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ABSTRACT 

Category theory is proving a useful tool in programming and program 
specification - not only as a descriptive language but as directly 
applicable to programming and specification tasks. 

Category theory achieves a level of generality of description at 
which computation is still possible. We show that theorems from 
category theory often have constructive proofs in the sense that they 
may be encoded as programs. In particular we look at the computation 
of colimits in categories showing that general theorems give rise to 
routines which considerably simplify the rather awkward computation 
of colimits. 

The general routines arising from categorical constructions can be 
used to build programs in the 'combinatorial' style of programming. 
We show this with an example - a program to implement the semantics 
of a specification language. More importantly, the intimate 
relationship between these routines and algebraic specifications 
allows us to develop programs from certain forms of specifications. 

Later we turn to algebraic specifications themselves and look at 
properties of "monadic theories". We establish that, under suitable 
conditions: 

1. Signatures and presentations may be defined for monadic 
theories and free theories on a signature may be 
constructed. 

2. Theory morphisms give rise to ad junctions between 
categories of algebras and moreover a collection of 
algebras of a theory give rise to a new theory with 
certain properties. 

3. Finite colimits and certain factorisations exist in 
categories of monadic theories. 

4. Many-sorted, order-sorted and even category-sorted 
theories may be handled by somewhat extending the notion 
of monadic theories. 

These results show that monadic theories are sufficiently 
well-behaved to be used in the semantics of algebraic specification 
languages. Some of the constructions can be encoded as programs by 
the techniques mentioned above. 
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INTRODUCTION 

Programming languages and specification languages together with 
programs and specifications are formal objects which have a logical 
structure. It is therefore no surprise that our attempt to 

understand and handle these things should make recourse to 
mathematics to provide a formal framework. What may be surprising to 
many who are familiar with computers and computer programming is that 
a branch of mathematical thought as abstract (and apparently as 

abstruse) as that known as the theory of categories can have any 

relevance to our understanding of programming. 

Pulling a book on category theory from a library shelf and browsing 

through its pages may well make one baulk at not only its highly 

abstract contents but also the type of mathematics involved. 

Category theory grew out of investigations in topology and yet is 
essentially just a theory of functions. We hope that this work, if 

nothing more, will provide a programmers' eye view of categories and 

point to their relevance for our understanding of programming. Some 

part of this thesis is devoted to translating the mathematics to be 

found in such a category theory book into computer programs. This in 

itself is an interesting and novel exercise - to translate a 

mathematical textbook into instructions for a machine - to make 

electrons dance to a categorical tune, as remarked in [Burstall 

1980]. Some basic knowledge of category theory will be assumed but 

our presentation of this program will follow the presentation 
normally to be found in textbooks, so the two may be read in 
parallel. 

On the one hand, categories provide some framework for our 

understanding of programming and the specification of programs 

whilst, on the other hand, we have the requisite theory running on a 

machine. We shall see that this programming of category theory - 
this interplay of programs and programming theory - sheds light on 

some fundamental problems in the understanding of programming. 

Our interest is largely in the relation of specifications of programs 
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to programs themselves. How do we get from specifications to 

programs? How do we bridge what we may call the "computation gap"? 

Several approaches to this problem are known. For instance, starting 

with a specification it may be possible by some sort of successive 

refinement of specifications to get to one that is runnable i.e. a 

program. Or we may try a more direct approach, synthesising a 

program directly from the text of a specification. The latter 

cannot, in general, be automated even if we limit ourselves to 

equational specifications. However, this should not preclude 

attempts at understanding the process of program synthesis nor 

prevent us enlarging the class of specifications from which programs 

can, by some means, be directly synthesised. We will describe some 

experiments in the synthesis of programs from certain forms of 

specifications. This will make extensive use of the programming of 

category theory. 

Another approach to the same problem starts at the programming end 

and tries to make available to the programmer more expressive program 

features and more powerful general routines. In this way programs 

may gain the simplicity and succinctness of specifications. In this 

context, the work of Backus [1978 has been a major inspiration. 

Backus advocates a 'combinatorial programming' in which high-level 

general functionals are provided with which to construct programs. 

The idea is that programs so constructed should contain little 

complex code - all the complexity is transferred to the general 

routines. In particular, few, if any, explicit iterations or 

recursion should be needed by the programmer. To construct programs 

in this way, we must both view the problem to be programmed in the 

right light and have routines which have the 'correct' degree of 

generality. The routines in which we encode category theoretic 

constructions are certainly 'general' - they have the generality of 

category theory itself. We will show how these routines can be used 

to produce programs with an example - a program which 'implements' 

the semantics of a specification language. The semantics of this 

language is 'categorical' in the sense that the syntactic operations 

are interpreted as operations in a category 
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Later we investigate specifications themselves using elements of 

category theory. We are interested in the properties of theories as 

denotations for algebraic specifications. The so-called monadic 

theories are a categorical means of handling these denotations. We 

look at several properties of these monadic theories and establish 

some results of mathematical interest, showing that these theories 

are sufficiently well-behaved to be used in program specification. 

More than this, our techniques of implementing category theory on 

computers can be used to encode some of our work on monadic theories. 

This intimate relation between programs and specifications gives us 

further insight into the process of synthesising programs. 

The Contents 

The first three chapters describe the programming of category theory. 

Starting with the basic ideas of a category and a functor we describe 

certain ways of putting categories together to get new categories. 

This provides a means of building complex data types from simpler 

types. Then we look at the implementation of colimits. In 

particular we are interested in making tractable the, often awkward, 

computation of colimits in categories. We show that there are ways 

of building these colimit programs using theorems from category 

theory. 

Having established a basic repertoire of routines implementing 

certain aspects of category theory, we put them to use. In chapter 

four we describe an implementation of the semantics of a 

specification language based upon these programs. This provides an 

example, for a large and complex program, of the program development 

technique described above. The program itself is of some interest as 

it can be seen as a small part of what would be needed for an 

automatic (or semi-automatic) synthesis of programs from 

specifications. 

In chapter five we investigate a systematic means of developing 

programs from certain types of specifications. 

We then turn to specifications themselves and investigate monadic 

theories, which are a functorial formulation of the notion of a 
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"theory". We establish that, under suitable conditions: 

1. Signatures and presentations may be defined for monadic 

theories and free theories on a signature may be 

constructed. 

2. Every theory morphism gives rise to an adjunction between 

categories of algebras. Moreover, a collection of 

algebras of a theory give rise to a new theory with 

certain properties. 

3. Finite colimits and certain factorisations exist in 

categories of monadic theories. 

4. Many-sorted, order-sorted and even category-sorted 

theories may be handled by extending somewhat the notion 

of monadic theories. 

These results show that monadic theories are sufficiently 

well-behaved to be used in the semantics of algebraic specification 

languages. Some of the constructions used to establish these results 

can be encoded using the techniques in the first three chapters. We 

thus have programs which implement theory constructions. We look at 

applications of these programs. 

Related Work 

The programming of category theoretic results was an experiment - try 

it and see. We were not, of course, without motivation and it may be 

of use to place this work in the context of current research. The 

following have been of some influence: 

(1) It has been observed that programs often have an algebraic (or 

categorical) interpretation and that this leads to more general and 

better understood programs. For instance it sometimes happens that a 

collection of functions in a program turn out to be an adjunction - 
the two functors and the unit and counit - or that a program not 

obviously connected with category theory can be viewed as the 

computation of colimits. The papers [Burstall and Landin 1969] and 

[Burstall 1980] give examples of the connection between programs and 

algebraic (and categorical) concepts. More examples will be found in 
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the following chapters. 

(2) As mentioned above Backus' work on 'functional programming' 

[Backus 1978] led us to look for more general functionals and thus to 

employ the generality achieved by category theory. Part of the 

inspiration for this comes from Landin's desire for "language-free 

programming" [Landin 1969]. A comparison of the approach taken by 

Backus with our programming of category theory can be found on page 

12. 

(3) Category theory not only achieves a generality at which 

programming is still possible but also allows us to formalise 

concepts from programming and program specification. The application 

of universal concepts from category theory has proved especially 

fruitful. Members of the ADJ group (see for instance [Goguen, 

Thatcher and Wagner 1978]) clearly state the need for universal 

constraints on specifications (initial and free algebras of abstract 

data types). Colimits have been used to build specifications [Ehrich 

1978] and [Burstall and Goguen 1980b], in graph grammars [Ehrig, 

Pfender and Schneider 1973], in record handling [Ehrig et al. 1980] 

and in the theory of data types [Lehmann and Smyth 1977]. We are to 

use colimits as a means of developing recursive programs from 

specifications. A direct link between the notion of programs and 

that of categories was noticed in [Burstall and Thatcher 1974]. 

We are impressed by the succinctness and applicability of algebraic 

specifications and that problems often seem to fit naturally into 

this framework (this has long since been known to mathematicians - 
see [Birkhoff 1938] for instance). The connection between algebraic 

specifications and programs to implement them seems quite 
tantalising. 

The work of Guttag, Horowitz and Musser (1978), Liskov and Zilles 

(1974) and Ehrich (1978) as well as many others has been influential. 

An up to date bibliography of work on abstract data types can be 

found in [Dungan 1979]. We are indebted to members of the ADJ group 

for formalising algebraic specification techniques and noticing that 

universal constraints (initiality of algebras for instance) are 
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involved in their interpretation. The extended exercise in using 

algebraic methods to handle programming languages and prove the 

correctness of compilers to be found in [Morris F.L. 1973] and 

[Thatcher, Wagner and Wright 1981] is of interest. We are to use the 

CLEAR specification language [Burstall and Goguen 1980b] (described 

briefly in Appendix Four) to describe programming problems which 

arise. CLEAR gives us a means of building algebraic specifications 

from theories in a modular manner. Ideas on how CLEAR may lead to a 

program development system are given in [Burstall and Goguen 1980c]. 

Monadic theories, which we investigate in later chapters, were 

introduced by Godement (1958). Much work has since been done on the 

applications and properties of these theories (see for instance 

[Manes 1976]). Particularly close to our own work is that of Adamek 

(1979) and Adamek and Koubek (1980). 
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CHAPTER ONE 

COMPUTING WITH CATEGORIES 

In this chapter and the two following, we look at an experiment in 
which we translate theorems of mathematics (or, more precisely, the 

constructive part of the proofs of theorems) into programs. The 

branch of mathematics with which we are concerned is, as discussed 

above, the theory of categories. 

Categories consist of a collection of objects together with morphisms 

between these objects. The morphisms have a composition upon them 

and to each object there is an identity morphism on the object. 
Formally, we define a category as follows: 
Definition 
A category is a class 0 (of objects) and M (of morphisms) such that M 

can be expressed as a disjoint union: 

M = U [a,b], where [a,b] are sets. 
a,bc0 

There are the following operations: 

1. For each triple of objects in 0, (a,b,c), there is a 

composition: 

[a,b] x [b,c] -> [a,c] 

If f is in [a,b] and g in [b,c] the image in [a,c] is 

denoted fg. 

2. For each object c there is an (identity) morphism in 

[c,c], denoted ic. 

The following axioms are satisfied: 

1. Associativity of composition: (fg)h = f(gh) whenever both 

sides are defined. 

2. Left and right identity: If f is in [a,b], iaf = f and 

fib = f. 

Sets together with set functions form a category as do partial-orders 

and monotonic functions. The simple step of introducing morphisms 

between objects, that is, the transition from a set (or class) of 
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objects to a category of these objects gives us an amazingly powerful 

theory. Since category theory is no more than an abstraction of the 

theory of functions - their composition and identities - it may be 

wondered how category theory gives us the ability to construct 

objects (which is its role in programming theory). The key to this 

lies in the fact that we can formalise "specification by universal 

properties" in category theoretic terms - i.e. in terms of the 

existence and properties of morphisms. 

We are already familiar with this type of specification by a 

universal property in the case of initial algebras of equational data 

types. Initiality is an example of a universal property. The 

importance of this means of specification is that the universality is 

not explicit in the specification. No need to declare the existence 
or uniqueness of the object specified nor indeed many of its 

properties which arise directly from the universality. This 

considerably simplifies specifications of problems. More than this, 

we often have a means of constructing the universal object in 

question both in a mathematical sense and computationally. We will 

be showing how this may be accomplished computationally in this 

paper. We shall also turn our attention to the specification of 

algorithms and how universal properties encode the behaviour 

required. 

The work of the first part of this paper may be seen to be giving 

some of the power of mathematics to the programmer. For instance, 
how are we to handle rational numbers computationally? One may 

suggest that rational numbers should be represented as equivalence 

classes of certain pairs of integers. Available to the 

mathematician, though not so far to the programmer, is the more 

elegant and, at the same time, more general description of the 

rationals as the minimum field containing the integral domain of the 

integers. This is a typical "universal specification". We shall be 

looking at specifications of this form and showing how they can give 

rise to programs. 

Part of the power of mathematics lies in its ability to build its 
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analysis hierarchically by proving theorems and then using these 

theorems as elementary deductive rules for further analysis. It is a 

facility that programmers may well envy. Something of this is 

available to programmers in the various forms of data abstraction 

that have become current. However, it should be understood that it 

is not so much the ability to 'abstract' as to choose the right 

things to elevate to theorems which gives us the power in 

mathematics. Our long experience with mathematics has taught us what 

we should look for in a theorem - what sort of generality and what 

sort of simplicity can be expected of a theorem. 

Can we do a similar thing in programming by a careful choice of 

'general' routines so that these routines may be used as basic 

building blocks for programs? Several approaches to this are already 

known. We have already mentioned the work of Backus on functional 

programming. This can be viewed as an extension of such things as 

the APL '/' operator and iterators available in CLU and ALPHARD. 

Our approach to constructing general routines which, it is hoped, 

will do much of the work of programming for us, is to cull the 

experience gained in mathematics by directly translating powerful 

general theorems into computer programs. Later we will show how this 

enables us to build programs in a modular manner by using these 

routines to handle a large part of the complex code required. We 

will exhibit a programming example - that of an 'implementation' of 

the semantics of a language, in our case, of a specification 

language. 

Comparing this categorical programming with the approach taken by 

Backus brings several points to light: 

(1) By introducing categories as basic objects in our programming we 

have solved the problem of abstracting on data types. That is our 

programming is not limited to any specific data types. For example 

graphs may be handled just as well as simpler types e.g. sets. A 

functional is specialised to the data type in question by applying it 

to the category of objects of the type. Increasing the complexity of 

the types in question should not appreciably increase the complexity 
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of the programming. 

(2) The level of generality of our approach may be questioned. As 

mentioned above programs specifically concerned with category theory 

(e.g. the program which implements a categorical semantics) may be 

constructed using the general routines provided. The question arises 

- what about general programming tasks - tasks that at first sight 

have little or nothing to do with category theory? Do the routines 

that we provide give a means of constructing programs which implement 

any given program specification? At the moment we do not know. What 

we can say is that, unlike Backus' work, there is a mathematical 

connection between the routines we derive from category theory and 

algebraic specifications of programs. This gives us some hope that 

we are working at the 'correct' level of generality. Later (chapter 

five) we show that the connection between specifications and our 

categorical programming gives (for certain types of specifications) a 

systematic means of program development. 

(3) Backus' 'functional programming systems' have associated laws 

which provide an algebra of programs. In our case the laws are 

derived from category theory. A typical example, concerning colimit 

programs, would be the commutativity (to within an isomorphism) of 

binary coproduct: "coproduct(a,b) = coproduct(b,a)". 

In constructing programs from a collection of general routines it is 

hoped that the iterative and recursive features will be encapsulated 

in these routines and therefore eliminated from the task of 

programming. We will see that certain parts of our programming of 

category theory do indeed encapsulate iterative and recursive 

constructs and therefore allow us to program in a 'combinatorial' 

style. To emphasise this we will try to point out where iteration or 

recursion occurs in the programming. 

To handle general routines which take other routines as parameters, 

we need a language which is either typeless (e.g. LISP) or else typed 

but allowing the passing of functions as arguments. Any such 

language would suffice. We choose a strongly typed applicative 

language, called HOPE (after Thomas Hope of Rankeillor - active 
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c.1740), developed here at Edinburgh. HOPE is fully higher order - 

it allows all data, including functions, to be arguments. We choose 

HOPE partly to gather some experience of programming in this 
experimental language but also because, being an ISWIM-like 

applicative language, our HOPE programs look somewhat like the 

mathematical texts which they are intended to encode. For those 

unfamiliar with languages of this sort there is a summary of the main 

features of HOPE in Appendix Three. A detailed exposition of the 

language may be found in [Burstall,MacQueen,Sannella 19791. 

CATEGORIES AND FUNCTORS 

Our development starts with the basic concept of a category. In 

programming terms, what is a category? It is a data type 

parameterised on the types of the objects and morphisms in the 

category and having the following components: two functions from 

morphisms to objects giving the source and target of the morphisms, a 

function from objects to morphisms giving the identity morphism on 

each object and a composition function taking pairs of morphisms to 

morphisms. In HOPE this is declared by: 

data Cat(o,m) == cat((m->o),(m->o),(o->m),(m#m->m)) 

In this declaration, "Cat" is a type constructor taking the type 

variables "o" and "m" (object and morphism types respectively) whilst 

"cat" is a constructor of data objects. We will, throughout our 

programming, use the following convention: 

Convention 

The initial letters of type constructors will be capitals, whilst 

constructors of data objects will begin with small letters. 

For those unfamiliar both with categories and with this style of data 

declaration it may be helpful to compare the above declaration with 
that of a more familiar data type. Consider the data type "list" 
which is parameterised on the type of the objects appearing in the 

list. In HOPE it can be declared as a recursively defined type by: 

data List(alpha) _= nil ++ cons(alpha,List(alpha)) 
Here the "++" is the disjunction of type instances. 

A function on lists can be defined as follows: 
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dec length : List(alpha) -> num 

--- length(nil) <- 0 

--- length(cons(a,l)) <- length(l) + 1 

The keyword "dec" introduces a declaration of the type of a function 

whilst "- introduces a function definition. 

Before we move on to implementing further concepts from the theory of 

categories, let us examine more closely what we have done in the 

above declaration of a category. Firstly, notice that we have not 

included the axioms which a category is required to satisfy (for 

instance, the associativity of composition). In most programming 

languages, we do not have the ability to declare axiomatic data 

types. Inclusion of such axioms would destroy or seriously limit any 

type checking that could be done on programs. However, these 

constraints on data types can be considered as correctness criteria 
for programs rather than included as part of type declarations. To 

gain some control over these verification details, we may impose upon 

the program a discipline in which categories are either basic 

categories for which the the axioms are known to hold (for instance, 

the category of sets) or are built from other categories by category 

constructors which are known to preserve the axioms (for instance, 

the comma category construction). In this way the correctness of the 

implementation is assured. We could in fact use the type discipline 

of HOPE to enforce such a scheme but this makes the type of a 

category unnecessarily obscure. What we are really saying is that we 

are to consider categories as implementations of a data type whose 

operations are category constructors. This is an interesting view of 

categories particularly so because colimits in categories "commute" 

with these category constructors. 

These comments upon the correctness criteria of our programs are 

important since, in the following pages, we are going to translate 

proofs in category theory into programs. In these programs we 

abstract only the constructive part of the proofs omitting the 

checking of properties which turn a construction into a proof. That 

we have some control over these properties is therefore of 

importance. 
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In this declaration of a category we do not include a set of objects 

or morphisms - in general the collection of objects and morphisms is 

"larger" than a set. If the objects and morphisms do form sets then 

we have a new type to be called "Small Category", which will be used 

later in our work. Notice further that the composition of morphisms 

takes any pair of morphisms as argument whereas, of course, it should 

take only composable pairs - those for which the target of the first 

is the source of the second. We handle this error condition by 

introducing, for each category, a morphism "undef". We can then set 

the composition of non-composable pairs equal to this "undef". 

To access the operations of a category we introduce the following 

"projection" functions. These are not strictly necessary, but help 

program readability. 

dec source : Cat(o,m) -> (m->o) 
dec target : Cat(o,m) -> (m->o) 
dec identity : Cat((o,m)> -> (o->m 
dec compose Cat(o,m) -> ((m#m) -> m) 

--- source(cat(s,,,_)) <= s 
--- target(cat(_,t,_, )) <= t 

--- identity(cat( , i, )) <= i 

--- compose(cat( , , cT) <= c 

The underbar denotes a missing (unnecessary) variable. 

What is an instance of this type going to look like? The basic 

category which we consider is the category of sets. With this 

category we are able to build many familiar data types. 

The objects in the category of sets are to be, of course, sets. We 

shall parameterise our sets on the type of elements they contain. 

Morphisms in the category of sets are to be set functions. However, 

to ensure that we can extract the source set and the target set from 

a morphism, we introduce a new data type: 

data Set Mor(alpha) =z 
++ undef 

where 'alpha' is a type variable and '++' is the 'sum' of type cases 

(allowing case analysis). We can then define the functions required 

to form the category: 
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dec s : Set.Mor(alpha) -> Set(alpha) 

dec t : Set Mor(al ha) -> Set(alpha) 
dec id : Set(alpha) -> Set_Mor(alpha) 
dec comp: Set Mor(alpha)#Set Mor(alpha) -> 

--- s(mor(x,<= x 
--- t(mor( ,y)) <= y 

Set Mor(alpha) 

--- id(x) <- mor(x,ident,x) 
--- comp(mor(x,f,y),mor(u,g,v)) <= mor(x,f.g,v) if u-y 

else undef 

The category of sets then looks like this: 
dec cat of sets : Cat(Set(alpha),SetMor(alpha)) 
--- cat of sets <- cat(s,t,id,comp) 

In this rather simple way we can define categories. In the next 
section we shall be looking at ways of constructing new categories 
from old which will give us powerful techniques for building 

categories of large and complex data types from simple types - in 
fact, all the data types to be used arise via these category 
constructors from the category of sets alone. 

Before turning to this, we introduce a further concept from category 

theory. Maps between categories are functors. A functor is a pair 
of maps, on objects and morphisms, which preserve the source, target, 

identity and composition. As a data type, however, it is just a pair 

of maps: 

data Functor(o,m,ol,ml) -= functor((o->ol),(m->ml)) 
Functors can be applied to objects and to morphisms 

dec ofo : Functor(o,m,ol,ml) # o -> 01 

infix ofo : 5 

--- functor(Fo, ) ofo o <- Fo(o) 

dec ofm : Functor(o,m,ol,ml) # m -> ml 

infix ofm : 5 

--- functor( ,Fm) ofm m <- Fm(m) 

Functors can also be composed: 

dec . Functor(o,m,ol,ml) # Functor(ol,ml,o2,m2) -> 

Functor(o,m,o2,m2) 

infix : 3 

--- functor(fo,fm) . functor(go,gm) <= functor(fo.go, fm.gm) 

where the dot on the right-hand side is function composition. The 

keyword "infix" introduces infix operations and gives their 
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precedence. 

For future reference, notation for the application of a functor F to 

an object x will be xF, so that application is 'diagrammatic'. The 

notation for the composition of functors is consistent with this: If 
F and G are functors, x(FG) - (xF)G. 

Notes 

The genesis of the programming of category theory is 
described in [Burstall 1980]. Prof. Rod Burstall, in order 
to gain insight into the computational aspects of colimits, 
coded up the colimits of sets in a language called NPL, a 

precursor of HOPE. The present development of the 

programming of category theory (up to page 52) owes much to 

this early version. Rod also outlined some of the code here 

including that arising from the colimit existence theorem 

(page 41) and suggested the lifting of colimits. Otherwise 

it was a joint project between Don Sannella and myself. 
Don's experience of programming and knowledge of the HOPE 

system together with my knowledge of categorical matters 
meant that the work was shared roughly equally. 

The HOPE programming language is described in [Burstall, 

MacQueen and Sannella 1979]. 
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CHAPTER TWO 

CONSTRUCTING DATA TYPES - A CATEGORICAL VIEW 

One way of developing large programs reliably is to 'structure' them 

in some manner and build programs hierarchically by fitting together 
component programs. This hierarchical and modular means of building 
the complex from the simple is of very general application in 
programming. For instance it may be used in the building of program 

specifications [Burstall,Goguen 1980b]. 

In this section we look at a similar approach to the building of data 

types from component types. Our type building operations are taken 

from category theory in which they appear as category constructors. 

Constructors of categories can be considered to be constructors of 

data types, if objects of the types can be considered to be objects 

in categories. Later, we look briefly at the formal relationship 

between data types and categories (page 96). 

The category constructors we are to use have an important 

computational property. In the next chapter our attention will turn 

to colimits and means for computing them. It turns out that we can 

"lift" computations of colimits through these category building 

operations. That is, at the same time as we build up new types, we 

can build colimit operations on these types. This greatly simplifies 

the computation of colimits. As we shall see colimits prove useful 

in investigating the structure of data objects and allow us to 

develop programs from specifications. 

We now look at some of these category building operations. We show 

their use for constructing familiar types and how we can implement 

them. Our first such operation is the construction of comma 

categories, due to Lawvere [1963b]. In this case we build new data 

types as morphisms between objects of old types. 

THE COMMA CATEGORY 

Many data types familiar in programming can be considered to be 

constructed as comma categories. We first define comma categories 
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and then illustrate this with some examples. 

Categories contain both objects and morphisms. Thus when considering 

any objects in programming, we should ask whether there are morphisms 

between objects so that a category can be defined. That is, we want 

to elevate morphisms so that they share an equal status with the 

objects. How about a category then whose objects are these 

morphisms? It seems only fair to the morphisms. This is the idea 

behind the comma category construction. The general definition goes 

as follows. 

Definition 

Consider the following picture of categories and functors: 

L R 

A > B < C 

We construct a category, the comma category, denoted (L,R) as 

follows: 

The objects are triples of the form (a, f: aL -> cR, c) with a an 

object of A and c an object of C. 

A morphism in (L,R) from (a, f: aL -> cR, c) to 

(a', f': a'L -> c'R, c') is a pair of morphisms one from A the other 

from C, (g: a -> a', h : c -> c'), such that the following square 

commutes. 

9L 
n QL 

cR 
hR 

C, R 

0 

Special cases of this construction arise from restricting either or 

both of the functors L and R to be constant or identity functors. A 

case that we are to use arises if A = B and L is the identity. Then 



21 

objects are of the form (b, f: b -> cR, c). Such a category we shall 
call a right comma category and denote it by (B,R). If, on the other 
hand, A is a category with one object and the image of this object in 
L is b, the we call the category a right object comma category and 

denote it by (b,R). Similar cases arise from restricting the functor 
R to be an identity or constant functor. 

For further details of this construction consult [Mac Lane 1971]. 

Examples of Comma Categories 

Consider graphs, by which we mean directed multigraphs possibly with 

loops and cycles. It is with graphs of this sort that we shall be 

working for most of the time so we will reserve the word "graph" for 
these graphs alone. These graphs, then, may be described by a set of 
nodes and a set of edges and two maps, called source and target, 
which take edges to nodes. We thus have the picture: 

source, target : E -> N 

How is this to be an object in a comma category? We need to combine 

the two set morphisms into one morphism. This can be done by the 

isomorphism (in cartesian closed categories, in this case that of 
sets): 

(x->Y) x (x->z) a (x->(Y x z)) 
The morphism is then, 

f : E -> N x N, 

such that f(e) = (source(e),target(e)). The crossproduct of sets can 

be extended to a functor, x, by defining an obvious morphism part. 

Morphisms of graphs are pairs of functions, one mapping edges to 
edges the other mapping nodes to nodes, such that 'source' and 

'target' are preserved. If f : E -> N x N and f' : E' -> N' x N' are 

two graphs and (p: E -> E', q: N -> N') is a graph morphism, the 

preservation of 'source' and 'target' is equivalent to the 

commutation of the following square: 
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P 

c, 

V 

NXN 
lw$ 

Thus, if Set is the category of sets and set functions, we see that 
graphs can be described as objects in the comma category (Set,X) and 

then morphisms of graphs are morphisms in this category. Thus the 

category of graphs is (isomorphic to) the comma category, (Set,%). 

If we consider instead undirected graphs then we merely need to 

change the crossproduct functor to the functor which gives unordered 

pairs of nodes, which we may denote by X. Thus the category of 
undirected graphs is (isomorphic to) (Set, X). 

A relation on a set N - by which we mean a subset of NxN - can also 

be expressed as an object in a comma category. For this we need to 

revise our picture a little. The observation required is that a 

relation can be defined by a map of the form 

f : N x N -> 2 

where 2 is any two element set (say, {true,false}). Then, if m and n 

are related f(m,n) = true, otherwise f(m,n) - false. Again this is an 

object in a comma category, this time the category, (X,2), where X is 
the crossproduct functor. Notice that morphisms in this category 
preserve the unrelatedness of elements as well as their relatedness. 

Notice how these categories have been built from the category of sets 
using suitable functors. We may continue this to more elaborate data 

types. Consider, for instance, signatures. A signature is a set of 
sorts, S, and a set of operations, 0, together with an arity for each 

operation. An arity is a string of sorts, the last sort in the 

string being the output sort and the remainder being the input 
functionality. Now if "strings" is the functor taking a set, S, onto 
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the set of non-empty strings on S, S+, (with morphism part as string 

substitution) then a signature is a pair of sets, S and 0 together 

with a set morphism: 

0 -> S+ 

This is an object in the category (Set,strings). Noting that 

signature morphisms are correctly described by morphisms in this 

category, we see that this comma category is (isomorphic to) the 

category of signatures. 

We now turn to the implementation of comma categories and show how 

these various data types arise. 

Implementation of Comma Categories 

We will be dealing with the following picture of categories and 

functors: 

L R 
A > B < C 

Let the three categories A, B and C have types Cat(o,m), Cat(ol,ml) 
and Cat(o2,m2) respectively. An object of the comma category (L,R) 

is a triple of type; 

o#ml #02. 
A morphism in this comma category, in our treatment, contains not 

only an A-morphism and a C-morphism but also the source and target 

comma-objects. We therefore declare the type: 

data CommaMor(o,m,ol,ml,o2,m2) __ 
comma mor((o#ml#o2),(m#m2),(o#ml#o2)) 

To define the comma category, (L,R), we need the four functions: 
source, target, identity and composition. These are defined by: 
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dec s : Comma_Mor(o,m,ol,ml,o2,m2) -> o#ml#o2 
dec t : Comma Mor(o,m,ol,ml,o2,m2) -> o#ml#o2 
dec id : Cat(o,m) # Cat(o2,m2) -> 

((o#ml#o2) -> Comma Mor(o,m,o1,m1,o2,m2) 
dec comp : Cat(o,m) # Cat(o2,m2) -5- 

(Comma Mor(o,m,ol,ml,o2,m2) # Comma Mor(o,m,ol,ml,o2,m2) 
-> Comma Mor(o,m,ol,ml,o2,m1T) 

--- s(commamor(a,,)) <- a 
<= c --- 

id(A,C) <_ (lambda obj & (a, c) _> 
commamor(obj,(identity(A)(a),identity(C)(c)),obj) ) 

--- <_ 

(lambda mor( 
) 

Thus, for any pair of functors, the comma category is given by: 

dec comma cat : Cat(o,m) # 
Functor(o,m,ol,ml) # 
Cat(ol,ml) # 
Functor(o2,m2,o1,m1) # 
Cat(o2,m2) -> 

Cat((o#ml#o2),Comma Mor(o,m,ol,ml,o2,m2)) 

--- comma cat(A, L, B, R, C) <= cat(s,t,id(A,C),comp(A,C)) 

The various restricted types of comma categories (in which either or 

both of the functors L and R are set to the identity functor or to 

constant functors) are obtained as instantiations of the general 

comma category as follows. 

The identity functor on a category is defined by, 

dec I : Cat(o,m) -> Functor(o,m,o,m) 
--- I( ) <= functor(ident,ident) 

where "ident" is the identity function, ident(x) = x. Constant 

functors are given by, 

dec K : Cat(o,m) -> (o -> Functor(Num,Num,o,m)) 
--- K(cat(_,_,id,_)) <_ 

(lambda a--> 
functor((lambda 1 => a),(lambda 1 => id(a))) ) 

where the source of the functor is the unit category consisting of 

one object and its identity both of which are the number '1'. 

By setting L to be the identity we get the right comma category: 
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type Right_Comma_Mor(o1,ml,o2,m2) -- 
Comma Mor(o1,ml,o1,ml,o2,m2) 

dec right-comma-cat : 

Cat(ol,ml)#Functor(o2,m2,ol,ml)#Cat(o2,m2) 
-> Cat((ol#ml#o2),Right Comma Mor(o1,ml,o2,m2)) 

--- right comma cat(B,R,C) <- comma cat(B,ITB),B,R,C) 

Notice that we can define types in terms of other types and 

type-operators, introducing such definitions with the keyword "type". 

Likewise by setting R to be the identity we get the left comma 

category. If L is a constant functor, we call the category a right 
object comma category. These are given, in a like manner, by, 

type Right Obj Comma Mor(ol ,ml) __ 
Comma Mor(o1,ml,ol,ml,Num,Num) 

dec right obj comma cat : Cat(ol,ml)#o1 -> 

--- right_obj_comma_cat(B,b) <= 

comma cat(B,I(B),B,K(B)(b),unit category) 

where "unit-category" is defined above. Similarly we can define the 

left object comma category. 

There are projection functors, 
left: (L,R) -> A 

right: (L,R) -> C 

defined by: 

dec left : Functor((o#ml#o2),CommaMor(o,m,ol,ml,o2,m2),o,m) 
--- left <- functor( (lambda (a, ) _> a), 

(lambda comma mor( ,(f, ), ) _> f) ) 

dec right : 

Functor((o#ml#o2),CommaMor(o,m,ol,ml,o2,m2),o2,m2) 
--- right <= functor( (lambda c) _> c), 

(lambda comma mor( ,( ,g), ) _> g) ) 

How do we construct the category of graphs? Graphs, as comma objects, 
are given by the type definition: 

type Graph(alpha) _= Set(alpha) # Set Mor(alpha) # Set(alpha) 

where 'alpha' is a type variable, that of the type of the labels in 
the graph. Graph morphisms are: 

type Graph Mor(alpha) == 
Right_Comma_Mor(Set(alpha), Set_Mor(alpha), 

Set(alpha), Set Mor(alpha)) 
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To construct the category of graphs we need the crossproduct functor. 

Before defining this functor we need to explain a tagging mechanism 

which we use. Because of the strong type discipline in HOPE, we 

cannot describe graphs as morphisms from sets of type Set(alpha) to 

sets of type Set(alpha x alpha). We need to coerce pairs of type 

"alpha x alpha" to objects of type "alpha". This may be done by a 

explicit coercion: 

data Tag(alpha) _= just(alpha) ++ pair(alpha,alpha) ++ 

Thus objects of type Tag(alpha) are either objects of type "alpha" 

labelled with "just" or pairs of objects of type "alpha" labelled 

with "pair" (the continuation "..." indicates that extra tagging will 

be needed later). 

The crossproduct functor is then given by, 

dec ocrossprod: Set(Tag(alpha))->Set(Tag(alpha)) 
--- ocrossprod(S) <= pair * (S X S) 

dec mcrossprod: Set_Mor(Tag(alpha)) -> Set Mor(Tag(alpha)) 
--- mcrossprod(mor(s,f,t)) <_ 

mor( ocrossprod(s), 
(lambda pair(a,b) => pair(f(a),f(b))), 
ocrossprod(t)) 

dec cross product: 
Set(Tag(alpha)),Set Mor(Tag(alpha)), 
Set(Tag(alpha)),Set Mor(Tag(alpha))) 

--- cross product <= functor(ocrossprod,mcrossprod) 

where X is the cartesian product of two sets and the set f*S, for a 

function f and a set S, is {f(s) 
1 s in S}. With this functor we 

describe the category of graphs by: 

dec cat_of_graphs: Cat(Graph(Tag alpha),Graph_Mor(Tag alpha)) 
--- cat of graphs <= 

right-comma cat(cat_of sets,cross_product,cat_of sets) 

Notice how, using a familiar set functor, the comma category 

construction above immediately gives us the data type of graphs. 

We have chosen to represent graphs as comma objects. This makes 

their formal behavior amenable but as a representation it is rather 

clumsy and includes duplication of information. We thus introduce a 

function for the construction of these comma objects from the 

relevant data: 
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dec graph 
Set(Tag alpha)#(Tag(alpha)->Tag(alpha))#Set(Tag alpha) 

-> Graph(Tag alpha) 
--- graph(E,f,N) <_ (E,mor(E,f,cross product ofo N),N) 

We can also introduce decomposition functions. Strictly these are 

not necessary as they can be obtained by "pattern matching" but they 

will make subsequent programs more readable. 

dec edges : Graph(Tag(alpha)) -> Set(Tag(alpha)) 
dec nodes : Graph(Tag(alpha)) -> Set(Tag(alpha)) 
dec graph map : Graph(Tag(alpha)) -> 

(Tag(al ha) -> Tag(alpha)) 
dec dom : Graph(Tag alpha -> (Tag(alpha) -> Tag(alpha)) 
dec range : Graph(Tag alpha) -> (Tag(alpha) -> Tag(alpha)) 
--- edges( (E,_,_) ) <= E 

--- nodes( ( N) ) <= N 

--- graph map( (,mor(,f, ), ) ) <= f 

--- dom( T 7 
lambda e -> n1 where pair(nl, ) 

--- range( ( ,mor( ,f, ), ) ) <_ 
lambda e -> n2 where pair( ,n2) 

Signatures as comma objects can be handled similarly. There is a 

difficulty here in that the "strings" functor takes finite sets to 
infinite sets. All infinite sets in our program are represented by 

the constant constructor for sets "bigset". 

Again we need a coercion of types. This time it is of 'strings of 
alpha' to 'alpha': 

data Tag(alpha) 
just(alpha) ++ ... ++ string(List Tag(alpha)) ... 

where 'string' is another constructor for the type 'Tag(alpha)'. The 

"strings" functor is given by 

dec ostrings : Set(Tag alpha) -> Set(Tag alpha) 
dec mstrings : Set Mor(Tag alpha) -> Set_Mor(Tag alpha) 

--- ostrings(S) <= nil set if S=nil set else bigset 
--- mstrings(mor(s,f,tt) <_ 

mor( ostrings(s), 
(lambda string(l) _> string(f*l)), 
ostrings(t) ) 

dec strings : Functor( Set(Tag alpha),Set Mor(Tag alpha), 
Set(Tag alpha),Set Mor(Tag alpha)) 

--- strings <= functor(ostrings,mstrings) 

Its only non-trivial part is its action on morphisms which is a 

string substitution and uses the predefined recursive 'maplist' 
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function, Signatures and their morphisms as objects and 

morphisms of a comma category are: 
type Signature(alpha) __ 

Set(alpha) # Set Mor(alpha) # Set(alpha) 

type Signature _Mor(alpha) __ 
Right Comma_Mor(Set(alpha), Set Mor(alpha), 

Set(alpha), Set Mor(alpha) ) 

The category of signatures is then: 

dec cat of signatures : 

Cat(Signature(Tag alpha),Signature Mor(Tag alpha)) 
--- cat_ofsignatures <- 

right_comma_cat( cat of sets, 
strings, 
cat of sets ) 

We shall be looking at colimits in these comma categories in the next 
chapter but now we turn to another method of combining two data types 

to give a new type. This time we are given two categories and 

produce the category of all functors from one category to the other. 

Using this, we can construct diagrams in categories. Moreover these 

functor categories are closely associated with theories which occur 

in program specification (page 101). 

FUNCTOR CATEGORIES 

A functor is to be, as before, a pair of maps on objects and 

morphisms. 

data Functor(o,m,ol,ml) _= functor((o->o1),(m->m1)) 

To make a category whose objects are functors we need to introduce 

morphisms between functors. Suppose that F,G : A -> B are two 

functors, then a morphism from F to G is a natural transformation 
oC : F => G. It is defined to be a map taking an object, a, of A to a 

morphism, f : aF -> aG, of B such that certain diagrams commute. In 
terms of a data type, it is simply a map from objects to morphisms 

together with the source and target functors: 
data Nat_transform(o,m,ol,ml) == 

nat_transform( Functor(o,m,ol,ml), 
(o->ml), 
Functor(o,m,ol,ml)) 

There are two compositions of these natural transformations - the 



29 

vertical or "dot" composition and the horizontal or "ring" 

composition. These can both be encoded: 

dec dotcomp : Cat(o,m)#Cat(o1,m1) -> 
(Nat transform(o,m,ol,ml) # Nat transform(o,m,ol,ml) 

-> Nattransform(o,m,oT,m1)) 

dec ringcomp : Cat(o2,m2) -> (Nat transform(o,m,ol,ml)# 
Nat transform(ol,ml,o2,m2) -> Nat transform(o,m,o2,m2)) 

--- dotcomp(A,cat(_,_,_,comp)) <= 

lambda nat transform(F,alpha,_), nat_transform(_,beta,H) 
_> nat_transform( F, 

(lambda a => comp(alpha(a),beta(a))), 
H ) 

--- ringcomp(cat(_,_,_,comp)) <_ 

lambda nat_transform(F,alpha,G), nat_transform(J,beta,L) 
nat transform( F.J, 

(lambda a => 

comp(beta(F ofo a),L ofm alpha(s))), 
G.L) 

(Where 'ofo' and 'ofm' apply a functor to objects and morphisms 

respectively.) In fact, it is the "dotcomp" that is the composition 

in the category of functors. 

The identity natural transformation is: 

dec id : Cat(o,m)#Cat(o1,m1) -> (Functor(o,m,ol,ml) -> 
Nat transform(o,m,ol,ml)) 

--- id(A,cat( ,i,_)) <= lambda F => 

nat transform(F,(lambda a => i(F ofo a)),F) 

We can now define the category of functors between two categories. 

dec cat of functors : Cat(o,m)#Cat(o1,m1) -> 
Cat(Functor(o,m,of,ml),Nat transform(o,m,ol,ml)) 

--- cat_of_functors(A,B) <_ 

cat((lambda nattransform(s,,_) s), 
(lambda t), 

id(A,B), 

dotcomp(A,B) ) 

It can be seen that this encoding of categorical concepts is quite 

easy once one has grasped the basic idea. We give a final example 

which will be of use later - the category of diagrams in a category. 

Diagrams have a shape - a graph - and maps from nodes of this graph 

to objects in a category and from edges in the graph to morphisms. 

These maps 'preserve' the source and target. As a data type: 

data Diagram(o,m) __ 
diagram(Graph(Name),(Node->o),(Edge->m)) 
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The types 'Name', 'Node' and 'Edge' are all defined to be the type 

'Tag(Label)' where 'Label' is: 
type Label == word(List(Char)) ++ number(Num). 

That is graphs are labelled with either words (character lists) or 
numbers. 

If C is a category, a diagram morphism in C from D to D' (where 

fo,fo' and fm,fm' are the object and morphism maps of these diagrams) 

is a pair (ccN,o(E) of maps between nodes and edges of the diagrams, 

together with a map, f, which takes nodes in the source diagram to 

morphisms in C. The latter map satisfies: 
sourceC(f(n)) = fo(n) and 

targetC(f(n)) = fo'(XN(n)) 
together with certain commutation conditions. In HOPE, diagram 

morphisms are to be: 

data DiagramMor(o,m) ffi_ 

diagrammor( Diagram(o,m), 
(Node->Node), 
(Edge->Edge), 
(Node->m), 

Diagram(o,m) ) 

If C is a category, the category of diagrams on 

then, 

dec cat of diagrams : Cat(o,m) -> 

C, Diagram(C), is 

Cat(Diagram(o,m),Diagram Mor(o,m)) 
--- cat of diagrams(c) <= cat(s(c),t(c),id(c),comp(c)) 

where 's', 't', 'id', 'comp' are the obvious source, target, identity 

and composition in the category of diagrams. 

We shall need the following diagrams: the empty diagram, the diagram 

of two nodes and no morphisms and the diagram with a pair of objects 

and a parallel pair of morphisms between them. For example the 

diagram of two nodes and no morphisms is declared as: 

dec cpdiagram : o#o -> Diagram(o,m) 
cpdiagram(a,b) <= diagram( cpgraph( just(word("left")), 

just(word("right"))), 
(lambda just(word(x)) _> a 

if x="left" else b), 
nil fn) 

Alternatively diagrams could be encoded as functors (possibly 



31 

functors from "small categories') and then their morphisms would be 

natural transformations (together with a functor between the 

'shapes'). This would be altogether more elegant yet somewhat more 

obscure. As it is an equivalent formulation, we keep to the explicit 

declaration of diagrams and their morphisms above. 

These category constructions all have a special property concerning 

colimits. Colimits in categories 'lift' through these category 

building operations, enabling us to express colimits of complex data 

types in terms of colimits of simpler types. Moreover, this fact can 

be encoded as a program. We now turn to the general problem of 

computing colimits in categories and show how this "lifting" is 

accomplished. 

Notes 

The programming of category theory described here was a joint 

project between Prof. Rod Burstall, Don Sannella and myself 

as explained in chapter one. Goguen and Burstall (1978) 

noticed that graphs and signatures can be viewed as objects 

in comma categories. 
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CHAPTER THREE 

THE COMPUTATION OF COLIMITS 

Colimits are a means of defining objects in a category in terms of 
other objects and morphisms between them. In other words, they allow 
us to build new objects by connecting together some given objects - a 

familiar concept in programming whenever we need to build complex 

objects from simpler components. 

Colimits have been used in building specifications from theories 
([Ehrich 1978] and [Burstall,Goguen 1980a]), in graph grammars 

[Ehrig,Pfender,Schneider 19731 and in the interpretation of data 

types ([Lehmann,Smyth 1977] and others). We will in the course of 

this paper be investigating other applications of colimits - for 
instance in program development. In this chapter we show how to 
compute colimits in categories using fairly general techniques. 

Implementation of Colimits 

Firstly we explain how we handle colimits and categories with 

colimits within our programming of category theory. So far, we have 

available an encoding of categories, functors, diagrams and of the 

category building operations. In order to define colimits we need 

cones. Fortunately, as with graphs, it turns out that cones may be 

represented by objects in a comma category. 

A cone is a diagram (its base), an object (its apex), and morphisms 

to the apex from objects at the nodes in the base satisfying certain 
commutation conditions (see [Herrlich, Strecker 1973]). This can be 

represented as a diagram morphism by considering the apex to be a 

diagram with one object. Using this trick we can represent the 

category of cones as a comma category as follows: 

If C is a category, Diagram(C) the category of diagrams on C, then 

this 'making a diagram from an object' is functorial: 
unit diagram : C -> Diagram(C). 

For each object c, in C, this gives a diagram with one object, c, and 

one morphism, the identity on c. Each morphism f : c -> c' in C gives 
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a diagram morphism from unit diagram(c) to unit_diagram(c'). 

The computation of this looks like: 

dec unitdiag : Cat(o,m) -> (o -> Diagram(o,m)) 
--- unitdiag(C) <= lambda o => 

diagram(discrete graph({just(word "solo"))), 
constantTo), 
constant(identity(C)(o)) ) 

dec unitdiag : Cat(o,m) -> (m -> Diagram Mor(o,m)) 
--- unitdiag(C & cat(s,t,_,_)) <_ 

lambda m => diagram_mor( unitdiag(C)(s(m)), 
ident, 
ident, 
constant(m), 
unitdiag(C)(t(m)) ) 

dec unit-diagram : 

Cat(o,m) -> Functor(o,m,Diagram(o,m),Diagram Mor(o,m)) 
--- unit diagram(c) <= functor(unitdiag(c),unitdiagTc)) 

The graph constructor 'discrete graph' takes a set and gives a graph 

whose set of nodes and of edges are both the given set and the source 

and target of each edge is the node of the same name. It is defined 

on page 83. 

The category of cones on a category C, Cone(C), is then (isomorphic 

to) the right comma category, (Diagram (C) , uni t-d iagram) . This is 

given by the following comma category construction: 

type Cone(o,m) _= Diagram(o,m) # DiagramMor(o,m) # o 
type Cone Mor(o,m) __ 

Right Comma Mor(Diagram(o,m), Diagram Mor(o,m), o, m) 

dec cat_of_cones : Cat(o,m) -> Cat(Cone(o,m),Cone_Mor(o,m)) 
_ --- cat_of_cones(c) < 

right comma cat(cat_of diagrams(c),unit diagram(c),c) 

As before with graphs, the representation of cones as comma objects 

includes redundancies, so we introduce a function to construct a cone 

as a comma object from the relevant data: 
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dec cone : Cat(o,m) -> 
((Diagram(o,m) # (Node->m) # o) -> Cone(o,m)) 

--- cone(C) <= lambda d,f,a -> 
( d, 

diagram mor( d, 
constant(just(word "solo")), 
constant(just(word 
f, 

"solo")), 

a ) 
unit diagram(C) ofo a), 

We also introduce the decomposition functions giving parts of a cone. 

dec base : Cone(o,m) -> Diagram(o,m) 
dec apex : Cone(o,m) -> o 

dec sides : Cone(o,m) -> (Node -> m) 

--- base(d,,_) <= d 

--- apex( ,,a) <- a 
--- sides , mor( , , ,f, ), ) <= f 

The function, "apex", for instance, is functorial - it can be 

extended to cone morphisms by simply extracting the morphism between 

the apices : 

dec apex morphism : Cone_Mor(o,m) -> m 

--- apex morphism(cm) <- right ofm cm 

The functor is : 

dec apex functor: Functor(Cone(o,m),Cone Mor(o,m),o,m) 
--- apex functor <= right 

The functor "right" is the projection functor associated with the 

comma category. 

With cones available we can define colimits. Colimits are a special 

type of cone on a diagram. They have a universal property which we 

need to include alongside the colimiting cone itself. The universal 

property says that, given any other cone (on the same base), there is 

a unique cone morphism from the colimiting cone to the given cone. 

This defines a function and colimits can thus be expressed as a data 

type: 

type Colimit(o,m) == Diagram(o,m) -> 
(Cone(o,m) # (Cone(o,m)->Cone Mor(o,m))) 

A category with such a colimit operation upon it is a new data type 
which we call a colimit category. 

data Colimit Cat(o,m) == colimit cat(Cat(o,m),Colimit(o,m)) 
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In keeping with. familiar terminology we perhaps ought to call this a 

cocomplete (or finitely cocomplete) category but we reserve this name 

for later use for a somewhat different data type. 

A colimit takes a diagram in a category to a cone. This can be 

extended to a functor by using the universal part of the colimit to 

define a morphism part of a functor. The object part is defined as 

follows: 

dec colimitcone : ColimitCat(o,m) -> 

(Diagram(o,m) -> Cone(o,m)) 
--- colimit_cone(colimit cat( ,colim)) <_ 

lambda d => let colim(d) in c 

Then the functor is: 

dec colimit_functbr : ColimitCat(o,m) 
-> Functor( 

Cone(o,m),Cone ) 

--- colimit_functor( cC & colimitcat(C, colimit)) <_ 

functor( colimitcone(cC), 
(lambda => 

let diagcat & cat(s,t,_,_) 
cat_of_diagrams(C) in 

let _,univ colimit(s(diagmor)) in 
let tcone,_ colimit(t(diagmor)) in 

univ(left_compose(diagcat,diagcat,I(diagcat)) 
(diagmor,tcone))) ) 

Here 'left compose' composes a diagram morphism into the base of a 

cone with the cone (treated as a diagram morphism itself) to give a 

new cone. We can also define a functor which takes a diagram to the 

colimiting object on the diagram. It is given rather neatly as a 

composition of functors: 

dec colimit_apex_functor : Colimit_Cat(o,m) -> 

Functor(Diagram(o,m),Diagram Mor(o,m),o,m) 

--- colimit apex functor(CC) <_ 
colimit functor(CC).apex functor 

A SHORT-CUT TO THE COMPUTATION OF COLIMITS 

Thus far, we have set up data types to correspond to the definition 
of colimits, yet we have given no example of a category with its 

colimits. The problem is this: Colimits on arbitrary (finite) 

diagrams are awkward creatures to handle. The category of sets is 
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cocomplete - has colimits of arbitrary diagrams - but to express an 

arbitrary (finite) colimit computationally is a lengthy process. 

With more complicated cocomplete categories it it is out of the 

question. However, what is feasible is to encode the colimits of 

diagrams of small, fixed shape. For instance we may encode 

coproducts of two objects, coequalisers or pushouts. What we then 

need is a means of extending these simple colimits to those of 

arbitrary (finite) diagrams. This can be achieved by "colimit 

existence" theorems. We shall give one such theorem and show how it 

translates into a program. We will then show how this short-cut to 

the, computation of colimits works in the case of the category of 

sets. 

The theorem that we intend to encode is: 

Theorem (Colimit Existence) 

If a category has an initial object, coproducts of pairs of objects 

and coequalisers of parallel pairs of morphisms then it has all 

finite colimits. 

We will not give a proof of the theorem partly because it can be 

found in category theory texts (e.g. [Herrlich,Strecker 1973]) but 

also because our program translates the proof into HOPE text omitting 
only the verification of properties of constructed objects. In this 
sense the proof is constructive - given a means of computing initial 

objects, coproducts of pairs and coequalisers, the proof offers a 

means of computing arbitrary finite colimits. 

Before looking at the construction, we use this theorem as an excuse 

for introducing some further data types. The colimits mentioned in 
the theorem, remembering that we include the universal parts along 

with the colimiting cone, can be given as data types: 

type InitialObj(o,m) == o # (o->m) 

type Coproduct(o,m) _= o#o -> (o#m#m) # (o#m#m->m) 

type Coequaliser(o,m) =s m#m -> (o#m) # (o#m->m) 

A category with these operations upon it is a new type, which by 
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virtue of the theorem we may call a cocomplete category: 

data C Cat(o,m) c_cat( Cat(o,m), 
InitialObj(o,m), 
Coproduct(o,m), 
Coequaliser(o,m)) 

The idea behind the construction is that given a finite diagram D we 

build the colimit stepwise, at each step using only the colimits 

available (the initial object, coproduct of pairs of objects and 

coequalisers of pairs of morphisms). 

The first step is to take the coproduct of all the objects at the 

nodes in the diagram (ignoring the morphisms in the diagram). This 

can be done stepwise using the binary coproduct. 

We begin by taking the coproduct of the empty diagram, which is the 

initial object. We then iterate through the nodes of the diagram. 

At each step we are given the coproduct of the objects at the nodes 

so far considered together with another node. The step is to 

construct a new colimiting cone by taking the binary coproduct of the 

apex of the colimiting cone that we are given and the object at the 
new node. A picture may help: 

9 

f' 

11 

n 

The new cone is constructed on the diagram, D', together with the new 

node and has the object 'a' as apex and as sides either f or a 

composition of sides of cone C' followed by g. 

The universal part is computed along with the colimiting cone. We 
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first construct. the universal part of the initial cone as a function 

which takes a cone and gives a cone morphism. The cone morphism has 

as apex morphism the unique morphism from the initial object and as 

diagram morphism the unique morphism from the empty diagram. 

Consider the picture above and let us try to construct a new 

universal part, given a universal part for the cone C' and also for 

the binary coproduct of b and c. Thus given any cone C" on the 

diagram D' augmented with the extra node, we have a picture as 

follows: 

n 

This cone C" is, by restriction of the base, a cone on the diagram D' 

and so the universal part of C' provides a cone morphism from C' to 

C" (on the smaller base). Thus there is a morphism h from the apex 

of C' to that of C". Now the binary coproduct comes into play since 

we have morphisms from b and c to the apex of C". Thus the universal 

part of the coproduct provides a morphism u : a -> c". This is the 

required lifting of the universal part. 

As HOPE code, this is the routine "multicoprod": 
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dec multicoprod : CCat(o,m) -> 
(Diagram(o,m) -> Cone(o,m) # (Cone(o,m) -> Cone Mor(o,m))) 

--- multicoprod(k & c_cat(C & cat( _,_,id,cmp),init,cp,_)) <_ 

lambda d & diagram((E,p,N),fo,fm) 
(let i,univinit init in 

let initialcone 
cone(C)(nil diagram,nil fn,i) in 

initialcone, 
(lambda pcone 

cone mor(C)(initialcone, 
univinit(apex(pcone)), 
pcone)) ) if N=nil set else 

(let n,N1 == singleton split(N) in 
let c_cone,univc =_ 

multicoprod(k)(diagram((E,p,N1),fo,fm)) in 
let (a,f,g),univcp =_ 

cp(fo(n),apex(c_cone)) in 
let resultcone 

cone(C)( d, 
(lambda m 

f if m=n else 
cmp(sides(c_cone)(m),g)), 

a) in 

let univpart =_ 
(lambda pcone => 

let h == apex functor ofm univc(pcone) in 

cone_mor(C)(resultcone, 
univcp( apex(pcone), 

sides(pcone)(n), 
h ), 

pcone )) in 

(resultcone,univpart) ) 

What about the edges in the diagram and the associated morphisms? The 

edges are taken into account in the definition of a cone only in the 

fact that certain triangles commute. When we add edges to the 

diagram we must ensure that the appropriate commutation condition 

holds. This can be done by using the coequaliser to construct a new 

cone. Consider a picture, 
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where m is a morphism in the diagram, 
i1 and p2 are sides of a "cone" 

but with m12 not necessarily equal to X1. Now if we take the 

coequaliser of m3'2 and 1 (h in the above picture) we can construct a 

new "cone" with sides 91h and 2h such that Y1h = m62h by definition. 

So, for each edge in the diagram, we construct such a coequaliser and 

thus a new cone, remembering of course to lift the universal part 

through the construction. The computation of the universal part is 

very much like that of the previous case. This construction is 

encoded as the routine "addedge": 

dec addedge : C Cat(o,m) -> 
(( Cone(o,mT # ( Cone(o,m) -> Cone Mor(o,m) ) ) # Edge 

-> Cone(o,m) # ( Cone(o,m) Cone Mor(o,m) ) ) 

addedge(ccat(C, _, _, ce)) <_ 

lambda (conel,puniv), e => 

let diagram(g,fo,fm) _= base(conel) in 
let (b,h),univ =_ 

ce( sides(conel)(dom(g)(e)), 
compose(C)( fm(e), 

sides(conel)(range(g)(e))) ) in 

let result graph =_ 
graph(e: edges(g),graph map(g),nodes(g)) in 

let resultdiag == diagrammresult graph,fo,fm) in 
let resultcone 

cone(C)( resultdiag, 

(lambda p => 
compose(C)(sides(conel)(p),h)), 

b ) in 
let universal (lambda pcone => 

let univ mor puniv(pcone) in 
cone mor(CT( resultcone, 

univ(apex(pcone),apex mor(univmor)), 
pcone) ) in 

(resultcone,universal) 

The colimit on an arbitrary finite diagram is calculated recursively 
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by splitting off an edge of the diagram if there are any (if not then 

"multicoprod" is called), recursively computing the colimit on the 

remaining diagram and then using "addedge" to add the extra edge. 

dec finite colimit : C Cat(o,m) -> Colimit(o,m) 

--- finite colimit(CC) <= 
(lambda d & diagram((E,mor( ,f,xN),N),fo,fm) _> 

(let ( ,gamma,a),univ == multicoprod(CC) d in 
(d,gamma,a), univ ) if E=nil set 

coproduct if no edges 
else 
(let e,E1 - singleton split(E) in 

addedge(CC) 
( finite colimit(CC) 

(iagram((E1,mor(E1,f,xN),N),fo,fm) ), 

e )) ) ! run through edges coequalising 

This is one of the major routines of the program. Its fascination is 
partly that it is a direct encoding of the proof of the "existence of 
colimits" theorem. Moreover, as we shall demonstrate, it makes the 

computing of colimits in categories at least tractable for we now 

need to construct only initial objects, binary coproducts and 

coequalisers. The application of the above routine will then compute 

any finite colimit for us. 

Notice that a proof of the program needs to establish not only the 

properties of "finite colimit" but also its well-definedness (e.g. 
that it is independent of the order in which "addedge" is used to add 

edges). This follows, of course, from standard category theoretic 

results. 

COLIMITS IN THE CATEGORY OF SETS 

We are now in a position to construct arbitrary finite colimits in 
the category of sets. We use the program above and so need the 

initial object, binary coproducts and coequalisers of parallel pairs 
of morphisms in the category of sets. 

The initial object is the empty set, "nil set". Its universal part 

is the unique morphism to any other set from the empty set: 

dec nil_mor : Set(alpha) -> Set Mor(alpha) 
--- nil mor(x) <= mor(nil set,nil fn,x) 

("nil fn" is a function without a definition, in fact any function 
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would do e.g. the identity.) So the initial object together with its 

universal prt is: 

dec init : InitialObj(Set(Tag alpha),Set Mor(Tag alpha)) 
--- init <- nil set,nil: mor 

The coproduct of two sets is their disjoint union (together with a 

universal part). The disjointness of the union is ensured, as usual, 

by a tagging of the elements to make the elements of different sets 
distinct elements in the coproduct set. We thus introduce two new 

tags, "pink" and "blue" (or "girl" and "boy"): 

Tag(alpha) -- ... ++ pink(Tag(alpha)) ++ blue(Tag(alpha)) ... 

The idea now is to construct a new set consisting of the elements of 

one set "pinked" and of the other set "blued". The morphisms into 

this colimiting set are essentially the colouring operations. Given 

any other cone on the two sets, the universal part of the coproduct 

is the morphism from the disjoint union which removes the colour from 

an object and then uses the morphisms in this given cone. As a 

program, the coproduct looks like this: 

dec coprod : Coproduct(Set(Tag alpha),Set Mor(Tag alpha)) 

--- coprod(s,t) <- let u -- (pink*s) U (blue*t) in 

(u, mor(s,pink,u), mor(t,blue,u)), 
(lambda v,mor(a,f,b),mor(c,g,d)=> 

undef if not(v-b and v-d and as and c-t) 

else let fg =- (lambda pink(x) _> f(x) 

blue(x) -> g(x)) in 
mor(u,fg,v) ) 

("lambda ... -> ... , ... -> ... etc" is a lambda expression with 

cases.) 

All that remains now is to compute the coequaliser of a parallel pair 
of set morphisms. This is usually given as a set of equivalence 

classes. Instead, to make the computation simpler, we choose 

elements of the classes to represent them. This routine uses a 

rather elegant recursion. Suppose that we want to calculate the 

coequaliser of f,g : S -> T. First split S into two pieces, P and Q, 

(if not possible then the coequaliser is trivial), and recursively 

compute the coequaliser of f and g restricted to P to get: 

flp u 
P T ----)U 

glp 
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To include the remainder of S, namely Q, we notice that there are 

morphisms 

f'u' g'u : Q -> U, 

where f' and g' are the restrictions of f and g to Q. We recursively 

compute the colimit of these two morphisms, to arrive at: 

f' u h 
Q TU--R 

g' 

The coequaliser of f,g is then the morphism 'u.h' together with a 

universal part which lifts from the two coequalisers used. In code 

this looks like: 
dec coeq : Coequaliser(Set(Tag alpha),Set Mor(Tag alpha)) 

--- coeq(mor(S,f,T),mor(R,g,V)) <- 
! the undefined case 

(nil set, undef), (lambda , ¢>undef) if not(S=R and T=V) 
else ! the empty case 
(let cat( ,,id,comp) _= catofsets in 
(T, (lambda else 

! if S has one object 
(let x, -- singleton split(S) in 

( (T,id(T)), (lambda- lambda ,j=>j) if f(x)=g(x) 
else 
let W == T - {g(x)} in ! target of coeq 
(W, mor(T,(lambda y=>f(x) if y=g(x) else y),W)), 
(lambda a,mor(_,j,_)=>mor(W,j,a)) ) ) if cardinal(S)=1 else 

(let P,Q == split(S) in ! the recursive case 
let ( ,u),univ coeq(mor(P,f,T),mor(P,g,T)) in 
let (R,h),univl 

coeq(comp(mor(Q,f,T),u),comp(mor(Q,g,T),u)) in 
(R, comp(u,h)), (lambda a,j=>univl(a,univ(a,j))) ) ) 

The cocomplete and colimit categories of sets then look like: 

dec C cat of sets : C_Cat(Set(Tag alpha),Set_Mor(Tag alpha)) 
--- c cat of sets <= c cat(cat of sets,init,coprod,coeq) 

dec colimitcatof sets : 
Colimit Cat(Set(Tag alpha),Set Mor(Tag alpha)) 

_ --- colimit cat of sets < 

colimit catTcat of sets , finite colimit(c cat of sets)) 

We now turn to techniques by which this explicit computation of 
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colimits for the category of sets can, without any further 

computation of colimits, be extended to the category of, say, graphs 

or of signatures or of more complex data types. 

COLIMITS AND CATEGORY CONSTRUCTORS 

Let us, for the moment, have a look at colimits in the category of 

graphs, Graph. As we have seen, the comma category (Set,X), where 

'X' is the cross-product functor, is isomorphic to the category of 

graphs. Can we use this fact to simplify the computation of colimits 

of graphs? 

First notice that there are two functbrs - the projection functors 

arising from the comma category: 

edges, nodes : Graph -> Set 

Given a diagram of graphs we can, by applying these functbrs to the 

objects and morphisms in the diagram, obtain two diagrams in Set, one 

of the edges of the graphs and the other of the nodes. The colimit 

object of the diagram of graphs is a graph with the following 

property: its edges are given by the colimit object of the diagram 

of edges, and the nodes likewise. The morphism from edges to pairs 
of nodes can also be constructed from these colimits in Set as we 

shall now show in a general setting. Thus we can reduce the 

calculation of colimits of graphs to those of sets provided that we 

have the means available to "lift" these colimits through to those of 

graphs. 

We now look at this in the more general setting of right comma 

categories. We state a theorem (brought to our attention by Prof. 

Joe Goguen) which says that colimits in right comma categories arise 

from those in the categories on which the comma category is built. 

We give a detailed proof from first principles of this theorem and 

then code this into a routine to lift colimits. To emphasize how 

close the proof is to a program, labels appear in the proof to match 

corresponding labels in the program. Thus the proof is a commentary 

on the program. More formally it ought to be the kernel of a proof 

of program correctness (with respect to some semantics). 
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Theorem 

If A and B are cocomplete categories and F : B -> A is any functor, 
then (A,F) is cocomplete. 

We could restrict the cocompleteness to, say, finite cocompleteness 

or to the existence of cblimits of a specified type, e.g. pushouts. 

Proof 

Let D be a diagram in (A,F) with nodes n in the set N, and objects 

d n = (an, fn: an -> bnF, bn). 

A morphism in the diagram is a morphism in (A,F) of the form; 

Lti F b,, 

9 1 91 c* k F I h 

Q,1 a K b F 6 , 
fn 

(1) 

where (*) commutes. 

There are projection functors, 

PA (A,F) -> A, PB (A,F) -> B. 

These functors extend to functors on diagrams, DA and DB. 

Let 3n : an -> a be a colimiting cone on the diagram DA(D) in A, 

then if g: am -> an is a morphism in DA(D) 

I J / 
CL 

(2) 

commutes. 
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Likewise, let 
'n 

: bn -> b be a colimiting cone on DB(D) in B, then 

if h : bm -> bn is a morphism in DB(D), 

hro% 
1 

P 6,1, 

V 
Thus as F is a functor the following is a cone in A: 

0nF : bnF -> bF. (4) 

Consider the following cone in A, with base DA(D): 

fn.XnF : an --> bnF --> bF. (5) 

It is a cone because, if g : am -> an is a morphism in DA(D), then 

this morphism is a left projection via PA of a morphism of the form 

(1), hence 

c 
v 4m~- bin F`Girt F 

(*) h () 6 F 

F F Q c-a 6 n 

commutes, because (*) is 
the condition that (g,h) is a morphism in the comma category and (**) 
commutes because 'n is a cone. 

Thus, by the colimiting property of 3n : an -> a, there is a unique 

morphism 

f : a -> bF (6) 

such that 
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P't 

(6a) 

commutes for all n. 

(6a) together with (2) and (3) state that 

(In' Xn) : (an,fn,bn) -> (a,f,b) (7) 
is a cone on D. 

We show that it is the colimiting cone. Let 

(Pn,gn) : (an,fn,bn) -> (a',f',b') be any other cone on D so that for 

any morphism of the form (1): 

both commute for all n, and 

Pri. 

q fn b F 

qjF 

b'F 
C1 I 

(7b) 
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commutes for all n. Thus by 

the colimiting properties of I n and W n we have unique morphisms: 

N : a -> a' in A and 

: b -> b' in B 

such that, for all n in N, 

u 
0( 

(9a) 

both commute. Then 

0( 

q bF 

pF 

b'F 

(9b) 

c' 

commutes from (6), (7a) and (9a) and the colimiting property of 

in : an -> a. That this morphism, 

(0(: a -> a', g: b -> b'), (10) 
is the unique morphism from (a,f,b) to (a',f',b') such that (9a) and 

(9b) both hold follows directly from the uniqueness properties of 
0(and 

l`" 
separately. 0 
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Implementation of the Lifting of Colimits 

We now turn to the encoding, in HOPE, of this construction. 

In the proof we refer to several functors which are extensions 

functors to diagrams and to cones. For example the functor DA may 

programmed as: 

dec left : Cat(o,m)#Cat(ol,ml) -> 
(Diagram(ofm#o1,Right_Comma_Mor(o,m,ol,m1)) -> 

Diagram(o,m) ) 

--- left(_, ) <- lambda diagram(gr,fo,fm) _> 
diagram( gr, 

(lambda x -> (left ofo fo(x))), 
(lambda y -> (left ofm fm(y))) ) 

of 

be 

The routine for the construction of colimits in a comma category is 

parameterised on the colimits in the two categories from which the 

comma category is built; 

dec lift colimit: 
Colimit Cat(ol,ml) # 
FunctorTo2,m2,ol,m1) # 
Colimit Cat(o2,m2) -> 

Colimit(o1#m1#o2, Right Comma Mor(ol,ml,o2,m2)) 

and is defined by: 



50 

--- lift_col'imit(cA & colimit_cat(A,colimA), 
F, 

cB & colimitcat(B,colimB)) <_ 
let dcat == cat of diagrams(A) in 
let commacat == right comma cat(A,F,B) in 

lambda D & diagram(_,fo,_) _> 
let coneA, univA == colimA(left(A,B)(D)) in (2) 

let coneB, univB == colimB(right(A,B)(D)) in (3) 

let FconeB == apply(B,A)(F,coneB) in (4) 

let pretendcone =_ (5) 

left_compose(dcat,dcat,I(dcat)) 
(diagram mor(base(coneA), 

ident, 

ident, 
(lambda n => fc 

where _,fc,_ _= fo(n)), 
base(FconeB)), 

FconeB ) in 
let u == apex morphism(univA(pretendcone)) in (6) 

let colimobj (apex(coneA), u, apex(coneB) ) in 
let resultcone (7) 

cone(commacat) 
(D, 

(lambda n 
comma_mor(fo(n), 

(sides(coneA)(n),sides(coneB)(n)), 
colimobj) ), 

colim_obj) in 

let universal -- 
(lambda pcone 

let uA =_ (8) 

ape xmorphism(univA(left(A,B)(pcone))) in 

let uB =_ (9) 

apex morphism(univB(right(A,B)(pcone))) in 

cone morTcommacat) (10) 

( resultcone, 
comma mor(colimobj,(uA,uB),apex(pcone)), 
pconeT ) in 

(resultcone,universal) 

The steps in the proof may be followed (with the help of the 

corresponding of labels) to understand the text of the program above. 

How do we put this to use? Access to the procedure is through a 

colimit routine in a new data type 'colimit_comma category'. That 

is, we produce a comma category along with its colimit routine: 
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dec colimit comma cat : 

Colimit Cat(o1,m1) # 
FunctorTo2,m2,o1,ml) # 
Colimit Cat(o2,m2) -> 

Colimit Cat((o1#m1#o2),Right Comma Mor(o1,m1,o2,m2)) 

colimit comma cat( kA & colimit cat(A, ), 

- kB & colimit_cat(B,_)) < 

colimit cat(right comma cat(A,F,B),lift colimit(kA,F,kB)) 

Now, we can immediately compute the colimits of diagrams in data 

types which can be expressed as comma categories, as long as we have 

routines to compute colimits in the categories on which the comma 

category is built. 

Graphs serve as a good example. We can define the colimit category 

of graphs - which contains a colimit routine for graphs - as: 

dec colimitcat_of graphs 
Colimit CatTGraph(Tag alpha), Graph Mor(Tag alpha)) 

--- colimitcat_ofgraphs <- 

colimit_comma_cat( colimit_cat_of_sets, 
cross-product, 
colimit cat of sets) 

Likewise, colimits of signatures: 

dec colimit_cat_of_signatures 
ColimitCat( Signature(Tag alpha), 

Signature Mor(Tag alpha) ) 

--- colimit cat of signatures <- 

colimit_comma cat( colimit_cat_ofsets, 
strings, 

colimit cat of sets) 

Lifting techniques like this are not new. For instance, many 

languages have the facility to "lift" an equality on a type, 'alpha', 

through to constructed types such as 'Set(alpha)' (set comprehension) 

or to maps 'alpha->alpha'. 

What about left comma categories? The above theorem does not hold if 

we simply replace "right comma category" with "left comma category". 

We need the extra requirement that the functor preserves colimits: 
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Theorem 

If L : A -> B is (finitely) cocontinuous and A and B are (finitely) 

cocomplete then (L,B) is (finitely) cocomplete. 

We could encode the construction used in the proof of this theorem, 

very much as we did for the right comma category. We shall not, 
however, be needing it. These two theorems embody a more general 

concept which is useful in describing the computational aspects of 
theorems of this form - that of the 'creation' of colimits. Before 

turning to this we will look briefly at colimits in functor 
categories. 

Colimits in Functor Categories 

Functor categories lend themselves to a treatment similar to that of 
comma categories. Colimits in categories of functors arise from 

colimits in the target category of the functors. The passage from 

colimits in the target category to colimits of functors is described 

as the 'pointwise' computation of colimits; that is, for each object 
of the source category, a diagram of functors gives, by application 
to this object, a diagram in the target category. By suitable 
manipulation of the colimits of these diagrams the colimit of the 

diagram of functors may be computed. 

If BA denotes the category of all functors from A to B, we have the 

theorem: 

Theorem (Colimits in Functor Categories) 

If B is (finitely) cocbmplete then so is BA. 0 

As in the case of comma categories, the proof is constructive and may 

be translated into a program. Since we shall not need this program, 

we relegate it to an appendix (Appendix One). 

CREATION 

From the discussion of the colimits of graphs we see that the essence 

of the construction lies in the functors 'edges' and 'nodes', in 
particular their behaviour with respect to colimits. 
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Functors may preserve colimits. This property alone gives us no 

means of constructing colimits. Reflection of colimits is a similar 

non-constructive property of functors. There is, however, a means of 
describing the behaviour of the functors, 'edges' and 'nodes', which 

allows us to lift colimits through these functors. It is known as 

'the creation of colimits' and is described in [Schubert 1972]. 

Definition 

A functor F : A -> B is said to create colimits, if for any diagram D 

in A, there is a colimiting cone C in B on the image of D under F, 

such that, there is a unique cone C' in A with base D and such that 
the image of C' under F is C and, moreover, C' is a colimiting cone 

on D. 

A picture may be helpful: 

Category A 

The unique cone 

whose image is C 

C - colimit in 
B of F(D) 

F(D) 

F 

0 

Thus, a constructive proof that a functor creates colimits in A from 

those in B will give a means of computing the colimits in A given a 

means of computing those in B. This is exactly what we have done in 

the case of colimits in comma categories where the proof that 'left x 

right' (the product of the projection functors) creates colimits is 

encoded as a program. Otner examples of creation will occur in the 

following chapters. 

There are several notions along the same lines as the creation of 
colimits but somewhat weaker: 

Definition 

A functor F : A -> B is said to lift colimits uniquely, if for any 

diagram D in A, there is a colimiting cone C in B on the image of D 

Category B 
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under F, such that, there is a unique colimiting cone C' 

base D and such that the image of C' under F is C. 

in A with 

0 

Notice that the only difference between this and the creation of 

colimits is that here we can say only that there is a unique 

colimiting cone, not a unique cone. Thus this is rather weaker. 

Computationally it says that part of the work of computing colimits 

in A can be done by calling a routine for computing colimits in B and 

that although more work is required to compute the colimit in A no 

further colimit computations will be of any use (because a choice of 

a colimit in B determines a colimit in A). 

Many forgetful functors lift colimits uniquely-for example that from 

partial-orders to the underlying sets. A computational example of 

the unique lifting of colimits will be found on page 69. 

A weaker notion still is the 'lifting of colimits' dropping the 

requirement of uniqueness. This is then equivalent to A having 

colimits and their being preserved by F. The functors 'edges' and 

'nodes' separately (or more generally 'left' and 'right') lift 

colimits but not uniquely. 

INFINITE COLIMITS 

We can handle colimits of infinite diagrams in the same way as those 

of finite diagrams but we must be careful to avoid non-terminating 

routines and attempts to compute infinite objects. 

Colimits of infinite diagrams, especially those of c)-chains, will of 

use in the next few chapters. For instance, they arise when we pass 

from signatures to free theories. More generally they provide a 

categorical formulation of program iteration. 

An w-chain in a category C, is a diagram of the form: 

a0 -> a, -> a2 -> ... an -> an+1 -> ... 

As a data type we can describe them by: 

type w Chain(o,m) __ (Num -> o) # (Num -> m) 

Notice that this is not itself a diagram. However, each such w-chain 



55 

gives rise to a'diagram: 

dec w_diagram : w_Chain(o,m) -> Diagram(o,m) 
--- w diagram(omap,mmap) <_ 

diagram( w graph, 
(lambda just(number n) omap(n)), 
(lambda just(number n) mmap(n)) ) 

where '4;-graph' is the underlying graph of anal-chain: 

dec w_graph : Graph(Name) 
--- w_graph 

let 

<_ 
f 

(lambda just(number(n)) 
pair(just(number(n)),just(number(n+1))) ) in 

(bigset,mor(bigset,f,bigset),bigset) 

All the sets are infinite and so are given by the undefined constant 
set 'bigset'. Attempts to evaluate this set will fail. 

We can define morphisms of G)-chains hence define a category of 
41-chains. A morphism of 4)-chains from )-chain (*) to the following 

chain, 

b0 -> b1 -> b2 -> ... bn -> bn+1 -> ... 

is a sequence of C-morphisms, <hn : an -> bn n>O >, such that for all 

n>O the following square commutes: 

;n 

k n+1 

9n 

As a data type such a morphism is simply: 

type wChain_Mor(o,m) -- 
w Chain(o,m) # (Num -> m) # w Chain(o,m) 

and the category of w-chains is: 
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dec catof_chains : Cat(o,m) -> 

Cat(w Chain(o,m),w Chain Mor(o,m)) 

--- cat-of _chains(cat(,,id,comp)) <_ 
cat( (lambda _, ) _> s), 

(lambda (_,t) _> t), 

(lambda we & (omap,_) _> 
(wc,(lambda n => id(omap(n))),wc)), 

(lambda (wcl,ml,_)m2,wc3) _> 
(wcl,(lambda n comp(m1(n),m2(n))),wc3))) 

Now the function '43-diagram' can be extended to a functbr - morphisms 

of w-chains become diagram morphisms. 

dec 

diagram mor( 

w_diagramfunctor 
Functor( w Chain(o,m),w Chain_Mor(o,m), 

Diagram(o,m),DiagramMor(o,m)) 
wdiagram _functor <_ 

functor( wdiagram, 
(lambda s,f,t 

wdiagram(s), 
ident, 
ident, 
(lambda just(number(n)) 

_> f(n)), 

w diagram(t))) ) 

An w-colimit is a colimit of an (J-chain: 

type w_Colimit(o,m) _= w_Chain(o,m) -> 
(Cone(o,m) # (Cone(o,m) -> Cone Mor(o,m))) 

In the same way that we defined cocomplete categories as data types, 

we can introduce w-cocomplete categories. 

data wCocomplete_Cat(o,m) __ 
w cocomplete cat(Cat(o,m),w Cblimit(o,m)) 

In the case of cocomplete categories the construction of a colimit 

category required the extension of initial object, coproduct and 

coequaliser to arbitrary finite colimits. The coercion of an 

4)-cocomplete category to a colimit category requires no such 

elaborate work since an w -colimit differs from a colimit only in that 

its argument is a 4)-chain and not a diagram. Thus, if we have a 

function which takes a diagram of the form (*) into a w-chain: 

dec diag_to_chain : Diagram(o,m) -> w Chain(o,m) 
--- diag to_chain(diagram( ,fo,fm)) <_ 

(lambda n fo(just(number n))), 
(lambda n fm(just(number n))) ) 

then a w-cocomplete category gives rise to a category together with a 
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colimit functiob on it: 
dec w_colimit cat : w Cocomplete Cat(o,m) -> ColimitCat(o,m) 
--- w_colimitcat(w cocomplete_cat(C,w_colim)) < _ 

colimit catTC, diag to chain.w colim) 

So far the work has been the setting up of the types required to 

handle colimits of 60-chains. We have not provided any means of 
computing c -colimits. 

In general, even for the category of sets, computation of c)-colimits 

is not possible - requiring non-terminating steps. However there are 

simple cases of O -chains for which this computation is possible and 

indeed arises commonly in applications. 

Firstly, a trivial remark: in any category, if an (0 -chain eventually 
becomes constant (i.e. the morphisms in the chain eventually become 

the identity on an object) then the chain has a colimit. The 

colimiting object is then the object in the chain at which the chain 

becomes constant. Whilst mathematically trivial, computationally 
this is an important case of O -colimits as it gives a categorical 
interpretation of program iteration. We shall use this to cast 

iterative programs into a categorical form so that the iteration 
inherent in the program is translated into the computation of a 

colimit (see page 140). 

To compute colimits of these, eventually constant, chains, we first 
find when they become constant: 

dec fixed-point : Cat(o,m) -> 
(w_Chain(o,m) -> (Num -> Num)) 

--- fixed point(C) <_ 

lambda w_chain & (fo,fm) 
(lambda n => 

n if fm(n) = identity(C)(fo(n)) 
else fixed point(C)(w chain)(n+1) ) 

The termination condition is an equality of morphisms. We can either 

assume that there is a predefined equality or include equalities for 

objects and morphisms as part of the definition of a category. In 

the latter case the equality may not always be computable (for 

instance, in the category of functors). Notice further that we 

assume that the first occurrence of an identity in a chain is the 
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point at which all succeeding morphisms in the chain are identities. 

For the applications we have in mind this is indeed the case. The 

colimiting object is then the object at which the chain becomes 

constant. 

The colimiting cone has sides that are the identity for objects 
beyond the point at which the chain becomes constant and are multiple 
compositions for objects before this point: 

dec w_cone_sides : Cat(o,m) -> 
(w Chain(o,m) -> (Num -> (Num -> m))) 

--- w_cone_sides(C) <_ 

lambda w_chain & (fo,fm) _> 

(lambda fixpoint -> (lambda n -> 
identity(C)(fb(n)) if n>-fixpoint 

else compose(C) 
( fm(n), 

w cone sides(C)(w chain)(fixpoint)(n+1)))) 
The w-colimit is then given by: 

dec finite -w colimit : Cat(o,m) -> w Colimit(o,m) 

--- finite w colimit(C) <_ 
lambda 

let 
let 
let 

in 

(lambda just(number(n)) -> 
w cone_sides(C)(w_chain)(N)(n)), 

fo(NT ) in 

w_chain & (fo,fm) _> 
d wdiagram(w chain) in 
N fixed pointTC)(w chain)(0) 
colim cone =_ 
coneTC)( d, 

let univ -- 

(lambda pcone -> 
cone_mor(C)( colim cone, 

sidesTpcone)(just(number(N))), 
pcone ) ) in 

(colim cone, univ) 

Categories with such w-colimits are given by: 

dec finite wcocomplete_cat 
Cat(o,m) -> wCocomplete_Cat(o,m) 

--- finite_w_cocomplete_cat(C) <_ 

w cocomplete cat(C, finite -w colimit(C)) 

These can be translated to colimit categories by: 

dec finite w colimit_ cat : 

Cat(o,m) -> Colimit_Cat(o,m) 
--- finite _wcolimitcat(C) <_ 

w colimit w cocomplete cat(C)) 
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We now turn to 'computation of non-trivial w -colimits in the category 

of sets. As mentioned, we cannot, in general, compute such colimits, 

but there is an important special case which is computable and occurs 

widely - particularly in the construction of initial algebras and 

free theories (see page 125). This is the case when the morphisms in 

the w-chains are monics, which means, in the category of sets, that 

the morphisms are 1-1. 

Suppose that 

a0 -> a1 -> a2 -> ... an -> an+1 -> ... 

is any 6o-chain in the category of sets. The colimiting set is the 

disjoint union of all the an, a U an, quotiented by the reflexive, 

symmetric, transitive closure of the relatibn,- given by: 

If x e an, x "+ fn(x)- 
If the fn are all monics then the equivalence classes are all of the 

form 

{ x, fn(x), fn+lfn(x), . . } 

for some n and some x E an. 

In our computation we choose representatives of these equivalence 

classes, choosing the 'x' as a representative. We need to record the 

n as well so we introduce a new tag: 

data Tag(alpha) __ ..... ++ origin(Tag(Label),Tag(alpha)) 
tagging an object with the label of the set from which it comes (the 

type 'Label' is defined on page 30). 

Now, in general, the colimiting set will be infinite. We assume that 
we are dealing with chains of sets of ever increasing cardinality. 
Let 3n : an -> a be the colimit of the above chain with all the fn 
monics. The following function calculates the 3n, assuming that the 
elements of the colimiting set are representatives of the equivalence 

classes (chosen as above and tagged with the label of the set in the 

chain from which they come). 
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dec first occur : 

Chain(Set(Tag alpha),Set Mor(Tag alpha)) # Num) 
-> Set Mor(Tag alpha) 

--- first occur(w chain & (omap,mmap),n) <_ 
morn omap(OT, 

(lambda x => origin(just(number(n)),x)), 
bigset ) if n = 0 else 

mor(omap(n), 
(lambda x => origin(just(number(n)),x) if x is in (omap(n) - 

image omap(n-1) through mmap(n-1)) 
else first occur(w chain,n-1) of 

bigset) 
(inv(mmap(n-1))(x)) ), 

Here 'inv' gives an inverse of a morphism (i.e. 
inv(m).m = identity morphism whenever the composition is defined). 
The multifix operation "image ... through ..." is the image of a set 

through a set morphism. This construction relies upon the 

factorisation of morphisms in the category Set. 

The colimit of such an w-chain is then given by: 

dec infinite w_colimit : 

w Colimit(Set(Tag alpha), Set Mor(Tag alpha)) 

--- infinite wcolimit(wchain) <_ 
let d == wdiagram(wchain) in 
let colim_cone =_ 

cone(cat of sets) 
( d,- - 

(lambda just(number n) _> 
first occur(wchain,n)), 

bigset ) in 
let univ -- 

(lambda pcone => 
cone mor(cat of sets) 

( 

(colim cone,univ) 

mor( bigset, 
(lambda origin(label,x) _> 

sides( cone)(label) of x), 
apex(pcone) ), 

pcone) ) in 

We can thus form an co-cocomplete category of sets where the &)-chains 

are restricted to those in which the morphisms are all monics and in 
which the sets increase in cardinality indefinitely: 
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dec infinite_w_cocomplete_cat_of_sets : 

w Cocomplete Cat(Set(Tag alpha),Set Mor(Tag alpha)) 

_ --- infinite_wcocomplete_cat_of_sets < 

w cocomplete cat(cat of sets, infinite -w colimit) 

This may be translated into a colimit category: 

dec infinite wcolimitcat_ofsets : 

Colimit Cat(Set(Tag alpha),Set Mor(Tag alpha)) 

--- infinite wcolimit_cat_of_sets <_ 
w colimit cat(infinite w cocomplete cat of sets) 

With these w -cocomplete categories, we can use the same lifting 

techniques as for finite colimits, thus constructing complex data 

types from simple ones whilst lifting through the V -colimit 

constructors. For instance, we could define a category of graphs 

with colimits of certain w-chains by: 

dec infinite_wcolimit_cat_ofgraphs 
Colimit Mor(alpha)) 

_ --- infinite wcolimit cat_of_graphs < 

colimit_comma_cat( infinite_wcolimit_cat_ofsets, 
cross_product, 
infinite -w colimit cat of sets ) 

In this discussion of w-colimits there is something anomalous as can 

be seen most clearly in the function 'diag-to-chain'. Not every 

diagram can be coerced into a chain. This same problem actually 

occurred in our discussion of finite colimits - only finite diagrams 

can be arguments to the function 'finite-colimit' The problem is 

essentially one of handling 'diagram schemes' - collections of 

diagrams, for instance, coproduct diagrams, diagrams obtained from 

to-chains, or all finite diagrams - within the strong type discipline 

of HOPE. We have avoided the problem by such partial functions as 

mentioned above. 

This ends our presentation of the basic category theory program. We 

now turn to applications of the routines we have programmed. 

Notes 

The programming described here (up to and including the 
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lifting of 'colimits to comma categories) was a joint project 

between Prof. Rod Burstall, Don Sannella and myself as 

explained in chapter one. Prof. Joe Goguen [Goguen and 

Burstall 1978] brought our attention to the lifting of 

colimits to comma categories. Creation of colimits is 

standard category theory. 
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CHAPTER FOUR 

IMPLEMENTING THE SEMANTICS OF A SPECIFICATION LANGUAGE 

- An application of the programming of categories. 

We claim to have to have powerful general routines which encode in 
programs part of category theory. What use are they? 

Certainly, given any construction expressed in the language of 
category theory - more particularly, the category theory that we have 

displayed so far - we ought to have a direct means of translating 
this construction into a program. An example of this is the 

categorical semantics which has been developed for a specification 
language [Burstall,Goguen 1980a]. We use the basic category theory 
program to build an implementation of this semantics. Given a text 
of a specification (in the language in question), we can run the text 
through the program to obtain a denotation for the specification - 
which essentially is a "theory" (a term we define below). We will 
briefly describe the program in this chapter. 

What of the interplay of programming theory and the running of 
category theory on a machine advertised in the introduction? In the 

next chapter we will look at some ways of using the categorical 
routines to handle programming tasks which (at first sight) have 

nothing to do with category theory. We will see that for certain 

restricted types of specifications the ability to compute colimits in 

categories of algebras gives us a means of developing programs from 

specifications. More work will be found on the topic of program 

synthesis when we turn our attention to the properties of theories. 

Here we describe a program which uses the category theory routines we 

have developed to implement a semantics of a specification language. 

This can be seen as an experiment in developing programs using very 
general routines which can be fitted together and specialised to the 

case in hand by the application of the routines. This gives a 

convenient way of building programs without writing large amounts of 
complicated code but is inherently inefficient since special cases of 
general routines can often be performed more quickly than the 

generality of the routines will allow. We will discuss the problem 
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of efficiency later (page 78). 

As mentioned before, it is hoped that the general routines obtained 

via the programming of category theory will encapsulate program 

iteration and recursion and thus that programming with these routines 

will eliminate the difficulties associated with these loop 

constructs. The following program can be considered to be an 

extended exercise in 'combinatorial programming' - programming 

without explicit recursion or iteration. With this in mind we ask : 

Where do recursions and iterations occur in the program? The answer 

is: 

1. In the colimit routines as designed. 

2. In several environment handling operations - which are not 

formulated in categorical programming terms (if indeed it 
be possible). 

3. In the translation of recursively defined functions into 
code (for example the semantic function (page 73)). 

The aim of the program is to take the text of a specification and 

give as a result a denotation of this text - that is, we run the 
semantics on a computer. The specification language in question is 

called CLEAR and is described in [Burstall,Goguen 1980b] (summarised 

in Appendix Four), whilst the semantics is fully explained in the 

paper [Burstall,Goguen 1980a] which can be read in parallel with the 

following program description. 

Specifications in CLEAR are built from algebraic theories using 
operations to modify or combine theories in various ways. In the 

following program we choose a representation for algebraic theories 
and then interpret the specification-building operations as 

operations on theories in accordance with the semantics. There is an 

inherent difficulty here in that theories usually contain an infinite 
set of equations. How are we to represent these? Moreover, the 

operations we need to perform on these equations assume that we have 

the power of a theorem-prover at hand. We could avoid these problems 

by ignoring the equations altogether. Then the denotation of a 
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specification would be the signature of a theory and the operations 

of CLEAR would reduce to operations on signatures (via the forgetful 

functor from theories to signatures). This would be of use in 

checking the sorts and operations available in a specification. What 

we actually do, as explained below, is leave the operations on 

equations uninterpreted so that later we may use a theorem prover to 

check whether an equation is true in a given specification. 

This running of a semantics of a specification language is of some 

interest in itself. A formal specification language and its 

semantics is a prerequisite for any systematic attempt at program 

development or program verification. The running of a semantics of 

such a language on a machine means that we can automatically "check" 

the intended meaning of a specification. More than this it is one 

step on the way to an automation of program design and development. 

The program itself is a large interpreted HOPE program (about a 

thousand lines of code) and runs slowly. Approximately half of this 

code is the, previously described, category program upon which this 

implementation is based. The semantic operations of the 

specification language are described as operations within categories 

- principally colimit operations. It is here that the previous work 

on simplifying the computation of colimits will come into play and 

thus we will find that much of the program is already written. 

A denotational semantics for a language of any complexity is beset 

with many details which are incidental to the main object of giving 

the semantics. This is partly because we are transforming clauses in 

a language which allow side effects - whose meaning is dependent upon 

the context of the clause - into functions, in which all arguments 

are made explicit. We model the dependence upon context by giving 

the functions "environments" as arguments. These environments must 

be able to handle all the interactions of a piece of text with its 

context. Thus, in general, environments are not simple objects at 

all. In the case of the semantics which we are to implement, 

environments are diagrams of theories. Moreover, a language of any 

complexity has many syntactic classes (e.g. commands, expressions) 
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and with each class is associated a semantic function. Each of these 

needs defining before we are in a position to give the semantics of 

programs or, in our case, of specifications. As our main interest 

lies outside that of language semantics we will not be concerned with 

all these details in the following description of the program which 

implements the semantics of CLEAR. 

The Program 

The program description follows closely the semantics to be found in 

[Burstall and Goguen 1980a]. 

As explained above a semantics of an algebraic specification language 

needs some notion of a "theory" as a denotation of specifications. 

CLEAR is designed to deal with very general theories including 

equational theories and predicate calculus theories as well as 

theories based upon categories other than that of sets, for instance 

the continuous theories of [wagner,wright,Goguen,Thatcher 1978]. 

However, at some points in the text of a specification we require 

theories that behave like equational theories in that they have 

initial algebras (and, more generally, algebras free in some sense). 

Elsewhere more general theories are permitted. 

A presentation of an equational theory contains equations to 

describe, or constrain, the operations in the theory. In predicate 

calculus theories instead of equations there are general predicate 

calculus clauses. The theories which we are to use to describe a 

semantics for CLEAR generalise these cases so that the constraints 

become sentences in an 'institution'. An institution is a rather 

complicated object (called a 'language' in [Burstall,Goguen 1980a]), 

an example of which is predicate calculus with equality. Institutions 

are defined as follows: 

Definition 

An institution I consists of an arbitrary category SIG (of 

'signatures') equipped with two functors and a relation: - 

1. Mod: SIG -> Setop - the set of models over a signature 

2. Sen: SIG -> Set - the set of sentences over a signature 
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3. C Mod( T- ) x Mod(Z) for each object Y- of SIG, such that 
for each a' : I -> 2' in SIG, s E Sen(Z) and m' e Mod(, ) 
we have m' Sen(a') (s) iff Mod(0) (m') * s. 

Institutions can be declared as a data type in HOPE, 

data Institution(o,m,alpha,beta) -- 
institution( Colimit Cat(o,m), 

FunctorTo,m,Set(alpha),Set Mor(alpha)), 
Functor(o,m,Set(beta),Set Mor(beta)), 
(o -> (Set(alpha)#Set(beta)->truval)) ) 

where 'alpha' is the type of models and 'beta' that of sentences. 

Later we will restrict ourselves to the familiar notion of a 

signature as sorts and operations - that is, as an object of a 

certain comma category (page 23). For the moment any category will 
do - well, any cocomplete category for we will need colimits of 
signatures. 

Suppose I is a institution as above, a presentation (of a theory) 
over I consists of a signature r (an object of SIG) and a subset of 
the set of sentences Sen(Z). A theory is then a presentation in 
which the set of sentences is "closed". In equational theories this 
closure is the deductive closure. In this more general setting, 
closure is a semantic closure in terms of models and arises from the 

above definition of a institution. 

Whatever form of closure is used it is not implementable. Even in 
the case of equational theories, the closure of a set of equations 

is, in general, an infinite set. We therefore define 'closure' as an 

unimplemented constructor for a type which represents closed sets of 
sentences. 

data Closure(o,m,beta) 
closure(Set(beta)) 

++ Closure(o,m,beta) closeU Closure(o,m,beta) 
++ closetrans(m,Closure(o,m,beta)) 
++ invtrans(m,Closure(o,m,beta)) 
++ star(o,Closure(o,m,beta)) 

To understand this data declaration, consider the operations which we 

want to perform on closures, for instance the union of two closures. 
Since closures are no longer sets of sentences but are a new data 
type we need to be careful. Notice that if S, T are sets of 
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sentences and S, T are their closures then 

S U T S U T 
Indeed S U T is generally not even closed. We thus must leave such 

operations unimplemented. The operations in the data declaration are 

interpreted as follows: Firstly, a closure may be just the closure 

of a set of sentences, or it may (by 'closeU') be a closure of a 

union of closures. It may also be either the closure of a 

translation of a closure by a signature morphism or the inverse 

translation (inverse image). In the paper referred to above it is 

shown that the inverse translation of a closure is itself closed. 

Finally, the 'star' operation is concerned with adding explicit 

equality operations to a presentation and then closing the result. 

There are several identities which hold between these operations. We 

may use these identities to manipulate expressions for closures, for 

example, 

invtrans(sigmor,C1 closeU C2) 
invtrans(sigmor,C1) closeU invtrans(sigmor,C2) 

(Of course, this is part of an equational semantics for the closure 

expressions.) We have dwelt at some length on these closure 

operations as they are the key to writing a modular theorem prover 

based upon CLEAR. For, whilst the operations themselves are not 

implementable, we should be able to use a theorem prover to check 

whether a given sentence is in a given closure. This involves 

interpreting the above closure operations in the setting of a theorem 

prover. This has been done by Don Sannella using Edinburgh LCF 

(paper to appear). 

We can now define theories. A theory is a pair consisting of a 

signature, of type 'o', and a closure. 

data Theory(o,m,beta) _= theory(o,Closure(o,m,beta)) 

Theory morphisms are simply signature morphisms which preserve the 

sentences. Thus, remembering that we need to include the source and 

target theories, a theory morphism is: 

data Theory_Mor(o,m,beta) 
_= theory_mor(Theory(o,m,beta),m,Theory(o,m,beta)) 

In the now-familiar fashion, we can define the category of theories 
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over a institution: 

dec cat-of theories : Institution(o,m,alpha,beta) -> 
Cat(Theory(o,m,beta),TheoryMor(o,m,beta)) 

--- cat of theories(i) <- 
cat(s(i),t(i),id(i),comp(i)) 

Here 's' and 't' are the projections of morphisms whilst 'id' and 

'comp' arise from the identity and composition in the category of 

signatures in the institution 'i'. 

The semantics of CLEAR which we are to implement is 'categorical' in 

several senses. Firstly, we can express the operations of CLEAR as 

operations in a category - principally colimit operations. We thus 

need to compute colimits of theories. Can we use the techniques 

developed so far for this task? Notice first that there is a functor 

from theories to signatures: 

dec signature : 

Functor(Theory(o,m,beta),TheoryMor(o,m,beta),o,m) 
--- signature <- 

functor( (lambda theory(sig,_) sig), 
(lambda theory mor( ,sigmor, ) -> sigmor) ) 

This functor lifts colimits uniquely - the signature part of the 

colimit of theories is the colimit of the signatures of the theories. 

We cannot go much further as the sentences of the theory require 

special treatment. We can however use the means of extending simple 

colimits to those of arbitrary finite diagrams. To this end we 

define, for instance, the initial theory: 

dec init : Institution(o,m,alpha,beta) -> 
InitialObj(Theory(o,m,beta),Theory Mor(o,m,beta)) 

--- init(institution(colimit cat(csig,sigcolim), ,_,_)) <- 

let (_,_,siginit),siguniv -- sigcolim(nil diagram) in 

let initth -- theory(siginit,closure(nil set)) in 
initth, (lambda pth & theory(psig,_) -> 

let univmor -- 
siguniv(nil diagram, 

diagrammor(nil_diagram, 
nil map, 
nil-map, 

unit diagram(csig) 
ofo psig), 

psig) in 

theory mor(initth,apex morphism(univmor),pth)) 

We can define the binary coproduct and the coequaliser of parallel 

pairs in a similar manner and thus arbitrary finite colimits of 
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theories: 

dec c_cat_of theories : Institution(o,m,alpha,beta) -> 

C_Cat (Theory( 0 ,m, beta) , Theory Mor(o,m,beta)) 
--- c cat of theories(i) <- 

c^cat(cat of theories(i),init(i),coprod(i),coeq(i)) 

dec colimit_catof theories : Institution(o,m,alpha,beta) -> 

Mor(o,m,beta)) 
--- colimit cat_of_theories(i) <- 

colimit_cat(cat of theories(i), 
finite- colimit(c cat of theories(i))) 

The semantics of CLEAR is categorical in another sense. Environments 

become diagrams in a category. An object with its environment is a 

cone with the environment diagram as base. This cone describes how 

the apex object depends upon the objects from which it is built 

(those in the base). We call such objects together with their 

environments 'based objects' and their morphisms 'based morphisms': 

type BasedObj(o,m) -- Cone(o,m) 

type BasedObj Mor(o,m) -- Cone Mor(o,m) 

What about colimits of these based objects? The category of based 

objects is not the comma category of cones but a subcategory of it, 

with the same objects but with a restricted class of morphisms which 

describe the behavior of environments. There is an explicit 

construction of these colimits in [Burstall,Goguen 1980a]. 

Unfortunately it does not seem possible to construct colimits of 

based objects by lifting techniques (the category of based objects as 

defined in [Burstall,Goguen 1980a] is not expressible as a comma 

category built from the category of sets). We thus implement these 

colimits directly as a procedure 'bo colimit' of type: 

dec bo_colimit : Colimit Cat(o,m) -> 

Colimit(BasedObj(o,m),BasedObj Mor(o,m)) 

(we do not give the definition - it is much like our previous 

encodings of colimits). The category of based objects and their 

colimits is then: 

dec colimit_catof based objects : Colimit_Cat(o,m) -> 
Colimit CatTBasedObj(o,m),BasedObj Mor(o,m)) 

--- colimit cat_of_based _objects(CC & colimitcat(C,clim)) <- 

colimit cat(cat of cones(C),bo colimit(CC)) 

The denotation of a CLEAR text is going to be a based object in the 
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category of theories - a thing which we call a based theory. Some of 
the semantic operations are described in terms of colimits in the 

category of based theories. For example the COMBINE operation is the 

coproduct of two theories: 

dec combine op : Institution(o,m,alpha,beta) -> 
((BasedObj(Theory(o,m,beta),Theory_Mor(o,m,beta)) 
# BasedObj(Theory(o,m,beta),Theory Mor(o,m,beta))) 

-> BasedObj(Theory(o,m,beta),Theory Mor(o,m,beta))) 

--- combine op(i) <= lambda tl,t2 
let colimit cat( bthcolim) -a 

colimitcat_ofbased_objects( 
colimit_ cat of_theories(i)) in 

let (_,_,coproduct), _= bthcolim(cpdiagram(t1,t2)) in 
coproduct 

('cpdiagram' takes two objects and forms a two-object, no-morphism, 

diagram) 

The operations of ENRICH and procedure application may be treated 
similarly. The application of a procedure is, in fact, described by 

a pushout in the category of based theories. The DERIVE operation, 
which is a data abstraction facility, can be thought of as a 

factorisation in a category. In the program we give an explicit 
operation on theories for this DERIVE operation. 

The operation DATA requires us to add extra constraints to a theory - 
not simply sentences of an institution but also data constraints. A 

data constraint is a pair consisting of a theory morphism and a 

signature morphism. See the reference above to understand why this 

is so. Data constraints behave like sentences in that we may form 

their closure to get a theory from a presentation. This motivates 

the following type declaration: 

data Constraint(o,m,beta) __ - (*) 

equation(beta) ++ 

data-constraint( Theory Mor(o,m,Constraint(o,m,beta)), 
m ) 

So far we have dealt with fairly general theories whose signatures 
lie in an arbitrary cocomplete category and whose constraints are of 
the form (*) for an arbitrary institution. To give explicit 
denotations for CLEAR texts, we need to specialise these general 

signatures and constraints. We choose our signatures to be the 
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familiar 'sorts and operations', that is, objects of a certain comma 

category (page 23). The sentences are to be either equations or data 

constraints built from equations. Equations will be of the form: 

data Eqn -- all Set(V Name#S Name) . Term = Term 

(where 'V Name' is the class of variable names, 'S Name' that of sort 
names and a 'Term' is either a variable name or an operation name 

followed by a list of 'Term') 

We call theories of this restricted type 'Ordinary Theory' and their 
morphisms 'Ordinary Theory Mor'. Based objects in the category of 
these theories will be of type 'Based Theory'. The institution of 
these signatures and constraints will be called 
'Ordinary Institution(alpha)' where 'alpha' is the type of models in 
the institution. 

Omitting some details concerning syntactic classes and the so-called 
dictionaries, we are at last in a position to define the semantics of 
CLEAR. Based theories are described by the CLEAR expressions: 

data E -- just(T Name) 
++ theory Enr endth 
++ E + E 
++ enrich E by Enr enden 
++ derive Enr using set E from E by Sic endde 
++ let th T Name - E in th E 

Here T Name is the syntactic class of theory names whilst Sic is that 
of signature changes (DERIVE and procedure application use signature 

changes). Notice the use here of distributed-fix operations (e.g. 
enrich by enden). 

Environments are diagrams, 

type Env -- 
Diagram(Ordinary Theory, Ordinary Theory Mor) 

whilst procedure environments associate with a procedure-name a based 

theory morphism (the denotation of the procedure) and a list of based 

theories (the meta-sorts): 

type ProcEnv -- 
T Name -> (Based_Theory_Mor # list Based-Theory). 

The semantic function is defined in terms of the following function 
which gives the denotation of the above expressions for (based) 
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theories: 

dec E : E -> (Ordinary_Institution(alpha) -> 

(Env -> (ProcEnv -> Based Theory))) 

For example for a COMBINE expression of type E + E, 

--- E(el + e2) <- 

(lambda i -> (lambda rho -> (lambda pi 
combine op(i)(E(el)(i)(rho)(pi),E(e2)(i)(rho)(pi)) ))) 

The other operations of CLEAR can be handled in a similar fashion. 

The semantics of CLEAR is then encoded as follows: The syntax of 

specifications is declared as a data type, 

data Spec -- const TName - E in spec Spec 
++ proc T List(T >> - E in spec Spec 

just(E) 

where the first term is the definition of a constant theory in a 

specification, the second the definition of a procedure, whilst the 

third is just an expression for a (based) theory. 

The semantic function for these CLEAR specifications is: 

dec Spec : Spec -> (Ordinary Institution(alpha,Eqnlike) -> 

(Env -> (ProcEnv -> Based Theory))) 

For the first case (definition of constant theories), the function is 

defined by: 

--- Spec(const tname - e in spec s) <- 

(lambda i ->(lambda -> (lambda pi -> 

Spec(s)(i)( bind(tname,E(e)(i)(rho)(pi),rho) )(pi) ))) 

This is simply the binding of a theory name to a theory in an 

environment (a diagram). The function 'bind' flattens a based object 

into an environment. The case of procedure definition in a 

specification is: 

--- Spec(proc pn << list_tnxe >> - e in spec 

(lambda i ->(lambda rho -> (lambda pi -> 
let listT -- 

_,ee 
let list to 

Tlambda 
let rhol 

let Ti 

-- 

m 

s) <- 

-> E(ee)(i)(rho)(pi)) * list_tnxe in 

tname, -> tname) * list tnxe 
T,rho) in bind(list tn,list 

E(e)(i)(rhol)(pi) in 
let F -- 
node_morphism(colimit_cat_of_theories(i)) 

(list tn,Tl,rhol) in 

in 

let pit -- 
(lambda pnn 

(F,list T) if pnn - pn else pi(pnn)) in 
Spec(s)(i)(rho)(pil) ))T 
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To evaluate a procedure definition we need to evaluate the metasorts 

(which denote based theories, hence we use the function 'E'), bind 
the formal parameter names to these theories, and then evaluate the 

body of the procedure. Finally we modify the procedure environment 

by binding all this to the procedure name. The final case is: 
--- Spec(just(e)) <_ 

(lambda i =>(lambda rho => (lambda pi => 
E(e)(i)(rho)(pi) ))) 

To evaluate a specification of this form we simply use 'E' to find 
the denotation. 

This completes our exposition of the program. A parser for CLEAR has 

been written by D. Sannella and thus we may apply the semantic 

function "Spec" to the parsed text to get a meaning for the text in 
the form of a (based) theory. As mentioned before the performance of 
the program is poor - needing about half a hour of CPU time on a 

DEC10 to evaluate a simple specification. However it does illustrate 
this program development technique on a large and complex program. 

For the sake of comparison and to get a usable program, D. Sannella 
[1981] has written a direct implementation of a variant of this 
semantics (also in the language HOPE). The semantic operations, 
instead of being interpreted as operations in a category, specialised 
to the category of theories in question, are implemented directly on 

theories. This gives an improvement of a factor of a thousand or so 

in the running time! Whilst some of this increase in efficiency can 

be attributed to the inefficiency of using general routines for 
specific problems it seems that most of it arises from the sheer size 
of the program in question causing, for instance, a large amount of 
page thrashing. 

Notes 

The language CLEAR and its semantics are described in 

[Burstall and Goguen 1977], [Burstall and Goguen 1980a] and 

[Burstall and Goguen 1980b]. The encoding of the semantics 

described here was rather simple (as it was meant to be) 

though it has proved difficult to "debug". The program is, 
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now running albeit rather slowly. It was a joint 
project between Don Sannella and myself (shared roughly 
equally). 
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CHAPTER FIVE 

THE DEVELOPMENT OF PROGRAMS FROM SPECIFICATIONS - SOME EXPERIMENTS 

We here start some experiments in systematic program development by 

various techniques made available through the programming of category 

theory. This discussion continues for the rest of this paper where 

we will be investigating properties of certain types of "theories" 
which we use in program specification. Many of the properties of 
these theories can be expressed categorically by colimit 
constructions and can be made amenable to the programming efforts 
already available. This gives further insight into the process of 
program synthesis. Here we investigate a few problems using a 

method, known as "colimit recursion", of translating functors into 
recursive programs 

COLIMIT RECURSION - RECURSION ON COMPLEX DATA TYPES 

Some stress has been laid on the fact that colimits provide us with a 

means of building up and breaking down objects in a category. We now 

show how this can be put to use in programming with a technique 

called "colimit recursion" introduced in [Burstall 1980]. 

The divide and conquer paradigm for the recursive computation of a 

procedure on, say, sets means that we split a set in parts, calculate 

the procedure recursively on the parts then assemble the results in 

some fashion. The splitting up of sets is easy - they can simply be 

partitioned. For more complex data structures, graphs for example, 

partitioning is not possible. When splitting a graph we need to have 

a shared part telling us how to reassemble the pieces into the 

original graph. We are saying that to decompose a graph we need, in 

general, a pushout rather than a coproduct. 

In general a splitting of an object in a category, C, is a diagram in 

the category. Now suppose that we wish to compute some function of 

these objects. Assume that the function is the object part of a 

functor, F, and that the results of the computation lie in some 

category, B, 

F : A -> B 
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We can calculate F on an object, a, by expressing 'a' as a colimit 
object of a diagram, D. There are, of course, many ways of doing 
this. We then apply F recursively to the objects and the morphisms 

in D to get a diagram, D ', in the category B. We then take the 

colimit of this diagram in B. Now provided that F preserves colimits 
(is cocontinuous), the colimit object of this colimit in B is 
(isomorphic to) F(a), as required. The proviso that F is 
cocontinuous is crucial but as we shall see, functions that we wish 

to compute can often be expressed as (the object parts of) free 

functors in which case cocontinuity is assured by a general theorem. 

A picture of this process may be helpful. 

F app)I Z!S recurs Idel 
V 

Notice that the recursive call of F requires us to compute the 

morphism part of F recursively as well as the object part. The 

objects are broken up into diagrams and thus the morphisms are to be 

expressed as diagram morphisms. That is, our recursive splitting is 
a functor 

decompose : A -> Diagram(A) 

such that 'colimit_apex functor.decompose' is naturally equivalent to 

the identity functor, where 'colimit apex functor' is the functor 
taking a diagram to the colimiting object on the diagram. It is 
defined on page 35. A similar general decomposition of objects which 

give rise to recursive programs has been investigated in 
[Burstall,Landin 1969] and [Klaeren 1980]. In these papers the 

decomposition takes place in the carrier of an algebra. The relation 
between this and the decomposition functor above is formalised at the 

end of this chapter (page 96). 



78 

What about the base cases on which we compute F directly? These are 

determined by our choice of a recursive splitting, that is, by the 

decomposition functor above. 

Examples of the use of this general means of recursion will appear in 

the next section but it should be said at the outset that it is often 

not at all obvious how a familiar function that we are required to 

compute can be expressed as a functor. In particular, the choice of 

the category of results is not at all obvious. This may, of course, 

be merely our own failure to look at the problem in the right light 

or our being hindered by our programmer's intuition. An example of 

this difficulty is given in [Burstall 19801 where the problem is to 

calculate the shortest distance between nodes in a distance graph. 

The category of results suggested for this problem is the category of 

metric spaces - a choice familiar to mathematicians but possibly not 

to programmers (metric spaces are not a common data type in 

programming) although, of course, the structure of the problem is 

captured in the concept of metric spaces. 

The role of the computation of colimits and the work done in the 

previous sections in finding short cuts to these computations by 

lifting colimits through category constructors ought now to be 

apparent. The whole work of the recursive program (apart from the 

computation on the irreducible objects of the recursion) is in the 

computation of colimits in the category B. The expression of objects 

as colimit objects of a diagram in A is a consequence of our choice 

of representation of the data types, although sometimes we are able 

to write some code for a functor 'decompose' as above. Notice how we 

have split the control structure and the computation in such a way 

that the computation is always a calculation of colimits. 

Finally, a word about the efficiency of these programs. In general 

the programs obtained are not highly efficient. As mentioned before, 

the building of programs from general routines, like the colimit 

routines, may well lead to inefficiency when we have only special 

cases to calculate for which quick methods may be available. There 

is always the hope that program transformation may provide a means of 
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increasing the efficiency of the programs and the further hope that 

the structure of these programs will lend itself readily to program 

transformation techniques such as those in [Burstall,Darlington 

1977]. A future for program transformation may be in its application 

to programs of a fixed structure such as these programs obtained via 

categorical insights. However, notice that in these recursive 

programs we do not specify how the decomposition of objects is to be 

achieved. So far, any 'decompose' functor, as above, will suffice. 

This means that the programs are well adapted to parallel processing, 

as we may decompose the objects so as to distribute pieces among 

processors in a parallel array and compute the procedure recursively 

on these pieces. Once general purpose parallel machines are 

available, efficiency may well not be a prime concern whereas the 

ability to incorporate parallelism into a routine may well come to 

the fore. As mentioned in [Schwartz 1980] the mere possibility of 

large parallel processor arrays does not create ways of exploiting 

the technology. We need to understand how to incorporate parallelism 

into computations. Another reason for not being too concerned about 

the inefficiency is that once a fixed repertoire of general routines 

is agreed upon in a certain field of programming, these routines may 

be 'hardwired' and thus a great improvement in speed might be 

achieved. 

In formal complexity terms, the programs are (with a suitable choice 

of machine model) polynomial time if the basic category (on which 

others are built with category constructors) is that of sets. 

Exactly what degree polynomial and what constant factor depends upon 

how we choose to decompose the objects in question. Some 

decompositions require less duplication of work and converge faster 

than others. 

EXERCISES IN PROGRAM DEVELOPMENT 

We now show how specifications can give rise to programs with two 

examples both chosen from graph theory. Recall that graphs are 

directed multigraphs possibly with loops and cycles. 
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Connected components of a graph 

Two subgraphs of a graph are said to be disconnected if their nodes 

are disjoint and there are no edges in the graph from nodes in either 

subgraph to nodes in the other. If a subgraph cannot be expressed as 

two non-empty disconnected subgraphs it is said to be connected. 

Connected components of a graph are maximal connected subgraphs. 

These components can be characterised as the equivalence classes 

under the reflexive, symmetric, transitive closure of the relation on 

nodes,' , defined by: 

a ^- b 4* There is an edge, e, in the graph 

whose source is a and target b. 

How are we to convert this 'mathematical' definition into an 

algebraic specification? A rather simple (and high level) 

specification of a graph and its connected components can be given by 

labelling the nodes of a graph in such a way that, if the labels of 

two nodes are the same then the nodes are in the same component and 

if the labels differ, then they are in different components. 

The specification, then, of the connected components of a graph is 

given as a theory enrichment, taking the theory of graphs and giving 

a theory of graphs with 

language CLEAR (whose main 

graphs can be given as: 

constant Graph = 

sorts node, edge 
opns 

labelled nodes. In the specification 

features are summarised in Appendix Four), 

source : edge 

target edge 
-> node 
-> node 

end 

Then the specification becomes 

constant Component Graph - 

enrich Graph + Triv by 
data opns label-: node -> element 

eqns label(source(e)) = label(target(e)) 
end 

Here the theory Triv is the trivial theory of one sort: 

constant Triv = 

sorts element 
end 
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This is a high level specification in that it gives no hint as to how 

we are to compute such a labelling. 

Let us look carefully at this specification. The first thing to 

notice is that the equation merely says that nodes in the same 

component have the same label. The converse requirement, that nodes 

in different components have different labels, not only is difficult 

to state using equations but need not be included! It arises from the 

freeness condition of a functor. This free interpretation of the 

specification is indicated by the appearance of the keyword "data". 
Data constraints are explained in [Burstall, Goguen 1980a]. Here we 

see a universal condition at work. The specification is simplified 

whilst the universal condition is implicit in any use of the 

specification, in particular it is a correctness condition for any 

program developed from the specification. It should be said that 

this is a rather unorthodox use of data constraints. Data 

constraints were originally introduced as a means of defining new 

data in a specification whereas we are using them in the more general 

sense of universal conditions on a specification. Nevertheless our 

usage accords with the semantics of the language CLEAR and can be 

seen as a by-product of it. 

To understand what is going on, let us first consider the 

specification without the data constraint: 

constant Labelled Graph 
enrich Graph + Triv by 

opns label : node -> element 

eqns label(source(e)) s label(target(e)) 
end 

Algebras of this specification are graphs with nodes labelled such 

that nodes in the same component have the same label, the converse 

requirement may not hold. 

The enrichment above gives rise to a theory morphism 

cC : Graph -> Labelled Graph 

(because the theory Graph is included in Labelled Graph). 

Algebras of Graph are just graphs and algebras of Labelled Graph are 

graphs with their nodes labelled. Now dropping down to the level of 
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algebras, the theory morphism above induces a "forgetful" functor 

U (Labelled Graph) -> Alg(Graph) 

which takes any graph with its nodes labelled and simply forgets the 

labelling, thus giving a graph. Our task is to assign a component 

labelling to a graph. Indeed, there is a left-adjoint of the functor 
above, the free functor: 

F : A (Gra h) -> j(Labelled Graph). 

Now, by definition of a data constraint, any image of a graph under F 

is an algebra of Component Graph. Thus it is this F that we wish to 

compute. 

The existence of such free functors arising from theory morphisms is 
not automatic. In this case the functor exists and, as we shall 
prove later (page 147), it exists for all equational specifications. 

It is the presence of the word "data" which ensures that it is the 

free fanctor that is intended. 

How then do we compute this functor? We use colimit recursion, 

remembering that free functors are always cocontinuous. 

To use colimit recursion, we need a means of computing colimits in 

Alg(Labelled Graph). Fortunately, the techniques that we have 

developed provide us with such a means. We can lift colimits from 

the category of sets because Alg(Labelled Graph) can be expressed as 

a comma category as follows. 

Let D : Set -> Alg(Gra h) be the functor taking a set onto the 

discrete graph on the elements of the set. A discrete graph has the 

same set for the nodes and for the edges and each edge has as source 

and target the node with the same name. 

Then Alg(Labelled Graph) 3 (!(Gr ph),D) because a graph, g, with 

its nodes labelled (not necessarily distinct labels for distinct 

components) is essentially a graph morphism, f : g -> sD where sD is 

a discrete graph. The fact that f is a graph morphism ensures that 

two nodes in the same component of g must map onto the same node in 

the discrete graph, sD. 



83 

Now, colimits of sets lift to those in Alg(Graph) and so, by the 

lifting construction for comma categories, we can compute colimits in 

Alg(Labelled Graph). 

Translation of this observation into code goes as follows. The 

functor, D, has object part: 

dec discrete_graph : Set(Tag alpha) -> Graph(Tag alpha) 
--- discrete_graph(S) <_ 

graph(S,(lambda s -> pair(s,s)),S) 
and the functor is then given by: 

dec D : Functor( Set(Tag alpha),Set Mor(Tag alpha), 
Graph(Tag alpha),Graph Mor(Tag alpha)) 

D <_ 

let C -- cat of sets in 
functor( discrete graph, 

lambda m -> 
comma_mor( discrete_graph(source(C)(m)), 

(m,m), 
discrete graph(target(C)(m))) ) 

As a comma object a labelled graph is: 

type LG_object(alpha) __ 
Graph(alpha) # Graph Mor(alpha) # Set(alpha) 

We can construct such a comma object from a graph, a set, and a 

suitable map from nodes of the graph to elements of the set: 

dec labelled graph : 

Graph(Tag(alpha)) # 
(Tag(al ha)->Tag(alpha)) # 
Set(Tag((alpha)) -> 

LG object(Tag(alpha)) 

labelledgraph(G,f,S) <_ 
let n_mor mor(nodes(G), f, S) in 

let a mor == mor( edges(G), 
(lambda e -> f(dom(G)(e)) ), 
S ) in 

let g mor comma mor( G, 

( G, g mor, S ) 

(e mor,n mor), 
discrete-graph(s)) in 

Morphisms of such comma objects are comma morphisms. 

type LG_morphism(alpha) =a 

Right_Comma_Mor( Graph(alpha), 
Graph_Mor(alpha), 
Set(alpha), 
Set Mor(alpha) ) 



84 

The category, La, of labelled graphs is thus a right comma category: 

dec LG : Cat( LG object(Ta alpha), 
LG morphism(Tag alpha)) 

--- LG <- right comma cat(cat of graphs,D,cat of sets) 

This information now gives us directly the colimits in the category 

of connected component graphs as the tiny piece of code demonstrates: 

dec cLG : Colimit_Cat( LG_object(Tag alpha), 
LG morphism(Tag alpha)) 

- cLG < 

colimit comma cat( colimit cat of graphs, 
D, 
colimit cat of sets ) 

The other part of the colimit recursion is a splitting of graphs as 

colimits. How are we to do this? We are quite at liberty to choose 

how we want to do this splitting and there may be cases when we want 

to leave this question open (e.g. for a maximal use of resources in 
parallel processing). However, we choose to restrict ourselves to 

expressing graphs as pushouts in the category of graphs. This seems 

a natural way to decompose graphs. 

The irreducible graphs under this recursion are: the graph with no 

nodes, "nil", the graph with one node and no edges, "node(n)", and 

the graph with just one edge, "edge(s,e,t)", where the parameters s,t 
are the source and target nodes of the edge, e. 

This decomposition allows us to represent any graph as either an 

irreducible graph or as a pushout of graphs. Remembering that graph 

morphisms must also be recursively split, we have the interdefined 

types: 

data Graphl(alpha) 

nil ++ 

node(alpha) ++ 

edge(alpha,alpha,alpha) ++ 

po_graph(Po Diagram(Graphl(alpha),Graphl Mor(alpha))) 

with GraphlMor(alpha) =s 
nilmor(Graphl(alpha)) ++ 

mor(alpha,alpha,Graphl(alpha)) ++ 

edgemor( (alpha#alpha#alpha), 
(alpha#alpha#alpha), 
Graphl(alpha)) ++ 

po_mor(Po_Diagram Mor(Graphl(alpha),Graphl Mor(alpha))) 
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The types of p'ushout diagram and pushout diagram morphism in the 

above are: 

type Po Diagram(o,m) _= m # m 

type Po_DiagramMor(o,m) __ 

Po Diagram(o,m) # (m # m # m) # Po Diagram(o,m) 

That is, a pushout diagram is treated as a pair of morphisms. 

Morphisms of pushout diagrams contain a source and target diagram as 

well as morphisms from the three objects in the source diagram to the 

objects in the target diagram. 

The irreducible graph morphisms above are: "nil mor(g)", the unique 

morphism from the empty graph to the graph, g, "node mor(a,b,g)", the 

morphism from the graph with one node 'a' to the graph, g, where the 

image of 'a' is 'b', and "edge mor((a,e,b),(c,f,d),g)", the morphism 

from "edge(a,e,b)" into g with the image of 'e' as 'f' and of 'a' and 

'b' as 'c' and 'd'. 

Notice that so far we have done no calculation except that of the 

functor, D, and the calculation implicit in the basic lifting of 

colimits. Now without further calculation we can compute the 

functor, F, whose object part takes a graph onto a connected 

component graph by recursive application to graphs and their 

morphisms: 
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dec F : Graphl(Tag(alpha)) -> LG_object(Tag(alpha)) 

dec F : Graphl Mor(Tag(alpha)) -> LG morphism(Tag(alpha)) 

! object part of F - recursive routine : 

F(nil) 
<= labelled_graph(nil_graph,nil_fn,nil__set) 

F(node(n)) 
<- labelled graph(node graph(n),ident,{n)) 

F(edge(nl,e,n2)T 
<= labelled-graph( edge_graph(nl,e,n2), 

(lambda _> n1), 
{n1} ) 

F(po_graph(m1,m2)) 
<= pushout(cLG) ofo (F(ml),F(m2)) 

! morphism part of F - also recursive 
F(nil_mor(gl)) <= let lg =a F(gl) in 

let (g, ,s) _= lg in 
comma mor(F(nil),(nil_morphismTg),nil mor(s)),lg) 

F(node_mor(a,al,gl)) <= let lg == F(g1 in 

let (g,gm,s) lg in 
let mor(_,f,_) 

right ofm gm in 
comma mor( F(node(a)), 

( node morphism(a,al,g), 
singleton mor(a,f(al),s)), 

lg) 
_-- F(edge_mor((a,e,b),(al,el,bl),gl)) <_ 

let lg == F(gl) in 

let (g,gm,s) lg in 

let mor(_,f,_) 
right ofm gm in 

comma_mor( F(edge(a,e,b)), 
( edge morphism((a,e,b),(a1,e1,b1),g), 
singleton mor(a,f(al),s)), 

lg) 

--- F(po_mor( (m1,m2),(l,c,r),(m3,m4) )) <_ 

pushout(cLG) ofm 
( (F(ml),F(m2)), (F(l),F(c),F(r)), (F(m3),F(m4)) ) 

Here "pushout(cLG)" is the functor taking a pushout diagram to the 

colimit object and a morphism of pushout diagrams to the universal 
morphism between the colimit objects. It uses the colimit 
computation implicit in the colimit category, "cLG". 

This then is the program we have developed from the specification of 
the problem. To show that it is a genuine program we give an example 

of it running. Consider the graph pictured below: 
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o ,usE (3) 

\i USE (10) 

It can be expressed as a pushout of irreducible graphs as follows: 

dec g : Graphl(Tag num) 
--- g <u po_graph( nil mor node just 1 ), 

nil mor edge just(2just(10),just(3)))) 

We then compute F(g). The value of F(g) is a connected component 

graph and contains a graph whose nodes are 

{ pink(just(1)), 

blue(blue(pink(just(3)))), 
blue(blue(pink(just(2)))) } 

and whose edges are 

{ blue(blue(pink(just(10)))) }. 

Notice the colouring that takes place in the evaluation of this graph 

by colimits. The connected component graph, F(g), is then a set of 

labels and a graph morphism from the above graph to this set of 

labels (considered as a discrete graph). The set of labels turns out 

to be: 

{ pink(just(1)), blue(blue(pink(just(2)))) } 

showing that g has just two components as it certainly does. 

In keeping with our aim of encapsulating recursion in general 

routines, we would need to introduce a routine, say 

"colimit recursion", which given sufficient information would compute 

the functor F by colimit recursion. It is not immediately apparent 

how we are to do this. The problem is to find the irreducibles of 

the decomposition of objects and morphisms (perhaps these ought to be 

given as arguments to the routine). It seems that we have not 

formulated the explanation of colimit recursion sufficiently 

abstractly. 

This program development was made easier by noticing that the target 

data type could be expressed as a comma category. Thus the 
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computation of 'colimits was available by the lifting routines. In 

general, data types cannot be expressed as comma categories. We now 

look at an altogether different and more difficult graphical problem, 

that of the transitive closure of a graph. For this problem no such 

lifting device is available. We need the explicit construction of 

colimits in a rather complicated category - that of small categories 

(categories whose collections of objects and morphisms both are sets 

and not "bigger" entities). We do not completely solve the problem 

here. The discussion spills over into the next few chapters where 

new techniques are made available to us. There a complete program is 

given for the transitive closure of a graph. 

Transitive closure of a graph 

We now look at the problem of developing a program for the transitive 

closure of a graph. That is, given a graph, we want to construct a 

new graph with the same nodes but with edges corresponding to paths 

in the original graph (for each path we have an edge in the 

transitive closure). This is an extension of the transitive closure 

of a relation so is quite a useful procedure. The exact relationship 

between these two problems and an interesting discussion on further 

analogues may be found in [Aho,Hopcroft,Ullman 1974]. Notice that 

programs to compute this transitive closure will not halt if the 

graph has cycles in it. 

We first generalise the problem slightly so as to produce a 

small-category from a graph (strictly this is not necessary but it is 

helpful to deal with familiar data types). That is, we produce not 

only the transitively closed graph but also the identities for each 

node and the composition operation under which the transitive closure 

is closed. 

A small category differs from a category in that the objects and 

morphisms both form sets (rather than any "larger" collection): 

data Small_Cat(o,m) _ 

small cat( Set o, set of objects 
Set m, set of morphisms 
(m->o), source 
(m->o), target 
(o->m), identity 
(m#m->m) ) composition 
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That is, it is 'a category with only a set of objects and a set of 

morphisms. Morphisms between small categories are small functors: 

data SmallFunctor(o,m) -- 
small_functor( Small_Cat(o,m), 

), ( Set Mor(o) # Set Mor(m) 
Small Cat(o,m) ) 

We can thus form a category, SC, of small categories. 

dec SC : Cat(Small Cat(o,m),Small Functor(o,m)) 

--- SC <- let comp -- compose(cat_of_sets) in 

cat( (lambda small functor(s,, ) -> s), 
(lambda _,t) -> t), 

(lambda let id -- identity(cat_of_sets) in 
small_functor( s_cat, 

( id(objects(s cat)), 
id(morphismsTs cat))), 

s_cat)), 
(lambda smallfunctor(s,(f,g), ), 

,(fl,g1'T,t) -> 

small functor(s,(comp(f,fl),comp(g,gl)),t)) ) 

Notice that there are projection functors giving the set of objects 

and the set of morphisms respectively. 

dec objects : Functor(Small Cat(o,m),Small_Functor(o,m), 
Set(oT,Set Mor(o)) 

dec morphisms : Functor(Small Cat(o,m),Small_Functor(o,m), 
Set(mT,Set Mor(m)) 

--- objects <- functor((lambda small cat(oset, , , , , ) 

_> oset), - - - 
- 
- 

(lambda small _functor( ,(mo,-),-) 
-> mo) ) 

- 
--- morphisms <- functor((lambda small cat( ,mset,-,-,-,-) 

-> mset), - 
(lambda small functor(,( ,mm), ) 

-> mm)-) - - - 

The functor 'objects' lifts colimits - objects in the colimit are the 

colimit of objects in the diagram. However, unlike the case of 
graphs, 'morphisms' does not lift colimits - extra work is required 
to compute the morphisms of the colimit small category. 

A formal specification of the problem goes as follows. Graphs are to 

be as before: 
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constant Graph - 

sorts node, edge 
opns source : edge -> node 

target : edge -> node 
end 

The required program is specified by the theory enrichment: 
constant Transitive Closure = 

enrich Graph by 
data opns identity : node -> edge 

compose : target # source -> edge 

eqns source(compose(e,f)) a source(e) 
target(compose(e,f)) - target(f) 

source(identity(n)) - n 

target(identity(n)) - n 

compose(e,compose(f,g)) - 

compose(com ose(e,f),g) 
compose(identity(n),e) - e 

compose(f,identity(n)) - f 

end 

Here 'target # source' is defined for any graph as the set of pairs 

of edges (e,f) such that target(e) - source(f), that is, it is the 

set of all composable pairs. This is a new facility in algebraic 

specification which we have not yet investigated thoroughly. The 

notation is that of a pullback in category theory. Further 

discussion will be found on page 191. 

Before plunging into the development of a program for the transitive 

closure of graphs, let us have a look at some algorithms which exist 

for this problem. 

Our first attempt at a recursive program may be to extract an edge 

from a graph, recursively close the remainder of the graph, then 

replace the edge adding all the new edges which will arise by 

composition with the replaced edge. Thus if the closed graph (as the 

underlying graph of a small category) is given by 
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e4 

3 2 

0 e. 

adding an edge el from '1 ' to '2' will require us to add extra edges 

for the paths e2,el,e4 and e3,el,e4, as well as those which result 

from the composition with the identities. We see that any new edge 

required to be added will be of the form 

(An edge with target as source of el), 

el, 
(An edge with source as target of el). 

Such a composition will include the new edge, el, itself, by choosing 

the identities at its source and target. 

Because we are deriving these morphisms in a small category from 

paths of edges in a graph we can introduce an explicit representation 

of these morphisms (later we will see that this representation comes 

from a free theory construction): 

data Morphism(alpha) __ 
id(alpha) ++ morphism(alpha,string(alpha),alpha) 

Thus a morphism is either the identity on an object (a node in the 

graph) or a string of edges (a path) in the graph (together with a 

source and target node). We can define source, target and 

composition of these morphisms: 
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dec mor source : Morphism(alpha) -> alpha 
--- mor source(id(a)) <- a 

--- mor source(morphism(a,_,_)) <= a 

dec mor_ target : Morphism(alpha) -> alpha 
--- mortarget(id(a)) <= a 

--- mor target(morphism( , ,a)) <- a 

dec comp : Morphism(alpha) # Morphism(alpha) 
-> Morphism(alpha) 

--- comp(id(n),m) <- m 

--- comp(m,id(n)) <- m 
--- comp(morphism(a,pl,b),morphism(c,p2,d)) 

<- morphism(a,pl.p2,d) 

If the set of morphisms into the source of the new edge is called 

'in morphisms' whilst the set of morphisms out of the target of the 

new edge is called 'out morphisms', then the code for the addition of 

a new edge looks like: 

dec add edge : 

Morphism(Tag(alpha)) # 
SmallCat(Tag(alpha),Morphism(Tag(alpha))) 

-> Small Cat(Tag(alpha),Morphism(Tag(alpha))) 

--- add edge( m, scat & small_cat(_,_,s,t,_,_) ) <_ 
let in_morphisms -- ! morphisms into 'a' 

filter morphisms(s cat) by 
(lambda x -> mor_target(x) - mor_source(m)) in 

let out_morphisms -_ ! morphisms from 'b' 

filter morphisms(s_cat) by 
(lambda x -> mor source(x) - mortarget(m)) in 

let new morphisms -- ! the extra morphisms 
ml,m2 -> comp(ml,comp(m,m2))) 
(in morphisms X out morphisms) in 

small-cat( objects(s cat), 

new_morphisms U morphisms(s_cat), 
mor_source, 
mor target, 

id, 

comp ) 

The recursion then is to split off an edge of the graph, close the 

remainder, then add the edge using the function above. 
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dec closure': Graph(Tag(alpha)) -> 
Small Cat(Tag(alpha), Morphism(Tag(alpha))) 

a --- closure(G) < 

discrete_smallcat(nodes(G)) ! initial case if edges(G) = nil-set else 
! recursive case 

let e,E1 -- singleton split(edges(G)) in 
let a dom(G)(e) in- 
let b range(G)(e) in 
let reduced graph =_ 

graph(E1,graph map(G),nodes(G)) in 
add edge( morphism(a,unitTe),b), closure(reduced graph)) 

('dom(G)' and 'range(G)' are the functions taking an edge to its 
source and target, respectively, in graph G.) 

The initial case is the discrete small category on a set of nodes 

whose only morphisms are the identities on the nodes: 

dec discrete small cat : Set(Tag(alpha)) -> 
SmallCat(Tag(alpha),Morphism(Tag(alpha))) 

--- discrete small cat(N) <_ 
small cat(N, id*N, mor source, mor target, id, comp) 

It is interesting to note that we can analyse the program in 
categorical terms. The addition of a new edge as encoded in 
'add edge' can be considered to be a special case of the computation 

of pushouts in the category of small categories. This is because the 

splitting of an edge from a graph can be seen as a pushout in the 

category of graphs: 

i 
e 

o r 
r 

f 

1' 'r 
1 `o r 

Fig: Extracting an edge from a graph is a pushout. 

Thus the recursion in 'closure' is a special case of colimit 

recursion. This gives us some assurance that recursive programs may 

be amenable to this type of "categorical analysis". Analysis of 
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programs using category theoretic tools has already been noted, for 
instance by Burstall and Landin (1969) and Burstall (1980). 

What about iterative programs? A 'fast' algorithm for this problem is 

known, due to Warshall [1962]. It does not correspond to any obvious 

recursive splitting of graphs. This is all that we can say for the 

moment for we have no techniques for developing such algorithms, 

though later we shall see how to handle iteration in category theory 

(page 135). 

We now return to the program development by colimit recursion. We 

express graphs as colimits exactly as in the example of the connected 

components of a graph. That is, graphs are given by: 

data Graphl(alpha) 
nil ++ 

node(alpha) ++ 

edge(alpha,alpha,alpha) ++ 

po graph(Po Diagram(Graphl(alpha),Graphl Mor(alpha))) 

with GraphlMor(alpha) -- 
nil _mor(Graphl(alpha)) ++ 

node mor(alpha,alpha,Graphl(alpha)) ++ 

edgemor( (alpha#alpha#alpha), 
(alpha#alpha#alpha), 
Graphl(al ha)) ++ 

po mor(Po_Diagram MorGraphl(alpha),Graphl Mor(alpha))) 

The recursive program for this problem will then look like: 
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dec F : Graphl(alpha) -> Small_Cat(alpha,Morphism(alpha)) 

dec F : Graphl Mor(alpha) -> 

Small Functor(alpha,Morphism(alpha)) 

F(nil) 

___ F(node(n)) 
___ F(edge(m,e,n)) 

F(po graph(m1,m2)) 

F(nil mor(g)) 
F(node mor(a,b,g)) 

<= nil-cat 
<= node cat(n,id(n)) 
<= edge cat( (m,id(m)), 

morphism(unit(e)), 
(n,id(n))) 

<= SC pushout ofo (F(ml),F(m2)) 

<= nil_sfunctor(F(g)) 
<= node_s functor( (a,id(a)), 

(b,id(b)), 

F(g) ) 

F(edge_mor((a,e,b),(c,f,d),g)) 

edge s functor( (a,id(a),morphism(unit(e)),b,id(b)), 
(c,id(c),morphism(unit(f)),d,id(d)), 

F(g) ) 
F(po_mor( (ml,m2), (l,c,r), (m3,m4) )) 

<= SC_pushout ofm 
( (F(ml),F(m2)), (F(l),F(c),F(r)), (F(m3),F(m4)) ) 

where the images under F of the irreducible graphs and irreducible 

graph morphisms are given by the obvious small categories and small 

functors. 

The functor 'SC pushout', which computes pushouts in the category of 

small categories is not yet defined. In fact, it is not available by 

the techniques so far given. We could write a program for this 

functor but we prefer to wait until a categorical formulation of the 

program is available (page 140). The construction of colimits in SC 

may be found in [Lawvere 1963b] and in general requires a rather 

complex iteration. We shall see later that such an iteration can be 

expressed as the construction of a free theory on a signature. We 

now close our discussion of these graphical problems for the moment. 

Discussion 

Notice in the above work that we have introduced two notions of the 
data type "graph". One is simply as objects in a category, actually 

a comma category: 

type Graph(alpha) (1) 

Set(alpha) # Set Mor(alpha) # Set(alpha) 

The other is a constructive means of giving graphs together with 
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their morphisms. 

data Graphl(alpha) -- 

nil ++ 

node(alpha) ++ - (2) 

edge(alpha,alpha,alpha) ++ 

po_graph(Po Diagram(Graphl(alpha),Graphl Mor(alpha))) 

with GraphlMor(alpha) -- 
nil mor(Graphl(alpha)) ++ 
nodemor(alpha,alpha,Graphl(alpha)) ++ 

edge_mor( (alpha#alpha#alpha), 
(alpha#alpha#alpha), 
Graphl(alpha)) ++ 

po_mor(Po_Diagram Mor(Graphl(alpha),Graphl Mor(alpha))) 

In programming terms, the second, "constructive", way of expressing 

data type is the more familiar - for instance "lists" are usually 

expressed in this form and it is this form that has lead to the 

association of data types with initial or free algebras. 

The formal relationship between these two notions of a data type is 

that of a language and its semantics - a categorical semantics, of 

course. We sketch how this may be expressed in algebraic semantics. 

The following explains how the carrier of a data type can be 

interpreted as a category and thus that structure on a data type can 

be translated into structure on a category (e.g. colimit structure). 

The expressions in (2) determine a free two-sorted theory i.e a free 

theory on the category Set x Set, (in fact this construction can be 

achieved computationally as we shall see). Thus given a pair of sets 

(the nodes and edges), terms on this pair are expressions for graphs 

and for graph morphisms derived from the data declaration above (2). 

The composition of this theory is simply term composition. 

In algebraic semantics, the semantic function is interpreted as a 

theory morphism. In our case the target theory (of denotations) of 

the semantic function, is also to be a theory on Set x Set. However, 

we are also claiming that the category of graphs is to be the domain 

of denotations. How do we reconcile these two views? Notice that a 

category can be thought of as a two sorted algebra. The sorts being 

the objects and morphisms of the category (we are ignoring questions 

of the "size" of sets or classes - this is all right in this case 
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since we are dealing with finite graphs only). Thus a category is an 

algebra of a theory on Set x Set. Thus the category of graphs can be 

interpreted as a theory on Set x Set. What is composition in this 

theory? Given a graph of graphs we need to "flatten" this to a 

graph. This is the colimit of a diagram of graphs! 

The semantic function is a theory morphism from the theory of graph 

expressions (and graph-morphism 'expressions) to the theory of the 

category of graphs. As a theory morphism it gives rise to an 

adjunction between categories of algebras. Indeed the free functor 

of this adjunction may be encoded - it is simply the functor F which 

appears in the discussion of connected component graphs, replacing 
"pushout(cLG)" with "pushout(colimit cat of graphs)". Notice also 

that the definition of F as it stands may be read as a semantic 

function interpreting graph expressions as connected component 

graphs. 

Somehow this looks like special pleading. Graphs occur both as the 

data type in question and as an integral part of the definition of 

colimits. Thus the composition in the theory is a colimit operation. 

Can we do a similar thing for other data types? Can we interpret 

type expressions as constructions in categories? Sets as a data type 

can be so interpreted, as sets of sets of elements can be flattened 
to sets of elements (by a coproduct) and we should be able to handle 

lists likewise. As for the generality, I do not know. 

How close is this, albeit rather limited, scheme for program 

development to a genuine automatic synthesis of programs from the 

text of a specification? The problem is twofold. Firstly we have 

used no formal apparatus to handle specifications, only an intuitive 

knowledge of what a specification means. Therefore we have not 

synthesised programs from the text of specifications. In the 

remaining chapters of this work we are to look at specifications from 

a formal viewpoint. Notice that the implementation of the semantics 

of a specification language is part of what is needed for the 

automation. 

Moreover we have produced the required colimits by "fiat". A perusal 
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of the text of the specifications of the problems reveals that 
connected component graphs can be considered as objects of a comma 

category (there is one operation and the equation is a 'preservation 
of structure') and hence that the colimits are computable by the 

techniques already available, whereas, in the case of the transitive 
closure of graphs, we can see that some iterative method of computing 

the colimits is required. Is it possible to formalise these 

observations? Given a theory, what do colimits of its algebras look 

like? The "monadic" theories of the next chapter give us one answer 

but do not provide a direct means of computing these colimits (but 

see [Adamek,Koubek 1980] for a construction of colimits of algebras). 

Notes 

Colimit recursion was introduced in [Burstall 1980] though no 

non-trivial example had been worked through. 
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CHAPTER SIX 

THEORIES 

In this chapter we look at various notions of "theories". Eventually 

we concentrate our attention on the so-called "monadic theories". 

Like categories, theories are an abstraction of the properties of 
functions. Categories deal with all "functions" of a certain kind 

between objects in a given class. Theories, on the other hand, are 

intended to handle a small collection, often finite, of specific 
functions. We need this notion of a theory in the analysis of 
programs and of specifications simply because programs, and parts of 
programs (program modules and abstract data types), as well as 

specifications contain a small collection of "functions" or 
"operations". 

The abstraction in the case of theories includes the composition of 
functions and their arities. We do not include function application 
as this is a special property of functions on sets. There are 

several ways that this abstraction may give rise to a mathematical 
formulation of theories. We look briefly at some of these. 

What we may call a 'theory in a logical form' consists of a signature 

- that is, a set of sorts (simply names) and operations (or 
"functions" - again simply names) together with arities of the 

operations in terms of the sorts. Along with the signature we have 

"constraints". These constraints may be universally quantified 

equations, clauses in predicate calculus or something else. We are 

not interested in the constraints per se, only in the way they 

restrict the behavior of the operations. Thus two sets of 

constraints may well entail the same behavior of the operations. We 

handle this by insisting that the set of constraints should be in 

some way 'maximal' or 'closed'. An abstract formulation of these 

logical theories in which signatures are objects in a category and 

the constraints are sentences in a language may be found in 

[Burstall,Goguen 1980a]. 
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Another approach is to consider the "terms" derived from a signature 

(in the form of sorts and operations with arities). If X is a set of 

variables indexed by the sorts in the signature, then we may form 

terms on X as follows: 

1. If x is a variable in X, x is a term (of sort the index of 

x). 

2. If o': s1s2s3 ... sn -> s is an operation in the signature 
and t1, t2, ... tn are terms of sort s1, s2 ... sn 

respectively, then Q(t1,t2, ... tn) is a term of sort s. 

How do we handle possible constraints? Suppose that the constraints, 
as in the case of universally quantified equations, give an 

equivalence relation on the terms. Then instead of dealing with the 

constraints directly we can deal with the equivalence classes of 
terms under the equivalence relation. This restriction on the type 

of constraints allowed is quite severe. However two things might be 

said: Theories with constraints of this type have some special 
properties (for instance, the existence of initial algebras). 
Moreover, from the examples of the last chapter, we might speculate 

that universal conditions on specifications can replace constraints 
that do not behave like equations (there is some theoretical 
justification for this view). 

The properties of these (equivalence classes of) terms can be 

abstracted to yield two "categorical" formulations of theories - 
either as derived from categories (Lawvere theories) or as derived 
from functors (monadic theories). 

The first, due to Lawvere [1963b], arises from the observation that 
the composition of terms (or of equivalence classes of terms) has 

formally the properties of composition in a category. Thus, the 

suggestion is that a theory is to be a category whose objects are the 

arities of the terms and whose morphisms are to be the the 

equivalence classes of terms. To handle the arities and the 

projection functions on the products of sorts (or coproducts, if we 

take the dual category, as is usual), we have another category whose 

objects are again the arities but whose morphisms are these 
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projection 
projection 
functor, 

functions. Thus, if A is the category of 
functions and C is any category, a Lawvere 

F : A -> C, 

which preserves 

isomorphism. We 

arities and 

theory is a 

finite coproducts and whose object part is an 

could consider this to be simply the category C with 
distinguished morphisms - those which are the image of morphisms in 
A. This formulation of theories as categories has the advantage that 
higher-order theories can be described using standard category 

theoretic apparatus as 'cartesian closed categories'. Topoi provide 

a further extension to theories with a distinguished sort of 'truth 
values' and thus an internal logic [Mac Lane 19751. 

A formulation in a different direction is that of monads 

theories. It is with monadic theories 
the remaining chapters of this paper. 

that we shall be 

Monadic theories 
the following observation. Given a presentation 

theory, the map which takes a set of variables 
equivalence classes of all terms is functorial. 
morphism part as substitution of variables in terms. 

Thus an equational presentation gives a functor, 
T : Set -> Set. 

or monadic 

working in 
arise from 

of an equational 

onto the set of 
We may define a 

Monadic theories are defined in terms of a functor and include a 

"composition" as follows: 
Definition 

A monadic theory (or a monad or, in the sequel, simply a theory) T on 

a category C is a triple T = (T, 2 ,1u) where T is an endofunctor on C 

and 2 and are natural transformations, 
7 

: I t> T and ? : T2 I> T 

(I being the identity functor on C), such that the following diagrams 

commute: 
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T?>T 2' T? T T3 
/uT 2 

N 0, 

T2 T 
P 

(These are diagrams in the category of functors from C to C.) 

The natural transformation "rt" is called the unit of the theory and 

"'a " its composition. The second diagram then says that the 

composition is "associative". 0 

Morphisms of these theories are natural transformations between the 

endofunctors. Formally, if T = (T,2 p) and T' _ (T',I2',/td') are 

theories on category C then a morphism o(.: T -> T' is a natural 
transformation o(: T => T' such that the following commute. 

o'u oC TI 2 I T2 

)-T T T 
0< 

We can form a category of these monadic theories, Th(C), by defining 

the identity on the theory T to be the identity natural 

transformation, i : T => T, and the composition as the vertical 

composition of natural transformations. 

As suggested above finitary equational theories can be expressed as 

monadic theories. Later, we extend monadic theories to cover other 
types of theories, in particular the data theories of 
[Burstall,Goguen 1980b]. For a detailed exposition of monadic 

theories consult [Manes 1976]. 
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Algebras of monadic theories are defined as follows. If 
T - (T,2 ,,U) is a theory on C, then a T-algebra is a pair (a,e) with 
'a' an object of C and E : aT -> a (the "structure map"), such that 
the following diagrams commute: 

a 

aTz0 

aT 

ET E 

aT a 
E 

A morphism of T-algebras from (a,E) to (b,X) is a C-morphism, 

f : a -> b, such that 

fT 
aT bT 

Q 6 

commutes. These algebras 

then form a category Alg(T). 

We have discussed several ways of expressing theories as mathematical 

objects. An alternative 'axiomatic' approach to theories is 
suggested in [Goguen,Burstall 1978]. In order that a semantics of 
the algebraic specification language CLEAR could be formulated, 

certain properties of theories were required. These properties were 

then abstracted as axioms. We give a rough statement of a variant of 
these axioms as follows(a precise statement of the axioms may be found 

in the above paper). 
There are two categories Th and Sig (of theories and signatures 
respectively) such that: 

1. There is an adjunction (T, U,2 E ) : Sig -> Th. 
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2. Sig and Th are both finitely cocomplete. 

3. Th has extremal-epi,mono factorisations. 

4. With each object of Th (each theory) is associated a 

category (of algebras) - this association being an indexed 

category. Moreover, each theory morphism gives rise to a 

free functor on algebras and a collection of algebras of a 

theory give rise to another theory with certain properties 
(page 157). 

The adjunction of (1) enables us to generate theories from signatures 

- the free theory on the signature - and express other theories as 

quotients of free theories. The existence of colimits in (2) gives 

us the means of fitting theories (or signatures) together to get new 

theories (or signatures). The factorisation in the category of 
theories is connected with data abstraction facilities. Finally (4) 
allows us to restrict the interpretation of specifications to 

algebras free in some sense and, thus, we can handle the so-called 
data theories of [Burstall,Goguen 1980b]. The following chapters 

will explain these things in detail. We will eventually show that 
the axioms hold for monadic theories. 

Why should we choose to investigate monadic theories? These theories 

have several special properties which will be of use to us. Firstly, 
by choosing the base category of the theories to be the category of 
sets we get the usual set-based theories. Other choices of base 

category give us other useful theories. For instance, choosing a 

category of continuous partial orders gives us the continuous 

theories of [Wagner,Wright,Goguen,Thatcher, 1978]. This means that 

constructions on monadic theories will handle both these cases 

uniformly. In particular, we will get free continuous theories by 

the same technique by which we get free set-based theories. 

Moreover, we will find that some of the constructions used can be 

translated into programs by the techniques we have developed. This 

gives us further insight into the relation of specifications to 

programs. 

Another reason for looking at monadic theories is their close 
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relation to data types. Data types in programs normally have an 

associated property of initiality or freeness. This can be 

interpreted in categorical terms as an adjunction. Indeed it was one 

of the early triumphs of category theory to correctly formalise the 

notion of freeness [Kan 1958]. The following theorem explains the 

connection between monadic theories and adjunctions. 

Theorem 

Every adjunction gives rise to a monadic theory and conversely every 

monadic theory gives rise to an adjunction. 

(In fact, this relationship is an adjunction between the dual of the 

category of monadic theories on a category and the category of 
adjunctions on this category.) 

Construction 

Let A and B be categories and (F, G, 2 , E) : A -> B be an adjunction. 
Then (FG,7 , F E G) is a monadic theory on A. 

Conversely, let T = (T,2 ,1u) be a monadic theory on A. Then define 
an adjunction (F,G, E ) A -> Alg(T) where Alg(T) is the category 

of T-algebras, by: 

aF - ap : (aT)T -> aT 

and if f : a -> b then fF = fT. G is the functor mapping an algebra 
onto its carrier. 2 is the unit of the theory and, if : aT -> a 

is a T-algebra, then 

I E : (a1U : aTT -> aT) -> aT -> a) 

is defined to be the algebra morphism 0 : aT -> a. 

The checking of properties and the remainder of the proof is routine. 
It may be found in [Schubert 1972]. 0 

The two approaches to theories - the functorial approach of monads 

and the categorical approach due to Lawvere - are not quite as 

disparate as they may seem. There is an intermediate notion due to 

Kleisli [1965] which converts a monad into a category as follows. 

Definition 

Let T = (T, 7 ,/2) be a monad on category C. The Kleisli category of 

T, denoted C(T), is defined as follows: 
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The objects'of C(T) are the objects of C whilst the 

morphisms of C(T), f : a -> b, are morphisms of C of 

the form f : a -> bT. 

The identity on an object a is a?Z: a -> aT. Composition uses the 

composition 1LL in the monad. If f : a -> b and g : b -> c in C(T), 

define fg in C(T) by the morphism in C: 

f.gT.cp : a --> bT --> cT2 -_> cT 

The theory laws of T establish the category laws of C(T). Q 

Notice that there is a functor F : C -> C(T) which is the identity on 

objects and takes a morphism f : a -> b into the composition (in C) 

f.b17 : a -> bT. This functor has the following rather special 

property: if C has finite coproducts, then this functor preserves 

them. We thus have that, formally at least, for any T over C, 

F : C -> C(T) is a Lawvere theory. 

However neither the choice of C as Set or as FinSet (the category of 

finite sets) will give the standard interpretation of a Lawvere 

theory. We need the following observation. 

Let T be a monadic theory on C, J a category with finite coproducts 

and H : J -> C a functor which preserves these finite coproducts. 

Then we can restrict the Kleisli construction to the category J as 

follows. Construct a new category, denoted H(T), whose objects are 

those of J and whose morphisms f : a -> b are C-morphisms of the form 

f : aH -> bHT. Identity and composition are similar to those of the 

Kleisli construction. As before there is a functor 

F : J -> H(T), - (*) 

which preserves finite coproducts. 

Now let J be FinSet (or its skeleton) and let C be Set, H the 

inclusion, and T a theory on Set. Then (*) is the Lawvere theory 

associated with T. It contains only finite sets of variables yet 

possibly infinite sets of terms. 

Colimits in Kleisli categories are of some independent interest. As 

mentioned above, the functor F : C -> C(T) for any monad T on C 

preserves finite coproducts. The same holds true for the initial 
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object. Coequalisers are of more interest. Even if C has 

coequalisers, in general, C(T) does not. Moreover coequalisers that 
do exist in C(T) can be interpreted computationally as the 

unification of terms - it is actually somewhat more general than 

this. Thus the definition of unification has been reduced to that of 

a colimit. Unfortunately this does not give a direct means of 
computing the unification of terms. We need the iterative methods 

arising from the free theory construction of chapter eight. 

MONADIC THEORIES COMPUTATIONALLY 

In the following pages we are to look at properties of monadic 

theories. Not only do we establish mathematical results but we also 

investigate these results in the light of our programming of category 

theory. To this end we need to express monadic theories in 

programming terms. We now do this and show also that the 

relationship between adjunctions and monadic theories described above 

can be encoded as a program. 

First we look at adjunctions as a data type. We could give an 

adjunction as a quadruple consisting of a pair of functors (the left 
and right adjoints) and a pair of natural transformations (the unit 
and counit). Instead, we look at another, equivalent, definition of 
adjunctions. 

Suppose (F,G,?,E) is an adjunction with F : A -> B. Then for any 

object 'a' of A and 'b' of B, and for any morphism f : a -> bG, there 

is a morphism f# : aF -> b such that the following triangle commutes: 

ark 

The passage from f to f# can be extended to a functor from the comma 

category (A,G) to the comma category (F,B). This is part of the 
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bijection associated with an adjunction. Thus there is an inverse 

functor. We can now define an adjunction in terms of these two 

functors as: 

data Adjunction(o,m,ol,ml) __ 
adjunction(Functor(o,m,ol,ml), ! free functor 

Functor(ol,ml,o,m), ! forgetful functor 
Functor((o#m#o1),Right Comma Mor(o,m,ol,ml), 

(ofml#ol),Left_Comma_Mor(o,m,ol,ml)), 
Functor((o#ml#ol),Left Comma Mor(o,m,ol,ml), 

(o#m#o1),RightCo mmaMor(o,m,ol,ml)) 
the- 

) 
"sharp" functor 

and its inverse 

A morphism of ad junctions from (F, G, 
6 

, E ) to (F' , G' , 7' , E') is a 

pair of natural transformations (a': F => F', 7: G' '> G) which are 

conjugate, that is, the following diagram commutes (see [Mac Lane 

1971] for details): 

F'r 

As a data type a morphism of adjunctions is: 
data Adj_Mor(o,m,ol,ml) -- 

adj_mor( Adjunction(o,m,ol,ml), 
( Nattransform(o,m,ol,ml) # 

Nattransform(ol,ml,o,m) ), 
Adjunction(o,m,ol,ml)) 

We can define a category of adjunctions in the now-familiar manner. 

We can also recover the unit and counit of the adjunction from our 
formulation as follows: 
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dec unit : Cat(o,m)#Cat(o1,m1) -> 
(Adjunction(o,m,ol,ml) -> Nat transform(o,m,o,m)) 

dec counit : Cat(o,m)#Cat(ol,ml) -> 
(Adjunction(o,m,ol,ml) -> Nat transform(ol,ml,ol,ml)) 

--- unit(A,B) <_ 

(lambda adjunction(F,G,_,invsharp) 
nat_transform(I(A), 

(lambda a eta_a 
where (_,eta_a, ) 

(invsharp ofo 
(a,identity(B)(F ofo a),F ofo a))), 

F.G) ) 

--- counit(A,B) <_ 

(lambda adjunction(F,G,sharp,_) _> 

nat_transform(G.F, 
(lambda b => epsilon_b 

where ( epsilon 
(sharp ofo 

(G ofo b,identity(A)(G ofo b),b))), 

A monadic theory, as a data type, is an endofunctor and two natural 

transformations (the unit 2 and composition P): 

data Monad(o,m) -- 
monad( Functor(o,m,o,m), 

Nat_transform(o,m,o,m), 
Nat transform(o,m,o,m)) 

Finally the passage from an adjunction to a monadic theory described 

above can be programmed: 

dec monadic: Cat(o,m)#Cat(ol,ml) -> 
(Adjunction(o,m,ol,ml) -> Monad(o,m)) 

--- monadic(A,B) <_ 

lambda Y & adjunction(F,G,_, ) _> 

monad( F.G, unit(A,B)(Y), F.counit(A,B)(Y).G ) 

There is a large body of results concerning the characterisation and 

properties of categories of algebras of monadic theories. Much less 

is known about categories of monadic theories themselves. In the 

following chapters we are to establish some properties of monadic 

theories, showing that the four axioms on page (103) hold for these 

theories and looking at the consequences of this in terms of our 

programming of category theory. 
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Constructions In category theory often include a good deal of 
verification that certain diagrams commute, by rather routine 
"diagram chasing". We therefore start with a chapter containing 
results which are intended to make the proofs more succinct and more 

readable. 

Notes 

Monadic theories were introduced by Godement (1958) where 

they were called "standard constructions". Eilenberg and 

Moore (1965) were the first to link monadic theories to 

universal algebra and noticed the relationship between 

adjunctions and monadic theories. 

The idea of investigating monadic theories as a basis for 
program specification came from Dr. Gordon Plotkin. 

The axioms required of theories which are to be denotations 

of CLEAR specifications are found in [Goguen and Burstall 
1978). 
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CHAPTER SEVEN 

COLIMIT CONSTRUCTIONS 

In this chapter we give some general results from category theory. 

In the first section we review some properties of colimits in functor 
categories. In the next we see how the universal properties of 
colimits may be translated into 'proof rules'. 

COLIMITS AND FUNCTORS 

Our interest lies with colimits in various categories of functors. 
We shall be constructing monadic theories using colimits of functors. 
Properties of these theories will then be determined by the 

properties of colimits in functor categories. The following results 
are all of the form: given a diagram of functors all of which have 

the property, P, then the colimiting object of the diagram, itself a 

functor, also has the property P. Further details and proofs will be 

found in [Schubert 1972]. 

Theorem 

If A, B are categories with B cocomplete (hence B. is cocomplete - 

see page (52)) and C is the full subcategory of B. whose objects are 

functors that preserve colimits that exist in A, then C is cocomplete 

and the colimits in C are those in B. 0 

Thus, in particular, if A is cocomplete, then the colimiting functor 

of a diagram of cocontinuous functors is itself cocontinuous. 

This result may be tightened somewhat: 

Theorem 

If A,B are categories with B cocomplete and C is the full subcategory 

of B. of functors that preserve Q-colimits (that exist in B) then C 

is cocomplete and closed with respect to colimits in B. Q 

We may replace c -colimits by pushouts, binary coproducts etc. More 

generally, we can extend the theorem to classes of "diagram schemes 

with commutativity conditions". Moreover, we may restrict B to be, 

say, tW-cocomplete and then the theorem says that C has the same 

cocompleteness property as B. Another result of a similar form is: 
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Theorem 

If D is a diagram of functors all of which preserve the colimit of a 

diagram of functors D', then the colimiting functor of D preserves 

the colimit of D'. 

These results are all corollaries of the following theorem: 

Theorem (Interchange of Colimits) 

a 

If P and Q are two (small) categories and C any category and 

D : P x Q -> C is a diagram in C, then the colimit of D is computed 

componentwise as follows: For each object p in P, consider the 

functor (p,_)D : Q -> C. Let its colimit, if it exists, be 

3p,q : (p,q)D -> cp for each q in Q. The map p N cp extends to a 

functor G : P -> C whose morphism part arises from the universal part 
of the colimit. Then D has a colimit iff G exists and has a colimit. 

Moreover, if p : pG -> c is the colimit of G, then the colimit of D 

is given by the composition: 

3p,q'yp : (p,q)D -> c 

for each pair of objects (p,q) in P x Q. Q 

Note that this is constructive in the sense that we may encode it as 

a program to compute double colimits. See the reference above for 

further details of theorems of this form. 

We see from these results that colimits in functor categories are as 

well-behaved as could be wished. Results of this type are not merely 

of a theoretical interest, they correspond to results in programming 

and specification. A typical application of such results would be to 

prove syntactic identities in algebraic specifications. Details of 

this may be found in [Ehrich 1978]. 

COLIMITS AND PROOF RULES 

In the following chapters extensive use will be made of colimit 

constructions. Their universal properties will be used to prove 

properties of the colimiting objects. The contents of this, rather 

technical, section are designed to make these proofs easier and more 

succinct by translating the universal property of a colimit into 
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proof rules. When we turn to colimit constructions we will find that 

much of the proof is routine "diagram chasing" - verifying that 

certain diagrams commute. It ought to be automatic. The casting of 

properties of colimits into proof rules shows how this automation 

might go. 

The idea is to use the fact that the colimiting object of a diagram 

can be thought of as "approximated" by the objects of the diagram. 

This gives us a means of reducing proofs of properties of the 

colimiting objects to proofs of properties of the objects in the 

diagram. 

The important facts are the following two lemmas and the idea that 

they may be extended to more complicated cases. 

Let D be a diagram in a category C which has colimits of D-shaped 

diagrams. Let the objects in D be ai (i ranging over a suitable 
index set). Let the colimit of D be I i : ai -> a. Then we have the 

following proof rule: 

Lemma (1-approximation) 

To show that f : a -> b is equal to g : a -> b, it suffices to show 

that, for all is 

7 

V 

a b 

9 

commutes. 

Proof 

Immediate consequence of the universality of the colimit. 0 

As a proof rule this is not very powerful. It encodes only the 

uniqueness part of the universality and not the existence. For 
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instance, in the category of sets, it applies not only to the 

coproduct of two sets, but also to their union. However, it provides 

a useful means of presenting proofs. The full universality of the 

colimit is given in the following lemma which is merely a statement 

of the colimiting property of colimits. It is included because we 

intend to extend it to more general cases. 

Lemma (1-existence) 

If hi : ai -> b form a cone on D then there is a unique h : a -> b 

such that for all is 

Q4 

commutes. 0 

The approximation lemma above (which, like the existence lemma, has a 

prefix of ' 1 ' because there are more to come) grew out of our toils 
in proving properties of objects defined by colimits of 4i-chains 

which were generated by the successive application of an endofunctor 

to an object and a morphism. In this context it turned out that the 

extra structure in the category of endofunctors on some category, 

that of a composition, gave us further approximation and existence 

lemmas. We present these lemmas in an abstract form by introducing a 

general "composition" on objects and morphisms of a category. In our 

applications we will, however, only be using the case of endofunctors 

under composition. 

Definition 

C is a strict monoidal category with composition U and identity e if: 

1. d is a bifunctor p: C X C -> C 

2. 0 is associative both on objects and morphisms 
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O (D X 1) - 0( 1 X C7) : C X C X C -> C (where we 

identify (C X C) X C and C X (C X C)). 

3. e is the left and right identity for D: 

( e X 1 ) = idC = O ( 1 X e). 
Notice that associativity and identity ensure the following rules: 

is t) ib - is a b for a,b in C 

(f' 0 g')(f Ca g ) - (f'f) D (g'g) 
whenever f'f and g'g are defined. 

The second is the interchange law. Thus for any a,b in C, a b is 

an object of C, and for any morphisms f : a -> a', g : b -> b' in C 

there is a morphism 

fa g : aOb -> a'D b' 

Following usual conventions, we will often write f U b for the 

morphism f O ib and a D g for is g. 0 

This definition occurs in [Mac Lane 1971. The example we have in 

mind is that C is the category of endofunctors on some category, O is 

the functor composition and e the identity functor. 

Now, to progress further we need to make assumptions about the 

relationship of G to the colimits in C, where C is cocomplete (or, at 

least, has colimits of diagrams of a certain shape). Using the 

notation of the previous lemmas, we specify that 

1. For all a i in D, ai a preserves colimits (at least of 

D-shaped diagrams) 

2. O a preserves colimits (again, at least of D-shaped 

diagrams) 

Then we have the following lemmas. 

Lemma (2-existence) 

If hi,j : ai aj -> b is such that for all ai, aj, ai,, aj, in D and 

for all f : ai -> ai, and g : aj -> aji in D, the following two 

triangles commute, 
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Foqj q,OC1P aL,aq 
q,ag 

ci D Qj 

(In this case we say that hi,j is a cone on D separately in i and j.) 

then there is a unique h : a O a -> b such that, for all i,j (with 

ai,aj in D), 

3j Ij 

Proof 

Construct such an h as follows: 

I 

6 

commutes. 

Consider the diagram ai G D. Its colimit is 

ai 0 1i : ai aj -> ai G a 

(as ai U preserves colimits). 

Now the hi'j form a cone on ai o D so there is a unique 

hi : ai fl a -> b such that 
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cone on D CI a, that is, for all ai, 

PC a 

g1osk 

commutes. 

To show this, we use the 1-approximation lemma. Thus it suffices to 

show that the following commutes for all ai, aj, ak and f : ai -> ai 
in D: 

4,o qK 

Qe Q 3k 
Qj 0.0 I< ' CLJ 4 

aL0 Ck b 
kz 

But (1) is the interchange law, (2) is the definition of hi, (3) 

commutes because 
hi+J 

is a cone in the first argument and (4) by the 

definition of hi. 

Thus the hi form a cone on D a and, as q a preserves colimits (of 

D-shaped diagrams), we have: there is a unique h : a a a -> b such 

that 

commutes. These hi form a 

aj in D and f : ai -> aj in D 

C EL 

FagK Fn CL 

n at_ 



be the colimit of diagn 

g a a -> b, to prove that 
a 1, aj in D. 

QQ GQQ 

as b 

c ; 
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q(ac 
lot 

cIak oa4cla 

lim3jalk 9 

commutes, then f = g. U 

The previous lemmas can be stated in a weaker form if we make the 

assumption that the diagram D is both commutative and path-connected. 
Path-connectedness means that for any two objects ai and aj in D 

there is a directed path of morphisms in D either from ai to aj or 
from aj to ai. 4i-chains in particular have this property. The 

weakened version of the 2-approximation lemma using the same colimit 
preserving properties of o, are: 

Lemma (2'-existence) 

If for each i with ai in D, hi : ai R aj -> b has the following 
property: for all ai and aj in D and for all d,e : ai -> aj in D, 

doe 
a Qa' a:ai J 

unique h : a fl a -> b such that 

qpq C3 CL 

}1, 

4, 

b 

commutes, then there is a 
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commutes. 

The proof constructs a cone on ai D using the hi and paths in D. fl 

Again an approximation lemma follows from the existence lemma: 

Lemma (2'-approximation) 

If for all ai in D, 

Q d a 

Con 

commutes, then f is equal 

to g. 0 

This completes our preparation. We now turn to various categorical 

constructions using the above results to help us with the proofs. 

Notes 

The properties of colimits of functors are standard category 

theory. 

The approximation lemmas were introduced in a restricted form 

(for 40-chains generated by a "signature" - see the next 

chapter) in [Burstall and Rydeheard 1979]. 
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CHAPTER EIGHT 

FREE THEORIES 

For equational theories and various extensions of equational theories 

(for example continuous theories and Lawvere theories) there is an 

important result which says, roughly, that we can define signatures 

for these theories in such a way that, for each signature, a free 
theory on the signature exists. 

The existence of free theories is of interest for several reasons. 

It provides an interpretation of the syntax of a language and then 

the 'unique extension lemma' associated with the free theory gives a 

semantics of the language. Free and initial algebras arise directly 

from free theories and they allow us to formalise the notion of a 

data type. Moreover, as we shall see, free theories are of 

importance in understanding the structure and development of 

programs. 

Our work here is to show that we can define signatures (and 

presentations) in such a way that free monadic theories exist on 

these signatures. This then will provide a uniform means of 
constructing free theories for several cases for which ad hoc methods 

have been known, for instance for continuous theories (see 

[Wagner,Wright,Goguen,Thatcher 1978]). Notice also that this is 
Axiom (1) of the requirements for theories to be of use in algebraic 
specifications. 

The construction is by means of an W-colimit in a category. This in 
itself is not new. The connection between ( -colimits and free 
theories (and also initial algebras) has appeared in various guises. 
Lehmann and Smyth [1977] and Smyth and Plotkin [1977] as well as 

others have used W -colimits to construct initial algebras in 
categories of continuous partial orders. Adamek and Trnkova [1978] 

have investigated the case when the functor generating the chain is 
not W-cocontinuous. Barr [1970] has given necessary and sufficient 
conditions that a functor "generates" a free theory whilst Dubuc 

[1974] has generalised the construction from categories of functors 
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to arbitrary monoidal categories. The novelty here is the definition 
of signatures in the framework of monadic theories, noting that this 
handles several disparate cases uniformly, and the investigation of 
the computational aspects of this construction. 

We now define signatures. 

Definition 

A signature (in a monadic form) on a category C is a pair 
E - (F ,Q') where E is an endofunctor on C and Q is a natural 

transformation, a : I t> E (I is the identity functor on C). Q 

Thus a signature differs from a theory in that it has no composition 

within it. A signature of the usual type - a collection of sorts and 

operations on the sorts - can be understood as a signature in a 

monadic form as the following example illustrates. 

Consider the signature of the theory of natural numbers with 

addition: 
sorts nat 
opns 0 : nat 

succ : nat -> nat 
add : nat,nat -> nat 

This gives a signature in a monadic form on the category of sets as 

follows. The endofunctor E is given by: 

aZ - a + 1 + a + axa 

for any set 'a'. Here 1 is the (one element) terminal set, x the 

product of sets and + the coproduct of sets. The morphism part of 
Z is defined exactly as the object part, that is, if f is a morphism 

of sets, 

f E - f + 1+ f + fxf. 
The natural transformation, a : I =>E, is defined such that, for 
any set 'a', aO is the morphism, arising from the coproduct, mapping 

a into the leftmost component of the coproduct. Notice that the 

endofunctor E is defined only up to an isomorphism. Notice further 

that we have dealt with signatures containing a single sort. Many 

sorted signatures and theories will be investigated later (page 190). 

In the general case, we have, for each operation /o in the signature, 
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a component of the form an in the expression for a2:, where n is the 

length of the arity of P , together with a component 'a' alone. 

Essentially then, I maps a set of variables into terms of depth at 

most one in the operations of the signature. 

We can form a category of signatures by defining morphisms. 

Definition 

A signature morphisin from a ) to a-' ) (both 

signatures over a category C) is a natural transformation, 

o(: Y 1> J:', such that 

commutes. 0 

We can define the category of signatures and signature morphims on a 

category C, Sig(C). 

What about finite colimits in the category of signatures, Sig(C)? 

Unlike colimits of monadic theories (page 173), these colimits are 

easy. The coproduct of two signatures (Z a) and (E',a') on a 

category C has endofunctor _r' given by the pushout: 

c 
r 

JI 
/-_-- -_--_- 1 

11 

where I is the identity functor on C. The natural transformation a' 
of the coproduct signature ( i", a-") is the diagonal of the 

pushout square. The initial signature on category C is (I,i) with I 
the identity on C and i the identity natural transformation in C. 

Coequalisers of signatures on C are created by those in C1. Thus, by 

the colimit existence theorem, if C has finite colimits so does 
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In a similar manner to defining algebras of theories we can define 
algebras of signatures. If Z - (La) is a signature on C, a 

27-algebra is an object 'a' of C together with a morphism 

6 : al -> a, such that 

commutes. 

There is a functor from theories to signatures which "forgets" the 

composition in the theories: 
U : Th(C) -> Sig(C) 

given by: (T,7,/u)U - (T,I2) on objects and oCU -OC on morphisms. Our 

aim is to construct a free monadic theory on a signature, , with 
respect to U. That is, a theory T together with a signature morphism 

oC: s -> TU such that, for any other theory T' and any signature 
morphism T'U, there is a unique morphism T -> T' such 

that 

OC 

commutes. 

As mentioned before, the construction of such a free theory on a 

signature, 2J , uses an W -colimit in a category. Thus we need at 

least that this category has W-colimits. In fact we need more - we 

need that the endofunctor of Z preserves W-colimits. Fortunately, 
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for signatures on the category of sets that can be expressed in the 

polynomial form above it is known that the endofunctor is 
w-cocontinuous (see [Lehmann, Smyth 1977] for details and extensions 
to various categories of continuous partial orders). We now turn to 

the construction. 

THE CONSTRUCTION OF A FREE MONADIC THEORY ON A SIGNATURE 

We here show how a signature gives rise to a monadic theory. 

Let C be a category which has colimits of &'-chains (is 4)-cocomplete) 

and Z - (Z,a) a signature on C with Z an endofunctor preserving 

all W-colimits in C. 

We now construct a theory T - ( T, 2 ,U ) together with the required 
signature morphism from to TU, where U is the forgetful functor 

from theories to signatures. We will then show that T is free on 

Y- with respect to U. 

To define the functor T consider the diagram (which we call G); 

(where I is the identity functor on C). 

Let T be the colimiting object of this chain, with colimiting cone, 

3 n : Fn :> T 

for n>O. By a result in the previous chapter, T is 

CJ-cocontinuous. The approximation lemmas arising from this colimit 

take the form: 

The 1-approximation: 

If, for all n>O 

1. 
'T 

c L. 
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commutes then f - g. 

Because T is W -cocontinuous we have the 2-approximation: 

If, for all m,n>O 

2 

c 

commutes, then f - g. 

0 

0 

Likewise for the 3-approximation. The 2-existence lemma becomes in 

this context: 

If hm : 
zm Z n _> V is a cone on Q separately in m and n, then 

there is a unique h : T2 -> V such that, for all m,n>O, 

commutes. 9 

We now show that T is the endofunctor of a theory by defining 

Definition 
Tt is defined to be J0 : IC T and 

2 and 

/d is defined to be the unique natural transformation, such that, for 
all m,n>O, 
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commutes (using the 

2-existence lemma above). 

Proposition 

T - (T,2,tu) is a theory. 
Proof 

We need to show that andIu satisfy the commuting diagrams required 

of a theory. First, we need that 

T 
T T z- 

T2 
T 

commutes. Recall that Mn,t.l - 
m+n by 

the definition of 
/U- 

Set m-0 remembering that 1 0 - 2 then we have 

In. 

IV% 

v V 

T 2T>T1 T 
commutes for all n>O. So 

by the 1-approximation lemma, 2 T.M - 'T. By a similar argument, 

taking n-0, we have T2.P - iT . Secondly we need to show that the 

following commutes: 
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T 3 

uT 
Tz 

T/ 

T2 T 
p 

For this we use the 3-approximation lemma. Thus it suffices to show 

that the square below commutes. 

c m w Llm I n. 3 

t I 

r 

T3 
Tf, 

*T' OT 

But we can show that either way round this square is 
consider, 

(3) 3L+n' aT 

f* z 0,2- ,L 

7 
uT 

L 

Z`Zm T 

I 1+m+n Thus 

s L+m+n 

where (1) commutes by definition of (1Sl1m)Sn, (2) by the definition 

of p and the fact that T is a functor, (3) by the definition of 
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ll+min and (4) by the definition of/. An analogous argument holds 

for the bottom left part of the square. 

The Freeness of the Theory 

Having shown that T is a theory we show that it is the free theory on 

the signature Z - (2:,a). First define a signature morphism, 

0: (Z,Cl) -> (T,2,,u)U 
by 0 

1 
: => T . This is indeed a signature morphism since we 

have 

I Cr 

commutes as 2 - 10 and 0 - 11 . 

Proposition 

The pair ((T,2,r) , 0 ) is free on ( Z , c' ) with respect to the 
forgetful functor U from theories to signatures. 

Proof 

We must show that for any other theory T' - (T' Iti ) and any 

signature morphism T'U , there is a unique theory morphism 

9 : T -> T' such that 

commutes. 

To construct 8 T => T' , we first define a sequence of natural 

transformations 8 n : 7n => T' , for any n>O, by induction as 

follows: 

60 -q' and en+1 (enyi)..' 
We note that 61 - '}b.,2' T' To show that the 9n form a cone, 
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that is for all'n>O 

commutes, we use induction 

on n. The base case n=0 is 

commutes as )U is a signature morphism. The inductive 

step follows from expanding s n and 9n+1 in the diagram above. We now 

define 9 : T *> T' to be the unique natural transformation from T, 

the colimit of A to T' such that for all n>O 

commutes. 

Is 9 a theory morphism? That is, do both the following diagrams 

commute? 
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e 

The first is easy as Q -30 and 30.9 - 80 -'2' by definition. We 

use the 2-approximation lemma for the second. It suffices to show 

that the outer square below commutes. 

(Z.) 

S &,\ + 
(1) 

T z -2 ' T/ 
99 

I 
/U/ 

T 
I:, 

/I , 

To see that (1) commutes recall the interchange law for the 

composition of natural transformations 

(Oa')(??'') - (o'.1)(a'.'r') 
Thus 

(?m1n)(B9) -(Im.6)(!n0) -emgn 

Now (3) commutes by the definition-of 9 and (4) by the definition of 

/,1. It remains to show that (2) commutes. We set this up as a lemma. 

Lemma 

For all m,n>O, 
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m ti mea t2 

commutes. 

Proof 

By induction on n. The base case, n=0, is 

which commutes as T' is a theory. The inductive step is - assume the 

triangle commutes for n, then show that it does for n+1. Expanding 

the triangle for n+1, we get 
M 

ZnM n mZ ti Tt B,,TZfwT'# Z 

e eT 

(1) 'T''E 

T' A 

(2) 

\m n 
8,T'z 

1 P, 

P'T' 

(5) 

'U' 
where (1) commutes by the definition of em+n+1 

1 
(2) by the inductive 



133 

hypothesis, (3)" by the definition of Om8n, (4) by the naturality of 

P' and (5) because T' is a theory. 

This completes the proof that (T, 0) 

U. Thus we have constructed a functor, 

F : S g(C) -> Th(C), 

left adjoint to the functor U. 

is free on with respect to 

0 

Free theories on a signature, as constructed above, gives us initial 

algebras on a signature as follows. We have seen (page 105) that, if 

T - (T,t ,,LL) is any theory on C and 'a' an object of C, then 

a)U : (aT)T -> aT 

is a T-algebra and is free with respect to the forgetful functor 

which takes an algebra to its carrier. Notice that if C has an 

initial object then 

4: (T)T ->T 
is the initial T-algebra. Now suppose that T is the free theory on a 

signature, Er 
. (Z, Q), with respect to U. Then T is the carrier of 

the initial Z-algebra, the initial algebra itself being, 

T31. u:TI->TT ->JT. 
Likewise we can define free 1 -algebras with respect the the forgetful 

functor giving the carrier of an algebra. 

PRESENTATIONS OF THEORIES 

Theories are essentially infinite objects but theories which we use 

often can be expressed in a finite form by a "presentation". We 

model the idea of a presentation for monadic theories as follows. 

Definition 

A presentation is a pair of signatures r and I together with a pair 

of signature morphisms (called 'derivors'): 

where F is the free theory functor and U the "forgetful" functor from 

theories to signatures. 
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In equational theories, this is interpreted as follows. The 

signature Z is that of the operations (i.e. the signature of the 

presentation, in the usual sense). The signature T arises from the 

equations - each equation gives an operation with arity that of the 

terms in the equation. The two derivors then simply map the 

equations to the terms on their left-hand and right-hand sides. 

We give an example. We may present the theory of groups as follows: 
sorts element 
opns x : element,element -> element 

e : -> element 
inv : element -> element 

eqns associativity (a x b) x c- a x (b x c) 
left identity a x e = a 

right identity e x a - a 

right inverse a x inv(a) - e 
left inverse inv(a) x a - e 

Notice that we have named the equations. The signature T for this 
presentation is then: 

sorts element 
opns associativity : element,element,element -> element 

right identity: element -> element 
identity : left element -> element 

right-inverse : element -> element 
left inverse : element -> element 

Presentations define theories. Suppose that, 

T 

is a presentation. The theory defined by it is given by the 

colimiting object of the coequaliser (in the category of theories) of 
the pair of morphisms, 

T F Z F 

where 0 # ,4F.Fu and (F,U,t,u) is the adjunction between signatures 
and theories. 
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The existence of coequalisers in a category of theories is not a 

trivial result. They exist for equational theories and Lawvere 

[1963b] has shown that they exist for theories in a categorical form. 
For various forms of 'logical' theories the result may be found in 
[Burstall,Goguen 1980a]. The result of most interest to us at the 
moment is the existence of coequalisers of monadic theories. This is 
to be found on page (179). 

There is an adjunction between signatures and presentations - each 

signature is trivially a presentation and each presentation contains 
a signature (that of the sorts and operations). 

The idea of a presentation as a parallel pair of morphisms and the 

theory defined by a presentation as a coequaliser may be found in 
[Lawvere 1963b] for the case of Lawvere theories. 

COMPUTATIONAL ASPECTS OF THE FREE THEORY CONSTRUCTION 

The technique, which we have developed, of translating categorical 
constructions into programs can be applied to this free theory 
construction. This gives us a means of computing free theories but, 
more than this, we get a categorical formulation of program 

iteration. We shall see this at work with an example from graph 

theory - the transitive closure of a graph. 

The construction of a free theory requires C)-colimits. We shall thus 

be using the encoding of W -chains and w -colimits and the computation 

of Q)-colimits (see page 56). We proceed as in the other 
implementations of constructions in categories. First we give the 

required data types then an encoding of the constructive part of the 

proof. 

Signatures in a monadic form are pairs of endofunctors and natural 
transformations. Morphisms of signatures are natural transformations 
with a certain commutativity property: 

type M Signature(o,m) -- 
Functor(o,m,o,m) # Nat transform(o,m,o,m) 

type M Signature Mor(o,m) -- Nat_transform(o,m,o,m) 
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It is rather unwieldy to give explicit expressions for signatures in 

this form so we have a function to translate signatures in the 

familiar form of sorts and operations into such a monadic signature. 

This is the polynomial expression for a monadic signature described 

above. 

dec monadic signature : Signature(Tag alpha) -> 
M Signature(Set(Tag alpha),Set Mor(Tag alpha)) 

--- monadic signature(Opns,mor(-,arity,-),Sorts) <a 

let C & cat(-,-,id, ) -= catof_sets in 
let omap =- ! object part of functor 

(lambda S -> ! S is a set of variables 
let indexed_set_of_terms -- 

! set of terms indexed on operations 
(lambda rho -> 

let string(ll) -- arity(rho) in 

(lambda 1 -> string(rho::l)) 
* lists(length(ll)-1)(S) ) 

* Opns in 
let set_of_terms -- 

either pinked variables or terms 
of depth one 

(pink*S) U total union(indexed_set_of terms) in 

set of terms ) in 
let mmap --r ! morphism part of functor 

(lambda mor(s,f,t) _> 
let f1 (lambda 

pink(s) -> pink(f(s)) 
string(rho::l) -> 

string(rho::(f*l)) ) in 
mor(omap(s),fl,omap(t)) ) in 

let Sigma functor(omap,mmap) in 

let sigma ! the natural transformation 
nat transform( I(C), 

( Sigma, sigma ) 

(lambda S -> 

mor( S, 

(lambda x -> pink(x)), 
omap(S))), 

Sigma ) in 

Notice the overloading of the ''x'' operation. On lists it is defined 

by: f * [ a, b, ... .1-F f(a), f(b), ... ], and similarly on sets. 

The recursively defined function "lists" takes a natural number, n, 

and a set, S, and gives the set of lists of length n of elements from 

S. 

Given a monadic signature, a category C and an object of C we can 

form an co-chain of the form of (*) by: 
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dec mkchain : Cat(o,m) -> 

(M Signature(o,m) -> (o -> w Chain(o,m))) 

--- mkchain(C) <_ 

(lambda (Sigma,sigma) _> (lambda a 
((lambda n -> 

(Sigma to_power n) ofo a), 
(lambda n -> 

(Sigma to power n) ofm (sigma of a))))) 

where "to-power" is an infix operation which raises an endofunctor to 

a power by successive composition with itself. 

In fact this function is the object part of a functor from C to 

G>-chains on C (which themselves form a category). 

dec chain_functor : Cat(o,m) -> ( M_Signature(o,m) -> 
Functor(o, m, wChain(o,m), w_Chain_Mor(o,m)) ) 

--- chain_functor(C & ,_)) <_ 
(lambda fsig & (Sigma,sigma) 

functor(mkchain(C)(f sig), 
(lambda f ->-( mkchain(C)(f sig)(s(f)), 

(lambda n ->- 
(Sigma to-power n) ofm f), 

mkchain(C)(f sig)(t(f)) )) )) 

The colimit of these W -chains, which are generated by monadic 

signatures, can be described as a functor: 

dec wcolimit functor : Colimit Cat(o,m) -> 

(M Signature(o,m) -> 
Functor(o,m,Cone(o,m),Cone Mor(o,m)) ) 

--- wcolimit_functor(wCC & colimit_cat(C,_)) <- 

(lambda f sig -> 
chain functor(C)(f-sig) 

w_diagram_functor 
colimit functor(wCC) ) 

The functor 'colimit functor' takes diagrams to colimiting cones on 

the diagrams (page 35). 

Now we are in a position to compute the free theory on a signature. 
The endofunctor of the free theory is simply the colimiting object 

(treated as a functor - see page 35) of the 60-chain and can be given 

rather neatly by a composition of functors: 

dec term functor : ColimitCat(o,m) -> 

TM Signature(o,m) Functor(o,m,o,m)) 
--- term functor(wCC) <- 

Tlambda fsig => 
w colimit functor(wCC)(f sig).apex functor) 
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The unit of the theory, as constructed in the proof of the existence 
of free theories, is given as: 

dec eta : Colimit Cat(o,m) -> 
( M_Signature(o,m) -> Nat transform(o,m,o,m) ) 

--- eta(wCC & colimit cat(C, )T <- 

(lambda f sig -> 
let f--- term functor(wCC)(fsig) in 

nat_transform(I(C), 
(lambda a 

sides(w colimit functor(wCC)(f sig) ofo a) 
(just(number 0)) ), 

T ) ) 

Likewise for the composition in the theory: 

dec mu : Colimit_Cat(o,m) -> 
( M_Signature(o,m) -> Nat_transform(o,m,o,m) ) 

--- mu(wCC & colimit_cat(C,w colim)) <- 

(lambda f_sig & (S,sT -> 
let T -- term_functor(wCC)(fsig) in 

let amu -- 
(lambda a 

! the colimit cone on the chain on 'a' 

let c_cone -- w colimit functor(wCC)(f sig) ofo a in 

let h -- 
(lambda m -> 

let newchain 
w_diagram(chain_functor(C)(f_sig) 

ofo ((S to_power m) ofo a)) in 

let univ -- wcolim(newchain) in 

let c cone_mor =_ 
univ( cone(C)( newchain, 

(lambda just(number n) 
sides(ccone) 

a )) in 

apex _morphism(c cone mor) ) in 

let Tof oldchain =_ 
n T ofo ((S to power n) ofo a)), 

(lambda n -> T ofm ((S to_power n) ofm (s of a)))) in 
let pcone -- 

cone(C)( wdiagram(T_of_oldchain), 
(lambda just(number n) -> h(n)), 
apex(c cone)) in 

let -,universal -- wcolim(wdiagram(T_ofoldchain)) in 

! here we assume the w_cocontinuity of T 

let c_cone morl -- universal(pcone) in 
apex morphism(ccone morl) ) in 

nat transform( T.T, a -> T) ) 

Then the free theory on a signature is computed by the following 

function. 
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dec free theory : Colimit Cat(o,m) -> 
T M Signature(o,mm -> Monad(o,m) ) 

--- free theory(wCC) <. 

Tlambda f sig > 
monadT term functor(wCC)(fsig), 

eta(wCC)(f_sig), 
mu(wCC)(f sig)) ) 

We are now quite adept at translating existence proofs in category 

theory into code for machines. What can we use the above program 

for? 

Well, by choosing the category C to be the category of sets, we may 

construct free theories on Set. In general, these will be rather 

uninteresting since the set of terms will be infinite - so cannot be 

represented. However all is not lost since the morphism part of the 

endofunctor T is non-trivial - it is a substitution function. Indeed 

the following example shows that we can choose the signature so that 
the function models the 'mapcar' of LISP. We thus, perhaps, have the 

most contorted implementation of 'mapcar' which has yet appeared. 

Suppose we choose a signature with one binary operation, "rho", 

dec sig : Signature(Tag(List Char)) 
--- sig <. ( {just("rho")}, ! operations 

mor( {just("rho")}, 
(lambda -> 

string [just("s"),just("s"),just("s")]), 
bigset), 

{just("s")} ) ! sorts 

Terms on this signature look like lists and so the 'mapcar' operation 

can be modelled by: 

dec mapcar: Set_Mor(Tag (List Char)) -> 

Set Mor(Tag (List Char)) 

s --- mapcar(m) < 

termfunctor(infinitew_colimitcat_of_sets) 
(functorial signature(sig)) ofm m 

We now look at a more serious application of the construction. The 

formalism of monadic theories includes many things which one would 

not naturally associate with the idea of a theory. We return to the 

graphical problem left unsolved in chapter five and show how the 

transitive closure of a graph may be described by a free theory on a 
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suitably chosen signature on graphs. In doing this we will be 

needing 4)-colimits in the category of graphs. Moreover, we shall see 

that a complicated iteration in a program can be subsumed in the 
computation of W -colimits. I first wrote the program in the usual 

iterative way, only later realising that the work could be cast into 
a categorical framework and thence that the iterative details had 

already been encoded for W-colimits. 

The idea is this: Take a graph. Make a new graph by adding new edges 

one for each composable pair in the old graph (this is not then 

transitively closed - it is, however, one step towards the closure). 
This operation actually extends to an endofunctor on the category of 
graphs. Moreover there is an obvious inclusion of the old graph into 
the new. This pair, of a functor and a natural transformation, is a 

signature in a monadic form on the category of graphs. The free 
theory on the signature is the transitive closure, in the following 
sense. The endofunctor of the theory takes a graph to its transitive 
closure. The unit of the theory is the obvious inclusion of a graph 

into its transitive closure. The composition is saying that 
transitive closure is a closure - it is idempotent. 

This observation now gives us a means of computing the transitive 

closure of a graph. We first note that there is a comma category 

associated with this operation of transitive closure. The edges in a 

transitively closed graph have a partially defined "composition" upon 

them taking any composable pair of edges into the composition of the 

pair. The "composition" is associative and so forms a partial 

semigroup: 

data Semigroup(alpha) 

semigroup( Set(alpha), ! the carrier 
((alpha # alpha) -> truval), 

! the definedness predicate 

((alpha # alpha) -> alpha) ) 

! the partial composition 

Morphisms of these semigroups are functions on the carrier which 

respect the definedness of composition as well as the composition 

itself: 

data Semigroup Mor(alpha) -- 
semigroup mor( Semigroup(alpha), 

Set Mor(alpha), 
Semigroup(alpha) ) 
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The category of these partial semigroups is given by the now-familiar 
construction. 

Graphs with such a composition operation upon their edges are given 

as a comma category as follows. First define a functor, called 

'pair semigroup' from sets to partial semigroups which takes a set 

onto its crossproduct treated as a partial semigroup. The 

composition of pairs of elements is: 

compose( (a,b), (c,d) ) - (a,d) if b=c else undefined. 

Notice how this reflects the condition for the composition of edges 

in a graph. We form the comma category 

(cat of partial semigroups,pair semigroup) and call it the category 

of composition graphs. Thus the functor, pair semigroup, is given 

by: 

! object part 
dec pair semigroup : Set(Tag alpha) -> Semigroup(Tag alpha) 
--- pair_semigroup(A) <_ 

semigroup( cross_product ofo A, 
! carrier is cross product 

(lambda pair(a,b),pair(c,dT b=c), 

composition def if target = source 
(lambda pair(a,_),pair(_,d) pair(a,d))) 

! composition 

! morphism part 
dec pair_semigroup : Set_Mor(Tag alpha) -> 

Semigroup Mor(Tag alpha) 
pair semigroup(m) <_ 

let C -- cat of sets in 

semigroup_mor( pair semigroup(source(C)(m)), 
cross-Product ofm m, 
pair semigroup(target(C)(m)) ) 

dec pair semigroup : 

alpha),Set Mor(Tag alpha), 
Semigroup(Tag alpha),Semigroup Mor(Tag alpha)) 

--- pair semigroup <= functor(pair semigroup,pair semigroup) 

The comma category of composition graphs is then: 

type CompositionGraph(alpha) __ 
Semigroup(alpha)#Semigroup Mor(alpha)#Set(alpha) 

type CompositionGraph Mor(alpha) __ 
Right_Comma Mor( Semigroup(alpha), 

Semigroup Mor(alpha), 
Set(alphaT, 
Set Mor(alpha)) 
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dec cat of composition graphs : 

Cat( CompositionGraph(Tag alpha), 
CompositionGraphMor(Tag alpha)) 

_ --- cat-of composition raphs < 

right comma cat( cat_ofpartial_semigroups, 
pair semigroup, 
cat of sets) 

There is a forgetful functor from composition-graphs to graphs 

(giving the underlying graph of a composition graph): 

dec U : CompositionGraph(Tag alpha) -> Graph(Tag alpha) 

Now the idea is that, in the construction of the free theory which 

gives the transitive closure of a graph, we successively extend the 

domain of definition of the partially defined composition on the 

edges by accumulating new edges. Thus we are in fact working in the 

category of composition graphs. The step of adding new edges to such 

a graph, one edge for each composable pair of edges, is given by: 

dec new_paths : CompositionGraph(Tag alpha) -> 

CompositionGraph(Tag alpha) 

--- new_paths(g & ( semigroup(E,def,comp), 
semigroup mor(_,m,_), 
N ) ) <- 

let composable_pairs =- filter cross product ofo E by 
(lambda pair(el,e2) -> 

range(U(g))(e1)- dom(U(g))(e2)) in 

let new edges -= filter composable pairs by 
(lambda pair(el,e2) _> not(def(el,e2)) ) in 

let newdef (lambda el,e2 -> true 

if def(el,e2) else 
pair(el,e2) is in new edges) in 

let new comp (lambda el,e2 -> comp(el,e2) 

if def(el,e2) else 
pair(el,e2) ) in 

let new map (lambda e -> (m of e) 

if e is in E else 
(pair(dom(U(g)T(el),range(U(g))(e2)) 

where pair(e1,e2) -- e) ) in 

let El =:;: E U new edges in 
let new semigp == semigroup(El, new_def, new comp) in 
let new -graph 

(new semigp, 
semigroup mor( new semigp, 

N ) in 
new graph 

mor( E1 , 

new map, 
cross_product ofo N), 

pair semigroup ofo N ), 
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Here the set "filter S by P" is Is in S ; P(s)}. The morphism part of 

the functor is: 

dec morphism_part : CompositionGraph Mor(Tag alpha) -> 
CompositionGraph Mor(Tag alpha) 

--- morphism part(comma mor( cgi, 
( semigroup_mor(sgl,m,sg2), 

m node), 
cg27) <_ 

let new cgl & (new sgl,,) _= new paths(cgl) in 
let cg2 new & (new ) new paths(cg2) in 
let newmor =_ 

semigroup_mor( new sgl, 
morT edges(newcgi), 

(lambda e => m of e 
if e is in carrier(sgl) else 

pairTm of el, m of e2) 
where pair(ei,e2) _= e), 

edges(new_cg2) ), 

new sg2 ) in 

comma mor(new paths(cgi-7,(new mor,m node),new paths(cg2)) 

The functor is then: 

dec new paths : 

Functor( CompositionGraph(Tag alpha), 
CompositionGraph_Mor(Tag alpha), 

CompositionGraph(Tag alpha), 
CompositionGraph_Mor(Tag alpha)) 

--- new paths <= functor(new paths,morphism part) 

This is the endofunctor of a signature whose "unit" is: 

dec inject : 

Nat-transform( CompositionGraph(Tag alpha), 
CompositionGraph Mor(Tag alpha), 

CompositionGraph(Tag al ha), 
CompositionGraph Mor(Tag alpha)) 

--- inject <_ 
nat transform( 

I(cat of composition graphs), 
(lambda cg & (E, N)-=> 

let new cg & TE1, new paths(cg) in 
comma_mor( cg, 

( semigroup_mor(E, 
mor( carrier(E), 

ident, 
carrier(E1)), 

new paths ) 

El), 
identity(catofsets)(N) ), 

new cg) ), 

The signature for this transitive closure operation is then: 
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dec new paths sig : 

F_Signature( CompositionGraph(Tag alpha), 
CompositionGraph Mor(Tag alpha)) 

--- new paths sig <_ ( new paths, inject ) 

Notice that any graph can be considered trivially as a composition 

graph with composition everywhere undefined. This is the start of 

the iteration of the free theory construction. We need a category 

with w -colimits. Fortunately, we are here dealing with the so-called 

"finite -w colimit categories" (see page 56) in this case the category 

of composition graphs so treated. Finally we can give the transitive 

closure operation on a graph as follows: 

dec transitive closure : 

Graph(Tag alpha) -> CompositionGraph(Tag alpha) 

--- transitive closure(g) <_ 

let SG =_ 
finite_wcolimit cat(cat of partial semigroups) in 

let S finite_wcolimit_catTcat_ofsets) in 

let CG 

colimit_comma_cat( SG, 

pair_semigroup, 
S ) in 

term functor(CG)(new paths_sig) ofo 

trivial composition graph(g) 

Notice that if the graph is not acyclic then the 4)-chain will fail to 

become a constant chain and hence the routine "fixed point" (page 57) 

will not terminate. 

Notice how the main iteration implicit in the transitive closure has 

been "hidden" in the Lo-colimit routine and thence that the above 

routine "transitive closure" is constructed by the successive 

application of functionals (indeed it could be made totally 

variable-free). 

This completes our discussion of the transitive closure of a graph. 

Notes 

The connection between free theories and W -colimits appears 

in various guises as mentioned above. The notion of 
signature, presentation and the construction here arose in 
discussion with Prof. Rod Burstall. He provided a complete 
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proof using a restricted form of the approximation lemmas. 

The proof here is a 'polished' version of that in [Burstall 

and Rydeheard 1979]. 
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CHAPTER NINE 

FREE ALGEBRAS AND DATA THEORIES 

The equational theories of universal algebra have proved a powerful 

stimulus in the study of program specification. However, they are, 
in fact, inadequate to describe the properties even of simple 

programs. The problem is that some properties arise from induction 

rules rather than the usual rules of inference available in 

equational specification - those of equational deduction. It is not 

so much that we cannot handle these induction rules in universal 

algebra. In some sense, we can - they arise from initial or free 

algebras. However, we want specifications in which certain parts are 

restricted to an initial or free interpretation whilst other parts 

are to have arbitrary interpretation. Specifications of this form 

can be formalised under the notion of a "data theory" due to Burstall 

and Goguen [1980a] (see also [Reichel 1980]). For a full explanation 

with examples consult [Burstall,Goguen 1980b]. 

These "partially interpreted" theories can be formalised using the 

so-called data constraints. Each part of a specification which is 

required to be interpreted initially or freely (in some sense) gives 
a corresponding data constraint. In a rather general logical 

setting, it is known that these data constraints behave like 

equations and hence that data theories can be defined in the same way 

that equational theories are defined by presentations. 

Our aim here is to show we can handle data constraints within monadic 

theories. We already know that monadic theories suffice to describe 

equational theories. This, then, is an extension of this result and 

is part of our program of showing that monadic theories are not only 

sufficient for much of program specification but they handle many 

cases uniformly. Essentially we are showing that Axiom 4 (page 103) 

is satisfied by monadic theories. 

The construction is again by colimits and is in two parts. We first 

show that an important result concerning theories and their algebras 

holds for monadic theories. This is interesting not only for the 
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explication of data theories but gives further insight into the 

computational aspects of specifications. The other part is a novel 

method of constructing theories from classes of algebras such that 
the theory contains all the equations which are "true" in all the 

algebras in the class. This gives us a somewhat different approach 

to the data constraints of data theories. 

FREE FUNCTORS ON ALGEBRAS 

There is a very important result concerning certain types of theories 
and their algebras. It may be stated, somewhat loosely, as: 

For any theory morphism OC : S -> T, there is a "forgetful" functor 
U : Alg(T) -> j(S) (notice the reversal of arrows) obtained from 

O(. The result then says that U has a left adjoint, a free functor 
F : Alg(S) -> Alg(T) . 

For example, let S be the theory of semigroups and T that of groups, 

with a. the usual 'inclusion' morphism. Then U is the functor which 

takes any group and simply forgets that the identity and inverses are 

present - that is, every group is a semigroup. The free functor 

closes a given semigroup to a group. 

The importance of the existence of this left adjoint can be seen from 

its variety of manifestations. It is the crux of the functorial 

semantics as introduced by Lawvere [1963b]. As special cases it 

gives the existence of initial and free algebras of a theory. 

Moreover, as mentioned before, it provides an understanding of the 

so-called "data theories" which allow us to restrict the 

interpretation of parts of specifications to initial or free models 

[Burstall,Goguen 1980b]. A result of the same shape but dealing with 

functor composition instead of theories and algebras was introduced 

by Kan [1958]. Later we will make use of Kan's result to construct 

free signatures from other signatures - a generalisation of a 

construction in order-sorted specifications. 

For what types of theories does the result above hold? For equational 

theories and, more generally, for theories in a Lawvere form the 

result is already known [Lawvere 1963b]. The work of this chapter 
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shows not only that the result holds for certain monadic theories, 

but also that the free functor left adjoint to the "forgetful" 

functor on algebras is constructed by a simple colimit - a 

coequaliser - and is thus ought to be susceptible to the techniques 

we have acquired of programming category theory constructions. The 

construction itself resembles that of Linton [1969] who uses a 

similar coequaliser to construct coproductsof algebras. 

The construction below and further constructions which we are to give 

require certain preservation properties to hold for the endofunctors 

of monadic theories. In the case of the free theory construction it 

was mentioned that the preservation condition (preservation of 

W-colimits) could be verified for finitary equational theories on the 

category of sets. Endofunctors of such theories in general preserve 

only epis, monos and, in terms of colimits, only filtered colimits 

(see [Mac Lane 1971] for details). Thus to-colimits are preserved but 

not pushouts, coequalisers, coproducts or even initial objects. This 

is why there are many attempts to make constructions of this sort 

independent of the preservation properties of the endofunctors (e.g. 

[Adamek, Koubek 1980]). A glance at the constructions below show 

that we are unable to do this and, moreover, that we have not 

established that the preservation properties hold even for the case 

of finitary equational theories on the category of sets. This is an 

omission. It seems that the conditions do hold for several examples 

but a general proof is lacking. Notice that the conditions required 

are not the preservation of colimits of all diagrams of a fixed shape 

but something weaker. 

We now turn to the construction, first stating what we need as a 

theorem: 

Theorem 

Let oC : S -> T be a theory morphism between monadic theories 

S = (S, ?t PS) and T = (T, 17T,/UT) , both on the same base category C 

which has coequalisers. Moreover we will assume that the 

endofunctors T and T2 preserve coequalisers of pairs of morphisms of 

the form (*) below. 



149 

The forgetful functor U : A1g(T) -> AS(S) is given by, 

(E : aT -> a)U = (aol.G : as -> aT -> a), 

with a morphism part which is essentially the identity on morphisms. 

Then there is a left adjoint to U, a free functor 
F : AS(S) -> Alg(T) 

Proof 

Given any S-algebra, E : as -> a, we need to construct a T-algebra. 

Consider the pair of morphisms between aST and aT: 

ET 
aST QT 

qaT. 
T 

Let f : aT -> b be their coequaliser. We can make b into the 

carrier of a T-algebra by noting that the following diagram commutes: 

QaT2 
3 

au,T 2 Gtr aST 2 > aT Q7 ----iaT 
ETA aSMT 

(:22 ) 
a`i`uT (++J 

a Tz aST aT2 Q T 
I c 

Q/1 T 1 ET 
a,*( 1 

(1) 

aT 
1: 

*b 

where (1) commutes by the 

definition of f, (2) and (3) by the naturality of /Wand (4) by a 

theory law for T. 

Thus a/U T.f is a cone on diagram (1) with T applied to it. As T 

preserves coequalisers of the form of (*) above, we have: 

There is a unique E' : bT -> b, such that 
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qTz 

qPT 

Q T- 
4, 

6 

commutes. 

We need to show that this E' : bT -> b is an algebra. Before doing 

so, we state an approximation lemma arising from the coequaliser. 

The 1-approximation lemma looks like: 

If r,s : b -> c and 

S 

r 

W 

C 

commutes, then r = s. 

Further approximation lemmas of this form arise from the fact that fT 

and fT2 are both coequalisers because T and T2 preserves coequalisers 
of the form (*) above. 

Now to show that F' : bT -> b is an algebra, we need that both the 

diagrams below commute. 
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?T 
6T 67Z 

E,T 6T 

E 1 It Ei 

6T 6 
6 , 

For the first, by the 1-approximation lemma, it suffices to show that 

T 

QTR? 
p 

7-2 
/4 

(2) f7 °T (3) f 
b7E, 

b 
LT 

+6 

e 

commutes. 

But (1) commutes by a theory law for T, (2) by the naturality of 
2T and (3) by the definition of E' Hence, the square commutes as 

required. 

For the second algebra law, we again use an approximation lemma. It 

thus suffices to show that 
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fT2 z 

bT 
QM T 

eT 

aT- 
2 

°N bT 
aT (3 ) 

E 

b'UT 

(2) 

FI 

commutes. But (1) is a 

theory law for T, (2), (3), (4) are the definition of E' and (5) is 

the naturality of/.JT. Thus the square commutes as required. 

We have shown that E' : bT -> b is an algebra. We now show that the 

passage from the algebra E to the algebra E' is functorial - that is, 

we can define an action on morphisms. 

Let g : a -> a' be an algebra morphism from 

algebra > : a'S -> a'. Thus, by definition: 

E 

o$ 
9s 

a'S 

a Q 

commutes. 

E : aS -> a to an 

If E' : bT -> b is the algebra of T obtained by the foregoing 

construction from the algebra r. : aS -> a, and T : b'T -> b' is 
the algebra obtained from ? : a'S -> a', then we can define an 

algebra morphism h : b -> b' from E' to T by: 
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gocT QT 
aST at b 

ET I 

,ST (I) 3T (2) 1 

aT y 
of ST a'T --- 4b 

o'ocT. or 

Here, (1) commutes for the the upper and lower morphisms separately, 
f' is the coequaliser of the morphisms a'o(T. a',IJT and ))T and h is the 
unique morphism which makes (2) commute. 

To show that h really is an algebra morphism, i.e that the following 

square commutes, 

6T 6'T 

'X ' 

h 

we use an approximation 

following commutes. 

fT 

lemma. It thus suffices to show that the 

But (1) commutes by the naturality of P T' (2) by the definition of E' 

and (3) by that of >'. (4) and (5) are both the definition of 
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h. Thus h is an algebra morphism as required and we may define the 

functor, 

F : Alg(S) -> Alg(T) 

by the action on objects and morphisms defined above. 

Now we turn to the question of freeness. First, there is an algebra 

morphism from e to (E )FU 

atT. f : a -> b. 

This is indeed an algebra morphism for the following diagram 

commutes. 

(L ) QT 

" r') bS 
airs f 

S " 

QT2-. 4T "0 4ST- 

2 
QT QT -- bT 

Q C< OTC 
( 
4) 

t ba 
-CT 

(2) 
ET\a'(T OPT 

f 

a ?T 

(1) and (2) are the naturality of 7T' (3) and (4) that of D(, (5) 

theory law for T, (6) is the definition of E' 

definition of f. Thus, 

(a9,) S 

E 

0 

commutes as 

a 9T f 

bS , ba 
bT 

E 
b 

is a 

and (7) is the 

required. So a?T.f is an algebra morphism. 

We can now show the freeness property of the algebra V. 

We need to show that for any algebra, K : cT -> c, and for any 
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algebra morphism, g : E -> K U, there is a unique g# such 

that ; 

09, f 

y 
KU 

commutes. We construct g# 

from g 

ET 
aolT 2 Q'UT 

qST -- qT aT 
(2) j gT 

9T g S T 172 cT 

(I) (3) K 

2 

KT 

c S T ; CI ---) CT--C 

CT cc(T KT K 

both commute - the first 
because g is an algebra morphism and the second because (1) commutes 

by the naturality of O(, (2) by that of 
/-'T 

and (3) by an algebra law 

of K. Thus gT.K is a cone on the parallel pair of morphisms E T and 

ao(T.a?T and so there is a unique morphism 

t 

K 

g# b -> c such that 

commutes. 

by noting that 

This g# makes the freeness triangle commute and is unique in this 
respect, as can easily be verified. This completes the proof of the 
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existence of a left adjoint to U, the forgetful functor on algebras 

induced by a theory morphism, a. 0 

Notice that, in the above proof, there was no necessity that S should 

be a theory (nor that Cr : aS -> a should be an algebra of a theory). 

It would have sufficed that these were signatures and signature 

algebras (or even a functor, S, and a morphism, aS -> a). 

What does this construction say computationally? In one sense it 
says that equational (and, more generally, monadic) enrichments are, 
from a computational viewpoint, trivial since they arise from a 

coequaliser in a category (usually that of sets). However, the 

experience of chapter five might make us think otherwise. Looking 

back at the coequaliser in question (*), we see that, whilst the 

carrier of the algebra to be constructed may well be finite, both 

'aST' and 'aT' are, in general, infinite. Thus the coequalising is 
not open to direct computation. What may possibly be done is an 

iterative computation of the colimit using the fact that the theories 
have associated signatures and then using the encoding of the free 
theory construction above. 

INDUCTION RULES AND MONADIC THEORIES 

We now present another result concerning monadic theories. This 

result may be thought of as mediating between the approach to 
specification (and to data types) whereby these objects are viewed as 

certain algebras and the approach which we have taken whereby these 

objects denote theories. 

A special case of the following construction is the addition of 
induction rules to equational theories (some work in this direction 

has been done by [Nourani 1980]). More generally we consider a 

collection of algebras of a theory and construct a new theory which 

has all the equations (usually an infinite collection) which are true 

in all the algebras in the collection. By choosing only the initial 

algebra we get the "induce" construction of a previous version of 

CLEAR [Burstall,Goguen 1977]. By choosing the collection of algebras 

to be those which are free in a certain sense we get an 

interpretation of the data constraints in monadic theories as will be 
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seen in the next section. 

The following theorem explains what we are to do. 

Theorem 

Let C be a category that is co-wellpowered and cocomplete. If 

T = (T, ? ,P ) is a theory on C (with T preserving epis and 

co-intersections of the form below) and S a class of T-algebras then 

there is a theory T' = (T' , 9' , gyp') on C and a theory morphism 

q: T -> T' which is an epi, such that, for all algebras E : aT -> a 

in S, and for all objects x in C and morphisms f : x -> a, there is a 

g : xT' -> a such that 

X9, 

e 

commutes. Moreover, T' is 
universal with this property: for any other theory T" on C and epi 

q' : T -> T" with the same property, there is a unique theory 

morphism, p : T" -> T' (notice the direction of the arrow), such 

that 

commutes. 

This can be thought of as saying that the epi xq "agrees with" all 
algebras in S, that is, xq "identifies" only things "identified" by 

all algebras in S. The class of algebras may be a set, it may be 

something "larger". This will cause no problem (greater than that 
which occurs with categories). 
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Proof 

We start our construction of such a T' with a definition in which we 

intend to capture the idea of an epi "agreeing with" algebras. 

Definition 
a 

If T is a theory onAcategory C and S is a class of T-algebras an epi 

e : xT -> b is an S- on x iff for each algebra E : aT -> a in S 

and for each morphism f : x -> a there is a g : b -> a such that 

xT 
e 

6 

aT 
E 

commutes. 

These S-epis have two important properties. In a sense to be made 

explicit, they are preserved under taking pushouts. Moreover they 

are closed under the operation of co-intersection. We need both 

these properties which we now state formally using the notation of 
the definition above. 

Proposition 

If e : xT -> b is an S-epi on x and 

XT 
e 

6 

hT i v 

yT---e-- 
P 

is a pushout diagram, then 

e' : yT -> p is an S-epi on y. 

Informally - "if h is a morphism of C, then pushout along hT 

preserves S-epis". 
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Proof 

Pushout preserves epis, hence e' is an epi. 

Now, if E : aT -> a is any algebra in S and f : y -> a, then there 
is a g : b -> a such that the following commutes: 

e 

e 

E 

9 

a 

where (1) is the pushout defining e' and g exists to make (2) commute 

because e is an S-epi on x. 

Hence by the colimiting property of the pushout, there is a unique 

k : p -> a such that 

aT 
E 

commutes, i.e. e' is an 

S-epi on y. 

We now introduce the notion of the co-intersection of a family of 
epis. 

Definition 
If a is an object of C and ei : a -> bi is a family of epis then the 

morphism e : a -> b is the co-intersection of the ei iff: 
1. For each i, there is a morphism, e'i : bi -> b such that 
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eie'i = e. 

2. If g a -> c and gi : bi -> c, for each i, such that 

eigi = g, then there is a unique morphism f : b -> c such 
that of = g. 

It should be recognised that co-intersection is nothing more than a 

colimit. 

Now consider the family ei : xT -> bi of S-epis on 'x'. Then: 

1. It is a non-empty family as ixT : xT -> xT is an S-epi. 

2. Though the family may not be a set, the co-intersection 
still exists as C is co-wellpowered and cocomplete. This 

is a general result, see [Herrlich,Strecker 1973]. 

Proposition 

If e : xT -> b is the co-intersection of a family 
ei : xT -> bi i E I of S-epis then e is an S-epi. 

Proof 

Generally, the co-intersection of epis is an epi, hence e is an epi. 

Let the co-intersection of the family be e : xT -> b with morphisms 

in the colimiting cone e'i : bi -> b such that eie'i = e. Now as ei 
is an S-epi on x we have for all f : x -> a and for all e in S there 
is a gi such that the following diagram commutes: 

xT ba)6 
fT 

aT >a 
E 

This can be read as saying that 'a' is the apex of a cone on the 

diagram whose colimit is the co-intersection. Thus there is a unique 

h: b -> a such that 
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xT 
e 

6 
r 

fT i h 
4. 

aT a 
6 

commutes. Thus e is an 

S-epi on x as required. 

We may now proceed with the construction of our new theory 
T' = (T' . 

We define the object part of the functor T' as follows. If x is an 

object of C and the co-intersection of S-epis on x is e : xT -> b 

then the rule T' : x H b defines the object part as required. 

The morphism part of T' uses the preservation by pushouts. Thus 

given a C-morphism g : x -> y, we need a morphism gT' : xT' -> yT'. 
Consider the diagram: 

el ' -- b. --xT1 
CJT (i) 

yT --- e - y T 

where e i is an S-epi, (1) is a pushout square, eie'i the 

co-intersection of S-epis on x and, using the fact that pushouts 

preserve S-epis, fif'i is the co-intersection of S-epis on y. Thus 

the colimiting property of the co-intersection says there is a unique 

h : xT -> xT' such that the square commutes: 
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e 

x7 xT' 

(3 ) i IZ IT 

yT rr r, 
yT, 

This h is the required morphism to be denoted h = gT'. 

Note also that (3) says that the map which takes an object, x, onto 

the co-intersection of S-epis on x is a natural transformation which 

we will denote by 

q : T -> V. 

That this T' so constructed is a functor is easily established. That 

it has the same cocontinuity properties as T follows from the 

'interchange of colimits' theorem (page 112). We now construct the 

natural transformations 17' and r'of the new theory T = 

The unit of the theory is simply the vertical composition: 

2'= r.q : I T -> T', where I is the identity functor on C. 

Before we define the composition in the new theory T' we give a 

little lemma which is useful in establishing the naturality of maps 

when we are dealing with epis. 

Lemma (Inherited naturality) 

If C is a category, U, V, W endofunctors on C and 
' 

: U -> V, 

5 U -> W are natural transformations with an epi (i.e. for each 

x in C, x is an epi) then if there is an 8x xV -> xW such that for 

all xinC; 
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commutes, then e x is a 

natural transformation in x. 

The proof is merely "diagram chasing" and will be omitted. 

We are now in a position to construct the composition 

We start with two propositions: 

Proposition 

If ei : xT -> bi is an S-epi and 

bj 

xT---- ->1' 
u" 

IL1. T'2 ->T'. 

is a pushout square, then 

ui : xT -> pi is an S-epi on x. 

Informally - "pushout of eiT along preserves S-epis". 

Proposition 

There is a unique natural transformation /U+: T'T -> T' such that 

T 
T2 )T'T 

commutes. 

The proof of these two propositions is rather routine and will be 

omitted. We note however that the existence of such a 
N+ 

uses the 

fact that T preserves co-intersections of the form above. Naturality 

of is a consequence of the Inherited Naturality lemma as qT and 

Mq are natural and qT is an epi as T preserves epis. 
Proposition 

I f ei : xT'T -> bi is an S-epi on xT' and 
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xT'T 
e` 

KT '- - -- - - - . p 
U' 

is a pushout square, then 

xq.ui : xT -> xT' -> pi is an S-epi on x. 

The situation is now: 

xq,T QL 2 i 
xT' ' xT'T _ x T 

1 

(2) 

Xq 
uZ ,i, 

where (1) is the definition of/4+, (2) is the pushout square and e!, 
i 

Ui are the morphisms to the co-intersections (using the above 

proposition). 

Thus the universality of the co-intersection of the S-epis on xT' 

gives a unique Mx : xT'T' -> xT' such that 

xT2 XQ2 T7L 

I 

lip 
r' x 

xT >xT' 
X7. 

commutes. 

Further by the Inherited Naturality lemma, as xqq is an epi for all 

x, we have that 
/U x is natural in x. 

Proposition 

There is a unique natural transformation I.I' T'T' -> T' such that 



165 

T2 q>T'2 

T T' 
1l 

commutes. 

Proof : Immediate from the previous work. 

It is now an easy task to show that T' _ (T',really is a 

theory i.e. satisfies the theory laws. '' 

Furthermore we have that q : T => T' is a theory morphism i.e. 

both commute. Hence we may 

write q : T -> T'. 

This completes the construction of the theory. We now establish 
its universal property. Suppose T" is another theory on C and there 
is an epi q' : T -> T" which is an S-epi. Then because, for each x 

in C, xq is a co-intersection, there is a unique /Ox : xT" -> xT' 
such that the following commutes. 

Xc,i 
X-F 

-> %T 
i 



166 

By the inherited naturality lemma /Ox is natural in x, so we may write 

,0 : T" -> T. It remains to show that.0 is a theory morphism. This 

follows from the fact that T preserves epis and that q and q' are 

epis and theory morphisms. This morphism P is evidently unique with 

the property and thus we have established the universal condition on 

T'. 0 

Properties of The Construction 

A denotational semantics of a language can be used to check syntactic 

identities which are believed to hold. That is, we can prove that an 

equational specification of the semantics is subsumed within the 

denotational semantics given. These category theory constructions 

are intended to provide part of a 'categorical' semantics for CLEAR. 

We would wish that properties of the constructions reflected 

syntactic identities that are assumed to hold. We look at an example 

of this. 

Choose S to contain only the initial algebra of a theory T (assuming 

that C has an initial object). Then denote the theory constructed as 

above from this S by Induce(T) (this is in keeping with the 

terminology of [Burstall,Goguen 1977]). The theory Induce(T) can be 

thought of as T together with all the equations which are true in the 

initial algebra of T. From this intuitive description of Induce(T) 

we might expect that 'Induce Induce = Induce' should hold. That is, 

'Induce' is idempotent. A priori, the sense in which the two 

expressions are equal has not been defined. This 'equality' turns 

out to be a categorical isomorphism. 

Using the notation of the previous parts we have: 

Proposition 
If T' = Induce(T) (i.e. S contains only the initial T-algebra), then 

q : T > T' is a section (i.e. has a right inverse). 
Proof 

0 is initial in C and the unique morphism 0 -> O T is T, 

hence we have: there is a k :0 T' ->O T such that: 



167 

OT ' 

0qTI k 

O?z 
ON 

0T 

commutes, where (1) 

commutes by theory law for T and the whole square commutes as O q is 
an S-epi on 0. Hence Oq. k = iOT, 

Proposition 

as required. 

E _ OT'q.ON :0T'T -> OT'T' ->0T' 

is a T-algebra. 

Now let Induce 

q' 

Then, 

T' -> T" be 

(Proof omitted) 

Induce(T) = Induce(T') = T" _ and let 
the theory morphism taking T' into Induce(T'). 

given f : x -> OT', we have the diagram: 

xT : xT x T 

fT (t) cT/ (2.) 

4. 

OT,T >OT,z T 

OT' 

where (1) commutes by the naturality of q and there is an 

h : xT" -> OT' such that (2) commutes as q' is a {4'}-epi. 

Hence, q and q' are both {E}-epis where E _ OT'q. OU'. We can now 

show that x(q.q') is an 0r}-epi for all x. For, given an f : x -> O T 

we have, 
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4 0g)T 

fT c2> hkz. 
XT 

X% 

xT' $ 
> xT" 

(,) OT2 0T (4) 6 

/09T 
(3) k \` 

45V T 
0 T/ 

T 

where k is the (unique) right inverse of O q : OT ->QST' and h is the 

unique morphism which makes the outside square commute - which exists 

because x(q.q') is an {E}-epi. (3) commutes as q is a theory 

morphism. (2) now commutes as all other polygons commute. 

Hence we have x(q.q') is an {op'}-epi. But xq : xT -> xT' is the 

co-intersection of all such epis thus there is an r : xT" -> xT' such 

that: 

xT > xT 1 1). xT 

Thus xq'. r = ixTt as xq is an epi. So xq' is a section, it is a 

epi, hence it is an isomorphism, by a general result (consult 
[Herrlich,Strecker 1973]). 0 

An obvious question which springs to mind - is "Induce" a functor 

between suitable categories? Consider the example: 
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constant One = 

sorts thing 

opns tt : thing 

0( _ 

Induce One = 

Induce sorts thing 
-> opns tt : thing 

eqns x = tt 

thing -> thing' ?? Induce(0C) 

tt -> tt' 

I 

constant Two = 

sorts thing' 

opns tt' : thing' 

ff' : thing' 

Induce 

- -> 

Induce Two 

= Two 

No morphism, Induce(oC), exists which makes the diagram commute. 

The error seems to be the of is not 'onto'. However, 'epiness' does 

not seem to be sufficient to construct the morphism Induce(CC). We 

show that the stronger assumption that OC is a retraction (i.e. has a 

left inverse) is sufficient. 

We proceed as in previous cases to show that given an oC : S -> T 

there is a unique oC' : Induce S -> Induce T such that 

C< I 
T Inau&QT 

IT 
commutes, provided that 

o(is a retraction (i.e. x is a retraction for all objects x). 

[Here the qS and the qT are co-intersections of {ojUS}-epis and 

101UTI-epis respectively] 
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Proposition 
If the following is a pushout square 

eL 

xT_ 

with D( a retraction and ei a 

#T } -epi . 
Proof 

We use the fact that given g 

that 

proceeds mechanically. 

commutes. The proof then 

The proof of the existence of the o(' (as a theory morphism) is now 

concluded by the same technique as in the previous existence proofs. 

0 

We now return to the discussion of data theories. 

DATA THEORIES ARE MONADIC 

It was shown in [Burstall,Goguen 1980a] that the data constraints of 
data theories behave somewhat like equations and therefore that a 

general formulation of theories which encompassed equational theories 
also included data theories. Here we give a similar result for 

monadic theories. The previous two propositions enable us to 

construct monadic theories from data constraints. 

{0/"S } -epi then gi : xT -> pi is a 

X -> O T there is an h: x -> O S such 

Suppose that T = (T, 7 ,p) is a monadic theory on a category C. Let 
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(F,G) be a data constraint with F : S -> T for some theory S and 

G : T -> U for some theory U (G may arise from a signature morphism 

if T and U have associated signatures). Thus we have the picture: 
S --> T --> U. 

F - 6 - 
Assuming that the theories S, T and U satisfy the requisite 
conditions (those concerned with preservation of colimits), we can 

construct another theory which is to be U "data constrained" by (F,G) 

as follows: 

By the first proposition above, if F+ : Alg(T) -> Alg(S) is the 

forgetful functor obtained from the theory morphism F, then there is 
a left adjoint to F+, F* : j(S) Alg(T). If 

G+ : Alg(U) -> j(T) is the forgetful functor obtained from G, 

consider the class of U-algebras, Q, defined such that 
G+ Q) = F*(Obj(Alg(S))) 

That is, when forgotten to T-algebras they are the image of F*, 

("Obj" gives the objects of a category). 

Now use the construction of the second proposition with U as the 

theory and Q as the class of U-algebras. We obtain a new theory U' 

and a theory morphism q : U -> U'. This is the required monadic 

theory obtained by enriching a monadic theory with a data constraint. 

As an example consider the following specification: 
constant Nat = 

data sorts nat 
opns 0 : nat 

succ : nat -> nat 
end 

constant NatPlus = 
enrich Nat by 

opns + : nat,nat -> nat 
eqns 0 + n = n 

succ(m) + n = succ(m + n) 
end 

Now if Nil is the empty theory, the data constraint corresponding to 

the "data" in the specification consists of the following two 

morphisms: 

Nil A> Nat -> NatPlus 

where is the unique morphism from the empty theory to Nat (this is 
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a morphism of many-sorted theories - not a straightforward monad 

morphism, see page (14) for an explanation of this). The morphism F 

is the inclusion of sorts and operations. 

Now assuming that the requisite conditions hold for the theories Nil, 
Nat and NatPlus, we can construct a new theory - NatPlus data 

constrained by <CF> - as follows. The class of algebras determined 

by the morphism f is simply the class containing only the initial 
algebra of Nat. In the above notation, the initial algebra is the 

only element of F*(Obj((Nil))). Thus the NatPlus algebras that we 

are considering must all have the "Nat-part" as this initial algebra. 
Such algebras must all satisfy extra equations, for example: 

all m,n: nat m + n = n + m 

which arises by induction rather than by equational deduction. Thus 

the theory denoted by the specification has this extra equation. The 

monadic theory constructed as above can thus be thought of as NatPlus 

with these extra equations. 

Notes 

Kaphenst and Reichel (1971) with their 'canons' introduced 

the notion which we call a data constraint. Data constraints 
are described in [Burstall and Goguen 1980a]. The idea 

behind the second construction in this chapter arose from a 

discussion with Dr. Gordon Plotkin. 



173 

CHAPTER TEN 

COLIMITS AND FACTORISATIONS IN CATEGORIES OF THEORIES 

We have seen that colimits give a categorical interpretation of the 

building of new objects from old and that expressing objects as 

colimits of diagrams gives an associated decomposition. Putting 
theories together to build specifications is an example of this and 

the use of colimits in this setting has (as described above) been 

noted by [Burstall,Goguen 1980a] as well as by [Ehrich 1978]. 

Factorisations are another way of obtaining new theories from old and 

are associated with data abstraction. 

COLIMITS OF THEORIES 

Theories in a Lawvere form have finite colimits [Lawvere 1963b] and 

so do those in the logical form of [Burstall,Goguen 1980a]. We 

therefore must ask - does the category of monadic theories have 

finite colimits? The answer is yes, at least for suitable theories 
on a suitable base category. We establish this by showing that 
binary coproducts and binary coequalisers of theories exist and 

finally that an initial theory exists. This is sufficient to prove 

the result by the colimit existence theorem (page 36). 

Theorem 

The category of monadic theories (with cocontinuous endofunctors) on 

an (arbitrarily) cocomplete base category C has binary coproducts. 

(The cocontinuity can be weakened to require only that the 

endofunctors preserve colimits of the diagram D below.) 

Proof 

Suppose T1 = 
(T1 , 9 1 ,1t.1 1 ) and T2 = (T2, 7 2,,U 2) are two theories 

(with T1, T2 preserving the colimits of diagrams of the form of D 

below) on a cocomplete category C. 

Our first attempt may be to suppose that, like the coproduct of 
monadic signatures (page 123), the coproduct of T1 and T2 arises by a 

pushout. This is not the case. We cannot define a composition 
operation, which preserves the compositions in T1 and T2, on the 

endofunctor arising from the pushout. A more elaborate construction 
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is required. 

In the Lawvere understanding of theories, the coproduct of two 

theories is given by a pushout diagram in the category of categories. 
This involves the transitive closure of part of the underlying graph 

of a category - i.e. something like a freeness construction. In the 

following, this is reflected by a colimit of an infinite diagram, 
just as free theories were given by colimits of 47-chains. 

The construction goes as follows. First consider words on the 

alphabet { T1, T2 }. Each word denotes, by functor composition, a 

functor - the empty word being the identity functor on C. Let W, W', 

W" be variables ranging over words (and over the functors that the 

words denote) on this alphabet and let !Wi be the length of word W. 

Consider the diagram in CC, which we call D, whose nodes are labelled 

by these words, each node having as object the functor denoted by its 

label. The morphisms of D are the following: 

W iW' : WW' => WTiW' and 

W,UiW' : WTi2W' -> WTiW' 

for i - 1,2 and all words W,W'. 

Let 1w: W -> U be the colimit of D. Notice that U preserves the 
colimit of D (page 112). In this case the approximation and 

existence lemmas that we need look like: 

The 1-approximation lemma: 

If, for all W in D: 

W 

1W 

3W 
-> U 

c 

y w 

u 
9 

V 
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commutes, then f - g. 

The 2-existence lemma: 

If, for all W and W', hW,W, : WW' -> V is separately a cone in W and 

W', then there is a unique h : U2 -> V such that 

W WI 3W lw: U 2 

commutes. 

Now we construct a theory with U as endofunctor, U - (U,r2 

We define 2 by 2 I I '> U where I is the identity functor on 

category C. 

Then define III, from the 2-existence lemma, as the unique morphism 

such that 

WWI 
Vj W U2 

t 

commutes 

automatically is a cone separately in W and W'). 
qWW' 

To verify that U really is a theory, notice that by setting W' - I in 

the triangle above, we have 
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'W U2 W; u >U2 

commutes. Hence by the 

1-approximation lemma 

commutes. This is one 

theory law. Setting W a I instead, gives another theory law. 

For the commutation of the square: 

NU 

expand, using the 3-approximation. Thus we need to prove that, for 

all W, W', W" in D: 

WW/w11 SW\ArtL 

1Q2 

'uU 

W 1W, wAV 

I /A 

U 3 u if em u 

commutes. But it is 
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readily verified that either way round the square is I WW,WVV. Thus U 

is a theory. 

All that remains to do is to show that it is the coproduct of T1 and 

T2. 

Define theory morphisms ti : Ti -> U by 

ti = ! Ti for i = 1,2. 

These are theory morphisms because, for i = 1,2 

/L 

commutes as 3 
W is 

a cone on D, and 

3Tt]Tj U2 

T2 
(1) 

commutes because (1) is the definition of 

and (2) commutes because 3 W is a cone on D. 

Now suppose that V = (V, 2'' p') is another theory, with theory 

morphisms, for i = 1,2 

Vi 
. Ti -> V. 

Construct a cone on D by.: 

V, - Q, : I -> V 

VW = vW.,u'W : W -> V for all 

W I 
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where vW is the horizontal composition of v1 's and v2's obtained by 

substituting v1 for T1 and v2 for T2 in the word W and P'W is defined 

by, 

/u'V iv 

M'V2 
a 

P'Vn fUVn-2,UIVn-1 

Then by the 1-existence lemma, there is a unique u : U -> V such 

that, for all W, 

commutes. 

This u is a theory morphism as: 

11 
U 

commutes from the definition of u and 

z 

Lit 
u 2. 

U v 
LI 

commutes by expanding as a 

2-approximation: 
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WW' 
3w w' ,uz 

rL 

141 
4- 

U 

U 1- u--- v = ) V 

This commutes for all W and W' in D as both ways round it is JWW'. 

Thus we have proved the universality of U, that is, U is the 

coproduct of the theories T1 and 12- 0 

We now turn our attention to coequalisers of theories. 

Theorem 

The category of monadic theories, whose endofunctors are 

cocontinuous, on an (arbitrarily) cocomplete category C has 

coequalisers of pairs of morphisms. 

(The cocontinuity condition can be weakened somewhat to require only 
that epis, W -colimits and the coequalisers and pushouts below are 
preserved.) 

Proof 

Let S (S, 9s, frt and T - (T,2.r,,CIT) be two cocontinuous theories on a 

cocomplete category C and let 
f,g : S -> T 

be two theory morphisms. 

We may suspect that, like the coequalisers of monadic signatures, 
coequalisers of theories are created by those in C. However, the 

coequaliser of 

S T 

in CC does not respect the composition in the theories. It is an 
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equivalence andnot a congruence. We build the required congruence 

iteratively using pushouts and take an W -colimit to construct the 

coequalising theory. Iterated pushouts and the associated w-colimits 

are used elsewhere in category theory to construct colimits. For 

instance Adamek and Koubek [1980] have used them to construct 

colimits of algebras. There seems to be a general understanding of 

this construction - iterated pushouts and the associated w -colimit 

are used to obtain the "closure" of an object under an operation. 

Define inductively a sequence of functors, Un, and natural 

transformations, un : Un -> Un+1 n>0, by UO a T, and u0 is given by 

the coequaliser: 

`' SST--- ° U, 

Inductively define Un+2 and un+2 by the pushout: 
z 

2 u^ z 
1.1,E urW 

b 
^M1 1 `anti 

un+l 

where k0 -,UT.uO. Notice that uO is an epi because it 
is a coequaliser, thus as each Un preserves epis, un is an epi. 

Now consider the chain 

U, U, U2 un Un+l 

U, - LIZ --s . . Un ) U%*- a 

Call it A. 
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Let its colimit be 3 : Un -> U for all n>O. Then 

Un } 
un-+ I 

commutes. 

We make U into the endofunctor of a theory U (U, 2 p ) by defining 
a 2 and a ,U : 

I => U is given by q T'1 0 

P again arises from the 2-existence lemma, but because 

is an W-chain, we can use the stronger form to say that /.L is 

defined to be the unique morphism such that, for all n>O, 

!, U 

commutes. 

To verify the theory properties of U is rather routine. 

For instance, we need to show that 

0q 
U 

. U2 

commutes. Using the 1-approximation 

lemma, it suffices to show that: 



182 

I 

'e (1) U9T 
u 

IT 
`T L(T '2 ujr (3 u o 

i+, L+1+i 
U 

where ui* 
u0u1 ..... ui. Here, (1) commutes by the naturality of , (2) by definition of 2 and (3) is 

U.T 
IT 

if 'UT 

U! UULU jUio 
Ui - U 

U& 

L2 

which commutes, (4) is the definition of t! and (5) is trivial. 

Only (6) remains - we need an inductive argument: 

We want to show that for all n>O the following commutes. 

UZ 7r Ui UL 

U i ---- > Uz T -- U; 

I 
U U«, 

If n = 0, this reduces to 
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T2>T2--r z 

U, 

which commutes by a theory property of T and the fact that 3n is a 

cone on A. Assume that the required square commutes for a fixed n, 

then show that it commutes for n+1. We have the situation: 

T U u UjT 
u1 

Q U, 
2 

T OT u; / 

10 k. 

UL+, 

Each inner piece commutes so the whole square commutes. 

The other theory laws are established by a similar reduction to an 

inductive argument. 

If we define h : T -> U by h - 1 0, then it is indeed a theory 

morphism. Moreover, we now show that it is the coequaliser of f and 

g. 

Let T -> V be another theory morphism such that fQ- g,$. We 12 : 

prove that there is a unique ' such that 
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commutes. Construct 

inductively. 

Define 1o to be the unique morphism such that 

commutes (using the 

colimiting property of the coequaliser). Now suppose that we have 
vv 

oi_1 and Oi such that 

UZ 
Utt1 

both commute. Construct a 

as the unique morphism making the following diagram commute, 

uc2 

k 
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(using the colimiting property of the pushout). 

Now, by definition, the Yi's form a cone on the chain So there is 

a unique 9 : U -> V such that 

commutes. This is the 

required morphism. We need only show that it is a theory morphism 

and has the required uniqueness. 

Set i - 0 for one condition and for the commutation of 

9 

use the 2'-approximation lemma. Thus it suffices that the following 
commutes. 

ii 
2 

But (1) commutes by the definition of the ii's, (2) by the definition 
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of ,U , (3) by the definition of ' and (4) by a property of the Xi. 
Thus 9 is a theory morphism as required. The necessary uniqueness 

follows from the uniqueness of Y above. 

This completes our proof of the existence of coequalisers. 0 

Notice now that the trivial theory on C, (I,i,i), where I is the 

identity functor on C and i is the identity natural transformation, 

is initial in Th(C). Finite cocompleteness now follows from a 

general theorem (page 36). 

We now turn to the factorisations in the category of theories, thus 

verifying Axiom 3 for monadic theories. 

FACTORISATIONS IN THE CATEGORY OF THEORIES 

Factorisations in categories are of use in formalising data 

abstraction mechanisms, in particular the DERIVE operation of CLEAR 

[Burstall,Goguen 1980b]. We have not so far dealt with 

factorisations but it seems that we can "compute" them by similar 

techniques (including lifting and pointwise evaluation) to those used 

for computing colimits. To complete our discussion of the axioms for 

theories (page 103), we include here a result about factorisations in 

the category of monadic theories. 

Unlike colimits of theories, certain factorisations of theories are 

easy - they lift from functor categories where they are computed 

pointwise. 

First several definitions: 

Definition 

We say that e is an extremal-e if e is an epi such that the 

following holds: If e - fm with m a mono then m is an isomorphism. 

Definition 

Let C be a category and F the class of its extremal-epis andRits 

monos, then C is said to have extremal-epi, mono factorisations if 

every morphism, f, in C can be expressed as 

f - em with e in e and m in,/K. 
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Now several propositions (proofs may be found in [Schubert 1972]). 

1. A sufficient condition for a category to have extremal-epi 

mono factorisations is that the category is cocomplete and 

co-wellpowered. The proof is constructive. 

2. If fe is an extremal-epi, so is e. 

3. If C is co-wellpowered and cocomplete then 

extremal-epi, mono factorisations are natural. That is if 
f - em and f' - e'm' are such factorisations and if 

e m 
ct ' 

> cL 

CL/ > - b 
of m` 

commutes, then there is a unique g : d -> d' which fills 
in the diagram commutatively. Consequently, these 

factorisations are unique to within an isomorphism. 

With these results, we may proceed. We show first that 

extremal-epi,mono factorisations in functor categories are computed 

pointwise. 

Let C be cocomplete and co-wellpowered - it therefore has 

extremal-epi,mono factorisations. If A is any other category, 
consider the functor category, CA* Let of : F -> G be a morphism in 
this category. For each a in A, ao(: aF -> aG factorises uniquely 
(to within an isomorphism) as, 

aF 
e 

> d --> aG with e in c, , m in,/Z. 

This factorisation is functorial, that is we can define a functor D 

in CA such that, on objects, aD - d and, on morphisms (using the 

naturality of the factorisation): 
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e 

D 

e' M' 

This diagram says that the e, e' and m, m' may be considered as 

natural transformations which we will call E and V. Thus in the 

category of functors, we have the factorisation: 

oC F -> D -> G. 

E is an extremal epi in CA and v is a mono, as required. 

We now turn to factorisations in the category of theories. 
Theorem 

If C is cocomplete and co-wellpowered (hence has extremal-epi, mono 

factorisations) and Th*(C) is the full subcategory of theories on C 

whose endofunctors preserve extremal_epis and monos, then Th*(C) has 

extremal-epi,mono factorisations. 
Proof 

Let S ( S , 2 , ) and T = (T, ,U' ) be theories in Th*(C) and 

OC : S -> T. By the previous discussion there is a functor U : C -> C 

and a factorisation in Ci: 

S 
CMy>T. 

First, it can be verified that this functor preserves extremal-epis 

and monos. We now show that it is the endofunctor of a theory and 

that E and )) are then theory morphisms. 

Define 2" : I -> U by 2" = 2 E and ltd" as the unique fill-in (using 
the fact that S, T, U preserve extremal-epis and monos): 
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P 

E vz 

Sz u 
2 1r z 

L 

It can readily be verified that (U, 2",p") really is a theory. This 
completes our demonstration. 

Notes 

Factorisation in a category and factorisation systems were 

described in [Mac Lane 1948]. 

0 

The connection between factorisation of theory morphisms and 

data abstraction was noted in [Goguen and Burstall 1978]. 
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CHAPTER ELEVEN 

MANY-SORTED THEORIES AND MORE 

The monadic theories which we have investigated so far are adequate 

to handle only theories with a single sort. It is true that we could 

use the cross-product of categories to describe many-sorted (or 
heterogeneous) theories - that is, we coerce the sorts into one sort 
by taking the product of the sorts. The operations then take such 

product sorts as arguments. Besides being clumsy, this method fails 

to generalise sufficiently for our purposes. It cannot, for 

instance, handle the, so called, order-sorted theories. We will, in 

this chapter, show how to generalise monadic theories to handle these 

cases. This categorical formulation of order-sorted theories means 

that we should be able to translate work in order-sorted theories 

into standard category theory. As an example of this, we show that 

the 'fill-out' operation of [Goguen 1978] arises from an adjunction. 

First we discuss several extensions of the many-sorted or 

heterogeneous theories. 

ORDER-SORTED AND CATEGORY-SORTED THEORIES 

The idea of "coercions" has proved useful in programming whenever one 

sort is to be thought of as included in another sort. For instance, 

we may wish that integers were, in some sense, included in the reals. 

This facility is available in many programming languages and is 

allied to the notion of "overloading" of operations. Overloading is 

simply the use of the same operation name for operations with 

different functionalities. This is necessary if coercions are to be 

introduced. For instance, an addition on reals should, under the 

above coercion, become an addition on integers. All this is 

formalised in the paper [Goguen 1978]. Notice that many sorted 

theories give us no means for describing such relations between the 

sorts. What is required is an ordering upon the sorts such that if 

there is a coercion of 'i.nt' into 'real' then int < real. This 

assumes that there is only one coercion of 'int' into 'real' and that 

there is no coercion of 'real' into 'int'. With this example, this 

is evidently the case, but several authors have advanced [Reynolds 
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1978] the more -general idea of a category of sorts which allows more 

than one coercion between sorts and coercions in both directions 

between sorts. 

So far we have made no mention of "errors" or "exception cases" but 

for a correct formulation of many data types within universal algebra 

we must introduce means of handling "errors". For instance, the 

standard presentation of 'stack' is: 
procedure Stack(X : Triv) 

let A 

data sorts stack 
opns nil : stack 

push : element,stack -> stack 
in 

enrich A by 
opns pop : stack -> stack 

top : stack -> element 
eqns pop(push(n,s)) s 

top(push(n,s)) n 
end 

Of course 'pop(nil)' is not a stack in the normal sense. We cannot 

push onto this stack. Goguen [1978] has shown that, by introducing 

"error-sorts", we may present this example correctly, and furthermore 

that this may be formulated within these order-sorted theories. The 

order on the sorts arises from the fact that we would like some 

relation between, say, ''error-stack' and 'ok-stack', both being 

included in a sort 'stack'. Further details and an algebraic 

formulation may be found in the paper just alluded to. 

An Aside 

This does not end the discussion on handling errors in data types. 

For one thing, the idea of introducing error-sorts and subsuming 

these theories with errors within order-sorted theories leads to 

rather unwieldy presentations of data types and the interpretation of 

the error-sorts and error-operations is often not at all obvious. 

Moreover, whilst we often need many different errors of different 

sorts so that we can handle error messages and different types of 

error recovery, often we would wish to eschew the mentioning of 

errors altogether. Yet we would still need the presentation of 

'stack' above to be correct - which it evidently is not. A case in 
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question is the synthesis of programs from specifications. We would 

hardly expect errors to be needed in programs synthesised correctly 
from specifications. 

We seem to need "errors" because our language for describing the 

domains of our operations is too limited (essentially to the product 

of sorts and, in higher-order theories, to their exponent). For 

instance in the case of 'stack' we would wish to say that the domain 

of 'pop' was restricted to non-empty stacks - those that satisfy the 

sentence: 

3 n: element,3s: stack : x a push(n,s) (1) 

For another example let us look at a presentation of (small) 

categories: 

sorts object, morphism 

opns source, target : morphism -> object 
identity : object -> morphism 
compose : morphism, morphism -> morphism 

eqns source(identity(n)) n 
target(identity(n)) n 
source(compose(ml,m2)) source(ml) 
target(compose(ml,m2)) target(m2) 
compose(identity(source(ml)),ml) ml 
compose(ml,identity(target(ml))) ml 
compose(compose(ml,m2),m3) compose(ml,compose(m2,m3)) 

not 
Again this is not correct - it doesAdescribe what we want. 

Composition is not defined on all pairs of morphisms, only on those 

pairs (ml,m2) satisfying the equation: 

target(ml) source(m2) (2) 

We give a brief outline of what might be done in this 
direction. Notice first that both the restricted domains above, 

those defined by sentences (1) and (2) have a categorical 
interpretation. If, for the moment, we work with Lawvere theories 
this will become clear. In the case of equation (1), 'push' will be 

a morphism in the category and the equation then says that we want a 

unique factorisation of this morphism (exactly which sort of 
factorisation may depend upon context). We may denote the sort 
obtained from the factorisation (intuitively, the sort of non-empty 
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stacks) by 'push' and write: 

pop : push -> stack. 

Likewise for the case of small categories, equation (2) denotes a 

pullback: 

target # source -- - - - - - - - ->morphism 

source 

N 01 

morphism > object 
target 

We can call the new sort, using standard category theory notation, 

'target # source', and write 

compose : target # source -> morphism. 

It should be possible to extend the usual product (or coproduct) in 

Lawvere theories to these more general domain constructors. Likewise 

monadic theories should encompass theories with operations of this 

form. We do not intend that we should be able to define every domain 

(though we could considerably extend the domain building operations 

above) but we may not need to. For instance we should not ask for a 

domain of acyclic graphs for a computation of transitive closure. 

There is a difference between the failure of a program to terminate 

and the undefinedness of, say, 'pop(nil)'. The former is correct - 

acyclic graphs have an infinity of paths - the latter has no meaning. 

However, it should be noted that this extension of algebraic theories 
does not include the theory of fields, unlike the error-theories of 
[Goguen 1978]. Fields are not well-behaved (for example, they are 

not monadic and free fields do not, in general, exist) whereas stacks 

and small-categories are well-behaved (at least in the sense given). 

The behaviour of theories with partially defined operations is 

discussed in [Broy,Wirsing 1980]. 

Notice that when we define restricted domains for operations, these 

restrictions are in terms of previously given operations. For 

instance, the declaration of "pop" is in terms of "push". We assume 

that "push" is declared before "pop". We are thus thinking of a 
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hierarchy of operations, each defined in terms of those 'below' it. 

Freyd [1972] discusses theories of this sort in the case when the 

domains are given by equations, calling these theories 'essentially 

algebraic'. 

MANY-SORTED THEORIES AND ORDER-SORTED THEORIES AS MONADIC 
THEORIES 

We now show how to extend monadic theories to include these 

many-sorted, order-sorted and even category-sorted theories. In the 

Lawvere approach to theories this extension from single-sorted 

theories to many-sorted theories can be accomplished by choosing a 

different category of "arities" as described in 

[Wagner,Wright,Goguen,Thatcher 1978]. 

We deal here only with category-sorted theories as the others are 

special cases. Let S be a category of categories and S an object of 

S. We are to think of S as the category of "sort sets" and S as a 

"sort set", i.e. a category - possibly the discrete category. 

Let C be any category (we usually think of C as the category of sets 

or possibly continuous partial orders), and F a functor: 

F : S -> C. 

An S-sorted theory will be a theory on the category of these 

functors, CS. So far, so good. What about theory morphisms? Theory 

morphisms have to include now not only a map on operations which 

preserves the equations (which, as we know, is handled by a natural 

transformation between endofunctors) but also a map between the 

sorts. Theory morphisms may change the sorts. Thus, we see that 

theory morphisms may map theories on one base category to theories on 

a different base category. This is where an extension of the 

definition of monadic theories is required. 

Notice that, with the categories S and C, we can form a new category 

whose objects are categories of the form CS, for S an object of S, 

and whose morphisms are all functors between these categories. 

Moreover, a map on sorts - a morphism in S - of the form h : S -> S', 

gives rise to a functor, 

Ch : CSt -> CS, 
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from the category of S'-sorted C-objects to the category of S-sorted 

C-objects. 

What is a category of theories now going to look like? Theories will 

still be monads on some category of the form CS. On the other hand, 

theory morphisms from T > (T,9 ,1A ) on CS to T' (T', 9',,u') on CS' 

will be pairs (h,a ) where h: S -> S' and c(: ChT -> T'Ch is a 

natural transformation. The diagram below may help: 

C 

C 
S 

CS 

T 

CS 

The identity morphism on T is (IS,iCS) and compositions of morphisms 

" is given by, if T" 4: (T", 2",lu") is a theory on C S and 

(h',o(') : T' -> T" then 

(h,o() (h', a') (hh', Ch'o( oc'ch) 

defines the composition. 

We call this category Theory(S,C) and by 'forgetting' the composition 

in theories we get, by the same construction, a category of 

signatures, Signature(S,C). Again, there is a forgetful functor, 

U : Theory(S,C) -> Signature(S,C). 

More notation: S-Sig(C) is the category of S-sorted signatures for an 

S in S, likewise for theories. 

This looks rather awkward but it can be cast into an elegant general 

form as these theory morphisms behave rather like natural 

transformations. We can define a 'horizontal' composition as well as 
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the above 'vertical' composition. See Appendix Two for details. 

PROPERTIES OF MANY-SORTED AND ORDER-SORTED MONADIC THEORIES 

We now look at properties of many-sorted and order-sorted theories in 

this monadic setting. We will show that the previous results, which 

we have proved in the case of the single-sorted theories, extend to 

these many-sorted, order-sorted and category-sorted theories. 

The idea is to choose a suitable category in which the construction 

for the single-sorted case can be carried out and then show that the 

construction is universal in the larger category of theories, 

Theory(S,C). We use the notation of the previous section and sketch 

briefly what the constructions look like in this category of 

theories. 

For the free theory on an S-sorted signature with respect to the 

functor, U, we notice that the construction takes place entirely 

within the category CS, so, provided that C has w-colimits and that 

the endofunctor of the signature preserves these colimits, the 

construction goes through as before. To establish the universality 

of the theory so constructed, we need that for each h : S -> S', the 

functor Ch : CS -> CS preserves 4)-colimits. This is a corollary of 

a general result concerning colimits in functor categories (see 

[Herrlich,Strecker 1973]). Now the construction of the mediating 

morphism goes through as before replacing, of course, single-sorted 

theory morphisms by these more general morphisms. 

What about finite cocompleteness of the category Theory*(S,C), the 

full subcategory of Theory(S,C) consisting of those theories whose 

endofunctors are cocontinuous? If we assume that C is (arbitrarily) 

cocomplete and that S is finitely cocomplete (as a subcategory of the 

category of categories) then Theory*(S,C) is finitely cocomplete. 

The initial object in Theory*(S,C) has no sorts - it has the initial 

"sort-set", . There is a unique functor H : b -> C and the initial 

theory is then (I,i,i) where I is the identity functor on the one 

object category containing H, and i is the identity natural 

transformation from I to I. 
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To construct the coproduct of a pair of objects in Theory*(S,C) let 
T1 (T1 , 7 1 /U1 ) be an S1-sorted theory and Z2 ;5; (T2, 9 2, P 2) be an 

S2-sorted theory (Si and S2 being objects of S). Let S1+S2 be the 
coproduct of the categories S1 and S2. By universality of the 

coproduct a functor H S1+S2 -> C splits into functors 
H1 : S1 -> C and H2 : S2 -> C. Now consider the functors, H1T1 and 

H2, these give a functor H' : S1+S2 -> C and then this passage from 

H to H' is functorial, the functor being the endofunctor of a theory 

T'1 on CS1+S 2. Likewise construct a theory f2. Then the coproduct 

of T1 and T2 is the coproduct of T'1 and T'2 calculated in the 

category CS1+S2. The universality of this construction can readily 
be checked. 

A similar treatment will provide the coequaliser of a parallel pair 
* of theory morphisms in Theory (S,C), using the coequaliser of 

"sort-sets" in S. Thus Theory (S,C) is finitely cocomplete. 

The other constructions that we have given for the single-sorted 
monadic theories should generalise to the category, Theory*(S,C), for 

suitable S and C. This has yet to be checked. 

FREE SIGNATURES AND KAN EXTENSIONS 

Part of the aim of this work is to bring the universal concepts of 
category theory to bear upon our understanding of programming. This 
is not anything new. For some years now the descriptive power of 
initiality and adjunctions and of colimits has been recognised. 
However adjunctions and colimits are not the only possible universal 
concepts in category theory. Whilst more such concepts may be 

formulated it appears that they all are 'equivalent' to each other. 
For instance, the definition of a colimit can be cast into a special 
case of that of an adjunction and adjunctions can become colimits via 
a formal existence theorem for adjunctions. 

We introduce here another, less familiar, universal concept - that of 

a Kan extension. We need this new universal concept to describe and 

extend an operation on signatures to be found in [Goguen 1978]. In 

fact, in investigating this, I inadvertently "rediscovered" the 

important existence theorem for Kan extensions (page 201). 
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Signatures and Order-sorted Theories 

What do signatures for order-sorted theories look like? To 

incorporate order-sorted theories into universal algebra an arbitrary 
set of operations will no longer serve as a signature. We need to 

consider how the order upon the sorts is reflected in the signature. 

For instance, if {inc, real) is our set of sorts and there is a 

coercion 'int -> real' , and if we had an operation in our 

signature: 

* : real -> int 

we would expect also the operations 

*, : int -> int 
*2 : real -> real 
* 

3 
: int -> real 

which arise from the coercion by restricting the domain or enlarging 
the range of *. 

It should be clear however that given an arbitrary set of operations 
and their arities and an order upon the sorts we can introduce extra 
operations as above to 'fill-out' the signature to an order-sorted 
signature. This filling-out operation is introduced in [Goguen 

19781. 

We show that this operation arises from a Kan extension and thereby 

give an interpretation of 'filling-out' for category-sorted 

signatures as well. In fact, there is a sense in which the fill-out 
of a signature is free upon the original signature. We first define 

the rather unfamiliar idea of a Kan extension then show how it 

relates to the construction of free signatures. 

Kan extensions 

Consider the following diagram of categories and functors 
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A 

There is an H : A -> C such that: 

F 

H 

Cr 

G 

commutes. H is given by the composition of F and 

G. Now we are looking for a way of inverting this. That is, given a 

diagram: 

A F B 

c 

F 

we are looking for a functor, G, such that: 
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A F 'B 

commutes. In general no such G exists. Suppose, 

however, that we weaken our requirement. Instead of insisting that 

(1) commutes we merely ask that there is a natural transformation 

o(: H -> FG. In general, there are many such G's. Now suppose that 

is universal in the following sense: 

For any other G' : B -> C and o(': H -> FG' there is a unique 

9 : G -> G' such that 

commutes. 

Then we say that G is the left Kan extension of H along F. Right Kan 

extensions arise if we insist on the requirement of a natural 
transformation oC : FG -> H with a similar universal property. 

Now suppose that for a fixed F, every H has a left Kan extension then 

we can cast the definition into that of an adjunction. Indeed the 

passage from an H to such a G is left adjoint to the "composition" 

functor, 

CF : CB -> CA which is defined by: 

CF(G) = FG. 
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We denote this left adjoint to CF, if it exists, by, 

: CA -> CB. C F 

Conversely an adjunction can be considered as a special case of a Kan 

extension. Further details of this and the interrelation of other 
universal concepts may be found in [Mac Lane 1971]. 

The existence theorem for Kan extensions, already alluded to, goes as 

follows. 

Theorem (Existence of left Kan extensions) 

If C is cocomplete then for any F : A -> B, CF has a left adjoint. 
Sketch of Proof 

Given any H : A -> C we construct a G B -> C with the given 

universal property. 

Let b be an object of B, (B,b) be the comma category of morphisms 

into b and 

Pb : (B,b) -> B 

the projection functor. 

We define a diagram in A as the functor Eb given by the following 

pullback square in the category of categories. 

Eb 

A 
F 

Pullbacks of categories exist. 

Now consider, for the given H : A -> C, the diagram in C given by the 

composition of functors: 

Tb----> A --io C- 

E 
b H 
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The colimit of this diagram gives rise to a functor, G, which takes b 

onto the apex of the colimiting cone. I.e. there is a G : B -> C 

such that the colimit of (2) is given by 

j1b : jHb -> bG for j in Jt. 
The morphism part of G arises from the universality of the colimit. 
This G is the free object on H with respect to CF. 0 

We now state a general lemma about adjunctions which we shall need in 
the next section. 

Lemma 

Let (K, L, y , F- ) : A -> B and (T, U, r2 ,Tf) : C -> D be any two 

adjunctions. Then the following functor 

L - T : CA -> DB is left adjoint to 

K L : D -> CA 

The meaning of these functors should be obvious : L - T takes any 

H : A -> C into LHT : B -> D. 

Proof omitted. 

Free Signatures 

Here we show the connection between the rather obvious "fill out" 
operation (referred to above) on signatures (which is, for finite 
signatures, computable) and the rather unfamiliar Kan extensions. 

Let S be a category of sorts and h : S -> S' a morphism in the 

category. Let C be a cocomplete category and C! the category of 
S-sorted C-objects. Then 

Ch : CSC -> CS 

has a left adjoint. This is simply the existence theorem for the 

left Kan extension. Let us denote this free functor by 

Ch : CS -> CSC 

Notice that the h : S -> S' induces a "forgetful" functor on 

signatures, 

U: S'-(C) -> S-SiI(C) given by 

( ',c5')U = (Ch 'Ch, ChQ'Ch) on objects and of U -> Ch(XCh on 
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morphisms. For instance, any order-sorted signature is a ordinary 

(set-sorted) signature. 

The above proposition about adjunctions together with the existence 

of a left adjoint for Kan extensions now give a left adjoint to U: 

T : S-Sig(C) -> S'-Si (C) 

given by ( a)T (ChZ Ch, Ch 
QCh) 

on objects and of T ChCh on 

morphisms. Thus we have constructed an adjunction on signatures. 

Now suppose that C > Set and that S' is an ordered set of sorts and S 

its underlying set (forgetting the order). Then we have an inclusion 

h : S -> S'. 
This induces a functor Ch, which takes an S'-sorted set to an 

S-sorted set by forgetting the order among the sets of variables. By 

the Kan extension existence theorem, there is a left adjoint to Ch. 

This fills out an S-sorted set according to the ordering on S'. For 

example, let S' > {int, real} with int < real. Then S {int, real} 

with no order upon it. Each S'-sorted set is automatically an 

S-sorted set by forgetting the order 'int < real'. This is Ch. 

Now suppose that {n,m : int, x,y : real} is an S-ordered set. It can 

be filled out to an S'-ordered set by including all the variables of 

sort "int" into those of sort "real". That is, the left adjoint of 

Ch, Ch, takes 

Ch {n,m : int, x,y : real} -> {n,m : int, n,m,x,y : real} 

The adjunction between signatures arising from h : S -> S' gives 

exactly the same operation but between sorted sets of terms. That 

is, it is the "filling out" operation of [Goguen 1978]. 

Notes 

The ADJ group gave a mathematical formulation of 

heterogeneous (many-sorted) theories [Goguen, Thatcher, 

Wagner and Wright 1975]. The idea of extending these 

theories to order-sorted and category-sorted theories came 

from several authors (e.g. Wadge (unpublished letter) and 
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Reynolds (1978)). Our presentation is an attempt to capture 
within the framework of monadic theories the work of [Goguen 

1978]. 
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CHAPTER TWELVE 

CONCLUSION 

The programming of category theory was an experiment both in 
translating mathematical proofs (relevant to programming theory) into 

code and using high level functionals for 'combinatorial' programming 

(as advocated by Backus [1978]). 

We have shown how constructive proofs in category theory can be 

encoded as programs and the routines arising from these proofs can be 

used to construct a program specifically concerned with category 
theory. What we have not shown is the usefulness of these routines 
for general programming problems. This is the task that we set 

ourselves in the attempt to systematically develop programs from 

specifications using category theoretic techniques. Unlike Backus' 

work there is a mathematical connection between our high level 
functionals and specifications of programs. This may possibly 
indicate that these functionals have the 'correct' degree of 
generality for general programming tasks. Evidence for this 
conjecture can arise both theoretically (the connection between 

structure in the category of algebras of a specification (e.g. 
colimits) and'programs which implement the specification) and through 

experience with translating programming tasks into a suitable 
categorical framework. For example, can we develop algorithms for 
sorting a list of totally-ordered objects into an ordered list (e.g. 
quicksort, bubblesort etc.)? Possibly we can. It should be said 

that this approach to program development was an unexpected bonus of 
our exercise in programming category theory. 

We gather together some speculations more or less loosely based on 

our experience with categorical programming. These can be seen as 

possible directions for future work. 

1. The conjecture in the paragraph above is correct. 

2. Constructions of colimits of algebras (e.g. those of 
Linton (1969) and Adamek and Koubek (1980)) are of some 

importance to programming. Unlike limits of algebras 
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(which are created by carriers) colimits of algebras 

require elaborate and non-trivial constructions. We have 

seen that co-continuous functors may be computed by 

colimit recursion as long as a construction of colimits of 

algebras of the resultant data type is available. 

3. Adding the power of universal contraints and of partially 

defined operations (as described in the text) to (possibly 

parameterised) equational specifications gives an adequate 

and natural means of program description which draws 

specification and implementation closer. Examples of the 

unorthodox use of universal constraints may be found in 

chapter five. Theoretical considerations show us that 

universal constraints can model unbounded existential 

quantifiers. The vague claim of adequacy could be 

substantiated by examining cases where equational 

specification of itself proved inadequate (e.g. [Majster 

1979]). 

4. Proving the correctness of categorical programs is 

essentially a task of proving theorems in category theory. 

We have looked at proof rules for colimits (chapter seven) 

- there are other such rules (for instance, associated 

with monos and epis). Could these rules be automated and 

along with a theorem-prover give a semi-automatic 

program-proving system for categorical programming? It 

may be of some interest to see a specification (in CLEAR) 

of the properties of such a categorical program - for 

instance that of a colimit program: 
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constant Category = 
sorts object, morphism 
opns domain morphism -> object 

range : morphism -> object 
identity : object -> morphism 
compose range # domain -> morphism 

egns 
domain(identity(o)) = o 

range(identity(o)) = o 

domain(compose(m,n)) = domain(m) 
range(compose(m,n)) = range(n) 
compose(identity(o),n) = n 
compose(m,identity(o)) = m 
compose(compose(l,m),n) = 

compose(l,compose(m,n)) 
end 

constant Graph = 
sorts node, edge 
opns source : edge -> node 

target : edge -> node 
end 

procedure Diagram(C Category) _ 
enrich Graph by 

opns objmap : node -> object 
mor_map edge -> morphism 

eqns 
domain(mormap(e)) _ 

objmap(source(e)) 
= 

obj_map(target(e)) 
end 

procedure Colimit(C : Category) _ 
enrich Diagram CT by 

data opns apex : object 
sides node -> morphism 

eqns domain (sides(n)) = obj_map(n) 
range(sides(n)) = apex 
compose(mor_map(e),sides(target(e))) 

sides(source(e)) 
end 

Notice how the universality of the colimit-cone has become 

a data constraint. 

Turning now to the constructions concerning monadic theories, we have 

shown that monadic theories are sufficiently well-behaved from the 

point of view of program specification. However the ad hoc nature of 
the constructions is unsatisfactory. In the case of the free theory 
construction we now understand the place of w -colimits in the 
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construction of free theories, initial algebras etc. Is there a 

similar understanding of the place of the other constructions? At 
several points in the text we have noted that the constructions 
resemble those of other authors. Is there a general synthesis - a 

few general constructions which can be used as (almost) all-purpose 
tools for constructing universally defined objects in certain 
categories? If such a synthesis exists, how does it impinge upon 
programming? 
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APPENDIX ONE 

COLIMITS IN FUNCTOR CATEGORIES 

We show how to program the lifting of colimits to functor categories. 

The relevant theorem is: 

Theorem (Colimits in Functor Categories.) 

If B is (finitely) cocomplete then so is B. 
Proof 

Consult [Schubert 1972]. 

The computation of this lifting of colimits goes as follows. 

The application of a diagram and a diagram morphism (and a cone) of 
functors to an object of the source category give the following 
functions. 

dec applydo : Diagram( Functor(o,m,ol,ml), 
Nat transform(o,m,ol,ml)) # o 

-> DiagramTol,ml) 
dec applydm : 

Cat(o,m) -> 
(Diagram(Functor(o,m,o1,m1),Nattransform(o,m,ol,ml)) # m 

-> Diagram Mor(ol,-Ml)) 
dec applyco : 

Cat(ol,ml) -> 
(Cone(Functor(o,m,ol,m1),Nat transform(o,m,ol,ml)) # o 

-> Cone(ol,m1T ) 

--- applydo(diagram(g,fo,fm),a) <_ 
diagram( g, 

(lambda n => fo(n) ofo a), 
(lambda e => fm(e) of a) ) 

--- applydm(cat(s,t,_, )) <= 
(lambda d & diagram(fo,fm), m => 

diagram mor( applydo(d,s(m)), 

--- applyco(B) <_ 

ident, 
ident, 
(lambda n => fo(n) ofm m), 
applydo(d,t(m))) ) 

lambda Fcone,s => 
let ds == applydo(base(Fcone),s) in 

cone(B) 

( ds, 
(lambda n => sides(Fcone)(n) of s), 
apex(Fcone) ofo s) 

The colimiting object, a functor, of a diagram of functors, is 

computed 'pointwise': 
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dec colimit obj Cat(o,m) # Colimit Cat(o1,ml) -> 
(Diagram(Functor(o,m,ol,ml),Nat transform(o,m,ol,ml)) 

-> Functor(o,m,ol,ml)) 

--- colimit_obj(A & cat(s,t,_,_),cB & colimit cat(B,_)) <_ 

(lambda D => a 
let dcatB == cat-of diagrams(B) in 
let dcat 

cat of diagrams(cat of functors(A,B)) in 

let omap =_ ! object part of colimit functor 
(lambda a => 

colimit object(cB)(applydo(D,a))) in 

let mmap =_ ! morphism part of colimit functor 
(lambda m => 

let suniv 
universal part(cB)(a pl do(D,s(m))) in 

let tcone == colimitcone(cB)(applydo(D,t(m))) in 
let pretendcone 

left compose(dcatB,dcatB,I(dcatB)) 
(applydm(A)(D,m),tcone) in 

apex morphism(suniv(pretendcone)) ) in 

) ! colimit functor 

Here the lambda-expressions in objects and morphisms of the source 

category, A, are the 'pointwise' computations. The whole of the 

colimit - the colimiting cone and the universal part - then arise as 

follows: 
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dec lift colimit : Cat(o,m)#Colimit Cat(ol,ml) -> 

colimit(Functor(o,m,o1,ml),Nat_transform(o,m,ol,ml)) 

--- lift_colimit(A, cB & colimit_cat(B,_) ) <_ 

(lambda D & diagram(_,Fo,Fm) _> 

let dcatB catofdiagrams(B) in 
let fcat cat of functors(A,B) in 

let F == colimit obj(A,cB)TD) in 
let gamma -- 

(lambda a => 
sides(colimit_cone(cB)(applydo(D,a))) ) in 

let colimcone =_ 
cone(fcat)( D, 

(lambda n => 
nat_transform( Fo(n), 

(lambda a => 

F ) in 
F )), 

gamma(a)(n)), 

let univ == 
(lambda a => 

universal part(cB)(applydo(D,a)) ) in 
let universal =_ 

(lambda pcone => 
cone mor(fcat) 

(colimcone, 

nat_transform(F, 
(lambda a 

apex_morphism( 
univ(a) 
(applyco(B) 
(pcone,a)))), 

apex(pcone)), 

pcone) ) in 
(colimcone,universal) ) 

An inspection of the steps of an elementary proof of the theorem will 

make this text comprehensible. 

Finally, as in the case of comma categories, we can use this 
'lifting' routine to define a colimit category by declaring: 

dec colimitcat_of functors : 

-> 
Colimit Cat(Functor(o,m,ol,ml),Nat transform(o,m,ol,ml)) 

--- colimit catof_functors(A,cB & colimit cat(B, )) <_ 

colimit cat(cat of functors(A,B),lift colimit(A,cB)) 

We could use this to compute colimits of diagrams for instance, or of 

signatures in a monadic form (page 123). 
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APPENDIX TWO 

GENERALISED TRANSFORMATIONS AND A GENERAL CATEGORY OF THEORIES 

We introduce here a generalisation of natural transformations of 

which the morphisms of many-sorted theories are an example. 

Consider the (not necessarily commuting) square of categories and 

functors: 

A A 

s' S 

NO, Nf 

B' a 

We say thato( is an F,G -transformation from S to S', denoted by 

0(: S => S' (with F and G understood) 

if OC is a natural transformation, o( : FS S'G. 

There are two compositions of these general transformations. Suppose 

we have 

0( : S S' an F,G -transformation 
13 : S' => S" an F',G'-transformation 

: T => T' a G, H -transformation 

with the following (not necessarily commuting) diagrams: 

AN 
F ; A'F A 

S" 1 5'1 1 Is 

Cr G, 

r 
16 

8 
T/I 

yC' r 
H 
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The vertical composition o(.R : S => S", an F'F,G'G-transformation, is 

defined by of f = F'P(.AG where the composition on the right-hand side 
is that of natural transformations. 

The horizontal composition o(oY: ST => S'T', an F,H -transformation, 
is defined by o!o X =o(T.S'' , again the right-hand side is the 

composition of natural transformations. Notice that this composition 
is no longer given as the diagonal of a commuting square - the 

functionalities are wrong. 

These generalised transformations, with their compositions, form a 

double category (in the sense of [Ehresmann 1965]) in that the 

interchange law holds - 

whenever either side is defined. It is not a two-category - the 

identities do not behave correctly. 

A Generalised Category of Theories 

Let V be a category whose objects are categories and whose morphisms 

are functors. The objects of V are to be the base categories of 
theories. 

Suppose that C and C' are objects of V and that T = (T,2 ,,u) and 

To _ (T', 9', ,u') are theories on C and C' respectively. Let 

H : C' -> C be a functor in V, then the square of categories and 

functors above reduces to: 

We now introduce the category Theory(V) - a generalised category of 
theories. Its objects are to be monadic theories on the objects 

(categories) in V. Its morphisms are given by the following: Let C 
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and C' be categories in V, a theory morphism (H,oc) : T -> T', where T 

and T' are theories as above, is a functor in V, H : C' -> C together 

with an H,H-transformation (which we abbreviate to an 

H-transformation), 0( : T => T' where satisfies the following two 

equations: 

? .0( = i.t' and («oa).P' = P.of 

Here the equations are of generalised transformations and their 
compositions. 'i' is the identity H-transformation and we have made 

the implicit coercion of natural transformations to 
I-transformations, I being the identity functor on a category. 

Notice how the form of the equations has been preserved form the case 

of ordinary monadic theories and their morphisms. 

Composition of generalised theory morphisms is given by the 

generalised vertical composition. This completes'our construction of 
the category Theory(V). 

By 'forgetting' the composition,/U , in theories we get a category, 
Signature(V), whose objects are signatures and whose morphisms are 

generalised signature morphisms. 

Furthermore, just as before, there is a 'forgetful' functor, U, from 

theories to signatures given by: (T,2 )U = (T, 2) on objects and 

the identity on morphisms. 

In this general setting, provided there are suitable restrictions on 

the category, V and the theories, the work which we have done with 
monads should generalise. 
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APPENDIX THREE 

HOPE : AN EXPERIMENTAL APPLICATIVE LANGUAGE 

An experimental applicative language called HOPE has been developed 

by Prof. Rod Burstall, David MacQueen and Don Sannella. The 

following brief informal description of the language is an extract 

from [Burstall, MacQueen and Sannella 1980]. 

Data Declarations 

Conceptually, all data in HOPE is represented as terms consisting of 

a data constructor applied to a number of subterms, each of which in 

turn represents another data item. The tips of this tree are nullary 

data constructors or functional objects. An example is succ(succ(O)) 

in which succ is a unary constructor and 0 is a nullary one (i.e. a 

constant). Constructor functions are uninterpreted; they just 

construct. 

A data declaration is used to introduce a new data type along with 

the data constructors which create new elements of the type. For 

example, the data declaration for natural numbers would be 

data Num == 0 ++ succ(Num) 

defining a data type called Num with data constructors 0 and succ. 

So the elements of Num are 0, succ(O), succ(succ(O)), ...; that is, 

0, 1, 2, ... . 

Types may be parameterised. To define a type of lists of elements 

where all the elements are to have the same (but arbitrary) type, we 

declare a type variable: 

typevar alpha 

which when used in a type expression denotes any type (including 

second- and higher-order types). A general definition of 'list as a 

recursive parametric type is now possible: 

data List(alpha) == nil ++ cons(alpha,List(alpha)) 

Notice that List is not a type but a unary type constructor. 

There is another means of defining types. We may define a new type 

by a type expression in other types. For example: 

type Pair(alpha) == alpha # alpha 
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where # is an (inbuilt) type constructor. If n and m are of type Num 

then an object of type Num # Num (and so of Pair(Num)) is (n,m). 

Notice that a data declaration introduces a new type in terms of new 

type constructors whereas a type declaration as above simply gives a 

name to a type expression. 

Expressions 

The simplest expressions of HOPE are constants (i.e. data 

constructors and functions - the 'usual' concept of a constant is 
just the class of nullary functions and data constructors) and 

variables. 

An pplication may be formed by simply juxtaposing two expressions: 

(f x) y 

The first expression, (f x), is taken to be a function which is 
applied to the second, y. 

It is possible to use function symbols as infix, postfix, outfix and 

distributed-fix if they are declared and given a precedence. For 

example: 

infix + : 8 

HOPE has a conditional expression: 

a if b else c 

Lambda expressions (denoting functions) are formed as described in 

the next section. 

Local variables may be introduced and asssociated with values using 

either of the equivalent forms: 

e where p == g 

or 

let p == g in e 

where p is an expression formed by application of data constructors 

to a number of distinct variables (this is called a pattern). For 

example: 

a + b where cons(a,cons(b,l)) _= f(t) 
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Upon evaluation, f(t) is expected to yield a value which matches the 

pattern 'cons(a,cons(b,l))'. The corresponding subterms in the value 

of f(t) are then bound to a, b and 1. Notice that the binding to 1 is 
not used in the evaluation of the above expression. We therefore may 

allow patterns to have "holes" in them (denoted by an underscore) 
where we do not wish a matching to take place. Then the above 

expression would become: 

a + b where cons(a,cons(b, )) == f(t) 

(yielding the same value but with less work). 

"Multilevel patterns" are also catered for: If x is a variable and P 

is a pattern, then x & P is also a pattern. The effect of this is 

that x is matched to the value matching the entire pattern P whilst 

variables within P are bound as before. For example, if 1 is a list, 

then the following expression: 

let cons(el, t & cons(e2, )) _= 1 in f(el,t,e2) 

binds el to the head of 1, t to the tail of 1 and e2 to the head of 

the tail of 1. Evidently the above expression could be written 

without an & but less concisely as: 

let cons(el,t) 
let cons(e2, ) 

1 in 
t in f(el,t,e2) 

Note that & binds more tightly that comma (tupling) but less tightly 

than function application. 

Defining Functions 

Before a function is defined, its type must be declared. For 

example: 

dec reverse : List(alpha) -> List(alpha). 

HOPE is a strongly typed language, and the HOPE system includes a 

polymorphic type checker (a modification of that in [Milner 1978]) 

which is able to detect all type errors at compile time. Function 
symbols may be overloaded - declared several times with different 

types. When this is done the typechecker is able to determine which 

function definition belongs to each instance of the function symbol. 

Functions are defined by a sequence of one or more equations, where 
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each equation specifies the function over some subset of possible 

argument values. This subset is described by a pattern on the 

left-hand side of the equation. For example: 

--- reverse(nil) <= nil 

--- reverse(cons(a,l)) <= reverse(l) <> cons(a,nil) 

(the symbol <> is infix append). This defines the (top-level) 

reverse of a list. 

The set of equations defining a function should exhaust the 

possibilities given in the data statement introducing the argument 

types. Nullary functions may also be defined: 

dec 2 : Num 
--- 2 <= succ(succ(O)) 

(Actually, numbers as well as lists, sets, characters and 

truth-values are built into the HOPE system.) 

Lambda expressions are defined similarly. For example, a function to 

compute the conjunction of truth-values: 

lambda true,true => true 

false, _> false 
,false => false 

Notice the use of case analysis on patterns which is allowed within a 

lambda expression. Lambda expressions are often used in the 

definition of higher order functions (functionals): 

typevar alpha, beta, gamma 

dec compose : (alpha -> beta) # (beta -> gamma) 
-> (alpha -> gamma) 

--- compose(f,g) <= lambda x => f(g(x)) 

HOPE has several features which we shall not explain as they do not 

occur in our programming. For instance, there is a simple data 

abstraction facility, there is lazy evaluation (for lists) and 

several iterators are available for sets and lists. Comments in HOPE 

are indicated by an exclamation mark. 



219 

APPENDIX FOUR 

CLEAR : A SHORT TUTORIAL 

The following outline of the CLEAR specification language is a 

summary of the pertinent parts of the following three papers: 

Burstall and Goguen [1977], [1980a] and [1980b]. The reader should 

consult these papers for a more thorough explanation of the language 

and its semantics. 

A specification in CLEAR is built from algebraic theories using 

operations to modify or combine specifications in various ways. 

CLEAR allows us to build specifications in a modular manner. 

Thus a CLEAR specification may simply be an algebraic theory in the 

form of a set of sorts, of operations and of equations. For example: 

constant SemiGroup = 
sorts element 
opns mult : element, element -> element 
egns 

mult(a,mult(b,c)) = mult(mult(a,b),c) 
end 

Any semigroup is an algebra of the above specification. There are 

occasions (when we are dealing with data types) when we need to 

constrain the possible interpretations of a specification to those 

which are initial or, more generally, free in some sense. The DATA 

operation of CLEAR allows us to do this. For instance: 

constant Simple Bool = 
data sorts bool 

opns true : bool 
false : bool 

end 

The keyword "data" here means that the only algebra of this 

specification is the initial algebra (in this case the initial 

algebra has only two elements in the carrier). In fact "data" also 

introduces an explicit equality on the sorts constructed. 

It ought to be mentioned that CLEAR is not restricted to equational 

theories. More general theories (e.g. those with general predicate 

calculus expressions instead of equations) can be used only we must 

ensure that when a "data" occurs the relevant initial or free 
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algebras exist. In the case of equational theories this is 

automatically the case, in general it is not so. 

We can add extra sorts, operations and equations to a specification 

by the ENRICH operation: 

constant Bool = 

enrich Simple Bool by 
opns not : bool -> bool 

and : bool, bool -> bool 
eqns 

not(true) false 
not(false) = true 
b and true = b 
b and false = false 

end 

Note that the equation 'x and y = y and x' does not follow by 

equational deduction from the equations in Bool. However because 

Simple Bool is to be interpreted initially the equation is valid in 
this specification (it follows by case analysis on the elements in 
the carrier of the initial algebra). 

We now turn to the fixing together of specifications to build large 

specifications in a modular manner. Suppose we specify "relations" 

as follows: 

constant Relation = 

enrich Simple Bool by 
sorts element 
opns rel : element,element -> bool 

end 

We may want to add to this theory the further operations on booleans 

available in the theory Bool (for instance to specify equivalence 

relations). We could do this by an enrichment but since we have the 

theory of Bool at hand we use the CLEAR operation COMBINE (written as 

an infix "+"): 

constant Full Relation = Relation + Bool end 

The theory Full Relation has the sorts and operations of both 

Relation and Bool but has only one "copy" of the theory Simple Bool - 

it being a common subtheory. In general COMBINE gives the disjoint 

union of the sorts and operations (with the associated equations) 

except where there is a common subtheory in which case only one copy 
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of the sorts and operations in the common subtheory are retained. 
For instance in Full Relation there is only one operation "true" and 

one "false". This prevents a proliferation of sorts and operations 
which ought to be identified. It is handled semantically by 

introducing environments in which theories are defined. 

CLEAR allows procedural (or parameterised) specifications. For 

instance we may specify lists of objects of an arbitrary type: 

procedure Lists(X : Triv) 

enrich X by 
data sorts list 

opns nil : list 
cons : element,list -> list 

end 

Notice that this procedure needs not only a formal parameter, X, but 

also a "constraint" (called a metasort) upon this parameter. The 

metasort itself is a theory. In this case the constraint upon X is 
merely that there is at least one sort in X so that we may build 
lists of objects of a particular sort. Thus the metasort is the 

theory Triv: 

constant Triv = 

sorts element 
end 

In general the metasort is more elaborate. For instance if we were 

defining a procedure to produce ordered lists of elements then 

instead of Triv we would need the theory of total-orders as a 

metasort. 

To apply a procedure, we need to show how the actual parameter "fits" 
the metasort. For a theory of lists of booleans we would write: 

constant Bool Lists = List(Bool[element is bool]) end 

showing that the sort 'element' in Triv is bound to the sort 'bool' 
in Bool. If the metasort has operations as well as sorts we need to 

show how these operations fit those in the actual parameter and that 
the fitting respects the equations which are present (that is, this 
fitting is a theory morphism). 

The final operation supplied in CLEAR is a data abstraction facility. 
It is often convenient to build up a large specification and then 
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abstract from it certain sorts and operations (and the equations 

associated with them) and "hiding" the rest. The CLEAR operation 

DERIVE allows us to do this. For instance, we might want to 

represent numbers as binary numbers using bit-strings from the theory 

Bool Lists: 

constant Numbers = 

derive sorts num 
opns 0 : num 

succ : num -> num 
using Bool 
from enrich Bool Lists by 

opns zero : list 

add-one : list -> list 
eqns zero = cons(false,nil) 

addone(cons(false,l)) = cons(true,l) 
add_one(cons(true,nil)) = 

cons(false,cons(true,nil)) 
add_one(cons(true,cons(x,l))) 

cons (false,add one( cons(x,l))) 
by num is list 

0 is zero 
succ is add one 

end 

Thus the representation of a number is a list of booleans with the 

least significant figure at the head. Notice that the operations 

'nil' and 'cons' are not available in Numbers - they are "hidden". 

The foregoing informal description of CLEAR is made precise with a 

formal semantics in [Burstall and Goguen 1980a]. Several reasonably 

substantial specifications have been written in CLEAR including a 

"garbage collector" [Burstall and Goguen 1980b]. 
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INDEX OF DATA TYPES AND FUNCTIONS 

Data Type 
or Function 

add edge 
Adjunction 
apex functor 

Cat 
cat of chains 
catof_composition graphs 

functors 
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sets 
cat of signatures 

C_Cat 
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Colimit 
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of graphs 
colimitcatoffunctors 
colimit cat of sets 
colimit cat of signatures 

colimit comma cat 
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comma cat 
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Cone 
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Cone Mor 
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Page 

40 Diagram 29 
108 Diagram Mor 30 
34 discrete graph 83 

14 finite colimit 41 

56 finite w colimit_cat 58 
142 free-theory 139 
33 Functor 17 
29 

26 Graph 25 
17 graph 27 
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34 InitialObj 36 

35 

34 K 24 

51 

211 Label 30 

43 left 25 
51 LG 83 

51 mapcar 139 
35 Monad 109 
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M Signature 135 
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23 
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33 
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36 
30 Po Diagram 85 

26 right 25 

right-comma-cat 25 
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right obj comma cat 25 Tag 27 
11 

59 
Semigroup 140 term functor 137 
Set Mor 16 transitive closure 144 
SC 

Signature 
89 
28 

- 
unit-diagram 33 

Signature Mor 28 
Small Cat 88 wChain 54 
Small Functor 89 w Chain Mor 55 
strings 27 w_Cocomplete_Cat 56 

w Colimit 56 
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