

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

APPLICATIONS OF CATEGORY THEORY

TO PROGRAMMING AND PROGRAM SPECIFICATION

DAVID ERIC RYDEHEARD

Ph.D. Thesis.

University of Edinburgh.

1981.

ABSTRACT

Category theory is proving a useful tool in programming and program
specification - not only as a descriptive language but as directly
applicable to programming and specification tasks.

Category theory achieves a level of generality of description at
which computation is still possible. We show that theorems from
category theory often have constructive proofs in the sense that they
may be encoded as programs. In particular we look at the computation
of colimits in categories showing that general theorems give rise to
routines which considerably simplify the rather awkward computation
of colimits.

The general routines arising from categorical constructions can be
used to build programs in the 'combinatorial' style of programming.
We show this with an example - a program to implement the semantics
of a specification language. More importantly, the intimate
relationship between these routines and algebraic specifications
allows us to develop programs from certain forms of specifications.

Later we turn to algebraic specifications themselves and look at
properties of "monadic theories". We establish that, under suitable
conditions:

1. Signatures and presentations may be defined for monadic
theories and free theories on a signature may be
constructed.

2. Theory morphisms give rise to ad junctions between
categories of algebras and moreover a collection of
algebras of a theory give rise to a new theory with
certain properties.

3. Finite colimits and certain factorisations exist in
categories of monadic theories.

4. Many-sorted, order-sorted and even category-sorted
theories may be handled by somewhat extending the notion
of monadic theories.

These results show that monadic theories are sufficiently
well-behaved to be used in the semantics of algebraic specification
languages. Some of the constructions can be encoded as programs by
the techniques mentioned above.

2

CONTENTS.

0. Introduction. 4

1. Computing with Categories. 10

1.1 Categories and Functors. 14

2. Constructing Data Types - a Categorical View. 19

2.1 The Comma Category. 19
2.2 Functor Categories. 28

3. The Computation of Colimits. 32

3.1 A Short-Cut to the Computation
of Colimits. 35

3.2 Colimits in the Category of Sets. 41

3.3 Colimits and Category Constructors. 44
3.4 Creation. 52
3.5 Infinite Colimits. 54

4. Implementing the Semantics of a
Specification Language

- An Application of the
Programming of Categories. 63

5. The Development of Programs from
Specifications - Some Experiments. 76

5.1 Colimit Recursion - Recursion
on Complex Data Types. 76

5.2 Exercises in Program Development. 79

6. Theories. 99

6.1 Monadic theories computationally. 107

7. Colimit Constructions. 111

7.1 Colimits in Functor Categories. 111

7.2 Colimits and Proof Rules. 112

8. Free Theories. 121

8.1 The Construction of a Free Monadic
Theory on a Signature. 125

8.2 Presentations of Theories. 133
8.3 Computational Aspects of the

Free Theory Construction. 135

3

9. Free Algebras and Data Theories. 146

9.1 Free Functors on Algebras. 147
9.2 Induction Rules and Monadic Theories. 156
9.3 Data Theories are Monadic. 170

10. Colimits and Factorisations
in Categories of Theories. 173

10.1 Colimits of Theories.
10.2 Factorisations in

Categories of Theories.

173

186

11. Many-Sorted Theories and More. 190

11.1 Order-Sorted and Category-Sorted
Theories. 190

11.2 Many-Sorted and Order-Sorted Theories
as Monadic Theories. 194

11.3 Properties of Many-Sorted and
Order-Sorted Monadic Theories. 196

11.4 Free Signatures and Kan Extensions. 197

12. Conclusion. 205

Appendices:

1. Colimits in Functor Categories. 209
2. Generalised Transformations and

a General Category of Theories. 212
3. HOPE : An Experimental Applicative

Language. 215
4. CLEAR : A Short Tutorial. 219

Index of Data Types and Functions. 222

Bibliography. 225

4

INTRODUCTION

Programming languages and specification languages together with
programs and specifications are formal objects which have a logical
structure. It is therefore no surprise that our attempt to

understand and handle these things should make recourse to
mathematics to provide a formal framework. What may be surprising to
many who are familiar with computers and computer programming is that
a branch of mathematical thought as abstract (and apparently as

abstruse) as that known as the theory of categories can have any

relevance to our understanding of programming.

Pulling a book on category theory from a library shelf and browsing

through its pages may well make one baulk at not only its highly

abstract contents but also the type of mathematics involved.

Category theory grew out of investigations in topology and yet is
essentially just a theory of functions. We hope that this work, if

nothing more, will provide a programmers' eye view of categories and

point to their relevance for our understanding of programming. Some

part of this thesis is devoted to translating the mathematics to be

found in such a category theory book into computer programs. This in

itself is an interesting and novel exercise - to translate a

mathematical textbook into instructions for a machine - to make

electrons dance to a categorical tune, as remarked in [Burstall

1980]. Some basic knowledge of category theory will be assumed but

our presentation of this program will follow the presentation
normally to be found in textbooks, so the two may be read in
parallel.

On the one hand, categories provide some framework for our

understanding of programming and the specification of programs

whilst, on the other hand, we have the requisite theory running on a

machine. We shall see that this programming of category theory -
this interplay of programs and programming theory - sheds light on

some fundamental problems in the understanding of programming.

Our interest is largely in the relation of specifications of programs

5

to programs themselves. How do we get from specifications to

programs? How do we bridge what we may call the "computation gap"?

Several approaches to this problem are known. For instance, starting

with a specification it may be possible by some sort of successive

refinement of specifications to get to one that is runnable i.e. a

program. Or we may try a more direct approach, synthesising a

program directly from the text of a specification. The latter

cannot, in general, be automated even if we limit ourselves to

equational specifications. However, this should not preclude

attempts at understanding the process of program synthesis nor

prevent us enlarging the class of specifications from which programs

can, by some means, be directly synthesised. We will describe some

experiments in the synthesis of programs from certain forms of

specifications. This will make extensive use of the programming of

category theory.

Another approach to the same problem starts at the programming end

and tries to make available to the programmer more expressive program

features and more powerful general routines. In this way programs

may gain the simplicity and succinctness of specifications. In this

context, the work of Backus [1978 has been a major inspiration.

Backus advocates a 'combinatorial programming' in which high-level

general functionals are provided with which to construct programs.

The idea is that programs so constructed should contain little

complex code - all the complexity is transferred to the general

routines. In particular, few, if any, explicit iterations or

recursion should be needed by the programmer. To construct programs

in this way, we must both view the problem to be programmed in the

right light and have routines which have the 'correct' degree of

generality. The routines in which we encode category theoretic

constructions are certainly 'general' - they have the generality of

category theory itself. We will show how these routines can be used

to produce programs with an example - a program which 'implements'

the semantics of a specification language. The semantics of this

language is 'categorical' in the sense that the syntactic operations

are interpreted as operations in a category

6

Later we investigate specifications themselves using elements of

category theory. We are interested in the properties of theories as

denotations for algebraic specifications. The so-called monadic

theories are a categorical means of handling these denotations. We

look at several properties of these monadic theories and establish

some results of mathematical interest, showing that these theories

are sufficiently well-behaved to be used in program specification.

More than this, our techniques of implementing category theory on

computers can be used to encode some of our work on monadic theories.

This intimate relation between programs and specifications gives us

further insight into the process of synthesising programs.

The Contents

The first three chapters describe the programming of category theory.

Starting with the basic ideas of a category and a functor we describe

certain ways of putting categories together to get new categories.

This provides a means of building complex data types from simpler

types. Then we look at the implementation of colimits. In

particular we are interested in making tractable the, often awkward,

computation of colimits in categories. We show that there are ways

of building these colimit programs using theorems from category

theory.

Having established a basic repertoire of routines implementing

certain aspects of category theory, we put them to use. In chapter

four we describe an implementation of the semantics of a

specification language based upon these programs. This provides an

example, for a large and complex program, of the program development

technique described above. The program itself is of some interest as

it can be seen as a small part of what would be needed for an

automatic (or semi-automatic) synthesis of programs from

specifications.

In chapter five we investigate a systematic means of developing

programs from certain types of specifications.

We then turn to specifications themselves and investigate monadic

theories, which are a functorial formulation of the notion of a

7

"theory". We establish that, under suitable conditions:

1. Signatures and presentations may be defined for monadic

theories and free theories on a signature may be

constructed.

2. Every theory morphism gives rise to an adjunction between

categories of algebras. Moreover, a collection of

algebras of a theory give rise to a new theory with

certain properties.

3. Finite colimits and certain factorisations exist in

categories of monadic theories.

4. Many-sorted, order-sorted and even category-sorted

theories may be handled by extending somewhat the notion

of monadic theories.

These results show that monadic theories are sufficiently

well-behaved to be used in the semantics of algebraic specification

languages. Some of the constructions used to establish these results

can be encoded using the techniques in the first three chapters. We

thus have programs which implement theory constructions. We look at

applications of these programs.

Related Work

The programming of category theoretic results was an experiment - try

it and see. We were not, of course, without motivation and it may be

of use to place this work in the context of current research. The

following have been of some influence:

(1) It has been observed that programs often have an algebraic (or

categorical) interpretation and that this leads to more general and

better understood programs. For instance it sometimes happens that a

collection of functions in a program turn out to be an adjunction -
the two functors and the unit and counit - or that a program not

obviously connected with category theory can be viewed as the

computation of colimits. The papers [Burstall and Landin 1969] and

[Burstall 1980] give examples of the connection between programs and

algebraic (and categorical) concepts. More examples will be found in

8

the following chapters.

(2) As mentioned above Backus' work on 'functional programming'

[Backus 1978] led us to look for more general functionals and thus to

employ the generality achieved by category theory. Part of the

inspiration for this comes from Landin's desire for "language-free

programming" [Landin 1969]. A comparison of the approach taken by

Backus with our programming of category theory can be found on page

12.

(3) Category theory not only achieves a generality at which

programming is still possible but also allows us to formalise

concepts from programming and program specification. The application

of universal concepts from category theory has proved especially

fruitful. Members of the ADJ group (see for instance [Goguen,

Thatcher and Wagner 1978]) clearly state the need for universal

constraints on specifications (initial and free algebras of abstract

data types). Colimits have been used to build specifications [Ehrich

1978] and [Burstall and Goguen 1980b], in graph grammars [Ehrig,

Pfender and Schneider 1973], in record handling [Ehrig et al. 1980]

and in the theory of data types [Lehmann and Smyth 1977]. We are to

use colimits as a means of developing recursive programs from

specifications. A direct link between the notion of programs and

that of categories was noticed in [Burstall and Thatcher 1974].

We are impressed by the succinctness and applicability of algebraic

specifications and that problems often seem to fit naturally into

this framework (this has long since been known to mathematicians -
see [Birkhoff 1938] for instance). The connection between algebraic

specifications and programs to implement them seems quite
tantalising.

The work of Guttag, Horowitz and Musser (1978), Liskov and Zilles

(1974) and Ehrich (1978) as well as many others has been influential.

An up to date bibliography of work on abstract data types can be

found in [Dungan 1979]. We are indebted to members of the ADJ group

for formalising algebraic specification techniques and noticing that

universal constraints (initiality of algebras for instance) are

9

involved in their interpretation. The extended exercise in using

algebraic methods to handle programming languages and prove the

correctness of compilers to be found in [Morris F.L. 1973] and

[Thatcher, Wagner and Wright 1981] is of interest. We are to use the

CLEAR specification language [Burstall and Goguen 1980b] (described

briefly in Appendix Four) to describe programming problems which

arise. CLEAR gives us a means of building algebraic specifications

from theories in a modular manner. Ideas on how CLEAR may lead to a

program development system are given in [Burstall and Goguen 1980c].

Monadic theories, which we investigate in later chapters, were

introduced by Godement (1958). Much work has since been done on the

applications and properties of these theories (see for instance

[Manes 1976]). Particularly close to our own work is that of Adamek

(1979) and Adamek and Koubek (1980).

Acknowledgements

Formal acknowledgements will be found in notes at the end of each

chapter. However I would like to mention here my indebtedness to

some who have helped me. Without the work, encouragement and

guidance of Prof. Rod Burstall this thesis could never have come into

existence. Some of the contents of this thesis are directly due to

Prof. Rod Burstall (e.g. much of the programming of category theory

[Burstall 1980]) whilst other parts arose in collaboration with him.

The work here is a small part of a large project concerned with the
program specification. Don Sannella here at Edinburgh, with whom I

collaborated on parts of this thesis, gladly made available his

experience in programming and specification. Both Don and Rod

scrutinised carefully a draft of this thesis for which I am grateful.

I would like to express my appreciation of the work and advice of

Prof. Joe Goguen and Dr. Gordon Plotkin.

The research was carried out at the University of Edinburgh under a

grant from the Science and Engineering Research Council.

10

CHAPTER ONE

COMPUTING WITH CATEGORIES

In this chapter and the two following, we look at an experiment in
which we translate theorems of mathematics (or, more precisely, the

constructive part of the proofs of theorems) into programs. The

branch of mathematics with which we are concerned is, as discussed

above, the theory of categories.

Categories consist of a collection of objects together with morphisms

between these objects. The morphisms have a composition upon them

and to each object there is an identity morphism on the object.
Formally, we define a category as follows:
Definition
A category is a class 0 (of objects) and M (of morphisms) such that M

can be expressed as a disjoint union:

M = U [a,b], where [a,b] are sets.
a,bc0

There are the following operations:

1. For each triple of objects in 0, (a,b,c), there is a

composition:

[a,b] x [b,c] -> [a,c]

If f is in [a,b] and g in [b,c] the image in [a,c] is

denoted fg.

2. For each object c there is an (identity) morphism in

[c,c], denoted ic.

The following axioms are satisfied:

1. Associativity of composition: (fg)h = f(gh) whenever both

sides are defined.

2. Left and right identity: If f is in [a,b], iaf = f and

fib = f.

Sets together with set functions form a category as do partial-orders

and monotonic functions. The simple step of introducing morphisms

between objects, that is, the transition from a set (or class) of

11

objects to a category of these objects gives us an amazingly powerful

theory. Since category theory is no more than an abstraction of the

theory of functions - their composition and identities - it may be

wondered how category theory gives us the ability to construct

objects (which is its role in programming theory). The key to this

lies in the fact that we can formalise "specification by universal

properties" in category theoretic terms - i.e. in terms of the

existence and properties of morphisms.

We are already familiar with this type of specification by a

universal property in the case of initial algebras of equational data

types. Initiality is an example of a universal property. The

importance of this means of specification is that the universality is

not explicit in the specification. No need to declare the existence
or uniqueness of the object specified nor indeed many of its

properties which arise directly from the universality. This

considerably simplifies specifications of problems. More than this,

we often have a means of constructing the universal object in

question both in a mathematical sense and computationally. We will

be showing how this may be accomplished computationally in this

paper. We shall also turn our attention to the specification of

algorithms and how universal properties encode the behaviour

required.

The work of the first part of this paper may be seen to be giving

some of the power of mathematics to the programmer. For instance,
how are we to handle rational numbers computationally? One may

suggest that rational numbers should be represented as equivalence

classes of certain pairs of integers. Available to the

mathematician, though not so far to the programmer, is the more

elegant and, at the same time, more general description of the

rationals as the minimum field containing the integral domain of the

integers. This is a typical "universal specification". We shall be

looking at specifications of this form and showing how they can give

rise to programs.

Part of the power of mathematics lies in its ability to build its

12

analysis hierarchically by proving theorems and then using these

theorems as elementary deductive rules for further analysis. It is a

facility that programmers may well envy. Something of this is

available to programmers in the various forms of data abstraction

that have become current. However, it should be understood that it

is not so much the ability to 'abstract' as to choose the right

things to elevate to theorems which gives us the power in

mathematics. Our long experience with mathematics has taught us what

we should look for in a theorem - what sort of generality and what

sort of simplicity can be expected of a theorem.

Can we do a similar thing in programming by a careful choice of

'general' routines so that these routines may be used as basic

building blocks for programs? Several approaches to this are already

known. We have already mentioned the work of Backus on functional

programming. This can be viewed as an extension of such things as

the APL '/' operator and iterators available in CLU and ALPHARD.

Our approach to constructing general routines which, it is hoped,

will do much of the work of programming for us, is to cull the

experience gained in mathematics by directly translating powerful

general theorems into computer programs. Later we will show how this

enables us to build programs in a modular manner by using these

routines to handle a large part of the complex code required. We

will exhibit a programming example - that of an 'implementation' of

the semantics of a language, in our case, of a specification

language.

Comparing this categorical programming with the approach taken by

Backus brings several points to light:

(1) By introducing categories as basic objects in our programming we

have solved the problem of abstracting on data types. That is our

programming is not limited to any specific data types. For example

graphs may be handled just as well as simpler types e.g. sets. A

functional is specialised to the data type in question by applying it

to the category of objects of the type. Increasing the complexity of

the types in question should not appreciably increase the complexity

13

of the programming.

(2) The level of generality of our approach may be questioned. As

mentioned above programs specifically concerned with category theory

(e.g. the program which implements a categorical semantics) may be

constructed using the general routines provided. The question arises

- what about general programming tasks - tasks that at first sight

have little or nothing to do with category theory? Do the routines

that we provide give a means of constructing programs which implement

any given program specification? At the moment we do not know. What

we can say is that, unlike Backus' work, there is a mathematical

connection between the routines we derive from category theory and

algebraic specifications of programs. This gives us some hope that

we are working at the 'correct' level of generality. Later (chapter

five) we show that the connection between specifications and our

categorical programming gives (for certain types of specifications) a

systematic means of program development.

(3) Backus' 'functional programming systems' have associated laws

which provide an algebra of programs. In our case the laws are

derived from category theory. A typical example, concerning colimit

programs, would be the commutativity (to within an isomorphism) of

binary coproduct: "coproduct(a,b) = coproduct(b,a)".

In constructing programs from a collection of general routines it is

hoped that the iterative and recursive features will be encapsulated

in these routines and therefore eliminated from the task of

programming. We will see that certain parts of our programming of

category theory do indeed encapsulate iterative and recursive

constructs and therefore allow us to program in a 'combinatorial'

style. To emphasise this we will try to point out where iteration or

recursion occurs in the programming.

To handle general routines which take other routines as parameters,

we need a language which is either typeless (e.g. LISP) or else typed

but allowing the passing of functions as arguments. Any such

language would suffice. We choose a strongly typed applicative

language, called HOPE (after Thomas Hope of Rankeillor - active

14

c.1740), developed here at Edinburgh. HOPE is fully higher order -

it allows all data, including functions, to be arguments. We choose

HOPE partly to gather some experience of programming in this
experimental language but also because, being an ISWIM-like

applicative language, our HOPE programs look somewhat like the

mathematical texts which they are intended to encode. For those

unfamiliar with languages of this sort there is a summary of the main

features of HOPE in Appendix Three. A detailed exposition of the

language may be found in [Burstall,MacQueen,Sannella 19791.

CATEGORIES AND FUNCTORS

Our development starts with the basic concept of a category. In

programming terms, what is a category? It is a data type

parameterised on the types of the objects and morphisms in the

category and having the following components: two functions from

morphisms to objects giving the source and target of the morphisms, a

function from objects to morphisms giving the identity morphism on

each object and a composition function taking pairs of morphisms to

morphisms. In HOPE this is declared by:

data Cat(o,m) == cat((m->o),(m->o),(o->m),(m#m->m))

In this declaration, "Cat" is a type constructor taking the type

variables "o" and "m" (object and morphism types respectively) whilst

"cat" is a constructor of data objects. We will, throughout our

programming, use the following convention:

Convention

The initial letters of type constructors will be capitals, whilst

constructors of data objects will begin with small letters.

For those unfamiliar both with categories and with this style of data

declaration it may be helpful to compare the above declaration with
that of a more familiar data type. Consider the data type "list"
which is parameterised on the type of the objects appearing in the

list. In HOPE it can be declared as a recursively defined type by:

data List(alpha) _= nil ++ cons(alpha,List(alpha))
Here the "++" is the disjunction of type instances.

A function on lists can be defined as follows:

15

dec length : List(alpha) -> num

--- length(nil) <- 0

--- length(cons(a,l)) <- length(l) + 1

The keyword "dec" introduces a declaration of the type of a function

whilst "- introduces a function definition.

Before we move on to implementing further concepts from the theory of

categories, let us examine more closely what we have done in the

above declaration of a category. Firstly, notice that we have not

included the axioms which a category is required to satisfy (for

instance, the associativity of composition). In most programming

languages, we do not have the ability to declare axiomatic data

types. Inclusion of such axioms would destroy or seriously limit any

type checking that could be done on programs. However, these

constraints on data types can be considered as correctness criteria
for programs rather than included as part of type declarations. To

gain some control over these verification details, we may impose upon

the program a discipline in which categories are either basic

categories for which the the axioms are known to hold (for instance,

the category of sets) or are built from other categories by category

constructors which are known to preserve the axioms (for instance,

the comma category construction). In this way the correctness of the

implementation is assured. We could in fact use the type discipline

of HOPE to enforce such a scheme but this makes the type of a

category unnecessarily obscure. What we are really saying is that we

are to consider categories as implementations of a data type whose

operations are category constructors. This is an interesting view of

categories particularly so because colimits in categories "commute"

with these category constructors.

These comments upon the correctness criteria of our programs are

important since, in the following pages, we are going to translate

proofs in category theory into programs. In these programs we

abstract only the constructive part of the proofs omitting the

checking of properties which turn a construction into a proof. That

we have some control over these properties is therefore of

importance.

16

In this declaration of a category we do not include a set of objects

or morphisms - in general the collection of objects and morphisms is

"larger" than a set. If the objects and morphisms do form sets then

we have a new type to be called "Small Category", which will be used

later in our work. Notice further that the composition of morphisms

takes any pair of morphisms as argument whereas, of course, it should

take only composable pairs - those for which the target of the first

is the source of the second. We handle this error condition by

introducing, for each category, a morphism "undef". We can then set

the composition of non-composable pairs equal to this "undef".

To access the operations of a category we introduce the following

"projection" functions. These are not strictly necessary, but help

program readability.

dec source : Cat(o,m) -> (m->o)
dec target : Cat(o,m) -> (m->o)
dec identity : Cat((o,m)> -> (o->m
dec compose Cat(o,m) -> ((m#m) -> m)

--- source(cat(s,,,_)) <= s
--- target(cat(_,t,_,)) <= t

--- identity(cat(, i,)) <= i

--- compose(cat(, , cT) <= c

The underbar denotes a missing (unnecessary) variable.

What is an instance of this type going to look like? The basic

category which we consider is the category of sets. With this

category we are able to build many familiar data types.

The objects in the category of sets are to be, of course, sets. We

shall parameterise our sets on the type of elements they contain.

Morphisms in the category of sets are to be set functions. However,

to ensure that we can extract the source set and the target set from

a morphism, we introduce a new data type:

data Set Mor(alpha) =z
++ undef

where 'alpha' is a type variable and '++' is the 'sum' of type cases

(allowing case analysis). We can then define the functions required

to form the category:

17

dec s : Set.Mor(alpha) -> Set(alpha)

dec t : Set Mor(al ha) -> Set(alpha)
dec id : Set(alpha) -> Set_Mor(alpha)
dec comp: Set Mor(alpha)#Set Mor(alpha) ->

--- s(mor(x,<= x
--- t(mor(,y)) <= y

Set Mor(alpha)

--- id(x) <- mor(x,ident,x)
--- comp(mor(x,f,y),mor(u,g,v)) <= mor(x,f.g,v) if u-y

else undef

The category of sets then looks like this:
dec cat of sets : Cat(Set(alpha),SetMor(alpha))
--- cat of sets <- cat(s,t,id,comp)

In this rather simple way we can define categories. In the next
section we shall be looking at ways of constructing new categories
from old which will give us powerful techniques for building

categories of large and complex data types from simple types - in
fact, all the data types to be used arise via these category
constructors from the category of sets alone.

Before turning to this, we introduce a further concept from category

theory. Maps between categories are functors. A functor is a pair
of maps, on objects and morphisms, which preserve the source, target,

identity and composition. As a data type, however, it is just a pair

of maps:

data Functor(o,m,ol,ml) -= functor((o->ol),(m->ml))
Functors can be applied to objects and to morphisms

dec ofo : Functor(o,m,ol,ml) # o -> 01

infix ofo : 5

--- functor(Fo,) ofo o <- Fo(o)

dec ofm : Functor(o,m,ol,ml) # m -> ml

infix ofm : 5

--- functor(,Fm) ofm m <- Fm(m)

Functors can also be composed:

dec . Functor(o,m,ol,ml) # Functor(ol,ml,o2,m2) ->

Functor(o,m,o2,m2)

infix : 3

--- functor(fo,fm) . functor(go,gm) <= functor(fo.go, fm.gm)

where the dot on the right-hand side is function composition. The

keyword "infix" introduces infix operations and gives their

18

precedence.

For future reference, notation for the application of a functor F to

an object x will be xF, so that application is 'diagrammatic'. The

notation for the composition of functors is consistent with this: If
F and G are functors, x(FG) - (xF)G.

Notes

The genesis of the programming of category theory is
described in [Burstall 1980]. Prof. Rod Burstall, in order
to gain insight into the computational aspects of colimits,
coded up the colimits of sets in a language called NPL, a

precursor of HOPE. The present development of the

programming of category theory (up to page 52) owes much to

this early version. Rod also outlined some of the code here

including that arising from the colimit existence theorem

(page 41) and suggested the lifting of colimits. Otherwise

it was a joint project between Don Sannella and myself.
Don's experience of programming and knowledge of the HOPE

system together with my knowledge of categorical matters
meant that the work was shared roughly equally.

The HOPE programming language is described in [Burstall,

MacQueen and Sannella 1979].

19

CHAPTER TWO

CONSTRUCTING DATA TYPES - A CATEGORICAL VIEW

One way of developing large programs reliably is to 'structure' them

in some manner and build programs hierarchically by fitting together
component programs. This hierarchical and modular means of building
the complex from the simple is of very general application in
programming. For instance it may be used in the building of program

specifications [Burstall,Goguen 1980b].

In this section we look at a similar approach to the building of data

types from component types. Our type building operations are taken

from category theory in which they appear as category constructors.

Constructors of categories can be considered to be constructors of

data types, if objects of the types can be considered to be objects

in categories. Later, we look briefly at the formal relationship

between data types and categories (page 96).

The category constructors we are to use have an important

computational property. In the next chapter our attention will turn

to colimits and means for computing them. It turns out that we can

"lift" computations of colimits through these category building

operations. That is, at the same time as we build up new types, we

can build colimit operations on these types. This greatly simplifies

the computation of colimits. As we shall see colimits prove useful

in investigating the structure of data objects and allow us to

develop programs from specifications.

We now look at some of these category building operations. We show

their use for constructing familiar types and how we can implement

them. Our first such operation is the construction of comma

categories, due to Lawvere [1963b]. In this case we build new data

types as morphisms between objects of old types.

THE COMMA CATEGORY

Many data types familiar in programming can be considered to be

constructed as comma categories. We first define comma categories

20

and then illustrate this with some examples.

Categories contain both objects and morphisms. Thus when considering

any objects in programming, we should ask whether there are morphisms

between objects so that a category can be defined. That is, we want

to elevate morphisms so that they share an equal status with the

objects. How about a category then whose objects are these

morphisms? It seems only fair to the morphisms. This is the idea

behind the comma category construction. The general definition goes

as follows.

Definition

Consider the following picture of categories and functors:

L R

A > B < C

We construct a category, the comma category, denoted (L,R) as

follows:

The objects are triples of the form (a, f: aL -> cR, c) with a an

object of A and c an object of C.

A morphism in (L,R) from (a, f: aL -> cR, c) to

(a', f': a'L -> c'R, c') is a pair of morphisms one from A the other

from C, (g: a -> a', h : c -> c'), such that the following square

commutes.

9L
n QL

cR
hR

C, R

0

Special cases of this construction arise from restricting either or

both of the functors L and R to be constant or identity functors. A

case that we are to use arises if A = B and L is the identity. Then

21

objects are of the form (b, f: b -> cR, c). Such a category we shall
call a right comma category and denote it by (B,R). If, on the other
hand, A is a category with one object and the image of this object in
L is b, the we call the category a right object comma category and

denote it by (b,R). Similar cases arise from restricting the functor
R to be an identity or constant functor.

For further details of this construction consult [Mac Lane 1971].

Examples of Comma Categories

Consider graphs, by which we mean directed multigraphs possibly with

loops and cycles. It is with graphs of this sort that we shall be

working for most of the time so we will reserve the word "graph" for
these graphs alone. These graphs, then, may be described by a set of
nodes and a set of edges and two maps, called source and target,
which take edges to nodes. We thus have the picture:

source, target : E -> N

How is this to be an object in a comma category? We need to combine

the two set morphisms into one morphism. This can be done by the

isomorphism (in cartesian closed categories, in this case that of
sets):

(x->Y) x (x->z) a (x->(Y x z))
The morphism is then,

f : E -> N x N,

such that f(e) = (source(e),target(e)). The crossproduct of sets can

be extended to a functor, x, by defining an obvious morphism part.

Morphisms of graphs are pairs of functions, one mapping edges to
edges the other mapping nodes to nodes, such that 'source' and

'target' are preserved. If f : E -> N x N and f' : E' -> N' x N' are

two graphs and (p: E -> E', q: N -> N') is a graph morphism, the

preservation of 'source' and 'target' is equivalent to the

commutation of the following square:

22

P

c,

V

NXN
lw$

Thus, if Set is the category of sets and set functions, we see that
graphs can be described as objects in the comma category (Set,X) and

then morphisms of graphs are morphisms in this category. Thus the

category of graphs is (isomorphic to) the comma category, (Set,%).

If we consider instead undirected graphs then we merely need to

change the crossproduct functor to the functor which gives unordered

pairs of nodes, which we may denote by X. Thus the category of
undirected graphs is (isomorphic to) (Set, X).

A relation on a set N - by which we mean a subset of NxN - can also

be expressed as an object in a comma category. For this we need to

revise our picture a little. The observation required is that a

relation can be defined by a map of the form

f : N x N -> 2

where 2 is any two element set (say, {true,false}). Then, if m and n

are related f(m,n) = true, otherwise f(m,n) - false. Again this is an

object in a comma category, this time the category, (X,2), where X is
the crossproduct functor. Notice that morphisms in this category
preserve the unrelatedness of elements as well as their relatedness.

Notice how these categories have been built from the category of sets
using suitable functors. We may continue this to more elaborate data

types. Consider, for instance, signatures. A signature is a set of
sorts, S, and a set of operations, 0, together with an arity for each

operation. An arity is a string of sorts, the last sort in the

string being the output sort and the remainder being the input
functionality. Now if "strings" is the functor taking a set, S, onto

23

the set of non-empty strings on S, S+, (with morphism part as string

substitution) then a signature is a pair of sets, S and 0 together

with a set morphism:

0 -> S+

This is an object in the category (Set,strings). Noting that

signature morphisms are correctly described by morphisms in this

category, we see that this comma category is (isomorphic to) the

category of signatures.

We now turn to the implementation of comma categories and show how

these various data types arise.

Implementation of Comma Categories

We will be dealing with the following picture of categories and

functors:

L R
A > B < C

Let the three categories A, B and C have types Cat(o,m), Cat(ol,ml)
and Cat(o2,m2) respectively. An object of the comma category (L,R)

is a triple of type;

o#ml #02.
A morphism in this comma category, in our treatment, contains not

only an A-morphism and a C-morphism but also the source and target

comma-objects. We therefore declare the type:

data CommaMor(o,m,ol,ml,o2,m2) __
comma mor((o#ml#o2),(m#m2),(o#ml#o2))

To define the comma category, (L,R), we need the four functions:
source, target, identity and composition. These are defined by:

24

dec s : Comma_Mor(o,m,ol,ml,o2,m2) -> o#ml#o2
dec t : Comma Mor(o,m,ol,ml,o2,m2) -> o#ml#o2
dec id : Cat(o,m) # Cat(o2,m2) ->

((o#ml#o2) -> Comma Mor(o,m,o1,m1,o2,m2)
dec comp : Cat(o,m) # Cat(o2,m2) -5-

(Comma Mor(o,m,ol,ml,o2,m2) # Comma Mor(o,m,ol,ml,o2,m2)
-> Comma Mor(o,m,ol,ml,o2,m1T)

--- s(commamor(a,,)) <- a
<= c ---

id(A,C) <_ (lambda obj & (a, c) _>
commamor(obj,(identity(A)(a),identity(C)(c)),obj))

--- <_

(lambda mor(
)

Thus, for any pair of functors, the comma category is given by:

dec comma cat : Cat(o,m) #
Functor(o,m,ol,ml) #
Cat(ol,ml) #
Functor(o2,m2,o1,m1) #
Cat(o2,m2) ->

Cat((o#ml#o2),Comma Mor(o,m,ol,ml,o2,m2))

--- comma cat(A, L, B, R, C) <= cat(s,t,id(A,C),comp(A,C))

The various restricted types of comma categories (in which either or

both of the functors L and R are set to the identity functor or to

constant functors) are obtained as instantiations of the general

comma category as follows.

The identity functor on a category is defined by,

dec I : Cat(o,m) -> Functor(o,m,o,m)
--- I() <= functor(ident,ident)

where "ident" is the identity function, ident(x) = x. Constant

functors are given by,

dec K : Cat(o,m) -> (o -> Functor(Num,Num,o,m))
--- K(cat(_,_,id,_)) <_

(lambda a-->
functor((lambda 1 => a),(lambda 1 => id(a))))

where the source of the functor is the unit category consisting of

one object and its identity both of which are the number '1'.

By setting L to be the identity we get the right comma category:

25

type Right_Comma_Mor(o1,ml,o2,m2) --
Comma Mor(o1,ml,o1,ml,o2,m2)

dec right-comma-cat :

Cat(ol,ml)#Functor(o2,m2,ol,ml)#Cat(o2,m2)
-> Cat((ol#ml#o2),Right Comma Mor(o1,ml,o2,m2))

--- right comma cat(B,R,C) <- comma cat(B,ITB),B,R,C)

Notice that we can define types in terms of other types and

type-operators, introducing such definitions with the keyword "type".

Likewise by setting R to be the identity we get the left comma

category. If L is a constant functor, we call the category a right
object comma category. These are given, in a like manner, by,

type Right Obj Comma Mor(ol ,ml) __
Comma Mor(o1,ml,ol,ml,Num,Num)

dec right obj comma cat : Cat(ol,ml)#o1 ->

--- right_obj_comma_cat(B,b) <=

comma cat(B,I(B),B,K(B)(b),unit category)

where "unit-category" is defined above. Similarly we can define the

left object comma category.

There are projection functors,
left: (L,R) -> A

right: (L,R) -> C

defined by:

dec left : Functor((o#ml#o2),CommaMor(o,m,ol,ml,o2,m2),o,m)
--- left <- functor((lambda (a,) _> a),

(lambda comma mor(,(f,),) _> f))

dec right :

Functor((o#ml#o2),CommaMor(o,m,ol,ml,o2,m2),o2,m2)
--- right <= functor((lambda c) _> c),

(lambda comma mor(,(,g),) _> g))

How do we construct the category of graphs? Graphs, as comma objects,
are given by the type definition:

type Graph(alpha) _= Set(alpha) # Set Mor(alpha) # Set(alpha)

where 'alpha' is a type variable, that of the type of the labels in
the graph. Graph morphisms are:

type Graph Mor(alpha) ==
Right_Comma_Mor(Set(alpha), Set_Mor(alpha),

Set(alpha), Set Mor(alpha))

26

To construct the category of graphs we need the crossproduct functor.

Before defining this functor we need to explain a tagging mechanism

which we use. Because of the strong type discipline in HOPE, we

cannot describe graphs as morphisms from sets of type Set(alpha) to

sets of type Set(alpha x alpha). We need to coerce pairs of type

"alpha x alpha" to objects of type "alpha". This may be done by a

explicit coercion:

data Tag(alpha) _= just(alpha) ++ pair(alpha,alpha) ++

Thus objects of type Tag(alpha) are either objects of type "alpha"

labelled with "just" or pairs of objects of type "alpha" labelled

with "pair" (the continuation "..." indicates that extra tagging will

be needed later).

The crossproduct functor is then given by,

dec ocrossprod: Set(Tag(alpha))->Set(Tag(alpha))
--- ocrossprod(S) <= pair * (S X S)

dec mcrossprod: Set_Mor(Tag(alpha)) -> Set Mor(Tag(alpha))
--- mcrossprod(mor(s,f,t)) <_

mor(ocrossprod(s),
(lambda pair(a,b) => pair(f(a),f(b))),
ocrossprod(t))

dec cross product:
Set(Tag(alpha)),Set Mor(Tag(alpha)),
Set(Tag(alpha)),Set Mor(Tag(alpha)))

--- cross product <= functor(ocrossprod,mcrossprod)

where X is the cartesian product of two sets and the set f*S, for a

function f and a set S, is {f(s)
1 s in S}. With this functor we

describe the category of graphs by:

dec cat_of_graphs: Cat(Graph(Tag alpha),Graph_Mor(Tag alpha))
--- cat of graphs <=

right-comma cat(cat_of sets,cross_product,cat_of sets)

Notice how, using a familiar set functor, the comma category

construction above immediately gives us the data type of graphs.

We have chosen to represent graphs as comma objects. This makes

their formal behavior amenable but as a representation it is rather

clumsy and includes duplication of information. We thus introduce a

function for the construction of these comma objects from the

relevant data:

27

dec graph
Set(Tag alpha)#(Tag(alpha)->Tag(alpha))#Set(Tag alpha)

-> Graph(Tag alpha)
--- graph(E,f,N) <_ (E,mor(E,f,cross product ofo N),N)

We can also introduce decomposition functions. Strictly these are

not necessary as they can be obtained by "pattern matching" but they

will make subsequent programs more readable.

dec edges : Graph(Tag(alpha)) -> Set(Tag(alpha))
dec nodes : Graph(Tag(alpha)) -> Set(Tag(alpha))
dec graph map : Graph(Tag(alpha)) ->

(Tag(al ha) -> Tag(alpha))
dec dom : Graph(Tag alpha -> (Tag(alpha) -> Tag(alpha))
dec range : Graph(Tag alpha) -> (Tag(alpha) -> Tag(alpha))
--- edges((E,_,_)) <= E

--- nodes((N)) <= N

--- graph map((,mor(,f,),)) <= f

--- dom(T 7
lambda e -> n1 where pair(nl,)

--- range((,mor(,f,),)) <_
lambda e -> n2 where pair(,n2)

Signatures as comma objects can be handled similarly. There is a

difficulty here in that the "strings" functor takes finite sets to
infinite sets. All infinite sets in our program are represented by

the constant constructor for sets "bigset".

Again we need a coercion of types. This time it is of 'strings of
alpha' to 'alpha':

data Tag(alpha)
just(alpha) ++ ... ++ string(List Tag(alpha)) ...

where 'string' is another constructor for the type 'Tag(alpha)'. The

"strings" functor is given by

dec ostrings : Set(Tag alpha) -> Set(Tag alpha)
dec mstrings : Set Mor(Tag alpha) -> Set_Mor(Tag alpha)

--- ostrings(S) <= nil set if S=nil set else bigset
--- mstrings(mor(s,f,tt) <_

mor(ostrings(s),
(lambda string(l) _> string(f*l)),
ostrings(t))

dec strings : Functor(Set(Tag alpha),Set Mor(Tag alpha),
Set(Tag alpha),Set Mor(Tag alpha))

--- strings <= functor(ostrings,mstrings)

Its only non-trivial part is its action on morphisms which is a

string substitution and uses the predefined recursive 'maplist'

28

function, Signatures and their morphisms as objects and

morphisms of a comma category are:
type Signature(alpha) __

Set(alpha) # Set Mor(alpha) # Set(alpha)

type Signature _Mor(alpha) __
Right Comma_Mor(Set(alpha), Set Mor(alpha),

Set(alpha), Set Mor(alpha))

The category of signatures is then:

dec cat of signatures :

Cat(Signature(Tag alpha),Signature Mor(Tag alpha))
--- cat_ofsignatures <-

right_comma_cat(cat of sets,
strings,
cat of sets)

We shall be looking at colimits in these comma categories in the next
chapter but now we turn to another method of combining two data types

to give a new type. This time we are given two categories and

produce the category of all functors from one category to the other.

Using this, we can construct diagrams in categories. Moreover these

functor categories are closely associated with theories which occur

in program specification (page 101).

FUNCTOR CATEGORIES

A functor is to be, as before, a pair of maps on objects and

morphisms.

data Functor(o,m,ol,ml) _= functor((o->o1),(m->m1))

To make a category whose objects are functors we need to introduce

morphisms between functors. Suppose that F,G : A -> B are two

functors, then a morphism from F to G is a natural transformation
oC : F => G. It is defined to be a map taking an object, a, of A to a

morphism, f : aF -> aG, of B such that certain diagrams commute. In
terms of a data type, it is simply a map from objects to morphisms

together with the source and target functors:
data Nat_transform(o,m,ol,ml) ==

nat_transform(Functor(o,m,ol,ml),
(o->ml),
Functor(o,m,ol,ml))

There are two compositions of these natural transformations - the

29

vertical or "dot" composition and the horizontal or "ring"

composition. These can both be encoded:

dec dotcomp : Cat(o,m)#Cat(o1,m1) ->
(Nat transform(o,m,ol,ml) # Nat transform(o,m,ol,ml)

-> Nattransform(o,m,oT,m1))

dec ringcomp : Cat(o2,m2) -> (Nat transform(o,m,ol,ml)#
Nat transform(ol,ml,o2,m2) -> Nat transform(o,m,o2,m2))

--- dotcomp(A,cat(_,_,_,comp)) <=

lambda nat transform(F,alpha,_), nat_transform(_,beta,H)
_> nat_transform(F,

(lambda a => comp(alpha(a),beta(a))),
H)

--- ringcomp(cat(_,_,_,comp)) <_

lambda nat_transform(F,alpha,G), nat_transform(J,beta,L)
nat transform(F.J,

(lambda a =>

comp(beta(F ofo a),L ofm alpha(s))),
G.L)

(Where 'ofo' and 'ofm' apply a functor to objects and morphisms

respectively.) In fact, it is the "dotcomp" that is the composition

in the category of functors.

The identity natural transformation is:

dec id : Cat(o,m)#Cat(o1,m1) -> (Functor(o,m,ol,ml) ->
Nat transform(o,m,ol,ml))

--- id(A,cat(,i,_)) <= lambda F =>

nat transform(F,(lambda a => i(F ofo a)),F)

We can now define the category of functors between two categories.

dec cat of functors : Cat(o,m)#Cat(o1,m1) ->
Cat(Functor(o,m,of,ml),Nat transform(o,m,ol,ml))

--- cat_of_functors(A,B) <_

cat((lambda nattransform(s,,_) s),
(lambda t),

id(A,B),

dotcomp(A,B))

It can be seen that this encoding of categorical concepts is quite

easy once one has grasped the basic idea. We give a final example

which will be of use later - the category of diagrams in a category.

Diagrams have a shape - a graph - and maps from nodes of this graph

to objects in a category and from edges in the graph to morphisms.

These maps 'preserve' the source and target. As a data type:

data Diagram(o,m) __
diagram(Graph(Name),(Node->o),(Edge->m))

30

The types 'Name', 'Node' and 'Edge' are all defined to be the type

'Tag(Label)' where 'Label' is:
type Label == word(List(Char)) ++ number(Num).

That is graphs are labelled with either words (character lists) or
numbers.

If C is a category, a diagram morphism in C from D to D' (where

fo,fo' and fm,fm' are the object and morphism maps of these diagrams)

is a pair (ccN,o(E) of maps between nodes and edges of the diagrams,

together with a map, f, which takes nodes in the source diagram to

morphisms in C. The latter map satisfies:
sourceC(f(n)) = fo(n) and

targetC(f(n)) = fo'(XN(n))
together with certain commutation conditions. In HOPE, diagram

morphisms are to be:

data DiagramMor(o,m) ffi_

diagrammor(Diagram(o,m),
(Node->Node),
(Edge->Edge),
(Node->m),

Diagram(o,m))

If C is a category, the category of diagrams on

then,

dec cat of diagrams : Cat(o,m) ->

C, Diagram(C), is

Cat(Diagram(o,m),Diagram Mor(o,m))
--- cat of diagrams(c) <= cat(s(c),t(c),id(c),comp(c))

where 's', 't', 'id', 'comp' are the obvious source, target, identity

and composition in the category of diagrams.

We shall need the following diagrams: the empty diagram, the diagram

of two nodes and no morphisms and the diagram with a pair of objects

and a parallel pair of morphisms between them. For example the

diagram of two nodes and no morphisms is declared as:

dec cpdiagram : o#o -> Diagram(o,m)
cpdiagram(a,b) <= diagram(cpgraph(just(word("left")),

just(word("right"))),
(lambda just(word(x)) _> a

if x="left" else b),
nil fn)

Alternatively diagrams could be encoded as functors (possibly

31

functors from "small categories') and then their morphisms would be

natural transformations (together with a functor between the

'shapes'). This would be altogether more elegant yet somewhat more

obscure. As it is an equivalent formulation, we keep to the explicit

declaration of diagrams and their morphisms above.

These category constructions all have a special property concerning

colimits. Colimits in categories 'lift' through these category

building operations, enabling us to express colimits of complex data

types in terms of colimits of simpler types. Moreover, this fact can

be encoded as a program. We now turn to the general problem of

computing colimits in categories and show how this "lifting" is

accomplished.

Notes

The programming of category theory described here was a joint

project between Prof. Rod Burstall, Don Sannella and myself

as explained in chapter one. Goguen and Burstall (1978)

noticed that graphs and signatures can be viewed as objects

in comma categories.

32

CHAPTER THREE

THE COMPUTATION OF COLIMITS

Colimits are a means of defining objects in a category in terms of
other objects and morphisms between them. In other words, they allow
us to build new objects by connecting together some given objects - a

familiar concept in programming whenever we need to build complex

objects from simpler components.

Colimits have been used in building specifications from theories
([Ehrich 1978] and [Burstall,Goguen 1980a]), in graph grammars

[Ehrig,Pfender,Schneider 19731 and in the interpretation of data

types ([Lehmann,Smyth 1977] and others). We will in the course of

this paper be investigating other applications of colimits - for
instance in program development. In this chapter we show how to
compute colimits in categories using fairly general techniques.

Implementation of Colimits

Firstly we explain how we handle colimits and categories with

colimits within our programming of category theory. So far, we have

available an encoding of categories, functors, diagrams and of the

category building operations. In order to define colimits we need

cones. Fortunately, as with graphs, it turns out that cones may be

represented by objects in a comma category.

A cone is a diagram (its base), an object (its apex), and morphisms

to the apex from objects at the nodes in the base satisfying certain
commutation conditions (see [Herrlich, Strecker 1973]). This can be

represented as a diagram morphism by considering the apex to be a

diagram with one object. Using this trick we can represent the

category of cones as a comma category as follows:

If C is a category, Diagram(C) the category of diagrams on C, then

this 'making a diagram from an object' is functorial:
unit diagram : C -> Diagram(C).

For each object c, in C, this gives a diagram with one object, c, and

one morphism, the identity on c. Each morphism f : c -> c' in C gives

33

a diagram morphism from unit diagram(c) to unit_diagram(c').

The computation of this looks like:

dec unitdiag : Cat(o,m) -> (o -> Diagram(o,m))
--- unitdiag(C) <= lambda o =>

diagram(discrete graph({just(word "solo"))),
constantTo),
constant(identity(C)(o)))

dec unitdiag : Cat(o,m) -> (m -> Diagram Mor(o,m))
--- unitdiag(C & cat(s,t,_,_)) <_

lambda m => diagram_mor(unitdiag(C)(s(m)),
ident,
ident,
constant(m),
unitdiag(C)(t(m)))

dec unit-diagram :

Cat(o,m) -> Functor(o,m,Diagram(o,m),Diagram Mor(o,m))
--- unit diagram(c) <= functor(unitdiag(c),unitdiagTc))

The graph constructor 'discrete graph' takes a set and gives a graph

whose set of nodes and of edges are both the given set and the source

and target of each edge is the node of the same name. It is defined

on page 83.

The category of cones on a category C, Cone(C), is then (isomorphic

to) the right comma category, (Diagram (C) , uni t-d iagram) . This is

given by the following comma category construction:

type Cone(o,m) _= Diagram(o,m) # DiagramMor(o,m) # o
type Cone Mor(o,m) __

Right Comma Mor(Diagram(o,m), Diagram Mor(o,m), o, m)

dec cat_of_cones : Cat(o,m) -> Cat(Cone(o,m),Cone_Mor(o,m))
_ --- cat_of_cones(c) <

right comma cat(cat_of diagrams(c),unit diagram(c),c)

As before with graphs, the representation of cones as comma objects

includes redundancies, so we introduce a function to construct a cone

as a comma object from the relevant data:

34

dec cone : Cat(o,m) ->
((Diagram(o,m) # (Node->m) # o) -> Cone(o,m))

--- cone(C) <= lambda d,f,a ->
(d,

diagram mor(d,
constant(just(word "solo")),
constant(just(word
f,

"solo")),

a)
unit diagram(C) ofo a),

We also introduce the decomposition functions giving parts of a cone.

dec base : Cone(o,m) -> Diagram(o,m)
dec apex : Cone(o,m) -> o

dec sides : Cone(o,m) -> (Node -> m)

--- base(d,,_) <= d

--- apex(,,a) <- a
--- sides , mor(, , ,f,),) <= f

The function, "apex", for instance, is functorial - it can be

extended to cone morphisms by simply extracting the morphism between

the apices :

dec apex morphism : Cone_Mor(o,m) -> m

--- apex morphism(cm) <- right ofm cm

The functor is :

dec apex functor: Functor(Cone(o,m),Cone Mor(o,m),o,m)
--- apex functor <= right

The functor "right" is the projection functor associated with the

comma category.

With cones available we can define colimits. Colimits are a special

type of cone on a diagram. They have a universal property which we

need to include alongside the colimiting cone itself. The universal

property says that, given any other cone (on the same base), there is

a unique cone morphism from the colimiting cone to the given cone.

This defines a function and colimits can thus be expressed as a data

type:

type Colimit(o,m) == Diagram(o,m) ->
(Cone(o,m) # (Cone(o,m)->Cone Mor(o,m)))

A category with such a colimit operation upon it is a new data type
which we call a colimit category.

data Colimit Cat(o,m) == colimit cat(Cat(o,m),Colimit(o,m))

35

In keeping with. familiar terminology we perhaps ought to call this a

cocomplete (or finitely cocomplete) category but we reserve this name

for later use for a somewhat different data type.

A colimit takes a diagram in a category to a cone. This can be

extended to a functor by using the universal part of the colimit to

define a morphism part of a functor. The object part is defined as

follows:

dec colimitcone : ColimitCat(o,m) ->

(Diagram(o,m) -> Cone(o,m))
--- colimit_cone(colimit cat(,colim)) <_

lambda d => let colim(d) in c

Then the functor is:

dec colimit_functbr : ColimitCat(o,m)
-> Functor(

Cone(o,m),Cone)

--- colimit_functor(cC & colimitcat(C, colimit)) <_

functor(colimitcone(cC),
(lambda =>

let diagcat & cat(s,t,_,_)
cat_of_diagrams(C) in

let _,univ colimit(s(diagmor)) in
let tcone,_ colimit(t(diagmor)) in

univ(left_compose(diagcat,diagcat,I(diagcat))
(diagmor,tcone))))

Here 'left compose' composes a diagram morphism into the base of a

cone with the cone (treated as a diagram morphism itself) to give a

new cone. We can also define a functor which takes a diagram to the

colimiting object on the diagram. It is given rather neatly as a

composition of functors:

dec colimit_apex_functor : Colimit_Cat(o,m) ->

Functor(Diagram(o,m),Diagram Mor(o,m),o,m)

--- colimit apex functor(CC) <_
colimit functor(CC).apex functor

A SHORT-CUT TO THE COMPUTATION OF COLIMITS

Thus far, we have set up data types to correspond to the definition
of colimits, yet we have given no example of a category with its

colimits. The problem is this: Colimits on arbitrary (finite)

diagrams are awkward creatures to handle. The category of sets is

36

cocomplete - has colimits of arbitrary diagrams - but to express an

arbitrary (finite) colimit computationally is a lengthy process.

With more complicated cocomplete categories it it is out of the

question. However, what is feasible is to encode the colimits of

diagrams of small, fixed shape. For instance we may encode

coproducts of two objects, coequalisers or pushouts. What we then

need is a means of extending these simple colimits to those of

arbitrary (finite) diagrams. This can be achieved by "colimit

existence" theorems. We shall give one such theorem and show how it

translates into a program. We will then show how this short-cut to

the, computation of colimits works in the case of the category of

sets.

The theorem that we intend to encode is:

Theorem (Colimit Existence)

If a category has an initial object, coproducts of pairs of objects

and coequalisers of parallel pairs of morphisms then it has all

finite colimits.

We will not give a proof of the theorem partly because it can be

found in category theory texts (e.g. [Herrlich,Strecker 1973]) but

also because our program translates the proof into HOPE text omitting
only the verification of properties of constructed objects. In this
sense the proof is constructive - given a means of computing initial

objects, coproducts of pairs and coequalisers, the proof offers a

means of computing arbitrary finite colimits.

Before looking at the construction, we use this theorem as an excuse

for introducing some further data types. The colimits mentioned in
the theorem, remembering that we include the universal parts along

with the colimiting cone, can be given as data types:

type InitialObj(o,m) == o # (o->m)

type Coproduct(o,m) _= o#o -> (o#m#m) # (o#m#m->m)

type Coequaliser(o,m) =s m#m -> (o#m) # (o#m->m)

A category with these operations upon it is a new type, which by

37

virtue of the theorem we may call a cocomplete category:

data C Cat(o,m) c_cat(Cat(o,m),
InitialObj(o,m),
Coproduct(o,m),
Coequaliser(o,m))

The idea behind the construction is that given a finite diagram D we

build the colimit stepwise, at each step using only the colimits

available (the initial object, coproduct of pairs of objects and

coequalisers of pairs of morphisms).

The first step is to take the coproduct of all the objects at the

nodes in the diagram (ignoring the morphisms in the diagram). This

can be done stepwise using the binary coproduct.

We begin by taking the coproduct of the empty diagram, which is the

initial object. We then iterate through the nodes of the diagram.

At each step we are given the coproduct of the objects at the nodes

so far considered together with another node. The step is to

construct a new colimiting cone by taking the binary coproduct of the

apex of the colimiting cone that we are given and the object at the
new node. A picture may help:

9

f'

11

n

The new cone is constructed on the diagram, D', together with the new

node and has the object 'a' as apex and as sides either f or a

composition of sides of cone C' followed by g.

The universal part is computed along with the colimiting cone. We

38

first construct. the universal part of the initial cone as a function

which takes a cone and gives a cone morphism. The cone morphism has

as apex morphism the unique morphism from the initial object and as

diagram morphism the unique morphism from the empty diagram.

Consider the picture above and let us try to construct a new

universal part, given a universal part for the cone C' and also for

the binary coproduct of b and c. Thus given any cone C" on the

diagram D' augmented with the extra node, we have a picture as

follows:

n

This cone C" is, by restriction of the base, a cone on the diagram D'

and so the universal part of C' provides a cone morphism from C' to

C" (on the smaller base). Thus there is a morphism h from the apex

of C' to that of C". Now the binary coproduct comes into play since

we have morphisms from b and c to the apex of C". Thus the universal

part of the coproduct provides a morphism u : a -> c". This is the

required lifting of the universal part.

As HOPE code, this is the routine "multicoprod":

39

dec multicoprod : CCat(o,m) ->
(Diagram(o,m) -> Cone(o,m) # (Cone(o,m) -> Cone Mor(o,m)))

--- multicoprod(k & c_cat(C & cat(_,_,id,cmp),init,cp,_)) <_

lambda d & diagram((E,p,N),fo,fm)
(let i,univinit init in

let initialcone
cone(C)(nil diagram,nil fn,i) in

initialcone,
(lambda pcone

cone mor(C)(initialcone,
univinit(apex(pcone)),
pcone))) if N=nil set else

(let n,N1 == singleton split(N) in
let c_cone,univc =_

multicoprod(k)(diagram((E,p,N1),fo,fm)) in
let (a,f,g),univcp =_

cp(fo(n),apex(c_cone)) in
let resultcone

cone(C)(d,
(lambda m

f if m=n else
cmp(sides(c_cone)(m),g)),

a) in

let univpart =_
(lambda pcone =>

let h == apex functor ofm univc(pcone) in

cone_mor(C)(resultcone,
univcp(apex(pcone),

sides(pcone)(n),
h),

pcone)) in

(resultcone,univpart))

What about the edges in the diagram and the associated morphisms? The

edges are taken into account in the definition of a cone only in the

fact that certain triangles commute. When we add edges to the

diagram we must ensure that the appropriate commutation condition

holds. This can be done by using the coequaliser to construct a new

cone. Consider a picture,

40

where m is a morphism in the diagram,
i1 and p2 are sides of a "cone"

but with m12 not necessarily equal to X1. Now if we take the

coequaliser of m3'2 and 1 (h in the above picture) we can construct a

new "cone" with sides 91h and 2h such that Y1h = m62h by definition.

So, for each edge in the diagram, we construct such a coequaliser and

thus a new cone, remembering of course to lift the universal part

through the construction. The computation of the universal part is

very much like that of the previous case. This construction is

encoded as the routine "addedge":

dec addedge : C Cat(o,m) ->
((Cone(o,mT # (Cone(o,m) -> Cone Mor(o,m))) # Edge

-> Cone(o,m) # (Cone(o,m) Cone Mor(o,m)))

addedge(ccat(C, _, _, ce)) <_

lambda (conel,puniv), e =>

let diagram(g,fo,fm) _= base(conel) in
let (b,h),univ =_

ce(sides(conel)(dom(g)(e)),
compose(C)(fm(e),

sides(conel)(range(g)(e)))) in

let result graph =_
graph(e: edges(g),graph map(g),nodes(g)) in

let resultdiag == diagrammresult graph,fo,fm) in
let resultcone

cone(C)(resultdiag,

(lambda p =>
compose(C)(sides(conel)(p),h)),

b) in
let universal (lambda pcone =>

let univ mor puniv(pcone) in
cone mor(CT(resultcone,

univ(apex(pcone),apex mor(univmor)),
pcone)) in

(resultcone,universal)

The colimit on an arbitrary finite diagram is calculated recursively

41

by splitting off an edge of the diagram if there are any (if not then

"multicoprod" is called), recursively computing the colimit on the

remaining diagram and then using "addedge" to add the extra edge.

dec finite colimit : C Cat(o,m) -> Colimit(o,m)

--- finite colimit(CC) <=
(lambda d & diagram((E,mor(,f,xN),N),fo,fm) _>

(let (,gamma,a),univ == multicoprod(CC) d in
(d,gamma,a), univ) if E=nil set

coproduct if no edges
else
(let e,E1 - singleton split(E) in

addedge(CC)
(finite colimit(CC)

(iagram((E1,mor(E1,f,xN),N),fo,fm)),

e))) ! run through edges coequalising

This is one of the major routines of the program. Its fascination is
partly that it is a direct encoding of the proof of the "existence of
colimits" theorem. Moreover, as we shall demonstrate, it makes the

computing of colimits in categories at least tractable for we now

need to construct only initial objects, binary coproducts and

coequalisers. The application of the above routine will then compute

any finite colimit for us.

Notice that a proof of the program needs to establish not only the

properties of "finite colimit" but also its well-definedness (e.g.
that it is independent of the order in which "addedge" is used to add

edges). This follows, of course, from standard category theoretic

results.

COLIMITS IN THE CATEGORY OF SETS

We are now in a position to construct arbitrary finite colimits in
the category of sets. We use the program above and so need the

initial object, binary coproducts and coequalisers of parallel pairs
of morphisms in the category of sets.

The initial object is the empty set, "nil set". Its universal part

is the unique morphism to any other set from the empty set:

dec nil_mor : Set(alpha) -> Set Mor(alpha)
--- nil mor(x) <= mor(nil set,nil fn,x)

("nil fn" is a function without a definition, in fact any function

42

would do e.g. the identity.) So the initial object together with its

universal prt is:

dec init : InitialObj(Set(Tag alpha),Set Mor(Tag alpha))
--- init <- nil set,nil: mor

The coproduct of two sets is their disjoint union (together with a

universal part). The disjointness of the union is ensured, as usual,

by a tagging of the elements to make the elements of different sets
distinct elements in the coproduct set. We thus introduce two new

tags, "pink" and "blue" (or "girl" and "boy"):

Tag(alpha) -- ... ++ pink(Tag(alpha)) ++ blue(Tag(alpha)) ...

The idea now is to construct a new set consisting of the elements of

one set "pinked" and of the other set "blued". The morphisms into

this colimiting set are essentially the colouring operations. Given

any other cone on the two sets, the universal part of the coproduct

is the morphism from the disjoint union which removes the colour from

an object and then uses the morphisms in this given cone. As a

program, the coproduct looks like this:

dec coprod : Coproduct(Set(Tag alpha),Set Mor(Tag alpha))

--- coprod(s,t) <- let u -- (pink*s) U (blue*t) in

(u, mor(s,pink,u), mor(t,blue,u)),
(lambda v,mor(a,f,b),mor(c,g,d)=>

undef if not(v-b and v-d and as and c-t)

else let fg =- (lambda pink(x) _> f(x)

blue(x) -> g(x)) in
mor(u,fg,v))

("lambda ... -> ... , ... -> ... etc" is a lambda expression with

cases.)

All that remains now is to compute the coequaliser of a parallel pair
of set morphisms. This is usually given as a set of equivalence

classes. Instead, to make the computation simpler, we choose

elements of the classes to represent them. This routine uses a

rather elegant recursion. Suppose that we want to calculate the

coequaliser of f,g : S -> T. First split S into two pieces, P and Q,

(if not possible then the coequaliser is trivial), and recursively

compute the coequaliser of f and g restricted to P to get:

flp u
P T ----)U

glp

43

To include the remainder of S, namely Q, we notice that there are

morphisms

f'u' g'u : Q -> U,

where f' and g' are the restrictions of f and g to Q. We recursively

compute the colimit of these two morphisms, to arrive at:

f' u h
Q TU--R

g'

The coequaliser of f,g is then the morphism 'u.h' together with a

universal part which lifts from the two coequalisers used. In code

this looks like:
dec coeq : Coequaliser(Set(Tag alpha),Set Mor(Tag alpha))

--- coeq(mor(S,f,T),mor(R,g,V)) <-
! the undefined case

(nil set, undef), (lambda , ¢>undef) if not(S=R and T=V)
else ! the empty case
(let cat(,,id,comp) _= catofsets in
(T, (lambda else

! if S has one object
(let x, -- singleton split(S) in

((T,id(T)), (lambda- lambda ,j=>j) if f(x)=g(x)
else
let W == T - {g(x)} in ! target of coeq
(W, mor(T,(lambda y=>f(x) if y=g(x) else y),W)),
(lambda a,mor(_,j,_)=>mor(W,j,a)))) if cardinal(S)=1 else

(let P,Q == split(S) in ! the recursive case
let (,u),univ coeq(mor(P,f,T),mor(P,g,T)) in
let (R,h),univl

coeq(comp(mor(Q,f,T),u),comp(mor(Q,g,T),u)) in
(R, comp(u,h)), (lambda a,j=>univl(a,univ(a,j)))))

The cocomplete and colimit categories of sets then look like:

dec C cat of sets : C_Cat(Set(Tag alpha),Set_Mor(Tag alpha))
--- c cat of sets <= c cat(cat of sets,init,coprod,coeq)

dec colimitcatof sets :
Colimit Cat(Set(Tag alpha),Set Mor(Tag alpha))

_ --- colimit cat of sets <

colimit catTcat of sets , finite colimit(c cat of sets))

We now turn to techniques by which this explicit computation of

44

colimits for the category of sets can, without any further

computation of colimits, be extended to the category of, say, graphs

or of signatures or of more complex data types.

COLIMITS AND CATEGORY CONSTRUCTORS

Let us, for the moment, have a look at colimits in the category of

graphs, Graph. As we have seen, the comma category (Set,X), where

'X' is the cross-product functor, is isomorphic to the category of

graphs. Can we use this fact to simplify the computation of colimits

of graphs?

First notice that there are two functbrs - the projection functors

arising from the comma category:

edges, nodes : Graph -> Set

Given a diagram of graphs we can, by applying these functbrs to the

objects and morphisms in the diagram, obtain two diagrams in Set, one

of the edges of the graphs and the other of the nodes. The colimit

object of the diagram of graphs is a graph with the following

property: its edges are given by the colimit object of the diagram

of edges, and the nodes likewise. The morphism from edges to pairs
of nodes can also be constructed from these colimits in Set as we

shall now show in a general setting. Thus we can reduce the

calculation of colimits of graphs to those of sets provided that we

have the means available to "lift" these colimits through to those of

graphs.

We now look at this in the more general setting of right comma

categories. We state a theorem (brought to our attention by Prof.

Joe Goguen) which says that colimits in right comma categories arise

from those in the categories on which the comma category is built.

We give a detailed proof from first principles of this theorem and

then code this into a routine to lift colimits. To emphasize how

close the proof is to a program, labels appear in the proof to match

corresponding labels in the program. Thus the proof is a commentary

on the program. More formally it ought to be the kernel of a proof

of program correctness (with respect to some semantics).

45

Theorem

If A and B are cocomplete categories and F : B -> A is any functor,
then (A,F) is cocomplete.

We could restrict the cocompleteness to, say, finite cocompleteness

or to the existence of cblimits of a specified type, e.g. pushouts.

Proof

Let D be a diagram in (A,F) with nodes n in the set N, and objects

d n = (an, fn: an -> bnF, bn).

A morphism in the diagram is a morphism in (A,F) of the form;

Lti F b,,

9 1 91 c* k F I h

Q,1 a K b F 6 ,
fn

(1)

where (*) commutes.

There are projection functors,

PA (A,F) -> A, PB (A,F) -> B.

These functors extend to functors on diagrams, DA and DB.

Let 3n : an -> a be a colimiting cone on the diagram DA(D) in A,

then if g: am -> an is a morphism in DA(D)

I J /
CL

(2)

commutes.

46

Likewise, let
'n

: bn -> b be a colimiting cone on DB(D) in B, then

if h : bm -> bn is a morphism in DB(D),

hro%
1

P 6,1,

V
Thus as F is a functor the following is a cone in A:

0nF : bnF -> bF. (4)

Consider the following cone in A, with base DA(D):

fn.XnF : an --> bnF --> bF. (5)

It is a cone because, if g : am -> an is a morphism in DA(D), then

this morphism is a left projection via PA of a morphism of the form

(1), hence

c
v 4m~- bin F`Girt F

(*) h () 6 F

F F Q c-a 6 n

commutes, because (*) is
the condition that (g,h) is a morphism in the comma category and (**)
commutes because 'n is a cone.

Thus, by the colimiting property of 3n : an -> a, there is a unique

morphism

f : a -> bF (6)

such that

47

P't

(6a)

commutes for all n.

(6a) together with (2) and (3) state that

(In' Xn) : (an,fn,bn) -> (a,f,b) (7)
is a cone on D.

We show that it is the colimiting cone. Let

(Pn,gn) : (an,fn,bn) -> (a',f',b') be any other cone on D so that for

any morphism of the form (1):

both commute for all n, and

Pri.

q fn b F

qjF

b'F
C1 I

(7b)

48

commutes for all n. Thus by

the colimiting properties of I n and W n we have unique morphisms:

N : a -> a' in A and

: b -> b' in B

such that, for all n in N,

u
0(

(9a)

both commute. Then

0(

q bF

pF

b'F

(9b)

c'

commutes from (6), (7a) and (9a) and the colimiting property of

in : an -> a. That this morphism,

(0(: a -> a', g: b -> b'), (10)
is the unique morphism from (a,f,b) to (a',f',b') such that (9a) and

(9b) both hold follows directly from the uniqueness properties of
0(and

l`"
separately. 0

49

Implementation of the Lifting of Colimits

We now turn to the encoding, in HOPE, of this construction.

In the proof we refer to several functors which are extensions

functors to diagrams and to cones. For example the functor DA may

programmed as:

dec left : Cat(o,m)#Cat(ol,ml) ->
(Diagram(ofm#o1,Right_Comma_Mor(o,m,ol,m1)) ->

Diagram(o,m))

--- left(_,) <- lambda diagram(gr,fo,fm) _>
diagram(gr,

(lambda x -> (left ofo fo(x))),
(lambda y -> (left ofm fm(y))))

of

be

The routine for the construction of colimits in a comma category is

parameterised on the colimits in the two categories from which the

comma category is built;

dec lift colimit:
Colimit Cat(ol,ml) #
FunctorTo2,m2,ol,m1) #
Colimit Cat(o2,m2) ->

Colimit(o1#m1#o2, Right Comma Mor(ol,ml,o2,m2))

and is defined by:

50

--- lift_col'imit(cA & colimit_cat(A,colimA),
F,

cB & colimitcat(B,colimB)) <_
let dcat == cat of diagrams(A) in
let commacat == right comma cat(A,F,B) in

lambda D & diagram(_,fo,_) _>
let coneA, univA == colimA(left(A,B)(D)) in (2)

let coneB, univB == colimB(right(A,B)(D)) in (3)

let FconeB == apply(B,A)(F,coneB) in (4)

let pretendcone =_ (5)

left_compose(dcat,dcat,I(dcat))
(diagram mor(base(coneA),

ident,

ident,
(lambda n => fc

where _,fc,_ _= fo(n)),
base(FconeB)),

FconeB) in
let u == apex morphism(univA(pretendcone)) in (6)

let colimobj (apex(coneA), u, apex(coneB)) in
let resultcone (7)

cone(commacat)
(D,

(lambda n
comma_mor(fo(n),

(sides(coneA)(n),sides(coneB)(n)),
colimobj)),

colim_obj) in

let universal --
(lambda pcone

let uA =_ (8)

ape xmorphism(univA(left(A,B)(pcone))) in

let uB =_ (9)

apex morphism(univB(right(A,B)(pcone))) in

cone morTcommacat) (10)

(resultcone,
comma mor(colimobj,(uA,uB),apex(pcone)),
pconeT) in

(resultcone,universal)

The steps in the proof may be followed (with the help of the

corresponding of labels) to understand the text of the program above.

How do we put this to use? Access to the procedure is through a

colimit routine in a new data type 'colimit_comma category'. That

is, we produce a comma category along with its colimit routine:

51

dec colimit comma cat :

Colimit Cat(o1,m1) #
FunctorTo2,m2,o1,ml) #
Colimit Cat(o2,m2) ->

Colimit Cat((o1#m1#o2),Right Comma Mor(o1,m1,o2,m2))

colimit comma cat(kA & colimit cat(A,),

- kB & colimit_cat(B,_)) <

colimit cat(right comma cat(A,F,B),lift colimit(kA,F,kB))

Now, we can immediately compute the colimits of diagrams in data

types which can be expressed as comma categories, as long as we have

routines to compute colimits in the categories on which the comma

category is built.

Graphs serve as a good example. We can define the colimit category

of graphs - which contains a colimit routine for graphs - as:

dec colimitcat_of graphs
Colimit CatTGraph(Tag alpha), Graph Mor(Tag alpha))

--- colimitcat_ofgraphs <-

colimit_comma_cat(colimit_cat_of_sets,
cross-product,
colimit cat of sets)

Likewise, colimits of signatures:

dec colimit_cat_of_signatures
ColimitCat(Signature(Tag alpha),

Signature Mor(Tag alpha))

--- colimit cat of signatures <-

colimit_comma cat(colimit_cat_ofsets,
strings,

colimit cat of sets)

Lifting techniques like this are not new. For instance, many

languages have the facility to "lift" an equality on a type, 'alpha',

through to constructed types such as 'Set(alpha)' (set comprehension)

or to maps 'alpha->alpha'.

What about left comma categories? The above theorem does not hold if

we simply replace "right comma category" with "left comma category".

We need the extra requirement that the functor preserves colimits:

52

Theorem

If L : A -> B is (finitely) cocontinuous and A and B are (finitely)

cocomplete then (L,B) is (finitely) cocomplete.

We could encode the construction used in the proof of this theorem,

very much as we did for the right comma category. We shall not,
however, be needing it. These two theorems embody a more general

concept which is useful in describing the computational aspects of
theorems of this form - that of the 'creation' of colimits. Before

turning to this we will look briefly at colimits in functor
categories.

Colimits in Functor Categories

Functor categories lend themselves to a treatment similar to that of
comma categories. Colimits in categories of functors arise from

colimits in the target category of the functors. The passage from

colimits in the target category to colimits of functors is described

as the 'pointwise' computation of colimits; that is, for each object
of the source category, a diagram of functors gives, by application
to this object, a diagram in the target category. By suitable
manipulation of the colimits of these diagrams the colimit of the

diagram of functors may be computed.

If BA denotes the category of all functors from A to B, we have the

theorem:

Theorem (Colimits in Functor Categories)

If B is (finitely) cocbmplete then so is BA. 0

As in the case of comma categories, the proof is constructive and may

be translated into a program. Since we shall not need this program,

we relegate it to an appendix (Appendix One).

CREATION

From the discussion of the colimits of graphs we see that the essence

of the construction lies in the functors 'edges' and 'nodes', in
particular their behaviour with respect to colimits.

53

Functors may preserve colimits. This property alone gives us no

means of constructing colimits. Reflection of colimits is a similar

non-constructive property of functors. There is, however, a means of
describing the behaviour of the functors, 'edges' and 'nodes', which

allows us to lift colimits through these functors. It is known as

'the creation of colimits' and is described in [Schubert 1972].

Definition

A functor F : A -> B is said to create colimits, if for any diagram D

in A, there is a colimiting cone C in B on the image of D under F,

such that, there is a unique cone C' in A with base D and such that
the image of C' under F is C and, moreover, C' is a colimiting cone

on D.

A picture may be helpful:

Category A

The unique cone

whose image is C

C - colimit in
B of F(D)

F(D)

F

0

Thus, a constructive proof that a functor creates colimits in A from

those in B will give a means of computing the colimits in A given a

means of computing those in B. This is exactly what we have done in

the case of colimits in comma categories where the proof that 'left x

right' (the product of the projection functors) creates colimits is

encoded as a program. Otner examples of creation will occur in the

following chapters.

There are several notions along the same lines as the creation of
colimits but somewhat weaker:

Definition

A functor F : A -> B is said to lift colimits uniquely, if for any

diagram D in A, there is a colimiting cone C in B on the image of D

Category B

54

under F, such that, there is a unique colimiting cone C'

base D and such that the image of C' under F is C.

in A with

0

Notice that the only difference between this and the creation of

colimits is that here we can say only that there is a unique

colimiting cone, not a unique cone. Thus this is rather weaker.

Computationally it says that part of the work of computing colimits

in A can be done by calling a routine for computing colimits in B and

that although more work is required to compute the colimit in A no

further colimit computations will be of any use (because a choice of

a colimit in B determines a colimit in A).

Many forgetful functors lift colimits uniquely-for example that from

partial-orders to the underlying sets. A computational example of

the unique lifting of colimits will be found on page 69.

A weaker notion still is the 'lifting of colimits' dropping the

requirement of uniqueness. This is then equivalent to A having

colimits and their being preserved by F. The functors 'edges' and

'nodes' separately (or more generally 'left' and 'right') lift

colimits but not uniquely.

INFINITE COLIMITS

We can handle colimits of infinite diagrams in the same way as those

of finite diagrams but we must be careful to avoid non-terminating

routines and attempts to compute infinite objects.

Colimits of infinite diagrams, especially those of c)-chains, will of

use in the next few chapters. For instance, they arise when we pass

from signatures to free theories. More generally they provide a

categorical formulation of program iteration.

An w-chain in a category C, is a diagram of the form:

a0 -> a, -> a2 -> ... an -> an+1 -> ...

As a data type we can describe them by:

type w Chain(o,m) __ (Num -> o) # (Num -> m)

Notice that this is not itself a diagram. However, each such w-chain

55

gives rise to a'diagram:

dec w_diagram : w_Chain(o,m) -> Diagram(o,m)
--- w diagram(omap,mmap) <_

diagram(w graph,
(lambda just(number n) omap(n)),
(lambda just(number n) mmap(n)))

where '4;-graph' is the underlying graph of anal-chain:

dec w_graph : Graph(Name)
--- w_graph

let

<_
f

(lambda just(number(n))
pair(just(number(n)),just(number(n+1)))) in

(bigset,mor(bigset,f,bigset),bigset)

All the sets are infinite and so are given by the undefined constant
set 'bigset'. Attempts to evaluate this set will fail.

We can define morphisms of G)-chains hence define a category of
41-chains. A morphism of 4)-chains from)-chain (*) to the following

chain,

b0 -> b1 -> b2 -> ... bn -> bn+1 -> ...

is a sequence of C-morphisms, <hn : an -> bn n>O >, such that for all

n>O the following square commutes:

;n

k n+1

9n

As a data type such a morphism is simply:

type wChain_Mor(o,m) --
w Chain(o,m) # (Num -> m) # w Chain(o,m)

and the category of w-chains is:

56

dec catof_chains : Cat(o,m) ->

Cat(w Chain(o,m),w Chain Mor(o,m))

--- cat-of _chains(cat(,,id,comp)) <_
cat((lambda _,) _> s),

(lambda (_,t) _> t),

(lambda we & (omap,_) _>
(wc,(lambda n => id(omap(n))),wc)),

(lambda (wcl,ml,_)m2,wc3) _>
(wcl,(lambda n comp(m1(n),m2(n))),wc3)))

Now the function '43-diagram' can be extended to a functbr - morphisms

of w-chains become diagram morphisms.

dec

diagram mor(

w_diagramfunctor
Functor(w Chain(o,m),w Chain_Mor(o,m),

Diagram(o,m),DiagramMor(o,m))
wdiagram _functor <_

functor(wdiagram,
(lambda s,f,t

wdiagram(s),
ident,
ident,
(lambda just(number(n))

_> f(n)),

w diagram(t))))

An w-colimit is a colimit of an (J-chain:

type w_Colimit(o,m) _= w_Chain(o,m) ->
(Cone(o,m) # (Cone(o,m) -> Cone Mor(o,m)))

In the same way that we defined cocomplete categories as data types,

we can introduce w-cocomplete categories.

data wCocomplete_Cat(o,m) __
w cocomplete cat(Cat(o,m),w Cblimit(o,m))

In the case of cocomplete categories the construction of a colimit

category required the extension of initial object, coproduct and

coequaliser to arbitrary finite colimits. The coercion of an

4)-cocomplete category to a colimit category requires no such

elaborate work since an w -colimit differs from a colimit only in that

its argument is a 4)-chain and not a diagram. Thus, if we have a

function which takes a diagram of the form (*) into a w-chain:

dec diag_to_chain : Diagram(o,m) -> w Chain(o,m)
--- diag to_chain(diagram(,fo,fm)) <_

(lambda n fo(just(number n))),
(lambda n fm(just(number n))))

then a w-cocomplete category gives rise to a category together with a

57

colimit functiob on it:
dec w_colimit cat : w Cocomplete Cat(o,m) -> ColimitCat(o,m)
--- w_colimitcat(w cocomplete_cat(C,w_colim)) < _

colimit catTC, diag to chain.w colim)

So far the work has been the setting up of the types required to

handle colimits of 60-chains. We have not provided any means of
computing c -colimits.

In general, even for the category of sets, computation of c)-colimits

is not possible - requiring non-terminating steps. However there are

simple cases of O -chains for which this computation is possible and

indeed arises commonly in applications.

Firstly, a trivial remark: in any category, if an (0 -chain eventually
becomes constant (i.e. the morphisms in the chain eventually become

the identity on an object) then the chain has a colimit. The

colimiting object is then the object in the chain at which the chain

becomes constant. Whilst mathematically trivial, computationally
this is an important case of O -colimits as it gives a categorical
interpretation of program iteration. We shall use this to cast

iterative programs into a categorical form so that the iteration
inherent in the program is translated into the computation of a

colimit (see page 140).

To compute colimits of these, eventually constant, chains, we first
find when they become constant:

dec fixed-point : Cat(o,m) ->
(w_Chain(o,m) -> (Num -> Num))

--- fixed point(C) <_

lambda w_chain & (fo,fm)
(lambda n =>

n if fm(n) = identity(C)(fo(n))
else fixed point(C)(w chain)(n+1))

The termination condition is an equality of morphisms. We can either

assume that there is a predefined equality or include equalities for

objects and morphisms as part of the definition of a category. In

the latter case the equality may not always be computable (for

instance, in the category of functors). Notice further that we

assume that the first occurrence of an identity in a chain is the

58

point at which all succeeding morphisms in the chain are identities.

For the applications we have in mind this is indeed the case. The

colimiting object is then the object at which the chain becomes

constant.

The colimiting cone has sides that are the identity for objects
beyond the point at which the chain becomes constant and are multiple
compositions for objects before this point:

dec w_cone_sides : Cat(o,m) ->
(w Chain(o,m) -> (Num -> (Num -> m)))

--- w_cone_sides(C) <_

lambda w_chain & (fo,fm) _>

(lambda fixpoint -> (lambda n ->
identity(C)(fb(n)) if n>-fixpoint

else compose(C)
(fm(n),

w cone sides(C)(w chain)(fixpoint)(n+1))))
The w-colimit is then given by:

dec finite -w colimit : Cat(o,m) -> w Colimit(o,m)

--- finite w colimit(C) <_
lambda

let
let
let

in

(lambda just(number(n)) ->
w cone_sides(C)(w_chain)(N)(n)),

fo(NT) in

w_chain & (fo,fm) _>
d wdiagram(w chain) in
N fixed pointTC)(w chain)(0)
colim cone =_
coneTC)(d,

let univ --

(lambda pcone ->
cone_mor(C)(colim cone,

sidesTpcone)(just(number(N))),
pcone)) in

(colim cone, univ)

Categories with such w-colimits are given by:

dec finite wcocomplete_cat
Cat(o,m) -> wCocomplete_Cat(o,m)

--- finite_w_cocomplete_cat(C) <_

w cocomplete cat(C, finite -w colimit(C))

These can be translated to colimit categories by:

dec finite w colimit_ cat :

Cat(o,m) -> Colimit_Cat(o,m)
--- finite _wcolimitcat(C) <_

w colimit w cocomplete cat(C))

59

We now turn to 'computation of non-trivial w -colimits in the category

of sets. As mentioned, we cannot, in general, compute such colimits,

but there is an important special case which is computable and occurs

widely - particularly in the construction of initial algebras and

free theories (see page 125). This is the case when the morphisms in

the w-chains are monics, which means, in the category of sets, that

the morphisms are 1-1.

Suppose that

a0 -> a1 -> a2 -> ... an -> an+1 -> ...

is any 6o-chain in the category of sets. The colimiting set is the

disjoint union of all the an, a U an, quotiented by the reflexive,

symmetric, transitive closure of the relatibn,- given by:

If x e an, x "+ fn(x)-
If the fn are all monics then the equivalence classes are all of the

form

{ x, fn(x), fn+lfn(x), . . }

for some n and some x E an.

In our computation we choose representatives of these equivalence

classes, choosing the 'x' as a representative. We need to record the

n as well so we introduce a new tag:

data Tag(alpha) __ ++ origin(Tag(Label),Tag(alpha))
tagging an object with the label of the set from which it comes (the

type 'Label' is defined on page 30).

Now, in general, the colimiting set will be infinite. We assume that
we are dealing with chains of sets of ever increasing cardinality.
Let 3n : an -> a be the colimit of the above chain with all the fn
monics. The following function calculates the 3n, assuming that the
elements of the colimiting set are representatives of the equivalence

classes (chosen as above and tagged with the label of the set in the

chain from which they come).

60

dec first occur :

Chain(Set(Tag alpha),Set Mor(Tag alpha)) # Num)
-> Set Mor(Tag alpha)

--- first occur(w chain & (omap,mmap),n) <_
morn omap(OT,

(lambda x => origin(just(number(n)),x)),
bigset) if n = 0 else

mor(omap(n),
(lambda x => origin(just(number(n)),x) if x is in (omap(n) -

image omap(n-1) through mmap(n-1))
else first occur(w chain,n-1) of

bigset)
(inv(mmap(n-1))(x))),

Here 'inv' gives an inverse of a morphism (i.e.
inv(m).m = identity morphism whenever the composition is defined).
The multifix operation "image ... through ..." is the image of a set

through a set morphism. This construction relies upon the

factorisation of morphisms in the category Set.

The colimit of such an w-chain is then given by:

dec infinite w_colimit :

w Colimit(Set(Tag alpha), Set Mor(Tag alpha))

--- infinite wcolimit(wchain) <_
let d == wdiagram(wchain) in
let colim_cone =_

cone(cat of sets)
(d,- -

(lambda just(number n) _>
first occur(wchain,n)),

bigset) in
let univ --

(lambda pcone =>
cone mor(cat of sets)

(

(colim cone,univ)

mor(bigset,
(lambda origin(label,x) _>

sides(cone)(label) of x),
apex(pcone)),

pcone)) in

We can thus form an co-cocomplete category of sets where the &)-chains

are restricted to those in which the morphisms are all monics and in
which the sets increase in cardinality indefinitely:

61

dec infinite_w_cocomplete_cat_of_sets :

w Cocomplete Cat(Set(Tag alpha),Set Mor(Tag alpha))

_ --- infinite_wcocomplete_cat_of_sets <

w cocomplete cat(cat of sets, infinite -w colimit)

This may be translated into a colimit category:

dec infinite wcolimitcat_ofsets :

Colimit Cat(Set(Tag alpha),Set Mor(Tag alpha))

--- infinite wcolimit_cat_of_sets <_
w colimit cat(infinite w cocomplete cat of sets)

With these w -cocomplete categories, we can use the same lifting

techniques as for finite colimits, thus constructing complex data

types from simple ones whilst lifting through the V -colimit

constructors. For instance, we could define a category of graphs

with colimits of certain w-chains by:

dec infinite_wcolimit_cat_ofgraphs
Colimit Mor(alpha))

_ --- infinite wcolimit cat_of_graphs <

colimit_comma_cat(infinite_wcolimit_cat_ofsets,
cross_product,
infinite -w colimit cat of sets)

In this discussion of w-colimits there is something anomalous as can

be seen most clearly in the function 'diag-to-chain'. Not every

diagram can be coerced into a chain. This same problem actually

occurred in our discussion of finite colimits - only finite diagrams

can be arguments to the function 'finite-colimit' The problem is

essentially one of handling 'diagram schemes' - collections of

diagrams, for instance, coproduct diagrams, diagrams obtained from

to-chains, or all finite diagrams - within the strong type discipline

of HOPE. We have avoided the problem by such partial functions as

mentioned above.

This ends our presentation of the basic category theory program. We

now turn to applications of the routines we have programmed.

Notes

The programming described here (up to and including the

62

lifting of 'colimits to comma categories) was a joint project

between Prof. Rod Burstall, Don Sannella and myself as

explained in chapter one. Prof. Joe Goguen [Goguen and

Burstall 1978] brought our attention to the lifting of

colimits to comma categories. Creation of colimits is

standard category theory.

63

CHAPTER FOUR

IMPLEMENTING THE SEMANTICS OF A SPECIFICATION LANGUAGE

- An application of the programming of categories.

We claim to have to have powerful general routines which encode in
programs part of category theory. What use are they?

Certainly, given any construction expressed in the language of
category theory - more particularly, the category theory that we have

displayed so far - we ought to have a direct means of translating
this construction into a program. An example of this is the

categorical semantics which has been developed for a specification
language [Burstall,Goguen 1980a]. We use the basic category theory
program to build an implementation of this semantics. Given a text
of a specification (in the language in question), we can run the text
through the program to obtain a denotation for the specification -
which essentially is a "theory" (a term we define below). We will
briefly describe the program in this chapter.

What of the interplay of programming theory and the running of
category theory on a machine advertised in the introduction? In the

next chapter we will look at some ways of using the categorical
routines to handle programming tasks which (at first sight) have

nothing to do with category theory. We will see that for certain

restricted types of specifications the ability to compute colimits in

categories of algebras gives us a means of developing programs from

specifications. More work will be found on the topic of program

synthesis when we turn our attention to the properties of theories.

Here we describe a program which uses the category theory routines we

have developed to implement a semantics of a specification language.

This can be seen as an experiment in developing programs using very
general routines which can be fitted together and specialised to the

case in hand by the application of the routines. This gives a

convenient way of building programs without writing large amounts of
complicated code but is inherently inefficient since special cases of
general routines can often be performed more quickly than the

generality of the routines will allow. We will discuss the problem

64

of efficiency later (page 78).

As mentioned before, it is hoped that the general routines obtained

via the programming of category theory will encapsulate program

iteration and recursion and thus that programming with these routines

will eliminate the difficulties associated with these loop

constructs. The following program can be considered to be an

extended exercise in 'combinatorial programming' - programming

without explicit recursion or iteration. With this in mind we ask :

Where do recursions and iterations occur in the program? The answer

is:

1. In the colimit routines as designed.

2. In several environment handling operations - which are not

formulated in categorical programming terms (if indeed it
be possible).

3. In the translation of recursively defined functions into
code (for example the semantic function (page 73)).

The aim of the program is to take the text of a specification and

give as a result a denotation of this text - that is, we run the
semantics on a computer. The specification language in question is

called CLEAR and is described in [Burstall,Goguen 1980b] (summarised

in Appendix Four), whilst the semantics is fully explained in the

paper [Burstall,Goguen 1980a] which can be read in parallel with the

following program description.

Specifications in CLEAR are built from algebraic theories using
operations to modify or combine theories in various ways. In the

following program we choose a representation for algebraic theories
and then interpret the specification-building operations as

operations on theories in accordance with the semantics. There is an

inherent difficulty here in that theories usually contain an infinite
set of equations. How are we to represent these? Moreover, the

operations we need to perform on these equations assume that we have

the power of a theorem-prover at hand. We could avoid these problems

by ignoring the equations altogether. Then the denotation of a

65

specification would be the signature of a theory and the operations

of CLEAR would reduce to operations on signatures (via the forgetful

functor from theories to signatures). This would be of use in

checking the sorts and operations available in a specification. What

we actually do, as explained below, is leave the operations on

equations uninterpreted so that later we may use a theorem prover to

check whether an equation is true in a given specification.

This running of a semantics of a specification language is of some

interest in itself. A formal specification language and its

semantics is a prerequisite for any systematic attempt at program

development or program verification. The running of a semantics of

such a language on a machine means that we can automatically "check"

the intended meaning of a specification. More than this it is one

step on the way to an automation of program design and development.

The program itself is a large interpreted HOPE program (about a

thousand lines of code) and runs slowly. Approximately half of this

code is the, previously described, category program upon which this

implementation is based. The semantic operations of the

specification language are described as operations within categories

- principally colimit operations. It is here that the previous work

on simplifying the computation of colimits will come into play and

thus we will find that much of the program is already written.

A denotational semantics for a language of any complexity is beset

with many details which are incidental to the main object of giving

the semantics. This is partly because we are transforming clauses in

a language which allow side effects - whose meaning is dependent upon

the context of the clause - into functions, in which all arguments

are made explicit. We model the dependence upon context by giving

the functions "environments" as arguments. These environments must

be able to handle all the interactions of a piece of text with its

context. Thus, in general, environments are not simple objects at

all. In the case of the semantics which we are to implement,

environments are diagrams of theories. Moreover, a language of any

complexity has many syntactic classes (e.g. commands, expressions)

66

and with each class is associated a semantic function. Each of these

needs defining before we are in a position to give the semantics of

programs or, in our case, of specifications. As our main interest

lies outside that of language semantics we will not be concerned with

all these details in the following description of the program which

implements the semantics of CLEAR.

The Program

The program description follows closely the semantics to be found in

[Burstall and Goguen 1980a].

As explained above a semantics of an algebraic specification language

needs some notion of a "theory" as a denotation of specifications.

CLEAR is designed to deal with very general theories including

equational theories and predicate calculus theories as well as

theories based upon categories other than that of sets, for instance

the continuous theories of [wagner,wright,Goguen,Thatcher 1978].

However, at some points in the text of a specification we require

theories that behave like equational theories in that they have

initial algebras (and, more generally, algebras free in some sense).

Elsewhere more general theories are permitted.

A presentation of an equational theory contains equations to

describe, or constrain, the operations in the theory. In predicate

calculus theories instead of equations there are general predicate

calculus clauses. The theories which we are to use to describe a

semantics for CLEAR generalise these cases so that the constraints

become sentences in an 'institution'. An institution is a rather

complicated object (called a 'language' in [Burstall,Goguen 1980a]),

an example of which is predicate calculus with equality. Institutions

are defined as follows:

Definition

An institution I consists of an arbitrary category SIG (of

'signatures') equipped with two functors and a relation: -

1. Mod: SIG -> Setop - the set of models over a signature

2. Sen: SIG -> Set - the set of sentences over a signature

67

3. C Mod(T-) x Mod(Z) for each object Y- of SIG, such that
for each a' : I -> 2' in SIG, s E Sen(Z) and m' e Mod(,)
we have m' Sen(a') (s) iff Mod(0) (m') * s.

Institutions can be declared as a data type in HOPE,

data Institution(o,m,alpha,beta) --
institution(Colimit Cat(o,m),

FunctorTo,m,Set(alpha),Set Mor(alpha)),
Functor(o,m,Set(beta),Set Mor(beta)),
(o -> (Set(alpha)#Set(beta)->truval)))

where 'alpha' is the type of models and 'beta' that of sentences.

Later we will restrict ourselves to the familiar notion of a

signature as sorts and operations - that is, as an object of a

certain comma category (page 23). For the moment any category will
do - well, any cocomplete category for we will need colimits of
signatures.

Suppose I is a institution as above, a presentation (of a theory)
over I consists of a signature r (an object of SIG) and a subset of
the set of sentences Sen(Z). A theory is then a presentation in
which the set of sentences is "closed". In equational theories this
closure is the deductive closure. In this more general setting,
closure is a semantic closure in terms of models and arises from the

above definition of a institution.

Whatever form of closure is used it is not implementable. Even in
the case of equational theories, the closure of a set of equations

is, in general, an infinite set. We therefore define 'closure' as an

unimplemented constructor for a type which represents closed sets of
sentences.

data Closure(o,m,beta)
closure(Set(beta))

++ Closure(o,m,beta) closeU Closure(o,m,beta)
++ closetrans(m,Closure(o,m,beta))
++ invtrans(m,Closure(o,m,beta))
++ star(o,Closure(o,m,beta))

To understand this data declaration, consider the operations which we

want to perform on closures, for instance the union of two closures.
Since closures are no longer sets of sentences but are a new data
type we need to be careful. Notice that if S, T are sets of

68

sentences and S, T are their closures then

S U T S U T
Indeed S U T is generally not even closed. We thus must leave such

operations unimplemented. The operations in the data declaration are

interpreted as follows: Firstly, a closure may be just the closure

of a set of sentences, or it may (by 'closeU') be a closure of a

union of closures. It may also be either the closure of a

translation of a closure by a signature morphism or the inverse

translation (inverse image). In the paper referred to above it is

shown that the inverse translation of a closure is itself closed.

Finally, the 'star' operation is concerned with adding explicit

equality operations to a presentation and then closing the result.

There are several identities which hold between these operations. We

may use these identities to manipulate expressions for closures, for

example,

invtrans(sigmor,C1 closeU C2)
invtrans(sigmor,C1) closeU invtrans(sigmor,C2)

(Of course, this is part of an equational semantics for the closure

expressions.) We have dwelt at some length on these closure

operations as they are the key to writing a modular theorem prover

based upon CLEAR. For, whilst the operations themselves are not

implementable, we should be able to use a theorem prover to check

whether a given sentence is in a given closure. This involves

interpreting the above closure operations in the setting of a theorem

prover. This has been done by Don Sannella using Edinburgh LCF

(paper to appear).

We can now define theories. A theory is a pair consisting of a

signature, of type 'o', and a closure.

data Theory(o,m,beta) _= theory(o,Closure(o,m,beta))

Theory morphisms are simply signature morphisms which preserve the

sentences. Thus, remembering that we need to include the source and

target theories, a theory morphism is:

data Theory_Mor(o,m,beta)
_= theory_mor(Theory(o,m,beta),m,Theory(o,m,beta))

In the now-familiar fashion, we can define the category of theories

69

over a institution:

dec cat-of theories : Institution(o,m,alpha,beta) ->
Cat(Theory(o,m,beta),TheoryMor(o,m,beta))

--- cat of theories(i) <-
cat(s(i),t(i),id(i),comp(i))

Here 's' and 't' are the projections of morphisms whilst 'id' and

'comp' arise from the identity and composition in the category of

signatures in the institution 'i'.

The semantics of CLEAR which we are to implement is 'categorical' in

several senses. Firstly, we can express the operations of CLEAR as

operations in a category - principally colimit operations. We thus

need to compute colimits of theories. Can we use the techniques

developed so far for this task? Notice first that there is a functor

from theories to signatures:

dec signature :

Functor(Theory(o,m,beta),TheoryMor(o,m,beta),o,m)
--- signature <-

functor((lambda theory(sig,_) sig),
(lambda theory mor(,sigmor,) -> sigmor))

This functor lifts colimits uniquely - the signature part of the

colimit of theories is the colimit of the signatures of the theories.

We cannot go much further as the sentences of the theory require

special treatment. We can however use the means of extending simple

colimits to those of arbitrary finite diagrams. To this end we

define, for instance, the initial theory:

dec init : Institution(o,m,alpha,beta) ->
InitialObj(Theory(o,m,beta),Theory Mor(o,m,beta))

--- init(institution(colimit cat(csig,sigcolim), ,_,_)) <-

let (_,_,siginit),siguniv -- sigcolim(nil diagram) in

let initth -- theory(siginit,closure(nil set)) in
initth, (lambda pth & theory(psig,_) ->

let univmor --
siguniv(nil diagram,

diagrammor(nil_diagram,
nil map,
nil-map,

unit diagram(csig)
ofo psig),

psig) in

theory mor(initth,apex morphism(univmor),pth))

We can define the binary coproduct and the coequaliser of parallel

pairs in a similar manner and thus arbitrary finite colimits of

70

theories:

dec c_cat_of theories : Institution(o,m,alpha,beta) ->

C_Cat (Theory(0 ,m, beta) , Theory Mor(o,m,beta))
--- c cat of theories(i) <-

c^cat(cat of theories(i),init(i),coprod(i),coeq(i))

dec colimit_catof theories : Institution(o,m,alpha,beta) ->

Mor(o,m,beta))
--- colimit cat_of_theories(i) <-

colimit_cat(cat of theories(i),
finite- colimit(c cat of theories(i)))

The semantics of CLEAR is categorical in another sense. Environments

become diagrams in a category. An object with its environment is a

cone with the environment diagram as base. This cone describes how

the apex object depends upon the objects from which it is built

(those in the base). We call such objects together with their

environments 'based objects' and their morphisms 'based morphisms':

type BasedObj(o,m) -- Cone(o,m)

type BasedObj Mor(o,m) -- Cone Mor(o,m)

What about colimits of these based objects? The category of based

objects is not the comma category of cones but a subcategory of it,

with the same objects but with a restricted class of morphisms which

describe the behavior of environments. There is an explicit

construction of these colimits in [Burstall,Goguen 1980a].

Unfortunately it does not seem possible to construct colimits of

based objects by lifting techniques (the category of based objects as

defined in [Burstall,Goguen 1980a] is not expressible as a comma

category built from the category of sets). We thus implement these

colimits directly as a procedure 'bo colimit' of type:

dec bo_colimit : Colimit Cat(o,m) ->

Colimit(BasedObj(o,m),BasedObj Mor(o,m))

(we do not give the definition - it is much like our previous

encodings of colimits). The category of based objects and their

colimits is then:

dec colimit_catof based objects : Colimit_Cat(o,m) ->
Colimit CatTBasedObj(o,m),BasedObj Mor(o,m))

--- colimit cat_of_based _objects(CC & colimitcat(C,clim)) <-

colimit cat(cat of cones(C),bo colimit(CC))

The denotation of a CLEAR text is going to be a based object in the

71

category of theories - a thing which we call a based theory. Some of
the semantic operations are described in terms of colimits in the

category of based theories. For example the COMBINE operation is the

coproduct of two theories:

dec combine op : Institution(o,m,alpha,beta) ->
((BasedObj(Theory(o,m,beta),Theory_Mor(o,m,beta))
BasedObj(Theory(o,m,beta),Theory Mor(o,m,beta)))

-> BasedObj(Theory(o,m,beta),Theory Mor(o,m,beta)))

--- combine op(i) <= lambda tl,t2
let colimit cat(bthcolim) -a

colimitcat_ofbased_objects(
colimit_ cat of_theories(i)) in

let (_,_,coproduct), _= bthcolim(cpdiagram(t1,t2)) in
coproduct

('cpdiagram' takes two objects and forms a two-object, no-morphism,

diagram)

The operations of ENRICH and procedure application may be treated
similarly. The application of a procedure is, in fact, described by

a pushout in the category of based theories. The DERIVE operation,
which is a data abstraction facility, can be thought of as a

factorisation in a category. In the program we give an explicit
operation on theories for this DERIVE operation.

The operation DATA requires us to add extra constraints to a theory -
not simply sentences of an institution but also data constraints. A

data constraint is a pair consisting of a theory morphism and a

signature morphism. See the reference above to understand why this

is so. Data constraints behave like sentences in that we may form

their closure to get a theory from a presentation. This motivates

the following type declaration:

data Constraint(o,m,beta) __ - (*)

equation(beta) ++

data-constraint(Theory Mor(o,m,Constraint(o,m,beta)),
m)

So far we have dealt with fairly general theories whose signatures
lie in an arbitrary cocomplete category and whose constraints are of
the form (*) for an arbitrary institution. To give explicit
denotations for CLEAR texts, we need to specialise these general

signatures and constraints. We choose our signatures to be the

72

familiar 'sorts and operations', that is, objects of a certain comma

category (page 23). The sentences are to be either equations or data

constraints built from equations. Equations will be of the form:

data Eqn -- all Set(V Name#S Name) . Term = Term

(where 'V Name' is the class of variable names, 'S Name' that of sort
names and a 'Term' is either a variable name or an operation name

followed by a list of 'Term')

We call theories of this restricted type 'Ordinary Theory' and their
morphisms 'Ordinary Theory Mor'. Based objects in the category of
these theories will be of type 'Based Theory'. The institution of
these signatures and constraints will be called
'Ordinary Institution(alpha)' where 'alpha' is the type of models in
the institution.

Omitting some details concerning syntactic classes and the so-called
dictionaries, we are at last in a position to define the semantics of
CLEAR. Based theories are described by the CLEAR expressions:

data E -- just(T Name)
++ theory Enr endth
++ E + E
++ enrich E by Enr enden
++ derive Enr using set E from E by Sic endde
++ let th T Name - E in th E

Here T Name is the syntactic class of theory names whilst Sic is that
of signature changes (DERIVE and procedure application use signature

changes). Notice the use here of distributed-fix operations (e.g.
enrich by enden).

Environments are diagrams,

type Env --
Diagram(Ordinary Theory, Ordinary Theory Mor)

whilst procedure environments associate with a procedure-name a based

theory morphism (the denotation of the procedure) and a list of based

theories (the meta-sorts):

type ProcEnv --
T Name -> (Based_Theory_Mor # list Based-Theory).

The semantic function is defined in terms of the following function
which gives the denotation of the above expressions for (based)

73

theories:

dec E : E -> (Ordinary_Institution(alpha) ->

(Env -> (ProcEnv -> Based Theory)))

For example for a COMBINE expression of type E + E,

--- E(el + e2) <-

(lambda i -> (lambda rho -> (lambda pi
combine op(i)(E(el)(i)(rho)(pi),E(e2)(i)(rho)(pi)))))

The other operations of CLEAR can be handled in a similar fashion.

The semantics of CLEAR is then encoded as follows: The syntax of

specifications is declared as a data type,

data Spec -- const TName - E in spec Spec
++ proc T List(T >> - E in spec Spec

just(E)

where the first term is the definition of a constant theory in a

specification, the second the definition of a procedure, whilst the

third is just an expression for a (based) theory.

The semantic function for these CLEAR specifications is:

dec Spec : Spec -> (Ordinary Institution(alpha,Eqnlike) ->

(Env -> (ProcEnv -> Based Theory)))

For the first case (definition of constant theories), the function is

defined by:

--- Spec(const tname - e in spec s) <-

(lambda i ->(lambda -> (lambda pi ->

Spec(s)(i)(bind(tname,E(e)(i)(rho)(pi),rho))(pi))))

This is simply the binding of a theory name to a theory in an

environment (a diagram). The function 'bind' flattens a based object

into an environment. The case of procedure definition in a

specification is:

--- Spec(proc pn << list_tnxe >> - e in spec

(lambda i ->(lambda rho -> (lambda pi ->
let listT --

_,ee
let list to

Tlambda
let rhol

let Ti

--

m

s) <-

-> E(ee)(i)(rho)(pi)) * list_tnxe in

tname, -> tname) * list tnxe
T,rho) in bind(list tn,list

E(e)(i)(rhol)(pi) in
let F --
node_morphism(colimit_cat_of_theories(i))

(list tn,Tl,rhol) in

in

let pit --
(lambda pnn

(F,list T) if pnn - pn else pi(pnn)) in
Spec(s)(i)(rho)(pil)))T

74

To evaluate a procedure definition we need to evaluate the metasorts

(which denote based theories, hence we use the function 'E'), bind
the formal parameter names to these theories, and then evaluate the

body of the procedure. Finally we modify the procedure environment

by binding all this to the procedure name. The final case is:
--- Spec(just(e)) <_

(lambda i =>(lambda rho => (lambda pi =>
E(e)(i)(rho)(pi))))

To evaluate a specification of this form we simply use 'E' to find
the denotation.

This completes our exposition of the program. A parser for CLEAR has

been written by D. Sannella and thus we may apply the semantic

function "Spec" to the parsed text to get a meaning for the text in
the form of a (based) theory. As mentioned before the performance of
the program is poor - needing about half a hour of CPU time on a

DEC10 to evaluate a simple specification. However it does illustrate
this program development technique on a large and complex program.

For the sake of comparison and to get a usable program, D. Sannella
[1981] has written a direct implementation of a variant of this
semantics (also in the language HOPE). The semantic operations,
instead of being interpreted as operations in a category, specialised
to the category of theories in question, are implemented directly on

theories. This gives an improvement of a factor of a thousand or so

in the running time! Whilst some of this increase in efficiency can

be attributed to the inefficiency of using general routines for
specific problems it seems that most of it arises from the sheer size
of the program in question causing, for instance, a large amount of
page thrashing.

Notes

The language CLEAR and its semantics are described in

[Burstall and Goguen 1977], [Burstall and Goguen 1980a] and

[Burstall and Goguen 1980b]. The encoding of the semantics

described here was rather simple (as it was meant to be)

though it has proved difficult to "debug". The program is,

75

now running albeit rather slowly. It was a joint
project between Don Sannella and myself (shared roughly
equally).

76

CHAPTER FIVE

THE DEVELOPMENT OF PROGRAMS FROM SPECIFICATIONS - SOME EXPERIMENTS

We here start some experiments in systematic program development by

various techniques made available through the programming of category

theory. This discussion continues for the rest of this paper where

we will be investigating properties of certain types of "theories"
which we use in program specification. Many of the properties of
these theories can be expressed categorically by colimit
constructions and can be made amenable to the programming efforts
already available. This gives further insight into the process of
program synthesis. Here we investigate a few problems using a

method, known as "colimit recursion", of translating functors into
recursive programs

COLIMIT RECURSION - RECURSION ON COMPLEX DATA TYPES

Some stress has been laid on the fact that colimits provide us with a

means of building up and breaking down objects in a category. We now

show how this can be put to use in programming with a technique

called "colimit recursion" introduced in [Burstall 1980].

The divide and conquer paradigm for the recursive computation of a

procedure on, say, sets means that we split a set in parts, calculate

the procedure recursively on the parts then assemble the results in

some fashion. The splitting up of sets is easy - they can simply be

partitioned. For more complex data structures, graphs for example,

partitioning is not possible. When splitting a graph we need to have

a shared part telling us how to reassemble the pieces into the

original graph. We are saying that to decompose a graph we need, in

general, a pushout rather than a coproduct.

In general a splitting of an object in a category, C, is a diagram in

the category. Now suppose that we wish to compute some function of

these objects. Assume that the function is the object part of a

functor, F, and that the results of the computation lie in some

category, B,

F : A -> B

77

We can calculate F on an object, a, by expressing 'a' as a colimit
object of a diagram, D. There are, of course, many ways of doing
this. We then apply F recursively to the objects and the morphisms

in D to get a diagram, D ', in the category B. We then take the

colimit of this diagram in B. Now provided that F preserves colimits
(is cocontinuous), the colimit object of this colimit in B is
(isomorphic to) F(a), as required. The proviso that F is
cocontinuous is crucial but as we shall see, functions that we wish

to compute can often be expressed as (the object parts of) free

functors in which case cocontinuity is assured by a general theorem.

A picture of this process may be helpful.

F app)I Z!S recurs Idel
V

Notice that the recursive call of F requires us to compute the

morphism part of F recursively as well as the object part. The

objects are broken up into diagrams and thus the morphisms are to be

expressed as diagram morphisms. That is, our recursive splitting is
a functor

decompose : A -> Diagram(A)

such that 'colimit_apex functor.decompose' is naturally equivalent to

the identity functor, where 'colimit apex functor' is the functor
taking a diagram to the colimiting object on the diagram. It is
defined on page 35. A similar general decomposition of objects which

give rise to recursive programs has been investigated in
[Burstall,Landin 1969] and [Klaeren 1980]. In these papers the

decomposition takes place in the carrier of an algebra. The relation
between this and the decomposition functor above is formalised at the

end of this chapter (page 96).

78

What about the base cases on which we compute F directly? These are

determined by our choice of a recursive splitting, that is, by the

decomposition functor above.

Examples of the use of this general means of recursion will appear in

the next section but it should be said at the outset that it is often

not at all obvious how a familiar function that we are required to

compute can be expressed as a functor. In particular, the choice of

the category of results is not at all obvious. This may, of course,

be merely our own failure to look at the problem in the right light

or our being hindered by our programmer's intuition. An example of

this difficulty is given in [Burstall 19801 where the problem is to

calculate the shortest distance between nodes in a distance graph.

The category of results suggested for this problem is the category of

metric spaces - a choice familiar to mathematicians but possibly not

to programmers (metric spaces are not a common data type in

programming) although, of course, the structure of the problem is

captured in the concept of metric spaces.

The role of the computation of colimits and the work done in the

previous sections in finding short cuts to these computations by

lifting colimits through category constructors ought now to be

apparent. The whole work of the recursive program (apart from the

computation on the irreducible objects of the recursion) is in the

computation of colimits in the category B. The expression of objects

as colimit objects of a diagram in A is a consequence of our choice

of representation of the data types, although sometimes we are able

to write some code for a functor 'decompose' as above. Notice how we

have split the control structure and the computation in such a way

that the computation is always a calculation of colimits.

Finally, a word about the efficiency of these programs. In general

the programs obtained are not highly efficient. As mentioned before,

the building of programs from general routines, like the colimit

routines, may well lead to inefficiency when we have only special

cases to calculate for which quick methods may be available. There

is always the hope that program transformation may provide a means of

79

increasing the efficiency of the programs and the further hope that

the structure of these programs will lend itself readily to program

transformation techniques such as those in [Burstall,Darlington

1977]. A future for program transformation may be in its application

to programs of a fixed structure such as these programs obtained via

categorical insights. However, notice that in these recursive

programs we do not specify how the decomposition of objects is to be

achieved. So far, any 'decompose' functor, as above, will suffice.

This means that the programs are well adapted to parallel processing,

as we may decompose the objects so as to distribute pieces among

processors in a parallel array and compute the procedure recursively

on these pieces. Once general purpose parallel machines are

available, efficiency may well not be a prime concern whereas the

ability to incorporate parallelism into a routine may well come to

the fore. As mentioned in [Schwartz 1980] the mere possibility of

large parallel processor arrays does not create ways of exploiting

the technology. We need to understand how to incorporate parallelism

into computations. Another reason for not being too concerned about

the inefficiency is that once a fixed repertoire of general routines

is agreed upon in a certain field of programming, these routines may

be 'hardwired' and thus a great improvement in speed might be

achieved.

In formal complexity terms, the programs are (with a suitable choice

of machine model) polynomial time if the basic category (on which

others are built with category constructors) is that of sets.

Exactly what degree polynomial and what constant factor depends upon

how we choose to decompose the objects in question. Some

decompositions require less duplication of work and converge faster

than others.

EXERCISES IN PROGRAM DEVELOPMENT

We now show how specifications can give rise to programs with two

examples both chosen from graph theory. Recall that graphs are

directed multigraphs possibly with loops and cycles.

80

Connected components of a graph

Two subgraphs of a graph are said to be disconnected if their nodes

are disjoint and there are no edges in the graph from nodes in either

subgraph to nodes in the other. If a subgraph cannot be expressed as

two non-empty disconnected subgraphs it is said to be connected.

Connected components of a graph are maximal connected subgraphs.

These components can be characterised as the equivalence classes

under the reflexive, symmetric, transitive closure of the relation on

nodes,' , defined by:

a ^- b 4* There is an edge, e, in the graph

whose source is a and target b.

How are we to convert this 'mathematical' definition into an

algebraic specification? A rather simple (and high level)

specification of a graph and its connected components can be given by

labelling the nodes of a graph in such a way that, if the labels of

two nodes are the same then the nodes are in the same component and

if the labels differ, then they are in different components.

The specification, then, of the connected components of a graph is

given as a theory enrichment, taking the theory of graphs and giving

a theory of graphs with

language CLEAR (whose main

graphs can be given as:

constant Graph =

sorts node, edge
opns

labelled nodes. In the specification

features are summarised in Appendix Four),

source : edge

target edge
-> node
-> node

end

Then the specification becomes

constant Component Graph -

enrich Graph + Triv by
data opns label-: node -> element

eqns label(source(e)) = label(target(e))
end

Here the theory Triv is the trivial theory of one sort:

constant Triv =

sorts element
end

81

This is a high level specification in that it gives no hint as to how

we are to compute such a labelling.

Let us look carefully at this specification. The first thing to

notice is that the equation merely says that nodes in the same

component have the same label. The converse requirement, that nodes

in different components have different labels, not only is difficult

to state using equations but need not be included! It arises from the

freeness condition of a functor. This free interpretation of the

specification is indicated by the appearance of the keyword "data".
Data constraints are explained in [Burstall, Goguen 1980a]. Here we

see a universal condition at work. The specification is simplified

whilst the universal condition is implicit in any use of the

specification, in particular it is a correctness condition for any

program developed from the specification. It should be said that

this is a rather unorthodox use of data constraints. Data

constraints were originally introduced as a means of defining new

data in a specification whereas we are using them in the more general

sense of universal conditions on a specification. Nevertheless our

usage accords with the semantics of the language CLEAR and can be

seen as a by-product of it.

To understand what is going on, let us first consider the

specification without the data constraint:

constant Labelled Graph
enrich Graph + Triv by

opns label : node -> element

eqns label(source(e)) s label(target(e))
end

Algebras of this specification are graphs with nodes labelled such

that nodes in the same component have the same label, the converse

requirement may not hold.

The enrichment above gives rise to a theory morphism

cC : Graph -> Labelled Graph

(because the theory Graph is included in Labelled Graph).

Algebras of Graph are just graphs and algebras of Labelled Graph are

graphs with their nodes labelled. Now dropping down to the level of

82

algebras, the theory morphism above induces a "forgetful" functor

U (Labelled Graph) -> Alg(Graph)

which takes any graph with its nodes labelled and simply forgets the

labelling, thus giving a graph. Our task is to assign a component

labelling to a graph. Indeed, there is a left-adjoint of the functor
above, the free functor:

F : A (Gra h) -> j(Labelled Graph).

Now, by definition of a data constraint, any image of a graph under F

is an algebra of Component Graph. Thus it is this F that we wish to

compute.

The existence of such free functors arising from theory morphisms is
not automatic. In this case the functor exists and, as we shall
prove later (page 147), it exists for all equational specifications.

It is the presence of the word "data" which ensures that it is the

free fanctor that is intended.

How then do we compute this functor? We use colimit recursion,

remembering that free functors are always cocontinuous.

To use colimit recursion, we need a means of computing colimits in

Alg(Labelled Graph). Fortunately, the techniques that we have

developed provide us with such a means. We can lift colimits from

the category of sets because Alg(Labelled Graph) can be expressed as

a comma category as follows.

Let D : Set -> Alg(Gra h) be the functor taking a set onto the

discrete graph on the elements of the set. A discrete graph has the

same set for the nodes and for the edges and each edge has as source

and target the node with the same name.

Then Alg(Labelled Graph) 3 (!(Gr ph),D) because a graph, g, with

its nodes labelled (not necessarily distinct labels for distinct

components) is essentially a graph morphism, f : g -> sD where sD is

a discrete graph. The fact that f is a graph morphism ensures that

two nodes in the same component of g must map onto the same node in

the discrete graph, sD.

83

Now, colimits of sets lift to those in Alg(Graph) and so, by the

lifting construction for comma categories, we can compute colimits in

Alg(Labelled Graph).

Translation of this observation into code goes as follows. The

functor, D, has object part:

dec discrete_graph : Set(Tag alpha) -> Graph(Tag alpha)
--- discrete_graph(S) <_

graph(S,(lambda s -> pair(s,s)),S)
and the functor is then given by:

dec D : Functor(Set(Tag alpha),Set Mor(Tag alpha),
Graph(Tag alpha),Graph Mor(Tag alpha))

D <_

let C -- cat of sets in
functor(discrete graph,

lambda m ->
comma_mor(discrete_graph(source(C)(m)),

(m,m),
discrete graph(target(C)(m))))

As a comma object a labelled graph is:

type LG_object(alpha) __
Graph(alpha) # Graph Mor(alpha) # Set(alpha)

We can construct such a comma object from a graph, a set, and a

suitable map from nodes of the graph to elements of the set:

dec labelled graph :

Graph(Tag(alpha)) #
(Tag(al ha)->Tag(alpha)) #
Set(Tag((alpha)) ->

LG object(Tag(alpha))

labelledgraph(G,f,S) <_
let n_mor mor(nodes(G), f, S) in

let a mor == mor(edges(G),
(lambda e -> f(dom(G)(e))),
S) in

let g mor comma mor(G,

(G, g mor, S)

(e mor,n mor),
discrete-graph(s)) in

Morphisms of such comma objects are comma morphisms.

type LG_morphism(alpha) =a

Right_Comma_Mor(Graph(alpha),
Graph_Mor(alpha),
Set(alpha),
Set Mor(alpha))

84

The category, La, of labelled graphs is thus a right comma category:

dec LG : Cat(LG object(Ta alpha),
LG morphism(Tag alpha))

--- LG <- right comma cat(cat of graphs,D,cat of sets)

This information now gives us directly the colimits in the category

of connected component graphs as the tiny piece of code demonstrates:

dec cLG : Colimit_Cat(LG_object(Tag alpha),
LG morphism(Tag alpha))

- cLG <

colimit comma cat(colimit cat of graphs,
D,
colimit cat of sets)

The other part of the colimit recursion is a splitting of graphs as

colimits. How are we to do this? We are quite at liberty to choose

how we want to do this splitting and there may be cases when we want

to leave this question open (e.g. for a maximal use of resources in
parallel processing). However, we choose to restrict ourselves to

expressing graphs as pushouts in the category of graphs. This seems

a natural way to decompose graphs.

The irreducible graphs under this recursion are: the graph with no

nodes, "nil", the graph with one node and no edges, "node(n)", and

the graph with just one edge, "edge(s,e,t)", where the parameters s,t
are the source and target nodes of the edge, e.

This decomposition allows us to represent any graph as either an

irreducible graph or as a pushout of graphs. Remembering that graph

morphisms must also be recursively split, we have the interdefined

types:

data Graphl(alpha)

nil ++

node(alpha) ++

edge(alpha,alpha,alpha) ++

po_graph(Po Diagram(Graphl(alpha),Graphl Mor(alpha)))

with GraphlMor(alpha) =s
nilmor(Graphl(alpha)) ++

mor(alpha,alpha,Graphl(alpha)) ++

edgemor((alpha#alpha#alpha),
(alpha#alpha#alpha),
Graphl(alpha)) ++

po_mor(Po_Diagram Mor(Graphl(alpha),Graphl Mor(alpha)))

85

The types of p'ushout diagram and pushout diagram morphism in the

above are:

type Po Diagram(o,m) _= m # m

type Po_DiagramMor(o,m) __

Po Diagram(o,m) # (m # m # m) # Po Diagram(o,m)

That is, a pushout diagram is treated as a pair of morphisms.

Morphisms of pushout diagrams contain a source and target diagram as

well as morphisms from the three objects in the source diagram to the

objects in the target diagram.

The irreducible graph morphisms above are: "nil mor(g)", the unique

morphism from the empty graph to the graph, g, "node mor(a,b,g)", the

morphism from the graph with one node 'a' to the graph, g, where the

image of 'a' is 'b', and "edge mor((a,e,b),(c,f,d),g)", the morphism

from "edge(a,e,b)" into g with the image of 'e' as 'f' and of 'a' and

'b' as 'c' and 'd'.

Notice that so far we have done no calculation except that of the

functor, D, and the calculation implicit in the basic lifting of

colimits. Now without further calculation we can compute the

functor, F, whose object part takes a graph onto a connected

component graph by recursive application to graphs and their

morphisms:

86

dec F : Graphl(Tag(alpha)) -> LG_object(Tag(alpha))

dec F : Graphl Mor(Tag(alpha)) -> LG morphism(Tag(alpha))

! object part of F - recursive routine :

F(nil)
<= labelled_graph(nil_graph,nil_fn,nil__set)

F(node(n))
<- labelled graph(node graph(n),ident,{n))

F(edge(nl,e,n2)T
<= labelled-graph(edge_graph(nl,e,n2),

(lambda _> n1),
{n1})

F(po_graph(m1,m2))
<= pushout(cLG) ofo (F(ml),F(m2))

! morphism part of F - also recursive
F(nil_mor(gl)) <= let lg =a F(gl) in

let (g, ,s) _= lg in
comma mor(F(nil),(nil_morphismTg),nil mor(s)),lg)

F(node_mor(a,al,gl)) <= let lg == F(g1 in

let (g,gm,s) lg in
let mor(_,f,_)

right ofm gm in
comma mor(F(node(a)),

(node morphism(a,al,g),
singleton mor(a,f(al),s)),

lg)
_-- F(edge_mor((a,e,b),(al,el,bl),gl)) <_

let lg == F(gl) in

let (g,gm,s) lg in

let mor(_,f,_)
right ofm gm in

comma_mor(F(edge(a,e,b)),
(edge morphism((a,e,b),(a1,e1,b1),g),
singleton mor(a,f(al),s)),

lg)

--- F(po_mor((m1,m2),(l,c,r),(m3,m4))) <_

pushout(cLG) ofm
((F(ml),F(m2)), (F(l),F(c),F(r)), (F(m3),F(m4)))

Here "pushout(cLG)" is the functor taking a pushout diagram to the

colimit object and a morphism of pushout diagrams to the universal
morphism between the colimit objects. It uses the colimit
computation implicit in the colimit category, "cLG".

This then is the program we have developed from the specification of
the problem. To show that it is a genuine program we give an example

of it running. Consider the graph pictured below:

87

o ,usE (3)

\i USE (10)

It can be expressed as a pushout of irreducible graphs as follows:

dec g : Graphl(Tag num)
--- g <u po_graph(nil mor node just 1),

nil mor edge just(2just(10),just(3))))

We then compute F(g). The value of F(g) is a connected component

graph and contains a graph whose nodes are

{ pink(just(1)),

blue(blue(pink(just(3)))),
blue(blue(pink(just(2)))) }

and whose edges are

{ blue(blue(pink(just(10)))) }.

Notice the colouring that takes place in the evaluation of this graph

by colimits. The connected component graph, F(g), is then a set of

labels and a graph morphism from the above graph to this set of

labels (considered as a discrete graph). The set of labels turns out

to be:

{ pink(just(1)), blue(blue(pink(just(2)))) }

showing that g has just two components as it certainly does.

In keeping with our aim of encapsulating recursion in general

routines, we would need to introduce a routine, say

"colimit recursion", which given sufficient information would compute

the functor F by colimit recursion. It is not immediately apparent

how we are to do this. The problem is to find the irreducibles of

the decomposition of objects and morphisms (perhaps these ought to be

given as arguments to the routine). It seems that we have not

formulated the explanation of colimit recursion sufficiently

abstractly.

This program development was made easier by noticing that the target

data type could be expressed as a comma category. Thus the

88

computation of 'colimits was available by the lifting routines. In

general, data types cannot be expressed as comma categories. We now

look at an altogether different and more difficult graphical problem,

that of the transitive closure of a graph. For this problem no such

lifting device is available. We need the explicit construction of

colimits in a rather complicated category - that of small categories

(categories whose collections of objects and morphisms both are sets

and not "bigger" entities). We do not completely solve the problem

here. The discussion spills over into the next few chapters where

new techniques are made available to us. There a complete program is

given for the transitive closure of a graph.

Transitive closure of a graph

We now look at the problem of developing a program for the transitive

closure of a graph. That is, given a graph, we want to construct a

new graph with the same nodes but with edges corresponding to paths

in the original graph (for each path we have an edge in the

transitive closure). This is an extension of the transitive closure

of a relation so is quite a useful procedure. The exact relationship

between these two problems and an interesting discussion on further

analogues may be found in [Aho,Hopcroft,Ullman 1974]. Notice that

programs to compute this transitive closure will not halt if the

graph has cycles in it.

We first generalise the problem slightly so as to produce a

small-category from a graph (strictly this is not necessary but it is

helpful to deal with familiar data types). That is, we produce not

only the transitively closed graph but also the identities for each

node and the composition operation under which the transitive closure

is closed.

A small category differs from a category in that the objects and

morphisms both form sets (rather than any "larger" collection):

data Small_Cat(o,m) _

small cat(Set o, set of objects
Set m, set of morphisms
(m->o), source
(m->o), target
(o->m), identity
(m#m->m)) composition

89

That is, it is 'a category with only a set of objects and a set of

morphisms. Morphisms between small categories are small functors:

data SmallFunctor(o,m) --
small_functor(Small_Cat(o,m),

), (Set Mor(o) # Set Mor(m)
Small Cat(o,m))

We can thus form a category, SC, of small categories.

dec SC : Cat(Small Cat(o,m),Small Functor(o,m))

--- SC <- let comp -- compose(cat_of_sets) in

cat((lambda small functor(s,,) -> s),
(lambda _,t) -> t),

(lambda let id -- identity(cat_of_sets) in
small_functor(s_cat,

(id(objects(s cat)),
id(morphismsTs cat))),

s_cat)),
(lambda smallfunctor(s,(f,g),),

,(fl,g1'T,t) ->

small functor(s,(comp(f,fl),comp(g,gl)),t)))

Notice that there are projection functors giving the set of objects

and the set of morphisms respectively.

dec objects : Functor(Small Cat(o,m),Small_Functor(o,m),
Set(oT,Set Mor(o))

dec morphisms : Functor(Small Cat(o,m),Small_Functor(o,m),
Set(mT,Set Mor(m))

--- objects <- functor((lambda small cat(oset, , , , ,)

_> oset), - - -
-
-

(lambda small _functor(,(mo,-),-)
-> mo))

-
--- morphisms <- functor((lambda small cat(,mset,-,-,-,-)

-> mset), -
(lambda small functor(,(,mm),)

-> mm)-) - - -

The functor 'objects' lifts colimits - objects in the colimit are the

colimit of objects in the diagram. However, unlike the case of
graphs, 'morphisms' does not lift colimits - extra work is required
to compute the morphisms of the colimit small category.

A formal specification of the problem goes as follows. Graphs are to

be as before:

90

constant Graph -

sorts node, edge
opns source : edge -> node

target : edge -> node
end

The required program is specified by the theory enrichment:
constant Transitive Closure =

enrich Graph by
data opns identity : node -> edge

compose : target # source -> edge

eqns source(compose(e,f)) a source(e)
target(compose(e,f)) - target(f)

source(identity(n)) - n

target(identity(n)) - n

compose(e,compose(f,g)) -

compose(com ose(e,f),g)
compose(identity(n),e) - e

compose(f,identity(n)) - f

end

Here 'target # source' is defined for any graph as the set of pairs

of edges (e,f) such that target(e) - source(f), that is, it is the

set of all composable pairs. This is a new facility in algebraic

specification which we have not yet investigated thoroughly. The

notation is that of a pullback in category theory. Further

discussion will be found on page 191.

Before plunging into the development of a program for the transitive

closure of graphs, let us have a look at some algorithms which exist

for this problem.

Our first attempt at a recursive program may be to extract an edge

from a graph, recursively close the remainder of the graph, then

replace the edge adding all the new edges which will arise by

composition with the replaced edge. Thus if the closed graph (as the

underlying graph of a small category) is given by

91

e4

3 2

0 e.

adding an edge el from '1 ' to '2' will require us to add extra edges

for the paths e2,el,e4 and e3,el,e4, as well as those which result

from the composition with the identities. We see that any new edge

required to be added will be of the form

(An edge with target as source of el),

el,
(An edge with source as target of el).

Such a composition will include the new edge, el, itself, by choosing

the identities at its source and target.

Because we are deriving these morphisms in a small category from

paths of edges in a graph we can introduce an explicit representation

of these morphisms (later we will see that this representation comes

from a free theory construction):

data Morphism(alpha) __
id(alpha) ++ morphism(alpha,string(alpha),alpha)

Thus a morphism is either the identity on an object (a node in the

graph) or a string of edges (a path) in the graph (together with a

source and target node). We can define source, target and

composition of these morphisms:

92

dec mor source : Morphism(alpha) -> alpha
--- mor source(id(a)) <- a

--- mor source(morphism(a,_,_)) <= a

dec mor_ target : Morphism(alpha) -> alpha
--- mortarget(id(a)) <= a

--- mor target(morphism(, ,a)) <- a

dec comp : Morphism(alpha) # Morphism(alpha)
-> Morphism(alpha)

--- comp(id(n),m) <- m

--- comp(m,id(n)) <- m
--- comp(morphism(a,pl,b),morphism(c,p2,d))

<- morphism(a,pl.p2,d)

If the set of morphisms into the source of the new edge is called

'in morphisms' whilst the set of morphisms out of the target of the

new edge is called 'out morphisms', then the code for the addition of

a new edge looks like:

dec add edge :

Morphism(Tag(alpha)) #
SmallCat(Tag(alpha),Morphism(Tag(alpha)))

-> Small Cat(Tag(alpha),Morphism(Tag(alpha)))

--- add edge(m, scat & small_cat(_,_,s,t,_,_)) <_
let in_morphisms -- ! morphisms into 'a'

filter morphisms(s cat) by
(lambda x -> mor_target(x) - mor_source(m)) in

let out_morphisms -_ ! morphisms from 'b'

filter morphisms(s_cat) by
(lambda x -> mor source(x) - mortarget(m)) in

let new morphisms -- ! the extra morphisms
ml,m2 -> comp(ml,comp(m,m2)))
(in morphisms X out morphisms) in

small-cat(objects(s cat),

new_morphisms U morphisms(s_cat),
mor_source,
mor target,

id,

comp)

The recursion then is to split off an edge of the graph, close the

remainder, then add the edge using the function above.

93

dec closure': Graph(Tag(alpha)) ->
Small Cat(Tag(alpha), Morphism(Tag(alpha)))

a --- closure(G) <

discrete_smallcat(nodes(G)) ! initial case if edges(G) = nil-set else
! recursive case

let e,E1 -- singleton split(edges(G)) in
let a dom(G)(e) in-
let b range(G)(e) in
let reduced graph =_

graph(E1,graph map(G),nodes(G)) in
add edge(morphism(a,unitTe),b), closure(reduced graph))

('dom(G)' and 'range(G)' are the functions taking an edge to its
source and target, respectively, in graph G.)

The initial case is the discrete small category on a set of nodes

whose only morphisms are the identities on the nodes:

dec discrete small cat : Set(Tag(alpha)) ->
SmallCat(Tag(alpha),Morphism(Tag(alpha)))

--- discrete small cat(N) <_
small cat(N, id*N, mor source, mor target, id, comp)

It is interesting to note that we can analyse the program in
categorical terms. The addition of a new edge as encoded in
'add edge' can be considered to be a special case of the computation

of pushouts in the category of small categories. This is because the

splitting of an edge from a graph can be seen as a pushout in the

category of graphs:

i
e

o r
r

f

1' 'r
1 `o r

Fig: Extracting an edge from a graph is a pushout.

Thus the recursion in 'closure' is a special case of colimit

recursion. This gives us some assurance that recursive programs may

be amenable to this type of "categorical analysis". Analysis of

94

programs using category theoretic tools has already been noted, for
instance by Burstall and Landin (1969) and Burstall (1980).

What about iterative programs? A 'fast' algorithm for this problem is

known, due to Warshall [1962]. It does not correspond to any obvious

recursive splitting of graphs. This is all that we can say for the

moment for we have no techniques for developing such algorithms,

though later we shall see how to handle iteration in category theory

(page 135).

We now return to the program development by colimit recursion. We

express graphs as colimits exactly as in the example of the connected

components of a graph. That is, graphs are given by:

data Graphl(alpha)
nil ++

node(alpha) ++

edge(alpha,alpha,alpha) ++

po graph(Po Diagram(Graphl(alpha),Graphl Mor(alpha)))

with GraphlMor(alpha) --
nil _mor(Graphl(alpha)) ++

node mor(alpha,alpha,Graphl(alpha)) ++

edgemor((alpha#alpha#alpha),
(alpha#alpha#alpha),
Graphl(al ha)) ++

po mor(Po_Diagram MorGraphl(alpha),Graphl Mor(alpha)))

The recursive program for this problem will then look like:

95

dec F : Graphl(alpha) -> Small_Cat(alpha,Morphism(alpha))

dec F : Graphl Mor(alpha) ->

Small Functor(alpha,Morphism(alpha))

F(nil)

___ F(node(n))
___ F(edge(m,e,n))

F(po graph(m1,m2))

F(nil mor(g))
F(node mor(a,b,g))

<= nil-cat
<= node cat(n,id(n))
<= edge cat((m,id(m)),

morphism(unit(e)),
(n,id(n)))

<= SC pushout ofo (F(ml),F(m2))

<= nil_sfunctor(F(g))
<= node_s functor((a,id(a)),

(b,id(b)),

F(g))

F(edge_mor((a,e,b),(c,f,d),g))

edge s functor((a,id(a),morphism(unit(e)),b,id(b)),
(c,id(c),morphism(unit(f)),d,id(d)),

F(g))
F(po_mor((ml,m2), (l,c,r), (m3,m4)))

<= SC_pushout ofm
((F(ml),F(m2)), (F(l),F(c),F(r)), (F(m3),F(m4)))

where the images under F of the irreducible graphs and irreducible

graph morphisms are given by the obvious small categories and small

functors.

The functor 'SC pushout', which computes pushouts in the category of

small categories is not yet defined. In fact, it is not available by

the techniques so far given. We could write a program for this

functor but we prefer to wait until a categorical formulation of the

program is available (page 140). The construction of colimits in SC

may be found in [Lawvere 1963b] and in general requires a rather

complex iteration. We shall see later that such an iteration can be

expressed as the construction of a free theory on a signature. We

now close our discussion of these graphical problems for the moment.

Discussion

Notice in the above work that we have introduced two notions of the
data type "graph". One is simply as objects in a category, actually

a comma category:

type Graph(alpha) (1)

Set(alpha) # Set Mor(alpha) # Set(alpha)

The other is a constructive means of giving graphs together with

96

their morphisms.

data Graphl(alpha) --

nil ++

node(alpha) ++ - (2)

edge(alpha,alpha,alpha) ++

po_graph(Po Diagram(Graphl(alpha),Graphl Mor(alpha)))

with GraphlMor(alpha) --
nil mor(Graphl(alpha)) ++
nodemor(alpha,alpha,Graphl(alpha)) ++

edge_mor((alpha#alpha#alpha),
(alpha#alpha#alpha),
Graphl(alpha)) ++

po_mor(Po_Diagram Mor(Graphl(alpha),Graphl Mor(alpha)))

In programming terms, the second, "constructive", way of expressing

data type is the more familiar - for instance "lists" are usually

expressed in this form and it is this form that has lead to the

association of data types with initial or free algebras.

The formal relationship between these two notions of a data type is

that of a language and its semantics - a categorical semantics, of

course. We sketch how this may be expressed in algebraic semantics.

The following explains how the carrier of a data type can be

interpreted as a category and thus that structure on a data type can

be translated into structure on a category (e.g. colimit structure).

The expressions in (2) determine a free two-sorted theory i.e a free

theory on the category Set x Set, (in fact this construction can be

achieved computationally as we shall see). Thus given a pair of sets

(the nodes and edges), terms on this pair are expressions for graphs

and for graph morphisms derived from the data declaration above (2).

The composition of this theory is simply term composition.

In algebraic semantics, the semantic function is interpreted as a

theory morphism. In our case the target theory (of denotations) of

the semantic function, is also to be a theory on Set x Set. However,

we are also claiming that the category of graphs is to be the domain

of denotations. How do we reconcile these two views? Notice that a

category can be thought of as a two sorted algebra. The sorts being

the objects and morphisms of the category (we are ignoring questions

of the "size" of sets or classes - this is all right in this case

97

since we are dealing with finite graphs only). Thus a category is an

algebra of a theory on Set x Set. Thus the category of graphs can be

interpreted as a theory on Set x Set. What is composition in this

theory? Given a graph of graphs we need to "flatten" this to a

graph. This is the colimit of a diagram of graphs!

The semantic function is a theory morphism from the theory of graph

expressions (and graph-morphism 'expressions) to the theory of the

category of graphs. As a theory morphism it gives rise to an

adjunction between categories of algebras. Indeed the free functor

of this adjunction may be encoded - it is simply the functor F which

appears in the discussion of connected component graphs, replacing
"pushout(cLG)" with "pushout(colimit cat of graphs)". Notice also

that the definition of F as it stands may be read as a semantic

function interpreting graph expressions as connected component

graphs.

Somehow this looks like special pleading. Graphs occur both as the

data type in question and as an integral part of the definition of

colimits. Thus the composition in the theory is a colimit operation.

Can we do a similar thing for other data types? Can we interpret

type expressions as constructions in categories? Sets as a data type

can be so interpreted, as sets of sets of elements can be flattened
to sets of elements (by a coproduct) and we should be able to handle

lists likewise. As for the generality, I do not know.

How close is this, albeit rather limited, scheme for program

development to a genuine automatic synthesis of programs from the

text of a specification? The problem is twofold. Firstly we have

used no formal apparatus to handle specifications, only an intuitive

knowledge of what a specification means. Therefore we have not

synthesised programs from the text of specifications. In the

remaining chapters of this work we are to look at specifications from

a formal viewpoint. Notice that the implementation of the semantics

of a specification language is part of what is needed for the

automation.

Moreover we have produced the required colimits by "fiat". A perusal

98

of the text of the specifications of the problems reveals that
connected component graphs can be considered as objects of a comma

category (there is one operation and the equation is a 'preservation
of structure') and hence that the colimits are computable by the

techniques already available, whereas, in the case of the transitive
closure of graphs, we can see that some iterative method of computing

the colimits is required. Is it possible to formalise these

observations? Given a theory, what do colimits of its algebras look

like? The "monadic" theories of the next chapter give us one answer

but do not provide a direct means of computing these colimits (but

see [Adamek,Koubek 1980] for a construction of colimits of algebras).

Notes

Colimit recursion was introduced in [Burstall 1980] though no

non-trivial example had been worked through.

99

CHAPTER SIX

THEORIES

In this chapter we look at various notions of "theories". Eventually

we concentrate our attention on the so-called "monadic theories".

Like categories, theories are an abstraction of the properties of
functions. Categories deal with all "functions" of a certain kind

between objects in a given class. Theories, on the other hand, are

intended to handle a small collection, often finite, of specific
functions. We need this notion of a theory in the analysis of
programs and of specifications simply because programs, and parts of
programs (program modules and abstract data types), as well as

specifications contain a small collection of "functions" or
"operations".

The abstraction in the case of theories includes the composition of
functions and their arities. We do not include function application
as this is a special property of functions on sets. There are

several ways that this abstraction may give rise to a mathematical
formulation of theories. We look briefly at some of these.

What we may call a 'theory in a logical form' consists of a signature

- that is, a set of sorts (simply names) and operations (or
"functions" - again simply names) together with arities of the

operations in terms of the sorts. Along with the signature we have

"constraints". These constraints may be universally quantified

equations, clauses in predicate calculus or something else. We are

not interested in the constraints per se, only in the way they

restrict the behavior of the operations. Thus two sets of

constraints may well entail the same behavior of the operations. We

handle this by insisting that the set of constraints should be in

some way 'maximal' or 'closed'. An abstract formulation of these

logical theories in which signatures are objects in a category and

the constraints are sentences in a language may be found in

[Burstall,Goguen 1980a].

100

Another approach is to consider the "terms" derived from a signature

(in the form of sorts and operations with arities). If X is a set of

variables indexed by the sorts in the signature, then we may form

terms on X as follows:

1. If x is a variable in X, x is a term (of sort the index of

x).

2. If o': s1s2s3 ... sn -> s is an operation in the signature
and t1, t2, ... tn are terms of sort s1, s2 ... sn

respectively, then Q(t1,t2, ... tn) is a term of sort s.

How do we handle possible constraints? Suppose that the constraints,
as in the case of universally quantified equations, give an

equivalence relation on the terms. Then instead of dealing with the

constraints directly we can deal with the equivalence classes of
terms under the equivalence relation. This restriction on the type

of constraints allowed is quite severe. However two things might be

said: Theories with constraints of this type have some special
properties (for instance, the existence of initial algebras).
Moreover, from the examples of the last chapter, we might speculate

that universal conditions on specifications can replace constraints
that do not behave like equations (there is some theoretical
justification for this view).

The properties of these (equivalence classes of) terms can be

abstracted to yield two "categorical" formulations of theories -
either as derived from categories (Lawvere theories) or as derived
from functors (monadic theories).

The first, due to Lawvere [1963b], arises from the observation that
the composition of terms (or of equivalence classes of terms) has

formally the properties of composition in a category. Thus, the

suggestion is that a theory is to be a category whose objects are the

arities of the terms and whose morphisms are to be the the

equivalence classes of terms. To handle the arities and the

projection functions on the products of sorts (or coproducts, if we

take the dual category, as is usual), we have another category whose

objects are again the arities but whose morphisms are these

101

projection
projection
functor,

functions. Thus, if A is the category of
functions and C is any category, a Lawvere

F : A -> C,

which preserves

isomorphism. We

arities and

theory is a

finite coproducts and whose object part is an

could consider this to be simply the category C with
distinguished morphisms - those which are the image of morphisms in
A. This formulation of theories as categories has the advantage that
higher-order theories can be described using standard category

theoretic apparatus as 'cartesian closed categories'. Topoi provide

a further extension to theories with a distinguished sort of 'truth
values' and thus an internal logic [Mac Lane 19751.

A formulation in a different direction is that of monads

theories. It is with monadic theories
the remaining chapters of this paper.

that we shall be

Monadic theories
the following observation. Given a presentation

theory, the map which takes a set of variables
equivalence classes of all terms is functorial.
morphism part as substitution of variables in terms.

Thus an equational presentation gives a functor,
T : Set -> Set.

or monadic

working in
arise from

of an equational

onto the set of
We may define a

Monadic theories are defined in terms of a functor and include a

"composition" as follows:
Definition

A monadic theory (or a monad or, in the sequel, simply a theory) T on

a category C is a triple T = (T, 2 ,1u) where T is an endofunctor on C

and 2 and are natural transformations,
7

: I t> T and ? : T2 I> T

(I being the identity functor on C), such that the following diagrams

commute:

102

T?>T 2' T? T T3
/uT 2

N 0,

T2 T
P

(These are diagrams in the category of functors from C to C.)

The natural transformation "rt" is called the unit of the theory and

"'a " its composition. The second diagram then says that the

composition is "associative". 0

Morphisms of these theories are natural transformations between the

endofunctors. Formally, if T = (T,2 p) and T' _ (T',I2',/td') are

theories on category C then a morphism o(.: T -> T' is a natural
transformation o(: T => T' such that the following commute.

o'u oC TI 2 I T2

)-T T T
0<

We can form a category of these monadic theories, Th(C), by defining

the identity on the theory T to be the identity natural

transformation, i : T => T, and the composition as the vertical

composition of natural transformations.

As suggested above finitary equational theories can be expressed as

monadic theories. Later, we extend monadic theories to cover other
types of theories, in particular the data theories of
[Burstall,Goguen 1980b]. For a detailed exposition of monadic

theories consult [Manes 1976].

103

Algebras of monadic theories are defined as follows. If
T - (T,2 ,,U) is a theory on C, then a T-algebra is a pair (a,e) with
'a' an object of C and E : aT -> a (the "structure map"), such that
the following diagrams commute:

a

aTz0

aT

ET E

aT a
E

A morphism of T-algebras from (a,E) to (b,X) is a C-morphism,

f : a -> b, such that

fT
aT bT

Q 6

commutes. These algebras

then form a category Alg(T).

We have discussed several ways of expressing theories as mathematical

objects. An alternative 'axiomatic' approach to theories is
suggested in [Goguen,Burstall 1978]. In order that a semantics of
the algebraic specification language CLEAR could be formulated,

certain properties of theories were required. These properties were

then abstracted as axioms. We give a rough statement of a variant of
these axioms as follows(a precise statement of the axioms may be found

in the above paper).
There are two categories Th and Sig (of theories and signatures
respectively) such that:

1. There is an adjunction (T, U,2 E) : Sig -> Th.

104

2. Sig and Th are both finitely cocomplete.

3. Th has extremal-epi,mono factorisations.

4. With each object of Th (each theory) is associated a

category (of algebras) - this association being an indexed

category. Moreover, each theory morphism gives rise to a

free functor on algebras and a collection of algebras of a

theory give rise to another theory with certain properties
(page 157).

The adjunction of (1) enables us to generate theories from signatures

- the free theory on the signature - and express other theories as

quotients of free theories. The existence of colimits in (2) gives

us the means of fitting theories (or signatures) together to get new

theories (or signatures). The factorisation in the category of
theories is connected with data abstraction facilities. Finally (4)
allows us to restrict the interpretation of specifications to

algebras free in some sense and, thus, we can handle the so-called
data theories of [Burstall,Goguen 1980b]. The following chapters

will explain these things in detail. We will eventually show that
the axioms hold for monadic theories.

Why should we choose to investigate monadic theories? These theories

have several special properties which will be of use to us. Firstly,
by choosing the base category of the theories to be the category of
sets we get the usual set-based theories. Other choices of base

category give us other useful theories. For instance, choosing a

category of continuous partial orders gives us the continuous

theories of [Wagner,Wright,Goguen,Thatcher, 1978]. This means that

constructions on monadic theories will handle both these cases

uniformly. In particular, we will get free continuous theories by

the same technique by which we get free set-based theories.

Moreover, we will find that some of the constructions used can be

translated into programs by the techniques we have developed. This

gives us further insight into the relation of specifications to

programs.

Another reason for looking at monadic theories is their close

105

relation to data types. Data types in programs normally have an

associated property of initiality or freeness. This can be

interpreted in categorical terms as an adjunction. Indeed it was one

of the early triumphs of category theory to correctly formalise the

notion of freeness [Kan 1958]. The following theorem explains the

connection between monadic theories and adjunctions.

Theorem

Every adjunction gives rise to a monadic theory and conversely every

monadic theory gives rise to an adjunction.

(In fact, this relationship is an adjunction between the dual of the

category of monadic theories on a category and the category of
adjunctions on this category.)

Construction

Let A and B be categories and (F, G, 2 , E) : A -> B be an adjunction.
Then (FG,7 , F E G) is a monadic theory on A.

Conversely, let T = (T,2 ,1u) be a monadic theory on A. Then define
an adjunction (F,G, E) A -> Alg(T) where Alg(T) is the category

of T-algebras, by:

aF - ap : (aT)T -> aT

and if f : a -> b then fF = fT. G is the functor mapping an algebra
onto its carrier. 2 is the unit of the theory and, if : aT -> a

is a T-algebra, then

I E : (a1U : aTT -> aT) -> aT -> a)

is defined to be the algebra morphism 0 : aT -> a.

The checking of properties and the remainder of the proof is routine.
It may be found in [Schubert 1972]. 0

The two approaches to theories - the functorial approach of monads

and the categorical approach due to Lawvere - are not quite as

disparate as they may seem. There is an intermediate notion due to

Kleisli [1965] which converts a monad into a category as follows.

Definition

Let T = (T, 7 ,/2) be a monad on category C. The Kleisli category of

T, denoted C(T), is defined as follows:

106

The objects'of C(T) are the objects of C whilst the

morphisms of C(T), f : a -> b, are morphisms of C of

the form f : a -> bT.

The identity on an object a is a?Z: a -> aT. Composition uses the

composition 1LL in the monad. If f : a -> b and g : b -> c in C(T),

define fg in C(T) by the morphism in C:

f.gT.cp : a --> bT --> cT2 -_> cT

The theory laws of T establish the category laws of C(T). Q

Notice that there is a functor F : C -> C(T) which is the identity on

objects and takes a morphism f : a -> b into the composition (in C)

f.b17 : a -> bT. This functor has the following rather special

property: if C has finite coproducts, then this functor preserves

them. We thus have that, formally at least, for any T over C,

F : C -> C(T) is a Lawvere theory.

However neither the choice of C as Set or as FinSet (the category of

finite sets) will give the standard interpretation of a Lawvere

theory. We need the following observation.

Let T be a monadic theory on C, J a category with finite coproducts

and H : J -> C a functor which preserves these finite coproducts.

Then we can restrict the Kleisli construction to the category J as

follows. Construct a new category, denoted H(T), whose objects are

those of J and whose morphisms f : a -> b are C-morphisms of the form

f : aH -> bHT. Identity and composition are similar to those of the

Kleisli construction. As before there is a functor

F : J -> H(T), - (*)

which preserves finite coproducts.

Now let J be FinSet (or its skeleton) and let C be Set, H the

inclusion, and T a theory on Set. Then (*) is the Lawvere theory

associated with T. It contains only finite sets of variables yet

possibly infinite sets of terms.

Colimits in Kleisli categories are of some independent interest. As

mentioned above, the functor F : C -> C(T) for any monad T on C

preserves finite coproducts. The same holds true for the initial

107

object. Coequalisers are of more interest. Even if C has

coequalisers, in general, C(T) does not. Moreover coequalisers that
do exist in C(T) can be interpreted computationally as the

unification of terms - it is actually somewhat more general than

this. Thus the definition of unification has been reduced to that of

a colimit. Unfortunately this does not give a direct means of
computing the unification of terms. We need the iterative methods

arising from the free theory construction of chapter eight.

MONADIC THEORIES COMPUTATIONALLY

In the following pages we are to look at properties of monadic

theories. Not only do we establish mathematical results but we also

investigate these results in the light of our programming of category

theory. To this end we need to express monadic theories in

programming terms. We now do this and show also that the

relationship between adjunctions and monadic theories described above

can be encoded as a program.

First we look at adjunctions as a data type. We could give an

adjunction as a quadruple consisting of a pair of functors (the left
and right adjoints) and a pair of natural transformations (the unit
and counit). Instead, we look at another, equivalent, definition of
adjunctions.

Suppose (F,G,?,E) is an adjunction with F : A -> B. Then for any

object 'a' of A and 'b' of B, and for any morphism f : a -> bG, there

is a morphism f# : aF -> b such that the following triangle commutes:

ark

The passage from f to f# can be extended to a functor from the comma

category (A,G) to the comma category (F,B). This is part of the

108

bijection associated with an adjunction. Thus there is an inverse

functor. We can now define an adjunction in terms of these two

functors as:

data Adjunction(o,m,ol,ml) __
adjunction(Functor(o,m,ol,ml), ! free functor

Functor(ol,ml,o,m), ! forgetful functor
Functor((o#m#o1),Right Comma Mor(o,m,ol,ml),

(ofml#ol),Left_Comma_Mor(o,m,ol,ml)),
Functor((o#ml#ol),Left Comma Mor(o,m,ol,ml),

(o#m#o1),RightCo mmaMor(o,m,ol,ml))
the-

)
"sharp" functor

and its inverse

A morphism of ad junctions from (F, G,
6

, E) to (F' , G' , 7' , E') is a

pair of natural transformations (a': F => F', 7: G' '> G) which are

conjugate, that is, the following diagram commutes (see [Mac Lane

1971] for details):

F'r

As a data type a morphism of adjunctions is:
data Adj_Mor(o,m,ol,ml) --

adj_mor(Adjunction(o,m,ol,ml),
(Nattransform(o,m,ol,ml) #

Nattransform(ol,ml,o,m)),
Adjunction(o,m,ol,ml))

We can define a category of adjunctions in the now-familiar manner.

We can also recover the unit and counit of the adjunction from our
formulation as follows:

109

dec unit : Cat(o,m)#Cat(o1,m1) ->
(Adjunction(o,m,ol,ml) -> Nat transform(o,m,o,m))

dec counit : Cat(o,m)#Cat(ol,ml) ->
(Adjunction(o,m,ol,ml) -> Nat transform(ol,ml,ol,ml))

--- unit(A,B) <_

(lambda adjunction(F,G,_,invsharp)
nat_transform(I(A),

(lambda a eta_a
where (_,eta_a,)

(invsharp ofo
(a,identity(B)(F ofo a),F ofo a))),

F.G))

--- counit(A,B) <_

(lambda adjunction(F,G,sharp,_) _>

nat_transform(G.F,
(lambda b => epsilon_b

where (epsilon
(sharp ofo

(G ofo b,identity(A)(G ofo b),b))),

A monadic theory, as a data type, is an endofunctor and two natural

transformations (the unit 2 and composition P):

data Monad(o,m) --
monad(Functor(o,m,o,m),

Nat_transform(o,m,o,m),
Nat transform(o,m,o,m))

Finally the passage from an adjunction to a monadic theory described

above can be programmed:

dec monadic: Cat(o,m)#Cat(ol,ml) ->
(Adjunction(o,m,ol,ml) -> Monad(o,m))

--- monadic(A,B) <_

lambda Y & adjunction(F,G,_,) _>

monad(F.G, unit(A,B)(Y), F.counit(A,B)(Y).G)

There is a large body of results concerning the characterisation and

properties of categories of algebras of monadic theories. Much less

is known about categories of monadic theories themselves. In the

following chapters we are to establish some properties of monadic

theories, showing that the four axioms on page (103) hold for these

theories and looking at the consequences of this in terms of our

programming of category theory.

110

Constructions In category theory often include a good deal of
verification that certain diagrams commute, by rather routine
"diagram chasing". We therefore start with a chapter containing
results which are intended to make the proofs more succinct and more

readable.

Notes

Monadic theories were introduced by Godement (1958) where

they were called "standard constructions". Eilenberg and

Moore (1965) were the first to link monadic theories to

universal algebra and noticed the relationship between

adjunctions and monadic theories.

The idea of investigating monadic theories as a basis for
program specification came from Dr. Gordon Plotkin.

The axioms required of theories which are to be denotations

of CLEAR specifications are found in [Goguen and Burstall
1978).

111

CHAPTER SEVEN

COLIMIT CONSTRUCTIONS

In this chapter we give some general results from category theory.

In the first section we review some properties of colimits in functor
categories. In the next we see how the universal properties of
colimits may be translated into 'proof rules'.

COLIMITS AND FUNCTORS

Our interest lies with colimits in various categories of functors.
We shall be constructing monadic theories using colimits of functors.
Properties of these theories will then be determined by the

properties of colimits in functor categories. The following results
are all of the form: given a diagram of functors all of which have

the property, P, then the colimiting object of the diagram, itself a

functor, also has the property P. Further details and proofs will be

found in [Schubert 1972].

Theorem

If A, B are categories with B cocomplete (hence B. is cocomplete -

see page (52)) and C is the full subcategory of B. whose objects are

functors that preserve colimits that exist in A, then C is cocomplete

and the colimits in C are those in B. 0

Thus, in particular, if A is cocomplete, then the colimiting functor

of a diagram of cocontinuous functors is itself cocontinuous.

This result may be tightened somewhat:

Theorem

If A,B are categories with B cocomplete and C is the full subcategory

of B. of functors that preserve Q-colimits (that exist in B) then C

is cocomplete and closed with respect to colimits in B. Q

We may replace c -colimits by pushouts, binary coproducts etc. More

generally, we can extend the theorem to classes of "diagram schemes

with commutativity conditions". Moreover, we may restrict B to be,

say, tW-cocomplete and then the theorem says that C has the same

cocompleteness property as B. Another result of a similar form is:

112

Theorem

If D is a diagram of functors all of which preserve the colimit of a

diagram of functors D', then the colimiting functor of D preserves

the colimit of D'.

These results are all corollaries of the following theorem:

Theorem (Interchange of Colimits)

a

If P and Q are two (small) categories and C any category and

D : P x Q -> C is a diagram in C, then the colimit of D is computed

componentwise as follows: For each object p in P, consider the

functor (p,_)D : Q -> C. Let its colimit, if it exists, be

3p,q : (p,q)D -> cp for each q in Q. The map p N cp extends to a

functor G : P -> C whose morphism part arises from the universal part
of the colimit. Then D has a colimit iff G exists and has a colimit.

Moreover, if p : pG -> c is the colimit of G, then the colimit of D

is given by the composition:

3p,q'yp : (p,q)D -> c

for each pair of objects (p,q) in P x Q. Q

Note that this is constructive in the sense that we may encode it as

a program to compute double colimits. See the reference above for

further details of theorems of this form.

We see from these results that colimits in functor categories are as

well-behaved as could be wished. Results of this type are not merely

of a theoretical interest, they correspond to results in programming

and specification. A typical application of such results would be to

prove syntactic identities in algebraic specifications. Details of

this may be found in [Ehrich 1978].

COLIMITS AND PROOF RULES

In the following chapters extensive use will be made of colimit

constructions. Their universal properties will be used to prove

properties of the colimiting objects. The contents of this, rather

technical, section are designed to make these proofs easier and more

succinct by translating the universal property of a colimit into

113

proof rules. When we turn to colimit constructions we will find that

much of the proof is routine "diagram chasing" - verifying that

certain diagrams commute. It ought to be automatic. The casting of

properties of colimits into proof rules shows how this automation

might go.

The idea is to use the fact that the colimiting object of a diagram

can be thought of as "approximated" by the objects of the diagram.

This gives us a means of reducing proofs of properties of the

colimiting objects to proofs of properties of the objects in the

diagram.

The important facts are the following two lemmas and the idea that

they may be extended to more complicated cases.

Let D be a diagram in a category C which has colimits of D-shaped

diagrams. Let the objects in D be ai (i ranging over a suitable
index set). Let the colimit of D be I i : ai -> a. Then we have the

following proof rule:

Lemma (1-approximation)

To show that f : a -> b is equal to g : a -> b, it suffices to show

that, for all is

7

V

a b

9

commutes.

Proof

Immediate consequence of the universality of the colimit. 0

As a proof rule this is not very powerful. It encodes only the

uniqueness part of the universality and not the existence. For

114

instance, in the category of sets, it applies not only to the

coproduct of two sets, but also to their union. However, it provides

a useful means of presenting proofs. The full universality of the

colimit is given in the following lemma which is merely a statement

of the colimiting property of colimits. It is included because we

intend to extend it to more general cases.

Lemma (1-existence)

If hi : ai -> b form a cone on D then there is a unique h : a -> b

such that for all is

Q4

commutes. 0

The approximation lemma above (which, like the existence lemma, has a

prefix of ' 1 ' because there are more to come) grew out of our toils
in proving properties of objects defined by colimits of 4i-chains

which were generated by the successive application of an endofunctor

to an object and a morphism. In this context it turned out that the

extra structure in the category of endofunctors on some category,

that of a composition, gave us further approximation and existence

lemmas. We present these lemmas in an abstract form by introducing a

general "composition" on objects and morphisms of a category. In our

applications we will, however, only be using the case of endofunctors

under composition.

Definition

C is a strict monoidal category with composition U and identity e if:

1. d is a bifunctor p: C X C -> C

2. 0 is associative both on objects and morphisms

115

O (D X 1) - 0(1 X C7) : C X C X C -> C (where we

identify (C X C) X C and C X (C X C)).

3. e is the left and right identity for D:

(e X 1) = idC = O (1 X e).
Notice that associativity and identity ensure the following rules:

is t) ib - is a b for a,b in C

(f' 0 g')(f Ca g) - (f'f) D (g'g)
whenever f'f and g'g are defined.

The second is the interchange law. Thus for any a,b in C, a b is

an object of C, and for any morphisms f : a -> a', g : b -> b' in C

there is a morphism

fa g : aOb -> a'D b'

Following usual conventions, we will often write f U b for the

morphism f O ib and a D g for is g. 0

This definition occurs in [Mac Lane 1971. The example we have in

mind is that C is the category of endofunctors on some category, O is

the functor composition and e the identity functor.

Now, to progress further we need to make assumptions about the

relationship of G to the colimits in C, where C is cocomplete (or, at

least, has colimits of diagrams of a certain shape). Using the

notation of the previous lemmas, we specify that

1. For all a i in D, ai a preserves colimits (at least of

D-shaped diagrams)

2. O a preserves colimits (again, at least of D-shaped

diagrams)

Then we have the following lemmas.

Lemma (2-existence)

If hi,j : ai aj -> b is such that for all ai, aj, ai,, aj, in D and

for all f : ai -> ai, and g : aj -> aji in D, the following two

triangles commute,

116

Foqj q,OC1P aL,aq
q,ag

ci D Qj

(In this case we say that hi,j is a cone on D separately in i and j.)

then there is a unique h : a O a -> b such that, for all i,j (with

ai,aj in D),

3j Ij

Proof

Construct such an h as follows:

I

6

commutes.

Consider the diagram ai G D. Its colimit is

ai 0 1i : ai aj -> ai G a

(as ai U preserves colimits).

Now the hi'j form a cone on ai o D so there is a unique

hi : ai fl a -> b such that

117

cone on D CI a, that is, for all ai,

PC a

g1osk

commutes.

To show this, we use the 1-approximation lemma. Thus it suffices to

show that the following commutes for all ai, aj, ak and f : ai -> ai
in D:

4,o qK

Qe Q 3k
Qj 0.0 I< ' CLJ 4

aL0 Ck b
kz

But (1) is the interchange law, (2) is the definition of hi, (3)

commutes because
hi+J

is a cone in the first argument and (4) by the

definition of hi.

Thus the hi form a cone on D a and, as q a preserves colimits (of

D-shaped diagrams), we have: there is a unique h : a a a -> b such

that

commutes. These hi form a

aj in D and f : ai -> aj in D

C EL

FagK Fn CL

n at_

be the colimit of diagn

g a a -> b, to prove that
a 1, aj in D.

QQ GQQ

as b

c ;

119

q(ac
lot

cIak oa4cla

lim3jalk 9

commutes, then f = g. U

The previous lemmas can be stated in a weaker form if we make the

assumption that the diagram D is both commutative and path-connected.
Path-connectedness means that for any two objects ai and aj in D

there is a directed path of morphisms in D either from ai to aj or
from aj to ai. 4i-chains in particular have this property. The

weakened version of the 2-approximation lemma using the same colimit
preserving properties of o, are:

Lemma (2'-existence)

If for each i with ai in D, hi : ai R aj -> b has the following
property: for all ai and aj in D and for all d,e : ai -> aj in D,

doe
a Qa' a:ai J

unique h : a fl a -> b such that

qpq C3 CL

}1,

4,

b

commutes, then there is a

120

commutes.

The proof constructs a cone on ai D using the hi and paths in D. fl

Again an approximation lemma follows from the existence lemma:

Lemma (2'-approximation)

If for all ai in D,

Q d a

Con

commutes, then f is equal

to g. 0

This completes our preparation. We now turn to various categorical

constructions using the above results to help us with the proofs.

Notes

The properties of colimits of functors are standard category

theory.

The approximation lemmas were introduced in a restricted form

(for 40-chains generated by a "signature" - see the next

chapter) in [Burstall and Rydeheard 1979].

121

CHAPTER EIGHT

FREE THEORIES

For equational theories and various extensions of equational theories

(for example continuous theories and Lawvere theories) there is an

important result which says, roughly, that we can define signatures

for these theories in such a way that, for each signature, a free
theory on the signature exists.

The existence of free theories is of interest for several reasons.

It provides an interpretation of the syntax of a language and then

the 'unique extension lemma' associated with the free theory gives a

semantics of the language. Free and initial algebras arise directly

from free theories and they allow us to formalise the notion of a

data type. Moreover, as we shall see, free theories are of

importance in understanding the structure and development of

programs.

Our work here is to show that we can define signatures (and

presentations) in such a way that free monadic theories exist on

these signatures. This then will provide a uniform means of
constructing free theories for several cases for which ad hoc methods

have been known, for instance for continuous theories (see

[Wagner,Wright,Goguen,Thatcher 1978]). Notice also that this is
Axiom (1) of the requirements for theories to be of use in algebraic
specifications.

The construction is by means of an W-colimit in a category. This in
itself is not new. The connection between (-colimits and free
theories (and also initial algebras) has appeared in various guises.
Lehmann and Smyth [1977] and Smyth and Plotkin [1977] as well as

others have used W -colimits to construct initial algebras in
categories of continuous partial orders. Adamek and Trnkova [1978]

have investigated the case when the functor generating the chain is
not W-cocontinuous. Barr [1970] has given necessary and sufficient
conditions that a functor "generates" a free theory whilst Dubuc

[1974] has generalised the construction from categories of functors

122

to arbitrary monoidal categories. The novelty here is the definition
of signatures in the framework of monadic theories, noting that this
handles several disparate cases uniformly, and the investigation of
the computational aspects of this construction.

We now define signatures.

Definition

A signature (in a monadic form) on a category C is a pair
E - (F ,Q') where E is an endofunctor on C and Q is a natural

transformation, a : I t> E (I is the identity functor on C). Q

Thus a signature differs from a theory in that it has no composition

within it. A signature of the usual type - a collection of sorts and

operations on the sorts - can be understood as a signature in a

monadic form as the following example illustrates.

Consider the signature of the theory of natural numbers with

addition:
sorts nat
opns 0 : nat

succ : nat -> nat
add : nat,nat -> nat

This gives a signature in a monadic form on the category of sets as

follows. The endofunctor E is given by:

aZ - a + 1 + a + axa

for any set 'a'. Here 1 is the (one element) terminal set, x the

product of sets and + the coproduct of sets. The morphism part of
Z is defined exactly as the object part, that is, if f is a morphism

of sets,

f E - f + 1+ f + fxf.
The natural transformation, a : I =>E, is defined such that, for
any set 'a', aO is the morphism, arising from the coproduct, mapping

a into the leftmost component of the coproduct. Notice that the

endofunctor E is defined only up to an isomorphism. Notice further

that we have dealt with signatures containing a single sort. Many

sorted signatures and theories will be investigated later (page 190).

In the general case, we have, for each operation /o in the signature,

123

a component of the form an in the expression for a2:, where n is the

length of the arity of P , together with a component 'a' alone.

Essentially then, I maps a set of variables into terms of depth at

most one in the operations of the signature.

We can form a category of signatures by defining morphisms.

Definition

A signature morphisin from a) to a-') (both

signatures over a category C) is a natural transformation,

o(: Y 1> J:', such that

commutes. 0

We can define the category of signatures and signature morphims on a

category C, Sig(C).

What about finite colimits in the category of signatures, Sig(C)?

Unlike colimits of monadic theories (page 173), these colimits are

easy. The coproduct of two signatures (Z a) and (E',a') on a

category C has endofunctor _r' given by the pushout:

c
r

JI
/-_-- -_--_- 1

11

where I is the identity functor on C. The natural transformation a'
of the coproduct signature (i", a-") is the diagonal of the

pushout square. The initial signature on category C is (I,i) with I
the identity on C and i the identity natural transformation in C.

Coequalisers of signatures on C are created by those in C1. Thus, by

the colimit existence theorem, if C has finite colimits so does

124

In a similar manner to defining algebras of theories we can define
algebras of signatures. If Z - (La) is a signature on C, a

27-algebra is an object 'a' of C together with a morphism

6 : al -> a, such that

commutes.

There is a functor from theories to signatures which "forgets" the

composition in the theories:
U : Th(C) -> Sig(C)

given by: (T,7,/u)U - (T,I2) on objects and oCU -OC on morphisms. Our

aim is to construct a free monadic theory on a signature, , with
respect to U. That is, a theory T together with a signature morphism

oC: s -> TU such that, for any other theory T' and any signature
morphism T'U, there is a unique morphism T -> T' such

that

OC

commutes.

As mentioned before, the construction of such a free theory on a

signature, 2J , uses an W -colimit in a category. Thus we need at

least that this category has W-colimits. In fact we need more - we

need that the endofunctor of Z preserves W-colimits. Fortunately,

125

for signatures on the category of sets that can be expressed in the

polynomial form above it is known that the endofunctor is
w-cocontinuous (see [Lehmann, Smyth 1977] for details and extensions
to various categories of continuous partial orders). We now turn to

the construction.

THE CONSTRUCTION OF A FREE MONADIC THEORY ON A SIGNATURE

We here show how a signature gives rise to a monadic theory.

Let C be a category which has colimits of &'-chains (is 4)-cocomplete)

and Z - (Z,a) a signature on C with Z an endofunctor preserving

all W-colimits in C.

We now construct a theory T - (T, 2 ,U) together with the required
signature morphism from to TU, where U is the forgetful functor

from theories to signatures. We will then show that T is free on

Y- with respect to U.

To define the functor T consider the diagram (which we call G);

(where I is the identity functor on C).

Let T be the colimiting object of this chain, with colimiting cone,

3 n : Fn :> T

for n>O. By a result in the previous chapter, T is

CJ-cocontinuous. The approximation lemmas arising from this colimit

take the form:

The 1-approximation:

If, for all n>O

1.
'T

c L.

126

commutes then f - g.

Because T is W -cocontinuous we have the 2-approximation:

If, for all m,n>O

2

c

commutes, then f - g.

0

0

Likewise for the 3-approximation. The 2-existence lemma becomes in

this context:

If hm :
zm Z n _> V is a cone on Q separately in m and n, then

there is a unique h : T2 -> V such that, for all m,n>O,

commutes. 9

We now show that T is the endofunctor of a theory by defining

Definition
Tt is defined to be J0 : IC T and

2 and

/d is defined to be the unique natural transformation, such that, for
all m,n>O,

127

commutes (using the

2-existence lemma above).

Proposition

T - (T,2,tu) is a theory.
Proof

We need to show that andIu satisfy the commuting diagrams required

of a theory. First, we need that

T
T T z-

T2
T

commutes. Recall that Mn,t.l -
m+n by

the definition of
/U-

Set m-0 remembering that 1 0 - 2 then we have

In.

IV%

v V

T 2T>T1 T
commutes for all n>O. So

by the 1-approximation lemma, 2 T.M - 'T. By a similar argument,

taking n-0, we have T2.P - iT . Secondly we need to show that the

following commutes:

128

T 3

uT
Tz

T/

T2 T
p

For this we use the 3-approximation lemma. Thus it suffices to show

that the square below commutes.

c m w Llm I n. 3

t I

r

T3
Tf,

*T' OT

But we can show that either way round this square is
consider,

(3) 3L+n' aT

f* z 0,2- ,L

7
uT

L

Z`Zm T

I 1+m+n Thus

s L+m+n

where (1) commutes by definition of (1Sl1m)Sn, (2) by the definition

of p and the fact that T is a functor, (3) by the definition of

129

ll+min and (4) by the definition of/. An analogous argument holds

for the bottom left part of the square.

The Freeness of the Theory

Having shown that T is a theory we show that it is the free theory on

the signature Z - (2:,a). First define a signature morphism,

0: (Z,Cl) -> (T,2,,u)U
by 0

1
: => T . This is indeed a signature morphism since we

have

I Cr

commutes as 2 - 10 and 0 - 11 .

Proposition

The pair ((T,2,r) , 0) is free on (Z , c') with respect to the
forgetful functor U from theories to signatures.

Proof

We must show that for any other theory T' - (T' Iti) and any

signature morphism T'U , there is a unique theory morphism

9 : T -> T' such that

commutes.

To construct 8 T => T' , we first define a sequence of natural

transformations 8 n : 7n => T' , for any n>O, by induction as

follows:

60 -q' and en+1 (enyi)..'
We note that 61 - '}b.,2' T' To show that the 9n form a cone,

130

that is for all'n>O

commutes, we use induction

on n. The base case n=0 is

commutes as)U is a signature morphism. The inductive

step follows from expanding s n and 9n+1 in the diagram above. We now

define 9 : T *> T' to be the unique natural transformation from T,

the colimit of A to T' such that for all n>O

commutes.

Is 9 a theory morphism? That is, do both the following diagrams

commute?

131

e

The first is easy as Q -30 and 30.9 - 80 -'2' by definition. We

use the 2-approximation lemma for the second. It suffices to show

that the outer square below commutes.

(Z.)

S &,\ +
(1)

T z -2 ' T/
99

I
/U/

T
I:,

/I ,

To see that (1) commutes recall the interchange law for the

composition of natural transformations

(Oa')(??'') - (o'.1)(a'.'r')
Thus

(?m1n)(B9) -(Im.6)(!n0) -emgn

Now (3) commutes by the definition-of 9 and (4) by the definition of

/,1. It remains to show that (2) commutes. We set this up as a lemma.

Lemma

For all m,n>O,

132

m ti mea t2

commutes.

Proof

By induction on n. The base case, n=0, is

which commutes as T' is a theory. The inductive step is - assume the

triangle commutes for n, then show that it does for n+1. Expanding

the triangle for n+1, we get
M

ZnM n mZ ti Tt B,,TZfwT'# Z

e eT

(1) 'T''E

T' A

(2)

\m n
8,T'z

1 P,

P'T'

(5)

'U'
where (1) commutes by the definition of em+n+1

1
(2) by the inductive

133

hypothesis, (3)" by the definition of Om8n, (4) by the naturality of

P' and (5) because T' is a theory.

This completes the proof that (T, 0)

U. Thus we have constructed a functor,

F : S g(C) -> Th(C),

left adjoint to the functor U.

is free on with respect to

0

Free theories on a signature, as constructed above, gives us initial

algebras on a signature as follows. We have seen (page 105) that, if

T - (T,t ,,LL) is any theory on C and 'a' an object of C, then

a)U : (aT)T -> aT

is a T-algebra and is free with respect to the forgetful functor

which takes an algebra to its carrier. Notice that if C has an

initial object then

4: (T)T ->T
is the initial T-algebra. Now suppose that T is the free theory on a

signature, Er
. (Z, Q), with respect to U. Then T is the carrier of

the initial Z-algebra, the initial algebra itself being,

T31. u:TI->TT ->JT.
Likewise we can define free 1 -algebras with respect the the forgetful

functor giving the carrier of an algebra.

PRESENTATIONS OF THEORIES

Theories are essentially infinite objects but theories which we use

often can be expressed in a finite form by a "presentation". We

model the idea of a presentation for monadic theories as follows.

Definition

A presentation is a pair of signatures r and I together with a pair

of signature morphisms (called 'derivors'):

where F is the free theory functor and U the "forgetful" functor from

theories to signatures.

134

In equational theories, this is interpreted as follows. The

signature Z is that of the operations (i.e. the signature of the

presentation, in the usual sense). The signature T arises from the

equations - each equation gives an operation with arity that of the

terms in the equation. The two derivors then simply map the

equations to the terms on their left-hand and right-hand sides.

We give an example. We may present the theory of groups as follows:
sorts element
opns x : element,element -> element

e : -> element
inv : element -> element

eqns associativity (a x b) x c- a x (b x c)
left identity a x e = a

right identity e x a - a

right inverse a x inv(a) - e
left inverse inv(a) x a - e

Notice that we have named the equations. The signature T for this
presentation is then:

sorts element
opns associativity : element,element,element -> element

right identity: element -> element
identity : left element -> element

right-inverse : element -> element
left inverse : element -> element

Presentations define theories. Suppose that,

T

is a presentation. The theory defined by it is given by the

colimiting object of the coequaliser (in the category of theories) of
the pair of morphisms,

T F Z F

where 0 # ,4F.Fu and (F,U,t,u) is the adjunction between signatures
and theories.

135

The existence of coequalisers in a category of theories is not a

trivial result. They exist for equational theories and Lawvere

[1963b] has shown that they exist for theories in a categorical form.
For various forms of 'logical' theories the result may be found in
[Burstall,Goguen 1980a]. The result of most interest to us at the
moment is the existence of coequalisers of monadic theories. This is
to be found on page (179).

There is an adjunction between signatures and presentations - each

signature is trivially a presentation and each presentation contains
a signature (that of the sorts and operations).

The idea of a presentation as a parallel pair of morphisms and the

theory defined by a presentation as a coequaliser may be found in
[Lawvere 1963b] for the case of Lawvere theories.

COMPUTATIONAL ASPECTS OF THE FREE THEORY CONSTRUCTION

The technique, which we have developed, of translating categorical
constructions into programs can be applied to this free theory
construction. This gives us a means of computing free theories but,
more than this, we get a categorical formulation of program

iteration. We shall see this at work with an example from graph

theory - the transitive closure of a graph.

The construction of a free theory requires C)-colimits. We shall thus

be using the encoding of W -chains and w -colimits and the computation

of Q)-colimits (see page 56). We proceed as in the other
implementations of constructions in categories. First we give the

required data types then an encoding of the constructive part of the

proof.

Signatures in a monadic form are pairs of endofunctors and natural
transformations. Morphisms of signatures are natural transformations
with a certain commutativity property:

type M Signature(o,m) --
Functor(o,m,o,m) # Nat transform(o,m,o,m)

type M Signature Mor(o,m) -- Nat_transform(o,m,o,m)

136

It is rather unwieldy to give explicit expressions for signatures in

this form so we have a function to translate signatures in the

familiar form of sorts and operations into such a monadic signature.

This is the polynomial expression for a monadic signature described

above.

dec monadic signature : Signature(Tag alpha) ->
M Signature(Set(Tag alpha),Set Mor(Tag alpha))

--- monadic signature(Opns,mor(-,arity,-),Sorts) <a

let C & cat(-,-,id,) -= catof_sets in
let omap =- ! object part of functor

(lambda S -> ! S is a set of variables
let indexed_set_of_terms --

! set of terms indexed on operations
(lambda rho ->

let string(ll) -- arity(rho) in

(lambda 1 -> string(rho::l))
* lists(length(ll)-1)(S))

* Opns in
let set_of_terms --

either pinked variables or terms
of depth one

(pink*S) U total union(indexed_set_of terms) in

set of terms) in
let mmap --r ! morphism part of functor

(lambda mor(s,f,t) _>
let f1 (lambda

pink(s) -> pink(f(s))
string(rho::l) ->

string(rho::(f*l))) in
mor(omap(s),fl,omap(t))) in

let Sigma functor(omap,mmap) in

let sigma ! the natural transformation
nat transform(I(C),

(Sigma, sigma)

(lambda S ->

mor(S,

(lambda x -> pink(x)),
omap(S))),

Sigma) in

Notice the overloading of the ''x'' operation. On lists it is defined

by: f * [a, b,1-F f(a), f(b), ...], and similarly on sets.

The recursively defined function "lists" takes a natural number, n,

and a set, S, and gives the set of lists of length n of elements from

S.

Given a monadic signature, a category C and an object of C we can

form an co-chain of the form of (*) by:

137

dec mkchain : Cat(o,m) ->

(M Signature(o,m) -> (o -> w Chain(o,m)))

--- mkchain(C) <_

(lambda (Sigma,sigma) _> (lambda a
((lambda n ->

(Sigma to_power n) ofo a),
(lambda n ->

(Sigma to power n) ofm (sigma of a)))))

where "to-power" is an infix operation which raises an endofunctor to

a power by successive composition with itself.

In fact this function is the object part of a functor from C to

G>-chains on C (which themselves form a category).

dec chain_functor : Cat(o,m) -> (M_Signature(o,m) ->
Functor(o, m, wChain(o,m), w_Chain_Mor(o,m)))

--- chain_functor(C & ,_)) <_
(lambda fsig & (Sigma,sigma)

functor(mkchain(C)(f sig),
(lambda f ->-(mkchain(C)(f sig)(s(f)),

(lambda n ->-
(Sigma to-power n) ofm f),

mkchain(C)(f sig)(t(f))))))

The colimit of these W -chains, which are generated by monadic

signatures, can be described as a functor:

dec wcolimit functor : Colimit Cat(o,m) ->

(M Signature(o,m) ->
Functor(o,m,Cone(o,m),Cone Mor(o,m)))

--- wcolimit_functor(wCC & colimit_cat(C,_)) <-

(lambda f sig ->
chain functor(C)(f-sig)

w_diagram_functor
colimit functor(wCC))

The functor 'colimit functor' takes diagrams to colimiting cones on

the diagrams (page 35).

Now we are in a position to compute the free theory on a signature.
The endofunctor of the free theory is simply the colimiting object

(treated as a functor - see page 35) of the 60-chain and can be given

rather neatly by a composition of functors:

dec term functor : ColimitCat(o,m) ->

TM Signature(o,m) Functor(o,m,o,m))
--- term functor(wCC) <-

Tlambda fsig =>
w colimit functor(wCC)(f sig).apex functor)

138

The unit of the theory, as constructed in the proof of the existence
of free theories, is given as:

dec eta : Colimit Cat(o,m) ->
(M_Signature(o,m) -> Nat transform(o,m,o,m))

--- eta(wCC & colimit cat(C,)T <-

(lambda f sig ->
let f--- term functor(wCC)(fsig) in

nat_transform(I(C),
(lambda a

sides(w colimit functor(wCC)(f sig) ofo a)
(just(number 0))),

T))

Likewise for the composition in the theory:

dec mu : Colimit_Cat(o,m) ->
(M_Signature(o,m) -> Nat_transform(o,m,o,m))

--- mu(wCC & colimit_cat(C,w colim)) <-

(lambda f_sig & (S,sT ->
let T -- term_functor(wCC)(fsig) in

let amu --
(lambda a

! the colimit cone on the chain on 'a'

let c_cone -- w colimit functor(wCC)(f sig) ofo a in

let h --
(lambda m ->

let newchain
w_diagram(chain_functor(C)(f_sig)

ofo ((S to_power m) ofo a)) in

let univ -- wcolim(newchain) in

let c cone_mor =_
univ(cone(C)(newchain,

(lambda just(number n)
sides(ccone)

a)) in

apex _morphism(c cone mor)) in

let Tof oldchain =_
n T ofo ((S to power n) ofo a)),

(lambda n -> T ofm ((S to_power n) ofm (s of a)))) in
let pcone --

cone(C)(wdiagram(T_of_oldchain),
(lambda just(number n) -> h(n)),
apex(c cone)) in

let -,universal -- wcolim(wdiagram(T_ofoldchain)) in

! here we assume the w_cocontinuity of T

let c_cone morl -- universal(pcone) in
apex morphism(ccone morl)) in

nat transform(T.T, a -> T))

Then the free theory on a signature is computed by the following

function.

139

dec free theory : Colimit Cat(o,m) ->
T M Signature(o,mm -> Monad(o,m))

--- free theory(wCC) <.

Tlambda f sig >
monadT term functor(wCC)(fsig),

eta(wCC)(f_sig),
mu(wCC)(f sig)))

We are now quite adept at translating existence proofs in category

theory into code for machines. What can we use the above program

for?

Well, by choosing the category C to be the category of sets, we may

construct free theories on Set. In general, these will be rather

uninteresting since the set of terms will be infinite - so cannot be

represented. However all is not lost since the morphism part of the

endofunctor T is non-trivial - it is a substitution function. Indeed

the following example shows that we can choose the signature so that
the function models the 'mapcar' of LISP. We thus, perhaps, have the

most contorted implementation of 'mapcar' which has yet appeared.

Suppose we choose a signature with one binary operation, "rho",

dec sig : Signature(Tag(List Char))
--- sig <. ({just("rho")}, ! operations

mor({just("rho")},
(lambda ->

string [just("s"),just("s"),just("s")]),
bigset),

{just("s")}) ! sorts

Terms on this signature look like lists and so the 'mapcar' operation

can be modelled by:

dec mapcar: Set_Mor(Tag (List Char)) ->

Set Mor(Tag (List Char))

s --- mapcar(m) <

termfunctor(infinitew_colimitcat_of_sets)
(functorial signature(sig)) ofm m

We now look at a more serious application of the construction. The

formalism of monadic theories includes many things which one would

not naturally associate with the idea of a theory. We return to the

graphical problem left unsolved in chapter five and show how the

transitive closure of a graph may be described by a free theory on a

140

suitably chosen signature on graphs. In doing this we will be

needing 4)-colimits in the category of graphs. Moreover, we shall see

that a complicated iteration in a program can be subsumed in the
computation of W -colimits. I first wrote the program in the usual

iterative way, only later realising that the work could be cast into
a categorical framework and thence that the iterative details had

already been encoded for W-colimits.

The idea is this: Take a graph. Make a new graph by adding new edges

one for each composable pair in the old graph (this is not then

transitively closed - it is, however, one step towards the closure).
This operation actually extends to an endofunctor on the category of
graphs. Moreover there is an obvious inclusion of the old graph into
the new. This pair, of a functor and a natural transformation, is a

signature in a monadic form on the category of graphs. The free
theory on the signature is the transitive closure, in the following
sense. The endofunctor of the theory takes a graph to its transitive
closure. The unit of the theory is the obvious inclusion of a graph

into its transitive closure. The composition is saying that
transitive closure is a closure - it is idempotent.

This observation now gives us a means of computing the transitive

closure of a graph. We first note that there is a comma category

associated with this operation of transitive closure. The edges in a

transitively closed graph have a partially defined "composition" upon

them taking any composable pair of edges into the composition of the

pair. The "composition" is associative and so forms a partial

semigroup:

data Semigroup(alpha)

semigroup(Set(alpha), ! the carrier
((alpha # alpha) -> truval),

! the definedness predicate

((alpha # alpha) -> alpha))

! the partial composition

Morphisms of these semigroups are functions on the carrier which

respect the definedness of composition as well as the composition

itself:

data Semigroup Mor(alpha) --
semigroup mor(Semigroup(alpha),

Set Mor(alpha),
Semigroup(alpha))

141

The category of these partial semigroups is given by the now-familiar
construction.

Graphs with such a composition operation upon their edges are given

as a comma category as follows. First define a functor, called

'pair semigroup' from sets to partial semigroups which takes a set

onto its crossproduct treated as a partial semigroup. The

composition of pairs of elements is:

compose((a,b), (c,d)) - (a,d) if b=c else undefined.

Notice how this reflects the condition for the composition of edges

in a graph. We form the comma category

(cat of partial semigroups,pair semigroup) and call it the category

of composition graphs. Thus the functor, pair semigroup, is given

by:

! object part
dec pair semigroup : Set(Tag alpha) -> Semigroup(Tag alpha)
--- pair_semigroup(A) <_

semigroup(cross_product ofo A,
! carrier is cross product

(lambda pair(a,b),pair(c,dT b=c),

composition def if target = source
(lambda pair(a,_),pair(_,d) pair(a,d)))

! composition

! morphism part
dec pair_semigroup : Set_Mor(Tag alpha) ->

Semigroup Mor(Tag alpha)
pair semigroup(m) <_

let C -- cat of sets in

semigroup_mor(pair semigroup(source(C)(m)),
cross-Product ofm m,
pair semigroup(target(C)(m)))

dec pair semigroup :

alpha),Set Mor(Tag alpha),
Semigroup(Tag alpha),Semigroup Mor(Tag alpha))

--- pair semigroup <= functor(pair semigroup,pair semigroup)

The comma category of composition graphs is then:

type CompositionGraph(alpha) __
Semigroup(alpha)#Semigroup Mor(alpha)#Set(alpha)

type CompositionGraph Mor(alpha) __
Right_Comma Mor(Semigroup(alpha),

Semigroup Mor(alpha),
Set(alphaT,
Set Mor(alpha))

142

dec cat of composition graphs :

Cat(CompositionGraph(Tag alpha),
CompositionGraphMor(Tag alpha))

_ --- cat-of composition raphs <

right comma cat(cat_ofpartial_semigroups,
pair semigroup,
cat of sets)

There is a forgetful functor from composition-graphs to graphs

(giving the underlying graph of a composition graph):

dec U : CompositionGraph(Tag alpha) -> Graph(Tag alpha)

Now the idea is that, in the construction of the free theory which

gives the transitive closure of a graph, we successively extend the

domain of definition of the partially defined composition on the

edges by accumulating new edges. Thus we are in fact working in the

category of composition graphs. The step of adding new edges to such

a graph, one edge for each composable pair of edges, is given by:

dec new_paths : CompositionGraph(Tag alpha) ->

CompositionGraph(Tag alpha)

--- new_paths(g & (semigroup(E,def,comp),
semigroup mor(_,m,_),
N)) <-

let composable_pairs =- filter cross product ofo E by
(lambda pair(el,e2) ->

range(U(g))(e1)- dom(U(g))(e2)) in

let new edges -= filter composable pairs by
(lambda pair(el,e2) _> not(def(el,e2))) in

let newdef (lambda el,e2 -> true

if def(el,e2) else
pair(el,e2) is in new edges) in

let new comp (lambda el,e2 -> comp(el,e2)

if def(el,e2) else
pair(el,e2)) in

let new map (lambda e -> (m of e)

if e is in E else
(pair(dom(U(g)T(el),range(U(g))(e2))

where pair(e1,e2) -- e)) in

let El =:;: E U new edges in
let new semigp == semigroup(El, new_def, new comp) in
let new -graph

(new semigp,
semigroup mor(new semigp,

N) in
new graph

mor(E1 ,

new map,
cross_product ofo N),

pair semigroup ofo N),

143

Here the set "filter S by P" is Is in S ; P(s)}. The morphism part of

the functor is:

dec morphism_part : CompositionGraph Mor(Tag alpha) ->
CompositionGraph Mor(Tag alpha)

--- morphism part(comma mor(cgi,
(semigroup_mor(sgl,m,sg2),

m node),
cg27) <_

let new cgl & (new sgl,,) _= new paths(cgl) in
let cg2 new & (new) new paths(cg2) in
let newmor =_

semigroup_mor(new sgl,
morT edges(newcgi),

(lambda e => m of e
if e is in carrier(sgl) else

pairTm of el, m of e2)
where pair(ei,e2) _= e),

edges(new_cg2)),

new sg2) in

comma mor(new paths(cgi-7,(new mor,m node),new paths(cg2))

The functor is then:

dec new paths :

Functor(CompositionGraph(Tag alpha),
CompositionGraph_Mor(Tag alpha),

CompositionGraph(Tag alpha),
CompositionGraph_Mor(Tag alpha))

--- new paths <= functor(new paths,morphism part)

This is the endofunctor of a signature whose "unit" is:

dec inject :

Nat-transform(CompositionGraph(Tag alpha),
CompositionGraph Mor(Tag alpha),

CompositionGraph(Tag al ha),
CompositionGraph Mor(Tag alpha))

--- inject <_
nat transform(

I(cat of composition graphs),
(lambda cg & (E, N)-=>

let new cg & TE1, new paths(cg) in
comma_mor(cg,

(semigroup_mor(E,
mor(carrier(E),

ident,
carrier(E1)),

new paths)

El),
identity(catofsets)(N)),

new cg)),

The signature for this transitive closure operation is then:

144

dec new paths sig :

F_Signature(CompositionGraph(Tag alpha),
CompositionGraph Mor(Tag alpha))

--- new paths sig <_ (new paths, inject)

Notice that any graph can be considered trivially as a composition

graph with composition everywhere undefined. This is the start of

the iteration of the free theory construction. We need a category

with w -colimits. Fortunately, we are here dealing with the so-called

"finite -w colimit categories" (see page 56) in this case the category

of composition graphs so treated. Finally we can give the transitive

closure operation on a graph as follows:

dec transitive closure :

Graph(Tag alpha) -> CompositionGraph(Tag alpha)

--- transitive closure(g) <_

let SG =_
finite_wcolimit cat(cat of partial semigroups) in

let S finite_wcolimit_catTcat_ofsets) in

let CG

colimit_comma_cat(SG,

pair_semigroup,
S) in

term functor(CG)(new paths_sig) ofo

trivial composition graph(g)

Notice that if the graph is not acyclic then the 4)-chain will fail to

become a constant chain and hence the routine "fixed point" (page 57)

will not terminate.

Notice how the main iteration implicit in the transitive closure has

been "hidden" in the Lo-colimit routine and thence that the above

routine "transitive closure" is constructed by the successive

application of functionals (indeed it could be made totally

variable-free).

This completes our discussion of the transitive closure of a graph.

Notes

The connection between free theories and W -colimits appears

in various guises as mentioned above. The notion of
signature, presentation and the construction here arose in
discussion with Prof. Rod Burstall. He provided a complete

145

proof using a restricted form of the approximation lemmas.

The proof here is a 'polished' version of that in [Burstall

and Rydeheard 1979].

146

CHAPTER NINE

FREE ALGEBRAS AND DATA THEORIES

The equational theories of universal algebra have proved a powerful

stimulus in the study of program specification. However, they are,
in fact, inadequate to describe the properties even of simple

programs. The problem is that some properties arise from induction

rules rather than the usual rules of inference available in

equational specification - those of equational deduction. It is not

so much that we cannot handle these induction rules in universal

algebra. In some sense, we can - they arise from initial or free

algebras. However, we want specifications in which certain parts are

restricted to an initial or free interpretation whilst other parts

are to have arbitrary interpretation. Specifications of this form

can be formalised under the notion of a "data theory" due to Burstall

and Goguen [1980a] (see also [Reichel 1980]). For a full explanation

with examples consult [Burstall,Goguen 1980b].

These "partially interpreted" theories can be formalised using the

so-called data constraints. Each part of a specification which is

required to be interpreted initially or freely (in some sense) gives
a corresponding data constraint. In a rather general logical

setting, it is known that these data constraints behave like

equations and hence that data theories can be defined in the same way

that equational theories are defined by presentations.

Our aim here is to show we can handle data constraints within monadic

theories. We already know that monadic theories suffice to describe

equational theories. This, then, is an extension of this result and

is part of our program of showing that monadic theories are not only

sufficient for much of program specification but they handle many

cases uniformly. Essentially we are showing that Axiom 4 (page 103)

is satisfied by monadic theories.

The construction is again by colimits and is in two parts. We first

show that an important result concerning theories and their algebras

holds for monadic theories. This is interesting not only for the

147

explication of data theories but gives further insight into the

computational aspects of specifications. The other part is a novel

method of constructing theories from classes of algebras such that
the theory contains all the equations which are "true" in all the

algebras in the class. This gives us a somewhat different approach

to the data constraints of data theories.

FREE FUNCTORS ON ALGEBRAS

There is a very important result concerning certain types of theories
and their algebras. It may be stated, somewhat loosely, as:

For any theory morphism OC : S -> T, there is a "forgetful" functor
U : Alg(T) -> j(S) (notice the reversal of arrows) obtained from

O(. The result then says that U has a left adjoint, a free functor
F : Alg(S) -> Alg(T) .

For example, let S be the theory of semigroups and T that of groups,

with a. the usual 'inclusion' morphism. Then U is the functor which

takes any group and simply forgets that the identity and inverses are

present - that is, every group is a semigroup. The free functor

closes a given semigroup to a group.

The importance of the existence of this left adjoint can be seen from

its variety of manifestations. It is the crux of the functorial

semantics as introduced by Lawvere [1963b]. As special cases it

gives the existence of initial and free algebras of a theory.

Moreover, as mentioned before, it provides an understanding of the

so-called "data theories" which allow us to restrict the

interpretation of parts of specifications to initial or free models

[Burstall,Goguen 1980b]. A result of the same shape but dealing with

functor composition instead of theories and algebras was introduced

by Kan [1958]. Later we will make use of Kan's result to construct

free signatures from other signatures - a generalisation of a

construction in order-sorted specifications.

For what types of theories does the result above hold? For equational

theories and, more generally, for theories in a Lawvere form the

result is already known [Lawvere 1963b]. The work of this chapter

148

shows not only that the result holds for certain monadic theories,

but also that the free functor left adjoint to the "forgetful"

functor on algebras is constructed by a simple colimit - a

coequaliser - and is thus ought to be susceptible to the techniques

we have acquired of programming category theory constructions. The

construction itself resembles that of Linton [1969] who uses a

similar coequaliser to construct coproductsof algebras.

The construction below and further constructions which we are to give

require certain preservation properties to hold for the endofunctors

of monadic theories. In the case of the free theory construction it

was mentioned that the preservation condition (preservation of

W-colimits) could be verified for finitary equational theories on the

category of sets. Endofunctors of such theories in general preserve

only epis, monos and, in terms of colimits, only filtered colimits

(see [Mac Lane 1971] for details). Thus to-colimits are preserved but

not pushouts, coequalisers, coproducts or even initial objects. This

is why there are many attempts to make constructions of this sort

independent of the preservation properties of the endofunctors (e.g.

[Adamek, Koubek 1980]). A glance at the constructions below show

that we are unable to do this and, moreover, that we have not

established that the preservation properties hold even for the case

of finitary equational theories on the category of sets. This is an

omission. It seems that the conditions do hold for several examples

but a general proof is lacking. Notice that the conditions required

are not the preservation of colimits of all diagrams of a fixed shape

but something weaker.

We now turn to the construction, first stating what we need as a

theorem:

Theorem

Let oC : S -> T be a theory morphism between monadic theories

S = (S, ?t PS) and T = (T, 17T,/UT) , both on the same base category C

which has coequalisers. Moreover we will assume that the

endofunctors T and T2 preserve coequalisers of pairs of morphisms of

the form (*) below.

149

The forgetful functor U : A1g(T) -> AS(S) is given by,

(E : aT -> a)U = (aol.G : as -> aT -> a),

with a morphism part which is essentially the identity on morphisms.

Then there is a left adjoint to U, a free functor
F : AS(S) -> Alg(T)

Proof

Given any S-algebra, E : as -> a, we need to construct a T-algebra.

Consider the pair of morphisms between aST and aT:

ET
aST QT

qaT.
T

Let f : aT -> b be their coequaliser. We can make b into the

carrier of a T-algebra by noting that the following diagram commutes:

QaT2
3

au,T 2 Gtr aST 2 > aT Q7 ----iaT
ETA aSMT

(:22)
a`i`uT (++J

a Tz aST aT2 Q T
I c

Q/1 T 1 ET
a,*(1

(1)

aT
1:

*b

where (1) commutes by the

definition of f, (2) and (3) by the naturality of /Wand (4) by a

theory law for T.

Thus a/U T.f is a cone on diagram (1) with T applied to it. As T

preserves coequalisers of the form of (*) above, we have:

There is a unique E' : bT -> b, such that

150

qTz

qPT

Q T-
4,

6

commutes.

We need to show that this E' : bT -> b is an algebra. Before doing

so, we state an approximation lemma arising from the coequaliser.

The 1-approximation lemma looks like:

If r,s : b -> c and

S

r

W

C

commutes, then r = s.

Further approximation lemmas of this form arise from the fact that fT

and fT2 are both coequalisers because T and T2 preserves coequalisers
of the form (*) above.

Now to show that F' : bT -> b is an algebra, we need that both the

diagrams below commute.

151

?T
6T 67Z

E,T 6T

E 1 It Ei

6T 6
6 ,

For the first, by the 1-approximation lemma, it suffices to show that

T

QTR?
p

7-2
/4

(2) f7 °T (3) f
b7E,

b
LT

+6

e

commutes.

But (1) commutes by a theory law for T, (2) by the naturality of
2T and (3) by the definition of E' Hence, the square commutes as

required.

For the second algebra law, we again use an approximation lemma. It

thus suffices to show that

152

fT2 z

bT
QM T

eT

aT-
2

°N bT
aT (3)

E

b'UT

(2)

FI

commutes. But (1) is a

theory law for T, (2), (3), (4) are the definition of E' and (5) is

the naturality of/.JT. Thus the square commutes as required.

We have shown that E' : bT -> b is an algebra. We now show that the

passage from the algebra E to the algebra E' is functorial - that is,

we can define an action on morphisms.

Let g : a -> a' be an algebra morphism from

algebra > : a'S -> a'. Thus, by definition:

E

o$
9s

a'S

a Q

commutes.

E : aS -> a to an

If E' : bT -> b is the algebra of T obtained by the foregoing

construction from the algebra r. : aS -> a, and T : b'T -> b' is
the algebra obtained from ? : a'S -> a', then we can define an

algebra morphism h : b -> b' from E' to T by:

153

gocT QT
aST at b

ET I

,ST (I) 3T (2) 1

aT y
of ST a'T --- 4b

o'ocT. or

Here, (1) commutes for the the upper and lower morphisms separately,
f' is the coequaliser of the morphisms a'o(T. a',IJT and))T and h is the
unique morphism which makes (2) commute.

To show that h really is an algebra morphism, i.e that the following

square commutes,

6T 6'T

'X '

h

we use an approximation

following commutes.

fT

lemma. It thus suffices to show that the

But (1) commutes by the naturality of P T' (2) by the definition of E'

and (3) by that of >'. (4) and (5) are both the definition of

154

h. Thus h is an algebra morphism as required and we may define the

functor,

F : Alg(S) -> Alg(T)

by the action on objects and morphisms defined above.

Now we turn to the question of freeness. First, there is an algebra

morphism from e to (E)FU

atT. f : a -> b.

This is indeed an algebra morphism for the following diagram

commutes.

(L) QT

" r') bS
airs f

S "

QT2-. 4T "0 4ST-

2
QT QT -- bT

Q C< OTC
(
4)

t ba
-CT

(2)
ET\a'(T OPT

f

a ?T

(1) and (2) are the naturality of 7T' (3) and (4) that of D(, (5)

theory law for T, (6) is the definition of E'

definition of f. Thus,

(a9,) S

E

0

commutes as

a 9T f

bS , ba
bT

E
b

is a

and (7) is the

required. So a?T.f is an algebra morphism.

We can now show the freeness property of the algebra V.

We need to show that for any algebra, K : cT -> c, and for any

155

algebra morphism, g : E -> K U, there is a unique g# such

that ;

09, f

y
KU

commutes. We construct g#

from g

ET
aolT 2 Q'UT

qST -- qT aT
(2) j gT

9T g S T 172 cT

(I) (3) K

2

KT

c S T ; CI ---) CT--C

CT cc(T KT K

both commute - the first
because g is an algebra morphism and the second because (1) commutes

by the naturality of O(, (2) by that of
/-'T

and (3) by an algebra law

of K. Thus gT.K is a cone on the parallel pair of morphisms E T and

ao(T.a?T and so there is a unique morphism

t

K

g# b -> c such that

commutes.

by noting that

This g# makes the freeness triangle commute and is unique in this
respect, as can easily be verified. This completes the proof of the

156

existence of a left adjoint to U, the forgetful functor on algebras

induced by a theory morphism, a. 0

Notice that, in the above proof, there was no necessity that S should

be a theory (nor that Cr : aS -> a should be an algebra of a theory).

It would have sufficed that these were signatures and signature

algebras (or even a functor, S, and a morphism, aS -> a).

What does this construction say computationally? In one sense it
says that equational (and, more generally, monadic) enrichments are,
from a computational viewpoint, trivial since they arise from a

coequaliser in a category (usually that of sets). However, the

experience of chapter five might make us think otherwise. Looking

back at the coequaliser in question (*), we see that, whilst the

carrier of the algebra to be constructed may well be finite, both

'aST' and 'aT' are, in general, infinite. Thus the coequalising is
not open to direct computation. What may possibly be done is an

iterative computation of the colimit using the fact that the theories
have associated signatures and then using the encoding of the free
theory construction above.

INDUCTION RULES AND MONADIC THEORIES

We now present another result concerning monadic theories. This

result may be thought of as mediating between the approach to
specification (and to data types) whereby these objects are viewed as

certain algebras and the approach which we have taken whereby these

objects denote theories.

A special case of the following construction is the addition of
induction rules to equational theories (some work in this direction

has been done by [Nourani 1980]). More generally we consider a

collection of algebras of a theory and construct a new theory which

has all the equations (usually an infinite collection) which are true

in all the algebras in the collection. By choosing only the initial

algebra we get the "induce" construction of a previous version of

CLEAR [Burstall,Goguen 1977]. By choosing the collection of algebras

to be those which are free in a certain sense we get an

interpretation of the data constraints in monadic theories as will be

157

seen in the next section.

The following theorem explains what we are to do.

Theorem

Let C be a category that is co-wellpowered and cocomplete. If

T = (T, ? ,P) is a theory on C (with T preserving epis and

co-intersections of the form below) and S a class of T-algebras then

there is a theory T' = (T' , 9' , gyp') on C and a theory morphism

q: T -> T' which is an epi, such that, for all algebras E : aT -> a

in S, and for all objects x in C and morphisms f : x -> a, there is a

g : xT' -> a such that

X9,

e

commutes. Moreover, T' is
universal with this property: for any other theory T" on C and epi

q' : T -> T" with the same property, there is a unique theory

morphism, p : T" -> T' (notice the direction of the arrow), such

that

commutes.

This can be thought of as saying that the epi xq "agrees with" all
algebras in S, that is, xq "identifies" only things "identified" by

all algebras in S. The class of algebras may be a set, it may be

something "larger". This will cause no problem (greater than that
which occurs with categories).

158

Proof

We start our construction of such a T' with a definition in which we

intend to capture the idea of an epi "agreeing with" algebras.

Definition
a

If T is a theory onAcategory C and S is a class of T-algebras an epi

e : xT -> b is an S- on x iff for each algebra E : aT -> a in S

and for each morphism f : x -> a there is a g : b -> a such that

xT
e

6

aT
E

commutes.

These S-epis have two important properties. In a sense to be made

explicit, they are preserved under taking pushouts. Moreover they

are closed under the operation of co-intersection. We need both

these properties which we now state formally using the notation of
the definition above.

Proposition

If e : xT -> b is an S-epi on x and

XT
e

6

hT i v

yT---e--
P

is a pushout diagram, then

e' : yT -> p is an S-epi on y.

Informally - "if h is a morphism of C, then pushout along hT

preserves S-epis".

159

Proof

Pushout preserves epis, hence e' is an epi.

Now, if E : aT -> a is any algebra in S and f : y -> a, then there
is a g : b -> a such that the following commutes:

e

e

E

9

a

where (1) is the pushout defining e' and g exists to make (2) commute

because e is an S-epi on x.

Hence by the colimiting property of the pushout, there is a unique

k : p -> a such that

aT
E

commutes, i.e. e' is an

S-epi on y.

We now introduce the notion of the co-intersection of a family of
epis.

Definition
If a is an object of C and ei : a -> bi is a family of epis then the

morphism e : a -> b is the co-intersection of the ei iff:
1. For each i, there is a morphism, e'i : bi -> b such that

160

eie'i = e.

2. If g a -> c and gi : bi -> c, for each i, such that

eigi = g, then there is a unique morphism f : b -> c such
that of = g.

It should be recognised that co-intersection is nothing more than a

colimit.

Now consider the family ei : xT -> bi of S-epis on 'x'. Then:

1. It is a non-empty family as ixT : xT -> xT is an S-epi.

2. Though the family may not be a set, the co-intersection
still exists as C is co-wellpowered and cocomplete. This

is a general result, see [Herrlich,Strecker 1973].

Proposition

If e : xT -> b is the co-intersection of a family
ei : xT -> bi i E I of S-epis then e is an S-epi.

Proof

Generally, the co-intersection of epis is an epi, hence e is an epi.

Let the co-intersection of the family be e : xT -> b with morphisms

in the colimiting cone e'i : bi -> b such that eie'i = e. Now as ei
is an S-epi on x we have for all f : x -> a and for all e in S there
is a gi such that the following diagram commutes:

xT ba)6
fT

aT >a
E

This can be read as saying that 'a' is the apex of a cone on the

diagram whose colimit is the co-intersection. Thus there is a unique

h: b -> a such that

161

xT
e

6
r

fT i h
4.

aT a
6

commutes. Thus e is an

S-epi on x as required.

We may now proceed with the construction of our new theory
T' = (T' .

We define the object part of the functor T' as follows. If x is an

object of C and the co-intersection of S-epis on x is e : xT -> b

then the rule T' : x H b defines the object part as required.

The morphism part of T' uses the preservation by pushouts. Thus

given a C-morphism g : x -> y, we need a morphism gT' : xT' -> yT'.
Consider the diagram:

el ' -- b. --xT1
CJT (i)

yT --- e - y T

where e i is an S-epi, (1) is a pushout square, eie'i the

co-intersection of S-epis on x and, using the fact that pushouts

preserve S-epis, fif'i is the co-intersection of S-epis on y. Thus

the colimiting property of the co-intersection says there is a unique

h : xT -> xT' such that the square commutes:

162

e

x7 xT'

(3) i IZ IT

yT rr r,
yT,

This h is the required morphism to be denoted h = gT'.

Note also that (3) says that the map which takes an object, x, onto

the co-intersection of S-epis on x is a natural transformation which

we will denote by

q : T -> V.

That this T' so constructed is a functor is easily established. That

it has the same cocontinuity properties as T follows from the

'interchange of colimits' theorem (page 112). We now construct the

natural transformations 17' and r'of the new theory T =

The unit of the theory is simply the vertical composition:

2'= r.q : I T -> T', where I is the identity functor on C.

Before we define the composition in the new theory T' we give a

little lemma which is useful in establishing the naturality of maps

when we are dealing with epis.

Lemma (Inherited naturality)

If C is a category, U, V, W endofunctors on C and
'

: U -> V,

5 U -> W are natural transformations with an epi (i.e. for each

x in C, x is an epi) then if there is an 8x xV -> xW such that for

all xinC;

163

commutes, then e x is a

natural transformation in x.

The proof is merely "diagram chasing" and will be omitted.

We are now in a position to construct the composition

We start with two propositions:

Proposition

If ei : xT -> bi is an S-epi and

bj

xT---- ->1'
u"

IL1. T'2 ->T'.

is a pushout square, then

ui : xT -> pi is an S-epi on x.

Informally - "pushout of eiT along preserves S-epis".

Proposition

There is a unique natural transformation /U+: T'T -> T' such that

T
T2)T'T

commutes.

The proof of these two propositions is rather routine and will be

omitted. We note however that the existence of such a
N+

uses the

fact that T preserves co-intersections of the form above. Naturality

of is a consequence of the Inherited Naturality lemma as qT and

Mq are natural and qT is an epi as T preserves epis.
Proposition

I f ei : xT'T -> bi is an S-epi on xT' and

164

xT'T
e`

KT '- - -- - - - . p
U'

is a pushout square, then

xq.ui : xT -> xT' -> pi is an S-epi on x.

The situation is now:

xq,T QL 2 i
xT' ' xT'T _ x T

1

(2)

Xq
uZ ,i,

where (1) is the definition of/4+, (2) is the pushout square and e!,
i

Ui are the morphisms to the co-intersections (using the above

proposition).

Thus the universality of the co-intersection of the S-epis on xT'

gives a unique Mx : xT'T' -> xT' such that

xT2 XQ2 T7L

I

lip
r' x

xT >xT'
X7.

commutes.

Further by the Inherited Naturality lemma, as xqq is an epi for all

x, we have that
/U x is natural in x.

Proposition

There is a unique natural transformation I.I' T'T' -> T' such that

165

T2 q>T'2

T T'
1l

commutes.

Proof : Immediate from the previous work.

It is now an easy task to show that T' _ (T',really is a

theory i.e. satisfies the theory laws. ''

Furthermore we have that q : T => T' is a theory morphism i.e.

both commute. Hence we may

write q : T -> T'.

This completes the construction of the theory. We now establish
its universal property. Suppose T" is another theory on C and there
is an epi q' : T -> T" which is an S-epi. Then because, for each x

in C, xq is a co-intersection, there is a unique /Ox : xT" -> xT'
such that the following commutes.

Xc,i
X-F

-> %T
i

166

By the inherited naturality lemma /Ox is natural in x, so we may write

,0 : T" -> T. It remains to show that.0 is a theory morphism. This

follows from the fact that T preserves epis and that q and q' are

epis and theory morphisms. This morphism P is evidently unique with

the property and thus we have established the universal condition on

T'. 0

Properties of The Construction

A denotational semantics of a language can be used to check syntactic

identities which are believed to hold. That is, we can prove that an

equational specification of the semantics is subsumed within the

denotational semantics given. These category theory constructions

are intended to provide part of a 'categorical' semantics for CLEAR.

We would wish that properties of the constructions reflected

syntactic identities that are assumed to hold. We look at an example

of this.

Choose S to contain only the initial algebra of a theory T (assuming

that C has an initial object). Then denote the theory constructed as

above from this S by Induce(T) (this is in keeping with the

terminology of [Burstall,Goguen 1977]). The theory Induce(T) can be

thought of as T together with all the equations which are true in the

initial algebra of T. From this intuitive description of Induce(T)

we might expect that 'Induce Induce = Induce' should hold. That is,

'Induce' is idempotent. A priori, the sense in which the two

expressions are equal has not been defined. This 'equality' turns

out to be a categorical isomorphism.

Using the notation of the previous parts we have:

Proposition
If T' = Induce(T) (i.e. S contains only the initial T-algebra), then

q : T > T' is a section (i.e. has a right inverse).
Proof

0 is initial in C and the unique morphism 0 -> O T is T,

hence we have: there is a k :0 T' ->O T such that:

167

OT '

0qTI k

O?z
ON

0T

commutes, where (1)

commutes by theory law for T and the whole square commutes as O q is
an S-epi on 0. Hence Oq. k = iOT,

Proposition

as required.

E _ OT'q.ON :0T'T -> OT'T' ->0T'

is a T-algebra.

Now let Induce

q'

Then,

T' -> T" be

(Proof omitted)

Induce(T) = Induce(T') = T" _ and let
the theory morphism taking T' into Induce(T').

given f : x -> OT', we have the diagram:

xT : xT x T

fT (t) cT/ (2.)

4.

OT,T >OT,z T

OT'

where (1) commutes by the naturality of q and there is an

h : xT" -> OT' such that (2) commutes as q' is a {4'}-epi.

Hence, q and q' are both {E}-epis where E _ OT'q. OU'. We can now

show that x(q.q') is an 0r}-epi for all x. For, given an f : x -> O T

we have,

168

4 0g)T

fT c2> hkz.
XT

X%

xT' $
> xT"

(,) OT2 0T (4) 6

/09T
(3) k \`

45V T
0 T/

T

where k is the (unique) right inverse of O q : OT ->QST' and h is the

unique morphism which makes the outside square commute - which exists

because x(q.q') is an {E}-epi. (3) commutes as q is a theory

morphism. (2) now commutes as all other polygons commute.

Hence we have x(q.q') is an {op'}-epi. But xq : xT -> xT' is the

co-intersection of all such epis thus there is an r : xT" -> xT' such

that:

xT > xT 1 1). xT

Thus xq'. r = ixTt as xq is an epi. So xq' is a section, it is a

epi, hence it is an isomorphism, by a general result (consult
[Herrlich,Strecker 1973]). 0

An obvious question which springs to mind - is "Induce" a functor

between suitable categories? Consider the example:

169

constant One =

sorts thing

opns tt : thing

0(_

Induce One =

Induce sorts thing
-> opns tt : thing

eqns x = tt

thing -> thing' ?? Induce(0C)

tt -> tt'

I

constant Two =

sorts thing'

opns tt' : thing'

ff' : thing'

Induce

- ->

Induce Two

= Two

No morphism, Induce(oC), exists which makes the diagram commute.

The error seems to be the of is not 'onto'. However, 'epiness' does

not seem to be sufficient to construct the morphism Induce(CC). We

show that the stronger assumption that OC is a retraction (i.e. has a

left inverse) is sufficient.

We proceed as in previous cases to show that given an oC : S -> T

there is a unique oC' : Induce S -> Induce T such that

C< I
T Inau&QT

IT
commutes, provided that

o(is a retraction (i.e. x is a retraction for all objects x).

[Here the qS and the qT are co-intersections of {ojUS}-epis and

101UTI-epis respectively]

170

Proposition
If the following is a pushout square

eL

xT_

with D(a retraction and ei a

#T } -epi .
Proof

We use the fact that given g

that

proceeds mechanically.

commutes. The proof then

The proof of the existence of the o(' (as a theory morphism) is now

concluded by the same technique as in the previous existence proofs.

0

We now return to the discussion of data theories.

DATA THEORIES ARE MONADIC

It was shown in [Burstall,Goguen 1980a] that the data constraints of
data theories behave somewhat like equations and therefore that a

general formulation of theories which encompassed equational theories
also included data theories. Here we give a similar result for

monadic theories. The previous two propositions enable us to

construct monadic theories from data constraints.

{0/"S } -epi then gi : xT -> pi is a

X -> O T there is an h: x -> O S such

Suppose that T = (T, 7 ,p) is a monadic theory on a category C. Let

171

(F,G) be a data constraint with F : S -> T for some theory S and

G : T -> U for some theory U (G may arise from a signature morphism

if T and U have associated signatures). Thus we have the picture:
S --> T --> U.

F - 6 -
Assuming that the theories S, T and U satisfy the requisite
conditions (those concerned with preservation of colimits), we can

construct another theory which is to be U "data constrained" by (F,G)

as follows:

By the first proposition above, if F+ : Alg(T) -> Alg(S) is the

forgetful functor obtained from the theory morphism F, then there is
a left adjoint to F+, F* : j(S) Alg(T). If

G+ : Alg(U) -> j(T) is the forgetful functor obtained from G,

consider the class of U-algebras, Q, defined such that
G+ Q) = F*(Obj(Alg(S)))

That is, when forgotten to T-algebras they are the image of F*,

("Obj" gives the objects of a category).

Now use the construction of the second proposition with U as the

theory and Q as the class of U-algebras. We obtain a new theory U'

and a theory morphism q : U -> U'. This is the required monadic

theory obtained by enriching a monadic theory with a data constraint.

As an example consider the following specification:
constant Nat =

data sorts nat
opns 0 : nat

succ : nat -> nat
end

constant NatPlus =
enrich Nat by

opns + : nat,nat -> nat
eqns 0 + n = n

succ(m) + n = succ(m + n)
end

Now if Nil is the empty theory, the data constraint corresponding to

the "data" in the specification consists of the following two

morphisms:

Nil A> Nat -> NatPlus

where is the unique morphism from the empty theory to Nat (this is

172

a morphism of many-sorted theories - not a straightforward monad

morphism, see page (14) for an explanation of this). The morphism F

is the inclusion of sorts and operations.

Now assuming that the requisite conditions hold for the theories Nil,
Nat and NatPlus, we can construct a new theory - NatPlus data

constrained by <CF> - as follows. The class of algebras determined

by the morphism f is simply the class containing only the initial
algebra of Nat. In the above notation, the initial algebra is the

only element of F*(Obj((Nil))). Thus the NatPlus algebras that we

are considering must all have the "Nat-part" as this initial algebra.
Such algebras must all satisfy extra equations, for example:

all m,n: nat m + n = n + m

which arises by induction rather than by equational deduction. Thus

the theory denoted by the specification has this extra equation. The

monadic theory constructed as above can thus be thought of as NatPlus

with these extra equations.

Notes

Kaphenst and Reichel (1971) with their 'canons' introduced

the notion which we call a data constraint. Data constraints
are described in [Burstall and Goguen 1980a]. The idea

behind the second construction in this chapter arose from a

discussion with Dr. Gordon Plotkin.

173

CHAPTER TEN

COLIMITS AND FACTORISATIONS IN CATEGORIES OF THEORIES

We have seen that colimits give a categorical interpretation of the

building of new objects from old and that expressing objects as

colimits of diagrams gives an associated decomposition. Putting
theories together to build specifications is an example of this and

the use of colimits in this setting has (as described above) been

noted by [Burstall,Goguen 1980a] as well as by [Ehrich 1978].

Factorisations are another way of obtaining new theories from old and

are associated with data abstraction.

COLIMITS OF THEORIES

Theories in a Lawvere form have finite colimits [Lawvere 1963b] and

so do those in the logical form of [Burstall,Goguen 1980a]. We

therefore must ask - does the category of monadic theories have

finite colimits? The answer is yes, at least for suitable theories
on a suitable base category. We establish this by showing that
binary coproducts and binary coequalisers of theories exist and

finally that an initial theory exists. This is sufficient to prove

the result by the colimit existence theorem (page 36).

Theorem

The category of monadic theories (with cocontinuous endofunctors) on

an (arbitrarily) cocomplete base category C has binary coproducts.

(The cocontinuity can be weakened to require only that the

endofunctors preserve colimits of the diagram D below.)

Proof

Suppose T1 =
(T1 , 9 1 ,1t.1 1) and T2 = (T2, 7 2,,U 2) are two theories

(with T1, T2 preserving the colimits of diagrams of the form of D

below) on a cocomplete category C.

Our first attempt may be to suppose that, like the coproduct of
monadic signatures (page 123), the coproduct of T1 and T2 arises by a

pushout. This is not the case. We cannot define a composition
operation, which preserves the compositions in T1 and T2, on the

endofunctor arising from the pushout. A more elaborate construction

174

is required.

In the Lawvere understanding of theories, the coproduct of two

theories is given by a pushout diagram in the category of categories.
This involves the transitive closure of part of the underlying graph

of a category - i.e. something like a freeness construction. In the

following, this is reflected by a colimit of an infinite diagram,
just as free theories were given by colimits of 47-chains.

The construction goes as follows. First consider words on the

alphabet { T1, T2 }. Each word denotes, by functor composition, a

functor - the empty word being the identity functor on C. Let W, W',

W" be variables ranging over words (and over the functors that the

words denote) on this alphabet and let !Wi be the length of word W.

Consider the diagram in CC, which we call D, whose nodes are labelled

by these words, each node having as object the functor denoted by its

label. The morphisms of D are the following:

W iW' : WW' => WTiW' and

W,UiW' : WTi2W' -> WTiW'

for i - 1,2 and all words W,W'.

Let 1w: W -> U be the colimit of D. Notice that U preserves the
colimit of D (page 112). In this case the approximation and

existence lemmas that we need look like:

The 1-approximation lemma:

If, for all W in D:

W

1W

3W
-> U

c

y w

u
9

V

175

commutes, then f - g.

The 2-existence lemma:

If, for all W and W', hW,W, : WW' -> V is separately a cone in W and

W', then there is a unique h : U2 -> V such that

W WI 3W lw: U 2

commutes.

Now we construct a theory with U as endofunctor, U - (U,r2

We define 2 by 2 I I '> U where I is the identity functor on

category C.

Then define III, from the 2-existence lemma, as the unique morphism

such that

WWI
Vj W U2

t

commutes

automatically is a cone separately in W and W').
qWW'

To verify that U really is a theory, notice that by setting W' - I in

the triangle above, we have

176

'W U2 W; u >U2

commutes. Hence by the

1-approximation lemma

commutes. This is one

theory law. Setting W a I instead, gives another theory law.

For the commutation of the square:

NU

expand, using the 3-approximation. Thus we need to prove that, for

all W, W', W" in D:

WW/w11 SW\ArtL

1Q2

'uU

W 1W, wAV

I /A

U 3 u if em u

commutes. But it is

177

readily verified that either way round the square is I WW,WVV. Thus U

is a theory.

All that remains to do is to show that it is the coproduct of T1 and

T2.

Define theory morphisms ti : Ti -> U by

ti = ! Ti for i = 1,2.

These are theory morphisms because, for i = 1,2

/L

commutes as 3
W is

a cone on D, and

3Tt]Tj U2

T2
(1)

commutes because (1) is the definition of

and (2) commutes because 3 W is a cone on D.

Now suppose that V = (V, 2'' p') is another theory, with theory

morphisms, for i = 1,2

Vi
. Ti -> V.

Construct a cone on D by.:

V, - Q, : I -> V

VW = vW.,u'W : W -> V for all

W I

178

where vW is the horizontal composition of v1 's and v2's obtained by

substituting v1 for T1 and v2 for T2 in the word W and P'W is defined

by,

/u'V iv

M'V2
a

P'Vn fUVn-2,UIVn-1

Then by the 1-existence lemma, there is a unique u : U -> V such

that, for all W,

commutes.

This u is a theory morphism as:

11
U

commutes from the definition of u and

z

Lit
u 2.

U v
LI

commutes by expanding as a

2-approximation:

179

WW'
3w w' ,uz

rL

141
4-

U

U 1- u--- v =) V

This commutes for all W and W' in D as both ways round it is JWW'.

Thus we have proved the universality of U, that is, U is the

coproduct of the theories T1 and 12- 0

We now turn our attention to coequalisers of theories.

Theorem

The category of monadic theories, whose endofunctors are

cocontinuous, on an (arbitrarily) cocomplete category C has

coequalisers of pairs of morphisms.

(The cocontinuity condition can be weakened somewhat to require only
that epis, W -colimits and the coequalisers and pushouts below are
preserved.)

Proof

Let S (S, 9s, frt and T - (T,2.r,,CIT) be two cocontinuous theories on a

cocomplete category C and let
f,g : S -> T

be two theory morphisms.

We may suspect that, like the coequalisers of monadic signatures,
coequalisers of theories are created by those in C. However, the

coequaliser of

S T

in CC does not respect the composition in the theories. It is an

180

equivalence andnot a congruence. We build the required congruence

iteratively using pushouts and take an W -colimit to construct the

coequalising theory. Iterated pushouts and the associated w-colimits

are used elsewhere in category theory to construct colimits. For

instance Adamek and Koubek [1980] have used them to construct

colimits of algebras. There seems to be a general understanding of

this construction - iterated pushouts and the associated w -colimit

are used to obtain the "closure" of an object under an operation.

Define inductively a sequence of functors, Un, and natural

transformations, un : Un -> Un+1 n>0, by UO a T, and u0 is given by

the coequaliser:

`' SST--- ° U,

Inductively define Un+2 and un+2 by the pushout:
z

2 u^ z
1.1,E urW

b
^M1 1 `anti

un+l

where k0 -,UT.uO. Notice that uO is an epi because it
is a coequaliser, thus as each Un preserves epis, un is an epi.

Now consider the chain

U, U, U2 un Un+l

U, - LIZ --s . . Un) U%*- a

Call it A.

181

Let its colimit be 3 : Un -> U for all n>O. Then

Un }
un-+ I

commutes.

We make U into the endofunctor of a theory U (U, 2 p) by defining
a 2 and a ,U :

I => U is given by q T'1 0

P again arises from the 2-existence lemma, but because

is an W-chain, we can use the stronger form to say that /.L is

defined to be the unique morphism such that, for all n>O,

!, U

commutes.

To verify the theory properties of U is rather routine.

For instance, we need to show that

0q
U

. U2

commutes. Using the 1-approximation

lemma, it suffices to show that:

182

I

'e (1) U9T
u

IT
`T L(T '2 ujr (3 u o

i+, L+1+i
U

where ui*
u0u1 ui. Here, (1) commutes by the naturality of , (2) by definition of 2 and (3) is

U.T
IT

if 'UT

U! UULU jUio
Ui - U

U&

L2

which commutes, (4) is the definition of t! and (5) is trivial.

Only (6) remains - we need an inductive argument:

We want to show that for all n>O the following commutes.

UZ 7r Ui UL

U i ---- > Uz T -- U;

I
U U«,

If n = 0, this reduces to

183

T2>T2--r z

U,

which commutes by a theory property of T and the fact that 3n is a

cone on A. Assume that the required square commutes for a fixed n,

then show that it commutes for n+1. We have the situation:

T U u UjT
u1

Q U,
2

T OT u; /

10 k.

UL+,

Each inner piece commutes so the whole square commutes.

The other theory laws are established by a similar reduction to an

inductive argument.

If we define h : T -> U by h - 1 0, then it is indeed a theory

morphism. Moreover, we now show that it is the coequaliser of f and

g.

Let T -> V be another theory morphism such that fQ- g,$. We 12 :

prove that there is a unique ' such that

184

commutes. Construct

inductively.

Define 1o to be the unique morphism such that

commutes (using the

colimiting property of the coequaliser). Now suppose that we have
vv

oi_1 and Oi such that

UZ
Utt1

both commute. Construct a

as the unique morphism making the following diagram commute,

uc2

k

185

(using the colimiting property of the pushout).

Now, by definition, the Yi's form a cone on the chain So there is

a unique 9 : U -> V such that

commutes. This is the

required morphism. We need only show that it is a theory morphism

and has the required uniqueness.

Set i - 0 for one condition and for the commutation of

9

use the 2'-approximation lemma. Thus it suffices that the following
commutes.

ii
2

But (1) commutes by the definition of the ii's, (2) by the definition

186

of ,U , (3) by the definition of ' and (4) by a property of the Xi.
Thus 9 is a theory morphism as required. The necessary uniqueness

follows from the uniqueness of Y above.

This completes our proof of the existence of coequalisers. 0

Notice now that the trivial theory on C, (I,i,i), where I is the

identity functor on C and i is the identity natural transformation,

is initial in Th(C). Finite cocompleteness now follows from a

general theorem (page 36).

We now turn to the factorisations in the category of theories, thus

verifying Axiom 3 for monadic theories.

FACTORISATIONS IN THE CATEGORY OF THEORIES

Factorisations in categories are of use in formalising data

abstraction mechanisms, in particular the DERIVE operation of CLEAR

[Burstall,Goguen 1980b]. We have not so far dealt with

factorisations but it seems that we can "compute" them by similar

techniques (including lifting and pointwise evaluation) to those used

for computing colimits. To complete our discussion of the axioms for

theories (page 103), we include here a result about factorisations in

the category of monadic theories.

Unlike colimits of theories, certain factorisations of theories are

easy - they lift from functor categories where they are computed

pointwise.

First several definitions:

Definition

We say that e is an extremal-e if e is an epi such that the

following holds: If e - fm with m a mono then m is an isomorphism.

Definition

Let C be a category and F the class of its extremal-epis andRits

monos, then C is said to have extremal-epi, mono factorisations if

every morphism, f, in C can be expressed as

f - em with e in e and m in,/K.

187

Now several propositions (proofs may be found in [Schubert 1972]).

1. A sufficient condition for a category to have extremal-epi

mono factorisations is that the category is cocomplete and

co-wellpowered. The proof is constructive.

2. If fe is an extremal-epi, so is e.

3. If C is co-wellpowered and cocomplete then

extremal-epi, mono factorisations are natural. That is if
f - em and f' - e'm' are such factorisations and if

e m
ct '

> cL

CL/ > - b
of m`

commutes, then there is a unique g : d -> d' which fills
in the diagram commutatively. Consequently, these

factorisations are unique to within an isomorphism.

With these results, we may proceed. We show first that

extremal-epi,mono factorisations in functor categories are computed

pointwise.

Let C be cocomplete and co-wellpowered - it therefore has

extremal-epi,mono factorisations. If A is any other category,
consider the functor category, CA* Let of : F -> G be a morphism in
this category. For each a in A, ao(: aF -> aG factorises uniquely
(to within an isomorphism) as,

aF
e

> d --> aG with e in c, , m in,/Z.

This factorisation is functorial, that is we can define a functor D

in CA such that, on objects, aD - d and, on morphisms (using the

naturality of the factorisation):

188

e

D

e' M'

This diagram says that the e, e' and m, m' may be considered as

natural transformations which we will call E and V. Thus in the

category of functors, we have the factorisation:

oC F -> D -> G.

E is an extremal epi in CA and v is a mono, as required.

We now turn to factorisations in the category of theories.
Theorem

If C is cocomplete and co-wellpowered (hence has extremal-epi, mono

factorisations) and Th*(C) is the full subcategory of theories on C

whose endofunctors preserve extremal_epis and monos, then Th*(C) has

extremal-epi,mono factorisations.
Proof

Let S (S , 2 ,) and T = (T, ,U') be theories in Th*(C) and

OC : S -> T. By the previous discussion there is a functor U : C -> C

and a factorisation in Ci:

S
CMy>T.

First, it can be verified that this functor preserves extremal-epis

and monos. We now show that it is the endofunctor of a theory and

that E and)) are then theory morphisms.

Define 2" : I -> U by 2" = 2 E and ltd" as the unique fill-in (using
the fact that S, T, U preserve extremal-epis and monos):

189

P

E vz

Sz u
2 1r z

L

It can readily be verified that (U, 2",p") really is a theory. This
completes our demonstration.

Notes

Factorisation in a category and factorisation systems were

described in [Mac Lane 1948].

0

The connection between factorisation of theory morphisms and

data abstraction was noted in [Goguen and Burstall 1978].

190

CHAPTER ELEVEN

MANY-SORTED THEORIES AND MORE

The monadic theories which we have investigated so far are adequate

to handle only theories with a single sort. It is true that we could

use the cross-product of categories to describe many-sorted (or
heterogeneous) theories - that is, we coerce the sorts into one sort
by taking the product of the sorts. The operations then take such

product sorts as arguments. Besides being clumsy, this method fails

to generalise sufficiently for our purposes. It cannot, for

instance, handle the, so called, order-sorted theories. We will, in

this chapter, show how to generalise monadic theories to handle these

cases. This categorical formulation of order-sorted theories means

that we should be able to translate work in order-sorted theories

into standard category theory. As an example of this, we show that

the 'fill-out' operation of [Goguen 1978] arises from an adjunction.

First we discuss several extensions of the many-sorted or

heterogeneous theories.

ORDER-SORTED AND CATEGORY-SORTED THEORIES

The idea of "coercions" has proved useful in programming whenever one

sort is to be thought of as included in another sort. For instance,

we may wish that integers were, in some sense, included in the reals.

This facility is available in many programming languages and is

allied to the notion of "overloading" of operations. Overloading is

simply the use of the same operation name for operations with

different functionalities. This is necessary if coercions are to be

introduced. For instance, an addition on reals should, under the

above coercion, become an addition on integers. All this is

formalised in the paper [Goguen 1978]. Notice that many sorted

theories give us no means for describing such relations between the

sorts. What is required is an ordering upon the sorts such that if

there is a coercion of 'i.nt' into 'real' then int < real. This

assumes that there is only one coercion of 'int' into 'real' and that

there is no coercion of 'real' into 'int'. With this example, this

is evidently the case, but several authors have advanced [Reynolds

191

1978] the more -general idea of a category of sorts which allows more

than one coercion between sorts and coercions in both directions

between sorts.

So far we have made no mention of "errors" or "exception cases" but

for a correct formulation of many data types within universal algebra

we must introduce means of handling "errors". For instance, the

standard presentation of 'stack' is:
procedure Stack(X : Triv)

let A

data sorts stack
opns nil : stack

push : element,stack -> stack
in

enrich A by
opns pop : stack -> stack

top : stack -> element
eqns pop(push(n,s)) s

top(push(n,s)) n
end

Of course 'pop(nil)' is not a stack in the normal sense. We cannot

push onto this stack. Goguen [1978] has shown that, by introducing

"error-sorts", we may present this example correctly, and furthermore

that this may be formulated within these order-sorted theories. The

order on the sorts arises from the fact that we would like some

relation between, say, ''error-stack' and 'ok-stack', both being

included in a sort 'stack'. Further details and an algebraic

formulation may be found in the paper just alluded to.

An Aside

This does not end the discussion on handling errors in data types.

For one thing, the idea of introducing error-sorts and subsuming

these theories with errors within order-sorted theories leads to

rather unwieldy presentations of data types and the interpretation of

the error-sorts and error-operations is often not at all obvious.

Moreover, whilst we often need many different errors of different

sorts so that we can handle error messages and different types of

error recovery, often we would wish to eschew the mentioning of

errors altogether. Yet we would still need the presentation of

'stack' above to be correct - which it evidently is not. A case in

192

question is the synthesis of programs from specifications. We would

hardly expect errors to be needed in programs synthesised correctly
from specifications.

We seem to need "errors" because our language for describing the

domains of our operations is too limited (essentially to the product

of sorts and, in higher-order theories, to their exponent). For

instance in the case of 'stack' we would wish to say that the domain

of 'pop' was restricted to non-empty stacks - those that satisfy the

sentence:

3 n: element,3s: stack : x a push(n,s) (1)

For another example let us look at a presentation of (small)

categories:

sorts object, morphism

opns source, target : morphism -> object
identity : object -> morphism
compose : morphism, morphism -> morphism

eqns source(identity(n)) n
target(identity(n)) n
source(compose(ml,m2)) source(ml)
target(compose(ml,m2)) target(m2)
compose(identity(source(ml)),ml) ml
compose(ml,identity(target(ml))) ml
compose(compose(ml,m2),m3) compose(ml,compose(m2,m3))

not
Again this is not correct - it doesAdescribe what we want.

Composition is not defined on all pairs of morphisms, only on those

pairs (ml,m2) satisfying the equation:

target(ml) source(m2) (2)

We give a brief outline of what might be done in this
direction. Notice first that both the restricted domains above,

those defined by sentences (1) and (2) have a categorical
interpretation. If, for the moment, we work with Lawvere theories
this will become clear. In the case of equation (1), 'push' will be

a morphism in the category and the equation then says that we want a

unique factorisation of this morphism (exactly which sort of
factorisation may depend upon context). We may denote the sort
obtained from the factorisation (intuitively, the sort of non-empty

193

stacks) by 'push' and write:

pop : push -> stack.

Likewise for the case of small categories, equation (2) denotes a

pullback:

target # source -- - - - - - - - ->morphism

source

N 01

morphism > object
target

We can call the new sort, using standard category theory notation,

'target # source', and write

compose : target # source -> morphism.

It should be possible to extend the usual product (or coproduct) in

Lawvere theories to these more general domain constructors. Likewise

monadic theories should encompass theories with operations of this

form. We do not intend that we should be able to define every domain

(though we could considerably extend the domain building operations

above) but we may not need to. For instance we should not ask for a

domain of acyclic graphs for a computation of transitive closure.

There is a difference between the failure of a program to terminate

and the undefinedness of, say, 'pop(nil)'. The former is correct -

acyclic graphs have an infinity of paths - the latter has no meaning.

However, it should be noted that this extension of algebraic theories
does not include the theory of fields, unlike the error-theories of
[Goguen 1978]. Fields are not well-behaved (for example, they are

not monadic and free fields do not, in general, exist) whereas stacks

and small-categories are well-behaved (at least in the sense given).

The behaviour of theories with partially defined operations is

discussed in [Broy,Wirsing 1980].

Notice that when we define restricted domains for operations, these

restrictions are in terms of previously given operations. For

instance, the declaration of "pop" is in terms of "push". We assume

that "push" is declared before "pop". We are thus thinking of a

194

hierarchy of operations, each defined in terms of those 'below' it.

Freyd [1972] discusses theories of this sort in the case when the

domains are given by equations, calling these theories 'essentially

algebraic'.

MANY-SORTED THEORIES AND ORDER-SORTED THEORIES AS MONADIC
THEORIES

We now show how to extend monadic theories to include these

many-sorted, order-sorted and even category-sorted theories. In the

Lawvere approach to theories this extension from single-sorted

theories to many-sorted theories can be accomplished by choosing a

different category of "arities" as described in

[Wagner,Wright,Goguen,Thatcher 1978].

We deal here only with category-sorted theories as the others are

special cases. Let S be a category of categories and S an object of

S. We are to think of S as the category of "sort sets" and S as a

"sort set", i.e. a category - possibly the discrete category.

Let C be any category (we usually think of C as the category of sets

or possibly continuous partial orders), and F a functor:

F : S -> C.

An S-sorted theory will be a theory on the category of these

functors, CS. So far, so good. What about theory morphisms? Theory

morphisms have to include now not only a map on operations which

preserves the equations (which, as we know, is handled by a natural

transformation between endofunctors) but also a map between the

sorts. Theory morphisms may change the sorts. Thus, we see that

theory morphisms may map theories on one base category to theories on

a different base category. This is where an extension of the

definition of monadic theories is required.

Notice that, with the categories S and C, we can form a new category

whose objects are categories of the form CS, for S an object of S,

and whose morphisms are all functors between these categories.

Moreover, a map on sorts - a morphism in S - of the form h : S -> S',

gives rise to a functor,

Ch : CSt -> CS,

195

from the category of S'-sorted C-objects to the category of S-sorted

C-objects.

What is a category of theories now going to look like? Theories will

still be monads on some category of the form CS. On the other hand,

theory morphisms from T > (T,9 ,1A) on CS to T' (T', 9',,u') on CS'

will be pairs (h,a) where h: S -> S' and c(: ChT -> T'Ch is a

natural transformation. The diagram below may help:

C

C
S

CS

T

CS

The identity morphism on T is (IS,iCS) and compositions of morphisms

" is given by, if T" 4: (T", 2",lu") is a theory on C S and

(h',o(') : T' -> T" then

(h,o() (h', a') (hh', Ch'o(oc'ch)

defines the composition.

We call this category Theory(S,C) and by 'forgetting' the composition

in theories we get, by the same construction, a category of

signatures, Signature(S,C). Again, there is a forgetful functor,

U : Theory(S,C) -> Signature(S,C).

More notation: S-Sig(C) is the category of S-sorted signatures for an

S in S, likewise for theories.

This looks rather awkward but it can be cast into an elegant general

form as these theory morphisms behave rather like natural

transformations. We can define a 'horizontal' composition as well as

196

the above 'vertical' composition. See Appendix Two for details.

PROPERTIES OF MANY-SORTED AND ORDER-SORTED MONADIC THEORIES

We now look at properties of many-sorted and order-sorted theories in

this monadic setting. We will show that the previous results, which

we have proved in the case of the single-sorted theories, extend to

these many-sorted, order-sorted and category-sorted theories.

The idea is to choose a suitable category in which the construction

for the single-sorted case can be carried out and then show that the

construction is universal in the larger category of theories,

Theory(S,C). We use the notation of the previous section and sketch

briefly what the constructions look like in this category of

theories.

For the free theory on an S-sorted signature with respect to the

functor, U, we notice that the construction takes place entirely

within the category CS, so, provided that C has w-colimits and that

the endofunctor of the signature preserves these colimits, the

construction goes through as before. To establish the universality

of the theory so constructed, we need that for each h : S -> S', the

functor Ch : CS -> CS preserves 4)-colimits. This is a corollary of

a general result concerning colimits in functor categories (see

[Herrlich,Strecker 1973]). Now the construction of the mediating

morphism goes through as before replacing, of course, single-sorted

theory morphisms by these more general morphisms.

What about finite cocompleteness of the category Theory*(S,C), the

full subcategory of Theory(S,C) consisting of those theories whose

endofunctors are cocontinuous? If we assume that C is (arbitrarily)

cocomplete and that S is finitely cocomplete (as a subcategory of the

category of categories) then Theory*(S,C) is finitely cocomplete.

The initial object in Theory*(S,C) has no sorts - it has the initial

"sort-set", . There is a unique functor H : b -> C and the initial

theory is then (I,i,i) where I is the identity functor on the one

object category containing H, and i is the identity natural

transformation from I to I.

197

To construct the coproduct of a pair of objects in Theory*(S,C) let
T1 (T1 , 7 1 /U1) be an S1-sorted theory and Z2 ;5; (T2, 9 2, P 2) be an

S2-sorted theory (Si and S2 being objects of S). Let S1+S2 be the
coproduct of the categories S1 and S2. By universality of the

coproduct a functor H S1+S2 -> C splits into functors
H1 : S1 -> C and H2 : S2 -> C. Now consider the functors, H1T1 and

H2, these give a functor H' : S1+S2 -> C and then this passage from

H to H' is functorial, the functor being the endofunctor of a theory

T'1 on CS1+S 2. Likewise construct a theory f2. Then the coproduct

of T1 and T2 is the coproduct of T'1 and T'2 calculated in the

category CS1+S2. The universality of this construction can readily
be checked.

A similar treatment will provide the coequaliser of a parallel pair
* of theory morphisms in Theory (S,C), using the coequaliser of

"sort-sets" in S. Thus Theory (S,C) is finitely cocomplete.

The other constructions that we have given for the single-sorted
monadic theories should generalise to the category, Theory*(S,C), for

suitable S and C. This has yet to be checked.

FREE SIGNATURES AND KAN EXTENSIONS

Part of the aim of this work is to bring the universal concepts of
category theory to bear upon our understanding of programming. This
is not anything new. For some years now the descriptive power of
initiality and adjunctions and of colimits has been recognised.
However adjunctions and colimits are not the only possible universal
concepts in category theory. Whilst more such concepts may be

formulated it appears that they all are 'equivalent' to each other.
For instance, the definition of a colimit can be cast into a special
case of that of an adjunction and adjunctions can become colimits via
a formal existence theorem for adjunctions.

We introduce here another, less familiar, universal concept - that of

a Kan extension. We need this new universal concept to describe and

extend an operation on signatures to be found in [Goguen 1978]. In

fact, in investigating this, I inadvertently "rediscovered" the

important existence theorem for Kan extensions (page 201).

198

Signatures and Order-sorted Theories

What do signatures for order-sorted theories look like? To

incorporate order-sorted theories into universal algebra an arbitrary
set of operations will no longer serve as a signature. We need to

consider how the order upon the sorts is reflected in the signature.

For instance, if {inc, real) is our set of sorts and there is a

coercion 'int -> real' , and if we had an operation in our

signature:

* : real -> int

we would expect also the operations

*, : int -> int
*2 : real -> real
*

3
: int -> real

which arise from the coercion by restricting the domain or enlarging
the range of *.

It should be clear however that given an arbitrary set of operations
and their arities and an order upon the sorts we can introduce extra
operations as above to 'fill-out' the signature to an order-sorted
signature. This filling-out operation is introduced in [Goguen

19781.

We show that this operation arises from a Kan extension and thereby

give an interpretation of 'filling-out' for category-sorted

signatures as well. In fact, there is a sense in which the fill-out
of a signature is free upon the original signature. We first define

the rather unfamiliar idea of a Kan extension then show how it

relates to the construction of free signatures.

Kan extensions

Consider the following diagram of categories and functors

199

A

There is an H : A -> C such that:

F

H

Cr

G

commutes. H is given by the composition of F and

G. Now we are looking for a way of inverting this. That is, given a

diagram:

A F B

c

F

we are looking for a functor, G, such that:

200

A F 'B

commutes. In general no such G exists. Suppose,

however, that we weaken our requirement. Instead of insisting that

(1) commutes we merely ask that there is a natural transformation

o(: H -> FG. In general, there are many such G's. Now suppose that

is universal in the following sense:

For any other G' : B -> C and o(': H -> FG' there is a unique

9 : G -> G' such that

commutes.

Then we say that G is the left Kan extension of H along F. Right Kan

extensions arise if we insist on the requirement of a natural
transformation oC : FG -> H with a similar universal property.

Now suppose that for a fixed F, every H has a left Kan extension then

we can cast the definition into that of an adjunction. Indeed the

passage from an H to such a G is left adjoint to the "composition"

functor,

CF : CB -> CA which is defined by:

CF(G) = FG.

201

We denote this left adjoint to CF, if it exists, by,

: CA -> CB. C F

Conversely an adjunction can be considered as a special case of a Kan

extension. Further details of this and the interrelation of other
universal concepts may be found in [Mac Lane 1971].

The existence theorem for Kan extensions, already alluded to, goes as

follows.

Theorem (Existence of left Kan extensions)

If C is cocomplete then for any F : A -> B, CF has a left adjoint.
Sketch of Proof

Given any H : A -> C we construct a G B -> C with the given

universal property.

Let b be an object of B, (B,b) be the comma category of morphisms

into b and

Pb : (B,b) -> B

the projection functor.

We define a diagram in A as the functor Eb given by the following

pullback square in the category of categories.

Eb

A
F

Pullbacks of categories exist.

Now consider, for the given H : A -> C, the diagram in C given by the

composition of functors:

Tb----> A --io C-

E
b H

202

The colimit of this diagram gives rise to a functor, G, which takes b

onto the apex of the colimiting cone. I.e. there is a G : B -> C

such that the colimit of (2) is given by

j1b : jHb -> bG for j in Jt.
The morphism part of G arises from the universality of the colimit.
This G is the free object on H with respect to CF. 0

We now state a general lemma about adjunctions which we shall need in
the next section.

Lemma

Let (K, L, y , F-) : A -> B and (T, U, r2 ,Tf) : C -> D be any two

adjunctions. Then the following functor

L - T : CA -> DB is left adjoint to

K L : D -> CA

The meaning of these functors should be obvious : L - T takes any

H : A -> C into LHT : B -> D.

Proof omitted.

Free Signatures

Here we show the connection between the rather obvious "fill out"
operation (referred to above) on signatures (which is, for finite
signatures, computable) and the rather unfamiliar Kan extensions.

Let S be a category of sorts and h : S -> S' a morphism in the

category. Let C be a cocomplete category and C! the category of
S-sorted C-objects. Then

Ch : CSC -> CS

has a left adjoint. This is simply the existence theorem for the

left Kan extension. Let us denote this free functor by

Ch : CS -> CSC

Notice that the h : S -> S' induces a "forgetful" functor on

signatures,

U: S'-(C) -> S-SiI(C) given by

(',c5')U = (Ch 'Ch, ChQ'Ch) on objects and of U -> Ch(XCh on

203

morphisms. For instance, any order-sorted signature is a ordinary

(set-sorted) signature.

The above proposition about adjunctions together with the existence

of a left adjoint for Kan extensions now give a left adjoint to U:

T : S-Sig(C) -> S'-Si (C)

given by (a)T (ChZ Ch, Ch
QCh)

on objects and of T ChCh on

morphisms. Thus we have constructed an adjunction on signatures.

Now suppose that C > Set and that S' is an ordered set of sorts and S

its underlying set (forgetting the order). Then we have an inclusion

h : S -> S'.
This induces a functor Ch, which takes an S'-sorted set to an

S-sorted set by forgetting the order among the sets of variables. By

the Kan extension existence theorem, there is a left adjoint to Ch.

This fills out an S-sorted set according to the ordering on S'. For

example, let S' > {int, real} with int < real. Then S {int, real}

with no order upon it. Each S'-sorted set is automatically an

S-sorted set by forgetting the order 'int < real'. This is Ch.

Now suppose that {n,m : int, x,y : real} is an S-ordered set. It can

be filled out to an S'-ordered set by including all the variables of

sort "int" into those of sort "real". That is, the left adjoint of

Ch, Ch, takes

Ch {n,m : int, x,y : real} -> {n,m : int, n,m,x,y : real}

The adjunction between signatures arising from h : S -> S' gives

exactly the same operation but between sorted sets of terms. That

is, it is the "filling out" operation of [Goguen 1978].

Notes

The ADJ group gave a mathematical formulation of

heterogeneous (many-sorted) theories [Goguen, Thatcher,

Wagner and Wright 1975]. The idea of extending these

theories to order-sorted and category-sorted theories came

from several authors (e.g. Wadge (unpublished letter) and

204

Reynolds (1978)). Our presentation is an attempt to capture
within the framework of monadic theories the work of [Goguen

1978].

205

CHAPTER TWELVE

CONCLUSION

The programming of category theory was an experiment both in
translating mathematical proofs (relevant to programming theory) into

code and using high level functionals for 'combinatorial' programming

(as advocated by Backus [1978]).

We have shown how constructive proofs in category theory can be

encoded as programs and the routines arising from these proofs can be

used to construct a program specifically concerned with category
theory. What we have not shown is the usefulness of these routines
for general programming problems. This is the task that we set

ourselves in the attempt to systematically develop programs from

specifications using category theoretic techniques. Unlike Backus'

work there is a mathematical connection between our high level
functionals and specifications of programs. This may possibly
indicate that these functionals have the 'correct' degree of
generality for general programming tasks. Evidence for this
conjecture can arise both theoretically (the connection between

structure in the category of algebras of a specification (e.g.
colimits) and'programs which implement the specification) and through

experience with translating programming tasks into a suitable
categorical framework. For example, can we develop algorithms for
sorting a list of totally-ordered objects into an ordered list (e.g.
quicksort, bubblesort etc.)? Possibly we can. It should be said

that this approach to program development was an unexpected bonus of
our exercise in programming category theory.

We gather together some speculations more or less loosely based on

our experience with categorical programming. These can be seen as

possible directions for future work.

1. The conjecture in the paragraph above is correct.

2. Constructions of colimits of algebras (e.g. those of
Linton (1969) and Adamek and Koubek (1980)) are of some

importance to programming. Unlike limits of algebras

206

(which are created by carriers) colimits of algebras

require elaborate and non-trivial constructions. We have

seen that co-continuous functors may be computed by

colimit recursion as long as a construction of colimits of

algebras of the resultant data type is available.

3. Adding the power of universal contraints and of partially

defined operations (as described in the text) to (possibly

parameterised) equational specifications gives an adequate

and natural means of program description which draws

specification and implementation closer. Examples of the

unorthodox use of universal constraints may be found in

chapter five. Theoretical considerations show us that

universal constraints can model unbounded existential

quantifiers. The vague claim of adequacy could be

substantiated by examining cases where equational

specification of itself proved inadequate (e.g. [Majster

1979]).

4. Proving the correctness of categorical programs is

essentially a task of proving theorems in category theory.

We have looked at proof rules for colimits (chapter seven)

- there are other such rules (for instance, associated

with monos and epis). Could these rules be automated and

along with a theorem-prover give a semi-automatic

program-proving system for categorical programming? It

may be of some interest to see a specification (in CLEAR)

of the properties of such a categorical program - for

instance that of a colimit program:

207

constant Category =
sorts object, morphism
opns domain morphism -> object

range : morphism -> object
identity : object -> morphism
compose range # domain -> morphism

egns
domain(identity(o)) = o

range(identity(o)) = o

domain(compose(m,n)) = domain(m)
range(compose(m,n)) = range(n)
compose(identity(o),n) = n
compose(m,identity(o)) = m
compose(compose(l,m),n) =

compose(l,compose(m,n))
end

constant Graph =
sorts node, edge
opns source : edge -> node

target : edge -> node
end

procedure Diagram(C Category) _
enrich Graph by

opns objmap : node -> object
mor_map edge -> morphism

eqns
domain(mormap(e)) _

objmap(source(e))
=

obj_map(target(e))
end

procedure Colimit(C : Category) _
enrich Diagram CT by

data opns apex : object
sides node -> morphism

eqns domain (sides(n)) = obj_map(n)
range(sides(n)) = apex
compose(mor_map(e),sides(target(e)))

sides(source(e))
end

Notice how the universality of the colimit-cone has become

a data constraint.

Turning now to the constructions concerning monadic theories, we have

shown that monadic theories are sufficiently well-behaved from the

point of view of program specification. However the ad hoc nature of
the constructions is unsatisfactory. In the case of the free theory
construction we now understand the place of w -colimits in the

208

construction of free theories, initial algebras etc. Is there a

similar understanding of the place of the other constructions? At
several points in the text we have noted that the constructions
resemble those of other authors. Is there a general synthesis - a

few general constructions which can be used as (almost) all-purpose
tools for constructing universally defined objects in certain
categories? If such a synthesis exists, how does it impinge upon
programming?

209

APPENDIX ONE

COLIMITS IN FUNCTOR CATEGORIES

We show how to program the lifting of colimits to functor categories.

The relevant theorem is:

Theorem (Colimits in Functor Categories.)

If B is (finitely) cocomplete then so is B.
Proof

Consult [Schubert 1972].

The computation of this lifting of colimits goes as follows.

The application of a diagram and a diagram morphism (and a cone) of
functors to an object of the source category give the following
functions.

dec applydo : Diagram(Functor(o,m,ol,ml),
Nat transform(o,m,ol,ml)) # o

-> DiagramTol,ml)
dec applydm :

Cat(o,m) ->
(Diagram(Functor(o,m,o1,m1),Nattransform(o,m,ol,ml)) # m

-> Diagram Mor(ol,-Ml))
dec applyco :

Cat(ol,ml) ->
(Cone(Functor(o,m,ol,m1),Nat transform(o,m,ol,ml)) # o

-> Cone(ol,m1T)

--- applydo(diagram(g,fo,fm),a) <_
diagram(g,

(lambda n => fo(n) ofo a),
(lambda e => fm(e) of a))

--- applydm(cat(s,t,_,)) <=
(lambda d & diagram(fo,fm), m =>

diagram mor(applydo(d,s(m)),

--- applyco(B) <_

ident,
ident,
(lambda n => fo(n) ofm m),
applydo(d,t(m))))

lambda Fcone,s =>
let ds == applydo(base(Fcone),s) in

cone(B)

(ds,
(lambda n => sides(Fcone)(n) of s),
apex(Fcone) ofo s)

The colimiting object, a functor, of a diagram of functors, is

computed 'pointwise':

210

dec colimit obj Cat(o,m) # Colimit Cat(o1,ml) ->
(Diagram(Functor(o,m,ol,ml),Nat transform(o,m,ol,ml))

-> Functor(o,m,ol,ml))

--- colimit_obj(A & cat(s,t,_,_),cB & colimit cat(B,_)) <_

(lambda D => a
let dcatB == cat-of diagrams(B) in
let dcat

cat of diagrams(cat of functors(A,B)) in

let omap =_ ! object part of colimit functor
(lambda a =>

colimit object(cB)(applydo(D,a))) in

let mmap =_ ! morphism part of colimit functor
(lambda m =>

let suniv
universal part(cB)(a pl do(D,s(m))) in

let tcone == colimitcone(cB)(applydo(D,t(m))) in
let pretendcone

left compose(dcatB,dcatB,I(dcatB))
(applydm(A)(D,m),tcone) in

apex morphism(suniv(pretendcone))) in

) ! colimit functor

Here the lambda-expressions in objects and morphisms of the source

category, A, are the 'pointwise' computations. The whole of the

colimit - the colimiting cone and the universal part - then arise as

follows:

211

dec lift colimit : Cat(o,m)#Colimit Cat(ol,ml) ->

colimit(Functor(o,m,o1,ml),Nat_transform(o,m,ol,ml))

--- lift_colimit(A, cB & colimit_cat(B,_)) <_

(lambda D & diagram(_,Fo,Fm) _>

let dcatB catofdiagrams(B) in
let fcat cat of functors(A,B) in

let F == colimit obj(A,cB)TD) in
let gamma --

(lambda a =>
sides(colimit_cone(cB)(applydo(D,a)))) in

let colimcone =_
cone(fcat)(D,

(lambda n =>
nat_transform(Fo(n),

(lambda a =>

F) in
F)),

gamma(a)(n)),

let univ ==
(lambda a =>

universal part(cB)(applydo(D,a))) in
let universal =_

(lambda pcone =>
cone mor(fcat)

(colimcone,

nat_transform(F,
(lambda a

apex_morphism(
univ(a)
(applyco(B)
(pcone,a)))),

apex(pcone)),

pcone)) in
(colimcone,universal))

An inspection of the steps of an elementary proof of the theorem will

make this text comprehensible.

Finally, as in the case of comma categories, we can use this
'lifting' routine to define a colimit category by declaring:

dec colimitcat_of functors :

->
Colimit Cat(Functor(o,m,ol,ml),Nat transform(o,m,ol,ml))

--- colimit catof_functors(A,cB & colimit cat(B,)) <_

colimit cat(cat of functors(A,B),lift colimit(A,cB))

We could use this to compute colimits of diagrams for instance, or of

signatures in a monadic form (page 123).

212

APPENDIX TWO

GENERALISED TRANSFORMATIONS AND A GENERAL CATEGORY OF THEORIES

We introduce here a generalisation of natural transformations of

which the morphisms of many-sorted theories are an example.

Consider the (not necessarily commuting) square of categories and

functors:

A A

s' S

NO, Nf

B' a

We say thato(is an F,G -transformation from S to S', denoted by

0(: S => S' (with F and G understood)

if OC is a natural transformation, o(: FS S'G.

There are two compositions of these general transformations. Suppose

we have

0(: S S' an F,G -transformation
13 : S' => S" an F',G'-transformation

: T => T' a G, H -transformation

with the following (not necessarily commuting) diagrams:

AN
F ; A'F A

S" 1 5'1 1 Is

Cr G,

r
16

8
T/I

yC' r
H

213

The vertical composition o(.R : S => S", an F'F,G'G-transformation, is

defined by of f = F'P(.AG where the composition on the right-hand side
is that of natural transformations.

The horizontal composition o(oY: ST => S'T', an F,H -transformation,
is defined by o!o X =o(T.S'' , again the right-hand side is the

composition of natural transformations. Notice that this composition
is no longer given as the diagonal of a commuting square - the

functionalities are wrong.

These generalised transformations, with their compositions, form a

double category (in the sense of [Ehresmann 1965]) in that the

interchange law holds -

whenever either side is defined. It is not a two-category - the

identities do not behave correctly.

A Generalised Category of Theories

Let V be a category whose objects are categories and whose morphisms

are functors. The objects of V are to be the base categories of
theories.

Suppose that C and C' are objects of V and that T = (T,2 ,,u) and

To _ (T', 9', ,u') are theories on C and C' respectively. Let

H : C' -> C be a functor in V, then the square of categories and

functors above reduces to:

We now introduce the category Theory(V) - a generalised category of
theories. Its objects are to be monadic theories on the objects

(categories) in V. Its morphisms are given by the following: Let C

214

and C' be categories in V, a theory morphism (H,oc) : T -> T', where T

and T' are theories as above, is a functor in V, H : C' -> C together

with an H,H-transformation (which we abbreviate to an

H-transformation), 0(: T => T' where satisfies the following two

equations:

? .0(= i.t' and («oa).P' = P.of

Here the equations are of generalised transformations and their
compositions. 'i' is the identity H-transformation and we have made

the implicit coercion of natural transformations to
I-transformations, I being the identity functor on a category.

Notice how the form of the equations has been preserved form the case

of ordinary monadic theories and their morphisms.

Composition of generalised theory morphisms is given by the

generalised vertical composition. This completes'our construction of
the category Theory(V).

By 'forgetting' the composition,/U , in theories we get a category,
Signature(V), whose objects are signatures and whose morphisms are

generalised signature morphisms.

Furthermore, just as before, there is a 'forgetful' functor, U, from

theories to signatures given by: (T,2)U = (T, 2) on objects and

the identity on morphisms.

In this general setting, provided there are suitable restrictions on

the category, V and the theories, the work which we have done with
monads should generalise.

215

APPENDIX THREE

HOPE : AN EXPERIMENTAL APPLICATIVE LANGUAGE

An experimental applicative language called HOPE has been developed

by Prof. Rod Burstall, David MacQueen and Don Sannella. The

following brief informal description of the language is an extract

from [Burstall, MacQueen and Sannella 1980].

Data Declarations

Conceptually, all data in HOPE is represented as terms consisting of

a data constructor applied to a number of subterms, each of which in

turn represents another data item. The tips of this tree are nullary

data constructors or functional objects. An example is succ(succ(O))

in which succ is a unary constructor and 0 is a nullary one (i.e. a

constant). Constructor functions are uninterpreted; they just

construct.

A data declaration is used to introduce a new data type along with

the data constructors which create new elements of the type. For

example, the data declaration for natural numbers would be

data Num == 0 ++ succ(Num)

defining a data type called Num with data constructors 0 and succ.

So the elements of Num are 0, succ(O), succ(succ(O)), ...; that is,

0, 1, 2,

Types may be parameterised. To define a type of lists of elements

where all the elements are to have the same (but arbitrary) type, we

declare a type variable:

typevar alpha

which when used in a type expression denotes any type (including

second- and higher-order types). A general definition of 'list as a

recursive parametric type is now possible:

data List(alpha) == nil ++ cons(alpha,List(alpha))

Notice that List is not a type but a unary type constructor.

There is another means of defining types. We may define a new type

by a type expression in other types. For example:

type Pair(alpha) == alpha # alpha

216

where # is an (inbuilt) type constructor. If n and m are of type Num

then an object of type Num # Num (and so of Pair(Num)) is (n,m).

Notice that a data declaration introduces a new type in terms of new

type constructors whereas a type declaration as above simply gives a

name to a type expression.

Expressions

The simplest expressions of HOPE are constants (i.e. data

constructors and functions - the 'usual' concept of a constant is
just the class of nullary functions and data constructors) and

variables.

An pplication may be formed by simply juxtaposing two expressions:

(f x) y

The first expression, (f x), is taken to be a function which is
applied to the second, y.

It is possible to use function symbols as infix, postfix, outfix and

distributed-fix if they are declared and given a precedence. For

example:

infix + : 8

HOPE has a conditional expression:

a if b else c

Lambda expressions (denoting functions) are formed as described in

the next section.

Local variables may be introduced and asssociated with values using

either of the equivalent forms:

e where p == g

or

let p == g in e

where p is an expression formed by application of data constructors

to a number of distinct variables (this is called a pattern). For

example:

a + b where cons(a,cons(b,l)) _= f(t)

217

Upon evaluation, f(t) is expected to yield a value which matches the

pattern 'cons(a,cons(b,l))'. The corresponding subterms in the value

of f(t) are then bound to a, b and 1. Notice that the binding to 1 is
not used in the evaluation of the above expression. We therefore may

allow patterns to have "holes" in them (denoted by an underscore)
where we do not wish a matching to take place. Then the above

expression would become:

a + b where cons(a,cons(b,)) == f(t)

(yielding the same value but with less work).

"Multilevel patterns" are also catered for: If x is a variable and P

is a pattern, then x & P is also a pattern. The effect of this is

that x is matched to the value matching the entire pattern P whilst

variables within P are bound as before. For example, if 1 is a list,

then the following expression:

let cons(el, t & cons(e2,)) _= 1 in f(el,t,e2)

binds el to the head of 1, t to the tail of 1 and e2 to the head of

the tail of 1. Evidently the above expression could be written

without an & but less concisely as:

let cons(el,t)
let cons(e2,)

1 in
t in f(el,t,e2)

Note that & binds more tightly that comma (tupling) but less tightly

than function application.

Defining Functions

Before a function is defined, its type must be declared. For

example:

dec reverse : List(alpha) -> List(alpha).

HOPE is a strongly typed language, and the HOPE system includes a

polymorphic type checker (a modification of that in [Milner 1978])

which is able to detect all type errors at compile time. Function
symbols may be overloaded - declared several times with different

types. When this is done the typechecker is able to determine which

function definition belongs to each instance of the function symbol.

Functions are defined by a sequence of one or more equations, where

218

each equation specifies the function over some subset of possible

argument values. This subset is described by a pattern on the

left-hand side of the equation. For example:

--- reverse(nil) <= nil

--- reverse(cons(a,l)) <= reverse(l) <> cons(a,nil)

(the symbol <> is infix append). This defines the (top-level)

reverse of a list.

The set of equations defining a function should exhaust the

possibilities given in the data statement introducing the argument

types. Nullary functions may also be defined:

dec 2 : Num
--- 2 <= succ(succ(O))

(Actually, numbers as well as lists, sets, characters and

truth-values are built into the HOPE system.)

Lambda expressions are defined similarly. For example, a function to

compute the conjunction of truth-values:

lambda true,true => true

false, _> false
,false => false

Notice the use of case analysis on patterns which is allowed within a

lambda expression. Lambda expressions are often used in the

definition of higher order functions (functionals):

typevar alpha, beta, gamma

dec compose : (alpha -> beta) # (beta -> gamma)
-> (alpha -> gamma)

--- compose(f,g) <= lambda x => f(g(x))

HOPE has several features which we shall not explain as they do not

occur in our programming. For instance, there is a simple data

abstraction facility, there is lazy evaluation (for lists) and

several iterators are available for sets and lists. Comments in HOPE

are indicated by an exclamation mark.

219

APPENDIX FOUR

CLEAR : A SHORT TUTORIAL

The following outline of the CLEAR specification language is a

summary of the pertinent parts of the following three papers:

Burstall and Goguen [1977], [1980a] and [1980b]. The reader should

consult these papers for a more thorough explanation of the language

and its semantics.

A specification in CLEAR is built from algebraic theories using

operations to modify or combine specifications in various ways.

CLEAR allows us to build specifications in a modular manner.

Thus a CLEAR specification may simply be an algebraic theory in the

form of a set of sorts, of operations and of equations. For example:

constant SemiGroup =
sorts element
opns mult : element, element -> element
egns

mult(a,mult(b,c)) = mult(mult(a,b),c)
end

Any semigroup is an algebra of the above specification. There are

occasions (when we are dealing with data types) when we need to

constrain the possible interpretations of a specification to those

which are initial or, more generally, free in some sense. The DATA

operation of CLEAR allows us to do this. For instance:

constant Simple Bool =
data sorts bool

opns true : bool
false : bool

end

The keyword "data" here means that the only algebra of this

specification is the initial algebra (in this case the initial

algebra has only two elements in the carrier). In fact "data" also

introduces an explicit equality on the sorts constructed.

It ought to be mentioned that CLEAR is not restricted to equational

theories. More general theories (e.g. those with general predicate

calculus expressions instead of equations) can be used only we must

ensure that when a "data" occurs the relevant initial or free

220

algebras exist. In the case of equational theories this is

automatically the case, in general it is not so.

We can add extra sorts, operations and equations to a specification

by the ENRICH operation:

constant Bool =

enrich Simple Bool by
opns not : bool -> bool

and : bool, bool -> bool
eqns

not(true) false
not(false) = true
b and true = b
b and false = false

end

Note that the equation 'x and y = y and x' does not follow by

equational deduction from the equations in Bool. However because

Simple Bool is to be interpreted initially the equation is valid in
this specification (it follows by case analysis on the elements in
the carrier of the initial algebra).

We now turn to the fixing together of specifications to build large

specifications in a modular manner. Suppose we specify "relations"

as follows:

constant Relation =

enrich Simple Bool by
sorts element
opns rel : element,element -> bool

end

We may want to add to this theory the further operations on booleans

available in the theory Bool (for instance to specify equivalence

relations). We could do this by an enrichment but since we have the

theory of Bool at hand we use the CLEAR operation COMBINE (written as

an infix "+"):

constant Full Relation = Relation + Bool end

The theory Full Relation has the sorts and operations of both

Relation and Bool but has only one "copy" of the theory Simple Bool -

it being a common subtheory. In general COMBINE gives the disjoint

union of the sorts and operations (with the associated equations)

except where there is a common subtheory in which case only one copy

221

of the sorts and operations in the common subtheory are retained.
For instance in Full Relation there is only one operation "true" and

one "false". This prevents a proliferation of sorts and operations
which ought to be identified. It is handled semantically by

introducing environments in which theories are defined.

CLEAR allows procedural (or parameterised) specifications. For

instance we may specify lists of objects of an arbitrary type:

procedure Lists(X : Triv)

enrich X by
data sorts list

opns nil : list
cons : element,list -> list

end

Notice that this procedure needs not only a formal parameter, X, but

also a "constraint" (called a metasort) upon this parameter. The

metasort itself is a theory. In this case the constraint upon X is
merely that there is at least one sort in X so that we may build
lists of objects of a particular sort. Thus the metasort is the

theory Triv:

constant Triv =

sorts element
end

In general the metasort is more elaborate. For instance if we were

defining a procedure to produce ordered lists of elements then

instead of Triv we would need the theory of total-orders as a

metasort.

To apply a procedure, we need to show how the actual parameter "fits"
the metasort. For a theory of lists of booleans we would write:

constant Bool Lists = List(Bool[element is bool]) end

showing that the sort 'element' in Triv is bound to the sort 'bool'
in Bool. If the metasort has operations as well as sorts we need to

show how these operations fit those in the actual parameter and that
the fitting respects the equations which are present (that is, this
fitting is a theory morphism).

The final operation supplied in CLEAR is a data abstraction facility.
It is often convenient to build up a large specification and then

222

abstract from it certain sorts and operations (and the equations

associated with them) and "hiding" the rest. The CLEAR operation

DERIVE allows us to do this. For instance, we might want to

represent numbers as binary numbers using bit-strings from the theory

Bool Lists:

constant Numbers =

derive sorts num
opns 0 : num

succ : num -> num
using Bool
from enrich Bool Lists by

opns zero : list

add-one : list -> list
eqns zero = cons(false,nil)

addone(cons(false,l)) = cons(true,l)
add_one(cons(true,nil)) =

cons(false,cons(true,nil))
add_one(cons(true,cons(x,l)))

cons (false,add one(cons(x,l)))
by num is list

0 is zero
succ is add one

end

Thus the representation of a number is a list of booleans with the

least significant figure at the head. Notice that the operations

'nil' and 'cons' are not available in Numbers - they are "hidden".

The foregoing informal description of CLEAR is made precise with a

formal semantics in [Burstall and Goguen 1980a]. Several reasonably

substantial specifications have been written in CLEAR including a

"garbage collector" [Burstall and Goguen 1980b].

223

INDEX OF DATA TYPES AND FUNCTIONS

Data Type
or Function

add edge
Adjunction
apex functor

Cat
cat of chains
catof_composition graphs

functors
catof graphs

sets
cat of signatures

C_Cat
c_cat_of_sets
Coequaliser
closure

Colimit
colimitapex _functor

of graphs
colimitcatoffunctors
colimit cat of sets
colimit cat of signatures

colimit comma cat
colimit cone

comma cat
Comma Mar

Cone
cone
Cone Mor

cpdiagram

cross_product

Page

40 Diagram 29
108 Diagram Mor 30
34 discrete graph 83

14 finite colimit 41

56 finite w colimit_cat 58
142 free-theory 139
33 Functor 17
29

26 Graph 25
17 graph 27

28 Graph Mor 25

37 I 24

43 infinite w colimit cat
36 of graphs 61

93 infinite_wcolimit cat
of sets 61

34 InitialObj 36

35

34 K 24

51

211 Label 30

43 left 25
51 LG 83

51 mapcar 139
35 Monad 109

35 monadic-signature 136
M Signature 135

24 multicoprod 39

23

Nat transform 28

33
34 ofm 17
33 ofo 17

36
30 Po Diagram 85

26 right 25

right-comma-cat 25

224

right obj comma cat 25 Tag 27
11

59
Semigroup 140 term functor 137
Set Mor 16 transitive closure 144
SC

Signature
89
28

-
unit-diagram 33

Signature Mor 28
Small Cat 88 wChain 54
Small Functor 89 w Chain Mor 55
strings 27 w_Cocomplete_Cat 56

w Colimit 56
Tag 26 w colimit cat 57

w_colimit_functor 137
w -diagram functor 56

225

BIBLIOGRAPHY

Aho A.V., Hopcroft J.E. and Ullman J.D. (1974) The Design
and Analysis of Computer Algorithms.
Addison Wesley.

Adamek J. (1979) Construction of Free Ordered Algebras.
Faculty of Electrical Engineering. Fel Cvut,
Suchbatrarova 2. 166 27 Praha 6. Czechoslovakia.

Adamek J. and Koubek V. (1980) Are Colimits of Algebras Simple
To Construct? J. Algebra, 66, 226-250.

Adamek J. and Trnkova V. (1978) Varietors and Machines.
Comp. and Inform. Science Technical Report, 78-6,
University of Massachusetts at Amherst.

Backus J. (1978) Can programming be liberated from the
Von Neumann style?
Comm. A.C.M 21. 8. pp 613-641

Barr M. (1970) Coequalisers and Free Triples.
Math. Z. 2. Vol 116. pp 307-332.

Birkhoff G. (1938) Structure of Abstract Algebras.
Proc. Cambridge Phil. Soc. 31 pp 433-454.

Broy M. and Wirsing M. (1980) Initial versus Terminal Algebra
Semantics for Partially Defined Abstract Types.
Institut Fur Informatik, Technische Universitat
Munchen.

Burstall R.M. (1972) An Algebraic Description of Programs
with Assertions, Verification and Simulation.
Proc A.C.M. Conf. on Proving Assertions about
Programs. New Mexico.

Burstall R.M. (1980) Electronic Category Theory.
Proc. Ninth International Symposium on The Mathematical
Foundations of Computer Science, Rydzyua, Poland.

Burstall R. M. and Darlington J. (1977) A transformation system for
developing recursive programs. J.A.C.M. 24 44-67.

Burstall R. M. and Goguen J. A. (1977) Putting Theories Together
To Make Specifications. In Proc. of the Fifth International
Joint Conference on Artificial Intelligence, Boston.

Burstall R.M. and Goguen J. A. (1980a) The Semantics of Clear, a

Specification Language. Proc. 1979 Copenhagen Winter School
on Abstract Software Specification.

Burstall R.M. and Goguen J.A. (1980b) An Informal Introduction to
Specifications using CLEAR.
Dept. of Computer Science, University of Edinburgh.

226

Burstall R.M. and Goguen J.A. (1980c) CAT, a System for the
Structured Elaboration of Correct Programs from
Correct Structured Specifications. Research Report,
SRI International, Menlo Park, Calif.

Burstall R.M. and Landin P.J. (1969) Programs and Their Proofs:
An Algebraic Approach. Machine Intelligence 4,
Edinburgh: University Press. 17-44.

Burstall R.M., MacQueen D.B. and Sannella D.T. (1979) HOPE:
An Experimental Applicative Language.
Comp. Sci. Dept. Report, University of Edinburgh.

Burstall R.M. and Rydeheard D.E. (1979) The Free Algebraic
Theory on a Signature. Unpublished Report. Dept.
of Artificial Intelligence, Univ. of Edinburgh.

Burstall R.M. and Thatcher J.W. (1974) The Algebraic Theory of
Recursive Program Schemes. Proc. of First International
Symp: Category Theory Applied to Computation and
Control. University of Amherst.

Darlington J. (1978) A Synthesis of Several Sorting Algorithms.
Acta Informatics 11, 1-30.

Dijkstra E.W. (1968) Goto statement considered harmful.
Comm. A.C.M. 11 pp 147-148.

Dubuc E.J. (1974) Free Monoids. J. Algebra, 29, 208-228.

Dungan D.M. (1979) Bibliography on Data Types.
SIGPLAN Notices 14, 11, 31-59.

Ehresmann Ch., (1960) Categorie des foncteurs types.
Rev. Un. Mat. Argentina, 20 pp 194-209.

Ehresmann Ch., (1963) Categories doublees et categories structurees.
C.R. Acad. Sci. Paris. 256 pp 1198-1201.

Ehrig H., Kreowski H-J., Maggiolo-Schettini A., Rosen B. and
Winkowski J. (1977) Deriving Structures from Structures.
Research Report. IBM Research Centre, Comp. Sci. Dept.,
Yorktown Heights, N.Y.

Ehrig H., Pfender M., and Schneider H. (1973) Graph Grammars: An
Algebraic Approach. Proc. 14th. Ann. IEEE Symp. on
Switching and Automata Theory, pp 167-180.

Ehrig H. and Rosen B. (1980) Mathematics of Record Handling.
SIAM J. Comput. Vol. 9, No. 3.

Eilenberg S. and Moore J.C. (1965) Adjoint functors and Triples.
Ill. J. Math. 9 pp 381-398.

227

Ehrich H.-D. (1978) Extensions and Implementations of Abstract Data
Type Specifications. Proc. 7th. Symp. Math. Foundations
of Comp. Science. Zakopane, Poland.
Springer-Verlag.

Freyd P. (1972) Aspects of Topoi.
Bull. of Australian Math. Soc. Vol. 7, 1-76.

Godement R. (1958) Theorie des Faisceaux. Hermann.

Goguen J. A. (1978) Order-Sorted Algebras: Exception and Error Sorts,
Coercions and Overloaded Operators.
Unpublished Report, UCLA Los Angeles.

Goguen J.A. and Burstall R.M. (1978) Some Fundamental Properties of
Algebraic Theories : A Tool for the Semantics of Computation.
Dept. of Artificial Intelligence Report No. 53., University
of Edinburgh.

Goguen J. A., Thatcher J. W. and Wagner E. G. (1978)
An initial algebra approach to the
specification, correctness and implementation
of Abstract Data Types. Current Trends in Programming
Methodology, IV, Data Structuring. Prentice Hall pp 80-149.

Goguen J.A., Thatcher J.W., Wagner E.G. and Wright J.B. (1975)
An Introduction to Categories, Algebraic Theories and
Algebras. I.B.M. Research Rep. RC 5369. T.J. Watson
Research Centre, Yorktown Heights, N.Y.

Goguen J.A., Thatcher J.W., Wagner E.G. and Wright J.B. (1977)

Initial Algebra Semantics and Continuous Algebras.
Jour. A.C.M. 24. 1. pp 68-95.

Guttag J.V., Horowitz E. and Musser D.R. (1978)

Abstract Data Types and Software Validation.
Comm. A.C.M. 21, No. 12, pp 1048-1063.

Herrlich H. and Strecker G. E. (1973) Category Theory.
Allyn and Bacon.

Hoare C.A.R. (1974) Proofs of Correctness of
Data Representations. Acta Inform. 1. pp 271-281.

Kan D. M. (1958) Adjoint functors.
Trans. American Math. Soc. 87 pp 294-329.

Kaphenst H. and Reichel H. (1971) Algebraische
algorithmentheorie. VEB Robotron, Zentrum
fur Forschung and Technik, Dresden, WIB.

Klaeren H. (1980) An Abstract Software Specification Technique
Based on Structural Recursion. SIGPLAN Notices 15, 28-34.

228

Kleisli H. (1965) Every Standard Construction is induced by
a pair of Adjoint Functors.
Proc. Am. Math. Soc. 16. pp 544-546.

Landin P.J. (1966) The Next 700 Programming Languages.
Comm. A.C.M. 9, 3, pp 157-166.

Landin P.J. (1969) A Program Machine Symmetric Automata Theory.
Machine Intelligence 5, Edinburgh University Press.

Lawvere F.W. (1963a) Functorial Semantics of Algebraic Theories.
Proc. Nat. Acad. of Science. 50 pp 869-872

Lawvere F.W. (1963b) Functorial Semantics of Algebraic Theories.
Ph.D. Thesis. Columbia University.

Lehmann D.J. and Smyth M.B. (1977) Data Types.
Theory of Computation Report No. 19. University
of Warwick.

Linton F.E.J.(1969) Coequalisers in Categories of Algebras. Lecture
Notes in Mathematics. No. 80. Springer-Verlag.

Liskov B.H. and Zilles S.N. (1974) Programming with Abstract
Data Types. Proc. A.C.M. SIGPLAN Sym. on Very
High Level Languages. SIGPLAN Notices 9 pp 50-59.

Mac Lane S. (1948) Groups, categories and duality.
Proc. Nat. Acad. Sci. U.S.A. 34 pp 263-267.

Mac Lane S. (1965) Categorical Algebra.
Bull. of the Amer. Math. Soc. 71 pp 40-106

Mac Lane S. (1971) Categories for The Working Mathematician.
Springer-Verlag.

Mac Lane S. (1975) Sets, Topoi and Internal Logic in Categories.
Logic Coll., Bristol. 1973.

North Holland.

Majster M.E. (1979) Data Types, Abstract Types and Their
Specification Problem. Theor. Comp. Sci.
8 pp 89-113.

Manes E.G. (1976) Algebraic Theories.
Springer-Verlag, New York.

Manna Z. and Waldinger R. (1980) A deductive approach to
program synthesis. A.C.M. Trans. on Prog. Lang. and Sys.
Vol. 2, No. 1.

Meseguer J. (1978) Completions, Factorisations and Colimits
for w-posets. Semantics and Th. of Computation

229

Report No. 13. U.C.L.A.

Milner R. (1978) A Theory of Type Polymorphism in
Programming. J. of Compn. and System Sci.
17 No. 3 pp 348-375.

Morris F. L. (1973) Advice on Structuring Compilers and
Proving Them Correct. A.C.M. Symp. on the
Principles of Programming Languages. pp 144-152.

Morris J.H. (1973) Types are not Sets. A.C.M. Sym. on the
Principles of Programming Languages. pp 120-124.

Nourani F. (1980) On Induction for Programming Logic : Syntax,
Semantics and Inductive Closure. Bulletin of EATCS.
Vol. 3. No. 13. pp 51-64.

Parsaye-Ghomi K. (1981) Higher Order Data Types.
Submitted for PhD. Comp. Science Dept. U.C.L.A.

Reichel H. (1980) Initially Restricting Algebraic Theories.
Proc. of Mathematical Foundations of Computer Science,
Vol. 88, Springer-Verlag, Berlin. pp 504-514.

Reynolds J.C. (1978) Category Sorted Algebras. Manuscript,
Syracuse University.

Robinson J. A. (1965) A machine - oriented logic based on
the resolution principle. J.A.C.M. 12. 1. 23-41.

Sannella D. (1981) A New Semantics for Clear.
Dept. of Comp. Sci. University of Edinburgh.
Unpublished Report.

Schubert H. (1972) Categories. Springer-Verlag.

Schwartz J. T. (1980) Ultracomputers. A.C.M. Trans. on Prog.
Lang. and Sys. Vol. 2 No. 4.

Smyth M.B. and Plotkin G.D. (1977) The Category-Theoretic
Solution of Recursive Domain Equations.
Proc. of Foundations of Comp. Sci.

Thatcher J.W., Wagner E.G. and Wright J.W. (1981)

More on Advice on Structuring Compilers and Proving
Them Correct. Theoretical Comp. Sci. 15 pp223-249.

Wagner E., Wright J., Goguen J.A. and Thatcher J. W. (1978) Some
Fundamentals of Order-Algebraic Semantics.
Research Report, IBM Laboratories, Yorktown
Heights, N.Y.

Wand M. (1979) Final Algebra Semantics and Data Type Extensions.
Jour. of Compn. and System Sci. 19. 27-44.

230

Warshall S. (1962) A Theorem on Boolean Matrices.
Jour. A.C.M Vol. 9. No. 1. pp 11-12.

	PhD coversheet April 2012
	EDI-INF-PHD-81-008.pdf

