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Abstract

The extent of the involvement of the catecholamine systems in

intra-cranial self-stimulation (ICSS) in the rat has been investigated.

It has been demonstrated that self-stimulation with electrodes situated

in the ventral mesencephalon was associated with increased release of

dopamine as indicated by the concentrations of the metabolites

homovanillic acid and dihydroxyphenylacetic acid. This increase was

found only in one terminal region of the mesencephalic dopamine systems,

namely olfactory tubercle but not in the nucleus accumbens or corpus

striatum. Self-stimulation with electrodes in medial posterior hypo¬

thalamus did not affect dopamine release in any of these areas.

A pharmacological study of ICSS from medial posterior hypothalamus

using the drugs a-methylparatyrosine, spiroperidol, para-chlorophenylalanine

and alaproclate was conducted. This indicated that the catecholamine

systems had a considerable involvement in the performance of ICSS, but

that the indoleamine systems did not have such a close involvement.

The ability of ICSS from the area of the locus coeruleus to cause

enhanced activity of the enzyme tyrosine hydroxylase in that nucleus

has been demonstrated. The effect of lesioning the ascending DA systems

with the neurotoxin 6-hydroxydopamine on ICSS from an area in the dorsal

pons mainly anterior to locus coeruleus has been investigated. No long-

lasting effect on ICSS was observed after such a lesion.

The relevance of these experiments to the catecholamine theory

of ICSS has been discussed.

Finally, recent experimental developments were discussed and

the catecholamine theory of ICSS re-assessed.
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General Introduction

The ability of electrical stimulation of the brain to function

as positive reinforcement was first discovered by Olds and Milner in

1954 (Olds J & Milner P, 1954). Reinforcement was a concept introduced

by Thorndike (1911) in his "law of effect" which recognised the

importance of reward and punishment. It was further defined by Skinner

(1953) as:

"A reinforcer is any stimulus that increases the
probability of a response that it follows".

This might be effective in causing an organism either to work for or

to avoid the reinforcer (positive reinforcement and negative reinforce¬

ment respectively). Behaviour of this type could be called instrumental

learning, or operant conditioning (Skinner 1938). Electrical stimulation

of the brain in itself was not new. It might be credited to Fritsch and

Hitzig (1870) who elicited motor responses in the dog upon galvanic

stimulation with an electrode placed on the cerebral cortices thus

demonstrating the excitability of brain tissue. This technique was

used by Ferrier (1876) using induced or "Faradised" current to produce

the first mapping study of the brain using electrical stimulation, in

this case the discovery and coarse mapping of motor cortex in the dog.

Leyton and Sherrington (1917), in a similar manner, produced a more

discrete map of motor cortex in primates by using smaller electrodes

and a more refined control of the current used. They also correlated

their stimulation map with an anatomical study, using Campbell's

(1905) description of cerebral cortex by "cell and fibre lamination".

In these points, they laid the foundations for the later investigation

of brain stimulation reward.
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However, these studies involved surface stimulation only.

Studies with electrodes implanted within brain structures were also

carried out, for instance by Hess (1929). In this study he produced

sleep in cats by stimulating an electrode in the thalamus. With

respect to this experiment, although with prophetic implication, he

said:

"In the influence of these deep strata on higher
brain parts, in the sense of regulation of the
readiness to function, we perceive something
fundamental concerning the functional structure
of the CNS".

Hess (1949) also noted an arousal effect on stimulating posterior

hypothalamus, which he called a 'dynamogenic zone'. This too was to

foreshadow later discoveries.

By the time of Olds and Milner's discovery much investigation

of the effects of stimulating brain tissue had been done, for example

in production of physiological sleep from the thalamus (Akert et al

1952) or in the disruption of some learning tasks by stimulating

frontal cortex (Rosvold and Delgado 1953). The ability of electrical

stimulation to act as a positive reinforcer or reward which produced

electrical self-stimulation behaviour, had major implications and

was the start of an intense investigation of the phenomenon.

Electrical self-stimulation, or intra cranial self-stimulation

(ICSS)seemed to provide a key to the physiological substrates of

reward. There have been three major approaches in the attempt to

delinate these substrates. These are firstly, mapping the brain

areas which will support ICSS; secondly, the effect of lesions at

a site in the brain distal to the stimulating electrode and thirdly

the effect of chemical manipulation on ICSS.
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1. Mapping Studies

Olds extended his initial observation of ICSS in the septum

to include the amygdala and anterior hypothalamus, and, although

with lower response rates, in hippocampus, cingulate cortex, anterior

thalamus and posterior hypothalamus (Olds, 1956). Some hypothalamic

areas were shown to be aversive to stimulation, and could produce

negative reinforcement (Roberts 1958a). Further investigation of

this aversive stimulation indicated that the same area could be both

positive and negative. Far lateral and far medial hypothalamus were

highly positive, medial was highly aversive, and there were

ambiguous areas where they overlapped. The production of reward or

punishment in these areas was largely dependent on the stimulus

parameters used, long trains of stimulation being the more aversive

(Roberts 1958b, Olds and Olds 1963). The occurrence of ICSS in

limbic cortex, in entorhinal and cingulate cortex was shown (Stein

and Ray 1959). More detailed mapping of the hypothalamus and mid¬

brain led to the discovery of two anatomically distinct groups of

positive sites, one passing from septum through medial thalamus to the

midbrain and another in a more central aspect through hypothalamus, then

turning dorsally into the dorsal tegmentum (Olds et al 1960; Olds

and Olds 1963). The ventral group which produced high rate/low

threshold ICSS was found to closely follow the medial forebrain bundle

(MFB), a compact fibre system extending as far rostrally as the

olfactory tubercle and caudally to the ventral tegmental area of Tsai,

comprising of ascending and descending fibres, largely uncrossed,

which reciprocally connect the limbic forebrain and midbrain

(Le Gros Clark 1938: Nauta 1958: Millhouse 1969). There was a

qualitative difference between the MFB group and the rhinecephalic
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(amyg-hippo-septum-thalamic) group (Olds and Olds 1965). The

latter was slower (~ 500 responses/hour as against up to 10,000

responses/hour in MFB), was satiable and did not produce hyper¬

activity. For the first time, the idea of two distinctive systems

underlying CSS was suggested. It should be noted that response rate

should not necessarily be equated with reward strength. If a choice

was given to the animal to select either septal or lateral hypothalamic

stimulation the animal chose the septal even though it responded at a

much lower rate (Hodos and Valenstein 1962).

Up till these studies, there was only the simple correlation

of anatomy and behaviour. Other work around the mid sixties brought in

the question of which specific neurotransmitters were released from the

specific neural systems involved in ICSS. This must be mentioned as it

was hereon possible to link the anatomical map with a neurotransmitter

map.

Two separate experiments linked the catecholamines (CA) to ICSS.

The drug, amphetamine, which was known to cause release of NA in the

peripheral nervous system was demonstrated to do likewise in the CNS,

and simultaneously produced a large increase in responding in lateral

hypothalamus (LH) ICSS rates. Amphetamine was not effective if the

CAs were depleted, and was stereo specific, the d-isomer being much

more potent than the 1-isomer (Stein 1964). In addition, the use of

monoamine oxidase inhibitors (MAOI) a class of drugs which prevent

enzymatic degradation of CA's was also shown to enhance responding in

LH ICSS rats (Poschel and Ninteman 1963). Thus the CA's were implicated

as being involved in ICSS. The implication was strengthened by the

correlation of the map of CA anatomy with the ICSS anatomy. It

seems reasonable to delinate the CA anatomy here.
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The mapping of catecholamines, noradrenaline (NA) and dopamine

(DA) was first done using a histochemical method that involved the

formation of fluophores from NA and DA in a reaction with formaldehyde

vapour (Falk et al 1962). Using this method the CAs were found to

form discrete neural systems, with cell bodies in the pons and

mesencephalon and long fibres terminating in the forebrain (Dahlstrom

and Fuxe 1964; Fuxe 1965; Anden et al 1966). Using a similar method,

a detailed map of the CA systems was produced (Ungerstedt 1971). The

introduction of a more sensitive method, the glyoxylic acid method,

enabled this map to be considerably extended and more accurately defined

(Lindvall & Bjorklund 1974). Based on the latter study, a summarised

anatomy of the CA systems was as follows:

The noradrenergic systems

1. The ascending dorsal tegmental bundle (DTB)

It originates in the nucleus locus coeruleus (LC) (A6 in the

nuclear designation of Dahlstrom and Fuxe 1964). It then turns

rostrally and runs medial to the superior cerebellar peduncle (SCP)

and then in the dorsal part of the SCP decussation. Some of the DTB

fibres turn rostroventrally along the tegmental radiations, along with

some collaterals of fibres continuing with the main bundle. Two

branches turn dorsally into the posterior and anterior colliculi.

Passing ventrolaterally to the periventricular gray of third

ventricle, the bundle turns ventrolaterally between fasiculus retro-

flexus and the medial lemniscus. Some fibres turn dorsally to

innervate thalamus except for a few fibres which turn laterally into

the internal capsule, joining with DA nigrostriatal fibres. The rest

gradually join the MFB throughout middle hypothalamus. These latter NA

fibres may end in the supra optic decussations or ansa lenticularis.
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The DTB runs in the dorsomedial part of the MFB. In rostral hypo¬

thalamus the axons give off abundant collaterals, the dorsal ones

run into the reticular thalamic nuclei, and others more rostral form

a bundle which runs on and in stria medullaris to the anterior thalamic

nuclei; the ventral collaterals mix with non-DTB axons to run into

the supra optic decussation. Further rostrally, fibres run dorsally

into the interstitial nucleus of stria terrrsinalis and pass through into

stria terminalis hence to amygdala and in the fornix to hippocampus

and caudal septum. The remainder of the DTB fibres continue to the

level of rostral septum. Some project to the anterior olfactory nuclei

but must turn dorso-medio rostrally and run along the septo-hypothalamic

tract to the genu of the corpus callosum, where they divide into a

caudal and rostral branch. The caudal branch travels along the

fornix superior to hippocampus. The rostral branch runs caudally above

the corpus callosum within the cingulum, giving off fibres to large

areas of neocortex, till it sweeps round to enter hippocampus from the

caudal side.

2. The central tegmental tract (CTT)

This originates far caudally in the pons from the CA cell group

A1 in the lateral reticular nucleus and A2 in the dorsal vagal nucleus

and the commisural nucleus. The axons course rostrally in a dorso¬

medial direction through the pons, in the CTT which grows in size as

axons from A5 cell group (lateral to superior olivary nucleus), A7 the

subcoeruleus cell bodies, and possibly also from the dorsal A4. They

now run ventrolateral to the DTB, virtually filling this part of the

tegmentum. Some fibres from the A6 group run in the CTT dorsal and

medial to the main CTT, but seem to pass straight through the tegmental

radiations parallel to the DTB and into the MFB. Fibres and collaterals
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leave the CTT almost vertically from the CTT to the periventricular

gray of the fourth ventricle, including LC, and may give rise to the

extensive terminals in this region, and in the dorsal raphe and

adjoining ventro-lateral antral gray. The positive and medullary

fibres of the CTT run through and ventral to the SCP decussation, then

turn rostroventrally to fan out along the tegmental radiations.

Some only travel a short way with the radiations to resume a long¬

itudinal course which is more ventrolateral than before. Others continue

along the radiations to the ventral tegmentum. Here they join the most

ventral CTT fibres to contribute to the MFB. At this level the CTT is

thinned out but has a wide mediolateral extension. These fibres bend

ventrally through and partly lateral to the medial lemniscus to run into

zona incerta and Forels field. They pass along the crus cerebri,

which some fibres leave ventrolaterally, while the rest either pass

dorsal to the crus cerebri towards the supra optic decussations or

through the crus cerebri to join with the internal capsule branch of the

DTB to pass into the ansa lenticularis and the supra optic decussations.

The fibres of the CTT which join the MFB give off abundant collaterals

and innervate

(a) The mediobasal hypothalamic area

(b) The dorsomedial and paraventricular nuclei

hypothalamic nuclei (by different projections)

(c) The supraoptic decussations, hence to anterior

hypothalamus and periventricular preoptic region.

Also to piriform cortex.

(d) Along ansa leticularis to ventral neostratium and

amygdala (mainly central amygdaloid nucleus)

(e) To the interstitial nucleus of stria terminalis,

thence to septum.

(f) To the medial preoptic area and to the septal nuclei.
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3. The dorsal periventricular system.

This system extends through the periventricular and periaqueductal

gray of the medulla oblongata, pons, mesencephalon and diencephalon - it

can be regarded as the CA component of the dorsal longitudinal fasiculus.

It runs sparsely from around the nucleus of the solitary tract to locus

coeruleus, and may be either ascending or descending. Rostral to LC,

it markedly increases in size gathering fibres from LC or A4, It moves

rostrally dorsal and medial to LC in the lateral part of the peri¬

ventricular gray. CA cell bodies are scattered among the fibres, which

could appear as a diffuse rostromedial extension of locus coeruleus.

Some of the fibres turn ventrally to either run along the raphe and

down the caudal edge of the decussation of the SCP or to turn more

sharply ventral to the ventral tegmental nucleus, both ending in the

ventromedial tegmentum, and forming part of the tegmental radiations.

Fibres carry on rostrally from the raphe complex within the dorsal

longitudinal fasiculus to medial and midline thalamic, pretectal and

hypothalamic regions. The hypothalamic branch probably contributes to

the ventral periventricular system.

4. The ventral periventricular system (VPS)

This system is first seen immediately dorsolateral to the inter¬

peduncular nucleus (IP). The fibres run rostrally central to the

supramamillary commisure and then medial to the mamillothalamic tract.

The fibres are seen to innervate the medial mamillary nucleus. Fibres

from the medial part of the MFB, or collaterals, come rostromedially to

join the VPS, thus increase it in size as it passes rostrodorsally into

the dense CA terminal area of the dorsomedial hypothalamic nucleus, which

also receives fibres from the DPS. The system thus formed is a broad

ascending CA fibre system on the lateral aspect of the periventricular

nucleus, which connects to the paroventricular hypothalamic nuclei-



Rostral to these nuclei, the VPS becomes dispersed and some fibres

turn dorsally along the anterior commisure to caudal septum, and some

laterally to the interstitial nucleus of stria terminalis where it

joins many other CA fibres from the MFB.

5. Tegmental CA radiations

As already described these form a radial fan of CA fibres in

the mesencephalic tegmentum, with contributions from DTB, CPS and

mainly CTT to assemble at the mesodiencephalic junction to help form

the MFB. In addition to these, there is a median CA fibre flow from

the dorsal raphe in a rostroventral direction between the medial

longitudinal fasciculi to a region dorsal to the IP nucleus where they

turn sharply rostral. These fibres mainly originate from the CA cell

bodies distributed within the raphe and this median fibre flow, which

may be regarded as a dorsal extension of the A10 cell group. A

slightly more lateral group of fibres passes from the dense tangle

around the raphe, medial to the DTB, and has a dense terminal network

in the ventral tegmentum. The lateral fibres of the radiation are as

aforesaid from the DTB and CTT, and mingling with the fibres from the

lateral A8 DA cell group then run rostrally, medially dorsal to the

medial lemniscus into the ventral tegmental area of Tsai, and between

medial lemniscus and SN through zona incerta and H^-field of Forel,
to both form part of MFB.

6. Nigro-Striatal DA System

Arising from the A9 DA cell group in SN, zona compacta the

fibres run medially, before turning sharply rostral in a well defined

bundle that ascends in the field of Forel dorsolateral to MFB.

Fibres leave first at the level of the subthalamic nuclei to run

laterally and rostrally through the internal capsule to the caudal
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parts of the neostriatum. The remaining fibres run rostrolaterally

into the medial edge of the internal capsule, then some turn dorso¬

lateral^ into the central parts of the striatum, the remaining fibres

running more rostrally before turning laterally through globus pallidus

to the head of the striatum. Some remaining fibres run rostrally dorsal

to MFB and just rostral to the anterior commisure turn into the head of

striatum, to the interstitial nucleus of stria terminalis and some to

ansa leticularis.

7. The mesolimbic DA system.

Arising from the A10 DA cell group, situated dorsal to the inter¬

peduncular nucleus and possibly diffusing dorsally along the tegmental

radiations to the dorsal raphe. The fibres run rostromedially with the

converging fibres from the CTT and tegmental radiations to help form the

MFB. The fibres run dorsomedially in the MFB till the level of the

retrochiasmatic region where fibres, often collaterals, leave laterally

to run together with the nigrostriatal fibres in ansa lenticularis towards

amygdala, ventrocaudal neostriatum and piriform cortex. The remaining

MFB fibres separate, some running dorsally into the nucleus accumbens,

and others fan out rostromedial and laterally before turning centrally

into the olfactory tubercles. Those still part of MFB continue rostrally,

and some fibres turn dorsally into the diagonal band of the septum,

giving rise to a dense terminal system in lateral septal nucleus. The

final fibres continue rostrally till the anterior nucleus accumbens where

they turn dorsally along the lateral edge of the accumbens along the

external capsule dorsally and laterally and into the deep layers of the

frontal cortex.



Thus the CA systems were shown to be widely distributed throughout the

brain. The existence of cortical DA was not shown in the earlier

studies using the Falck-Hillarp method. However although it was

visualised using the glyoxylic method (Lindvall & Bjorklund 1974),

its existence in cortex had already been indicated by biochemical

measures which showed it did not simply exist as a precursor to NA

(Thierry et al 1973). It was biochemically localised in limbic

cortex-cingulate, piriform and entorhinal (Browstein et al 1974),

and this was confirmed using pharmacological-histochemical methods

(Hokfelt et al 1974, Lidbrink et al 1974). The CA's thus provided very

widely distributed neural systems which furthermore often affected

different brain areas virtually simultaneously due to the extensive

formation of collaterals.

The studies of ICSS sites so far (Olds & Olds 1965), were all

situated in areas receiving CA innervation. The MFB was already noted

as a major site for ICSS, now also seen as the major pathway for

ascending CA systems. Study of all well executed mapping studies revealed

that all positive areas were near CA cell bodies, axons or nerve terminals

(German & Bowden, 1974). To continue the mapping studies, and consolidate

this statement, positive electrode sites in the ventral tegmentum,

around the interpeduncular nucleus which corresponded to the A10 group

were found, and this was the first anatomical correlation of CA systems

and ICSS (Dresse 1966) although it was spoiled by defining them as

noradrenergic cells. As this indicated a mesolimbic DA involvement,

let us discover if the whole system has been shown to support ICSS,

and thence the other major CA systems.
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(a) Mesolimbic DA

The cell body area finding was confirmed (Crow 1971, 1972a).

The fibre projection was also positive, both in the ventral tegmental

area of Tsai (Olds & Olds 1963, Routtenberg & Malsbury 1969) and of

course throughout MFB (Olds et al 1960). Areas of terminal projection

found positive were nucleus accumbens and olfactory tubercle (Olds

et al 1960: Routtenberg 1971), frontal cortex (mainly medial and

sulcal regions), (Routtenberg 1971: Routtenberg & Sloan 1972) and

entorhinal cortex (Collier et al 1977).

Thus the correlation between ICSS and the mesolimbic system is

very high.

(b) Nigrostriatal DA

The cell body area, zona compacta of SN was highly positive

(Routtenberg and Malsbury 1969: Crow 1972a), as was the pathway in

hypothalamus (Olds et al I960, Huang & Routtenberg 1971). The terminal

areas were also positive, in the neostriatum (Routtenberg 1971:

Phillips et al 1976, Wurtz & Olds 1963) and the amygdala (Wurtz &

Olds 1963: Routtenberg 1971). Thus again the correlation was very high.

(c) Dorsal Tegmental Bundle

The cell bodies were shown to be positive (Crow et al 1972 :

Ritter and Stein 1973), and the area anterior to A6, around the DTB

(Routtenberg & Malsbury 1969: Wolfe et al 1971). The MFB is positive

in common with all these systems. Terminal areas which have proved

positive include hippocampus (Huang & Routtenberg 1971: Olds et

al 1960: Ursin et al 1966) , amygdala (Wurtz & Olds 1963) :

periventricular hypothalamus (Huang & Routtenberg 1971: Atrens et

al 1972) interstitial nucleus of stria terminalis (Olds et al 1960:

Routtenberg 1971) and dorsal and lateral cortex (Olds et al 1960;
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Ursin et al 1966). Thus the correlation for this system was also high.

(d) Central Tegmental Tract

Most of the sites correlated with this tract can be related to

the preceding CA systems e.g. in MFB, central tegmentum or where it

contains fibres from LC. The other evidence is contradictory. Some

evidence exists for the tract to be positive where it is separate from

the DTB (Ritter & Stein 1974: Wolfe et al 1971) but still containing

fibres from A6, A7 and A4 (Lindvall & Bjorklund 1974).

Attemps to produce ICSS at the cell body sites Al & A2 have not

been successful (Crow 1972b: Anlezark et al 1974). ICSS in the area

is possible (Carter & Phillips 1975), although the involvement of Al

or A2 is uncertain.

Thus although the correlation of ICSS with the CTT is fairly good

rostral to LC it is not good caudal to the appearance of LC fibres.

(e) The periventricular systems

Again although most of sites corresponding to these systems are

common to other CA systems, e.g. stria terminalis, and the pons certain

sites may indicate a possible involvement. Firstly, sites in the pons

anterior to LC, and medial to the SCP, produce higher rates of

responding and more easily obtained ICSS (Routtenberg 1971: Section

Four) . This could be due to the presence of cell bodies and

fibres of the DPS in this area. Also the positive thalamic areas

(Olds et al 1960: Olds & Olds 1963) may be partly due to the DPS

which passes through thalamus to septum. The often highly positive

far medial/periventricular hypothalamic areas (Olds et al 1960 :

Olds & Olds 1963: Atrens et al 1972) support the possible involvement

of the VPS in ICSS.
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However, although some correlation exists it is not conclusive.

Indeed conclusive proof would be hard to come by due to the diffuse

distribution of cell bodies in these systems.

The anatomical correlation of the CA system with ICSS was a very

good one. However, with the widespread CA innervation in rat brain, it

would be difficult to avoid being in or near a CA system with an

electrode which supported ICSS. The demonstration of ICSS from some CA

cell bodies was an important factor in the ICSS problem, and has done

much to link ICSS with the catecholamines. The indoleamine (5-HT) neural

system has also been suggested as a substrate for ICSS. Mapping work

has shown ICSS from both the dorsal raphe (Margules 1969: Simon et al

1976) and from the median raphe (Simon et al 1973: St. Laurent 1973).

These nuclei also project into the MFB, projecting ventrorostrally

to the ventral tegmentum and then into MFB, where they occupy the ventral

part. They innervate hypothalamus, neostriatum, cortex and hippocampus

(Ungerstedt 1971a -

However, 5-HT involvement was not certain from the mapping studies,

as CA's both follow the same path and terminate in the same structures.

In addition the area of the dorsal and medial raphe was thick with CA

innervation mainly from the DPS & CTT and also possessed CA cell bodies,

probably from A10. The possibility that they support the ICCS cannot

be ruled out in these type of studies.

All the prece ding studies have involved the rat only, and a

species specific behaviour might be inferred. This was not the case.

ICSS has been produced in fish (Boyd and Gardner 1962), birds

(Goodman & Brown 1966: MacPhail 1967), rabbit (Bruner 1967), dog

(Stark & Boyd 1963), cat (Roberts 1958b: Wilkinson and Peele 1963:

O'Donohue & Hagamen 1967) and man (Heath 1963: Bishop et al 1963)

and monkey (Brodie et al 1960: Plotnik et al 1972). The effects in

man are varying, ranging from mild pleasure, relaxation and sometimes
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sexual feelings to euphoria (Sem-Jacobsen 1968: Heath 1963).

However, areas such as the amygdala, caudate, mesencephalic tegmentum

and septum were shown to cause self stimulation behaviour (Heath 1963:

Bishop et al 1963) which in rat are CA innervated areas and as the

principles of organization of the monoamine neurone systems are

notably similar in rat and man (Nobin & Bjorklund 1973), it may be

possible to assume a CA involvement in man also. More detailed mapping

studies of rabbit (Bruner 1967), cat (O'Donohue & Hagamen 1967) and

monkey (Plotnik et al 1972) have been carried out and show a similar

pattern to the rat studies, with the most positive areas being in ventral

tegmentum and MFB, and in cat at least in the LC and area anterior in

the pons, Thus a theory based on CA was not confined to the rat.

The data from mapping stydies would appear to uphold the involve¬

ment of CA's as substrates for ICSS. Derived from mapping studies

(and pharmacological studies also) a theory of ICSS based on the A9,

A10 DA and A6 NA was evolved by Crow (1972 b, 1973) . Even the bare

mapping studies would seem to indicate that these sys, terns alone are

insufficient, viz., the midthalamic area, the olfactory bulb (Phillips &

Mogenson 1969) and periventricular hypothalamus. However the theory

does allow for such sites by postulating that systems (probably sensory)

which feed into these CA systems might also support ICSS. This remained

to be proven. As a basic theory, however, a CA theory does have support

from the mapping studies (German & Bowden 1974).
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Pharmacology of ICSS

In addition to mapping studies of ICSS the use of psychoactive

chemicals which alter normal regulation of neurotransmitter function

has been employed to characterise the neural basis of ICSS. For this

approach to be conclusive, the drug has to have a specific mode of

action, and produce a specific effect. This simple aim has proved

remarkably elusive in the case of ICSS, since early drug studies with

chlorpromazine showed differing effects depending on the electrode site

used (Olds et al 1956). This has been a common problem since then, and

may be a reflection of the heterogenity of the ICSS systems. Although

not definitive, drug studies have suggested a general direction to studies

of ICSS, especially with regard to the catecholamines.

This CA involvement was apparent in retrospect in that initial drug

study of Olds et al (1956). The drugs reserpine and chlorpromazine known

then as tranquillizers, reduced the bar-press rate for ICSS markedly,

and these drugs have since been found to interfere with CA transmission,

reserpine by releasing and preventing storage in the NA vesicles

(Sulser and Sanders-Bush 1971) and chlorpromazine (amongst other

actions) to block the CA receptors (Anden et al 1970). This reduction

in operant responding was not unique to ICSS as responding for other

reinforcers was similarly suppressed (Chance & Silverman 1964). Although

animals were shown to be capable of a passive shock avoidance tests

after chlorpromazine (Olds, Hogberg and Olds 1964) this generalised

deficit in operant responding has remained a problem in the inter¬

pretation of drug effects in ICSS.

More direct evidence for CA's as ICSS substrates was produced

by drugs enhancing transmission at CA synapses. Amphetamine increased

ICSS at low doses, and seemed to act by releasing endogenous amines as
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reserpine blocked this effect (Stein 1964). Amphetamines actions

are complicated, as it potentiates CA release, inhibits re-uptake

and also MAO, an enzyme responsible for breakdown of free amine

within the cell (Bloom & Gasman 1968), but the result is an increased

amount of CA in the synapse. Drugs which inhibit monoamine oxidase,

the MAOI, such as iproniazid, pargyline and tranylcypromine also

increased ICSS (Poschel & Ninteman 1964). Another compound,

a-methyl-m-tyrosine believed to act as a releasor of CA, increased

ICSS (Stein 1966, Crow 1969) especially if given with an MAOI to prevent

its breakdown (Poschel & Ninteman 1963). Phenethylamine, which is

similar structurally to the amines, also was excitatory if given with

a MAOI to prevent its own breakdown (Stein 1964). Cocaine, which is

believed to prevent re-uptake of CA, especially NA (Trendelburg 1959)

was also facilitatory (Crow 1970). The facilitatory effect of

increasing the concentration of CA in the synapse does indicate a role

for the CA's in the performance of a reward reinforced behaviour.

A cautionary note must be added here. It has been suggested

that the release of CA should be associated with nerve impulses for

the generation of reinforcement, both with regard to ICSS (Crow 1970)

and free operant behaviour in general (Ahlenius et al 1971). Although

it has been shown that amphetamine induced release of DA at least was

related to the impulse flow in the neurones (Von Voightlander &

Moore 1973) the effect of prolonging the synaptic effect of released

transmitter could dissociate the relationship between nerve impulse and

post-synaptic effect. In addition amphetamine was found to be rewarding

in its own right from self-administration experiments (Pickens &

Harris 1968). The interactions between amphetamine and ICSS were

clearly more complicated than initially suspected, and the conclusions

from such experiments more uncertain.
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The use of CA antagonists i.e. drugs which block the receptors

also indicated such a role. The neuroleptics, such as haloperidol,

pimozide and spiroperidol, which at low doses selectively block DA

receptors (Anden et al 1970) severely reduce ICSS, especially in

hypothalamus, (Wauquier & Niemegeers 1972: Dresse 1966), as did

chlorpromazine (Olds et al 1956). The work with NA antagonists was

less conclusive, as a-NA antagonists e.g. phentolamine and

phenoxybenzamine did decrease ICSS (Bailey et al 1972: Hastings &

Stutz 1973) but did not completely abolish it. However if given

intra-ventricularly phenoxybenzamine may achieve complete suppression

(Wise et al 1973). However beta-blockade with propanolol might decrease

ICSS (Bailey et al 1972) or have no effect (Hastings & Stutz 1973:

Wise et al 1973).

The effect of inhibiting CA synthesis was also compatible with

a direct role of the CA's in rewarded behaviour. The drug

a-methyl-paratyroxine (a-MPT) which blocks the rate limiting enzymes

in CA synthesis tyroxine hydroxylate has been shown to decrease brain

CA levels dramatically (Spector et al 1965). This decrease in CA was

paralleled by a decrease in ICSS (Poschel & Ninteman 1966: Gibson

et al 1970: Black & Cooper 1970). The latter used a rate free measure

of ICSS and thus indicated a direct role in the reward process for ICSS

rather than simply a generalised performance deficit. The blockade

of only NA synthesis by using drugs which inhibit dopamine-8-hydroxylase

preferentially was claimed to decrease ICSS and thus demonstrated a prime

role for NA (Wise & Stein 1969). However, a general sedation effect may

have been the cause of the decrement, as replacing the animals on the

lever reversed this decrement, (Roll 1970). The use of 6-OHDA, a compound

which selectively destroys CA neurones (Breese & Traylor 1970) will be
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initial use indicated that destruction of CA's in whole brain was

disruptive to ICSS in a manner related to the extent of CA depletion

(Breese et al 1971), and supported the other CA pharmacological evidence.

In addition, not only does CA synthesis inhibition block ICSS,

but it appeared to be possible to reinstate the self-stimulation behaviour

with CA's. After blockade of NA synthesis by DEDTC or disulfiram, the

suppression of ICSS could be reversed only by 1-NA given intra¬

ventricular ly, not by d-NA or by DA (Wise & Stein 1969). Also after CA

synthesis inhibit by a-MPT, ICSS could be restored by L-DOPA the CA

precursor or DOPS i.e. bypassing the blocked tyrosine hydroxylase (Stinus

& Thierry 1973) or by methamphetamine (Poschel & Ninteman 1966)

presumably either a direct sympathomimetic action or by potentiating the

action of small remaining amounts of CA in the neurones. This would

seem to be excellent proof for the necessity of CA's at least at some

level whether motor, arousal or reward in the maintainance of rewarded

behaviour. Facilitation of ICSS has also been produced by intra¬

ventricular 1-NA (Wise et al 1973 , Olds ME 1974) although whether

this was directly due to a reward function must be debatable.

It seems highly likely that CA's are involved in the modulation

of behaviour, but other neurotransmitters may also be involved. As

both MAOI's and reserpine affect the indoleamine 5-hydroxytryptamine

in a similar manner to the CA's, it seemed pertinent to examine its

function in ICSS.

Attempts have been made to raise levels of 5-HT or stimulate

its release as with the CA's. 5-hydroxytryptophan (5-HTP) the

immediate precursor of 5-HT was given in combination with an MAOI to

raise the 5-HT levels, and this produced a facilitation of ICSS



(Poschel & Ninteman 1968). However, 5-HTP may also release NA, and

with a MAOI present this could result in the facilitation by NA

already described. The use of p-chloroamphetamine (PCA) a drug

believed to cause an initial increase in release of 5-HT by blocking

intraneuronal storage (Pletscher et al 1966), caused an immediate

decrement in ICSS. Furthermore this decrement was prevented by

previously decreasing the 5-HT available by blocking its synthesis with

p-chlorophenylalamine (PCPA). PCPA blocked the enzyme tryptophan

hydroxylase, and although it has an effect on NA synthesis, this

preceded themaxim5HT depletion and by waiting a selective effect on

5-HT may be produced (Koe & Weissman 1966) . Thus it appeared the

decrement in ICSS after PCA was in fact due to increased 5-HT release

(Poschel & Ninteman 1971). The administration of 5-HT intraventricularly

also caused a decrease in ICSS (Wise et al 1973), thus it appears most

likely that increased synaptic 5-HT has an inhibitory effect on ICSS.

If an increase in 5-HT was inhibitory it might be expected that a

decrease would be excitatory. This has not proved to be generally true,

as most studies reported no effect of PCPA at the time of maximum

5-HT depletion (Margules 1969: Gibson et al 1970: Black & Cooper

1970). The Margules study used electrodes near the dorsal raphe nucleus,

which contain 5-HT cell bodies, but only reported a decrement after CA

synthesis inhibition with a-MPT although this could have been due to

the more general sedative and motor disruptive qualities of this drug.

An increase in ICSS was seen after a large dose of PCPA (500 mg/kg)

(Poschel & Ninteman1971)but a decrease was seen in both rats and dogs in

another study (Stark & Fuller 1972). Thus although not providing any

conclusive evidence for a vital role in ICSS for 5-HT there is evidence

for some role in the expression of operant behaviour. It has been
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but this cannot be certain.

The final major group of drug studies have been based on the

cholinergic system. This system may be divided peripherally into two

distinct types, nicotinic and muscarrnic with pharmacologically distinct

receptors and this division seems to apply centrally (Feldberg 1945).

The effect of increasing the acetylcholine (ACh) available at the

receptor by giving physostigmine, an anticholinesterase (i.e. preventing

the breakdown of ACh by inhibiting acetylcholinesterase, the enzyme

which destroys ACh), was to depress ICSS (Jung & Boyd 1966: Olds &

Domino 1969: Newman 1972). This effect was a CNS one, as neostigmine,

an anti-cholinesterase which does not cross the blood-brain barrier,

had no effect. The depression of ICSS was blocked by atropine,

(Jung & Boyd 1966: Newman 1972), and by scopolamine (Olds & Domino

1969), both muscarinic antagonists. Centrally acting muscarinic

agonists also depressed ICSS, though with a shorter duration of action

than physostigmine, arec oline (Olds & Domino 1969) and pilocarpine

(Newman 1972) .

The effects of nicotinic stimulation were however excitatory on

ICSS, as nicotine itself increased responding either low response rates

only (Pradhan & Bowling 1971): or with all response rates (Newman

1972), although the latter experiment used a different schedule of

reinforcement. A biphasic effect, with a short depression followed

by a longer excitation was also seen, but the depression may have been

due to a local irritation caused by the nicotine injection (Olds &

Domino 1969). In all these studies, the nicotine excitation was

blocked by mecamylamine, a centrally active nicotinic antagonist.

Further evidence for an excitatory nicotinic activity (and conversely

for the muscarinic inhibitory system) was found by giving mecamylamine
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Domino 1969), presumably by removing the nicotinic excitation.

However, the nicotinic excitation may not be a direct action on

behaviour, as it seems likely that it acts through the CA's, as

pre-treatment with reserpine abolishes nicotine excitation (Pradhan &

Bowling 1971).

There was evidence for a muscarinic cholinergic system which is

inhibitory on operant behaviour in general, (Morrison 1967) as well as

the above studies in ICSS. Some support for the inhibitory system

idea may be taken from the increased extinction shown by blocking the

cholinergic receptors with scopolamine (Olds ME 1970), thus preventing

the inhibitory system from functioning. There was also evidence for a

general excitatory effect of nicotine in operant behaviour in general

(Morrison 1967) and as mentioned this might be through a CA system.

Therefore, although it seemed that the cholinergic system was not the

substrate for brain stimulation reward, it may influence it by a more

general effect on behaviour, perhaps an an inhibitory system in operant

behaviour.

In summary, interpretation of the pharmacological experiments

was rendered highly difficult by the apparent ability of cate-

cholaminergic, serotinergic and cholinergic drugs to affect primary

motor, sensorimotor or inhibitory systems controlling behaviour. This

was in addition to difficulties comparing the individual experiments

due to difference in drug dosage, route of administration, electrode

site and behavioural parameters studied. However, in the relatively

few studies with some control of the behavioural variables, there is

some evidence for the involvement of the CA's directly in reward, i.e.

the rate free measured effect of alpha-MPT (Black & Cooper 1970) and the



measurement of gross activity as well as rewarded activity, with

spiroperidol having a greater effect on reward (Rolls et al 1974).

In all the studies it may be seen that the CA's do have a primary

function in operant behaviour however, as with a wide variety of

treatments increasing the effective levels of CAs facilitates behaviour,

and decreasing them depresses behaviour. There seemed little good

evidence for a direct cholinergic substrate of reward, but plenty

evidence for a role in modulating behayiour.v The same might be said

of serotinergic systems, except that the evidence for no direct role

in reward was less conclusive, and cannot be ruled out. The drug

evidence was not incompatible with a catecholaminergic theory of self-

stimulation.
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Lesion Studies

If ICSS was supported by a discrete neural system, it might be

expected that lesions to that system would abolish the ICSS behaviour.

This has proved so difficult to do that it has been said:

"Any search for a critical focus or essential
pathway will meet with little success as the
neural substrate is characterised by
massive redundancy and a plasticity
which provides a basis for reorganisation"

(Valenstein 1966). Since the early mapping studies of Olds (Olds et

al, I960; Olds & Olds 1963) indicated the MFB as the critical substrate

for ICSS, lesions in this area were the obvious beginning. The

techniques available were electrocoagulation or knife cuts. A type

of 'reversible' lesion might be induced by intracranial application of

local anaesthetics. However the information so obtained was difficult

to interpret as MFB contained large numbers of ascending and descending

pathways (Gurdjian 1927). A 'mechanical' lesion disrupted them all

equally. The discovery of discrete CA systems throughout the brain

(Anden et al 1966) led to the possibility of producing highly selective

lesions to these systems using the neurotoxin 6-hydroxydopamine (6-OHDA)

(Ungerstedt 1971).

Lesions directed at elucidating MFB function could either have

involved MFB or LH ICSS and distal lesions, or ICSS from distal areas

and MFB lesions. Unfortunately neither approach has produced conclusive

evidence. Lesions of septum, fornix and cortex (Ward 1960); amygdala,

striatum and cortex (Ward 1961); ventromedial hypothalamus (Hoebel &

Teitelbaum 1962; Ferguson & Keesy 1971); cingulate cortex (Coons &

Foburg 1963); anterior hypothalamus, reticular formation, ventral

tegmentum and central gray (Lorens 1966); fornix (Boyd & Gardner

1967): dorsal and median raphe nuclei (Lorens 1971) and unilateral LC



(Lorens 1973) produced little decrement in LH ICSS. Other studies,

with lesions to MFB rostral and caudal to LH (Morgane 1962); to

MFB at level of olfactory tubercle (Olds & Hogberg 1964); ipsilateral

preoptic area, mammillothalamic tract and ventra-tegmental lesions

(Boyd and Gardner 1967); posterior hypothalamus (Olds & Olds 1969) or

bilateral parasagittal knife cuts along lateral border of LH (Kent &

Grossman 1973) did produce significant decrements to LH ICSS, the most

reliable decrements occurring with lesions caudal to LH (Olds & Olds

1969: Boyd and Gardner 1967).

Lesions affecting septal self stimulation were similarly

inconclusive. Lesions in midbrain reticular formation reduced septal

ICSS (Schiff 1964); bilateral lateral hypothalamic lesions did not

affect it (Valenstein & Campbell 1966) and lesions in amygdala increased

it (Kant 1969).

However care is needed in interpreting the deficits produced.

It has been shown that even with decortication and removal of cortices

destruction of hippocampus, amygdala, septum and neostriatum, LH ICSS

was unaffected if the operant was simple, e.g. head turning, compared to

the complex sequence of motor responses required in bar pressing (Huston

and Borbely 1973). This applied to the lateral LH knife cuts, which also

disrupted other operant tasks (Kent & Grossman 1973). Thus the

posterior hypothalamic lesion deficits could have been due to a non¬

specific effect.

Experiments with intracranial local anaesthetics have also managed

to decrease LH ICSS, with injections into sulcal prefrontal cortex

(Rolls and Cooper 1974), lateral hypothalamus and ventral tegmental
1972;

area (Nakajima^Madryga and Albert 1971). Injections into medial hypo¬
thalamus increased LH ss although this might be due to a reduction in

any aversive component in ~LH ss (Olds and Olds 1963). Owing to their
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general inactivating effect however few positive conclusions on ICSS

substrates could be made.

Thus lesions of MFB could reduce ICSS, although seldom abolish

it. Lesions caudal to the stimulation site were generally more

effective. In addition the ability to maintain ICSS after decortication

suggested the possibility of descending pathways originating at the

level of hypothalamus, or intrinsic hypothalamic pathways which could

support ICSS. Care must be taken to avoid general performance deficits

being interpreted as reward or motivation deficits. The use of an

operant task appropriate to the reduced motor capabilities of the

animal as after decortication would seem likely to yield more definitive

results. Alternatively the ability to maintain appropriate levels of

motor performance should be demonstrated. The lack of such controls

would make interpretation of a successful lesion experiment difficult.

The use of specific 6-OH DA lesions to elucidate the role of the CA's

will be discussed in a later section.

These experiments have supported the idea that the ICSS pathways

were diffuse and redundantly organised at the level of MFB.
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Theories of ICSS

Theories have been constructed to explain the phenomenon

of ICSS in more general terms of motivation and reward. From more

general rewarded behaviour, Deutsch constructed a theory with separate

motivational and reinforcement systems (Deutsch 1960). He considered

that it applied to ICSS, as evidence from extinction trials with ICSS,

investigating temporal and quantitative factors, fitted with such a

theory (Deutsch & Howarth 1963). The further work of Gallistel (1969)

separated the motivational and reinforcing aspects of ICSS in a runway

situation, by giving both pre-trial primary stimulation and rewarding

stimulation after running, and using running speed as the measure. Also,

using the pulse pair method to measure refractory period, it was shown

that the motivational and reinforcing systems had different refractory

periods (Gallistel et al 1969), and thus appeared to be distinct

neural systems.

Other workers have described the motivational aspect of ICSS as

incentive motivation (Trowill, Panksepp & Gandelman 1969) . In various

experiments, by manipulating the amount of rewarding stimulation, the

timing of the reward, and the length of session used, it has been shown

that ICSS can resemble natural reinforcers in both extinction,

behaviour and in complex behavioural schedules. In particular ICSS

can be most accurately mimiced by conventional reinforcers of high

incentive value (e.g. condensed milk) presented without delay after the

operant response, with a low drive state of the animal as is normal in

ICSS experiments (Panksepp & Trowill 1967). From these observations,

these workers have concluded that ICSS produced incentive motivation.

Olds' theories have attempted to relate ICSS to a distinct

neural substrate, and the existence of neurones which mediate reward.
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The favourite candidate for these special neurones are the pathway

neurones in the MFB, in lateral hypothalamus. Positive reinforcement

would result from excitation of these LH reward systems, which might

act by correlating afferent sensory information (especially olfactory

inputs in the rodent) and efferent motor pathways. There would also

be motivational (drive) mechanisms in hypothalamus, probably with

drive specific areas, which could also be activated by ICSS, but which

would normally influence the reward neurones. Olds theory also

incorporates a punishment system, in the area aversive to electrical

stimulation in medial hypothalamus, which would have an inhibitory

input to the reward neurones. Hence, cessation of punishment could be

rewarding. The catecholamines (especially NA) could also have a function

in this theory, by acting in the reward neurones, possibly by changing

their susceptibility to other inputs. The Olds theory thus has a

reward system centred in hypothalamus, but which allows for the

influence of other systems, and the possibility that they themselves can

be rewarding due to this influence.

Stein however attributes the reward function to the NA neural

systems themselves on the basis of anatomical and pharmacological

evidence. He believes that rewards inherently have incentive properties

and thus produce a positive feedback system i.e. rewards facilitate

the behaviour that-produced the reward through the sensory stimuli

that produced the reward. A reward system is sufficient therefore,

without an associated motivational one. He also postulates a mutually

antagonistic inhibitory or punishment system. However, although

initially an attractive theory on the earlier pharmacological and

anatomical data, later work has indicated the likelihood of dopaminergic

involvement in ICSS, or at least the existence of two distinct neural



systems. It seems unlikely that a theory based solely on NA will be

sufficient to explain ICSS.

Crow has evolved a theory that does incorporate both NA and DA.

From anatomical experiments he has observed that both mesencephalic

DA systems and the locus coeruleus NA system seem to support ICSS,

and that the pharmacological evidence in general supported a CA

involvement in rewarded operant behaviour. Furthermore, from qualitative

behavioural differences observed between apparently dopaminergic or

noradrenergic stimulation, he has stated that the DA systems were

involved with incentive motivation and the NA system with reinforcement

or reward. This difference might also be due to the type of sensory

input these systems received. He proposed an olfactory input to the

DA system (which could provide anticipatory cues) and a gustatory input

to the NA system Which could provide consummatory cues). As the

NA and DA systems are part of the MFB, they would both be activated in

MFB ICSS which could explain the great responsiveness to ICSS in that

area. It could be said that the Crow theory was the most concrete one,

in that it predicted both the systems involved and their function, and

also that it directly implicated the CA's which accorded with the

experimental evidence. In addition it fitted in with the theories

based on behavioural observations, in that it possesses two neural

systems and it concured with the idea of incentive motivation in ICSS.

Therefore, the work in this thesis has been directed at investigating

the involvement of the CAs in ICSS. It has included the effects of

ICSS on the biochemistry of the CA's; the effect of lesioning CA

pathways on ICSS, and the pharmacology of ICSS. The delination of CA

involvement in ICSS was necessary to determine the exactness of the

Crow hypotheses.
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Section One

The effect of intra-cranial self-stimulation from sites

in the area ventralis tegmenti and posterior

hypothalamus on dopamine metabolism
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Section 1

Introduction

A theory of ICSS based on the specific neural substrates of the

CA systems must predict a concomitant release of CA's from the neurones

on electrical stimulation. Electrical stimulation of peripheral

adrenergic neurones has been shown, for example, to increase the efflux

of NA from the dog spleen (Mirkin & Bonnycastle 1954). This approach

has been attempted in the CNS, but due to problems with perfusion and

small quantities actually released into CSF, direct evidence for release

of endogenous amines has been hard to obtain (Portig and Vogt 1969:

Vogt 1969). Initially attempts were made to measure amine release by

measuring endogenous amine levels.

One such attempt indicated that a decrease in NA was observed as

measured histochemically by a decrease in the fluorescence of the NA-

terminal areas after self-stimulation of the area ventralis tegmenti

(Dresse 1966)• However, the introduction of stress by electric foot

shock (Maynert & Levi 1964), and the 'emotionality' which accompanied

ICSS behaviour had both been shown to reduce NA levels in the brain. A

later study indicated that the lowering of brain amine levels was

directly related to electrical self-stimulation only, and that neither

forced stimulation at rewarding or aversive sites which were more

stressful produced such a decrease. In addition, the lowered amine

levels were not correlated with other indices of stress measured, such

as adrenocorticoid activity (Olds & Yuwiler 1972). Although these

experiments have indicated some change in gross amine levels with ICSS,

this might not give a reasonable measure of activity in CA neurones,

and in addition there could be a lack of a direct correlation between

amine levels and function (Carlsson 1966). Indeed in the periphery,
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stimulation of adrenergic neurones can lead to an increased level of

amine in the tissue (Folkow et al 1967).

In order to obtain a better measure of amine release studies were

made on amine turnover after ICSS. A measure of amine turnover can be

obtained by either measuring the rate of disappearance of amines after

synthesis inhibition (S pector et al 1965) or of radioactive tracer

amines (Iversen & Glowinski 1966). The rate of disappearance of the

amines could be measured either histochemically or biochemically.

Firstly, studies which used synthesis inhibition in order to measure

turnover. Using the histochemical method that is measuring the rate

of reduction in fluorescence intensity, NA turnover was seen to have

increased after both stimulation of anaesthetised (Arbuthnott et al

1970) and conscious self-stimulating animals (Arbuthnott et al 1971)

with electrodes in the ventral tegmentum in the area of the ventral NA

bundle (Ungerstedt 1971). The NA turnover had increased solely in the

projection areas of the ventral bundle such as the hypothalamus.

The increases in turnover of NA, and in one case of striatal DA

correlated well with the anatomical placement of the electrode though

less well with the ICSS behaviour. Due to the inhibiting effect of

CA synthesis on ICSS in general, forced stimulation was required to

continue the stimulation.

Alternatively, biochemical measurement of increased depletion

of amines with stimulation after CA synthesis inhibit also indicated

increased utilization. Applied stimulation through electrodes in the

area of MFB which had supported ICSS produced decreased NA levels in

hypothalamus and the rest of the brain, although not in all the animals

stimulated at rewarding sites. There was no change with animals

stimulated at non-rewarding sites (Yuwiler & Olds 1973). Similar

results were obtained with electrodes placed bilaterally in the area



ventralis tegmenti, with increased NA utilisation in hypothalamus,

hippocampus and cortex after applied stimulation (Stinus et al 1973) .

However, even measuring utilization of amines might not give

a sensitive method for the detection of release. Results from studies

of the spontaneous or drug induced release of radioactive DA, synthesised

endogenously from radioactive tyrosine (Besson et al 1971) and the

biphasic disappearance of both exogenous or endogenously synthesised
\

amine after stress (Thierry et al 1971) have indicated that a unique

pool of newly synthetised amines were preferentially released from

CA neurones. As this pool was readily labelled using radioactive

amines or their precursors (Thierry et al 1971), the rate of dis¬

appearance of these tracers might give a better indication of amine

turnover. Also with no synthesis inhibition necessary, free self-

stimulation was possible, using bilateral electrodes in AVT. Dopamine

utilization was increased in the olfactory tubercle, and NA in brain

stem, hypothalamus, hippocampus and cortex. No changes in amine

levels were detected, and this might have been due to increased synthesis

of amine (Stinus et al 1973) . More direct evidence of amine release due

to stimulation was obtained, by perfusing brain areas using a push-

pull cannula and measuring the efflux of radioactive tracer amines

which had been previously injected intraventricularly. Applied stim¬

ulation of electrodes which had previously been rewarding caused an

increased efflux of radioactivity in hypothalamus and amygdala. This

increased efflux also contained a larger proportion of CA metabolites

(Stein & Wise 1969).

Unfortunately, none of these approaches produced definitive

evidence of CA release in ICSS, especially release of a single amine.

Most suffer from generalised procedural deficits. Nearly all have had

to use imposed stimulation which may produce different results; -to



free ICSS as in Olds & Yuwiler (1972). In addition some of the studies

have examined very discrete brain areas which may or may not be directly

involved in ICSS, (Stein & Wise 1969) or others gross whole brain levels

in which more discrete effects would be submerged (Olds & Yuwiler 1972,

1973). The use of CA synthesis inhibitors prevented the measurement of

CA utilization in self-stimulation by enforcing applied stimulation,

and also produced an artificial state in the CA systems which might not

reflect normal function. The use of radioactive tracing techniques

although more promising does have its own problems. The push-pull

cannula technique has been criticised for the trauma it may cause and for

causing non-specific release of neurotransmitters (Chase & Kopin 1968).

Also, the mechanisms for transport and release of monoamines do not have

strict chemical specificity (Kopin 1968), as might be demonstrated by

an increased efflux of radioactive DA from hippocampus (Stinus et al

1973), an area apparently without dopaminergic innervation (Lindvall

& Bjorkland 1974). The problem has been to demonstrate an increased
«

release of an endogenous amine from an area that normally contains

aminergic terminals, after ICSS.

An approach which comes nearer this ideal is to measure the turn¬

over of an amine by measuring the principle concentration of its final

metabolites. The final metabolite of noradrenaline in CNS is 4-

hydroxy-3-methoxyphenylglycol, (HMPG), (Mannarino et al 1963).

Stimulation of NA cell bodies in locus coeruleus in anaesthetised

animals produced an impulse related rise in HMPG levels in cerebral

cortex (Walters & Eccleston 1972: Korf et al 1973), and destruction

of LC caused a decrease in HMPG levels (Arbuthnott et al 1973:

Korf et al 1973), and thus HMPG seemed to be a good measure of NA

activity in cerebral cortex. It was found that ICSS in the region of

LC also produced an increase in HMPG levels in cortex on the stimulated
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side of the brain, although this increase was less than that

obtained with applied stimulation from previously rewarding electrodes

in the same area in anaesthetised animals (Anlezark et al 1975).

However, it was proof of an increase in NA metabolism after ICSS from

the LC, without any interference by drugs or from imposed stimulation.

Other evidence that NA metabolism was increased after ICSS in the region

of LC has been obtained. It was shown that tyrosine hydroxylase (TOH)

activity was increased in peripheral sympathetic neurones after electrical

stimulation (Ben Ari & Zigmond 1975). TOH was the rate-limiting enzyme

for NA synthesis (Levitt et al 1965) and it was suggested that increased

TOH activity might reflect increased neuronal activity (Thoenen 1972).

It has now been shown that ICSS with electrodes in the area of LC also

increased TOH activity (Section 3, this thesis). This was in accord with

the HMPG results, and together these experiments implied that the dorsal

NA system from LC might be a substrate for ICSS.

It seemed appropriate to use a method to investigate changes in

dopamine turnover in ICSS by measuring the major final metabolites of

dopamine, which are 3, 4-dihydroxyphenylacetic acid (DOPAC)

(Rosengren 1960) and homovanillic acid (HVA) (Sharman 1963). It has

been shown that stimulation of the MFB in anaesthetised animals produced

a rise in the levels of HVA & DOPAC in the striatum, nucleus accumbens

and olfactory tubercle (Korf et al 1976). More directly, stimulation of

the nigro-striatal pathway produced on impulse related rise in DOPAC

levels in the striatum and stimulation of the mesolimbic pathway

produced a similar rise in DOPAC in the olfactory tubercle in anaes¬

thetised animals (Roth et al 1976), these areas being the respective

projection areas of these pathways (Ungerstedt 1971). Destruction

of the nigrostriatal or mesolimbic pathway produced a decrease in

DOPAC levels in the respective terminal areas (Roth et al 1976).

The measurement of the levels of DOPAC & HVA thus seemed a relevant

measure of activity in these dopaminergic pathways.
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An anatomical map of the ventral mesencephalon had indicated a

close correlation of sites positive for ICSS with the dopamine cell

bodies, in cell groups A8, A9 and AlO (Crow 1972). It was important

to discover if dopamine was released from the nerve terminals by the

electrical stimulation of conscious animals during ICSS. With

electrodes situated in the area of the AlO cell group, the origin

of the mesolimbic pathway (Ungerstedt 1971), changes in dopamine

metabolism as measured by metabolite concentrations were looked for

in the main projection areas of that pathway, the olfactory tubercle

and nucleus accumbens. Changes in DA metabolism in the striatum were

also looked at in case of a more generalised increase in DA release

during this behaviour. Finally, the concentration of HMPG in cerebral

cortex and hippocampus was measured to discover whether increased

activity in the dorsal NA system accompanied ICSS from dopaminergic

cell body areas. It had been shown using the radioactive labelling

technique that stimulation in AVT, near the mesolimbic pathway,

produced increased utilization of NA from cortex and hippocampus

(Stinus et al 1973). It was pertinent to discover whether NA release

occurred without pre-loading with radioactive tracers in view of the

already mentioned problems with such a technique.



Methods

1. Implantation of electrodes

Bipolar electrodes were constructed from lOOumstainless steel

wire coated with Teflon for insulation (Thermal Wire of America).

The wire was twisted together, then cut to produce two uninsulated

tips, approximately 200umin maximum diameter. The other ends of the

electrode were also cleared of insulation at their tips and crimped

into gold pin sockets (ITT Canon electrics) with a crimping tool

(Buchanan). The electrode sockets were cemented together using dental

acrylic cement (Simplex-Howmedica Int. ) to provide a stable

assembly. This was then mounted in a Kopf electrode holder for

implantation.

Male Wistar rats (180 - 220 gm) were anaesthetised with halothane

(ICI) and fixed in a David Kopf stereotaxic frame using blunt guinea-

pig ear bars. The tooth bar of the frame was set -2.4 mm below ear

bar zero. The skull was exposed by a medial incision, and viewed with a

binocular operating microscope (Zeiss) the periosteum scraped from the

surface to make the sutures clearly visible. In these experiments,

bregma was used as the stereotaxic reference point. The electrodes

were aimed dorsal to the interpeduncular nucleus, using the following

co-ordinates:

Anterior posterior (AP) - 4.3 mm

Lateral (L) - 0 mm

Vertical (V) - 8.3 mm (measured from the skull surface)

A second group aimed at the posterior hypothalamus were inserted at:

Anterior posterior (AP) - 4.0 mm

Lateral (L) - 0 mm

Vertical (v) - 8.1 mm
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A burr hole was drilled at the site of these co-ordinates, taking care

not to damage the cortex, then filled with bone wax (Ethicon). The

electrode was then lowered to the appropriate depth using the stero-

taxic electrode holder. Previous to inserting the electrode three

plastic screws had been inserted into holes drilled in the skull,

and the electrode was made secure to these using dental acrylic cement.

The skin was then drawn together around the electrode assembly and

stitches inserted. The rats were allowed to recover from the operation

for one week before screening for ICSS behaviour, and were maintained

on ad lib water and diet of lab chow.

2. Stimulation

In the initial part of this experiment, a Campden brain stimulator

(Campden 522) was used which produced 50Hz sine wave current. The

stimulus parameters used were 200 msec trains, with intensity being

in the range 20 - 50 yA.

The second part of the experiment used Neurolog 700 series

stimulators (Digitimer) producing monophasic square wave pulses. The

stimuli used were 200 msec trains,.15 msec pulses, 50 pulses/sec. The

current was typically 150 - 250 yA. This was checked and routinely

monitored on an oscilloscope (Telequipment).

3. Behavioural equipment and training procedures

All experiments were carried out in Campden rodent test chambers,

housed in Campden sound attenuating boxes. The test chamber was made

of aluminium, measuring 8" x 9V x 8V with a perspex side door. The

lever was 2" wide and protruded h" into the test chamber at a height

of 2h" from the floor. It required a force of 10 gm. The test chamber

was continually illuminated, and could be viewed through a one way window



in the box. The stimulator was connected to the electrode assembly

via a mercury slip ring which allowed free movement of the rat.

The rats were run on a continuous reinforcement schedule (CRF).

This was controlled by electro mechanical logic modules (Colne

Instruments) which allowed one train of pulses for each lever press.

A delay control was inserted in the programming circuit so that at

least 200 msec elapsed between trains. The number of lever presses

and the number of pulse trains given in each session of ICSS were

counted on an electro-mechanical counter. In addition the rate of

pressing throughout a session was displayed with a cumulative pen

recorder (Campden).

After the one week post-operative recovery period, the rats

were placed in the test chamber and the electrode connected to the

cable from the slip ring in the roof of the chamber. The rat was

shaped for lever pressing by the experimenter manually giving a

pulse train whenever the rat approached the lever. The current was

progressively increased until a reaction was elicited, either a

positive one indicated by the increased time spent near the lever or

conversely for an aversive one. Occasionally a neutral response

occurred, when the rat was simply disinterested in the electrical

stimulation. Those rats in which the electrical stimulation was

positively reinforcing were trained to press the lever to receive the

stimulation, after at most three thirty minute training sessions on

separate days. Thereafter the rats were allowed one 30 minute session

for five consecutive days. At the end of the last session, the rats

were quickly removed from the box and killed by stunning and de¬

capitation .
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4. Dissection procedure

The rats were rapidly decapitated and the brains removed and

immersed in ice-cold saline, then dissected over ice. The brain was

placed ventral side up, and the olfactory tubercles pinched off with a

curved forceps. A coronal cut was mcide 2 mm anterior to the optic

chiasma, followed by a similar cut through the optic chiasma itself.

The resulting tissue slice was placed horizontally and a vertical cut

o \
at 90 to the first cut made through the anterior commissure. The

part ventral to the commissure was removed, and tissue lateral to

the lateral olfactory tract was cut away. The remaining tissue con¬

tained the nucleus accumbens. The dorsal section of the slice contained

the ;septum, striatum and frontal cortex. Septum and striatum were

picked out with curved forceps, as was the striatal tissue remaining

in the rest of the brain caudal to optic chiasma. The cortex and

hippocampus were removed. Immediately after dissection the tissue was

frozen in aluminium foil amongst solid CO^, before longer term storage
in liquid . The hypothalamus and pons were snap frozen to be cut

into thin sections in a cryostat for histological evidence of electrode

placement.

5. Histological procedures

The staining technique used was a modified version of the one

reported by Kluver Barrera, 1953. A tissue slice about 3 mm

containing posterior hypothalamus and the ventral tegmentum was frozen

onto a cryostat chuck in solid CO^- Sections of 20 ym were cut in a

cryostat and every fourth one in the region of the electrode tract

was collected. The sections were melted on to glass microscope slides

in preparation for staining.



The sections were treated as follows:

(a) Washed in 95% ethanol for 5 minutes.

(b) Stained for 20 minutes at room temperature in

a filtered 0.1% Luxol Fast Blue in 95% ethanol

solution containing 5 ml of 10% acetic acid in

every 1000 ml.

(c) Washed in distilled water to remove excess stain.

(d) Differentiated by brief immersion (15 seconds) in

0.05% Lithium Carbonate solution.

(e) Differentiation continued in 70% Ethanol for 30 seconds.

(f) Washed in distilled water

Steps (d) - (f) were repeated until only the white matter in

the section was stained light blue against a clear background.

(g) Stained for 10 minutes in cresyl violet solution

(0.2%) containing 5 drops of 10% acetic acid to every

30 mis of solution.

(h) Differentiated in 95% Ethanol by frequent brief

(5 seconds) immersion.

(i) Dehydrated in absolute Ethanol, cleared in Xylene and

mounted in D.P.X. ready for microscopic examination.

6. Estimation of 3, 4-dihydroxyphenylacetic acid (DOPAC) and

homovanillic acid (HVA) in rat brain by Gas-liquid

chromatography and Electron Capture Detection

This method was based largely on that of Pearson and Sharman

(1975), with modifications in the extraction procedure (Nicoleu N,

Ph.D. Thesis, Edinburgh) .

(a) Simultaneous estimation of HVA & DOPAC concentrations in rat

brain samples

Tissue samples were homogenised in 0.8 ml of 0.4N perchloric

acid (PCA), then centrifuged for 4 minutes (at low speed).
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The supernatant was transferred to an Eppendorf tube and 0.5 ml

of toluene added. After 30 seconds of mixing, the tube was centrifuged

at low speed. The organic phase was discarded, and after adding 0.5 ml

of ethyl acetate (Reeve Angel Scientific Ltd) the tube was shaken for

1 minute. The tube was centrifuged then for 4 minutes, and the ethyl

acetate layer transferred to a reaction vial. This ethyl acetate

extraction procedure was repeated twice, taking the aqueous layer. The

combined ethyl acetate sample extracts were evaporated to dryness under

a stream of N2

In the derivatisation step, 0.2 ml of twice redistilled tri-

fluoroacetic anhydride (Aldrick Chemical Co. Inc.) and 0.1 ml of

redistilled hexafluoroisopropanol (BDH), were added to the dried residue

and reacted at 100°C for 1 hour. Following this step the reaction

vial was allowed to cool to room temperature before opening and the

contents were evaporated just to dryness under a stream of dry N .

The oily residue was dissolved in 1 ml of dry ethyl acetate, containing

lOO ng of pentafluorophenyl benzoate used as an internal standard.

2 pi of this solution was injected into the gas chromatograph.

(b) Gas-liquid chromatography

This was performed with a Hewlett-Packard model 5710A gas chrom-

6 3
atograph, fitted with Ni electron capture detectors, maintained at

a temperature of 250°C. The carrier gas was argon containing 5%

methane. It was delivered at a flow rate of 50 ml/min which corres¬

ponded to a gas pressure of 40 pounds/sq. in. (psi). The chromatograph

column consisted of a 2% SE 52 liquid phase coated on Chromosorb Q

(Hewlett Packard) used at an oven temperature of 115°C.

The relative retention times of the trifluoroacetic anhydride

and hexafluoroisopropanol derivatives of DOPAC and HVA, with respect



to the internal standard, were 0.35 and 0.52 respectively. The areas

of the DOPAC, HVA derivatives peaks were measured in each case and the

ratio of metabolite peak area to internal standard peak area was

calculated. These ratios were compared with those in a standard

curve and the amounts of HVA and DOPAC in each sample was calculated.

With this method the recovery of both HVA and DOPAC was typically

90% and the values given are uncorrected for recovery.

7. Estimation of 4-hydroxy-3methoxyphenylglycol (HMPG) in the cortex

and hippocampus by gas-liquid chromatography

The tissue samples were homogenised in 5.0 ml chilled 0.4N

perchloric acid (PGA) and the homogenate transferred to a centrifuge

tube, washing it out with another 1.0 ml of 0.4N PCA. After high speed

Centrifugation (10,000 r.p.m. for 10 minutes) of the homogenate, the

supernatant was decanted into a test tube and the pH adjusted to about

5 with KOH. The solution was poured into a chilled C14 tube, washing

out with a few drops of distilled water. The sample was placed in a

deep freeze for 15 - 60 minutes to ensure the maximum precipitation of

potassium perchlorate. After thawing, it was centrifuged (3,000 r.p.m.

for 5 - lO minutes) and 2.5 ml supernatant decanted into a C14 tube.

In some of the samples a duplicate was taken from the supernatant to

which was added standard amounts of HMPG. To all tubes were added

lOO yl 1M sodium acetate buffer pH 5.0, 50 yl helicase (50 mg/ml) and

a drop of chloroform. The sample was incubated overnight at 37°C.
The sample was then shaken twice, for 5 minutes each time, with

4 ml and 3 ml of ethyl acetate. After centrifugation, 3.5 and 3 ml

respectively of the ethyl acetate layer, which contains the glycols,

was removed. The pooled ethyl acetate extracts were evaporated to

dryness under in heated block at 56°C. The residue was taken up in
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0.4 ml water and acetylated by adding 50 yl of acetic anhydride

(redistilled) and 0.6 ml KHCO^ (16.5 g/100 ml). The solution was

agitated, and the reaction proceeded for 30 minutes. The sample was

then agitated for 1 minute with 1.6 ml dichloromethane and centrifuged.

1.3 ml of the lower organic layer (containing the acetylated derivatives

of the alcohol metabolites) was shaken with a little anhydrous Na^SO^.
The dichloromethane extract was decanted into a 2.5 ml test-tube and

evaporated under N2 at 56°C. The residue was taken up in 0.6 ml tri-

fluoroacetic anhydride mixture (1 part trifluoroacetic anhydride +

5 parts ethyl acetate) and the tube was stoppered and heated at 56°C for

15 minutes (to convert the acetylated HMPG into its fluorinated derivative).

The solution was evaporated to dryness under N2 at 56°C and the residue
was taken up in 0.2 ml ethyl acetate containing 30 ng/ml benzene

hexachloride as an internal standard. This solution was transferred by

Pasteur pipette into a GLC microvial. 4 yl of this solution was

injected into the column.

GLC conditions

A Perkin-Elmer 900 gas liquid chromatograph was used, with a

column containing 2.5% silicone gum rubber E301 on a support of

chromosorb. The carrier gas was argon/methane (90/10), at a pressure

of 70 lbs/sq.in. The column temperature was 170°C and the temperature

of the electron capture heads was 290°C. This gave retention times of

1.8 min for HMPG and 2.8 minutes for benzene hexachloride.

The height of each HMPG peak was expressed as a proportion of

the peak height of the internal standard. The amount of HMPG in the

sample was calculated by comparing the sample ratio with the ratio

obtained from standard amounts of HMPG taken through the method.
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Section One Fig 1

The relationship in individual rats between response rate
(bar presses/30 minutes) and HVA concentration in olfactory
tubercle after ICSS (Experiment A). Open circles (O)
represent unstimulated controls (n = 7); square symbols (■)
represent rats with electrodes in area ventralis tegmenti
(AVT group, n = 9); and triangles (A) represent rats with
electrodes in medial posterior hypothalamus (PH^ group, n = 7).
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Results

HVA and POPAC levels

Experiment A

The concentrations of HVA and DOPAC were measured in three

forebrain areas, the olfactory tubercle and nucleus accumbens and

the corpus striatum. There were two experimental groups, one of

16 rats which had self-stimulated as described above, and a control

group of 7 rats which had had electrodes implanted but had proved

negative for self-stimulation. The control groups were placed in the

test boxes for an equivalent period of time to stimulated group, but

received no stimulation.

Initial examination of HVA and DOPAC levels in the tissues of

the stimulated group revealed a slight increase in HVA and DOPAC in

the olfactory tubercle compared with control values, but no difference

in nucleus accumbens or corpus striatum. However there was a large

variance within the stimulated olfactory tubercle group, with some

individual increases in HVA and DOPAC of 200 - 300% of the mean

control values. This can be seen in Fig 1 which shows the HVA levels

in olfactory tubercle of the individual rats.

The exact locations of the electrodes in the rats' brains were

found by microscopic examination of the stained brain sections. These

were mapped onto an atlas of the rat brain (Konig and Klippel 1963)

and hence the location was defined. It was discovered that some of

the electrodes were in the area dorsal to the interpeduncular nucleus,

in the area ventralis tegmenti, in which the AlO dopamine cell bodies

and their axons are to be found. However, some electrodes were mis¬

placed, and were in a more rostral aspect of the brain, in the

posterior hypothalamus dorsal to the mamillary bodies. There appeared



Section One Table One

The Concentration of HVA and DOPAC in forebrain

areas after ICSS in the ventral mesencephalon

Experiment A

Olfactory Tubercle

HVA

\ r

(yg/gm) p vs control DOPAC (yg/gm) p vs control

Control (7) 1.97 + .15

AVT (9) 3.93 + .23

PHa (7) 1.85 + .22

Nucleus Accumbens

Control (7) 1.42 +_ .26

AVT (9) 1.96 + .20

PHa (7) 1.45 + .18

p < .001

n.s.

n.s.

n.s.

2.47 + .23

4.95 + .53

1.60 + .27

1.44 + .16

2.31 + .40

1.05 + .18

p < .005

p < .05

n.s.

n.s.

Corpus striatum

Control (7) 1.09 + .09

AVT (9) l.Ol + .10

PHa (7) 0.94 + .08

n.s.

n.s.

n.s.

1.13 + O.13

1.05 + .24

0.80 + .27

n.s.

n.s.

Results expressed as mean
ventralis tegmenti group,
experiment A. The groups

using the student t-test,

concentrations in yg/gm
PHa - medial posterior
were compared with the
unpaired.

+ SEM. AVT-area

hypothalamus,
unstimulated control
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Section One Fig 2

The concentration of HVA and DOPAC in olfactory tubercle after ICSS.
The groups were unstimulated control (c), n = 7; electrode location
area ventralis tegmenti (AVT), n = 9; posterior hypothalamus,
experiment A (PH^) n = 7; and posterior hypothalamus (PH ) n = 5.
Group comparisons using student t-test, unpaired.
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Section One Fig 3

The concentration of HVA and DOPAC in nucleus accumbens after ICSS.
The groups were unstimulated control (c), n = 7; electrode location
area ventralis tegmenti (AVT), n = 9; posterior hypothalamus,
experiment A n = 7; and posterior hypothalamus (PH^) n = 5.
Group comparisons using student t-test unpaired.
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Section One Fig 4

The concentration of HVA and DOPAC in the striatum after ICSS. The

groups were unstimulated control (c), n = 7; electrode location area
ventralis tegmenti (AVT), n = 9; posterior hypothalamus, experiment A
(pH ) n = 7; and posterior hypothalamus (pHg) n = 5. Group comparisons
using student t-test, unpaired.
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to be two anatomically distinct subgroups of self-stimulating rats.

Rats with electrodes placed rostral to A2420 were assigned to the PH

group, those caudal to this in the AVT group.

The biochemical data was arranged in corresponding groups to

investigate the correlation between electrode location and changes in

dopamine metabolite levels. The levels of HVA and DOPAC as found in

these groupings was as follows, (see Table 1).

The concentration of HVA in the olfactory tubercle of the AVT

group 3.93 yg/gm was elevated significantly compared with the non-

stimulated control group 1.97 yg/gm (P < .OOl, student t-test, two-

tailed) , while the level of the pH group 1.85 yg/gm, was no different

to the control value. DOPAC concentrations were increased similarity,

the AVT groups containing 4.95 yg/gm; the controls 2.47 yg/gm and

the PH group 1.60 yg/gm (AVT to control, P < .005), PH to control,

P < .05 (see Fig 2).

In the nucleus accumbens, the concentration of HVA in the AVT

group was 1.96 yg/gm, in the controls 1.42 yg/gm and the PH group

1.45 yg/gm. The DOPAC concentrations were 2.31 yg/gm from AVT group,

1.44 in controls and 1.05 yg/gm in the PH group. Neither metabolite

was significantly elevated in either of the stimulated groups compared

to control, although the highest concentrations were seen in the AVT

group (Fig 3).

The concentration of HVA in the striatum was 1.01 yg/gm in the

AVT group, 1.09 yg/gm in controls and 0.94 yg/gm in the PH group.

DOPAC concentrations were 1.05 yg/gm, 1.13 yg and .80 yg/gm for AVT,

control and PH groups respectively. None of these metabolite con¬

centrations were significantly different from control values (Fig 4).
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Section One Table Two

The Concentration of HVA and DOPAC in forebrain

areas after ICSS in medial posterior hypothalamus

Experiment B

HVA (yg/gm) p vs control DOPAC (yg/gm) p vs control

Olfactory tubercle (5) 1.87 +_ .13 n.s. 2.SI +_ .40 n.s.

Nucleus accumbens (5) 1.25 +_ .13 n.s. 1.53 .18 n.s.

Striatum (5) 0.90 + .05 n.s. 1.08 + .16 n.s.

Results expressed as mean concentrations in ug/gm + SEM. PH^ - medial
posterior hypothalamus group, experiment B. Groups were compared with
the unstimulated controls using the student-t test, unpaired. Control
values as in Table One.

Section One Table Three

The Concentration of HMPG in cortex and hippocampus

Experiment A

p vs control

Control (7) 61.7 + 5.7 -

AVT (9) 64.6 + 6.2 n.s.

PH (6) 62.8 + 5.8 n.s.

Results expressed as mean concentrations in ng/gm +_ SEM. AVT - area
ventralis tegmenti group. PH^ - medial posterior hypothalamus, experiment
A. The groups were compared using the student t-test, unpaired.
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Experiment B

Although there were increased concentrations of dopamine

metabolites in the olfactory tubercle only in the group of rats

with electrodes actually in the AVT, discrimination between AVT

electrode sites and those in the posterior hypothalamus was made on

a post-hoc basis. The experiment was repeated therefore with

electrodes aimed deliberately at the medial posterior hypothalamus.

A group of 5 rats was used and the same procedures were followed.

Histological examination confirmed the location of the electrodes

in medial posterior hypothalamus, dorsal to the mamillary bodies.

They were mostly found dorsal to the supramamillary decussations,

medial to the mamillo-tegmental tracts. Some were on the edge of

the periventricular gray matter. The amount of HVA and DOPAC in the

same forebrain areas were obtained (Table 2).

In this posterior hypothalamic group, PH , the concentrationsB

of HVA in olfactory tubercle was 1.87 yg/gm, in nucleus accumbens

1.25 yg/gm and in striatum 0.90 yg/gm. None of these values were

significantly different to control values. The concentration of

DOPAC in olfactory tubercle was 2.67 yg/gm in nucleus accumbens

1.53 yg/gm and in striatum 1.08 yg/gm and again none were

significantly different to controls. These can be seen in

Figs 2, 3 and 4.

In this experiment therefore, there were no increases in

the concentrations of the DA metabolites HVA and DOPAC. It seems

likely that the anatomical discrimination in Experiment 1 was in

fact justified.
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The concentration of HMPG in parietal cortex and hippocampus after
ICSS. The groups were unstimulated control (c) n = 7; area ventralis
tegmenti (AVT) n = 9; and posterior hypothalamus from experiment A
(PH) n = 6.



MHPG

The concentration of a metabolite of NA, MHPG, was measured

in the parietal cortex and hippocampus of the rats in the first

experiment. The results were grouped on the basis of the anatomical

distinction between electrodes in AVT and those in PH, (Table 3).

Control tissues contained 61.7 yg/gm, those from the AVT groups

64.5 yg/gm and those from the pH group 62.8 yg/gm. There were no

significant differences between any of the groups (Fig 5).

Statistics

The student t-test was used to estimate the statistical significance

of the experimental variations, as described by Snedecor and Cochran

(1967).



A 2580p A2180p

Section One Fig 6

The location of electrodes in Experiment A, plotted on coronal sections
from the atlas of Konig and Klippel. The relationship to changes in DA
metabolism is indicated - group AVT, increase in DA metabolism; group

PH^, no change in DA metabolism, and unstimulated control.
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Section One Fig 7

The location of electrodes in experiment B, diagrams based on the atlas
of Konig and Klippel. All electrodes in group PH^ were found in medial
posterior hypothalamus, dorsal to the mamillary bodies.



58

Discussion

The catabolism of dopamine in the brain is effected by the

enzymes catechol-O-methyl transferase (COMT) monoamine oxidase (MAO)

and aldehyde dehydrogenase (Sharman 1973 and Duncan and Sourkes 1974).

The major end products are the acidic metabolites, 3, 4-dihydroxy-

phenylacetic acid (DOPAC) (Rosengren I960) and homovanillic acid (HVA)

(Sharman 1963), and measurement of the concentrations of these

metabolites can give a measure of dopamine turnover. Furthermore, changes

in the firing rate of dopamine neurones may be reflected in the con¬

centration of these metabolites in terminal areas. The level of DOPAC

increases after administration of chlorpromazine (Walters and Roth 1972),

a phenothiazine which increases the firing rate of DA neurones

(Bunney et al 1973). Electrical stimulation is also efficacious in

raising DA metabolite levels. Electrical stimulation of the rat nigro-

striatal pathway enchances release of dopamine in the caudate

(McLennan 1964), and enhances the output of HVA into ventricular

perfusates in the cat (Portig and Vogt 1969). Stimulation of the

nigro-striatal pathway produced rises in DOPAC in the corpus striatum

on the stimulated side (Roth et al 1976). This experiment used pooled

tissue and so exact proof of DA neurone stimulation causing increased

DOPAC concentration in the individual animal is lacking. In another

experiment, electrical stimulation of the medial forebrain bundle (MFB),

a nerve bundle with which DA neurones are associated (Ungerstedt 1971A,

produced rises in the concentration of both DOPAC and HVA. These

rises are found in the olfactory tubercles and nucleus accumbens part

of the terminal area of the meso-limbic DA system, and in the corpus

striatum, the terminal area of the nigro-striatal DA system (Korf e£

al 1976). In both sets of experiments though, anaesthetised animals
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are stimulated by the experimenter. In a different type of experiment,

stimulation in the area ventralis tegmenti, in conscious rats near the

A10 DA cells, increases the rate of utilization of radioactivity labelled

3-H
DA, DA, with which the brains had been previously loaded (Stinus et

al 1973) .

It seems reasonable therefore to conclude that electrical

stimulation of dopamine neurones can cause release of dopamine from the

neurones. This release may be measured by determining the concentration

of the dopamine metabolites DOPAC and HVA. Indeed, for conscious

animal studies this may be the only reasonable method. Other methods

of measuring DA turnover using the rate of disappearance of DA after

synthesis inhibition are unusable as CA synthesis inhibitors cause

physical impairments in the animal. Pre-loading of radioactive label

has also disadvantages, mainly that the label may be taken up into non-

dopaminergic neurones, and thence released, for example from the

hippocampus (Stinus et al 1973), an area not know to contain DA terminals

(Lindvall & Bjorkland 1974). For the purpose of examining DA release

in self-stimulating animals, the method used in the present study would

seem to be appropriate.

The results from the present study show that electrical self-

stimulation from electrodes placed in the area ventralis tegmenti

(AVT), in close proximity to the DA neurones from the A10 cell group,

causes large increases in the concentration of both DOPAC and HVA

in the olfactory tubercle. The size of these rises (approximately

200% increase) is in close agreement with that obtained with enforced

stimulation of the MFB in anaesthetised animals (Korf et al 1976),

which were believed to be maximal (Korf et al 1976b). There is also

agreement with other studies on changes in DA metabolism after electrical
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self-stimulation of the AVT. An increase in the rate of disappearance
3 _H

of pre-loaded DA from the olfactory tubercle (Stinus et al 1973)

and an increase in the DA concentration from the olfactory tubercle

(St. Laurent £t al 1976) are reported.

All these measures indicate an increase in the dopaminergic

activity in olfactory tubercle, and the DA release study and the present

metabolite study indicate an increased release of DA on stimulation of

the DA neurones. " \

The absence of a significant rise in HVA or DOPAC in the nucleus

accumbens is unexpected, as the DA neurones of the AlO cell group

project to this area of the brain (Ungerstedt 1971). Although there

are no changes in DA concentration after electrical self-stimulation

(St. Laurent et al 1976), large increases in DOPAC are found after

MFB stimulation in the ipsilateral accumbens only (Korf et al 1976a).

In the present experiment, both HVA and DOPAC concentrations were

greater in the nucleus accumbens in the AVT stimulated group than

in the control group. The ipsi-and contralateral accumbens are pooled

before assay, thus any unilateral rise in accumbens may have been masked

by the pooling, as the stimulating electrodes are found mostly in the

lateral aspects of the AlO area.

There was no change in HVA or DOPAC in the corpus striatum. The

corpus striatum has a different DA innervation, from the substantia

nigra pars compacta DA cell group, A9 (Ungerstedt 1971). In the

ventral tegmentum the A9 DA neurones run lateral to those from AlO,

and hence are not so likely to be stimulated from electrodes situated

near the midline. The lack of a rise in DA metabolites in this area

also suggests that there is no non-specific rise in DA metabolism

due to increased motor activity.



In the animals with electrodes located in medial posterior hypo¬

thalamus (the PH groups) there are no increases in HVA or DOPAC in any

of the DA terminal areas examined compared with control. As the

stimulation parameters are identical to those of the AVT group, and

electrical stimulation of dopaminergic pathways has previously been

shown to increase DOPAC (Roth et al 1976) and HVA (Korf et al 1976),

it seems likely that electrodes in this loci are not stimulating the

mesolimbic or nigro-striatal dopamine pathways. There appears to be

no other study of changes in dopamine metabolism after electrical

stimulation of medial posterior hypothalamus with which to corroborate

the present results.

It has been suggested that ICSS from at least some brain areas is

dependent on NA release (Stein 1966: Crow 1969). Anatomical mapping

studies have indicated that the dorsal noradrenergic system, originating

in the locus coeruleus (A6) pontine cell group (Fuxe et al 1965 and

Ungerstedt 1971) may support ICSS (Crow et al 1972: Ritter & Stein

1973). The dorsal noradrenergic bundle projects rostrally into the

hypothalamus, in the medial forebrain bundle (Ungerstedt 1971), and

hence it may be possible that stimulation of the pH group in fact

activated this system.

The main metabolites of noradrenaline in brain are 4-hydroxy-

3-methoxyphenylglycol (HMPG) and its sulphate conjugate (MHPG-SO^)
(Mannarino et al 1963: Schanberg et al 1968), with HMPG-SO^ being
the major metabolite in rat brain (Walter and Eccleston 1973).

Fluorescence histochemistry suggests that the main NA innervation of

the hippocampus and cerebral cortex originates in the locus coeruleus

(Ungerstedt 1971). Lesions of the locus coeruleus markedly decrease

both the NA concentration (Anzelark et al 1973) and the metabolite

MHPG (Arbuthnott et al 1973: Korf et al 1973) in the ipsilateral
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cerebral cortex. Electrical stimulation of one locus coeruleus

produced significant increases in the concentration of MHPG-SO^ in
the ipsilateral cerebral cortex (Walter and Eccleston 1973: Korf et

al 1973). In the rat brain, MHPG-SO^ concentration gives a measure of
noradrenaline turnover. Furthermore, electrical self-stimulation with

electrodes placed in or near locus coeruleus is shown to increase

MHPG-SO^ concentration most markedly in the cerebral cortex ipsilateral
to the electrodes (Anzelark et al 1975)". The measurement of HMPG-SO^
concentration in cerebral cortex and hippocampus as a measure of

electrical activation of the dorsal noradrenergic system in the present

study seems justified.

There are no increases in HMPG in these areas after stimulation

in the AVT or PH compared with the unstimulated control group. This

indicates that stimulation at these sites does not produce an increase

in noradrenaline metabolism in cerebral cortex, and hence activation

of the dorsal noradrenergic pathway does not seem to have occurred.

This result is not unreasonable as the sites of stimulation do not

correspond with the location of the dorsal bundle in the mesencephalon

and hypothalamus (Ungerstedt 1971). Although no other study is known

of the effects of medial posterior hypothalamic stimulation on nor¬

adrenaline metabolism, previous studies examine the effect of AVT

3_H 3—H
stimulation. After pre-loading with DA, utilization of DA and
3_H

NA in cortex and hippocampus increased a self-stimulation with

bilateral electrodes in AVT (Stinus et al 1973). However, with

unilateral stimulation in AVT, and measuring the disappearance of

amine fluorescence after a-MPT administration, no change is found in the

levels of cortical noradrenaline (Arbuthnott et al 1971). The latter

experiment is in accord with the present results. Whether the results
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of the other experiment are due to the bilateral stimulation or to

the pre-loading technique remains uncertain. Pre-loading of amines

can be criticised on the grounds of non-specific uptake and release

(Chase & Kopin 1967), and the descending pathway which is surmised to

activate the dorsal noradrenergic system is not yet verified exper¬

imentally. In the light of the present study it seems likely that the

dorsal noradrenergic system is not activated by electrical stimulation

of the AVT.

Unfortunately the present study does not provide evidence for

activation of the ventral noradrenergic system, which passes through

the AVT (Ungerstedt 1971). Both the previous studies suggest that

such an activation takes place, and this seems a reasonable supposition

in view of the close proximity of the ventral bundle to the stimulation

sites (Arbuthnott et al 1970: Stinus et al 1973). It may be possible

that activation of the ventral noradrenergic pathway supports self-

stimulation behaviour. There is conflicting evidence for the ability

of this pathway to support self-stimulation. Self-stimulation can be

produced in the rostral pons, in the area of the ventral noradrenergic

bundle (Ritter & Stein 1974). However, attempts to produce self-

stimulation from the principal cell bodies of origin of the ventral

noradrenergic system, Al and A2 (Fuxe et al 1965) are not successful

(Anlezark et al 1974: Clavier & Routtenberg 1974). As the ventral

noradrenergic system is joined by other ascending NA fibres in the

rostral pons to form the central tegmental tract (Lindvall and

Bjorkland 1974) there remains the possibility that self-stimulation in

the ventral mesencephalon and/or the posterior hypothalamus has a

noradrenergic component.

The ventro-medial areas in the hypothalamus are often described

as sites in the brain which produce aversive behaviour on electrical
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stimulation (Olds 1960, Olds & Olds 1963). Sites in the ventro-medial

posterior hypothalamus in the present study support high rates of

self-stimulation. This area has been shown previously to be positive

for self-stimulation (Atrens and Von Vietinghoff-Riesch 1972).

Furthermore there exists a series of points throughout the ventro¬

medial hypothalamus which support self-stimulation (Atrens et al

1972: Ball 1972), with one area, around the paraventricular nucleus

producing very high reward with a very weak aversive component

(Atrens et al 1972). The behavioural aspects of self-stimulation in

this area are similar to those in lateral hypothalamus, with

excitation, sniffing and "searching" or exploratory behaviour

(personal observations; Atrens et al 1972), although it may require

a longer shaping procedure (personal observations: Ball 1972).

It is tempting to speculate that there might exist a medial hypothal¬

amic system which supports self-stimulation as well as the better

documented one in lateral hypothalamus. Intriguingly there exi ted a

noradrenergic pathway in this area, the ventral periventricular system

Bjorklund
(Lindvall & 1974) which could perhaps support the self-stimulation,

although this must be considered pure speculation.

There remains the problem of the neurological substrate of the

self-stimulation produced in ventro-medial posterior hypothalamus, which

appears not to involve the main catecholamine systems hypothesised to

be responsible for this behaviour. As well as the ventral periventricular

system mentioned above, 5-HT containing fibres are found in the supra-

mamillary decussation (Bobellier et al 1975), and there are nerve fibres

which pass from lateral hypothalamus to this decussation (Hpang &

Routtenberg 1971). Pharmacological experiments to investigate the

neurochemical characters of this "ventromedial reward system" are

detailed in the next section.
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In conclusion, it has been demonstrated that in vivo electrical

activation of the dopaminergic mesolimbic system in the self-stimulating

rat produces an increase in the dopamine metabolites HVA and DOPAC in a

terminal area of the system viz the olfactory tubercle. However,

such an increase in dopamine metabolites is not a necessary concom¬

itant to electrical self-stimulation in the rat as demonstrated by the

results from the posterior hypothalamic group of rats. Furthermore

electrical self-stimulation in the ventral mesencephalon or ventromedial

posterior hypothalamus does not appear to activate the dorsal noradrenergic

system, as measured by an increase in the NA metabolite, MHPG.
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Section 2

Pharmacological evaluation of medial posterior hypothalamic ICSS

Introduction

The existence of an area of medial posterior hypothalamus (MPH)

which supported ICSS but which did not appear to be mediated by the

mesencephalic dopaminergic systems has been demonstrated (Section One).

Early mapping studies of ICSS in the brain have shown that this area

can support ICSS (Olds et al 1960). Furthermore the ICSS from medial

sites in caudal hypothalamus has been shown to be almost purely positive

with very little aversive effects (Atrens et al 1972), and more

especially in the area dorsal to the supramamillary decussations (Olds

and Olds 1963). The neural systems involved here have remained

undefined, and these areas have not been investigated thoroughly,

especially the MPH.

A number of pathways which have an identified neurotransmitter

traverse this area, in particular the monoamine containing pathways.

The ventral periventricular NA system has been found to run rostrally

through this area ventral to the supramamillary commisure and medial to

the mamillothalamic tract (Lindvall and Bjorklund 1974). In the more

dorsal aspects of this area the All cell group (Fuxe et al 1969) has

been found, which appeared to contain both NA and DA cells, with ventral

projections towards the mamillary body (Bjorklund and Nobin 1973).

The central tegmental tract has multiple projections to this area,

corresponding in part to the former ventral NA system (Lindvall and

Bjorklun^ 1974). The MPH thus has a considerable catecholaminergic

innervation of various origin, which could be supporting ICSS.

An indolaminergic innervation of this area has been described.

The mamillary nuclei were found to have a moderately dense innervation

from the raphe nuclei in an autoradiographic study (Moore et al 1978).
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There have also been descriptions of fibres from the raphe crossing

above the mamillary bodies (Bobillier et al 1975). The possibility

of this serotoninergic system supporting ICSS would have to be

considered.

The identity of the pathways supporting ICSS in this area might

be elucidated by pharmacological investigation. The effect of

pharmacological manipulations in ICSS has been studied extensively,
\

and in particular the effect of drugs acting on the monoaminergic

systems. In general drugs which increase the availability of CA's

at the synapse have potentiated ICSS. The amphetamines, which have

been shown to enhance NA and DA release, inhibit their re-uptake and

block MAO (Sulser and Sanders Bush 1971), enhance ICSS response rates

(Stein 1964; Crow 1969) . The enhancement produced was most marked

at near threshold current intensities (Stein 1964). In addition,

amphetamine has been shown to reduce these thresholds (Stein and Ray

1960). Drugs which inhibit monoamine oxidase (MAO) and hence increase

the concentration of amine in the nerve terminal have been shown to

facilitate ICSS (Poschel and Ninteman 1964). These MAOI prevent the

intraneuronal breakdown of both CA's and 5-HT, hence these results do

not differentiate between the monoamines. Cocaine, which enhances the

release of the CA's (Trendelenburg 1959) and may also inhibit their

re-uptake enhances ICSS (Crow 1970). There has been consicferable support

for an involvement of CA's in ICSS from these experiments with enhanced

CA release.

In experiments in which CA transmission was either blocked or

reduced, decreases in responding for ICSS were found. CA synthesis

was found to be inhibited by a-methyl-p-tyrosine (aMPT), aMPT inhibited

the enzyme tyrosine hydroxylase which catalysed the rate-limiting step
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in CA synthesis (Nagatsu et al 1964), and thus led to a reduction

in brain CA concentrations (Spector et al 1965). A corresponding

reduction of ICSS was seen after a-MPT (Poschel and Ninteman 1966:

Black and Cooper 1970), using the bar-press response. However,

using rate-free measures a reduction of ICSS was also obtained with

a MPT (Black and Cooper 1970). This indicated that a non-specific

impairment of the animal was not responsible for the reduction in

ICSS, which suggested a vital role for CAs in ICSS.

A different approach was possible using reserpine, which was

believed to deplete CA transmitter stores by interfering with the

intraneuronal storage of the transmitter (Bloom and Giarman 1968).

Reserpine markedly reduced ICSS response rates (Olds et al 1956) and

also elevated the current threshold for responding (Stein 1962).

Another drug which also depletes intraneuronal CA's, tetrabenazine

also reduced ICSS response rates (Stein 1966). There seemed to be good

evidence for an essential role of the CA's from the evidence of these

depletion studies also.

As well as interfering with the pre-synaptic neurone it was

possible to reduce CA neurotransmission by blocking the post-synaptic

receptors. The neuroleptics, which block DA receptors, severely

reduced ICSS (Olds et al 1956: Wauquier and Niemeegers 1972). With

NA antagonists, the alpha-blockers phentolamine and phenoxybenzamine

did decrease ICSS, but at doses which could have caused a general

impairment (Bailey et al 1972: Hastings and Stutz 1973). The beta-

blocker propanolol had little effect at doses which caused pronounced

blockade (Hastings and Stutz 1973: Wise et al 1973). These experiments

strongly suggested an essential role for DA, but were less conclusive

for NA.
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The effect of drugs on the 5-HT system has been contradictory.

When p-chloroamphetamine was given a decrease in ICSS was observed

(Poschel and Ninteman 1971). This compound was believed to increase

the release of 5-HT, but it also similarily affects CA systems

(Sulser and Sanders-Bush 1971). If 5-hydroxytryptophan (5-HTP) was

given in conjunction with a MAOI, an increase in responding was seen.

However, 5-HTP not only increases brain 5-HT levels, but it may

displace NA. Furthermore, MAOI themselves may increase ICSS (Poschel

and Ninteman 1968). The use of drugs which deplete 5-HT in the brain

has not supported a crucial role for this amine in ICSS. P-

chlorophenylalamine (PCPA) has been found to inhibit tryptophan

hydroxylase, and lower brain 5-HT levels significantly (Koe and

Weissman 1966). Maximum 5-HT depletion occurred around seventy-two

hours after administration of PCPA, and numerous studies have failed

to show an effect on ICSS responding (Black and Cooper 1970: Margules

1969). Any effect of PCPA on ICSS has been in the first 24 hours

after dosing (Stark et al 1970: Crow and Deakin 1977) when a marked

effect on NA levels was seen (Koe and Weissman 1966). There has been

little conclusive pharmacological evidence on the role of 5-HT in ICSS

behaviour.

The localisation of monoamine containing neurones in medial

posterior hypothalamus suggested that the initial experiments to investigate

the pharmacology of ICSS from this area should involve drugs with specific

actions on these systems. The investigation of catecholaminergic

involvement was based on the use of a-MPT, the tyrosine hydroxylase

inhibitor, and a dopamine antagonist, spiroperidol. The possibility of

5-HT systems being involved was investigated using PCPA, a tryptophan

hydroxylase inhibitor and alaproclate, a specific inhibitor of 5-HT

uptake.
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Methods

Male Wistar rats (180 - 200 gm) were implanted with bipolar

electrodes as in Section I. The electrodes were aimed at medial

posterior hypothalamus, and the co-ordinates used relative to bregma

were:-

A - P

L

V

After a one week recovery period all animals were tested for ICSS

behaviour as previously described. Animals which showed no evidence

of positive self-stimulation behaviour after three half hour training

sessions were discarded. The stimulation used was biphasic square

wave pulses, produced by a Neurolog stimulator (Digitimer). Stimulation

parameters were as follows:- 200 msec trains of 0.2 msec pulses, with

an inter pulse interval of 4 msec. A continuous schedule of reinforce¬

ment was used, although any lever press occurring during a stimulus train

was ineffective.

All rats positive for ICSS were allowed to self-stimulate for

15 minutes/day until stable rates of responding were achieved. During

this period current levels were varied to obtain an approximate current-

response rate relationship. A current level was chosen for each rat

which produced a response rate of approximately 60% of maximal. The

rat was then stabilised at this rate.

After stabilisation response rates were obtained, the drug

tests began. When a drug vehicle control was obtained drug sessions were

performed two days later if the response rate remained constant on the

interceding day. At least one week elapsed before a second drug treat¬

ment was given to any individual rat.

4.0 mm

0

- 8.2 mm
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Drugs acting on CA systems

The tyrosine hydroxylase inhibitor a-methyl-p-tyrosine methyl

ester (Sigma) was administered i.p. at a dose of 150 mg/kg. It was

suspended in hydroxy propyl methyl cellulose (HMPC) (ICI), in a volume

of 4 ml/kg. Vehicle alone was given on the control day. After drug

administration the animals were returned to their home cage for 4

hours. They were then placed in the test chamber for 15 minutes.

The dopamine antagonist spiroperidol (janssen) was administered

i.p. at a dose of 0.05 mg/kg. It was dissolved in a few drops of

O.IN Tartaric Acid and made up with distilled water to a volume of

2 ml/kg. The drug was given immediately after the first 15 minute

ICSS session which served as the baseline. After a period of 30 minutes

the animal was returned to the test chamber for a 15 minute test session.

There was then a 15 minute time out, and the test repeated. This

pattern was repeated until the final session, 2 hours post drug

administration.

All bar-press responses were counted for the test period on electro¬

mechanical counters as previously described. Visual records were some¬

times obtained on cumulative pen recorders.

Drugs acting on 5-HT systems

The tryptophan hydroxylase inhibitor parachlorophenylalanine (PCPA)

(Sigma) was administered orally at a dose of 400 mg/kg. It was suspended

in HPMC in a volume of 4 ml/kg. This was done after a baseline test

session. Subsequent test sessions of 15 minutes were performed 24, 48

and 72 hours after drug administration.

The 5-HT uptake inhibitor alaproclate hydrochloride monohydrate

(GEA 654) (Astra) was administered i.p. at doses of 10 and 20 mg/kg.

It was dissolved in distilled water at a volume of 2 ml/kg. The drug was



given immediately after a baseline test session, and subsequent

15 minute sessions were performed 30, 75 and 120 minutes after drug

administration.

The responses were measured as before.

Histology

At the end of the experiment the rats were killed and their

brains removed. The procedures followed were exactly as in Section One,

and electrode location was determined from the stained sections using

a light microscope.
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Section Two Table One (a)

The effect of a-methyl-para-tyrosine on ICSS

from medial posterior hypothalamus

Mean Responses/15 min Control a-MPT + 4 hrs % of Control
+ S. E.

(bar presses)
n = 8 894 + 108 518 + 81.O ** 58%

Drug was administered i.p., suspended in HPMC. Response rates, expressed
as mean +_ S.E., were measured before and four hours after drug
administration. The difference in response rates was statistically
significant, ** -P < .01, paired student t-test.

Section Two Table One (b)

The Changes in response rate within

sessions before and after a-MPT

Control a-MPT

Rate/min first 10 min 60 41
n= 8

Rate/min last 5 min 58 22

Section Two Table One (c)

The effect of a-MPT on ICSS from lateral hypothalamus (initial results)

LH ICSS Control a-MPT + 4 hrs % of control

(n = 4) 597 + 74 134 + 39 22^

a-MPT, 150 mg/kg i.p. as above.Mean bar presses^/15 min.
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Section Two- Fig 1

The effect of a-methyl-para-tyrosine 150 mg/kg i.p. on ICSS from
medial posterior hypothalamus. The test session was four hours after
drug administration. Response rates expressed as mean + SE (n = 8)
The difference was statistically significant, * P < .01, student paired
t-test.



Section Two Table Two

The effect of spiroperidol on ICSS

from medial posterior hypothalamus

75

Time after dosing

Responses/15 min

Difference from

control

% control

+ 0

(pre-drug
control)

975

+ 143

n = 8

100

+ 30

610

+ 135

n = 8

P < .02

63%

+ 60

207

+ 102

n = 8

+ 90

135

+ 74.2

n = 8

+ 120 min

80.0

+ 55.9

n = 5

P < .001 P < .001 P < .01

21% 14% 8

Drug was administered i.p. at a dose of 0.05 mg/kg. It was
dissolved in a few drops of 0.1N Tartaric Acid, and made up to
volume with distilled water. Thirty minutes after drug
administration, 15 minute test sessions commenced, with 15 minute
time-outs in between sessions. Response rates expressed as mean

+_ S.E. There was a statistically significant difference compared
to pre-drug control rates at 30 minutes, P < .02, 60 and 90 minutes,
P < .001 and at 120 minutes, P < .01 - paired student t-test.
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Section Two Fig 2

The effect of spiroperidol, 0.05 mg/kg i.p. on ICSS from medial posterior
hypothalamus at various times after drug administration. Response rates
expressed as mean +_ SE (n = 8) . The differences were statistically
significant: *-P < .02, *** P < .OOl, student paired t-test.



Results

CA pharmacology

The effect of a-MPT was to reduce although not abolish ICSS.

The control response rate of 894 +_ 108 (S.E.) was reduced to

518 +_ 81.O and this difference was statistically significant (P < .01,

Student paired-t test, two-tailed). This reduction was most marked

in the last five minutes of the test session (Table One). The mean response

rate/minute was the same throughout the control session, 60/minute during

the first ten minutes and 58/minute in the next five minutes. After

a-MPT the response rate was reduced to 41/minute and 22/minute respectively

(Table One).

Spiroperidol caused a decrease in ICSS response rates which

became progressively more pronounced throughout the sessions. The

initial rate of 975 + 143 was reduced to 135 + 74.2 in the session

commencing 90 minutes after drug administration. Most of the animals

were tested at 120 minutes and responding had decreased to 80 +_ 55.9

(n = 5). All these reductions were statistically significant at least

P < .02 (paired t-test, two-tailed) (Table Two).

5-HT pharmacology

There was no observable effect of PCPA on ICSS (Table Four ).

The response rates at all times observed were not significantly different

from the pre-drug baseline session. The animals were observed to be

hyperactive and hyperirritable compared with their normal behaviour,

which was typically seen after PCPA treatment in other experiments.

The effect of alaproclate was complex (TableThree). At a dose

of 10 mg/kg it produced an increase in response rates that was

statistically significant at both 75 minutes (P < .05) and 120 minutes

(P < .01) after drug administration (n = 10, paired-t test, two-tailed).
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Section Two Table Three

The effect of alaproclate on ICSS

from medial posterior hypothalamus

Response rates/15 min

Alaproclate Alaproclate
Time after dosing (minutes) 10 mg/kg i.p. 20 mg/kg i.p.

n - 10 n = 5

0 (pre-drug control) 803 + 137 665 + 276

30 878 + 164 n.s. 78 + 47 n.s.

75 1073 + 183 * 631 + 151 n.s.

120 1077 + 163 ** 968 + 386 n.s.

Alaproclate administered i.p., dissolved in distilled water.
Response rate expressed as mean +_ S.E. Comparison with
pre-drug control rates using paired student-t test,
* P < .05, ** P < .01

Section Two Table Four

The effect of p-chlorophenylalanine on ICSS

from medial posterior hypothalamus

Time after dosing (hrs)

0 (pre-drug control)

+24

+48

+72

Mean response rate/to
n = 8

680 + 86.3

695 + 96.5

680 + 80.6

670 + 92.3

n.s.

n. s.

n.s.

The drug was administered p.o., suspended in HPMC. Dosage was
400 mg/kg. Response rate was expressed as mean +_ S.E. The results
were compared with pre-drug controls using the paired student t-test.
There were no differences at any point.



Hours after dosing

Section Two Fig 3

The effect of para-chlorophenylalanine, 400 mg/kg p.o. on ICSS from
medial posterior hypothalamus. Response rates expressed as mean
+ SE (n = 8). There was no significant change in response rates.
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Section Two Fig 4

The effect of alaproclate at doses of lO and 20 mg/kg i.p. on ICSS
from medial posterior hypothalamus. Response rates expressed as
mean +_ SE. The 10 mg/kg dose produced a statistically significant
increase, * P < .05,** P < .01, n = 10, student paired t-test.
The 20 mg/kg dose produced no statistically significant changes (n = 5).



The effect of 20 mg/kg was variable. None of these variations in

response rate were statistically significant (paired-t test, two-tailed),

but there was a small group size in this part of the experiment (n = 5).

Electrode placements

The electrodes of all the rats used in these experiments were

found to be located in medial posterior hypothalamus, dorsal to the

mamillary body. They were mostly found on the dorsal aspects of the

supramamillary decussations, medial to the mamillo-tegmental tracts.

Some positive sites extended dorsally along the edges of the peri¬

ventricular gray up to the ventral aspect of the third ventricle,

parallel to medial lemniscus. Two electrodes were placed in the supra¬

mamillary decussations between the medial forebrain bundles (Fig Five).



Section Two Fig 5

The location of electrodes in medial posterior hypothalamus as plotted
on coronal sections from the atlas of Konig and Klippel. All electrodes
were located in a region dorsal to the mamillary bodies, mostly dorsal
to the supramamillary decussations.
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Discussion

Drugs acting on CA systems

These two experiments have both indicated that the CA systems have
*

a function in ICSS from medial posterior hypothalamus (MPH) . a-MPT has

been shown to markedly reduce the concentration of both NA and DA, and

that this was observed 4-8 hours after administration (Spector et al

1965) . This has been shown to cause a marked reduction in lever-

pressing for ICSS (Poschel and Ninteman 1966; Cooper et al 1971). It

has also been shown to increase the electrical threshold for ICSS (Gibson

et al 1970) and to decrease ICSS when a rate-free measure of reward was

used (Black and Cooper 1970). These were of considerable importance

to the relevance of the a-MPT effect as it had been shown to adversely

affect a number of tasks involving motor co-ordination (Rech et al

1966) and it was suggested that such an effect on ICSS might be related

to non-specific effects (Roll 1970). A technique which relates reward

strength and running speed in a runway test of ICSS, which in part is

a sophisticated measure of reward threshold, has been used to determine

the nature of the a-MPT effect. This has shown that a-MPT did affect

the performance aspects, but at some electrode locations it also reduced

the reward strength (Edmonds and Gallistel 1977) .

Unfortunately there was no way of determining the precise effect

on ICSS in the present experiment. However in view of the performance

debilitating aspects of a-MPT it would not be wise to attribute the

present result to a direct effect on a CA pathway mediating reward. It

was possible that the decreased rate of responding in the latter part

of the session after a-MPT was a reflection of an effect on the ability

to perform the motor task, perhaps increased fatigueability or weakness

for example. However an alternative explanation must be pointed out.



It has been shown that prior depletion of the reserpine-sensitive

CA storage pool enhanced the abolition of ICSS by synthesis inhibitors

(Franklin and Herberg 1975). It could be suggested that due to impaired

synthesis the release of CA by the electrical stimuli caused depletion of

CA from the nerve terminals in the initial part of the test session. Hence

in the later part of the session the release of CA was reduced and thus

also the magnitude of the reward. However in view of the evidence of

the effect of a-MPT on performance this seems a less likely explanation.

The extent of the effect of this dose of a-MPT on ICSS from MPH

would also seen to indicate a non-essential role for CA at this site.

This was of the order of a 40% decrease. In a similar experiment ICSS

from the AVT and from LH was reduced to a much greater extent by the same

dose of a-MPT, by approximately 90% (Stinus and Thierry 1973). In a

recent experiment initial results indicated that this dose of a-MPT

caused an effect on ICSS from lateral hypothalamus similar to this with

a 80% decrease (Table One, initial results). It thus seems that at

other sites this dose of a-MPT has a much more severe effect on ICSS.

In view of the experiment which showed directly that a-MPT affected reward

at only some sites (Edmonds and Gallistel 1977) it must be considered

possible that ICSS in MPH has a non-CA component.

The result of the spiroperidol experiment however indicated that

DA systems had an essential role in ICSS from MPH. Spiroperidol, a

potent and specific DA antagonist (Anden et al 1970) has been shown to

be a very potent inhibitor of ICSS from lateral hypothalamus (Wauquier 1976),

with an °f 0.02 mg/kg. In the present experiment a dose of 0.05 mg/kg

produced 86% inhibition and this would seem to support these earlier

findings. Another experiment which used spiroperidol has shown a 91%

inhibition of ICSS from LH with a dose of 0.06 mg/kg (Mora et al 1975).

These results would seem to show considerable unanimity, and suggested
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that ICSS from the MPH and LH was mediated by DA systems.

There has been considerable controversy over the effect of

DA antagonists on ICSS. It has been suggested that they disrupt a

variety of operant tasks (Wauquier and Niemegeers 1972). They have

been shown to disrupt complex motor responses such as bar-pressing for

various reinforcers including ICSS (Fibiger et al 1976; Rolls et al

1974) and other learned motor responses (Fibiger et al 1975). It may

be possible that the low doses of DA antagonists which severely disrupt

ICSS might not affect motor responses so severely (Mora et al 1975; White

et al 1978). Furthermore some experimental designs have indicated that

the reward and performance aspects of DA blockade may be separated.

Experiments using a rate-free measure of ICSS in a shuttle-box (Liebman

and Butcher 1974), a runway test (White et al 1978) or the measure of

the reward summation function in the runway (Franklin 1978) have all

indicated that low doses of specific DA antagonists could decrease the

rewarding effect of ICSS. Of considerable relevance was the runway test

which showed a differential effect at sites in far-lateral or medial-

lateral hypothalamus. At both sites the bar-press response for ICSS was

similarly attenuated (White et al 1978) . It would seem fair to say that

DA antagonists have a disruptive effect on complex learned motor tasks

such as bar-pressing and that the measure of their effects on average

rates of such responses did not differentiate between reward and per¬

formance effects. The results of the present experiment must be considered

open to either interpretation.

The possibility that a DA system supported ICSS in MPH would not

seem to fit with the results of Section One. However only the mesolimbic

and nigro-striatal DA systems were investigated in that experiment and

in view of the possible involvement of DA in ICSS from frontal cortical

areas (Clavier and Gerfen 1979; Robertson and Mogenson 1978) it was
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possible that mesocortical fibres were stimulated in MPH as cortical

DA metabolites were not measured. The anatomical evidence would not

seem to support this supposition, especially the more anterior sites

(see Fig. 10, Lindvall and Bjorklund 1974). Alternatively the DA

system which was found in caudal hypothalamus, from cell groups All and

A13 and which projected into this area (Bjorklund and Nobin 1973)

could have supported ICSS. This would explain the spiroperidol result

on the basis of a reward effect.

In conclusion the effects of a-MPT and spiroperidol have indicated

that CA systems, in particular in the DA system have a critical role

in ICSS from MPH. The a-MPT effect could in fact be explained solely

by its effect on DA systems, but of course no evidence was presented

to discount a role for NA. The significance of CA involvement was not

determined, as it could have reflected an effect either on performance

or the operant response or on the rewarding aspects of the stimulation.

A more refined approach to these problems, either by more sophisticated

behavioural controls or the use of more direct measures of reward

strength, would have been required to answer these problems.

Drugs affecting 5-HT systems

The effect of pharmacological manipulations of 5-HT systems has

not indicated that these have a crucial role in ICSS from MPH. The

complete lack of effect of PCPA would suggest that a 5-HT system did

not support ICSS in this area. PCPA has been shown to cause a large

decrease in brain 5-HT levels with maximum depletion around 72 hours

after drug administration (Koe and Weissman 1966). The present dose

of 400 mg/kg given orally has been shown to cause a similar pattern

of depletion (Van der Kooy et al 1977). A disruption of NA synthesis

has been noted but the effect had a much shorter time span of about
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24 hours (Welch and Welch 1967). No consistent effect of PCPA on ICSS

has been found. At the time of 5-HT depletion PCPA was shown to have no

effect on ICSS from lateral hypothalamus (Stark et al 1970; Black and

Cooper 1970), or to facilitate it (Phillips et al 1976b; Poschel and

Ninteman 1971) and in one study to inhibit it (Gibson et al 1970). It

must be emphasised that these were the effects which correlated with

5-HT depletion as inhibition of ICSS at early times after dosage did not.

The effect of PCPA on ICSS from the 5-HT cell bodies in the dorsal

and median raphe has also been contradictory. In the region of the

dorsal raphe it has been shown to facilitate (Simon et al 1976), to

have no effect (Margules 1969) and to inhibit (Van der Kooy et al 1978)

ICSS. In the median raphe it has been shown to inhibit (Miliaressis et

al 1975) or to have no overall effect (Van der Kooy et al 1978).

Reasons for such disparate results might be found in different exper¬

imental procedures. It has been suggested that long test sessions were

more sensitive to the disruptive effects of PCPA (Miliaressis et al

1975) and the demonstrations of inhibitory effects in the raphe have

used this technique. Even median raphe ICSS has shown some decremental

effect of PCPA in the latter part of a two hour session (Van der Kooy

et al 1978). However the use of long test sessions might also emphasise

any deleterious effects on motor performance, as has been discussed

previously. Experiments which differentiated reward and performance

effects should be carried out to determine the role of 5-HT.

It has been possible to demonstrate inhibitory effects of PCPA

using short test sessions as used in the present experiment. A marked

inhibition of ICSS in the striatum has been shown and most interestingly

a facilitation was seen with LH placements using the same design

(Phillips et al 1976). It thus seems possible that in some areas an

inhibitory effect of PCPA can be demonstrated using a similar exper-
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imental design to the present one. The lack of effect of PCPA in the

present experiment might be said to indicate that 5-HT systems were not

responsible for the mediation of ICSS in MPH. In one of the previous

experiments although facilitation was seen after PCPA with electrodes

in LH, no effect was seen with some electrodes in medial PH (Poschel

and Ninteman 1971). It would have been interesting to have observed

the effect on long test sessions to perhaps confirm these observations.

The total lack of effect might suggest that this would also be negative.

The lack of effect at 24 hours which might reflect CA inhibition has

however been seen in other experiments with PCPA (Margules 1969;

Stark et al 1970), and thus need not suggest a general ineffectiveness

of PCPA administration in this experiment. The effects on activity

and irritability were as previously reported (Fibiger and Campbell

1974) and hence the PCPA treatment was likely successful.

The other part of the experiment produced a complicated pattern

of results. Alaproclate (2-(4-chlorophenyl)-1, 1-dimethylethyl

2-aminopropanoate) has been shown to be a potent and specific inhibitor

of brain 5-HT uptake (Lindberg et al 1978) . The effect of increasing

the level of 5-HT in the synapse which such a drug should cause might

have indicated the role of 5-HT in ICSS in this area. The results ob¬

tained were somewhat confusing. A slight but significant increase in

responding was seen after 10 mg/kg, but 20 mg/kg produced an initial

fall in response rates, which then recovered and in fact increased at a

later time. The latter results were not statistically significant but

the increase over baseline was seen in all of the small group of animals.

The indication was that alaproclate slightly facilitated ICSS from this

hypothalamic area. In other experiments with 5-HT uptake inhibitors,

fluoxetine has been shown to inhibit ICSS (Katz and Carroll 1977) as

has Lu 5-003 (Atrens et al 1977). The effect of altering brain 5-HT
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levels might help explain these conflicting results. The administra¬

tion of 5-hydroxytryptophan (5-HTP) has been shown to facilitate ICSS

at low doses (Poschel and Ninteman 1968) and to inhibit it at high

doses (Bose et al 1974). The results with PCPA, the 5-HT synthesis

inhibitor have also shown both facilatory and inhibitory effects

(as discussed previously). No clear conclusion has been reached on the

role of 5-HT in ICSS, but the duality of effects would seem to suggest

both inhibitory and excitatory roles.

In a different approach, the injection of 5-HT into the lateral

ventricles was shown to inhibit ICSS (Wise et al 1973). The distribu¬

tion of ventricular injections of monoamines (Fuxe and Ungerstedt 1960)

would suggest that cortical structures might be particularly affected

by such a procedure. Interestingly alaproclate has a regional

selectivity on 5-HT uptake, with a more pronounced activity on hypo¬

thalamic and hippocampal uptake, and much less activity in cerebral

cortex (Astra; unpublished results). This selectivity would have been

apparent at the 10 mg/kg dose, but not at 20 mg/kg.

The possibility that an action on cortical 5-HT systems caused

inhibitory effects was an intriguing possibility. Of possible relevance

to this speculation was the fact that zimelidine, a less selective 5-HT

uptake inhibitor without this pattern of regional activity, has been

found to inhibit learning in a conditioned avoidance task, whilst

doses of alaproclate similar to those used here had no inhibitory effect

(T. Archer, Astra - personal communication). It would be exceedingly

interesting if fluoxetine or Lu 5.003 did not demonstrate such regional

effects, especially with regard to their effect on cortical 5-HT uptake.

This experiment has suggested that the neuronal systems which

mediated ICSS in MPH might have interacted with a facilatory 5-HT system

at some level.
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These two experiments taken together have not presented a definitive

picture of the role of 5-HT systems in MPH. The effect of PCPA has

indicated that 5-HT systems did not play a direct role in ICSS in this

area. There was a possibility that an indirect interaction with a 5-HT

system at some level was present but the evidence for this was equivocal.

The use of longer test sessions in the PCPA experiment, and the effect

of alaproclate at other sites supporting ICSS would have thrown some

light on these problems, and might have reinforced these tentative con¬

clusions .

General conclusion

This limited pharmacological investigation has indicated that ICSS

in medial posterior hypothalamus was not mediated by the 5-HT systems

in this area. The involvement of the CA systems was suggested, and as

described in the introduction a variety of NA and DA neurones could have

been involved. These included the ventral periventricular NA system,

the All and A13 NA and DA systems and the ventral NA system. The very

potent inhibition of this ICSS by spiroperidol has indicated the

importance of the DA systems. It has been pointed out that an involve¬

ment of DA at the cortical level of reward mediation would not negate

the results of section one which indicated that mesolimbic and nigro-

striatal DA systems were not stimulated by MPH ICSS. The possibility

that they were an essential part of a ICSS "loop" and trans-synaptically

activated could be suggested. However, the effect of CA blockade and

depletion on the performance of bar-press tasks renders such

speculation unecessary. The present results could be explained on such

a basis. A more critical experimental approach would be required to

determine the exact role of CA systems in MPH self-stimulation.
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Section 3

The effect of ICSS on the activity of tyrosine hydroxylase in

the locus coeruleus.

Introduction

The enzyme tyrosine 3-hydroxylase (EC 1.14.16.2) has been shown

to catalyse the conversion of L-tyrosine to 4, -dihydroxy-L-

phenylalanine, the first step in the conversion of L-tyrosine to

noradrenaline (Nagatsu et al 1964). This synaptic step was found to

be the rate limiting one for this pathway (Levitt et al 1965).

Early experiments had shown that stimulation of sympathetic

nerves caused a large increase in the catecholamine content of the

venous effluent from adrenergically innervated tissues, with little

or no reduction in the catecholamine content of these tissues

(Von Euler 1955), and hence it was suggested that increased catecholamine

synthesis had occurred. Later it was shown that electrical stimulation

of the sympathetic innervation to the guinea pig vas deferens in vitro

caused an increased conversion of radiolabeled tyrosine to noradrenaline

(Roth et al 1966). Furthermore, stimulation of the sympathetic nerve

to the submaxillary glands in vivo was shown to increase the rate of

conversion of radiolabelled tyrosine, but not radiolabelled Dopa, to

noradrenaline (Sedvall & Kopin 1966). This indicated that the increase

in noradrenaline synthesis due to nerve stimulation was effected at or

before the tyrosine hydroxylation step. The exposure of the intact rat

to cold or exercise also caused an increase in noradrenaline synthesis

from labelled tyrosine in adrenergically innervated organs (Gordon

et al 1966) .
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An increase in the activity of tyrosine hydroxylase was induced

by similar treatments. Such an increase in central and peripheral

adrenergic neurones was demonstrated after cold stress (Thoenen 1970).

Long lasting increases in TOH activity in the superior cervical ganglion

have been shown after stress (Hanbauer et al 1973; Zigmond & Mackay

1974). The drug reserpine also induced increased TOH activity in the

SCG (Mueller et al 1969). Both reserpine and cold stress were shown

to increase TOH activity in the brain stem, specifically in the area

around locus coerule us, and with a similar time course to the changes

seen in SCP (Zigmond, Schon & Iversen 1974).

The prolonged depolarisation of SCG cells in vitro has been

found to increase TOH activity (Mackay & Iversen 1972) . In addition,

electrical stimulation of the SCG caused an increase in ganglionic TOH

activity (Ben-Ari and Zigmond 1975). Electrical stimulation of the

guinea pig vas deferens preparation in vitro also produced increased

TOH activity (Morgenroth et al 1974).

It has been suggested that the increase in TOH activity might be

an indication of increased neuronal activity (Thoenen 1972; Zigmond et

al 1974) and hence a measure of long term changes in activity in

adrenergic neurones. The prece ding experiments have suggested that

increased noradrenergic synthetic activity in response to direct

stimulation of the neurones and external stressors has been parallelled

an increase in the activity of TOH in those neurones. It would seem

that this activation of TOH was common to both peripheral and central

adrenergic neurones (Thoenen 1970; Zigmond et al 1974).
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There has been considerable evidence to suggest an increase in

metabolism in central adrenergic neurones after electrical stimulation.

An increased rate of disappearance of radiolabelled noradrenaline was

seen after stimulation in the area ventralis tegmenti, without changes

in tissue levels of NA (Stinus et al 1973). Electrical stimulation

of the dorsal noradrenergic bundle has produced rises in the

concentration of 4-hydroxy-3-methoxy phenylglycol (HMPG) the final

metabolite of NA in brain (Mannarino et al 1963), in the terminal areas

of this pathway both in unconscious (Walter & Eccleston 1972) and

conscious (Anlezark et al 1975) rats. These experiments suggested an

increased release of NA after electrical stimulation of central

noradrenergic neurones.

There thus seemed to be reasonable evidence to suggest that

electrical stimulation of noradrenergic neiirones could produce increased

TOH activity and increased release of NA. It has been shown that

electrical self-stimulation produced from electrodes in the area of the

cell bodies of origin of the dorsal noradrenergic system, locus

coeruleus, caused an increase in the concentration of HMPG in cerebral

cortex, which indicated increased release of NA (Anlezark et al 1975).

This present study was initiated to discover whether electrical self-

stimulation from the area of locus coeruleus, the cell bodies of

origin of the dorsal noradrenergic system (Dahlstrom & Fuxe 1964),

produced an increase in TOH activity in these cells. The in vivo

electrical stimulation of TOH in central noradrenergic neurones had not

previously been demonstrated.

It has been shown that stress can induce increased TOH activity

both centrally (Zigmond et al 1974) and in the periphery (Thoenen 1970).

In order to control for a general increase in TOH activity which could
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be induced by any stress inherent in the behavioural procedures, TOH

activity was measured in the superior cervical ganglion, as stress

has been shown to increase TOH activity in this ganglion (Hanbauer

et al 1973: Zigmund & Mackay 1974).

The experiment involved two groups of rats. All of the rats

were to be implanted with electrodes aimed at locus coeruleus in the

dorsal brain stem, but those which did not demonstrate self-stimulation

behaviour would serve as a control group for the study. The control

group would indicate whether chronic self-stimulation produced an

increase in TOH activity over and above any increase which might be

caused by the implantation procedure itself.

In summary, the experiment was conducted to determine whether

the electrical self-stimulation behaviour produced with electrodes

in the vicinity of locus coeruleus was associated with increased

TOH activity in the noradrenergic neurones. If in fact this was the

case then the experiment could also indicate that in vivo electrical

stimulation of central noradrenergic neurones induced an increase in

TOH activity.



Methods

1. Implantation of electrodes

The materials used and procedures followed were as in Section I.

The electrodes were aimed at the dorsal brain stem, in the area of

locus coeruleus. The lambdasuture was used as the stereotaxic

reference point. The co-ordinates relative to lambdawere as follows:

Anterior-posterior (AP) - 1.7 mm

Lateral (L) - 1.1 mm

Vertical (V) - 7.3 mm (from skull surface)

2. Stimulation

A Campden brain stimulator (Campden 522) was used. The parameters

used for the stimuli were 200 msec trains of 50 Hz sine wave, with the

current being in the range of 20 - 50 yA.

3. Behavioural equipment and training procedures

All equipment was as described in Section I. A continuous

reinforcement schedule was used.

After a one week post-operative recovery period the rats were

placed in the test chamber and shaped for lever pressing as previously

described. It was usual for multiple training sessions to be

required before self-stimulation was initiated, and at least five

individual sessions were undergone with each rat before it was rejected

as being negative for ICSS.

Rats which produced ICSS behaviour were allowed to self-stimulate

for 30 minute sessions on five consecutive days. At the end of the

last session the rats were removed from the box and killed by stunning

and decapitation.
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4. Dissection procedure

The brains were removed, immersed in ice-cold saline, then

dissected over ice. The dissection followed the procedure of Zigmond,

Schon and Iversen (1974). The brain was placed dorsal side upwards,

and the cerebellum removed by first transecting it, then cutting the

cerebellar peduncles at the lateral border of the pons. An imaginary

line can be drawn at the level of the cerebellar peduncles through

three deep indentations on the dorsal surface of the pons. A coronal

cut was made through the identations and a second coronal cut made

1 - 1.5 mm rostrally. The resulting coronal section was placed with

its caudal surface up. A horizontal cut was made 1 mm from the dorsal

surface of this pontine section. The portion between the two sulci

limitantes was removed, and the remaining pieces of tissue were taken

as "left and right locus coeruleus".

The pieces of tissue were then weighed and stored in liquid

until they could be assayed.

5. Estimation of tyrosine hydroxyase activity

The activity was estimated using a radioenzymatic assay based

on the method of Hendry & Iversen 1971.

Tissue preparation

The brain tissue samples were added to 100 yl of 5mM PO^ buffer,
pH 6 and homogenised. Two 10 yl aliquots were taken for the assay

procedure. The ganglion samples were added to 30 yl of buffer,

homogenised, and 10 yl aliquots taken.
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Incubation Mix

This was made up in two parts

3
(A) 0.15 ml H tyrosine (11.5 Ci/mmol)

+ 0.25 ml 0.OO5M Tris buffer pH 8.6

+ 0.15 ml alumina

This mixture was agitated then allowed to stand for 20 minutes to

3
absorb out the impurities in the H tyrosine.

(B) 1 mg pteridine co-factor (DMPH^)
100 yl 8-Mercaptoethanol

l.O ml P04/NSD 1055 buffer pH 6.0

350 yl of the supernatant from mixture A were added to 350 yl of mixture

B just before using to produce the incubation mixture. This was kept

on ice before usage.

Reaction

The 10 yl samples of tissue homogenate were added to 10 yl of

the incubation mixture in Eppendorf tubes. These were then incubated

at 37°C for 20 minutes, on an Eppendorf heating block.

The reaction was stopped by adding 0.25 ml of 0.4N perchloric

acid containing 2 yg/ml cold dopa carrier.

The mixture was washed out into glass stoppered tubes by

approximately 4 ml of neutralising solution containing 0.1M Tris

pH 8.6, 0.2M EDTA and 0.3N NaOH in the ratio 2:1:1.

Separation and extraction

The mixture was separated using small glass columns packed

with alumina. The alumina was freshly prepared by immersing it in

K-P buffer 0.5M pH 7.4.

The mixture was decanted from the tube into the column and the



tube washed out with 0.005M Tris buffer, pH 8.6. The columns were then

washed out with approximately 40 mis of the same solution.

Once this was completed, the Dopa was eluted with 3 mis IN Acetic

Acid. 1 ml of this was removed and added to 10 mis Triton scintillant.

The scintillant mixture was 0.4% butyl PBD in toluence containing

2:1 (vol:vol) Triton X-IOO.

Blanks

Two aliquots of 10 yl 5mM PO^ buffer.

Recovery

3H
lO yl of -DOPA solution was taken through the assay in

duplicate from the incubation stage onwards. These were compared with

3R
10 yl of -DOPA counted directly. Recovery was typically around 65%.

Results

Tyrosine hydroxylase activity, as measured by the rate of

conversion of tyrosine to dopa, was estimated in the locus coeruleus

and superior cervical ganglion in two groups of rats. The first group,

seven in all, had shown evidence of self-stimulation behaviour and been

allowed to stimulate themselves throughout 30 minute sessions for five

consecutive days. The mean rate of responding in the last three sessions

was 574 +_ 68.5 (S.E.M.) responses/30 minutes. The second group con¬

tained eight rats which had had electrodes implanted as in the first

group, but had not demonstrated self-stimulation behaviour. These

rats had not been placed in the behavioural equipment for at least one

week prior to killing, and thus had no response rates.

TOH activity was measured individually in left and right locus

coeruleus. The electrodes had been aimed at the left locus coeruleus,

which was thus presumed to be the one which was stimulated. All



Section Three Table One

Tyrosine hydroxylase activity in rat locus coeruleus

after chronic ICSS

Left locus

coeruleus

Self-stimulated (n = 7) Un-stimulated (n = 8)

495.5 + 52.3 344.0 *(L.v.L.)

+34.6 p < .05

Right locus
coeruleus

451.9 + 49.1

n.s. (L.v.R.)

344.1 n.s. (R.v.R.)

+ 34.8

n.s. (L.v.R.)

Electrodes were in the region of this nucleus. Mean TOH activity
was expressed as picomoles DOPA/hour/locus coeruleus +_ S.E.M.
Statistical significance was assessed using the student t-test, the
paired test for intra-group comparisons and unpaired for inter-group.

Section Three Table Two

Mean TOH Activity in locus coeruleus

(left and right combined) after ICSS

Mean locus

Self-stimulated (n = 14) Unstimulated (n = 16)

coeruleus TOH

activity + SE 473.6 344.1 **

+ 35.0 +23.7 p < .005

TOH expressed as picomoles DOPA/hour/locus coeruleus +_ SEM
(significance was assessed using the student t-test, unpaired).
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Section Three Fig 1

Mean TOH activity (jf S.E.) in locus coeruleus and in paired superior
cervical ganglion after chronic self-stimulation in the area of locus
coeruleus and in unstimulated controls. The activity in left locus
coeruleus in the stimulated group was significantly higher than in the
unstimulated group, P < .05, student t-test, two-tailed.



Mean TOH activity
picomoles DOPA^hour +S.E.

Locus Coeruleus TOH

Section Three Fig 2 —

Mean TOH activity (+ S.E.) in the locus coeruleus (both left and right)
after chronic self—stimulation in the area of locus coeruleus, and in
unstimulated controls. They were significantly different,
P < .005, student t-test two tailed.
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Section Three Table Three

Mean TOH activity in Superior Cervical Ganglion

after ICSS in the region of locus coeruleus

Mean TOH activity
picomoles DOPA/hour/pair

ganglion + S.E.

Self-stimulated ( n = 6) Un-stimulated (n = 7)

125 +19.2 159 +23.5

n. s.

Groups were compared with the student t-test, unpaired.
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results are stated as mean TOH activity, expressed in picomoles Dopa

formed/hour/locus coeruleus, j^S.E.M.

In the self-stimulated group, TOH activity in the left locus

was 495 +_ 52.3. The activity in the right locus was 451.9 +_ 49.1.

This difference was not statistically significant, using the paired-t-

test. In the unstimulated group the TOH activity in the left locus was

344.0, and in the right locus 344.1. This difference was again not

significant. However, the TOH activity in the stimulated (left) locus

coeruleus in the self-stimulating group was significantly higher than

in the left locus coeruleus of the unstimulated group (P < .05, student-

t-test, unpaired two-tailed). The right locus on the stimulated group

had a greater activity than its unstimulated comparator, but this

difference just failed to achieve significance at the .05 level.(Fig D

The mean TOH activity of both left and right locus coeruleus in

the self-stimulated group was 473.6 + 35.0 and in the unstimulated

group was 344.1 ■+23.7 . This difference was highly significant,

P < .005, student-t-test, two-tailed. (Fig 2)

The mean TOH activity per pair of superior cervical ganglion was

125 + 19.2 in the self-stimulated group, and 159 23.5 in the

unstimulated group. This difference was not significant. (Table 3)

There was no histological confirmation of the electrode positions

due to the design of the experiment.
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Discussion

The results of this experiment have shown that there was an

increase in tyrosine hydroxylase (TOH) activity in locus coeruleus

after self-administered electrical stimulation in vivo through electrodes

aimed at the area of locus coeruleus in the dorsal brain stem (Table One:

Fig One). This reaction of a central noradrenergic system was similar

to that seen in the peripheral sympathetic nervous system after electrical

stimulation, both in vitro in the guinea-pig vas deferens (Morgenroth

et al 1974) and in vivo in the superior cervical ganglion (Ben-Ari &

Zigmond 1975).

It has previously been shown that both reserpine and cold stress

cause increased TOH activity in the central nervous system (Thoenen 1970)

in particular the locus coeruleus (Zigmond et al 1974). This activation

was also parallel to the effects of reserpine and cold stress on TOH

in the peripheral sympathetic system (Mueller et al 1969: Thoenen 1970).

There thus seems to be considerable similarity between peripheral and

central TOH in their reaction to such external stimuli.

The in vivo activation of TOH in central NA neurones was

subsequently demonstrated in anaesthetized rats with acute electrical

stimulation (Roth et al 1975). The TOH activity in hippocampus was

measured after electrical stimulation of locus coeruleus. The dorsal

noradrenergic pathway has a unilateral projection to hippocampus

(Ungerstedt 1971) and hence the experiment measured TOH in the nerve

terminals of the dorsal noradrenergic system. After electrical

stimulation for 15 minutes, an increase in TOH activity of 300% was

seen when compared to TOH activity in unstimulated contralateral

hippocampus. In the present experiment, the comparable increase

comparing left locus in the stimulated animals with left locus in
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unstimulated controls was only 44%. Apart from large procedural

differences, especially the effect of anaesthesia and the use of

terminal areas as opposed to cell bodies, there were other possible

explanations for this difference.

It has been found that the degree of TOH activation in central

adrenergic neurones was stimulus dependent in an in vitro model which

used field stimulated hippocampal slices (Bustos et al 1978). In

the anaesthetised preparation, approximately 18,000 pulses were passed

whilst in a comparable period in the self-stimulating group an average

of about 3,000 pulses would have been passed. This would have helped

to explain the difference if this in vitro model was an accurate

predictor of in vivo occurrences.

There was evidence of a higher level of TOH activity in the

unstimulated (right) locus coeruleus in the +ve ICSS group, indeed

the two sides were not significantly different. Furthermore, the

mean total TOH activity (left and right combined) in locus coeruleus

was much enhanced in the stimulated group compared to the unstimulated

group. This difference was significant (P < .005). In a similar

experiment to the present one, when changes in the metabolism of nor¬

adrenaline as measured by HMPG concentrations were investigated, a

rise in HMPG was observed on both ipsi- and contralateral sides of the

brain to the stimulating electrode, in conscious self-stimulating

rats. In anaesthetised animals a unilateral rise in HMPG was found

on the stimulated side, after stimulation comparable to that received

by the self-stimulating animals. It was suggested that the rise in

the contralateral side could be a reflection of motor activity or

the operant behaviour (Anlezark et al 1975). Interestingly unilateral

increases in TOH activity have been reported after electrical

stimulation, but in anaesthetised animals (Roth et al 1975). It thus
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appeared that the effects of electrical stimulation of noradrenergic

neurones was to cause an increase in NA metabolism as measured both

by HMPG and TOH changes. In the freely self-stimulating rat however,

both these measures were increased in the contralateral NA system

also. It has been suggested previously that operant behaviour

was associated with changes in NA metabolism (Lewy & Seiden 1972:

Olds & YuwiLer 1972). However the results of a recent experiment

have indicated that operant behaviour itself does not alter TOH

activity in the LC. The TOH activity was the same whether the

animals performed a bar-press response for a food reward, was auto¬

matically fed in the test chamber by the responses of another rat, or

was simply subjected to the pre-trial starvation period. Moreover

none of these were significantly different to the completely untreated

controls (Arbuthnott 1976). It would seem unlikely that the operant

responding was in itself capable of raising TOH activity in a general

manner, and hence the contralateral effect might indeed have been a result

of ICSS of LC. It must be pointed out that although there was an increase

in TOH activity in the contralateral locus, this was not statistically

significant compared with the unstimulated controls, whereas the

stimulated side was significantly increased.

The possibility of some interaction between the locus coeruleus

in the conscious animal was suggested (Anlezark et al 1975). Anatomical

evidence for a connection between the two nuclei has been reported. A

projection to the contralateral nucleus was first demonstrated in the

cat (using the horseradish peroxidase (HRP) retrograde tracing technique)

(Sakai et al 1977). Also using the HRP method, with small amounts

injected by iontophoresis, some contralateral cells were detected in

the rat (Cederbaum & Aghajanian 1978). When a larger injection of HRP



was used a large number of contralateral locus coeruleus cells were

labelled. This labelling was not seen after HRP injections into brain

areas adjoining locus coeruleus (Clavier 1979).

As the noradrenergic cells of locus coeruleus have been shown

to alter their rate of firing both after clonidine, an a-adrenergic

agonist (Svensson et al 1975) and after iontophoretically applied NA

itself (Cederbaum & Aghajanian 1975), the electrophysiological evidence

also supported the possibility of a NA input to LC although the nature

of that input was not determined and indeed Aghajanian suggested the

possibility of recurrent collateral fibres. The more recent anatomy

however might suggest a NA link. It could be suggested that indirect

anatomical and electrophysiological evidence has supported the conten¬

tion that activity in one LC might influence the activity in the

contralateral LC.

The present experiment was only designed to demonstrate changes

in the activity of TOH, and did not attempt to delineate the mechanism

of such changes. For instance the pteridine cofactor was present in

excess in the assays, and changes in affinity for it were not

measured. Other experiments have suggested possible mechanisms however.

After electrical stimulation of the locus coeruleus in vivo, and of

hippocampal slices in vitro, the increased activity of TOH was shown

to be attributable to changes in the kinetic properties of the enzyme.

The affinity of the enzyme for the substrate tyrosine was increased,

and the affinity for the end-product inhibitor was decreased (Roth

et al 1975: Bustos et al 1978). A similar pattern was seen in the

DA nigro-striatal system (Murrin et al 1976) and in the peripheral

sympathetic system, after electrical stimulation of the guinea pig vas

deferens (Morgenroth et al 1974). It seems possible that similar
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mechanisms were responsible for the increased activity seen in the

present experiment.

There was no rise in the TOH activity in the superior cervical

ganglion (SCG) in the stimulated group compared with the control group.

This suggested that the rise in TOH in locus after self-stimulation was

not a generalised rise due to stressful factors inherent in the

behavioural procedures. TOH activity has been shown to increase in

the peripheral and central nervous systems after cold stress (Thoenen

1970: Zigmond et al 1974), and after foot shock (Weiss et al 1975).

Neither did it appear likely that the implantation of electrodes was

itself responsible for the rise in TOH activity as the control group

had undergone the same procedure although it must be pointed out

that they probably consisted of a different population of electrode

locations.

Evidence from similar work on changes in TOH activity in DA

systems has indicated that damaging the DA neurones caused an increase

in DA levels (Walters et al 1973).and that such an increase could be

associated with increased TOH activity (Walters & Roth 1976). However

this effect was transient, with a maximum time course of 48 hours.

Furthermore it was shown that the insertion of electrodes in itself

did not increase DA synthesis, but that this was directly related to

electrical stimulation (Murrin & Roth 1976). This would seem to

indicate that in the present experiment the insertion of electrodes

alone would not have resulted in an elevation of TOH activity during

the test period as this was at least one week after implantation.

It seemed reasonable to compare these results with the NA system

as electrical stimulation of this DA system resulted in a comparable

increase in TOH activity (Murrin et al 1976).
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The results indicated that activation of the dorsal noradrenergic

system was associated with the electrical self-stimulation supported by

electrodes in the dorsal brain stem. This was in complete agreement

with previous studies which showed increased formation of HMPG, and

hence suggested increased activity in NA neurones, after electrical

self-stimulation or enforced stimulation of the locus coeruleus

(Anlezark et al 1975: Korf et al 1973). However, it was impossible

to determine the location of the stimulating electrodes in the present

study and hence no absolute link between self-stimulation, the locus

coeruleus and TOH activity could be proved. Other studies have

shown that there was a very close anatomical correlation between sites

in the dorsal brain stem which supported ICSS and the NA cell bodies

in the locus coeruleus (Crow et al 1972: Ritter & Stein 1973).

Although it might be inferred that the electrodes in the present study

were stimulating the dorsal noradrenergic system, there was no proof

of direct stimulation.

In the sympathetic ganglion, the increase in TOH activity

produced by reserpine was prevented by sectioning of the preganglionic

cholinergic nerve (Thoenen et al 1969) or by nicotinic ganglionic

receptor blockers (Mueller et al 1970). This suggested that the

release of acetyl choline from the pre-ganglionic nerve could stimulate

TOH activity in the ganglion. This observation has been extended to

the central nervous system. The centrally active cholinergic agonist,

oxytremorine has been shown to increase TOH activity in the locus

coeruleus after systemic administration, and this increase was blocked

by the centrally active cholinergic antagonist atropine (Lewander et

al 1975). The area of the locus coeruleus contains large amounts of

enzymes which are involved in the metabolism of acetylcholine

(Shute & Lewis 1967). With the" aid of histochemical techniques which
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visualise acetylcholinesterase, an enzyme which degrades acetylcholine

(Stedman et al 1932) it has been shown that large amounts of acetyl¬

cholinesterase could be found in cells of the locus coeruleus with a

similar morphology to those which contained catecholamines

(Pallkovits & Jacobowitz 1974) . It has been shown that the acetyl¬

cholinesterase disappeared after 6-OHDA treatment and hence these cells

were in fact the LC noradrenergic cells (Lewis & Schon 1975).

Interestingly this situation was also described in the cells of the

superior cervical ganglion (Koelle 1955). A hypothesis could be

suggested whereby activation of a cholinergic input to the locus

coeruleus by electrical stimulation might have resulted in an activation

of TOH in that nucleus. Although this idea must be highly speculative,

it could be a valid alternative interpretation of the present data, and

might be taken to illustrate other similar explanations for the

experimental data under discussion.

Although it would have been preferable to have had other

experimental control groups included in the present experiment other work

has indicated that these might not have been essential. The inclusion

of a completely untreated group would have demonstrated that implantation

of electrodes into this brain area did not cause the rise in TOH

activity. However, as previously discussed when comparable work on the

DA system was taken into consideration, this would have been unlikely

(Walters et al 1973; Murrin & Roth 1976). The stimulation of

anaesthetised animals through electrodes which had previously supported

ICSS might have been useful. The observation of a unilateral rise in

TOH activity after electrical stimulation of a NA pathway has been made

elsewhere (Roth et al 1975). If this and the present experiment were

considered together, the combined results had a marked resemblance to

that seen when NA metabolite concentration was measured after electrical
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stimulation and ICSS from the LC (Anlezark et al 1975).

The possibility that the performance of the operant response

itself was responsible for the increased TOH activity would seem

unlikely. Neither the experimental situation nor bar-pressing for a

food reward has caused any change in TOH activity in the LC

(Arbuthnott 1976).

In conclusion, an increase in tyrosine hydroxylase activity

in locus coeruleus was observed after electrical self-stimulation

with electrodes in the dorsal brain stem. This provided indirect

evidence that ICSS in the dorsal brain stem was associated with

increased activity in the dorsal noradrenergic system. It also

implied that electrical stimulation of a central noradrenergic system

in vivo could produce activation of TOH as has been reported for the

peripheral sympathetic nervous system. However, the lack of anatomical

verification of electrode positions has prevented such direct conclusions

from being made. Further experimental evidence has indicated that this

was the correct deduction as electrical stimulation of NA neurones in

the CNS has been shown to increase TOH activity both in vivo (Roth et

al 1975) and in vitro (Bustos et al 1978) .
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Section 4

The effect of selective lesions to the tegmental dopaminergic

system on pontine electrical self-stimulation.

Introduction

Electrical self-stimulation behaviour was found to be elicited

by electrodes in the dorsal tegmentum (Olds & Olds 1963) in an area

later found to be traversed by the dorsal noradrenergic bundle
a

(Ungerstedt 1971). Further investigation revealed that ICSS could be

sustained from electrodes in the pons, in or around the locus coeruleus

the nucleus containing the cell bodies A6 of the dorsal noradrenergic

system (Dahlstrom and Fuxe 1964). It was suggested that self-stimulation

behaviour elicited from this region was qualitatively different from

that produced in lateral hypothalamus and the ventral tegmental area.

ICSS from electrodes in locus coeruleus was characterised by low rates

of lever pressing, little excitation (Crow et al 1972). The behaviour

associated with ventral tegmental ICSS was very different, with generally

very high rates of lever pressing, and much excitation, with increased

rearing, sniffing and licking. There was a very close anatomical

relationship between sites supporting this type of ICSS behaviour and

the dopaminergic systems of the ventral tegmental area and hence this

type of self-stimulation behaviour was associated with activation of a

dopaminergic system (Crow 1972a) However, high rates of self-

stimulation have been observed with dorsal pontine electrodes, comparable

to tegmental stimulation in all aspects (Ellman et al 1975).

The sites supporting such ICSS were predominantly in the anterior

locus coeruleus, or medial to the brachium conjunctivum in the dorsal

midbrain (Ellman et al 1975) .



113

It seemed possible that activation of a dopaminergic system in

the mesencephalon could explain the sites supporting ICSS in the dorsal

pons. There appeared to be an anatomical connection between the

substantia nigra and the dorsal pons. After horseradish peroxidase

was injected into the substantia nigra pars compacta, it was transported

retrogradely to cells in the dorsal pons, near the superior cerebellar

peduncle (Tulloch, Ph.D. thesis). Horseradish peroxidase has been

shown to be taken up by nerve terminals and transported retrogradely

to the cell body (Kristensson et al 1971; La Vail and La Vail 1972).

Pharmacological evidence also existed to suggest a stimulant effect of

noradrenaline on dopamine systems. Low doses of clonidine (0.1 mg/kg),

which decreased NA utilization, also decreased DA synthesis and release,

and yohimbine which increased NA utilization, also increased DA synthesis

and release (Anden and Grabowska 1976). It has been suggested that

ICSS from LC was produced by some kind of learning which gave access

to DA reward mechanisms, possibly involving synaptic plasticity

(Milner 1977).

In order to investigate whether the dopaminergic systems of the

mesencephalon, especially the substantia nigra pars compacta, provided

an essential functional link in ICSS from the dorsal pons, it was decided

to investigate the effect of lesioning these DA systems on ICSS from

this area. It has been shown that 6-hydroxydopamine (6-OHDA) can

produce lesions of the brain catecholamine systems when administered

intracerebrally (Ungerstedt 1968) or intraventricularly (Uretsky &

Iversen 1969). It had been shown that 6-OHDA produced a selective

degeneration of the sympathetic noradrenergic nerve terminals in the

peripheral nervous system when given systemically (Tranzer and Thoenen

1968). Investigation of the biochemical consequences of brain

administration of 6-OHDA showed that catecholamines were selectively
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depleted, with little or no effect on indoleamine levels (Bloom et

al 1969; Uretsky & Iversen 1970). The selective destruction of

catecholaminergic neurones has been ascribed to the active uptake

of 6-OHDA into such neurones, as drugs which inhibit the uptake of

noradrenaline prevent the destruction of noradrenergic neurones

(Breese & Traylor 1971). The formation of oxidative products of

6-OHDA that can undergo covalent binding with nucleophilic groups

of some important constituents of the neuronal membrane might produce

the neurotoxic action (Saner & Thoenen 1971). It was possible to cause

increased destruction of dopaminergic neurones by giving a monoamine

oxidase inhibitor prior to 6-OHDA (Breese & Traylor 1971) as 6-OHDA

could be metabolized by this enzyme also (Jonsson et al 1972). A

selective destruction of dopaminergic neurones was produced by giving a

highly specific inhibitor of noradrenaline uptake, desimipramine

(Lidbrink et al 1971) which prevents 6-OHDA induced destruction of

noradrenergic neurones (Breese & Traylor 1971) prior to 6-OHDA treatment.

The use of 6-OHDA combined with these pharmacological treatments seemed

to provide a suitable method for making selective lesions to the

dopaminergic systems in the mesencephalon without destroying noradrenergic

systems.

It was decided to lesion the nigro-striatal DA system on the

ipsilateral and contralateral side of the brain (relative to the

stimulating electrode) in different groups of animals. By this

experimental design, any effects of a dopaminergic lesion which were

not specific to the neural system supporting self-stimulation might

become apparent. It was to be supposed that if non-specific effects of

a unilateral nigro-striatal DA lesion produced deficits in ICSS, then

such a deficit would be equally severe in both an ipsilateral and a

contralateral lesion. If however this DA system was an essential link
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in the ICSS produced from the dorsal pons then only one or other

of the lesions would produce a deficit, depending upon whether

this putative pathway projected in a unilateral manner or whether

it crossed over. The HRP studies indicated a unilateral link to

the substantia nigra from the dorsal pons (Tulloch Ph.D thesis) and

hence the ipsilateral lesion would be the one expected to produce a

deficit in ICSS if this was a functional link.

The extent of the lesion to the DA systems was verified in two

ways. It has been shown that rats with lesions to the nigro-striatal

DA system produced asymmetric body postures and pronounced rotational

behaviour when given drugs which release dopamine (Anden et al 1966a ).

With 6-OHDA lesions to the nigro-striatal DA system, similar results

were obtained, and pronounced rotational behaviour in a direction

contralateral to the side of the lesion was produced by the dopamine
b

agonist apomorphine (Ungerstedt 1971). Hence rats which had had their

nigro-striatal DA system lesioned could be identified by the ability

of apomorphine to induce rotational behaviour. Further verification of

these lesions was provided by biochemical analyses of the levels of

DA and NA in various brain areas after the behavioural testing was

completed. The biochemical analysis also showed the extent of damage

to the different DA systems, and any unintentional damage to the NAergic

systems. DA and NA were estimated by a modification of the radioenzymatic

method (Coyle and Hendry 1973).

In order to minimise non-specific mechanical destruction of

tissue by the injection cannula, an indwelling guide cannula was

inserted along with the stimulating electrode. It was supposed that

if a pathway necessary for ICSS was disrupted by this procedure then no

ICSS would be seen with that animal.
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It was considered, therefore, that the combination of an

indwelling cannula, ipsi-and contralateral lesions, and the pharmacological

protection of noradrenergic systems would provide reasonable evidence

as to whether the mesencephalic DA systems were neural substrates for

pontine self-stimulation, or if they were involved in some non-specific

way.

\
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Methods

(1) Self-stimulation procedures

Male Wistar rats, 180 - 200 gm in weight, were anaesthetised

with halothane, and bipolar electrodes were implanted in the dorsal

pons, using the methods described in section (1). The stereotaxic

co-ordinates used were 1.4 mm posterior to the lambda suture, 1.0 mm

lateral to the midline, and 6.4 mm below the skull surface at this
\

point. During the same operation an indwelling cannula was implanted

in posterior hypothalamus using the co-ordinates 4.1 mm posterior to

the bregma suture, 1.1 mm lateral to the midline, and 8.3 mm below

the skull surface at this point. The cannula was constructed from

a disposable hypodermic needle, 26G and 10 mm in length (Gillete Surgical,

Eng.), with a stainless steel stylet inserted to keep the cannula patent.

All rats were allowed at least seven days to recover from surgery.

All animals were tested for ICSS as described in section (1),

except for the stimulus parameters. These were 200 msec trains of

monophasic square wave pulses, each 0.2 msec duration at 50 Hz. They

were produced by a Neurolog stimulator, using an NL800 isolated

constant current output stage (Digitimer Ltd.). The animals were

tested at 50 yA, and the current was increased until interest was

shown (i.e. the animal repeatedly returned to the place where stimulation

had been given) or until an aversive response was elicited. Current

levels used to produce reliable ICSS were typically lOO - 200 yA and

routinely monitored on an oscilloscope, using the voltage drop across

a 1 Kohm resistor. Rats were shaped to the lever until spontaneous

ICSS was seen.

The rats were allowed to self-stimulate for 15 minutes each day

for 5 days, by which time their response rates were stable. The current
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used for each rat was adjusted so that it produced sub-maximal

response rates. The response rates were recorded at the end of each

15 minute session.

Once the response rate was stable, the animals were subjected

to the lesioning procedure, and typically allowed two days to

recover from this. Thereafter, all rats were placed in the test

chamber for 15 minutes a day, until 21-24 days post-lesioning when

the experiment was terminated. Currents to the animal were maintained

at pre-lesion levels and no retraining was attempted.

(2) Lesion procedures

All lesions to the nigro-striatal dopaminergic system were made

through indwelling cannulae, which were placed either ipsi or contra¬

lateral to the stimulating electrode. After the training and stabilisation

of response rates was completed, the rats were treated with 50 mg/kg

pargyline and 25 mg/kg desmethylimipramine i.p. 30 minutes prior to being

anaesthetized with 4% halothane, and anaesthesia maintained with

appropriate levels of this iagent. The stainless steel sylet was removed,

and a 32G stainless steel injection cannula attached to a 10 yl glass

syringe (Hamilton) was lowered down the indwelling cannula. The injection

cannula projected approximately 1 mm below the outer cannula. 8 yg

of 6-OHDA hydrobromide (AB Biotec, Sweden) dissolved in 4 yl of chilled

isotonic saline containing 0.25 mg/ml ascorbic acid as an anti-oxidant

was injected at a rate of 1 yl/minute. The cannula was left in position

for two minutes after this, then slowly withdrawn. A plug of bonewax

(Ethicon) was inserted into the top of the indwelling cannula. The

animals were allowed to recover from the anaesthetic and returned to

a clean cage.
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The extent of the lesion in each animal was verified after the

ICSS testing was completed. The rats were given apomorphine, 0.3 mg/kg

intra-peritoneally and observed for rotation in a semi-spherical bowl.

If a criteria of 150 turns contralateral to the side of the lesion was

observed in 30 minutes, then that rat was assumed to have a substantial

lesion of the nigro-striatal system (Ungerstedt 1971), and was included

in the subsequent biochemical analysis. Those which failed to satisfy

this criteria were retested with the same dose of apomorphine after an

interval of three days. Rats which did not produce such rotation were

deemed to have an unsuccessful lesion and were not included in further

analysis. Eventually there were two groups of 8 rats with successful

lesions, ipsi - and contralateral to the stimulating electrode

respectively.

(3) Biochemical analysis

(a) Dissection procedure

All the rats which had satisfied the rotation criteria were

sacrificed 30 days post-lesion by stunning and decapitation. The

brains were removed, and placed in ice-cold isotonic saline. They

were then dissected over ice. The brain was placed ventral side

upward, and the olfactory tubercles pinched off with curved forceps.

A coronal cut was made 2 mm anterior to the optic chiasma, followed

by a similar cut through the optic chiasma. The resulting tissue

slice was placed horizontally, and a vertical cut at 90° to the previous

cuts made through the anterior commissure. The ventral part of this

slice was removed, and tissue lateral to the lateral olfactory tract

was cut away. The remaining tissue comprised of left and right

nucleus accumbens. The dorsal part of this slice included the

striata, which were picked~out with curved forceps, as was the striatal
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tissue caudal to the optic chiasma in the remainder of the brain.

The cortices caudal to the level of the optic chiasma were removed.

A coronal cut was made at the level of the mamillary bodies, and

this slice was then cut horizontally through the anterior commissure.

The cuboid thus produced was the hypothalamus. Immediately after

dissection the tissue was frozen in aluminium foil on solid C0^ before
weighing and storage in liquid N^. The remainder of the brain was
snap frozen to be cut into thin sections in a cryostat for histological

evidence of the electrode placement.

(b) Estimation of noradrenaline and dopamine in the same tissue sample

by a radioenzymatic method modified from Coyle J.T. & Henry D. J-

Neurochem 1973 Vol 21 pp 61- 67.

The tissue was homogenised in 300 yl of 0.1N perchloric acid,

then centrifuged at 10,000 G for 15 minutes. The standards contained

25 ng of DA or NA added to 300 yl of brain extract. After centrifugation,

the supernatant was transferred to 15 ml glass-stoppered tubes and

100 yl of a reaction mixture containing

500 yg dithiothreitol

0.5 ymol MgCl^
140 ymol of Tris buffer pH 9.6

25 yl COMT (catechol-O-methyl-transferase)
3

25 yl Tritium S-Adenosyl-L-(Methyl- H) Methionine (2.5 yCi)
This was incubated for 60 minutes at 37°C, then the reaction was stopped

by the addition of 500 yl of 0.5M Borate buffer pH 10. 50 yl of

nonradioactive carrier was now added. This contained:-

7 yg Methoxytryramine

3 yg Normetanephrine

3 yg Metanephrine

1 mg EDTA (ethyl enediamine tetra-acetic acid)
The O-methylated products were extracted into 9 mis of water saturated

ethyl acetate - methanol (10:1) by shaking for 30 seconds, and low
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speed centrifugation. 8.5 mis of the organic phase was transferred

into a tube containing 0.5 mis of 0.5M borate buffer pH 10. 8 mis

of the organic phase was transferred to a glass tube containing

0.5 mis of O.IN HC1, then shaken for 30 seconds and centrifuged at

low speed. The organic phase was aspirated off, and 8 mis water

saturated ethyl acetate added. The tube was shaken for 30 seconds,

centrifuged, and the organic phase aspirated off. This was transferred

to an ice bath, and 0.5 mis of 0.5M PO^ buffer pH 7.5 added to each
tube. In order to separate DA from NA, 50 pi of freshly prepared

3% Sodium Metaperiodate was added, and allowed to react for 3 minutes,

until stopped by the addition of 50 yl 10% glycerol. 10 mis of toluene

was added, the tubes shaken for 30 seconds and centrifuged as before.

For NA estimation 9 mis of the toluence phase were removed and

1 ml 1N NaOH added. The aqueous phase was kept for DA estimation. The

tubes were shaken and centrifuged. The organic phase was removed by

aspiration, and 0.1 ml glacial acetic acid was added to the NaOH phase.

lO mis toluene was added, the tubes then shaken and centrifuged. 9 mis

of the toluene phase were removed and added to 0.4 mis Liquifluor

for liquid scintillation counting. For the estimation of DA the

aqueous phase (see above) was added to 5 mis toluene, then the tubes

were shaken and centrifuged as before. The organic phase was aspirated

off, and to the aqueous phase was added 0.5 mis 1M borate buffer and

6 mis of toluene - isoamyl alcohol mixture (3:2). The tubes were shaken

and centrifuged, then 5 mis of the organic phase was added to lO mis

of liquid scintillant, for liquid scintillation counting.

(c) Counting and estimation details

Samples were counted for 10 minutes on a Nuclear-Chicago, liquid

scintillation system. C.P.M. (counts per -minute) were converted to
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D.P.M. (disintegrations per minute) using a channels ratio quench

curve for the machine. Actual concentrations were calculated from the

NA and DA standards in the assay, (ng/g wet weight tissue).

4. Histological procedures

The ventral mesencephalon and brain stem which remained after

the dissection of the brain for biochemical analysis were stained using

a modified Kluver Barrera method (see Section One, methods, this thesis),

and examined in a light microscope. The location of the electrode

tip was verified and the location determined by comparison with the

atlas of Pellegrino & Cushman (1967). By examining the sections of

the mesencephalon it was possible to look for the unilateral

disappearance of cell bodies in the pars compacta of the substantia

nigra.



Pre-lesion response rates
(bar presses/15min)

Section Foug_ Fig 1

Mean ICSS response rates before the 6-OHDA lesion. The two groups
were not different significantly.
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Section Four Table One (a)

The effect of a unilateral 6-OHDA lesion of the

ascending DA systems on ICSS from the dorsal pons

Days post-lesion

Mean difference from control, response rate/15 mins

Ipsilateral group n = 8 Contralateral group n = 8

Responses
+ SE

%

Control
Responses

+ SE

%

Control

3 -156 + 73 ns -25 -248 + 95 -36
~

n.s

4 -197 + 83 -32 -306 + 88 -44
—

n.s
—

*

6/7 -111 + 66 -18 -118 + 92 -17
—

n.s n.s

13/14 20 + 39 3 -41+50 - 6
—

n.s
~~

n-s

* p < .05 Paired Student t-test

Table One (b)

Maximum recovery

up to 21 days 83 + 19 +14 n.s. 77 + 36 +11 n.s.

post-lesion

Significantly different from pre-lesion control, paired student t-test



Section Four Table Two

The mean number of days to recovery of pre-lesion

response rates (to within 15% of pre-lesion control rate)

Ipsilateral Contralateral
Mean number of n = 8 \ n = 8

days to recovery
+ S.E.M.

5.9 + 1.2 5.6 + 0.3 n.s.

Student t-test.
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Results

Pre-lesion response rates

The baseline response rate of each rat was defined as the mean of

the rates on the two days prior to lesioning. The group of 8 rats

which had ipsilateral lesions, designated Ipsi, had an average response

rate of 617 +_ 66 (Standard Error S.E.) for each 15 minute test session.

The groups of 8 rats which had contralateral,lesions, designated

Contra, had a response rate of 691 + 91. These response rates did not

differ significantly (Fig One).

Post lesion response rates

The effect of lesions to the dopaminergic systems in the ventral

mesencephalon was to produce a transient decrement in lever pressing

rates for ICSS from the dorsal pons (Table One (a), Figure Two).

The decrement was of the order of 30 - 40% of pre-lesion control

rates, and only significant on day 4 in the contralateral lesion group

(student paired t-test). A complete recovery to pre-lesion levels was

seen by 14 days post-lesion, with a considerable recovery to above

80% of control values by day 7 (Table One). There was no significant

difference between the Ipsi and the Contra groups at any time.

Although there was considerable variation within lesion groups in the

time taken to full recovery, this variation was similar in both groups.

Animals with considerable deficits in responding immediately after a

lesion was made recovered with a similar time course in both groups

(Fig 3). The maximum rate which animals recovered to within the

21 day post-lesion experimental period was highly comparable in both

Ipsi and Contra groups, and in both cases was at least to pre-lesion

response rates (Table One (b)). The mean number of days to recovery



Difference from control post lesion (±SE)

DAYS POST LESION

^Section Four Fig 2

The mean difference in response rates from pre-lesion controls after the
6-OHDA lesion. The ipsilateral lesion group (dots) were never

statistically different either from pre-lesion control or from the
contralateral lesion group (hatched lines). The contralateral lesion
group was statistically different from its pre-lesion control only on
day 4 (P < .05, student paired t-test).



X u

Difference in response rate from control

Section Four Fig 3

The differences in response rates from pre-lesion control for individual
animals. Both after successful ipsi - and contra-lateral lesions,
which severely depleted forebrain DA, deficits at 4 days post-lesion
ranged from severe to virtually non-existant. All animals however had
recovered by lO days post-lesion.



Days to recovery * SE

-

N.S.

- Illllti

IPSI CONTRA

Section Four Fig 4

Mean number of days to recovery in the ipsi - and contralateral lesion
groups. Recovery was defined as recovering to within 15% of pre-lesion
response rates. There was no difference between the two groups.
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of response rates to within 15% of pre-lesion rates was 5.9 + 1.2

days for the Ipsi groups and 5.6 +_ 0.8 for the Contra group. There

was no significant difference between groups (Student-t). (Table

Two Fig 4).

In summary, no long lasting deficit in ICSS response rates was

seen after the lesioning procedure. A temporary deficit was induced

in some cases with variations between animals in the extent and

duration of this deficit. However, these effects were common to both

Ipsi and Contra groups, and the effect of the lesion was not significantly

different between groups.

Biochemical results

The concentrations of DA and NA in the brain areas assayed were

as shown in Table three. The results were expressed in absolute

amounts of transmitter in ng/gm of wet weight of tissue. The lesion

produced very marked depletions of DA in the corpus striatum

ipsilateral to the 6-OHDA injection in both the Ipsi and Contra groups,

of the order of 86 and 95% depletions respectively (% of lesioned to

unlesioned side). A similar pattern of depletion of DA was seen in the

nucleus accumbens in both Ipsi and Contra groups, with depletions of

77 and 91% respectively. These differences were statistically

significant, P < .001, student t-test. Cortical dopamine was also

reduced on the lesioned side, P < .001 in the Ipsi group and P < .05

in the Contra group. The concentration of dopamine in hypothalamus

was the same in both Ipsi and Contra groups.

The concentrations of noradrenaline was markedly reduced in the

corpus striatum in both Ipsi and Contra groups (Ipsi P < .01, Contra

P < .001) to 37 and 16% respectively.
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Table
Three

The

effect
of
a

unilateral
6-OHDA
lesion
to

the

ascending
DA

systems
on

the

concentration

of

noradrenaline
and

dopamine
in

various
brain

areas

DopamineIpsilaterallesionn

=

7Contralaterallesionn

=

7

CorpusLeft

StriatumRight

Nucleus
A

Left

ccumbensRight

ParietalLeft

cortexRight

Hypothalamus

1756
***

+

687

13012
+

1557

1723
***

+

460

7441
+

703

3g

***

+

6

125
+

14

970
+

127

10227
+

1033

521
***

+300

6945
+

1105

624
***

+

103

141
+

37

16
*

+

6

1013
+

126

NoradrenalineIpsilaterallesionn

=

7Contralaterallesionn

=

7

85
**

±

25

227
+

32

1911

n.s.

+

222

1984
+

309

297

n.s.

+3
8

367
+

55

6115
+

923

419
±

78

64

***
±18

2242+414

3048
+

790

434+64

291

n.s.

+29

6416
+

753

Results
expressed
as

mean

concentration
in

nanograms/gram
+_

S.E.M.

Significantly
different
from

unlesioned
side,

student
t-test

Electrode
on

left

side-

Lesion
relative
to

this-

***■k
kk

p

<

.001

P

<

.01

P

<

.05
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Section Four Fig 5

The mean (+ S.E.M.) concentrations of NA and DA in the striatum after a
unilateral 6-OHDA lesion of the ascending DA pathways. The lesioned
side (L) was compared to the unlesioned control side (c) of the same
animals. Lesions were made in posterior hypothalamus either Ipsi or
Contra lateral to the stimulating electrode.
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Nucleus accumbens

10r

pg/gm

p<-00l
DA

p<-001

Section Four Fig 6

This shows the mean concentrations of NA and DA in the nucleus accumbens
after the unilateral 6-OHDA lesion; the lesioned side (L) was compared
to the unlesioned control side (C) of the same animals. Lesions were

made in posterior hypothalamus either Ipsi or Contra-lateral to the
stimulating electrode.
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Section Four Fig 7

This shows the mean concentrations of NA and DA in cortex and hippocampus
together, after the unilateral 6-OHDA lesion; the lesioned side (L) was
compared to the unlesioned control side (C) of the same animals. Lesions
were made in posterior hypothalamus either Ipsi or Contra-lateral to the
stimulating electrode.
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Section Four Fig 8

This shows the mean concentrations of NA and DA in hypothalamus after
the unilateral 6-OHDA lesion; the lesioned side (L) was compared to
the unlesioned control side (C) of the same animals. Lesions were made
in posterior hypothalamus either Ipsi - or Contra-lateral to the
stimulating electrode.
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In no other brain areas studied was there any significant

difference between lesioned and unlesioned sides in either of the

treatment groups. Although there were slight reductions in the

concentrations of NA in parietal cortex (19% in the Ipsi group, 33%

in the Contra) these were not significant. The concentration of NA

was the same in the hypothalamus in both Ipsi and Contra groups. The

injection of 6-OHDA into the ventral tegmental area did not produce

a general depletion of noradrenaline throughout the forebrain and

cortical areas.

Correlation of biochemical assay results with behavioural effects of

the lesion

In order to assess the effect of lowering DA concentration in the

corpus striatum on the response rate for ICSS, the correlation between

the concentration of DA which remained in corpus striatum after the

lesion and the difference from control response rates on day 3/4 was

calculated. The correlation coefficient between these two measures

was 0.46 in the Ipsi group and 0.18 in the Contra group. This

indicates that these two measures were not highly correlated.

Electrode placements

The electrodes were found to lie in the dorsal pontine area,

ventral to the 4th ventricle. A number were in or close to the anterior

locus coeruleus, and the rest were located in or near the projection

of the dorsal tegmental bundle as defined by Lindvall & Bjorklund

(1974). These were medial to the brachium conjunctivum, dorsal of

the superior cerebellar peduncle. They were mostly on the margins

of the periventricular gray matter. One electrode was at the level
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Section Four Fig 9

This shows the electrode positions in the pons. All electrodes
were situated on the same side of the brain but for ease of
illustration the ipsilateral lesion group (diamonds) are shown on
the opposite side from the contralateral lesion group (filled circles).
(DBC - dorsal brachium conjunctivum: DPCS - decussations of the
superior cerebellar peduncle).
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of the dorsal raphe nucleus, on the dorsal edge of the brachium

conjunctivum, in or near to the dorsal tegmental bundle as it has been

represented at this brain level(Fig 9).

\
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DISCUSSION

The results of this experiment indicated that unilateral

injections of 6-OHDA into the dopaminergic systems in the ventral

tegmentum, which produced marked destruction of these systems, had

no lasting effect on ICSS from electrodes in the dorsal pons. This

was the case whether the 6-OHDA injection was ipsi - or contra -

lateral to the stimulating electrode. - \

There were transient deficits in response rates after the lesion,

but these were seen in both Ipsi and Contra groups. Some animals had

severe deficits, and had recovery periods of 10 days, while others

had little or no deficit after 3 days. However, this variation was

common to both treatment groups. The time course of recovery was also

similar to both treatment groups, with full recovery by 14 days post-

lesion, and recovery to within 15% of control values by a mean time

of approximately 6 days in both groups. Response rates post-lesion

recovered to a maximum only slightly above pre-lesion control values

(+14% in Ipsi group, +11% in Contra) but this was not significantly

different. There was no evidence for any facilitation of ICSS by this

lesion.

There remains the fact that large initial deficits in responding

were produced by the 6-OHDA injection in some animals. Unilateral

lesions of the nigro-striatal pathway have been reported to produce

impairment in the contralateral limbs (Marshall et al 1974) and to

produce deficits in sensorimotor integration (Frigesyi et al 1971,

Marshall et al 1974). A lever-pressing task would be susceptible

to disruption with such impairments. Further evidence for the possibility

that destruction of nigro-stri; cal DA system produced motor system
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impairment came from an experiment which tested swimming ability.

It was found that there was a high correlation between the number of

DA cells remaining, DA concentrations in striatum and motor performance

(Ranje & Ungerstedt 1977). As some animals did not suffer large

deficits in response rates after a successful DA lesion the possibility

of non-specific damage to some other pathway might be the cause of these

deficits. An efferent pathway from the substantia nigra pons reticulata

projects rostro-dorsally through the injection area and runs lateral to

the mamillo-thalamic tract into the thalamus (Beckstead et al 1979;

Faull and Carman 1968). It has been suggested that this pathway

modulates posture (Olianas et al 1978) or acts as part of the motor

output of the extra-pyramidal system (Arbuthnott et al 1977). It would

seem reasonable to suggest that damage to such a pathway could result

in motor deficits. Electrolytic lesions of the mamillothalamic tract

produced deficits in ICSS from the posterior lateral hypothalamus

(Boyd and Gardner 1967). This study did not differentiate between

impaired performance and impaired reward function. It would seem

possible that the deficits seen in the present study could arise from

non-specific damage to such a system, or damage to the nigro-striatal

DA system.

The results of this present study firmly indicated that the

nigro-striatal DA system was not essential for ICSS. Previous studies

involving lesions to the nigro-striatal DA system have suggested an

essential role for DA in ICSS from sites rostral to the ventral

tegmental area. ICSS may be elicited from the caudate nucleus,

especially the medial regions (Phillips et al 1976), and this nucleus

has been shown to be the major terminal area for the DA neurones A8,

of the substantia nigra (Ungerstedt 1971). Lesions of these neurones
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by injections of 6-OHDA produced large deficits in 1CSS which slowly

reversed if the lesion was contralateral but which were still only at

free operant levels at the end of the 21 day test after an ipsilateral

lesion (Phillips et al 1976). This experiment provided very strong

evidence that the nigro-striatal DA system mediated ICSS in at least

the caudate nucleus. This finding was extended by others to suggest

that the nigro-striatal DA system was an essential link in ICSS from

an area in the dorsal pons, in and around locus coeruleus. Lesions

to the nigro-striatal system with 6-OHDA severely attenuated ICSS from

this area, and the deficit was long lasting (at least 20 days) in

the case of the Ipsi lesion but very short lasting (3 days) after a

contralateral lesion (Koob et al 1978). This latter experiment

suggested a functional role in the reward process for the nigro-striatal

system owing to the unilateral nature of the ICSS deficit. However,

the results of the present study directly contradict this latter

experiment. The effect of lesions to the nigro-striatal system on ICSS

from the SN itself was in accord with the present study. The nigro-

striatal system was lesioned at the level of the hypothalamus with 6-OHDA,

and the effect on ICSS from electrodes in the SN pars compacta (the DA

cell group A8) examined. A deficit was produced, but it disappeared

by 8 - 10 days post-lesion in both Ipsi and Contra groups (Clavier &

Fibiger 1977) .

This indicated that the nigro-striatal pathway plays an important

role in ICSS but a non essential one in the reward process. The

equivalent effect on both Ipsi and Contra groups in this and the

present experiment supports the motor deficit hypothesis.

✓
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The experiment of Koob et al (1978) has results which appear

contradictory to the present study. There were differences in procedure

however, as well as possible differences in interpretation. Firstly,

the exact location of the stimulating electrodes varied slightly as the

majority of sites in the present study were anterior to the locus

coeruleus whereas with Koob et al they were situated in or adjacent to

this nucleus. This, or the different type of stimuli used, might have

explained the difference in pre-lesion response rates, whichvere

almost three times as high in the present study. Secondly, an indwelling

guide cannula was used in the present study and hence mechanical damage

at the time of the lesion was minimised. It might be supposed that non¬

specific damage to any neural pathway essential for self-stimulation

caused by the insertion of the guide cannula would have prevented the

elicitation of ICSS from that particular subject. Thirdly, the con¬

centration of ascorbic acid used in the 6-OHDA injection vehicle was

only 0.25 mg/ml in the present study, but 1 mg/ml was used by Koob et

al. There was evidence for some non-specific damage to the NSB, either

by the vehicle or the cannula in the study of Koob et al as the SHAM

injected controls had considerable depletions of striatal DA. The

ability of a saline ascorbate vehicle as used by Koob et al to induce

a functional change, namely rotation in response to 5-MethoxyDMT, has

been documented (Waddington & Crow 1979) . This change appeared to

be unrelated to changes in forebrain monamine levels, and hence could

have been due to damage to a non-monaminergic pathway. This effect was

not seen with a saline - ascorbate vehicle similar to the present

study (0.25 mg/ml ascorbic acid) and hence it might be inferred that

this vehicle causes less non-specific damage. Unfortunately, no

sham-injection group was included in the present study so no direct

evidence was available to prove this.
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Although no actual numbers were published in the Koob et al study

of post-lesion response rates, examination of Fig 5, Koob et al (1978),

indicated a possible alternative interpretation of their results.

There appeared to be a recovery to approximately 80% of pre-lesion

rates on day 14 post-lesion, and it seemed unlikely that there was any

statistical significance between the Ipsi and Control groups at that

time. Furthermore, there was a marked trend for response rates to

rise from days 8-14 towards full recovery of pre-lesion rates. Although

this rise does not continue it should be noted that the Control group

show a marked decline in response rates from days 14-20 for no apparent

reason. Finally, there was no significant difference between Ipsi

and Control groups for the main groups effect using the Neuman-Keuls

test. It must be suggested therefore that the evidence for a critical

functional role for the nigro-striatal system in this experiment was

perhaps not as strong as the writers suggested.

There remained the possibility that the nigro-striatal system

was indeed critical for ICSS but that functional recovery took place

over a period of time either by regeneration of neurones of the

formation of new synaptic connections (neuronal plasticity), or

alternatively due to supersensitivity of the post-synaptic receptors

following the degeneration of the pre-synaptic neurones.

The neurones of the central nervous system were believed to

have a limited regenerative capacity, and regeneration after transection

was considered abortive i.e. no functional connections were made

(Ramon Y Cajal 1928). Furthermore adult mammalian neurones could not

produce new neurones by differentiation and mitosis (Addison 1911).

The study of the transected spinal cord has indicated that some limited

functional capacity was restored by regeneration (Windle 1956) and it

has been suggested that this re-lies on the integrity of the cell body
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to sprout and develop new processes (Clemente 1964). The ability to

visualise the monoamine neurones (Fuxe 1965) has made it possible to

investigate the consequences of lesioning. It has been shown that

mesencephalic CA axons regenerated 7-19 days after an electrolytic

lesion (Katzman et al 1971). Regeneration of spinal CA neurones was

observed after intraspinal 6-OHDA but this was considered abortive

(Wiklune & Bjorklund 1975). After neuronal degeneration caused by

5, 6-dihydroxytryptamine (5, 6-DHT) regeneration of serotoninergic

neurones has been seen, although with altered patterns of innervation.

This regeneration commenced 10 - 17 days after the lesion and was

considerable after three months (Bjorklund et al 1973) . There this

seemed to be the potential for regeneration in central CA neurones but

whether it was functionally relevant was uncertain.

Of possibly greater significance has been the work which has

investigated axonal sprouting, and plasticity i.e. the formation of

new synaptic pathways which take over the same function. After

partial destruction of the optic tract undamaged axons have been

found to emit sprouts which invaded adjacent denervated regions

(Goodman & Horel 1966). The ability of NA & 5-HT neurones to form

axonal sprouts in the rat spinal cord has been shown (Bjorklund et al

1971). Subsequently the importance of axonal sprouting after lesions

has been demonstrated. The destruction of the hippocampal input to the

septum has been shown to cause a reinnervation of the septal nuclei

by NA neurones as shown by a long lasting increase in the number of

NA terminals using fluorescence histochemistry. These NA axons

invaded areas which normally had a much lesser NA innervation (Moore

et al 1971). After silimar lesions the synaptic ultrastructure has

been investigated and showed that, after initial synaptic destruction,

new synapses appeared over a month (Raisman & Field 1973). These
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experiments would suggest that a functional reinnervation of these

septal cells by NA neurones occurred after dennervation of another

septal input. Thus although true regeneration was not seen

reinnervation was possible, although whether it was of functional

significance was not determined.

The importance of these discoveries has been emphasised by

another study. After lesion of one 5-HT input to the hippocampus it

was found that reinnervation took place after 28 days by collateral

sprouting of another intact 5-HT hippocampal input. This was

accompanied by functional recovery as demonstrated by the disappearance

of an asymmetrical behavioural response (Azmitia et al 1978). It

would thus appear that collateral reinnervation at least by neurones

containing the same neurotransmitter could produce functional

restoration. Of possible significance was the finding that injection

of nerve growth factor enhanced recovery of feeding after a lateral

hypothalamic lesion (Berger et al 1973).

Interesting and important as these indications of functional

recovery and neuronal plasticity after lesions were, their immediate

relevance to the present experiment must be doubtful. In all these

experiments reinnervation was found to occur on a time-scale of 2 weeks -

3 months, and, in the one measurement of functional recovery this

occurred 28 - 42 days after lesioning. In the present experiment

functional recovery was observed with a mean time of 6 days and hence

could not be explained on this basis. A mechanism with a much faster

response to lesion damage would be needed. The phenomenon of

supersensitivity might be such a mechanism.

The appearance of denervation supersensitivity after the destruction

of catecholamine neurones has been much documented. It was initially

described as paradoxical contraction when an exagerated response to
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adrenaline was seen after lesions of sympathetic nerves (Anderson

1904). Such results led to the formulation of Cannon's law of

denervation, Cannon (1939) .

"When in a series of efferent neurones a unit

is destroyed, an increased irritability to
chemical agents develops in the isolated structure
or structures"

Dennervation supersensitivity has been extensively described in the

peripheral sympathetic nervous system, when an exaggerated response

by the post-synaptic effector cells to exogenous sympathomimetic

amines has been observed (Trendelenburg 1963, 1966). The ability of

systemic 6-0HDA to mimic this effect has been demonstrated (Haeusler

et al 1969; Trendelenburg & Wagner 1971). This observation has been

extended to the CNS. An enhanced behavioural responsiveness to the

DA agonist apomorphine has been seen after destruction of the nigro-

striatal system with 6-OHDA (Ungerstedt 1971b). Alternative evidence

for a post-synaptic supersensitivity was enhanced changes in striatal

acetylcholine levels after similar treatment (Grewaal et al 1974).

The time course for the development of supersensitivity has

been determined in various experiments. In the periphery denervation

supersensitivity has been shown to develop rapidly within hours but

this probably reflected the disappearance of pre-synaptic uptake

mechanisms. Post-synaptic supersensitivity developed over the period

of 2 - 28 days after lesioning (Langer et al 1967) . Similar results

have been obtained in the CNS. Enhanced locomotor activity after intra¬

ventricular L-DOPA was demonstrated three days after 6-OHDA (Schoenfield

& Uretsky 1973) although this might have in part been due to pre¬

synaptic supersensitivity. The development of the rotational response

to apomorphine which reflected post-synaptic supersensitivity was

apparent by three days after 6-OHDA treatment but was not fully developed



until 6 days after the lesion (Ungerstedt 1971b). The development

of increased locomotor activity after apomorphine was potentiated by

6-OHDA lesions in the nucleus accumbens and this increase in sensitivity

was apparent two days after the lesion though it increased to a maximum

at about 14 days (Kelly et al 1975). It would appear that super¬

sensitivity mechanisms had a similarity rapid development in the CNS.

The development of supersensitivity has appeared to possess

functional significance. The recovery of food intake after unilateral

nigrostriatal lesions was also found to occur in the period 7-11 days

after 6-OHDA lesion (Baez et al 1977). After pre-treatment with

a-MPT, which could cause supersensitivity, recovery of function after

LH lesions was enhanced (Glick et al 1972). It would appear that

denervation supersensitivity could facilitate recovery of function.

The time course of this phenomenon was similar to that observed for

the recovery of ICSS in the present experiment.

It must be considered possible therefore that development of

supersensitivity after the 6-OHDA lesion was able to produce functional

recovery. It could be suggested that initial recovery mechanims were

provided by supersensitivity, and this was followed by a period of

reinnervation. Interestingly the normal response to amphetamine has

been shown to reappear in a variety of studies around one month after

a lesion to the DA systems (Kelly et al 1975 ; Ungerstedt 1974),

which might suggest reinervation. Whatever the later events, super¬

sensitivity might explain the recovery of function after the DA

lesion, whether the recovery of motor function or an ICSS reward

system. U seful as this explanation might be, there was an indication

that the response rates on the first day of testing after lesioning

(day 3 or 4) were not correlated with the extent of striatal DA

destruction. As previously postulated non-specific damage to another
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motor system might have caused the deficits observed in some animals.

DA destruction might also have contributed to such a deficit, or

perhaps damage to both resulted in a more profound deficit. Unfor¬

tunately systematic evaluation of non-specific damage was impossible

as the dissection of hypothalamus usually cut through the injection

site. It must be noted that even with a non-specific lesion super¬

sensitivity could have developed in another system and hence recovery.

There has been some indication that lesions to the nigro-striatal

system have resulted in motor or performance deficits rather than an

effect on reward systems. Unilateral 6-OHDA lesions have resulted in

an equal disruption of LH (Ornstein & Huston 1975) and SN ICSS

(Clavier & Fibiger 1977) whether the lesion was ipsi- or contralateral

to the stimulating electrode. More importantly bilateral 6-OHDA lesions

of the SN abolished ICSS with a lever press response but not when a

simple motor response was used (Ornstein & Huston 1975). These

experiments would support a more generalised deficit after such lesions.

Even in studies which have demonstrated a long lasting deficit after

unilateral DA lesions, the contralateral lesion has produced a

short-lasting deficit (Phillips et al 1976: Phillips & Fibiger 1978:

Clavier & Gerfen 1979). These results confirmed that unilateral DA

lesions produced a temporary impairment of a complex motor response,

and they showed that DA systems might have a direct role in reward

insome areas as well as motor performance. It must be suggested

tentatively that in the present study the motor performance effect

has been demonstrated but not the effect on reward.

The experimental results suggested that an independent pontine

pathway supported ICSS. The obvious candidate for such a pathway

must be the dorsal tegmental noradrenergic bundle originating from

the locus coeruleus (Anden et al 1966B Ungerstedt 1971a-
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The stimulating electrodes were all in or near this pathway, and it

was not destroyed by the 6-OHDA procedure. The slight decrease in

NA concentrations seen in cortical tissue, a major projection area of
a

DTB (gngerstedt 1971) could have been due to mechanical destruction

of DTB fibres by the stimulating electrode. This decrease was not

significant in either lesion group. It could be argued that this

experiment provided supportive evidence for an independent functional

role in ICSS for the dorsal NA system, but not conclusive evidence for

this role. The role of this NA system in ICSS has remained contro¬

versial. Various studies have demonstrated ICSS from electrodes

within or close to the locus coeruleus (Crow et al 1972; Ritter &

Stein 1973; Ellman et al 1975; this thesis), although other groups

have not been able to produce ICSS from this area at all (Amaral and

Routtenberg 1975; Simon et al 1975). It seemed that training

procedures could account for this difference, as multiple training

sessions were often needed to produce ICSS from this region. The

results of lesioning the locus coeruleus have however not in general

been supportive of a vital role for this NA system in ICSS.

Electrolytic lesions of the locus coeruleus have failed to attenuate

ICSS from the MFB in lateral hypothalamus, and in fact increases

in response rate have been reported in these experiments (Koob et

al 1976; Corbett et al 1977). Similar lesions, both unilateral and

bilateral also failed to permanently attenuate ICSS from the dorsal

brain stem in the area of the DTB although a transient deficit was

produced (Clavier and Routtenberg 1976). More direct evidence against

LC involvement in brain stem ICSS was provided by experiments which

had electrodes in the LC, and lesions were made to the DTB. In one

experiment, 6-OHDA was injected into the DTB bundle, and large depletions

of cortical NA were achieved (by 96%), but without any attenuation of
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LC ICSS (Clavier et al 1976). In another electrolytic lesions were

made to the DTB, both uni and bilateral, but again ICSS from LC was

unaffected (Corbett et al 1977). These experiments indicated that

the ICSS produced from the dorsal brain stem did not rely on the

integrity of the LC.

There does exist evidence for some link between the dorsal

brain stem and lateral hypothalamus in the mediation of ICSS.

Brain stem self-stimulation was attenuated by MFB electrolytic lesions,

with the attenuation proportional to the degree of damage to MFB

(Clavier & Routtenberg 1976). In a completely different type of

experiment, simultaneous stimulation of the dorsal brain stem and

hypothalamic sites at subthreshold intensities interacted to produce

suprathreshold response rates (Ellman et al 1975). These experiments

have indicated that a common neural substrate might underly self-

stimulation in both these areas, although they gave no indication of

the putative pathway. Anatomical studies have suggested that there

were descending pathways from LH which at least passed through these

dorsal pontine areas. An autoradiographic study has shown that efferent

pathways from LH projected to the rostral LC through the ventral aspects

of the Central gray (Saper et al 1979). Conversely the use of retro¬

grade tracing techniques utilising horseradish peroxidase have also

demonstrated such a projection. Both iontophoretic application of

small amounts of HRP (Cedarbaum & Aghajanian 1978) and larger intra¬

cerebral injections of HRP (Clavier 1979) have shown that the axons

of LH cells project to the area of the LC. The possibility that

activation of such a pathway could have supported ICSS in the dorsal

brain stem must remain open to speculation.

Other pathways have also been suggested to support ICSS in the

dorsal pontine area. One interesting possibility was that the afferent
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sensory pathway containing gustatory information supported ICSS. This

pathway from the nucleus of the solitary tract has a relay centre in

the area of the brachium conjunctivum, the so-called pontine taste

area (Norgren & Leonard 1973). This area was close to the LC, and

its rostral projections ran close to those of LC (Norgren 1978). The

possibility that this taste pathway supported ICSS must be considered.

The brachium conjunctivum has been claimed to support ICSS (Routtenberg

& Malsbury 1969), but this was not supported by a later study with

electrodes actually within the superior cerebellar peduncle (brachium

conjunctivum) (Crow et al 1972). The possibility that the mesen¬

cephalic nucleus of the trigeminal nerve was the possible mediator of

ICSS in this region was considered, although the motor trigeminal

nucleus did not itself support ICSS (Crow et al 1972). Subsequently

ICSS has been obtained from the motor trigeminal nucleus (Motor V)

area (Van der Kooy & Phillips 1977), and from the lateral aspects of

locus coeruleus and the mesencephalic nucleus of the trigeminal nerve

(Van der Kooy 1979). In the latter experiment 6-OHDA injections failed

to disrupt this ICSS, and hence it appeared that the LC was not essential

for ICSS from this area. Another extensive mapping study has indicated

that ICSS in the area of LC was most reliably elicited in lateral but

not in medial aspects of this nucleus (Corbett and Wise 1979). It

would seem reasonable to suggest that either the trigeminal system or

the pontine taste system, or both could be the mediators of ICSS in the

dorsal pons.

In summary, the present study has indicated that ICSS from the

dorsal brain stem, in the region of the DTB, does not rely on the

integrity of the nigro-striatal DA system. Therefore, there was no

evidence for the involvement of those neurones in the dorsal tegmentum

which projected to"the substantia nigra in such ICSS. However, it



seemed possible that this DA system played a functional role in the

bar pressing response used to elicit ICSS. The suggestion that ICSS

from LC was evoked by some type of learning process whereby LC

stimulation gains access to DA reward mechanisms (Milner 1977)

seemed to be refuted. The wider question of whether the LC itself

was the neural substrate for dorsal brain stem ICSS remained unresolved

by this study. However, caution must be used, after consideration

of the afore mentioned lesion studies, in ascribing the non-DA ICSS

system in brain stem to the NA system originating in locus coeruleus.



General Discussion

Since the discovery of electrical self-stimulation by Olds

and Milner (1954), extensive research has been undertaken to

discover the neural systems which supported this behaviour. Initial

mapping studies indicated that discrete brain areas were involved

and that the focus of positive sites was the medial forebrain bundle

(Olds 1956: Olds et al 1960). Pharmacological investigations

suggested that catecholamines were directly involved in ICSS. Drugs

which increased the availability of catecholamines at the synapse

potentiated ICSS (Stein 1962: Poschel and Ninteman 1963) and

conversely the drug reserpine which decreased catecholamine brain

levels decreased ICSS (Olds et al 1956).

The anatomical basis for this relationship was uncovered when

the medial forebrain bundle was shown to contain a large catechol-

aminergic component by fluorescence histochemistry (Anden et al 1966b.

The cell bodies of origin of these CA pathways were located in

the ventral mesencephalon and the brain stem (Dahlstrom et al 1964).

The ventral mesencephalon supported ICSS (Dresse 1966), in the area

of the A10 CA cells (Dahlstrom & Fuxe 1964). However this was

considered to be a noradrenergic cell group but was subsequently shown

to be dopaminergic (Anden et al 1966b). The dorsal brain stem also

supported ICSS, in the area of the superior cerebellar peduncle

(Routtenberg & Malsbury 1969), close to the fibres of the dorsal

noradrenergic system (Ungerstedt 1971a. These results suggested it

was indeed possible that the CA systems supported ICSS. A systematic

evaluation of this hypothesis was conducted by Crow and co-workers.

They investigated the ventral mesencephalon and the dorsal brain stem

in the area of locus coeruleus. There was a close correlation between
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the sites supporting ICSS and the DA cell groups A9 and A10 in the

ventral mesencephalon and the sites in the brain stem and the NA cell

group A5 in locus coeruleus (Crow 1971, 1972a; Crow et al 1972). It

thus seemed that both NA and DA systems supported ICSS. Crow (1972b)

proposed a hypothesis on their functions based on the behavioural

consequences of electrical stimulation in these areas and on possible

sensory inputs to these cell groups. Briefly, self-stimulation of the

DA cells produced increased activity, sniffing and licking and rearing

and high rates of responding. There was indirect anatomical evidence

that there was in fact a link between the olfactory systems and those

DA cells (Millhouse 1969). It was thus suggested that these

dopaminergic systems mediated incentive motivation which was phylo-

genetically related to olfaction. Self-stimulation of the noradrenergic

cells in locus coeruleus produced a different type of behaviour. There

was little excitation with gnawing the predominant associated behaviour,

and low response rates were seen. Anatomically the locus coeruleus

lies in the visceral afferent column of the brain stem (Russell 1955),

which contains the gustatory input although this is believed to terminate

in the nucleus of the tractus solitarius. It was therefore suggested

that this NA system might mediate reward or reinforcement, which

was phylogentically related to gustation. In order for this dual

catecholamine hypothesis to be sustainable it has been necessary to

verify that ICSS from these areas was mediated by these CA systems.

A substantial body of experimental evidence on this problem has now

accumulated, and the justification for this theory may be reassessed.
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There has been some dispute as to whether the locus coeruleus

supported ICSS at all. The initial demonstration that ICSS could be

elicited with electrodes in or around locus coeruleus (Crow et al

1972) could not be replicated in other laboratories (Amaral and

Routtenberg 1975; Simon et al 1975). The studies used different

behavioural procedures, omitting the shaping to the bar press response

with multiple training sessions. If these procedures were used ICSS

could be obtained from this area (Ritter and Stein 1973; Ellman et

al 1975). There seemed little doubt that ICSS could be obtained from

this area, and there was a qualitative difference from that obtained

elsewhere.

Once a function has been ascribed to a brain area or neural

system the classical approach to confirm this relationship has been

to lesion it and then observe the changes in behaviour so produced.

When electrolytic lesions were made through electrodes in the superior cer¬

ebellar peduncle which had supported ICSS there was a subsequent build

up of catecholamines as demonstrated by histofluorescence. This

indicated that catecholamine pathways had been close to the stimulating

electrode (Clavier and Routtenburg 1974), most likely the dorsal

tegmental system from locus coeruleus. The neurotoxin 6-OHDA (see

section 4) was injected bilaterally to locus coeruleus, with subsequent

considerable depletion of cortical NA, and hence presumably marked

destruction of the dorsal tegmental pathway. There was no lasting

attenuation of ICSS from these brain stem sites in the region of the

superior cerebellar peduncle (Clavier and Routtenberg 1976). This

experiment did not resolve the ability of LC to support ICSS as the

lesions were not confirmed in all animals, and were not complete.

Further more the stimulation sites were in dorsal brain stem, not LC

itself. Subsequent experiments have helped resolve these problems.
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ICSS was established from sites in or around LC, and then 6-OHDA was

injected into the mesencephalic projection of the dorsal NA system.

Although virtually complete depletion of cortical and hippocampal NA

was achieved, there was no significant or lasting effect on LC ICSS

(Clavier et al 1976). A very similar experiment was performed using

electrolytic lesions of the dorsal noradrenergic bundle, after ICSS in

LC had been established. Neither unilateral nor bilateral lesions

attenuated LC ICSS (Corbett et al 1977). These experiments have shown

that the telencephalic projections of the LC were not essential for

ICSS from this nucleus, and question the role of the LC in dorsal brain

stem ICSS.

Virtually all the mapping studies linking dorsal brain stem ICSS

to CA systems have been assumptive i.e. the sites supporting ICSS were

believed to lie in or near CA neurones whose location had been determined

previously in other anatomical studies. There was thus considerable

room for interpretation or even error. A study has now been made of

ICSS sites in the dorsal brain stem and the electrode site's relation¬

ship to the CA systems determined by histofluorescence in the same

animal. In addition a movable electrode was used and hence the

electrode position relative to the CA systems was variable. There was

no correlation observed between the density of CA innervation and ICSS

response rates, and sites within the CA cells of locus coeruleus proved

negative. This was true in the dorsal aspects of the nucleus when little

damage had been done by the electrode. In spite of using methods including

behavioural shaping and repeated testing the locus coeruleus nucleus

failed to support ICSS although it was elicited from adjacent structures,

especially the mesencephalic nucleus of the trigeminal nerve (Corbett

and Wise 1979) .



It could now be said that the dorsal noradrenergic system

originating in locus coeruleus seems unlikely to be as essential

component of ICSS from the dorsal brain stem. The convergence of the

results from the divergent approaches of lesion and mapping studies was

compelling. However it was shown that areas adjacent to locus coeruleus

(both lateral and anterior), supported ICSS and it must be a possibility

that electrodes in LC could stimulate these areas also which would

explain the many reports of ICSS being obtained from this area of the

brain stem. Indirect supportive evidence for the non-essential role

of locus coeruleus in ICSS has been the number of studies showing no

attenuation of medial forebrain bundle self-stimulation after locus

coeruleus lesions (Farber et al 1976) and in fact increased response

rates in some cases (Koob et al 1976: Corbett et al 1977). Conversely

much of the supportive evidence for the central role of the dorsal

noradrenergic system in ICSS has been only correlative. The release of

NA in terminal areas of this system, associated with LC ICSS has been

measured by electrophysiological (Segal and Bloom 1976) or by bio¬

chemical (Anlezark et al 1975) methods. An effect on NA metabolism in

the cell bodies of LC has also been noticed (section 3, this thesis).

However, these studies have only shown that these NA neurones lay

within the field of stimulation from electrode sites which supported

ICSS, and not that the NA neurones were essential. In view of the

negative results from more direct tests of the dorsal NA hypothesis the

value of these results must now be doubtful, as must the hypothesis



The initial demonstration of self-stimulation from sites in

the ventral mesencephalon, dorsal to the interpeduncular nucleus

(Dresse 1966) has since been replicated and positive sites shown

to extend into the adjacent area of the substantia nigra, mainly

in the pars compacta (Crow 1972a. These mesencephalic areas contained

the dopaminergic cell groups A9, in the substantia nigra pars

compacta (SNC), and the A10 cell group dorsal to the interpeduncular

nucleus. The A9 cells projected to the striatum to form the nigro-

striatal-DA system and the AlO cells to limbic forebrain areas to

form the meso-limbic DA system (Ungerstedt 1971a. This close anatomical

relationship has been further demonstrated by the existence of ICSS

in the terminal areas of both systems. The striatum has been shown to

support ICSS (Phillips et al 1976) and areas in limbic forebrain shown

to support ICSS include the olfactory bulb (Phillips & Mo genson 1969),

frontal cortex (Routtenburg and Sloan 1972) and the nucleus accumbens

(Phillips et al 1975). The associative evidence that dopaminergic

systems supported ICSS was therefore strong. Further evidence was

obtained by lesion experiments and by the use of pharmacological

techniques.

Lesion experiments which directly investigated the role of

dopamine were possible using the neurotoxin 6-OHDA which selectively

destroys CA neurones (Ungerstedt 1971b. This -selectivity could be

increased by pre-treatment with desmethylimipramine which protected

NA neurones from destruction presumably by blocking 6-OHDA uptake

into these neurones (Roberts et al 1975). Although it has been

shown that bilateral 6-OHDA lesions of the nigro-striatal bundles

(NSB) produced generalised deficits in instrumental responding

(Fibiger et al 1974) it has proved possible to control for this in
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the ICSS experiments by observing the effect of lesions to the ipsi-

and contralateral DA pathways (relative to the stimulating electrode).

Using these methods it was found that ICSS in the striatum was

dependent on an intact DA innervation. 6-OHDA lesions of the nigro-

striatal system produced a long lasting and severe attenuation of

ICSS from the striatum when placed ipsilateral to the electrode but

only a transient attenuation when contra-lateral (Phillips et al

1976). This seemed to indicate a vital role for this DA pathway in

ICSS. However, in a subsequent experiment when the stimulating

electrodes were placed in the SNC, and 6-OHDA lesions of the NSB

were made both ipsi-and -contralateral lesions produced only a short-

lasting deficit in ICSS (Clavier & Fibiger 1977). It thus appeared

that the DA cells of the substantia nigra were not essential for ICSS

from that area. Previously it had been shown that ICSS from SN was

seriously attenuated by bilateral electrolytic lesions of sulcal

pre frontal cortex. This was interpreted as evidence for a descending

pathway from frontal cortex which supported ICSS in SN (Clavier and

Corcoran 1976).

Although it seemed that SN ICSS could be mediated by a non-DA

system, possibly arising in sulcal prefrontal cortex, ICSS from pre-

sulcal frontal cortex has been shown to depend on an intact DA system.

Ipsilateral 6-OHDA lesions which greatly reduced DA in both the nigro-

striatal and mesolimbic systems severely attenuated ICSS from sulcal

frontal cortex (Clavier and Gerfen 1979). The results from these

experiments suggested that ICSS in DA terminal regions was dependent

on intact DA systems, while in the ventral mesencephalon other neural

systems could support ICSS. This distinction has proved unfounded

however.
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Unilateral 6-0HDA lesions to the ascending DA pathways

severely attenuated ICSS from the ventral tegmentum, in the A10 DA

cells but had only a slight transient effect on nucleus accumbens ICSS

in the same animals. A separate group of rats subjected to the

same lesioning procedure also showed a pronounced attenuation of A10

ICSS and on medial frontal cortex ICSS but the latter site showed a

progressive though incomplete recovery (Phillips & Fibiger 1978).

The results of these experiments must be considered paradoxical.

Lesions of the nigro-striatal DA system virtually abolish striatal

ICSS (i.e. terminal area) but have no such effect on nigral ICSS

(i.e. cell bodies). Conversely lesions of the mesolimbic DA system

have virtually no effect on nucleus accumbens ICSS (terminal) but

severely attenuate ventral tegmentum (A10) ICSS (cell bodies).

The effects of 6-OHDA lesions on ICSS from frontal cortex,

believed to have a mesolimbic DA innervation (Lindvall and Bjorklund

1974) were also equivocal. ICSS from sulcal prefrontal cortex was

abolished after DA lesions, whilst medial prefrontal cortex ICSS was

only moderately reduced. However, recent anatomical studies have

indicated that the A9 DA cells also project to frontal cortex, with

medial areas receiving their DA input from A10 and sulcal areas from

A9 (Fallon and Moore 1978: Emson and Koob 1978) thus it appeared

that in the terminal areas of the A9 system DA was essential for ICSS

whereas in the terminal areas of A10 cells other neurones also

supported ICSS. Likewise in the mesencephalon, in the area dorsal to

the interpeduncular nucleus DA appears to have an essential role whilst

in substantia nigra other neurones can support ICSS.



These interpretations must be treated with caution. In most

of these experiments both mesolimbic and nigrostriatal pathways were

destroyed unilaterally, hence functional discrimination was not really

possible. A further factor which complicated these results was that

recovery of ICSS behaviour was sometimes gradual e.g. in the medial

prefrontal cortex. The possibility of recovery arising from adaptive

changes in the damaged DA system, for example the development of

supersensitivity must be considered (see section IV). In spite of

these reservations the results which showed a profound decrement in

ICSS after DA system lesions when ICSS at another site was intact

or the contralateral control not similarly affected have shown a

vital role for DA at some sites. Other sites which were previously

assumed to be mediated by DA systems, such as the SNC, would seem to

have other ICSS-supporting systems in close proximity. This has not

excluded the SNC from a role in ICSS, indeed the results in its

terminal regions suggested the opposite. It emphasised the need for

caution in drawing conclusions from lesion experiments as they only

indicated the role of a neural system at a particular stimulation site.

ICSS from other points in the same system can have simultaneously

stimulated other neural systems which also supported ICSS.

It has been suggested that the ventral NA system was responsible

for ICSS in the region of SN (Belluzzi et al 1975). These experiments

were distinctly crude with either large mechanical lesions or 6-OHDA

lesions at concentrations which would produce non-specific damage.

Additionally ICSS has not been obtained from the cell bodies of the

ventral NA system (Anlezark et al 1974). This raised the interesting

possibility of a non-CA system supporting ICSS in the ventral

tegmentum.



In conclusion, experiments which have specifically lesioned

the DA systems have indicated that at some points in these systems

DA appeared to have an essential role in ICSS. At other points in

the same neural system the destruction of DA neurones had either a

non-specific or negligible effect on ICSS and the existence of non-DA

neurones which supported ICSS was suggested. There remained the

possibility that the mesencephalic DA systems supported ICSS, but

that the effects of their destruction were masked by the close

proximity of these other systems supporting ICSS.

The role of DA in ICSS has also been investigated by pharm¬

acological means. The ability of amphetamine to potentiate ICSS

(Stein 1964) was believed to indicate a facilitation of NA

transmission. Subsequent analysis of the mode of action of amphetamine

has shown that it increases release of both NA and DA, inhibits their

reuptake and inhibits one of the CA degrading enzymes, monoamine oxidase

(Carlsson 1970). Recent experiments with 6-OHDA lesions of the DA

systems have indicated that these systems must be intact for this

facilitation to occur. When whole brain DA was selectively depleted

after intraventricular 6-OHDA the effect of d-amphetamine on ICSS from

lateral hypothalamus was significantly reduced (Cooper et al 1974).

More directly, ipsilateral 6-OHDA lesions of the DA systems abolished

amphetamine facilitation of SN ICSS without significantly affecting

the ICSS itself. A contralateral lesion had no such effect (Clavier

and Fibiger 1977). A similar finding was obtained with ICSS from the

nucleus accumbens and medial prefrontal cortex after ipsilateral

6-OHDA to the DA pathways (Phillips and Fibiger 1978). Conversely,

unilateral destruction of the dorsal NA system did not affect the

ability of d-amphetamine to potentiate ICSS (Clavier et al 1976).

It thus appeared that the potentiation of ICSS by amphetamine crucially

involved the DA systems, but not the dorsal NA system. The nature of
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that involvement was not determined however, whether it was a direct

effect on the "reward" system or whether it facilitated the performance

of the operant behaviour. The latter must be a consideration as by

the use of selective DA lesions it has been shown that the dopaminergic

systems in the nucleus accumbens were essential for the facilitation

of locomotor activity by amphetamine (Kelly et al 1975). The

difficulty of separating reward from performance deficits has also

influenced the interpretation of another pharmacological approach,

the use of dopaminergic antagonists.

The first indication of the effectiveness of DA antagonists

in blocking ICSS was when chlorpromazine was found to severely

attenuate self-stimulation from lateral hypothalamus (Olds et

al 1956). Chlorpromazine has been shown to block both DA and NA

receptors however (Anden et al 1970). The use of more selective DA

antagonists has produced similar effects on average rates of bar-press

responses for ICSS. Haloperidol (Wauquier and Niemegeersl972:

Phillips et al 1975) spiroperidol (Wauquier and Niemegears 1972)

and pimozide (Liebman and Butcher 1974: Fibiger et al 1976) have all

been shown to decrease ICSS in a dose-related manner. The inter¬

pretation of these results as indicative of a direct effect in a

reinforcement system has been questioned. It has been suggested that

these drugs cause an impairment of complex motor acts such as bar-

pressing (Fibiger et al 1976) or more generally the performance of

learned motor responses (Fibiger et al 1975) . Operant behaviours

for natural reinforcers such as food and water have also been attenuated

by similar low doses of neuroleptics (Fibiger et al 1976: Rolls et

al 1974). This could be taken as evidence for the performance deficit

theory only if the assumption that DA systems did not mediate natural

reward also was correct. It was necessary however to prove that

reward deficits could be dissociated from performance deficits for this

line of experimentation to demonstrate an essential role for DA systems
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in reinforcement.

An indication that this might be possible came from an experiment

which showed that increased stimulation current would overcome neuro¬

leptic blockade of ICSS (Liebman and Butcher 1973). This suggested

that increased reward (whether by involvement of another adjacent

system or not) could reinstate ICSS, and hence a generalised motor

deficit was improbable. The use of operant tasks less dependent on

complex motor performance than bar-pressing have also been used to

dissociate reward from performance.

With a rate-free measure of ICSS in a shuttle box, pimozide

was shown to significantly reduce the amount of stimulation received

(Liebman & Butcher 1974), and hence presumably was reducing the

rewarding properties of the stimulation. In another study, which

confirmed the non-specific effects of pimozide on a variety of

operant behaviours at higher doses, low doses of pimozide markedly

reduced ICSS from sites in the far-lateral hypothalamus when a runway

response was used. These stimulation sites were in the region of the

ascending DA pathways (Ungerstedt 1971a^ but ICSS from a more medial

hypothalamic site was unaffected. The bar-press response was

attenuated at both sites (White et al 1978). This was evidence for

the direct involvement of DA in ICSS when DA pathways were being

stimulated. In another experiment using a runway as part of the operant

response, a measure known as the reward summation function which relates

maximum running speed to the duration of the electrical stimulation

(Edmonds & Gallistel 1974) was used. Pimozide caused a marked change

on this function in the direction equivalent to reduced reward without

so affecting the maximum running speed (Franklin 1978). This again

indicated a selective affect on reward rather than performance at

low doses of the neuroleptic.
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An alternative approach which also investigated a direct measure

of the rewarding strength of electrical stimuli has been investigated.

The experimental design was such that reinforcement thresholds were

determined by the animal itself as the current was automatically stepped

down until a second operant task was performed which reset the current

to its original level. In this way an overall decrease in responding

reflected a general performance deficit whereas a change in reinforcement

threshold could occur independently (Stein and Ray 1960). In the

present experiment pimozide at low doses produced a dose-related increase

in reinforcement thresholds, without a general disruption of response

rates (Zarevics and Setler 1979). This effect was similar to that seen

when the quantity of electrical charge per stimulus was decreased, and

hence suggested that pimozide had effectively reduced the rewarding

properties of the stimulus.

Other experiments have used intra-cerebral microinjections of

the DA antagonists in an attempt to dissociate reward from performance.

Injections of spiroperidol into the nucleus accumbens almost completely

abolished ICSS from LH but produced little motor impairment (this was

comprehensively rated separately) while injections into the striatum

caused motor impairment with little effect on ICSS (Mora et al 1975).

In accord with this finding injections of haloperidol into either ipsi

or contralateral striatum disrupted ICSS from the ventral tegmentum

(Broekkamp and Van Rossuml975), which was presumably a non-specific

effect. In a similar experiment microinjections of spiroperidol

made close to the stimulating electrodeeignificantly attenuated self-

stimulation from the nucleus accumbens, with injections to the contra¬

lateral accumbens having no effect. The experiment was repeated in

medial prefrontal cortex with less marked effects, and only at the

highest dose used was any attenuation observed (Robertson and
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Mogenson 1978). This again suggested that DA systems played an

important role in ICSS in some brain areas, and that this was not

simply related to performance of the task.

The use of simple response rate measures has been questioned

without the presence of elaborate behavioural controls. The analysis

of variations in response-rates throughout an ICSS period after drug

treatment has usually been neglected, and only average response rates

used. Experiments conducted with the self-administration of stimulant

drugs (which function as reinforcers in this situation) have indicated

that DA antagonists alter response patterns in particular ways. Low

doses of pimozide were found to have the same effect as decreasing the

amount of amphetamine delivered, namely to increase response rates,

i.e. it reduced the affective reward value of a certain dose of stimulant.

Higher doses of pimozide caused an unusual response pattern of initially

accelerated responding followed by a gradual cessation. This effect

was typically that seen during the extinction of responding caused by

substitution of saline for the stimulant drug (Yokel and Wise 1975).

These results had two main implications. Firstly that dopamine

systems mediated the rewarding effect of these drug stimuli and secondly

that low doses of pimozide did not impair the lever press response,

as enhanced responding was produced.

When this analysis was performed in the response pattern seen

with ICSS from LH after pimozide an equivalent effect was seen.

Higher doses of pimozide caused an initial period of normal responding,

a gradual deceleration and then cessation i.e. an extinction type

pattern and low doses caused normal early responding followed by a low

rate of responding (Fouriezos and Wise 1976) . This finding was

replicated in a later study which also investigated the extinction -

like effect in more detail and compared it with the extinction produced
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by current reduction. It has been found that after extinction trials

if the animal was subsequently tested in the non-reward situation a

brief period of responding would ensue. A high dose of pimozide which

caused the extinction pattern of responding was shown to cause this

pattern of short response periods after inter trial intervals and

thus mimiced the extinction effect in this also. Finally the effect

on a runway task for ICSS was used and again high doses of pimozide

mirrored the extinction effect, with increased latencies and a

reduction in running speed as the trial progressed although the first

test runs were normal (Fouriezos et al 1978).

These experiments have suggested that DA antagonists specifically

block neural systems critical for the rewarding property of electrical

stimulation, and that performance deficits were not a sufficient explan¬

ation for the observed decrements in ICSS. It has been reported that

these drugs also attenuate operant responding for natural reinforcers

including food (Fibiger et al 1976) and water (Rolls et al 1974);

which was interpreted as an effect on performance. This might not be

the case as analysis of the effect of pimozide has shown that the

extinction effect was also seen with food or saccharin rewarded animals

(Wise et al 1978). This has suggested that DA systems might mediate

positive reward, but further work would be necessary to substantiate

this interesting possibility.

If the use of DA antagonists to define the role of DA in ICSS

was to be valid, it was necessary to eliminate other possible actions

of these drugs. It has been shown that many of the neuroleptics possess

a pronounced antagonism at NA receptors (Anden et al 1970). This was

especially so with haloperidol, although pimozide had a much more

specific action on DA. It seemed unlikely that pimozides action on

ICSS was a result of a-NA blockade as at doses which caused no significant
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attenuation of the a-NA flexor reflex test (Zarevics et al 1977) it

caused complete extinction of ICSS (Fouriezos et al 1978). Further¬

more, a-NA blockade itself with phenoxybenzamine was ineffective in

blocking ICSS at doses which blocked the flexor reflex (Zarevics et

al 1977). The deficits seen in ICSS after high doses of phenoxybenzamine

did not resemble the extinction-effect but caused erratic responding in

the lever-press test, and caused reduced running speeds and increased

latencies in the runway test (Fouriezos et al 1978). Finally pimozide

given chronically did not cause an enhanced responsiveness to clonidine,

an a-NA agonist whilst haloperidol did (Ettenberg and Milner 1977).

It therefore seems that the results with pimozide reflected its DA

antagonist activity, although results with other neuroleptics,

especially haloperidol must be treated with some caution.

The latter experiment with chronic pimozide further emphasised

the importance of DA in ICSS. It caused an enhanced sterotypy with

amphetamine after pimozide was withdrawn, which indicated an increased

DA receptor sensitivity as had previously been reported (Thornburg and

Moore 1974). The effect on ICSS was both to increase response rates and

to lower thresholds (Ettenberg and Milner 1977). As NA sensitivity

had not changed, this was interpreted as evidence for a crucial role

for DA systems in ICSS.

In conclusion, pharmacological experiments with DA antagonists

have indicated that the DA systems have a functional role in the rewarding

aspects of ICSS. Although at high doses non-specific effects on

performance were demonstrated at low doses the effect on reward and

performance could be separated with appropriate experimental design.

The evidence for a reward function was particularly compelling as a

wide variety of experiments had reached this conclusion. These had

included measures such as the reward summation function, of reward

thresholds and in particular the stimulating animals own control
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of them, and of behavioural effects, the extinction-like effect

which was shown both with lever pressing and runway tasks. All these

measures were able to demonstrate performance and reward deficits

and found that DA receptor blockade reduced the rewarding effect of

ICSS.

When these results were considered in conjunction with those

from the selective DA lesion experiments the evidence for a critical

role for DA in ICSS seemed convincing. It was possible to severely

disrupt ICSS with selective DA lesions and to reduce the rewarding

effects of ICSS with selective DA blockade. However there remained

certain problems. In most cases DA receptor blockade experiments

did not discriminate between different DA systems whilst DA antagonists

have varying affinities for DA receptors in different areas (Laduron

et al 1978). One study which did discriminate between DA systems, with

intra-cerebral spiroperidol has in fact raised further problems. It

showed that the DA system in the nucleus accumbens was essential for

ICSS from that area (Robertson and Mogenson 1978). After destruction

of the DA pathway however there was no effect on ICSS from this area

(Phillips and Fibiger 1978). It seemed unlikely that inadequate lesions

were responsible for this absence of effect as ICSS from the ventral

tegmentum was severely reduced. The possibility that spiroperidol had

blocked other receptors must be considered as at high doses it has been

shown to block NA (Anden et al 1970) and 5-HT receptors (Leyson et al

1978). However, low doses of spiroperidol which should have been

specific for DA were used. The two results must be considered contra¬

dictory at present, and need resolving. Another area which supported

ICSS which was presumed to be mediated by dopamine, was the medial

prefrontal cortex. It has been shown to contain a high concentration

of DA terminals (Berger et al 1976) and to have an increased release
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local injections of moderate doses of spiroperidol (Robertson and

Mogenson 1978) nor DA lesions (Phillips and Fibiger 1978) have

abolished ICSS from this area. It must therefore be concluded that

although DA systems mediated the rewarding properties of ICSS at

some sites in the brain, there existed other areas where this was not

the case. However, the initial hypothesis that DA could mediate ICSS

at certain areas now must be considered justified.

There have been other approaches to the problem of the role of

CA's in ICSS. It has been shown that ICSS was associated with changes

in the activity of CA neurones. There was some evidence that ICSS

from the ventral tegmentum area caused a decreased intensity of

fluorescence in NA - terminals (Dresse 1966). A similar result has

been obtained after imposed stimulation in anaesthetised rats in this

area (Arbuthnott et al 1970) and also after stimulation in conscious

rats through electrodes which has previously supported ICSS (Arbuthnott

et al 1971). Even in the latter experiment stimulation had to be

imposed as the self-stimulation was impaired by the use of a tyrosine-

hydroxylase inhibitor to measure turnover rates. This experiment

however illustrated the problems of interpretation inherent in such

work. The changes in NA metabolism were indicative of a role for the

ventral NA system in ICSS from this area but it was subsequently

demonstrated that this system did not support ICSS (Anlezark et al

1974: Clavier and Routtenberg 1974). Furthermore changes in DA

metabolism have been shown after ICSS from this region (Section One)

which contains the mesencephalic DA cell groups. However, lesion

studies have indicated that non-DA systems might also support ICSS

in the ventral mesencephalon and hence these results might not be so

convincing either. If CA pathways were in close proximity to those
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supporting ICSS then it would be possible for them to be stimulated

fortuitously. The same argument could be applied to the studies which

have shown changes in NA metabolism after ICSS in the region of locus

coeruleus, in the dorsal NA system. These have shown both increased

metabolism of NA in terminal areas (Anlezark et al 1975) and increased

TOH activity in locus coeruleus itself (Section Three). In view of

the subsequent lesion and anatomical studies which have consistently

shown that the dorsal NA system was not the sole substrate of ICSS

from this region such evidence must be regarded as more coincidental

than essential. However, it must be pointed out that the two studies

which have shown increased release of CA's as measured by metabolite

concentrations after ICSS (Anlezark et al 1975: Section One, this

thesis) have shown that electrical self-stimulation can cause release

of these transmitters. The release of CA could therefore have con¬

tributed to the ICSS behaviour. Studies of amine metabolism have not

produced definitive evidence for the CA hypothesis of ICSS.

One problem that the studies of CA release by electrical

stimulation in anaesthetised animals seemed to pose was that maximal

release of CA's was obtained by stimulation frequencies much lower than

those commonly used in ICSS experiments (typically 50 - lOOHz). Indeed

it has been shown to be very difficult to obtain ICSS with frequencies

below 40Hz (Wauquier et al 1972). Maximal stimulation of HMPG, a NA

metabolite was obtained from 2 - 20Hz (Walter and Eccleston 1973;

Korf et al 1973). Similarly, maximal stimulation of HVA, a DA metabolite

was obtained at 25 Hz (Korf et al 1976). One possible reason for this

difference might be that in these experiments stimulation lasted for long

continual periods of up to 45 minutes. In the ICSS stimulus trains of

up to 0.5 seconds were typically used, with at least short intervals

between trains and hence less stimulation would be delivered in a given
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time. Even allowing for this, electrophysiological studies have

indicated that the CA cells firing rates were also very low, typically

2Hz for NA cells of LC (Graham and Aghajanian 1971) and 2 - 10 Hz for

DA cells (Bunney et al 1973). It might be felt that stimulation rates

of 50 - lOO Hz would produce supra-maximal stimulation of such cells,

and raises the possibility that cells with a higher firing rate might

be responsible for supporting ICSS.

One very interesting experiment which seemed to support the

involvement of the dorsal NA system in ICSS was one in which it was

shown that this system was activated by rewarding stimulation in the

region of locus coeruleus (Segal and Bloom 1976). They showed that

the hippocampal pyramidal cells which responded both to iontophoretic

NA and LC stimulation in an inhibitory manner, were inhibited by

LC self-stimulation, but not by stimulation of non-rewarding sites

in this area. Activation of the dorsal NA system appeared to be

necessary for ICSS. An analysis of hippocampal self-stimulation has

cast doubt on this simple relationship (Wise 1978). Briefly, hippocampal

self-stimulation was found most reliably in the CA3 region of hippocampus

(Ursin et al 1966), where the pyramidal cells were found. The pyramidal

cells had been shown to be innervated by the dorsal NA system and to

have an inhibitory NA input (Segal and Bloom 1976). It thus appeared

that both direct stimulation and indirect inhibition of pyramidal cells

in the hippocampus was rewarding, which made a simple role for NA as

the mediator of reward in this area impossible. The possibility that

hippocampal self-stimulation was mediated by other cells which were

also stimulated must be considered a possibility.

Although there might be grounds for doubting the role of the dorsal

NA system in ICSS, the problem has remained that the dorsal brain stem



173

supported ICSS. There has been some evidence that this ICSS did not

involve the mesencephalic DA systems (Section 4) and hence at least

two rewarding systems existed in the brain. Other possible explanations

for brain stem ICSS have been suggested.

Although Crow suggested that the locus coeruleus was situated

in a position to receive gustatory input from the visceral afferent

column, no such input has been demonstrated (German and Fetz 1976).

However a central gustatory pathway has been identified in close

proximity to the locus coeruleus. The nucleus of the solitary tract

which receives a gustatory input was shown to project to the para-

brachial nuclei. These cells also responded to gustatory stimuli

and were considered to form a pontine taste area around the brachium

conjunctivum. These cells themselves projected to the gustatory nuclei

of the thalamus, and to lateral hypothalamus (Norgren and Leonard

1973) . This pathway might have some relevance to ICSS, especially

if the theory that afferent stimulation had primary rewarding properties

(Pfaffman 1960) was correct. It has been shown that ICSS could be

easily obtained from areas around the brachium conjunctivum (Routtenberg

and Malsbury 1969) and indeed one of the sites reported in the original

report of locus coeruleus ICSS (Crow et al 1972) was situated lateral to

the mesencephalic trigeminal nucleus in this very area. Further support

has come from the demonstration of ICSS in the medulla oblongata, in or

near the nucleus of the solitary tract itself (Carter and Phillips 1975).

From the description of the rostral projection of the pontine taste

area dorso-medial through the pons it must be considered possible that

the area anterior to locus coeruleus which has been shown to support

strong and easily obtained ICSS, (see Section 4; Wise (1979)) contained

these fibres. Although the projections from the nucleus of the solitary

tract were concentrated around the brachium conjunctivum, they were
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also found in the mesencephalic trigeminal nucleus (Norgren 1978).

It thus seems possible that there were very few sites in the locus

coeruleus, which would not perhaps have stimulated these neurones

also. They would certainly have been stimulated in the study which

claimed to demonstrate that the mesencephalic trigeminal nucleus

supported ICSS (Van der Kooy 1979). In view of these observations

this central gustatory pathway must be considered a possible mediator

of ICSS in pontine areas. However more conclusive evidence must be

obtained. The major difficulty in this must be in the organisation

of these pathways, this being both diffuse at the pontine level and

multi-synaptic. The identification of the neurotransmitters in these

pathways must also be realised.

The trigeminal system itself has convincing claims t.o be a

mediator of ICSS. Although it was considered as a possible mediator

of ICSS in the original mapping study of LC, this possibility was

discounted as ICSS could not be elicited from another part of this
j

system, the motor trigeminal nucleus (Motor V) (Crow et al 1972) .

Subsequent work has shown that ICSS can be reliably elicited within and

adjacent to MOT V. Stimulation-induced oral behaviour was associated

with these sites, and post-stimulation jaw movements (Van der Kooy

and Phillips 1978, 1979). The discrepancy between this and the previous

study would be difficult to explain especially as very similar behavioural

methods were used including extensive shaping.

The area in and around MES V, which has monosynaptic connections

with MOT V (Mehler 1963) has been shown to support ICSS also (Van der

Kooy 1979). An extensive mapping study which demonstrated the relation¬

ship of the catecholamine systems to the electrode site has also

indicated a much better correlation of ICSS with MES V than with LC

(Corbett and Wise 1979). Both of these studies have indicated that
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ICSS was more difficult to obtain from the medial aspects of LC.

The original study of Crow et al did obtain ICSS from these regions,

but interestingly those sites required fairly high currents and at

one of them jaw movements were seen which could indicate current

spread to MES V.

Further evidence for the independent nature of trigeminal ICSS

was also obtained. It has been shown that the sub-coeruleus NA

neurones projected to the area of MOT V (Olson and Fuxe 1972) and

hence their involvement in the ICSS was a possibility. There was no

significant effect of bilateral lesions of the LC on ICSS from MOT V,

either with electrolytic (Van der Kooy and Phillips 1979) or with

6-OHDA lesions (Van der Kooy 1979). As well as indicating that

activation of the LC was not responsible for MOT V ICSS these also

illustrated the existence within the brain stem of a non-DTB system

supporting ICSS.

The ICSS obtained from the area of the nucleus of the solitary

tract (NST) (Carter and Phillips 1975) has been suggested to involve

the motor trigeminal nucleus (Van der Kooy 1979). The NST has a

projection which passes through the area of MOT V but whether terminals

or fibres of passage was not determined (Norgren 1978). It must be

suggested that the obverse might equally be true, that the fibres

from NST might be mediating ICSS. The existence of some sites around

MOT V which elicited jaw movements without supporting ICSS (Van der

Kooy and Phillips 1979) might support this assumption. In addition

the area around MES V forms the pontine taste area (Norgren and

Leonard 1973), and hence these gustatory pathways might be supporting

ICSS there also. It must be pointed out however that a close

anatomical relationship between electrode sites supporting ICSS and

MES V (Corbett and Wise 1979: Van der Kooy 1979) and MOT V (Van der
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Kooy and Phillips 1977, 1979) has been demonstrated. This has not

been accomplished with the pontine gustatory pathways.

In conclusion, the results from these more recent experiments

have indicated that the dorsal NA system from locus coeruleus was not

essential for ICSS from the dorsal brain stem. The evidence for the

involvement of the mesencephalic DA systems has indicated that at some

sites in the brain this neurotransmitter mediated ICSS. However the

problem remained complex as ICSS sites with a large DA innervation did

not necessarily depend on DA for the mainte.nance of ICSS. The major

problem would seem to be to determine the nature of non-DA ICSS,

which appeared to be obtainable in the present studies from the dorsal

brain stem and possibly from medial posterior hypothalamus. Interest¬

ingly lesions produced at a site in the dorsal brain stem similar to

the present study which supported ICSS caused degeneration in the

area of medial posterior hypothalamus (Clavier and Routtenburg 1976).

This possible connection might be an interesting subject for study.

The hypothesis that ICSS was mediated by these NA and DA pathways

could not be refuted by the present series of experiments which could

all be interpreted as supportive. The results of these other

experiments have shown however that other neural systems have to be

integrated into a comprehensive explanation of ICSS. Interestingly,

if the pontine gustatory pathway did support ICSS, the original hypothesis

relating gustatory and olfactory modalities to ICSS might still be

relevant.
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