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Lay Summary

The design of systems is an important field in aircraft architecture engineering. Especially if it has
to do with the safety of an aircraft. The research for this dissertation was done in cooperation with
AIRBUS Group France and they are very interested in the optimal design of aircraft architecture
systems. Therefore, this dissertation addresses how to optimally design the door management
system (DMS) which is an aircraft architecture system. The function of the DMS is to check if
all doors are properly closed and the cabin has the correct pressure. As the DMS is part of the
pressurization system of the aircraft, it is obvious why it is considered to be safety-critical. For
safety-critical systems, reliability and redundancy are important issues that have to be considered
while designing them.

Reliability is the probability of a system not failing. Imagine a gas network system which has
to transport gas from one point to another by using pipeline systems. The reliability of such a gas
network is the probability of it being able to transport the gas. Redundancy has also something
to do with the functionality of a system. Redundancy means that every function of a system is
implemented twice with both implementations not sharing any hardware. Consider again the gas
network example. It is redundant if there exists at least two pipelines systems that connect the
same two points and these two pipeline systems share no pipeline or crossing point. Therefore,
if one pipeline system has an error, the other is not affected and gas can still be transported
between the end points of the pipeline systems.

Hence, the objective of the dissertation is to examine how to optimally design the DMS under
consideration of reliability and redundancy. Optimality can mean different things. It can mean
that the system is supposed to weigh as little as possible, to be as cheap as possible or the
reliability to be as high as possible.

To address this objective, the thesis is split into three smaller problems. The first problem is
to find the most efficient calculation method for the reliability of the DMS that also can be used
in designing it in the best possible way. The second problem is to consider only redundancy and
to develop methods for designing an optimal DMS so that it is redundant. The last problem is to
consider both redundancy and reliability and to develop methods for designing an optimal DMS
so that it is redundant and has a certain reliability.
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Abstract

Reliability and redundancy of safety-critical network systems is a paramount issue in system
engineering. Be it in evaluating existing network systems or solving optimization problems for
designing network systems, it is important to consider reliability and redundancy. This disserta-
tion is in collaboration with AIRBUS Group, France, and they are very interest in the optimal
design of safety-critical aircraft architecture systems which have to consider reliability and re-
dundancy. To address the problem of optimally designing such systems, we chose to focus on
one specific aircraft architecture system the door management system. It checks if all doors are
properly closed and the cabin has the correct pressure. It is a safety-critical system since it is
part of the pressurization system of an aircraft.

To optimally design the DMS while considering reliability, a suitable reliability evaluation al-
gorithm is necessary. In this dissertation, we begin by proposing a suitable reliability evaluation
algorithm for a type of non series-parallel network system which includes the DMS and which
can be used in an optimization model. The reliability evaluation algorithm is based on a simplifi-
cation of the probability principle of inclusion-exclusion formula for intersections of unions. The
simplification exploits the presence of many repeated events and has many fewer terms, which
significantly reduces the number of operations needed. We compare its computational efficiency
against the sum of disjoint products method KDH88 for a simple artificial example and for the
DMS.

Afterwards, we introduce the first MILP model for the DMS with k-redundancy. As the
model is too difficult to be solved efficiently by standard MILP solvers, we discuss the issues
of solving the model with general solving methods such as branch-and-bound and branch-and-
price. We introduce specialized branching rules and new heuristics to solve the DMS problem
with k-redundancy more efficiently and show results of computational tests which compare the
specialized solving algorithms with general solving algorithms for example instances of the DMS
problem.

Lastly, we discuss the problems of considering reliability in MI(N)LP models for the DMS
and how the new reliability evaluation algorithm can be used. In this discussion, we give different
MI(N)LP models for the DMS problem with redundancy and reliability. Moreover, we propose
a new heuristic for the DMS problem with redundancy and reliability. It is based on branch-
and-bound, the Dantzig-Wolfe decomposition and on the new reliability evaluation algorithm.
We show results of computational tests of the new heuristic for example instances of the DMS
problem and discuss its validity.
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Chapter 1

Introduction

1.1 Motivation

Reliability and redundancy of safety-critical network systems is a paramount issue in system
engineering. Be it in evaluating existing network systems or solving optimization problems for
designing network systems, it is important to consider reliability and redundancy. First we would
like to define what reliability and redundancy of a network system are.

The reliability of a network system is its probability of not failing. Failure of a network
system happens if it cannot perform all of its functions. For example, a data information network
with multiple points fails if it cannot transfer data between any two points of the system. In
safety-critical network systems such as an aircraft safety system, the reliability should be at least
(1− 10−9) based on data from AIRBUS Group France.

Redundancy of a network system is given when every function of the network system is
implemented at least twice. This means that at least two implementations of a function do not
share any hardware components in the network system. Redundancy is mainly used to increase
the reliability of the system and because evaluation and calculation of reliability is very hard,
sometimes k-redundancy is considered for network systems. A network system is k-redundant if
each function of the network system is implemented k times and all implementations are disjoint.

In this dissertation, we are addressing the reliability calculation and the design of a door
management system (DMS), which is a safety-critical network system in aircraft architecture en-
gineering, through optimization while considering redundancy and/or reliability. We concentrate
on this specific safety-critical network system as the work for this PhD thesis is in cooperation
with AIRBUS Group France for whom this is a very important problem.

The functions of a DMS are to check the status of doors and locks in an aircraft, and send their
status information to on-board computers and from these on-board computers to pressurization
regulators in the aircraft. Because the pressurization of an aircraft is very important, the DMS
is a safety-critical network system. Figure 1.1 shows a simple DMS with one door and Figure 1.2
shows an example for a DMS with multiple doors.
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Figure 1.1: DMS for one door.

Figure 1.2: Example space for the DMS.

To consider reliability and k-redundancy in optimization models of network systems is a hard
problem and there has been considerable research in the literature for many different network
systems but not yet for the DMS. Not only are network system optimization models most often
mixed integer problems (MIP), but both redundancy and reliability create even greater challenges.
For example, k-redundancy brings symmetry to the MIP formulation, which creates problems for
most solvers. But k-redundancy is still the smaller problem and can be reasonably dealt with.
On the other hand, to consider reliability is much harder and to this day in most of the cases
it is not possible to solve a reliability optimization model exactly without certain restrictive
assumptions on the system. This is the case because reliability calculations are non-linear and
also non-convex and this makes the optimization problem a non-convex mixed integer non-linear
problem (MINLP), which can be considered as one of the hardest kind of optimization problem
today.
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Furthermore, most reliability calculation or evaluation methods are not suitable to be used in
MINLP formulations and when they can be included in the formulation as an MINLP constraint,
the number of variables and constraints needed is too large for the model to be solved.

Therefore, one of the main parts of this PhD thesis is to find and develop a reliability cal-
culation algorithm that can be used in an MIP formulation for the DMS problem. The other
main parts are how to consider redundancy and reliability in an MIP formulation for the DMS
problem.

1.2 Objective, Contribution and Structure

As mentioned before, we address in this thesis three issues that arise when considering reliability
and k-redundancy in MI(NL)Ps of network systems, specifically the DMS. They are:

• Finding the most suitable reliability calculation/evaluation method for the DMS, which can
also be used in MIPs.

• How to consider k-redundancy in an MILP formulation for the DMS and how to solve it
most efficiently.

• How to consider reliability in an MILP or MINLP formulation for the DMS and how to
solve it most efficiently.

The thesis is also structured into three parts, with each one addressing one of these issues.
We start in Chapter 2 by giving an overview of reliability calculation and evaluation methods

and discuss their suitability for MIP formulation. Afterwards we introduce our own reliability
calculation method, which uses a simplification of inclusion-exclusion for intersections of unions.
The simplification of inclusion-exclusion for intersections of unions is proven in Proposition 1 and
is the main result of this chapter. Furthermore, it is shown how to implement our new method
and we compare it with another similar existing method KDH88 [19]. The results of this chapter
are published in [48] of which I am the main author.

In Chapter 3, we first introduce for the first time an MILP formulation for the k-redundancy
DMS problem. For this problem, we explore two approaches to solve the MILP problem and
discuss why general solving methods are not suitable and efficient. The first approach is an
branch-and-bound algorithm with a new branching rule and heuristic which are tailored to the
DMS problem with k-redundancy. It is discussed why the general branching rules and heuristics
are not suitable and we show good performance of our algorithm with a computational study.
This research is part of the paper [49], of which I am the main author. The second approach is a
branch-and-price algorithm. We show that this approach is not efficient, but it helped to inspire
the main idea for a heuristic of the DMS problem with redundancy and reliability which is the
main result of the following chapter.

After having considered only k-redundancy, we start to also consider reliability. In Chapter 4
we address the DMS problem with redundancy and reliability. We first give MINLP and MILP
formulations for the DMS problem with redundancy and reliability and discuss why these cannot
be solved at the moment. Both of these formulations use our new reliability calculation method.
Since we cannot solve these formulations to optimality at the moment, we developed a heuristic
that gives a good reliability feasible solution by considering certain characteristics of reliability
calculation of network systems. It is based on the Dantzig-Wolfe decomposition, branch-and-
bound and our new reliability calculation method. This heuristic is introduced in Section 4.2.

Finally, in Chapter 5 we summarize the objective, methodology and results of our work and
draw our conclusions.
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Chapter 2

Reliability Calculation Method

In this chapter, we discuss the best way to calculate the reliability of the DMS which can also be
used in MIP formulations. This chapter is structured as follows.

In Section 2.1 we first give an overview of existing reliability calculation and evaluation meth-
ods and discuss their lack of suitability to be used in MIP formulations. For this reason, we
developed our own reliability calculation method which is based on a new simplification of the
probability principle of inclusion-exclusion for intersections of unions. This new method is the
main result of this chapter and is introduced in Section 2.2 as Proposition 1. In Section 2.2 we
also compare the time complexity of the new method with the time complexity of the classical
probability principle of inclusion-exclusion for intersections of unions. The two following sub-
sections, 2.2.1 and 2.2.2, contain the proofs for Proposition 1 and the time complexity of the
method.

To implement the reliability calculation method, we need a generating algorithm for a certain
type of set which we later introduce as Ck sets. Such an algorithm is introduced in Section 2.3
with a proof of correctness.

With this, we were able to run computational tests for the new reliability calculation method.
We implemented the method in Python and compared it to the KDH88 method which we also
implemented in Python. The results of these tests are shown in Section 2.4.

The last section of this chapter is Section 2.5 in which we discuss the applicability of our new
method and its limitations.

2.1 Reliability Evaluation/Calculations Methods

In this section we will give an introduction to reliability evaluation and calculation methods. As
mentioned before, reliability of a network system is the probability of the system not failing.
It is a critical issue in different fields such as computer networks, information networks or gas
networks. In particular, reliability of safety-critical network systems ([44],[42]) is an important
topic in system engineering. In most practical situations, the reliability of a complex network
system (e.g. a system that is not series-parallel) has to be calculated exactly [22]. There are
several methods to calculate or evaluate the reliability of a complex system which have been
developed in recent decades. For static systems, these include reliability block diagram models
[29], fault tree models, and binary decision diagram models. A general introduction to these
methods can be found in [44]. For time-dependent systems, modeling techniques such as Markov
models [31], dynamic fault tree models [6] and Petri net models [61] have been used.

Reliability calculations of complex systems can also be divided into systems with multi-state
components, where the components of a system operate in any of several intermediate states
with various effects on the entire system performance ([39], [38],[36],[43], [56] and [34]), or with
binary-state components, where either a component works perfectly or not at all. Furthermore,
reliability of complex systems with specific graph structures, like systems with a hypercube struc-
ture ([30],[33]), have received attention over the last few years. However most of these methods
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consider systems with two-terminal nodes or k-terminal nodes where all k-nodes have to be con-
nected. The DMS is a different type of complex system with a specific structure that has multiple
functions with multiple start and end nodes. This will be explained in more detail later on.

For considering reliability in an optimization model for the DMS, reliability calculation meth-
ods are methods that consider binary state component and the specific graph structure of the
network. Methods that are based on the classical probability principle of inclusion-exclusion,
whose formula is

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

(−1)i+1
∑

J⊆{1,...,n},
|J|=i

P

⋂
j∈J

Aj


 , (2.1)

with probability events A1, . . . , An, belong to this category.

Practical reliability calculations often involve very long expressions when the probability prin-
ciple of inclusion-exclusion formula (2.1) is used. Therefore, there are many approaches in the
literature on general network reliability calculations to simplify it such as, for example, partition-
ing techniques [12] and the sum of disjoint products (SDP) methods ([1],[19],[4], [41], [45], [60]).
SDP methods are the most often used approaches, with recent results in [59], [58], [57],[9] and
[51].

There is a problem with all of these methods. To simplify the classical probability principle
of inclusion-exclusion formula with these methods, the exact system structure is needed and not
only a general graph structure. However when we build the optimization model/MIP formulation,
we do not have the exact structure of the network system because the exact system structure is
the result of the optimization, and, therefore, these methods are not suitable.

We also found approximations, lower or upper bounds, of the probability principal of inclusion-
exclusion ([7, 10]) as a reliability evaluation method unsuitable. This is the case because the
approximations are not generally monotone increasing or decreasing with the exact reliability
value. We provide an example of this behavior for a lower bound approximation in Appendix A.1.

This shows us that we need a new reliability calculation method that does not use the exact
system structure. The method should only simplify the probability principle of inclusion-exclusion
based on a general graph structure of the system. We propose such a method in the following
section.

2.2 Simplification of Inclusion-Exclusion for Intersections of Unions

We propose our new approach to simplify the probability principle of inclusion-exclusion without
needing the exact system structure, and to apply it to the calculation of the reliability of complex
network systems in system engineering. To begin, we introduce the complex network systems
under consideration which are generalized from the network structure of the DMS.

In system engineering, most network systems have multiple functions that have to be per-
formed and these are not always independent (e.g., they share components). Reliability can be
increased if different sets of components in the network can perform the same function. There-
fore, these functions are implemented multiple times in the network system through different sets
of components, and calculation of the reliability of the network system becomes a very complex
task. Figure 2.1 shows an example complex network. It is a redundant DMS network with three
doors.
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Door, 1

S Closed, 4

S L&L, 8

S L&L, 11

S Closed, 24

Door, 2
S L&L, 7

S Closed, 12

S L&L, 22

S Closed, 23

Door, 3 S Closed, 10
S L&L, 19

S L&L, 25

S Closed, 26

RDC, 47

RDC, 44

RDC, 50
RDC, 45

OVF, 31

OVF, 32

OVF, 34

OCU, 36

OCU, 39

Switch, 80

Switch, 84

CPIOM, 74

CPIOM, 75

Figure 2.1: Redundant DMS network with three doors.

We assume that all failure probabilities of the individual components are known exactly. We
do not consider the case when these probabilities are known only approximately (e.g., either by
estimation or a confidence interval). If the different components of the network are independent of
each other, then we can easily calculate the reliability of a set of components. Through this we can
calculate the reliability of one implementation of a function, which is defined as the probability
of the event that one implementation of the function does not fail. Finally, the probability of
an intersection of such events can be calculated easily. However, if full independence cannot be
assumed, then the calculation becomes very expensive, usually prohibitively so, as we demonstrate
now.

Let n be the number of functions in the system and ti be the number of implementations of
function i in the system. Let Fi, i ∈ {1, . . . , n}, be the event that function i of a system does
not fail in a specific period of time and Fij , j ∈ {1, . . . , ti}, be the event that implementation j
of function i does not fail in a specific period of time. Let F = {F1, . . . , Fn} be the set of all
functions and Fi = {Fi1, . . . , Fiti} be the set of all implementations of function i. Furthermore,
let R be the event that the system does not fail. The reliability of the system, P (R), is the
probability that no function in F fails. A function F ∈ F does not fail if at least one of its
implementations does not fail. Therefore,

P (R) = P

(
n⋂

i=1

Fi

)
= P

 n⋂
i=1

 ti⋃
j=1

Fij

 .

Because the different functions and implementations may not be independent, P (R) is not easily
calculable. In order to work on this expression, first we need to establish some notations. Let

W = {1, . . . , t1} × . . .× {1, . . . , tn}, and

Bw =
n⋂

i=1

Fiwi for w = (w1, . . . , wn) ∈W,

where wi ∈ {1, . . . , ti} represents the implementation index of function i. We then have that

P (R) = P

 n⋂
i=1

 ti⋃
j=1

Fij

 = P

( ⋃
w∈W

(
n⋂

i=1

Fiwi

))
= P

( ⋃
w∈W

Bw

)
. (2.2)
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Now the probability principle of inclusion-exclusion can be used and it follows that

P (R) =

|W |∑
t=1

(−1)t+1
∑
I⊆W,
|I|=t

P

⋂
j∈I

Bj


 . (2.3)

The number of summands in (2.3), which is equal to the number of possible intersections of

Bw’s, is
∑|W |

t=1

(|W |
t

)
= 2|W | − 1 with |W | =

∏n
i=1 |Fi|. Therefore, we have a doubly exponential

computational complexity. Table 2.1 shows the number of summands for different values of the
number of functions and implementations, with the assumption that every function has the same
number of implementations.

|F| |Fi| Summands

2 2 15
2 3 5.11×102

2 4 6.55×104

3 2 2.55×102

3 3 1.34×108

3 4 1.84×1017

4 2 6.55×104

4 3 2.41×1024

5 2 4.29×109

5 3 1.41×1073

Table 2.1: Number of summands in the probability principle
of inclusion-exclusion formula.

As can be seen, even for a small number of functions and implementations, the calculation of
P (R) becomes very expensive. However, note that there are many (a priori different) terms that,
when the intersection of the sets is calculated, lead to the same intersection set, that is,

∃I, J ⊆W : I 6= J ∧
⋂
i∈I

Bi =
⋂
j∈J

Bj . (2.4)

For example, let F = {F1, F2}, F1 = {F11, F12} and F2 = {F21, F22}. It follows that

P (R) = P ((F11 ∩ F21) ∪ (F11 ∩ F22) ∪ (F12 ∩ F21) ∪ (F12 ∩ F22)) .

It can be seen, for example, that

B(1,1) ∩B(2,2) = (F11 ∩ F21) ∩ (F12 ∩ F22)

= F11 ∩ F12 ∩ F21 ∩ F22

= (F11 ∩ F21) ∩ (F11 ∩ F22) ∩ (F12 ∩ F21)

= B(1,1) ∩B(1,2) ∩B(2,1).

Therefore, it seems natural to determine which combinations lead to the same intersection set
and then simplify the formula. Utilizing this idea, we obtain the following result.

Proposition 1. Let F = {F1, . . . , Fn} and let Fi = {Fi1, . . . , Fiti}, i ∈ {1, . . . , n}, be sets of
events such that Fi =

⋃ti
j=1 Fij. Let R =

⋂n
i=1 Fi, m =

∑n
i=1 ti and, given k ∈ {n, n+ 1, . . . ,m},

let

Ck ={E = {E1, . . . , Ek} : Eu = Fi(u)j(u) for some i(u) ∈ {1, . . . , n}, j(u) ∈ {1, . . . , ti(u)},
u ∈ {1, . . . , k}, {i(l) | l ∈ {1, . . . , k}} = {1, . . . , n} and Ep 6= Eq for p, q ∈ {1, . . . , k}
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and p 6= q}.

That is, Ck is the family of sets E = {E1, . . . , Ek} of implementations not failing where every
function i, i ∈ {1, . . . , n}, is implemented at least once. Then

P (R) =

m∑
k=n

(−1)k−n
∑
E∈Ck

P

 k⋂
j=1

Ej

 . (2.5)

The proof for Proposition 1 can be found in Section 2.2.1. A generating algorithm for sets
Ck, k ∈ {n, n+ 1, . . . ,m}, is given in Section 2.3.

Table 2.2 shows the total number of summands that we obtain when we use the result stated
in Proposition 1 for different numbers of functions and implementations where we again assume
that every function has the same number of implementations. These calculations require summing
over k ∈ {n, . . . ,m} the cardinalities |Ck|, but Lemma 3, stated and proved in Section 2.2.2, shows

m∑
k=n

|Ck| =
n∏

i=1

(
2|Fi| − 1

)
, (2.6)

making the calculations possible. Therefore, the expression given by (2.5) has an exponential
computational complexity with a linear exponent.

|F| 2 2 2 3 3 3 4 4 5 5

|Fi| 2 3 4 2 3 4 2 3 2 3

Summands 9 49 225 27 343 3375 81 2401 243 16807

Table 2.2: Number of summands in formula (2.5).

When comparing Tables 2.1 and 2.2, we can see an enormous reduction in the number of
terms involved to calculate the same value of P (R). In the following, we prove Proposition 1 and
its time complexity.

2.2.1 Proof of Proposition 1

In this section, we prove Proposition 1 after stating and proving an auxiliary result (Lemma 2).
As we mentioned earlier (see (2.4)), there are different subsets of W in (2.3) that lead to the
same intersection set and, therefore, the same probability. The first result of the following lemma
enables us to count how many different subsets of W with the same cardinality t ∈ {1, . . . , |W |}
lead to the same intersection set. The second result of Lemma 2 gives us the coefficient of an
intersection set E in formula (2.5).

Lemma 2. Let t, n ∈ N+ and let A1, . . . , An be non-empty sets with Ai ∩ Aj = ∅ ∀i 6= j,
A =

⋃n
i=1Ai, k = |A| and D = A1 × . . .×An. Furthermore, let us define s(e) = {e1, . . . , en} for

e = (e1, . . . , en) ∈ D and, given I ⊆ A and A = (A1, . . . , An), let

p(I,A) =

n∏
i=1

|Ai ∩ I| = |(A1 ∩ I)× . . .× (An ∩ I)|.

Let c(A, t) be the total number of non-empty subsets {e1, . . . , et} ⊆ D of cardinality t such that⋃t
`=1 s(e

`) = A. Then

1. c(A, t) =
∑k−n

i=0 (−1)i
∑

I⊆A,
|I|=k−i

(
p(I,A)

t

)
, (2.7)

2.
∑|D|

t=1(−1)t−1c(A, t) = (−1)k−n. (2.8)
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Proof.
1. First we prove (2.7) by induction over k ≥ n. We use

(
i
j

)
= 0 if j > i several times throughout

the proof. The first time it is needed is to see that for all t with t > |D|, we have that c(A, t) = 0
because there exist no subsets of D with cardinality strictly greater than |D|. Furthermore, if
t > |D| and because p(I,A) ≤ |D|, the right-hand side of (2.7) is 0. Therefore, (2.7) holds for
t > |D|. In the following, we assume that t ≤ |D|.

If k = n, then |A1| = . . . = |An| = 1 and |D| = 1 and we can assume t = 1. Thus

k−n∑
i=0

(−1)i
∑
I⊆A,
|I|=k−i

(
p(I,A)

t

)
= (−1)0

(
1

1

)
= 1.

Moreover, |D| = 1 means that there exists exactly one vector e ∈ D and s(e) = A. Therefore,
c(A, 1) = 1 and the formula is correct for k = n.

Let us assume that (2.7) holds for n, k, t ∈ N+ with k ≥ n. We will show that it also
holds for k + 1. For this, let A1, . . . , An be non-empty sets with Ai ∩ Aj = ∅ for all i 6= j,
A =

⋃n
i=1Ai with |A| = k + 1 and A = (A1, . . . , An). We can write the number of non-empty

subsets {e1, . . . , et} ⊆ D of cardinality t from D with
⋃t

l=1 s(e
l) = A as the number of subsets

{e1, . . . , et} ⊆ D of cardinality t minus the number of subsets {e1, . . . , et} ⊆ D of cardinality t
with

⋃t
i=1 s(e

i) = A\J for all non-empty sets J ⊆ A, |J | ≤ k + 1 − n (because |A\J | ≥ n) and
p(A\J,A) =

∏n
i=1 |(Ai ∩ (A\J))| =

∏n
i=1 |(Ai\J)| 6= 0. Since for these sets A\J we have that

|A\J | ≤ k, we can use the induction hypothesis to obtain that the number of such sets, for each
J , is c(A\J, t), where we define A\J = (A1\J, . . . , An\J). Therefore, using that |D| = p(A,A)
we have that

c(A, t) =

(
|D|
t

)
−

k+1−n∑
j=1

 ∑
J⊆A, |J|=j,
p(A\J,A)6=0

c(A\J, t)


=

(
p(A,A)

t

)
−

k+1−n∑
j=1

 ∑
J⊆A, |J|=j,
p(A\J,A)6=0

k+1−j−n∑
i=0

(−1)i
∑
I⊆A\J,

|I|=k+1−j−i

(
p(I,A\J)

t

)
 .

We can drop the condition p(A\J,A) 6= 0, because if p(A\J,A) = 0 then there exists i ∈ {1, . . . , n}
such that Ai\J = ∅ and therefore we have for all I ⊆ A\J that p(I,A\J) = 0. Thus, by dropping
the condition only zeros are added to the sum. Furthermore based on the definition of function p,
we know that for all I, J ⊆ A :

p(I,A\J) =

n∏
i=1

|(Ai\J) ∩ I| =
n∏

i=1

|Ai ∩ (I\J)| = p(I\J,A).

Therefore

c(A, t) =

(
p(A,A)

t

)
−

k+1−n∑
j=1

 ∑
J⊆A, |J |=j

k+1−j−n∑
i=0

(−1)i
∑
I⊆A\J,

|I|=k+1−j−i

(
p(I\J,A)

t

)


=

(
p(A,A)

t

)
−

k+1−n∑
j=1

 ∑
J⊆A, |J |=j

k+1−j−n∑
i=0

(−1)i
∑

I⊆A, J⊆I,
|I|=k+1−i

(
p(I\J,A)

t

)
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=

(
p(A,A)

t

)
−

k+1−n∑
j=1

k+1−j−n∑
i=0

(−1)i

 ∑
J⊆A, |J |=j

∑
I⊆A, J⊆I,
|I|=k+1−i

(
p(I\J,A)

t

)
 . (2.9)

Next, we define A[`] = {I ⊆ A : |I| = `}, ` ∈ N+, and we have that
∀` ∈ {1, . . . , |A| − 1} ∀L ∈ A[`] ∀j ∈ {1, . . . , |A| − `} :

|{(I, J) ∈ A[`+ j]×A[j] : J ⊆ I, I\J = L}|
= |{(I, J) ∈ A[`+ j]×A[j] : L ∩ J = ∅, I = L ∪ J}|
= |{(L ∪ J, J) ∈ A[`+ j]×A[j] : L ∩ J = ∅}|
= |{J ∈ A[j] : J ⊆ A\L}|

=

(
|A| − `
j

)
. (2.10)

The last step is known from the general result for unordered sampling without replacement in
combinatorics. Equation (2.10) can now be used to rewrite (2.9) by summing over sets L = I\J
with coefficients

(|A|−`
j

)
instead of summing over J and I separately. We can now write that

(2.9) =

(
p(A,A)

t

)

−
k+1−n∑
j=1

k+1−j−n∑
`=0

(−1)`
∑
L⊆A,

|L|=k+1−j−`

((
|A| − (k + 1− j − `)

j

)(
p(L,A)

t

))
=

(
p(A,A)

t

)
−

k+1−n∑
j=1

k+1−j−n∑
`=0

(−1)`
∑
L⊆A,

|L|=k+1−j−`

((
j + `

j

)(
p(L,A)

t

)) . (2.11)

Now let ˆ̀∈ {1, . . . , k + 1− n} and L ∈ A[k + 1− ˆ̀]. It holds that

∀j ∈ {1, . . . , ˆ̀} ∃` ∈ {0, . . . , k + 1− n− j} : j + ` = ˆ̀

and that L appears exactly once for all possible combinations j + ` = ˆ̀ with the coefficients

(−1)
ˆ̀−j( ˆ̀

j

)
= (−1)

ˆ̀+j
( ˆ̀
j

)
in (2.11). Therefore, we can take the sum over the sets L ∈ A[k + 1− ˆ̀]

for ˆ̀∈ {1, . . . , k + 1− n} and it holds that

(2.11) =

(
p(A,A)

t

)
−

k+1−n∑
ˆ̀=1

 ∑
L⊆A, p(L,A)6=0,

|L|=k+1−ˆ̀

 ˆ̀∑
j=1

(−1)
ˆ̀+j

( ˆ̀

j

)(p(L,A)

t

)

=

(
p(A,A)

t

)
−

k+1−n∑
ˆ̀=1

 ∑
L⊆A, p(L,A)6=0,

|L|=k+1−ˆ̀

(−1)
ˆ̀

 ˆ̀∑
j=1

(−1)j
( ˆ̀

j

)(p(L,A)

t

) . (2.12)

Finally, by using the following known result from combinatorics

n∑
i=0

(−1)i
(
n

i

)
=

n∑
i=1

(−1)i
(
n

i

)
+ 1 = 0, (2.13)
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we have that

(2.12) =

(
p(A,A)

t

)
−

k+1−n∑
ˆ̀=1

 ∑
L⊆A,

|L|=k+1−ˆ̀

(−1)
ˆ̀
(−1)

(
p(L,A)

t

)

=

(
p(A,A)

t

)
+

k+1−n∑
ˆ̀=1

 ∑
L⊆A,

|L|=k+1−ˆ̀

(−1)
ˆ̀
(
p(L,A)

t

)

=

k+1−n∑
ˆ̀=0

 ∑
L⊆A,

|L|=k+1−ˆ̀

(−1)
ˆ̀
(
p(L,A)

t

) .

This completes the proof for (2.7).

2.) Now we will prove the second result, (2.8), for n ≥ 1 and k ≥ 1 with n ≤ k by induction
over m = k − n. Let n ≥ 1, k ≥ 1 and let A1, . . . , An be non-empty sets with Ai ∩ Aj = ∅ for
all i 6= j, A =

⋃n
i=1Ai with |A| = k, A = (A1, . . . , An) and D = A1 × . . .×An. We can rewrite

(2.8) by using (2.7) as follows:

|D|∑
t=1

(−1)t−1c(A, t) =

p(A,A)∑
t=1

(−1)t−1
k−n∑
i=0

 ∑
I⊆A,
|I|=k−i

(−1)i
(
p(I,A)

t

)


=

p(A,A)∑
t=1

(−1)t−1
k−n∑
i=0

 ∑
I⊆A, p(I,A)6=0,
|I|=k−i

(−1)i
(
p(I,A)

t

)


=

k−n∑
i=0

(−1)i

 ∑
I⊆A, p(I,A) 6=0,
|I|=k−i

p(I,A)∑
t=1

(−1)t−1
(
p(I,A)

t

) . (2.14)

Next we use (2.13) again and thus,

(2.14) =
k−n∑
i=0

(−1)i

 ∑
I⊆A, p(I,A)6=0,
|I|=k−i

(−1)

p(I,A)∑
t=0

(−1)t
(
p(I,A)

t

)
− 1




=
k−n∑
i=0

(−1)i

 ∑
I⊆A, p(I,A)6=0,
|I|=k−i

(−1)2


=

k−n∑
i=0

(−1)i

 ∑
I⊆A, p(I,A)6=0,
|I|=k−i

1

 .

If we now modify the external sum on the previous expression to start with i = n, it follows that

|D|∑
t=1

(−1)t−1c(A, t) = (−1)k
k∑

i=n

(−1)i

 ∑
I⊆A, p(I,A)6=0,

|I|=i

1

 . (2.15)
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If m = 0 and therefore n = k, then

|D|∑
t=1

(−1)t−1c(A, t) = (−1)k
k∑

i=n

(−1)i

 ∑
I⊆A, p(I,A)6=0,

|I|=i

1


= (−1)n · (−1)n · 1 = 1 = (−1)k−n.

As a consequence, equation (2.8) holds for m = 0.

We assume now that it holds for n ≥ 1 and k ≥ 1 with m = k − n and m ≥ 0. Without
loss of generality, we show that it also holds for m + 1 with m + 1 = (k + 1) − n by fixing n.
For this, let A1, . . . , An be non-empty sets with Ai ∩ Aj = ∅ for all i 6= j, and A =

⋃n
i=1Ai with

|A| =
∑n

i=1 |Ai| = k. Furthermore, let A∗1, A
∗
2, . . . , A

∗
n be non-empty sets with A∗ =

⋃n
i=1A

∗
i

and |A∗| = k + 1. Without loss of generality, let A2 = A∗2, . . . , An = A∗n and A1 = A∗1\{δ}
with δ /∈

⋃n
i=2Ai. Also, let Â1, . . . , Ân−1 be non-empty sets with Â1 = A2, . . . , Ân−1 = An and

Â =
⋃n−1

i=1 Âi. By using (2.15), it holds that

p(A∗,A∗)∑
t=1

(−1)t−1c(A∗, t) = (−1)k+1
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,

|I|=i

1


= (−1)

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,

|I|=i

1


 .

The sum over the subsets I can be split by considering whether the subsets contain δ or not:

= (−1)


(−1)k

k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,
|I|=i, δ/∈I

1


+

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,
|I|=i, δ∈I

1





= (−1)

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗\{δ}, p(I,A∗\{δ})6=0,

|I|=i

1




+ (−1)

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,
|I|=i, δ∈I

1


 .

Using that A∗\{δ} = A and that no subset of A can be of cardinality k + 1, we can rewrite the
first sum:

= (−1)


(−1)k

k∑
i=n

(−1)i

 ∑
I⊆A, p(I,A)6=0,

|I|=i

1


+

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗) 6=0,
|I|=i, δ∈I

1





= (−1)

p(A,A)∑
t=1

(−1)t−1c(A, t) +

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,
|I|=i, δ∈I

1



 ,

where we use (2.15) to obtain this last equality. Finally, by using the induction hypothesis for
m = k − n:

= (−1)

(−1)k−n +

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,
|I|=i, δ∈I

1
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= (−1)k+1−n + (−1)

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,
|I|=i, δ∈I

1


 .

Thus to prove that (2.8) holds for m+ 1, we only have to show that

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,
|I|=i, δ∈I

1

 = 0. (2.16)

First, we rewrite the left-hand side of (2.16) as follows:

(−1)k
k+1∑
i=n

(−1)i

 ∑
I⊆A∗, p(I,A∗)6=0,
|I|=i, δ∈I

1


= (−1)k

k+1∑
i=n

(−1)i

 ∑
I⊆A∗\{δ}, p(I∪{δ},A∗)6=0,

|I|=i−1

1


= (−1)k

k∑
i=n−1

(−1)i+1

 ∑
I⊆A∗\{δ}, p(I∪{δ},A∗)6=0,

|I|=i

1

 . (2.17)

The following observations are needed to rewrite (2.17) further.

1. First note that A∗\A∗1 = Â, and that for all I ⊆ Â :

p(I ∪ {δ},A∗) =
n∏

i=1

|A∗i ∩ (I ∪ {δ})|

=|{δ}| ·
n∏

i=2

|A∗i ∩ I| =
n−1∏
i=1

|Âi ∩ I| = p(I, Â). (2.18)

2. In addition, A∗\{δ} = A and for all I ⊆ A it holds that

p(I ∪ {δ},A∗) =
n∏

i=1

|A∗i ∩ (I ∪ {δ}) | = (|A1 ∩ I|+ 1)

n∏
i=2

|A∗i ∩ I|.

Therefore,

p(I ∪ {δ},A∗) 6= 0⇔
n∏

i=2

|A∗i ∩ I| =
n−1∏
i=1

|Âi ∩ I| = p(I, Â) 6= 0.

3. Moreover, it holds that

∀I ⊆ A : p(I, Â) 6= 0 ∧ |I ∩A1| 6= 0

⇔ p(I, Â) · |I ∩A1| = p(I,A) 6= 0. (2.19)

Now we can rewrite (2.17) by splitting the sum over subsets I by considering whether or not the
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subset is disjoint with A1.

(−1)k
k∑

i=n−1
(−1)i

 ∑
I⊆A∗\{δ}, p(I∪{δ},A∗)6=0,

|I|=i

1



= (−1)k
k∑

i=n−1
(−1)i

 ∑
I⊆A∗\A∗1, p(I∪{δ},A

∗)6=0,

|I|=i

1


+ (−1)k

k∑
i=n

(−1)i

 ∑
I⊆A∗\{δ}, p(I∪δ,A∗) 6=0,

|I|=i, I∩A1 6=∅

1

 .

(2.20)

By using (2.18), we can rewrite the sum over I ⊆ A∗\A∗1 = Â and, by using (2.19), the sum
over I ⊆ A∗\{δ} = A. Furthermore, we can change the upper limit of the first sum in (2.20) to
|Â| = k − |A1|. Therefore, we can write that (2.20) is

= (−1)k
k−|A1|∑
i=n−1

(−1)i

 ∑
I⊆Â, p(I,Â)6=0,

|I|=i

1

+ (−1)k
k∑

i=n

(−1)i

 ∑
I⊆A, p(I,A)6=0,

|I|=i

1



= (−1)|A1| (−1)k−|A1|
k−|A1|∑
i=n−1

(−1)i

 ∑
I⊆Â, p(I,Â)6=0,

|I|=i

1


+ (−1)k

k∑
i=n

(−1)i

 ∑
I⊆A, p(I,A)6=0,

|I|=i

1

 .

(2.21)

Further, as (k− |A1|)− (n− 1) < m+ 1 and k− n < m+ 1, we can use the induction hypothesis
on both sums and we use (2.15) to obtain that

(2.21) =
(

(−1)|A1| (−1)k−|A1|−(n−1) + (−1)k−n
)

=
(

(−1)k−(n−1) + (−1)k−n
)

= 0.

Hence, we have proved that

|D|∑
t=1

(−1)t−1c(A, t) = (−1)k−n (2.22)

holds for any n ≥ 1 and k ≥ 1 with k − n ≥ 0 which completes the proof of Lemma 2.

We can now prove our main result, Proposition 1.

Proof of Proposition 1.

Since R =
⋂

F∈F F , it follows that

P (R) = P

(
n⋂

i=1

Fi

)
= P

 n⋂
i=1

 ti⋃
j=1

Fij

 . (2.23)
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Let

W = {1, . . . , t1} × . . .× {1, . . . , tn},

Bw =

n⋂
i=1

Fiwi and

Bw = {F1w1 , . . . , Fnwn} for w = (w1, . . . , wn) ∈W.

We can rewrite (2.23) as

P (R) = P

( ⋃
w∈W

(
n⋂

i=1

Fiwi

))
= P

( ⋃
w∈W

Bw

)

as in (2.3). Using the probability principle of inclusion-exclusion (2.1), it holds that

P (R) =

|W |∑
t=1

(−1)t+1
∑
I⊆W,
|I|=t

P

⋂
j∈I

Bj


 . (2.24)

Based on the definition of Bw, w ∈W , we know that

∀I ⊆W ∃k ∈ {n, n+ 1, . . . ,m} and ∃ E = {E1, . . . , Ek} ∈ Ck :⋂
j∈I

Bj =
k⋂

i=1

Ei. (2.25)

We define for all k ∈ {n, n+ 1, . . . ,m} and E ∈ Ck :

DE = {Bw : Bw ∩E = Bw and w ∈W}.

Furthermore, for all k ∈ {n, . . . ,m}, E ∈ Ck and ` ∈ {1, . . . , |DE|}, let us define

T (E, `) =

{
I ⊆W : |I| = ` and

⋃
i∈I

Bi = E

}
and

t (E, `) = |T (E, `)| .

If we use (2.25), we can rewrite (2.24) to a sum over E ∈ Ck, k = n, . . . ,m, where the coefficients

are
∑|W |

i=1 (−1)i+1 t(E, i). Furthermore, we can rewrite it as
∑|DE|

i=1 (−1)i+1 t(E, i), because t(E, `)
is zero for E ∈ Ck, k = n, . . . ,m and ` ≥ 1 if |DE| < `. Hence, we have that (2.24) is

=
m∑

k=n

∑
E∈Ck

|DE |∑
i=1

(−1)i+1 t(E, i)

P

 k⋂
j=1

Ej

 (2.26)

In addition, let E = (F1 ∩E, . . . ,Fn ∩E). Based on the first result (2.7) from Lemma 2, we know
that t(E, `) = c (E , `) for all E ∈ Ck, k ∈ {n, n + 1, . . . ,m} and ` ∈ {1, . . . , |DE|}. This gives us
that (2.25) is

=
m∑

k=n

∑
E∈Ck

|DE |∑
i=1

(−1)i+1 c(E , i)

P

 k⋂
j=1

Ej
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and using (2.8) from Lemma 2, it holds that

=
m∑

k=n

∑
E∈Ck

(−1)k−nP

 k⋂
j=1

Ej


=

m∑
k=n

(−1)k−n
∑
E∈Ck

P

 k⋂
j=1

Ej

 .

This completes the proof and we have shown that (2.5) holds.

Now we going to prove the time complexity.

2.2.2 Proof of Time Complexity

Lemma 3 states the time complexity of the new formula in Proposition 1 and the proof for this
Lemma is given next.

Lemma 3. Let n ≥ 1, Fi = {Fi1, . . . , Fiti}, i ∈ {1, . . . , n}, be sets of cardinality ti, ti ≥ 1 and
F = (Fi, . . . ,Fn). Let m :=

∑n
i=1 ti and, given k ∈ {n, n+ 1, . . . ,m}, let

CF
k :={E = {E1, . . . , Ek} : Eu = Fi(u)j(u) for some i(u) ∈ {1, . . . , n}, j(u) ∈ {1, . . . , ti(u)},

u ∈ {1, . . . , k}, {i(l) | l ∈ {1 . . . , k}} = {1, . . . , n} and Eu 6= Ev for u 6= v ∈ {1, . . . , k}}.

Lastly, let c(F) :=
∑m

k=n |CF
k |. It holds that

c(F) =
m∑

k=n

|CF
k | =

n∏
i=1

(
2|Fi| − 1

)
. (2.27)

Proof. We prove (2.27) by induction. Let n ≥ 1 and ti ≥ 1, i ∈ {1, . . . , n}. We use induction on
` = m−n. Because all ti, i ∈ {1, . . . , n}, are greater than 1, m ≥ n and we can first assume ` = 0
with m = n. With m = n, we have that t1 = . . . = tn = 1. Therefore Cn = {{F11, . . . , Fn1}} and
c(F) =

∑m
k=n |Ck| = |Cn| = 1. Also

n∏
i=1

(
2|Fi| − 1

)
=

n∏
i=1

1 = 1

and (2.27) holds for ` = 0.

We assume now that (2.27) holds for n ≥ 1 and ti ≥ 1, i ∈ {1, . . . , n}, with ` = m − n
and ` ≥ 0. Without loss of generality, we show it also holds for ` + 1 with `+ 1 = (m+ 1)− n
by fixing n. Let n ≥ 1, Fi = {Fi1, . . . , Fiti}, for i ∈ {1, . . . , n} be sets of cardinality ti, ti ≥ 1
and m =

∑n
i=1 ti. We then know that c(F) =

∏n
i=1

(
2|Fi| − 1

)
. Without loss of generality, let

F∗i = Fi, i ∈ {1, . . . , n − 1}, F∗n = Fn ∪ {δ}, δ /∈ Fn, and F∗ = (F∗1 , . . . ,F∗n). Furthermore, let
F̂i = Fi, i ∈ {1, . . . , n− 1} and F̂ = (F̂1, . . . , ˆFn−1). For k ∈ {n, . . . ,m+ 1}, we can split the set
CF∗
k by considering whether or not δ is contained in E. We have that

CF∗
k = {E ∈ CF∗

k : δ ∈ E} ∪ {E ∈ CF∗
k : δ /∈ E} and

|CF∗
k | = |{E ∈ CF∗

k : δ ∈ E}|+ |{E ∈ CF∗
k : δ /∈ E}|.

For k ∈ {n, . . . ,m}, {E ∈ CF∗
k : δ /∈ E} = CF

k and {E ∈ CF∗
m+1 : δ /∈ E} = ∅. By the induction

hypothesis,

m+1∑
k=n

|{E ∈ CF∗
k : δ /∈ E}| =

m∑
k=n

|CF
k | =

n∏
i=1

(
2|Fi| − 1

)
= c(F). (2.28)
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The set {E ∈ CF∗
k : δ ∈ E}, k ∈ {n, . . . ,m+ 1}, can be further split into two sets by considering

if, for E ∈ CF∗
k , Fn ∩E = ∅ or Fn ∩E 6= ∅. This gives

{E ∈ CF∗
k : δ ∈ E}

= {E ∈ CF∗
k : δ ∈ E and Fn ∩E = ∅} ∪ {E ∈ CF∗

k : δ ∈ E and Fn ∩E 6= ∅} and hence

|{E ∈ CF∗
k : δ ∈ E}|

= |{E ∈ CF∗
k : δ ∈ E and Fn ∩E = ∅}|+ |{E ∈ CF∗

k : δ ∈ E and Fn ∩E 6= ∅}|.

Let m̂ =
∑n−1

i=1 ti. The set {E ∈ CF∗
k : δ ∈ E and Fn ∩ E = ∅}, k ∈ {n, . . . , m̂ + 1}, can also be

rewritten as

{E ∈ CF∗
k : δ ∈ E and Fn ∩E = ∅} = {E ∪ {δ} : E ∈ CF̂

k−1}.

Therefore it holds that

|{E ∈ CF∗
k : δ ∈ E and Fn ∩E = ∅}| = |{E ∪ {δ} : E ∈ CF̂

k−1}| = |CF̂
k−1|.

Next, since | (
⋃n

i=1F∗i ) ∩ Fn| = m̂+ 1, we have that {E ∈ CF∗
k : δ ∈ E and Fn ∩ E = ∅} = ∅ for

k ∈ {m̂+ 2, . . . ,m+ 1}. Because m̂+ 1− (n− 1) < (m+ 1)−n = `+ 1, we can use the induction
hypothesis to see that

m+1∑
k=n

|{E ∈ CF∗
k : δ ∈ E and Fn ∩E = ∅}| =

m̂+1∑
k=n

|CF̂
k−1|

=
m̂∑

k=n−1
|CF̂

k | =
n−1∏
i=1

(
2|F̂i| − 1

)
= c(F̂). (2.29)

Now we consider the sets {E ∈ CF∗
k : δ ∈ E and Fn ∩ E 6= ∅}, k ∈ {n, . . . ,m}. For k = n, let

E ∈ CF∗
k and we have that |E ∩ F∗i | = 1 for i ∈ {1, . . . , n}. Therefore,

{E ∈ CF∗
n : δ ∈ E and Fn ∩E 6= ∅} = ∅.

For k ∈ {n+ 1, . . . ,m+ 1} it holds that

{E ∈ CF∗
k : δ ∈ E and Fn ∩E 6= ∅} = {E ∪ {δ} : E ∈ CF

k−1}

and thus it follows that

|{E ∈ CF∗
k : δ ∈ E and Fn ∩E 6= ∅}| = |{E ∪ {δ} : E ∈ CF

k−1}| = |CF
k−1|. (2.30)

By using the induction hypothesis again,

m+1∑
k=n

|{E ∈ CF∗
k : δ ∈ E and Fn ∩E 6= ∅}| =

m+1∑
k=n+1

|CF
k−1| =

m∑
k=n

|CF
k |

=

n∏
i=1

(
2|Fi| − 1

)
= c(F).

We can now write

c(F∗) =

m∑
k=n

|CF∗
k |

=
m∑

k=n

|{E ∈ CF∗
k : δ /∈ E}|+

m∑
k=n

|{E ∈ CF∗
k : δ ∈ E and Fn ∩E = ∅}|
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+
m∑

k=n

|{E ∈ CF∗
k : δ ∈ E and Fn ∩E 6= ∅}|

and using (2.28), (2.29) and (2.30), we obtain that

= 2c(F) + c(F̂) = 2

n∏
i=1

(
2|Fi| − 1

)
+

n−1∏
i=1

(
2|Fi| − 1

)
=
(

2
(

2|Fn| − 1
)

+ 1
) n−1∏

i=1

(
2|Fi| − 1

)
=

n−1∏
i=1

(
2|Fi| − 1

)
∗
(

2|Fn|+1 − 1
)

=

n∏
i=1

(
2|F

∗
i | − 1

)
.

This shows that (2.27) holds for `+ 1 and thus, by induction, completes the proof.

2.3 Generating Algorithm for Sets Ck

In this section, we provide a generating algorithm for the elements of sets Ck in Proposition 1.
Furthermore, we include an example of how the algorithm works for n = 2 and t1 = t2 = 3.

The algorithm only needs the inputs n and ti, i ∈ {1, . . . , n} and is described in Algorithm 1.
The correctness of Algorithm 1 is proven in the Subsection 2.3.1.

Algorithm 1 Generating Algorithm

Require: n and t = {t1, . . . , tn}.
1: Create sets Hi = {Fi,p | p ∈ {1, . . . , ti} }, i ∈ {1, . . . , n} and let m =

∑n
i=1 tn.

2: for k ∈ {n, . . . ,m}
3: Set E = {}.
4: Recursion(k, n,E)
5: end for
6: procedure Recursion(l, s, E)
7: Set ubs = min{l − (s− 1), ts} and lbs = max{1, l −

∑s−1
b=1 tb}.

8: for i ∈ {lbs, . . . , ubs}
9: Create all combinations Combsi of Hs of length i.

10: for J ∈ Combsi
11: Set Ê = E ∪ J .
12: if s > 1
13: Recursion(l − i, s− 1, Ê)
14: end if
15: else
16: Output Ê as element of Ck

17: end else
18: end for
19: end for

We now present an example of how to generate elements of Ck sets and the formula from
Proposition 1 for n = 2 and t1 = t2 = 3. Furthermore, we show how the algorithm works by
generating elements of C3.

1. First, we define the two sets H1 = {F(1,1), F(1,2), F(1,3)} and H2 = {F(2,1), F(2,2), F(2,3)}.

2. Next, we set E = ∅ and start the Recursion procedure with Recursion(3, 2, E).

3. The next step is to calculate ub2 and lb2. In this case we have
ub2 = min{(3− (2− 1), 3} = 2 and lb2 = max{1, 3− (2− 1)× 3} = 1.
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4. For i = 1, we create all possible combinations Comb21 of H2 of length 1 and obtain
Comb21 = H2.

5. We choose J = {F(2,1)} and we have that Ê = E ∪ J = {F(2,1)}.

6. As s = 2 > 1, we start the recursion procedure with Recursion(2, 1, Ê).

7. We have to calculate lb1 and ub2. We have that lb1 = ub1 = 2.

8. Therefore, i = 2 and we create Comb12 = {{F(1,1), F(1,2)}, {F(1,1), F(1,3)}, {F(1,2), F(1,3)}}.

9. First, we choose J = {F(1,1), F(1,2)} and we have that Ê = {F(2,1), F(1,1), F(1,2)}.

10. As s = 1, Ê is an element of C3 and we iterate over the elements of Comb12. We also obtain
{F(2,1), F(1,1), F(1,3)} and {F(2,1), F(1,2), F(1,3)} which are elements of C3.

After running the algorithm for all k ∈ {2, . . . , 6}, we obtain the following sets Ck, k ∈ {2, . . . , 6}.

C2 = {{F(1,1), F(2,1)}, {F(1,1), F(2,2)}, {F(1,1), F(2,3)}, {F(1,2), F(2,1)}, {F(1,2), F(2,2)},
{F(1,2), F(2,3)}, {F(1,2), F(2,1)}, {F(1,2), F(2,2)}, {F(1,2), F(2,3)}},

C3 = {{F(2,1), F(1,1), F(1,2)}, {F(2,1), F(1,1), F(1,3)}, {F(2,1), F(1,2), F(1,3)}, {F(2,2), F(1,1), F(1,2)},
{F(2,2), F(1,1), F(1,3)}, {F(2,2), F(1,2), F(1,3)}, {F(2,3), F(1,1), F(1,2)}, {F(2,3), F(1,1), F(1,3)},
{F(2,3), F(1,2), F(1,3)}, {F(2,1), F(2,2), F(1,1)}, {F(2,1), F(2,2), F(1,2)}, {F(2,1), F(2,2), F(1,3)},
{F(2,1), F(2,3), F(1,1)}, {F(2,1), F(2,3), F(1,2)}, {F(2,1), F(2,3), F(1,3)}, {F(2,2), F(2,3), F(1,1)},
{F(2,2), F(2,3), F(1,2)}, {F(2,2), F(2,3), F(1,3)}},

C4 = {{F(2,1), F(1,1), F(1,2), F(1,3)}, {F(2,2), F(1,1), F(1,2), F(1,3)}, {F(2,3), F(1,1), F(1,2), F(1,3)},
{F(2,1), F(2,2), F(1,1), F(1,2)}, {F(2,1), F(2,2), F(1,1), F(1,3)}, {F(2,1), F(2,2), F(1,2), F(1,3)},
{F(2,1), F(2,3), F(1,1), F(1,2)}, {F(2,1), F(2,3), F(1,1), F(1,3)}, {F(2,1), F(2,3), F(1,2), F(1,3)},
{F(2,2), F(2,3), F(1,1), F(1,2)}, {F(2,2), F(2,3), F(1,1), F(1,3)}, {F(2,2), F(2,3), F(1,2), F(1,3)},
{F(2,1), F(2,2), F(2,3), F(1,1)}, {F(2,1), F(2,2), F(2,3), F(1,2)}, {F(2,1), F(2,2), F(2,3), F(1,3)}},

C5 = {{F(2,1), F(2,2), F(1,1), F(1,2), F(1,3)}, {F(2,1), F(2,3), F(1,1), F(1,2), F(1,3)},
{F(2,2), F(2,3), F(1,1), F(1,2), F(1,3)}, {F(2,1), F(2,2), F(2,3), F(1,1), F(1,2)},
{F(2,1), F(2,2), F(2,3), F(1,1), F(1,3)}, {F(2,1), F(2,2), F(2,3), F(1,2), F(1,3)}}, and

C6 = {{F(2,1), F(2,2), F(2,3), F(1,1), F(1,2), F(1,3)}}.

To show the sum of (2.5), which is the new formula of the simplification of the inclusion-
exclusion principle, for n = 2 and t1 = t2 = 3, we use a simple artificial example that is also
used later in the computational tests. We assume that each implementation j of i, i ∈ {1, 2}
and j ∈ {1, . . . , 3}, corresponds to an elementary component aij which is independent of all
other components and has reliability rij . Therefore, for E ∈ Ck, k ∈ {2, . . . , 6}, we find that
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P (E) =
∏

F(i,j)∈E rij and for R we have that

P (R) = r21r11 + r21r12 + r21r13 + r22r11 + r22r12 + r22r13 + r23r11 + r23r12 + r23r13

+ r21r11r12 + r21r11r13 + r21r12r13 + r22r11r12 + r22r11r13 + r22r12r13 + r23r11r12 + r23r11r13

+ r23r12r13 + r21r22r11 + r21r22r12 + r21r22r13 + r21r23r11 + r21r23r12 + r21r23r13 + r22r23r11

+ r22r23r12 + r22r23r13 + r21r11r12r13 + r22r11r12r13 + r23r11r12r13 + r21r22r11r12 + r21r22r11r13

+ r21r22r12r13 + r21r23r11r12 + r21r23r11r13 + r21r23r12r13 + r22r23r11r12 + r22r23r11r13

+ r22r23r12r13 + r21r22r23r11 + r21r22r23r12 + r21r22r23r13 + r21r22r11r12r13 + r21r23r11r12r13

+ r22r23r11r12r13 + r21r22r23r11r12 + r21r22r23r11r13 + r21r22r23r12r13 + r21r22r23r11r12r13.

2.3.1 Proof of Correctness of Algorithm 1

In this section, we prove in Lemma 4 that the sets Ck created by Algorithm 1 are equal to the
sets Ck from Proposition 1.

Lemma 4. Let n ∈ N+, t = {t1, . . . , tn} ∈ N+n
and m =

∑n
i=1 ti. Furthermore, let Ĉk, k ∈

{n, . . . ,m}, be the sets created with Algorithm 1 and for all k ∈ {n, . . . ,m} let

Ck ={E = {E1, . . . , Ek} : Eu = Fi(u)j(u) for some i(u) ∈ {1, . . . , n}, j(u) ∈ {1, . . . , ti(u)},
u ∈ {1, . . . , k}, {i(l) | l ∈ {1 . . . , k}} = {1, . . . , n} and

Ep 6= Eq for p, q ∈ {1, . . . , k} and p 6= q}.

We then have that Ĉk = Ck for all k ∈ {n, . . . ,m}.

Proof. Without loss of generality, let k ∈ {n, . . . ,m} be fixed. First, we prove that Ĉk ⊆ Ck. We
begin by showing that lbs ≤ ubs for all s ∈ {1, . . . , n} in the algorithm. We first choose s = n
and, hence, l = k. As seen before, ubn = min{k − n+ 1, tn} and lbn = max{1, k −

∑n−1
b=1 tb}. We

know that 1 ≤ tn, 1 ≤ k − n+ 1, and k −
∑n−1

i=1 ti ≤ k − (n− 1). Also,

k ≤ m =
n∑

i=1

ti ⇔ k −
n−1∑
i=1

ti ≤ tn.

Hence, lbn ≤ ubn. Without loss of generality, let s ∈ {1, . . . , n − 1} and let t̂n, . . . , t̂s+1 be the
value chosen with lbi ≤ t̂i ≤ ubi, i ∈ {s+ 1, . . . , n}. Therefore l = k −

∑n
b=s+1 t̂b. We know that

1 ≤ ts and k −
∑

b=s+1 t̂b −
∑s−1

b=1 tb ≤ k −
∑n

b=s+1 t̂b − (s− 1). Furthermore, we know that

k −
n∑

b=s+2

t̂b −
s∑

b=1

tb ≤ lbs+1 ≤ t̂s+1

⇒k −
n∑

b=s+2

t̂b − t̂s+1 −
s−1∑
b=1

tb − ts ≤ 0

⇒k −
n∑

b=s+1

t̂b −
s−1∑
b=1

tb ≤ ts and

t̂s+1 ≤ ubs+1 ≤ k −
n∑

b=s+2

t̂b − ((s+ 1)− 1)

⇒0 ≤ k −
n∑

b=s+1

t̂b − (s− 1)− 1

⇒1 ≤ k −
n∑

b=s+1

t̂b − (s− 1).
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Hence, lbs ≤ ubs. This gives us that lbi ≤ ubi for all i ∈ {1, . . . , n}.
Let Ê ∈ Ĉk, Ĥi = Ê ∩Hi and t̂i = |Ĥi|, i ∈ {1, . . . , n}. We know that 1 ≤ t̂i ≤ ti, i ∈ {1, . . . , n}.
To prove that Ê ∈ Ck, we just have to show |Ê| = k. We have proven that lbs ≤ ubs, s ∈
{1, . . . , n}, and we know that lbs ≤ t̂i ≤ ubs. Hence,

lb1 = max{1, k −
n∑

b=2

t̂b} ≤ t̂1 ≤ ub1 = min{k −
n∑

b=2

t̂b, t1}

⇒t̂1 = k −
n∑

b=2

t̂b

⇒k =

n∑
b=1

t̂b = |Ê|.

This gives us that Ĉk ⊆ Ck. Now we prove that Ck ⊆ Ĉk.
Let E = {E1, . . . , Ek} ∈ Ck. We know that

∀l ∈ {1, . . . , k} ∃î ∈ {1, . . . , n} ∃ĵ ∈ {1, . . . , t̂i} : El = Fîĵ .

Furthermore, let Ĥi = {Fij | ∃l ∈ {1, . . . , k} ∃i ∈ {1, . . . , n} ∃j ∈ {1, . . . , ti} : El = Fij} and t̂i =∣∣∣Ĥi

∣∣∣ for all i ∈ {1, . . . , n}. We know that
∑n

i=1 t̂i = k and t̂i ∈ {1, . . . , ti}. In the recursion

procedure of the algorithm with l = k, s = n, and E = {}, we have that
ubn = min{k − n+ 1, tn} and lbn = max{1, k −

∑n−1
b=1 tb}.

As 1 ≤ t̂n, k −
∑n−1

i=1 ti ≤ k −
∑n−1

i=1 t̂i = t̂n, t̂n ≤ tn and t̂n = k −
∑n−1

b=1 t̂i ≤ k − (n− 1), we have

that lbn ≤ t̂n ≤ ubn and, therefore, t̂n can be chosen in the algorithm and Ĥn is a combination
of elements in Hn of length t̂n.

Without loss of generality, let s ∈ {1, . . . , n− 1}. We then have that
ubs = min{k −

∑n
b=s+1 t̂n − (s− 1), ts} and lbs = max{1, k −

∑n
b=s+1 t̂n −

∑s−1
b=1 tn}.

We know that 1 ≤ t̂s, k −
∑n

b=s+1 t̂n −
∑s−1

b=1 tn ≤ k −
∑n

b=s+1 t̂n −
∑s−1

b=1 t̂n = t̂s, t̂s ≤ ts and

t̂s = k−
∑n

b=s+1 t̂n−
∑s−1

b=1 t̂n ≤ k−
∑n

b=s+1 t̂n−
∑s−1

b=1 1 ≤ k−
∑n

b=s+1 t̂b− (s−1) and, therefore,

lbs ≤ t̂s ≤ ubs. Hence t̂1, . . . , t̂n can be chosen in the recursion of the algorithm and as Ĥi ⊆ Hi

with cardinality t̂i for all i ∈ {1, . . . , n}, we know that E ∈ Ĉk and Ck ⊆ Ĉk.
This proves that Ck = Ĉk for all k ∈ {n, . . . ,m}.

2.4 Computational Tests

To test the efficiency of our proposed reliability calculation method, we run computational tests
on simple artificial system examples and a DMS application from aircraft architecture engineering.
For our computational tests, we compare the number of summands and the computational time
of the SDP method KDH88 from [19], with the classic probability principle of inclusion-exclusion
(2.3) and our proposed method. We are using KDH88 by applying it on (2.2).KDH88 algorithm
is described in Appendix A.2. All methods are implemented in Python 2.7 and run on an Intel
Core i7-6600U with CPU 2.60GHz and 32GB memory.

2.4.1 Simple Artificial System

First we compare the methods for some examples of a simple artificial system. We set all ti = t,
and assume that each implementation j of i, i ∈ {1, . . . , n} and j ∈ {1, . . . , t}, corresponds to an
elementary component aij which has a behavior independent from all other components and has
the common elementary reliability r. We then have a system of t×n components. We run compu-
tational tests for n ∈ {2, . . . , 6}, t ∈ {2, . . . , 4} and different values of r. Because all components
are independent, we know that the reliability R can be calculated with R(t, n, r) = ((1−(1−r)t)n).
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Proposed KDH88 Classic I-E

n t Summands Time (s) Summands Time (s) Summands Time (s)

2 2 9 0.00018 4 0.00023 15 0.00034
2 3 49 0.00071 9 0.00121 511 0.00440
2 4 225 0.00266 16 0.00269 65535 0.54116
3 2 27 0.00052 8 0.00075 255 0.00242
3 3 343 0.00672 27 0.00933 1.34e+8 > 300
3 4 3375 0.03884 64 0.10125 1.84e+19 > 300
4 2 81 0.00120 16 0.00199 65535 0.55845
4 3 2401 0.02959 81 0.17708 2.41e+24 > 300
4 4 50625 0.64799 256 7.66231 1.15e+77 > 300
5 2 243 0.00358 32 0.01169 4.29e+9 > 300
5 3 16807 0.23287 243 5.48717 1.41e+73 > 300
5 4 759375 11.28866 1024 > 300 1.79e+308 > 300
6 2 729 0.01087 64 0.07497 1.84e+19 > 300
6 3 117649 1.65340 729 174.17662 2.82e+219 > 300

Table 2.3: Computational results for examples of simple artificial systems.

To check the validity of the methods and their implementation, we compared the calculated reli-
ability against R(t, n, r). Table 2.3 shows the number of summands and computational time for
all three methods.

Table 2.3 shows that the number of summands for our method is far greater compared to
KDH88. However our method is computationally more efficient. This is because it is much more
computationally expensive to calculate the few disjoint products/summands with KDH88 than
all summands that are needed in our method. Furthermore the summands that are created by
KDH88 are not simple products like the summands in our method. However, both methods are
far more efficient and have fewer summands than the classic probability principle of inclusion-
exclusion.

2.4.2 Door Management System

Our next computational test is based on the DMS. As mentioned earlier, the DMS is a safety-
critical system which checks the status of doors, regulates the locks and relays information to
on-board computers and pressurization regulators.

The functionality of the DMS for each door can be seen as a function of the systems. Hence,
suppose the aircraft has n doors and consider the event set F = {F1, . . . , Fn} where Fi is the event
“The functionality of the DMS for door i in the system does not fail”. Let an implementation of
the functionality of a door be a set of components and the corresponding connections which can
check the status of a door, regulate the locks and relay information to on-board computers and
pressurization regulators. Moreover, suppose that no subset of these components and connections
can be removed without losing functionality. Because the DMS is a safety-critical system that has
to be redundant, there are at least two implementations for every door. Let Fi = {Fi1, . . . , Fiti}
and ti ≥ 2, i ∈ {1, . . . , n}, be event sets where Fij is the event “The functionality of implemen-
tation j of door i does not fail”. Lastly, let R be the event “The DMS system fails for no door”.
With these event sets, we can calculate the reliability P (R) of the DMS with the formula from
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Proposition 1:

P (R) =
m∑

k=n

(−1)k−n
∑
E∈Ck

P

 k⋂
j=1

Ej

 . (2.31)

The calculation of P (
⋂k

j=1Ej) for E = {E1, . . . , Ek} ∈ Ck, k ∈ {n, n+1, . . . ,m} is simple. Let Tc
be the event that component c of the DMS system does not fail. Since we are considering a static
system, we know the probability P (Tc) = ac with ac ∈ (0, 1). Let TFij be the set of components
of implementation j for door i. Since we assume that all components have independent failures
for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ti}, it follows that

P (Fij) = P

 ⋂
c∈TFij

Tc

 =
∏

c∈TFij

P (Tc) .

Therefore, for all k ∈ {n, n+ 1, . . . ,m} and for all E ∈ Ck, we have that

P

 k⋂
j=1

Ej

 = P

 k⋂
j=1

 ⋂
c∈TEj

Tc

 = P

 ⋂
c∈

⋃k
j=1 TEj

Tc

 =
∏

c∈
⋃k
j=1 TEj

P (Tc) .

If z is the number of components of the system, we know that each summand of (2.31) is a
product of at most z factors.

We ran computational tests for different numbers of doors n, implementations t and number
of components/connections. We tested them for our proposed method and the KDH88 method,
but we did not run them for the classic probability principle of inclusion-exclusion (2.3) because
of its much worse performance already discussed. For every combination of n and t, we ran 100
different systems. All systems have a different numbers of components and different reliability
values. An example system can be found in Appendix A.3 as well as a link to the data of all
other DMS systems. Table 2.4 shows the minimum, maximum and median number of compo-
nents/connections, the minimum, maximum and median number of summands and minimum,
maximum and median execution times for both methods and every combination of n and t.

Proposed KDH88

(n, t) Components Summands Time (s) Summands Time (s)
Min Max Med Min Max Med Min Max Med Min Max Med

(2, 2) 42 65 56.0 9 0.00017 0.00037 0.00020 4 5 5.0 0.00028 0.00073 0.00036
(2, 3) 57 81 72.0 49 0.00087 0.00128 0.00103 13 20 17.0 0.00252 0.00421 0.00332
(3, 2) 57 76 69.0 27 0.00056 0.00070 0.00061 7 13 11.0 0.00102 0.00215 0.00174
(3, 3) 68 96 84.0 343 0.00662 0.00857 0.00760 34 87 59.0 0.02927 0.09249 0.06568
(4, 2) 76 101 90.0 81 0.00187 0.00231 0.00208 10 28 21.0 0.00744 0.01381 0.01074
(4, 3) 83 119 102.5 2401 0.05573 0.07409 0.06377 81 339 187.0 0.42229 3.23434 1.88462
(5, 2) 88 128 111.0 243 0.00599 0.00807 0.00704 19 67 45.0 0.02448 0.11609 0.08271
(5, 3) 96 146 125.0 16807 0.45604 0.60943 0.54729 110 1067 619.0 12.21276 95.74859 59.34907

Table 2.4: Computational results for the DMS.

We obtained similar results as in the other computational tests. With our proposed method
there is a constant number of summands for the 100 different systems, but this value is much larger
than the number of summands when using KDH88. Also, the minimum and maximum number
of summands for the different systems when using KDH88 is very different. This shows that the
efficiency of KDH88 is highly dependent on the exact structure of the system. Furthermore, we
can see that our method is computationally much more efficient, especially for larger systems.
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2.5 Discussion

The new expression (Proposition 1) reduces considerably the computational effort needed to cal-
culate the reliability. It has been shown that the formula obtained can be applied to the reliability
calculation of a certain kind of complex network systems and it decreases the computational time
significantly. It has also been shown that the time complexity is reduced from doubly exponential
to exponential with linear exponent. Moreover, we have provided a comparison with the general
SDP method KDH88 from [19] and showed that our method is computationally more efficient
than KDH88 for our examples.

The complex network systems we consider are systems with multiple functions, which means
they have multiple start and end nodes in the system. If a system with only one function is
considered, the simplification does not take effect and the number of terms of the probability
principle of inclusion-exclusion does not decrease. We also considered that we have multiple
implementations for each function. For a system with only one implementation per function,
our proposed calculation method does not have any advantages. In all the other cases, that is,
multiple functions and multiple implementations per function, the expression proposed in this
paper can be applied very effectively.

Another limitation of our method is also one that KDH88 and other SDP methods have. The
different paths in the system that represent the implementations for each function and the failure
probability of all components in the system have to be known.

And as it was our main goal, it must be noted that the result introduced does not only give the
option to calculate reliability more efficiently. It also allows to formulate optimization problems of
complex network systems to include the exact reliability of the system without depending solely
on heuristics to solve it.
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Chapter 3

Redundancy Model and Methods

In this chapter we address the issue of how to consider k-redundancy in an MILP formulation for
the DMS and how to solve it most efficiently. This chapter is structured as follows.

We start by showing in what kind of MILP problem category the DMS problem with redun-
dancy falls and present a short overview of previous research in that field. We then introduce
a new MILP formulation of the DMS problem with redundancy in Section 3.2. In Section 3.3
we propose a solving method which is based on branch-and-bound. It includes a new branching
rule and heuristic that are tailored to the new formulation of the problem. We explore another
approach in Section 3.4 which is based on branch-and-price. The branch-and-price approach is
not efficient, but inspired the main idea for a reliability heuristic which is the main result of Chap-
ter 4. A short introduction to the general branch-and-bound and branch-and-price algorithm can
be found in Appendix B.1.

In the last section of this chapter, Section 3.5, we discuss authenticity of our problem instances
and the practicability of the new method for the industry.

3.1 Motivation and Previous Research

In this section, we explain the DMS in detail and how it can be formulated as an MILP. Fur-
thermore, we present an overview of previous research and we show why our results are a new
contribution to the literature.

The functions of a DMS are to check the status of doors and locks and send their status
information to on-board computers and to pressurization regulators in the aircraft. For our MILP
formulation, we consider the gathering of the doors status and sending the status information to
on-board computers as one function and sending the information to the pressurization regulators
as a second function. In a DMS, the two functions are implemented in the system through sets of
units and cable connections between them. Like every safety-critical system, a DMS has to adhere
to safety and architectural constraints and regulations. One of the most important regulations
is that the system has to be k-redundant. A system is k-redundant if for every function of the
system it has k disjoint subsystems that can fulfil this function.

Therefore, a DMS is a system with multiple doors, two functions for each door and both
functions have to be k-redundant for each door. Our goal is to build an MILP formulation for
such a system. To achieve this goal, we first have to consider one main architectural restriction.
This restriction is the space restriction of an aircraft. Only specific locations in an aircraft can be
used to install units for the DMS and also only certain cable connections are available. For our
formulation, we represent all possible locations and all possible cable connections as a directed
graph G = (N,A). Figure 3.1 shows a set of possible locations for units and its corresponding
graph which includes possible connections. Not all possible connections are shown in the figure.
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Figure 3.1: View of a set of locations and connections and their corresponding graph.

Therefore, any DMS design would be a subgraph G′ of G. We will refer to the complete
DMS as the overall system in the rest of this chapter. To formulate our problem we cannot only
consider the overall system. We must look at every function which must be k-redundant in the
overall system. As mentioned before, functions are sets of units and cable connections. Hence,
we can also see every function as a subgraph of G′. In the following, we refer to these subgraphs
as subsystems.

Hence, we have k-redundancy for the functions when we have k node/arc-disjoint paths for
each function. In our formulation, we consider node- and arc-disjoint paths. k-node/arc-disjoint
path problems have been widely researched ([25],[23],[52],[13],[16],[18]) and are applied in many
different fields, as for example routing ([32],[47]) and social networks ([17],[46]).

The problem studied in this chapter is not a mere case of the previous researched problems.
It is a problem with multiple subsystems that have to have k node/arc-disjoint paths and all
subsystems are part of the overall system and do not have to be pairwise disjoint. Also, only the
start and end unit type of a function is fixed and not the location of the start and end unit.

In the following, we will introduce an MILP formulation of the DMS problem with redundancy.

3.2 MILP Formulation of the DMS Problem with Redundancy

We propose an MILP formulation for the DMS problem with redundancy which is the first in
literature. For the formulation, we first consider the limited space in an aircraft. As mentioned
before, only certain locations are available for installing units and there is also a limited number
of possible cable connections in an aircraft. These locations and possible connections can be
seen as a directed graph G = (N,A). To write the formulation concisely, we need the following
notation. We first define the sets.

3.2.1 Sets

We need to know for the formulation which unit types are available and at which locations they
can be placed. Also, we have to consider that a type of unit may come in different models. For
example, we have two different models for a switch, where one model has 24 ports and the other
one only 16 ports. This information is contained in the following sets:

• U is the set of different unit types.

• U i, i ∈ N , is the set of different unit types that can be put at locations i.

• Nu, u ∈ U , is the set of different locations where a unit of type u can be set.

• Mu, u ∈ U , is the set of different models available for unit type u.

In Figure 3.2 we can see an example of these sets.
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Figure 3.2: Example for sets U , U i, and Nu.

We define subsets of U , N , and A for each function, since each function has their own archi-
tectural and safety restrictions. For the DMS problem, let D be the set of doors, let F be the
set of functions, and let P = {1, . . . , k} be the set of disjoint paths needed. We then define the
following sets:

• Uf ⊂ U, f ∈ F , is the set of unit types that can be used for function f .

• Nf = {i ∈ N | Uf ∩U i 6= ∅}, f ∈ F , is the set of locations that can be used for function f .

• Nu
f = {i ∈ Nf | u ∈ U i}, f ∈ F, u ∈ Uf , is the set of locations that can be used for

function f and unit u.

• U i
f = {u ∈ Uf | u ∈ U i}, f ∈ F, i ∈ Nf , is the set of unit types that can be used at location

i for function f .

• Af = {(i, j) ∈ A | i, j ∈ Nf}, f ∈ F , is the set of connections (arcs) that can be used for
function f .

• F u = {f ∈ F | u ∈ Uf}, u ∈ U , is the set of functions that can use a unit of type u.

In the following, if the subscript f ∈ F or superscript u ∈ U, i ∈ N is missing, it means it is the
union over the missing index. For example Uf =

⋃
i∈N U i

f .

There are architectural constraints that restrict which units can be connected or even which
units must have a connection from another unit for a function f ∈ F . The following sets contain
this information:

• Cf (u), f ∈ F, u ∈ Uf , is the set of unit types to which a unit of type u can connect to for
function f .

• C+
f (u), f ∈ F, u ∈ Uf , is the set of unit types to which a unit of type u must connect to

for function f .

• C−f (u), f ∈ F, u ∈ Uf , is the set of unit types from which a unit of type u must have a
connection from for function f .

• W i
f (u) = U i

f ∩ Cf (u), is the set of unit types that can be set at location i and can have a
connection from a unit of type u for function f .

Additional sets that contain information of the architectural restrictions for the functions are:

• U b
f , f ∈ F, is the set of unit types that are not a start or end unit type for function f .

• U s,e = { (sf , ef ) | sf , ef ∈ Uf are a start unit and an end unit for some f ∈ F}, is the set
of pairs of start and end units for functions.

• V +
f (i) := {k ∈ Nf : (i, k) ∈ Af}, i ∈ Nf , is the set of locations that location i can connect

to for function f ∈ F .

29



• V −f (i) := {k ∈ Nf : (k, i) ∈ Af}, i ∈ Nf , is the set of locations that location i can connect
from for function f ∈ F .

• V +
f (i, u) = V +

f (i) ∩ {k ∈ N | W k
f (u) 6= ∅} is the set of locations that location i can connect

to and where units can be placed to which unit u can be connected to.

• V −f (j, û) = V −f (j)∩{k ∈ N | {u ∈ Uk
f | û ∈ Cf (u)} 6= ∅} is the set of locations that location

j can have a connection from and where units can be placed from which unit û can be
connected from.

3.2.2 Decision variables

We will now define the decision variables of the MILP. First, we need variables that represent
the overall system. These are assignment variables that represent which unit type and model is
installed at which location and variables that represent which cable connections are used.

• tium ∈ {0, 1}, i ∈ N, u ∈ U i, m ∈ Mu, is a binary variable that takes value 1 if unit type
u and model m is set at location i and 0 otherwise.

• xijuû ∈ {0, 1}, (i, j) ∈ A, u ∈ U i, û ∈ W j(u), is a binary variable that takes value 1 if
locations i and j are connected and units u and û are installed at i and j, respectively. It
is 0 otherwise.

We need the same kind of variables for every path in a subsystem. For each path p of the
subsystem for function f and door d, let (d, f, p) ∈ D × F × P refer to it. The required decision
variables for every (d, f, p) ∈ D × F × P are:

• tdfpiu ∈ {0, 1}, i ∈ Nf , u ∈ U i
f , a binary variable that takes value 1 if a unit of type u is used

at location i, and

• xdfpijuû ∈ {0, 1}, (i, j) ∈ Af , u ∈ U i
f , û ∈ W j

f (u), a binary variable that takes value 1 if
locations i and j are connected and unit u and û are used at i and j, respectively. It is 0
otherwise.

3.2.3 Constraints

In this subsection we describe the constraints of the MILP formulation. With the overall system
and the subsystems, we have two levels of assignment variables which have to be synchronized.
For example, if a unit or cable connection is installed in the overall system, there has to be
a subsystem which uses it. And also if a unit or cable connection is used for a subsystem, it
has to be installed in the overall system. Constraints (3.1) to (3.4) force this synchronization.
Furthermore, constraints (3.3) and (3.4) impose that the subsystems have k node/arc-disjoint
paths.

In detail, constraint (3.1) forces at least one subsystem to use a unit u at location i if it is
located there in the overall system.

∀i ∈ N, ∀u ∈ U i : ∑
m∈Mu

tium ≤
∑

d∈D p∈P,
f∈F (u)

tdfpiu , (3.1)
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Constraint (3.2) forces at least one subsystem to use a connection (i, j) if it is used in the overall
system.

∀(i, j) ∈ A, ∀u ∈ U i, ∀û ∈W j(u) :

xijuû ≤
∑

d∈D, p∈P,
f∈F | (i,j)∈Af ,

u∈Ui
f
, û∈Wj

f
(u)

xdfpijuû, (3.2)

Constraint (3.3) forces a unit u be installed at location i in the overall system if it was used in at
least one subsystem. Moreover, it imposes that the subsystems have k node-disjoint paths since
tium are binary variables.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f , ∀f̂ ∈ F u :∑

m∈Mu

tium ≥ tdfpiu +
∑

p̂∈P\{p}

tdf̂ p̂iu , (3.3)

Constraint (3.4) forces connection (i, j) be installed in the overall system if it was used in at least
one subsystem. It also imposes that the subsystems have k arc-disjoint paths, because xijuû are
binary variables.

∀d ∈ D, ∀f ∈ F, ∀(i, j) ∈ Af , ∀u ∈ U i
f , ∀û ∈W

j
f (u) :

xijuû ≥
∑
p∈P

xdfpijuû. (3.4)

Constraints (3.1) to (3.4) provide also the option to lift the integer requirement on tium and
xijuû variables. Computational tests showed that lifting the integer requirement did not improve
solution time.

In the following, we present flow constraints which create the needed paths of the subsystems.
First, constraint (3.5) imposes that no more than the maximum number of connections Eout

fu can
go out of unit u at location i for a function f ∈ F . It also synchronizes the connection and
location variables of the subsystems.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, i ∈ Nf , ∀u ∈ U i
f :∑

j∈V+
f

(i,u),

û∈Wj
f
(u)

xdfpijuû ≤ E
out
fu t

dfp
iu , (3.5)

For connections arriving at a location, we use constraint (3.6).

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, j ∈ Nf , ∀û ∈ U j
f :∑

i∈V−
f

(j,û),

u∈Uf | û∈Cf (u)

xdfpijuû ≤ E
in
fut

dfp
jû . (3.6)

The following constraints impose that a flow arrives and leaves if a unit u at a location i is
used for a function f ∈ F . Constraint (3.7) imposes that a flow arrives at a unit. If a unit u at

location i is used for a function f , at least T f,in
u connections have to arrive at location i for f .

Constraint (3.8) imposes that the flow continues as long as it does not arrive at the end unit. This
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means that if a unit u at location i is used for a subsystem, at least T f,out
u connections have to

leave location i for a function f ∈ F . We do not need subtour and graph elimination constraints,
because of the architecural restriction of the network system.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F,∀i ∈ Nf :∑
u∈(Ub

f ∪{ef})∩U
i
f

T f,in
u tdfpiu ≤

∑
`∈V−

f
(i), u∈(Ub

f
∪{ef })∩U

i
f
,

û∈Uf | u∈Cf (û)

xdfp`iûu, (3.7)

∑
u∈(Ub

f ∪{sf})∩U
i
f

T f,out
u tdfpiu ≤

∑
`∈V+

f
(i), u∈(Ub

f
∪{sf })∩U

i
f
,

û∈W`
f
(u)

xdfpi`uû. (3.8)

The last flow constraint is (3.9). It imposes that a start unit and an end unit are installed for
all k paths of each function f ∈ F .

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀uf ∈ {sf , ef} :∑
i∈N

uf
f

tdfpiuf
= 1. (3.9)

We have now presented all general flow and synchronization constraints that are needed. In
the following, we present problem specific architectural constraints for the different functions.

The first function specific architectural constraints are constraints (3.10) and (3.11). Con-
straint (3.10) imposes that if a unit u is installed at location i for function f ∈ F , then it connects
to all unit types which it has to have a connection to for function f ∈ F . Set C+

f (u) contains the
unit types to which unit u has to have a connection to.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f , ∀û ∈ C

+
f (u) :

tdfpiu ≤
∑

j∈V +
f (i)∩N û

f

xdfpijuû. (3.10)

Constraint (3.11) imposes that if a unit u is installed at location i for a function f ∈ F , then
it has a connection from all unit types it has to have a connection from. Set C−f (u) contain the
unit types which unit u has to have a connection from.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀j ∈ Nf , ∀u ∈ U j
f , ∀û ∈ C

−
f (u) :

tdfpju ≤
∑

i∈V −f (j)∩N û
f

xdfpijûu. (3.11)

The last architectural constraint for subsystems is (3.12). In some cases, specific functions
have to be connected. For example, the end unit of a function f1 has to be also the start unit of
another function f2. Therefore, we need for some f1, f2 ∈ F that

∀i ∈ N ef1 ,∀d ∈ D, ∀p ∈ P with ef1 = sf2 :

tdf1pief1
= tdf2pisf2

. (3.12)

For the DMS problem, we need that the two functions are connected. As the information
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of the sensors are saved in a specific CPIOM/computer, the data flow of that information to a
pressurization valve can also only leave this specific CPIOM/computer. Therefore, constraint
(3.12) is needed for the formulation.

Other than for the subsystem, we also need architectural constraints for the overall system.
The first architectural constraint is constraint (3.13), which imposes that at most one unit is
installed at any location of the system.

∀i ∈ N : ∑
u∈Ui,
m∈Mu

tium ≤ 1. (3.13)

Constraint (3.14) imposes that only as many connections arrive and leave as ports are available
on a unit in the overall system.

∀i ∈ N, ∀u ∈ U i : ∑
`∈V−(i,u),

û∈U` | u∈C(û)

x`iûu +
∑

`∈V+(i,u),

û∈Wk(u)

xi`uû ≤
∑

m∈Mu

tiumEum. (3.14)

Until now, we provided an MILP formulation for a general system with multiple sets of
functions and k-redundancy for these functions. The following constraint is specific for the DMS
problem. It is a safety regulation constraint. In the DMS we always have two unit types named
outflow valve (OVF) and outflow valve control unit (OCU). The requirement is that every OVF
must have at least a connection from two different OCUs in the overall system. This is imposed
through constraint (3.15):

∀i ∈ NOV F :

2
∑

m∈MOV F

xi(OV F )m ≤
∑

j∈NOCU∩V −(i)

xji(OCU)(OV F ). (3.15)

3.2.4 Tightening Constraints

Constraints (3.1) to (3.15) represent a valid formulation for the DMS problem with k-redundancy.
Furthermore, we could reduce the number of decision variables and synchronization constraints
by aggregating the decision variables xijuû to xij and the corresponding constraints and still have
a valid formulation. However we encountered large gaps between the LP relaxation and the MILP
solution during computational tests with the current constraints and the aggregation of decision
variables. This lead to long computational times and poor convergence in the branch-and-bound
algorithm. Therefore, we dis-aggregate the connection variable of the overall system and also
propose the following constraints (3.16)-(3.21) to decrease the gap between the LP relaxation
and the MILP solution.

Constraints (3.16) and (3.17) strengthen the flow of the different paths in the subsystems
through sets C+

f (u) and C−f (u) and the parameters Ein
fu and Eout

fu . C+
f (u) and C−f (u) are the

sets that contain information on which unit must connect to which unit and which unit must
connect from which other unit,respectively. Furthermore, Ein

fu and Eout
fu are the parameters that

contain the information what the maximum number of connections arriving or leaving a unit u
is for function f ∈ F .
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∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀u ∈ Uf : ∑
û∈{u | u∈C+

f
(u)},

i∈Nû
f

tdfpiû ≤ E
in
fu

∑
i∈Nu

f

tdfpiu (3.16)

∑
û∈{u | u∈C−

f
(u)},

i∈Nû
f

tdfpiû ≤ E
out
fu

∑
i∈Nu

f

tdfpiu (3.17)

Constraints (3.18) to (3.21) synchronize decision variable sets tium and xijuû.

∀(i, j) ∈ A, ∀u ∈ U i : ∑
û∈W j(u)

xijuû ≤
∑

m∈Mu

tium, (3.18)

∀(i, j) ∈ A, ∀û ∈ U j : ∑
u∈U i | û∈C(u)

xijuû ≤
∑

m∈Mu

tjûm. (3.19)

∀i ∈ N ∀u ∈ (Ub ∪
⋃

f∈F {ef}) ∩ U i : ∑
m∈Mu

tium ≤
∑

`∈V−(i,u),

û∈U` | u∈C(û)

x`iûu (3.20)

∀i ∈ N ∀u ∈ (Ub ∪
⋃

f∈F {sf}) ∩ U i : ∑
m∈Mu

tium ≤
∑

`∈V+(i,u),

û∈Wj(u)

xi`uû. (3.21)

The utility of constraints (3.16)-(3.21) was tested and the results can be seen in Table 3.2 in
Section 3.3.3. It can be clearly seen that the additional constraints and decision variables reduce
the gap significantly and help to solve the problem faster.

3.2.5 Objective Functions

We introduce here several objective functions which are used for computational tests. The fol-
lowing parameters are used:

• cum: cost of a unit of type u ∈ U and model m ∈MU ,

• c0: cost of cable for a meter,

• wum: weight of a unit of type u ∈ U and model m ∈MU ,

• w0: weight of cable for a meter,

• powum: power usage of a unit of type u ∈ U and model m ∈MU ,

• `ij : distance between locations i and j in meters,

• γc, γw, γpow: weight for the respective parameter in a combination of different objectives.

The different objective functions that we consider for minimization are the following:
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1. Total of weight and cost (obj1):

min

∑
i∈N

∑
u∈Ui,
m∈Mu

tium (cum + wum)

+
∑

(i,j)∈A

xij`ij (c0 + w0) , (3.22)

2. Total number of units placed (obj2):

min

∑
i∈N

∑
u∈Ui,
m∈Mu

tium

 , (3.23)

3. Total length of cable used (obj3):

min
∑

(i,j)∈A

xijlij , (3.24)

4. Weighted total of weight, cost, and power (obj4):

min

∑
i∈N

∑
u∈Ui,
m∈Mu

tium (γccum + γwwum + γpowpowum)

 (3.25)

+
∑

(i,j)∈A

xij`ij (γcc0 + γww0) .

3.3 Branch-and-bound Approach

In this section, we use the MILP formulation of the previous Section 3.2 and build a solving
method using branch-and-bound algorithm (see Subsection B.1.1). During the first computational
tests, we noticed that the standard branching rules implemented in CPLEX (e.g. pseudo cost or
strong branching) do not work well and, hence, we developed a branching rule that is tailored to
our formulation. Also, we found that the CPLEX default heuristics do not work efficiently for
the problem. This is a problem that is often seen in location problems as for example in [24].
To solve our problem efficiently, we developed a simple heuristic which is also tailored to our
formulation.

In the following subsections, we present our new branching rule and heuristic and, furthermore,
show computational results that compare our branch-and-bound method that is tailored to the
problem and the general branch-and-bound method that CPLEX uses.

3.3.1 Branching Rule

The following new branching rule allows us to solve the DMS problem with redundancy and
reliability much more efficiently. In the literature, see [3], branching is usually done on integer
decision variables which have a fractional value for the current linear relaxation. Computational
tests have shown that the general branching strategies are not efficient. These strategies would
branch on decision variables that represent specific locations or connections for the overall system
and subsystems. However these would not affect the gap between linear relaxation and MILP
solution immediately. This is the case since we have symmetry for different paths of a function
in a subsystem or a unit can be set at other location in the overall system without affecting the
objective value.

The two main points of our branching rules are that:
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• Whenever possible, we branch on the decision variables sets tu, tum and tfu based on the
following conditions, and

• If no suitable decision variable is found among tu, tum and tfu, general branching rules of
CPLEX are used.

3.3.1.1 Sets, decision variables and constraints

These are the sets, decision variables and constraints needed for the new branching rule. First,
the sets are

• U+
f =

{
u ∈ Uf : Cf (u) ∩

(⋃
f ′∈F\{f}Cf ′(u)

)
= ∅
}

, f ∈ F , is the set of units which cannot

connect to the same units for other functions f̂ ∈ F\{f} as for f ∈ F . It is a subset of Uf .

• U−f =
{
u ∈ Uf :

{
u : u ∈ Cf (u) and u ∈

⋃
f ′∈F\{f}Cf ′(u)

}
= ∅
}

, f ∈ F , is the set of

units which cannot connect from the same units for other functions f̂ ∈ F\{f} as for
f ∈ F . It is a subset of Uf .

• E+
f (u) =

{
û ∈ Uf | u ∈ C+

f (û)
}
, f ∈ F, u ∈ U+

f , is the set of units that must connect to

unit u for function f .

• E−f (u) =
{
û ∈ Uf | u ∈ C−f (û)

}
, f ∈ F, u ∈ U−f , is the set of units that must connect

from unit u for function f .

Note that E+
f (u) = ∅ for f ∈ F, u ∈ Uf\U+

f and E−f (u) = ∅ for f ∈ F, u ∈ Uf\U−f . The decision
variables for the new branching and pruning rule are:

• tu ∈ {0, 1, . . . , |Nu|}, u ∈ U i, which is the total number of units of type u used,

• tum ∈ {0, 1, . . . , |Nu|}, u ∈ U i, m ∈Mu, which is the total number of units of type u and
model m used,

• tfu ∈ {0, 1, . . . , |Nu|}, f ∈ F, u ∈ U i
f , which is the total number of units of type u used for

function f ,

• tfiu ∈ {0, 1}, f ∈ F, u ∈ U i
f , which takes value 1 if a unit of type u is used for function f at

location i, and 0 otherwise.

Lastly, the needed constraints are synchronization constraints between the new branching vari-
ables and the previous variables that represent the network system. The following constraints
(3.26)-(3.29) impose the synchronization between decision variables tium and tdfpiu and the branch-

ing variables tu, tum, t
f
u, and tfiu.

∀u ∈ U, ∀m ∈Mu : ∑
i∈Nu

tium = tum, (3.26)

∀u ∈ U : ∑
m∈Mu

tum = tu, (3.27)

∀d ∈ D, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f : ∑

p∈P
tdfpiu ≤ t

f
iu, (3.28)
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∀f ∈ F, ∀u ∈ Uf : ∑
i∈Nf

tfiu = tfu. (3.29)

3.3.1.2 Branching rule algorithm

In the following, we present the conditions and rules on which the branching variable is cho-
sen from the decision variable sets tu, tum and tfu. Let t∗u, t

∗
um and tf,∗u be the values of the

corresponding variables for the solution of the current linear relaxation.

First, we branch on a variable tu if it is integer infeasible. If all tu variables are integer
feasible, we check the tum variables and branch on one of them if it is integer infeasible. The gap
between lower and upper bound of the branch-and-bound algorithm closes quicker than through
the general branching strategies, because the objective functions are based on cost, weight or
power usage of the overall system and the number of cables is strongly linked to the number of
installed units

The two previously proposed branching rules are for closing the lower and upper bound gap.
The following branching rules do not close the lower and upper bound gap of the branch-and-
bound algorithm. They are needed for the pruning rule which we propose later. The goal of the
next two branching rules is that for all u ∈ U the lower bound tlbu is equal to the upper bound tubu
for the decision variables tu, u ∈ U . If t∗u is greater than the lower bound tlbu for a tu, then we
branch on this tu by creating a new node with tlbu ≥ t∗u and another with tubu ≤ t∗u − 1. If t∗u = tlbu
for all u ∈ U , we check if t∗u equals the upper bound tubu . If this is not the case for a unit type
u ∈ U , then we branch on tu by creating a new node with tlbu ≥ t∗u + 1 and another with tubu ≤ t∗u.

The goal of the last branching rule is that variables tfu are equal to their lower bound tf,lbu .
Therefore, if tf,∗u 6= tf,lbu for a unit type u ∈ U , then we branch on tf,∗u by creating a new node
with tf,lbu = dtf,∗u e and another with tf,ubu = dtf,∗u e − 1.

Through the previous mentioned branching rules, we obtained that tlbu = tubu for all u ∈ U , all
tum variables are integer feasible and all tfu variables are equal to their lower bound tf,lbu . This
enables us to use the following pruning and branching rule. Before introducing it, we first explain
it is important for our problem.

A linear relaxation of the MILP does not guarantee that the redundancy requirement is met.
For example, the solution of a linear relaxation can have

tdfp,∗iu = tdfp̂,∗iu = 0.5

for d ∈ D, f ∈ F, i ∈ Nf , u ∈ U i
f , p, p̂ ∈ P and p 6= p̂. Through this, a system based on a linear

relaxation solution may have a combination of units given by tu and tum that does not provide
enough ports for all paths if they are integer feasible. A small example is in Appendix B.2. It
is very hard to prune nodes with such a linear relaxation solution through normal branching.
Unfortunately, we did not find constraints or cuts which were able to prevent such solutions from
occurring. This is why we use the following pruning and branching rule.

As part of the pruning and branching rule, we first test for all unit types u ∈ U whose ports
are all used in the linear relaxation solution if they have enough ports. We will refer to this test
as validity test and we explain it later in detail. If a test for a unit u ∈ U shows that not enough
ports are available, we branch on variable tum by creating a new node with tubum ≥ t∗um − 1 and
another with tlbum ≤ t∗um + 1, therefore pruning all possible solutions with tum = t∗um. If no such
u ∈ U is found, we do not branch on any tu, tum or tfu variable and instead we use the general
branching rules implemented in the solver.

For the validity test, we need the assumption that tlbu = tubu for all u ∈ U , all tum variables
are integer feasible and all tfu variables are equal to their lower bound tf,lbu . Furthermore, we
need the sets E+

f (u) and E−f (u) which were defined in Section 3.2.1. Let u be the unit type for

which we do the validity test. Since tubu = tlbu , tf,∗u = tf,lbu for all f ∈ F and constraints (3.10)
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and (3.11) hold, we know that at least
∑

f∈F
∑

û∈E−f (u) t
f,lb
û connections have to leave from and

at least
∑

f∈F
∑

û∈E+
f (u) t

f,lb
û connections have to arrive at the locations where a unit of type u is

installed in the overall system.

Through the values t∗um, m ∈MU , of tum, we can build all possible combinations of connections
that can arrive at and leave from the units of type u for the different functions and check if they
are feasible. If it is shown that no combination is feasible, then the unit type failed the validity
test.

The pruning and branching rules are summarized in Algorithm 2.

Algorithm 2 Branching rule

Require: LP Relaxation (t∗, x∗)
1: for u ∈ U
2: if t∗u integer infeasible then
3: Branch on tu with tu ≥ dt∗ue and tu ≤ bt∗uc
4: else if t∗um integer infeasible
5: Branch on tum with tum ≥ dt∗ume and tum ≤ bt∗umc
6: else if t∗u 6= tlbu
7: Branch on tu with tu ≥ t∗u and tu ≤ t∗u − 1
8: else if t∗u 6= tubu
9: Branch on tu with tu ≥ t∗u + 1 and tu ≤ t∗u

10: else if tf,∗u 6= tf,lbu

11: Branch on tfu with tfu ≥ dtf,∗u e and tfu ≤ dtf,∗u e − 1
12: end if
13: end for
14: for u ∈ U
15: if u fails validity test
16: Choose m ∈ MU with t∗um ≥ 1 and branch with tum ≤ t∗um − 1 and tum ≥ t∗um + 1, while

remembering that tum is integer feasible.
17: end if
18: end for
19: if No decision variable was chosen for branching
20: Use CPLEX standard branching rules
21: end if

3.3.2 Heuristic I

We introduce in this section the heuristic specifically designed for the DMS problem with redun-
dancy. Before deciding to use a problem specific heuristic, we first tried general heuristics, e.g.
feasibility pump [2], that are implemented into solvers such as CPLEX or Gurobi. Through com-
putational tests, we saw that these general heuristics do not find a solution with a low objective
value at the root node of the branch-and-bound tree and in most cases they were only able to
find a solution with a low objective value only at much later nodes.

One reason why the general heuristics do not work well may be the following. Our model
mostly consists of binary variables. Most of them have values that are below 0.5 for a solution
of the linear relaxation, because of disjoint constraints and symmetry of paths. In many general
heuristics, one step of the heuristic is to round the values of the binary variable. Most of the
times this either leads to an infeasible solution or to a bad starting solution for the DMS problem
with redundancy since almost all variables are rounded down to 0.

In the following we show an example of how our model behaves in the general MIP heuristic
from [2] called feasibility pump. Let y be all variables of the model, y∗ be the solution of an LP
relaxation, ỹ = [y∗] and J = {1, . . . , |y|}. For our model, ỹ is mostly equal to 0. The feasibility
pump then tries to close the distance between y and ỹ by solving the model with the distance
∆(y, ỹ) =

∑
j∈J |yj − ỹj | as the objective. The idea is that we obtain a different integer solution

˜̃y by rounding the new solution y∗∗ and repeat this until the distance is 0. However if ˜̃y = ỹ, this
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iteration would run infinitely. As our ỹ is mostly equal to 0 and the values of our LP relaxation
solutions are below 0.5, we have in most cases that ˜̃y = ỹ. In order to avoid that the loop iterates
indefinitely, the feasibility pump algorithm changes ỹ values randomly with the help of a score.
However for our model, this leads to a slow convergence and a bad feasible solution. After a few
nodes, we have that some variables are fixed to 1 and more values are greater than 0.5. This
means that feasibility pump performs better deeper in the branch-and-bound tree. As we would
like to obtain fast a solution with a low objective value at the root node, we developed our own
problem specific heuristic.

We propose the following heuristic which will help us to solve the DMS problem in an exact
way much more efficiently. The main idea of the algorithm is based on greedy algorithms where
nodes or arcs of a graph that have the highest value in the LP relaxation are chosen. For our
algorithm, the idea is to start with a path of a subsystem and to find an integer feasible solution
for it. Afterwards we move to another path of a subsystem. After all paths are made integer
feasible, we have also an integer feasible overall system.

Let S = {(d, f, p) ∈ D × F × P} be the set of all paths. To decide with which path to start,
we calculate

vdfp =

 ∑
xdfpijuû 6=0

(
1− xdfp,∗ijuû

)
·
∑

xdfpijuû 6=0

1

 (3.30)

for all (d, f, p) ∈ S, where xdfp,∗ijuû are the variable values of the linear relaxation. We call vdfp

violation of the path. Let (d̂, f̂ , p̂) be the path with the smallest violation. To obtain an integer

feasible solution for decision variables of (d̂, f̂ , p̂), we look at the connection variables xd̂f̂ p̂ijuû. We

define 1 − xd̂f̂ p̂ijuû as the violation of the variable. Now we choose the least violated variable and
set it to 1. Afterwards, we solve the new problem and choose the new least violated variable.
If all connection variables of the path are binary feasible, which means that they have value 0
or 1, then all location variables of this path are binary feasible because of the synchronization
constraints. Now that this path is integer feasible, we choose the new least violated path and
repeat this procedure until all the paths are feasible for the integer problem.

We have feasible subsystems when every path is feasible. This does not assure us a feasible
overall system since there might still be infeasible fractional variables of the overall system. This
is the case since for the synchronization constraint (3.3) the left hand side is a sum over the
models of the units and the decision variables tium of the overall system can still be fractional in
the linear relaxation even though all subsystem variables are integer feasible.

Therefore, if we have several variables tium > 0 for a unit u and location i, we choose the
model m ∈MU with the most ports Eum for unit u, set tium to 1 and solve the linear relaxation.
This is repeated until all variables tium are integer feasible. By proceeding in this way we obtain
a feasible solution that in most cases is better than the solutions obtained by standard heuristics
implemented in CPLEX. Particularly, the greater the cardinality of D, F or P is, the better our
heuristic works when compared to CPLEX heuristics. Our heuristic is shown in pseudo-code form
in Algorithm 3.

3.3.3 Computational Results for Branch-and-Bound

In this subsection, we show our computational results using Heuristic I (Algorithm 3) and the
branching rule (Algorithm 2). The study compares solution times of our model with tightening
constraints and without (Table 3.2). Then it compares solution times of our solving method and
the standard MILP solver of CPLEX for several instances. The instances differ in the number of
doors, number of disjoint paths required, configurations of the locations and objective function.
The instances are artificial and were built in cooperation with AIRBUS Group.

As mentioned in the introduction, we have two functions in the DMS and therefore F =
{F1, F2}. The first function is the information flow from two sensors at a door to a controller
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Algorithm 3 Model Heuristic

Require: LP Relaxation (t∗, x∗), K = number of violated variables,
Kf = number of violated variables on flow level f , S = {(d, f, p) ∈ D × F × P}
while Kf 6= 0

vdfp =
(∑

xdfpiuû 6=0

(
1− xdfp,∗ijuû

)
·
∑

xdfpiuû 6=0
1
)

(d, f, p)∗ = arg min(d,f,p)∈S{vdfp}
S = S\{(d, f, p)∗}
K(d,f,p)∗ = number of violated variables in the (d, f, p)∗ subsystem

Let V(d,f,p)∗ be the set of all x
(dfp)∗

ijuû variables in subsystem (d, f, p)∗

while K(d,f,p)∗ 6= 0

x̂ = arg min{x(dfp)
∗,∗

ijuû − 1}
Set x̂ = 1 and solve LP
V(d,f,p)∗ = V(d,f,p)∗\{x̂}

end while
end while
while K 6= 0

(̂i, û) = arg mini∈N,u∈U,m∈Mu{|tium − 0.5|}
m̂ = arg maxm∈M û{Eûm}
Set t̂iûm̂ = 1 and solve LP

end while

(CPIOM) and the second function is the information flow from that controller to an outflow
valve. Also, the controller used in both functions has to be the same for a door and, therefore,
constraint (3.12) is used.

The DMS has 8 unit types: door (DO), latch-and-lock sensor (LLS), closed sensor (CS), out-
flow valve (OVF), outflow valve control unit (OCU), remote data concentrator (RDC), CPIOM,
switch (SWT). We also have the following unit sets:

• U s,e = {s1 = DO, s2 = CPIOM, e1 = CPIOM, e2 = OV F},

• Ub = {LLS,CS,OCU,RDC, SWT},

• U1 = {DO,LLS,CS,RDC,CPIOM,SWT},

• U2 = {OV G,OCU,RDC,CPIOM,SWT}.

Except for the door, all units are available in different models. For example, there can be various
kinds of RDC models with different costs, weights or number of ports.

In Table 3.1, the size of the model for different instances is shown. It includes the number
of potential locations, continuous variables, integer variables, binary variables, and constraints.
For the two door instances, a more complex configuration of locations was used which resulted in
a higher number of continuous variables. The more complex configuration of locations was not
used for more doors to avoid having too large problems.

Doors Locations Continuous Binary Integer Constraints
Variables Variables Variables

2 66 3149 13038 21 14020
3 90 1772 21648 21 23468
4 91 1820 27226 21 29262

Table 3.1: Size of the problems for different number of doors and locations.

In the computational tests, a total of 5 different cost and weight sets were used and a time
limit of 4 hours was set. All computations were done with a Four Intel Xeon E5-2680 v3 2.5GHz,
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192GB RAM and CPLEX 12.5.1. Implementation of the branching rules and heuristic was done
in C++. Also, all available cuts in CPLEX were disabled because computational tests showed
that they are not efficient for this problem. The problem instances in the tables have the names
i(d, p, loc, `) with d the number of doors, p the number of paths, loc the number of locations in
the configuration of the space, and ` the number of the cost and weight set.

In Table 3.2, we solve the DMS problem with and without constraints (3.16)- (3.21). Column
“Objective Function” refers to which objective function was used, zMIP is the MIP optimal value
of the instance, zLP is the optimal value for the linear relaxation at the root node, Gap is the
gap at the root node and Time is the solution time in seconds.

Without With

Instance Objective zMIP zLP Gap Time zLP Gap Time
Function

i(2, 2, 66, 1) obj1 2721.92 2608.06 4.18 14400 2721.92 0.00 20
i(2, 2, 66, 1) obj2 22.00 17.00 22.73 14400 22 .00 0.00 19
i(2, 2, 66, 1) obj3 32.00 26.00 18.75 14400 32 .00 0.00 22
i(2, 2, 66, 1) obj4 4127.88 3847.19 6.80 14400 4127.88 0.00 16
i(2, 2, 66, 2) obj1 2539.91 2473.28 2.62 14400 2539.91 0.00 13
i(2, 2, 66, 3) obj1 2257.46 2173.33 3.73 14400 2257.46 0.00 11
i(2, 2, 66, 4) obj1 2871.12 2728.16 4.98 14400 2871.12 0.00 13
i(2, 2, 66, 5) obj1 3721.74 3592.35 3.48 14400 3721.74 0.00 17

i(2, 3, 66, 1) obj1 4082.88 3912.09 4.18 14400 4082.88 0.00 98
i(2, 3, 66, 1) obj2 32.00 24.50 23.44 14400 32.00 0.00 177
i(2, 3, 66, 1) obj3 48.00 39.00 18.75 14400 48.00 0.00 94
i(2, 3, 66, 1) obj4 6191.82 5770.78 6.80 14400 6191.82 0.00 110
i(2, 3, 66, 2) obj1 3809.86 3709.93 2.62 14400 3809.86 0.00 290
i(2, 3, 66, 3) obj1 3386.19 3260.00 3.73 14400 3386.19 0.00 144
i(2, 3, 66, 4) obj1 4306.68 4092.24 4.98 14400 4306.68 0.00 167
i(2, 3, 66, 5) obj1 5582.60 5388.54 3.48 14400 5582.60 0.00 197

i(3, 2, 90, 1) obj1 2731.00 2608.50 4.49 14400 2731.00 0.00 57
i(3, 2, 90, 1) obj2 27.00 18.00 33.33 14400 27.00 0.00 72
i(3, 2, 90, 1) obj3 40.00 30.00 25.00 14400 40.00 0.00 164
i(3, 2, 90, 1) obj4 4182.22 3854.49 7.84 14400 4182.22 0.00 148
i(3, 2, 90, 2) obj1 2545.63 2473.28 2.84 14400 2545.63 0.00 252
i(3, 2, 90, 3) obj1 2262.84 2173.33 3.96 14400 2262.84 0.00 117
i(3, 2, 90, 4) obj1 2876.44 2728.16 5.15 14400 2876.44 0.00 355
i(3, 2, 90, 5) obj1 3731.41 3592.36 3.73 14400 3731.41 0.00 183

i(3, 3, 90, 1) obj1 4096.50 3912.75 4.49 14400 4096.50 0.00 758
i(3, 3, 90, 1) obj2 39.00 25.50 34.62 14400 39.00 0.00 2248
i(3, 3, 90, 1) obj3 60.00 45.00 25.00 14400 60.00 0.00 1952
i(3, 3, 90, 1) obj4 6273.33 5781.73 7.84 14400 6273.33 0.00 3486
i(3, 3, 90, 2) obj1 3818.45 3709.93 2.84 14400 3818.45 0.00 4437
i(3, 3, 90, 3) obj1 3394.27 3260.00 3.96 14400 3394.27 0.00 1792
i(3, 3, 90, 4) obj1 4314.66 4092.24 5.15 14400 4314.66 0.00 1218
i(3, 3, 90, 5) obj1 5597.12 5388.54 3.73 14400 5597.12 0.00 3008

i∗(3, 2, 90, 1) obj1 2829.00 2608.50 7.79 14400 2731 .00 3.46 14400
i∗(3, 2, 90, 1) obj2 27.00 18.00 33.33 14400 27.00 0.00 62
i∗(3, 2, 90, 1) obj3 40.00 30.00 25.00 14400 40.00 0.00 59
i∗(3, 2, 90, 1) obj4 4182.22 3854.49 7.84 14400 4182.22 0.00 144
i∗(3, 2, 90, 2) obj1 2644.33 2473.28 6.47 14400 2545.63 3.73 14400
i∗(3, 2, 90, 3) obj1 2336.34 2173.33 6.98 14400 2262.84 3.15 14400
i∗(3, 2, 90, 4) obj1 2886.24 2728.16 5.48 14400 2876.44 0.34 14400
i∗(3, 2, 90, 5) obj1 3869.73 3592.36 7.17 14400 3731.41 3.57 14400

i(4, 2, 91, 1) obj1 2838.08 2626.22 7.46 14400 2740.08 3.45 14400
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i(4, 2, 91, 1) obj2 32.00 27.00 15.63 14400 32.00 0.00 752
i(4, 2, 91, 1) obj3 48.00 42.00 12.50 14400 48.00 0.00 855
i(4, 2, 91, 1) obj4 4236.56 3955.87 6.63 14400 4236.56 0.00 65
i(4, 2, 91, 2) obj1 2650.06 2484.73 6.24 14400 2551.36 3.72 14400
i(4, 2, 91, 3) obj1 2341.73 2184.09 6.73 14400 2268.23 3.14 14400
i(4, 2, 91, 4) obj1 2891.56 2738.80 5.28 14400 2881.76 0.34 14400
i(4, 2, 91, 5) obj1 3879.41 3611.71 6.90 14400 3741.09 3.57 14400

Average Computing times 14400 3492

Table 3.2: Analysis of constraints (3.16)- (3.21)

It is evident that the use of constraints (3.16)- (3.21) helps considerably to solve the instances
of the DMS problem. In most of the cases, we were able to find an optimal solution at the root
node with the tightening constraints. Without them, we were not able to solve any instance in 4
hours. However, there are some instances which cannot be solved within the time limit even with
the use of these constraints. It must be noted that for all instances that could not be solved to
optimality, the MILP optimal solution was found as the upper bound and the gap could not be
closed to prove optimality and the lower bound did not improve after the root node.

Next, we compare the performance of the standard branch-and-bound algorithm of CPLEX
(“Standard”) and the modification that uses the branching rules and the heuristic that we propose
in this chapter (“Proposed”). In both cases, as mentioned earlier, the solver cuts were disabled.
Table 3.3 shows the different instances, objective function used, linear relaxation value at the root
node (zLP ), gap in % and computational time, respectively. Independently on whether optimality
is achieved or not, zlb and zub show the best lower bound and the best upper bound when the
run stops. If zub is in bold face, it means that the optimal solution was found and proven to be
optimal.

Standard Proposed

Instance Objective zLP Gap Time zlb zub Time zlb zub
Function

i(2, 2, 66, 1) obj1 2721.92 0.00 20 2721.92 2721.92 22 2721.92 2721.92
i(2, 2, 66, 1) obj2 22.00 0.00 19 22.00 22.00 24 22.00 22.00
i(2, 2, 66, 1) obj3 32.00 0.00 22 32.00 32.00 20 32.00 32.00
i(2, 2, 66, 1) obj4 4127.88 0.00 16 4127.88 4127.88 22 4127.88 4127.88
i(2, 2, 66, 2) obj1 2539.91 0.00 13 2539.91 2539.91 29 2539.91 2539.91
i(2, 2, 66, 3) obj1 2257.46 0.00 11 2257.46 2257.46 29 2257.46 2257.46
i(2, 2, 66, 4) obj1 2871.12 0.00 13 2871.12 2871.12 27 2871.12 2871.12
i(2, 2, 66, 5) obj1 3721.74 0.00 17 3721.74 3721.74 27 3721.74 3721.74

i(2, 3, 66, 1) obj1 4082.88 0.00 98 4082.88 4082.88 69 4082.88 4082.88
i(2, 3, 66, 1) obj2 32.00 0.00 177 32.00 32.00 99 32.00 32.00
i(2, 3, 66, 1) obj3 48.00 0.00 94 48.00 48.00 94 48.00 48.00
i(2, 3, 66, 1) obj4 6191.82 0.00 110 6191.82 6191.82 66 6191.82 6191.82
i(2, 3, 66, 2) obj1 3809.86 0.00 290 3809.86 3809.86 91 3809.86 3809.86
i(2, 3, 66, 3) obj1 3386.19 0.00 144 3386.19 3386.19 223 3386.19 3386.19
i(2, 3, 66, 4) obj1 4306.68 0.00 167 4306.68 4306.68 72 4306.68 4306.68
i(2, 3, 66, 5) obj1 5582.60 0.00 197 5582.60 5582.60 87 5582.60 5582.60

i(3, 2, 90, 1) obj1 2731.00 0.00 57 2731.00 2731.00 60 2731.00 2731.00
i(3, 2, 90, 1) obj2 27.00 0.00 72 27.00 27.00 84 27.00 27.00
i(3, 2, 90, 1) obj3 40.00 0.00 164 40.00 40.00 68 40.00 40.00
i(3, 2, 90, 1) obj4 4182.22 0.00 148 4182.22 4182.22 47 4182.22 4182.22
i(3, 2, 90, 2) obj1 2545.63 0.00 252 2545.63 2545.63 70 2545.63 2545.63
i(3, 2, 90, 3) obj1 2262.84 0.00 117 2262.84 2262.84 73 2262.84 2262.84
i(3, 2, 90, 4) obj1 2876.44 0.00 356 2876.44 2876.44 65 2876.44 2876.44
i(3, 2, 90, 5) obj1 3731.41 0.00 183 3731.41 3731.41 68 3731.41 3731.41

i(3, 3, 90, 1) obj1 4096.50 0.00 758 4096.50 4096.50 168 4096.50 4096.50
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i(3, 3, 90, 1) obj2 39.00 0.00 2248 39.00 39.00 303 39.00 39.00
i(3, 3, 90, 1) obj3 60.00 0.00 1952 60.00 60.00 218 60.00 60.00
i(3, 3, 90, 1) obj4 6273.33 0.00 3486 6273.33 6273.33 171 6273.33 6273.33
i(3, 3, 90, 2) obj1 3818.45 0.00 4437 3818.45 3818.45 243 3818.45 3818.45
i(3, 3, 90, 3) obj1 3394.27 0.00 1792 3394.27 3394.27 241 3394.27 3394.27
i(3, 3, 90, 4) obj1 4314.66 0.00 1217 4314.66 4314.66 233 4314.66 4314.66
i(3, 3, 90, 5) obj1 5597.12 0.00 3008 5597.12 5597.12 244 5597.12 5597.12

i∗(3, 2, 90, 1) obj1 2731.00 3.46 14400 2731.00 2829.00 203 2829.00 2829.00
i∗(3, 2, 90, 1) obj2 27.00 0.00 62 27.00 27.00 83 27.00 27.00
i∗(3, 2, 90, 1) obj3 40.00 0.00 59 40.00 40.00 66 40.00 40.00
i∗(3, 2, 90, 1) obj4 4182.22 0.00 144 4182.22 4182.22 57 4182.22 4182.22
i∗(3, 2, 90, 2) obj1 2545.63 3.73 14400 2545.63 2644.33 240 2644.33 2644.33
i∗(3, 2, 90, 3) obj1 2262.84 3.15 14400 2262.84 2336.34 228 2336.34 2336.34
i∗(3, 2, 90, 4) obj1 2876.44 0.34 14400 2876.44 2886.24 243 2886.24 2886.24
i∗(3, 2, 90, 5) obj1 3731.41 3.57 14400 3731.41 3869.73 271 3869.73 3869.73

i(4, 2, 91, 1) obj1 2740.08 3.45 14400 2740.08 2838.08 264 2838.08 2838.08
i(4, 2, 91, 1) obj2 32.00 0.00 752 32.00 32.00 122 32.00 32.00
i(4, 2, 91, 1) obj3 48.00 0.00 855 48.00 48.00 77 48.00 48.00
i(4, 2, 91, 1) obj4 4236.56 0.00 65 4236.56 4236.56 68 4236.56 4236.56
i(4, 2, 91, 2) obj1 2551.36 3.72 14400 2551.36 2650.06 329 2650.06 2650.06
i(4, 2, 91, 3) obj1 2268.23 3.14 14400 2268.23 2341.73 271 2341.73 2341.73
i(4, 2, 91, 4) obj1 2881.76 0.34 14400 2881.76 2891.56 279 1 2891.561 2891.56
i(4, 2, 91, 5) obj1 3741.09 3.57 14400 3741.09 3879.41 323 3879.41 3879.41

Average Computing times 3492 131

Table 3.3: Analysis of new branching rules and heuristic

For the smaller instances with two doors and two paths, the general solver is slightly better in
all instances except one. Albeit the new method obtains better solution times with more doors or
paths. Therefore, for larger instances our proposed method performs much better. Particularly,
it can solve many instances that the general solver cannot solve within the time limit of 4 hours.
These are the instances where a gap between linear relaxation at the root node and optimal
solution still exists.

3.4 Branch-and-Price Approach

After using the branch-and-bound approach, we want to explore the option to use branch-and-
price to solve the DMS problem with redundancy. We want to price the paths of functions and
to do this, we have to reformulate certain parts of the MILP formulation from Section 3.2.

3.4.1 Reformulation

We need the following changes to constraints of the MILP formulation and, furthermore, need a
new level of variables for paths of the doors. This level is between the overall system level and
the function level.

These additional variables are location variables for components and connections for each
path of the door. Let (d, p) ∈ D×P refer to path p of the subsystem for door d wich includes all
functions f ∈ F . The required decision variables for every (d, p) ∈ D × P are:

• tdpium ∈ {0, 1}, i ∈ N, u ∈ U i, m ∈Mu, a binary variable that takes value 1 if a unit of type
u is installed at location i, and

• xdpijuû ∈ {0, 1}, (i, j) ∈ A, u ∈ U i, û ∈ W j(u), a binary variable that takes value 1 if
locations i and j are connected and unit u and û are installed at i and j, respectively. It is
0 otherwise.
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We need to synchronize these new decision variables with the location variables of the overall
system level and the function level. For this we drop constraints (3.3) and (3.4) and add the
following constraints. Constraint (3.31) and (3.32) synchronize the overall system with the path
level of the doors and they also create node-disjoint and arc-disjoint paths which are needed for
redundancy.

∀d ∈ D ∀i ∈ N ∀u ∈ U i ∑
p∈P,m∈Mu

tdpium ≤
∑

m∈Mu

tium, (3.31)

∀d ∈ D ∀(i, j) ∈ A ∀u ∈ U i ∀û ∈W j(u) :∑
p∈P

xdpijuû ≤ xijuû. (3.32)

The following two constraints (3.33) and (3.34) synchronize the path level with the function level.
∀(d, f, p) ∀i ∈ Nf ∀u ∈ U i

f

tdfpiu ≤
∑

m∈Mu

tdpium, (3.33)

∀(d, f, p) ∀(i, j) ∈ A u ∈ U i
f , û ∈W

j
f (u) :

xdfpijuû ≤ x
dp
ijuû. (3.34)

These new constraints and variables are needed to obtain a dual solution that proves the
optimality of the reduced master problem in branch-and-price. Furthermore, we need constraints
like (3.14) which are only for the overall system level in the previous formulation also for the (d, p)
level in the pricing problems. Therefore, we have to add constraint (3.35) to the formulation.

∀(d, p) ∀i ∈ N, ∀u ∈ U i : ∑
`∈V−(i,u),

û∈U` | u∈C(û)

xdp`iûu +
∑

`∈V+(i,u),

û∈Wk(u)

xdpi`uû ≤
∑

m∈Mu

tdpiumEum. (3.35)

In the following, we show the master and pricing problems which are necessary for the branch-
and-price algorithm.

3.4.2 Master Problem and Pricing Problems

In this subsection, we introduce the master problem and the pricing problems. In the following,
we split the constraint matrix of our formulation into three matrices.

• Constraints (3.1), (3.2), (3.31) and (3.32) are represented through matrix S and RHS vec-
tor s. These are the synchronization constraints between (d, f, p) variables and overall
variables or between (d, p) variables and overall variables. These are part of the master
problem.

• Constraints (3.13)-(3.15) and (3.18)-(3.21),are represented through matrix O and RHS vec-
tor o. These are synchronization or architectural constraints that only include overall vari-
ables and they are also part of the master problem.

• Constraints (3.5)-(3.8), (3.9)-(3.12), (3.16), (3.17), and (3.33)-(3.35) are represented through
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matrices Kdp and RHS vector kdp, d ∈ D, p ∈ P . These are only constraints that include
(d, f, p) and (d, p) variables.

Let t be the vector containing all tium variables and x be the vector containing all xijuû variables.

Furthermore, let tdp and xdp be vectors containing all corresponding variables tdpium, x
dp
ijuû, t

dfp
iu

and xdfpijuû for d, p ∈ D × P , respectively. Also, let

l = (t, x, (tdp)d,p∈D×P , (xdp)d,p∈D×P ). (3.36)

Let n, n0 and ndp, d, p ∈ D × P so that we have l ∈ {0, 1}n, (t, x) ∈ {0, 1}no and (tdp, xdp) ∈
{0, 1}ndp , d, p ∈ D × P , respectively. We can now write the MILP formulation in the following
form:

min f(l) (3.37)

s.t. Sl ≤ s
O(t, x) ≤ o
Kdp(tdp, xdp) ≤ kdp, ∀d ∈ D, p ∈ P l ∈ {0, 1}n.

Figure 3.3 shows an example constraint matrix for two doors and three paths. We can identify
the matrices O, Kdp, (d, p) ∈ D × P, and S and see that we have a block diagonal form with
connecting constrains in S.

Figure 3.3: Example Constraint matrix for 2 doors and 3 paths.

LetKdp = {(tdp, xdp) |Kdp(tdp, xdp) ≤ kdp}, (d, p) ∈ D×P . Then we can write formulation 3.37
as

min f(t, x) (3.38)

s.t. Sl ≤ s
O(t, x) ≤ o
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(tdp, xdp) ∈ Kdp, ∀d ∈ D, p ∈ P.

To look in more detail at the Kdp, we write out the included constraints and see why we can use
a result from network flow theory. The first constraints are flow constraints

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, i ∈ Nf , ∀u ∈ U i
f :∑

j∈V+
f

(i,u),

û∈Wj
f
(u)

xdfpijuû ≤ E
out
fu t

dfp
iu , (3.39)

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, j ∈ Nf , ∀û ∈ U j
f :∑

i∈V−
f

(j,û),

u∈Uf | û∈Cf (u)

xdfpijuû ≤ E
in
fut

dfp
jû , (3.40)

∀d ∈ D, ∀p ∈ P, ∀f ∈ F,∀i ∈ Nf :∑
u∈(Ub

f ∪{ef})∩U
i
f

T f,in
u tdfpiu ≤

∑
`∈V−

f
(i), u∈(Ub

f
∪{ef })∩U

i
f
,

û∈Uf | u∈Cf (û)

xdfp`iûu, (3.41)

∑
u∈(Ub

f ∪{sf})∩U
i
f

T f,out
u tdfpiu ≤

∑
`∈V+

f
(i), u∈(Ub

f
∪{sf })∩U

i
f
,

û∈W`
f
(u)

xdfpi`uû, (3.42)

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀uf ∈ {sf , ef} :∑
i∈N

uf
f

tdfpiuf
= 1. (3.43)

These constraints create the flow for the path of the functions. And, therefore, every set Kdp

contains all possible paths for the two functions of door d. The following constraints are only
architectural restrictions, synchronizations and tightening constraints.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f , ∀û ∈ C

+
f (u) :

tdfpiu ≤
∑

j∈V +
f (i)∩N û

f

xdfpijuû. (3.44)

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀j ∈ Nf , ∀u ∈ U j
f , ∀û ∈ C

−
f (u) :

tdfpju ≤
∑

i∈V −f (j)∩N û
f

xdfpijûu. (3.45)

∀i ∈ N ef1 ,∀d ∈ D, ∀p ∈ P with ef1 = sf2 :

tdf1pief1
= tdf2pisf2

. (3.46)
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∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀u ∈ Uf : ∑
û∈{u | u∈C+

f
(u)},

i∈Nû
f

tdfpiû ≤ E
in
fu

∑
i∈Nu

f

tdfpiu (3.47)

∑
û∈{u | u∈C−

f
(u)},

i∈Nû
f

tdfpiû ≤ E
out
fu

∑
i∈Nu

f

tdfpiu (3.48)

∀(d, f, p) ∀i ∈ Nf ∀u ∈ U i
f

tdfpiu ≤
∑

m∈Mu

tdpium, (3.49)

∀(d, f, p) ∀(i, j) ∈ A u ∈ U i
f , û ∈W

j
f (u) :

xdfpijuû ≤ x
dp
ijuû. (3.50)

∀(d, p) ∀i ∈ N, ∀u ∈ U i : ∑
`∈V−(i,u),

û∈U` | u∈C(û)

xdp`iûu +
∑

`∈V+(i,u),

û∈Wk(u)

xdpi`uû ≤
∑

m∈Mu

tdpiumEum. (3.51)

The paths contained in Kdp are represented by the new decision variables tdpium and xdpijuû. Fur-
thermore, we know that every extreme point of these sets are paths for the two functions. Hence,
we use Kdp ≤ kdp as our constraints of the pricing problem. We therefore price the paths of our
doors and we can use the following result of network flow theory to formulate the master problem.
An extreme point (tpdp, xpdp) of the polytope conv(Kdp) is a path p which includes both functions
in the network. Let Pdp be the set of all possible paths/extreme points of Kdp. We can then
rewrite variable vectors (tdp, xdp) as a convex combination of possible paths:

(tdp, xdp) =
∑

p∈Pdp

(tpdp, xpdp)λp∑
p∈Pdp

λp = 1

λp ≥ 0, ∀p ∈ Pdp.

Furthermore, we split the matrix S to So and Sdp, (d, p) ∈ D × P , so that we have

Sl ≤ s ⇔ So(t, x) +
∑

d∈D, p∈P
Sdp(tdp, xdp) ≤ s.

We obtain the following master problem that are equivalent to formulation (3.37) and (3.38):

min f(t, x) (3.52)

s.t. O(t, x) ≤ o

So(t, x) +
∑

d∈D,p∈P

Sdp ∑
p∈Pdp

(tpdp, xpdp)λp

 ≤ s
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∑
p∈Pdp

λp = 1

λp ∈ N, ∀p ∈ Pdp, ∀d ∈ D, p ∈ P
(t, x) ∈ {0, 1}no

To understand the master problem better, we write out the constraints related to constraint
matrices O and S and how they were reformulated for (3.52). Constraints O(t, x) ≤ o are the
overall system flow constraints

∀(i, j) ∈ A, ∀u ∈ U i : ∑
û∈W j(u)

xijuû ≤
∑

m∈Mu

tium, (3.53)

∀(i, j) ∈ A, ∀û ∈ U j : ∑
u∈U i | û∈C(u)

xijuû ≤
∑

m∈Mu

tjûm, (3.54)

∀i ∈ N ∀u ∈ (Ub ∪
⋃

f∈F {ef}) ∩ U i :∑
m∈Mu

tium ≤
∑

`∈V−(i,u),

û∈U` | u∈C(û)

x`iûu, (3.55)

∀i ∈ N ∀u ∈ (Ub ∪
⋃

f∈F {sf}) ∩ U i :∑
m∈Mu

tium ≤
∑

`∈V+(i,u),

û∈Wj(u)

xi`uû, (3.56)

and architecural constraints

∀i ∈ N : ∑
u∈Ui,
m∈Mu

tium ≤ 1, (3.57)

∀i ∈ N, ∀u ∈ U i : ∑
`∈V−(i,u),

û∈U` | u∈C(û)

x`iûu +
∑

`∈V+(i,u),

û∈Wk(u)

xi`uû ≤
∑

m∈Mu

tiumEum. (3.58)

∀i ∈ NOV F :

2
∑

m∈MOV F

xi(OV F )m ≤
∑

j∈NOCU∩V −(i)

xji(OCU)(OV F ). (3.59)

No changes were made to these constraints to create the master problem. Now, we consider the
constraints related to matrix S. We have the two synchronization constraints (3.60) and (3.61)
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between overall system and the subsystems related to the functions of doors.

∀i ∈ N, ∀u ∈ U i : ∑
m∈Mu

tium ≤
∑

d∈D p∈P,
f∈F (u)

tdfpiu , (3.60)

∀(i, j) ∈ A, ∀u ∈ U i, ∀û ∈W j(u) :

xijuû ≤
∑

d∈D, p∈P,
f∈F | (i,j)∈Af ,

u∈Ui
f
, û∈Wj

f
(u)

xdfpijuû. (3.61)

After reformulation, the constraints are

∀i ∈ N, ∀u ∈ U i : ∑
m∈Mu

tium ≤
∑

d∈D p∈P,
p∈Pdp

tpdpλp, (3.62)

∀(i, j) ∈ A, ∀u ∈ U i, ∀û ∈W j(u) :

xijuû ≤
∑

d∈D, p∈P,
p∈Pdp

xpdpλp. (3.63)

Lastly, we have the two synchronization constraints (3.66) and (3.67) which also enforce that the
paths are node- and arc-disjoint.

∀d ∈ D ∀i ∈ N ∀u ∈ U i ∑
p∈P,m∈Mu

tdpium ≤
∑

m∈Mu

tium, (3.64)

∀d ∈ D ∀(i, j) ∈ A ∀u ∈ U i ∀û ∈W j(u) :∑
p∈P

xdpijuû ≤ xijuû. (3.65)

After reformulation, the constraints are

∀d ∈ D ∀i ∈ N ∀u ∈ U i ∑
p∈P,

p∈Pdp

tpdpλp ≤
∑

m∈Mu

tium, (3.66)

∀d ∈ D ∀(i, j) ∈ A ∀u ∈ U i ∀û ∈W j(u) :∑
p∈P,

p∈Pdp

xpdpλp ≤ xijuû. (3.67)

This gives us the valid master problem (3.52). Let πdp be the dual optimal solutions of the the
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RMP (reduced master problem) for constraint matrix Sdp and π0dp for convexity constraint λp ≥ 0,
for all p ∈ Pdp,(d, p) ∈ D × P . With the constraints sets Kdp for the pricing problems, we can
write the pricing problems for (d, p) ∈ D × P as follows:

c∗dp := min − πT
dpSdp(tdp, xdp)− π0dp

s.t. Kdp(tdp, xdp) ≤ kdp
(tdp, xdp) ∈ {0, 1}ndp

With this, we have enough to implement a general branch-and-price algorithm. Before devel-
oping such an algorithm that is tailored to the DMS problem with redundancy, we tried using the
generic branch-cut-and-price solver GCG (see [14]). We first tried to solve the linear relaxation
with GCG. The solver detected the same structure of the constraint matrix as we did. Unfor-
tunately, even for the smallest problem with 2 doors and 2 paths, the solver did not converge
to an optimal solution within one hour. And for larger problems we did not obtain an optimal
solution. Even though we knew the outcome before, we tried to solve the MILP with GCG. The
outcome was also that we did not obtain a solution in a reasonable time. It seems that the MILP
formulation is not suitable for a general column generation/branch-and-price solver. Therefore,
we addressed the problem of the slow convergence to optimality as explained in the following
subsection.

3.4.3 Solving Dual Problem of Reduced Master Problem

Through computational experiments, we saw that the results from dual solutions obtained through
solving the standard primal problem does not prove optimality in the column generation algorithm
in a reasonable time as the convergence is very slow and unstable. We observed that this is
caused by the symmetry of the location variables in the pricing problem. To reduce the number
of iterations needed to prove optimality and converge faster, we tried solving the dual problem
directly with a different objective function and replaced variables to remove the symmetry.

Let b be the dual variables of constraints (3.31) and let o be the dual variables of constraints
(3.32). For all d ∈ D and u ∈ U , we reformulated the dual problem and all dual variables bd,i,u,
i ∈ N , where replaced with bd,u one to one. Also for all d ∈ D, j ∈ N , u ∈ U and û ∈Wj(u), we
replaced all dual variables od,i,j,u,û, i ∈ Nu, with od,j,u,û. This cancels the symmetry problem of the
pricing problems. Let g be the objective function of the dual problem and z∗ the optimal solution
of the reduced master problem. We add the constraint g = z∗ to the dual problem. With this,
we can change the objective function and still have an optimal solution for objective function g.
Let ydp be the dual variable associated with the convexity constraint of the (d, p) pricing problem
and R be the set of all dual variables associated with the constraints (3.1) and (3.2). We change
the objective function of the dual problem to

min
∑

(d,p)∈D×P

100ydp +
∑
r∈R
|D|r −

∑
d∈D,j∈N,

u∈UanduŴj(u)

od,j,u,û −
∑

d∈D, u∈U
bd,u,

because this gave dual solution with lower dual convexity constraint solution and higher dual
solution values for location variables in the pricing problems. This results in in pricing problem
solutions wit higher optimal values. Through these changes, we were able to stabilize the conver-
gence. However we were still not able to solve the LP relaxation in a reasonable time compared
to the general LP solver of CPLEX. No instance from Section 3.3.3 was solved in less than 10
minutes. We suspect that it still converges to slowly because for most cases the solution of LP
relaxations are very fractional.

At this point we stopped to research the branch-and-price approach for the MILP prob-
lem. We did not see a possibilty that the approach can be better than our branch-and-bound
approach from Section 3.3. Nevertheless, the branch-and-price approach inspired an idea for an-
other heuristic which uses the pricing problems. The heuristic has certain limitations that makes
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it also unsuitable to use. However it gave us an idea fo the heuristic of the DMS problem with
reliability and redundancy which provides feasible solutions with low objective values. Therefore,
we still present the heuristic in the following subsection, even though it is not usable.

3.4.4 Heuristic II

In this subsection a second heuristic is proposed for the DMS problem with redundancy which
uses the idea of Dantzig-Wolfe decomposition.

Let the objective function for the DMS problem with redundancy be

min
∑
i∈N

∑
u∈Ui,
m∈Mu

cumtium +
∑

(i,j)∈A

ccablexij`ij , (3.68)

where ccable and cum are objective coefficients.

To obtain a feasible solution for the MILP from solving the pricing problems, we use the
following steps:

Let Liu be the number of open ports of unit u at location i. Let X ∈ {0, 1}|N |×|N | and xij of

X is 0 if arc (i,j) is not yet used in any subsystem and 1 otherwise. Also, let T ∈ (U ∪ {0})|N |
and ti is u ∈ U if unit type u is set by a subsystem and 0 otherwise. Lastly, we have to enforce
constraint (3.15). For this let

H1 := {i ∈ N | ti = OV F and |x∗i|1 = 1},
H> := {i ∈ N | ti = OV F and |x∗i|1 > 1},

B>
j = {i ∈ N | (i, j) ∈ A,

∑
j∈H>

(X)ij) > 0} and

B1
j = {i ∈ N | (i, j) ∈ A,

∑
j∈H1

(X)ij) > 0}.

Moreover choose appropriate z1, z> ∈ R− with z1 < z> and l. z1, z> and l have to be chosen based
on the parameters c(OV F )m, c(OCU)m and ccable. For example, a better objective value should be
achieved by connecting a second OCU to an existing OVF rather than placing a new OVF and
connecting a OCU to it or connecting a third OCU to an existing OVF. For all (d, p) ∈ D × P :

1. Define objective function :

v(dp) :=
∑
i∈N

∑
u∈Ui,
m∈Mu

(lcum + 1)tdpium +
∑

(i,j)∈A
∀u∈Ui ∀û∈Wj(u)

(lccable + 1)xdpijuû`ij

+
∑
j∈H

 ∑
i∈B1

j ,û∈Wi(OV F )

z1xijû(OV F ) +
∑

i∈B>j ,û∈Wi(OV F )

z>xijû(OV F )



2. Update port constraints (3.35) in Kdp with :

∀i ∈ N with ti 6= 0:∑
`∈{V−(i,ti)| (X)ij=0},

û∈U` | ti∈C(û)

xdp`iûti +
∑

`∈{V+(i,u)| (X)ij=0},
û∈Wk(ti)

xdpi`tiû ≤
∑

m∈Mti

tdpitimEtim − |x∗i| − |xi∗|.(3.69)
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3. Solve:

min v(dp)

s.t. Kdp(tdp, xdp) ≤ kdp
(tdp, xdp) ∈ {0, 1}ndp

4. Let (t∗dp, x
∗
dp) be the optimal solution. For all p̂ ∈ P\{p}, add constraint∑

u∈U i,m∈Mu

tdp̂ium = 0

to Kdp̂, if i ∈ N with
∑

u∈U i,m∈Mu t
(dp)∗

ium > 0.

5. Update X, T , H1, H>, B1
j and B>

j and go to next element in D × P .

The heuristic obtains a feasible solution to the DMS with redundancy with certain limitations.
One limitation is that lower bounds greater than 0 on the overall location variables cannot be
used in the formulations. If we have for example a lower bound on the number of a certain model
of a unit, we cannot translate this into a constraint of the pricing problems. Another limitation
is that if we have an upper bound on the number of a specific model of a unit, we can add this
constraint to the pricing problems. However we cannot ensure that we obtain a feasible solution
from the heuristic, as one of the later pricing problems can be infeasible. These limitations make
the heuristic unusable. However, it inspired the main idea for the heuristic of the DMS problem
with reliability and redundancy in Section 4.2.

3.5 Discussion

In this section, we discuss the authenticity of the used instances and computational results and
furthermore the practicability of our results. For the authenticity of the used instances, we have
to mention that only artificial data was used due to confidentiality issues. However, it must be
noted that the instances solved were built in collaboration with AIRBUS Group so that they were
as real as possible. Moreover, the DMS problem with redundancy is just a simplification of the
whole real problem because some aspects are not taken into account: for example, the reliability
of the system. Nevertheless, having an exact method to solve the DMS problem with redundancy
is already a useful tool for engineers in order to analyze the solutions obtained for small-scale
configurations because so far only some internal heuristics were available to them.

In this context, we also have to consider the relationship between redundancy and reliability.
For example, it is known that a 2-redundant system has a lower reliability than a 3-redundant
system. Hence, the k-redundancy formulation can be used to build a heuristic for the problem
with reliability by iterating k. By creating a k-redundant system that is reliability feasible (i.e.,
that meets the reliability threshold) and then a (k − 1)-redundant system that is not reliability
feasible, an aircraft engineer has two systems which can be used to build the needed end system.
Therefore, the model can be used in the preliminary design phase of a network in order to enable
a quick exploration of the design space for a better initialization of the detailed design phases.
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Chapter 4

Reliability Models and Methods

Now that we have presented an MILP formulation and an exact solution method for the DMS
problem with redundancy, we discuss how to consider reliability for the DMS problem. As we
have already seen in Chapter 2, the calculation of reliability is very hard and computationally
expensive even on its own. If reliability has to be considered in an optimization problem it
becomes even more complex.

Optimization problems of safety-critical systems that consider redundancy or reliability are
called redundancy allocation problems (RAPs) (see [28, 26]). RAPs involve the simultaneous
selection of components and a system-level design configuration which can collectively meet all
design constraints in order to optimize some objectives such as system cost or reliability. In
particular, system reliability has received broad attention in the literature (see [53] for a review).
For RAPs, the majority of research has been done in the direction of reliability with respect
to subsystems and series-parallel systems (see [15] and [27]). However, some assumptions, such
as independency of certain subsystems, were made in most cases to simplify the calculation of
reliability. Research has also been conducted into RAPs of aircraft architecture systems. For
fly-by-wire airliners, an architecture optimization of a flight-control system which considers the
reliability of the system was proposed in [5] and the optimization of an actuation system with
regards to redundancy and reliability was presented in [40]. In all of these cases, because of the
difficulty of modelling and calculating reliability in complex systems, either independency was
assumed for the calculation of the reliability, or a genetic algorithm [8] or colony algorithm [21]
was used to design the system. Clearly, the DMS problem with redundancy and reliability is an
RAP. Our objective is to make no assumption of independency or to use any approximations. An
optimization model for aircraft architecture problems similar to the DMS is proposed in [20], but
this uses an approximation for the reliability. As mentioned before, in Appendix A.1 we observe
that approximations as used in [20] are not suitable for optimization.

We saw in Chapter 2 that the DMS is also a system where the calculation of reliability is
computationally expensive and also non-linear. We would like now to formulate MINLP and
MILP problems using the calculation method for the reliability from Chapter 2 and see if they
are solvable.

In the following sections, we first propose MINLP and MILP formulations for the DMS prob-
lem with redundancy and reliability, and then discuss the current difficulties to solving it exactly
in Section 4.1. As mentioned in the previous chapter, the branch-and-price approach helped to
inspire the main idea for a heuristic of the DMS problem with redundancy and reliability which is
introduced in Section 4.2. It is also based on the reliability calculation method from Section 2.2
and characteristics of the reliability calculation that were observed during the development of the
heuristic.

4.1 MILP and MINLP Formulations

In this section we present MILP and MINLP formulations for the DMS problem with reliability
and redundancy. Note that we only consider 2-redundancy and not k-redundancy as in Chapter 3.
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Both formulations are based on the MILP formulation in Section 3.2 and all sets, parameters,
constraints and decision variables can be used with only one small change. As mentioned be-
fore, we only require 2-redundancy and not k-redundancy and therefore we have to loosen the
redundancy constraints. However more than two paths may be needed to achieve the necessary
reliability. Therefore, we define P = {1, . . . , κ}, κ ≥ 3. For both of these reliability formulations,
we can use all constraints and variables from the redundancy formulation with two exception. We
must relax the redundancy constraints (3.3) and (3.4): we force the first two paths to be disjoint
to obtain the 2-redundancy and all other paths are allowed to share components and connections.
This results in the following constraints (4.1)-(4.4) instead of (3.3) and (3.4).

∀d ∈ D, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f , ∀f̂ ∈ F u :∑
m∈Mu

tium ≥ td1fiu + td2f̂iu , (4.1)

∀d ∈ D, ∀f ∈ F, ∀(i, j) ∈ Af , ∀u ∈ U i, ∀û ∈W j(u) :

xijuû ≥ xd1fijuû + xd2fijuû, (4.2)

∀d ∈ D, ∀p ∈ P\{1, 2}, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f :∑

m∈Mu

tium ≥ tdpfiu , (4.3)

∀d ∈ D, ∀p ∈ P\{1, 2}, ∀f ∈ F, ∀(i, j) ∈ Af , ∀u ∈ U i, ∀û ∈W j(u) :

xijuû ≥ xdpfijuû. (4.4)

The rest of the MILP formulation for the DMS problem with redundancy will be used without
changes and this provides us with all necessary architectural restriction and design constraints.
We only have to add constraints and variables that are needed to consider the reliability. Before
introducing these constraints and variables, we first present the reliability calculation formula
from Section 2.2 applied to the DMS problem.

Let R be the event that the system does not fail, and Rd, d ∈ D, be the event that the system
for door d does not fail. Also let Rdp, d ∈ D and p ∈ P, be event that the system of path p for
door d does not fail. Let zd = |D|, zp = |P |, R = {R1, . . . , Rzd}, Rd = {Rd1, . . . , Rdzp}, d ∈ D,
and zall =

∑zd
i=1 |Ri|. Given k ∈ {zd, zd + 1, . . . , zall}, let

Ck = {E = {E1, . . . , Ek}| Eu = Ri(u)j(u) for some i(u) ∈ {1, . . . , n}, j(u) ∈ {1, . . . , ti(u)},
u = 1, . . . , k, {i(1), i(2), . . . , i(k)} = {1, . . . , n} and Eu 6= Ev, u, v ∈ {1, . . . , k}}.

Using this, we know from Proposition 1 that

P (R) =
m∑

k=n

(−1)k−n
∑
E∈Ck

P (E)

 . (4.5)

However it is usually the case that we need to consider reliability with a value of around
1 − 10−9 which creates numerical issues in optimization models. Therefore, we want to look at
the probability of the whole system failing, which is 1 − P (R). The probability of the whole
system failing is around 10−9 and it is easier to scale it to a number that does not give numerical
issues. The probability of the whole system failing can be written as

1− P (R) = 1−
m∑

k=n

(−1)k−n
∑
E∈Ck

P (E)


=

m∑
k=n

(−1)k−n
∑
E∈Ck

1

− m∑
k=n

(−1)k−n
∑
E∈Ck

P (E)
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=
m∑

k=n

(−1)k−n
∑
E∈Ck

(1− P (E))

 . (4.6)

In the following, we present decision variables and constraints that are used in both the MILP
and the MINLP formulation.

4.1.1 Variables and Constraints for Reliability

From (4.6) we can see that we need to calculate each P (E). To implement this in the formulation,
we need variables tEium and xEij with i ∈ N, u ∈ Ni, m ∈Mu, j ∈ V +(i),
E ∈ Ck, k ∈ {zd, . . . , zall}, and variables tEum and xE with E ∈ Ck, k ∈ {zd, . . . , zall}. For each
E ∈ Ck, these variables represent the subnetwork which is composed of all implementations in E.
For these variables to represent the subnetworks, constraints are also needed to synchronize these
new variables with the existing location variables of the overall system and the subnetworks of
(d, f, p) ∈ D × F × P .

Let k ∈ {zd, . . . , zall} and E ∈ Ck, and I(E) = {(d, p) | ∃i ∈ {1, . . . , k} : Ei = Rdp}. For zd,
we have the synchronization constraints:

∀E ∈ Czd , ∀(d, p) ∈ I(E), ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f :∑

m∈Mu

tEium ≥ tdfpiu , (4.7)

∀E ∈ Czd , ∀i ∈ N, ∀u ∈ U i : ∑
m∈Mu

tEium ≤
∑

∀(d,p)∈I(E),
∀f∈Fu

tdfpiu , (4.8)

∀E ∈ Czd , ∀i ∈ N, ∀u ∈ U i, ∀m ∈Mu :

tium ≥ tEium, (4.9)

∀E ∈ Czd , ∀(d, p) ∈ I(E), ∀f ∈ F, ∀(i, j) ∈ Af :

xEij ≥
∑

(u,û)∈U if×W
j
f (u)

xdfpijuû. (4.10)

For k > zd we know the following:

∀E ∈ Ck ∃Ê1,E, Ê2,E ∈ Ck−1 : I(E) = I(Ê1,E) ∪ I(Ê2,E).

Therefore, for k > zd we can use the following synchronization constraints.

∀k ∈ {zd + 1, . . . , zall}, ∀E ∈ Ck, ∀i ∈ N, ∀u ∈ U, ∀m ∈Mu :

tEium ≥ tÊ1,Eium, (4.11)

tEium ≥ tÊ2,Eium, (4.12)

tEium ≤ tÊ1,Eium + tÊ2,Eium. (4.13)

If we were to use the same synchronization constraints for k > zd as for k = zd, many more
constraints would be needed.

The following provides a strengthening of constraints (4.13). Let E ∈ Ck, k > zd and for
i ∈ {1, . . . , n} define:

Ei = {E ∈ E | ∃j ∈ {1, . . . , ti} : E = Rij}

and also define αE := maxi∈{1,...,n}{|Ei|}. Furthermore define αk = maxE∈Ck{aE}. Let k1 = dk2e
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and k2 = bk2c. We then have that if αk1 + αk2 ≥ αE then

∃ Êk1,E ∈ Ck1 and ∃ Êk2,E ∈ Ck2 with I(E) = I(Êk1,E) ∪ I(Êk2,E).

Otherwise

∃ Êk1,E ∈ Ck1 and ∃ Êk2,E ∈ Ck2+1 with I(E) = I(Êk1,E) ∪ I(Êk2,E).

The following constraint is stronger than (4.13):

∀k ∈ {zd + 1, . . . , zall}, ∀E ∈ Ck, ∀i ∈ N, ∀u ∈ U, ∀m ∈Mu :

tEium ≤ tÊk1,Eium + tÊk2,Eium. (4.14)

To calculate each P (E) we need the total number of components and connections of the corre-
sponding subnetwork. These are given through the constraints

∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck, ∀u ∈ U, ∀m ∈Mu :

tEum =
∑
i∈Nu

tEium (4.15)

and ∀k ∈ {zd, . . . ,m}, ∀E ∈ Ck :

xE =
∑

(i,j)∈A

xEij . (4.16)

With these variables and constraints, we could calculate P (E) easily with

P (E) =
∏

u∈U,m∈Mu

(1− fum)tEum × (1− fcable)xE (4.17)

where fcable is the failure rate of a cable and fum is the failure rate of a model m of a component
u. It is easy to see that this is a non-convex (non-linear) function.

To finish our formulation, we only need to formulate (4.17). We will see that the MILP and
MINLP formulations require different variables and constraints needed for this. We first propose
the last part of the MINLP formulation.

4.1.2 MILNP Formulation

We need variables rE, E ∈ Ck, k ∈ {zd, . . . , zall} to include (4.17) in the MINLP formulation.
These will represent the negative logarithm of P (E). We consider the negative of the logarithm,
because the logarithm turns a value that is less than, but close to 1 into a negative variable
that is close to 0. Furthermore, the failure rates fum and fcable are very small (usually less than
< 10−5) and hence the values of rE are also very small, so we scale rE by 10`, for some ` ≥ 1
which depends on the average value of the failure rates. We can then include (4.17) as

∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck :

−rE =
∑
u∈U,
m∈Mu

tEum

(
10` ln(1− fum)

)
+ xE

(
10` ln(1− fcable)

)
. (4.18)

To include the probability 1 − P (R) of the whole system failing, we need a variable rtotal
which gives the probability of the whole system failing, also scaled by 10`. To include it in the
formulation, we use the constraint

rtotal =

zall∑
k=zd

(−1)k−zd
∑
E∈Ck

pE

 (4.19)
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where pE is 10l
(

1− e−
rE
10l

)
.

To include pE, we have the constraints ∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck :

(−1)k−zd = 1⇒ −pE + 10l
(

1− e−
rE
10`

)
≤ 0, (4.20)

(−1)k−zd = −1⇒ pE − 10l
(

1− e−
rE
10`

)
≤ 0. (4.21)

Observe that (4.20) is a concave function, while (4.21) is a convex function. We now explain a
linear relaxation that can be used for the constraints (4.20) and (4.21).

To initially construct the best possible linear relaxation, bounds on the variables pE and rE
are needed. The bounds for both variables are closely related and dependent because pE is the
result of an equation calculation that only involves rE. To obtain the best possible bounds,
we solve the problem without (4.20) and (4.21) several times. For every k ∈ {zd, . . . , zall}, we
choose an element E ∈ Ck and minimize and maximize once with the objective function rE. This
provides the bounds for rE and consequently pE . For the convex constraint (4.21), we use the outer
approximation (4.23) and (4.24) as the linear relaxation and use the known convex envelope (4.22)

for the concave constraint (4.20). Let us define a function g : R→ R by g(x) = 10l
(

1− e−
x

10`

)
.

Let rlbE and rubE be the lower and upper bounds of rE, respectively, then:
∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck :

(−1)k−zd = −1⇒ f
(
rlbE

)
+
g
(
rubE
)
− g

(
rlbE
)

rubE − rlbE

(
rE − rlbE

)
− pE ≤ 0, (4.22)

(−1)k−zd = 1⇒ pE − rE exp

(
−
rubE
10l

)
− pubE + rubE exp

(
−
rubE
10l

)
≤ 0, (4.23)

(−1)k−zd = 1⇒ pE − rE exp

(
−
rlbE
10l

)
− plbE + rlbE exp

(
−
rlbE
10l

)
≤ 0. (4.24)

Another possible way of calculating pE is by using the power series representation of the expo-
nential function:
∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck :

(−1)k−zd = 1⇒

− pE ≥ rE −
1

2× 10`
r2E +

1

6× 102`
r3E −

1

4!× 103`
r4E +

1

5!× 104`
r5E, (4.25)

(−1)k−zd = −1⇒

pE ≥ −rE +
1

2× 10`
r2E −

1

6× 102`
r3E +

1

4!× 103`
r4E. (4.26)

Observe that (4.25) is a concave constraint, while (4.26) is a convex constraint.
We ran tests on these different non-convex mixed integer programming problems for both two

and three doors with different MINLP solvers available on the NEOS server. Unfortunately, even
when using (4.22) the problem is not tractable and therefore not solvable in a reasonable amount
of time. It is not tractable mainly because of the linear part is very large for non-convex MINLPs
as seen in Chapter 3 and linear relaxation values of the reliability variables are very poor and
fractional. All this slows the convergence considerably.

4.1.3 MILP Formulation

As a alternative to the MINLP formulations for (4.17), we have an MILP formulation. I consists
in enumerating all possible combinations of the subsystems, calculating the reliability beforehand
and then using them in the formulation. To verify that this approach is computationally possible,
we first consider a simpler problem where only units are used for the reliability calculation as this
reduces the number of combinations.
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For the MILP formulation, we also need the decision variables rtotal and rE, E ∈ Ck,
k ∈ {zd, . . . , zall}, with

rtotal =

zall∑
k=zd

(−1)k−n
∑
E∈Ck

rE

 . (4.27)

To create linear constraints to calculate the values of rE, we need all the possible combinations
of units. We need the lower and upper bounds tlbkmu and tubkmu, u ∈ U , m ∈Mu, of variables tEum,
to enumerate all these possible combinations of units for an element E ∈ Ck,
k ∈ {zd, . . . , zall}. These can be calculated by minimizing and maximizing the redundancy MILP
formulation with all constraints from Subsection 4.1.1 and with tEUm as the objective, e.g.
max{tEum}, E ∈ Ck, u ∈ U , m ∈ Mu. Since all elements E ∈ Ck have the same bounds
at first, we only need to run a minimization and maximization for one element E ∈ Ck per
k ∈ {zd, . . . , zall}.

Let m̂ = maxu∈U M
u. The set of all possible combinations of units for an element E ∈ Ck,

k ∈ {zd, . . . , zall} is

KE
k =

X ∈ Z|U |×m̂
∣∣∣∣∣ tlbkij ≤ Xij ≤ tubkij , i ∈ U, j ∈M i and tlbku ≤

∑
j∈M i

Xij ≤ tubku, i ∈ U,

and Xij = −1, i ∈ U, |M i| < j ≤ m̂

 .

We define decision variables dEuma ∈ {0, 1}, E ∈ Ck, k,∈ {zd, . . . , zall}, u ∈ U, m ∈ Mu and
a ∈ {tlbkum, . . . , tubkum}. Variable dEuma takes value 1 if tEum = a, and 0 otherwise. Furthermore,
let us define variables hEX ∈ {0, 1}, k ∈ {zd, . . . , zall}, E ∈ Ck, and X ∈ KE

k . The variable hEX

is 1 if
∑

i∈U, j∈M i dEijxij =
∑

i∈U |M i|, and 0 otherwise. To achieve this, we need the following
constraints:

∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck, ∀u ∈ U, ∀m ∈Mu :

tEum =
∑

a∈{tlbkum,...,tubkum}

adEuma, (4.28)

∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck, ∀u ∈ U, ∀m ∈Mu :∑
a∈{tlbkum,...,tubkum}

dEuma = 1, (4.29)

∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck, ∀u ∈ U, ∀m ∈Mu ∀a ∈ {tlbkum, . . . , tubkum} :

a− tEum = oa+ − oa−, (4.30)∑
a∈{tlbkum,...,tubkum}\{â}

dEuma ≤ oa+ + oa−, (4.31)

∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck, ∀u ∈ U, ∀m ∈Mu, ∀a ∈ {tlbkum, . . . , tubkum} :

dEuma =
∑

X∈KE
k | xij=a

hEX , (4.32)
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∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck : ∑
X∈KE

k

hEX = 1. (4.33)

Instead of (4.32), we could use the following constraints (4.34), although there are many more of
them:

∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck, ∀X ∈ KE
k :∑

i∈U, j∈M i

dEijxij −
∑
i∈U
|M i|+ 1 ≤ hEX . (4.34)

Let fum be the failure rate of a model m of unit u. We then have that the reliability of an

element E with combination of units X is rEX = 1−
(∏

i∈U,m∈M (1− fum)xij
)

. To have the right

value of rE, we need the constraints

∀k ∈ {zd, . . . , zall}, ∀E ∈ Ck :

(−1)k−zd = −1 ⇒ rE ≤
∑

X∈KE
k

rEXhEX , (4.35)

(−1)k−zd = 1 ⇒ rE ≥
∑

X∈KE
k

rEXhEX . (4.36)

However the number of all possible combinations of units is huge. We show this fact with an
example of the DMS with 2 doors and 3 possible paths. The Tables C.1, C.2, C.3, C.4 and C.5
in Appendix C.1 give the lower and upper bounds with the number of models and possible
combinations for all k ∈ {2, . . . , 6}. We see that for all k there are 5, 346, 096 possible combinations
and with |C2| = 9, |C3| = 18, |C4| = 15, |C5| = 6 and |C6| = 1, we have 27, 586, 608 hEX variables
in the model.

We ran computational tests on a smaller example with only one model per unit type and this
resulted in a problem with approximately 100.000 variables. We saw that the linear relaxation
for the reliability value rtotal is very poor because of fractional hEX values close to 0. Due
to this poor linear relaxation value, we were not able to solve the problem, unless the reliability
threshold was achieved through simple 2-redundancy. However such solutions are not meaningful.
Unfortunately, we were not able to strengthen the linear relaxation and could not solve the
problem.

Another approach was to use column generation/branch-and-price to solve the problem and
add the hEX variables to the problem slowly and not start with all of them from the beginning.
This is not possible, because we would need a non-linear non-convex objective function or a non-
linear non-convex constraint in the pricing problems or master problem, respectively. This would
result in the same problems as with the previous MINLP formulations.

Having not been able to solve the DMS problem with redundancy and reliability exactly, we
now wish to develop a heuristic that offers good feasible solutions inspired by what has been
discussed in Section 3.4.

4.2 Heuristic for the DMS Problem with Redundancy and Reli-
ability

In this section, we introduce a new heuristic for the DMS problem with redundancy and reliability
that gives good feasible solutions for problems where the reliability threshold is a constraint and
not an objective. It is important to note that this is a heuristic that is valid for a DMS with at
most three paths. If we wish to consider more paths, changes have to be made to the heuristic.

As mentioned before, the heuristic is based on the branch-and-price approach. It therefore uses
an MILP formulation for the master problem and pricing problems. We also use the redundancy
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MILP formulation for the DMS problem with redundancy as a basis for the master problem and
pricing problems.

As mentioned in Section 3.1, the design for the DMS network can be seen as a sub-graph
G′ of G where G is a directed graph that represents all possible locations of units and cable
connections. We will refer to the DMS network as the overall system. However, to formulate
our problem we cannot only look at the overall system. We have to look at every function which
must be at least 2-redundant in the network system. As mentioned before, functions are sets of
units and cable connections that fulfill a certain task. Hence, we can also see every function as a
sub-graph of G′. Every functions is implemented multiple times in the network systems and every
implementation is represented by a path. If we look at the finished redundancy formulation, we
then have flow and architectural constraints for every path of a function of a door. Furthermore,
we have constraints that synchronize the subsystems with the overall system. Figure 4.1 shows
the constraint matrix of the redundancy formulation for 2 doors and 3 paths.

Figure 4.1: Example constraint matrix for 2 doors and 3 paths.

The matrix shows the structure needed for a Dantzig-Wolfe decomposition where we have a
block of connecting constraints or, in our case, synchronization constraints and several indepen-
dent sub-matrices that represent the paths of both functions for a door. Therefore, we can split
the problem into a master problem which includes synchronization constraints and the architec-
tural constraints for the overall system, and pricing problems which include flow and architectural
constraints of the functions. It has to mentioned here that a pricing problem covers a path for each
function of a door. We combine both functions into one pricing problem, because the functions
are connected, as mentioned before, and therefore have to be considered together for reliability
calculations. We therefore have for example 6 pricing problems for a DMS network with 2 doors
and 3 paths.

To consider the reliability in our heuristic and to obtain good solutions which meet the reli-
ability threshold, we have to add additional constraints to the master and sub-problems. Since
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we cannot directly implement the reliability of the subsystems and overall system, we use the
following five characteristics of the system reliability which help us to obtain solutions with high
reliability. These characteristics were observed during computational tests on the reliability cal-
culation of the DMS. They are not proven to be true in general, but helped us to obtain better
solutions. In Appendix C.4, we give proofs for a few simplifications of these characteristics.

(a) The first characteristic is that the fewer the units or connections are shared between the
different paths of a function, the higher the reliability. Let us assume that we have three
paths and two of these are disjoint. This means that the third path is allowed to share units
and connections with the other two paths. We observed that the fewer units and connections
the third paths shares with the other two, the higher the reliability of the overall system.

(b) Let there be n paths of a function and suppose that the ith path does not share all units
or connections with the other paths. Furthermore, let the sum of the failure rates of the
units and connections of the different paths be fixed as well as the number of units and
connections. The second characteristic is that the higher the sum of the failure rates of the
units and connections that the ith path does not share with the other paths, the higher the
reliability of the overall system. This is the case since the ith path becomes more disjoint
from the other paths and this always increases the reliability of the overall system.

(c) Furthermore, we observed that if the number of units, the number of cables and the sum
of failure rates for a path is low, then in most cases the reliability of the overall system is
high.

(d) For the fourth characteristic, let us assume that we have three paths. Two of the paths have
to be disjoint to obtain a redundant system. The third path can share units and connections
with either of the two paths. We observe that if the third path shares approximately the
same sum of failure rates with the first as with the second path, the reliability is higher.
Possible explanation for this observation is that it the reliability is higher the less reliant
the third path is on either of the two other paths.

(e) Finally, let us assume that we have a system where the number of shared units and con-
nections is fixed. We then know that the lower the sum of the failure rates of the overall
system, the higher the reliability of the overall system.

Using the idea of the branch-and-price approach, these reliability characteristics and the
redundancy MILP formulation, we can build the following heuristic that obtains good feasible
solutions for the DMS problem with redundancy and reliability.

The rest of this section is organized as follows: first, the MILP formulation for the master
problem and subproblems is given in Subsection 4.2.1. It must be noted that what we previously
called pricing problems, we now call subproblems as the idea of pricing is not used in what follows.
The heuristic algorithm is presented in Subsection 4.2.2. A computational study is presented in
Subsection 4.2.3 and shows the performance of the heuristic. Since there is no exact solution
method, we can only give computational times and the range of the objective values, and no
comparisons are possible. The instances used in the computational study range from two doors
to five doors with different objectives and reliability thresholds.

4.2.1 Master and Subproblem Formulations

For our heuristic, we build a master problem for the overall system and subproblems for the
different subsystems in the DMS. This builds on the redundancy MILP formulation and the
idea of the Dantzig-Wolfe decomposition. The master problem gives us the architecture of the
overall system and synchronization constraints between the overall system and the subsystems.
The subproblems are used to obtain the architecture of the subsystems. The master problem is
used as a verification tool so that the solutions of the subproblem build a feasible DMS network,
and it is also used to optimize the real objective. For the formulations of the master problem
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and the subproblems, we define the same sets and parameters as in the redundancy formulation.
Descriptions of these sets and parameters can be found in Subsections 3.2.1 and ??, respectively.
The only additional parameters that we need are the failure rates of the different models of units
and cable connections:

• fum, the failure rate of the model m of unit type u ∈ U ; and

• fcable, the failure rate of a connection.

We first introduce the MILP formulation of the master problem.

4.2.1.1 Formulation of the master problem

The master problem is comprised of synchronization constraints between the overall system and
the subsystems, and architectural constraints for the overall system. Before presenting the con-
straints, we first define the decision variables needed for the formulation.

We need decision variables for the overall system and each of the subsystems which tells us
the location at which a unit is installed and which cable connections are used. For the overall
system, we have the following decision variables:

• tium ∈ {0, 1}, i ∈ N, u ∈ U i, m ∈Mu, a binary variable which takes value 1 if unit type u
and model m is set at location i, and takes value 0 otherwise; and

• xijuû ∈ {0, 1}, (i, j) ∈ A, u ∈ U i, û ∈ W j(u), a binary variable which takes value 1 if
locations i and j are connected and units u and û are installed at i and j, respectively, and
takes value 0 otherwise.

The same kind of decision variable sets are defined for each subsystem (d, p) ∈ D × P :

• tdpiu ∈ {0, 1}, i ∈ N, u ∈ U i, a binary variable which takes value 1 if a unit of type u is
installed at location i , and takes value 0 otherwise; and

• xdpijuû ∈ {0, 1}, (i, j) ∈ A, u ∈ U i, û ∈ W j(u), a binary variable which takes value 1 if
locations i and j are connected and unit u and û are installed at i and j, respectively, and
takes value 0 otherwise.

As can be seen, we only have a differentiation of the model type included in the overall system
decision variables. This is the case because we must include the parameters associated to the
models only in the constraints for the overall system.

Lastly, we need the decision variables rdp, d ∈ D and p ∈ P, which represent the sum of the
failure rates in the different (d, p) subsystems. A path of d ∈ D covers both functions as they are
connected.

With these decision variables, sets and parameters, we can present the constraints of the
master problem. We need synchronization constraints which synchronize the decision variables
of the overall system and the subsystems. For example, if a unit or cable connection is installed
in the overall system, there has to be a subsystem which uses it. Also, the converse is true: if
a unit or cable connection is used for a subsystem, it has to be installed in the overall system.
Constraints (4.37) to (4.42) force this synchronization. As we only consider a system with at most
three paths and 2-redundancy for this heuristic, we have three different sets of synchronization
constraints.

First, we have constraints (4.37) and (4.38) that impose that the overall system uses a unit
or cable connection, if it is used in a third path of a door.

∀d ∈ D, ∀i ∈ N ∀u ∈ U i

td3iu ≤
∑

m∈Mu

tium, (4.37)

62



∀(i, j) ∈ A u ∈ U i, û ∈W j(u) :

xd3ijuû ≤ xijuû. (4.38)

The second set of constraints, which include (4.39) and (4.40), impose the same for the first
two paths. Additionally, they also impose the redundancy through the binary condition of the
decision variables.

∀d ∈ D, ∀i ∈ N ∀u ∈ U i

td1iu + td2iu ≤
∑

m∈Mu

tium, (4.39)

∀(i, j) ∈ A u ∈ U i, û ∈W j(u) :

xd1ijuû + xd2ijuû ≤ xijuû. (4.40)

Lastly, constraints (4.41) and (4.42) impose the reverse. That is, if a unit is used in the overall
system, then it has to be used in at least one subsystem:

∀i ∈ N ∀u ∈ U i ∑
m∈Mu

tium ≤
∑

d∈D, p∈P
tdpiu , (4.41)

∀(i, j) ∈ A ∀u ∈ U i ∀û ∈W j(u) :

xijuû ≤
∑

d∈D, p∈P
xdpijuû. (4.42)

With these constraints, we have synchronized the two levels of decision variables. The follow-
ing constraints are architectural constraints for the overall system.

Constraint (4.43) imposes that the number of available ports for connections at a location is
not exceeded:

∀i ∈ N, ∀u ∈ U i : ∑
`∈V−(i,u),

û∈U` | u∈C(û)

x`iûu +
∑

`∈V+(i,u),

û∈Wk(u)

xi`uû ≤
∑

m∈Mu

tiumEum. (4.43)

Additionally, constraint (4.44) is used to enforce that at most one unit is installed at any location.

∀i ∈ N : ∑
u∈Ui,
m∈Mu

tium ≤ 1. (4.44)

The formulation described above could be used for several different network systems. The
following constraint is specific to the DMS problem and is a safety requirement. The DMS always
has two particular unit types: the outflow valve (OVF) and the outflow valve control unit (OCU).
We require that every OVF has at least one connection from two different OCUs in the overall
system. This is imposed through constraint (4.45):
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∀i ∈ NOV F :

2
∑

m∈MOV F

xi(OV F )m ≤
∑

j∈NOCU∩V −(i)

xji(OCU)(OV F ). (4.45)

With constraint (4.45), we now have all the synchronization and architectural constraints
that are required. The following constraints and decision variables are related to reliability. To
consider reliability, we need constraints that give us the value of rdp, d ∈ D and p ∈ P, which
represent the sum of the failure rates in the different (d, p) subsystems. As mentioned before, we
solve the master problem after we have solved the subproblems, and to do this we use the solutions
of the subproblems. For the formulation of the following constraints, we use these solutions and
define the following sets for each subproblem of the subsystems (d, p) ∈ D × P :

H l
(d,p) = {(i, u) ∈ N × U | unit u is set at position i for the subsystem (d, p)},

Hc
(d,p) = {(i, j) ∈ A | cable connection from i to j is used for the subsystem (d, p)}.

We can now define the following failure rate constraints:

∀d ∈ D, ∀p ∈ P : ∑
(i,u)∈Hl

(d,p)
,

m∈Mu

fumtium +
∑

(i,j)∈Hc
(d,p)

,

u∈Ui û∈Wj(u)

fcablexijuû = rdp. (4.46)

With all constraints and decision variables defined, we now address the objective function of
the master problem, for which there are many options. For example, we might wish to minimize
the cost or the weight of the overall system. We could also try to include the power consumption
into the minimization. For our heuristic, we assume that the objective is based on parameters of
the different units and cables and that it is linear.

Let wum and wc be the objective coefficients of the decision variable types tium and xijuû,
respectively. The objective function would be:

min
∑

i∈N, u∈U i, m∈Mu

wumtium + wc

∑
(i,j)∈A,

u∈Ui û∈Wj(u)

`ijxijuû (4.47)

where `ij is the distance of the connection between locations i and j, where i, j ∈ N . However,
when solving the heuristic, it is not efficient to use this as the objective function and has to
be included in the constraints. It is not efficient as it does not improve the reliability of the
DMS. Therefore, we need a decision variable ototal which represents the objective function value
of (4.47). This can be done by using the following constraint (4.48).∑

i∈N, u∈U i, m∈Mu

wumtium + wc

∑
(i,j)∈A,

u∈Ui û∈Wj(u)

`ijxijuû = ototal. (4.48)

In our heuristic, we minimize the sum of failure rates of all subsystems. This goes back
to reliability characteristic (c) mentioned in the introduction. Therefore, we have the following
objective function for the master problem:

min
∑

d∈D, p∈P
rdp. (4.49)

We now have a complete MILP formulation of the master problem and present the formulation
of the subproblems in the following subsection.
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4.2.1.2 Formulation of the subproblems

We now introduce the formulation of the subproblems. The sets and parameters needed are the
same as for the master problem. For the rest of this subsection, we look at the formulation of the
subsystem related to (d, p) ∈ D × P . We first define the decision variables.

The decision variables we need for the subproblem are similar to the master problem variables.
We also need decision variables that represent the units used in the overall system. We do not
need a decision variable for the number of connections in the overall system, since this can be
obtained through different means. We define:

• tium ∈ {0, 1}, i ∈ N, u ∈ U i, m ∈ Mu, a binary variable that takes value 1 if unit type u
and model m is set at location i and 0 otherwise.

We again need decision variables that represent the subsystem (d, p). The only difference to the
master problem is that we also need to include the model type in the index of the variable.

• tdpium ∈ {0, 1}, i ∈ N, u ∈ U i, m ∈Mu, a binary variable that takes value 1 if a unit of type
u is installed at location i, and takes value 0 otherwise, and

• xdpijuû ∈ {0, 1}, (i, j) ∈ A, u ∈ U i, û ∈ W j(u), a binary variable that takes value 1 if
locations i and j are connected and unit u and û are installed at i and j, respectively, and
takes value 0 otherwise.

Lastly, we need a similar set of decision variables for the different functions f ∈ F .

• tfiu ∈ {0, 1}, i ∈ Nf , u ∈ U i
f , a binary variable that takes value 1 if a unit of type u is

installed at location i, and takes value 0 otherwise, and

• xfijuû ∈ {0, 1}, (i, j) ∈ Af , u ∈ U i
f , û ∈ W j

f (u), a binary variable that takes value 1 if
locations i and j are connected and unit u and û are installed at i and j, respectively, and
takes value 0 otherwise.

Furthermore, we need decision variables that are connected to the different characteristics (a)-(e)
of reliability networks. However we will not present these variables here, because it is easier to
understand their meaning together with the corresponding constraints.

First, since we have three levels (overall system, subsystems and flows) and their corresponding
decision variable sets, we need to synchronize the decision variable sets through constraints. The
constraints are built in a similar way to the master problem synchronization constraints.

The following constraint synchronizes the subsystem level to the overall system level:

∀d ∈ D, ∀i ∈ N ∀u ∈ U i, m ∈Mu

tdpium ≤ tium. (4.50)

Furthermore, the following constraints (4.51) to (4.54) synchronize the subsystem level with the
function level:

∀f ∈ F ∀(i, j) ∈ AF u ∈ U i
f , û ∈W

j
f (u) :

xfijuû ≤ x
dp
ijuû, (4.51)

∀f ∈ F, ∀i ∈ N ∀u ∈ U i
f

tfiu ≤
∑

m∈Mu

tdpium, (4.52)
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∀(i, j) ∈ A u ∈ U i, û ∈W j(u) :

xdpijuû ≤
∑
f∈F

xfijuû, (4.53)

∀i ∈ N ∀u ∈ U i : ∑
m∈Mu

tdpium ≤
∑
f∈F

tfiu. (4.54)

Since we have different flows in our subsystem, we need the following flow constraints (4.55) to
(4.58). Constraint (4.55) imposes the restriction that no more than the maximum number of
connections Eout

fu can go out of unit u at location i for a function f ∈ F in a subsystem, and it
also synchronizes the arc and location variables of the subsystems:

∀f ∈ F, i ∈ Nf , ∀u ∈ U i
f : ∑

j∈V+
f

(i,u),

û∈Wj
f
(u)

xfijuû ≤ E
out
fu t

f
iu. (4.55)

The following constraint (4.56) imposes the same than (4.55) with the only difference that it is
for connections arriving at a location.

∀f ∈ F, j ∈ Nf , ∀û ∈ U j
f : ∑

i∈V−
f

(j,û),

u∈Uf | û∈Cf (u)

xfijuû ≤ E
in
fut

f
jû. (4.56)

Constraint (4.57) below imposes that if a unit u at location i is used for a subsystem, then at least

T f,in
u connections must arrive at location i for the subsystem. Constraint (4.58) below imposes

that a flow continues, which means that if a unit u at location i is used for a subsystem, at least
T f,out
u connections must leave location i for the subsystem.

∀f ∈ F,∀i ∈ Nf : ∑
u∈(Ub

f ∪{ef})∩U
i
f

T f,in
u tfiu ≤

∑
`∈V−

f
(i), u∈(Ub

f
∪{ef })∩U

i
f
,

û∈Uf | u∈Cf (û)

xf`iûu, (4.57)

∑
u∈(Ub

f ∪{sf})∩U
i
f

T f,out
u tfiu ≤

∑
`∈V+

f
(i), u∈(Ub

f
∪{sf })∩U

i
f
,

û∈W`
f
(u)

xfi`uû. (4.58)

We need a final flow constraint which imposes that a flow starts and ends. This is achieved
through constraints (4.57) and (4.58) as well as constraint (4.59), which imposes that a start and
end unit are set for every flow.

∀f ∈ F, ∀uf ∈ {sf , ef} : ∑
i∈N

uf
f

tfiuf = 1. (4.59)
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After these flow constraints, we also need further architectural constraints for the subsystems and
flows.

In the case of the DMS system, the functions must be connected. This means that, for
example, the end unit of a function f1 has to be also the start unit of another function f2.
Therefore, we need for some f1, f2 ∈ F that

∀i ∈ N ef1 with ef1 = sf2 :

tdf1pief1
= tdf2pisf2

. (4.60)

We also require the additional architectural constraints (4.61) and (4.62). Constraint (4.61)
imposes the condition that if a unit u is installed, then it connects to all unit types it has to
connect to:

∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f , ∀û ∈ C

+
f (u) :

tfiu ≤
∑

j∈V +
f (i)∩N û

f

xfijuû. (4.61)

Constraint (4.62) on the other hand imposes that if a unit u is installed, then it has a connection
from all unit types it has to have a connection from:

∀f ∈ F, ∀j ∈ Nf , ∀u ∈ U j
f , ∀û ∈ C

−
f (u) :

tfju ≤
∑

i∈V −f (j)∩N û
f

xfijûu. (4.62)

As shown in Chapter 3, constraints are needed to achieve a better linear relaxation for such a
problem. Therefore, we also include the following constraints (4.63) and (4.64) into our subprob-
lem formulation.

∀f ∈ F, ∀u ∈ Uf : ∑
û∈{u | u∈C+

f
(u)},

i∈Nû
f

tfiû ≤ E
in
fu

∑
i∈Nu

f

tfiu, (4.63)

∑
û∈{u | u∈C−

f
(u)},

i∈Nû
f

tfiû ≤ E
out
fu

∑
i∈Nu

f

tfiu. (4.64)

Up until now, the constraints have been the same for every subproblem and are not based on
the solution of any previously solved subproblem. Since our heuristic is based on solving the
subproblems one after the other and use the solutions of the previously solved subproblems to
improve the reliability, we introduce the following constraints. Let x∗, t∗ be solutions of already
solved subproblems.

First, we use these solutions to achieve redundancy through the following constraints. If
p ∈ {1, 2} for the current subproblem, then we add the following constraint to the formulation:

∀p̂ ∈ {1, 2}\{p}, ∀i ∈ N, ∀u ∈ U i :

tdpiu ≤ 1− tdp̂
∗

iu . (4.65)
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We also need a constraint in the subproblem similar to (4.43) which limits the number of ports
used. This constraint requires the solutions of the previously solved subproblems. Let

Edp
um = Eum −

∑
d̂∈D\{d},p̂∈P\{p}

 ∑
`∈V−(i,u),

û∈U` | u∈C(û)

xd̂p̂
∗

`iûu +
∑

`∈V+(i,u),

û∈Wk(u)

xd̂p̂
∗

i`uû

 .

We then require:

∀i ∈ N, ∀u ∈ U i : ∑
`∈V−(i,u),

û∈U` | u∈C(û),∑
d̂∈D\{d},p̂∈P\{p} x

d̂p̂
∗

`iûu
=0

xdp`iûu +
∑

`∈V+(i,u),

û∈Wk(u),∑
d̂∈D\{d},p̂∈P\{p} x

d̂p̂
∗

i`uû
=0

xdpi`uû ≤
∑

m∈Mu

tdpiumE
dp
um. (4.66)

Furthermore, the following constraints synchronize the overall system variables with the solutions
of the previously solved subproblems.

∀i ∈ N ∀u ∈ U i :
∑

d̂∈D, p̂∈P

tdp
∗

iu ≥ 1⇒
∑

m∈Mu

tium ≥ 1. (4.67)

The last group of constraints are related to the five characteristics of reliability. First, we propose
the constraints (4.68) to (4.70) that are related to the characteristic (c). Constraint (4.68) gives
us the sum of failure rates for the current subsystem:∑

i∈N,u∈u,
m∈Mu

fumt
dp
ium +

∑
∀(i,j)∈A,

∀u∈Ui ∀û∈Wj(u)

fcablex
dp
ijuû = rdp. (4.68)

The following constraints (4.69) and (4.70) calculate the number of units and gives us the number
of cables used in the subsystem, respectively. ∑

i∈N,u∈u,
m∈Mu

tdpium = tdp, (4.69)

∑
(i,j)∈A, u∈U i,û∈W j(u)

xdpijuû = xdp. (4.70)

We now define a number of constraints that are related to the characteristics (b) and (d). These
are related to the overlap of units and connections of the different paths, and also to the sum of
the failure rates of these units and connections that are used by different paths.

Let t̂dpp̂ and x̂dpp̂ be the number of overlapping units and connections of subsystem (d, p) and

(d, p̂), respectively. Furthermore, let r̂dpp̂ be the sum of failure rate of the overlapping units and
connections of subsystem (d, p) and (d, p̂). We need the following constraints which give us the
values for these variables based on the previously solved subproblems and the current subproblem.

∀p̂ ∈ P\{p} :

t̂dpp̂ =
∑

i∈N, u∈Ui|
∑
m∈Mu t

dp̂∗
iu

=1,

m∈Mu

tdpium, (4.71)

x̂dpp̂ =
∑

(i,j)∈A, u∈U i,û∈W j(u)| xdp̂
∗

ijuû=1

xdpijuû, (4.72)
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r̂dpp̂ =
∑

(i,j)∈A, u∈U i,û∈W j(u)| xdp̂
∗

ijuû=1

fcablex
dp
ijuû +

∑
i∈N, u∈Ui|

∑
m∈Mu t

dp̂∗
ium

=1,

m∈Mu

fumt
dp
ium. (4.73)

Let t̂dpu be the decision variable which represents the number of overlapping units of type u ∈ U
of subsystem (d, p) with all other previous solved subsystems of d ∈ D. For this we need the
following constraints:

∀u ∈ U :

t̂dpu =
∑

i∈N |
∑
m∈Mu,p̂∈P\{p} t

dp̂∗
iu

=1,

m∈Mu

tdpium. (4.74)

The variables r̂dpp̂ can be used for the characteristic (b). However, we need further constraints
and variables for characteristic (d). The following constraints and variables give us the difference
of these variables for the different subsystem combinations.

∀(p̂, p) ∈ P\{p} × P\{p} :

t̂dpp̂ − t̂
dp
p = t̂dp,+(p̂,p) − t̂

dp,−
(p̂,p), (4.75)

x̂dpp̂ − x̂
dp
p = x̂dp,+(p̂,p) − x̂

dp,−
(p̂,p), (4.76)

r̂dpp̂ − r̂
dp
p = r̂dp,+(p̂,p) − r̂

dp,−
(p̂,p). (4.77)

To consider characteristic (e), we need to know the number of units and the number of connections
in the overall system. For this, we first calculate the value

Xbefore =
∑

(i,j)∈A,u∈Ui,û∈Wj(u),

d̂∈D,p̂∈P

xd̂p̂
∗

ijuû, (4.78)

which is based on previously solved subproblems. The following constraints (4.79) and (4.80) give
us these numbers through the variables to and xo: ∑

i∈N,u∈u,
m∈Mu

tium = to, (4.79)

∑
(i,j)∈A, u∈Ui,û∈Wj(u):∑

d̂∈D p̂∈P x
d̂p̂
∗

ijuû
=0

xdpijuû +Xbefore = xo. (4.80)

Lastly, to use characteristic (a) in our heuristic, we define the following parameter sdp and con-
straint (4.81). Let sdp be the maximum number of overlapping units of subsystem (d, p) with all
other paths of the same door, so that we have the constraint∑

p̂∈P\{p}

t̂dpp̂ ≤ s
dp. (4.81)

With this, we have all the variables and constraints of the subproblem formulation and it only
remains to define an objective function for the subproblem.

So far, we have only proposed constraints and variables associated to the characteristics.
To effectively use these characteristics, we must incorporate these variables into the objective
function of the subproblem. We need to make sure to create a feasible overall system, while
solving the different subproblems. For that, we also need to consider the architectural constraint
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(4.45) and incorporate them into the objective function. Therefore, let Liu be the number of
open ports of unit u at position u. Let X ∈ {0, 1}|N |×|N | with xij of X is 0 if arc (i, j) is not yet

used in any subsystem and 1 otherwise. Also, let T ∈ (U ∪ {0})|N | and ti = u if unit type u ∈ U
is set by a subsystem on position i and 0 otherwise. Let

H1 := {i ∈ N | ti = OV F and |x∗i|1 = 1},
H> := {i ∈ N | ti = OV F and |x∗i|1 > 1},

B1
j := {i ∈ N | (i, j) ∈ A,

∑
j∈H1

(X)ij) > 0} and

B>
j := {i ∈ N | (i, j) ∈ A,

∑
j∈H>

(X)ij) > 0}.

Moreover, we need to choose appropriate coefficients w9, w10 ∈ R− with w9 < w10 for the objective
function. These are based on the overall objective coefficients of the OV F and OCU units.

We then can define the objective function for a subproblem of (d, p) ∈ D×P with a coefficient
vector w ∈ R10

+ :

v(dp) := min w1t
total + w2x

total + w3t
dp + w4x

dp + w5r
dp + w6

(
t̂dp,+(p̂,p) + t̂dp,−(p̂,p)

)
+w7

(
x̂dp,+(p̂,p) + x̂dp,−(p̂,p)

)
+ w8

(
r̂dp,+(p̂,p) + r̂dp,−(p̂,p)

)
(4.82)

+
∑
j∈H

 ∑
i∈B1

j ,û∈Wi(OV F )

w9xijû(OV F ) +
∑

i∈B>j ,û∈Wi(OV F )

w10xijû(OV F )

 .

The coefficients are based on failure rate values of the unit types and cables and we will give an
example coefficient vector which is used in the computational study.

4.2.2 Heuristic Algorithm

Now that we have presented the formulation of the master problem and the subproblems, we
can introduce the algorithm of the heuristic. As mentioned before, it is built on the key idea
of Dantzig-Wolfe decomposition with its master problem and subproblems, the characteristics of
reliability, and branching on the variables tiu.

The following points must be mentioned before we can show the algorithm of the heuristic in
a flow chart.

• Let V = {v(d, p) | d ∈ D, p ∈ P} be the subproblems. Furthermore, let U< be the ordered
set of U regarding the objective coefficients of (4.47) with U< = {u1, . . . , u|U |}.

• When solving the subproblems, we solve the subsystems of the doors consecutively. Also, we
first solve the subproblems associated with the disjoint paths and then solve the subproblem
associated with the third path.

• Furthermore, when solving the subproblems for the first time, we alter the objective function
of the subproblems associated with a third path and add wnew

∑
∀p̂∈P\{p} t̂

dp
p̂ . Therefore we

have

v(d3) := min w1t
total + w2x

total + w3t
dp + w4x

dp + w5

(
t̂dp,+(p̂,p) + t̂dp,−(p̂,p)

)
+w6

(
x̂dp,+(p̂,p) + x̂dp,−(p̂,p)

)
+ w7

(
r̂dp,+(p̂,p) + r̂dp,−(p̂,p)

)
+ wnew

∑
p̂∈P\{p}

t̂dpp̂ (4.83)

+
∑
j∈H

 ∑
i∈B1

j ,û∈Wi(OV F )

w1xijû(OV F ) +
∑

i∈B>j ,û∈Wi(OV F )

w>xijû(OV F )

 .
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Through this, we achieve a solution of the overall problem where the third path overlaps as
much as possible with the other two paths. We also have the highest possible s over which
we can iterate and, therefore, we fix s =

∑
p̂∈P\{p} t̂

dp∗

p̂ , after solving the subproblems for
the first time.

• To use the solutions of the subproblems in the master problem, we fix the variables tdpiu and

xdpijuû of the master problem as follows:

∀(d, p) ∈ D × P, ∀i ∈ N, ∀u ∈ U i :

tdpiu =
∑

m∈Mu

tdp
∗

ium, (4.84)

∀(d, p) ∈ D × P, ∀(i, j) ∈ A, ∀u ∈ U i, ∀û ∈Wj(u) :

xdpijuû = xdp
∗

ijuû, (4.85)

where xdp
∗

ijuû and tdp
∗

ium are the solution values of the subproblems.

• Let z be the objective value ototal
∗

of the best reliability feasible solution found. For the
following branching rules, we add the following constraint (4.86) to all subproblems:∑

i∈N, u∈U i, m∈Mu

wumtium + wcx
o ≤ z. (4.86)

• As mentioned before, we use the idea of branching. We branch when we have either a
reliability feasible solution from the master problem or when constraint (4.86) is infeasible
for a subproblem. In the following, we show the two different ways of creating new sets of
subproblems.

1. First, we show how to branch when we have a reliability feasible solution. Let t̂d3
∗

u , (u, d) ∈
U × D, be the values of the subproblems solutions. We construct a new set of sub-
problems Vu for each unit type u ∈ U<. Let ul ∈ U< with l ∈ {1, . . . , |U |}. The new
set of subproblems Vul has the following bounds on the variables t̂d3u , (u, d) ∈ U ×D:
∀d ∈ D ∀uk ∈ U< with k < l :

if max
d∈D

t̂d3
∗

uk
= 0 then t̂d3uk = 0 else t̂d3uk ≥ max

d∈D
t̂d3
∗

uk
,

and

if max
d∈D

t̂d3
∗

ul
= 0 then t̂d3ul = 1 else t̂d3ul ≤ max

d∈D
t̂d3
∗

ul
− 1.

Furthermore, for the set of subproblems we fix the parameter s to be the sum of the
upper bounds of variables t̂d3u , (u, d) ∈ U ×D.

2. We also branch if (4.86) is infeasible for a subproblem. If a subproblem is infeasible
because of (4.86), we solve the subproblem again with an infinite right hand side of
(4.86) and obtain a solution for every subproblem.
Let t̂d3

∗
u , (u, d) ∈ U × D, be the values of the subproblems solutions. We con-

struct a new set of subproblems Vu for each unit type u ∈ U<. Let ul ∈ U< with
l ∈ {1, . . . , |U |}. The new set of subproblems Vul has the following new bounds on the
variables t̂d3u , (u, d) ∈ U ×D:
∀d ∈ D ∀uk ∈ U< with k < l:

t̂d3uk ≤ max
d∈D

t̂d3
∗

uk
, and t̂d3ul ≥ max

d∈D
t̂d3
∗

ul
+ 1.
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Furthermore, for the new sets of subproblems we fix the parameter s to s∗ which is
the parameter value of the current set of subproblems.

• Lastly, having found a reliability feasible solution, we use an improvement step in the
heuristic. If we find a reliability feasible solution, we still do not know if a system with
more units or more overlapping units can have a better objective value. This is the case
because we have different types of units and also each type has different models. Let s∗ be
the parameter value of the current reliability feasible solution and t̂d3

∗
u , (u, d) ∈ U ×D, be

the values of the associated subproblems solutions. Let t̂u = maxd∈D t̂
d3∗
u , u ∈ U, let V be

the associated set of subproblems and let ẑ be the objective value ototal
∗

of the reliability
feasible solution. ototal

∗
is used for constraint (4.86). We create a new set of subproblems

Vnew with s = s∗ − 1 which we use as the initial set of subproblems. Furthermore, we use
the solution from the reliability feasible solution as the incumbent x∗ of the algorithm. The
following flow chart in Figure 4.2 shows the algorithm of the improvement step.

START
Initialization

Initial Subproblem set V
z = ototal

∗

Incumbent x∗

and t̂u, u ∈ U

Solve subproblems vdp ∈ V .

Create master problem
with fixed tdpiu .

Solve master problem and
validate reliability.

Set z = ototal
∗

and x∗∗ solution
of current master problem.

Solve master problem.

If z > z, update z = z and
incumbent x∗ = x∗∗.

Validate reliability.

Start new improvement step
with current V, z and x∗∗.

Results of improvement step
with objective value z∗ and solution x∗∗∗

If z > z, update z∗ = z and
incumbent x∗ = x∗∗∗.

Set t̂∗u = maxd∈D t̂
d3∗
u , u ∈ U, based on x∗∗.

Find ul ∈ U with t̂∗u < t̂u.
Set td3ul ≥ t̂u.

STOP
Improvement Solution x∗ and z.

Feasible

Infeasible

Infeasible

Invalid

Valid and feasible

Add ototal ≤ z − ε

Feasible

Infeasible

Invalid

Valid

Set solution x∗∗

Figure 4.2: Improvement step
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With these points, we now present the heuristic through a flow chart in Figure 4.3.

N empty?
STOP

Incumbent x∗ is heuristic solution.

Choose Problem V l ∈ N .

Solve subproblems vdp ∈ V l.

Create master problem
with fixed tdpiu .

Solve master problem.

START
Initialization

Initial Subproblem set V
N = {V }
z =∞

Incumbent x∗ void

Solve subproblems vdp ∈ V
with obj. func. with (4.83).

Set s = maxd∈D
∑

p̂∈P\{3} t̂
d3∗

p̂ .

Validate reliability.

Set z = ototal
∗

and x∗∗ solution
of current master problem.

Solve master problem.

If z > z, update z = z and
incumbent x∗ = x∗∗.

Validate reliability.

Improvement step as seen in Figure 4.2.

Create new set of subproblems based on
point 1 and add to N .

Create new set of subproblems
based on point 2 and add to N .

Add ototal ≤ z − ε
to master problem

Valid

Invalid

Yes

No

(4.86) feas.

Feasible

Feasible

Infeasible

Infeasible

Infeasible

Decrease sl by one

(4.86) infeas.

Figure 4.3: Heuristic for reliability feasibility
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4.2.3 Computational Study for Reliability Heuristic

We carry out a computational study to analyze the performance of our heuristic. We cannot
compare the new heuristic to other methods, because it is very specific to this problem and there
exist no other fitting heuristics or exact methods to solve the problem. We will run problem
instances that differ in the number of doors, thresholds for reliability, configurations of the lo-
cations, objective functions and unit type parameters. We will then present the best solution,
computational time, number of nodes and range of solution values for each instance.

The instances are artificial and were built based on data provided by AIRBUS Group. As
mentioned in the introduction, we have two functions in the DMS and therefore F = {F1, F2}.
The first function is the information flow from two sensors at a door to a controller (CPIOM) and
the second function is the information flow from that controller to an outflow valve. Also, the
controller used in both functions has to be the same for a door and therefore constraint (4.60) is
used.

The DMS has eight unit types: door (DO), latch & lock sensor (LLS), closed sensor (CS),
outflow valve (OVF), outflow valve control unit (OCU), remote data concentrator (RDC), con-
troller (CPIOM), switch (SWT). We have the following unit sets:

• U s,e = {s1 = DO, s2 = CPIOM, e1 = CPIOM, e2 = OV F},

• Ub = {LLS,CS,OCU,RDC, SWT},

• U1 = {DO,LLS,CS,RDC,CPIOM,SWT},

• U2 = {OV G,OCU,RDC,CPIOM,SWT}.

Except for the door, all units are available in different models. For example, there can be various
kinds of RDC models with different costs, weights or number of ports. In our instances, most
units have two available models.

All computations were done with a Four Intel Xeon E5-2680 v3 2.5GHz, 192Gb RAM and
CPLEX 12.5.1. The heuristic was coded in C++.

In our computations, we used failure rates from 10−5 to 10−2 and a reliability threshold from
0.998 to 0.9999. We ran computational tests for 2, 3, 4 and 5 doors with 3 paths.

For the objective function (4.82), we used the coefficient set

w = (20, 1, 1, 1, 1000, 0.5, 0, 200, 10, 15).

These values were found after numerical experiments. For other failure rates, w5 and w8 would
need to be adapted based on a few numerical experiments with small example models. For
constraint (4.48), we use different randomly generated coefficients wum and wc which are the
weight coefficients for the objective of the optimization. These intervals for the random value
is based on data for real components used by AIRBUS Group. The parameters and coefficients
used can be found in Appendix C.2. Table 4.1 shows the results of our computational tests.
Next to the values of the best solution found, the table also shows the value range and reliability
range. The value range is the range of the objective values of all feasible solutions found and the
reliability range is the range of the reliabilities of all feasible solutions found. In Table 4.1, NA
stands for ”Not Achievable” which means there is no solution with three paths which reaches the
necessary reliability threshold.

|D| Reliability Nodes Time Optimal Reliability Value Reliability
Threshold (s) Value Range Range

2 0.999 16 335 1292.85 0.99901 1292.85-1377.25 0.99900-0.99903
2 0.9991 21 407 1347.2 0.99910 1347.2-1378.15 0.99910-0.99915
2 0.9992 40 950 1404.95 0.99920 1404.95-1509.3 0.99920-0.99925
2 0.9993 36 811 1451.1 0.99931 1451.1-1553.3 0.99930-0.99932
2 0.9994 53 989 1479.3 0.99940 1479.3-1590.1 0.99940-0.99942
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2 0.9995 64 1187 1569.3 0.99950 1569.3-1675.1 0.99950-0.99952
2 0.9996 58 1128 1599.35 0.99961 1599.35-1769.3 0.99960-0.99964
2 0.9997 39 949 1705.3 0.99970 1705.3-1755.1 0.99970-0.99970
2 0.9998 19 608 1786.3 0.99981 1786.3-1929.4 0.99980-0.99981
2 0.9999 9 460 1888.4 0.99990 1888.4-1888.4 0.99990-0.99990

3 0.999 93 4199 1485.9 0.99900 1485.9-1660.2 0.99900-0.99934
3 0.9991 88 3548 1525.9 0.99912 1525.9-1650.95 0.99912-0.99937
3 0.9992 77 4271 1545.9 0.99927 1545.9-1647.8 0.99920-0.99941
3 0.9993 66 2995 1575.9 0.99931 1575.9-1701.05 0.99930-0.99937
3 0.9994 53 2871 1625.9 0.99940 1625.9-1705.9 0.99940-0.99965
3 0.9995 44 2994 1703.9 0.99950 1703.9-1757.1 0.99950-0.99965
3 0.9996 27 1434 1705.9 0.99965 1705.9-1705.9 0.99965-0.99965
3 0.9997 13 1282 1747 0.99970 1747-1747 0.99970-0.99970
3 0.9998 14 1524 1854 0.99980 1854-1854.05 0.99980-0.99980
3 0.9999 1 294 NA NA NA NA

4 0.999 81 3820 1606.6 0.99904 1606.6-1862.7 0.99900-0.99916
4 0.9991 65 3581 1616.55 0.99910 1616.55-1766.5 0.99910-0.99954
4 0.9992 51 3166 1686.55 0.99922 1686.55-1766.5 0.99920-0.99954
4 0.9993 40 3216 1756.55 0.99931 1756.55-1903.3 0.99930-0.99954
4 0.9994 35 2920 1766.5 0.99954 1766.5-2014.65 0.99940-0.99954
4 0.9995 22 1492 1766.5 0.99954 1766.5-1766.5 0.99954-0.99954
4 0.9996 17 1400 1806.5 0.99960 1806.5-1806.5 0.99960-0.99960
4 0.9997 14 1641 1896.5 0.99970 1896.5-1904.6 0.99970-0.99970
4 0.9998 9 1319 2004.6 0.99980 2004.6-2004.6 0.99980-0.99980
4 0.9999 1 308 NA NA NA NA

5 0.999 77 8222 1728.8 0.99900 1728.8-1818.7 0.99900-0.99944
5 0.9991 58 7625 1788.8 0.99910 1788.8-1818.7 0.99910-0.99944
5 0.9992 45 7117 1818.7 0.99944 1818.7-1838.8 0.99920-0.99944
5 0.9993 49 6213 1818.1 0.99944 1818.1-1946.8 0.99930-0.99944
5 0.9994 42 4392 1818.1 0.99944 1818.1-1818.1 0.99944-0.99944
5 0.9995 31 4055 1858.1 0.99952 1858.1-1858.1 0.99952-0.99952
5 0.9996 13 3530 1928.1 0.99960 1928.1-1928.1 0.99960-0.99960
5 0.9997 13 3343 1998.85 0.99970 1998.85-1998.85 0.99970-0.99970
5 0.9998 9 3021 2168.2 0.99980 2168.2-2168.2 0.99980-0.99980
5 0.9999 1 685 NA NA NA NA

Table 4.1: Results for the first set of wum and wc

Table 4.1 shows the results for the first set of wum and wc. We can see that in most cases
the optimal value increases when we increase the threshold, except for cases where a solution
has a very high reliability compared to the threshold and it is still valid for a higher reliability
threshold. In these situations, the optimal solution can then be the same for multiple thresholds.
Using this heuristic, we found multiple reliability feasible solutions with a large range of objective
and reliability values. The heuristic is not built to just find a feasible solution, but to find the
best feasible solution based on our reliability characteristics. Furthermore, for instances with 3, 4
and 5 doors we see that the time decreases when the threshold increases. One reason for this is
that the number of feasible solutions decreases and the branching tree becomes smaller, which
can be seen by the number of nodes. However, this is not the case for instances with 2 doors. For
these instances, the number of nodes first increases with the threshold and after a certain point
decreases again.

We ran computational tests for a second set of wum and wc and the results show the same
behavior. The results can be seen in Table C.2 in Appendix C.3. We ran further tests with a
lower reliability threshold to observe if the behavior of the instances for 2 doors also occur for
3, 4 and 5 doors. These results can be seen Table C.3 in the Appendix C.3. Our results show
that such behavior occurs for instances with 3 doors, but not for instances with 4 or 5 doors. It is
probable that the same behavior occurs for 4 and 5 doors if we decrease the reliability threshold
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even more.

4.3 Discussion

In this section, we discuss the practicability and limitations of the results in this chapter and the
authenticity of the instances used in the computational study. We proposed MILP and MILNP
formulation for the DMS problem with redundancy and reliability and presented the current
problems of solving these models. Because these models are not solvable, we introduced the
heuristic to obtain good reliability feasible solution. It is specialized to the model, but has a
general structure so that it can also easily be fitted to similar network problems with multiple
flows and paths.A limitation of our heuristic is that it only considers at most three paths. If
more paths have to be used to reach the necessary level of reliability, the heuristic has to be
extended and further iteration variations must be included. This makes the heuristic much more
computationally expensive and possibly unusable.

For authenticity of the instances in the computational study, we must note that we only used
artificial data due to confidentiality issues. However the instances are built in collaboration with
AIRBUS Group and the cost, failure rates, weight and other parameters are based on real values
provided by AIRBUS Group.

Lastly, the heuristic does not only provide one feasible solution but several. In practice,
engineers do not only want the optimal solution for reviewing but a selection of good feasible
solutions. Therefore, the heuristic can, as the redundancy method, be used in the preliminary
design phase of a network in order to enable a quick exploration of the design space for a better
initialization of the detailed design phases.
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Chapter 5

Conclusion

This section summarises the main results of the thesis and explains our conclusions. Section 5.1
provides an overview of the contents of this dissertation, and in Section 5.2 we present the main
results and possible future research directions.

5.1 Summary of the Contents

In Chapter 2 we first give a short overview of reliability evaluation and calculation techniques
and discuss the problems of using them in optimization models. Afterwards we present Proposi-
tion 1, which is a result in probability and combinatorics that simplifies the classical probability
principle of inclusion-exclusion formula for intersection of unions. Furthermore, we prove the
time complexity of the formula in Proposition 1. We use this to introduce a new algorithm to
calculate the reliability of a system network with multiple functions and implementations which
is also usable in optimization models and compare the efficiency of this algorithm to a very known
and often used algorithm KDH88. The contents of this chapter is published in [48] of which I am
the main author.

Chapter 3 addresses the DMS problem with redundancy in the field of mixed integer program-
ming problems. We first give an introduction into the problem of designing a door management
system while considering redundancy and what as what kind of mixed integer programming prob-
lem we are going to formulate. We then introduce an MILP formulation and explore two solving
approaches. The first solving approach is based on branch-and-bound and we introduce a new
branching rule and heuristic which are tailored to this MILP formulation. The solving approach
is successful and we present a computational study that compares it to the general MILP solver
implemented in CPLEX. This approach and the MILP formulation are published in [49] of which
I am the main author. The second approach is based on branch-and-price and also tailored to
the formulation. The approach was not successful for the DMS problem with redundancy, but it
gave us a good idea for a heuristic of the DMS problem with redundancy and reliability.

In Chapter 4 we first introduce MINLP and MILP formulations for the DMS problem with
redundancy and reliability that is based on the formulation of Chapter 3 and discuss why these
problems are not solvable. Afterwards, we introduce a new heuristic for the DMS problem with
redundancy and reliability that gives good feasible solution. The heuristic is based on branch-and-
price approach in Chapter 3, the reliability calculation algorithm from Chapter 2, and observed
characteristic of reliability calculation.

Our main findings and future research possibilities on these topics are summarized in the
following three sections.

5.2 Main Findings and Further Research

In the following we present the main results of the dissertation and what possible future research
directions are possible.
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5.2.1 Reliability Calculation Algorithm

Our main result presented in Chapter 2 is a new expression (Proposition 1) which considerably re-
duces the computational effort needed to calculate the probability principle of inclusion-exclusion
when applied to intersections of unions of events. It has been shown that the formula obtained
can be applied to the reliability calculation of a certain kind of complex network systems and it
decreases the computational time significantly. It has also been shown that the computational
complexity is reduced from doubly exponential to exponential with linear exponent. Moreover,
we have provided a comparison with the general sum of disjoint products method KDH88 from
[19] and showed that our method is more computationally efficient as KDH88 for our examples.

The complex network systems we considered in this thesis are systems with multiple functions,
which means they have multiple start and end nodes in the system. If a system with only one
function is considered, the simplification does not take effect and the number of terms of the
probability principle of inclusion-exclusion does not decrease. We also considered that we have
multiple implementations for each function. For a system with only one implementation per
function, our proposed calculation method does not have any advantages. In all the other cases,
that is, multiple functions and multiple implementations per function, the expression proposed
in this thesis can be applied very effectively.

Another limitation of our method is the same which KDH88 and other SDP methods also
have. The different paths in the system that represent the implementations for each function and
the failure probability of all components in the system have to be known.

It must be noted that the result introduced in this paper does not only provide the option to
calculate reliability more efficiently. It also allows to formulate optimization problems of complex
network systems that include the exact reliability of the system without depending solely on
heuristics to solve it which can be seen in Chapter 4.

A potential extension for future research is to generalize Proposition 1 and Lemma 2. For
example, the implementation for a function i can also be used for function j with i 6= j which
results in Fi∩Fj 6= ∅. This may result in a simplification of the probability principle of inclusion-
exclusion with summand coefficients that are not −1 or 1, and still results in a decrease on the
number of summands compared to Proposition 1.

Another potential extension for future research is to see if this simplification can be used
with a multi-state system. In this case, the components of a system operate in any of several
intermediate states with various effects on the entire system reliability.

5.2.2 Redundancy Network System Model for the DMS

In Chapter 3 we have proposed for the first time in the literature an MILP formulation to design
the DMS of an aircraft while optimizing a certain criterion (e.g. cost or weight of the system)
and considering redundancy. It is a network system with multiple functions and k-redundancy
for the functions. Because the MILP formulation is not easily solvable with a standard solver like
CPLEX, we introduced new branching rules and we proposed a heuristic to solve the problem.
Both are specialized for the model proposed in this paper and through computational tests we
were able to see that the DMS problem with redundancy can now be solved much more efficiently:
Problem instances which could not be solved in several hours can now be solved in minutes.

As the next step for this research, we considered the reliability of the DMS and how to include
it in the optimization model, which we addressed in Chapter 4. Another aspect that was not
considered in this thesis is the speed of the data transportation, which is also important in safety
systems. By adding this property, we would be closer to solve the most possible real problem
and, thus, we would be able to provide aircraft engineers with a better decision tool in the design
process.
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5.2.3 Reliability Network System Model for the DMS

In Chapter 4 we have proposed for the first time MILP and MINLP formulations for the DMS
problem with redundancy and reliability. Furthermore, we have proposed a heuristic for DMS
problem with redundancy ad reliability. The heuristic is based on the key idea of Dantzig-Wolfe
decomposition and branching of integer variables and differs greatly from a genetic heuristic,
which, to the best of our knowledge, was so far the technique used by AIRBUS to solve this
problem.

Because the problem is not exactly solvable as an MILP or MINLP problem, we introduced
the heuristic to obtain good reliability feasible solution. It is specialized to the model, but has
a general structure so that it can also easily be fitted to similar network problems with multiple
flows and paths.

Regarding future research for the heuristic, it is possible to include other characteristics of a
data network that are not easily incorporated into an MILP formulation. As mentioned before,
the speed of the data transportation is not considered in the current model and it is also important
in safety systems. Therefore, further research should include these requirements in the model.
The corresponding constraints will be non-linear, which means that certain characteristics of data
speed in a network have to be found and used in a heuristic. Another direction for future research
is to find a solution to the linear relaxation problem of the MILP problem and, hence, being able
to solve the MILP of the DMS problem with redundancy and reliability. Finally, it might also be
interesting to see how we can extend the new heuristic to more than three paths.
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Appendix A

Appendix for Chapter 2

A.1 Example for Lower Bound

In order to optimize the reliability of a system, lower bounds cannot be used. To use a lower
bound, we need that the lower bound of the reliability of T1 is lower than the lower bound of
the reliability of T2 if the reliability of a system T1 is lower than the reliability of a system T2.
Otherwise, one cannot be sure that the optimal solution that it is obtained by using the lower
bound is the optimal solution regarding the exact reliability. We did not find a lower bound that
is suitable for optimization and fulfills that latter criterion.

We show an example of two systems where the reliability of one system is greater than the
other, but the lower bound of the reliability of the former is smaller than the latter. This is the
reason why it is not suitable to use in optimization. For the example, we use the following lower
bound proposed by [10].

Let A1, . . . , An be the considered events, S2 =
∑

1≤i<j≤n P (Ai ∩Aj) and S1 =
∑n

k=1 P (Ak).

Theorem 5. [10]
Given a probability measure space (Ω,F, P ), let Ak ∈ F, k = 1, . . . , n.

P

(
n⋃

k=1

Ak

)
≥ θS2

1

2S2 + (2− θ)S1
+

(1− θ)S2
1

2S2 + (1− θ)S1
(A.1)

with θ = 2S2/S1 − [2S2/S1].

Because it is not easy to define θ in an optimization constraint, we consider the minimum of
the right-hand side which occurs with θ = 0 and we obtain that

P

(
n⋃

k=1

Ak

)
≥ S2

1

2S2 + S1
. (A.2)

Calculating the derivatives, it is easy to see that θ = 0 gives the minimum of the right-hand side,
if the lower bound given by the right-hand side is considered as function f of θ. It is easily seen
that f is a concave function for 0 ≤ θ ≤ 1 and f(0) = f(1). This gives you that f(0) ≤ f(θ) for
0 ≤ θ < 1.

For the example, let us assume that we have a system with one function and the function is
implemented three times. Let A, B and C be the implementations. We can calculate for system
T the exact reliability P (T ) as follows :

P (T ) = P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩B ∩ C).
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We will also calculate a lower bound based on (A.2). Let T1 and T2 be as seen in Figures A.1
and A.2, respectively. Furthermore, let P (1) = 0.5, P (2) = 0.7, P (3) = 0.2, P (4) = 0.6 and
P (5) = 0.3 be the probabilities of the unit not failing for T1 and take P (3) = 0.2521 for T2.
We obtain that P (T1) = 0.2668 and that P (T2) = 0.2668232. Therefore, the reliability of T2
is greater than the reliability of T1. However, if we look at the lower bounds, we have that
P (T1)lb = 0.2260049 and P (T2)lb = 0.2257831. Therefore, we can see that the lower bound of T1
is greater than the lower bound of T2. This shows us that the lower bounds are not monotone
increasing with the reliability and therefore should not be used for exact optimization of reliability
systems. Another example is system T3 in Figure A.3. Let 1, 2, 4 and 5 have the same probabilities
of not failing as for T1 and let P (3) = 0.3. We obtain that P (T3) = 0.261 for T3 which is smaller
than P (T1) and P (T2). However, the lower bound of P (T3) is P (T3)lb = 0.2278481 which is
greater than the lower bound of P (T1) and P (T2).

1 2 3

4 5

A

B

C

Figure A.1: System T1

1 2 3

4 5

A

B

C

Figure A.2: System T2

1 2 3

4 5

A

B

C

Figure A.3: System T3

A.2 KDH88 Algorithm

Algorithm KDH88 was proposed [19]. The algorithm generates the sum of disjoint products
recursively, using minsets (either minpaths or mincuts) as input data. In our computational
tests we use minpaths and in the case of a system with multiple functions an implementations, a
minpath is a set components

⋃n
i=1 TFiwi for w ∈ {1, . . . , t1}× . . .×{1, . . . , tn} where TFij is defined

as in Section 2.4.2. In KDH88, each minset contributes a set of disjoint terms, all of which are
also disjoint with the prior minsets. The recursive buildup of the formula is accomplished with an
inner loop within an outer loop. A recursion of the outer loop results in a portion of the system
formula, representing the probability accounted for by a single minset. Each recursion includes a
sequence of inner loop steps, one step for each prior minset, and each step possibly resulting in
the modification of one or more terms. In the following, we will describe the algorithm and how
we produced the minsets from our examples.

To create the minsets, we need the path for each implementation of every functions in the
system. With this we also have the number of functions n and the number of implementations
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for every function t1, . . . , tn. Let W = {1, . . . , t1} × . . . × {1, . . . , tn}. For every element i ∈ W ,
we have to create an array ai whose length is the number of components o in the systems and is
a minset/minpath. aic is 1 if component c is used in one of the implementations in i, otherwise
takes value 0. Matrix A is the collection of all these arrays and has the dimension |W | × o. The
algorithm KDH88 creates all summands of the Sum of Disjoint Products formula. The algorithm
is split into two functions which are NextStep, the main function with inner and outer loop, and
Mask, a sub function called in NextStep. We will show both functions in Python code. Further
details can be found in [19].

A.2.1 NextStep and Mask

The function NextStep needs the variables n, j ∈ {1, . . . , i}, i ∈ {1, . . . , |W |}, A and an array
v ∈ No. To create all summands, the function NextStep has to be called for every ai, i ∈ W ,
with NextStep(n, j, i, A, ai). The functions in Python are

def NextStep(n,j,i,A,v): #NextStep function of KDH88 method

dv=copy.deepcopy(v)

if j<k:

list_a=Mask(n,j,i,A,v)

disjoint=list_a[2]

if list_a[2]:

NextStep(n,j+1,i,A,v)

else:

for s in xrange(1,list_a[0]+1):

for i in xrange(0,n):

if v[k]==list_a[1][s-1] and A[j-1][k]<0:

dv[k]=-1

NextStep(n,j+1,i,A,dv)

for k in xrange(0,n):

if v[k]==list_a[1][s-1]:

if A[j-1][k]==0:

dv[k]=0

else:

dv[k]=list_a[1][s-1]

for k in xrange(0,n):

if(v[k]<0) and A[j-1][k]==0:

dv[k]=j

disjoint=True

if disjoint:

NextStep(n,j+1,i,A,dv)

else:

print("Summand is ", v)

def Mask(n,j,k,beg_matr,pro): #Mask function of KDH88 method

disjoint=False

r=0

s=1

b=False

c=False

mask=np.zeros((n,),dtype=np.int)

while not disjoint and (s<j):

for i in xrange(0,n):

if pro[i]==s:

if beg_matr[j-1][i]==0:

91



b=True

else:

c=True

if b:

if not c:

disjoint=True

else:

r+=1

mask[r-1]=s

b=False

c=False

s+=1

return([r,mask,disjoint])

A.3 Examples of Door Management Systems

In this section, we show an example input for DMS with two doors and three paths. Data for all
other systems can be found at https://sites.google.com/site/sergiogarciaquiles/. They
are given as CSV files where each row represents a path and each column represents a component
or connection. The rows represent the paths are ordered by doors. For every row i, we have at
column j a 1 if the component/connection represented by column j is used for the path that is
represented by row i and 0 otherwise. The Python code we used to run the computational tests
has also been uploaded to this repository.

The example system has 70 elements of which 27 are components and 43 are connections.
Table A.1 shows what positions ti and connections xi are used in which path for every door.
Failure probabilities of the components and connections are also provided.

t\x (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) Prob.

t1 1 1 1 0 0 0 0.020

t2 0 0 0 1 1 1 0.020

t3 0 0 0 0 0 1 0.020

t4 0 0 0 0 1 0 0.050

t5 0 0 1 0 0 0 0.030

t6 1 0 0 0 0 0 0.010

t7 0 0 1 0 0 0 0.030

t8 0 0 0 0 1 0 0.050

t9 0 0 0 1 0 0 0.090

t10 0 1 0 0 0 0 0.090

t11 0 0 0 1 0 0 0.060

t12 1 0 0 0 0 0 0.020

t13 0 1 0 0 0 0 0.090

t14 0 0 0 0 0 1 0.010

t15 1 0 0 1 0 1 0.090

t16 0 1 1 0 1 0 0.070

t17 0 0 1 0 1 0 0.090

t18 0 1 1 1 0 0 0.020

t19 1 0 1 0 1 1 0.010

t20 1 0 0 0 0 1 0.060

t21 0 1 0 1 0 1 0.080

t22 0 1 0 1 0 0 0.050

t23 1 0 0 0 1 0 0.060

t24 0 1 0 1 0 0 0.090

t25 1 0 1 0 1 1 0.080

t26 1 0 1 0 1 1 0.020

t27 0 1 0 1 0 0 0.050

x1 0 0 1 0 0 0 0.004

x2 1 0 0 0 0 0 0.004

x3 0 0 1 0 0 0 0.004

x4 0 1 0 0 0 0 0.004

x5 1 0 0 0 0 0 0.004

x6 0 1 0 0 0 0 0.004

x7 0 0 0 0 0 1 0.004
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x8 0 0 0 0 1 0 0.004

x9 0 0 0 0 1 0 0.004

x10 0 0 0 1 0 0 0.004

x11 0 0 0 1 0 0 0.004

x12 0 0 0 0 0 1 0.004

x13 0 0 0 0 0 1 0.004

x14 0 0 0 0 1 0 0.004

x15 0 0 1 0 0 0 0.004

x16 1 0 0 0 0 0 0.004

x17 0 0 1 0 0 0 0.004

x18 0 0 0 0 1 0 0.004

x19 0 0 0 1 0 0 0.004

x20 0 1 0 0 0 0 0.004

x21 0 0 0 1 0 0 0.004

x22 1 0 0 0 0 0 0.004

x23 0 1 0 0 0 0 0.004

x24 0 0 0 0 0 1 0.004

x25 0 0 1 0 1 0 0.004

x26 0 1 0 1 0 0 0.004

x27 0 0 1 0 0 0 0.004

x28 0 1 0 1 0 0 0.004

x29 0 0 1 0 1 0 0.004

x30 1 0 0 0 0 1 0.004

x31 1 0 1 0 1 1 0.004

x32 1 0 0 0 0 1 0.004

x33 0 0 0 0 0 1 0.004

x34 0 1 0 1 0 0 0.004

x35 0 0 0 1 0 0 0.004

x36 0 1 0 0 0 0 0.004

x37 1 0 0 0 1 0 0.004

x38 0 1 0 1 0 0 0.004

x39 1 0 1 0 1 1 0.004

x40 1 0 1 0 1 1 0.004

x41 1 0 1 0 1 1 0.004

x42 0 1 0 1 0 0 0.004

x43 0 1 0 1 0 0 0.004

Table A.1: Example systems data
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Appendix B

Appendix for Chapter 3

B.1 MILP Solution Methods

In this section, we will present shortly two general MILP solving algorithms. The first one is
the general branch-and-bound algorithm and the second one is the general branch-and-price. A
general introduction to MIP can be found in [55].

B.1.1 Branch-and-bound Algorithm

First we introduce the basic branch-and-bound algorithm based on linear programming and give a
few examples for improvements of the basic algorithm. The idea of branch-and-bound is a divide
and conquer approach. For dividing a problem we use the following. Let z = max{ctx : x ∈ S}
be a MIP problem. The basic algorithm is the same for IP problems. We can break this problem
up into smaller subproblems.

Proposition 6. Let S = S1 ∪ . . . ∪ SK be a decomposition of S into smaller sets, and let zk =
max{ctx : x ∈ Sk} for k = 1, . . . ,K. Then z = maxk z

k.

The branch-and-bound algorithm uses the decomposition, not to obtain easier problems, but
to attain a feasible solution for the original problem by solving the LP relaxations.

Let z optimal value of the problem and z a lower bound to z that is set to −∞ at the start.
We see the original problem as the root and first node of an enumeration tree. Let N be the set
of unsolved nodes in the tree. The first step of the algorithm is to choose a node from N , which
is at the beginning always the root, and solve its LP relaxation. After solving the LP relaxation,
we can have four different results.

The first one is that the node problem is infeasible, in which case we discard the node from
N and choose a new node. The second one is that the optimal solution is lower than the lower
bound z, in which case we also discard the node from N and choose a new node. The third
type is that the optimal solution of the node problem is feasible for MIP and greater than the
already found feasible solutions. We save the feasible solution as an incumbent optimal solution
of the MIP x∗, set z equal to the optimal objective value, discard the node from N and choose
a new node. These three types are called prune by infeasibility, prune by bound and prune by
optimality, respectively. The last type is that we get an optimal solution for the LP relaxation
that is infeasible for the MIP. We then give new bounds on a variable that decompositions the
node problem and creates two new subproblems (nodes) which are added to N . The solved node
is discarded and a new node chosen. Figure B.1 shows the basic branch-and-bound algorithm in
a flow chart.

There are two choices in the branch-and-bound algorithm: How to split the problem which is
called branching, and which subproblem (node) to select. First we analyze the branching decision.
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Initialization
Initial Problem S with
Formulation P on List N
z = −∞
Incumbent x∗ void

N empty?
STOP

Incumbent x∗ optimal

Choose Problem Si ∈ N with
Formulation P i

Solve LP relaxation over P i

Dual bound zi = LP value
xi(LP ) = LP solution

If P i empty, prune by infeasibility

If zi ≤ z, prune by bound

If xi(LP) integer, update primal
bound z = zi and incumbent x∗ = xi(LP).

Prune by optimality

Return two subproblems Si
1 and Si

2

and add them to N

Yes

No

No

No

No

Yes

Yes

Yes

Figure B.1: Branch-and-bound flow chart

B.1.1.1 Branching

Branching is concerned with splitting the problem in a branch-and-bound algorithm. It is im-
portant to find efficient strategies for branching to reduce the number of nodes needed to get the
optimal solution for the MIP. Therefore, efficient strategies become even more important for large
scale optimization problems in MIP. In the following we will present the most popular rules that
are used in today MIP solvers for branching such as CPLEX. In these strategies, the algorithm
branches on a linear inequality that splits the feasible interval of a single variable.

Let j be some index so that xij /∈ Z in the current optimal LP solution of the problem Si. We

obtain the two subproblems Si
j,− and Si

j,+ by adding the inequalities xj ≤ bxijc and xj ≥ dxije,
respectively. The first subproblem is called left son and the second one right son. There are some
branching strategies that use more complicated inequalities or they split the problem into more
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than two subproblems. However, these are seldom used.
To decide on which such j we branch the problem, we first give a generic variable selection

algorithm with a score function. The score function depends on the strategy used.

Algorithm 7. Generic Variable Selection.
Input: Current Subproblem Si with an optimal LP solution xi which is infeasible for the MIP.
Output: An index j ∈ J of a fractional variable xij /∈ Z.

1. Let C = {j ∈ J | xij /∈ Z} be the set of branching candidates.

2. For all candidates j ∈ C, calculate a score value tj ∈ R.

3. Return an index j ∈ C with tj = maxk∈C{tk}.

The following explanations are symmetric for the left Si
−and right Si

+ problems, which is why
we explain it only with right sons.

1. Most infeasible branching: This is the most basic and still very common strategy. It has
the score function tj = 0.5− |xij −bxijc− 0.5|, which means it chooses the variable with the
fractional part closest to 0.5. The reason behind this choice it that this selects a variable
where the least tendency can be recognized to which “side” (up or down) the variable should
be rounded. Results in [3] indicate that this strategy is in general not better than selecting
the variable randomly.

2. Pseudocost branching: This strategy works with the history of the success of variables
on which we have already branched. We present the pseudocost branching from [37]. For
alternatives, see [35]. We need some notation for the strategy. Let cS be the optimal value
of a problem S. We set f+j = dxije − xij , ∆+

j = cSij,+
− cSi and let ς+j be the objective gain

per unit change in variable j at node Si with ς+j = ∆+
j /f

+
j .

Let σ+j denote the sum of ς+j over all problems (nodes) Si, where j has been selected as

branching variable and Si
j,+ has been solved and was feasible. Let η+j be the number of

these problems (nodes). The pseudocosts for the upward branching of variable j are

Ψ+
j = σ+j /η

+
j .(B.1)

This provides us the scoring function

sj = (1− µ) ∗min{f−j Ψ−j , f
+
j Ψ+

j }+ µ ∗max{f−j Ψ−j , f
+
j Ψ+

j },(B.2)

which can be used in Algorithm 7 and results in the pseudocost branching. At the beginning
of the branch-and-bound algorithm σ+j = η+j = 0 for all j. We call the pseudocost of a

variable j uninitialized for the upward direction, if η+j = 0. Uninitialized upward pseudo-

costs are set to Ψ+
j = Ψ+

avg, where Ψ+
avg is the average of the initialized upward pseudocosts

over all variables. The average is set to 1, if all upward pseudocosts are uninitialized. The
pseudocost is uninitialized if it is uninitialized in at least one direction.

Because the strategy is based on the history of the successes, it has its weakness at the
beginning of the branch-and-bound algorithm. Because of that it is often combined with
another strategy that is strong at the beginning, see 4.

3. Strong branching: In strong branching, we test which of the fractional candidates provides
the best progress before actually branching on any of them. This is done by giving a
temporary lower bound bxijc and subsequently an upper bound dxije for a variable j with
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fractional LP value xij and solving the linear relaxations for these. If we did that for all
variables in C and solve the LPs to optimality, it is called full strong branching. Because
the computational time is very high for full strong branching, we have two possibilities to
speed it up. One is to restrict the possible variables to C ′ ⊂ C. Another way is to only
use a few simplex iterations. This is possible, because the change of the objective function
in the simplex algorithm usually decreases with the iterations. Full strong branching with
restrictions is then called strong branching. In the following we will introduce a combination
of strong branching and pseudocost branching.

4. Combinations of strong and pseudocost branching: The simplest combination is the hybrid
strong/pseudocost branching. In this strategy, the strong branching is applied in the upper
part of the branch-and-bound tree up to a given depth level d. Afterwards pseudocost
branching is used. An extension on this strategy is the pseudocost branching with strong
branching initialization. Because even in the hybrid strong/pseudocost branching strategy
the decisions of pseudocost in the lower part of the tree are potentially based on uninitialized
pseudocost values, the pseudocost branching with strong branching initialization uses strong
branching for variables with uninitialized pseudocost and uses the resulting estimates to
initialize the pseudocost. This results in a more dynamic use of strong branching.

A new strategy called reliability branching is proposed in [3]. It uses the idea of pseudocost
branching with strong branching initialization, but does the strong branching not only on vari-
ables with uninitialized pseudocost values, but also on variables with unreliable pseudocosts. The
pseudocost of a variable j is called unreliable, if min{η+j , η

−
j } < ηrel, with ηrel being the “reliabil-

ity” parameter. With this we get an even more dynamic way of using strong branching than in
the previous strategies. The computational results of [3] give the indication that a more intensive
dynamic use of strong branching, like the reliability branching, gives a significant improvement
in both the nodes needed to solve the MIP and the time needed to solve the considered problem
instances.

B.1.1.2 Node Selection

The second choice after branching you need to take in your branch-and-bound algorithm is the
selection of the next node. This also affects how quickly the MIP is solved by branch-and-bound,
because the number of evaluated nodes can be reduced. The two basic selection methods for
choosing the next node are the Depth-First search and the Best-Bound search.

In the Depth-First search you choose the right or left son of the most recently explored node
and there are different heuristics to choose between the sons. If the last solved node is either LP
infeasible, MIP feasible, or worse than the incumbent solution, then the last created node which
is not yet explored will be chosen.

In the Best-Bound method, the active node with the best upper bound, which is the LP
relaxation optimal objective value of the parent node, will be chosen.

In practice, a compromise between these two methods is often adopted, i.e. initial depth-
first method until at least one feasible solution has been found and then a mix between these
methods. A small introduction into node selection is given in [54] and also new selection methods
are proposed.

B.1.2 Branch-and-Price

Decomposition and reformulation of MIPs are classical approaches to obtaining stronger relax-
ations and reduce symmetry. One of these approaches is column generation that solves linear
programming (LP) problems. If column generation is used for the general branch-and-bound
algorithm, the algorithm is called branch-and-price. As we also have symmetry issues in our
problem and will try to use branch-and-price to solve it.
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We will give a short overview of column generation and the decomposition/reformulation that
is needed for most problems to use column generation. For a more detailed introduction to column
generation and branch-and-price, see [11].

• Column Generation: Let us consider the integer problem

min
∑
j∈J

cjλj

subject to
∑
j∈J

ajλj ≤ b, λ ∈ Z|J |+(B.3)

If J is huge, many standard MILP solver have a problem, because the linear relaxation
cannot be solved. Therefore the linear relaxation of (B.3), which we call master problem,
by column generation. First a restricted master problem (RMP) which contains a subset of
J ′ ⊆ J of variables is solved and we obtain λ∗ and π∗, the primal and dual optimal solution,
respectively. Afterwords we solve the pricing problem v := minx∈X{c(x) − πa(x)}, where
cj = c(xj) and aj = a(xj) reflect that each column j ∈ J is associated with an element
xj ∈ X from a domain X over which we can optimize, often a set of combinatorial objects
like paths or other subgraphs. When v < 0 the variable λj and its coefficient column (cj , aj)
corresponding to a minimizer xj are added to the RMP and we start again with solving
the RMP . If v ≥ 0, it proves that there is no such improving variable and the current λ∗

is an optimal solution to the master problem.

• Dantzig-Wolfe Decomposition: To exploit certain special structure in a linear problem, the
Dantzig-Wolfe decomposition principle was devised. Let us consider the

z∗ := min cx

subject to Ax ≤ b(B.4)

x ∈ X = {x ∈ Zn
+ ×Qq

+|Dx ≤ D}

The decomposition build on the representation theorems by Minkowski and Weyl [50] and
convexifies X. Each x ∈ X can be expressed as a convex combination of finitely many
extreme points {xp}p∈P plus a non-negative combination of finitely many extreme rays
{xr}r∈R of conv(X):

∀x ∈ X ∃λ ∈ Q|P |+|R|+ : x =
∑
p∈P

xpλp +
∑
r∈R

xrλr,
∑
p∈P

λp = 1.(B.5)

Using this and applying cj = cxj and aj = Axj , j ∈ P ∪R, we can rewrite problem B.4 to

min
∑
p∈P

cpλp +
∑
r∈R

crλr

subject to
∑
p∈P

apλp +
∑
r∈R

arλr ≤ b∑
p∈P

λp = 1

λ ≥ 0

x =
∑
p∈P

xpλp +
∑
r∈R

xrλr

x ∈ Zn
+ ×Qq

+

With this formulation, we have a problem like (B.3) and can use column generation, where
the constrains linking x and λ variables can be dropped. Thus, only the dual variables
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π and π0 remain relevant where π0 corresponds to the convexity constraints. For column
generation, the pricing problem is min{cx− πAx− πo| x ∈ X}.

• Block diagonal structure: A block diagonal structure of D can be exploited by Dantzig-
Wolfe decomposition. Let

D =


D1

D2

. . .

Dk

 , d =


d1

d2

...
dk

 .

We can write X =×k∈K Xk, with Xk = {Dkxk ≥ dk, xk ≥ 0}, k ∈ K := {1, . . . , k}. We
have a representation as in (B.5) for each Xk, k ∈ K, and have also k pricing problems,
each with its own convexity constraint constraint and associated dual variable min{ckxk −
πAkxk − πko | xk ∈ Xk}, k ∈ K.

B.2 Negative Validity Example

In this example, we have |D| = 3, |P | = 2 and |F | = 2. There are four different unit types
U = {U1, U2, U3, U4}. A unit of type U1 cannot be used for different doors. All needed infor-
mation of the units is given in Tables B.1 and B.2 for functions f1 and f2, respectively.

Unit types Model Eum Ein
fu Eout

fu T f,in
u T f,out

u C+
f (u) C−f (u)

U1 M1 2 1 1 1 1 {U2} ∅
U2 M1 4 1 1 1 1 {U3} ∅
U2 M2 5 1 1 1 1 {U3} ∅
U3 M1 8 1 1 1 1 ∅ ∅

Table B.1: Unit parameters and corresponding sets for function f1.

Unit types Model Eum Ein
fu Eout

fu T f,in
u T f,out

u C+
f (u) C−f (u)

U2 M1 4 1 1 1 1 ∅ {U3}
U2 M2 5 1 1 1 1 ∅ {U3}
U3 M1 8 1 1 1 1 ∅ ∅
U4 M1 4 1 1 1 1 ∅ {U2}

Table B.2: Unit parameters and corresponding sets for function f2.

Tables B.3 to B.8 give a feasible linear relaxation solution for the small example and Figure B.2
illustrates it in a graph. To distinguish the different functions in Figure B.2 we have used thicker
arrows for function f2. As can be seen, 2-redundancy is not given and constraint (3.14) is fully
satisfied for units of type U2. Even though the system is feasible in the linear relaxation, for this
combination of units there are no cable connections which are feasible in the integer formulation
and unit type U2. If such a case as here is discovered through the validity test, we can then
branch on the corresponding tum variables. In this example, we would branch with tU2,M1 ≥ 3
and tU2,M1 ≤ 1 or tU2,M2 ≥ 2 and tU2,M2 ≤ 0.
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Figure B.2: Illustration of liner relaxation solution. Solution can be found in Tables B.7 and B.9.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
u U1 U1 U1 U1 U1 U1 U2 U2 U2 U3 U3 U4 U4

ti,u,M1 1 1 1 1 1 1 0 1 1 1 1 1 1
ti,u,M2 0 0 0 0 0 0 1 0 0 0 0 0 0

Table B.3: Linear relaxation solution values for location variables of the overall system.

i 1 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9
j 7 8 7 8 7 9 8 9 7 8 9 10 11 10 11 10 11
u U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U2 U2 U2 U2 U2 U2

û U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U3 U3 U3 U3 U3 U3

xijuû 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 1

Table B.4: Linear relaxation solution values for connection variables of the overall system.

i 7 7 8 8 9 9 10 10 10 11 11 11
j 12 13 12 13 12 13 7 8 9 7 8 9
u U2 U2 U2 U2 U2 U2 U3 U3 U3 U3 U3 U3

û U4 U4 U4 U4 U4 U4 U2 U2 U2 U2 U2 U2

xijuû 1 0 0 0.5 0 0.5 1 0 0 0 0.5 0.5

Table B.5: Linear relaxation solution values for connection variables of the overall system.

i u td1,f1,p1 td1,f1,p2 td2,f1,p1 td2,f1,p2 td3,f1,p1 td3,f1,p2

7 U2 0.5 0.5 0.5 0 0.5 0
8 U2 0.5 0.5 0 0.5 0.5 0
9 U2 0 0 0.5 0.5 0 1

10 U3 1 0 1 0 1 0
11 U3 0 1 0 1 0 1
12 U4 1 0 1 0 1 0
13 U4 0 1 0 1 0 1

Table B.6: Linear relaxation solution values for location variables and function f2.
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i u td1,f1,p1 td1,f1,p2 td2,f1,p1 td2,f1,p2 td3,f1,p1 td3,f1,p2

1 U1 1 0 0 0 0 0
2 U1 0 1 0 0 0 0
3 U1 0 0 1 0 0 0
4 U1 0 0 0 1 0 0
5 U1 0 0 0 0 1 0
6 U1 0 0 0 0 0 1
7 U2 0.5 0.5 0.5 0 0.5 0
8 U2 0.5 0.5 0 0.5 0.5 0
9 U2 0 0 0.5 0.5 0 1

10 U3 1 0 1 0 1 0
11 U3 0 1 0 1 0 1

Table B.7: Linear relaxation solution values for location variables and function f1.

i j u û xd1,f1,p1
xd1,f1,p2

xd2,f1,p1
xd2,f1,p2

xd3,f1,p1
xd3,f1,p2

7 12 U2 U4 1 0 1 0 1 0
7 13 U2 U4 0 0 0 0 0 0
8 12 U2 U4 0 0 0 0 0 0
8 13 U2 U4 0 0.5 0 0.5 0 0.5
9 12 U2 U4 0 0 0 0 0 0
9 13 U2 U4 0 0.5 0 0.5 0 0.5

10 7 U3 U2 1 0 1 0 1 0
10 8 U3 U2 0 0 0 0 0 0
10 9 U3 U2 0 0 0 0 0 0
11 7 U3 U2 0 0 0 0 0 0
11 8 U3 U2 0 0.5 0 0.5 0 0.5
11 9 U3 U2 0 0.5 0 0.5 0 0.5

Table B.8: Linear relaxation solution values for connection variables for function f2.

i j u û xijuû xd1,f1,p1
xd1,f1,p2

xd2,f1,p1
xd2,f1,p2

xd3,f1,p1
xd3,f1,p2

1 7 U1 U2 0.5 0.5 0 0 0 0 0
1 8 U1 U2 0.5 0.5 0 0 0 0 0
2 7 U1 U2 0.5 0 0 0 0 0 0
2 8 U1 U2 0.5 0 0.5 0 0 0 0
3 7 U1 U2 0.5 0 0 0.5 0 0 0
3 9 U1 U2 0.5 0 0 0.5 0 0 0
4 8 U1 U2 0.5 0 0 0 0.5 0 0
4 9 U1 U2 0.5 0 0 0 0.5 0 0
5 7 U1 U2 0.5 0 0 0 0 0.5 0
5 8 U1 U2 0.5 0 0 0 0 0.5 0
6 9 U1 U2 1 0 0 0 0 0 1
7 10 U2 U3 0.5 0.5 0 0.5 0 0.5 0
7 11 U2 U3 0.5 0 0.5 0 0 0 0
8 10 U2 U3 0.5 0.5 0 0 0 0.5 0
8 11 U2 U3 0.5 0 0.5 0 0.5 0 0
9 10 U2 U3 0.5 0 0 0.5 0 0 0
9 11 U2 U3 1 0 0 0 0.5 0 1

Table B.9: Linear relaxation solution values for connection variables.
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Appendix C

Appendix for Chapter 4

C.1 Lower and Upper Bounds with the Number of Models and
Possible Combinations

Units LB UB #Models Combinations

2 2 2 2 3
3 2 2 2 3
4 1 2 1 2
5 1 3 2 9
6 2 8 2 42
7 1 2 1 2
8 1 4 2 14

#Comb. : 190512

Figure C.1: Combinations for k=2

Units LB UB #Models Combinations

2 3 3 2 4
3 3 3 2 4
4 2 3 1 2
5 2 3 2 7
6 4 10 2 56
7 2 3 1 2
8 2 4 2 12

#Comb. : 301056

Figure C.2: Combinations for k=3

Units LB UB #Models Combinations

2 3 3 2 4
3 3 3 2 4
4 2 3 1 2
5 2 3 2 7
6 4 10 2 56
7 2 3 1 2
8 2 4 2 12

#Comb. : 301056

Figure C.3: Combinations for k=4

Units LB UB #Models Combinations

2 4 5 2 11
3 4 5 2 11
4 2 3 1 2
5 2 3 2 7
6 4 10 2 56
7 2 3 1 2
8 2 4 2 12

#Comb. : 2276736

Figure C.4: Combinations for k=5

Units LB UB #Models Combinations

2 4 5 2 11
3 4 5 2 11
4 2 3 1 2
5 2 3 2 7
6 4 10 2 56
7 2 3 1 2
8 2 4 2 12

#Comb. : 2276736

Figure C.5: Combinations for k=6
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C.2 Parameter and Coefficient Table for Computational Tests

Unit Model Ports Coeff. weight set 1 Coeff. weight set 2 Failure Rate

DO 1 20 0 0 0

LLS 1 2 10 1.5 0.02
2 2 25 2.5 0.01

CS 1 2 2 2 0.002
2 2 10 10 0.001

OVF 1 4 80 100 0.001
2 3 70 60 0.002

OCU 1 6 20 100 0.01
2 6 30 120 0.005

RDC 1 6 100 70 0.002
2 8 90 100 0.003

CPIOM 1 4 170 160 0.005
2 4 150 155 0.007

SWT 1 24 170 120 0.005
2 16 175 150 0.004

Cable 1 0 2 0.05 0.00001

Table C.1: Parameter and coefficients for units and cables used in reliability heuristic.

C.3 Computation Tables for Reliability Heuristic

|D| Reliability Nodes Time Optimal Reliability Value Reliability
Threshold (s) Value Range Range

2 0.999 51 1214 1466 0.99904 1466-1652 0.99900-0.99904
2 0.9991 37 999 1486 0.99910 1486-1624 0.99910-0.99914
2 0.9992 33 887 1528 0.99922 1528-1648 0.99920-0.99926
2 0.9993 102 1383 1551 0.99932 1551-1652 0.99930-0.99932
2 0.9994 71 1789 1646 0.99940 1646-1848 0.99937-0.99944
2 0.9995 55 1634 1725 0.99951 1725-1879 0.99950-0.99953
2 0.9996 52 1897 1810 0.99960 1810-1990 0.99960-0.99964
2 0.9997 29 1056 1901 0.99972 1901-2045 0.99970-0.99973
2 0.9998 22 869 2004 0.99980 2004-2172 0.99980-0.99980
2 0.9999 9 437 2118 0.99991 2118-2118 0.99991-0.99991

3 0.999 102 5352 1759 0.99901 1759-1962 0.99898-0.99921
3 0.9991 83 5466 1806 0.99914 1806-1903 0.99908-0.99921
3 0.9992 78 5544 1836 0.99921 1836-2042 0.99917-0.99923
3 0.9993 80 4946 1855 0.99932 1855-2024 0.99924-0.99937
3 0.9994 58 4610 1881 0.99940 1881-2088 0.99935-0.99960
3 0.9995 47 4069 1959 0.99950 1959-2108 0.99950-0.99960
3 0.9996 34 3018 2004 0.99960 2004-2208 0.99960-0.99965
3 0.9997 21 2307 2049 0.99970 2049-2182 0.99964-0.99970
3 0.9998 9 1161 2138 0.99980 2138-2138 0.99980-0.99980
3 0.9999 9 1136 NA NA NA NA

4 0.999 72 3153 1830 0.99900 1830-2012 0.99900-0.99902
4 0.9991 48 4498 1897 0.99910 1897-2116 0.99910-0.99950
4 0.9992 54 4369 1922 0.99920 1922-2121 0.99920-0.99950
4 0.9993 54 4537 1974 0.99931 1974-2156 0.99930-0.99950
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4 0.9994 27 2135 1998 0.99940 1998-2064 0.99940-0.99950
4 0.9995 26 2315 2058 0.99950 2058-2104 0.99950-0.99950
4 0.9996 31 2443 2099 0.99960 2099-2387 0.99960-0.99962
4 0.9997 9 1193 2174 0.99970 2174-2174 0.99970-0.99970
4 0.9998 9 1184 2258 0.99980 2258-2258 0.99980-0.99980
4 0.9999 9 1119 NA NA NA NA

5 0.999 42 8085 2017 0.99906 2017-2148 0.99902-0.99939
5 0.9991 44 7922 2037 0.99909 2037-2148 0.99909-0.99939
5 0.9992 46 7702 2101 0.99920 2101-2159 0.99920-0.99939
5 0.9993 23 5191 2147 0.99932 2147-2148 0.99932-0.99939
5 0.9994 23 5208 2153 0.99940 2153-2172 0.99940-0.99940
5 0.9995 29 4977 2154 0.99951 2154-2279 0.99950-0.99951
5 0.9996 28 4958 2229 0.99960 2229-2431 0.99960-0.99960
5 0.9997 14 2991 2304 0.99970 2304-2304 0.99970-0.99970
5 0.9998 9 2616 2424 0.99980 2424-2424 0.99980-0.99980
5 0.9999 1 754 NA NA NA NA

Table C.2: Results for second set of wum and wc

|D| Reliability Nodes Time Optimal Reliability Value Reliability
Threshold (s) Value Range Range

2 0.998 52 1050 1382 0.99806 1382-1420 0.99801-0.99834
2 0.9981 54 1140 1387 0.99813 1387-1420 0.99810-0.99839

3 0.998 68 4780 1461 0.99803 1461-1580 0.99800-0.99813
3 0.9981 77 5765 1495 0.99817 1495-1610 0.99809-0.99819
3 0.9982 85 6424 1498 0.99826 1498-1636 0.99819-0.99831
3 0.9983 91 6259 1513 0.99831 1513-1666 0.99830-0.99843
3 0.9984 86 4569 1532 0.99845 1532-1710 0.99840-0.99848
3 0.9985 128 4985 1556 0.99850 1556-1752 0.99848-0.99858
3 0.9986 106 5185 1563 0.99861 1563-1828 0.99855-0.99869
3 0.9987 106 4492 1603 0.99870 1603-1800 0.99866-0.99881
3 0.9988 112 4586 1623 0.99881 1623-1833 0.99877-0.99889
3 0.9989 104 5855 1655 0.99892 1655-1918 0.99884-0.99897

4 0.998 94 6096 1633 0.99809 1633-1830 0.99800-0.99837
4 0.9981 58 3370 1645 0.99811 1645-1820 0.99808-0.99818
4 0.9982 61 2582 1692 0.99824 1692-1875 0.99821-0.99827
4 0.9983 71 3218 1708 0.99831 1708-1898 0.99830-0.99838
4 0.9984 83 3133 1718 0.99840 1718-1912 0.99840-0.99846
4 0.9985 86 3359 1742 0.99850 1742-1980 0.99850-0.99853
4 0.9986 74 3334 1778 0.99864 1778-1938 0.99860-0.99869
4 0.9987 64 4379 1800 0.99870 1800-2029 0.99867-0.99879
4 0.9988 68 3411 1830 0.99880 1830-1944 0.99880-0.99902
4 0.9989 61 3665 1858 0.99890 1858-1982 0.99890-0.99901

5 0.998 54 14466 1984 0.99821 1984-2247 0.99800-0.99821
5 0.9981 56 13328 1984 0.99832 1984-2309 0.99810-0.99832
5 0.9982 51 12059 1984 0.99832 1984-2367 0.99820-0.99832
5 0.9983 54 11321 1968 0.99835 1968-2192 0.99835-0.99841

Table C.3: Results for second set of wum and wc and low thresholds
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C.4 Lemmas for Reliability Characteristics

In this section, we will explore the reliability characteristics (b)-(d) which we used in the heuristic.
These characteristic were observed in numerical experiments of our reliability calculation method.
In the following, we are presenting lemmas that are related to these characteristics. Note that
stronger assumptions are made for the lemmas than we can make based on the DMS. We are not
able to prove these characteristics for reliability in general.

For the rest of the section, let F1, F2, F3, F4 be implementations of a function. Let T be the
set of all components (units, cables, etc.) used in the system and Ti be the set of components
used for Fi, i ∈ {1, . . . , 4}. For t ∈ T , let ft be the event that t does not fail and ft be the
associated failure rate. Furthermore, let us use the following notation:

∀l ∈ {1, . . . , 4} :
∏
t∈Tl

(1− ft) = al, and

∀l, k ∈ {1, . . . , 4} :
∏

t∈Tl∩Tk

(1− ft) = al∩k.

Lastly, we know that for l ∈ {3, 4}:

P (F1 ∪ F2 ∪ Fl) =
∏
t∈T1

(1− ft) +
∏
t∈T2

(1− ft) +
∏
t∈Tl

(1− ft)−
∏

t∈T1∪T2

(1− ft) (C.1)

−
∏

t∈T1∪Tl

(1− ft)−
∏

t∈T2∪Tl

(1− ft) +
∏

t∈T1∪T2∪Tl

(1− ft).

We first look at characteristic (d). For this characteristic, we assumed that we have three
paths and a redundant system with the first two paths being disjoint. The third path can share
units and connections with the other two paths. The characteristic is that the closer sum of
failure rates of the shared units and connections of the first and third path is to the sum of the
second and third path, the higher is the reliability.

We were not able to prove this in general. We had to make the assumption that the reliability
of the first path is equal to the reliability of the second path. Furthermore, we assume that the
reliability of the third path and also the sum of failure rates the third path shares with other
paths stays the same. With these assumptions, we can prove in Lemma 8 that the reliability is
higher the smaller the difference between the sum of failures of shared units between the first and
third path and between the second and third path is.

Lemma 8. Let us assume a redundant system with T1 ∩ T2 = ∅, P (F1) = P (F2) and that
P (F3) = P (F4). Furthermore, let us assume that∣∣∣∣∣∣

∑
t∈T1∩T3

log(1− ft)−
∑

t∈T2∩T3

log(1− ft)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

t∈T1∩T4

log(1− ft)−
∑

t∈T2∩T4

log(1− ft)

∣∣∣∣∣∣
(C.2)

and that ∑
t∈T1∩T3

log(1− ft) +
∑

t∈T2∩T3

log(1− ft) =
∑

t∈T1∩T4

log(1− ft) +
∑

t∈T2∩T4

log(1− ft)

⇔ a1∩3a2∩3 = a1∩4a2∩4

(C.3)

Than it holds that

P (F1 ∪ F2 ∪ F3) ≥ P (F1 ∪ F2 ∪ F4) . (C.4)
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Before proving Lemma 8, we prove Lemma 9 which is necessary for Lemma 8.

Lemma 9. Let a, b, â, b̂ ∈ R+. Assume that ab = âb̂ and | log(a) − log(b)| ≤ | log(â) − log(b̂)|.
Then, it holds that

a+ b ≤ â+ b̂

Proof. Let a, b, â, b̂ ∈ R+. We assume that ab = âb̂ and | log(a) − log(b)| ≤ | log(â) − log(b̂)|.
Without loss of generality, we can assume that a ≥ b and â ≥ b̂. Therefore,

| log(a)− log(b)| ≤ | log(â)− log(b̂)|

⇔ | log
(a
b

)
| ≤ | log

(
â

b̂

)
|

⇔ log
(a
b

)
≤ log

(
â

b̂

)
⇔ a

b
≤ â

b̂

⇔ ab̂ ≤ âb.

We first prove that a ≤ â and b ≥ b̂. We prove these by contradiction. Let us assume that a > â.
It holds that

ab > âb ≥ ab̂
⇒ b > b̂

⇒ ab > ab̂ > âb̂,

which is a contradiction to our assumption ab = âb̂. Hence, a ≤ â.
Let us now assume that b < b̂. It holds that

âb̂ > âb ≥ ab̂
⇒ a < â

⇒ ab < ab̂ < âb̂,

which is a contradiction to our assumption ab = âb̂. Hence, b ≥ â.
As a ≤ â and b ≥ b̂, we have that

√
a−
√
b ≤
√
â−

√
b̂

⇔
(√

a−
√
b)
)2
≤
(√

â−
√
b̂
)2

⇔
(√

a−
√
b)
)2

+ 2
√
ab ≤

(√
â−

√
b̂
)2

+ 2
√
âb̂

⇔ a+ b ≤ â+ b̂.

We can now prove Lemma 8.

Proof. We can reformulate (C.1) for l ∈ {3, 4}:

P (F1 ∪ F2 ∪ Fl) =a1 + a2 + a2 − a1∪2 + al(a1\la2\l − a1\l − a2\l)
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and

a1\la2\l − a1\l − a2\l =
a1a2

a1∩la2∩l
− a1
a1∩l

− a2
a2∩l

Because of (C.3), we know that

a1a2
a1∩3a2∩3

=
a1a2

a1∩4a2∩4

To prove that (C.4) holds, we only have to show that

− a1
a1∩3

− a2
a2∩3

≥ − a1
a1∩4

− a2
a2∩4

. (C.5)

It holds that

(C.5)⇔−a1a2∩3 − a2a1∩3
a1∩3a2∩3

≥ −a1a2∩4 − a2a1∩4
a1∩4a2∩4

⇔ a1∩3 + a2∩3 ≤ a1∩4 + a2∩4 (C.6)

and inequality (C.6) holds by using Lemma 9 and assumption (C.2) and (C.3). Hence, we proved
that (C.4) holds.

The second characteristic we look at is (c). The characteristic states that if the sum of failure
rates for a path is lower, the reliability of the overall system is higher.

We again consider a system with three paths. We assume that the first two paths are disjoint
and that the third can share units and connections with other two paths.Furthermore, we assume
that the disjoint paths are fixed. We prove for two cases of how the third path shares its units
and connections with the other two paths in Lemma 10 and Lemma 11 that the lower the change
sum of failure rates for the third path is, the higher is the reliability. There are more cases to
consider, but we were not able to prove these yet.

Lemma 10. Let us assume a redundant system with T1 ∩ T2 = ∅, and that P (F3) ≥ P (F4).
Furthermore, let us assume that a1∩3 = a1∩4 and a2∩3 = a2∩4. Then it holds that

P (F1 ∪ F2 ∪ F3) ≥ P (F1 ∪ F2 ∪ F4) . (C.7)

Proof. We know that for l ∈ {3, 4}:

P (F1 ∪ F2 ∪ Fl) =a1 + a2 + al − a1a2 + al
(
a1\la2\l − a1\l − a2\l

)
.

For the function f(a, b) = a+ b−a× b, we have a maximum at (1, 1) with f(1, 1) = 1. Therefore,
we know that

1 ≥ a1\3 + a2\3 − a1\3a2\3
⇔ a4 − a3 ≤ (a4 − a3)(a1\3 + a2\3 − a1\3a2\3)
⇔a4 + a4(a1\4 + a2\4 − a1\4a2\4) ≤ a3 + a3(a1\3 + a2\3 − a1\3a2\3)
⇔ P (F1 ∪ F2 ∪ F4) ≤ P (F1 ∪ F2 ∪ F3) .

Therefore, (C.7) holds.

Lemma 11. Let us assume a redundant system with T1 ∩ T2 = ∅, and that P (F3) ≥ P (F4).
Furthermore, let us assume that a1∩3 ≥ a1∩4, a2∩3 ≥ a2∩4 and a3\(1∪2) = a4\(1∪2). Than it holds
that

P (F1 ∪ F2 ∪ F3) ≥ P (F1 ∪ F2 ∪ F4) . (C.8)
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Proof. We can reformulate (C.1) and know that for l ∈ {3, 4}:

P (F1 ∪ F2 ∪ Fl) =a1 + a2 + al − a1a2 − a1al\(1∪2)a2∩l − a2al\(1∪2)a1∩l + a1a2al\(1∪2).

Let δ1, δ2 ∈ R+ with a1∩4 + δ1 = a1∩3 and a2∩4 + δ2 = a2∩3. We know that

P (F1 ∪ F2 ∪ F3) ≥ P (F1 ∪ F2 ∪ F4)

⇔a1 + a2 + a3 − a1a2 − a1a3\(1∪2)a2∩3 − a2a3\(1∪2)a1∩3 + a1a2a3\(1∪2)

≥ a1 + a2 + a4 − a1a2 − a1a4\(1∪2)a2∩4 − a2a4\(1∪2)a1∩4 + a1a2a4\(1∪2)

⇔ a1∩4a2∩4 − a1a2∩4 − a2a1∩4 ≤ a1∩3a2∩3 − a1a2∩3 − a2a1∩3
⇔ a2∩4 (a1∩4 − a1)− a2a1∩4 ≤ a2∩3 (a1∩3 − a1)− a2a1∩3
= (a2∩4 + δ2) (a1∩4 + δ1 − a1)− a2 (a1∩4 + δ1)

= a2∩4 (a1∩4 − a1) + a2∩4δ1 + δ2(a1∩4δ1 − a1)− a2a1∩4 − δ1a2
⇔ 0 ≤ a2∩4δ1 + δ2(a1∩4 + δ1 − a1)− δ1a2
⇔ 0 ≤ δ1(a2∩4 − a2) + δ2(a1∩4 + δ1 − a1).

Therefore, (C.9) holds.

Lastly, we prove Lemma 12 that corresponds to characteristic (b). We assume again tat we
have three paths and the third path does not share all units and connections with the other paths.
Furthermore, we assume that the sum of failure rates of units and connections of all paths and
the number of units and connections are fixed. We then prove in Lemma 12 for one case of how
the third path shares its units and connections with the other two paths that the reliability of
the overall system is higher if the sum of failure rates of the units and connections that the third
path does not share with the other paths is higher. There are more cases to consider, but we
were not able to prove these yet.

Lemma 12. Let us assume a redundant system with T1 ∩ T2 = ∅, and that P (F3) = P (F4).
Furthermore, let us assume that a1∩3 ≥ a1∩4 and a2∩3 ≥ a2∩4. Then it holds that

P (F1 ∪ F2 ∪ F3) ≥ P (F1 ∪ F2 ∪ F4) . (C.9)

Proof. We know that for l ∈ {3, 4}:

P (F1 ∪ F2 ∪ Fl) =a1 + a2 + al − a1a2 + al
(
a1\la2\l − a1\l − a2\l

)
.

As a1∩3 ≥ a1∩4 and a2∩3 ≥ a2∩4, we know that a1\3 ≤ a1\4 and a2\3 ≤ a2\4. Let δ1, δ2 ∈ R+ be
such that a1\3 + δ1 = a1\4 and a2\3 + δ2 = a2\4. We then know that

P (F1 ∪ F2 ∪ F3) ≥ P (F1 ∪ F2 ∪ F4)

⇔a1 + a2 + a3 − a1a2 + a3
(
a1\3a2\3 − a1\3 − a2\3

)
≥ a1 + a2 + a4 − a1a2 + a4

(
a1\4a2\4 − a1\4 − a2\4

)
⇔ a1\3a1\3 − a1\3 − a1\3 ≥ a1\4a2\4 − a1\4 − a2\4
⇔ a2\4

(
a1\4 − a1

)
− a2a1\4

= (a1\3 + δ1)(a2\3 + δ2)− a1\3 − δ1 − a2\3 − δ2
≤ a1\3a2\3 − a1\3 − a2\3
⇔ δ1a2\3 + δ2a1\3 + δ1δ2 − δ1 − δ2 ≤ 0

⇔ δ1(a2\3 + δ2 − 1) + δ2(a1\3 − 1) ≤ 0

⇔ δ1(a2\4 − 1) + δ2(a1\3 − 1) ≤ 0.
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Therefore, (C.9) holds.

With these lemmas, we have starting point to see in which cases the characteristics are true.
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