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ABSTRACT. 

A cDNA library was constructed from polyA RNA isolated from an 

inbred maize line (837N). The library was screened by heterologous 

hybridisation for cDNA clones representing genes which encode 

mitochondrial polypeptides. A cDNA clone (pANT-1) encoding the adenine 

nucleotide translocator (ANT) of maize was identified by virtue of 

hybridisation to the homologous gene from Saccharomyces cerevisiae, and 

the identity of the clone confirmed directly by DNA sequence analysis. 

Examination of the cDNA library with DNA probes derived from pANT- 1 

identified two further ANT cDNA clones, one of which, pANT-2, was shown 

by restriction mapping and partial DNA sequence analysis to be derived 

from a different structural gene to that of pANT-1. The polypeptides 

encoded by these two genes differ by eight amino acids. The maize ANT 

polypeptides exhibit a high degree of amino acid sequence homology to the 

ANT polypeptides of Saccharomyces cerevisiae, (65%) and Neurosoora 

crassa.(75%), but only 50% amino acid homology with the ANT protein 

purified from beef heart mitochondria. 

A maize nuclear genomic library was constructed in a bacteriophage 

lambda vector, and two clones were isolated which correspond to the 

structural genes of pANT- 1 and pANT-2. Maize is the only organism which 

has so far been shown to possess multiple genes for the ANT. 

The nucleotide sequence of the structural gene 02, which encodes 

PANT-2, has been determined, together with Ca. 400 nucleotides of 

sequence 5 to the coding region. The gene contains two introns of 95bp and 

82bp which are located in different positions to those in the NeurosDora 

crassa ANT gene. The Saccharomyces cerevisiae gene is uninterrupted. The 

introns in the maize 62 gene contain the consensus sequences postulated 

to be important for intron splicing. 

The 62 gene has two potential translational starts. If the more 5' ATO 

Vii 



is utilised, the polypeptide is 16 amino acids longer than the ANT 

polypeptides of NeurosDora and yeast and 22 aminoacids longer than that 

of beef. The implications for targeting the polypeptide to mitochondria are 

discussed. 

There are two TATA like sequences located 5 to the coding region, 283 

and 301bp upstream of the more 5 of the two ATGs. The site(s) of 

transcription initiation have not been accurately mapped, but the 5 

untranslated region appears to be unusually long, (ca. 300 nucleotides) and 

contains several small inverted repeat sequences, the significance of 

which is unknown. The 5 untranslated region also contains a sequence of 

76bp which has 57% homology to an intron found in another nuclearly 

encoded plant mitochondrial gene, and Is delimited by potential 

intron-exon boundaries 

The Y untranslated region of both maize ANT genes does not contain a 

5'-AATAAA-3 sequence, which supports the suggestion that this sequence 

is not an essential requirement for the polyadenylation of higher plant 

mRNAs. 
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CHAPTER 1 GENERAL INTRODUCTION. 

L I INTRODUCTORY REMARKS 

The purpose of this chapter is to set the results described in Chapters 

3-5 within the context of the higher plant mitochondrion and its 

relationship with other cellular and developmental events. To this end, 

mitochondrial structure and function will be briefly reviewed, with the 

emphasis on those aspects of plant mitochondria which differ from their 

animal and fungal counterparts. A comprehensive review of plant 

mitochondrial biochemistry is outside the scope of this thesis, and is 

covered in a number of text books on plant biochemistry (e.g. Hanson and 

Day 1980). However, the import of proteins into mitochondria and 

chioroplasts and interactions between nucleus and mitochondrion will be 

discussed. 

1.2 MITOCHONDRIAL STRUCTURE. 

Mitochondria are subcellular organelles present in the cytoplasm of all 

aerobically respiring eukaryote cells. A 'typical higher plant cell may 

contain several hundred rod shaped or spherical mitochondria of the order 

of 0.5-1um x 3um (Clowes and Juniper 1968). All mitochondria are bounded 

by a double membrane which defines four compartments, the matrix, the 

inner membrane, the inter membrane space, and the outer membrane. 

The outer membrane has a number of integral and peripheral proteins 

associated specifically with it. The most abundant is a protein (porin), 

which forms non-specific pores, rendering the membrane permeable to 

most small molecules up to Ca. 5,000 molecular weight. In addition the 

outer membrane presumably contains specific receptor proteins which 

recognise po lypept ides imported into the mitochondrion. 



The inner membrane is extremely protein rich (ca. 80% protein by mass) 

and is highly convoluted. The surface area of the inner membrane appears 

to be correlated with the respiration rate of the mitochondria. The inner 

membrane is impermeable to most hydrophilic substances, and specific 

protein carriers or transporters mediate the selective transport of 

substrates between the mitochondrial matrix and intermembrane space. In 

addition the inner membrane contains the respiratory complexes involved 

in electron transport and oxidative phosphorylation. 

The matrix space is also protein rich (about 50% by mass), and contains 

many soluble enzymes including those of the tricarboxylic acid (TCA) 

cycle (with the notable exception of succinate dehydrogenase, which is 

membrane bound), and the mitochondrial transcription and translation 

machinery. The mitochondrial DNA (mt.DNA) is located in the matrix, 

associated with the inner membrane. 

1.3 MITOCHONDRIAL FUNCTION. 

Mitochondria of higher plants, as those of fungi and animals, carry out 

synthesis of ATP linked to substrate oxidation, and participate in 

intermediary metabolism. For a general review see Tzagoloff, (1982). 

Electron transport in plant mitochondria is reviewed by Palmer (1 976). 

1.3.1 Oxidative PhosDhorylation. 

Endo genous NADH generated by the action of the TCA cycle 

dehydrogenases, is re-oxidised by transfer of electrons to a series of 

redox carriers ( iron-sulphur proteins, I lavoproteins, ubiquinones and 

cytochromes) located in the inner membrane. These form the electron 

transport chain and are associated with proteins which make up the 

respiratory complexes of the inner membrane, Fig I.I. Transfer of 

2 
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electrons along the chain to cytochrome c.  oxidase proceeds with a 

decrease in free energy. Electron transport is associated with the pumping 

of protons from the matrix to the intermembrane space by complexes I, III, 

and IV, so that energy made available byelectron transport is conserved in 

the form of an electrochemical potential gradient or proton motive force, 

(pmf) across the inner membrane. Typically the pmf is 1 80-22OmV, with 

the matrix more negative and alkaline than the cytosol, (Moore and Bonner 

1981). In coupled mitochondria, the pmf is utilised to drive synthetic 

reactions such as the phosphorylation of ADP, accumulation of substrates 

against their concentration gradients, and the import of cytoplasmically 

synthesised proteins. These features of mitochondria are common to 

animal, fungal and plant cells, although the protein subunit composition of 

the various complexes may vary between species. 

1.3.2 Unique features of Dlant mitochondria. 

Unlike animal mitochondria, plant mitochondria can oxidise external 

NADH (Palmer 1976), by means of an external NADH dehydrogenase located 

on the cytosolic face of the inner membrane (Douce et al., 1973). Electrons 

from the oxidation of external NADH are fed into the electron transport 

chain at the ubiquinone pool, by-passing the first coupling site. Plant 

mitochondria may also be able to transfer reducing equivalents directly 

from the matrix to external NAD4  by means of a uni-directional 

transhydrogenase (Day and Wiskich 1978). 

Mitochondria of higher plants, and some fungi, contain an alternative 

oxidase activity which, unlike cytochrome c.  oxidase, is insensitive to 

cyanide inhibition, (Solomos 1977). The alternate oxidase branches from 

the respiratory chain at the ubiquinone pool, by-passing complexes III and 

IV, two of the sites for coupling electron transport to phosphorylation. The 

4 



subunit composition and function is unknown, but it may be important in 

the oxidation of NADH generated by the action of the TCA cycle in the light. 

Under these conditions where the energy charge is high, oxidation of NADH 

coupled to ATP synthesis might inhibit the TCA cycle, the continued 

operation of which is required to produce carbon skeletons for some 

biosynthetic pathways, (Singh and Naik 1984). 

The molecular biology of plant mitochondria exhibits an number of 

unusual features. These are summarised in section 1.5. 1. 

1.3.3 Intermediary metabolism. 

Plant mitochondria participate in a number of metabolic pathways 

concerned with both degradation and biosynthesis. Several of these require 

co-operation with other cell organelles such as chloroplasts, glyoxysomes 

and peroxisomes, as well as with the cytoplasm. Some examples are: 

Gluconeogenesis in fatty seeds. 

Succinate produced as a result of the glyoxylate cycle in glyoxysomes is 

further metabolised in the mitochondria to oketoglutarate, which is 

transported back to the glyoxysome to generate oxaloacetate (Cooper and 

Beevers 1969). 

Photorespiration in C3 plants. 

Glycine, produced in the peroxisome as a result of photorespiration can 

undergo oxidative decarboxylation to serine, NADH, CO2  and NH 4. Glycine 

is a major substrate for mesophyll mitochondria in C3 plants, (Moore et 

si., 1977) 

Carbon fixation in C4 plants. 

Plants which have C4 or Crassulacian Acid Metabolism fix CO2  by the 

action of phosphoenol pyruvate carboxylase, which converts phosphoenol 

pyruvate to oxaloacetate. This may subsequently be converted to malate in 



the case of CAM plants and some C4 plants or aspartate in the case of 

other C4 plants. In CAM plants, malate is converted to pyruvate which is 

oxidised to CO2  in the mitochondria, while in some C4 plants which 

synthesise aspartate, the mitochondrial enzymes malate dehydrogenase 

and NAD malic enzyme are used to regenerate CO2  and pyruvate. The CO2  

released is then fixed by photosynthetic dark reactions in the chioroplast. 

(4) Amino acid biosynthesis 

TCA cycle intermediates are substrates for amino acid biosynthesis, 

notably alanine (from pyruvate), Glutamate (from oketoglutarate) and 

aspartate (from oxaloacetate). 

1.4 RELATIONSHIP BETWEEN OXIDATIVE AND PHOTO PHOSPHORYLATION IN 

HIGHER PLANT CELLS. 

Plant cells show both developmental and diurnal changes in the major 

source of ATP. The first is exemplified by the transition from 

heterotrophy to autotrophy in early seedling development, and the second 

by light-dark transitions. 

1.4.1 Diurnal regulation of mitochondrial respiration. 

The effect of photosynthesis on mitochondrial respiration in green 

tissues has been reviewed by Graham (1980), Singh and Naik (1984). 

Measurements suggest that mitochondrial respiration in the light is under 

tight control of the cytosolic adenylate energy charge (Hampp et a]., 

1982), which regulates the rate of entry of ADP to the mitochondrion via 

the adenine nucleotide transicator (ANT). In this way a system which is 

sensitive and capable of rapidly responding to changes in physiological 

status is achieved. 

M. 



1.4.2 Developmental regulation of mitochondrial biogenesis in seed 

germination. 

While diurnal changes in mitochondrial function take place too rapidly 

to be regulated at the level of gene expression, long term changes must 

rely to some extent on the de novo synthesis of mitochondrial components. 

During germination and early seedling development, plants are dependent 

upon mitochondrial oxidative phosphorylation for the catabolism of stored 

reserves. 

De novo synthesis of mitochondria presents an apparent paradox, as 

nuclear encoded polypeptides are required, but many of these cannot be 

imported into the mitochondrion in the absence of a membrane potential 

(section 1.5.5), the generation of which is also dependent upon nuclear 

encoded subunits of the respiratory complexes. 

Mitochondria from dry seeds are structurally and enzymically deficient. 

Upon imbibition, an increase in cyanide sensitive oxygen consumption 

occurs, and mitochondria become structurally more developed. Two plants 

exhibit extremes of mitochondrial development in early germination. In the 

case of pea (Pisum sativusv ) seeds, these changes are observed in the 

absence of mitochondrial and cytoplasmic protein synthesis, suggesting 

that upon re-hydration, assembly of pre-formed components takes place to 

produce respiration competent mitochondria (Morohashi and Bewley 1980). 

In the contrast, the number of pre-formed mitochondria in the dry seed of 

peanut (Arachis hyoogea) is very low, and most of the early increase in 

mitochondrial activity is probably due to de.  novo synthesis of 

mitochondrial membranes (Morohashi etal.,1981). However, it is unlikely 

that mitochondria are ever totally absent. 

After the initial increase in oxygen consumption upon imbibition, there 

is a lag period of variable duration before oxygen consumption increases 



again. This may be due to temporary anaerobiosis as a result of the 

restriction of oxygen diffusion by the testa, or a requirement for the 

synthesis and assembly of new mitochondrial components. Some seeds do 

not show this lag, e.g. Avena fatua, wheras in others, e.g. pea, the removal 

of the seed coat reduces but does not abolish the lag, suggesting that 

oxygen availability is not the only cause. 

In a number of plants the capacity of mitochondria to synthesise 

protein lags behind the development of cytosolic protein synthesis. This 

may be because the developing mitochondria lack the nuclear encoded 

proteins required for organellar protein synthesis, e.g. ribosomal proteins, 

initiation, elongation and termination factors and perhaps also 

polymerases and RNA maturases. Once some mitochondrial function is 

established and a proton motive force generated across the inner 

membrane, nuclear encoded subunits can be imported and the synthesis of 

new mitochondrial membranes can commence. 

Germination is just one example of a developmental situation where 

there are changing demands on mitochondrial function. Other examples 

include the greening of etiolated tissue, fruit ripening and pollen 

formation. The availability of molecular probes should go some way 

towards resolving the temporal sequence of events which occur during 

differentiation, as the steady state levels of mRNA and protein for both 

nuclear and mitochondrially encoded polypeptides can be analysed at 

different developmental stages and under different physiological 

conditions. 

1.5 MITOCHONDRIAL BIOGENESIS. 

Mitochondrial biogenesis is a complex process requiring the 

co-operation of two distinct genetic systems, and is sensitive to a variety 



of physiological and developmental factors. Mitochondria contain their own 

DNA (Luck and Reich 1964), although it only encodes a very small (<10%) 

but vital subset of mitochondrial proteins. NUclear genes encode the 

remainder, including those polypeptides required for replication and 

expression of mtDNA. The lipid and sterol constituents of the 

mitochondrial membranes are also. the product of cytoplasmic biosynthetic 

pathways. 

1.5.1 Mitochondrially encoded DolyoeDtides. 

The genetic origin of the different mitochondrial proteins has been 

determined by a combination of techniques, including differential 

sensitivity of cytosolic and organelle ribosomes to protein synthesis 

inhibitors, genetic studies on the inheritence of mutations, and analysis of 

proteins synthesised in organello by isolated mitochondria. Direct 

sequence analysis of mtDNA and comparisons with known genes has also 

been valuable in identifying open reading frames in plant mitochondrial 

DNA. Table 1 a summarises the genes encoded by mtDNA of various species. 

For a review see Dujon (1983), also Ise et al.,( 1 985) and Chomyn et al., 

(1985) for references to the NADH dehydrogenase. The presence of ATP 6 in 

plant mitochondrial DNA is a personal communication from S. Levings. 

The organisation and expression of the mitochondrial genome in higher 

plants has been reviewed by Leaver and Gray (1982). The principal 

differences between plants and other organisms are summarised below. 

(a) Plant mitochondrial DNAs are much larger than those of fungal and 

animal mitochondria. Plant mtDNAs range in size from Ca. 200kb to 

2,400kb (Ward et al 1981) compared to 16kb for the mammalian mt 

genome and 78kb for Saccharomyces cerevisiae. Unlike mammalian and 

fungal mtDNAs, higher plant mtDNA is probably not maintained as a single 



circular molecule in vivo, but probably as a number of sub genomic circular 

and/or linear molecules (Palmer and Shields 1984, Lonsdale et al., 1984). 

The consequences of this more complex organisation for the expression of 

plant mitochondrial genes is largely unknown. 

Table la. Summary of mitochondrially encoded genes in different organisms 

GENE 	S.cerevisiae N.crassa Mammals Plants 

ATP  + + + + 

ATP  + + + ? 

I.E9 + +1- - + 

ATP  - - - + 

COB + + + + 

Cox I + + + + 

+ + + + 

Cox III + + + 

NADH - 6 sub- 6 sub- 

dehydrogenase units units 

Ribosomal prot. + + - 

Intron coded + + - ? 

maturases 

rRNAs 2 2 2 3 

tRNAs + + + 

(b) Plant mitochondrial DNA contains additional genes not present in 

the mitochondrial DNA of other organisms. The gene encoding the alpha 

subunit of F1  ATPase is encoded in mtDNA in higher plants (Isaac et at, 

1985b) while in all other eukryotes examined to date the gene is 
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nucearly encoded. The results of in organello protein synthesis by isolated 

mitochondria suggest that there are other as yet unidentified genes which 

are unique to plant mitochondria. 

(c) The genetic code used by plant mitochondria differs from that of 

nuclear and other organelle genetic systems. The codon CGG specifies 

tryptophan as opposed to arginine (Fox and Leaver 1981) and TGA specifies 

termination, as in the nuclear genetic code, rather than tryptophan as in 

mammalian mitochondria (Schuster and Brennicke 1985) 

1.5.2 Nuclear encoded mitochondrial DolyPeotides. 

The remainder of the estimated 400+ mitochondrial polypeptides are 

the products of nuclear genes, transcribed, processed and modified in the 

nucleus, translated in the cytosol, and imported into the mitochondrion in 

a post translational manner. 

A number of nuclear genes encoding mitochondrial proteins have been 

isolated and analysed, but they include only two representatives from a 

higher plant, the ATP/ADP translocator (Baker and Leaver 1985, and this 

thesis) and the beta subunit of mitochondrial F1  ATPase from Nicotiana 

Dlumbaginifolia (Boutry and Chua 1985). Consequently this section will 

concern itself principally with results obtained from studies with fungi. 

Yeast is a particularly suitable organism for these kinds of studies, as 

mitochondrial biogenesis is easily manipulated via the culture conditions 

and it is particularly suited to the generation and analysis of mutants of 

mitochondrial function. Furthermore, as a single celled organism, analysis 

is not additionally complicated by heterogeneity due to the presence of 

different tissues. It remains to be seen whether regulation of the 

expression of nuclear genes encoding mitochondrial protein has a common 

basis in all eukaryotic organisms. 



Table lb summarises the nuclear genes encoding mitochondrial proteins 

which have been isolated and sequenced. 

Table lb. 

ORGANISM 

S.cerevisiae 

GENE 

iso- 1 -cytochrome c 

iso-2-cytochrome c 

cytochrome c.1  

cytochrome ç. peroxidase 

REFERENCE 

Smith et aL,( 1979) 

Montgomery et a].,(] 980) 

Sadler eta]., (1984) 

Kaput eta]., (1982) 

cytochrome c oxidase IV 	Maarse et a],, (1984) 

cytochrome c.  oxidase Va + b Cumsky et a]., (1985) 

12 

cytochrome c.  oxidase VI 

ATP/ADP translocator 

complex III genes: 14K 

17K 

alpha subunit ATPase 

beta subunit ATPase 

70kD outer membrane prot. 

EF-Tu (elongation factor) 

MSS-51 (splicing enzyme) 

N.crassa. 	subunit 9 ATPase 

ATP/ADP translocator 

H. sa i ens orn i th I ne transcarbamy 1 ase 

B.taurus cytochrome P450 (5CC) 

R.rattus cytochrome ç 

Z.mavs ATP/ADP translocator 

N.Dlumbainjfo1ja beta subunit ATPase 

Wright et a]., (1984) 

Adrian eta]., (1985) 

deHaan et a]., (1984)   

van Loon,( 1984)   

M. Douglas pers. comm. 

Sal tzgaber et a]., (1 983) 

Hase et al., (1984) 

Nagata et al.,(1983) 

Faye and Simon (1983) 

Viebrock eta]., (1982) 

Arrends and Sebald 0 984) 

Horwich et a]., (1984) 

Morohashi et a]., (1 984) 

Scarpulla eta]., (1981) 

Baker and Leaver (1985)   

Boutry and Chua (1 985) 



A number of other genes have been identified and isolated on the basis of 

their ability to complement specific mutations, but the nucleotide 

sequence has not yet been reported, e.g C.El and 2 from yeast, required 

for the processing of apocytochrome b transcripts, (Dieckmann et al. 

1982, McGraw and Tzagoloff 1983) and MAS- 1, the protease which 

processes imported proteins, (Yaffe et al., 1985). 

1.5.3 Nuclear gene CODY number. 

All the nuclear genes encoding mitochondrial proteins analysed to date 

occur in single or low copy number. Most of the yeast genes are present 

only once in the genome, with the exception of cytochrome c and 

cytochrome oxidase subunit V. (Cumsky et al., 1985), where there are two 

genes, both of which are expressed. In rat there are about 30 copies of the 

cytochrome ç gene, however most are pseudogenes which represent 

processed copies of three alternative mRNA's (Scarpulla and Wu 1983). 

Other mammalian genomes also contain multiple copies of cytochrome 

(Scarpulla et al.,1982). Both of the nuclear genes isolated from higher 

plants are present more than once. There are two copies of the beta 

subunit in Nicotiana both of which are expressed (Boutry and Chua 1985), 

and two or three genes for the ATP/ADP translocator in maize, of which 

two are known to be expressed (this thesis). 

1.5.4 TranscriDtion 

The transcription of many nuclear genes encoding mitochondrial 

proteins in yeast is repressed by glucose or other fermentable carbon 

sources in the growth media (Penman and Mahler 1974). However, detailed 

studies concerning the mechanisms of induction and repression have only 



been carried out on a small number of these genes. 

Cytochrome c. Cytochrome c.  in yeast is encoded by two non allelic 

genes, CYC 1 and CY.7.  The CYC 1 gene (iso- i cytochrome c) encodes 95% of 

the cytochrome c.  in wild type yeast. CYCI expression is repressed by 

glucose and stimulated by oxygen and haem. Regulation of the expression 

of the Q.1 gene is primarily at the level of transcription (Zitomer et al 

1979). The relative rate of transcription was shown to be six-fold higher 

in de-repressed cells grown on raffinose, compared to repressed cells 

grown on glucose, while the half life of the QLCI mRNA was shown to be 

similar under both growth conditions. The observed increase in Cy1 

transcription in the absence of glucose is sufficient to account for the 

elevated levels of the protein under these growth conditions. 

The nucleotide sequences involved in mediating catabolit'e and haem 

regulation of iso- 1 cytochrome c have been characterised in greater detail 

by Guarente and co-workers (Guarente et al., 1984,   Guarente and Hoar, 

1984, Guarente 1984). The sites of regulation of the CYCI gene by glucose 

and haem map 5 to the coding sequence. Two distinct sites are involved, 

named upstream activation site UAS1 and UAS2, which are located 229 and 

265bp 5 to the start of transcription respectively (Guarente et al 1984). 

These two sites have a core of sequence homology, but also contain unique 

sequences. In glucose containing media nearly all the transcription is 

driven by UAS 1. Under derepressing conditions, the activity of UAS I is 

increased 10 fold while that of UAS2 is increased 100 fold, so that both 

contribute equally to CYCI transcription. UAS1 or UAS2 alone when placed 

5 to the yeast Lj2 gene is sufficient to confer haem and glucose 

regulated expression. However, while UASI is derepressed by haem or its 

analogues, UAS2 cannot be derepressed by haem alone, even although haem 

is required for the basal rate of expression of UAS2 in the presence of 

14 



glucose. Activation of UAS 1 and UAS2 is dependent upon- two transacting 

non allelic loci, HAP1 and ]E2.  A mutant of HAP I, hap l-1, prevents haem 

activation of UAS1 but does not affect UAS2. Conversely, a mutant of 

HAP2, hap2- 1, causes a decrease in expression from UAS2 but not UAS 1. 

Hence the IE loci are proposed to encode proteins which act as positive 

regulatory factors at UAS 1 and 2. 

The UAS sequences have several features in common with viral and 

cellular enhancer sequences of higher eukaryotes. They appear to stimulate 

transcription of specific genes in cis, in response to physiological stimuli, 

and show a position and orientation independent effect. However, unlike 

enhancers, the UAS's of CY..1  are inactive when located 3 to the TATA box, 

(Guarente and Hoar 1984). The mitochondrial Mn superoxide dismutase (Mn 

SOD) of yeast also has two sequences 5' to the coding sequence which have 

homology to UAS1 and UAS2 (Marres et at, 1985). Interestingly the Mn SOD 

is constitutively expressed in a mutant which also exhibits constitutive 

anaerobic expression of CYC 1. 

The CYC7 gene which encodes i30-2 cytochrome c, is independently 

regulated and transcription is not controlled by the intracellular level of 

haem. Like Q1 several transacting loci are involved in expression. A 

deletion analysis ofsequences 5 to the gene (Iborra et al., 1985) showed 

that the region between -350 and -450 is required f or negative regulation, 

and that sequences between -350 and -200 are essential for 

transcriptional activity. The most striking feature of this latter region is 

a perfect palindrome located between -309 and -295: 

5 -CCTTCTCTGA6AA66-3 

A similar palindrome consisting of a pyrimidine rich sequence followed by 

a purine rich one is found in the 5' untranslated region of the maize and 

NeurosDora adenine nucleotide translocator genes, (section 5.5.5). 
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Subunits of comDlexIlI. The steady state levels of the mRNAs for seven 

nuclear encoded subunits of complex III in yeast, change co-ordinately 

when grown on glucose or a derepressing carbon source (van Loon et al., 

1983). However, when individual cloned subunits are introduced into yeast 

cells on multi copy plasmids, overproduction of the individual subunit is 

observed (van Loon et a]., 1983, van Loon et al., 1984). In the case of the 

11 kD protein, although mRNA steady state levels are increased 15-30 fold, 

the steady state level of the protein Is only increased 5-10 fold. 

Translational controls and elevated rate of protein turnover were 

suggested as a means whereby partial compensation for gene dosage is 

achieved (van Loon et al:, 1983). Similar experiments with the core 11 (4OkD 

protein) and the Mn superoxide dismutase (originally thought to be the 

Rieske iron sulphur protein, van Loon et al., 1984, but see Marres et al., 

1985), showed that over production of these individual subunits did not 

affect the levels of the other complex III subunits, and that the over 

produced subunits were imported into mitochondria. The authors conclude 

that: 

although the synthesis of the different subunits of complex III is 

normally tightly coupled, this is not obligatory 

mRNA levels are probably the most important factor in determining 

protein levels for these subunits 

over production of individual subunits does not markedly influence 

mitochondrial function and 

that import of the subunits into mitochondria occurs even although 

the excess subunits are not assembled. 

Other yeast nuclear genes. Szekely and Montgomery (1984) showed that 

the mRNA levels of the alpha and beta subunits of mitochondrial F1  ATPase 

and the adenine nucleotide translocator were co-ordinately regulated in 
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response to glucose. A mutant was described (C 149), in which these three 

genes are insensitive to derepression, but levels of cytochrome c mRNA 

were not affected. This suggests that not all nuclear genes for 

mitochondrial proteins in yeast are regulated by the same mechanism. 

1.5.5 Translation and import of nuclear gene products. 

The mRNAs which encode the products oLf nuclear genes destined for 

the mitochondrion are translated on cytosolic ribosomes, along with the 

mRNAs encoding proteins for all the other subcellular compartments. The 

means by which the correct subset of polypeptides are targeted to the 

appropriate organelle is fundamental to the differentiation of eukaryotic 

cells. It is clear that the information required for recognition by the 

appropriate compartment must reside within the polypeptide. Amino acid 

sequences have been identified which, when fused to heterologous coding 

sequences, will direct foreign polypeptides to the nucleus (Kalderon et 

j..,1984), the mitochondrion (Hurt et al 1985 and Horwich et al., 1985), 

the chloroplast (van den Broeck et al., (1985), Schreier et al., 1985), and 

the secretory pathway via the endoplasmic reticulum (Walter et al., 1984, 

Lingappa et al., 1984). However in most cases the molecular mechanisms 

of protein transport are not known in detail. 

The import of proteins into mitochondria has been studied principally 

in fungal systems, and is comprehensively reviewed by Reid (1984) and 

Hay et al., (1984). In this section I will briefly summarise the main steps 

in this process, and seek to draw comparisons with the import of proteins 

into chloroplasts, which appears to share several features of the 

mitochondrial import pathway. The biogenesis of the adenine nucleotide 

translocator will be discussed in more detail. 
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1.5.5.1 Is import co- or post-translational? 

Experiments performed in vitro and in vivo with a variety of organisms 

have demonstrated that mitochondria import polypeptides 

post-translationally. Thus there is no obligate coupling of transport to 

protein synthesis. However, under some circumstances, cytoplasmic 

ribosomes have been reported associated with the mitochondrial outer 

membrane, and these are enriched for mRNA's encoding mitochondrial 

proteins (Ades and Butow 1980). It is unclear whether these results 

reflect the situation in vivo, i.e. that a proportion of some polypeptides 

may be imported co-trans lationally, or whether they are an artifact of the 

experimental manipulations (Suissa and Schatz 1982). 

1.5,5.2 Import pathways 

(1) The matrix and inner membrane proteins. Most, but not all, of the 

polypeptides destined for the matrix and inner membrane are synthesised 

as precursors which have a slower electrophoretic mobility than the 

mature protein on SDS-PAGE. This has been demonstrated for polypeptides 

from a variety of organisms (Maccecchini et aL, 1979, Gieti and Hock 

1982). Nucleotide sequence analysis of the cloned genes and comparison 

with the amino terminal sequence of the mature protein has shown that in 

all cases to date, the additional coding sequence is located at the amino 

terminus. The pre piece is removed upon or shortly after import into the 

mitochondrion, but transport is not dependent upon processing (Zwizinski 

and Neupert .1983). The cleavage is carried out by specific metal ion 

dependent protease(s) located in the mitochondrial matrix (Bohni et al., 

1980, McAda and Douglas 1982). The activity processes all mitochondrial 

precursors tested but not denatured precursors or cytoplasmic proteins. 

Despite the high specificity for mitochondrial precursors, the protease(s) 
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do(es) not show species specificity. A mitochondrial lysate from maize 

will correctly process yeast precursors, and yeast mitochondria import 

and process the Neurosoora crassa subunit 9 of F0  ATPase, despite the fact 

that the homologous protein from yeast is encoded in mtDNA (Schmidt et 

flj.., 1983). 

These results suggest that the protease recognises a domain in the 

precursor rather than a specific amino acid sequence. Indeed there is very 

little amino acid sequence homology around the known cleavage sites, and 

in some gene fusions where the authentic site is lost, cleavage may take 

place at a secondary site (Hurt et al., 1984). 

The first twelve amino acids of the cytochrome oxidase subunit IV 

precursor have been shown to be both necessary and sufficient for the 
(H4 4IF ei-.'t, ii) 

re-targeting of a cytoplasmic protein to the mitochondrial matrix.A In the 

case of polypeptides synthesised without amino terminal extensions, the 

targeting information must presumably reside within the mature 

polypeptide, as is the case with the secreted polypeptide ovalbumin 

(Lingappa et al., 1978, 1979). Whether some proteins which are 

synthesised as precursors also contain essential targeting information 

within the mature protein is uncertain. Experiments by Douglas et 

j..,(1984) which utilised gene fusions between the beta subunit of ATPase 

and beta galactosidase, suggested that a substantial amount of the mature 

protein may be required for the targeting of beta galactosidase to the 

mitochondrion. However, caution must be exercised in the design and 

interpretation of such gene fusion experiments. Recognition of precursor 

polypeptides by mitochondria almost certainly involves protein-protein 

interactions in three dimensions, and the fusing together of heterologous 

polypeptide sequences could result in the aberrant folding of the hybrid 

precursor protein such that it is not recognised or recognised less 
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efficiently by mitochondrial receptors. 

Apart from the optional presence of an amino terminal extension, 

import of all matrix and inner membrane proteins appears to proceed via 

the same route, with the following sequence of events: 

Tight specific and reversible binding to the outer membrane, 

presumably via receptor proteins (Riezman et aL, 1983) 

Translocation dependent upon a membrane potential across the inner 

membrane (Gasser et al.. 1982a, Schleyer et al.. 1982), and processing 

where appropriate 

Assembly into biologically active form. 

It is not known whether these proteins use the same class of receptor or 

different ones. 

(2)Inter membrane space proteins. Proteins destined for the inter 

membrane space, with the exception of cytochrome c, share part of the 

import pathway with matrix and inner membrane proteins. These 

polypeptides, e.g. cytochrome c,, cytochrome b2  and cytochrome c.  

peroxidase are made as precursors and their import is energy dependent. 

They have quite long and complex presequences, including a region of non 

polar amino acids capable of spanning a lipid bilayer as an alpha helix 

(Kaput et al.,1982, Sadler et al.. 1984). It has been demonstrated that 

these precursors are processed in two steps, the first catalysed by a 

matrix, protease, and the second by a less well defined intermembrane 

space protease (Gasser et al., 1982b, Reid et al., 1982). The intermediate is 

attached to the inner membrane but with the bulk of the polypeptide 

projecting into the inter membrane space. Thus it is proposed that 

transport across the inner membrane is initiated, but arrested by the 

hydrophobic stop transfer sequence. The matrix protease processes the 
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amino terminus of the polypeptide projecting into the matrix, and the 

second protease releases the mature protein to the inter membrane space. 

In the case or cytochrome C,, the final maturation step is dependent upon 

the covalent attachment of haem (Ohashi et al., 1982). 

(3)Outer membrane proteins. Less is known about the biogenesis of the 

outer membrane in comparison with any other sub mitochondrial 

compartment. Outer membrane proteins are not made as higher molecular 

weight precursors, with the exception of rat liver porin (Shore et 

L, 1981). However, in the case of the 70kD outer membrane protein, the 

targeting information has been shown to reside at the extreme amino 

terminus (Hase et al.. 1984). Unlike matrix, inner membrane and inter 

membrane space polypeptides, the import of outer membrane polypeptides 

is not dependent upon a membrane potential across the inner membrane, 

(Gasser and Schatz 1983). In yeast it Is also insensitive to mild trypsin 

treatment of the mitochondria, which abolishes import of inner membrane 

proteins. 

(4)Cytochrome c. Cytochrome c appears to be imported by a different 

route to all the other proteins examined to date. It is localised on the 

inner membrane side of the inter membrane space and interacts with 

cytochrome cl in the respiratory chain. The polypeptide is not made as a 

higher molecular weight precursor, although the apoprotein (lacking haem) 

was demonstrated to possess a different conformation to the holoprotein 

(Korb and Neupert 1978). Import of cytochrome c does not require a 

membrane potential, and it has a different receptor to the other imported 

polypeptides (Hennig et al., 1983). 



The import of a number of proteins into mitochondria is stimulated by 

factor(s) present in reticulocyte lysate, (Miura et a)., 1983, Ohta and 

Schatz 1984). The 'factor(s)' are sensitive to trypsin (Ohta and Schatz 

1984) and high concentrations of RNAse (Firgaira et aL, 1984), which 

suggests that a ribonucleoprotein may be involved. 

1.5.5.3 Biogenesis of the adenine nucleotide translocator. 

The ATP/ADP translocator is imported by the same pathway as other 

proteins destined for the inner membrane, but it is one of the few which is 

not made as a larger precursor (Zimmerman et al., 1979). Some of the 

smaller subunits of the yeast complex III also apparently lack cleavable N 

terminal extensions. However, since it has not proved possible to compare 

the amino acid and gene sequences for the translocator from any one 

organism, processing at the amino terminus cannot entirely be ruled out. 

The translocator is quite a hydrophobic polypeptide, and the precursor 

can be identified as high molecular weight aggregates in aqueous solution 

(Zimmerman and Neupert 1980). The precursor and mature polypeptide have 

different properties which suggest that the protein takes up an alternative 

conformation upon import. The extra mitochondrial precursor binds to 

hydroxyapatite, but the mature protein does not. Furthermore, the 

precursor imported in vitro accquires the properties of the mature protein 

(Schleyer and Neupert 1984). 

A role for the adenine nucleotide translocator in mitochondrial 

biogenesis can be envisaged. Yeast petite strains, which contain defective 

mtDNA, are still able to import polypeptides even although they lack 

mitochondrially synthesised proteins and cannot carry out electron 

transport. However import is blocked by bongkrekic acid, an inhibitor of 

the translocator. Thus the translocator may be able to generate a 
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membrane potential sufficient for the import of proteins, merely by the 

electrogenic exchange of ATP4  and ADP3 , as directed by their 

concentration gradients. This mechanism could be important in the early 

stages of mitochondrial biogenesis, before electron transport becomes 

fully active. However this cannot be essential as the S cerevisiae opi 

mutant, which lacks a functional translocator, is capable of assembling a 

competent respiratory chain (Kovac et al., 1967) 

1.6 CHLOROPLAST BIOGENESIS. 

Like mitochondria, chloroplasts also have their own genetic system but 

are dependent upon nuclear gene products to provide many protein 

components of the organelle. Chioroplast biogenesis has been reviewed by 

Ellis (1981). 

Chioroplasts and mitochondria appear to share many common features 

in their biogenesis. All the imported chloroplast proteins which have been 

studied to date are synthesised as higher molecular weight precursors, 

imported post translationally and processed upon import to the mature 

size (Cashmore et al., 1985). As with import of proteins into the 

mitochondrial matrix, the transport of chloroplast precursors •  into the 

stroma is energy dependent (Grossman et al., 1980). The import of proteins 

into the chloroplast envelope has not been reported. 

Relatively few imported chloroplast proteins have been studied, and by 

far the greatest amount of work has been done on the small subunit of 

ribulose bisphosphate carboxylase. The leader sequence of this polypeptide 

has been shown to be sufficient to direct the bacterial gene product 

neomycin phospho trans f erase into the chloroplast (van den Broecket al., 

1985, Schreier et al., 1985). The genes encoding four proteins which are 

imported into chloroplasts have been sequenced, the small subunit of RuBP 
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carboxylase (Bedbrook et al.,1980, Berry-Lowe et al.,1982, Brogue et, 

&.,1983, Smith et al.,1983 ),the chlorophyll a/b binding protein (Dunsmuir 

et al.. 1983), 	ferredoxin (Smeekens et al.,1985a), and plastocyanin 

(Smeekens et al., 1985b) The presequences of these polypeptides do not 

have any amino acid homology, with the exception of the sequence 0 'K 
near the cleavage site of the first three. However, like the presequences of 

imported mitochondrial proteins, they have an excess of basic over acidic 

residues and a relatively high threonine and serine content. 

The stromal located protease has some similar features to the 

mitochondrial matrix protease(s) (Robinson and Ellis 1984). It is specific 

for chloroplast precursors, and is neither polypeptide or species specific. 

Both stromal (small subunit) and thylakoid (plastocyanin) polypeptides are 

substrates. The protease is metal ion dependent as is the mitochondrial 

enzyme, both being inhibited by 1,10 phenanthroline. 

Import of proteins into chioroplasts and mitochondria do differ with 

respect to the energy source required. Mitochondrial import requires a 

transmembrane potential, ATP alone will not suffice if the ATPase is 

inhibited by oligomycin (Gasser et al., 1982a). Chioroplasts however can 

import proteins in the presence of an uncoupler, so long as ATP is present 

(Grossman et al., 1980). 

As both chloroplasts and mitochondria carry out electron transport and 

phosphorylation reactions, DNA replication, transcription and protein 

synthesis, many of their proteins are homologous or analogous. Given the 

considerable similarities in the processes of protein import by both 

organelles, and the analogous features of the proteins to be transported, 

how do polypeptides become associated with the correct organelle? To 

resolve this question it may be necessary to characterise in much greater 

detail than has been possible so far, the receptors in the mitochondrial 
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outer membrane and chioroplast envelope respectively. 

.7 NUCLEAR-MI TOCHONDR I AL INTERACTIONS 

Nuclear gene products are required not only when a net synthesis of 

mitochondrial material is occuring but continuously, to compensate for 

turnover of mitochondrial components and to regulate mitochondrial 

activities. In addition some nuclear gene products may be required at 

specific stages in the organisms life cycle. In this section I will 

emphasise the importance of nuclear-mitochondrial interactions, and 

discuss a number of examples from higher plants and fungi where this 

relationship appears to be defective. 

Nuclear gene products are involved in probably every mitochondrial 

activity. To those functions considered in section 1.3 can be added 

mtDNA replication 

recombination 

transcription 

mRNA processing 

mt protein synthesis 

metabolite transport 

import, processing and assembly of cytoplasmically synthesised 

0 lypept ides. 

Because of the complex nature of nuclear mitochondrial interactions, 

nuclear mutants which affect these processes are often pleiotropic and 

therefore difficult to recognise. Furthermore, because many of them will 

be expected to severely peturb mitochondrial function they will be lethal 

or conditional lethal. 
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1.7.1 Nuclear genes controlling mitochondrial gene expression. 

In S. cerevisiae, there are a number of respiration defective mutants 

which are inherited in a Mendelian fashion even although they lack 

mitochondrially encoded gene products such as cytochrome b or 

cytochrome oxidase subunits I and II (Dieckmann et al.,1982, McGraw and 

Tzagoloff 1983, Pillar et al.,1983, Pratje et al.,1983, Faye and Simon 

1983) Other nuclear gene mutations are able to suppress mitochondrial 

mutations (Contamine and Bolotin-Fukuhara 1984,   Dujardin et al.,1983). 

There is also an example of a nuclear mutation which blocks the 

expression of a mitochondrial gene but can itself be suppressed by a 

mtDNA rearrangement (Muller et al., 1984, Costanzo and Fox 1985). 

Most of these mutations define nuclear encoded components of the 

mitochondrial splicing system. The C21 and UP2 genes are involved in 

the complex processing of the apocytochrome b transcript (Dieckmann et 

.L)1982, McGraw and Tzagoloff 1983). The NAM 2-1 mutation suppresses 

the mitochondrial mutation box7, and restores correct splicing of the COX 

I and COB transcripts. The NAM 2-I allele requires the presence of the COX 

I a14 intron in order to function and is thought to activate a latent 

maturase encoded by this intron (Dujardin et al., 1983). 

1.7.2 Cytoplasmic male sterility in higher plants. 

In higher plants most mutations affecting nuclear-mitochondrial 

interactions will probably be lethal due to the inability of plants to 

survive in the absence of functional mitochondria. Cytoplasmic male 

sterility (CMS), may represent a class of non lethal mutations which are 

due to perturbation of normal nuclear- mitochondrial interactions. CMS in 

higher plants has been reviewed by Leaver and Gray (1 982). 

Cytoplasmic male sterility is a trait which results in the inability to 
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produce or shed viable pollen. A number of commercially important plant 

species exhibit this phenotype and it has been widely exploited in the 

production of F1  hybrids in plant breeding. In some cases the earliest 

observable phenotypic effect is the degeneration of mitochondria in the 

tapetal layer of the developing anthers, which suggests that the CMS trait 

may be due to a failure of mitochondrial biogenesis or function. The CMS 

phenotype is maternally inherited, and is associated with an alteration in 

mtDNA restriction patterns relative to male fertile lines, and with the 

synthesis of characteristic variant polypeptides by isolated mitochondria. 

The CMS phenotype can be 'restored to fertility by nuclear restorer genes, 

and this forms the basis of classification of CMS lines into different 

groups. In this regard the action of restorer genes in suppressing a 

mitochondrial mutation is analogous to the yeast nuclear suppressors 

described in section 1.7. 1. However, the nature of the CMS mutation(s) 

remains to be elucidated, as does the mechanism of action of restorer 

genes. 

Recent evidence suggests that crosses which generate incompatible 

combinations of nuclear and cytoplasmic genotype (i.e. male steriles), 

result in recombination of the mitochondrial genome. In Sorghum bicolor, 

the variant polypeptide synthesised by one male sterile line (Kafir 

nucleus/9E cytoplasm = K/90 was identified as as larger (42kD vs 38kD) 

form of cytochrome oxidase subunit I (Dixon and Leaver 1982). Analysis of 

the COX I gene from male sterile and male fertile sorghum lines 

(Bailey-Serres et al)  in preparation) has shown that synthesis of a larger 

CO I polypeptide is due to a rearrangement within the coding region which 

generates an extended open reading frame at the 3 end of the gene. 

Sorghum lines which synthesise the 42kD Co i variant have the gene 

located on a 1 0.4kb Eco R 1 generated restriction fragment, as opposed to a 
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4.3kbER1fragment in the lines that make the 38kD CO I. The two genes 

have different characteristic patterns of transcription. The nuclear 

genotype in SoEghum affects the organisation of the mitochondrial genome. 

The introduction of 9E genes into the nucleus by backcrossing results in 

the relocation of the COX I gene on the 4.3kb Eco R 1 fragment and the 

synthesis of the 38kD form of the Co i polypeptide. The points of sequence 

divergence between the genes encoding the 38kD and 42kD forms of CO I 

are flanked by small direct repeats. These sequences may be involved in 

recombination events which alter the genomic environment and expression 

of the Sorghum COX I gene in different nuclear backgrounds. The synthesis 

of a 42kD CO I polypeptide is not correlated with CMS, but may be a 

consequence of recombination events which impair the function of the 

mitochondrial genome at cruicial times in development. 

In Zea mays CMS is also associated with rearrangements of the mt 

genome adjacent to the structural gene sequences COX I, COX II and ATP A 

(Isaac et al., 1985, Dawson, 1983 PhD. thesis, Isaac et a)., 1985 submitted). 

In one specific form of CMS, S, the COX I gene undergoes rearrangement at 

a point just 5' to the coding sequence, to generate a series of Barn H 1 

fragments which contain complete copies of the gene (Isaac et al., 1985). 

These are present in different stoichiometries depending on the nuclear 

background. Like COX I inSorghum, the rearrangements adjacent to COX I in 

CMS maize involve repeated sequences, but there is no alteration in the 

pattern of transcription or the size of the CO I polypeptide. The repeated 

sequence represents I 86bp of the 208bp terminal inverted repeat of the S 

plasmids, low molecular weight linear DNAs which are characteristic of S 

type cytoplasms, and which are known to integrate into the main 

mitochondrial genome. Integration events are also known to be influenced 

by the nuclear background. Thus the sequence 5 to COX P may be a target 
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site for integration or recombination with S plasmid sequences. 

The question remains as to why the CMS phenotype only becomes 

evident at anthesis. In the laboratory, seeds from CMS lines germinate and 

grow as vigorously as those from fertile lines, and in the case of 

mitochondria from seedlings of male sterile Sorghum lines, contain a 

normal cytochrome oxidase activity despite the presence of a larger 

subunit I. It is possible that mitochondria from CMS lines, although 

defective in some yet undefined function, are capable of supporting normal 

growth and development. However, during pollen formation other factors 

may impose an additional stress upon the mitochondria which they can no 

longer accomodate. This could be due to an increased demand for cellular 

ATP, the production of some developmental specific compound to which 

CMS mitochondria are especially sensitive, or perhaps the unleashing of 

uncontrolled recombination triggered by some developmental event.The 

resolution of these questions will probably require the study of 

mitochondria from developing anthers. Hitherto this has been difficult due 

to the problems of obtaining sufficient material for in oranello protein 

synthesis, or ethidium bromide staining of mtDNA. However, less material 

is required for hybridisation analysis and the availability of gene probes 

will allow an investigation of mitochondrial and nuclear gene expression 

at the time that the defect becomes apparent. 

1.8 CONCLUSIONS 

The preceding sections have dealt with the central role of 

mitochondria in cellular metabolism, and the complex interplay between 

organelles necessary for their biogenesis and continued function. The 

disruption of intracellular communication may have drastic consequences 

for the whole organism, as with male sterility. As yet comparatively little 
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is known about the molecular basis of these interactions between 

organelles, and most of the data available are from fungal systems. While 

mitochondria of higher plants are in many repects similar to those of their 

animal and fungal counterparts, they differ in detail, and have some unique 

biochemical activities. Furthermore the development and physiology of 

plants is quite different, and consequently the demands and constraints on 

their mitochondria may be subtly different. One major difference between 

plant and animal cells is the presence in the former of another semi 

autonomous organelle, the chloroplast. Like mitochondria, chloroplasts 

have their own genetic system, but are dependent on nuclear gene products 

to provide many of the protein components of the organelle. This would 

seem to add a further level of complexity to the problem of 

cyto-differentiation in higher plants compared to fungi and mammals. 

The work presented in this thesis is concerned with the isolation and 

analysis of nuclear genes encoding a mitochondrial polypeptide from a 

higher plant, Zea mays L. This gene, encoding the adenine nucleotide 

translocator, is one of the few constituitively expressed genes to be 

isolated from a higher plant. The essential role of this protein in 

mitochondrial metabolism (section 4.2) means that expression of the 

translocator gene can be used as a marker of mitochondrial biogenesis, and 

the availability of specific gene probes will form the basis for future 

experiments aimed at understanding the mechanism and co-ordination of 

mitochondrial biogenesis in higher plants. 
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CHAPTER2 MATERIALS AND METHODS 

2.1 MATERIALS 

2. 1.1 Seed. 

Maize (Zea mays L.) seed, nuclear genotype 637, with the N (fertile) 

cytoplasm, was kindly supplied by Pioneer Hi-bred International, Des 

Moines, Iowa, USA. 

2. 1.2 Enzymes. 

Restriction enzymes were purchased from Boehringer Mannheim, 

Bethesda Research Laboratories, Amersham International p1 c., P&S 

Biochemicals, NBL and BCL. 

Kienow fragment of Escherichia coli DNA polymerase 1 was from 

Boehringer or Amersham. Calf Thymus Terminal Deoxynucleotidyl 

Transf erase was from Amersham, T4 DNA ligase from Boehringer and 

Reverse Transcriptase from Life Sciences Inc. 

2. 1.3 Radiochemicals. 

Alpha 32P dCTP (410 Ci/ mmol) in aqueous solution, and 35  Methionine 

0 040 Cu mmol) were purchased from Amersham International plc. 

2. 1.4 Film 

X ray film was Dupont Cronex 4 , Fuji RX (sequencing gels) or Kodak 

X-omat A.R. for genomic Southerns. 

2.1.5 Bacterial Strains and Plasmids. 

E.coli strains: 

294( Pro End A rk Mk- Sul II Thi ) (Smith eta1., 1983) 

JM1O1 (4 (lac pro), thi, Sup E, FtraD36, proAB lac 1q  z) 

(Messing 1()79). 

BH82600 [803 Sup E Sup F rkmkmet] Hohn (1979) 

ED8654 (met supE supF hsd R m s trpR red) 
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BHB 2688 [N205 rec A( imm434 clt$2 red3 Eam4 5am741 

Hohn (1979) 

6HB2690 [N205 recA ( imm 434 c1ts2 red3 Dam 15 Sam7/A I 

Hohn (1979) 

Plasmid vectors: 

pAT 153 AmpTetr  Twigg and Sherratt (1980) 

pUC 9 Amp' 	Messing and Vieira 0 982a) 

Bacteriophage vectors: 

AgtWES. B. 

M13 mp8 

mpl I 

MP 18 

Leder et al.,( 1977) 

Messing and Vieira (1 982b) 

Yan i sch- Perron et al., (1 985). 

mpl9 

2. 1.6 Other materials 

Nitrocellulose was purchased from Schleicher and Schull. Sigma type II 

agarose was used for genomic Southerns. Hybond N nylon membranes were 

purchased from Amersham and used for Southern blots according to the 

manufacturer's instructions. 

2.2 STOCK BUFFERS AND MEDIA 

All solutions and reagents were stored at room temperature unless 

otherwise specified. 

Bacterial and bacteriophage media. 

L. Broth 1 Og/l Difco Bactotryptone, 5g/l Difco Bacto yeast extract, I Og/l 

NaCl pH7.2 

LB Agar L Broth plus 15 g/l Difco Bacto agar. 

32 



CY Medium 10 g/l casamino acids, 5 g/l Difco Bacto yeast extract, 3 g/l 

NaCl, 2 g/l KC1 pH7. Autoclave then add 25m1 1M Tris HC1 pH7.4 and 5m1 1M 

MgSO4  per litre. 

CY Agar CY medium plus 15 g/l Difco Bacto agar. 

Top Agarose 10 g/l Difco Bacto tryptone, 5 g/l NaCl, 7 g/l agarose. 

BBL top layer 10 g/l Baltimore Biological Laboratories trypticase, 5 g/l 

NaCl, 6.5 g/l Difco Bacto agar. 

Minimal Plates 15 g/l Difco Bacto agar, 2 g/l (NH4)2SO4  14 g/l K2  HPO4  

6 g/l KH2PO4, I g/l Na3citrate, 0.2 g/l Mg 504, 0.2% glucose, 1 mg/I 

Thiamine hydrochloride. 

LTB 20mM Tris HCl pH8, 20mM NaCl, 1 mM EDTA. 

IPTG 24mg/ml dissolved in dimethyl formamide. Stored at -200C 

XGal 20 mg/ml dissolved in dimethyi formamide 	
I. 

Antibiotics 

Tetracycline 	10mg/mi stock solution in ethanol. Stored at -200C 

Ampicillin 	50 mg/ml stock suspension in sterile double distilled 

water. Stored at -200C. 

Ch]oramphenicol Added as a solid to bulk cultures, 150 ug/ml. Stored at 

40C. 

Electrophoresis buffers 

lOX TBE 	890mM TrisHCl, 890mM boric acid, 25mM EDTA pH8.3. 

i Ox TAE 	400mM Tr1sHC1, 20mM EDTA, 200mM Na acetate pH8 

1 OXMOPS 250mM MOPS, 50mM Na acetate, 10mM EDTA pH7. 

Hybridisation buffers 

20xSSC 	3M NaCl, 0.3M sodium citrate pH7. 

20XSSPE 	200mM NaH2PO4, 3M NaCl, 20mM EDTA pH7. 

20XSET 	3M NaC1, 0.6M TrisHCi, 20mM EDTA pH8. 
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IOOX Denhardts solution 2% BSA, 2% Ficoll, 2% Polyvinyl pyrolidine. 

(stored at -2000. 

Southern transfer solutions. 

Denaturing 0.511 NaOH, 1.5M NaCl 

Neutralising O.SM TrisHCl, 3M NaCl pH7 

Restriction enzyme buffers. 

i OX High 	1 M NaC1, 500mM Tr1SHC1 pH7.5, 100mM MgCl, 10mM OTT.. 

1 Ox Medium 500mM NaCl, 500mM TrIsHC1 pH7.5, 100mM MgCl, 10mM DTT. 

I Ox Low 	500mM TrisHCl pH7.5, 100mM MgC12, 10mM OTT. 

i OX jjjdI I I 600mM NaCl, 100mM Tr1sHC1 pH7.5, 70mM MgCl2. 

lOX 	R 1 500mM NaCl, 100mM Tr1sHC1 pH7.5, 100mM MgCl2. 

i Ox Sma 1 200mM KC1, 100mM TrisHCl pH8, 100mM MgCl2, 10mM DTT. 

lOX Ligation 500mM Tris HCl pH7.5, 100mM Mg C12, 100mM DTT, 5mM ATP. 

Honda medium. 

2.5% Ficoll, 5.0% Dextran T40, 3mM MgCI21  25mM Tr1sHC1 pH7. 1, 1mM 

2-mercaptoethanol. 
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2.3 GENERAL METHODS. 

2.3. 1 Growth of giant material. 

Maize seed was Asterilised by immersion in a 1:15 dilution of sodium 

hypochiorite (stock=] 1-14% available chlorine) for 10 mm. and imbibed in 

running tap water overnight. The imbibed seed was germinated on cellulose 

wadding saturated with 0.2mM CaCl2  at 28-290C in total darkness for 

60h. 

2.3.2 Preparation of nucleic acids. 

Coleoptiles were harvested directly into liquid N2  or onto aluminium 

foil spread on dri-ice, and either stored at -800C or extracted 

immediately. Total nucleic acids were extracted by the method of Leaver 

and Ingle 0 971), and RNA by the method of Chirgwin et al., 0 979). 

Total nucleic acids were fractionated into RNA and DNA by two cycles 

of salt precipitation with 2.5M NaCl according to Haffner et a].. (1978). 

Poly A containing RNA was recovered from total RNA by elution from an 

oligo dT cellulose column (Aviv and Leder 1972). "Poly A enriched" RNA is 

the bound fraction eluted from the column by 10mM Tris-HC1 pH7.5, and 

contains Ca. 10% rRNA as judged by non-denaturing agarose gel 

electrophoresis. To obtain "Poly A" RNA, the enriched fraction was 

reapplied to the column and eluted as before. 

2.3.3 PreDaration of Diasmid DNA. 

Crude nucleic acid extracts of E.coli strains harbouring recombinant 

plasmids were prepared by lysing the cells with hot SDS as described by 

Barnes (1977). 

Small scale plasmid DNA preparations were obtained by the alkaline 

SDS lysis method of Birnboim and Doly (1979). For large scale isolation of 
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plasmid DNA the lysozyme/triton lysis method of Katz et ai,(1973) was 

employed. Bacteria were grown at 370C in L. Broth supplemented with 1% 

(w/v) glucose and the appropriate antibiotic until an 0D600  of 1.0 was 

reached. Chior amphenicol was added to a final concentration of 150ug/mi 

and the culture amplified overnight. Cleared lysate was prepared according 

to Katz et al.,and the DNA purified in CsC1/ EtBr density gradients (Radloff 

et al .,1967). 

2.3.4 Restriction endonuclease digestion of DNA. 

Plasmid DNA was digested at a concentration of 10-lOOng/ul in 

volumes of 10-30u1, with 2-3U of enzyme per ug of DNA. Low, medium and 

high salt buffer were used for most enzymes, according to Maniatis e..t. 

j..,(1982), with the exception of Sma 1, which requires KC1. Digestions 

were performed at the recommended temperature for 1-4h., and 

terminated by heating at 650C for 10mm. or by phenol extraction. 

Nuclear DNA was digested in larger volumes, typically 5-bug in lOOul 

with 5U of enzyme per ug of DNA. With both Eco R  and Jjd1 11, more 

complete digestion was observed using buffers recommended by the 

manufacturers, as opposed to medium salt buffer. 

2.3.5 DNA gel electrophoresis. 

Flat-bed agarose slab gels were run in TAE buffer. DNA fragments 

> 1 0kb were resolved on 0.8% (w/v) agarose gels, I - 1 0kb on I % gels and 

<I kb on 1.5% gels. Vertical acrylamide gels (19:1 acrylamide:bis) prepared 

according to Dingman and Peacock (1968) were used to resolve small 

fragments of DNA. Gels were stained in lug/ml EtBr for 15-30 mm., 

destained in distilled water, and photographed under short wave UV light 

(254nm, Ultraviolet products Inc.) The film was Kodak 2451 technical pan 
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or Ilford HP5. 

2.3.6 Transfer of DNA to nitrocellulose. 

DNA was transferred to nitrocellulose by the method of Southern 

(1975). In order to facilitate transfer of large fragments of DNA, gels 

were soaked in 0.25N HC1 for 5min prior to denaturation. Denaturation and 

neutralisation were for 40-60min each. Plasmid DNA in gels treated in 

this manner could be efficiently transferred to nitrocellulose in 2-3h. Gels 

containing digests of high molecular weight nuclear DNA were allowed to 

transfer overnight. In some instances it was useful to obtain two identical 

filters from the same gel. This was achieved by means of the "double dry 

blot" technique, where the gel is sandwiched between two pieces of 

nitrocellulose (Palmer et a]., 1982). 

2.3.7 Preparation of radioctively labelled DNA. 

Nick-translation. 

Nick-translation of DNA (Rigby et a] 1977) was carried out as 

described by Maniatis et a],,( 1982), except that a typical reaction was 

30u1 in volume, and contained 0. I -0.5ug of DNA. Unincorporated 

nucleotides were removed by centrifugation of the reaction mixture 

through a Imi column of Sephadex 6-50 (Maniatis et a) (1982). 	Using 

10-20 uCi alpha 32P dCTP (41OCi/mmol), 20-507o of the label could be 

incorporated, depending on the DNA preparation, and specific activities of 

5x 107  cpm/ug could be routinely obtained. 

Second strand synthesis. 

Strand-specific probes were obtained by synthesising a radioactive 

complementary strand to single stranded M13 clones of known sequence. 

- Both sequencing (Messing et al., 1 98 1) and probe primers (Hu and Messing 
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1 982) were used to prime second strand synthesis by AMy Reverse 

Transcriptase. Primer (2.5ng) was annealed to the template (ca. 150ng) by 

incubating at 600C for 20-30 mm. in 10mM MgCl2  , I OmMTr1sHCI pH8.5 in a 

volume of lOul. The annealing mix was allowed to cool slowly to 420C and 

centrifuged briefly. 1.5ul of lOx RT salts (500mM TrisHCl pH8.3, 200mM 

KC1, 80mM MgC12, 100mM DIT ), Jul each of 1mM dATP, dGTP and dTTP, 

10-3OuCi alpha 32P dCTP and 8U AMy Reverse Transcriptase were added, 

and the reaction incubated at 420C for 1-2h. Unincorporated nucleotides 

were removed as previously described (Section 2.3.7a). 

c) Labelling restriction fragments with random hexanucleotide orimers 

In order to synthesise probes of very high specific activity, the random 

primer method of Feinberg and Vogelstein (1984) was used. DNA was 

digested with the appropriate restriction endonuclease(s) and separated on 

a IT., (w/v) low gelling temperature agarose gel in 1XTBE. The gel was 

stained in lug/ml EtBr for 10 mm., and the desired band excised in the 

minimum volume of agarose. The agarose containing the DNA was weighed 

and double distilled water added in the ratio 3m1 per g agarose. The 

DNA/agarose was denatured by boiling for 7 min and labelled exactly as 

described by Feinberg and Vogelstein (1984). With this protocol probes 

with specific activities in excess of 109cpm lug could be obtained. 

d)PreDaration of end labelled DNA fragments for molecular weight 

markers 

Plasmid DNA was digested with a suitable restriction endonuclease 

(one leaving a 5 protruding end) and the fragments labelled by filling in 

the 3recessed end with reverse transcriptase. Digests were phenol 

extracted, ethanol precipitated and resuspended in Ix RT buffer (section 

2.3.7b). Nucleotides, enzyme and label were added and the reaction 

incubated as for second strand synthesis. 
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2.4 cDNA SYNTHESIS. CLONING, AND CLONE IDENTIFICATION. 

2.4. 1 cDNA synthesis. 

The method used was essentially that of Efstradiatis et al.,(1976), as 

modified by Buell et al.,(1978), which relies on the formation of a hairpin 

loop at the 5' end of the first strand to prime second strand synthesis, 

followed by S  nuclease digestion of the double stranded DNA products. 

First strand reaction contained 4ug poly A RNA per 50u1 incubation 

mix (50mM TrIsHCI pH8.3, 20mM KCJ, 8mM MgC12, 10mM DTT, 1mM each 

dATP, dTTP, dGTP, dCTP,l5Ong oligo dT) 5-1OuCi alpha 32PdCTP was added 

to facilitate detection of the product. The incubation also contained 30U 

placental RNAse inhibitor and 30U AMV Reverse Transcriptase. The 

reaction mix was incubated 10 min on ice then 60 min at 420C. After 

boiling for 2 min followed by rapid cooling on ice, 50u] 2x second strand 

buffer (200mM HEPES-KOH, 2mM each dNTP,6mM KC1) and 15U of the 

Kienow fragment of DNA polymerase 1 of E.coli were added and the 

reaction incubated at 150C for 5h. Unincorporated nucleotides were 

removed by gel filtration through Sephadex 6-50. The size of the 1st and 

2nd strands was estimated by electrophoresis of glyoxal treated aliquots 

of the reaction through 1%(w/v) agarose gels in 10mM NaPO4  (section 

2.7.1). 

2.4.2 51 nuclease digestion and size fractionation of cDNA. 

The double stranded cDNA was resuspended in 200u1 of Si digestion 

buffer (0.311 NaCl ,0.03M NaOAc pH4.5, 4.5mM ZnSO4  ,5% (v/v) glycerol) and 

incubated with 400U Si nuclease at 370C for 60mm. followed by 10 min at 

10°C. 

RM 



51 digested cDNA was size fractionated by centrifugation through 

sucrose gradients. The gradients were 12.5%(w/v) sucrose dissolved in 

150mM NaCl, 10mM Tr1sHCI pH8, 1 mM Na2EDTA, and were formed by 

freezing 5m1 aliquots of this solution in 5m1 polyallomer centrifuge tubes 

and allowing them to thaw for 30 mm. at 370C. After 51 digestion the 

cDNA was ethanol precipitated, the pellet resuspended in lOOul of TE80 

and applied to the top of the gradient, which was centrifuged at 50Krpm 

for 4h. at 200C in the Beckmann SW50. 1 rotor. The gradients were 

fractionated by displacement through a hole in the bottom of the tube and 

the fractions Cerenkov counted to localise the labelled cDNA. The size of 

each fraction was estimated by running a small aliquot on a 1.57o(w/v) 

agarose mini gel in TAE. The cDNA recovered from the gradient was 

resuspended in sterile double distilled water for homopolymer tailing. 

2.4.3 HomoDolymer tailing. 

Optimal conditions for the tailing reaction (section 3.4.3) were found 

to be 1 OOng double stranded cDNA, 100mM sodium cacodylate, 1 mM dCTP, 

0.2mM DTT, 1mM CoC12, IOU  calf thymus terminal transf erase, incubated at 

370C for 10mm. Vector tailing was performed as above except that 2ug 

Pst 1 digested pAT 153 and 1 mM dGTP replaced the cDNA and dCTP, and the 

incubation was carried out at 370C for 5 mm. Reactions were terminated 

by the addition of 2ul of 0.5M Na2EDTA pH8. 

2.4.4 Annealing and Transformation. 

lul of cDNA from the tailing reaction and up to 5u1 from the vector 

tailing reaction were added directly to 50ul of 100mM NaC1,lOmM TrisHCl 

pH8,lmM Na2EDTA. The annealing mix was incubated at 650C forlOmin and 
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allowed to cool overnight to 40C. Competent cells of E. coli strain 294 

were prepared and transformed by the procedure of Dagert and Ehrlich 

0 979). The transformation mixes were plated on L-broth plates containing 

lOOug/ml ampicillin. 

2.4.5 Ordering and maintenance of the maize cDNA library. 

Amps Tetr  colonies were tooth picked onto 6x8 arrays on L Broth plates 

containing bug/ml tetracycline. A permanent replica of the library was 

frozen in microtitre dishes at -800C as described by Gergen et a].,(] 979). 

The library contains Ca. 2,500 colonies. 

2.4.6 Colony hybridisation. 

Filter replicas of the cONA library were prepared on Whatmann 541 

paper as described by Gergen et ai.,(1979). Filters (7x5cm) were probed 

under heterologous' conditions. Prehybridisation was performed in 

50%(v/v) formamide, 5x SSC pH7, 1 5Oug/ml denatured herring sperm DNA 

in a total volume of 4m1 per filter on a rocking table at 250C for 2-16h. 

Hybridisation was for 48h. at the same temperature in fresh buffer 

containing the denatured radioactively labelled-yeast probe. Filters were 

washed 400min. in 2xSSC at room temperature, air dried and exposed to 

pre-flashed X-ray film at -800C, with intensifying screens for up to three 

weeks. (Laskey and Mills 1977). Colony hybridisations using cloned maize 

DNA fragments were performed in 4xSSC/ 10xDenhardts solution! 

0.1%(w/v)SDS/ 150ug/ml denatured herring sperm DNA at 650C, and 

washed in 2xSSC 2x30min. at room temperature. 

41 



2.5 CONSTRUCTION OF A MAIZE NUCLEAR DNA LIBRARY INtWES 

2.5.1 Growth of Watina cells 

A single colony of BHB2600 was used to innoculate a 5m1 L Broth 

overnight and grown with shaking at 370C to stationary phase. This was 

used to innoculate 200m] L Broth containing 0. 1% maltose and grown 

overnight 370C with shaking. Cells were harvested by centrifugation, 

5Krpm x 5 mm. and resuspended in 0.01 vol. 10mM M9304 (1 OOX plating 

cells). Alternatively cells were grown to an CD500  of 0.5, centrifuged, and 

resuspended in 0.5 vol of 10mM MgSO4(2X plating cells). 

Serialdilutions of phage in 10mM MgSO4  were adsorbed to lOOul of 2X 

plating cells in thin walled glass tubes for 15min at 290C. Five ml aliquots 

of molten 68L top agar (cooled to 500C) were added and the contents of 

each tube plated onto dry 90nim L-broth plates. The plates were incubated 

for 8-14h at 370C. 

2.5.3 Isolation of bacterioDhage DNA 

AgtWES DNA was prepared from liquid cultures.8H52600 cells were 

grown to an 00600  of 0.4 in 1 OOml L Broth containing 10mM M9304. Phage 

were added to a multiplicity of infection (m.o.i.) of 1,( Ca. 4xlO9pfu) and 

the culture incubated at 370C with vigorous shaking until lysis was 

complete (ca. 4h.). At this point the culture was no longer turbid, and 

aggregates of bacterial debris were visible. 0.2m1 of chloroform were 

added and the culture incubated with shaking for a further 25 mm. The 

culture was cleared by centrifugation lOKrpm x 10 min in the Sorvall GSA 

42 



rotor. Lambda DNA was purified by the PEG precipitation method of 

Yamamoto et al., (1970). 

2.5.4 Preparation of )çtWES arms 

0.5m] of the phage suspension removed from the CsC1 equilibrium 

gradient was diluted 10 fold with 10mM Tris HCl pH8/ 0. 1% (w/v)SDS. 1mg 

of proteinase K was added and the phage incubated for 20min at 370C, 

followed by 10 min at 500C.. The digest was extracted with an equal 

volume of 1: 1 (v/v) phenol/chloroform and the organic layer back extracted 

with 4m) of TE80. The pooled aqueous phases were re-extracted with 

1: 1 (v/v) phenol/chloroform, and ethanol precipitated. 

150ug of DNA was digested to completion with 150U of restriction 

endonucleaseEcoRl. Digests were heated to 650C for 5mm , chilled in ice 

water, and loaded directly onto sucrose gradients. The gradients were 

11.5 ml, linear 5-30% sucrose in 1M NaCl, 20mM TrisHCl pH8, 10mM 

Na2EDTA, and were poured in polyallomer tubes. The DNA was applied to 

the top of the gradient in a volume of 500ul, 75ug of DNA per gradient, and 

centrifuged forl6h. at 28Krpm and150C in the Beckmann 5W41 rotor. The 

gradients were fractionated into 0.5m1 aliquots and those fractions 

containing the arms identified by agarose gel electrophoresis of small 

aliquots. The desired fractions were pooled and ethanol precipitated. 

2.5.5 Preparation of extracts for in vitro packaging 

E.coli strains BHB2688 and BH62690 are temperature sensitive 

lysogens, and act as head and'tail' donors (Hohn 1979). Strains were 

checked for inability to grow at 370C. 

Single colonies were streaked onto CV plates and grown overnight at 

300C. Bacteria from one plate were resuspended in 5ml L Broth which was 
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used to innoculate 500m1 CY medium. 1.5 litres of BHB2688 and 500m] of 

BH82590 were incubated at 320C with shaking, until the 0D500  reached 

0.5. The lysogens were induced by incubation in a 450C water bath for 20 

mm., and the cultures returned to a 370C incubator for a further 2.5h. Cells 

were harvested by centrifugation, 5Krpm x 5 min at 40C in the Sorvall 

GSA rotor, resuspended in lOml L Broth per litre of original culture, 

transferred to 30m1 Corex tubes and re centrifuged 5Krpm x 5 min in the 

55-34 rotor. 

The pellet from 6HB2690 was used to make the sonicated extract (SE). 

It was resuspended in 3.5m1 Buffer A (20mM Tris HCI pH8, 3mM MgC12, 

0.05%(v/v) 2-mercaptoethanol, 1 mM Na2EDTA) and sonicated, setting 8 for 

3x30s on ice, using the fine probe of an 'MSE soniprep. The sonicated 

extract was centrifuged for 10 Krpm x 5 min at 40C in the Sorvall 55-34 

rotor, and the supernatant which was highly viscous, was frozen in liquid 

N2  in 200u1 aliquots and stored at -800C until use. 

The pellet from the BH62688 culture was used to prepare the freeze 

thaw lysate (FTL). It was resuspended in 6m1 10% sucrose, 50mM Iris HC  

pH7.5, in a Corex tube. 75ul of a 2 mg/ml solution of lysozyme in 25mM 

Tris HC1 pH7.5 was added and the tube frozen in liquid N2. The lysate was 

allowed to thaw slowly on ice for lb., then centrifuged 20Krpm x 60 mm. 

at 50C in the 55-34 rotor in l5ml thick wailed polypropylene tubes. The 

supernatant was frozen in lOOul aliquots in liquid N2  and stored at -800C. 

2.5.6 Extraction of maize nuclear DNA 

Total DNA was prepared from etiolated coleoptile tissue as described 

by Weinand and Feix (1980) except that the CTAB precipitation step was 
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omitted. 

Nuclear DNA was extracted from nuclei prepared by a modification of 

the method of Luthe and Quatrano (1980). All procedures were carried out 

on ice unless otherwise specified. Coleoptiles (ca.15g) which had been 

germinated in the dark for 60h. (section 2.3. 1) were ground in an equal 

volume of Honda medium (Honda et al., 1966) in a precooled pestle and 

mortar. The suspension was filtered through 20u mesh nylon which was 

washed with several volumes of Honda medium. Nuclei were pelleted by 

centrifugation l000g x 5 m  n. 40C, and the pellet washed in Honda medium. 

The nuclear pellet was resuspended in l0ml Honda medium containing 

1%(v/v) Triton-X-100 to lyse the organelles, and the nuclei were pelleted 

as before. This pellet was resuspended in Sml 0.2M sucrose, 25mM TrisHCl 

pH7.4, 3mM MgC12, underlaid with a lOml cushion of 0.3M sucrose, 25mM 

TrIsHC1 pH7.4, 3mM MgCl2, and centrifuged 275g x 6 mm. The pellet 

obtained was washed by resuspension in cushion buffer. Nuclei were 

resuspended in 18ml lysis buffer (30mM TrisHCl pH8, 10mM Na2EDTA), 

Sarkosyl and protease K were added to final concentrations of 1 %(w/v) and 

SOug/ml respectively, and incubated 370C with gentle shaking for 2-3h. 

Nuclear DNA was purified by centrifugation in CsCl equilibrium density 

gradients containing 1  CsC1 per ml of original volume and 500ug/ml EtBr. 

Centrifugation was for 24h at 38K and 150C in the Sorvall TVT865B 

vertical rotor. The DNA was removed from the gradients with a bent 

pasteur pipette and diluted with 4 volumes of TE80. EtBr was removed 

with n-butanol which had been equilibrated with TE80 saturated with 

CsC1. The DNA was precipitated with 2 volumes of ethanol, washed twice 

in 70% ethanol and resuspended in 1 0mM TrIsHC1, 0. 1 mM EDTA pH8. 
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2.5.7 Ligation and in vitro Dackaging of recombinant rhage. 

20ug total maize DNA was digested to completion with 100U of the 

restriction endonuclease Eco RI, and the digest terminated by heating at 

650C forlO mm. This DNA was ligated to 20ug AgtWES arms according to 

the following protocol. 

bug Eco R  digested maize DNA and bug )gtWES arms were incubated 

together at 550C for 5 mm. in 20mM Iris HCI pH7.6, 10mM MgCl2  In a total 

volume of 1 15u1. Dithiothreitol and ATP (pHd to 7.5) were added to final 

concentrations of 10mM and 1mM respectively, and the ligation reaction 
Ike 	 o (OU \- 74-DNA liç..ce. 

allowed to proceed for 60 mm. at 290C.,jhe reaction was terminated by 

addition of lOOul double distilled water, 20u1 10%(w/v)SDS, lOul 0.41 

Na2EDTA pH8, and the DNA recovered by ethanol precipitation. 

Ligated DNA was resuspended in 50ul of double distilled water for 

packaging. 70u1 Buffer A (section 2.5.7) 14ul buffer M (50mMTris HC1 

pH7.5, 30mM Spermidine HC1 pH7.5, 60mM Putrescine HC1 pH7.5, 20mM 

MgCl, 6mM ATP pH7.5, 25mM 2-mercaptoethanol), 60u1 SE and 50ul FTL 

(section 2.5.7) were added, mixed, and the reaction incubated 10 min on ice 

followed by 15 min at 290C. 500ul of (IOOX) BRB2600 plating cells 

(section 2.5.1) were added, and allowed to adsorb forl5 mm. at 290C. , and 

25u1 aliquots of the reaction plated with top agarose on dry L Broth plates. 

2.5.8 Screening the library by plague hybridisation. 

The library was plated at a density of ca.10,000 plaques per plate on 

60 x 90mm petri dishes. Plaque lifts were performed according to the 

method of Benton and Davis (1977), Maniatis et al., (1982) (see also 

section 2.6.3), and the filters hybridised with nick-translated plasmid 



containing the maize ATP/ADP translocator cDNA clone pANT-1. 

Nitrocellulose filters were prehybridised in 6x SSPE, 0.1%(w/v) SDS, lOx 

Denhardts solution, lOOug/ml denatured herring sperm DNA at 650C for 

>30 mm. Hybridisation was performed at 650C in 3x SSPE, 0. 1 % (w/v) SDS, 

lOx Denhardts solution, iOOug/ml denatured herring sperm DNA and the 

denatured probe (specific activity ca. 108cpm/ug). Filters were washed in 

2xSSPE, 0.1% (w/v) SOS for2 x15 min at 650C, air dried and exposed to 

x-ray film at -800C with intensifying screens for three days. 

Positive plaques were picked into im] 10mM MgSO4  replated and 

screened as before. The process was repeated until pure cultures of phage 

were obtained. 

2.5.9 Isolation of small amounts of DNA from recombinant Dhage. 

DNA was prepared from plate lysates of plaque purified recombinant 

phage as described by Maniatis et al.. (1982), with the exception that 

10mM M9504  was used in place of SM buffer throughout. 

2.5. 10 Subcloninq maize nuclear DNA into oUC plasmids. 

The pUC vectors (Messing and Vieira 1982a) are plasm ids derived from 

pBR322, but carrying part of the lac Z gene and the Ml 3 polylinker with the 

multiple cloning sites. The selection is for ampicilin resistant colonies 

and recombinants give rise to white colonies when plated upon media 

containing IPTG and Xgal. 

The plasmid pUC9 was linearised with restriction endonuclease Eco RI, 

and ligated to Eco RI digested DNA from the recombinant phage minipreps. 

As the concentration of miniprep DNA was not known accurately, three 

different ratios of plasmid to phage DNA were used in the ligation. 

Aliquots of the ligation reaction were used to transform E.coli strain. 
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MC 1022 and the transformants plated on L-broth plates containing 

iOOug/ml Amp, and which had been spread with 30u] of 20mg/mi Xgai and 

20u1 of 24mg/mi IPTO diluted in 200u1 of L broth. 

Transformants exhibiting the white phenotype were picked at random 

and plasmid DNA prepared from them by the method of Birnboim and Doly 

(1979). The desired piasmids were identified by restriction endonuclease 

digestion with Eco RI and hybridisation to the pANT-i probe in Southern 

blots. 

2.6 DNA SEQUENCE ANALYSIS 

The chain terminator method of DNA sequence analysis (Sanger et al.. 

1977) was used in conjunction with the filamentous phage M13 vectors 

developed by Messing (Messing et al., 1977; Oronenborn and Messing 1978; 

Messing and Vieira 1982; Messing 1983). For a comprehensive review of 

M 1 3 cloning and sequencing methods see Messing (1983). 

2.6.1 Cloning. 

At the outset of a sequencing project, plasmids containing DNA to be 

sequenced were digested with tetranucieotide recognising restriction 

enzymes e.g. Tag. 1, Alu 1, !3. Sau3A. 'jQ.  1, and shotgun cloned into M13 

vectors. M13 recombinants containing the desired sequences were detected 

by plaque hybridisation (Benton and Davis 1977) with the appropriate 

hybridisation probe. At later stages in the sequencing project, specific 

fragments were force cloned' into the appropriate vector (Messing 1983). 

When no convenient restriction sites were available f or sequencing, Bal 

3 1 nuclease was used to generate deletions from a known restriction site 

(Poncz et al.. 1982). 
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2.6.2 Manipulation of M13 phage and transformation of E col J. 

Competent JM1O1 cells were prepared and transformed by the method 

of Dagert and Ehrlich (1979). Recombinant phage cultures were grown and 

the single stranded DNA prepared as described by Messing (1 983), except 

that L Broth was used as the growth medium. 

2.6.3 Preparation of nitrocellulose filter replicas. 

Plates containing phage plaques were overlaid with precut circles of 

nitrocellulose. Orientation marks were provided by puncturing the filters 

with a needle. The nitrocellulose was left in contact with the plates for 2 

mm., then peeled off and laid plaque side up on a piece of Whatmann 3MM 

paper soaked in Southern denaturing solution. After 2 mm., the filters 

were transferred to a second piece of 3MM paper soaked in neutralising 

solution for a further 2 mm., and finally to a piece of 3MM paper soaked in 

2x SSPE. Filters were dried on 3MM paper and baked 60 mm. at 800C under 

vaccuum. 

2.6.4 Identification of recombinant M13 clones. 

2.6.4.1 In situ  hybridisation. 

Nitrocellulose filters were prepared directly from the plates obtained 

as a result of the transformation as described above. Filters were 

hybridised with the appropriate 32P labelled DNA fragment. This approach 

was used to screen large numbers of plaques for relatively rare 

recombinants. 

2.6.4.2 Ordered grids. 

Minimal plates were overlaid with 5m1 BBL top agar containing 200ul 

JM101 plating cells, which were prepared by growing a 1 in 100 dilution of 

a fresh overnight culture for 2h. at 370C. White plaques from the 



transformation were picked onto duplicate plates in 6x8 arrays using 

sterile tooth picks, and the plates incubated for 12-16h at 370C. Plaque 

lifts were then made from each plate as described above. Multiple lifts (up 

to three) were made from each plate if more than one probe was to be 

employed. The principal advantage of ordered grids is the ease with which 

hybridising plaques can be identified and located. 

2.6.5 Plaque purification 

Positive plaques were picked into lml of LTB with a sterile tooth pick, 

and the phage suspension dil uted 1 in 1000 with LIB. One microlitre of 

the 1 in 1000 dilution was added to lOOul JM1O1 plating cells, lOul Xga) 

and 7ul IPTG, and plated with imi BBL top agar on 3.5cm minimal plates. 

This procedure reliably gave single well separated plaques which could be 

used for the preparation of single stranded template DNA for sequencing. 

2.6.6 Seauencing reactions and gels. 

Sequencing reactions were carried out according to Sanger et al., 

(1977),Sanger et al., (1980), except that the synthetic 1113 sequencing 

primer (5 TCCCAGTCACGACGT3 ) was used to prime the reactions, which 

were carried out in 1.5m] Eppendorf tubes. The labelled nucleotide was 

alpha32PdCTP (41 OCl/mmol). 

Sequencing gels were 8% (w/v) polyacrylamide (38:2 acrylamide:bis),8M 

urea, dissolved in lx TBE. Gels were poured between glass plates 30cm x 

40cm separated by 0.4mm plasticard spacers. Typically 10 clones (40 

reactions) were loaded onto this size of gel, and electrophoresed at 65W 

constant power for 2h. (short run) or 6h. (long run). Gels were fixed by 

immersion in 10% (v/v) acetic acid for 10 mm., rinsed briefly in tap water 

and dried onto Whatmann 3MM paper. Dried gels were exposed to Fuji x-ray 
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film for 16h. to 3days. 

2.6.7 Computer methods. 

DNA sequence was assembled on the Apple lie microcomputer. 

Sequences read from gels were entered into the computer and checked for 

homology to any other sequence already entered by means of the program 

FINDMATCH. This program takes a short sequence e.g. 10 bases, from the 

beginning and end of a longer sequence and searches for its occurance in 

any other sequence (or its complement), specified. In this way overlapping 

and complementary sequences can rapidly be identified and combined into 

longer sequences. The programmes of the University of Wisconsin Genetics 

Computer Group (UWGCG) Wisconsin package were used for further analysis 

of completed DNA sequences. 

2.7 RNA METHODS. 

2.7. 1 Denaturing gels 

c3iyoxai gels (McMaster and Carmichael 1 977) 

Samples were made 50% (w/v) DMSO, 10mM NaPO4pH7, and 1M with 

respect to glyoxal, incubated lhr at 500C and cooled on ice. 0.1 vol sample 

buffer (50%w/v glycerol, 10mM NaPO4  pH7, 1 mg/ml bromophenol blue) was 

added and the samples electrophoresed through agarose gels in 1 0mM 

NaPO4  pH7 with continuous recirculation of buffer. 

Formaldehyde gels (Lehrach et p1., 1 977) 

Samples were made 50%(wlv) formamide, 6% formaldehyde, lx MOPS 

buffer, heated at 650C for 5min and cooled on ice. 0.2 vol of sample buffer 

(507o w/v formamide, 1mg/mi bromophenol blue) was added, and the 

samples electrophoresed through agarose gels containing 6% formaldehyde 
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in Ix MOPS buffer. 

2.7.2 Transfer of RNA to nitrocellulose and hybridisation conditions. 

RNA was transferred to nitrocellulose as described by Thomas (1960). 

Filters were prehybridlsed in 50% (w/v) formamide, 5xSET, 0.05M NaPO4  

pH7, 0.1% NaPP, 0.1%SDS, lOx Denhardts solution, lOOug/ml denatured 

herring sperm DNA at 420C. Hybridisation was performed in the same 

buffer but including the probe, and with the concentration of Denhardts 

reduced to 1 x, for 12-18h  at 420C. The first wash was in 2xSET, 0. 1 %SDS, 

O.1%NaPP at 550C for 15 mm., and subsequent washes (2-3) in 2xSSC, 

0.1%SDS, ).1%NaPP at 550C for 15 mm. Filters were air dried and exposed 

to X-ray film at -800C with intensifying screens. 

2.7.3 S I Nuclease maDDing of RNA molecules. 

Si nuclease mapping was carried out as described by Sharp et al., 

(1980). 

2.7.3.1 Preparation of labelled DNA probes 

1113 subclones covering the presumptive start of transcription were 

uniformly labelled with 32P by second strand synthesis, such that the 

labelled strand was complementary to the RNA. The standard second strand 

synthesis conditions for Klenow were used, except that after lh 

incubation at 370C the reaction was chased by the addition of 8ul of a 

2mM solution of non radioactive dNTPs. The unincorporated nucleotides 

were removed by passing the reaction through a G50 centrifuged column, 

and the 32P labelled DNA precipitated with ethanol. The pellet was washed 

with 70% ethanol, dried and counted. The pellets were resuspended in 

10mM Tr1sHC1 1mM EDTA pH8 at 1-3xl05cpm/u]. 
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2.7.3.2 DNA /RNA hybridisation. 

Four parallel reactions were set up for each probe. The first contained 

the labelled DNA alone, the second labelled DNA plus bug yeast tRNA, and 

the third and fourth labelled DNA, bug yeast tRNA and 5 and bug maize 

poly A+ RNA respectively. 3-5xlO5cpm of labelled DNA were used per 

reaction, and each set of four reactions with the same probe had equal 

numbers of input counts. 

The DNA, RNA and tRNA were mixed together in 1.5ml eppendorf tubes 

and dried in a speed vac. The pellets were resuspended in 2W of 5x 

hybridisation buffer (2M NaCl, 200mM PIPES-NaOH pH6.4, 5mM EDTA) and 

8u1 of de-ionised formamide, heated to 820C for 10 mm., transferred 

directly to a waterbath which had been stabilised at the desired 

temperature, and incd'ated submerged for 12-20h. The temperature for 

hybridisation was determined from the empirical formula of Howley et . j., 

(1979) 

TM= 81.5 + 16.6log10M + (0.41 x %GC) - (0.72 x F) 

Where M = the molar concentration of Na 

%GC = the GC content of the probe 

F = the % of formamide 

The formula was derived for DNA/DNA hybridisation. As DNA/RNA 

hybrids are more stable in formamide than DNA/DNA hybrids, the 

hybridisations were performed at Tm+  11 as this reduces the extent to 

which the probe self associates (J. Bailey-Serres pers. comm.) 

2.7,3.3 51 nuclease digestion. 

51 nuclease was diluted with ice cold 51 buffer (250mM NaCl, 30mM Na 

acetate pH4.6, 1 mM Zn504), to a concentration of 250U/ml and kept on ice. 



iOOul of the ice cold Si mix plus 2u1 of 10mg/mi salmon sperm DNA were 

added to each of the RNA containing hybridisations whilst they were still 

in the waterbath. The tubes were immediately removed, placed on ice for 

10 secs., briefly vortexed and incubated at 370C. After 30 mm. digestion 

the reactions were returned to ice and ethanol precipitated in the presence 

of bug tRNA. The pellets were resuspended in 2mM ammonium acetate, 

5mM trisHCl pH8, 0.5mM EDTA pH8, and reprecipitated. The precipitates 

were washed with 70% ethanol, dried and counted. Aliquots of the Si 

reactions were electrophoresed through standard sequencing gels 

alongside a sequencing ladder of a clone of known sequence. Gels were 

fixed, dried and exposed as for sequencing gels. 

2.7.3.4 Estimation of the size of 51 protected fragments. 

The fragments which were unique to the poly A containing reactions, 

and which showed an increase in intensity at the higher poly A 

concentration were considered to be true Si protected fragments. The size 

of these fragments was measured by their position relative to the 

sequencing reaction. The value obtained for the 51 fragments had to be 

increased by an- amount corresponding to the distance from the M13 primer 

binding site to the cloning site used in the construction of the clone used 

as the probe, as this sequence is not complementary to the RNA and is 

removed by Si digestion, but is present in the products of the sequencing 

reaction used for the size markers. 

2.7.4 Primer extension analysis of mRNA 5' termini. 

2.7.4.1 Preparation of the primers. 

An M13 clone containing the sequences desired for primers was 
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labelled by second strand synthesis as in the preparation of Si probes. 

After the chase reaction, the now double stranded DNA was digested with 

the appropriate restriction endonuclease(s) to generate the desired 

fragment(s), which were isolated from a polyacrylamide gel by the crush 

soak method of Maxam and Gilbert (1977 ). The isolated fragments were 

subjected to secondary digests to generate more specific primers, and the 

products of this reaction were separated by electrophoresis through an 8M 

urea, 6% (38:2 acrylamide:bis) polyacrylamide gel. The desired single 

stranded primers were detected by autoradiography, excised from the gel 

and extracted by the crush soak method. 

2.7.4.2 The primer extension reaction. 

Labelled primer (ca. 1 C3  cpm) was mixed with 1 Oug polyA RNA or 1 oug 

yeast tRNA, and dried down. The nucleic acids were resuspended in 4.4u1 of 

annealing buffer (100mM Tris HC1 pH8, 100mM MgC12), heated to 800C for 5 

mm., and allowed to coo] in air to room temperature. Reverse 

transcriptase mix was prepared immdiately before use as follows: 

2.5u1 1 .OM Tris HCl pH8.3 

5.0ul 500mM KC1 

5.0ul 80mM MgC12  

5.0ul 1 mM DTT 

5.0ul 40mM NaPP 

1.Oul 1mMdATP 

1.0u] 1mMdGTP 

LOu] 1mMdTTP 

1.Ou] ImMdCTP 

1 .Oul 40U Reverse Transcript ase 

5,6u] of this mix was added to each reaction to give final concentrations 
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of 144mM Tris HC1, 50mM KC1, 52mM MgC12, lOOuM DTT, 4mM NaPP, lOOuM 

dNTPs, and the reaction was incubated at 400C for 25 mm. Reactions were 

stopped by freezing or the addition of formamide dye. Primer extension 

reactions were electrophoresed through sequencing gels and sized from 

sequencing reactions in the adjacent lanes. 



CHAPTER3 CONSTRUCTION OF A cDNA LIBRARY FROM MAIZE POLY 

ARNA. AND IDENTIFICATION OF CLONES FOR NUCLEAR ENCODED 

MITOCHONDRIAL PROTEINS. 

3.1 RATIONALE 

In order to study many of the processes involved in mitochondrial 

biogenesis, the availability of defined gene probes is an essential 

prerequisite. Such probes will allow an investigation of the location, 

number and organisation of genes involved in the biogenesis of 

mitochondria, and their expression under defined environmental conditions 

or at particular stages of development. 

The isolation of cDNA clones is the first step in the isolation of the 

nuclear genes themselves. DNA sequence analysis of these genes will 

permit comparison with other known gene sequences in an attempt to 

identify common regulatory elements, or sequences involved in directing 

the translation product to specific sub cellular compartments. Recent 

advances in plant transformation techniques mean that it will now be 

possible to test the functional significance of these sequences in vivo, by 

the reintroduction of altered genes into plant cells. 

3.2 SURVEY OF METHODS FOR THE CONSTRUCTION OF cDNA LIBRARIES. 

Construction of a cDNA library involves the enzymatic synthesis of 

single stranded cDNA complementary to the mRNA, subsequent conversion 

of single stranded to double stranded DNA, and cloning into a plasmid or 

bacteriophage vector. Since the original method of Efstratiadis et al., 

(1976) a number of variations have appeared designed to circumvent 

particular problems inherent in the method. These have largely been 

concerned with improving the overall yield of cDNA from RNA, and the 
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efficiency with which the 5 end of the mRNA molecule can be cloned. 

Table 3a is a summary of the different procedures. 

TABLE 3a 

METHODS OF cDNA LIBRARY CONSTRUCTION. 

I) Enzymatic Conversion of poly A+ mRNA to double 
stranded cDNA- 

A) 1 st strand synthesis. 

1 )Prime by oligo (dT) 12_18 1,2,4  

2)Pnme by hybridization to T tailed vector.3  
3)Additives to inhibit RNase activity. 

a )RNasi n. 
b)Na pyrophosphate. 

B)2nd Strand Synthesis: 

1 )Prime by 1 st strand hairpin loop.1  
2)Pnme by oligo (dG) 12-18 hybridized to 3' C tail.2  
3)"Nick-translation" of RNA/DNA hybrid.3'4  

II)Cloninq of cDNA into a vector to make library. 

A)Homopolymeric tailing of cDNA and vector. 
B)Ligation of DNA linkers to cDNA. 
C)Synthesis of cDNA directly into vector.3  

1= Efstratiadis et al., (1976) 2= Land et al., (1981) 
3= Okayama and Berg (1 982) 4= Gubler and Hoffman (1 984) 



3.2. 1 Methods for synthesising double stranded cDNA. 

Synthesis of the first strand of the cDNA is usually primed by oligo dT 

hybridised to the 3' polyA tail of the mRNA, either as an oligomer, or as an 

poly dT 'tail' attached to a vector primer. AMy reverse transcriptase is 

used to copy the mRNA sequence, extending the oligo dT primer. 

The single stranded cDNA has the ability to form a hairpin loop at the 

3 end and so prime the synthesis of a complementary second strand, either 

by reverse transcriptase or E.coli DNA polymerase 1 (Efstratiadis et a], 

1976). The resulting double stranded product is covalently joined at one 

end, and must be digested with a single strand specific nuclease (e.g Si) 

to yield blunt ended molecules suitable for cloning. Si nuclease digestion 

frequently results in the loss of sequences representing the 5' end of 

mRNAs, and also the hairpin priming has been found to result in the 

generation of artifactual sequences (e.g. Fagan et al., 1980). To overcome 

these problems several procedures have been developed which eliminate 

this step. 

(1)The method of Land et aL,(1981,1983) uses calf thymus terminal 

deoxynucleotidyl transf erase to add dC tails to the 3' end of the first 

strand, which allows priming of second strand synthesis with oligo dcl The 

claimed efficiency is 104-105   transformants per microgram of RNA. 

(2)Okayama and Berg (1982) used poly dT tailed plasmid vector 

annealed to mRNA as a primer for first strand synthesis, then tailed the 

cDNA/RNA hybrid with dCTP, and annealed a dG tailed linker to this. The 

linker has at its other end a sticky end complementary to the free end of 

the vector primer, so that the vector becomes cyclised on annealing. The 

RNA strand is converted to DNA with E.coli RNAse H , DNA polymerase 1 

and DNA ligase. This method is claimed to be highly efficient, yielding 10 

transformants per microgram RNA, with a very high recovery of 5' 
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terminal sequences. The major disadvantage is the time consuming 

preparation of the vector primers, although these are now commercially 

available. 

(3)The method of Gubler and Hoffman (1983) uses the standard oligo dT 

priming technique for first strand synthesis, then the RNA replacement 

step of Okayama and Berg. The cDNA can then be cloned into the vector by 

the method of choice. 

3.2.2 Strategies for cloning double stranded cDNA. 

The vector primed methods result in the cDNA being synthesised 

directly into the vector. Methods such as those of Efstratiadis, Land and 

Gubler and Hoffman yield double stranded cDNA which can be cloned in a 

number of ways. Most simply the dscDNA can be ligated directly into a 

vector digested with a restriction enzyme which gives blunt ends. In 

practice this method may be less useful as; 

Blunt ended ligations are relatively inefficient. 

Excising the inserted cDNA is difficult unless it was cloned into a 

polylinker which contains flanking restriction sites 

Multiple inserts may be obtained, complicating further analysis. 

The most commonly used methods are the ligation of oligo nucleotide 

linkers, containing specific restriction sites, to the cDNA (Ulrich et al., 

1977), or the addition of homopolymer tails, Jackson et aL,( 1972) Maniatis 

et al., (1976). The major disadvantage of oligo nucleotide linkers is that 

the procedure involves ligation of the linkers to the cDNA followed by 

digestion with the restriction enzyme that cleaves within the linkers, in 

order to generate the sticky ends' for ligation. Thus if this restriction 

site is also present in the cDNA, incomplete clones will be obtained. This 



can be circumvented in the case of restriction enzymes which are 

sensitive to methylation, by first treating the cDNA with the appropriate 

methyl transf erase. Double inserts may be obtained with linkers, 

particularly if the size of the cDNA is small, but is less of a problem than 

with blunt end ligation. 

Homopolymer tailing is probably the most widely used cloning method 

for cDNA. Usually calf thymus terminal deoxynucleotidyl transf erase 

(terminal transferase) is used to add dC residues to the 3 ends of the 

cDNA and dO residues to the 3 ends of the vector. The complementary ends 

are annealed and are ligated upon transformation into E.coli. If the vector 

is cut with J2.t, I to generate the substrate for tailing, the Pst, 1 site is 

regenerated. The disadvantages of homopolymer tailing are that excessive 

lengths of 6-C tail may lead to insert instability when propagated in recA 

strains of E. coli, and that 6-C tails interfere with sequencing by the 

dideoxy chain terminator method. (section 4.3.2) 

3.2.3. Strategies for screening cDNA libraries. 

A number of approaches have been developed which may exploit 

particular properties of the sequences to be identified. Some of these are 

outlined below. The method of screening may dictate the vector to be used 

in constructon of the library. 

(1) Colony Hybridisation.(Grunstein and Hogness 1975) 

Bacterial colonies containing the recombinant plasmids are grown on 

nitrocellulose filters or other similar solid support. The colonies are lysed 

and the DNA immobilised on the filters which are then hybridised with the 

probe. 

The probe employed will depend upon the gene(s) of interest. Genes 

which exhibit developmental or organ specific expression, or are inducible 
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by environmental conditions can be identified by a +1- hybridisation, 

Labelled RNA, or cDNA synthesised from RNA from induced () and 

uninduced (-) cells can be used to probe duplicate filters, and the colonies 

which hybridise more intensely to the () probe selected for further 

characterisation. Alternatively the hybridisation of labelled () RNA can be 

competed with unlabelled (-) RNA, and clones which are least affected by 

the competitor RNA selected (e.g. van Loon et al., 11982). In some instances 

RNA can be significantly enriched for the desired product e.g. by 

fractionation in sucrose gradients or immunoprecipitation of polysomes. If 

the amino acid sequence of the gene product is known, synthetic 

oligonucleotides corresponding to the predicted nucleotide sequence may 

be employed. Alternatively, if the homologous gene from another organism 

has been cloned ,it can be used to probe the library under conditions of 

reduced stringency which will take into account the sequence divergence 

between the same gene from different organisms. 

Hybrid select translation. (Ricciardi et al., 1979) 

If an antibody is available,batches of recombinant clones can be used to 

hybrid select complementary mRNA which is subsequently translated in a 

cell free system, and the products immunoprecipitated. Although this 

method has been used for primary screening (e.g. Viebrock et al., 1982) it is 

laborious for the screening of large libraries.This method is often used to 

confirm the identity of clones picked as a result of other types of 

screening. 

Direct immunological screening of expression libraries.(Broome and 

Gilbert 1978) 

An alternative method of utilising an antibody as a probe requires the 

sequences encoded in the cDNA to be expressed as a fusion protein. The 

cDNA must be cloned into an expression vector in the correct orientation 



and reading frame to make a fusion protein which has antigenic 

determinants recognised by the antibody. Several plasmid and 

bacteriophage expression vectors are now available which provide the 

necessary transcription and translation signals for expression of the 

foreign protein in E. coli.( e.g.Young and Davis 1983, Ruther and Muller-Hill 

1982) 

(4) In vivo complementation of mutants. 

At present this is applicable mainly to bacteria and fungi where there 

are well characterised mutants and efficient transformation systems. A 

mutant in the structural gene of interest is transformed with DNA from 

the wild type, in the case of yest the DNA is cloned in a shuttle vector 

which can replicate in both yeast and E. coli (Beggs, 1978). Colonies which 

exhibit co-segregation of the wild phenotype and vector borne markers are 

selected for further characterisation. 

3.3 RATIONALE FOR SCREENING THE MAIZE cDNA LIBRARY BY HETEROLOGOUS 

HYBRIDISATION. 

In Saccharomyces cerevisiae the phenomenon of glucose repression has 

been exploited to identify nuclear genes encoding mitochondrial proteins. 

Transcription of these genes is repressed in the presence of glucose, and 

this has been used as the basis of a competition hybridisation assay (van 

Loon et at, 1982). In higher plants there is insufficient knowledge of the 

effects of environmental factors on the synthesis of mitochondrial 

components to permit the adoption of a similar approach. Screening 

methods relying on antibodies were also not possible as at the time none 

were available to specific plant mitochondrial proteins. 

Heterologous hybridisation has been used successfully to identify a 

number of maize mitochondrial genes. Fox and Leaver (198 1) used a clone 



for cytochrome oxidase subunit II (COX II) from yeast to identify the maize 

equivalent, and Dawson et al.,(1984) and Isaac et al.,(1985) identified 

apocytochrome b (Q) and COX I by the same method.This approach has 

also been used to identify a number of other genes which are apparently 

well conserved between even quite distantly related organisms. For 

example Saccharomyces elongation factor Tu cross hybridised with an 

E.coli tuf B gene probe, Nagata et al.,( 1983), Rat cytochrome c with a yeast 

probe, Scarpulla et al.,(1981), and homeo box sequences from a number of 

organisms including humans, mice, chickens and toads have been identified 

with Drosophila gene probes. McGinnis et al.,(1984), Carrasco et al.,(1984). 

Clearly a major limitation is the availability of a gene probe for the 

sequence of interest. For, some genes the homology with their counterparts 

from other organisms is too low, as with some of the mitochondrially 

encoded polypeptides which are now believed to be part of the rotenone 

sensitive NADH dehydrogenase. In other cases plant mitochondria may have 

unique polypeptides e.g. nuclear restorer genes, which suppress the 

mitochondrially inherited CMS phenotype, for which there may not be an 

equivalent in animal or fungal cells (section 1.7.2). However, as many of 

the polypeptides of the mitochondrial inner membrane exhibit considerable 

cross species homology and as probes for several of these were available 

from both yeast and Neurospora, this approach was the one taken in this 

study. 

3.4 CONSTRUCTION OF A MAIZE cDNA LIBRARY. 

3.4.1 Aims 

The aim of constructing the library was to identify and characterise 

specific cDNA clones which could then be used 

(1) to screen a lambda nuclear genomic library and identify the 



corresponding nuclear gene and 

(2) as hybridisation probes to assess steady state mRNA levels during 

mitochondrial biogenesis. 

Consequently the recovery of full length clones was not initially a prime 

consideration, although clearly it would be advantageous in the long term. 

Several of the more recent methods described above have been published 

since this piece of work was initiated, therefore the method employed was 

in essence that of Efstratiadis et al.,(1976) as modified by Buell et 

J.,(1978). 

3.4.2 Isolation of RNA from maize and synthesis of dscDNA. 

RNA was extracted from maize coleoptiles, germinated for 60h in total 

darkness, during which time mitochondrial biogenesis is very active (V. 

Jones pers. comm.), and chloroplast development is retarded. RNA was 

extracted by two methods, the guanidinium thiocyanate method of 

Chirgwin et a].,( 1979), and. the phenol-detergent method of Leaver and 

Ingle (1971), and used to prepare poly A RNA. The two RNA preparations 

were compared by electrophoresis in non-denaturing agarose gels, Fig.3. 1. 

A low level of rRNA contamination was present in both samples after two 

cycles of elution from oligo dT cellulose. The guanidinium thiocyanate 

extracted RNA appeared to contain a larger proportion of high molecular 

weight RNA (larger than the 255 rRNA), but this may reflect differing 

degrees of secondary structure between the two samples. No difference 

could be detected in the spectrum of polypeptide products of these RNA's 

when translated in a wheat germ in vitro protein synthesising system. As 

the phenol-detergent method consistently yielded more RNA than the 

guanidinium thiocyanate method, (average 19 ug polyA RNA per g fwt 

tissue Cf. 5 ug/g fwt) it was routinely used to prepare RNA for cDNA 
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Fig.3.1 Comparison of RNA extracted by the guanidinium thiocyanate and 
phenol detergent methods. 

Ethidium bromide stained agarose gel. Lane A 5ug total RNA, B, 5ug 

p0IyARNA; C, 5ug polyARNA extracted by the phenol-detergent method; 

D,5ug polyARNA extracted by the guanidinium thiocyanate method. 

An equal volume of loading buffer (23mM TrisHCl pH7.5, 2.3mM EDTA, 
0.25%(w/v) 5D5, 20%(w/v) sucrose, 42%(w/v) urea, 0.5mg/mi xylene 
cyanol, 0.5mg/ml bromophenol blue) was added to each sample which was 

heated to 500C for 2 mm., rapidly cooled on ice and electrophoresed in a 
1. 1 %(w/v) agarose gel in 10mM sodium phosphate buffer pH7. Buffer was 

recirculated during electrophoresis. 



synthesis, in vitro translation and transcript analysis by Northern blotting 

and Si mapping. 

cDNA was synthesised as described in section 2.4. 1. Samples of the 32P 

labelled first strand and double stranded cDNA before and after 51 

treatment were treated with glyoxal and fractionated by electrophoresis 

through a 1% (w/v) agarose gel (section 2.7.1), and autoradiographed to 

determine the size of products and the efficiency of the Si treatment. 

After 51 digestion, the cDNA was size fractionated in sucrose gradients. 

This removes small fragments of cDNA which would otherwise be over 

represented in the library, and selects for larger cDNA's. Aliquots of one 

tenth of each of the fractions from the gradient were analysed by 

electrophoresis in agarose mini gels. The fraction from the bottom of the 

gradient (which contained the longest cDNA molecules), had a median size 

of around 1600bp, and the next fraction was only slightly smaller. There 

was considerable overlap in size between the fractions. 

3.4.3 ODtimisation of the homoDolymer tailing reaction 

Homopolymer tailing is one of the most critical steps in construction 

of a library, so the reaction must be calibrated to add the correct number 

(15-20) residues to cDNA and vector. Deviation from this optimum causes 

a sharp decrease in the number of transformants obtained, (Peacock et a]., 

1981) 

The 3 protruding ends of a double stranded DNA molecule are the 

favoured substrate for terminal transferase. The addition of divalent ions 

such as Co2  or Mn2  makes it possible for the enzyme to utilise blunt or 

recessed 3' ends, Nelson and Brutlag (1979), Deng and Wu (1981), Maniatis 

et al.,(1982). It has been suggested that Co2  favours the addition of dCMP 

tails and Mn2  the addition of dGMP, although Mn2  may improve the 
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tailing of blunt ends, Deng and Wu (1981). 

3.4.3.2 Optimising the tailing of inserts 

The approximate rate of the addition of dC residues to small blunt 

ended DNA molecules was measured in a time course experiment using Alujj 

1 generated restriction fragments of lambda DNA, Fig.3.2. This gives an 

average figure for the number of residues added per 3' end, but the 

calculation requires the assumption that all molecules are tailed. The 

kinetics of terminal transferase suggest that the enzyme dissociates 

between rounds of dNTP addition (Michelson and Orkin 1982). The higher 

efficiency of tailing of 3' protruding ends compared with blunt ends means 

that molecules tailed early in the incubation will have their tails extended 

in preference to the enzyme initiating on untailed molecules. Therefore 

this assumption is probably not valid, and may lead to an under estimation 

of tail length. 

3.4.3.2 Optimising the tailing of the vector 

Vector tailing was assayed by measuring the change in mobility in 

polyacrylamide gels of tailed restriction fragments. .p.t,  1 digested 

pAT153 was tailed with dO residues, then digested with jHae.  III and 

separated by electrophoresis in a 6% polyacrylamide gel, alongside a 

til double digest. Fig.3.2. The restriction fragments containing the 

Pst 1 'sticky ends' (122bp and 145bp ) increased in mobility relative to 

those in the untailed digest, and an estimate of the number of tails added 

(15 and 25 residues respectively, ) could be obtained by calculating the 

size increase. The disappearance of the 122 and 145bp restriction 

fragments and their replacement by discrete (if faint ) fragments at 37 

and 70 bp (indicated by arrows in Fig.3.2) indicate that a very high 

proportion of the plasmid molecules are tailed, and that the reaction is 
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Fig.3.2 Analysis of homopolymer tailing. 

Upper panel: 6%(w/v) polyacrylamide gel stained with ethidium bromide. 

Lanes are as follows: A, pAT153 digested with 	jH; B, pAT153 digested 

with Pstl, tailed with dGTP for 5 mm. as described in materials and 

methods, then digested with HeJIt;  C, pAT 153 digested with Li.lIl  and 

Pst l; D, pBR322 digested with Alu I and E, pBR322 digested with Jjl and 
tailed with dCTP for 10 mm. as described in materials and methods. The 
two bands indicated with arrows are those which correspond to the two 

tailed fragments (lane B). 

Lower panel: A graph illustrating the incorporation of 32P dCTP into 

homopolymer tails by terminal transferase using Alul generated 

fragments of lambda DNA as a substrate. 
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self limiting. In contrast restriction fragments derived from an &,Jjj. 1 

digest of lambda DNA, tailed and run on the same gel do not give discrete 

fragments of higher molecular weight, but merely smear. This suggests 

that the enzyme can add infinitely long tails to the inserts. 

3.4.3.3 Comparison of the efficiency of different tailing protocols in the 

construction of chimaeric plasmids and their introduction into E. coli. 

In order to overcome the problems associated with calculating both the 

rate of tailing and the fraction of molecules tailed, and to test the 

annealing and transformation steps, a library was constructed using 

lambda DNA as mock inserts. pt.  1 digested vector DNA and Alu I 

generated lambda fragments were tailed under a variety of conditions, 

annealed pairwise and used to transform E.coli strain 294. The number of 

transformants per microgram of recombinant DNA and the percentage 

Ampr colonies were scored, Table 3b. The number of transformants/ug 

obtained varied over an order of magnitude from l.1x104-9.8x104. The 

best results were obtained with vector tailed for 10 mm. in the presence 

of Co2 , and insert for 5 mm. in the presence of Mn2 . However the 

difference between the highest and lowest values in the first two rows 

and three columns is only a factor of two, and this may not be significant 

given that only a small number of colonies (100-300) obtained in a single 

experiment were scored. Doubling the amount of insert DNA did not 

increase the number of colonies obtained on a per ug basis. The conditions 

recommended by Michelson and Orkin (1982) for efficient insert tailing 

gave consistently poor results in this experiment (column 4 ). The tailing 

conditions used for construction of the maize cDNA library were: 

pAT 153- 10 mm., 370C, 10mM Co2  bOng/u] DNA 

cDNA - 5 mm., 370C, 10mM Co2  5ng/ul dscDNA. 
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TABLE 3b. 

INSERT 
VECTOR 

A 

C 

5.9x 10 
cols./ug 
50%Amp5  

4.05x 10 

N.D. 

3.35x 10 
52%AmpS 

2 

7.65x 104  
cols/ug 

N.D. 

8.70x 10 
63%AmpS 

7.20x 104 
N.D. 

7.35x 10 
cols/ug 

N.D. 

7.70x 104 
76%AmpS 

9.80x 10 
N.D. 

Ij 

1.15x 10 
cols/ug 
24%Amp8  

1.30x 104 

N.D. 

3.30x 10 
43%AmpS 

72 

6.30x 104 
89%AmpS 

5.80x 104 

74%AmpS 

6.40x 104 

N.D. 

Uncut pAT 153 4x 1 05co1onies per ug. 
Vector A alone - <250 colonies 
No DNA - no colonies. 
A2, 62,  vectors A and B annealed with double the amount of insert DNA 

N.D. - not determined. 
Tailing Drotocols 
1, 100mM Na cacody late, 1 mM CoC12, 0.2mM DTT, 1 mM dCTP, lOU TdT, 370C, 

5 mm. 
As above but incubated for 2 mm 
As 1. but with 10mM MnCl2  in place of C0C12  

120mM Na Cacodylate, 1mM CoCl2, 0.1mM DTT 5uM dCTP, 500ug/ml BSA, 

120C, 20 mm. 
A. As 1 except dGTP was substituted for dCTP 
B As A, except incubation was for 10mm. 
C As A, except incubation was for 10mm n at 200C. 
0 Commercially tailed pBR322. 

[IJ 

A 
2 
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3.5 CHARACTERISTICS OF THE MAIZE cDNA LIBRARY. 

The annealed cDNA/pAT 1 53 transformed into E. coil strain 294 gave 

rise to colonies at a frequency of 5.5x 10 per ug recombinant DNA. Tailed 

vector alone gave less than 102 colonies per ug, and no colonies were 

observed in the absence of exogenously added DNA. Supercoiled pAT 153 

gave 2.8x107  colonies lug. The library was expanded to a total of 2,500 

clones, of which 76% were Tetr, Amps. 

One plate was selected at random from the library and SDS lysates 

made of 32 colonies (Barnes 1977). The lysates were fractionated by 

electrophresis through 19 (w/v) agarose gels and the size of the plasmids 

estimated relative to undigested plasmids of known size. Twenty-five out 

of the thirty-two colonies contained detectable plasmids. The mobility of 

these plasmids relative to pATI53 suggested that they contained cDNA 

inserts of 250 to 900bp. 

3.6 SCREENING THE LIBRARY FOR cDNA CLONES ENCODING MITOCHONDRIAL 

PROTEINS BY HETEROLOGOUS HYBRIDISATION. 

A number of factors have to be taken into consideration when using a 

gene probe from another organism to isolate the homologous gene from a 

higher plant by DNA/DNA hybridisation. 

Firstly, there is the predicted homology between the probe and the 

target sequence. This will determine the melting temperature of a 

heteroduplex formed between the probe and the target sequence, and hence 

the hybridisation conditions which must be employed to detect that 

sequence. As the true level of homology is unknown, a "best guess" figure 

has to be employed, and the stringency of the hybridisation conditions 

determined empirically. 

Secondly, higher plants present an additional complication in that 
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some mitochondrial proteins have counterparts in the chioroplast, e.g. 

ATPase subunits, cytochromes. Neither higher plant mitochondrial or 

chioroplast RNAs are polyadenylated (C.J. Leaver, unpublished 

observations, Wheeler and Hartley 1975) and therefor should not be 

represented in the cDNA library. However, in some instances the analogous 

mitochondrial and chloroplast proteins are both nuclearly encoded and 

their mRNAs might have been cloned. In addition the possibility of either 

mitochondrial or chioroplast RNA's being present in the poly A fraction 

due to the presence of A-rich tracts elsewhere in the transcription unit 

cannot be ruled out. In order to try and reduce this problem RNA was 

extracted from young etiolated tissue where mitochondrial biogenesis is 

very active but chloroplasts are relatively undifferentiated. 

Another consideration is that E.coli contains proteins analogous ( and 

homologous) to many mitochondrial proteins, which could lead to a high 

background in low stringency colony hybridisations, particularly if the 

probe sequence happened to be more closely related to the E.coli gene than 

the plant gene. 

3.7 ISOLATION OF A cDNA CLONE ENCODING THE ADENINE NUCLEOTIDE 

TRANSLOCATOR OF MAIZE 

The adenine nucleotide translocator (ANT) has a number of features 

which make it of interest for our studies. The structure and properties of 

the ANT are reviewed in section 4.2, but the main features are summarised 

below. 

(1) It is a protein with a well defined and important function. It 

mediates the exchange of ATP and ADP between mitochondrial matrix and 

cytosol and is the exclusive means by which the nucleotide pools of these 

two compartments are linked. Its specificity for adenine nucleotides 
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determines the specificity of ATP synthase, Klingenberg (1985), and it is a 

point where control may be exerted over the rate of oxidative 

phosphorylation. In higher plants where there are developmental and 

diurnal fluctuations in the contributions of photophosphorylation and 

oxidative phosphorylation to cellular ATP levels, the role of the 

translocator may be particularly important. 

It is an abundant polypeptide comprising Ca. 10% of the protein of 

the mitochondrial inner membrane as estimated from Coomassie blue 

staining, and therefore is likely to be represented in the library. 

The protein has been purified from beef heart and NeurosDora 

crassa mitochondria, and its properties have been subject to extensive 

investigation (see Vignais 1976, Klingenberg and Heldt 1982 for reviews). 

Kinetic and inhibitor data from maize mitochondria (Earnshaw 1977), 

imply that the plant protein has similar properties to the better 

characterised mammalian and fungal translocators. 

DNA and protein sequence data show that the translocator has 

regions of high amino acid homology between such diverse organisms as 

Neurosoora and cow (Arrends and Sebald 1984,   Aqul la et a)., 1982). 

Neither higher plant chloroplasts or E.coli have a homologous 

protein. Higher plant chloroplasts have an adenine nucleotide exchange 

activity (Heldt 1969) but the characteristics differ from that of the 

mitochondrial translocator and it is unlikely to be the same protein. Most 

of the ATP synthesised in chloroplasts is exported by the extremely active 

triose phosphate carrier, which exchanges phosphoglycerate and 

d i hydroxyace tone phosphate (Heber 1974). 

3.7. 1 Deriving the hybridisation conditions. 

The melting temperature of a DNA-DNA duplex under defined conditions 
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can be calculated according to the formula 

Tm [81.5 + 16.6 log 10M + 0.41 (GC) - 0.72F]°C. 

where TM  = the melting temperature 

M = The molar concentration of sodium 

(GC)= %GC composition of the DNA 

F= To of formamide in the hybridisation buffer. 

(Howley et al., 1979) 

From the nucleotide sequence of the Neurosoora gene (Arrends and Sebald 

1984), the percentage GC content of the coding region is 58.57o. This gives 

a TM  in 50% formamide and 5xSSC of 68.1 0C. 

Comparison of the amino acid sequences of the beef and Neurosora 

translocators gives an overall amino acid sequence homology of 50%, 

although there are two regions of the polypeptide where 15 or more 

consecutive amino acids are identical. In these regions the nucleotide 

sequence homolgy must be at least 667. taking into account the redundancy 

of the genetic code. Given that a 1% mismatch reduces Tm  of a 

heteroduplex by 10C (Bonner et a]., 1973), a maximum temperature of 

34.10C should allow these regions to hybridise. Since the degree of 

homology between the maize gene and the yeast probe was unknown,a 

hybridisation temperature of 250C, which corresponds to an overall 

nucleotide sequence homology of 57%, was employed. This is similar to the 

level of nucleotide sequence homology shown to exist between maize and 

yeast mitochondrially encoded genes (Fox and Leaver 1981, Dawson et a]., 

1984, Isaac et al.,1985a). 
MAIZE MITOCHONDRIAL GENE 

COB 	COXI 	Cox 11 
F. homology to S.cerevisiae 52 	58 	56 



3.7.2 Identification of a cDNA clone. ØANT- 1. encoding the translocator 

The maize cDNA library was screened by hybridisation with a 2.6kb Barn 

Hi fragment of yeast DNA which contains the entire translocator gene ( 0 

Malley et a]., 1982). The initial colony hybridisations were ambiguous, with 

a number of colonies binding the probe to different extents. Forty four of 

the more intensely hybridising colonies were picked and crude nucleic acid 

extracts were prepared by the method of Barnes (1977). The plasmid DNA 

was separated from E.coli chromosomal DNA and RNA by electrophoresis 

through 1%(w/v) agarose gels in TAE buffer, transferred to nitrocellulose 

and hybridised again with the same probe under the same conditions, 

Fig.3.3. Colony 12/1  62 is clearly positive. Plasmid DNA was prepared from 

this colony by the method of Birnboim and Doly (1979) and digested with 

Pst 1. The digested DNA was fractionated by electrophoresis in a 1% (w/v) 

agarose gel and transferred to nitrocellulose. The probe hybridised 

specifically to the ca.1 i5Obp Pst I fragment representing the inserted 

cDNA ,Fig.3.4. This cDNA clone was designated pANT-1. Sequence analysis 

(section4.3) subsequently confirmed this to be a clone for the ANT. 

3.8 OTHER cDNA CLONES RELATED TO cANT- 1. 

The filter replicas of the cDNA library were recycled to remove bound 

probe as described by Gergen et a)., (1979), and rehybridised with an Mi 3 

clone derived from pANT-I, containing a 225bp Sau 3A fragment 

designated 516, which is contained entirely within the coding region of 

the gene, towards the carboxy terminus, Fig.3.5. This M13 clone had been 

sequenced in its entir ity and shown to contain no other sequences apart 

from those derived from the translocator gene. The clone was labelled by 

second strand synthesis to a specific activity of 4 x 107dpm/ug and 

hybridised with the filters under'homologous' conditions but washed 
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Fig. 3.3 Identification of pANT-i by hybridisation with the yeast ATP/ADP 
trans locator 

Upper panel: l(w/v) agarose gel of crude nucleic acid extracts from 
single colonies from the maize cDNA library visualised by ethidium 

bromide staining. 

Lower panel: autoradiograph of the gel shown above. The DNA was 

transferred to nitrocellulose and hybridised with the 32 P labelled 2.6kb 

BamHl fragment from pYeOPl(2.6) in 50% formamide, 5xSSC, lOx 
Denhardts solution, 150ug/ml herring sperm DNA at 250C. Washes were n 

2xSSC at room temperature. Clone 12/ 1 G2 (arrowed) = pANT- I 
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Fig.3.4 Estimation of the size of the cDNA insert in pANT- 1 

Plasmids pAT 153 and pANT-i were digested to completion with Pst l. 

Left panel: Ethidium bromide stained l%(w/v) agarose gel. 

Right panel: Autoradiograph of the gel after transfer of the DNA to 

nitrocellulose and hybridisation with the 2.6kb BamHI fragment from 

pYeOPl(2.6). Hybridisation conditions are as described in the legend to 
Fig.3.3. Size markers are from aHJndlII digest of Ac1857, and Sau3A digest 

of pBR322. 
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Fig.3.5 Identification of additional ANT clones by colony hybridisation 

Clone 516 was labelled with 32P by second strand synthesis (sp. act. 
4xl07dpm/ug) and hybridised with the filters under homologous conditions 
(4xSSC, I Ox Denhardts 0.1 %(w/v)SDS, 250ug/ml herring sperm DNA) at 
620C. Washes were in 2xSSC at room temperature. 

Upper panel: Autoradlograph of the filters. 
Lower panel: Origin of the 516 subclone of pANT-i 
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relatively non-stringently. The autoradiograph of the filters is shown in 

Fig.3.5. 

Nine intensely hybridising colonies were observed, while two others 

gave weaker signals but were significantly above background. Plasmid DNA 

was prepared from single colonies of the clones by the method of Birnboim 

and Doly (1979), digested with restriction endonuclease 21 and 

separated by electrophoresis through a 1%(w/v) agarose gel in TAE buffer. 

The DNA was transferred to nitrocellulose by capillary blotting (Southern, 

1975) and hybridised with the 516 probe (ca2xl07dpm/ug) 

Only three of the clones hybridise to this probe, Fig.3.6; 5/1D6 

(=pANT-2) the insert of which cannot be excised by E.t.1,  12/162 

(=pANT-1) which serves as a positive control in this experiment, and 

19/E2 (=pA$r-3) which contains a similar sized Pst 1 insert to pANT- 1. The 

reason why only three out of the nine positives from the colony 

hybridisation should hybridise to the probe in this experiment is unclear, 

however this result was repeatable with subsequent plasmid preparations 

from the same colonies. 

Plasmid DNA from these three clones was digested with the restriction 

endonucleases Alul and Haelil, and electrophoresed through a 67o 

polyacrylamide gel alongside similar digests of the vector, pATI53, 

Fig.3.7. All three clones clearly contain different restriction fragments as 

well as many common ones. Some differences may arise as the result of 

the cloned cDNAs being of different lengths, therefore fragments 

containing both vector and insert sequences will vary in size, and other 

fragments may be missing altogether due to cDNA synthesis terminating 

before the 5 end of the mRNA is reached. There is also the possibility, 

that these three clones may show restriction site polymorphism which 

implies that they are the transcripts of different but related genes. 
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Fig.3.6 Characterisation of the additional ANT cDNA clones. 

Plasmid DNA was extracted from each of the colonies identified in Fig.3.5 
(I 1/lA3 and 19/2F3 failed to grow), digested with Pst I and separated by 
electrophoresis in a l%(w/v) agarose gel. The DNA was transferred to 
nitrocellulose and hybridised with the 516 probe in 3xSSPE, lOxDenIiardts, 
0. 1 %(w/v)SDS, 50ug/ml herring sperm DNA at 650C, and washed in 2xSSPE, 
0.l%(w/v)SDS at 650C. (a) = ethidium bromide stained gel, (b) 
autoradiograph. M = AftndIII size markers (23.13, 9.42, 6.56, 4.34, 2.32, 
2.03, 0.56kb) 
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Fig.3.7 Comparison of the restriction endonuclease digest patterns of the 
cDNA clones pANT- I, pANT-2, and pANT-3. 

6% polyacrylamide gel stained with ethidium bromide. Lanes A-D contain 
DNA from pAT153, pANT-2, pANT-I, and pANT-3 respectively digested 
with Alul. Lanes E-H contain DNA from the same clones digested with 
HaeIIt. 
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3.9 DISCUSSION. 

The cDNA library has been shown to contain clones for nuclear encoded 

mitochondrial polypeptides, and can be used for the isolation of additional 

genes in the future. Heterologous hybridisation has proved a useful tool for 

identifying genes where a probe for a homologous gene is available from 

another organism. This however, along with the reliance of a reasonably 

high degree of nucleotide sequence homology between the two genes from 

different organisms, is its major limitation. There may be components of 

higher plant mitochondria which are not homologous to yeast or 

mammalian mitochondria. The genes involved in the restoration of 

cytoplasmic male sterility are an example. Other polypeptides may have 

counterparts in other organisms which have an insufficient degree of 

sequence homology to detect by this relatively insensitive method. For 

example the small nuclearly encoded subunits of complexes III and IV of 

the respiratory chain are not so well conserved between different 

species. Thus in order to identify less well conserved or unique plant 

genes alternative methods of identifying clones will have to be developed. 



CHAPTER4. THE MITOCHONDRIAL ADENINE NUCLEOTIDE 

TRANSLOCATOR; ANALYSIS OF CLONES FROM A MAIZE cONA 

LIBRARY. 

4.1 RATIONALE. 

Mitochondrial biogenesis is dependent upon contributions from both the 

nucleo-cytoplasmic and the organellar genetic machinery. A complete 

understanding of mitochondrial biogenesis requires an knowledge of the 

location and expression of the genes encoding mitochondrial proteins, the 

mechanisms by which the activity of the two genetic systems are 

co-ordinated and regulated, and the way in which the components of 

different genomic origin are directed to and assemble into a biologically 

active form. Of equal importance is an understanding of the way in which 

mitochondria) biogenesis and activity is integrated with other cellular 

processes that may be dependent upon, and in turn influence, these events. 

In the case of higher plants, a number of mitochondrially encoded genes 

have been isolated, sequenced and subjected to transcriptional analysis 

(Fox and Leaver 1981, Hiesel and Brennicke 1983, Bonen et at, 1984, Kao 

et al., 1984, Dawson et al., 1984, Boer et al 1985, Schuster and Brennicke 

1985, Moon et a], 1985, Dewey et al., 1985, Isaac et at, 1985a, b) 

Physical maps of mt DNA's from Brassica camDestris and Zea mays have 

been constructed ( Palmer and Shields 1982, Lonsdale et al., 1984 ), and 

the location of the genes determined on the maize map, (Dawson et al,, in 

preparation). The results of these studies indicate that the organisation 

and expression of the plant mitochondrial genome, whilst sharing basic 

features with fungal and animal mitochondria, may be fundamentally 

different in a number of ways (section 1.5. I) 

In contrast, comparatively little attention has been paid to the nuclear 
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genes which encode ca.907o of the proteins in plant mitochondria This 

chapter describes the characterisation of a cDNA clone for a nuclearly 

encoded mitochondrial polypeptide from maize, the adenine nucleotide 

translocator (ANT).The isolation and characterisation of clones encoding 

this polypeptide will provide a starting point for a detailed study of the 

role of nuclear genes in mitochondrial biogenesis in higher plants. 

4.2 THE ADENINE NUCLEOTIDE TRANSLOCATOR. 

4.2. 1 Introduction. 

The mitochondrial inner membrane contains a number of specific 

protein carriers which permit the controlled exchange of otherwise 

impermeant molecules between the matrix space and cytosol (reviewed by 

Wiskich 1977, Lalloue and Schoolwerth 1979). Fig.4.1.These carriers are 

the means by which the biochemical processes of mitochondria and the 

rest of the cell are integrated, while maintaining distinct environments 

within the different subcellular compartments. The adenine nucleotide 

translocator is the best characterised of these transport proteins and has 

been the subject of extensive research for two decades. Much information 

has been obtained concerning the structure and function of the protein 

from a variety of sources including mammals, fungi and plants (see 

Vignais 1976, Klingenberg and Heldt 1982, Klingenberg 1985 for reviews), 

but only in recent years have the increasingly powerful techniques of 

molecular biology been applied to the study of this polypepide which is so 

vitally important to the energy economy of the eukaryotic cell. 

4.2.2 The ANT Polypeptide 

The adenine nucleotide translocator is probably the most abundant 

mitochondrial protein. In a variety of species it has a Mr  Of 30,000-33,000 
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daltons as estimated from SDS-PAGE and in maize mitochondria is 5-10% 

of the total protein as estimated by Coomassie blue staining. This is in 

good agreement with the figure of 13% quoted for beef heart mitochondria 

(Klingenberg, 1985). The functional protein is a dimer which spans the 

inner membrane, and there is one binding site per dimer for adenine 

nucleotides and inhibitors of transport. The translocator can be readily 

purified from mitochondria (Kramer et al.,1977 Aquila et al., 1978), and 

has been reconstituted into phospholipid vesicles of defined composition 

(Kramer and Klingenberg 1977) The amino acid sequence of the beef heart 

mitochondrial protein has been determined directly (Aquila et al., 1982). It 

contains 297 amino acids and has a calculated molecular mass of 38,870 

daltons. The nucleotide sequence of the cloned cDNA and gene have been 

determined from Neurosøora crassa (Arrend and Sebald 1984) and now 

from a higher plant, Z. mays L. (this thesis). 

The data available concerning the structural and functional properties of 

the protein can now be correlated with the predicted primary and higher 

order structure, to yield a more complete picture of the adenine nucleotide 

translocator as a functional entity. In addition the availabilty of cloned 

gene sequences and antibodies to use as probes will enable the 

organisation and expression of the gene(s) encoding the translocator to be 

studied, and should add considerably to the understanding of its 

biogenesis. 

4.2.3 Biogenesis of the adenine nucleotide translocator. 

The vast majority (ca. 90%) of mitochondrial proteins are the products 

of nuclear genes. Several lines of evidence suggested that the adenine 

nucleotide translocator was one of these. 

(1) Yeast petite mutants, which are respiration deficient as a result of - 



the loss of large portions of their mt DNA, contain a wild type adenine 

nucleotide translocator as judged by its sensitivity to ATR and BKA (Groot 

et al, 1975). 

(2) Mutations which affect transport of adenine nucleotides and yield 

strains which are unable to grow on non fermentable carbon sources (e.g. 

opl), are inherited in a Mendelian fashion (Kovac et a)., 1967). More 

recently the gene for the adenine nucleotide translocator of 

Saccharomyces cerevisiae has been cloned by complementation of the op  

mutation with plasmids containing restriction fragments of wild type 

nuclear DNA, (O'Malley et a)., 1982) 

The nucleotide translocator is encoded in nuclear DNA, transcribed in 

the nucleus, the mRNA transjated in the cytoplasm and the protein 

imported into mitochondria in a post translational manner. The 

translocator protein has been synthesised by translation of mRNA in a cell 

free system and imported into NeurosDora crassa mitochondria in vitro 

(Zimmerman et a).)  1979, Zimmerman and Neupert 1980). The precursor 

synthesised in vitro has the same Mr  on SDS-PAGE as the mature protein 

(33,000 daltons), suggesting that it is not subjected to extensive 

proteolytic processing upon import. This is in contrast to many other 

imported mitochondrial inner membrane proteins which are synthesised 

with an amino terminal pre-piece shown to be important for targeting to 

the mitochondrion. Import of the translocator shows the same sensitivity 

to uncoupler-s of mitochondrial oxidative phosphorylation as do other 

proteins, indicating that a proton motive force across the inner membrane 

is required. 



4.2.4 Substrate seciflcity. 

Early experiments indicated that when radioactively labelled ATP or 

ADP was added to mitochondrial suspensions they rapidly equilibrated 

with the endogenous adenine nucleotide pool (Pfaff et al,,(1965), 

demonstrating the presence of a specific transport system. By pre-loading 

mitochondria with [3H] ADP, then adding exogenous [14C] ADP, it could be 
h. 

shown that the stokometry of exchange is 1:1. The specificity of the 

system is extremely high. Only ADP and ATP are transported efficiently; 

dATP and dADP are slightly active whilst AMP is almost entirely excluded. 

Other nucleotide di- and tn- phosphates are also inactive in transport, 

(Pfaff and Klingenberg 1968). The substrate specificity of the adenine 

nucleotide translocator is higher than that of ATP synthase, so it is the 

former which determines the high substrate specificity of oxidative 

phosphorylation in intact mitochondria (Klingenberg, 1985). 

4.2.5 Effects of enerisation of the inner membrane on adenine nucleotide 

transport. 

Adenine nucleotide transport is not energy dependentper se, as the 

binding energy of the substrate provides the energy for translocation. In 

uncoupled mitochondria ATP and ADP are exchanged in all possible 

combinations e.g. ATP for ATP, ATP for ADP, ADP for ATP and ADP for ADP, 

to an extent dependent on the concentrations of the nucleotide species in 

the different compartments. However, in coupled mitochondria, the 

presence of a membrane potential, such that the matrix is negative with 

respect to the outside, allows the export of ATP against its concentration 

gradient due to its extra negative charge in relation to ADP,and this 

accounts for ca.75% of the exchange (K]ingenbergl985). Purified 
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translocator protein reconstituted into phospholipid vesicles also shows 

membrane potential dependent control of the exchange of adenine 

nucleotides, (Kramer and Ki ingenberg, 1980). 

4.2.6 Inhibitors of adenine nucleotide translocation. 

Considerable insight into the mechanism of adenine nucleotide 

translocation has been gained from studies with the specific inhibitors 

atractyloside (ATR),(Chappel I and Crofts 1 965) carboxyatractyloside 

(CAT), and bongkrekic acid (BKA) (Henderson and Lardy 1970). These 

compounds inhibit adenine nucleotide translocation in mitochondria from 

all sources, but higher concentrations are required to achieve the same 

degree of inhibition of the plant mitochondrial translocator (Earnshaw 

1977). ATR and CAT interact with the translocator from the cytosolic side 

and displace bound ADP. The inhibition of translocation by CAT is virtually 

irreversible, while ATR can be displaced by adenine nucleotides. 

Bongkrekic acid inhibits nucleotide transport after a time lag and in a pH 

and temperature dependent fashion, implying that it is required to cross 

the membrane in order to reach its site of action. In contrast, inhibition of 

adenine nucleotide transport in submitochondrial particles (where the 

membranes form inside out sealed vesicles) is immediate and not 

dependent upon temperature or pH. These results indicate that the 

translocator has an asymmetric orientation within the membrane, with 

different binding sites exposed on opposite sides of the membrane.Other 

compounds which inhibit the translocator are long chain acyl CoA 

derivatives. These act as competitive inhibitors, and may play a role in the 

regulation of ATP/ADP exchange in vivo. (More] et al., 1974). All the 

compounds which inhibit the adenine nucleotide translocator have three 

net negative charges, as does ADP. This suggests that a cluster of three 



positive charges may be a salient feature of the binding site created by 

the protein. 

4.2.7 Mechanism of adenine nucleotide transport. 

The ANT is postulated to be able to alternate between two different 

conformations. In the c' state the nucleotide binding site is oriented 

towards the cytosol, where it can interact with adenine nucleotides or 

inhibitors such as CAT or ATR. Upon binding an adenine nucleotide, the 

protein undergoes a conformational change, resulting in the transport of 

the nucleotide and the reorientation of the binding site to the matrix. This 

is the 'm' state and is defined by the ability of the translocator to bind 

BKA. In the 'm' state the ANT can bind matrix adenine nucleotides and 

transport them to the cytosol. 	CAT and BKA are able to 	'lock' the 

translocator in the 'c' and 'rn 	states respectively, which permits the 

investigation of their individual properties. The transport cycle is 

illustrated in Fig.4.2. 

CYTOSOL 	 M.BKA 4- M+BKA 	MATRIX 

+ 	1 	 11' 	- 
C+ADP-* C.ADP *— M.ADP -* M+ADP 

I 	

Ii 

CATP+- C.ATP *—* M.ATP4— M+ATP 

_ I 

C+CAT -* J C.CAT 

SCHEMATIC DIAGRAM SHOWING THE OPERATION OF THE TRANSLOCATOF 
IN THE 'PRODUCTIVE' MODE. 
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There is considerable evidence for changes in conformation of the 

protein upon binding and transport of adenine nucleotides. These include: 

Different immunological cross reactivity of the translocator in the 

"rn"- and "c-states (Buchanan et al., 1976). 

Changes in sensitivity of the protein to proteases (Aquila et a)., 

1978) 

Unmasking of -SH groups sensitive to alkylation upon transition 

between states (Klingenberg and Appel 1980) 

Unmasking of argenine residues important for transport (Klingenberg 

and Appel 1980,   Block et al., 1981 

Changes in circular dichroism spectra (K) ingenberg, 1 985) 

Changes in the accessibility of some lysine side chains to 

modification with pyridoxal phosphate. (Bogner et al., 1 983) 

Different binding of fluorescent adenine nucleotide derivatives to 

the different states of the translocator (Klingenberg et al., 1984) 

Differential sensitivity to ultraviolet light (Block eta]., 1979) 

As one molecule of inhibitor is bound per dimer, both subunits are 

postulated to contribute to the binding site, perhaps by forming a 

relatively hydrophilic pore through the membrane. Access to the pore 

would be permitted from one side of the membrane only, depending on the •  

orientation of the translocator, Fig.4.3. 

Several attempts have been made to identify residues involved in the 

binding site. Walker et al.,(1982) have identified a sequence in the beef 

heart mitochondrial translocator which may be part of a common 

nucleotide binding domain shared with other nucleotide binding proteins, 

while Bogner et al.,(1983) have studied the accessibilty of lysine residues 

in the presence and absence of bound nucleotides and inhibitors, and Block 

et al., 1979, 1981 and Klingenberg et aL, 1984, have used UV and 
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fluorescent probes.However as yet there is no definitive answer. 

4.2.8 Adenine nucleotide translocation and the control of respiration. 

Mitochondrial oxidative phosphorylation is the major source of ATP in 

aerobically growing eukaryotic cells. Most of the enzymic processes which 

utilise ATP occur outside the mitochondria. In addition many key enzymes 

in metabolic pathways are regulated via the levels of adenine nucleotides 

e.g. phosphfructokinase, pyruvate kinase. The adenine nucleotide 

translocator forms the exclusive link between the ATP producing and ATP 

consuming processes. However, whether transport of adenine nucleotides 

is the rate limiting step in respiration is highly controversial. 

Isolated mitochondria in the absence of ADP consume little oxygen and 

produce little ATP (state 4 respiration). Upon the addition of ADP to the 

incubation medium it is transported into the mitochondria via the 

translocator, oxygen consumption is increased and ATP is synthesised 

(state 3). The ratio of state3/state4 is the respiratory control ratio, and 

is a measure of the integrity of the mitochondria. However in vivo many 

factors may influence rates of respiration and so the resting and active 

states of isolated mitochondria may be misleading. Recent experiments 

(Duszynski et al.,( 1982), Groen et al.,( 1 982), Tager et al.,( 1983), Baggetto 

et a].,( 1984)) have attempted to answer this question by measuring the 

control strength (Kacser and Burns 1 973) of various steps in respiration. 

The sum of the control strengths of all the steps in a metabolic pathway is 

I, and the higher the control strength of any individual step, the greater 

its control over flux through the pathway. the control strengths of the 

different steps varies according to the rate of respiration (Groen et al., 

1982). In state 4 most of the control is exerted via the passive 

permeability of the inner membrane to protons (proton leak). However in 
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state 3 the adenine nucleotide translocator (control strength 0.29) and the 

dicarboxylate carrier (control strength 0.33) make the most significant 

contribution to the control of respiration rate. The conclusions drawn from 

these experiments is that the adenine nucleotide translocator exerts a 

significant control over state 3 respiration but is not the sole rate 

determining step. In higher plants the role of the translocator may be 

particulary important during light-dark transitions, as the cytosolic 

energy charge, and hence the availabilty of ADP, is an important way of 

controlling the rate of phosphorylation by mitochondrial ATP synthase. 

4.2.9 Adenine nucleotide transDort in chioroDlasts 

Chloroplasts also contain an adenine nucleotide translocation activity, 

(Heldt, 1969), but it differs from the mitochondrial one in that (I) it is 

insensitive to CAT, (ii) it is inhibited by uncouplers, (iii) it shows a 

marked preference for ATP as a substrate and (iv) the measured 

translocation rate is much slower than the mitochondrial translocator. It 

is insufficiently active to export the AlP formed by photophosphorylation 

to the cytoplasm, and probably functions to supply ATP to the chioroplast 

in the dark. Recently a CAT insensitive adenine nucleotide translocator has 

been reported from rat liver mitochondria (Austin and Aprille 1984). It is 

similar to the chioroplast nucleotide translocator in that ATP is the 

preferred substrate. The translocation rate is an order of magnitude less 

than the CAT sensitive translocator, and its function is unknown. It is not 

known whether there is any relationship between this protein and the 

chloroplast nucleotide translocator. 

IN 



4.3 SEQUENCE ANALYSIS OF cDNA CLONES ENCODING THE ADENINE 

NUCLEOT IDE TRANSLOCATOR OF MAIZE. 

The clone pANT-I was identified in a maize cDNA library using the 

homologous nuclear gene from yeast as a probe in colony hybridisations 

(section 3.72). In the absence of an antibody to confirm the identity of the 

clone by hybrid select translation (Ricciardi et a]., 1979) and 

immunoprecipitation, and in order to obtain information concerning the 

degree of similarity between plant and animal nuclear genes encoding 

mitochondrial proteins, the nucleotide sequence of the clone was 

determined. 

4.3. 1 Re-cloning the 1 .2kb Pst I fragment of QANT- 1 into M 1 3mD8. 

By cloning the entire cDNA into M 1 in both orientations it was hoped 

that the nucleotide sequences at the ends of the clone could be determined 

very rapidly. Thus allowing positive identification of the clone as the 

ATP/ADP translocator and allowing an estimation to be made of the extent 

of the mRNA copied into cDNA. 

Plasmid DNA from pANT-I was digested to completion with restriction 

endonuclease 	and ligated to Pstl digested mp8 DNA. White plaques 

from the resulting transformation were plaque purified, and single 

stranded and double stranded replicative form (RE) DNA prepared from a 

total of 12 clones. The RF DNA was digested with El and subjected to 

electrophoresis through a 1% agarose gel. None of these clones contained 

an insert which co-migrated with the cDNA insert of pANT-I, although 

several phage contained inserts identical in size to the vector pAT 153. A 

number of clones contained no detectable inserts. 

The 1.2kb1 fragment of pANT-i was purified by electroelution from 

a preparative agarose gel and ligated to P1  digested mp8. Replicative 
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form DNA was prepared from 10 recombinant phage and digested with Pst 

as before. Again none of the recombinants contained a 1.2kb insert. 

The inability to clone the 	Pst fragment suggests that it may not 

be stably maintained in M13. This may be due to the presence of the 

homopolymer tails at either end of the cDNA, which might lead to deletion 

of the insert via homologous recombination between these sequences. 

(dM101, the M13 host strain used, is recombinationally active.) This might 

explain the recovery of phage with the recombinant phenotype, i.e. white 

plaques, but which apparently lacked an insert. Paradoxically, the clone 

pANT-i is stably maintained in E. coli strain 294 which is also recA. 

4.3.2 'Shotgun cloning' restriction fragments of DANT- 1 into M 13 vectors. 

Comparison of restriction endonuclease digests of pANT- 1 and pAT 153 

determined that there were restriction sites for Alul, Haelll, IQ1 and 

Sau3A within the 1.2kb insert of pANT-I. No sites were found for the 

hexanucleotide recognising enzymes EQRi, thndIIl, Sal.1, Xho i or BamHi. 

Piasmid DNA from pANT- 1 was digested separately with each of the 

enzymes Alul, HaeIII, I1 and Sau3A and ligated with the appropriately 

digested mp8 (Smal for Alul and Hae.  Ilifragments, Accl for Taal, and 

BamHl for 	3A). Duplicate nitrocellulose filters were made from the 

phage plaques (section 2.6.3). One set was hybridised with nick translated 

pANT-1, and the duplicate with nick translated pATI53. Plaques which 

hybridise to pANT-I but not with pAT 153 are predicted to contain inserts 

derived from the cDNA, Fig.4.4. This screening strategy led to the rejection 

of clones which contain both pAT 153 and cDNA sequences, i.e. those which 

span the Psti sites in pANT-I. In order to recover these fragments, the 

purified 1.2kb Pst fragment was nic translated and used as a probe. 



100 

• • . 
\0  

••. 
/ 

Fig.4.4 Screening recombinant phage by hybridisation. 

White plaques were picked onto 6x8 grids and duplicate sets of filters 
made as described in materials and methods. One set (A) was hybridised 
with nick translated pANT-i and the other (8) with nick translated 
pAT153.. Hybridisation conditions were as described in the legend of Fig 
3.5. Phage which hybridise to pANT-i but not pAT153 (arrowed) contain 
inserts derived from the cDNA. 



4.3.3 Forced cloning of the ends of the 1 .2kb Pst I fragment. 

The type of shotgun cloning strategy outlined above results in an initial 

very rapid accumulation of unique sequence, but the frequency with which 

new sequence is obtained declines as the accumulation of sequence data 

approaches completion and more recombinant clones have to be screened in 

order to detect the rare' clones not previously isolated. In addition some 

sequences may be under represented due to a lack of convenient restriction 

sites or as a result of instability in M13. Other clones may be overlooked 

initially as the recombinant phage may be blue. This can occur if a small 

DNA fragment is inserted in the lac gene such that the reading frame is 

maintained, or if the insert contains a sequence which is functional as a 

promoter in E.coli. 

In the case of pANT-I, the major difficulty encountered was obtaining 

clones derived from the ends of the cDNA, containing the homopolymer 

tails. These clones were recovered less frequently than expected, and 

almost invariably in the orientation such that the plasmid sequences were 

adjacent to the sequencing primer binding site. The presence of the 

homopolymer tails causes the sequencing reaction to terminate, or to 

generate spurious bands ('laddering'), probably a result of secondary 

structure in the template, so no useful sequence could be determined 

distal to the tracts of polydO or polydC, Fig4.5. Attempts to use Bal3l 

nuclease digestion (Poncz et al., 1982) to remove the homopolymer tails 

was largely unsuccessful, as the activity of the enzyme could not be 

sufficiently controlled to remove just the homopolymer tracts and not 

adjacent sequences of interest. However, some Bal3l clones were obtained 

which were useful in providing overlaps between a number of small 

restriction fragments. The most fruitful solution to the problem of 

obtaining sequence from the ends of the insert proved to be the forced 
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Hg.4.5 Premature termination and laddering caused by homoploymer tails 

Autoradiographs of 6%(w/v) polyacry lam i nde sequencing gels. 
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cloning of fragments generated by a double digest with E1 and another 

enzyme such that the Pst site and the homopolymer tails lay distal to the 

primer hybridisation site of M13, Fig.4.6. In this way the sequence could be 

determined up to the start of the homopolymer tails. The disadvantage of 

this method is that it only permits the sequence to be determined from one 

strand of the DNA. Although independently isolated clones generated with 

different enzymes were sequenced, ideally the sequence should be 

determined from both strands of the DNA throughout. In this case to do 

this would probably require the use of specific olignucleotides as primers, 

or to use the chemical sequencing method of Maxam and Gilbert (1977). 

However more than 80% of the sequence was obtained from both strands, 

and the entire sequence was determined from multiple overlapping clones. 
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GACGTCCCCCC 	 TTTGGGGGACGTC 

4— Direction of sequencing reaction 
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Fig.4.6. Diagram illustrating the principeof forced cloning' 

4.4 DISCUSSION 

4.4. 1 Nucleotide sequence of oANT- 1. a cDNA encoding the adenine 

nucleotide translocator of maize. 

The nucleotide sequence of the entire 1.2kb insert of plasmid pANT-I 

was determined from independent overlapping subclones covering the 

entire length. The sequencing strategy is illustrated in Fig.4.7 The cDNA 

contains an open reading frame of 954bp (318 amino acids) commencing 

with an ATG codon at position +3 and ending with the codon TAA at +957. 

There is 1 SObp of 3 untranslated sequence, and Ca. 60 adenine nucleotides 

comprising-the poly A,Fig.4.8. The G+C Content of the coding region is 
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P ATA 	H I 	ST A  AS ST S P 
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Fig.4.7 Restriction map of the cDNA insert of plasmid pANT-i illustrating 
the strategy used for determining the nucleotide sequence. 

The extent of the open reading frame (box), 3' untranslated region and poly 
A 'tail' are indicated in relation to the map. N and C denote the amino and 
carboxy termini of the polypeptide. P=Psti, A=l, T=Il, H=HeJII, 
S=Sau3A. 
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Fig.4.8 Nucleotide sequence and predicted amino acid sequence of the 
maize adenine nucleotide translocator, derived from clone pANT- 



-2 
TB 

1 	 * 	 * 
ATGCAGACCCCBCTCTGTCCTAATGCTCCTGCTSAGAAAGGAGGCAAGAACTTCATGATTGATTTCATGAIGGGCGGTGTTTCAGCTGCT 
H Q I P L C A N A P A E K 3 3 K N F M I D F N N 3 3 V S A A 

* 	 * 
GTTTCAAA3ACTGCTOCTOCTCCCATCGAGCGTGTGAAGCTGCTTATTCAGAACCAAGATCAGATBATTAAGTCTOSTAGGCTATCAGAS 
VS K TA A A P I ER V K L LID N DDE M 1K 56 F L SE 

131 	 * 	 * 
COTACAAGB3TATIGITGACTBCTTCAAACGTACCATTAAGGATGAABGTTTCTCTTCCTTSTGGA6GGGATACACTGCTAATGTTATT 
P V K CIV DC F K RI I K D E SF S S LW R S VT A N V I 

271 	 * 	 * 
C3TTATTC:C1ACTCA3GCTTT3AACTTIGCA1ITA.GACTACTTCAA3AS3TT61TCAACTTCAA3AAGGATA663AT33CTATTGG 
R V F PT Q AL N F A F K D 	F NFL F N F K K DR D BY W 

361 	 * 	 * 
AGTG3TTTGCTGGCAACCT66CCICT3GT6GTGC1GCTG6T3CTTCCICTT1GTTTTTT3TGTACTCCCT6GACTACGCGAGAACAA6B 
K W F A S N L A 5 6 6 A A S A S S L F F V V S L D V A R I R 

451 	 * 	 * 
T7G3CTAATGACGCGAAGGCIGCCAAGGGAGGAGCTGAAACGCAGITCAATGGGCTTGTCGATGTCTACCGCAAGACACTCAABTCTGAT 
LAND A K A A KB GB ER C F NB L 	DV Y 	K ILK SD 

541 	 * 	 * 
OGTATTSCTGGSCTTTACCGTSGATTTAACATCTCCTGTGTTGCAATCATTBTTTATCGTGGICTGTACITTG6ACTCTATGATTCCATC 
B IA SLY R 	F N IS CV S IIV Y 	SLY F B L V D 5  

631 	 * 	 * 
AAGCCAGITGTCCTIACTGGCAACCTCCA3GACAATTTCTTTGCCASTTTCGCTCTGSGTIGGCTGATCACTAATSGTGCTBCTCTTGCA 
NP V V L 	3 N LO D N F F A S F A LB W LIT N GAG LA 

721 	 * 	 * 
1CTTACCCATC3AIACC3TCCG2CAAG3ATSATSAIGPCATCTC3T6AGGCT6TCAAGTACAAGAGCTCTTGSACGCGITCCA5CAG 
S V P1 DIV R R RIM MIS GE A V KY KS S L C A F C C 

* 	 * 
ATTCTTAA6AA3GAA363CCCAA5TCCCT3TTCAASGSTGCT3GTGCTAACATTCTTCST6CCATT3CTGGTGCIG3TGTGCTTTCTG3C 
I L K K E B P K S L F K B A S A N I L R A I 4 6 A S V L S 3 

701 	 * 

T,ITGACCA3CTCCACATCCTCTICTTCGGAAA5AAGTACGGCTCCSGCGGTGCTTAAATGGAGAAATAATGTAGACGAACA4GAGCAGTB 
V DCL OIL FF3 K KY 563 GA * 

* 	 * 
TST3TTCCCGGTCCTTTCCAATCASGAICISGTGAASTTTTTSCCTTTCATTTCGAAGAAATIAATAATTCATSTADACSGAG3ATTCTT 

1021 	 * 	 * 
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48.9%, compared to 38.3% for the 3' untranslated region. The overall GC 

content is 43.6%. 

The 3' untranslated sequence does not contain an obvious 

polyadenylation signal conforming to the animal consensus sequence 

5'-AATAAA-3" which is usually located 15-40 bases 5' to the point of 

polyA addition (Proudfoot and Brownlee 1976). There are two sequences of 

5'-AATAAT--3', a variant of the consensus sequence found near to the point 

of polyA addition in some plant mRNA's (Messing et al., 1983). However, 

both of these sequences are rather remote from the point of polyA 

addition, 76 and 172 nucleotides 5' to the start of the polyA. A cDNA clone 

encoding malate synthase from cucumber also apparently lacks a 

polyadenylation signal (Smith and Leaver 1985), as do the genes encoding 

the small subunit of RuBP carboxylase from a variety of plant species, 

(Smith et al., 1983). It must be emphasised that none of these various 

sequences proposed as polyadenylation signals in higher plants have been 

shown to be sufficient or even necessary for correct polyadenylation. 

Several Saccharomyces cerevisiae mRNAs also lack 5'-AATAAA-3', and 

foreign genes do not require this sequence in order to produce 

polyadenylated transcripts when expressed in yeast, (Birnstiel et al., 1 985) 

4.4.2 Amino acid sequence homology with translocator oolyoeotides from 

other organisms. 

The deduced amino acid sequence of the maize ATP/ADP translocator 

exhibits a high degree of homology to previously published sequences for 

this protein from Neurospora crassa Bos taurus and Saccharomvces 

cerevisiae (Arrends and Sebald 1984), Aquila et al., (1982) Adrian et al., 

in preparation.). When the sequences are aligned to maximise the homology 

between them, maize is 74.8% homologous to Neurosoora 64.7% homologous 



to yeast and 50.3% homologous to beef. In addition, many of the 

substitutions are conservative in nature, as demonstrated by the 

remarkable similarity of the hydropathy profiles of the proteins and the 

distribution of charged residues along the polypeptide chain. This is 

illustrated for the maize and N.crassa polypeptides in Fig.4.9. 

When the deduced amino acid sequences are aligned as in Fig.4. 10, the 

open reading frame encoding the maize polypeptide extends 5 amino acids 

beyond the amino terminus of the NeurosDora protein, where a methionine 

occurs in the correct reading frame. It is not possible to determine 

whether this is the amino terminal methionine of the maize polypeptide as 

the cDNA clone terminates 2 nucleotides 5 to this ATO, and the homology 

between the three proteins falls off essentially to zero at the amino 

terminus. The maize translocator protein is acetylated at the N terminus 

(protein sequencing unit, University of Aberdeen), so it has not proved 

possible to determine the amino terminal sequence from the purified 

protein. The location of the amino terminal sequence of the protein and its 

implications in mitochondrial targeting and import will be discussed in 

relation to the genomic clone sequence in Chapter 5. 

4.4.3 Nucleotide seguences of other maize ANT cDNA clones. 

Partial sequence analysis was carried out on cDNA clones pANT-2 and 

pANT-3 (section 3.8), using the same shotgun cloning strategy, in order to 

determine whether either of them contained additional sequences 5 to 

those present in pANT-I, and in addition to determine if all 3 clones 

represent transcripts of the same gene. The clone pANT-3 is identical in 

the region sequenced to pANT-i, but terminates at nucleotide +49 relative 

to the pANT-i sequence. The remaining clone pANT-2 has a much smaller 

insert. It was not possible to calculate the exact size due to the loss of 
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Fig.4.9 Hydropathy plot of the maize and Neurospora ANT polypeptides 
calculated using the indices of Kyte and Doolittle (1982) for an 11 
amino acid window. The positions of positively and negatively 
charged residues are indicated, as are the six potential membrane 

spanning domains. 
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AMINO ACID SEQUENCES OF THE ADENINE N1JCLEDIIDE TRAN8LOCATOR 
FOLYF'EF'rIDES FROM BEEF • MAIZE, NEUROSF'ORA AND YEAST, ALIGNED TO 
MAXIMISE THE HOMOLOGY BETWEEN THEM. 
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one of the flanking E.t.1  sites. Restriction mapping data suggest that this 

is due to a deletion resulting in loss of some vector sequences adjacent to 

the inserted cDNA. The region of this clone sequenced corresponds to 

amino acids 200 to 310 of pANT-i but does not include the deletion break 

point which occurs at the 5' end of the sequence, or the 3' untranslated 

region. The nucleotide sequence of pANT-2 thus far determined reveals a 

number of nucleotide substitutions relative to pANT-I, most of which 

occur in the 3rd position of the codon and do not change the amino acid 

specified by that codon. Some of these changes do however create 

restriction site polymorphisms, such as the loss of the Clal site in 

pANT-2. This result indicates that there are at least two different genes 

encoding .  ATP/ADP trans locator polypeptides expressed in young dark 

grown coleoptile tissue. 

4.4.4 RNA TranscriDts of the ANT genes. 

Samples of total cellular RNA and the poly A RNA preparation used to 

construct the library were fractionated by electrophoresis in 

formaldehyde-agarose gels and transferred to nitrocellulose. When 

hybridised with either nick-translated pANT-i plasmid DNA or with strand 

specific M13 subclones of the plasmid, a single transcript of Ca. 1600 

nucleotides was detected, Fig.4.1 1. The cloned cDNA is 1196 nucleotides 

long including the cloned portion of the poly A tail. Assuming the 

transcript is a mature message, this leaves an additional 400 nucleotides 

to be accounted for by additional lengths of polyA and the 5' untranslated 

sequence, which implies that the latter may be unusually long. The probes 

and hybridisation conditions used in this experiment would not 

discriminate between transcripts of the two different genes. The 

detection of a single band, even on over exposure of the autoradiograph 
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Flg.4. I I RNA transcripts of the maize adenine nucleotide translocator. 

Panel A representsl5ug total RNA, Panel 5, 2ug poly A RNA which were 
fractionated by electrophoresis in the same 1 %(w/v) formaldehyde agarose 
gel. RNA was transferred to nitrocellulose, probed with nick translated 
plasmid pANT- I and autoradiographed. The size markers are E. coli rRNA. 



(not shown) suggests that the transcripts of the two genes are 

sufficiently similar in size not to be resolved. 

4.4.5 Codon usage in ANT-1, 

Despite the high degree of nucleotide sequence homology between the 

maize, yeast and NeurosDora crassa adenine nucleotide translocator genes, 

the codon usage is quite different. Codon usage for the three genes is 

summarised in Table 4a. The maize gene uses 51 out of 61 possible amino 

acid specifying codons while the yeast gene uses 57 and the NeurosDora 

gene uses only 36. In both maize and Neurospora TAA is used to specify 

stop while yeast uses IGA. Codons with A in the 3rd position are under 

represented in all three genes. In NeurosDora, these occur <1% of the time, 

(one CAA codon specifying glutamir 	in a protein of 313 amino acids). 

In maize the figure is 8% or 25 out of 318 codons and in yeast 16% or 50 

out of 309 codons. This is in contrast to the situation in several other 

maize nuclear genes, although maize and soybean actin show a similar bias 

(Shah et al., 1983) However, the number of sequences available is 

distorted by the plethora of storage protein gene sequences, so it remains 

to be seen whether the ATP/ADP translocator is a special case or whether 

this bias against the use of A in the wobble position is 

representative of maize nuclear genes in general, or 

representative of genes which are constitutively expressed, or 

a feature of genes whose products are destined for the 

mitochondrion. 

The only other higher plant nuclear gene encoding a mitochondrial protein 

to be sequenced to date, the beta subunit of F1 ATPase from Nicotiana 

plumbainifolia., (Boutry and Chua 1985) does not show this bias against A 

in the 3rd position. 
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CocIQn m n y cocion m n y coclon m n y codon m n y 
666 3 0 5 GAG 5 7 4 GIG 3 1 6 GCG 3 2 7 
GGA 805 GAA 305 GTA 002GCA 203 
661 19 30 15 OAT 9 6 7 611 7 1 5 6CT 25 12 10 
66C 8 7 8 GAC 7 11 8 GTC 5 21 4 6CC 5 21 4 

AGG 7 0 5 AAG 24 23 13 ATG 8 10 '9 ACO 0 0 6 
AGA 207 AAA 208 ATA OO2ACA 304 
A6T I 0 1 AAT 6 0 5 ATT 11 3 8 ACT 5 2 5 
A6C 1 0 0 AAC 8 11 2 ATC 7 12 3 ACC 2 10 4 

TGG 4 4 3 TAG 0 0 0 TTG 6 3 16 TCG 0 1 7 
TGA 0 0 I TAA 1 1 0 TTA 0 0 2 TCA 3 0 4 
TGT 202 TAT 405 TTT 809TCT 856 
TGC 1 2 1 TAC 12 14 9 TTC 15 18 11 TCC 8 12 4 

C66 0 0 4 CAG 9 8 10 CTG 7 1 8 CCG 2 1 0 
CGA 0 0 0 CAA 1 1 3 CIA 1 0 4 CCA 1 0 0 
COT 6 14 1 CAT 0 0 1 CTT 8 3 5 CCI 2 2 1 
CGC 2 5 1 CAC 0 0 2 CTC 6 21 2 CCC 3 4 4 

Table 4a Codon usage for the translocator genes of maize (pANT- 1) (m) 
Neurospora (n) and yeast (y) 



In yeast and E.coli where numerous gene sequences are available and the 

relative amounts of the different tRNA species are known, it is clear that 

the codon usage relates to the level of expression of many genes 

(Bennetzen and Hall 1982). In general genes which are expressed at a high 

level contain many codons for the most abundant tPNA species. This avoids 

depleting the pool of charged tRNAs of the rarer species which might lead 

to an inhibition of protein synthesis or an increase in missense reading. 

Furthermore the use of 'rare codons may represent a means of 'fine-

tuning' expression of a gene at the level of translation. Codon usage will 

also reflect the overall base composition of the sequence. The high GC 

content of the Neurospora adenine nucleotide translocator coding region 

(58.5%, as opposed to 48.9% for the maize translocator coding region), may 

reflect or be a consequence of, the overwhelming preference for C in the 

3rd position (557o of codons). In contrast the most abundant codons used in 

the maize gene (387o of the total) are those ending in T. 

4.4.6 Predicted secondary and higher order structure of the ATP/ADP 

translocator protein. 

The hydropathy profiles of the adenine nucleotide translocator 

polypeptides of Neurospora and maize are shown in Fig.4.9 The striking 

similarities between them, both with respect to the conservation of 

hydrophobic and hydrophilic domains and the distribution of charged 

residues, serves to further confirm the high degree of homology between 

them. There are six regions of sufficient length and overall hydrophobicity 

to traverse the membrane as alpha helices (Saraste and Walkerl982) and 

these are indicated on Fig.4.9. Some of the segments contain charged 

residues which would need to be neutralised to permit being buried in the 

membrane. 
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Another striking feature of the hydropathy profiles is the presence of a 

three fold repeat (Saraste and Walker 1982). This feature is apparent in 

all the translocator polypeptides at both the nucleotide and amino acid 

level, and is illustrated by the maize translocator sequence in Fig.4.12. As 

a result of analysis of the beef polypeptide sequence, Saraste and Walker 

(1982), proposed that the gene evolved as a result of two gene 

duplications. The occurance of the repeated feature in all translocators 

sequenced to date would appear to bear this out, particularly as the repeat 

is also obvious at the nucleotide sequence level. 

The topology of the translocator in the membrane has been probed using 

pyridoxal phosphate as an impermeant agent to modify lysine residues 

accessible in isolated mitochondria and sub mitochondrial particles from 

beef heart (Bogner et at, 1983). These studies support the suggestion that 

segments H-VI span the membrane, and put the hydrophilic regions linking 

II and IM, and IV and V on the cytoplasmic side of the bilayer, while the 

segments linking I andil, and II and IV are accesible from the matrix. The 

effects of binding CAT and BKA on the labelling pattern of the polypeptide 

were also studied. Different sets of lysine residues were labelled in the c 

and m states, giving further support to the idea that a conformational 

change takes place upon transition between the cytosol facing and matrix 

facing binding sites. 

Binding of both ATR and CAT convert the translocator to the c state, 

but whereas CAT is irreversibly bound, ATR can be displaced. In ATR 

'loaded' mitochondria, lys 22 and 146 were labelled to a greater extent 

than in CAT loaded mitochondria, suggesting that these residues are 

unmasked by ATR removal and hence may be at or close to the ligand 

binding site. Of the 14 lysines which could be labelled in these studies, 

only six are conserved between all four species, and these include lys 22 
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It has been known for several years that N-ethyl maleimide inhibits the 

translocation of adenine nucleotides (Vignais and Vignais 1972). This 

reagent alkylates sulphydryl groups and thus indicating the involvrnent of 

a cysteine in the translocation process. A recent publication (Boulay and 

Vignais 1984) demonstrated directly that the cysteine alkylated in the 

beef polypeptide is cys 56. This is supported by the sequence comparisons 

shown in Fig.4.10 as this is the only cysteine which is conserved in all the 

sequences. 

4.5 CONCLUSION. 

The clone pANT-i represents a cloned cONA for the ATP/ADP 

translocator of maize. This assertion is supported by the high degree of 

both nucleotide and amino acid sequence homology between this clone and 

the adenine nucleotide translocators from beef heart, yeast and 

NeurosDora crassa mitochondria. This homology implies a high degree of 

structural and functional similarity. 

The nucleotide translocator of maize lacks a 5'-AATAAA-3 sequence, 

which supports the view that this sequence may not be essential for 

polyadenylation of higher plant mRNAs. The codon usage of the 

translocator gene differs from that of many other maize genes, and from 

the Neurospora translocator. The significance of this is uncertain. 

The cDNA clone pANT- I encodes 5 more amino acids than the 

NeurosDora and 11 amino acids than the beef polypeptide. The size of the 

transcript, Ca. 1600 nucleotides, suggests that either the coding sequence 

is much longer, or that the transcript has an abnormally long 5 end. In 

addition the recovery of 2 distinct cDNAs, pANT- 1 and pANT-2 raises the 

possibility that the translocator is encoded by a small multigene family. 
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In order to address these questions, the construction of a maize nuclear 

DNA library in a bacteriophage lambda vector, and the isolation and 

characterisation of genomic clones for the adenine nucleotide translocator 

was undertaken. 
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CHAPTER 5. ORGANISATION. STRUCTURE AND EXPRESSION OF THE 

NUCLEAR GENES ENCODING ADENINE TRANSLOCATOR POLYPEPTIDES 

IN LEA MAYS L. 

5.1 RATIONALE 

Characterisation of the cDNA clones for the ATP/ADP translocator 

(described in section 4.3), suggests that, in contrast to the situation in 

Neurospora crassa (Arrends and Sebald, 1984), there may be multiple 

genes encoding the polypeptide in maize. In order to confirm and extend 

these observations, the isolation and characterisation of the structural 

genes corresponding to the cDNA clones pANT- V and pANT-2 was 

undertaken. The cDNA clones were used as hybridisation probes in Southern 

blots and to identify genomic clones from a maize nuclear genomic library. 

5.2 GENOMIC ORGANISATION. 

5.2. 1 Analysis of total and nuclear DNA by Southern blotting. 

Ten microgramme aliquots of total DNA were digested separately with 

each of the restriction endonucleases EcoR I and Hindi II. Ten 

microgrammes of DNA purified from isolated nuclei (nuclear DNA 

expected to be largely free of contaminating chioroplast and mitochondrial 

DNA) was digested with EcoRl, The restriction fragments were separated 

by electrophoresis through a 0.8% (w/v) agarose gel. The DNA was 

transferred to nitrocellulose by capillary blotting and hybridised with the 

32p labelled 1.2kb cDNA insert from pANT-1,Fig 5.1. 

The total and nuclear DNA digested with EQ  R 1 gave identical patterns 

of hybridisation. Three discrete DNA fragments with estimated sizes of 

26.Z 8.2 and 6.4kb hybridised with the probe. Three djn.dIII generated 

fragments with 	estimated 	sizes of 18.5kb, 14.9kb 	and 	8.4kb 	also 
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Fig.5. 1 Nuclear genomic Southern blot of total DNA and DNA from purified 
nuclei. 

The 12kb cDNA insert from pANT-1 was labelled with 32P by the random 
primer method of Feinberg and Vogelstein (1984) to a specific activity of 
8.5xlO8cpm/ug. Hybridisation and washes were as described in the legend 
to Fig.3.6. 

Lane A: 1 Oug total DNA digested with 	R I. 
Lane B: bug total DNA digested with !jJ.ndIll. 
Lane C: bug DNA from purified nuclei digested with EcoRl. 
Markers are from a dindlil digest ofAcl8S7. 



hybridised to the probe. The 8.4kb I±.ndffl fragment reproducibly 

hybridises less intensely than the other two dJndlH fragments. The fact 

that it is the smallest in size makes it unlikely that it is a partial 

digestion product. It may represent a sequence which shares some 

homology to the probe but less than the homology between the probe and 

the other two thn.dIH  fragments, or it may represent a restriction 

fragment which has only a small overlap with the probe sequence. The ca. 

26.2kb Eco RI fragment appears in variable stoichiometry in different 

blots (compare Figs.5. 1 and 5.3 ). This may be a partial digestion product, 

or it may reflect the relatively inefficient transfer of large DNA 

fragments to nitrocellulose. The latter argument is supported by a recent' 

observation that a longer de-purination treatment of the gel, 05mm. in 

0.25N HCl as opposed to 5mm.) and overnight transfer as opposed to 3-4h., 

increases the relative proportion of the 26.2kb fragment detected by 

hybridisation. 

None of the cDNA clones isolated contain restriction sites for EcQR1  or 

Hindill. As the entire 1.2kb cDNA insert from pANT-i was used as a probe 

in these experiments, the results presented here have two alternative 

explanations: 

Each DNA fragment contains a complete copy of a gene encoding the 

translocator, with the restriction sites lying outside the coding sequence; 

The coding region of one of the genes is split by an intron or introns 

containing both a HJn.dIII  and Eco RI site, generating two hybridising 

fragments, each representing part of the gene. 

Thus the minimum estimate for the number of translocator genes, 

based on Southern hybridisation and supported by recovery of cDNA clones, 

is two. It is not possible to distinguish on the basis of hybridisation to 

nuclear genomic DNA whether any of the fragments which hybridise to the 
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probe contain more than one copy of the gene. 

5.2.2 Do chloroplast and mitochondrial DNA contain sequences homologous 

to the translocator? 

In the light of recent reports concerning DNA transfer between 

organelles (van den 800gart et al., 1982, Stern and Lonsdale 1982, Kemble 

et al., 1983, Timmis and Scott, 1983, Wright and Cummings 1983), DNA 

from maize chloroplasts and mitochondria was examined for sequences 

homologous to the translocator. Ten microgrammes of nuclear DNA 

(extracted from purified nuclei) and lug each of maize chloroplast and 

mitochondrial DNA were digested with Ec.Q.  RI and separated by 

electrophoresis through a 0.8% (w/v) agarose gel. The DNA was transferred 

and hybridised with pANT-i insert as before. The autoradiograph is shown 

in Fig.5.2. The 8.2 and 6.4kb Eco.  RI fragments are clearly present in the 

nuclear DNA lane, although the 26.2kb fragment is only faintly visible. No 

hybridisation is observed in the mtDNA lane, while in the chloroplast DNA 

lane faintly hybridising fragments are visible co-migrating with the 

nuclear fragments. These are almost certainly attributable to nuclear 

contamination of the chloroplast DNA preparation. No unique fragments are 

observed. This result, and the observation that total and nuclear DNA give 

the same pattern of hybridisation when digested with Eco. RI shows that 

there are no sequences homologous to the translocator gene sequence in 

either the chloroplast or mitochondrial genomes of maize. 

5.3 ISOLATION OF ANT GENOMIC CLONES. 

5.3.1 Construction of a maize nuclear genomic library in A gtWES. 

The bacteriophage lambda vector AgtWES. AB is a DNA replacement 

vector which can accomodate Eco P 1 fragments of 1-  1 4kb in length (Leder 
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Flg.5.2 Maize chioroplast and mitochondrial genomes do not contain 

sequences homologous to the translocator. 

Autoradiograph of a filter probed as in Fig.5.1. Lane A lug mtDNA, Lane 8 

I Oug nuclear DNA, Lane C I ug CtDNA. 

[ig. 5.3 The clones pA8 and pA32 correspond to EcoRl fragments Identified 

in Southern blots. 

Autoradiograph of filter hybridised as described in Fig.5. 1 legend. 

Lane A total DNA digested with EcoR1 
Lanes 8 and C, 1 and 10 gene copy equivalents of pA8 digested with EcoRi 
Lanes D and E, I and 10 gene copy equivalents of pA32 digested with EcoRl 

F tOCL DNA dtsJ w 	4ind/11 
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et al .,1977). When the purified Eco RI generated right and left arms 

(1 3.84 and 2 1 .70kb respectively) are ligated together they are too small to 

be packaged efficiently, thus providing an effective selection against 

non-recombinants. 

Total maize DNA was digested to completion with EQQ. RI, and ligated 

to lambda arms prepared by sucrose gradient centrifugation of E.Q. RI 

digested AgtWES DNA, (section 2.5.4) The optimum ratio of maize DNA to 

lambda arms was determined in a trial ligation and packaging experiment 

(Table 5a). 

TABLE 5a 

Maize DNA (ug) 	Arms (ug) No.of plagues 

0 	 1.0 	 320 

0.05 	 1.0 	 1400 

0.1 	 1.0 	 2200 

0.5 	 1.0 	 12000 

1.0 	 1.0 	 18000 

Plagues per ug 

Maize DNA 

0 

2.8x 1 04 

2.2x 10 

2.4x 10 

1.8x 104  

The bacterial host strain used was BHB2600, (Hohn 1979) an E. coli 

K803 derivative which is recA. K803 strains have been reported to give 

higher plating efficiencies with phage carrying maize DNA inserts 

(Fedoroff 1983). 

To construct the library, 20ug Eco RI digested DNA was ligated to 

20ug of lambda arms, packaged and plated at a density of ca. 104  plaques 

per 90mm diameter plate. Approximately 106  phage plaques were obtained. 

Eco Ri recognises a hexanucleotide sequence, so cuts on average once 

every 46bp or 4kb. In a library of 106  clones the probability of cloning any 
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given single copy sequence is 0.55. This is calculated from the formula of 

Clarke and Carbon (1 976): 

N=In( 1 -P) 

In( 1-f) 

Where N is the number of clones 

f the fraction of the genome present in a single recombinant 

P the probability of the sequence being present in the library 

However the probability of cloning the 6.4 and 8.2kb fragments will be 

much higher than this as a significant proportion of the genome will 

consist of EQ.  P1 fragments outside the cloning size range of 1 - 1 4kb for 

AgtWES. 

5.3.2 Screening the library for sequences homologous to DANT-1. 

The library was screened initially with pANT-i plasmid DNA labelled 

with 32P by nick-translation. Nitrocellulose filters were made according 

to the procedure of Benton and Davis (1977), and hybridised with the probe 

for 16h at 650C in 3xSSPE, lOx Denhardts solution, 0.1%(w/v)SDS, 

1 OOug/ml herring sperm DNA, and washed at 650C for 2x 15m i  in 2xSSPE, 

0. 1 %(w/v)SDS. On the first round of screening 35 hybridising plaques were 

obtained. These were picked and replated and screened as before. Nine 

clones were strongly positive on the second screen. 

Attempts to plaque purify some of these phage were initially 

unsuccessful. Every time a single hybridising plaque was picked and 

replated, a high proportion of the plaques did not hybridise when 

rescreened with the probe. When DNA was made from single hybridising 

plaques, all the clones tested had identical restriction patterns and did 

not hybridise to the probe. These results would suggest tjat the clones are 

unstable and a high proportion tend to rearrange and delete part of their 
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inserts. Apparently this is not an uncommon problem with lambda clones 

of higher plant DNAs (D. Baulcombe pers. comm.). In this instance, the 

problem was overcome by changing host strains. Using E.coli strain ED8654 

as a host it proved possible to plaque purify and make DNA from two 

clones A8 and A32, which contained Eco Ri inserts of 8.0 and 6.4kb 

respectively, and hybridised intensely to the 32P labelled cDNA insert from 

pANT- 1. The reason why ED8654 proved a more suitable host for 

recombinant phage than 5HB2600 is unknown as both strains are recA+. 

5.4 CHARACTER I SAT ION OF THE GENOMIC CLONES. 

5.4. 1 Restriction endonuc lease mapping. 

The Eco R 1 fragments of maize DNA cloned in A8 and A32 were re-cloned 

into the Eco R1 site of pUC9 to facilitate restriction mapping. The 

resulting plasmids were designated p8 and pA32. Because of the 

problems of instability associated with some of the lambda clones, it was 

important to demonstrate that these Eco R 1 fragments did indeed 

correspond to those detected by Southern hybridisation and had not 

undergone rearrangement during the cloning procedure. Al iquots of Eco P 1 

digested pA8 and p A32, calculated to be equivalent to one and ten copies of 

the gene per haploid genome, were fractionated by electrophoresis through 

a 0.8% (w/v) agarose gel alongside an Eco R1 digest oftotal maize DNA. 

The gel was transferred to nitrocellulose and probed with the cDNA insert 

of pANT-i as before. The resulting autoradiograph is shown in Fig.5.3. Both 

cloned fragments co-migrated with the hybridising fragments in maize 

DNA, making it unlikely that any rearrangement had taken place during 

cloning. 

Restriction maps of the two clones were constructed by means of a 

series of single and double digests with enzymes recognising 
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hexanucleotide cutting sites in the DNA. The gene was located on the 

restriction map in each case by transferring the digested DNA to 

nitrocellulose and probing with the 32P labelled cDNA insert from pANT - i. 

The orientation of the coding seqence was determined by probing the 

mapping gels with a probe derived from the N-terminal region of the cDNA 

clone. The restriction maps of the two clones are shown in Fig.5.4. 

From the restriction maps it appears that the insert of pA8 carries the 

gene from which the cDNA clone pANT-i was derived. The diagnostic 

restriction sites are the adjacent Clai and Sacl sites, which occur in the 

coding region towards the C terminus, and the .gJ.II  site which, in the 

cDNA clone, occurs 26 nucleotides 5' to the point of polyA addition and so 

acts as a convenient marker for the 3' end of the mRNA. The insert in 

plasmid p)\32 lacks bath the Clal and BaIll sites, as does pANT-2.(section 

4.3.3). The hypothesis that the Cial site is absent from pA32 as a result of 

an intervening sequence present in the genomic clone 5' to the 	1 site 

can be discounted, as an N-terminal specific pANT-1 probe hybridises to 

the 1.1kb Sacl fragment suggesting that the 5' end of the coding region 

lies within this restriction fragment(not shown). Furthermore sequence 

analysis of the cDNA clone pANT-2 indicated that the loss of the çji site 

was a consequence of a single base change from C to T changing the 

sequence 5'-ATCGAT-3' in pANT-i to 5'-ATTGAT-3' in pANT-2. Thus the 

available evidence suggested that the gene from which the pANT-i cDNA 

was derived is located on the 8.0kb Eco R 1 fragment cloned in p .X 8 and 

designated 01. The gene located on the 6.4kb Eco Ri fragment, designated 

02, is consistent in its restriction map with the clone pANT-2. 

Restriction mapping and hybridisation data also indicate that both 

fragments probably contain complete copies of the gene, although the 

presence of an intervening sequence in the extreme 5' or 3' ends of the 
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Fig.5.4 Restriction maps of the nuclear DNA inserts in pA8 and pA32. 

pANT- 1 is shown to the same scale. The region sequenced from p A32 is 
indicated as is the region of homology between p)8 and pANT-i as 
determined by Southern hybridisation. 



transcription unit cannot be ruled out in the absence of sequence data. If 

this is the case and a portion of one of the genes lies on another 

restriction fragment e.g. the 26.2kb Ec.Q RI fragment, the intron must be 

several kilobases long. This is unlikely as the majority of plant introns are 

of the order of a few hundred base pairs. 

5.4.2 Nucleotide sequence analysis. 

In order to confirm that the translocator gene 62 corresponded to the 

cDNA clone pANT-2, and to investigate the extent of sequence divergence 

between the two copies of the gene, the nucleotide sequence of 62 was 

determined. 

Southern hybridisation had located the gene on the restriction map as 

indicated in Fig.5.4. Pst 1, Sac l and Ei /Sac .i clones were constructed in 

the M13 vectors mpl 1 and mple, .E1  and Sacl single digests of p A32 

were cloned in mpl 1. Restriction fragments from double digests of Pstl 

and Sac i were cloned in mpl 1 and mp 19 in order to obtain clones in both 

orientations relative to the M13 primer hybridisation site. White plaques 

from the resulting transformations were picked onto grids and 

nitrocellulose filters of the phage containing plates made by taking plaque 

lifts. The filters were probed with the 1.2kb cDNA insert from pANT-1, 

labelled with 32P by nick-translation. Twenty clones were plaque purified 

and single and double stranded DNA prepared. The double stranded DNA was 

digested with the cloning enzyme(s) and electrophoresed on a 1% agarose 

gel, alongside the appropriate digestions of p A32. In this way it was 

possible to identify clones containing specific inserts, Fig.5.5. For 

example 18/P52 carries the 0.4kb 	 fragment, 11/57 the 1.1kb 

Sac 1 fragment, 11 /PA2 the 1 .5kb Pst l fragment, and 11/5 1 the 4.7kb Sac.1 

fragment. 
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Fig. 5.5 Identification of jl and Sac 1 subclones of pA32. 

Left panel: Ethidium bromide stained gel showing Pstl 	1 Oanesl -5 
and 8-12), Pst I (lanes) 4-19) and Sac l (Ianes2 1-24) digests of recombinant 
M13 clones. PL1ac1,Pst1 and Sac 1digests of pA32 are included in lanes 
6,13 and 25. Lanes7 and 20 are Hindl II digests. 

Right panel: Clones from above located on a restriction map of pA32. 



- Nucleotide sequence analysis of these clones confirmed that 02 is a 

translocator gene and differs from the pANT-i sequence in a number of 

positions. The DNA sequence was completed by shotgun cloning 

Eie.1 1l, and Sau3A fragments as before. Single stranded gaps were filled by 

cloning specific restriction fragments isolated from acrylamide gels, or 

by 'clone turnaround' (Messing 1983). The latter procedure can be adopted 

when a restriction fragment has been cloned in one orientation only, and 

sequence information is required from the distal cloning site. The double 

stranded RFDNA is digested with the cloning enzyme(s), and either 

religated or ligated with another appropriately digested M13 vector which 

will yield recombinants of the correct orientation. This approach was used 

to turn around clone 1 8/P52, in order to obtain sequence from the 	1 

site. The RFDNA was digested with Pstl and Sacl to release the insert, 

and ligated with 2l/ci digested mpl9. As the Sacl site in the mpl9 

polylinker is proximal to the primer hybridisation site, the clones obtained 

were in the desired orientation. Using a combination of these techniques a 

continuous sequence of 1.72kb was obtained, which included the entire 

gene sequence and a substantial amount of sequence 5' to the coding 

region. Of this 94% was confirmed from two or more independently 

isolated clones and 75% was sequenced from both strands of the DNA. All 

overlaps were verified from at least one other clone. The sequencing 

strategy is presented in Fig.5.6. Fine scale restriction maps of the 62 gene 

and the cDNA clones pANT- I and pANT-2 are shown in Fig.5.7. 

5.4.3 Maing the 5' point of divergence between the genomic clones. 

In order to identify the region in which the sequences of the 61 and 62 

genes diverge, M 13 subclones from the 5' end of the coding sequence and 5' 

untranslated region of the 62 gene were used to probe filters to which DNA 
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Fig.5,6 The sequencing strategy employed for the 02 gene. 

The arrows indicate the extent and direction of the sequence determined. 
Exons are identified by boxes and the introns by thin lines. 
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Fig. 5.7 Fine scale restriction map of the cDNA clones pANT- I and pANT-2, 
and the genomic clone 02 aligned at the common Sacl site. 

The distances between the different restriction sites were determined by 
DNA sequence analysis. The extent of sequence determined is indicated by 
solid lines. 



from p32 and p8 had been bound. The filters were hybridised in 3XSSPE, 

lOX Denhardt's solution, 0.1%(w/v)SDS at 650C and washed in 2XSSPE, 

0. 1 %(w/v)SDS at the same temperature. The results are presented in Table 
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WO 
PROBE CO-ORDINATES 

(Fig 5.8) 
pANT-I 400-1700 
18PS2 256-504 
18A6 45-235 
18H13 282-361 

HYBRID. 	HYBRID, 
TO 61 	TO G2 

+ 	 + 

+ 	 + 

- 	 + 

- 	 + 

These results place the point of divergence between co-ordinates 361 and 

504. From the nucleotide sequence of pANT-i it is known that the two 

genes are highly homologous up to the point where the cDNA clone ends 

(base 400 in the G2 sequence). Hence the two genes probably diverge 

between 361 and 400. This is almost certainly within the transcription 

unit, and possibly between the two potential translational starts. 

5.5 COMPARISON OF THE cDNA AND GENOMIC CLONES. 

5.5.1 The G2 gene encodes a different DolyDeDtide from that encoded by 

DANT-1. 

The nucleotide sequence of the genomic clone G2 is presented in Fig.5.8. 

Inspection of this sequence reveals that it is very similar but not 

identical to that determined from pANT-I. The two nucleotide sequences 

are shown aligned in Fig.5.9. Most of the nucleotide substitutions occur in 

the third position of the codon (60 out of 68). Seven of these substitutions 

result in a change in the amino acid, at codons 2, 6, 66, 85, 137, 192, and 

232 (taking 1 to be the first methionine encoded in pANT- 1). The 

nucleotide and amino acid changes are summarised in Table 5c, as are the 

restriction site polymorphisms introduced by these substitutions. Of the 

seven amino acid changes, three are conservative and five are non - 
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Fig5.8 Nucleotide and predicted amino acid sequence of the 02 gene. 

The arrow indicates the 5' end of the cDNA clone pANT-i in relation to the 

02 sequence. 



Fig 5.8 

1 	 * 	 * 
GTTAGTGTTGCACG6AGGCTCTCTGCTTCAGTTAGTA6TGTCTM3CTTTGATTTGITCTTACTCTATATTSAAACTGTAAAATATACTCA 

	

91 	 * 	 * 

TCCTTTTTTGCACAGGTGCGGAGGTCTTATTTTSTTTCTCTTTATGTAATGTCCTAAGTTTGTGTGTGTTGACATTATGTTGCAGCCAAC 

181 	 * 	 * 

ASTTTTGAGGTGGTAACGGCGGACCAGGCTAACCAACCCACTGTCCTTCATAAGCTAGGTGGCCAGTCCACCTGAGCTCCAGCTTCTCTG 

	

271 	 * 	 * 
AAGGTGTACSGSCCCGTAACACTGCCCTTCTTTCTCACCTTATGAAAGGAGATTTSCCACGASGAACTACAT6ACCCAGABCCTTTGGGS 

	

361 	 * 	 * 
CCCTIGGAATGTCTSTTAGC66TGGCATCAATGTTCCAGTGATGCCGACTCCGCTTTTTGCCAATGCTCCAGCGSASAAASGTGGCAAAA 

MS VS G GIN VP V M PIP L F A N A PA E KG 6K 
* 	f 

	

451 	 * 	 * 

ACTTCATGATTGAIITCATGAT6GGCGGTGTTTCAGCTGCTGTTTC6AAGACTGCAGCTGCTCCCATTGAACGAGTGAAGCTGCTTATTC 
N F MID F MM 66 VS A A V S K TA A API ER V K L L  

	

541 	 * 	 * 
AGAATCAGGATGAGATGATCAAGTCTGGTASGCTATCAGASCCGTACAAGGGTATTGCTGATIGCTTCAAACGTACCATCAAGGATGAGG 
0 NOD EM 1K 56 R L S E P V K 61 A DC F K nil K 0 E 

	

631 	 * 	 * 

GTTTCTCTTCCTTGTGGAGGGGTAACACTGCTAAIGTTATTCGTTACTTCCCIACICAGGTAGCCACACATICCAATTATATITATCTGA 
SF S S LW R 6 N TAN VI R V F PT 0 

~ 

	

721 	 * 	 * 

GTAACTATTGAAATATGTTSAAACTGCATGGTCTTTCAGATCCTAAAATTAATACTTGCCTASGCTTTGAACTTTGCGTTTAAGGACTAC 
AL N F A F K DV 

	

811 	 * 

TTCAABAGGCTGIICAACITCAAGAASGACASGGAT6GTTACIGSAAGTSGTTTGCIG6CAACCTSGCCTCTGGTSSIGCTSCIGGIGCT 
F KR L F N F K <DR D S V W K W FAG N LASS GA A GA 

	

901 	 * 	 * 

TCCTCTTTGTTTTTTGTGTACTCCCTGGATTATGCSAGGACAAGGTTGSCCAATGATGCCAAGGCTGCCAAG6GA6GAGGCGATAGACAA 
S S L F F V VS L D 	ART R LAND A K A A K 666 DR 0 

4 

	

991 	 * 	 * 

ITCAATGGTCTTGTGSATGTCATCCGCAA6ACACICAAATCT6ATG6TATT6CTSGSCTTTACCSTGGATTTAACATATCITSTGTTGGA 
F NB L 	D V I R K ILK SD 61 AG L 	R SF N IS C VS 

1081 	 * 	 * 
ATTATTGTITATCI3AGGCCTGTATTTCGGACITTACGATTCTATCAAGCCAGTTGTCCICACTGGCAGCCTCCAGGTTTBCATAATGTCT 
II V V R G L 	F SLY D 61K P V V L 	55 L 0 

1171 	 * 	 * 
CTCTCTCICTCTAATGIAATTIIGCTTITGCCTGTGTGAGCTATAAGATSTTICICTCITTTGCASGACAACITCIIIGCCAGIITTSCT 

ON F F A S F A 

1261 	 * 	 * 
CTGSGTTGGCTGATCACCAAC6STGCTGGTCTTGCATCITACCCCATISATACT6TCCGCAGAAGGATGATSATGACTTCTGGTSAGGGT 
L SW LIT N GAG LAS VP ID TV R R R MM MISSES 

	

1351 	 * 	 * 
GTCAASTACAAGASCTCATTGSACSCATTCCAGCAGATCCTTAAGAAGSAASGCCCCAAGICCCTSTTCAASGSIGCTSGTGCTAACATT 
V <V KS S LOAF 001 L K KEG P KS L F K SAGAN I 

	

1441 	 * 	 * 

CTTCGTGCCATTGCTGGC6CTSGT6TGCTIICIGGCTACGACCA6CTCCASATCCTCTTCTTCSSAAAGAASTACGGCTCCGGCGGIGCI 
L R A IA GAG V L 86 V DO L OIL F F 6K KY 6666 A 

	

1531 	 * 	 * 

TAAATGGAGAAAAATGATGACGAACAAGAGCAGTTC6CTCCSGTCCAGCCCAGTCAGGATCTGSTCAAGTTTITGCCITTATATGAAGAA 
* 

	

1621 	 * 	 * 
AITA ATAATTTATGTAGGAGAATTTTTCCAACATTCGTTTTGGGCSGAGACATTGAICTCCAAAACATCGTAATCTGTCCTACTAGGTSS 

	

1711 	 * 	 * 
TGSCGAIGGTCC 
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ffm 

Fig 5'9 
The nucleotide sequence of the adenine nucleotide Iranulocator gene 
02 aligned cith the sequence of the eDNA clone pANT-i such that the 
homology between the two sequences is eaxinised. 

400 TGATGCCGACTCCCCTTTTTGCCAATCCTCCACCGOAI1AAAGGTGOCAAA 
44 9G2 

1 TCATGCACACCCCOCTCTG000T9ATIOCTCCTGC0964AAAGGAOGCAAG SO pANT-i 

450 AACTTCA006TTOATTTCATGATGGGCOGTGTTTCAGCTGCTGTTTCTAA 

II 	III 	I 	I 	III 	II 	11111 	I III 	I 	11111 	I 	I 
499 

St AACTTCATOATT0ATTTCAT0ATCGGC000GTTTCAOCTGCTGTTTCAAA 100 

bOO GACTGC60CTGCTCCCATTGAACGAGT08ATCTTCTTATTCACAATCAOG 549 

101 GACTOCTGCTGCTCCCATCOAGCGTGTCAAGCTCCTTATTCAGAACCAAG 150 

550 6TGAGATGATCAA0TC000TAOGCTATCAGAGCCGTACAAGGGTATTCCT 

I 	I 	III 	I 	I 	III 	III 	I 	II 	II 	III 	I 	11111 

	

II 	I 
599 

051 ATGAGATGATTAACTCTDCTACGCTATCAOAI1CCCTACAAGOGTATTCTT 200 

600 C1ATTGCTTCAAACI0TACCATCAAOGATGACGGTTTCTCTTCCTTCTGOA0 649 

201 GACTCC00000ACGTACCAPTAAGCATGAAGCTTTC'DCTTCCTTGTGGAD 250 

650 006T8ACACTOCTAATGTTATTCGTTACTTCCCTACTCAIOGIAGCCACAC 

II 	liii 	I 	I 	I! 	II 	11111 I 	II 	I 	I 
699 

251 GCIOATACACTOCTAATGTTATTCGTTACTTCCCTACTC ............288 

750 OGTCTTTCAGATCCTAAAATTAATAOITTGCCTAGGCTTTGAACTTTGCGT 799 

289 	..... i'rqn1 AGGCTTTGAACTTTGCAT 306 

800 TTAACCACTACTTCAAGAGGCTGTTCAACTTCAACAACGACAGGGATGGr 849 
liii 	I 	III 	11111111 	II 	11111 	1111 	II 	I 	I1 	II 	Jill 

307 TTAAGGACTACTTC6A(OAGGTTGTTCAACTTCAACAACOA'rA000AI200C 356 

852 PACTCGAAT'OGO'I'UTGCTOGCAACCTOGCCTCTOCTOGTGCTOCTOGTCC 899 

II 	II 	II 	I 	II 	II 	II 	111111 	II 	II 	I 	III 	I 	I 
357 TATTOGAA000TTTTGC100CAACCTCGCCTCTGGTGCrGCTGCTGGTOC 426 

900 TTCCTCTTTOTTTTTTGTGTACTCCCTGGATTATCC000GACAAGGTTGC 949 

407 TTCCTCTTTGTTTTTTGTOTACTCCCTGGACT6COCGAGAACAAOOTTGC 456 

950 CCA6TC9TCCCAA00010CCA0000AOCAGGCCATAGACAATTCAAr000 999 

457 CTAATGACIOCGAAGGCT000AA000AUIIAGOOGAAAGCCAGTTCAATOCG 506 

0000 CTTCTCOATOTCATCCOCAAGACACTCAAATCTCATOGTATTOCTOGCCT 1049 

507 CTTGTCCI\TOTCTA000CAASACACTCAAGPC9'0AT000ATTOCTG000T 556 

1050 TTACCGTOG6TTTAACATATCTTGPOTTOOAATTATTGTTTATCOATGCC 1099 

557 TTA001T500TTTAACATCTCCTGTCTTO0AATC6TTOTTTATC1ITGGTC 606 

1100 TOTATTT0000CTTTACOATTCTATCOAOCCAGTTGTCCTCACTCCCAOC 1149 

Ili 	11 	11111 	11 	11111 	IIIIIIIIIIIIIHIll 	HIIIII 	1 
607 TCTACTT'CGOACTCTATCATTCCATCAAGCCAGTTOTCCTTACTGGCAAC 656 

2150 CTCCACGTTTGCATAATGTCTCTCTCTCTCTCTAATGTAATPTTGCTTTT 1099 
III 

657 eTC .................................. ifltrOn2 659  

1200 OCCTGTGTOAGCTATAACATGTTTCTCTCTTTTCCAIIG6CAACTTCTTTG 1249 

IIIIIIII WHIM 
660 ..................................CAGGACAATTTCTTTO 675 

1250 CCAGTTTTOCTCTCGGTTG0CTGATC6CCAACCGTCCTGGTCTTOCATCT 1299 

676 CC6GTTTCGCTCTGGGTT000TGATCACTA6TGCTGCTGGTCTTGCATCT 725 

1300 TAccccATrcAThcTcOTccocAooAAoo.ATOATGATCAcTTcTOGTOA040 1349 

726 PACCCCATCCATACCGTCCGCAGAAC0OATGATOATCACATCTGOTGAGGC 775 

1350 TCPCAAGTACAA062CTC9TTGOACOC600CCAGCACATCCTT6AGAAGG 1399 

776 TCTCAAGTACAAI0AGCTCCTTCGACGCGTTCCACCACATTCTTAAGAACG 825 

1400 AACGCCCCAAOTCCCTGTTCAAGGGTGCTGCTCCTAACATTCTTCGTG 11 CC 1449 11 

I 	III 	II 	II 	Ii1 	
1 	

1 	111111 	11111 	II 	J 	II 	
111 

1 	
11 

I 
826 AAGOOCCCP.AOTCCCTI0TTCAA000TTCTGGTCCTAAC6TTCTTCOTGCC 875 

1450 ATTGCTC000CTTCTGTTCTTTCTGOCTACCACCAGCTCCAGATCCTCTT 1499 
ill 	II 	III 	I 	liii 	11111 	III 	III 	I 	I 	I 	I 

876 ATTGC000TI0CTGOTOTOCTTTCTGCCTATCACCAOCTCCAGATCCTCTT 925 

2500 CTTCGIOAAAGAACTACCCCTCCCCCGCTOCTTA.AATCGACAAA . AATCAT 1548 
II 	I 	I 	I 	II 	liii 	I 	I 	II 	I 	II 	I 	I 

926 CTTCGGAAACkSCTACGI0CTCCGOCOGTCCTTAAATOGAGAAATAATCTA 975 

1549 GACCAACAAGAGCAI0T... TCGCTCCGGTCCAGCCCAGTCAI140TCTCGT 1595 

976 GACC,AACA6GAGCAOTCTOTOTTCCC0OTCCTTTCCAATCACO6TCTOOT 1025 

1596 CAAGTTTTTOCCTTT. .ATATOAA0AAATTAATAATTTATOTA ... OChO 1040 

I 	HILIHHJIIII 	11111 
1026 OAAGTTTTTOCCTTTCO1TTCOAAGAAATTAATAATTCATO'OAGAOOOAG 1275 

1641 AATTTTTCCAAC . ATTCOTTTT000CC0GAGACATTCATCTCCAAAACATC 1689 

II 
1076 CATTCTTCCAACAATTTOTTTTGGATOCAGACTT6CATCTCCAAACACTC 1.125 

1690 10IAATCTOTCCT 1701 

III 	I 	II 
1126 OTAA.CTATCCT 1136 



TABLE 5c 

SUMMARY OF DIFFERENCES BETWEEN THE CODING SEQUENCES OF 62 AND 

DANT-1. 

(1 )Seauence divergence 

NUCLEOTIDES 	 AMINO ACIDS 

68 (= 7.1%) 	 8 (= 2.5%) 

(2)Nucleotide substitutions 

BASE IN CODON 	EXPRESSED* 	SILENT 

1st 	 2 	 1 

2nd 	 6 	 0 

3rd 	 1 	 58 

Total 	 9 	 59 

*One codon has changes in both 1 St and 2nd bases. 

(3)Retriction site DolvmorDhisms. (co-ordinates taken from Fig.5.8) 

62 seq pANT-i seq co-ordinate site 

CTGCAGCTG CTGCTGCTG 504 Pstl/PvuII 

ATTGAA ATCGAG 518 Taql 

TGATCA TGATTA 560 Sau3A/Bc] 1 

TGGCCA TGGCTA 951 HaeIII/Ball 

GTGGAT GTCGAT 1005 TaqI 

ATTGAT ATCGAT 1308 Clal 

AGATCC AGATTC 1389 Sau3A 

GGCCCC GGGCCC 1403 Apal 

GGCGCT GGTGCT 1458 Hhai 

TGATCT AGATCT 1673 BglII 
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conservative. None of these substitutions occur in regions of the 

polypeptide which are invariant in all translocators sequenced to date. The 

sequence of pANT-2 thus far determined corroborates these changes and 

supports the hypothesis that pANT-2 is derived from a transcript of 62. 

This provides the strongest evidence that the gene (32 is expressed. 

5.5.2 Intervening sequences in the 02 gene. 

When the sequences of pANT-I and the 62 gene are aligned as in Fig. 

5.9, it becomes apparent that the latter contains two intervening 

sequences which split the coding region into three exons of approximately 

equal length. Intron 1 is 95 nucleotides in length and interrupts the coding 

sequence between codons 96 and 97 (using the pANT- 1 numbering). Intron 2 

is 82 nucleotides long and interrupts the coding sequence between amino 

acids 220 and 221. In neither instance is a codon split. The yeast 

translocator gene does not contain introns (Adrian et al., in preparation), 

while the NeurosDora crassa gene, like that of maize, contains two introns 

of 280 and 194 bp, but inserted at different positions in the coding 

sequence, Fig.5. 10. There are a number of cases, e.g. actin genes, insulin 

genes where the position of introns within the gene is conserved even 

between widely different species (Breathnach and Chambon 1981).  This 

does not appear to be the case for the nucleotide translocator. The 

asymmetric distribution of the introns in the NeurosDora gene, and the 

occurrance of introns at different locations in the maize gene would 

suggest that these introns were accquired independently, after the 

postulated gene duplication which gave rise to the translocator (section 

4.4.6, and Saraste and Walker 1982). 
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EJ...5. 10 Introns in the maize and Neurospora ANT genes 

1 V 1 280bp 1V82 19 4 b p. 

E:Urfl 	E:x:Or' 2 	 E;,--'0N3 
11AA 	32AA 	 269AA 

NJ 	I 	 I 	 C: 

NE U P.09 Fl PA 
ANT 

MAIZE ANT 

EXON1 	EXC'N2 	EX0N 
7 1?& 	 1 124AA I 98AA 

IYS1 96bp. 	1,52 82Lp. 

NTPIJN- EXON BOUNDARIES. 

5p1ice 	 3splice 

NEUPOSPOPA ANT IVS1 TECCGGTAT 	AC AG CCCTT 
ivs: ACCAGTAC ...... CTA6GATG? 

MAIZE ANT 	IVS 1 CTCAG GTAG------CTAG CCITT 
1V52 TCCG GIlT ...... GCG GCM 

ANIMAL CONSENSUS 	
A AG GTPu -----

C
AG 
 

C C 
C 	 I 	I 

The sequences at the 5' and 3' splice junctions of the maize translocator 

introns conform well to the consensus sequence for eukaryotic nuclear 

genes (Mount 1982). 

Recent publications on the mechanism of eukaryotic pre-mRNA 

splicing (reviewed by Keller 1984), have indicated that sequences 

contained within the intron also play a role in splicing. In yeast and higher 

eukaryotes, excision of introns procedes via a 'lariat' intermediate, where 

the free G residue at the 5' end of the intron (generated by a cleavage step 
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at the 5 intron/exon boundary) becomes attached via a 2'3' phosphodiester 

bond to an internal A residue. Direct sequencing of these branch point 

intermediates shows that, although variable, they conform to a consensus 

5'-pyXpyTpupy-3', where A is the branch point. In Saccharomyces nuclear 

gene introns, the sequence requirement is much stricter and the branch 

point sequence has been named the TACTAAC box. These sequences occur 

18-40 nucleotides from the 3 splice junction, and most introns in nuclear 

genes from a variety of organisms have a sequence which fits this 

consensus. Experimental evidence for the functional significance of these 

sequences is as follows: 

(1) Lariat structures have been observed in the electron microscope 

for a number of genes spliced in vitro (Zeitlin and Efstatiadis, 1984) 

(2)If the branch point sequence is mutated, cryptic sites may be used 

(Reed and Maniatis 1985). 

(3)Introduction of the beta globin branch point sequence into a 

synthetic intron greatly enhanced the efficiency of splicing in vitro 

(Rautman and Breathnach 1985). 

A branch point consensus has been derived for plant genes by 

comparison of intron sequences (Keller and Noon 1985). The maize 

translocator gene introns contain sequences in the appropriate position 

which conform to both the plant and general consensus sequences. 

Table 5c 	Potential branch point sequences from the 62 gene introns. 
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SEQUENCE 

1V51 TCCTAAA 

1V52 CTCTAAT 

GENERAL pyXpyTpupy 

PLANT pyTpu(T/C/A) 

POSITION FROM 3INTRON BOUNDARY 

-16 

-50 

-18 to -40 



Plant and S.cerevisiae genes differ from other eukaryotic nuclear 

genes in that their introns tend to be small, less than 500bp. In contrast 

many animal genes have introns several kilobases long. It has been shown 

that artificially increasing the length of S.cerevisiae introns leads to a 

reduction in the efficiency with which they are spliced (Klinz and Gallwitz 

1985). While this has not been demonstrated directly for a plant gene, two 

1.4kb Mu- 1 insertions in the first intron of the Adh- 1 gene of maize reduce 

the levels of mRNA produced to 40% and 13% of the wild type (Bennetzen 

et at, 1984). This could either be due to an effect on transcription or a 

reduced efficiency of splicing analogous to that seen in the yeast system. 

If the latter were the case, it would provide an explanation as to why 

plant introns tend to be small compared to their animal counterparts. 

5.5.3 The ATP/ADP translocator DolyDeDtide of maize may be significantly 

larger than those of beef, yeast and Neurospora. 

Inspection of the nucleotide sequence of the genomic clone G2 

indicates that the long open reading frame which encodes the translocator 

polypeptide extends beyond the methionine identified as a potential 

translational start from the pANT-i sequence, to a second methionine ii 

amino acids further upstream (Fig.5.8). This raises the question of which 

methionine is used for initiation of translation of the protein, and if it is 

indeed the upstream one, what the implications of the additional sequence 

are for targeting the polypeptide to the mitochondrion. 

In the absence of a cDNA clone covering this region and the inability 

to determine directly the amino terminal sequence from the purified 

protein (the amino terminus is blocked) , the probability of each 
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methionine acting as the initiator codon has to be assessed by indirect, 

and therefore less reliable, means. 

Hybridisation studies suggest that the two copies of the gene diverge 

within or just 5 to this additional 11 amino acids (section 5.4.3). Amino 

acid sequence homology between all four translocators sequenced to date 

falls to essentially zero at the amino terminus.The codon usage of the 

additional 11 amino acids of the 02 gene is consistent with the rest of the 

coding region and with pANT-l(section 4.4.5), but does not constitute 

proof that this sequence is translated. 

The amino terminal sequences of proteins imported into mitochondria, 

while not sharing any great homology, appear to have certain 

characteristics (Reid 1984). These are an excess of basic over acidic 

amino acids and a relatively high content of serine and threonine. Proteins 

which are synthesised as higher molecular weight precursors, and those 

imported without proteolytic cleavage both show these features, with the 

exception of all the adenine nucleotide translocator polypeptides examined 

to date. They are neither particularly basic, or with the exception of the 

yeast polypeptide, rich in serine and threonine. This raises the possibility 

that the translocator may be imported via a different pathway, perhaps 

interacting with a different kind of receptor, or that some other part of 

the polypeptide may be important in targeting to mitochondria. Thus there 

are no features of the deduced amino acid sequence following the two 

methionines which give a clue as to which is the genuine amino terminus 

of the polypeptide. 

In eukaryotes translation begins at the first ATO codon in ca. 90% of 

cases (Kozak 1984). However there are a number of cases in the literature, 

including examples from higher plants, where an internal ATG appears to 

be used (Hoffman et al., 1982, Hoffman and Donaldson 1985). The sequence 
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context of the ATG used for initiation appears to be important. Kozak 

(1984) has suggested 5'-CCpuCCI-3'  as a consensus sequence, with the 

most important feature being a purine at position -3 (+1 is the A of the 

ATG), which occurs in 97% of translational starts. The importance of the 

purine has been demonstrated by site directed mutagenesis (unpublished 

data cited in Kozak 1984b). In the case of non functional upstream ATG's 

usually a pyrimidine occurs at -3. 

Fig.5. 11 	ATG codons 5' to the open reading frame in the G2 gene. 
5' . 	 3' 

CAcCTT 	______MCTAC ]__.____CTTG6A lATe -CCA6TG  lATe 

4 	 4 10 4 	 10 

26bp 	 25bp 	 30bp 

The sequences surrounding the two potential initiator codons in the 

maize ANT are 5'-TTGGAI.-3' and 5'-CAGTGJ..-3'. Both have a purine (3) 

at -3 but neither show a good match to the CCACC consensus, 0/5 for the 

upstream ATG and 1/5 for the downstream ATG. In considering the merits 

of the potential starts in these terms it should be noted that two other 

ATG's occur in the sequence just 5' to the upstream ATG (Fig.5. 11). One of 

these is out of frame with the coding sequence, whilst the other is in 

frame but could only encounter a 10 amino acid peptide before 

encountering a translational stop. There is no evidence from the nucleotide 

sequence of an intron in this region which could, by its excision, remove 

the stop codon from the mature message. However Kozak (1 985) has 

demonstrated that, at least in vitro, ribosomes may start translating at 

the first ATG encountered and then re-initiate at an internal ATG if a stop 

codon occurs between the two, as in this case. The sequence surrounding 
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this most distal ATO is 5'-CACCTTI..-3,  which has homology to the 

CCpuCCATG consensus but displaced two nucleotides 5' so that a 

pyrimidine (C) occupies the -3 position. 

Hence consideration of the sequence context of possible initiation 

codons does not give a clear indication of which may be used in vivo, and 

indeed raises the possibility that even a third translational start exists. 

5.5.4 Potential transcriptional control seguences. 

The sequence 5' to the gene was analysed for typical eukaryotic 

transcriptional control sequences (Breathnach and Chambon 1981 ).  Two 

TATA like sequences are located at nucleotides 65 to 70, 5'-TATATT-3', 

and at 78 to 86 5'-TAAAATATA-3'. No CAAT or AGGA boxes, usually found 

40-50 nucleotides 5' to the TATA (Messing et al., 1983), occur, but the 

trinucleotide TTG which is a feature of the -35 homology of prokaryotic 

promoters occurs at position 53 in the sequence. The -35 motif is located 

ca.25 bases 5' to the TATA in prokaryotic promoters (Rosenberg and Court 

1979), and in this instance is 23 bases from the second TATA like 

sequence. Further upstream from the TTG, at positions 33-45, the tn-

nucleotide TAG is repeated three times. There is no experimental evidence 

concerning which if either of these TATA sequences act as promoters in  

vivo. 

Fig.5. 1 2. Potential promoter sequences. 

4bp 	7bp 	9bp 	 Up 

TAGTAG TAG TTG 	TATATT TAAAATATA 

290bp from 

ATG 

5.5.6 The 5' untranslated region has some unusual features. 

The cap site is usually located approximately 30 nucleotides 3' to the 
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TATA box. If this is the case for the 62 translocator gene, the 5' 

untranslated sequence is abnormally long, up to 300 nucleotides if 

translation commences at the methionine included in the cDNA clone 

pANT-1. This would be in reasonable agreement with the size of the 

transcript determined from 'Northern blotting', which is ca. 1600 

nucleotides, i.e. 300 nucleotides of 5' nontranslated sequence, 954 

nucleotides coding region, 180 nucleotides 3' non translated region and 

60+ poly A residues. This adds up to 1494+ nucleotides. 

In order to determine the transcriptional start, 51 nuclease analysis 

and primer extension were carried out. These results are preliminary and 

inconclusive, but are presented here for discussion as they may have some 

relevance to future work. An example of an Si mapping experiment is 

shown in Fig.5. 1 3. 

Interpretation of 51 mapping data in the case of the maize adenine 

nucleotide translocator is complicated due to the fact that the RNA 

preparation used contains a heterogeneous population of translocator 

mRNA's derived from at least two different structural genes. Furthermore 

the exact extent of sequence homology between the two genes at the 5' end 

is unknown as yet. An Si protected fragment will be generated wherever 

there is a discontinuity between the labelled single stranded DNA used as 

a probe and the RNA molecule to which it is partially complementary. 

Therefore an Si site may represent: 

the 5' end of an RNA molecule 

a point where the sequence of the probe and mRNA diverge, as 

might happen if the probe is derived fom one copy of the gene and the 

mRNA from another 

a 3' intron/exon boundary, or 

a point where the mRNA forms a self complimentary structure in 
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A G C T 

Fir 
I 

5 10 C P 

-e 

--- 1 

ATG ATG 

112bp 	 33bp 	103bp 

clone l8PS 

Fig5.13. 51 nuclease mapping the transcripts of the 62 gene using clone 

1 8/PS2. 

Left panel: Autoradlograph of 51 mapping gel. Lanes A,6,C,T = sequencing 

reaction of clone 18/P52; 5, 10, = probe incubated with 5 and 10 ug po1yA 

RNA, C = probe + tRNA control, P = 181P52 probe alone (no RNA). 
Right panel: Diagram showing clone 18/P52 in relation to the 62 sequence. 

- 
01 
0 



preference to hybridising with the probe. 

For these reasons, primer extension provides useful corroboration of S 1 

data. The length of the extended primer should correspond to the distance 

from the primer to the 5' end of the mRNA, unless a strong stop sequence 

for reverse transcriptase is encountered. So if an Si site and a site 

mapped by primer extension co-incide, it is probable that this represents a 

genuine 5' end of an RNA molecule. 

Figure 5.14 indicates the 51 and primer extension sites mapped with 

three different clones and two different primers. As can be seen from the 

figure, the RNA has the potential to form considerable secondary 

structure, although whether any of these stem loop structures are stable 

enough to form in vitro is uncertain. The 51 sites mapped are scattered, 

whether as a result of the potential secondary structure of the region, or 

due to inaccuracies in sizing, is unclear. It must be emphasised that these 

experiments were performed once and have not yet been repeated. 

Figure 5.14 serves to emphasise the inverted repeats clustered in the 

region 236-365, where five pairs of repeats occur. The sequence from 

290-322 is of particular interest as it displays 72% homology to a 

sequence which occurs in the 5' untranslated region of the NeurosDora 

crassa ANT transcript. This level of nucleotide sequence homology is 

actually higher than that obeserved between the coding regions of these 

two genes (69%). Like it's maize counterpart, this Neurosora sequence has 

the potential to form a stem loop structure. Both these sequences have 

some homology to the SV40 enhancer core sequence (Weiher et al., 1983). 

5V40 TGGAAAG 

N.crassa GGAAAG 

Z.mays. TGAAAG 
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Fig.5. 14 DiaQram showina the Potential secondary structure of the 5' untranslated realon, and the sites mapped by 
51 nuclease and primer extension. Bases are numbered according to Fig. 5,8. 



The palindrome is also similar to a sequence which occurs 5' to the yeast 

gene and which has been implicated in the regulation of gene 

expression (Iborra et al., 1985 and section 1.5.4). Whether these sequences 

hve any functional significance remains purely speculative, but it is 

tempting to think that some factor involved in modulating gene expression 

may bind to this region. Sequences with homology to the viral enhancer 

have been obseved upstream of ribulose bisphosphate carboxylase small 

subunit genes in a number of dicotyledenous plants, and in Petunia their 

presence appears to be correlated with the level of expression of the 

different genes (Dean et at, 1985 submitted). This sequence also occurs 5' 

to the sucrose synthase gene from maize which may account for up to No 

of the total protein in endosperm (Werr et al.,1985). While it is tempting 

to look for 'conserved' sequence motifs between different genes and 

although this may give some indication of common regulatory mechanisms, 

caution must be exercised in extrapolating from relatively well 

characterised systems such as 5V40 to such diverse organisms as higher 

plants where as yet comparatively little is known about the regulation of 

gene expression. 

5.5.6 Is the leader sequence sDliced? 

The G2 translocator sequence was compared to the only other known 

gene sequence of a nuclearly encoded mitochondrial protein from a higher 

plant, the beta subunit of mitochondria] F1 ATPase from Nicotiana 

Diumbagnifolia (Boutry and Chua, 1985, submitted). The computer 

programme WORDSEARCH, part of the Wisconsin package on the VAX/VMS 

was used to search for regions of homology between the two sequences in 

the hope that some common sequence element which might be related to 

the expression of the two genes could be identified. Common sequence 
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elements have been found 5 to genes induced by heat shock in both plants 

and animals (Czarnecka et al., 1985, Pelham 1982), and possibly in the 

case of enzymes induced by anaerobiosis (Dennis et al., 1985), which are 

co-ordinately expressed (Hake et al., 1985). Interestingly the computer 

identified an unsuspected homology of a different kind. The sequence 

between 114 and 190 in the G2 sequence is 57% homologous to intron V of 

the beta gene. The alignment between the two is shown in Fig.5.15. The 

extent of the homology almost precisely delimits the intron in Nicotiana. 

and the homologous sequence in maize is flanked by perfect intron/exon 

boundaries. This is surprising, given that intron sequences are not 

apparently subjected to a great deal of selective pressure, and tend to 

diverge rapidly, although often the position of the insertion is conserved. 

For example maize alcohol dehydrogenase (Adh) genes 1 and 2 are probably 

derived from a common ancestral gene. Both have nine introns in identical 

positions which differ in both length and nucleotide sequence. (Dennis et 

, 1985). 

An alternative explanation is that the sequence common to the 

Nicotiana beta gene and the maize translocator is some kind of potentially 

mobile genetic element. However as it is only 76bp long it is clearly too 

small to be autonomous, and defective transposable elements such as 

dissociation (Ds) tend to diverge in sequence, sometimes remaining 

homologous only at the terminal inverted repeats, which are thought to be 

important in transposition, (Doring and Starlinger 1984). The maize 

element is not flanked by any sequences which suggest that it might be 

mobile, the only repeated sequences being the direct repeat AGGT which is 

homologous with intron/ exon boundaries. Experiments are under way to 

determine whether this sequence is found elsewhere in the maize genome. 

In order to find out whether this sequence is expressed in translocator 
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TCTTATTTTGTTTCTCTTTATGTAATG .......TCCTAAGTTTGTGTGT GTTGACATTATGTTGCAGCCAACAGTTTTGAG 

II 	III 	IIIIIIII!III 	liii 	III 	II 	111111 	Ill 	I 	111111 	III 
TCAAAATTATTTGCTCTTTATCTCATAATGCTATTCCTTTGTGTTGCTGG CCTGACATATTGTGACCTCAACCATTTCAGAG 

5 	57% homology 3• 

MAIZE 	GAG GTCTT ----------- TTTTGAG GT 
NICOTIANA 	TCAA --------- TTCAGAG A 

Fig-5-15 Alignment between intron V of the beta subunit of Nicotiana 
Dlumbagnifolium and the sequence 5 to the 62 maize translocator gene. 
The numbers are taken from the sequence of Boutry and Chua 1985,   and 
from Fig 5.8. 

115 

2663 

189 maize 

2744 nicotiana 



mRNA, clone 19/A6 was used as a probe in an 51 mapping experiment. A 

major cluster of Si protected fragments of 39, 40,41 and 42 bases were 

oberved, which correspond exactly to the four bases adjacent to the 

putative intron/exon boundary at 190 Fig.5.9 This very preliminary data 

suggests that the element may be spliced out of the transcript. 

There are several precidents for introns in the 5' untranslated 

sequences of mRNAs. Chicken, human and rat preproinsulin genes are 

interrupted in this fashion (quoted in Breathnach and Chambon 1 98 1) as 

are the genes for Troponin T in rat, (Brietbart et al 1985), alcohol 

dehydrogenase in Drosophila (Benyajati et al.,1983), alpha amylase in 

mouse (reviewed by Flavell 1981), and sucrose synthase in maize (Werr et 

flj., 1985). In the case of alpha amylase and alcohol dehydrogenase, 

differential splicing of the 5' leader sequence occurs in different tissues 

or in different developmental stages, and may play a role in modulating 

expression of the gene. 

5.5.7 The 3' untranslated region. 

The 3' untranslated region of the clones pANT- I and 02 are clearly 

related in sequence, but show a greater degree of divergence than the 

coding sequence. The nucleotide sequence homology between them is 79% 

compared to 93% for the coding region, and they differ in a number of 

places by the insertion or deletion of small blocks of nucleotides in one 

sequence relative to the other. As is the case with pANT-I, the 62 clone 

lacks the sequence 5'-AATAAA-3', which has been shown to be important 

for polyadenylation in animal and viral systems (reviewed by Proudfoot 

1984). It is unclear whether the 3' ends of plant and yeast mRNA's are 

formed by an identical mechanism to that operating in higher eukaryotes, 

where transcription termination is followed by endonucleolytic cleavage 
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at the selected site and immediate polyadenylation. In the case of yeast 

genes which, like plant genes, frequently lack AATAAA, the addition of 

poly A to the transcript appears to be coupled to transcript termination 

rather than processing (Birnstiel et a)., 1985). Furthermore a functional 

AATAAA sequence is not required for efficient polyadenylation of animal 

genes expressed in yeast, (Birnstiel et at, 1985) Even in animal cells 

sequences other than AATAAA are needed to direct selection of the correct 

sites for cleavage. In particular the consensus sequence py6TGTTpypy (Mc 

Lauchian et al., 1985) which is located 3' to the polyA site of many genes 

has been implicated by deletion studies to be important in producing wild 

type levels of mRNA. Other sequences and small nuclear RNA's may also be 

involved in generating correct 3' ends (Berget 1984). Termination of 

transcription and polyadenylation in eukaryotes is clearly a complex 

process and the sequence requirements for this remain largely 

speculative, particularly in higher plants. 
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CHAPTER 6 GENERAL DISCUSSION 

6.1 AIMS. 

The intention of this Chapter is to summarise the major results 

presented in preceeding chapters and to discuss some remaining 

unresolved questions in the wider context of higher plant genes and 

genomes. Future areas for research will also be discussed. 	 - 

6.2 SUMMARY OF RESULTS. 

The principal achievements of the research presented in this thesis are 

outlined below: 

The construction of cDNA and nuclear genomic libraries from the 

inbred maize line 637. These libraries have been demonstrated to contain 

sequences representing nuclear genes, and can be used for the future 

isolation of additional nuclear gene sequences. 

The isolation and characterisation by hybridisation and nucleotide 

sequence analysis of two cloned cDNAs and their corresponding structural 

genes encoding the ATP/ADP translocator of maize. This line of 

investigation has shown that: 

The primary sequence and probably the higher order structures of 

the adenine nucleotide translocators of a variety of organisms, Zea mays 

Saccharomyces cerevisiae, NeurosDora crassa and Bos taurus are highly 

homologous. 

In contrast to the situation in S. cerevisiae and N. crassa, two 

separate genes for the adenine nucleotide translocator are transcribed in 

maize. A third copy of the gene or a related sequence may also be present 

in the nuclear genome of maize. 

DNA sequence analysis suggests that the maize ANT polypeptide may 



contain an additional 16 amino acids at the amino terminus compared with 

the Neurospora polypeptide, This raises the possibility that the ANT 

polypeptide of maize may undergo processing at the amino terminus upon, 

or after, import into mitochondria. 

The gene 62, which encodes an ANT polypeptide, is split by two 

introns. These are in different locations compared to the introns in the 

homologous gene from NeurosDora (Arrends and Sebaid 1984). in contrast, 

the Saccharomyces cerevisiae gene is uninterrupted, (Adrian et al., in 

preparation). The introns contain the normal consensus sequences required 

for the splicing of eukaryotic pre mRNA5 (Mount 1982, Keller 1984). 

The 5' untranslated region of the 62 translocator gene is unusually 

long and may be spliced. This region contains a number of inverted repeat 

sequences. Their significance, if any, in the regulation of expression of the 

gene is unknown. 

The maize translocator sequences support the contention that the 

sequence motif 5'-AATAAA-3' is not an essential requirement for the 

addition of polyA to higher plant mRNAs 

it was shown that maize mitochondrial and chioroplast DNA do not 

contain sequences homologous to the adenine nucleotide translocator. 

6.3 UNRESOLVED QUESTIONS. 

6.3. 1 Why are there multiDle cooies of the translocator gene in maize? 

In higher plants, many polypeptides appear to be encoded by multiple 

genes. These fall into two catagories, either quite large gene families 

which can be further sub divided into groups on the basis of sequence 

homology, or much smaller families which consist of only 2-3 members. 

Examples of the former include seed storage pro te ins, (Sorenson 1984), 

actins,(Hightower and Meagher 1985) heat-shock proteins,(Key et al., 
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1985), the small subunit of RUBP carboxylase, (Dunsmuir et al., 1983) and 

the chlorophyll a/b binding proteins, (Dunsmuir 1985). The latter class 

include alcohol dehydrogenase (Dennis et al., 1985), catalase (Sorenson 

1982), sucrose synthase (Werr et al., 1985) the ANT from maize, and the 

beta subunit of mitochondrial AlPase from Nicotiana Dlumbainifo1ia 

(aoutry and Chua 1985). 

While tissue or developmental specific expression of several individual 

genes within a family have been reported, the biological significance in 

many cases remains unclear. The small subunit genes of Petunia, where the 

levels of mRNA derived from individual genes may vary 25 fold in green 

leaf tissue, but the amino acid sequences of the encoded polypeptides are 

virtually identical (Dean et al., 1985) are one example. In other cases such 

as sucrose synthase and alcohol dehydrogenase of maize, the nucleotide 

sequences of the different genes have diverged sufficiently for them to 

encode polypeptides with slightly different catalytic or regulatory 

properties, although it is probable that they originated from a single 

ancestral gene. 

The coding sequences of the two copies of the maize ANT gene have 

diverged to a greater extent than those of the small subunit genes of 

Petunia, (Dunsmuir et al.,1983),but less than those of the ADH genes of 

maize (Dennis et al.,1985), or the chlorophyll a/b binding proteins of 

Petunia (Dunsmuir 1985). It seems unlikely on the basis of the limited 

sequence divergence that the properties of the two maize ANT 

polypeptides are radically different. At present there is no data concerning 

the individual transcription of the two ANT genes, so whether both are 

transcribed to the same extent in the same tissue is unknown. The 

translocator polypeptides purified from beef heart, liver and kidney 

mitochondria have some different antigenic determinants, (Schultheiss 
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and K]ingenberg, 1984) which implies that in mammals there may also be 

multiple genes for the translocator which exhibit tissue specific 

regulation. In the case of cytochrome c oxidase from mammals there are a 

number of tissue specific variants of the smaller nuclear encoded subunits 

which might confer slightly different kinetic or regulatory properties upon 

the complex,(Kadenbach et at, 1982, Kuhn-Nentwig and Kadenbach 1985). In 

yeast there are two non identical genes for cytochrome oxidase V, both of 

which are expressed (Cumsky et at, 1985). The COXVa gene encodes the 

polypeptide normally found in cytochrome oxidase preparations, but COXVb 

is expressed in vegetatively growing cells and can restore respiration to 

coxVa structural gene mutants. In Neurospora crassa and Aspêrgillus 

nidulans the gene for subunit 9 of the mitochondrial ATPase is encoded in 

the nucleus. However a copy is present in the mtDNA which, although 

exhibiting sequence divergence from the nuclear copy, remains a 

potentially functional gene although its expression has not yet been 

demonstrated (van den Boogaart et al., 1 982, Brown et al., 1 985). The 

significance of tissue and developmental expression is not clear, but it is 

tempting to believe that the different forms of these subunits may play a 

role in the modulation of enzyme activity in response to changing cellular 

demands. 

If both genes are transcribed in the same tissue, what is the 

relationship between the two polypeptides? The functional ANT is a dimer. 

In maize do homologous or heterologous subunits preferentially associate? 

Now that sequence data are available for the two copies of the 

translocator gene, it will be possible to construct DNA probes specific for 

each mRNA and so quantify the expression of each in different tissues or 

at different developmental stages. These experiments may lead to some 
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insight into the function of the two gene copies. 

6.3.2 Is the maize translocator made as a larger Drecursor? 

The nucleotide sequence of the genomic clone 62 suggests that the open 

reading frame encoding the translocator is significantly larger than that 

encoding the equivalent polypeptide from fungi. It is not clear whether 

this additional sequence constitutes a pre-piece which functions as a 

targeting signal and which is proteolytically removed. Formal proof 

requires the determination of the amino terminal sequence of the purified 

protein. This has not proved possible as the amino terminal residue is 

acetylated, rendering the polypeptide intractable to analysis by Edman 

degradation. It may however prove possible to address this problem by 

alternative means, as outlined below. 

6.3.2.1 Homology between the 0 1 and 02 genes. 

Hybridisation studies undertaken with probes originating from the 5' 

untranslated sequence and the start of the 62 open reading frame indicate 

that the nucleotide sequences of the 61 and 62 genes diverge within or 

just 5' to the first few amino acids of the 62 open reading frame, (section 

5.4.3). Isolation and DNA sequence analysis of this region from the 01 gene 

will identify the point of divergence and determine whether the extended 

open reading frame present in 62 is common to both copies of the gene. If 

it is, this would support the hypothesis that translation commences at the 

more 5' of the two ATOs. 

6.3.2.2 Comparison of the in vitro synthesised product and the mature 

protein. 

Higher molecular weight precursors of mitochondrial proteins are 
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usually identified by virtue of their slower electrophoretic mobility on 

SIDS PAGE. immunoprecipitation of the in vitro synthesised precursor, 

followed by SIDS PAGE alongside the purified mature translocator protein, 

would reveal whether the precursor and mature proteins behave 

differently in polyacrylamide gels. However, even if this were the case, it 

would not prove that this was due to the presence of an additional 

sequence, as the precursor and mature proteins are known to have 

different conformations and may bind SIDS to differing extents. The 

purified translocator protein is known to migrate anomalously in SIDS gels, 

running at ca. 3OkD instead of the 40.52kD predicted from sequence 

analysis, and migrates slightly faster than the 'native' translocator from a 

solubilised membrane extract, Fig.6.1 

6.3.3 Where does transcription commence? 

The availability of a complete set of strand specific M3 subclones 

covering the entire region from the presumptive TATA box to the coding 

region will allow identification of the subclone within which 

transcription initiates. Single strand specific nuclease mapping and 

primer extension can then be repeated using more specific probes covering 

this region. 

In order to determine whether a splicing event occurs in the 5' 

untranslated sequence it may be necessary to make a 5' extension cDNA 

library, as P loop analysis is not sufficiently sensitive to detect 

intervening sequences of less than lOObp. This would involve the following 

steps: 

(I) Purification of a single stranded restriction fragment derived from 

the 5' end of the coding sequence and complementary to the mRNA 

(2) Annealing of this primer fragment to mRNA and extension of the 
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FIG.6. 1 SDS polyacrylamide gel of the maize ANT. 

Lanes A,C purified translocator protein; B,D total mitochoncirial protein. 
A,B stained with Coomassie Blue; C,D replicate gel blotted to 
nitrocellulose, probed with an antibody to the maize translocator and 
visualised by autoradiography after incubation with iodinated protein A. 

(Figure courtesy of Dr. M. Hawkesford) 



primer by reverse transcriptase or the Klenow fragment of E. coli 

polymerase 1 

(3) Cloning and DNA sequence analysis of the extended products. 

6.4 FUTURE DIRECTIONS 

The research described in this thesis is part of a larger programme 

aimed at increasing the understanding of the regulation of mitochondrial 

biogenesis in plants. The isolation and characterisation of nuclear and 

mitochondrially encoded genes is an essential first step towards this goal. 

We have already isolated and analysed a number of genes encoded in 

mtDNA, and begun to use them to characterise the organisation and 

expression of mtDNA in fertile and male sterile lines of maize and in the 

developing wheat leaf (Fox and Leaver 1981, Dawson et a]., 1,984, Isaac et 

1.,1985a, Isaac et al.,1985b, U. Topping unpublished data). The isolation 

and sequence analysis of a cDNA clone for the ANT (Baker and Leaver 

1985) is the first report of a cloned nuclear gene encoding a mitochondrial 

polypeptide from a higher plant. These clones will enable us to 

complement our studies on mitochondrial gene expression by parallel 

studies on nuclear genes encoding mitochondrial polypeptides. We have 

also purified the translocator polypeptide from maize mitochondria and 

raised an antibody to it (M. Hawkesford, unpublished data), and are in the 

process of isolating both genes and polypeptides of the respiratory 

complexes of the mitochondrial inner membrane. 

The combination of gene probes and antibodies will allow us to extend 

our studies to a variety of developmental systems where significant 

changes in respiration, and presumably also in mitochondrial biogenesis, 

occur. These include germination, greening of etiolated tissue, fruit 

ripening and pollen formation. Eventually it should prove possible to 
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- 	correlate molecular, biochemical and ultrastructural information to 

provide a complete picture of the role of mitochondria in these important 

developmental events. 

A second area of research is to use cloned nuclear genes to 

reconstitute protein import in vitro, and to begin to characterise the 

nature of the signals which allow proteins to partition to the correct 

subcellu]ar organelle. As discussed in section 1.6, many features of 

protein import by (fungal) mitochondria and (plant) chloroplasts appear to 

be similar, but to make valid comparisons between the two will require 

the use of homologous systems. 

Our long term aim is to understand the molecular basis and mechanisms 

of mitochondrial biogenesis, and how this influences and is influenced by 

the development of the plant as a whole. The availability of cloned nuclear 

genes for mitochondrial proteins makes possible both in vitro and in vivo 

experiments which should increase the understanding of this complex and 

fascinating process. 
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ABSTRACT 
A cDNA complementary to the mRNA for the ATP/ADP translocator of maize 

(Zea mays L.) has been identified by virtue of hybridisation with the 
homologous gene from yeast. The cloned cDNA has been shown by DNA sequence 
analysis to contain an open reading frame of 954bp., which encodes a poly-
peptide of molecular weight 40,519. This polypeptide exhibits a high degree 
of homology to the translocator polypeptides of beef heart and Neurospora 
crassa mitochondria. 

l ki l -Tel III rim iu'1 10 l 

An essential prerequisite for growth and differentiation of higher 

plants is the ability of the mitochondrion and chloroplast to meet the 

changing energy requirements of the plant cell. Many developmental trans-

itions are associated with, or dependent upon, marked changes in mito-

chondrial number, structure and metabolism. As part of a programme directed 

towards an understanding of how genetic, environmental and physiological 

factors regulate mitochondrial biogenesis and function, we are analysing the 

structure and expression of genes encoding components of the mitochondrial 

inner membrane. 

The mitochondrial genome encodes less than 10% of the total mito-

chondrial proteins (ca. 20 polypeptides), most of which are polypeptides of 

the major enzyme complexes of the inner membrane. We have isolated and 

analysed mitochondrial genes for subunits of the cytochrome c oxidase (1,2) 

and bc1, respiratory complexes (3), and the F1  ATP-synthase complex (4) of 

maize. However to date no report has been published of the isolation of a 

nuclear gene encoding a mitochondrial protein from a higher plant. As a 

first step towards the study of nuclear genes involved in mitochondrial 

biogenesis, we report here the identification and sequence analysis of a 

cDNA clone for the ATP/ADP translocator from Zea maya L. 

The functional adenine nucleotide translocator is a homodimer with the 

individual subunits having an estimated molecular weight (by SDS PAGE) of 

© I R L Press Limited, Oxford, England. 	 5857 



Nucleic Acids Research 

30,000 (bovine) to 33,000 (Neurospora) (5,6). It is the major polypeptide 

of the mitochondrial inner membrane, comprising about 10% of the total 

mitochondrial protein in maize. It shows a high degree of specificity for 

ATP and ADP, and mediates the transfer of energy generated by oxidative 

phosphorylation to the energy consuming processes of the cytosol (7). As 

a consequence it forms an important interface between mitochondrial and 

cytosolic metabolic pathways, and under some conditions exerts a significant 

control over the rate of oxidative phosphorylation by regulating the supply 

of ADP to the matrix as a substrate for the ATP synthase (8,9). The 

translocator may thus have a pivotal role in plants where both developmental 

and diurnal changes occur in the relative contributions from oxidative 

phosphorylation and photophosphorylation to cellular ATP levels. 

MATERIALS 

Maize seed with a B37 nuclear background and the N (fertile) mito-

chondrial genotype, was supplied by Pioneer Hi-Bred International, Des 

Moines, Iowa m[32P]4CTP, 41OCi/mmol, triethylammonium salt, was purchased 

from Amersham International. Enzymes were purchased from BRL, Amersham, 

BCL, NBL, and P&S Biochemicals. X-ray film was Dupont Cronex 4 or FujiRX 

(sequencing gels) 

EXPERIMENTAL PROCEDURES 

Construction of a cDNA Library from Zea mays L. 

Total nucleic acids were prepared (10) from coleoptiles of maize 

seedlings germinated for 60h at 28-29°C in total darkness. Poly(A) RNA was 

prepared by two cycles of elution from oligo dT cellulose (11). cDNA 

synthesis was performed essentially as described (12,13). First strand 

reaction contained 4ig poly(A) RNA per 50p1 incubation mix (50mM Tris-HC1 

pH 8.3, 20mM Ed, 8mM MgCl2, 10mM dithiothreitol, laM each of 4ATP, dGTP, 

4CTP and dTTP (4NTPs), 150ng oligo dT) plus 30U placental RNAse inhibitor 

and 30U reverse transcriptase. Incubation was for 10 min on ice followed 

by 60 min at 42°C. After boiling followed by rapid cooling on ice, 5Oi1 of 

2x second strand buffer (200mM HEPES-KOH pH 7, 2mM each dNTP5, 6mM Mdl) and 

15U of the Klenow fragment of DNA polymerase 1 were added and the reaction 

incubated at 15°C for 5h. Unincorporated nucleotides were removed by gel 

filtration through Sephadex G50. The double stranded cDNA was treated with 

Sl nuclease and size selected on sucrose gradients. The fraction having a 

mean size around 1200 nucleotides was inserted into the Pat 1 site of 
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plasmid pAT153 by 0-C homopolymer tailing, used to transform S. coli strain 

294, and a library of approximately 2,500 tetracycline resistant colonies 

obtained. These clones were stored frozen in microtitre plates at -80°C. 

Filter replicas of the clone bank were prepared on Whatmann 541 paper and 

used in hybridisation studies (14). 

Identification of a cDNA clone encoding the ATP/ADP translocator 

The library was screened by colony hybridisation using a Bam Hl 

fragment from plasmid pYe OP1 (2.6), containing the entire yeast translocator 

gene (15). The 8am fragment was labelled with 32P by nick translation (16) 

to a specific activity of 106_107  cpm per pg. Filters (7cm x 5cm) were 

prehybridised in 50% (v/v) formamide, 5xSSC pH 7, lsopg/ml denatured herring 

sperm DNA, in a total volume of 4ml per filter at 25°C, for 2-16h. Hybrid-

isation was for 48h in the same buffer, but including the probe. Washes 

were 4x30 min in 2xSSC at room temperature. Filters were air dried and 

exposed to preflashed X-ray film, at -80°C with intensifying screens for up 

to three weeks. 

Potential positive colonies were lysed with hot sodium dodecyl sulphate 

as described (17), and the crude nucleic acid extracts separated by electro-

phoresis on 1% (w/v) agarose gels, transferred to nitrocellulose (18) and 

rescreened with the yeast gene probe as above, except that lOx Denhardts 

solution and 0.1% (w/v) SDS were included in both pre-hybridisation and 

hybridisation buffers. Small amounts of plasmid DNA were prepared by the 

method of Birnboim and Doly (19). 

Colony hybridisations using maize translocator probes were performed in 

4xSSC, lOx Denhardt's solution, 0.1% (w/v) SDS, lsopg/ml denatured herring 

sperm DNA at 65°C. 

DNA sequence analysis of the translocator clone pANT-1 

The clone pANT-i was sequenced using the M13/dideoxy chain terminator 

method (20,21). Fragments were derived from plasmid pANT-i using restriction 

endonucleases recognising tetranucleotide sequences within the cDNA insert, 

and ligated into the appropriate site(s) of N13mp8 or mpll replicative form 

(RF) DNA. Clones were also generated by Bal3l exonuclease digestion of the 

Pstl-digested plasmid, followed by blunt ended ligation to Smal-cut M13 

RFDNA. 

Single stranded M13 DNA was purified as described (22), and sequenced 

according to Sanger et al., (21) except that the synthetic N13 primer was 

used to prime the sequencing reaction (23). 
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Transcript analysis 

Total cytosolic and poly(A) RNA were fractionated by electrophoresis in 

1.25% (w/v) formaldehyde-agarose gels (24), transferred to nitrocellulose 

(25) and hybridised with either nick-translated plasmid DNA from pANT-1 or 

with labelled strand-specific M13 subclones (26). Prehybridisation was in 

50% (w/v) formamide, 5xSET, 50mM NaPO4  pH 7, 0.1% (w/v) sodium pyrophosphate, 

0.1% (w/v) SDS, lOxDenhardt's solution, lOOpg/ml herring sperm DNA, at 42°C 

for 2-6h (20xSET is 3M NaCl, 0.6M Tris-HC1 pH 8, 20mM Na2EDTA pH 8). 

Hybridisation was overnight at 42°C in the same buffer, except that the 

concentration of Denhardt's solution was reduced ten-fold. Washes were 

performed in 2xSSC, 0.1% (w/v) SDS, 0.1% (w/v) sodium pyrophosphate at 

50-55°C. 

RESULTS AND DISCUSSION 

Identification of translocator clones 

cDNA clones containing the maize translocator sequence were tentatively 

identified by colony hybridisation with a probe containing the entire yeast 

ATP/ADP translocator gene (15). In order to confirm their identity, 

candidate clones were subjected to a second round of screening. Crude 

nucleic acid extracts of these colonies were prepared (17),  the recombinant 

plasmids separated from E. coli chromosomal DNA by agarose gel electro-

phoresis, transferred to nitrocellulose and hybridised under conditions of 

reduced stringency, with the yeast gene probe. One clone exhibited intense 

hybridisation to the probe, and subsequent restriction analysis of purified 

plasmid DNA from this colony revealed that this was due to homology with the 

ca. 1200 nucleotide cDNA insert present in this plasmid. This clone was 

designated pANT-l. When the cDNA library was re-examined using an M13 

subclone of pANT-1 as a homologous probe under stringent hybridisation 

conditions, an additional two clones were identified. One clone contained 

a cDNA insert smaller than pANT-1 and had lost one of the flanking Pst 1 

sites, while the other contained an insert of similar size to pANT-1 as 

judged by agsrose gel electrophoresis. This represents a frequency of ca. 

0.2% for translocator clones in the library, and is comparable with that 

observed for cDNA clones of the translocator and also the nuclear encoded 

proteolipid subunit of the F portion of the ATP synthase in a cDNA library 

from Neurospora (27). The translocator is one of the most abundant inner 

membrane polypeptides, so in order to obtain clones of less abundant proteins 

a larger library may be required. 
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Figure 1. Restriction map of the cDNA insert of plasmid pANT-1 illustrating 
the strategy used for determining the DNA sequence. The extent of the open 
reading frame (box), 3 untranslated region and poly(A) are indicated in 
relation to the map. N and C denote the amino and carboxy termini of the 
protein. P = Pstl A = Alul T = Taql H = HaeIII S = Sau3A. 

DNA sequence analysis 

The DNA sequence of the entire cDNA insert of pANT-1 was determined 

from independent overlapping subclones covering the entire length (Fig. 1). 

Although in two regions, from the Taq I site at 1063 to the poly A and from 

the Taq I site at 468 to the Ssu 3A site at 655, the sequence was determined 

from one strand only. Considerable difficulty was encountered in obtaining 

sequence from the ends of the insert which contained the homopolymer tails, 

as these fragments are recovered as subclones rather less frequently than 

expected. Furthermore, it only proved possible to sequence these clones in 

one orientation, from sites within the insert outwards towards the ends, 

because as soon as the homopolymer tails were reached the sequencing reaction 

would either terminate or generate spurious bands ('laddering'). The most 

fruitful approach to solving this problem proved to be the construction of 

clones from double digests of Pat 1 with Rae 111, Alu 1, or Taq 1, and 

ligating these fragments into the vector such that the sequences of interest 

lay adjacent to the primer hybridisation site of M13. 

DNA sequence analysis of the maize cDNA clone pANT-1 reveals an open 

reading frame of 954 nucleotides (318 amino acids), 180 nucleotides of 3 

untranslated sequence and ca. 60 nucleotides of the poly(A) tail (Fig. 2). 

The deduced amino acid sequence of the encoded polypeptide is highly 

homologous to previously published sequences for the ATP/ADP translocator of 

both Neurospora crassa and Bos taurus (28,29) (Fig. 3). The amino acid 

sequences from all three organisms are identical in 142 positions, while 

maize and Neurospora, and maize and beef, respectively have 238 (74.8%) and 

160 (50.3%) amino acids in common. When the sequences are aligned, the 

maize open reading frame continues five amino acids beyond the amino 
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-2 
IS 

1 	 * 	 * 
ATGCAGACCCCSCTCTGTGCTAATGCICCTGCTGAGAAAGGAGGCAAGAACTICATGATTGATTTCATGATGGSCGGTGTTICAGCTGCT 
1151 PLC A N A P A E KOOK N F PP ID FM 1183 VS A A 

91 	 * 
GITTCAGACIGCT9CTGCTCCCATCGAGCGTGTGAAGCTSCITATICAGAACCAAGATGASATGATTAAGICTGSIASGCTATCAGAG 
VS K TA A API ER V K L LID N DDE P11K S SR L SE 

181 	 * 
CCGTACAAGGGTATTGTTGACTGCTTCAAACGTACCATTAAGSATGAAGGTTTCICTTCCTTGTGGAGGGGAIACACTGCTAATGTTATT 
P V KG IV DC F KR T I K 0 E SFS S LW R G  TAN VI 

271 	 * 	 * 
COTTACTTCCCTACTCAGGCTTTGAACTITGCATTTAAGGACTACTTCAAGAGGTTBITCAACTTCAAGAAGGATAGGGAIGGCTATIGS 
R Y 	PT GAL N F A F K D 	F KR L F N F K K DR D 6  W 

361 	 * 	 ft 

AA6TGSTTTGCTGGCAACCTGGCCTCTGGTBGTGCTGCTGSTGCTTCCTCTTTGTITTITSTGTACTCCCTGGACTACGCGAGAACAAGS 
K W FAD N LAS 3D A A GAS S L F F V VS L 0 VAR T R 

451 	 * 	 ft 

TTGGCTAATGACGCGAAGGCTGCCAAGGGADGAGGTSAAAGGCADTICAATGGSCTTGTCGATSTCTACCDCAAGACACTCAAGTCTGAI 
LAND A K A A K 886 ERG F N DLV DV Y 	K ILK SD 

541 	 * 
GGTATISCTGGGCTTTACCGTSGAITTAACATCICCTGIGTTGGAATCATIGITTATCGTGGICTSTACITTGGACTCTATGATTCCAIC 
0  A SLY RD F NIB CV DII V Y 	3 L 	F SLY OS I 

631 	 ft 

AAGCCABTTGTCCTIACIGGCAACCICCAGGACAATITCIITGCCAGTTTCGCTCTGGGTTGGCTSATCACIAATBGIGCTD6TCTTGCA 
K P V V LTD N L 9  N F F A SF AL SW LIT N GAG LA 

721 	 ft 	 * 
TOT TAOCCCATCGATACCGTCCGCAGAAGGAIGATGATOACATCTGSTGAGGCTGTCAABTACAAGAGCICCTTGGACGCDTTCCAGCAS 
BY P ID TV R R R 1111 PITS GE A V KY K 5  LOAF 0  

811 	 * 	 * 
ATTCTTAAGAADGAAGGGCCCAAGICCCTSTTCAAGGGTGCTGGT6CTAACATTCTICGIGCCATTGCTGGTGCTGGTGTGCTTTCTGGC 
ILK KEG P KB L F K GAG A NIL R A IA GAG V LBS 

901 	 ft 	 ft 

TATDACCAGCTCCASATCCTCTTCITCGGAAAGAAGTACGGCTCCGGCGGTGCITAAATGGAGAAAIAATGTA6ACSAACAAGAGCAGTG 
V 0 DL GIL F F OK KY 3330 A * 

991 	 ft 	 ft 

TGTGTTCCCGGTCCTITCCAATCAGGATCTGGISAAGITTTIGCCTTTCATIICGAAGAAAITAAIAAITCATGIASASGGAGDATICTT 

1081 	 ft 	 ft 

CCAACAATTTGTTTTDSATGGAGACITAGATCTCCAAACACTCGTAACTAICCT 

Figure 2. Nucleotide sequence and predicted amino acid sequence of the 
maize adenine nucleotide translocator derived from plasmid pANT-1. 

terminus of the Neurospora polypeptide, where a methionine occurs in the 

correct reading frame. It is not possible to state conclusively that this 

is the methionine codon used for initiation in maize, as the cDNA clone 
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I! 
BOVINE 	 SPQALS LK

=GV 

ETAVAPIF.RVKLLLQVQIIA 

MAIZE 	H 9 T P I. C A N A P A F. K C C K N F M I 	K T A A A F I I B V K L 	I 9 N C P 1 

NEIJROSPORA 	 MA EQQK V LA N P P F VA 	K TA A API E BTTIK I. IV 911110 F 

BOVINE 	S - K 9 5 5 A E K 9 5 K G I 5 5 C V V B I P K I 9 C F LIS F V N C Nl±JA N V I B V P P T 9 A 1 N P A F 
MAIZE 	N I II S C B I S K P V K C ID C F K N T I K I) E C F S[L V R C V S A N V I H V F P T 9 A L N P A F 

NPIIROSPOBA Ml B AGR LOIIRYNC 11 DCFKRTTAPEGVNAIIVRCNTANV I I1YF P T Q A L N F A F 

BOVINE 	K B K V K 9 flL  G C V II B H K9F V B V P A C N L A C CO A A C A S S I C F V V P L S F A N I II L A A 

MAIZE 	KIIYFKRNFKKDBIIGVWKWFAGNLA500AACASS FFVYSLDVAH T

NEUROSPORA 	5 F K K 	C V K K D1DG V V K WI1A S N I A S C C A A C A T S L L F V V S 1 0 V A R T S L A N 

BOVINE 	DJV r K GJA A Q R 9 F JF LLG N C I TnK I F F- 	 VrF]VQ I I I =YA F 

NEUROSPOI1A

r 

. 	 . I I V Y R . 	7 

	

v v 	 o 

BOVINE 	GVVDTAKGMLPDPKKVHI_I.!JTVNI AQTVTAVACLVSYPFI)TVNRI1MMMjf 

MAIZE 	C L V D II I K P V V 1 1 C N I. 9 5 N F FFS F A I C I I I I N S LAG I A S V P I B T V R N R H 14 H T S 

NIIIIBOSPORA CIYOSIKPVLLVSPIKFINFLIASFAIGWCVTTAAC IASYPPDTI RBRMMI4TS 

BOVINE 	KCA III MY TOT VI>CVR~Kl AK DEC PKAF FE GAlS NV LRCMGGA FV LV LVIII ISV 

MAIZE 	C 	E A V K V K S S I B A F9 I K K F C P K S I F K S A C. A N 1 L B A I A C A C V I S C V

NEUI1OSPOIIA C 	P.AVKyK5SFflAA5VAEFCFjK5!.FKCACANIIRIIVAI5A5U,1 

BOVINE 	F V 

MAIZE 	I. F P C K K V C SflC A 

NI:I,BOSPORA L I F C K A F K cisis S 

Figure 3. The amino acid sequences of the bovine, maize and Neurospora 
crassa adenine nucleotide tranalocator proteins aligned in order to maximise 
the homology between them. The maize and Neurospora sequences are deduced 
from nucleotide sequences (this paper, 22), the bovine sequence was 
determined directly (23). The two conserved lysine residues and the 
cysteine referred to in the text are indicated with arrows. 

terminates two nucleotides 5' to this ATG codon. However transcript analysis 

suggests that the mRNA may be as long as 1600 nucleotides,raising the 

possibility that the coding sequence is much larger than either the bovine 

or Neurospora translocators. In Neurospora the ADP/ATP translocator is 

apparently not made as a precursor with an amino terminal prepiece which is 

cleaved off upon import into the mitochondrion (6). The relationship between 

the initial translatiu-iproduct and the mature protein is not known for maize, 

although the mature protein has an estimated molecular weight from SOS PACE 

of ca. 30,000 (M.J. Hawkemford pers. comm.) compared to the calculated 

molecular weight from the cDNA clone of 40,519. In the case of both beef and 

Neurospora, the calculated molecular weight from the sequence exceeds that 

predicted from SOS PAGE, 38,870 vs 30,000, (estimated) for beef and 39,509 
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vs 33,000, (estimated) for Neurospora. 

The 3 untranslated region does not contain an obvious polyadenylation 

signal conforming to the animal consensus AATAAA (30). This observation 

supports the suggestion that many plant genes differ from animal genes in 

this respect. A variation of this sequence, GATAA13, is usually located 

15-40 bases from 5' to the site of polyadenylation (31). The maize adenine 

nucleotide translocator gene lacks the AATAAA motif, but two sequences of 

AATAAT do occur, one 8 nucleotides 3' to the termination codon and one 76 

nucleotides 5' to the point of poly(A) addition. The sequence AATAAT is 

found in the zein subfamily B49 of maize (31), and in maize alcohol dehydro-

genase-2 (32), which both lack the canonical AATAAA motif. However, none of 

these sequences have been shown to be sufficient or even necessary for 

correct polyadenylation of higher plant messenger RNA's. 

Codon usage 

Despite the high overall nucleotife sequence homology, 69% in the coding 

region, codon usage between the Neurospora and maize translocator genes is 

quite different. The maize gene exhibits a marked bias towards T in the 3rd 

position of the codon, where it occurs 38% of the time. In the Neurospora 

gene 55% of the codons end with C, compared with 28% for maize. Both genes 

show a bias against codons ending in A, 8% for maize and less than 1% for 

Neurospora. This codon usage is in marked contrast to that observed for 

several other maize nuclear genes. 

In yeast and E. coli it is clear that codon usage bias relates to the 

level of expression of many genes, the higher the level of expression, the 

greater the degree of bias towards codons corresponding to the major 

isoaccepting tRNA species (33). It has been suggested that this avoids 

depletion of the pool of charged tRNA's of rarer species, which might lead 

to an inhibition of translation or an increase in missense reading. In 

comparison to yeast and E. coli, relatively few plant genes have been 

sequenced, so it remains to be seen whether similar rules of codon bias apply 

and the significance, if any, of the observed differences in codon usage 

between the maize translocator and some other maize genes. 

RNA transcripts 

Samples of total cellular RNA and the poly(A) RNA preparation used to 

construct the library were fractionated by electrophoresis in formaldehyde-

agarose gels and transferred to nitrocellulose. When hybridised with either 

nick-translated pANT-i plasmid DNA or with strand specific N13 subclones of 

the plasmid, a single transcript of ca. 1600 nucleotides was detected 
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Kb 
Figure 4. RNA transcripts of the maize adenine nucleotide 
translocator. Panel (A) represents 15ig of total RNA, panel 

(B) 2ig of poly(A) RNA, from 60h old dark grown maize cole-
optiles, which were fractionated by electrophoresis in the 
same gel. RNA was transferred to nitrocellulose, probed 
with nick translated plasmid pANT-1, and autoradiographed. 
Size markers are E. coli rRNA. 

-2901 

.54 

(Fig. 4). The cloned cDNA is 1196 nucleotides long including the cloned 

portion of the poly(A) tail. This means that an additional 400 nucleotides 

remains to be accounted for. Assuming that the transcript observed 

represents a mature message and that 50-200 nucleotides is a reasonable 

estimate of the length of the poly(A) tail, then the 5' untranslated 

sequence may be in excess of 250 nucleotides. This would be unusual as 

several plant messengers have been shown to possess quite short leader 

sequences of less than 100 nucleotides (34). 

Predicted higher order structure and arrangement of the translocator 

polypeptide in the mitochondrial inner membrane 

The hydropathy profiles of the beef heart, Neurospora and maize 

translocator polypeptides are very similar and can virtually be superimposed 

one upon another, which reflects the remarkable degree of conservation seen 

in the primary sequence (data not shown). Six hydrophobic domains are 

apparent which may be membrane traversing alpha-helices (35). These segments 

are separated by regions of a more hydrophilic nature. Saraste and Walker 

(35) noted that the bovine polypeptide contains a marked internal repeat, 

and proposed that the gene evolved by triplication of an ancestral gene. 
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This repeated feature is also striking in the maize sequence at both the 

amino acid and nucleotide level, and supports the idea that a gene triplica-

tion took place before the progenitors of mammals, fungi and higher plants 

diverged. 

Data derived from pyridoxal phosphate labelling studies of the beef 

translocator complexes with the inhibitors carboxyatractyloside (CAT) and 

atractyloaide (ATR) have been cited to propose that lys-22 and iys-146 of 

the bovine polypeptide are involved in, or close to, the binding centre of 

the nucleotide translocator (36). The binding site for ATR is thought to be 

closely related to the binding site for adenine nucleotides but different 

to the site for bongkrekic acid, another inhibitor of nucleotide transport 

(37). Out of 14 lysine residues which could be labelled in these studies, 

only 6 are conserved between all three translocator proteins and these 

include the equivalents of lys-22 and lys-146 in the bovine protein (Fig. 3). 

The ATP/ADP translocator is inhibited by N-ethyl maleimide, implicating 

a cysteine residue at or near the active site (38). A recent publication 

demonstrated directly that the sulphydryl group alkylated in the bovine heart 

mitochondrial carrier is cys-56 (39). This is supported by the sequence 

comparisons shown in Fig. 3, as cys-56 is the only cyateine residue conserved 

between all three species. 
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