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Abstract

We define two logics of safety specifications for reactive systems.
The logics provide a setting for the study of composition rules. The
two logics arise naturally from extant specification approaches; one of
the logics is intuitionistic, while the other one is linear.

1 Introduction

Modular, hierarchical methods for specifying reactive systems [HP85a] in-
clude rules for composing and refining specifications (e.g., [dBdRR90]). The
form of the rules suggests a possible specification logic. In it, the propo-
sitions would be system specifications; the notations for combining speci-
fications would become logical connectives; and the rules for composition
and refinement would be formulated as sound inference rules. The logic
would thereby provide a setting for the study of composition and refinement
rules. It should also provide a framework for writing specifications and for
verifying them using these rules.

In this paper, we define and develop such a logic for composition. We
intend to treat refinement in a second paper, and thereby complete a frame-
work for the use of the modular specification methods that composition and
refinement rules underpin. At that point it will be natural and useful to
consider a formal logic; in this paper we prefer to work at the semantical
level. (The treatment of refinement and the formal logic were sketched in a
preliminary version of this paper [AP91].)

In fact two logics of composition arise naturally. One of the logics is an
intuitionistic logic, while the other one is linear [Gir87]. In the intuitionistic
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logic, a specification is a set of allowed behaviors, as in [Lam83a, BKP84].
In the linear logic, a specification is a set of allowed processes, much as in
the sense of Abrahamson [Abr79].

Composition rules rules typically apply to safety properties, and also,
sometimes with significant complication, to certain liveness properties. Here
we treat only safety properties. With this restriction, the logics provide
a new understanding of some current specification methods, and suggest
extensions. They are intended as a basis for Lamport’s transition-axiom
method for reactive systems [Lam89].

A reactive system can be expected to operate correctly only when its
environment operates correctly. For example, a concurrent program module
can be expected to exhibit desirable behavior only when its inputs are of
the proper types. The environment cannot be required to operate correctly,
but the system’s obligations are void when the environment operates incor-
rectly. An assumption-guarantee specification states that a reactive system
satisfies a specification M if it operates in an environment that satisfies an
assumption E; this specification is sometimes written E ⇒ M .

A Composition Principle gives a way of combining assumption-guarantee
specifications while discharging their assumptions [MC81, Pnu84, Sta85,
AL90]. A simple version of the principle, applied to two reactive systems p1
and p2, says:

If p1 satisfies M2 ⇒ M1
and p2 satisfies M1 ⇒ M2,
then when they are run in parallel
p1 satisfies M1 and p2 satisfies M2.

As stated, the Composition Principle is not sound in general. The underlying
propositional reasoning is obviously (and intriguingly) circular.

However, the principle is sound when M1 and M2 are safety properties,
and under some additional hypotheses. For instance, consider two processes
p1 and p2 that communicate by the distributed integer variables x1 and x2;
it is assumed that only p1 writes x1 and that only p2 writes x2. Let M1
be “x1 never decreases” and M2 be the corresponding assertion for x2, and
suppose that p1 and p2 satisfy M2 ⇒ M1 and M1 ⇒ M2, respectively. Then
it is sound to conclude that M1 and M2 both hold, that is, that neither x1
nor x2 ever decreases.

An important test for a logic of specifications is whether it can be used to
express and to illuminate the Composition Principle. Both of our logics are
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designed to satisfy this criterion. For example, the intuitionistic formulation
of the principle just given is:

(M2 → M1) ∧ (M1 → M2) ` M1 ∧M2

with a proviso to guarantee that M1 and M2 are specifications of separate
processes. The logics can express also other variants of the Composition
Principle; they serve in comparing these variants and, occasionally, in dis-
covering new ones.

As we consider only safety properties, which are closed sets, we ob-
tain an intuitionistic logic. In this we follow Hennessy and Plotkin [HP87]
and, less directly, Abramsky with his proposal of a general logic of open
sets [Abr89]. Parallel composition can be represented by conjunction, as in
works of Lamport and Pnueli. Both Dam [Dam88] and Abramsky [Vic88]
pointed out that in general parallelism will give extra, quantalic structure.
This indeed happens when we take specifications to be sets of processes, and
then the logic of specifications is linear. Our work may yield some evidence
for the relevance of linear logic to concurrency. Other evidence can be found
in work on Petri Nets (e.g., [MOM89]) and testing equivalence [AV90].

We introduce our logics in the following overview. Sections 3, 4, and 5
give formal definitions and develop the material further.The reader may wish
to consult [DP91, Joh82, Ros90] , for information on partial orders, cpos
(complete partial orders), complete Heyting algebras, and quantales.

2 Overview

We review the basic propositional intuitionistic and linear calculi. We de-
scribe the usual connectives, and motivate the addition of new constructs,
which are needed in order to support the assumption-guarantee specification
style.

2.1 A calculus of sets of behaviors

The intuitionistic logic is inspired by the work of Lamport, Pnueli, and
others, where the specification of a system is a set of allowed behaviors.
In turn, a behavior is a sequence of state transitions, and a state is an
assignment of values to state components, or variables. Each state transition
is attributed to an agent, the environment process or system process that
caused the state change. Thus, a behavior is a sequence

s0
a1−→ s1

a2−→ s2
a3−→ . . .
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where each si is a state and each ai is an agent, and the sequence is either
infinite or else ends in a state sm for some m ≥ 0.

The use of agents is motivated by the obvious need to distinguish be-
tween actions performed by the environment and those performed by the
system. In any particular specification, it suffices to consider two agents:
the environment and the system. However, it is preferable to allow arbitrary
sets of agents, in order to ease the composition of specifications. Agents are
taken as a primitive notion below, but this can be avoided, for example as
in [Pnu84].

Since we are concerned only with safety properties, we restrict attention
to finite behaviors. A safety property is then a prefix-closed set of behav-
iors. In the logic, the propositions denote safety properties, and ` simply
stands for ⊆. The collection of safety properties forms a complete Heyting
algebra [Joh82] and so the intuitionistic logical operations ∧, ∨, and → are
available. The first two are intersection and union.

Conjunction serves its usual logical role: a process p satisfies M1 ∧M2
if and only if it satisfies both M1 and M2. Further, conjunction represents
parallel composition: if p1 satisfies M1 and p2 satisfies M2 then p1 and p2
in parallel satisfy M1 ∧ M2. Disjunction corresponds to nondeterministic
choice: if p1 satisfies M1 and p2 satisfies M2 then a processes that acts like
either p1 or p2 satisfies M1 ∨M2.

Implication turns out to be a familiar and handy operation: E → M is
the set of all behaviors that satisfy M at least as long as they satisfy E. The
connective → has arisen in works on the Composition Principle (in [AL90],
and implicitly in [MC81] and [Pnu84]). Under reasonable hypotheses, the
specifications E ⇒ M and E → M have the same implementations, and
hence ⇒ can be replaced with →. It is encouraging that the logical formu-
lation naturally yields this connective.

The specification of a system cannot require the environment to work
properly, and so any environment action should be allowed. More precisely,
if a property M is intended to specify the process represented by an agent
(or set of agents) µ, then any minimal behavior not in M should end with
a µ state change. When this condition holds, we say that M constrains at
most µ, and write M / µ.

With this notation, the Composition Principle reads: for any M1 and
M2,

(M2 → M1) ∧ (M1 → M2) ` M1 ∧M2

provided M1 / µ1, M2 / µ2, and the sets µ1 and µ2 are disjoint. The proviso
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expresses the requirement that M1 and M2 describe different processes. (The
principle is not sound otherwise, for example if M1 and M2 are the same.)
Note how the logical approach obviates the need for explicit reference either
to processes (as in [MC81, Pnu84]) or to the realizable parts of properties
(as in [AL90]).

Many variants of the Composition Principle can be treated in this frame-
work; for example, we easily obtain:

E ∧M2 ` E1 E ∧M1 ` E2

(E1 → M1) ∧ (E2 → M2) ` (E → M1 ∧M2)

where M1/µ1 and M2/µ2. Some of these variants are well known, while oth-
ers seem to be new. All of them can be proved equivalent using propositional
reasoning and a few rules about the constrains relation.

2.2 A calculus of sets of processes

In the linear calculus, a proposition denotes a set of processes. We take a
process to be a set of sequences of state pairs. Intuitively, a process that
contains (s1, t1) (s2, t2) (s3, t3) . . . can change the state from s1 to t1, and
later from s2 to t2, and later yet from s3 to t3, . . . .

In the study of safety, it suffices to consider finite sequences of state
pairs. We require also that processes be prefix-closed. It turns out that the
set of safety properties is isomorphic to the set of processes; thus, we may
identify safety properties and processes.

The logical operations ∧, ∨, and → are still meaningful. They arise as
before from the complete Heyting algebra structure of the partial order of
safety properties.

The property M1 ∧ M2 allows the processes that are allowed both by
M1 and M2; conjunction does not have any particular relation with con-
currency. Disjunction corresponds to nondeterministic choice, as before.
Finally, M1 → M2 includes the processes that behave like a process in M2
at least as long as they behave like a process in M1.

Intuitionistic linear logic arises when we consider the parallel composition
of two processes. The parallel composition of p1 and p2 is the set of shuffles
of p1 sequences with p2 sequences. At the level of specifications, this gives
rise to a new logical operation, ⊗, which is the multiplicative conjunction in
linear logic. A process satisfies M1 ⊗M2 if it is the parallel composition of
an M1 process with an M2 process. Thus, if p1 satisfies M1 and p2 satisfies
M2 then the parallel composition of p1 and p2 satisfies M1 ⊗M2.
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Associated with the connective ⊗ is a linear implication operation, −◦.
The property M1 −◦ M2 is the largest N such that M1 ⊗ N is a subset of
M2. Thus, p ∈ M1 −◦M2 if and only if the parallel composition of p with
any q ∈ M1 satisfies M2.

Conjunction and disjunction are then the additive connectives of linear
logic. The exponential operator ! is trivial, but a nontrivial (·)∗ construct
can be added to represent the parallel composition of a number of like pro-
cesses. In the next subsection, we propose an interpretation of the classical
constructs.

The standard intuitionistic linear connectives do not suffice as a basis
for assumption-guarantee specifications. In particular, p ∈ E −◦ M is not
equivalent to the desired “p satisfies M in any environment that satisfies E.”
The assertion p ∈ E−◦M means only that the composition of p with any E
process q is an M process. It is possible that q is not the whole environment
of p—there could be a third process running in parallel; it is also possible
that p does not satisfy M in this environment—the parallel composition of
p and q does.

To remedy this deficiency, we introduce a connective −�. The property
M1 −�M2 consists of the processes that, when run in parallel with an M1
process (and with nothing else), behave like M2 processes. The special case
of M1 −� M2 where M1 contains only the null process 1 is of particular
interest; {1} −� M is the set of all processes that behave like a process in
M when run by themselves, with no interference from the environment. We
denote this property by M�.

Now the Composition Principle goes:

(M2 −�M1)⊗ (M1 −�M2) ` (M1 ⊗M2)�

This formula is valid in our model, without any additional proviso. As in
the intuitionistic case, a number of variants of the Composition Principle
are available, and for example we have also the more general:

E ⊗M2 ` E1 E ⊗M1 ` E2

(E1 −�M1)⊗ (E2 −�M2) ` (E −�M1 ⊗M2)

2.3 Testing

The linear logic described so far is an intuitionistic one. It does not include
a constant ⊥ that resembles falsehood, or a negation-like involution (·)⊥.
The notion of testing suggests useful ⊥ and (·)⊥ constructs, and gives rise
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to a different account of assumption-guarantee specifications. We can view
the environment of a process as a tester for the process. Tests start from a
distinguished state α; and another state β is distinguished to represent the
result of successful tests. A process p passes the test of q if p and q may
yield the state β when they run in parallel, starting from α, and q fails p
otherwise. A process succeeds if it may yield β when it runs in isolation,
starting from α, and it fails otherwise. Thus, p passes the test of q if the
parallel composition of p and q succeeds.

Failure is a safety property, and we write ⊥ for the set of all processes
that fail. A sort of negation can also be defined: M⊥ is the set of all
processes that fail M processes. Naturally, we are particularly interested in
the propositions M such that M = (M⊥)⊥, which are called facts. These
are the specifications that have sound and complete testers; they can be
characterized explicitly with a simple set of closure conditions.

Certain expressions in this classical linear logic are reminiscent of as-
sumption-guarantee specifications. In particular, (E ∧ M⊥)⊥ is the set of
processes that fail all of the tests that M processes fail, provided these tests
are from E. In other words, (E ∧M⊥)⊥ includes all of the processes that
cannot be distinguished from M processes in E environments (by E tests).
It is analogous to the assumption-guarantee specification E ⇒ M , but the
obvious analogues of the Composition Principle do not hold.

A small correction solves this problem. Let

E+ = E ∪ {u(s, β) | u ∈ E, s a state}

The processes in E+ behave like processes in E, except that they may pass
the testee at any point. If E and M are facts, then

E −�M = (E+ ∩M⊥)⊥

and the expected Composition Principle follows.

3 Intuitionistic Logic

The model that underlies the intuitionistic logic is a small variant of that
in [AL90]; we refer the reader to this and previous works for additional
motivation.

We assume given a nonempty set of states, S, and a nonempty set of
agents, A. These sets are disjoint. A behavior is an alternating finite se-
quence of states and agents that both begins and ends with a state. It can
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be pictured as:
s0

a1−→ s1
a2−→ s2

a3−→ . . . sn−1
an−→ sn

where each si is a state and each ai is an agent. We identify states with the
corresponding one-element sequences. If σ is a sequence, a an agent, and s a
state, then σ a−→ s denotes the concatenation σas. The set of all behaviors
is denoted by B.

A safety property is a set of behaviors closed under prefixes. The set
of all safety properties is denoted by Sb, and ordered by subset. It will
be convenient to use the turnstile symbol ` to denote the subset ordering.
Safety properties, as we have defined them, are isomorphic to the safety
properties of [AL90], for example, with the caveat that we have not yet
treated invariance under stuttering. It is quite natural, and desirable, to add
a straightforward condition of invariance under stuttering to our definitions,
as first advocated by Lamport [Lam83b]. For simplicity, we do not do so at
this point, but do give a full discussion below.

The length |σ| of a behavior σ is the number of agents that occur in σ.
If 0 ≤ m ≤ |σ| then σ|m is the prefix of σ of length m; if m > |σ|, then
σ|m = σ.

Proposition 1 Sb is a complete Heyting algebra, where ∧ is ∩,
∨

is
⋃

, and
the associated implication is

M1 → M2 = {σ | ∀n ≥ 0. if σ|n ∈ M1 then σ|n ∈ M2}

Proof As Sb is closed under finite intersections and arbitrary unions, the
set-theoretic operations are the lattice-theoretic ones. For implication, note
that

M1 → M2 = {σ | ∀n ≥ 0. σ|n ∈ (B\M∞) ∪M∈}

and so it is the greatest safety property contained in the Boolean implica-
tion.

Hence, the algebra of safety properties is a model for intuitionistic logic.
The next subsection discusses composition in this intuitionistic setting, and
the following one adds the treatment of stuttering.

3.1 Composition

We say that the safety property M constrains at most the set of agents µ,
and write M / µ, if: (i) if s ∈ S then s ∈ M ; and (ii) if σ ∈ M , s ∈ S, and
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a ∈ µ̄, then σ a−→ s ∈ M . Note that if M /µ then (N → M)/µ for every N ,
and that if µ ⊆ ν and M / µ then M / ν. The collection of safety properties
that constrain at most µ is closed under non-empty joins and finite meets.

Further, let Mµ be the smallest superset of M that constrains at most
µ. The definition of “constrains at most,” in the form of a monotone closure
condition, guarantees that such an Mµ exists. In fact, a behavior in Mµ is
either a behavior in M extended with arbitrary µ̄ steps, or simply a behavior
that consists exclusively of µ̄ steps. So (·)µ is a monotone closure operation.
It commutes with arbitrary non-empty joins, and also with finite meets.

We are now in a position to formulate a version of the Composition
Principle of [AL90] specialized to safety properties. If I is a set of states,
we write Î for the safety property {σ | σ begins with an element of I}; such
a safety property is an initial condition.

Theorem 1 (Composition Principle) Let µi be sets of agents, let Ii and
I be sets of states, and let Mi / µi and Ei / µ̄i (for i = 1, n). Suppose that
Î `

∧

i Îi and E ∧
∧

i Mi `
∧

i Ei. Then
∧

i

(Îi ∧ Ei → Mi) ` Î ∧ E →
∧

i

Mi (1)

Proof We show by induction on the length of σ that if it is in the set on the
left-hand side and also in Î ∧E then it is in Mi (i = 1, n). In case the length
is zero, this is immediate as Mi / µi. Otherwise, σ has the form σ′ a−→ s.
By induction hypothesis, σ′ is in Mi. So if a 6∈ µi, we get σ ∈ Mi as Mi /µi.
We are left with the case where a ∈ µi. As σ ∈ Î ∧ E we get σ ∈ Îi. As
σ ∈ E ∧

∧

i Mi, we get σ′ ∈ E ∧
∧

i Mi, and hence σ′ ∈ Ei and σ ∈ Ei (as
Ei / µ̄i). So, finally, as we now have σ ∈ Îi ∧ Ei → Mi and σ ∈ Îi ∧ Ei, we
get σ ∈ Mi as required.

The Composition Principle corresponds to that of [AL90] restricted to
safety properties (once stuttering is taken into account). The principle is
designed to be of direct use in applications. As such, it is rather complex,
and we turn to finding simpler but equivalent versions. An immediate sim-
plification is obtained by removing the initial conditions to obtain that if
Mi / µi, Ei / µ̄i, and E ∧

∧

i Mi `
∧

i Ei, then
∧

i

(Ei → Mi) ` E →
∧

i

Mi (2)

This is evidently a special case of the principle. It also implies the principle
as (1) follows from (2) and Î `

∧

i Îi by propositional reasoning. (By that
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we mean that if we treat (1), (2), and Î `
∧

i Îi as sequents in a suitable
intuitionistic calculus, regarding the E, Ei, Mi, Î, Îi as propositional sym-
bols, and ∧ and → as logical connectives, then (1) can be derived from (2)
and Î `

∧

i Îi.)
It is instructive to consider the case n = 1 which amounts to the fact that

if E ∧M1 ` E1 then (E1 → M1) ` (E → M1). By propositional reasoning
this is equivalent to the case where E = (M1 → E), which can be written
as:

(E1 → M1) ∧ (M1 → E1) ` M1 (M1 / µ,E1 / µ̄) (3)

It turns out that the whole Composition Principle can be reduced to this
case just using propositional reasoning. To show this, let us assume (3) and
demonstrate the special case of the Composition Principle not involving
initial conditions. We proceed by induction on n, with the base case having
already been considered. For n > 1, assume that E ∧

∧

i Mi `
∧

i Ei. Then
for any j (where 1 ≤ j ≤ n) we have:

∧

i(Ei → Mi) ∧ E ` (Ej → Mj) ∧
∧

i6=j(Ei → Mi) ∧ E
` (Ej → Mj) ∧ (E ∧Mj →

∧

i6=j Mi) ∧ E
(by induction hypothesis, since
E ∧Mj ∧

∧

i 6=j Mi `
∧

i6=j Ei)
` (Ej → Mj) ∧ (E ∧Mj → Ej) ∧ E

(since by assumption E ∧Mj ∧
∧

i6=j Mi ` Ej)
` (Ej → Mj) ∧ (Mj → Ej)
` Mj

(by (3))

In short, we get
∧

i(Ei → Mi) ∧ E ` Mj (for j = 1, n), and hence also
∧

i(Ei → Mi) ` E →
∧

i Mi as desired.
If we allow the (·)µ operator in our statements, (3) can be further reduced

to:
(Mµ̄ → M) ` M (M / µ) (4)

This formula follows by propositional reasoning from (3) (taking M = M1
and Mµ̄ = E1) and the fact that M ` Mµ̄. But (4) also implies (3), once we
add to our propositional reasoning a fact about the (·)µ operator given by
Lemma 1:

Lemma 1 If M and E are safety properties and ν is a set of agents, then
M → E ` Mν → Eν .
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Proof The proof is a simple chain of implications:

(M → E) ∧Mν ` (M → E)ν ∧Mν
` ((M → E) ∧M)ν (as (·)ν preserves intersections)
` Eν (as (·)ν is monotone)

Now to see that (3) follows from (4), suppose that M / µ, E / µ̄, and
calculate:

(E → M) ∧ (M → E) ` (E → M) ∧ (Mµ̄ → Eµ̄) (by Lemma 1)
` Mµ̄ → M (since E / µ̄)
` M (by (4))

3.2 Stuttering

Two behaviors are stuttering equivalent if they differ only as regards the
presence or absence of steps of the form s a−→ s. Formally, define stuttering
equivalence as the least equivalence relation ' on behaviors such that:

usasv ' usv (5)

Orienting this equation from left to right we evidently obtain a strongly
normalising Church-Rosser reduction system. The normal forms are the
behaviors containing no stuttering steps. Write \σ for the normal form of
σ; it is the shortest behavior stuttering equivalent to σ.

Following [AL90] we concern ourselves with properties closed under '.
Let Stb be the collection of safety properties closed under stuttering, and
order it by inclusion. It turns out that Stb is again a complete Heyting
algebra with finite meets and arbitrary joins given set theoretically and the
associated implication is the restriction of that for Sb. The first part of these
assertions is obvious; for the second we need to examine the relationship
between the prefix ordering ≤ on behaviors and stuttering equivalence.

Lemma 2 Suppose that σ′ ≤ σ ' τ . Then there exists a τ ′ such that
σ′ ' τ ′ ≤ τ .

Proof Since σ ' τ, τ can be obtained from σ by a sequence of steps of the
form (5) or the converse. We prove the result for the case of one such step;
an evident inductive argument then completes the proof. So first suppose
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that σ, τ have the forms usasv and usv. Since σ′ ≤ σ = usasv either σ′ ≤ us
or us < σ′. In the first case we have σ′ ≤ τ and so we can take τ ′ = σ′. In
the second case σ′ must have the form usasv′ where v′ ≤ v and we can take
τ ′ = usv′. It remains to consider the situation where σ, τ have the forms usv
and usasv. Since σ′ ≤ usv we have either σ′ ≤ u (when we can take τ ′ = σ′)
or that σ′ has the form usv′ with v′ ≤ v (when we can take σ′ = usasv′).

We can now check that if M1 and M2 are in Stb then so is M1 →
M2 (where → is as defined above)—it follows that → is the intuitionistic
implication in Stb. For this, suppose that σ ' τ ∈ M1 → M2. Suppose
further that σ |n∈ M1 for some n ≥ 0. Then, by the Lemma, for some
τ ′ ≤ τ , σ |n' τ ′. We now have successively that: τ ′ ∈ M1 (as M1 is closed
under '), τ ′ ∈ M2 (as τ ∈ M1 → M2), and σ |n∈ M2 (as M2 is also closed
under '). Hence, σ ∈ M1 → M2.

The relation between Sb and Stb is best explained by the map ϕ : Sb → Sb
where ϕ(M) is defined to be the least safety property containing M and
closed under stuttering.

Proposition 2 1. ϕ(M) = {τ | ∃σ ∈ M.τ ' σ}.

2. ϕ is a monotone closure operation preserving all joins;

Stb is its partial order of fixed-points.

Proof

1. It suffices to show that the right-hand side is a safety property and
this is immediate from Lemma 2.

2. Obvious.

As the lattice-theoretic operations in Stb are the set-theoretic ones, the
collection of stuttering-closed safety properties that constrain at most µ is
closed under non-empty joins and finite meets; and we also know that if M
is such a property then so is N → M , for any N in Stb. For M in Stb, let
Mµ be the least superset of M in Stb which constrains at most µ.

Proposition 3 1. Mµ = ϕ(Mµ).

2. (·)µ is a monotone closure operation that preserves non-empty joins
and finite meets.
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Proof

1. It suffices to show that ϕ(Mµ) constrains at most µ. First S ⊆ Mµ ⊆
ϕ(Mµ). Second, suppose that σ ∈ ϕ(Mµ), a /∈ µ, and s ∈ S. Then σ '
some τ in Mµ. But now we have that σ a−→ s ' τ a−→ s ∈ Mµ and so
σ a−→ s ∈ ϕ(Mµ).

2. Evidently (·)µ is a monotone closure operation. It preserves non-empty
joins as both ϕ and (·)µ do. All closure operations preserve the top
element. For binary meets, we just prove ϕ(Mµ) ∩ ϕ(Nµ) ⊆ ϕ((M ∩
N)µ), the other direction being a trivial consequence of monotonicity.
So suppose that σ ' τ in Mµ and σ ' γ in Nµ. It is straightforward to
show, for any M in Stb, that if σ ∈ Mµ then \σ ∈ Mµ. So we get that
σ ' \σ ∈ (Mµ ∩Nµ), as \σ = \τ = \γ. But (Mµ ∩Nµ) = (M ∩N)µ as
(·)µ preserves binary intersections, and so we have σ ∈ ϕ((M ∩N)µ),
as required.

The Composition Principle goes through with stuttering-invariance ex-
actly as it did before. One need only note that Î is in Stb, and that meet,
join, and implication for Stb are the restrictions of the corresponding Sb op-
erations. All the reductions of the principle to simpler ones also go through
exactly as before, as they are either propositional or use the expected cor-
responding facts for (·)µ, viz. that M ` Mµ and M → E ` Mµ → Eµ—the
proof of the latter being perfectly analogous to that of Lemma 1.

4 Intuitionistic Linear Logic

In this section we develop the intuitionistic linear logic proposed in the
overview. The study of classical linear logic is postponed to the next section.

We assume given only a set of states S; there is no notion of agent in
this calculus. A transition is a pair of states. A process is a prefix-closed
set of sequences of transitions. (Note that the empty sequence ε is allowed.)
The set of all processes is denoted by P. It is partially ordered by ⊆ and
as such it is a complete semilattice, which is to say that it has least upper
bounds of all subsets . For two given complete semilattices L and M , we
write f : L →l M , and say that f is linear, meaning that f preserves all least
upper bounds, that is f(

∨

X) =
∨

x∈X f(x) for all subsets X of L. The set
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L →l Mof linear functions from L to M itself forms a complete semi-lattice
under the so-called pointwise ordering: f ≤ g iff f(x) ≤ g(x) for all x in X.1

Complete semilattices L can be viewed as cpos (partial orders with a
least element and least upper bounds (lubs) of directed sets) endowed with
a continuous semilattice operation, +, such that x ≤ x+y. (Note that x+y
must be x∨ y, the lub in the partial order.) This kind of algebra was found
in [HP85b] to be appropriate to the study of lower powerdomains, which
are just free algebras of that kind. Following ideas in [HP87], we now define
a safety property on such a structure as a non-empty Scott-closed subset
closed under the semilattice operation. The idea is that safety properties
correspond to “nothing going wrong” and so: first, nothing can go wrong
with ⊥, the least element, as that corresponds to nothing happening; second,
if nothing can go wrong with each element of a directed set X then nothing
can go wrong with

∨

X either, as “going wrong” is continuous; third, if
nothing can go wrong with x or y then nothing can go wrong with x + y
as all that can happen with x + y is whatever happens with x or whatever
happens with y. This can be formalised by taking as a way of going wrong a
linear map f : L →l I where I is the two-point complete semilattice, {⊥,>},
with ⊥≤ >. The collection of elements of L where f does not “go wrong”
is f−1(⊥) and this yields an isomorphism

S(L) ∼= (L →l I)op

where we order the collection of safety properties S(L) by subset. Consider-
ing again our desire to work with elementary means, note that every safety
property X ⊆ L has a largest element, viz. m(X) =def

∨

X.

Proposition 4 The function m : S(L) → L is an isomorphism of partial
orders.

1It is possible to view P also as the solution to a domain equation, by choosing a
category of domains tailored to nondeterminism, in the fashion of [HP85b]. Specifically,
working in the category of complete semilattices, one finds that P is the initial solution
to the equation:

P ∼= (℘(S) →l ℘(S)⊗ P)⊥

where the lifting operator (·)⊥ adds a new least element, and the tensor product is defined
by a universal property: there is a universal bilinear map L × M ⊗−→ L ⊗ M . Thus
P can be obtained by the methods available in domain theory, and as such it provides
a kind of resumption useful for the semantics of non-terminating processes. Its simple
representation as the prefix-closed sets of transition sequences allows us to work with it
using very elementary mathematical means.
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Proof The function is clearly monotone. Its inverse is m−1(x) = {y | y ≤ x}
which is also monotone.

This isomorphism, together with the above remarks, yields an isomor-
phism Lop ∼= (L →l I) which is part of the well-known self-duality of the
category of complete semilattices [Joh82]. We say the process p satisfies
a safety property X, and write p |= X, if and only if p ∈ X. Under the
isomorphism this is the case iff p ⊆ m(X).

We will work with P rather than the more complex S(P). First, P is
again a complete Heyting algebra with the lattice-theoretic operations being
the set-theoretic ones and the associated implication being

M1 → M2 = {u | ∀n ≥ 0. if u|n ∈ M1 then u|n ∈ M2}

where the prefix u|n is defined as usual for sequences. The empty set (false-
hood) is written 0, and the set of all transition sequences (truth) is written
>.

If p1 and p2 are two processes, their parallel composition is p1 ||p2, where
|| is the language shuffle operator. Conjunction is no longer the logical
correlate of parallelism, however. If p |= X and q |= Y it is not true in
general that p ‖ q |= X ∧ Y . Rather, in order to treat parallelism, we define
a new operator on safety properties by:

X ⊗ Y = {p ‖ q | p |= X, q |= Y }s

where (A)s is the least safety property containing A.

Proposition 5 m(X ⊗ Y ) = m(X) ‖ m(Y ).

Proof If p |= X and q |= Y then p ⊆ m(X), q ⊆ m(Y ), and so X ⊗ Y =
{r | r ⊆ m(X) ‖ m(Y )}.

Working with P in place of S(P) we take ⊗ on P to be ‖. One sees that
⊗ commutes with arbitrary joins in P and gives a commutative monoid,
with unit the null process, 1 = {ε}. In other words, we have:

Proposition 6 (P,
⋃

, 1,⊗) is a commutative quantale, where 1 = {ε}.

The associated quantalic implication is then given by

M1 −◦M2 = {u | ({u} ||M1) ⊆ M2}
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It follows immediately that the algebra of safety specifications provides
a model of intuitionistic linear logic [Yet90, Ros90]. Parallel composition is
the multiplicative conjunction operation, while ∧ and ∨ are the additives.

The exponential operator ! is uniquely, but trivially, determined. If
1 ⊆ M then 1 ⊆!M , and in addition !M ⊆ 1, by the general properties
of !, so we get !M = 1. On the other hand, if 1⊆M is false, the only
possibility is M = 0, and !M = 0, as in every model !M ⊆ M .

Instead, a nontrivial (·)∗ operation is available: M∗ is defined as
∨

i M i,
where M i is the i-fold parallel composition of M with itself, and it represents
an arbitrary number of M processes running in parallel.

Composition

A transition sequence is chained if it is of the form

(s1, s2) (s2, s3) . . . (sn−2, sn−1) (sn−1, sn)

(The sequences ε and (s1, s2) are chained.) Intuitively, chained transition
sequences correspond to runs of a system by itself, with no interference
from the environment. We write u ^I v if u and v have a chained shuffle,
beginning with an element of I.

Assumption-guarantee specifications are made possible by a new connec-
tive −�I . We set:

(M)†I = {u | ∃v ∈ M. u ^I v}

and
M1 −�I M2 = (M1)

†
I → M2

The definition says that if a prefix u of a sequence in M1−�I M2 has a chained
shuffle beginning in I with a sequence in M1, then u is in M2. Hence, the
sequences in M1 −�I M2 cannot be distinguished from sequences in M2 by
an M1 environment as regards computations beginning in I.

It seems rather unfortunate to have to introduce a ternary connective
where, furthermore, one of the arguments comes from a set of propositions
different from the other two. We are missing a principled explanation of this
connective arising from the nature of processes. In Section 5 we give one
account of it, relating it to the work using intuitionistic logic.

We can now formulate a version of the Composition Principle in intu-
itionistic linear logic.

16



Theorem 2 (Composition Principle) Let Mi, Ei ∈ P, and let Ii and I
be sets of states (for i = 1, n). Set M ′

i =
⊗

j 6=i Mj. Suppose that I ⊆
⋂

Ii
and E ⊗M ′

i ` Mi −�Ii Ei. Then
⊗

i

(Ei −�Ii Mi) ` E −�I
⊗

i

Mi

Rather than prove the soundness of this rule directly, we will progres-
sively reduce it to simpler principles, and prove the simplest. First, since
−�I is antimonotone in I the principle is equivalent to the case where Ii = I,
for i = 1, n. We now keep I fixed and often omit it, and write, for example,
E −�M .

It is straightforward to reduce the principle to the binary case. The
unary case follows from the binary case by taking M2 = 1, E2 = E ⊗M1,
and using the fact that N ` M −�N , for all M , N . For n ≥ 2 we proceed by
induction. The base case is given, so suppose n ≥ 3 and E ⊗M ′

i ` Mi−�Ei
for i = 1, n. So for i = 2, n we have (E⊗M1)⊗

⊗

j≥2,j 6=i Mj ` Mi−�Ei and,
by induction hypothesis, we get that

⊗

i≥2(Ei−�Mi) ` E⊗M1−�
⊗

i≥2 Mi.
In order to prove

⊗

i(Ei −�Mi) ` (E −�
⊗

i Mi) it is now enough to prove
(E1−�M1)⊗ (E⊗M1−�M ′

1) ` E−�M1⊗M ′
1. But, since we have E⊗M ′

1 `
M1 −�E1, this follows from the binary case, taking M2 to be M ′

1 and E2 to
be E ⊗M1 (and using again the fact that N ` M −�N).

More surprisingly, the general case reduces further to the unary case,
which is:

E ` M1 −� E1

(E1 −�M1) ` (E −�M1)

Note that this is equivalent simply to:

(E1 −�M1) ` (M1 −� E1)−�M1 (6)

using the antimonotonicity of M −�N in its first argument.
The proof that the binary case reduces to the unary case has two parts.

The first part applies not only to the binary case but also to the general case;
it consists in reducing the general case to its instance where Ei = E ⊗M ′

i :
⊗

i

(E ⊗M ′
i −�Mi) ` E −�

⊗

i

Mi

In the second part, this instance is derived from the unary case for n = 2:

(E ⊗M2 −�M1)⊗ (E ⊗M1 −�M2) ` E −� (M1 ⊗M2)
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For the first part of the proof, assume that E ⊗ M ′
i ` Mi −� Ei. The

antimonotonicity of −� then gives:
⊗

i

((Mi −� Ei)−�Mi) ` E −�
⊗

i

Mi

and (6) gives:
⊗

i

(Ei −�Mi) `
⊗

i

((Mi −� Ei)−�Mi)

The general principle follows by transitivity.
We need first a little more about the logic of −� for the second part of

the proof:

Lemma 3 Let A,B, E ∈ P. Then

A⊗ (A⊗E −�I B) ` E −�I A⊗B

Proof It is enough to take w in A ⊗ (A⊗ E −�I B) and x in E such that
w ^I x and show that w is in A⊗B. So taking such a w and x, we get first
that w is a shuffle of an element u of A with an element v of A ⊗ E −� B.
Next, u and x must have a shuffle, y, say, such that v ^I y. But then y is
in A⊗E and so as v is in A⊗ E −�I B, we get that v is in B. So as w is a
shuffle of u (in A) with v (in B) we get w in A⊗B as required.

We may now calculate that:

(E ⊗M2 −�M1)⊗ (E ⊗M1 −�M2)

` (E ⊗M2 −�M1)⊗ ((M2 −� E ⊗M1)−�M2)

(by the unary case)

` (E ⊗M2 −�M1)⊗ (((E ⊗M2 −�M1)⊗E)−�M2)

(as (E ⊗M2 −�M1)⊗ E ` M2 −� E ⊗M1 by Proposition 3)

` E −� ((E ⊗M2 −�M1)⊗M2)

(by Proposition 3)
` E −� (E −�M1 ⊗M2)

(by Proposition 3)
` E −�M1 ⊗M2
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We are left with the task of proving the unary case. The proof requires
an induction on the length of transition sequences and it is noteworthy that
no other truth of the logic we have so far shown (such as Proposition 3) has
done so. Thus all the induction is, as it were, concentrated into this one
case.
Proof We have to show that (E −�I M) ` (M −�I E) −�I M for any E
and M in P. In case M = 0 the result follows immediately as 0−�I E = >.
Otherwise it is enough to show that if u is in (E−�I M) and v is in (M−�I E)
and u ^I v then u is in M ; we show this by induction on | u | + | v |. If
this is 0 then u = ε ∈ M . Otherwise let w be a complete shuffle of u and v
beginning in I.

There are two cases. In the first, w = w1(s, t), v = v1(s, t), and w1 is a
complete shuffle of u and v1. By induction hypothesis, as | u | + | v1 |<| u |
+ | v |, we then get u in M . In the second case, w = w1(s, t), u = u1(s, t),
and w1 is a complete shuffle of u1 and v. By induction hypothesis as | u1 |
+ | v |<| u | + | v |, we get u1 in M . But as v is in (M −�I E) and u1 ^I v,
we get v in E. But then as u is in (E −�I M) and u ^I v, we get u in M .

It also seems possible to obtain variants of the principle that apply to
the composition of an arbitrary number of like processes that depend on one
another, in an environment E. For example, one can show:

(E ⊗M∗ −�I M)∗

E −�I M∗

There does not seem to be an analogous rule in the intuitionistc framework
of the previous section. check this is true!

5 Classical Linear Logic

Once one has a quantale, there is a well-known and straightforward way
to interpret classical linear logic; one chooses an element ⊥ and, setting
x⊥ = x−◦ ⊥, one works with the (·)⊥⊥-closed elements [Ros90]. Here we
show that by an appropriate choice of ⊥ we can also find a Composition
Principle within the framework of classical linear logic. Abramsky [Vic88]
has suggested that the choice of ⊥ could depend on a notion of testing, and
could be taken to be the set of processes that, when run by themselves, can
be seen as failing (i.e., not passing the test). In this way one would have an
internalised notion of testing where tests were represented by processes: a
process p would pass a test q iff (p || q) /∈⊥.
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Here we will make this suggestion concrete for safety properties; every
test q will yield a safety property q−◦ ⊥ so that p does not pass q iff p ∈
q−◦ ⊥. One may think of the safety property yielded by q−◦ ⊥ as being the
failure to pass q. Once one focuses on the (·)⊥⊥-closed subsets, all safety
properties will be of this kind as then M = M⊥−◦ ⊥ holds.

It is instructive to begin with an external approach to testing and for
this we provide a semantical analogue to some of the testing ideas of de
Nicola and Hennessy [Hen88], adapted to the present context of processes
and safety specifications. Let α, β be two distinct entities not in S, and put
S′ = S∪{α, β}. One can think of α and β as being starting and stopping
states for an external test scenario. Let P ′ be the processes over S′; these
will be the tests. Clearly notions and results applying to S and P extend
to S′ and P ′. For p in P and r in P ′, we say that p passes r iff there are
u ∈ p, v ∈ r such that u _ v, meaning that there are prefixes u′, v′ of u
and v that have a chained shuffle starting in α and ending in β. Note the
element of possibility here: only the existence of such a pair u, v is required;
p will not pass r iff there is no such possibility.

Now one has a natural testing preorder on processes in P:

p ≤P q iff ∀r ∈ P ′.(p passes r ⊃ q passes r)

In order to characterize this preorder some definitions are needed. Let
w be the least preorder on transition sequences over S such that:

uv w u

u(r, s)(s, t)v w u(r, t)v

uv w u(s, s)v

and for u = (s1, t1) . . . (sn, tn) (with n ≥ 0) such a transition sequence, set
u# = (α, s1)(t1, s2) . . . (tn−1, sn)(tn, β), and set ε# = (α, β).

Proposition 7 1. u _ u#.

2. Suppose v w u _ w. Then v _ w.

3. Suppose v _ u#. Then v w u.

Proof Parts 1 and 2 are easy to prove and we just consider part 3. If
u = ε then (trivially) v w u. Otherwise u has the form (s1, t1) . . . (sn, tn)
with n > 0 and since v _ u#, v must have the form v1 . . . vnv′ where, for
i = 1, n, either vi = ε and si = ti or vi is a chained transition sequence
beginning in si and ending in ti. In either case vi w (si, ti) and so v w u.
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Theorem 3 p ≤P q iff ∀u ∈ p.∃v ∈ q.u v v.

Proof First suppose that p ≤P q and u ∈ p. Let r = {w | w ≤ u#} ∈ P ′.
Then as u _ u#, by the Proposition, we get that p passes r, and since
p ≤P q so does q. Hence v _ w for some v in q and some w ≤ u#. But
then v _ u# and so v w u, by the Proposition. Conversely, suppose that
∀u ∈ p.∃v ∈ q.u v v and that p passes r. Then u _ w for some u ∈ p, w ∈ r;
taking a v ∈ q such that u v v, we get v _ w by the Proposition, and so q
passes r.

Note that it follows from the last part of the Proposition that the largest
process ≤P -equivalent to a given process p is {u | ∃v ∈ p.u v v}.

To internalise, we simply work with P ′ rather than with P and extend the
above notions, taking u _ v for u, v transition sequences over S′ to mean, as
before, that there are prefixes u′, v′ of u, v which have a chained shuffle from
α to β and writing p passes r also for p in P ′ and correspondingly extending
the testing preorder — the extension is written as: ≤P′ . To pass to classical
linear logic, we take ⊥ to be the safety property of those processes that do
not contain a chained transition sequence from α to β and so one has indeed
that:

p does not pass r iff (p || r) ⊆⊥

Under the isomorphism of processes and safety properties, ⊥ becomes

{w | no prefix of w is a chained transition sequence from α to β}

and we get for any safety property (under the isomorphism):

M⊥ = {u | ∀v ∈ M.¬(u _ v)}

Note that p does not pass r iff r || p `⊥ iff r ` p⊥, so p⊥ is the largest test
p does not pass. The internal and external views are linked up as follows:

Proposition 8 1. For any p, q in P ′, p ≤P′ q iff q⊥ ` p⊥.

2. The largest process ≤P′-equivalent to p is p⊥⊥.

Proof

1. Suppose p ≤P′ q. Then as q does not pass q⊥, neither does p and so
p || q⊥ `⊥. Therefore, q⊥ ` p⊥. Conversely, suppose q⊥ ` p⊥ and q
does not pass r, so q || r `⊥. Then r ` q⊥ ` p⊥ and so p || r `⊥.
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2. By the first part, p is ≤P′-equivalent to q iff p⊥ = q⊥. But then p
and p⊥⊥ are equivalent (as we always have, for any choice of ⊥, that
p⊥ = p⊥⊥⊥) and if p and q are ≤P ′-equivalent then q ⊆ q⊥⊥ (true for
any choice of ⊥) = p⊥⊥.

The next task is to extend the characterization of the testing preorder
to the whole of P ′. We extend w to a relation w′ which is the least preorder
on S′-transition sequences such that:

uv w′ u

u(r, s)(s, t)v w′ u(r, t)v

uv w′ u(s, s)v

(α, α)u w′ u

u(s, β) w′ u(s, t)v

and (·)# is defined exactly as before. Note that u## = (α, α)u(β, β) ≡′ u
(where we take ≡′ to be the equivalence relation induced by w′).

The analogue of Proposition 7 holds, with w′ replacing w:
Proof As before, parts 1 and 2 are easy and we concentrate on part 3.
So suppose that v _ u#. The case u = ε is trivial and so we can take
u to have the form (s1, t1)(s2, t2) . . . (sn, tn) (with n > 0). Then u# is
(α, s1)(t1, s2), (t2, s3) . . . (tn−1, sn)(tn, β). Some prefixes v′, w of v, u# have
a chained transition sequence from α to β; we take w and then v′ to be as
short as possible. Then β is either the last state in w or the last state in v′.

In the first case, either w = u# or w = (α, s1)(t1, s2) . . . (tm, sm+1) with
0 ≤ m < n and sm+1 = β. In the first of these cases v′ will have the
form v0v1 . . . vn where v0 is ε or is a chained transition sequence from α to
α, and for i = 1, n each vi is ε and si = ti or vi is a chained transition
sequence from si to ti. But then v w′ v′ w′ (α, α)(s1, t1) . . . (sn, tn) w′ u. In
the second of these cases v′ has the form v0v1 . . . vm with v0 and the vi as
before. Then, v w′ v′ w′ (α, α)(s1, t1) . . . (sm, tm) w′ (s1, t1) . . . (sm, tm) w′
(s1, t1) . . . (sm, tm)(β, β) w′ (s1, t1) . . . (sm, tm)(β, tm+1) . . . (sn, tn) = u.

In the second case, since we chose first w and then v′ as short as possible,
w has the form (α, s1)(t1, s2) . . . (tn, sn+1) with 0 ≤ m < n and v′ has
the form v0v1 . . . vmvm+1 with v0 and the vi as before (for i = 1, m) and
with vm+1 a chained transition sequence from sm+1 to β. But then v w′
(α, α)(s1, t1) . . . (sm, tm)(sm+1, β) w′ u.
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The symmetry of testers and testees in the _ relation enables a pleasing
reformulation of the first three parts of the analogue of Proposition 7:

Proposition 9 v _ u iff v w′ u#.

Proof If v _ u then as u## ≡′ u we get by part 2 of the analogue
of Proposition 7, and the symmetry of _ that v _ u##. So by part 3,
v w′ u#.

Conversely if v w′ u# then as u _ u# by part 1, we get u# _ u by
symmetry and then v _ u by part 2.

The analogue of Theorem 3 holds, with the analogous proof:

p ≤P′ q iff ∀u ∈ p.∃v ∈ q.u v′ v

and so the facts, being the maximal≤P ′-equivalence classes by Proposition 8,
are exactly the v′-downwards closed sets. It follows that the lattice-theoretic
operations are the set-theoretic ones. We can rewrite the above formula for
M⊥ (when M is a fact) using Proposition 9:

Proposition 10 M⊥ = {u | u# /∈ M}.

Proof Taking negations we see that ∃v ∈ M.u _ v iff ∃v ∈ M.v w′ u# iff
u# ∈ M (as M is a fact).

The preorder w′ and the map (·)# interact in a natural way:

u## ≡′ u

u w′ v iff v# w′ u#

(For the last, note that if u w′ v then u _ v# and so v# w′ u#, by
Proposition 9). We call any such map on a preorder an involution. The case
where the preorder is a set, say U , is well-known to the relevance logicians
who instead of quantales considered quasi-fields of subsets of U closed under
the quasi-complement operation:

¬X = U\g(X)

If we divide out by the equivalence relation ≡′ we obtain a quasi-field of sets
(g([u]≡′) = [u#]≡′) over U = {[u]≡′} isomorphic to our lattice of facts. The
sets in the quasi-field are the subsets of U downwards closed in the partial
order v′ / ≡′.
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We have already noted that the facts are closed under the set-theoretic
operations and so the additives ∧,∨,>, 0 retain their set theoretic defini-
tions. However ⊗ and 1 must be redefined, and M ⊗N is now (M ‖ N)⊥⊥

and 1 is {ε}⊥⊥. At the level of transition-sequences one can make a further
connection to relevance logic, this time considering R-frames ([Dun86] p.47).
Taking U to be the collection of equivalence classes as above one obtains a
structure (U,R, [ε], g) where R([u], [v], [w]) iff there are u′ v′ u, v′ v′ v, and
a shuffle, x, of u′ and v′ such that w v′ x. This satisfies all the require-
ments to be an R-frame, except for (the undesired) idempotence. Given
any such structure (U,R, 0, g) one obtains a quantale (Q,⊗, 1) for classical
linear logic where Q is the collection of ≤-downwards closed subsets of U .
One takes u ≤ v iff R(1, v, u) and A ⊗ B = {z | ∃x ∈ A, y ∈ R.R(x, y, z)},
1 = {x | x ≤ 0}, and ⊥= {x | x ≤ g(0)}. Starting from the (U,R, [ε], g) as
above one obtains the quantale for classical linear logic considered in this
paper.

Composition

To be consistent with the testing idea of starting computations from α, we
fix the set I to be {α}, and write M −� N for M −�I N . As suggested in
subsection 2.2, let

E+ = E ∪ {u(s, β) | u ∈ E, s ∈ S′}

Note that E+ is not a fact in general, even when E is a fact.

Lemma 4 Let E be a fact. Suppose w ∈ E and v ^{α} w.Then v] ∈ E+

Proof First suppose that v = ε. Then v] is (α, β) which is in E+ as ε is
in E (since w is). Suppose now instead that w = ε. Then v is a chained
transition sequence from α to some state t, and so v] has the form u(t, β),
where is u a sequence of stutters, that is transition pairs of the form (s, s).
But then: w w′ ε w′ u and so u is in E, and v] is in E+.

We may now therefore suppose that neither v nor w are ε. There are
two cases according as to whether the chained shuffle of v and w starts with
a transition from w, or one from v. In the first case there is a prefix w′ of
w, states s0, . . . , sn+1 (with s0 = α) and t0, . . . , tn, and also v0, . . . , vn and
w0, . . . , wn such that v = v0 · · · vn, w′ = w0 · · ·wn, and for i = 0, n, vi is a
chained transition sequence from ti to si+1, and wi is a chained transition
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sequence from si to ti.Now v] has the form (s0, t0)u0 · · · (sn, tn)un(sn+1, β)
where for i = 0, n, ui is a sequence of stutters. But then

w w′ w′ w′ (s0, t0)u0 · · · (sn, tn)un

as wi is a chained transition sequence from si to ti, and so v] is in E+.
The last case last case is similar. Here there is a prefix w′ of w, states

s0, . . . , sn+1 (with s0 = α) and t0, . . . , tn+1, and also v0, . . . , vn+1 and w0, . . . , wn
such that v = v0 · · · vn+1, w′ = w0 · · ·wn, and for i = 0, n+1, vi is a chained
transition sequence from si to ti, and for i = 0, n, wi is a chained transition
sequence from ti to si+1. Now v] has the form

(s0, s0)u0(t0, s1) · · ·un(tn, sn+1)un+1(tn+1, β)

where for i = 0, n, ui is a sequence of stutters. But then

w w′ w′ w′ (s0, s0)u0(t0, s1) · · ·un(tn, sn+1)un+1

as wi is a chained transition sequence from ti to si+1, and so v] is in E+,
concluding the proof.

We may now obtain:

Proposition 11 If E and M are facts then

E −�M = (E+ ∩M⊥)⊥

Proof It is fairly straightforward to show that E −� M ⊆ (E+ ∩ M⊥)⊥,
directly from the definitions. Suppose that u ∈ E−�M , that v ∈ (E+∩M⊥),
to prove that it is not the case that u _ v. If u _ v then some prefix u′ of
u has a chained shuffle from α to β with some prefix v′ of v. Choose such a
u′ and v′ with u′as short as possible.

Since v ∈ E+, v′ ∈ E+ and so either v′ ∈ E or v′ = v′′(t, β) for some
v′′ ∈ E and some state t. In the first case, v′ ∈ E and so u′ ∈ M , using the
assumption that u ∈ E−�M . But as we also have that u′ _ v and v ∈ M⊥,
this is a contradiction.

In the second case, u′ and v′′ have a complete shuffle starting from α,
by the choice of u′ and v′. This again gives us that u′ ∈ M , and we have a
contradiction as before.

For the converse, assume that u ∈ (E+ ∩ M⊥)⊥, that v is a prefix
of u, and that v ^{α} w for some w ∈ E, to show that v ∈ M . Then
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v ∈ (E+ ∩M⊥)⊥ and by Lemma 4, v] ∈ E+. Now assume for the sake of
contradiction that v 6∈ M . Then v] ∈ M⊥, by Proposition 10. But now
v _ v] is in contradiction with v ∈ (E+ ∩M⊥)⊥.

So it is not necessary to redefine −� in the classical logic. The direct
analogue of the Composition Principle for the intuitionistic case holds, viz.:

Theorem 4 (Composition Principle) Let Mi and Ei be facts (for i =
1, n). Set M ′

i =
⊗

j 6=i Mj. Suppose that E ⊗M ′
i ` Mi −�Ei. Then

⊗

i

(Ei −�Mi) ` E −�
⊗

i

Mi

where we are taking the classical interpretation of the tensor products. This
version of the Composition Principle follows straightforwardly from the in-
tuitionistic one using Proposition 11 and propositional reasoning. Further,
the propositional reasoning used in the discussion of the intuitionistic case
remains valid here, including the analogue of Proposition 3.

6 Comparisons

The intuitionistic logic and the linear logic are based on different connec-
tives, and on different semantic models, yet there is a fairly straightforward
translation between them. Let σ be a behavior

s0
a1−→ s1

a2−→ . . . sn−1
an−→ sn

Let tµ(σ) be the subsequence of (s0, s1) . . . (sn−1, sn) such that the transition
(si−1, si) appears in tµ(σ) if and only if ai ∈ µ. The runs of an element p
of P with identity µ are the behaviors σ such that tµ(σ) ∈ p. This yields
a map rµ : P → Sb. It has a left-inverse sµ : Sb → P, which maps a set of
behaviors to the most general process that implements this set of behaviors.
The operations of the two calculi can then be related, and for example

M1 ⊗M2 = sµ∪ν(rµ(M1) ∩ rν(M2))

and again,
M1 −�M2 = sµ(rν(M1) → rµ(M2))

where µ, ν are nonempty, disjoint sets of agents.
The intuitionistic logic captures an external view of processes, via their

behaviors. The notation M/µ makes it possible to express who is the subject
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of a specification. Linear logic specifications describe a process at a time,
and hence the notion of “constrains at most” is unnecessary. On the other
hand, it becomes more difficult to express that one process is the complete
environment of another, and that the system that they form is closed. Such
closed systems are essential in the notion of testing, which then helps in the
analysis of assumption-guarantee specifications.
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