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Abstract 

Major Depressive Disorder (MDD) is a disabling, common psychiatric 

disorder and the leading cause of global disability. A complex combination of genetic 

and environmental factors gives rise to MDD, although the exact aetiology has not 

been identified. Genome-wide association studies (GWAS) have established that 

MDD has a moderate heritability of approximately 37%. MDD has in the past also 

been associated with abnormalities of white matter microstructure, which represents 

the brain’s connectivity network. This network is also moderately heritable, providing 

rationale to investigate its relationship to MDD genetic risk.  

Over recent years, there has been considerable progress in establishing genetic 

contributions to MDD. These advances can be harnessed, in combination with 

neuroimaging and epigenomics, to understand the neurobiology of the disorder. This 

has only recently become possible at sufficient scale with the availability of large 

publicly available datasets including genomic, epigenomic, and neuroimaging data. 

In the current thesis, I therefore aimed to leverage genetic, epigenetic, and 

neuroimaging data in two large datasets, UK Biobank (N range: 6,400 – 14,800) and 

Generation Scotland: Scottish Family Health Study (N = 625). Specifically, I aimed to 

uncover links between white matter microstructure, as measured by fractional 

anisotropy and mean diffusivity, and (i) differential gene expression as indexed by 

expression quantitative trait loci (eQTLs) scores in chapter 2; here, decreased white 

matter integrity was found to be associated with 6 scores regulating genes previously 

reported to be implicated in neurological and neuropsychiatric disorders, while 2 

scores regulating neurodevelopment-linked genes were associated with increased 

white matter integrity; (ii) MDD genetic risk stratified by the NETRIN1 Signalling 

Pathway, previously implicated in MDD, indexed by polygenic risk scores (PRS) in 

chapter 3; results indicated novel associations between the pathway-focussed PRS and 

decreased white matter integrity in thalamic radiations, as well as several association 

fibres, including superior and inferior longitudinal fasciculus; (iii) a novel whole-

genome epigenetic risk score for MDD, which uncovered an association with MDD, 

but no significant associations with changes in white matter microstructure (chapter 

4). The overall aim of the thesis was to use advanced genomic techniques to stratify 
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genetic function and risk and explore epigenetic risk for MDD in order to identify 

novel links to structural brain connectivity. 

Overall, the three studies provide a strong rationale for integrating 

neuroimaging, genomic and epigenomic data. Specifically, findings in chapter 2 

indicate the importance of DCAKD, SLC35A4, SEC14L4, SRA1, PLEKHM1, UBE3C, 

NMT1, and CPNE1, not previously found by conventional GWAS approaches. This 

suggests that integrating neuroimaging and genetic expression data may uncover novel 

associations that inform disease- or trait-specific genetic links to brain connectivity. 

Chapter 3 results provide a rationale for investigating the NETRIN1 Signalling 

Pathway and emphasise the role of thalamic connections in MDD within this biological 

pathway, indicating that novel associations with brain connectivity may be uncovered 

at a more focused level when stratifying MDD risk by biology. Finally, results from 

chapter 4 indicate that epigenetics play an important role in MDD risk, although further 

analysis including larger-scale epigenetic and neuroimaging data should be carried out 

to uncover the role of epigenetics in relation to brain phenotypes. 
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Lay summary 

Major Depressive Disorder (MDD) is a common psychiatric disorder affecting 

approximately 4.4% of the world’s population. Although a complex mixture of 

environmental and genetic factors plays a role in MDD, an exact cause has not been 

identified. MDD has been linked to changes in the wiring of the brain, which is also 

known to have a genetic component, making it a valid target in the investigation of 

MDD. 

Combining neuroimaging and genetic data is useful in the investigation of 

MDD, as it may provide novel insights into disease mechanisms, ultimately leading to 

disorder categorisation and novel treatments. Despite this, large-scale studies 

combining both types of data have only recently become available. 

The current thesis therefore presents three studies using two large datasets that 

comprise both genetic and neuroimaging data. In chapter 2, I looked at the genetics 

behind protein production, which is carried out by genes. I found that poorer 

connectivity was associated with genes previously known to play a role in brain-related 

disorders, while better connectivity was linked to those implicated in developmental 

processes. In chapter 3, genetic risk for MDD aggregated in a specific biological 

process was linked to poor connectivity between the thalamus and other parts of the 

brain, as well as to connections linking homologous parts of the two brain 

hemispheres. In chapter 4, two types of MDD risk, one coming from multiple genetic 

mutations, and one which may be modified by environmental factors called 

“epigenetic risk”, were shown to additively increase risk of having MDD, but were not 

linked to brain connectivity in this sample, though larger studies with this specific type 

of “epigenetic” data are required. 

The three studies show that using analysis methods that link different forms of 

genetic data to neuroimaging variables may elucidate the role played by a large number 

of genetic mutations in MDD, as well as identify specific biomarkers, improving 

diagnosis and treatment outcomes. 
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Chapter 1: Introduction 

 

1. Major Depressive Disorder (MDD) 

 

1.1 Definition and diagnosis 

Major Depressive Disorder (MDD) is a common psychiatric disorder and the 

leading cause of disability worldwide. According to a report by the World Health 

Organization (2017), it is estimated that over 300 million individuals are affected 

globally, which is equivalent to 4.4% of the world’s population (World Health 

Organization, 2017).  

MDD is mainly characterized by at least one depressive episode of at least a 2-

week duration, with symptoms persisting for most of the day, nearly every day. 

According to the Diagnostic and Statistical Manual of Mental Disorders-V (DSM-V), 

for a diagnosis of MDD, at least 5 of 9 symptoms must be present (Table 1). At least 

one of the symptoms must be either depressed mood or loss of interest or pleasure in 

daily activities. In addition, MDD may be further characterized using specifiers, which 

describe the nature of an episode (e.g. severity of episode, with mixed, melancholic, 

atypical, mood-congruent psychotic or mood-incongruent psychotic features, with 

catatonia, with peripartum onset or with a seasonal pattern). These symptoms must 

mark a significant change from previous functioning, such as impairment in social, 

educational or occupational domains, and may not be attributable to another medical 

condition (APA, 2013).  

Due to the classification system of MDD, there are over 200 ways in which 

patients can meet diagnostic criteria for MDD. This means that 2 patients diagnosed 

with MDD can have completely different symptom profiles (Zimmerman et al., 2015). 

Moreover, some symptoms are alternative or opposite: a patient presenting with 

psychomotor agitation and insomnia meets criteria in the same way as a patient 

presenting with psychomotor retardation and hypersomnia (Goldberg, 2011). These 

factors make MDD a highly heterogeneous disorder, which may lead to difficulty in 

downstream analyses of the disorder.  
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To address this inherent heterogeneity, stratification of the disorder is needed. 

For instance, patients may form sub-groups comprised of different biological 

mechanisms. Kunugi et al. (2015) discuss three distinct biological mechanisms which 

may act as sub-groups of MDD. Briefly, different classes of antidepressants inhibit the 

reuptake of neurotransmitters in the monoamine system (serotonin, noradrenaline, 

dopamine), which are thought to be important biomarkers for MDD; secondly, the 

hypothalamic-pituitary-adrenal (HPA) axis has been shown to be disrupted in MDD, 

with patients showing both hyper- and hypo-cortisolism; lastly, MDD has been 

proposed as a chronic inflammatory disease, as shown by inflammatory markers linked 

to the disorder. However, research has been inconclusive and often showed opposite 

results when investigating these three, and other, mechanisms in MDD patients (Hodes 

et al., 2015; Kunugi et al., 2015), suggesting the importance for potential biological 

stratification of patients in future analyses. 

In addition, studies suggest stratification of symptoms when assessing their 

association with traits of interest. Pearson et al. (2017) investigated the extent to which 

variation in single nucleotide polymorphism (SNPs) explained variation in 4 MDD 

symptom dimensions in 1,345 cases. They found that core depressives symptoms such 

as sad mood and anhedonia had a lower SNP heritability (14%) than symptoms such 

as insomnia and appetite (30% for both), although replication is needed for a more 

robust conclusion of this study (Pearson et al., 2017).  

The approach of stratifying patients through biological systems or phenotypic 

similarity allows for more homogeneity within MDD when investigating specific links 

to biologically relevant mechanisms. This may lead to a more effective personalised 

medicine approach, such as tailoring treatment options to specific sub-groups 

(Wardenaar & de Jonge, 2013; Fried, 2017). 
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 Symptom 
1. Depressed mood most of the day, nearly every day, as indicated by either 

subjective report (e.g., feels sad, empty, hopeless) or observation made by others 
(e.g., appears tearful). (Note: In children and adolescents, can be irritable mood) 

2. Markedly diminished interest or pleasure in all, or almost all, activities most of 
the day, nearly every day (as indicated by either subjective account or 
observation) 

3. Significant weight loss when not dieting or weight gain (e.g., a change of more 
than 5% of body weight in a month) or decrease or increase in appetite nearly 
every day. (Note: In children, consider failure to make expected weight gain) 

4. Insomnia or hypersomnia nearly every day 
5. Psychomotor agitation or retardation nearly every day (observable by others, 

not merely subjective feelings of restlessness or being slowed down) 
6. Fatigue or loss of energy nearly every day 
7. Feelings of worthlessness or excessive or inappropriate guilt (which may be 

delusional) nearly every day (not merely self-reproach or guilt about being sick) 
8. Diminished ability to think or concentrate, or indecisiveness, nearly every day 

(either by subjective account or as observed by others) 
9. Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation 

without a specific plan, or a suicide attempt or a specific plan for committing 
suicide 

Table 1. DSM-V diagnostic criteria for MDD (APA, 2013).  

1.2 Epidemiology 

The average 12-month prevalence of MDD is approximately 6%, with 1 in 6 

individuals affected. Although limited by recall bias and underestimation, reports 

show that approximately 20% of all individuals fulfill diagnosis criteria for MDD at 

some point in their life (Otte et al., 2016). MDD typically affects twice as many women 

(5.1%) as men (3.6%), at any age (WHO, 2017), with the number of MDD episodes 

also being more frequent in women than men (Otte et al., 2016). Moreover, the median 

age of onset is 25 years for both men and women, although MDD may appear at any 

age, and the risk period for MDD appearance ranges from mid-adolescence to mid-life 

(early 40s) (Otte et al., 2016). 

Between 2005 and 2015, it is estimated that the number of people with an MDD 

diagnosis increased by 18.4%, reflecting both a growing population and an increase in 

the possible age groups which receive an MDD diagnosis (WHO, 2017). Briefly, 

nowadays, more individuals globally grow to an older age, leading to an increase in 

incident cases. 
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 A recent WHO report indicated that there are some regional differences in the 

prevalence of MDD, ranging from 2.6% affected males in the Western Pacific region, 

to 5.9% affected females in the African region. Moreover, from a total of 322 million 

affected individuals worldwide, 9% of these are in the African region while 27% are 

in the South-East Asia Region (WHO, 2017). MDD also affects individuals 

irrespective of income. Bromet et al. (2011) investigated data from 18 countries 

categorized by income (N = 89,037) and found that the lifetime and 12-month 

prevalence was 14.6% and 5.5% in 10 high-income and 11.1% and 5.9% in 8 low-

income countries, respectively, indicating that the manifestation of MDD is similar 

across countries, independent of income (Bromet et al., 2011).  

 

1.3 MDD impact on everyday functioning and treatment options 

The economic burden of MDD has increased through the years, with 5% 

attributable to suicide-related costs, 48-50% to workplace costs, and a significant 45-

47% accounting for direct medical costs (Greenberg et al., 2015). MDD has a 

substantial impact on workplace performance, with MDD individuals missing 

approximately one month of work per year (McIntyre et al., 2015) Moreover, 

approximately 60% of individuals with MDD report impairment of functioning (Fried 

& Nesse, 2014). Furthermore, MDD has an effect on a range of domains which may 

impact individuals’ capability for self-care and independent living, including homelife, 

social activities and relationships (Beblo et al., 2010; Rot et al., 2012; Fried & Nesse, 

2014). 

Given the far-reaching negative impact of MDD, numerous treatment options 

have been investigated in order to establish which is the most efficacious. Gartlehner 

et al. (2017) looked at 140 pharmacological and non-pharmacological treatment 

options in a review of systematic reviews and identified only 5 treatment options for 

which the general efficacy for MDD in an acute phase is supported by reliable 

evidence. Of these, cognitive-behavioural therapy seems to be the only non-

pharmacological treatment with similar efficacy to second generation antidepressants, 

based on moderate strength evidence (Gartlehner et al., 2017). Khan et al. (2012) 

aimed to compare the efficacy of various treatment options in a review, including 
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psychotherapy, pharmacotherapy, a combination of those two, and alternative 

therapies. Although further research is needed, they concluded that a combination of 

psychotherapy and pharmacotherapy provided a slight advantage as compared to only 

taking antidepressants or participating in therapy.  

 Lastly, Cipriani et al. (2018) carried out a review and meta-analysis 

investigating the efficacy and acceptability of 21 antidepressant drugs in the acute 

treatment of adults with MDD, which included 116,477 participants across 522 trials. 

All 21 antidepressants were more efficacious than placebo in adults with MDD with 

modest effect sizes, although there was variability in their efficacy and acceptability, 

which indicates heterogeneity of acting drugs.  

The variability in treatment for MDD mentioned above suggests that empirical 

research is needed in order to uncover novel targets for intervention. Genetic studies 

targeting specific biological pathways and genes, as well as neuroimaging studies 

focusing on specific brain regions associated with MDD will be needed in order to 

address the need for novel optimal treatment options. 

 

1.4 Major risk factors 

MDD arises as a result of a complex combination of environmental and genetic 

risk factors. The sections below outline some of the major risk factors, and it is 

important to note that these do not act in isolation. In MDD, gene-environment 

interactions are complex, and cumulatively act to predispose individuals to the 

development of the disorder throughout their lifetime (Lopizzo et al., 2015).  

 

1.4.1 Environmental risk factors 

A majority of epidemiological studies find that gender and age are highly 

associated with depression (Stordal et al., 2001; Brodaty et al., 2005).  As indicated 

above, women have a two-fold increased risk of MDD, and MDD risk is known to 

increase with age (WHO, 2017). In addition, a variety of other sociodemographic 

factors increase the risk of depression. For instance, childhood is a period in life when 

the brain is vulnerable and sensitive due to developmental processes (Heim & Binder, 
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2012). Therefore, early-life stressors such as early adversity (e.g. sexual, physical, and 

emotional abuse and maltreatment), parental loss due to separation or death, poor 

paternal relationships, or maternal overprotection have all been reported to lead to an 

increased risk of depression (Gibb et al., 2001; Gibb, Chelminski & Zimmerman, 

2007; Heim & Binder, 2012). Other environmental risk factors later in life include 

stressful life events, such as moving to a new house (Bhugra & Ayonrinde, 2004), a 

lower socio-economic status (Gavin et al., 2010), and a stressful work environment 

(Theorell et al., 2015). 

 

1.4.2 Health risk factors 

In addition to environmental risk factors, multiple health factors may increase 

the risk for depression. For instance, researchers have found that a family history of 

depression and co-morbidity with other psychiatric disorders (e.g. schizophrenia, 

bipolar disorder, anxiety disorders) may lead to an increased risk of depression. 

Individuals who have already experienced an episode of depression are also at 

increased likelihood of experiencing further episodes (Kendler et al., 2001).  

Brook et al. (2002) showed that cumulative use and frequency of drug use, such 

as alcohol and marijuana, in childhood and early adolescence, was associated with 

episodes of MDD in the late 20s (Brook et al., 2002), a link uncovered in other studies 

as well (Nemeroff & Vale, 2005; Neupane, 2016). Moreover, food addiction has 

previously been linked to both MDD and depressive symptom severity (Mills et al., 

2020). 

Lastly, previous evidence has shown that physical conditions, such as 

cardiovascular disorders and type 2 diabetes, may also lead to an increased risk of 

depression (Beekman et al., 2000; Heim & Binder, 2012). Chronic inflammatory states 

and chronic pain have been consistently associated with depression prevalence 

(Dantzer et al., 2007; Ohayon & Schatzberg, 2003; Ohayon & Schatzberg, 2012). 

During system infections for instance, continual activation of the peripheral immune 

system may lead to the development of depressive symptoms, marking inflammation 

as an important risk factor for depression (Dantzer et al., 2007). Furthermore, in their 

study investigating the prevalence of chronic painful physical conditions and MDD, 
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Ohayon and Schatzberg (2010) found that 73.3% of participants who met criteria for 

MDD also reported chronic pain (Ohayon & Schatzberg, 2010). The studies above 

therefore indicate the importance of both physical and psychological health factors in 

MDD prevalence. 

 

1.4.3 Genetic risk factors 

Twin, adoption, and family studies 

In an early meta-analysis of studies investigating genetic contributions to 

MDD, Sullivan et al. (2000) concluded that MDD is a heritable trait, stating that 

genetic effects are the most important contributor to familial aggregation. Twin studies 

investigating concordance rates for MDD indicate a heritability of approximately 37%, 

and family studies indicate that first-degree relatives of probands have a two-fold to 

three-fold increase in lifetime risk of developing MDD (Lohoff, 2010).  

Linkage and candidate gene studies 

 Family, twin, and adoption studies have also provided support for the genetic 

contribution to MDD, and a number of linkage and candidate gene studies were 

conducted in the 2000s in order to identify specialised loci and genes conferring risk 

to MDD. However, although this type of approach was successful in the investigation 

of rare, Mendelian disorders with high penetrance, no major loci of large effect were 

reported for MDD. These studies were largely underpowered, which may have played 

a role in the unsuccessful results. Border et al. (2019) recently investigated 18 genes 

that were empirically identified by such studies to have had an association with MDD. 

Using new well-powered samples (Nrange = 62,138 – 443,264), the authors showed that 

none of the most highly investigated polymorphisms within these 18 genes 

demonstrated a significant genetic contribution to the liability of MDD (Border et al., 

2019).  

This, and additional studies described below, has provided additional support 

to the hypothesis that MDD is likely to be a polygenic disorder, with thousands of loci 

of minor effect contributing a fraction to the liability of the disorder. Moreover, MDD 

has a complex genetic architecture, indicating that different sets of susceptibility 
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genes, interacting with environmental risk factors, confer risk of MDD (Flint & 

Kendler, 2014). 

Rare genetic variants and MDD 

 Aided by recent rapid advances in genetic analysis techniques, rare genetic 

variants have been increasingly investigated in relation to psychiatric disorders (Cook 

& Scherer, 2008; Dunn et al., 2015). Specifically, previous evidence indicates that 

copy-number variants (CNVs), inherited or de-novo segments of DNA that may affect 

gene function through deletion or duplication, may play a role in MDD.  

In a study examining CNVs in 1,693 MDD cases and 4,506 controls, Glessner 

et al. (2010) found 12 CNV regions that occurred more frequently in MDD cases. 

Among these, the most significant locus was harboring the SLIT3 gene, which is 

known to be implicated in axon guidance. Rucker et al. (2013) analysed copy number 

variation in 2,723 individuals with recurrent depression and 5,176 controls. They 

found that rare deletion CNVs, specifically genic and exonic, are enriched in recurrent 

depression cases as compared to controls (Rucker et al., 2013). 

More recently, Kendall et al. (2019) investigated 53 CNVs previously 

associated with neurodevelopmental disorders in 407,074 individuals (23,979 MDD 

cases and 383,095 controls). They found that all 53 CNVs were associated with self-

reported depression, however this association was partly explained by variables such 

as smoking status, physical health, and alcohol consumption. Zhang et al. (2019) 

conducted the largest genome-wide CNV study to date in a meta-analysis of four 

cohorts comprised of 5,780 MDD cases and 6,626 controls, finding an enrichment of 

short intergenic deletions in MDD patients. This suggests that CNVs may confer risk 

to MDD through the deletion of regulatory mechanisms. 

The studies above indicate a role played by rare genetic variants in MDD. 

However, the association between CNVs and MDD risk remains largely unclear and 

CNVs do not replicate across studies, which may be due to small sample sizes in 

previous studies. As such, the study of rare genetic variants in relation to MDD is still 

in its infancy, and further research is needed to uncover their contribution to MDD 

risk. 
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Genome-wide association studies and MDD 

Genome-wide association studies (GWAS) have been an important tool in 

investigating the genetic architecture of MDD, as they allow researchers to identify 

the genetic underpinnings of MDD by investigating the association between millions 

of SNPs across the genome without any a priori hypothesis about the function of a 

gene and the phenotype of interest (McCarthy et al., 2008).  

MDD is a complex genetic trait with thousands of variants each contributing a 

small amount to the risk for disease. Until recently, MDD GWAS did not have 

sufficient sample sizes to detect what is now known to be the polygenic architecture 

of the trait. A GWAS mega-analysis for MDD found no genome-wide significant hits 

in the discovery sample (9,240 cases and 9,519 controls), replication sample (6,783 

cases and 50,695 controls), or any other secondary analyses (Ripke et al., 2013). In 

2015, Cai et al. (2015) found two genome-wide significant loci in 5,303 MDD 

recurrent cases and 5,337 controls.  

The success of MDD GWAS only came to be realized once sample sizes 

massively increased. Wray et al. (2018) found 44 risk variants associated with MDD, 

using 135,458 cases and 344,901 controls (Wray et al., 2018). The most recent GWAS 

of MDD to date, a genome-wide meta-analysis of 807,553 individuals, has identified 

102 independent variants associated with depression (Howard et al., 2019). An 

independent replication sample of 1,306,354 individuals showed that 87 of the 102 

variants continued to be significant after multiple testing correction. Genes and gene-

sets uncovered in this analysis showed an association with synaptic structure and 

neurotransmission, highlighting prefrontal brain regions as an important area for the 

study of MDD (Howard et al., 2019).  

Downstream genetic and epigenetic analysis approaches 

The increasing power of GWAS and large number of hits have allowed for 

further downstream analyses, and a number of cutting-edge approaches can be used to 

identify the underlying biology of MDD. Given the notorious heterogeneity of MDD, 

there is a need for disorder stratification in order to gain a deeper understanding of the 

environmental and genetic impacts on the disorder. A novel way to stratify MDD is 

through employing genetic approaches to investigate specific links to MDD. These 

include, but are not limited to, polygenic risk score calculation, pathway analysis and 
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expression quantitative trait loci analysis. Moreover, DNA methylation analysis may 

be carried out to examine the impact of environmental insults on the biology of MDD.  

Given that most posited biological mechanisms implicated in MDD involve 

neural mechanisms and brain regions, there is a need to understand the impact of MDD 

genetic risk factors on the brain in order to identify neurobiological markers. As such, 

the approaches mentioned above and discussed in more detail in the sections below, 

may be explored in association with neuroimaging traits. Early literature did not 

initially provide conclusive evidence for an association between genetic risk factors 

for MDD and brain phenotypes, mainly due to scarce genetic-MDD associations and 

limited sample sizes (Reus et al., 2017; Wigmore et al., 2017). With increasing sample 

sizes, associations are becoming more evident (Schmaal et al., 2016; Elliott et al., 

2018; Shen et al., 2019), which further highlights heterogeneous findings. This 

emphasizes the importance of leveraging other genetic approaches to examine these 

associations. Imaging phenotypes typically studied include white matter 

microstructure, subcortical volumes, cortical volume, surface area, and thickness, of 

which white matter demonstrates moderate heritability (Elliott et al., 2018). White 

matter microstructure, which forms the brain’s connectivity network, may be a key 

neurobiological marker for MDD, although findings have so far been unclear and 

inconsistent (Whalley et al., 2013; Shen et al., 2017; Reus et al., 2017). A description 

and summary of white matter microstructure and its relationship with MDD as well as 

genetic risk for MDD to date is presented in the next section. 

 

2. White matter microstructure 

2.1 White matter microstructure 

White matter, located beneath the grey matter cortex, comprises millions of 

myelinated axon bundles which connect neurons in different areas of the brain, 

travelling along tracts (Fields, 2010). These white matter tracts are structurally 

classified in terms of spatial connection within the brain. More specifically, projection 

fibres connect higher cortical areas to subcortical regions of the brain, such as limbic 

system structures (e.g. amygdala, thalamus), as well as the brain stem, cerebellum and 

spinal cord; association fibres connect cortical areas within the same hemisphere; and 

commissural fibres connect homologous areas between the two hemispheres (Jellison 
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et al., 2004).  

The myelin surrounding the axons, which gives these nerve fibres a white 

colour, is necessary for high-speed transmission of electrical signals. Review articles 

report that damage to this may result in impaired cognitive, sensory, and motor 

functions (Fields, 2010). Furthermore, changes in white matter microstructure have 

been previously associated with both normal functioning, such as learning complex 

tasks (Scholz et al., 2009), and psychiatric and neurological disorders, such as 

schizophrenia, MDD, and Alzheimer's Disease (Nasrabady et al., 2018). These 

findings implicate white matter microstructure in behavioural changes, indicating that 

perhaps psychiatric disorders arise as a result of a connection deficit within the brain, 

rather than being confined to a single brain region. 

Diffusion tensor imaging (DTI), a specialised Magnetic Resonance Imaging 

(MRI) technique, is the most common method used to measure white matter 

microstructure. DTI allows for the measurement of both architecture and integrity of 

white matter tracts in both healthy and disordered brains (Assaf & Pasternak, 2008). It 

does this by applying a tensor which measures the three-dimensional distribution of 

water molecule diffusion within voxels. Temperature, presence of large molecules, 

myelination, and microstructural barriers such as cell membranes and axon 

compaction all influence the mobility of water molecules (Beaulieu et al., 2002; Jones 

et al., 2013). Unlike cerebrospinal fluid, in which water diffusion is isotropic (i.e. water 

diffusion occurs equally in any direction), water diffusion in white matter occurs along 

tracts, meaning it is anisotropic. As opposed to a sphere indicating an isotropic 

diffusion distribution, the diffusion distribution in white matter then becomes an 

ellipsoid, in which the main axis is the principal eigenvector, while the second and 

third eigenvectors are oriented perpendicularly to it (ε 1-3). The amount of diffusion 

along each of these eigenvectors is quantified as eigenvalues (λ 1-3) (Figure 1) 

(Jellison et al., 2004 ; Gerrish et al., 2014).  
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Figure 1. The diffusion tensor as a model of white matter microstructure. The figure 
was adapted from Jellison et al. (2004). 
 

Two common DTI scalars are fractional anisotropy (FA) and mean diffusivity 

(MD), which can both be calculated using eigenvalues (Figure 2). FA measures the 

directionality of water diffusion from 0 (complete diffusion isotropy) to 1 (complete 

diffusion anisotropy). Generally, therefore, lower FA indicates decreased 

microstructural integrity of white matter and directionality, while higher FA represents 

increased white matter microstructural integrity. A major limitation of FA is crossing 

fibres, where different tracts with distinct orientations are present within an imaging 

voxel, which hamper accurate deterministic tractography of different tracts (Jbabdi et 

al., 2011). MD is calculated as an average of the eigenvalues and measures the 

magnitude of water molecule diffusion. Generally, higher MD indicates decreased 

white matter microstructural integrity, while lower MD indicates increased white 

matter microstructural integrity. Although crossing fibres affect FA more than they do 

MD, the scalar is sensitive to partial volume contamination in certain cases. For 

instance, ageing or specific disorders lead to loss of white and grey matter, which in 

turn may lead to cerebrospinal fluid contamination in white matter tracts which are 

spatially close to the ventricles (Metzler-Baddeley et al., 2011; Berlot et al., 2014). 

Two additional DTI scalars providing more specific measurements of water 

diffusion are axial diffusivity (AD; (λ1), which is the measurement of water molecule 

diffusion parallel to the tract, and radial diffusivity (RD; ( (λ2 + λ3)/2 ), which 

measures water diffusion perpendicular to the tract (Winklewski et al., 2018). The two 

measures may capture distinct tissue characteristics such as axonal degeneration (AD) 
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and demyelination (RD) and are also sensitive to issues such as crossing fibres and 

anisotropy decrease as a result of disorders (Alexander et al., 2008).  

However, structural changes, such as demyelination, changes in neurite 

morphology, or increase/decrease in the dispersion of neurite orientation distribution, 

may contribute independently to variation within both FA and MD (Timmers et al., 

2016). Newly developed measures such as neurite orientation dispersion and density 

imaging (NODDI) may provide additional information with regards to cellular 

contributors to FA and MD. NODDI provides estimates of neurite density through 

intra-cellular volume fraction (ICVF); extra-cellular water diffusion through isotropic 

volume fraction (ISOVF); and tract complexity or fanning and bending of axon 

bundles through orientation dispersion index (OD) (Zhang et al., 2012).  

As NODDI measures may uncover additional sources of variation within FA 

and MD that cannot be distinguished using conventional DTI measures, there is 

increasing interest in using this method alongside FA and MD. Previous studies have 

shown they are sensitive in both healthy (Cox et al., 2016; Edwards et al., 2017) and 

clinical populations (Timmers et al., 2016; Rae et al., 2017), and may therefore provide 

more specific information with regards to changes in white matter microstructure. 

Despite the limitations outlined above, FA and MD are microstructure 

variances that provide a more general measurement of water diffusion and 

directionality within white matter tracts, and have been shown to be valid and effective 

methods of white matter microstructure measurement (Jones et al., 2013; Shen et al., 

2017). As the two DTI scalars are the most commonly reported measurements in 

previous studies (Jones et al., 2013), in the current thesis, findings concerning both FA 

and MD are presented. 

Previous studies indicate that white matter microstructure is consistently 

heritable across tracts. Kochunov et al. (2015) investigated the heritability of FA in 

481 participants, finding white matter tracts to be highly heritable, with approximately 

70 – 80% of the total variance being explained by genetic factors in an additive 

manner. In addition, Vuoksimaa et al. (2017) examined the proportion of genetic and 

environmental influence on white matter microstructure, as measured by FA, MD, AD 

and RD, in 393 middle-aged twins, and found that genetic effects explained between 

72 – 80 % of the variance in global measures of FA, although heritability differed 
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between individual tracts. This evidence suggests that white matter microstructure 

formation and maintenance is partially explained by genetic factors, enabling it as an 

important phenotype in downstream analyses of brain-related traits and disorders in 

relation to genetic information. 

 

𝑀𝐷 =	
λ1 + 	λ2 + 	λ3

3  

𝐹𝐴 =	,
(λ1 − MD)2 +	(λ2 − MD)2	+	(λ3 − MD)2		

2(λ12 +	λ22 +	λ32)  

 
Figure 2. Calculation of FA and MD (Alexander et al., 2007). 

2.2 Probabilistic tractography and tract-based spatial statistics 

Tractography is a non-invasive method used to measure the apparent 

orientation and trajectory of white matter tracts in vivo. There exist numerous methods 

that allow for the characterisation of anatomical microstructure of white matter. In the 

present thesis, white matter tracts derived from two methods, probabilistic 

tractography and tract-based spatial statistics (TBSS), are presented.  

Probabilistic tractography probes probability distribution of fibre orientations 

at each voxel. This allows for observing the probability of a given fibre moving along 

a specific path (Hagler et al., 2009). This method accounts for uncertainty in local fibre 

orientation and can reconstruct crossing fibres in a reliable way (Behrens et al., 2003; 

Hagler et al., 2009); however, the method is computationally demanding as it requires 

a large number of iterations, and prior anatomical knowledge of white matter 

microstructure organisation is required (Hagler et al., 2009). AutoPtx 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx), which is a set of scripts used to run 

probabilistic tractography, outputs 27 white matter tracts, 3 unilateral and 12 bilateral 

(Figure 3). In chapters 2 and 3, white matter tracts derived from probabilistic 

tractography were analysed. 

Tract-based spatial statistics (TBSS; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS) aims to combine strengths of both voxel-

wise and tractography-based methods (Smith et al., 2006; Yeh et al., 2009). Firstly, 
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subjects’ FA raw images are non-linearly aligned to a standard brain space; the mean 

of the aligned images is then used to create a mean FA skeleton representing the centre 

of major white matter tracts which are common in all participants; lastly, each 

participant’s FA data is then projected onto the mean FA skeleton, where their 

projected FA values are taken from the local centre of the tract in the original FA image 

(Smith et al., 2006). In addition to the method being less computationally intensive by 

reducing the number of tests it carries out (Smith et al., 2006), it also attempts to take 

into account issues such as tract alignment and pre-specification of tracts. Potential 

limitations include crossing fibres, as well as disease states, which might lead to 

exclusion or skewness of FA values due to, for example, reduction in grey matter 

volume, although images should be carefully examined during pre-processing stages 

in order to avoid this (Smith et al., 2006). In chapter 4, TBSS was used to derive 43 

white matter tracts, 5 unilateral and 19 bilateral (Figure 4).  

Although the two methods output different sets of white matter tracts, both are 

computationally valid and are based on connectivity and anatomical knowledge of the 

brain (Jones et al., 2013; Alfaro-Almagro et al., 2018). 
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Figure 3. White matter tracts grouped in three tract categories output by AutoPtx. The 
images were created using Heatmapper 
(https://www.ccace.ed.ac.uk/research/software-resources/software).  
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Figure 4. White matter tracts output by TBSS. The images were created using Mango 
(http://ric.uthscsa.edu/mango/).  
 

2.3 White matter microstructure and MDD 

White matter microstructural changes indicated by lower FA and higher MD 

have been associated with MDD in the past (Tham et al., 2011; Shen et al., 2017). In 

2011, Tham et al. reviewed post-mortem, genetic, and neuroimaging studies of white 

matter microstructure abnormalities in MDD. Previous post-mortem studies mainly 

found white matter abnormalities in prefrontal brain regions characterised by decreases 

in oligodendrocyte density, a glial cell responsible for myelin production. In addition, 

myelin-associated genes important for processes such as axon guidance and growth, 

and synaptic function, were generally related to white matter abnormalities (Tham et 

al., 2011). 

Neuroimaging studies generally reported lower FA within cortical and 

subcortical regions; in Tham et al.’s (2011) review, the frontal gyrus, superior 

longitudinal fasciculus (SLF), and the striatum were marked as specific affected tracts 

(Tham et al., 2011). A meta-analysis investigating DTI studies in connection to MDD 

found the SLF to be consistently abnormal in MDD patients as opposed to healthy 

individuals across studies (Murphy & Frodl, 2011). A further meta-analysis of DTI 

studies in MDD patients looked at research including case-control samples only. The 

authors found that tracts connecting the prefrontal cortex with cortical and sub-cortical 

areas were the most consistently identified fascicles in patients with MDD (Liao et al., 
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2013). 

These studies however were typically limited by sample size and heterogeneity, 

which hinders generalisability to wider population samples. All studies described 

above concluded that further analysis using much larger sample sizes would be needed 

in order to uncover links between genetic factors and specialised white matter tracts in 

MDD, as well as to identify genes which are implicated in white matter formation, 

maintenance, and pathology. 

More recent empirical studies have attempted to address the above-mentioned 

limitations, and evidence exists linking lower FA and higher MD in numerous white 

matter tracts to MDD, both in affected individuals and those at high risk of the disorder. 

Whalley et al. (2013) investigated the association between white matter microstructure 

as measured by FA and individuals at high risk for mood disorders, quantified by a 

polygenic risk score (PRS) for bipolar disorder and MDD. With regards to MDD, they 

found a significant association between higher polygenic risk of MDD and lower FA 

within the parietal region of the superior and inferior longitudinal fasciculus, as well 

as thalamic radiations, uncinate fasciculus, and inferior fronto-occipital fasciculus 

(Whalley et al., 2013). In a case-control study, Shen et al. (2017) found global 

measures of FA, as well as thalamic radiations and association fibres, to be reduced in 

MDD patients as opposed to healthy individuals in a sample size of 1,087. Lower FA 

was also localised to individual white matter tracts, such as the left SLF, superior 

thalamic radiation, and forceps major. Van Velzen et al. (2019) investigated white 

matter anisotropy and diffusivity in 1,305 MDD cases and1,602 healthy controls 

across 20 samples worldwide as part of the MDD Working Group of the Enhancing 

Neuroimaging Genetics through Meta-Analysis (ENIGMA). Within adult samples, 

they found significantly lower FA in MDD cases (N = 921) compared to healthy 

controls (N = 1,265) in 16 of the total 25 white matter tracts investigated, including 

parts of the corona radiata, corpus callosum, and superior and inferior fronto-occipital 

fasciculi. While no differences were found for AD and MD, global RD was found to 

be higher in MDD cases (Van Velzen et al., 2019). 

Shen et al. (2019) also investigated cross-sectional and longitudinal measures 

of depressive symptoms and their association with white matter microstructure as 

measured by FA and MD in 18,959 individuals. They found that anterior thalamic 
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radiation was associated with all measures of depressive symptoms; several 

association fibre tracts, including superior and inferior longitudinal fasciculus, and 

projection fibre tracts, including acoustic radiation and corticospinal tract, were 

associated with cross-sectional measures of depressive symptoms (Shen et al., 2019). 

In summary, the main findings to date indicate connections between the 

prefrontal cortex and sub-cortical areas, most notably the SLF and thalamic radiations. 

The SLF connects the frontal lobe to parietal, occipital, and temporal lobes 

(Schmahmann et al., 2007). As a result, it is associated with numerous higher-order 

cognitive functions, such as language, spatial working memory, attention, and emotion 

regulation (Vestergaard et al., 2011; Madhavan et al., 2014; Parkinson & Wheatly, 

2014). Thalamic radiations connect the thalamus to anterior, superior, and posterior 

regions of the brain (Jones, 2002). The thalamus is a subcortical structure which plays 

an important role in sleep regulation, as well as cognitive processes such as attention, 

speed of information processing, and memory (Van Der Werf et al., 2001; Fama & 

Sullivan, 2015). White matter tracts connecting the thalamus with other cortical areas 

of the brain may therefore be implicated in these processes. 

Deficits in these tracts may therefore reflect MDD symptomatology profiles 

such as insomnia or hypersomnia, inability to concentrate, mood disruptions and 

suicidal tendencies, providing a strong rationale for the investigation of white matter 

microstructure in relation to MDD (Coenen et al., 2012; Jia et al., 2014). Numerous 

causative paths may contribute to these symptoms, and novel opportunities allowing 

the combination of genetic approaches with neuroimaging traits may provide a deeper 

mechanistic understanding of the disorder. An overview of the genetic approaches 

used in this thesis is presented below. 

 

3. Expression quantitative trait loci (eQTL) 

Gene expression is the process by which genetic information is used to direct 

product synthesis, such as proteins for protein-coding genes, or transfer RNA, for non-

protein coding genes. Within this process, some genes that produce proteins involved 

in important functions (i.e. breaking down glucose) are continuously expressed, while 

others may only be expressed as part of a specific process and at a particular time (e.g. 

cell differentiation) (Garcia-Sanchez & Marques-Garcia, 2016). Gene regulation, the 
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process that increases or represses gene expression, is vital in all living organisms, as 

it allows for the cell’s control of structure and function, as well as cell differentiation. 

Moreover, it facilitates organisms’ adaptability and evolution, as the cell has control 

over the amount of gene expression at a specific time and location (Wray, 2007).  

Gene expression is one of the primary processes in converting information 

within the genome to observable phenotypes (Storey et al., 2007). As such, levels of 

expression may act as an intermediate phenotype between genetic information and 

observable traits, such as common diseases (McKenzie et al., 2014). Therefore, 

understanding the genetics of gene expression allows researchers to gain insight into 

the genetics of complex traits (Lee, 2018). 

Expression quantitative trait loci (eQTL) are genetic variants that explain 

variation in gene expression, and have been characterised as cis (loci within 1 

megabase from a gene’s transcription start site) or trans (loci at least 5 megabases 

downstream or upstream of a gene’s transcription start site, or on a different 

chromosome) (Nica & Dermitzakis, 2013) (Figure 5). GWAS of gene expression have 

been developed in order to identify polymorphic genetic loci influencing gene 

expression across the genome. Essentially, if a genotype at a specific locus is 

associated with an increase or decrease in the expression of a gene, this locus may act 

as a regulator, or eQTL (Michaelson et al., 2009), and different genotypes will lead to 

variation in phenotypes. 

 
Figure 5. Cis and trans eQTL gene expression regulation. 1 Mb and 10 Mb represent 
the physical distance of the genome region and indicate the distance from each gene’s 
transcription start site; the two types of eQTL regulate gene expression which in turn 
give rise to traits / diseases. 
 

Findings from these methods indicate that eQTL may play a role in 

susceptibility to disease and may help elucidate the role of potential biological 
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pathways and gene sets in the manifestation of specific disorders. GWAS findings 

have identified significant associations between genetic variants and disease 

phenotypes, but our understanding of the molecular mechanisms underlying these 

associations is scarce. Numerous variants lie in non-protein coding regions of the 

genome, and therefore it could be that they influence traits through the regulation of 

gene expression (Fagny et al., 2017). Therefore, gaining insight into the links between 

eQTL and disease phenotypes may further the understanding of the causation, 

formation, and manifestation of these traits.  

Previous studies have indicated that genetic variation may explain variance in 

level of gene expression in a tissue-specific manner. For example, O’Brien et al. (2018) 

mapped eQTL by performing deep RNA sequencing and genome-wide genotyping in 

120 post-mortem foetal human brains in the second trimester, and identified eQTL 

conferring risk and gene expression changes mediating susceptibility to 

neuropsychiatric disorders, such as attention deficit hyperactivity disorder, 

schizophrenia, and bipolar disorder (O’Brien et al., 2018). In addition, Bhalala et al. 

(2018) conducted a multi-region meta-analysis to investigate whether SNPs previously 

associated with schizophrenia, bipolar disorder, and MDD are associated with gene 

expression in human brain tissue. To do this, they investigated SNPs associated with 

the three disorders in 11 GWAS of gene expression levels in post-mortem neurotypical 

brain tissue from two independent datasets, and identified 2,224 cis eQTL associated 

with expression of 40 genes (Bhalala et al., 2018). 

Lastly, Zhong et al. (2019) integrated genetic associations from a recent MDD 

GWAS (Wray et al., 2018) and brain eQTL data to identify genes whose expression 

alteration may contribute to susceptibility of MDD. They found 18 genes whose 

perturbations may play a role in susceptibility to MDD, including FLOT1, whose 

expression was further upregulated in the brain and peripheral blood of a European 

sample of MDD cases, as compared to controls (Zhong et al., 2019). As shown by 

these studies, eQTL analysis may uncover putatively novel associations between gene 

expression and brain-related disorders, paving the way for further analyses implicating 

potentially new therapeutic targets.   

However, using brain tissue in eQTL analysis poses several issues due to the 

nature of the tissue. Firstly, the brain is comprised of a number of cell types, hence 
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levels of expression throughout the brain are not likely to be uniform. Moreover, the 

brain is not accessible ante-mortem, and the use of tissue post-mortem introduces 

issues such as small sample sizes, cause of death, post-mortem interval, and gene 

expression differences in post-mortem as opposed to ante-mortem brains (McKenzie 

et al., 2014). These issues have led researchers to consider alternative approaches of 

investigating eQTL in relation to brain-related traits in more accessible tissues, such 

as whole blood (Qi et al., 2018).  

Hernandez et al. (2012) sought to observe whether it is possible to use 

peripheral tissues such as blood to infer expression levels in the central nervous 

system. They examined 399 brain samples (frontal lobe and cerebral cortex) and 501 

blood samples and found a small number of eQTL to be shared between the two tissues 

(brain and blood). They also found that some eQTL differed between the two tissues, 

which might be due to differences in pattern of gene expression (e.g. neuron-specific 

proteins being expressed). McKenzie et al. (2014) analysed eQTL overlap between 8 

published brain studies and eQTL measured in blood in a large meta-analysis, finding 

that between 13 – 23% of eQTL overlapped between the two tissues. These studies 

suggest that where it is not possible to directly access the tissue of relevance, it is 

appropriate, with caution and an awareness of possible limitations, to use whole blood 

as a proxy. 

Using peripheral samples to investigate gene expression levels in the brain 

introduces additional limitations that should be considered. Firstly, gene expression is 

tissue- and cell-specific, and evidence suggests that there is limited commonality 

among different tissue types. For instance, gene expression may be altered in both a 

tissue- and timing-specific manner, leading to different expression levels in peripheral 

tissues compared to brain (Hernandez et al., 2012). To address this, it is necessary to 

identify which gene expression patterns and biological processes are conserved 

between brain and peripheral tissues (Glatt et al., 2005).  

Secondly, it is difficult to determine the overlap between brain and peripheral 

tissue eQTL, as data is often taken from different subjects; moreover, while brain 

samples are collected post-mortem, blood samples are collected in life. This in turn 

introduces further limitations, such as number of samples used, presence or absence of 

disease phenotype across samples, and different population demographics with 
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differential expression pattern, whose gene expression levels have been measured 

using different protocols (McKenzie et al., 2014).  

Lastly, Sullivan et al. (2006) found a 0.5 correlation between transcripts present 

in whole blood and central nervous system tissues, arguing that whole blood gene 

expression may not be suitable for specific applications that require high tissue or 

transcription specificity, but may be applicable for specific sets of genes or biological 

pathways that are arguably expressed at a similar level across brain and peripheral 

tissues, or in the investigation of more general tissue-gene expression approaches 

(Sullivan et al., 2006). 

Neuroimaging phenotypes, as measured by MRI, provide a unique opportunity 

to examine eQTL in association with in vivo brain phenotypes. Uncovering novel 

associations between gene expression patterns and brain structure may lead to further 

analysis and identification of loci that are of importance in psychiatric and neurological 

disorders, by linking genetic information to both specific brain regions and brain-

related disorders. As both white matter microstructure and MDD are moderately 

heritable (Kochunov et al., 2015; Lohoff, 2010) and linked to each other (Shen et al., 

2017), in Chapter 2, using genetic and neuroimaging data, the relationship between 

white matter phenotypes and eQTL genetic scores, previously measured in whole 

blood, is explored and analysed. The analysis provides evidence of changes in gene 

expression in relation to white matter microstructure, allowing for an insight into the 

relationship between previous brain- and disease-associated genes, their expression, 

and brain connectivity.  

 

4. Polygenic risk scores, biological pathways, and MDD 

4.1 Polygenic risk scores 

GWAS allow for the identification of the genetic underpinnings of MDD 

reflected by the effect of multiple common genetic variants, lending support to further 

studies attempting to uncover the heritability of the disorder. Studies have attempted 

to uncover the functional impact of these variants, but a major issue in uncovering 

genetic links to MDD is that the variance explained by a single genetic variant is minor 

(Gandal et al., 2016). As such, a method of aggregating risk variants into a single 

variable was proposed in order to capture the additive effect of genetic variants for a 
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given trait, known as a PRS (Wray et al., 2008). 

A PRS for a given trait is calculated from GWAS summary statistics, by 

summing the number of risk alleles carried by an individual in an independent dataset 

and weighting them by the effect size from the discovery GWAS (Euesden et al., 

2015). The score can be calculated at any p-value threshold, which is chosen based on 

the trait it is calculated for (Euesden et al., 2015), and is described as a single 

continuous variable measuring genetic liability of a disorder. PRS may be used to 

predict an individual’s risk of disease, differentiating between higher-risk and lower-

risk individuals, with the average PRS being higher in cases than controls (Lewis & 

Vassos, 2017). PRS may also be used to investigate genetic links between two traits, 

by associating PRS for one trait with the phenotype for another trait. The International 

Schizophrenia Consortium (2009), for instance, calculated PRS for schizophrenia 

(3,322 cases and 3,587 controls) and were able to show that genetic risk for 

schizophrenia may explain some variance in bipolar disorder (1.9% and 1.4% in two 

independent samples).  

The most direct application of PRS is to follow-up GWAS results by testing 

the prediction of case / control status in an independent study. However, PRS may be 

limited by the power of the original GWAS (Gandal et al., 2016). In MDD, GWAS 

results have increased in robustness and power over time, as described earlier. In the 

most recent MDD GWAS, Howard et al. (2019) found that PRS calculated from more 

than 800K individuals (246,363 cases and 561,190 controls) explained between 1.5 – 

3.2% of the variance in MDD. Although this is a small proportion of the total variance 

explained, it is in line with previous findings concerning psychiatric disorders 

(Reginsson et al., 2018), and will likely further increase as sample sizes become larger 

and statistical methods improve. 

In addition to being influenced by the original GWAS, there are a number of 

additional factors that may influence PRS accuracy. Firstly, heterogeneity between 

training and testing samples may have an effect on the accuracy of PRS. Secondly, 

there may be a lack of diversity in populations used to derive PRS, as the majority of 

genetic studies used for GWA consist of European populations. As disease-associated 

risk alleles may significantly differ in frequency between populations, this may lead 

to misestimations of disease risk when applied to populations other than those used in 
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the derivation of PRS (De La Vega & Bustamante, 2018). 

Moreover, GWAS are typically only used to identify common genetic variants 

with a small contribution to disease risk. However, as mentioned previously, other 

genetic variants, such as copy number variants of high penetrance, may contribute to 

disease risk. Thus, individuals carrying rare, but not common risk alleles, may not 

show high genetic risk for a disorder according to PRS (Fullerton & Nurnberg, 2019). 

Lastly, PRS assumes that genetic risk conferred by common alleles of small effect is 

additive and does not yet consider complex epistatic relationships between risk 

variants, which may differ between individuals based on their genetic profile 

(Fullerton & Nurnberg, 2019). 

Even with the success of recent GWAS, at the moment, PRS are unlikely to 

have clinical utility as a single variable. However, their usefulness may increase when 

associated and combined with environmental or other genetic risk factors, such as rare 

risk variants or DNA methylation (Lewis & Vassos, 2017). PRS calculated for MDD 

have previously been associated with traits of importance in MDD, including 

childhood trauma (Peyrot et al., 2014), depressive symptoms and psychological 

distress (Musliner et al., 2015), body mass index and obesity (Clarke et al., 2015), and 

the personality trait neuroticism (De Moor et al., 2015). These studies show that 

combining PRS for MDD with other known environmental risk factors may aid in 

increasing the variance explained in MDD, as well as uncovering interaction effects 

between genetic and environmental risk factors. 

To date, there is scarce evidence of the association between PRS for MDD and 

brain-related phenotypes. This may be in part due to unsuccessful results from past 

GWAS, as well as the lack of, until recently, large datasets consisting of both genetic 

and neuroimaging data. Large cohorts such as UK Biobank (Sudlow et al., 2015) and 

Generation Scotland (Smith et al., 2006; Smith et al., 2013), which contain both types 

of data in a large number, have allowed researchers to gain novel insights into the 

association between the two.  

The fact that white matter microstructure is moderately heritable and the most 

recent GWAS shows an enrichment of risk loci in brain regions (Howard et al., 2019) 

points to the importance of relating this phenotype to MDD genetic risk in order to 

inform risk prediction models. Whalley et al. (2013) investigated the association 
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between polygenic risk for individuals at high risk of mood disorders (MDD and 

bipolar disorder) and FA in 70 high-risk cases and 62 controls. They found a negative 

association between PRS for MDD and several white matter tracts, including SLF, 

inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus (IFOF). Shen 

et al. (2019) provided a comprehensive analysis of PRS for MDD associated with 210 

behavioural and 278 neuroimaging traits in a discovery (N = 10,674) and replication 

sample (N = 11,214). For white matter tracts as measured by FA and MD, they found 

MDD PRS to be associated with lower global white matter integrity, as well as regional 

tracts within association fibres and thalamic radiation. Several individual white matter 

tracts were also associated with higher MDD PRS, including lower FA in the SLF, 

posterior thalamic radiation, and forceps major; and higher MD in anterior and 

superior thalamic radiation, SLF, IFOF, cingulate gyrus, and forceps minor (Shen et 

al., 2019).  

Findings from the above studies indicate that white matter microstructure is 

globally and regionally disrupted in those at higher genetic risk of MDD (Shen et al., 

2017; Whalley et al., 2013). This evidence shows that MDD is perhaps a connectivity-

based disorder and may not be localised to a specific brain region or tract. As such, 

stratification of genetic risk factors may be needed to uncover, for instance, risk 

conferred by variants localised to a specific genomic region, and whether these are 

associated with more specific white matter tracts based on their functionality, which is 

discussed below. 

 

4.2 Biological pathway specific PRS 

 PRS may be further stratified in terms of biological functionality of loci and 

genes, clustered in biological pathways. Biological pathways are defined as a series of 

actions and reactions among molecules inside a cell which lead to a change in the cell 

(e.g. turning genes on and off, producing molecules such as proteins). Numerous 

databases have been created that aggregate and describe biological processes and 

structures in which genes and proteins are involved; this has been helpful in identifying 

gene-sets which take part in the same biological process and pathway (Khatri et al., 

2012).  

When running GWAS, conducting pathway analysis may provide additional 
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information about the combined effect and behaviour of multiple risk variants in 

relation to a trait or disease, allowing researchers to gain mechanistic insight into 

disrupted molecular and biological mechanisms in relation to disorders (Herold et al., 

2012), as well as identify possible pharmacological targets (Sullivan & Posthuma, 

2015). Sullivan and Posthuma (2015) conducted a review of 42 studies investigating 

biological pathways in five major psychiatric disorders, finding that biological 

pathways converge in schizophrenia and bipolar disorder, but not in other psychiatric 

disorders. In MDD, larger samples were needed at the time, reflecting the scarce 

GWAS results driven by a low sample size. 

Methods to conduct pathway analysis, as well as ever-increasing sample sizes, 

have since provided more success in identifying biological pathways in relation to 

MDD. Howard et al. (2019) conducted pathway analysis on the MDD GWAS results 

using MAGMA (Multi-marker Analysis of GenoMic Annotation), a tool that identified 

genes in biological pathways, and investigated the significance of association between 

each pathway and depression utilizing p-values for each gene. Using pathway 

information from the Gene Ontology Consortium, they found 14 biological pathways 

enriched for depression, of which 8 were cellular components in the nervous system, 

and 6 were biological processes implicated in behaviour. This information aided in 

uncovering several biological pathways involved in depression, including enrichment 

in synaptic structure and activity, and response and behaviour to external stimuli 

(Howard et al., 2019).  

Zeng et al. (2016) integrated regional heritability analysis and pathway analysis 

in order to identify MDD-specific biological pathways in two independent samples 

(Generation ScotlandN = 6,455; Psychiatric Genomics Consortium MDDN = 18,759). 

Regional heritability analysis is generally applied in order to identify specific genomic 

regions which contribute a significant amount of heritability to a trait, more so than 

other regions. Pathway analysis is applied to identify related proteins within biological 

pathways in relation to traits of interest (Zeng et al., 2016). The authors found that of 

1,035 biological pathways across numerous databases investigated, one pathway, the 

NETRIN1 Signaling Pathway, was significant in both datasets. In addition, Zeng et al. 

calculated pathway-specific PRS tailored to the NETRIN1 Signaling Pathway and 

compared these with whole-genome (minus SNPs within the pathway) PRS in the 
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prediction of MDD. They found that NETRIN1-specific PRS explained 0.216% of the 

variance in MDD, while whole-genome PRS explained 0.198%, indicating that this 

region alone explained more variance than PRS derived from the rest of the genome. 

Their study provided evidence that biological pathway-tailored PRS may 

provide novel avenues for research in MDD and showed that there is rationale to 

investigate the relationship between brain phenotypes and the NETRIN1 Signaling 

Pathway, which is known to be implicated in thalamo-cortical axon guidance (Bonnin 

et al., 2007). As such, in Chapter 3, I investigate the association between MDD PRS 

calculated for SNPs within the NETRIN1 Signalling Pathway, as well as PRS 

calculated for SNPs outside the pathway, and global, regional, and individual white 

matter tracts. The study provides evidence of novel associations implicating 

functionally similar risk variants for MDD in white matter microstructure.  

As sample sizes increase in cohorts combining neuroimaging and genetic data, 

it is necessary to examine novel links between specific genetic variants, biological 

pathways, and neurobiological factors in MDD. Despite its inherent heterogeneity, 

localised effects may be uncovered in relation to MDD. Investigating both genome-

wide and pathway-specific PRS in white matter microstructure is therefore important 

for refining the genetic and biological mechanisms underlying MDD, and their effects 

on neurobiological phenotypes. 

 

5. DNA methylation in MDD   

In the context of traits and disease phenotypes, equally important to the human 

genome is a mechanism used by cells to determine at what point in space and time a 

gene is expressed. This mechanism is known as an epigenetic process, and is known 

to induce changes during cell division, such as altered patterns of gene expression 

within a specific cell type, thereby influencing the genome without changing its 

sequence (Tost, 2009).  

DNA methylation (DNAm), one of many epigenetic processes, alters gene 

expression through the addition of methyl groups at cytosine-phosphate-guanine 

(CpG) sites, chemically changing DNA, and is situated at the intersection between 

genetic and environmental factors (Robertson, 2005). This process is led by DNA 

methyltransferases (DNMTs), which are the main family that catalyse the transfer of 
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methyl groups to DNA (Jaenisch & Bird, 2003). Approximately 75% of CpG 

dinucleotides are methylated at varying levels throughout the genome of mammals, 

marking DNAm as a promising biomarker in the context of differentially methylated 

CpG sites in association with phenotypes, at least partially (Tost, 2009). Fraga et al. 

(2005) found that twins’ epigenomes are indistinguishable during early life, but as 

monozygotic twins advance in life, their DNAm signatures are different. Their results 

indicate that epigenetic mechanisms may provide an insight into how different 

phenotypes may arise even with the same genome as a starting point (Fraga et al., 

2005). 

Patterns in DNAm are particularly susceptible to change as a result of 

environmental stimuli, such as lifestyle factors. Joehanes  et al. (2016) conducted a 

meta-analysis of previous studies investigating DNAm in relation to cigarette smoking 

behaviour in 15,907 individuals across 16 cohorts. They found a remarkable 

epigenome-wide influence on smoking, consisting of 18,760 CpG sites annotated to 

more than 7,000 genes. Mendelson et al. (2017) conducted an epigenome-wide 

association study (EWAS), the epigenome equivalent of a GWAS, of body mass index 

(BMI) in more than 3,700 individuals and led a replication analysis in a further 4,000 

individuals. They found that BMI was associated with 83 differentially methylated 

CpG sites. Lastly, Liu et al. (2018) conducted an EWAS of alcohol consumption in 

13,317 participants across 13 cohorts and identified 144 CpG sites highly predictive 

in the discrimination between heavy alcohol drinkers and non-drinkers. As the results 

of the above study indicate, differentially methylated CpG sites associated with various 

environmental factors may in future act as biomarkers to advance our understanding 

of molecular mechanisms implicated in the phenotypes. 

Alterations in DNAm also exist in the manifestations of disease phenotypes 

(Robertson, 2005; Bergman & Cedar, 2013). Cancer is one of the most studied diseases 

in its relationship with epigenetic modifications. One acting mechanism is both 

hypomethylation (decrease of methylation) across the entire genome within tumours, 

and hypermethylation (increase of methylation) in specific regions and genes which 

act as tumour suppressors. This increase in promoter regions of tumour suppressor 

genes has been associated with transcriptional silencing, thus giving rise to tumour 

development (Jones & Baylin, 2002; Baylin, 2005).  
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Epigenetic modifications and their impact on complex psychiatric disorders 

have also been investigated. Gene-specific hypo- and hypermethylation has been 

found in schizophrenia, bipolar disorder, and autism spectrum disorder (Grayson & 

Guidotti, 2013; Klengel et al., 2014). DNAm alterations in relation to pathological 

states may act as the link between genotype and phenotype. Therefore, investigating 

the epigenetic impact on disease susceptibility loci may in future be of clinical and 

therapeutic relevance. 

In recent years, DNAm has also been investigated in relation to MDD, and has 

been posited to play a role in the susceptibility of the disorder via dysregulation of 

gene expression catalysed by both environmental and genetic risk factors (Dalton et 

al., 2014). For instance, early life stress has been posited to act as a mechanism of 

lifelong changes in gene expression. Franklin et al. (2010) showed, in mice, that 

chronic and unpredictable situations where the mother is separated during the early 

post-natal timeframe leads to depressive-like symptoms and modifies the offspring’s 

behavioural responses to novel environments as well as altered DNAm at several genes 

in the germline (Franklin et al., 2010). Their results indicate that early-life stress 

modifies behaviours and alters the epigenetic profile across generations through hypo- 

and hyper-methylation. 

Studies investigating specific genetic loci have indicated several genes that 

may be of interest to depression from a DNAm standpoint. These include BDNF, 

which is known to regulate neuronal plasticity and neurotransmitter signalling (Roth 

et al., 2009); SLC6A4, which transmits serotonin from synaptic spaces to pre-synaptic 

neurons (Kang et al., 2013); and the glucocorticoid receptor gene NR3C1, which is 

important within the stress response system (Watkeys et al., 2018). Differential DNAm 

at these specific sites may elucidate specific links to MDD (Li et al., 2019). 

 Reviews examining the relationship between DNAm alterations and 

depression show that EWAS findings have not generally been replicated across 

studies, but this might be due to a number of factors, such as small sample sizes or 

heterogeneity of analyses (Dalton et al., 2014; Januar et al., 2015). Recently, Jovanova 

et al. (2018) ran an EWAS of depressive symptoms in a middle-aged and elderly 

sample of 7,948 individuals across 9 cohorts and attempted replication in an 

independent sample of 3,308 individuals in 2 further studies. They found 3 CpG sites 
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to be associated with depressive symptoms. These included sites at CDC42BPB, which 

plays a role in the regulation of cytoskeleton organisation, cell migration, and 

regulation of neurite outgrowth; ARHGEF3, which plays a role in axon guidance 

through co-expression with other gene families; and a third site situated in an 

intergenic region and is associated with SEMA4B, which in turn interacts with PSD-

52 to promote synapse maturation (Jovanova et al., 2018). All three CpG sites seem to 

be implicated in axon guidance, leading to conclude that this pathway may be disrupted 

in MDD. 

 Furthermore, Aberg et al. (2018) ran an EWAS of CpG-SNPs, defined as CpG 

sites which are created or destroyed by SNPs, to investigate whether they contribute 

to risk of MDD in 1,132 individuals (320 controls; 812 cases) and found 27 CpG sites 

that were suggestively associated with MDD. Among the key genes at these sites are 

ASIC2, which plays a role in neurotransmission; DCC, which is implicated in axon 

guidance and neurite outgrowth in developing neurons; and ROBO2, which also 

participates in axon guidance and cell migration (Aberg et al., 2018). Their findings 

complement those of Jovanova et al. (2018) and further confirm that the axon guidance 

pathway may be a putative disrupted pathway in MDD. 

 The findings from the studies described above indicate that DNAm plays an 

important role in MDD. However, research studies have been hindered by the 

complexity of DNAm, small sample sizes, and heterogeneity of analysis and 

phenotype, as well as hundreds of thousands of individual CpG sites across the 

epigenome. Therefore, investigation of DNAm through EWASs often poses the same 

issues as a GWAS study. As such, a DNAm risk score may be created, which acts in 

the same manner as a PRS. Such risk scores have shown to be successful in the 

investigation of other traits in the past.  

For instance, Shah et al. (2015) investigated whether the contribution of 

DNAm profiles are associated with body mass index (BMI) and height independently 

of genotypic information (Shah et al., 2015). The authors first conducted an EWAS 

for both BMI and height in two independent cohorts (NDiscovery = 1,366; NValidation = 

750). They also calculated DNAm profile scores, a weighted sum of methylation level 

at associated CpG sites, in the validation dataset based on observed associations in the 

discovery dataset and vice versa, and determined whether the scores were associated 



 

32 
 

with the two traits in addition to PRS (Shah et al., 2015). They found that the DNAm 

score, PRS, and the two combined accounted for 7%, 8%, and 14% of the variance in 

BMI, respectively, in one of the cohorts, and 5%, 9%, and 13%, respectively, in the 

second cohort. The DNAm score did not account for much variation in height, which 

is consistent with previous literature indicating a larger genetic influence for height 

(Shah et al., 2015). 

McCartney et al. (2018) used penalised regression models to train DNAm 

predictors for ten health and lifestyle factors, including BMI, total cholesterol, HDL 

cholesterol, LDL with remnant cholesterol, total:HDL cholesterol ratio, waist-to-hip 

ratio, percentage body fat, and self-reported alcohol consumption and smoking status  

(N = 5,087). They then developed DNAm scores and PRS for the ten traits in an 

independent sample (N = 895). They found that DNAm predictors explained a high 

proportion of variance in smoking (60.9%), medium proportion of variance in BMI, 

alcohol consumption, and HDL cholesterol (12.5 – 15.6%) and a small proportion of 

variance for the rest of the traits (0.6 – 4.5%). The DNAm scores and PRS additively 

explained the most variance in each trait (McCartney et al., 2018). The study showed 

that DNAm predictors are able to predict various traits as well as add to variance 

explained when combined with a genetic predictor, indicating a strong rationale to 

study DNAm scores in relation to other traits and disease phenotypes. 

A DNAm score for MDD has recently been developed to investigate whether 

DNAm explains variance in both prevalent (N = 1,780) and incident (N = 1,607) MDD 

in an additive manner to PRS (Barbu et al., 2019). It was found that the DNAm score 

explained 1.75% and 0.52% of the variance in prevalent and incident MDD, 

respectively. In prevalent MDD, the combined DNAm score and PRS explained 3.99% 

of the variance. Furthermore, when accounting for lifestyle factors, including BMI, 

smoking status, pack years, and alcohol consumption, the DNAm score explained 

0.68% of the variance, as opposed to 1.75% on its own. This indicates that the DNAm 

score effect is attenuated by lifestyle factors, however the score is still independent in 

its prediction of MDD. The study showed that there is rationale for investigating a 

DNAm score in relation to MDD, and provides a basis for relating DNAm scores for 

MDD in relation to other traits which might in turn be associated with the disorder. 

White matter microstructure has previously been associated with DNAm 
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alterations at specific sites across the epigenome. A review detailing imaging genetic 

studies in MDD indicated previous studies which found altered DNAm at specific 

genes associated with structural changes in the brain. The genes included SLC6A4, 

where methylation was associated with hippocampal grey matter; OXTR methylation 

level, which was associated with amygdala responsiveness; DNAm at NR3C1 and 

hippocampal volume; and BDNF methylation level, which was associated with 

anterior corona radiata structure alterations (Won & Ham, 2016).  

This indicates that part of the effect of DNAm at specific loci and genes on 

MDD may be exerted through brain phenotypes. What is more, one of the key 

disrupted pathways uncovered in DNAm investigations of MDD is the axon guidance 

pathway. Two of the genes found by Aberg et al. (2018) participate in the NETRIN1 

Signalling Pathway, which guides axons from the thalamus to other parts of the brain 

in neurodevelopment (Tang & Kalil, 2005), and which is investigated in the current 

thesis in terms of aggregated MDD genetic risk in relation to white matter 

microstructure. These findings combined indicate that an MDD DNAm risk score 

could have predictive ability in relation to white matter microstructure; a significant 

risk score-white matter association would aid in developing and determining 

neurobiological markers on which DNAm acts. This would have both clinical and 

therapeutic relevance, and could lead to advancements in the treatment and diagnosis 

of MDD. As such, in chapter 4, I investigate the association between a DNAm risk 

score and whole-genome PRS and global and individual white matter tracts, as 

measured by FA and MD. The study aids in advancing research relating to DNAm 

associated with both MDD and white matter microstructure.  

 

6. Neuroimaging and genetic & epigenetic research – past studies and current 

thesis 

 Following the sequencing of the first human genome, the genetics field has led 

to important advances in the understanding of heritable traits. Most importantly, when 

investigating disease, genetic loci and genes offer a mechanistic insight of the disease 

and allow for the identification of high-risk individuals. Moreover, genetic variants aid 

in uncovering molecular and cellular processes acting within diseases. Similarly, 

neuroimaging technological advancements have provided a unique ability to identify 
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structural and functional processes within the brain, and complement the genetic 

approach by aiding in the identification of neural systems and brain circuitry (Hariri et 

al., 2006). Therefore, imaging genetics provide a unique opportunity to gain an 

understanding of biological, chemical, and molecular mechanisms, as well as specific 

pathways modulating variation in traits and disorders.  

 Neuroimaging genetics provide an avenue to investigate the structural and 

functional impact of polymorphisms on brain traits, ultimately leading to an 

understanding of aberrant or neurotypical behavioural manifestations. Due to the fact 

that genes give rise to both brain function and structure, responsible for the 

development of cognitive and behavioural processes, genetic variation may indirectly 

impact behavioural traits through neural systems. In this way, neuroimaging traits may 

act as endophenotypes, or the path from genotype to phenotype. Furthermore, mapping 

genetic variants in association with specific neural phenotypes also allows for the 

identification of candidate genes and their neural impact in vivo (Scharinger et al., 

2010; Bigos & Weinberger, 2010).  

 GWAS have led to important discoveries in relation to numerous traits and 

diseases along the years. Although the method’s clinical utility is still in its infancy, 

genetic variants identified through GWAS may serve as biomarkers for imaging 

phenotypes. For instance, Elliott et al. (2018) carried out GWAS for 3,144 imaging-

derived phenotypes (IDP), covering the entire brain, including white matter 

connectivity, in more than 8,428 individuals. Of the total 3,144 phenotypes, 1,578 

showed significant SNP heritability, indicating that brain traits are generally heritable. 

Within diffusion MRI, tractography-based IDPs generally showed lower heritability 

than tract-skeleton-based IDPs, indicating that different modalities and pre-processing 

pipelines may vary in their genetic underpinnings (Elliott et al., 2018).  

 For polygenic traits such as MDD, the amount of phenotypic variance 

explained by single SNPs is small, while a large number of SNPs is thought to underlie 

risk for complex disorders. PRS aggregate the contribution of a large number of SNPs, 

and can be used to test the genetic overlap between MDD and brain traits. In this way, 

novel associations between PRS and disorders may be uncovered by specific brain 

phenotypes (Dima & Breen, 2015). What is more, genetic research advancements now 
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allow for the use of pathway-based approaches to investigate functionally related SNPs 

aggregated within a single biological pathway in relation to brain phenotypes. Inkster 

et al. (2010) investigated a pathway contributing to risk of MDD, the Wnt signalling 

pathway, in relation to grey matter volume, in 1,022 MDD patients and 1,000 healthy 

individuals. They found that numerous polymorphisms within the genes showed 

genotype-by-MDD interactions with regional grey matter volume (Inkster et al., 2010). 

These findings lend support to the use of candidate pathway approaches in the 

investigation of neuroimaging phenotypes.  

 Lastly, epigenetic modifications are ideal candidates in the investigation of 

brain-related phenotypes, as they reflect the direct influence of environmental factors 

(Lancaster et al., 2018). As such, using neuroimaging traits to examine the relationship 

between DNAm, for instance, and aberrant and neurotypical traits and behaviours has 

become popular in the past years. However, unique challenges accompany this 

research approach, not dissimilar to GWAS approaches. For instance, there are 

approximately 28 million CpG sites along the human haploid genome, leading to 

difficulty in investigating each site (Lancaster et al., 2018). The use of a DNAm score 

has proved to be useful in the past, in terms of aggregating sites into a single, 

continuous measure. 

 In addition to challenges mentioned above, past studies have encountered a 

number of difficulties in analysing and interpreting findings. One of the most common 

issues is sample size; when investigating neuroimaging genetics within a complex 

disorder, such as MDD, this issue is threefold. Firstly, sample sizes used within studies 

may not reflect the general population, due to phenotypic heterogeneity of MDD; 

patients may have different symptom manifestations, making specific associations 

difficult to assess and interpret. Moreover, in the investigation of both genetic and 

neuroimaging data in MDD, very large samples are needed in order to account for 

genetic heterogeneity and number of neuroimaging phenotypes. Until recently, a 

combination of both types of data within the same individuals had not been achieved.  

 A further issue in the investigation of neuroimaging genetics in MDD is 

accuracy of inferences and assumptions when looking at GWAS downstream analyses. 

In this context, pathway-based approaches are powerful as they determine how 
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biologically informative findings stemming from combined neuroimaging and genetic 

data are. However, the accuracy of these inferences is limited by previous information 

used to identify the pathway and its relationship to the function it carries out.  

 Finally, DNAm and gene expression analyses pose unique challenges, as they 

are both dynamic, tissue- and cell-specific, and variable (Fazzari & Greally, 2004; 

McKenzie et al., 2014). Therefore, both data types can only be assessed and 

investigated within the physical brain post-mortem, which in turn introduces its own 

challenges, such as differential gene expression post- as opposed to ante-mortem, and 

a possible heterogeneous sample limited in size. Neuroimaging phenotypes therefore 

provide a novel, non-invasive method of investigating genetic and epigenetic impact 

on the brain in vivo. 

Therefore, in the current thesis, I address some of the issues mentioned above 

by aiming to uncover links between white matter microstructure and differential gene 

expression, as well as to identify its role in relation to (1) genetic risk stratified by 

biological function and (2) whole-genome epigenetic risk of MDD. The overall aim of 

the thesis was to stratify genetic and epigenetic risk for MDD and identify novel 

genetic links to structural brain connectivity. 

I utilise neuroimaging genetics approaches in two large projects, UK Biobank 

and Generation Scotland: Scottish Family Mental Health (GS:SFHS). UK Biobank is 

a large, population-based health resource aiming to prevent, diagnose, and treat 

numerous disorders by investigating genetic and environmental risk factors in middle 

and old age (Sudlow et al., 2015). The prospective study comprises 502,617 

individuals aged 40-69 years whose genetic and environmental (e.g. lifestyle factors, 

medication intake) data were collected between 2006 and 2010 

(http://www.ukbiobank.ac.uk/). A total of 488,363 individuals were genotyped using 

two arrays, the UK BiLEVE and the UK Biobank Axiom arrays (Bycroft et al., 2018). 

At the time of the current thesis, approximately 20,000 individuals have neuroimaging 

data across a number of modalities, including structural, diffusion, and functional. This 

number will in time increase to 100,000 participants, making UK Biobank a unique 

resource for investigating neurobiological markers of disease in association with 

genetic and environmental factors. 
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 GS:SFHS is a family-based population study investigating the genetics of 

health and disease in approximately 24,000 individuals across Scotland aged 18 – 98 

years, with baseline data collected between 2006 and 2011 (Smith et al., 2006; Smith 

et al., 2011). Data include environmental factors (e.g. lifestyle, medication intake) as 

well as genetic. Genome-wide DNAm data was also profiled from blood samples, 

marking GS:SFHS as one of the largest cohorts with available DNAm data. A subset 

of individuals, as part of Stratifying Resilience and Depression Longitudinally 

(STRADL), were followed-up, with the project aiming to further assess mental health, 

especially depression. Neuroimaging data was also collected for over 1,000 

individuals within the STRADL subset (Navrady et al., 2017). The data make it 

possible for researchers to investigate neuroimaging phenotypes in relation to a vast 

amount of data, including DNAm, in a large number of individuals. 

In the current thesis, I first start by investigating eQTL in relation to white 

matter microstructure in order to explore its genetic underpinnings. I applied a PRS 

derived from eQTL GWAS, with each score acting as a genetic proxy for the 

expression of a single gene. I found that expression scores of 8 genes were significantly 

associated with white matter microstructure after correction for multiple comparisons 

across scores and DTI metrics. More specifically, genes whose expression was linked 

to better white matter microstructural integrity were previously associated with 

developmental neural processes, such as neurite outgrowth; genes whose expression 

was linked to worse white matter microstructural integrity were previously associated 

with neuropsychiatric and neurological disorders (Chapter 2).  

Having lent support to white matter microstructure being genetically linked to 

differential expression patterns, I next investigated genetic risk for MDD aggregated 

within a biological pathway, the NETRIN1 Signalling Pathway, which had previously 

been associated with MDD, and its relationship to white matter microstructure. I 

calculated PRS for SNPs within and outside the pathway, and compared the two PRS 

lists in their association with white matter tracts. Findings indicated that the PRS 

aggregated within the NETRIN1 pathway was associated with large tracts connecting 

frontal-to-occipital areas of the brain, such as the superior and inferior longitudinal 

fasciculus. Most interesting was its association with thalamic radiations, both 
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regionally and individually, as the biological pathway itself guides axons from the 

thalamus to the rest of the cortex in neurodevelopment (Chapter 3). 

Finally, to investigate increased epigenetic risk for MDD, I calculated an 

epigenome-wide DNAm risk score as well as a genome-wide PRS and associated both 

with white matter microstructure. While both risk scores were associated with MDD, 

supporting previous findings of an epigenetic signature of MDD, neither was 

associated with white matter tracts, globally or individually (Chapter 4). The results 

indicated the need for larger sample sizes in neuroimaging epigenetic studies, 

reflecting a similar pattern to genetic fields, which may in future prove to be more 

successful. Finally, the thesis ends with a summary of the main findings, strengths and 

limitations, and directions for future study in chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 
 

Chapter 2: Expression quantitative trait loci-derived scores and white matter 

microstructure in UK Biobank: a novel approach to integrating genetics and 

neuroimaging 

 

1. Chapter Introduction  

Previous GWAS of white matter microstructure reported it to be moderately 

heritable, indicating a genetic component contributing to white matter formation 

(Elliot et al., 2018). However, gene expression-based data has not previously been 

investigated in relation to white matter tracts in large sample sizes. Novel insight into 

expression changes in relation to brain connectivity may be gained and downstream 

analyses investigating brain-related traits and disorders (e.g. cognition, psychiatric 

disorders) may be interrogated as a result of this exploration. Therefore, the aim of the 

current study was to utilise a novel approach to identify genetic underpinnings of white 

matter microstructure, globally at whole-brain level, and with increasing regional 

specificity, in order to form a basis for future MDD genetic risk-associated studies in 

relation to brain connectivity. This chapter investigates the association between 

genetic proxies of gene expression for specific genes and white matter microstructure. 

In total, 6,457 eQTL scores, each representing the genetic profile of a single gene’s 

expression, were calculated for N = 14,518 individuals with FA data and N = 14,485 

individuals with MD data in UK Biobank. The study has been summarised in a 

manuscript entitled, “Expression quantitative trait loci-derived scores and white matter 

microstructure in UK Biobank: a novel approach to integrating genetics and 

neuroimaging”, and is under review at Translational Psychiatry 

(https://doi.org/10.1101/646646). As the first author, I designed the experiment, 

carried out all the analyses, and wrote the manuscript for publication.  

 

2. Manuscript 

2.1 Abstract 

Expression quantitative trait loci (eQTL) are genetic variants associated with 

gene expression. Using genome-wide genotype data, it is now possible to impute gene 

expression using eQTL mapping efforts. This approach can be used to analyse 
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previously unexplored relationships between gene expression and heritable in-vivo 

measures of human brain structural connectivity.  

Using large-scale eQTL mapping studies, 6,457 gene expression scores (eQTL 

scores) were computed using genome-wide genotype data in UK Biobank, where each 

score represents a genetic proxy measure of gene expression. These scores were then 

tested for associations with two diffusion tensor imaging measures, fractional 

anisotropy (NFA=14,518) and mean diffusivity (NMD=14,485), representing white 

matter microstructural integrity. 

FDR-corrected significant associations were found between 8 eQTL scores and 

structural connectivity phenotypes, including global and regional measures (βabsolute 

FA=0.0339-0.0453; MD=0.0308-0.0381) and individual tracts (βabsolute FA=0.0320-

0.0561; MD=0.0295-0.0480). The loci within these eQTL scores have been reported 

to regulate expression of genes involved in various brain-related processes and 

disorders, such as neurite outgrowth and Parkinson’s disease (DCAKD, SLC35A4, 

SEC14L4, SRA1, NMT1, CPNE1, PLEKHM1, UBE3C).  

Our findings indicate that eQTL scores are associated with measures of in-vivo 

brain connectivity and provide novel information, not previously found by 

conventional genome-wide association studies. Although the role of expression of 

these genes regarding white matter microstructural integrity is not yet clear, these 

findings suggest it may be possible, in future, to map potential trait- and disease-

associated eQTL to in-vivo brain connectivity and better understand the mechanisms 

of psychiatric disorders and brain traits, and their associated imaging findings. 

 

2.2 Introduction 

Expression quantitative trait loci (eQTL) are genetic variants which are 

proximally (cis) or distally (trans) associated with variation in the expression of genes 

(Nica & Dermitzakis, 2013). Previous animal and human studies have found that 

changes in gene expression lead to phenotypic variation, including adaptive 

phenotypic changes and evolutionary developments. In humans, for instance, cis-

regulatory mutations lead to differences in lactase (LCT) gene expression, resulting in 
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lactase persistence in adulthood (Wray, 2007). With respect to psychiatric disorders, 

major depressive disorder (MDD) and bipolar disorder have been associated with 

decreased expression of prodynorphin messenger RNA (mRNA), which is involved in 

regulation of mood and expressed in limbic-related areas within the brain (e.g. 

amygdala, hippocampus) (Hurd, 1996; Hurd, 2002; Gandal et al., 2018). These 

findings indicate the importance of cis-regulatory mutations and variations in trait 

evolution. 

Variation in gene regulation leads to differences in individual phenotypes, 

indicating that eQTL may play a role in susceptibility to disease (De Jong et al., 2012; 

Luo et al., 2015). To test this hypothesis, methods which combine gene expression 

data with genome-wide association studies (GWAS) summary statistics have been 

developed. These approaches may provide further insight into the potential causal 

pathways and genes involved in specific disorders, or predict the regulatory roles of 

single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with 

previously associated variants (Gilad et al., 2008). Previous studies have found that 

genetic variation may explain some of the variance in levels of gene expression in 

human tissues, including post-mortem brain tissue (Stranger et al., 2005; Hernandez 

et al., 2012; Ramasamy et al., 2014; Zhu et al., 2016). In one such study, Zou et al. 

(2012) conducted an expression genome-wide association study (eGWAS) on post-

mortem brains of individuals with Alzheimer’s disease (AD) and other brain 

pathologies (non-AD; including progressive supranuclear palsy). They found 2,980 

cisSNPs associated with both AD and non-AD conditions. By investigating brain 

eQTL in post-mortem tissue therefore, researchers have been able to discover 

associations between gene expression and disease states in the brain.  

Using brain tissue in order to investigate gene expression levels is however 

problematic, due to limitations such as small sample sizes and possible expression 

level differences in post-mortem versus ante-mortem brains (McKenzie et al., 2014). 

As such, alternative approaches have therefore been investigated. One such approach 

is using eQTL measured from whole blood gene expression as a proxy for brain gene 

expression; an approach supported by important benefits such as greater sample size 

and easier accessibility (Qi et al., 2018). Although it is recommended that wherever 

possible gene expression levels should be measured in a tissue-specific manner, 
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considerable overlap has been demonstrated between blood and brain eQTL, 

indicating the validity of the approach (McKenzie et al., 2014). 

Neuroimaging measures provide a novel opportunity to investigate whether 

eQTL are significantly associated with in vivo brain phenotypes, and thereby 

increasing our knowledge of the role of eQTL in the wider context of psychiatric 

disorders. White matter microstructure, as measured by diffusion tensor imaging 

(DTI), is consistently heritable across tracts (Kochunov et al., 2015; Vuoksimaa et al., 

2017; Sprooten et al., 2014) and is compromised in several psychiatric disorders. 

Generally, decreased microstructural integrity of white matter is characterised by 

lower directionality of water molecule diffusion (reduced fractional anisotropy, FA) 

and less constrained water molecule diffusion (increased mean diffusivity, MD). 

Consistent findings across studies have indicated higher MD and lower FA in 

individuals suffering from MDD, for example (Whalley et al., 2013; Shen et al., 2017). 

Investigating the regulatory loci associated with white matter microstructure in health 

and disease may aid in the detection of molecular mechanisms influencing disease 

through aberrant structural brain connectivity.  

Within the current study, eQTL scores were derived based on two well-

powered whole-blood eQTL studies (Westra et al., 2013; Gusev et al., 2016). 

GENOSCORES, a database of filtered summary statistics of publicly-available 

GWAS covering multiple phenotypes, including gene expression, was used to 

calculate eQTL scores  (https://pm2.phs.ed.ac.uk/genoscores/).  

The resultant eQTL-based genetic scores can be considered proxies for the 

expression of particular genes, which can then be tested for association with traits of 

interest. Here, their association with white matter microstructure as measured by FA 

and MD was analysed in UK Biobank using participants from the October 2018 UK 

Biobank neuroimaging release (NFA = 14,518; NMD = 14,485). The purpose of the 

study was to utilise a novel approach to investigate associations between regulatory 

SNPs and white matter microstructure. This approach could lead to further specialised 

investigation into psychiatric and neurological disorders, as well as other brain-related 

traits, such as cognition and behaviour. 
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2.3 Methods and materials 

2.3.1 UK Biobank (UKB) 

UK Biobank is a health resource aiming to prevent, diagnose and treat 

numerous disorders. It is comprised of 502,617 individuals whose genetic and 

environmental data (e.g. lifestyle, medications) were collected between 2006 and 2010 

in the United Kingdom (http://www.ukbiobank.ac.uk/). UKB received ethical 

approval from the Research Ethics Committee (reference: 11/NW/0382). This study 

has been approved by the UKB Access Committee (Project #4844). Written informed 

consent was obtained from all participants. 

 

2.3.2 Study population – neuroimaging measures 

In the current study, individuals were excluded if they participated in studies 

such as the Psychiatric Genomics Consortium (PGC) MDD GWAS or Generation 

Scotland (Scottish Family Health Study) to remove overlap of genetic samples.  

From the total of 502,617 individuals participating in UK Biobank, a subset 

was invited to attend neuroimaging assessments following the initial appointment. A 

total of 14,506 individuals who were part of the latest UK Biobank neuroimaging 

release (May 2018) were used in the current chapter. The age at the imaging 

assessment here ranged from 44.58-80.25 (mean: 62.69 +/- 7.48), of which 47.91% 

were men.  

The current study used two DTI scalars, FA and MD. DTI data pre-processing 

and quality checking included correction for eddy currents and head motion in the 

scanner, outlier-slices correction, as well as grand distortion correction. FA maps were 

used to generate tract masks, using probabilistic tractography analysis as part of the 

AutoPtx package in FSL (Mori et al., 2002). A total of 27 tracts were generated, of 

which 12 were bilateral and 3 unilateral; weighted mean FA and MD were then 

calculated for each tract and these were used as variables in the current chapter. 

Images were acquired, pre-processed, and quality controlled by UK Biobank 

using FMRIB Software Library (FSL) packages through a standard protocol 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977). All data inconsistent with 
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scanner settings and that did not pass initial quality control were excluded from current 

analyses (Alfaro-Almagro et al., 2018). Moreover, individuals whose global measures 

for FA and MD lay more than three standard deviations from the sample mean were 

excluded (Shen et al., 2017; Barbu et al., 2019). This resulted in 14,518 individuals 

with FA values (Nfemale = 7,561 (52%); Nmale = 6,957 (48%); mean age: 63.14 +/- 7.4; 

age range: 45.92 – 80.67) and 14,485 individuals with MD values (Nfemale = 7,552 

(52%); Nmale = 6,933 (48%); mean age: 63.12 +/- 7.39; age range: 45.92 – 80.67).  

Tables 1 and 2 below detail general mental health for all individuals with FA 

and MD values, as taken from the mental health questionnaire administered to all UK 

Biobank participants (http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=137). 

 Ever sought/received professional 
help for mental distress 

Ever suffered mental distress 
preventing usual activities 

FA   
Yes 
No 

Do not 
know 

Prefer not to 
answer 

4,180 (M=1,490) 3,603 (M=1,313) 
6,481 (M=3,481) 6,957 (M=3,596) 

18 (M=10) 121 (M=71) 

13 (M=6) 11 (M=7) 
MD   

Yes 
No 

Do not  
know 

Prefer not to 
answer 

4,175 (M=1,486) 3,598 (M=1,308) 
6,462 (M=3,469) 6,939 (M=3,586) 

18 (M=10) 120 (M=70) 

13 (M=6) 11 (M=7) 

Table 1. Mental distress reported with the on-line mental health questionnaire; 
M=male; column headers indicate questions asked in the questionnaire; mental health 
data is not available for all participants with FA and MD measures. 

 Mental health problems ever diagnosed by a professional 
FA and MD (Totaln=7)  

Female 
 
 
 
 

Male 

Depression (N=1) 
Psychological over-eating or binge-eating (N=1) 

Anxiety, nerves or generalized anxiety disorder (N=1) 
Agoraphobia (N=1) 
ADD/ADHD (N=1) 

Anxiety, nerves or generalized anxiety disorder (N=2) 
Table 2. Mental health conditions present within both FA and MD samples; 7 
individuals with FA (N=14,518) and MD (N=14,485) have previously been diagnosed 
with mental health conditions. 
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2.3.3 Genotyping and eQTL score calculation 

A total of 488,363 UKB blood samples (N female = 264,857; N male = 

223,506; http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=22001) were genotyped 

using the UK BiLEVE array (N = 49,949; 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149600) and the UK Biobank Axiom 

array (N = 438,417; http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149601). Details 

of genotyping and quality control are described in more detail by Hagenaars et al. 

(2016) and Bycroft et al. (2017). 

From GENOSCORES, eQTL analysis summary statistics from two studies of 

whole-blood eQTL were used (Westra et al., 2013; Gusev et al., 2016). Briefly, Gusev 

et al. (2016) developed a novel approach aimed at identifying associations between 

gene expression and complex traits in cases where gene expression level is not directly 

measured. These authors reported eQTL based on a sample of 1,414 individuals with 

whole-blood expression measured using the Illumina HumanHT-12 version 4 

Expression BeadChip. Westra et al. (2013) performed a large eQTL meta-analysis in 

5,311 samples across 7 studies from peripheral blood, with gene expression measured 

using Illumina whole-genome Expression BeadChips (HT12v3, HT12v4 or H8v2 

arrays). Their aim was to investigate the magnitude of the effect of cis and trans SNPs 

on gene expression, as well as to observe whether mapping eQTL in peripheral blood 

could uncover biological pathways associated with complex traits and disease. Further 

details of data acquisition and protocols are described in more detail in the two studies 

(Westra et al., 2013; Gusev et al., 2016). 

Before being imported into the GENOSCORES database, summary statistics 

were filtered at a liberal p-value < 1E-4 (0.0001). A total of 10,884 eQTL scores (N 

Gusev study = 3,801; N Westra study = 7,083) were computed for individuals included 

in the imaging sample (NFA: 14,518; NMD: 14,485) from the SNPs found in 

GENOSCORES, using a p-value threshold of 1E-5 (0.00001). Overlapping eQTL 

scores between the two studies (i.e. scores for which SNPs affect expression of the 

same gene in both studies) were then excluded by only including the score where a 

SNP had the lowest p-value, i.e. most significant association. The final eQTL score 

list was 6,457 (N Gusev study = 3,286; N Westra study = 3,171). These scores were 
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used as input variables in subsequent statistical analyses (Appendix 1: Figure S4 

provides a summary of the score derivation process).  

Briefly, eQTL scores were computed as a sum of the genotypes for an 

individual (g, scored as 0, 1, 2 copies of the reference allele) weighted by the effect 

size estimate (βt) for the trait of interest t. In order to adjust for LD, vector βt was pre-

multiplied by the generalized inverse of the SNP-SNP correlation matrix R estimated 

from the 1000 Genomes reference panel, limited to the individuals with European 

ancestry. 

The formula to compute the eQTL score for trait t for an individual (i) is 

therefore: 

score(i,t) = gi βt R-1 

 

2.3.4 Magnetic resonance imaging (MRI) acquisition 

In the current study, imaging-derived phenotypes (IDPs) produced by UKB 

were used. MRI acquisition and pre-processing procedures for white matter tracts were 

performed by UKB using standardised protocols 

(https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf). Briefly, images were 

acquired in Manchester (NFA = 12,248; NMD = 12,221) and Newcastle (NFA = 2,270; 

NMD = 2,264) on a standard Siemens Skyra 3T scanner with a 32-channel radio-

frequency (RF) receive head coil and later pre-processed using the FMRIB Software 

Library (FSL), and parcellation of white matter tracts was conducted using AutoPtx 

(Alfaro-Almagro et al., 2018). Individual white matter tracts belonging to each tract 

category can be observed in Appendix 1, Table S13. 

Owing to the fact that head position and RF coil in the scanner may affect data 

quality and subsequent pre-processing, three scanner brain position variables were also 

generated by UKB, with the aim of being used as confounding variables in subsequent 

analyses. These are lateral brain position – X 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=25756), transverse brain position – 

Y (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=25757) and longitudinal brain 
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position – Z (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=25758). The three 

variables were included as covariates in the statistical analysis described below. 

 

2.3.5 Statistical methods 

All analyses were conducted using R (version 3.2.3) in a Linux environment. 

Generalised linear mixed models (function “lme” in package “nlme”) were used for 

bilateral brain regions, which were included as dependent variables. The eQTL scores 

were included as independent variables separately in each model, with additional 

covariates: age, age2, sex, fifteen genetic principal components to control for 

population stratification, three MRI head position coordinates, MRI site and genotype 

array, while hemisphere was included as a within-subject variable. For unilateral tracts, 

as well as global measures and white matter tract categories of FA and MD, also 

included in the models as dependent variables, a general linear model (function “lm”) 

was used, using the same covariates as above, without hemisphere included as a 

separate term, and again including the eQTL scores as independent variables 

separately in each model. 

For global measures and white matter tract categories of FA and MD, principal 

component analysis (PCA) was applied on the white matter tracts of interest (all 27 for 

global measures; 12 for association fibres; 6 for thalamic radiations; 9 for projection 

fibres) in order to extract a latent measure. Scores of the first unrotated component 

were extracted and set as dependent variables in general linear models. False discovery 

rate (FDR) correction using the “p.adjust” function in R (q < 0.05) was applied across 

the eQTL scores and the individual white matter tracts (Ntests = 98,855), and separately 

across eQTL scores and global and tract categories (Ntests = 25,828). 

 

2.4 Results 

There were several eQTL scores that showed significant associations with a 

number of global measures, tract categories, and white matter tracts post FDR 

correction (Table 3; Figure 1a & 1b and Figure 2a & 2b; Appendix 1: Tables S5 – 

S12). In total, 25 scores were significantly associated with FA values (βabsolute = 0.0320-
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0.0561) and 24 scores with MD values (βabsolute = 0.0295-0.0480) in several tracts 

(these are fully detailed in Appendix 1: Tables S1, S2, S3 and S4; Figure S1 and S2). 

Among these scores, 8 were associated with white matter tracts measured by both FA 

and MD. The primary findings reported in this thesis section focus on these 8 

overlapping scores (consistent with the submitted paper), as these were considered to 

provide the most consistent information with regards to gene expression within white 

matter tracts as measured by two different DTI scalars (see tables 4 and 5).  

Score name & eQTL 
type 

N SNPs 
in score 

Regulated 
gene 

Study from 
which score 
is calculated 

Gene function 

DCAKD_eQTL_cis 8 DCAKD Gusev et al. 

Expressed in glioma; 
ubiquitous expression in brain; 

implicated in a number of 
psychiatric and neurological 
disorders (Latourelle et al., 

2012; Gonzalez-Lozano et al., 
2016; Schizophrenia Working 

Group, 2018; Butler et al., 
2015) 

SLC35A4_eQTL_cis 12 SLC35A4 Gusev et al. Expressed in brain (Sosicka et 
al., 2017) 

SEC14L4_eQTL_cis 1 SEC14L4 Westra et al. 

Specific function not yet 
determined; may be 

implicated in 
neurodegeneration (Curwin et 

al., 2008) 

SRA1_eQTL_cis 15 SRA1 Westra et al. 

Involved in regulation of 
many NR (nuclear receptor) 
and non-NR activities (e.g. 

chromatin organisation); may 
be associated with idiopathic 

hypogonadotropic 
hypogonadism (Kotan et al., 

2016; Bianco et al., 2009) 
 

NMT1_eQTL_cis 7 NMT1 Westra et al. 

Ubiquitous expression in 
brain; may be implicated in 
brain tumours (Deng et al., 

2018; Lu et al., 2005; Ducker 
et al., 2005) 

CPNE1_eQTL_cis 1 CPNE1 Westra et al. 

May regulate molecular events 
at the interface of the cell 
membrane and cytoplasm; 

expressed during brain 
development and implicated in 
neurite outgrowth in rats (Kim 
et al., 2018; Park et al., 2012; 

Park et al., 2014)  

PLEKHM1_eQTL_cis 5 PLEKHM1 Gusev et al. 
Protein encoded by this gene 

is important for bone 
resorption; may play critical 
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role in vesicular transport in 
the osteoclast (Fujiwara et al., 
2016; McEwan et al., 2015) 

UBE3C_eQTL_cis 4 UBE3C Westra et al. 

Expressed in brain; may be 
implicated in Parkinson’s 

disease (Garriock et al., 2010; 
Filatova et al., 2014) 

Table 3. Information regarding eQTL scores with significant associations for both FA and MD-
measured tracts.  

 

 

The effect of the 8 scores on FA measures of white matter microstructure 

Score, White Matter Tracts Effect 
size, β SD t value p value 

p value, 
FDR 

corrected 

DCAKD eQTL score      

Global FA 
Thalamic radiations 

Superior longitudinal fasciculus (SLF) 
Anterior thalamic radiations (ATR) 

Forceps minor 

-0.0367 
-0.0403 
-0.0386 
-0.0429 
-0.0471 

0.0079 
0.0080 
0.0077 
0.0076 
0.0078 

-4.6474 
-5.0378 
-5.0327 
-5.6798 
-6.0115 

3.39E-06 
4.77E-07 
4.89E-07 
1.37E-08 
1.88E-09 

0.0088 
0.0025 
0.0040 
0.0002 
0.0001 

SLC35A4 eQTL score      

Global FA 
Association fibres 
Projection fibres 

Corticospinal tract 
Acoustic radiation 

Inferior longitudinal fasciculus (ILF) 
Superior longitudinal fasciculus (SLF) 

Forceps minor 

-0.0403 
-0.0347 
-0.0453 
-0.0326 
-0.0326 
-0.0335 
-0.0367 
-0.0561 

0.0079 
0.0079 
0.0079 
0.0074 
0.0069 
0.0076 
0.0077 
0.0078 

-5.0996 
-4.4036 
5.7612 
-4.3945 
-4.7044 
-4.3887 
-4.7887 
-7.1754 

3.45E-07 
1.07E-05 
8.52E-09 
1.12E-05 
2.57E-06 
1.15E-05 
1.69E-06 
7.56E-13 

0.0022 
0.0198 
0.0002 
0.0337 
0.0133 
0.0337 
0.0103 

7.32E-08 

SEC14L4 eQTL score      

Global FA 
Association fibres 

Thalamic radiations 
Projection fibres 

Corticospinal tract 
Posterior thalamic radiation 

Superior longitudinal fasciculus (SLF) 
Inferior longitudinal fasciculus (ILF) 

Forceps minor 

-0.0420 
-0.0358 
-0.0388 
-0.0416 
-0.0320 
-0.0352 
-0.0392 
-0.0419 
-0.0456 

0.0079 
0.0079 
0.0080 
0.0079 
0.0074 
0.0075 
0.0077 
0.0076 
0.0078 

-5.3199 
-4.5425 
-4.8429 
5.2850 
-4.3116 
-4.7014 
-5.1143 
-5.4773 
-5.8270 

1.05E-07 
5.60E-06 
1.29E-06 
1.27E-07 
1.63E-05 
2.61E-06 
3.19E-07 
4.39E-08 
5.76E-09 

0.0011 
0.0121 
0.0048 
0.0011 
0.0416 
0.0133 
0.0028 
0.0006 
0.0001 

SRA1 eQTL score      

Projection fibres 
Forceps minor 

-0.0339 
-0.0462 

0.0079 
0.0078 

4.3032 
-5.8981 

1.69E-05 
3.76E-09 

0.0273 
0.0001 
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NMT1 eQTL score      

Anterior thalamic radiations (ATR) 
Forceps minor 

0.0324 
0.0352 

0.0076 
0.0078 

4.2863 
4.4956 

1.83E-05 
6.99E-06 

0.0429 
0.0271 

CPNE1 eQTL score      

Forceps minor 
Forceps major 

0.0338 
0.0436 

0.0078 
0.0081 

4.3185 
5.3818 

1.58E-05 
7.49E-08 

0.0416 
0.0009 

PLEKHM1 eQTL score      

Forceps minor -0.0347 0.0078 -4.4321 9.40E-06 0.0337 
UBE3C eQTL score      

Forceps minor -0.0382 0.0078 -4.8721 1.12E-06 0.0077 
Table 4. Significant associations between eQTL scores and global measures, category, and individual 
white matter tracts (FA); the first column indicates standardised effect size (β); FDR = false discovery 
rate; for each score, tracts are arranged from global to individual tracts. 

 

The effect of the 8 scores on MD measures of white matter microstructure 

Score, White Matter Tracts Effect 
size, β SD t value p value 

p value, 
FDR 

corrected 
DCAKD eQTL score      

Global MD 
Thalamic radiations 
Association fibres 
Acoustic radiation 
Uncinate fasciculus 

Cingulate gyrus 
Inferior longitudinal fasciculus (ILF) 
Anterior thalamic radiations (ATR) 
Inferior fronto-occipital fasciculus 

(IFOF) 
Superior longitudinal fasciculus (SLF) 

Forceps minor 

0.0404 
0.0327 
0.0381 
0.0295 
0.0314 
0.0352 
0.0377 
0.0403 
0.0410 

 
0.0415 
0.0480 

0.0075 
0.0072 
0.0077 
0.0069 
0.0068 
0.0073 
0.0073 
0.0070 
0.0075 
0.0076 
0.0076 

5.3762 
4.5625 
4.9643 
4.2470 
4.6086 
4.7887 
5.1766 
5.7964 
5.4805 
5.4902 
6.3085 

7.72E-08 
5.09E-06 
6.97E-07 
2.18E-05 
4.09E-06 
1.69E-06 
2.29E-07 
6.92E-09 
4.31E-08 
4.08E-08 
2.89E-10 

0.0015 
0.0132 
0.0045 
0.0472 
0.0162 
0.0085 
0.0024 
0.0003 
0.0008 
0.0008 

2.76E-05 

SLC35A4 eQTL score      

Global MD 
Inferior longitudinal fasciculus (ILF) 

Forceps minor 

0.0308 
0.0362 
0.0432 

0.0075 
0.0073 
0.0076 

4.0893 
4.9676 
5.6773 

4.35E-05 
6.86E-07 
1.39E-08 

0.0423 
0.0044 
0.0004 

SEC14L4 eQTL score      

Global MD 
Cingulate gyrus 

Acoustic radiation 
Forceps minor 

0.0326 
0.0328 
0.0339 
0.0348 

0.0075 
0.0073 
0.0069 
0.0076 

4.3299 
4.4648 
4.8778 
4.5604 

1.50E-05 
8.07E-06 
1.08E-06 
5.15E-06 

0.0277 
0.0248 
0.0060 
0.0188 

SRA1 eQTL score      

Forceps minor 0.0353 0.0076 4.6349 3.60E-06 0.0155 
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NMT1 eQTL score      

Global MD 
Inferior longitudinal fasciculus (ILF) 

Inferior fronto-occipital fasciculus 
(IFOF) 

Anterior thalamic radiations (ATR) 
Superior longitudinal fasciculus (SLF) 

Forceps minor 

-0.0328 
-0.0311 
-0.0335 

 
-0.0339 
-0.0343 
-0.0392 

0.0075 
0.0073 
0.0075 
0.0070 
0.0076 
0.0076 

-4.3626 
-4.2695 
-4.4845 
-4.8703 
-4.5355 
-5.1537 

1.29E-05 
1.97E-05 
7.36E-06 
1.13E-06 
5.79E-06 
2.59E-07 

0.0257 
0.0447 
0.0234 
0.0060 
0.0204 
0.0025 

CPNE1 eQTL score      

Global MD 
Association fibres 

Inferior longitudinal fasciculus (ILF) 
Superior longitudinal fasciculus (SLF) 

 

-0.0366 
-0.0368 
-0.0309 
-0.0356 

0.0075 
0.0077 
0.0073 
0.0076 

-4.8650 
-4.7868 
-4.2303 
-4.7055 

1.16E-06 
1.71E-06 
2.35E-05 
2.56E-06 

0.0050 
0.0063 
0.0497 
0.0116 

PLEKHM1 eQTL score      

Global MD 
Thalamic radiations 
Association fibres 

Forceps minor 
Superior longitudinal fasciculus (SLF) 

Anterior thalamic radiations (ATR) 

0.0330 
0.0296 
0.0318 
0.0334 
0.0342 
0.0356 

0.0075 
0.0072 
0.0077 
0.0076 
0.0076 
0.0070 

4.3859 
4.1282 
4.1395 
4.3876 
4.5223 
5.1101 

1.16E-05 
3.68E-05 
3.50E-05 
1.15E-05 
6.17E-06 
3.26E-07 

0.0250 
0.0423 
0.0423 
0.0297 
0.0210 
0.0028 

UBE3C eQTL score      

Forceps minor 
Inferior fronto-occipital fasciculus 

(IFOF) 

0.0331 
0.0332 

0.0076 
0.0075 

4.3465 
4.4413 

1.39E-05 
9.01E-06 

0.0349 
0.0268 

Table 5. Significant associations between eQTL scores and individual white matter tracts (MD); the 
first column indicates standardised effect size (β); FDR = false discovery rate; for each score, tracts are 
arranged from global to individual tracts. 
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Figure 1 (A and B). Indicates nominal p-values between each of the 8 scores (shown in legend entitled 
“eQTL score”) and global and tract category measures (noted on the x-axis; FA = fractional anisotropy 
(figure 1A, top); MD = mean diffusivity (figure 1B, bottom), note for 1B there were no significant 
relationships with projection fibres). All values in the figure met FDR correction. Two of the scores 
with the circular black border around the points (CPNE1 and NMT1) had an effect size in the opposite 
direction to all other scores (also indicated by -β for MD in figure legend). The colours of the plot points 
indicate the score to which they belong. Magnitude of standardised effect is shown in the legend entitled 
“Effect size (absolute values)”.  
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Figure 2 (A and B). Indicates nominal p-values between each of the 8 scores (shown in legend entitled 
“eQTL score”) and individual white matter tracts (noted on the x-axis; FA = fractional anisotropy (figure 
2A, top); MD = mean diffusivity (figure 2B, bottom)). SLF = superior longitudinal fasciculus; 
ILF = inferior longitudinal fasciculus; IFOF = inferior fronto-occipital fasciculus; ATR = anterior 
thalamic radiations; PTR = posterior thalamic radiations). All values in the figure met FDR correction. 
Two of the scores with the circular black border around the points (CPNE1 and NMT1) had an effect 
size in the opposite direction to all other scores (+β and -β for FA and MD, respectively in figure legend). 
The colours of the plot points indicate the score to which they belong. Magnitude of standardised effect 
is shown in the legend entitled “Effect size (absolute values)”. 
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Allen Brain Atlas gene expression pattern 

 The Allen Brain Atlas is a multi-modal atlas of gene expression across brain 

regions, integrating structure, function, and gene expression data to aid in the 

investigation of the human brain in health and disease (Shen et al., 2012). For the 

current chapter, the atlas was used to investigate the 8 significantly-associated eQTL 

scores in terms of gene expression patterns across brain regions in 6 donors (Table 6; 

Figures 3 and 4). 

Allen Brain Atlas Donor Demographic characteristics 

H0351.2001 24 years, Male, African American 

H0351.2002 39 years, Male, African American 

H0351.1009 57 years, Male, Caucasian 

H0351.1012 31 years, Male, Caucasian 

H0351.1015 49 years, Female, Hispanic 

H0351.1016 55 years, Male, Caucasian 

Table 6. Descriptive statistics of the 6 donors included in the Allen Brain Atlas 
(Shen et al., 2012). 
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Figure 3. Average gene expression patterns across brain regions in N = 6 donors for 
2 neurodevelopment-linked genes. Points on the plot indicate participants’ own gene 
expression level, while the bars indicate the mean gene expression value across all 
donors. The y-axis indicates gene expression values (normalized z-scores). Brain 
structures are indicated in the legend. 

 

 

 

Figure 4. Average gene expression patterns across brain regions in N = 6 donors for 6 
disease-linked genes. Points on the plot indicate participants’ own gene expression 
level, while the bars indicate the mean gene expression value across all donors. The y-
axis indicates gene expression values (normalized z-scores). Brain structures are 
indicated in the legend. 
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Genome-wide associations between score SNPs and white matter tracts  

Using a previously published GWAS of imaging traits (Elliott et al., 2018), the 

association between the SNPs comprising each of the 8 scores (Ntotal = 53; SNP list can 

be found in Appendix 1: Table S14) with those found previously for the white matter 

tracts of interest (i.e. the tracts which showed post-FDR significant associations) were 

investigated. This SNP look-up was performed in order to observe whether our 

analysis of eQTL scores, comprising SNPs which together regulate the expression of 

a single gene, yielded any novel associations with white matter tracts which were not 

previously found in conventional GWAS.  

The Brain Imaging Genetics (BIG) database (http://big.stats.ox.ac.uk/) was 

used to extract the effect size and p-value of each SNP of interest as associated with 

the white matter tracts of interest, as provided in Elliott et al. (2018). As GWAS for 

global and tract category measures were not performed in the original study, these 

GWAS were performed as part of the current project (i.e. GWAS for global measures, 

association fibres, thalamic radiations and projection fibres). Our GWAS parameters 

and quality check procedures are described in more detail in Appendix 1. P-values and 

effect size of each SNP for each individual white matter tract of interest (left and right 

hemispheres separately from Elliott et al., 2018), as well as for global and tract 

categories (run locally), are also contained in Appendix 1: Figure S3. Briefly, only one 

SNP across two eQTL scores (SLC35A4; SRA1) was previously found to reach 

genome-wide significance with forceps minor (FA), projection fibres (FA) and global 

FA (GWAS run locally): rs2237077. 

 

2.5 Discussion 

The current study utilised a novel approach to investigate whether eQTL 

scores, corresponding to the expression of specific genes in whole blood, were 

significantly and specifically associated with white matter tracts in N > 14,000 

individuals. Significant associations were found in white matter microstructure as 

measured by both FA and MD for a number of scores (FAN scores = 25; MDN scores = 24). 

Of these, 8 scores were found to be significantly associated with various white matter 

tracts as measured by both FA and MD. In particular, the largest effect was seen for 
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the association between forceps minor (FA) and the eQTL score for SLC35A4, and 

across several tracts measured by MD for the eQTL score for DCAKD. Although these 

eQTL were derived from whole blood, there is evidence of expression in the brain for 

some of the genes, outlined in further detail below. These findings also provided novel 

information not previously found by conventional genome-wide association studies.  

All 8 scores were associated with white matter microstructural integrity of the 

forceps minor as measured by FA (7 of which were also associated with MD values). 

The forceps minor forms the anterior part of the corpus callosum, connecting 

homologous regions of the prefrontal cortex between hemispheres. It is postulated to 

be involved in numerous cognitive and behavioural skills, such as decision making, 

social behaviour, and language (Miller et al., 2001). This connection therefore 

implicates forceps minor in a wide range of cognitive skills, and damage to the tract 

has been associated with neuropsychiatric and neurological disorders, such as multiple 

sclerosis and depression (Gobbi et al., 2014; Mamiya et al., 2018). 

2.5.1 Global and individual tract findings – largest associations  

The two genes with the largest associations were DCAKD, globally and across 

numerous tracts as measured by higher MD, and SCL35A4 across tracts measured by 

lower FA, with a peak in projection fibres, localised to forceps minor. DCAKD is a 

protein coding gene which is ubiquitously expressed in brain, among other tissues 

(Latourelle et al., 2012). Previous evidence using mouse models indicates expression 

of this gene has a putative role in neurodevelopment (Gonzalez-Lozano et al., 2016), 

and is associated with a number of psychiatric and neurological disorders, including 

schizophrenia, autism spectrum disorder, and Parkinson’s disease (Latourelle et al., 

2012; Schizophrenia Working Group, 2018; Butler et al., 2015). Evidence for 

involvement in autism spectrum disorder comes from Butler et al. (2015), who 

compiled a list of clinically relevant genes for the disorder, with DCAKD among the 

participating susceptibility genes. Expression of DCAKD was also found to be 

implicated in Parkinson’s disease (Latourelle et al., 2012), a disorder previously 

associated, along with other characteristic neurobiological features, with lower white 

matter integrity in tracts within the temporal, parietal and occipital lobes (Auning et 

al., 2014).  
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SLC35A4 belongs to the SLC35 family, members of which act as transporters 

of nucleotide sugars, and is known to be expressed in brain (Sosicka et al., 2017). 

There is limited knowledge about its specific function, although a recent review 

investigating the subcellular localization and topology of SLC35A4 demonstrated that 

it localizes mainly to the Golgi apparatus (Sosicka et al., 2017). 

2.5.2 Disease-linked genes - lower FA & higher MD (decreased white matter 

integrity) 

Four genes identified through eQTL methods (SRA1, UBE3C, SEC14L4, 

PLEKHM1) were associated with lower FA within several individual tracts pertaining 

to projection and association fibres, as well as with higher global MD. SRA1 encodes 

both non-coding and protein-coding RNAs, is implicated in the regulation of numerous 

nuclear receptor activities, such as metabolism and chromatin organization, and is 

known to be expressed in the brain. Kotan et al. (2016) posited that SRA1 plays a role 

in the initiation of puberty in humans by finding that inactivating SRA1 variants were 

associated with idiopathic hypogonadotropic hypogonadism (IHH) in three 

independent families. IHH is a rare genetic disorder caused by the inability of the 

hypothalamus to secrete gonadotropin-releasing hormones (GnRH) or by the inability 

of GnRH to act on pituitary gonadotropes (Bianco et al., 2009). These previous results 

might link the association of SRA1 with projection fibres, which connect the cerebral 

cortex to the spinal cord and brainstem, as well as to other centres of the brain (e.g. 

thalamus). 

UBE3C contains ubiquitin-protein ligase (E3), an enzyme which accepts 

ubiquitin from E2 before transferring it to the target lysine; ubiquitin targets proteins 

for degradation via the proteasome. UBE3C is expressed in numerous tissues, 

including the brain, and has been previously associated with some neuropsychiatric-

related phenotypes. For instance, Garriock et al. (2010) performed a GWAS to 

determine the association between genetic variation and Citalopram response. 

Although not genome-wide significant, their top finding was a SNP in proximity to 

UBE3C and was found to be associated with antidepressant response and MDD 

remission (rs6966038, p = 4.65e-07 and p = 3.63E-07, respectively) (Garriock et al., 

2010). Moreover, Filatova et al. (2014) studied the expression of genes within the 

ubiquitin-proteasome protein degradation system, which is implicated in Parkinson’s 



 

59 
 

disease, in mice with MPTP-induced pre-symptomatic and early symptomatic stages 

of Parkinson’s disease. They found decreased expression in the striatum and the 

substantia nigra of mice, which may lead to a decrease in performance of the system. 

This may in turn lead to accumulation of abnormal and toxic proteins which guide 

neuronal cell death (Filatova et al., 2014).  

The specific function of SEC14L4 has not yet been determined, although the 

protein encoded by it is similar to a protein encoded by the SEC14 gene in 

saccharomyces cerevisiae, which is essential to the biogenesis of Golgi-derived 

transport vesicles. Curwin and McMaster (2008) found that mutations in several 

SEC14 domain-containing proteins in humans may be implicated in 

neurodegeneration, although it is not clear what the role of SEC14L4 is within this 

context. Lastly, PLEKHM1 is important in bone resorption, may be involved in 

vesicular transport in the osteoclast, and is weakly expressed in the brain. Although 

mutations in this gene have been associated with numerous phenotypes (Fujiwara et 

al., 2016; McEwan et al., 2015), none were neuropsychiatric-related. 

2.5.3 Development-linked genes - higher FA & lower MD (increased white matter 

integrity) 

Two of the eight genes (CPNE1, NMT1) were associated with higher FA and 

lower MD, indicating increased white matter integrity, associated with increased 

expression level as quantified by the corresponding eQTL.  

CPNE1, which is thought to regulate molecular events at the cell membrane 

and cytoplasm, has previously been found to mediate several neuronal differentiation 

processes by interacting with intracellular signalling molecules. CPNE1 has also been 

found to be highly expressed during brain development, indicating that it might be 

implicated in earlier developmental stages of neuronal function (Kim et al., 2018). 

Furthermore, C2 domains of CPNE1, calcium-dependent phospholipid-binding 

motives, have been shown to be implicated in neurite outgrowth of hippocampal 

progenitor HiB5 cells, which are hippocampal cell lines derived from the hippocampal 

analgen of E16 rat (Park et al., 2012; Park et al., 2014). CPNE1 expression was 

associated here with two tracts within projection fibres (FA) and with regional 

association fibres (MD), which link the cortex to lower brain areas. In mouse and 
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human models, these findings may be of use when investigating neurite outgrowth 

from the hippocampus, which is part of the limbic system, an area located beneath the 

cortex. 

NMT1 (N-myristoyltransferase) catalyzes the transfer of myristate (a rare 14-

carbon saturated fatty acid) from CoA to proteins, and is expressed in numerous 

tissues, including ubiquitously in the brain. It has been found that NMT1 is required 

for early mouse development, mainly due to its role in early embryogenesis (Deng et 

al., 2018). Expression of this gene has also been implicated in human brain tumours 

(Lu et al., 2005) and tumour cell proliferation (Ducker et al., 2005). In our study, NMT1 

was associated with tracts within thalamic radiations and projection fibres (FA) and 

global MD.  

2.5.4 General Discussion 

The current study employed a novel strategy of investigating a direct 

association between eQTL scores and white matter tracts to uncover a relationship 

between specific regulatory variants and brain connectivity. Together, our findings 

indicate that increases in expression of these genes may be implicated in several 

processes which may directly or indirectly alter white matter microstructure, each with 

localised, pronounced effects in specific tracts. Further, while some of the significant 

associations had connections with other brain-related traits, such as neurite outgrowth 

or psychiatric and neurological disorders, others did not. Interestingly, decreased white 

matter microstructure integrity, as marked by lower FA and higher MD, was associated 

with eQTL scores which regulate expression of genes implicated in neuropsychiatric 

and neurological disorders. Conversely, increased white matter integrity, as marked by 

higher FA and lower MD, was associated with CPNE1 and NMT1, which are important 

in developmental processes such as neurite outgrowth. In addition, encouragingly, 

regions of the corpus callosum (i.e. the forceps minor), the largest and arguably most 

reliably measured white matter tract in the brain, was demonstrated to be associated 

with all 8 scores for FA, and 7 for MD. These findings together suggest that utilising 

this approach to associate eQTL scores with white matter microstructure may add to 

previous research which found associations between genes and these brain-related 

traits and disorders. These genes or eQTL for them might indirectly implicate brain 

connectivity through other processes in which they participate. 
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The current study has several strengths and some potential limitations. First, to 

our knowledge, this study is the first one to compute eQTL scores for specific gene 

transcripts and attempt to associate them with white matter tract integrity in vivo. 

Moreover, our analysis consisted of a population-based sample of N > 14,000 

individuals recruited to the UKB, large enough to make our findings robust and 

generalizable to other samples within the same age range, background and ethnicity. 

Lastly, our findings revealed novel associations which were not previously found in 

GWAS (Elliott et al., 2018; GWAS of g measures run locally), indicating a potential 

to use such scores for further discovery analyses. 

However, a potential limitation in this study is calculation of scores for data 

taken from whole blood, although there is previous evidence indicating that whole 

blood can be used as a proxy for brain eQTL, important for study of in vivo brain traits 

(McKenzie et al., 2014).  

In summary, our results suggest that expression of the genes discussed above 

alter white matter microstructure and could facilitate the manifestation of numerous 

brain-related traits. Uncovering specific markers leading to the formation, 

maintenance and pathology of white matter could enable downstream analyses to 

elucidate links between genetics and neuroimaging in neurological and psychiatric 

disorders, as well as other brain-related traits. 

 

3. Chapter conclusion 

This study provided novel associations between gene expression-based eQTL 

scores and white matter microstructure, not previously identified by conventional 

genome-wide association studies. The finding that gene expression of previously 

disease linked-genes is associated with decreased white matter integrity, and 

previously development-linked genes are associated with increased white matter 

integrity, across two DTI scalars, indicates that the brain phenotype may in future be 

utilised to link genotype to disease phenotype. This chapter laid the foundation for the 

next two chapters, in which attempts were made to elucidate the link between stratified 

genetic risk of MDD to specific white matter tracts. 
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Chapter 3:  Association of whole-genome and NETRIN1 signaling pathway-

derived polygenic risk scores for Major Depressive Disorder and white matter 

microstructure in UK Biobank 

 

1. Chapter introduction 

As indicated in chapter 2, white matter microstructure phenotypes are linked 

to differential gene expression patterns, either in disease- or health-related traits. PRS 

have previously shown their utility in predicting psychiatric disorders in analyses 

including white matter microstructure (Whalley et al., 2013; Shen et al., 2017). 

However, while providing information relating to variance explained by additive 

genetic variants, a whole-genome PRS is limited in its ability to provide specific 

mechanistic insight into disease phenotypes (Dudbridge, 2013).  

In this chapter, I attempt to look beyond whole-genome PRS and exploratory 

candidate gene pathways. I explore the relationship between PRS derived for a 

biological pathway, previously identified by large-scale data-driven genetic analyses 

and which participates both in neurodevelopment and manifestation of MDD (Zeng et 

al., 2016), and white matter microstructure. Chapter 3 therefore aims to investigate, 

using PRS, the association between white matter microstructure and genetic risk of 

MDD localised to one pathway, and uses a whole-genome PRS (excluding variants 

within the identified pathway) as a control risk score. PRS were calculated for 6,401 

individuals with FA data and 6,390 individuals with MD data in UK Biobank. The 

study has been summarised in a manuscript entitled, “Association of whole-genome 

and NETRIN1 signaling pathway-derived polygenic risk scores for Major Depressive 

Disorder and white matter microstructure in UK Biobank” and has been published in 

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. I am the first 

author of this manuscript, I designed the experiment, ran data analysis, and wrote the 

manuscript.  
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2. Manuscript 

2.1 Abstract 

Background: Major Depressive Disorder (MDD) is a clinically heterogeneous 

psychiatric disorder with a polygenic architecture. Genome-wide association studies 

have identified a number of risk-associated variants across the genome, and growing 

evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic 

variation within the NETRIN1 pathway may provide important routes for 

identification of disease mechanisms by focusing on a specific process excluding 

heterogeneous risk-associated variation in other pathways. Here, associations between 

MDD polygenic risk scores derived from the NETRIN1 signalling pathway 

(NETRIN1-PRS) and the whole genome excluding NETRIN1 pathway genes 

(genomic-PRS) with white matter microstructure were tested. 

Methods: Two diffusion tensor imaging measures were used, fractional 

anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank 

neuroimaging data release (FA: N = 6,401; MD: N = 6,390). 

Results: Findings included significantly lower FA in the superior longitudinal 

fasciculus (β = -0.035, pcorrected = 0.029) and significantly higher MD in a global 

measure of thalamic radiations (β = 0.029, pcorrected = 0.021), as well as higher MD 

in the superior (β = 0.034, pcorrected = 0.039) and inferior (β = 0.029, pcorrected = 

0.043) longitudinal fasciculus and in the anterior (β = 0.025, pcorrected = 0.046) and 

superior (β = 0.027, pcorrected = 0.043) thalamic radiation associated with NETRIN1-

PRS. Genomic-PRS was also associated with lower FA and higher MD in several 

tracts. 

Conclusions: Our findings indicate that variation in the NETRIN1 signaling 

pathway may confer risk for MDD through effects on a number of white matter tracts. 
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2.2 Introduction 

Major Depressive Disorder (MDD) is a common and frequently disabling 

psychiatric disorder and a leading cause of disability worldwide (Otte et al., 2016). 

MDD is known to result from a complex combination of environmental and genetic 

factors (Bromet et al., 2011; Zeng et al., 2016), with a moderate heritability of 

approximately 37% (Sullivan et al., 2000; Belmaker & Agam, 2008; Ripke et al., 

2013). 

Genome-wide association studies (GWAS) suggest that at least part of MDD’s 

heritability is due to the cumulative effect of alleles of small effect size (Hek et al., 

2013; Lubke et al., 2012) and have identified a number of risk-associated genetic 

variants across the genome (Ripke et al., 2013; Hek et al., 2013; Converge Consortium, 

2015; Hyde et al., 2016; Mullins & Lewis, 2017). Significant findings for GWAS 

analyses can also be annotated to specific biological pathways, revealing underlying 

cellular and molecular mechanisms. 

Following several GWAS, the Psychiatric Genomics Consortium (PGC) have 

identified an aggregation of variants in several specific biological pathways (Network 

T, 2015; Jia et al., 2012). In MDD, Zeng et al. (2017) combined pathway and regional 

heritability analysis in two independent samples and reported that the NETRIN1 

signalling pathway was involved in the genetic aetiology of MDD. Moreover, 

polygenic risk scores (PRS) calculated for this pathway alone more accurately 

predicted MDD in one of the cohorts compared to PRS calculated for the whole 

genome. Genetic variation within the NETRIN1 signalling pathway may therefore 

capture more aetiologically circumscribed liability for MDD that is less susceptible to 

heterogeneous influences from other biological pathways. 

Animal studies have previously indicated that NETRIN1, by binding to and 

activating NETRIN1 receptors such as ‘Deleted in Colorectal Cancer’ (DCC), plays 

an important role in commissural and cortical axon guidance (Serafini et al., 1996). 

More recently, DCC was identified as playing a crucial role in thalamic axonal growth, 

confirming that interaction of NETRIN1 with DCC leads to successful axon growth 

during central nervous system development (Castillo-Paterna et al., 2015). GWAS of 
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other traits related to MDD have also shown an aggregation of variants in the 

NETRIN1 pathway (Manitt et al., 2013; Ward et al., 2017). 

Previous studies have attempted to investigate psychiatric disorders by 

examining relevant quantitative traits such as brain structure or function (Reus et al., 

2017). Differences in white matter (WM) integrity as measured by diffusion tensor 

imaging (DTI) have been found between MDD patients and healthy participants in 

numerous studies, although findings have been widely inconsistent (Shen et al., 2017; 

Klimes-Dougan et al., 2010; Korgaonkar et al., 2011). For example, Shen et al. (2017) 

found significantly lower global white matter integrity in association fibres and 

thalamic radiations, as measured by fractional anisotropy (FA), in MDD patients 

compared to healthy individuals. More specifically, they also found lower FA in the 

left superior longitudinal fasciculus, superior thalamic radiations and forceps major 

tracts in MDD patients. Lower WM integrity as measured by FA has also been found 

in adolescents with MDD as compared to age-matched healthy individuals (Klimes-

Dougan et al., 2010; Korgaonkar et al., 2011). 

It has previously been shown that the NETRIN1 signaling pathway is 

associated with MDD and white matter microstructure (Zeng et al., 2017). Therefore, 

the current study sought to investigate the association between MDD risk-associated 

variants in the NETRIN1 signaling pathway and white matter integrity. Polygenic risk 

scores for pathway SNPs (NETRIN1-PRS) and SNPs excluded from the pathway 

(genomic-PRS) were created and their association with WM integrity as measured by 

FA and mean diffusivity (MD) was tested using the most up-to-date genetic and 

imaging data available (N after exclusion steps: FA = 6,401; MD = 6,390) from UK 

Biobank (UKB). It was hypothesized that NETRIN1-PRS would be significantly 

associated with WM integrity, after adjustment for genomic-PRS, indicating a 

potential role of the pathway in MDD pathophysiology. 
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2.3 Methods and Materials  

2.3.1 UK Biobank 

The UKB study consists of 502,617 community-dwelling individuals who 

were recruited between 2006 and 2010 in the United Kingdom 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). UKB received ethical approval 

from the Research Ethics Committee (reference: 11/NW/0382). This study has been 

approved by the UKB Access Committee (Project #4844). Written informed consent 

was obtained from all participants. 

 

2.3.2 Study population 

In the most recent UKB imaging data release, 8,839 individuals (N female = 

4,639; N male = 4,200; mean age: 62.54 +/- 7.42 years; age range: 45.17 – 79.33) 

completed DTI assessment, and a quality check by UKB. In addition to this, for the 

current study, individuals were excluded if they participated in studies from the PGC 

MDD GWAS (Wray & Sullivan, 2017) or Generation Scotland (Scottish Family 

Health Study), or if they happened to be related, as the PGC MDD GWAS dataset was 

used in order to calculate PRS. Moreover, individuals whose FA and MD values were 

greater than three standard deviations above/below the mean were not included in the 

study (Appendix 2: Tables S4 and S5). This resulted in 6,401 individuals with FA 

values (N female = 3,334; N male = 3,067; mean age: 62.60 +/- 7.37; age range: 45.92 

– 78.42; N control: 3,736; N case: 2,512) and 6,390 individuals with MD values (N 

female = 3,327; N male = 3,063; mean age: 62.58 +/- 7.36; age range: 45.92 – 78.42; 

N control: 3,729; N case: 2,508), excluding 19 and 30 individuals with FA and MD 

values from a total of 6,420, respectively. Details of data exclusion as well as 

participant information for the full dataset (N = 6,420) are shown in Appendix 2: 

Tables S1 and S2. 

 

2.3.3 The NETRIN1 signalling pathway and SNP annotation 

 The NETRIN1 pathway is implicated in axon guidance, by binding to and 

activating receptors such as DCC during neurodevelopment, where axon navigation is 
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guided by extracellular axon guidance cues (Braisted et al., 2000). Figure 1 below 

indicates the NETRIN1-dependent axon guidance pathway process.  

 

Figure 1. Model of signalling pathways and interactions downstream of DCC in the 
NETRIN1-dependent axon guidance pathway, as shown in Boyer and Gupton (2018). 
As shown in the figure, DCC interacts with enzymes and adaptor proteins in the 
absence of NETRIN1, which can initiate responses to ligand binding. Valency is 
increased by NETRIN1 through multimerization of DCC homodimers. Intracellular 
domains of the receptors are thus brought into close apposition, which forms a 
scaffolding for recruitment and activation of proteins. In the figure, solid green arrows 
indicate direct activation steps, and dashed green arrows represent known connections. 
The pathways modify the intracellular environment together to promote directional 
axon growth in response to Netrin1 (Boyer & Gupton, 2018).  
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Genic SNPs found in the NETRIN1 signaling pathway as taken from Zeng et 

al.’s (2017) study (N genes = 43; gene list is presented in Appendix 2: Table S3) and 

genic SNPs excluded from the pathway were annotated using the program 

ANNOVAR. ANNOVAR is a biostatistical tool used to annotate genetic variants to 

functional genomic regions (Yang & Wang, 2015). In the current study, a gene-based 

annotation was performed for SNPs used in the largest available GWAS of MDD 

(N=461,134, of which 130,664 were MDD cases), carried out by the Psychiatric 

Genomics Consortium (Wray & Sullivan, 2017), which includes summary statistics 

from the personal genetics company 23andMe, Inc. (Hyde et al., 2016). Gene 

boundaries were defined as an extended region of 20 kb from transcription start sites 

and transcription end sites. After SNPs were annotated to genes, they were further 

mapped to the NETRIN1 signalling pathway. All protein-coding genes within this file 

were annotated in reference to hg 19. Intergenic SNPs were not included in the 

annotated files. The resulting output file included: function of each SNP, gene name, 

chromosome number, start position, end position, reference and alternative alleles, 

odds ratio, standard error and p-value for each variant. 

Following functional annotation, a file containing the 43 gene names included 

in the NETRIN1 signaling pathway was used as an input in order to extract gene-based 

SNPs located in the pathway. For the genomic-PRS, all gene-based SNPs excluding 

those implicated in the NETRIN1 signaling pathway were extracted. The two files 

were then used as input for creation of PRS. 

 

2.3.4 Genotyping and PRS profiling 

A total of 488,363 UKB blood samples (N female = 264,857; N male = 

223,506; http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=22001), were genotyped 

using two different arrays: UK BiLEVE array (N = 49,949) 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149600) and UK Biobank Axiom 

array (N = 438,417) (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149601). 

Details of genotyping and quality control are described in more detail by Hagenaars et 

al. (2016) and Bycroft et al. (2017). 
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Using the largest available GWAS of MDD, PRS for each individual were 

computed using PRSice (Euesden et al., 2014), at five p-value thresholds (0.01, 0.05, 

0.1, 0.5, 1) by adding the number of risk alleles and weighting them by the strength of 

association with MDD. PRS were created both from SNPs annotated to the NETRIN1 

signalling pathway and from SNPs from the rest of the genome, thus resulting in 

separate PRS lists. PRS were created both with and without clump-based pruning of 

SNPs in linkage disequilibrium (r2 = 0.25, 250km window). The primary analysis 

reported in this manuscript concerns unpruned SNPs, owing to the potential of causal 

variants within the NETRIN1 pathway to be in LD with other variants, and uses SNPs 

which met a significance level of p = 0.5, in line with previous studies (Purcell et al., 

2009; Whalley et al., 2016). Secondary analyses with other PRS p-value thresholds, as 

well as with LD pruned SNPs, are presented in Appendix 2, Tables S6 – S21. 

 

2.3.5 MRI acquisition 

In the present study, imaging-derived phenotypes (IDPs) produced by UKB 

were used. MRI acquisition and pre-processing procedures for FA and MD values of 

white matter tracts were performed by UKB using standardised protocols 

(https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf). Briefly, images were 

collected on a single Siemens Skyra 3.0 T scanner with a standard Siemens 32-channel 

head coil and were pre-processed using FSL packages; parcellation of white matter 

tracts was conducted using AutoPtx (Alfaro-Almagro et al., 2017). 

Summary data were composed of tract-averaged FA and MD values for 15 

major white matter tracts, of which 12 are bilateral and three are unilateral. The white 

matter tracts were also categorised into three separate subsets, as follows: association 

fibres: inferior fronto-occipital fasciculus, uncinate fasciculus, cingulum bundle (gyrus 

and parahippocampal), superior and inferior longitudinal fasciculus; thalamic radiation 

fibres: anterior, superior and posterior thalamic radiations; projection fibres: forceps 

major and minor, corticospinal tract, acoustic radiation, medial lemniscus and middle 

cerebellar peduncle. Global measures of FA and MD are referred to as general factors 

of FA and MD (gFA and gMD, respectively). 
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Exclusion criteria comprised removal of scans with severe normalisation 

problems by UKB. Moreover, individuals whose FA and MD values were higher than 

three standard deviations from the sample mean were also excluded. Descriptive 

statistics for the full dataset with outliers included and excluded are also presented in 

Appendix 1: Tables S1 and S2. Lastly, due to the fact that the position of the head and 

radio-frequency coil in the scanner may affect data quality as well as IDPs, three 

scanner brain position variables which may be used as confounding variables in 

subsequent analyses were generated by UKB: lateral brain position – X 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=25756), transverse brain position –Y 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=25757) and longitudinal brain 

position – Z (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=25758). The three 

variables were included as covariates in the statistical analysis described below. 

 

2.3.6 Statistical methods 

All analyses were conducted using R (version 3.2.3) in a Linux environment. 

In order to test the association between the NETRIN1 signaling pathway- and genomic 

pathway-derived unpruned PRS lists, repeated measures linear mixed-effects models 

(function “lme” in package “nlme”) were used for 12 bilateral brain regions, correcting 

for hemisphere, with age, age2, sex, fifteen genetic principal components, three MRI 

head position coordinates and genotype   array set as covariates. For unilateral tracts, 

global measures of FA and MD, and tract categories, a general linear model (function 

“lm”) was used, using the same covariates as above, and without hemisphere included 

as a separate term in the model. All models included both the genomic-PRS and the 

NETRIN1-PRS as predictor variables. 

First, the association between unpruned PRS (both NETRIN1-PRS and 

genomic-PRS) and global white matter integrity was tested. Principal component 

analysis (PCA) was then applied on the 27 white matter tracts (12 tracts in both the 

right and left hemisphere and three unilateral tracts) in order to extract a latent measure. 

Scores of the first unrotated component of FA and MD (variance explained = 37.52% 

for FA and 38.83% for MD) were extracted and set as the dependent variable in a 
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general linear model in order to test association with both NETRIN1-PRS and 

genomic-PRS. 

The three categories of white matter tracts were examined by applying PCA on 

the regions involved in each, as a substantial proportion of white matter 

microstructural properties shows substantial commonality across these pathways (Cox 

et al., 2016). Scores of the first unrotated component of FA and MD were similarly 

extracted and set as dependent variables in general linear modelling, as above. 

Variance explained for each white matter tract subset was as follows: association 

fibres: 45.36% (FA), 50.76% (MD); thalamic radiations: 60.85% (FA), 73.40% (MD); 

projection fibres: 35.54% (FA), 29.28% (MD). 

Lastly, the association between PRS (both NETRIN1-PRS and genomic-PRS) 

and each individual white matter tract (N = 15) was tested, using a repeated-effect 

linear model for the 12 bilateral tracts and a random-effect general linear model for the 

three unilateral tracts. 

False discovery rate correction was applied separately for the 15 individual 

tracts and for global and tract category values. 

 

2.3.7 Permutation analysis 

In order to establish that the effect of the NETRIN1 pathway-derived PRS on 

WM integrity as measured by FA and MD was not due to chance, a circular genomic 

permutation method developed by Cabrera et al. (2012) was applied to the pathway 

SNP genotypes. The permutation approach uses GWAS SNP association results to 

identify the significance of pathway associations while accounting for the linkage 

disequilibrium structure of SNPs. As such, for a given GWAS, all SNPs are placed in 

what is called a “circular genome” based on their location. The complete set of p-

values derived from the GWAS SNP associations are then permuted in a rotational 

fashion with respect to the genomic locations of the SNPs. This allows SNPs to retain 

the same position within the genome and with respect to each other, but gain new 

random association p-values. Once simulated p-values are assigned, a Fisher’s 

combination test is used to calculate joint gene p-values. The method was developed 
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to increase understanding of gene-sets and pathways implicated in traits without 

generating pathway associations that are false-positive (Cabrera et al., 2012).  

In this study, this was done by placing all SNPs in the whole genome 

(excluding those in the NETRIN1 pathway) in a circular genome, according to their 

location. One thousand SNP lists with the same set size as the NETRIN1 pathway were 

permuted using the method described above and 1000 PRS lists were created, which 

were then fitted in linear mixed-effects and general linear models, depending on the 

white matter tract tested, and their association with five white matter tracts and one 

tract category, found to be significantly associated with NETRIN1, was tested. 

 

2.4 Results 

Results presented below are significant specifically to each pathway. White 

matter tracts showing a significant association with both the NETRIN1-PRS and the 

genomic-PRS pathways are described in Appendix 2. Results for all individual white 

matter tracts, tract categories and global measures can be found in tables 1-4 and 

figures 2-5. 

2.4.1 The effect of unpruned NETRIN1-PRS & genomic-PRS on measures of 

white matter integrity – FA (N = 6,401) 
 

White 
matter 
tracts 

NETRIN1-PRS genomic-PRS 

Effect 
size 
(β) 

SD p 
value 

p 
correc

ted 
(FDR) 

R2 
Effect 
size 
(β) 

SD p 
value 

p 
correcte
d (FDR) 

R2 

A
F 

CGC -0.025 0.011 0.020 0.152 0.062 -0.019 0.011 0.069 0.115 0.038 
PHC -0.008 0.011 0.435 0.544 0.007 -0.020 0.011 0.061 0.115 0.040 
IFOF -0.023 0.011 0.046 0.172 0.053 -0.028 0.012 0.016 0.060 0.076 
ILF -0.023 0.011 0.043 0.172 0.054 -0.024 0.012 0.040 0.115 0.056 
SLF -0.036 0.012 0.002 0.030 0.128 -0.023 0.012 0.047 0.115 0.053 
UF -0.019 0.011 0.081 0.202 0.102 -0.032 0.011 0.003 0.043 0.102 

TR
 ATR -0.022 0.011 0.057 0.172 0.048 -0.015 0.011 0.190 0.238 0.023 

PTR -0.014 0.011 0.205 0.308 0.020 -0.022 0.011 0.054 0.115 0.047 
STR -0.006 0.012 0.622 0.718 0.003 -0.015 0.012 0.213 0.244 0.022 

PF
 

AR 0.003 0.011 0.759 0.814 0.001 -0.013 0.011 0.228 0.244 0.016 
CST 0.002 0.011 0.863 0.863 0.000 -0.018 0.011 0.103 0.154 0.034 
ML -0.009 0.010 0.400 0.544 0.008 -0.003 0.010 0.803 0.803 0.001 

Fmaj -0.016 0.012 0.193 0.308 0.024 -0.032 0.012 0.009 0.043 0.100 
Fmin -0.018 0.012 0.135 0.262 0.032 -0.032 0.012 0.009 0.043 0.099 
MCP -0.018 0.012 0.140 0.262 0.032 -0.019 0.012 0.125 0.170 0.035 
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Table 1. The effect of NETRIN1-PRS & genomic-PRS at PRS threshold 0.5 on 
individual white matter tracts (FA values). The first column for each PRS indicates 
standardised effect size (β). Statistically significant p-values after false discovery rate 
correction for each pathway individually are shown in bold. R2 = estimate of variance 
explained by each pathway in %. 

 

 

 

Figure 2. The effect of NETRIN1-PRS & genomic-PRS on FA values of white matter 
tracts. The x-axis indicates the standardised effect size of each pathway's PRS; the y-
axis indicates the white matter tracts. The legend indicates the tract category belonging 
to each white matter tract. The error bar represents standard deviation of mean. 
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NETRIN1-PRS genomic-PRS 

Effect 
size(β) 

Standard 
deviation 

p 
value 

p 
corrected 

(FDR) 
R2 Effect 

size(β) 
Standard 
deviation 

p 
value 

p 
corrected 

(FDR) 
R2 

gFA -0.026 0.012 0.028 0.056 0.068 -0.033 0.012 0.006 0.011 0.109 
AF -0.033 0.012 0.006 0.023 0.107 -0.034 0.012 0.005 0.011 0.113 
TR -0.018 0.012 0.138 0.185 0.032 -0.022 0.012 0.064 0.064 0.050 
PF -0.011 0.012 0.366 0.366 0.012 -0.029 0.012 0.016 0.021 0.083 
Table 2. The effect of NETRIN1-PRS & genomic-PRS at PRS threshold 0.5 on global 
FA and 3 white matter tract categories. The first column for each PRS indicates 
standardised effect size (β). Statistically significant p-values after false discovery rate 
correction for each pathway individually are shown in bold. R2 = estimate of variance 
explained by each pathway in %. 
 
 
 

 
 

Figure 3. The effect of NETRIN1-PRS & genomic-PRS on FA values of tract 
categories and global FA. The x-axis indicates the standardised effect size of each 
pathway's PRS; the y-axis indicates the tract categories. The error bar represents 
standard deviation of mean. 
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Global measures 

Lower global FA (gFA) was significantly associated with higher genomic-PRS 

(β = -0.033, pcorrected = 0.011) only. 

Tract categories 

The association between NETRIN1-PRS and Genomic-PRS and three subsets 

of white matter tracts (association fibres, thalamic radiations and projection fibres) was 

then tested. Significantly lower FA values in projection fibres were found for genomic-

PRS (β = -0.028, pcorrected = 0.020) only. 

Individual white matter tracts 

Lastly, the effect of NETRIN1-PRS and genomic-PRS on WM integrity in 15 

individual white matter tracts was investigated. NETRIN1-PRS, but not genomic-PRS, 

was associated with significantly lower FA in the superior longitudinal fasciculus (β = 

-0.035, pcorrected = 0.029).  

In the genomic-PRS, there was significantly lower FA in the forceps major (β 

= -0.031, pcorrected = 0.043), forceps minor (β = -0.031, pcorrected = 0.043) and 

uncinate fasciculus (β = - 0.031, pcorrected = 0.043). None of these tracts showed 

significant associations with NETRIN1-PRS. 
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2.4.2 The effect of unpruned NETRIN1-PRS & genomic-PRS on measures 

of white matter integrity – MD (N = 6,390) 

Figure 4. The effect of NETRIN1-PRS & genomic-PRS on MD values of white matter 
tracts. The x-axis indicates the standardised effect size of each pathway's PRS; the y-
axis indicates the white matter tracts. The legend indicates the tract category belonging 
to each white matter tract. The error bar represents standard deviation of mean. 

 White 
matter 
tracts 

NETRIN1-PRS genomic-PRS 
Effect 
size 
(β) 

SD p 
value 

p 
corrected 

(FDR) 
R2 

Effect 
size 
(β) 

SD p 
value 

p 
corrected 

(FDR) 
R2 

A
F 

CGC 0.020 0.011 0.061 0.130 0.040 0.035 0.011 0.001 0.014 0.124 

PHC -
0.002 0.011 0.861 0.861 0.000 0.033 0.011 0.002 0.014 0.107 

IFOF 0.027 0.011 0.014 0.047 0.075 0.031 0.011 0.005 0.019 0.098 
ILF 0.029 0.011 0.009 0.043 0.086 0.025 0.011 0.027 0.067 0.061 
SLF 0.034 0.011 0.003 0.039 0.116 0.024 0.011 0.033 0.071 0.058 
UF 0.018 0.010 0.090 0.168 0.085 0.029 0.010 0.005 0.019 0.084 

TR
 ATR 0.025 0.011 0.016 0.047 0.065 0.021 0.011 0.043 0.080 0.046 

PTR 0.025 0.011 0.020 0.050 0.062 0.002 0.011 0.876 0.876 0.000 
STR 0.027 0.010 0.006 0.043 0.074 0.018 0.010 0.077 0.096 0.031 

PF
 

AR 0.004 0.010 0.708 0.772 0.002 0.019 0.011 0.064 0.087 0.038 
CST 0.016 0.011 0.162 0.221 0.025 0.022 0.011 0.055 0.082 0.047 
ML 0.004 0.011 0.721 0.772 0.001 0.004 0.011 0.692 0.741 0.002 

Fmaj 0.018 0.012 0.135 0.203 
-

0.026 0.028 0.012 0.018 0.055 0.019 

Fmin 0.019 0.012 0.101 0.168 
-

0.063 0.023 0.012 0.050 0.082 -0.051 
MCP 0.013 0.012 0.290 0.363 0.016 0.010 0.012 0.394 0.455 0.010 

Table 3. The effect of NETRIN1-PRS & genomic-PRS at PRS threshold 0.5 on 
individual white matter tracts (MD values).  The first column for each PRS indicates 
standardised effect size (β). Statistically significant p-values after false discovery 
rate correction for each pathway individually are shown in bold. R2 = estimate of 
variance explained by each pathway in %. 
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Tract categories 

MD values for association fibres (β = 0.041, pcorrected = 0.001) and projection 

fibres (β = 0.028, pcorrected = 0.023) were found to be significantly higher for 

genomic-PRS, but not NETRIN1-PRS. MD values for thalamic radiations were found 

to be significantly higher in the NETRIN1-PRS (β = 0.029, pcorrected = 0.021), 

whereas there was no significant association with genomic-PRS. 

 

 
NETRIN1-PRS genomic-PRS 

Effect 
size(β) SD p 

value 
p corrected 

(FDR) R2 Effect 
size(β) SD p value p corrected 

(FDR) R2 

gMD 0.028 0.011 0.016 0.031 0.076 0.034 0.011 0.003 0.007 0.111 
AF 0.022 0.012 0.058 0.077 0.048 0.042 0.012 0.000 0.001 0.172 
TR 0.030 0.011 0.005 0.021 0.089 0.013 0.011 0.218 0.218 0.017 
PF 0.021 0.012 0.077 0.077 0.045 0.029 0.012 0.017 0.023 0.081 
Table 4. The effect of NETRIN1-PRS & genomic-PRS at PRS threshold 0.5 on global 
MD and 3 white matter tract subsets.  The first column for each PRS indicates standardised 
effect size (β). Statistically significant p-values after false discovery rate correction for 
each pathway individually are shown in bold. R2 = estimate of variance explained by each 
pathway in %. 
 
 

 
 
Figure 5. The effect of NETRIN1-PRS & genomic-PRS on MD values of tract categories 
and global MD. The x-axis indicates the standardised effect size of each pathway's PRS; 
the y-axis indicates the tract categories. The error bar represents standard deviation of 
mean. 
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Individual white matter tracts 

Within the 15 individual white matter tracts, numerous areas were significantly 

associated with both the NETRIN1-PRS and genomic-PRS. With regards to 

NETRIN1-PRS, MD values were significantly higher in the inferior longitudinal 

fasciculus (β = 0.029, pcorrected = 0.043), superior longitudinal fasciculus (β = 0.034, 

pcorrected = 0.039), and in the anterior (β = 0.025, pcorrected = 0.046) and superior 

(β = 0.027, pcorrected = 0.043) thalamic radiations. All of these significant 

associations were specific for NETRIN1-PRS. 

In the genomic-PRS, there were significantly higher MD values in the cingulate 

gyrus (β = 0.035, pcorrected = 0.013) and parahippocampal (β = 0.032, pcorrected = 

0.014) part of cingulum and in the uncinate fasciculus (β = 0.029, pcorrected = 0.018). 

 

2.4.3 Permutation analysis 

NETRIN1-PRS, but not genomic-PRS, were found to be individually 

significantly associated with white matter microstructure in the following white matter 

tracts: superior longitudinal fasciculus as measured by lower FA; superior and inferior 

longitudinal fasciculus and anterior and superior thalamic radiations, as well as 

thalamic radiations tract category, as measured by higher MD. Therefore, an additional 

circular genomic permutation analysis was performed and it was found that the 

variance explained by NETRIN1-PRS in these tracts was significantly higher than 

expected by chance (table 5). 

White matter tract 

Effect size of 
regression 
NETRIN1 
pathway 

Regression 
NETRIN1 

pathway t-score 

NETRIN1 
calculated 

permutation 
p value 

Superior longitudinal fasciculus 
(FA) -0.035 -3.093 0.004 

Superior longitudinal fasciculus 
(MD) 0.034 3.008 0.004 

Inferior longitudinal fasciculus 
(MD) 0.029 2.624 0.014 

Anterior thalamic radiations (MD) 0.025 2.419 0.023 
Superior thalamic radiations (MD) 0.027 2.757 0.007 

Thalamic radiations (MD) 0.029 2.785 0.008 
Table 5. Permutation results for NETRIN1-PRS at PRS threshold 0.5 on 5 significant white 
matter tracts and one significant tract category. The first column indicates standardised 
effect size (β) and the second column indicates t-scores. 
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2.5 Discussion 

The present study aimed to investigate whether PRS calculated from the 

NETRIN1 signalling pathway are significantly and specifically associated with WM 

integrity while simultaneously modelling genomic-PRS in more than 6,000 

individuals. Significant differences were found in white matter integrity in both 

NETRIN1-PRS and genomic-PRS, for both FA and MD values. Regarding FA values, 

for NETRIN1-PRS, but not for genomic-PRS, a significant association was observed 

in the superior longitudinal fasciculus. NETRIN1-PRS alone were significantly 

associated with higher generalised thalamic radiations as measured by MD, as well as 

higher MD in the superior and inferior longitudinal fasciculus, and the anterior and 

superior thalamic radiations. Genomic-PRS were also significantly associated with FA 

and MD values in several tracts. 

One of the main findings in our paper was both a reduction of FA and an 

increase of MD in the SLF in relation to NETRIN1-PRS. The SLF, a tract in 

association fibres, connects the frontal, temporal, parietal and occipital lobes, and has 

been shown to be highly involved in MDD (Wu et al., 2011; Cole et al., 2012). FA 

reductions in the SLF have also been found in previous studies combining genetic and 

neuroimaging techniques (Whalley et al., 2013), further indicating that the tract might 

be an important biomarker of MDD. In addition to this finding, there was also an 

increase in MD values in the ILF, a tract connecting the temporal and occipital lobes. 

Key areas in these two lobes include the amygdala and hippocampus, which are known 

to be implicated in emotion processing, a process which is disrupted in MDD (Ritchey 

et al., 2011). Previous studies have found disrupted white matter integrity in this tract 

in association with MDD using FA, indicating that it may play an important role in the 

pathophysiology of MDD (Whalley et al., 2013). 

An  MD  increase  in  the  thalamic  radiations  tract  category was also found.  

Thalamic radiations connect the thalamus with numerous cortical areas (Cabrera et al., 

2012; Braisted et al., 2000), and are connected to various cognitive processes, such as 

attention and wakefulness (Bonnin et al., 2007). Thalamocortical axons play an 

important role during development, as their projection from the dorsal thalamus (DT) 

transmit sensory information to the neocortex (Braisted et al., 2000). Thalamic 

radiations have previously been linked to MDD in numerous studies. For instance, a 
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decrease in FA was found in the TR subset in a large UKB sample comparing 335 

MDD patients with 754 healthy individuals (Shen et al., 2017). This tract subset was 

also found to be significantly associated with higher PRS, indicating that there is a link 

between the sets of tracts and a potential genetic predisposition to MDD (Whalley et 

al., 2013). 

NETRIN1, and its receptor DCC, one of the genes in the NETRIN1-pathway, 

have been previously implicated in thalamic axonal growth. NETRIN1 promotes 

growth of thalamocortical axons by binding to and activating DCC, which is expressed 

in the DT. Moreover, NETRIN1 has been shown to enhance axonal growth in explants 

of the DT, as well as providing guidance from the DT to the cortex (Braisted et al., 

2000). It has also been found that serotonin, which is highly implicated in MDD, 

modulates the effect of NETRIN1 on embryonic thalamocortical axons (Braisted et 

al., 2000; Bonnin et al., 2007; Clasca et al., 2016). The active involvement of 

NETRIN1 in thalamocortical axonal growth, therefore, may explain our findings, and 

further confirms that there is a potential link between a biological pathway and specific 

neurobiological markers in MDD. 

Several other tracts also showed a significant association of FA (individually 

in forceps major and minor and uncinate fasciculus, and in global measures of FA and 

projection fibres) and MD (individually in cingulate part of the cingulum, 

parahippocampal part of cingulum and uncinate fasciculus, and in global measures of 

association and projection fibres) with genomic-PRS, most of which have also been 

previously associated with MDD (Shen et al., 2017; Whalley et al., 2013). This 

evidence further confirms that there is an association between genetic predisposition 

to MDD and disruptions in white matter integrity, also for variants that lie outside the 

NETRIN1-DCC pathway. As such, these findings suggest that both PRS lists affect 

integrity across the white matter tracts, each with localized, pronounced effect in 

specific tracts. 

The current study has several strengths and a few potential limitations. First of 

all, it is the largest combined genetic and neuroimaging study investigating the effect 

of PRS derived from a specific biological pathway on white matter integrity, to our 

knowledge. Moreover, our analysis consisted of a population-based sample of 
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ambulant individuals recruited to UKB. Our findings might therefore be robust and 

generalizable to other samples within a certain age range, although studies such as 

UKB are not immune to biases associated with study participation, such as collider 

bias (Day et al., 2016). 

In addition to the large sample, the fact that NETRIN1-PRS are derived from 

only 43 genes, comprising approximately 0.215% of the genes in the whole genome 

(N = ~ 20,000) suggests that MDD risk associated variation exerts a disproportionate 

influence on white matter microstructure. Our findings are also further supported by 

permutation analysis. The association between the NETRIN1 pathway and white 

matter integrity is therefore likely to reflect the importance of a specific pathway in 

the pathophysiology of MDD. 

The NETRIN1 signaling pathway has previously been found to be implicated 

in MDD (Zeng et al., 2017). The current study found specific neurobiological 

structural connectivity markers associated with this biological pathway. To our 

knowledge, the current study is the first one to note an association between PRS 

derived specifically from the NETRIN1 signaling pathway and several white matter 

tracts in a large genetic and neuroimaging dataset. This indicates that these brain 

structures may be involved in the manifestation of genetic risk of MDD and ultimately 

the aetiology of the disorder. 

 

3. Chapter conclusion 

In this study, a PRS calculated from SNPs within a single biological pathway 

was significantly associated with global, regional, and individual white matter 

microstructure across two DTI scalars, FA and MD. Most interesting is the association 

between PRS and regional and individual thalamic radiations, which lends support to 

the hypothesis that focusing on biological pathways with specific functions may 

elucidate the mechanistic genetic underpinnings of MDD. Finding such connections 

may in future aid in conducting more focused analyses to detect gene-sets which are 

defined by biologically functional mechanisms in an effort to identify treatment targets 

and neurobiological markers. 
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Chapter 4: Genetic and epigenetic prediction of Major Depressive Disorder and 

associations with white matter microstructure in Generation Scotland 

 

1. Chapter introduction 

In chapter 3, an MDD PRS calculated using multiple variants with a similar 

biological function, as well as cumulative genome-wide variants (whole-genome 

PRS), were associated with white matter microstructure. In complex, multifactorial 

disorders, equally important to the investigation of genetic risk are environmental 

factors and their impact on biology. One way to measure the effect of multiple 

environmental risk factors objectively is by looking at the epigenome (McCartney et 

al., 2018). Investigating the relationship between MDD and DNAm, which is 

environmentally modifiable, is especially important as MDD is in part the result of 

environmental risk factors. 

Previously, both MDD and a higher genetic risk for MDD have been associated 

with disruptions in white matter microstructure (Shen et al., 2017; Shen et al., 2019), 

indicating that these disruptions are present throughout the manifestation of the 

disorder. Recently, a higher MDD DNAm risk score (hereafter named MRS) was 

associated with MDD, as well as with an archive of lifestyle factors known to impact 

MDD, such as smoking, BMI, and alcohol consumption (Barbu et al., 2019). Given 

that white matter microstructural disruptions are generally present in MDD, the aim of 

chapter 4 is to explore whether a higher MRS for MDD also plays a role in the above-

mentioned structural deficits, as well as to identify whether this role is additive to 

MDD PRS. This was investigated in 621 individuals with FA data and 623 individuals 

with MD data in Generation Scotland (GS). Due to the fact that the current sample is 

smaller than in Barbu et al. (2019) (N = 625 versus N = 1,780), the ability of the MRS 

to predict MDD diagnosis here was also tested. The study is presented as a paper 

entitled, “Genetic and epigenetic prediction of Major Depressive Disorder and 

associations with white matter microstructure in Generation Scotland”, and is now 

ready for submission. As the first author, I designed the experiment, ran analyses, and 

wrote the manuscript. 
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2. Manuscript 

2.1 Abstract 

Background: Major Depressive Disorder (MDD) is among the most prevalent 

psychiatric disorders, resulting from a combination of genetic and environmental 

factors. Higher MDD genetic risk has been associated with white matter 

microstructural disruptions in association fibres and thalamic radiations. DNA 

methylation (DNAm), an environmentally modifiable epigenetic process, has recently 

been associated with MDD and lifestyle factors that play a role in MDD. It is therefore 

important to identify whether DNAm also plays a role in white matter microstructural 

disruptions in MDD, and whether this role is additive to MDD genetic risk. The current 

study aims to explore this relationship by using a DNAm risk score (MRS) in 

conjunction with a polygenic risk score (PRS). 

Methods: First, penalised regression was used to train an MRS for MDD based 

on epigenome-wide methylation at CpG sites in N = 4,211 individuals. Next, in an 

independent test sample, MDD MRS and PRS were used to investigate associations 

with white matter microstructure as measured by FA (N = 621) and MD (N = 623) and 

MDD diagnosis (N = 625) and to explore whether the two risk scores acted additively. 

Results: MRS (β = 0.143, p = 0.0002) and PRS (β = 0.084, p = 0.039) separately 

explained 2.11% and 0.69% of the variance in MDD, respectively and together 

explained  2.13% of the variance in the disorder (MRS: β = 0.144, p = 0.0002; PRS: β 

= 0.084, p = 0.033). The AUC for the MRS and PRS were 0.63 and 0.56, respectively. 

Neither score however was significantly associated with white matter microstructure, 

globally or regionally (MRS: FAβ range: 0.002 – -0.039; MDβ range: -0.002 – -0.075; PRS: 

FAβ range: -0.0006 – -0.078; MDβ range: -0.0006 – 0.041). The greatest effect sizes were 

for MRS and MD in the anterior corona radiata (β = -0.075) and PRS and FA in the 

superior fronto-occipital fasciculus (β = -0.078).  

Conclusion: Both MRS and PRS for MDD were significantly associated with 

MDD, together explaining 2.13% of the variance in the disorder. However, neither 

score was significantly associated with white matter microstructure at corrected 

significant levels, indicating that larger sample sizes will be needed in future to 
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elucidate the link between MDD, its epigenetic signature, and white matter 

microstructure. 

 

2.2 Introduction 

Major Depressive Disorder (MDD) is the leading cause of global disability 

worldwide, currently affecting around 300 million individuals (WHO, 2017). 

Although the exact cause is unknown, it is thought to result from a complex 

combination of genetic and environmental risk factors (Otte et al., 2016).  

Twin-based heritability studies indicate estimates of around 37% (Sullivan et 

al., 2000), and a proportion of this heritability is explained by the cumulative effect of 

common alleles of small effect size, as shown by genome-wide association studies 

(GWAS; Ripke et al., 2013; Wray et al., 2017). A recent meta-analysis investigated 

three large GWAS of depression (N = 807,553) and found 102 independent variants 

associated with depression, enriching our understanding of risk-associated variants 

across the genome (Howard et al., 2019). 

A useful method of investigating this additive effect of common risk-

associated variants is through the creation of polygenic risk scores (PRS). These are 

computed by adding risk alleles for a certain trait at an optimised p-value threshold, 

and weighing them by the strength of their association with the trait of interest. This 

method is especially useful in aiding downstream analyses, by associating a single 

score, which depicts an individual's overall risk at a given p-value threshold, with other 

factors known to relate to a specific trait. Although useful, the amount of variance PRS 

explain, particularly for MDD, is small. For instance, polygenic risk for MDD explains 

1.5 – 3.2% of the phenotypic variance in MDD (Howard et al., 2019).  

As shown in chapter 3, PRS for MDD may be used to explore associations with 

neuroimaging traits that may be implicated in MDD, such as white matter 

microstructure. Chapter 3 showed that MDD PRS comprising SNPs that form a 

specific biological pathway are associated with thalamic radiations when compared 

with a PRS comprising SNPs in the rest of the genome. Other studies have shown 

whole-genome MDD PRS associations with regional and global reductions in 
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microstructural integrity, with some indications of regional specificity, including in 

thalamic radiations and association fibres (Shen et al., 2017; Shen et al., 2019). These 

findings suggest that disruptions in white matter microstructure are present in MDD.  

There is evidence that along with risk ascribed to specific genetic variants, 

effects of gene expression and regulation are also important in the manifestation of 

disorders and associated traits (Peedicayil et al., 2007). DNA methylation (DNAm) is 

one such epigenetic mechanism affecting gene expression whereby chemical changes 

to DNA occur, through the addition of methyl groups at cytosine-phosphate-guanine 

(CpG) nucleotide base pairings (Robertson, 2005). DNAm is essential for normal 

development, is tissue- and cell-specific, is involved in gene expression and regulation 

without altering DNA sequence, and can be influenced by both genetic and 

environmental factors (Jaenisch & Bird, 2003).  

There is indeed strong evidence that such differential DNAm changes occur in 

complex disorders and traits (Cordova-Palomera et al., 2018). In MDD, a recent meta-

analysis of multi-ethnic epigenome-wide association studies (EWAS) in multiple 

cohorts (N = 11,256) found three CpGs significantly associated with depressive 

symptoms. These sites included CDC42BPB, which plays a role in the regulation of 

cytoskeleton organisation, cell migration, and regulation of neurite outgrowth; 

ARHGEF3, which plays a role in axon guidance through co-expression with other gene 

families; and a third site situated in an intergenic region and associated with SEMA4B, 

which in turn interacts with PSD-52 to promote synapse maturation (Jovanova et al., 

2018). Interestingly, all three CpG sites seem to be implicated in axon guidance, 

suggesting a role played by DNAm in brain connectivity in the presence of depressive 

symptoms. These results, together with findings in chapter 3 where disruptions in 

white matter microstructural thalamic radiations were linked to a polygenic risk score 

comprising SNPs that form an axonal guidance pathway, further indicate that this 

pathway may be disrupted in MDD.  

Recently, studies have derived DNAm predictors to predict MDD in 

independent testing samples. For instance, Clark et al. (2019) found a significant 

association between blood DNAm from 581 MDD patients at baseline with MDD 

status 6 years later. Using machine learning methods, they trained a DNAm risk score 

(MRS) of MDD to predict MDD status 6 years later. They found that MRS could 
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discriminate between MDD cases and controls with an area under the curve (AUC) of 

0.74 (Clark et al., 2019). Barbu et al. (2019) trained an MRS on 1,223 MDD cases and 

1,824 healthy individuals which was then tested in 1,780 independent individuals (363 

cases and 1,417 controls). The MRS was significantly associated with MDD status, 

explaining 1.75% of the variance in the disorder, and was independent of PRS, which 

explained 2.40% of the variance in MDD. Together, the two risk scores explained 

3.99% of the variance in MDD. Moreover, the MRS was significantly associated with 

a number of lifestyle factors implicated in MDD, such as smoking status, pack years, 

and alcohol consumption (Barbu et al., 2019). 

Examining quantitative traits relevant to psychiatric disorders, such as brain 

structure and function, may elucidate mechanisms through which genetic risk and 

DNAm may act. Previous evidence indicates an association between MDD PRS and 

disrupted white matter integrity (Shen et al., 2019) as well as associations between 

MDD MRS and MDD-associated lifestyle factors (Barbu et al., 2019). Given these 

associations connecting MDD MRS to MDD-related traits, the current chapter firstly 

aims to explore whether a higher MRS for MDD is also associated with disrupted white 

matter microstructure, as well as to investigate whether the MDD MRS acts additively 

in relation to the PRS. The ability of the MRS to predict MDD status was also tested. 

To achieve this, MDD PRS were trained on N = 807,579 from the most recent 

MDD GWAS (Howard et al., 2018) and MDD MRS were trained on N = 4,211 in 

Generation Scotland (GS) (McCartney et al., 2018), both the largest samples of genetic 

and DNAm currently available for MDD. The two scores were tested for associations 

with MDD status (N = 625), as well as white matter microstructure as measured by 

fractional anisotropy (FA; N = 621) and mean diffusivity (MD; N = 623), two white 

matter measures derived from diffusion tensor imaging (DTI) as discussed elsewhere 

in this thesis, in independent samples from the Stratifying Resilience and Depression 

Longitudinally (STRADL) cohort, a subsample of GS (Navrady et al., 2017; Habota 

et al., 2019). The purpose of the current study was to determine the proportion of 

individual and additive variance explained by an MDD PRS and MDD MRS in MDD 

and in white matter microstructure as measured by FA and MD. 
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2.3 Methods and Materials 

2.3.1 Study populations 

Training sample - GS 

GS is a large, family-based epidemiological study and a health resource aiming 

to investigate the genetics of health and disease in approximately N = 24,000 

individuals across Scotland, aged 19-98 years. Data was collected between 2006 and 

2011, with 98.1% of the study population having available genetic data. At the time of 

the current study, N = 5,087 individuals had DNAm measures derived (McCartney et 

al., 2018). Environmental data (e.g. lifestyle, demographics) was also present in a high 

proportion of the study participants (Smith et al., 2006; Smith et al., 2013). GS 

received ethical approval from NHS Tayside Research Ethics Committee (REC 

reference number 05/S1401/89). Written consent was obtained from all participants.  

Testing sample - STRADL 

STRADL is a project aimed at studying the aetiology and stratification of depression, 

and was achieved through re-contacting individuals who previously participated in GS 

and further obtaining data on mental health, specifically depression. A total of N = 

9,618 individuals responded at the re-contact recruitment stage and were assessed on 

numerous mental health and lifestyle measures; 1,095 were contacted for scanning, 

and 625 provided usable DTI data at the time of the current study. Details of 

recruitment and study information have been reported previously (Navrady et al., 

2017). STRADL is supported by the Wellcome Trust through a Strategic Award 

(reference 104036/Z/14/Z). Written consent at each stage of the study was obtained 

from all participants.  

Figure 1 below provides a flowchart detailing the participants used in the study. 
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Figure 1. Flowchart detailing the number of participants with MDD PRS, MDD MRS 
and imaging data available. MDD PRS training sample has been taken from the most 
recent MDD GWAS (N = 807,579) (Howard et al., 2018) and is therefore not shown 
in the flowchart. 

 

2.3.2 MDD diagnosis 

The axis-I Structured Clinical Interview of the Diagnostic and Statistical 

Manual, version IV (SCID) was administered to participants who answered “yes” to 

either of two screening questions for MDD diagnosis at baseline. MDD status was 

measured prospectively by remote paper questionnaire between 4 and 10 years after 

baseline assessment (2015-2016) using the Composite International Diagnostic 

Interview - Short Form (CIDI-SF). 

Healthy individuals used in the control group were defined as those who 

answered “no” to the two screening questions and did not fulfil criteria for a diagnosis 

of current or previous MDD following the SCID interview and CIDI-SF remote 

follow-up assessment. Individuals fulfilling criteria for schizophrenia or bipolar 

disorder, or who self-reported these diagnoses, were excluded from both case and 

control groups. 

Generation Scotland

N = 24,000 genetic and environmental data

N DNAmCurrent study = 5,087

N = 4,211 non-imaging DNAm 
training sample 

MDD PRS available

STRADL
N = 625 imaging testing 

sample
MDD PRS available

Prediction 
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2.3.3 Genotyping and PRS profiling 

A total of N = 20,195 individuals in GS were genotyped using the Illumina 

OmniExpress BeadChip. Individuals with a call rate < 98%, SNPs with a genotype rate 

< 98%, minor allele frequency < 1%, and p-value < 10−6 Hardy-Weinberg equilibrium 

were removed from the initial dataset. Following this, imputation was performed using 

the Sanger Imputation Service with the Haplotype Reference Consortium panel v1, 

resulting in 19,997 individuals with genome-wide data (Nagy et al., 2017; Howard et 

al., 2019). 

Briefly, using the largest available depression GWAS (Howard et al., 2019), 

MDD PRS for N = 18,977 individuals were computed using Plink v1.90b4 (Chang et 

al., 2015) using SNPs that met a significance level of p ≤ 0.05, in line with previous 

studies which have shown that this threshold explained the most variance in MDD 

status. Clumping was applied using a linkage disequilibrium r2 < 0.1 and a 500-kb 

window. 

 

2.3.4 Methylation preparation and DNAm prediction 

At the time of the current study, a total of 5,087 individuals in GS had genome-

wide DNAm data profiled from blood samples using the Illumina Human-

MethylationEPIC BeadChip. These individuals were part of a single batch. 

ShinyMethyl (Fortin et al., 2014) was used to exclude samples where predicted sex 

mismatched recorded sex, as well as to plot the log median intensity of methylated and 

unmethylated signals per array; where outlying values were subsequently excluded. 

WaterRmelon (Pidsley et al., 2013) was then used to remove samples in which > 1% 

of cytosine-guanine dinucleotides had a detection p-value > 0.05; probes with a 

beadcount of < 3 in more than 5% samples; and probes in which > 0.5% of samples 

had a detection p-value > 0.05 (McCartney et al., 2018). These steps left N = 5,087 

participants for analysis. 

Training dataset 

The final number of individuals with DNAm data used in the training dataset, 

following outlier exclusion as indicated above and exclusion of individuals with DTI 



 

91 
 

data, was N = 4,211. CpG sites measured in these individuals were input as 

independent variables in a LASSO penalised regression model using the “glmnet” 

function in R.  Depression status was regressed on age, sex, and ten genetic principal 

components, and the extracted residuals from this model were input as the dependent 

variable in the LASSO regression model. Tenfold cross-validation was applied, and 

the mixing parameter was set to 1 for our LASSO penalty (Friedman et al., 2010). 

Testing dataset 

Using the set of CpG sites selected from the penalised regression, MRS were 

calculated in the testing dataset (a subset of STRADL participants who had complete 

PRS, DTI and DNAm data, N = 625) by summing the weights estimated in the training 

set. This resulted in a single continuous variable for each participant, with a higher 

score corresponding to a higher MRS of MDD. 

 

2.3.5 Magnetic Resonance Imaging (MRI) acquisition and pre-processing 

In the current study, DTI imaging-derived phenotypes (IDPs) pre-processed 

and produced locally were used. MRI acquisition was performed in two sites in 

Scotland, Aberdeen and Dundee.  

Aberdeen 

Data was acquired using a Philips Achieva 3T TX-series scanner (Philips 

Healthcare, Best, Netherlands) at the University of Aberdeen, with a 32-channel 

phased-array head coil with a back-facing mirror (software version 5.1.7; gradients 

with maximum amplitude 80 mT/m and maximum slew rate 100 T/m/s) (Romaniuk et 

al., 2019).  

Dundee 

Data was acquired using a Siemens 3T Prisma-FIT (Siemens Healthineers, 

Erlangen, Germany) at the University of Dundee, with 20 channel head and neck coil 

and a back-facing mirror (software version VE11, gradient with max amplitude 80 

mT/m and maximum slew rate 200 T/m/s) (Habota et al., 2019). 
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Pre-processing – quality check and tract-based spatial statistics (TBSS) 

Standard tools available from FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) were 

used to quality check and exclude abnormal scans from downstream analyses. All 

quality checking steps were performed separately for the two scanning centres, as the 

acquired number of volumes differed between them (Nvolume Aberdeen: 73; Nvolume Dundee: 

72). These included (1) correcting for eddy current-induced distortions and subject 

movement in the scanner; (2) skull stripping using BET at a threshold of 0.2; (3) using 

DTIFIT in order to compute diffusion tensor characteristics (i.e. principal eigenvectors 

or V1, V2, V3; eigenvalues or L1, L2, L3; fractional anisotropy (FA), mean diffusivity 

(MD), and others); and (4) visually checking the quality of FA images at this stage in 

order to exclude distorted images. 

TBSS was carried out according to the ENIGMA DTI protocol 

(http://enigma.ini.usc.edu/protocols/dti-protocols/) for both scanning centres. Briefly, 

images were first slightly eroded in order to remove brain-edge artefacts as well as 

other outlying measures. All images were then nonlinearly registered to the ENIGMA 

template and all subjects were taken into 1x1x1mm standard space. A mean of all 

registered FA images was then calculated, in order to create a white matter skeleton. 

At this step, images were visually inspected in order to exclude badly registered 

images. Finally, a recommended threshold of FA > -0.049 was used in order to project 

the aligned FA data for each participant onto the skeleton created earlier. This final 

step created an individual FA skeleton image per subject. ROI extraction analyses 

using protocols provided by ENIGMA (http://enigma.ini.usc.edu/protocols/dti-

protocols/) were then performed, in order to extract IDPs, including FA and MD.. This 

resulted in 5 unilateral tracts and 19 bilateral tracts, as well as an average measure, for 

all 4 DTI scalars noted above (for a list of all white matter tracts, see table 1 below). 

The tracts are based on the Johns-Hopkins University (JHU) DTI-based white matter 

atlas (Mori et al., 2005). The final number of participants before merging with PRS 

and MRS, following quality check and exclusion criteria, was N = 968 (details of the 

exclusion process can be found in Appendix 3: Figure S1). 
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White matter tract Abbreviation 
Average FA/MD* aMD 
Global FA/MD* gMD 

Cingulum (hippocampus) CGH 
Cingulum (cingulate gyrus) CGC 

Fornix* FX 
Fornix (cres) / Stria terminalis FX / ST 

Inferior fronto-occipital fasciculus IFO 
Superior fronto-occipital fasciculus SFO 

External capsule EC 
Superior longitudinal fasciculus SLF 

Sagittal striatum SS 
Uncinate fasciculus UNC 

Body of corpus callosum* BCC 
Genu of corpus callosum* GCC 

Splenium of corpus callosum* SCC 
Corpus callosum* CC 

Corona radiata CR 
Internal capsule IC 

Anterior corona radiata ACR 
Posterior corona radiata PCR 
Superior corona radiata SCR 

Corticospinal tract CST 
Anterior limb of internal capsule ALIC 
Posterior limb of internal capsule PLIC 

Posterior thalamic radiation PTR 
Retrolenticular limb of internal capsule RLIC 

Table 1. White matter tracts used as dependent variables in statistical analyses outlined 
below. * = unilateral tracts. 
 
2.3.6 Statistical methods 

All analyses were conducted using R (version 3.2.3) in a Linux environment. 

As GS is a family-based study, with at least one family member participating in the 

study (McCartney et al., 2018), ASReml-R was used in order to account for relatedness 

within the sample, by including pedigree information as a random effect in each model. 

Association of MRS and PRS with MDD 

MDD was regressed on PRS; MRS; and PRS and MRS in three separate 

ASReml-R models. Covariates for these models included age, sex, ten genetic 

principal components to control for population stratification, and smoking status and 

smoking pack years, as it has been shown that cigarette smoking is a strong modifier 

of DNAm (Lee & Pausova, 2013; Joehanes et al., 2016; McCartney et al, 2018). In 
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addition, using the “ROCR” R package, the predictive ability of PRS and MRS in 

MDD was plotted using a Receiver Operating Characteristic (ROC) curve, 

representing the sensitivity and specificity of the scores in relation to MDD. 

Association of MRS and PRS with IDPs (FA and MD) 

Firstly, for global measures of FA and MD, principal component analysis 

(PCA) was applied on the white matter tracts of interest (Ntracts = 38; for a list of the 

tracts included in the PCA, see Appendix 3: Table S1) in order to extract a latent 

measure. Scores of the first unrotated component were extracted and set as dependent 

variables in ASReml-R. MRS and PRS were included as independent variables, with 

additional covariates: sex, age, age2, ten genetic principal components, smoking status, 

smoking pack years, and MRI site. 

Each white matter tract (N = 24; 5 unilateral and 19 bilateral) was then included 

as dependent variables in separate ASReml-R models. MRS and PRS were included 

as independent variables, with all covariates listed above, and for bilateral tracts only, 

hemisphere. 
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2.3.7 Descriptive statistics 

Table 2 provides descriptive statistics relating to the training sample. Tables 3 

and 4 below provide descriptive statistics relating to the testing sample. 

Descriptive statistics – training sample (N = 4,211) 

 

Table 2. Descriptive statistics of individuals included in training dataset; SD = 
standard deviation; number of pack-years = (packs smoked per day) x (years as a 
smoker). 
 

 

 

 

Variables Descriptive statistics 

Depression status  

Cases (%) 1,036 (25%) 

Controls (%) 3,175 (75%) 

Sex  

Female (%) 2,619 (62%) 

Male (%) 1,592 (38%) 

Age  

Mean +/- SD, range 47.83 +/- 14.42, 18 - 95 

Smoking status  

Current smoker 
Pack years (mean +/- SD, range) 

835 
19.98 +/- 18, 0.03 – 120 

Former smokers who quit under a year ago 
Pack years (mean +/- SD, range) 

117 
17.31 +/- 18.36, 0.004 – 88.80 

Former smokers who quit over a year ago 
Pack years (mean +/- SD, range) 

1,082 
14.31 +/- 16.60, 0.01 – 116 

Never smoked tobacco 
Pack years (mean +/- SD, range) 

2,177 
-  

Unsure of smoking status 
Pack years (mean +/- SD, range) 

- 
- 

Total 4,211 
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Descriptive statistics – testing sample (MDD; N = 625) 

Variables Descriptive statistics 

Depression status  

Cases (%) 122 (20%) 

Controls (%) 503 (80%) 

Sex  

Female (%) 378 (60%) 

Male (%) 247 (40%) 

Age  

Mean +/- SD, range 52.81 +/- 9.12, 20 - 72 

Smoking status  

Current smoker 
Pack years (mean +/- SD, range) 

78 
25.37 +/- 18.52, 0.36 – 79.55 

Former smokers who quit under a year 
ago 
Pack years (mean +/- SD, range) 

12 
23.54 +/- 12.68, 3.33 – 46.20 

Former smokers who quit over a year 
ago 
Pack years (mean +/- SD, range) 

195 
16.28 +/- 18.78, 0.004 – 107.60 

Never smoked tobacco 
Pack years (mean +/- SD, range) 

333 
- 

Unsure of smoking status 
Pack years (mean +/- SD, range) 

7 
- 

Total 625 
Table 3. Descriptive statistics of individuals included in testing dataset (MDD); SD = 
standard deviation; number of pack-years = (packs smoked per day) x (years as a 
smoker). 
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Descriptive statistics – testing sample (FA; N = 621 and MD; N = 623) 
 
 
Variables Fractional anisotropy 

(FA)  
Mean diffusivity (MD)  

Depression status   

Cases (%) 122 (20%) 121 (19%) 

Controls (%) 499 (80%) 502 (81%) 

Sex   

Female (%) 376 (60%) 377 (60%) 

Male (%) 245 (40%) 246 (40%) 

Age   

Mean +/- SD, range 52.77 +/- 9.13, 20 - 72 52.78 +/- 9.10, 20 - 72 

Smoking status   

Current smoker 
Pack years (mean +/- SD, 
range) 

78 
25.37 +/- 18.52, 0.36 – 
79.55 

78 
25.37 +/- 18.52, 0.26 – 
79.55 

Former smokers who quit 
under a year ago 
Pack years (mean +/- SD, 
range) 

12 
 
23.54 +/- 12.68, 3.33 – 
46.20 

12 
 
23.54 +/- 12.68, 3.33 – 
46.20 

Former smokers who quit 
over a year ago 
Pack years (mean +/- SD, 
range) 

195 
 
16.28 +/- 18.78, 0.004 – 
107.60 

194 
 
16.31 +/- 18.82, 0.004 – 
107.60 

Never smoked tobacco 
Pack years (mean +/- SD, 
range) 

330 
- 

332 
- 

Unsure of smoking status 
Pack years (mean +/- SD, 
range) 

6 
- 

7 
- 

Total 621 623 
Table 4. Descriptive statistics of individuals included in testing dataset (FA and MD); 
individuals whose global measures for FA and MD lay more than three standard 
deviations (SD) from the sample mean were excluded; number of pack-years = (packs 
smoked per day) x (years as a smoker). 
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2.4 Results 

In the LASSO penalised regression model, 256 CpG sites with the lambda 

value corresponding to the minimum mean cross-validated error were extracted and 

applied to CpG sites in the independent testing sample (Friedman et al., 2010) (see 

Appendix 3: Table S2 for a list of CpG sites and their regression weights). 

 

2.4.1 Association of MRS and PRS with MDD 

ASReml-R models showed that both MRS (β = 0.1433, p = 0.0002, R2 = 

2.11%) and PRS (β = 0.0839, p = 0.0387, R2 = 0.69%) explained a small proportion of 

variance in MDD. The model including both MRS (β = 0.144, p = 0.0002) and PRS (β 

= 0.084, p = 0.033) explained the most variance (R2 = 2.13%), though this was not 

significantly greater than MRS alone. Information relating to this can be viewed in 

Figure 2. The AUC of the MRS was 0.63, while the AUC of the PRS was 0.56 (Figure 

3). 
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Figure 2. PRS and MRS prediction of MDD in neuroimaging sample (N = 625); 
variance explained (R2) is shown as follows: PRS (blue), MRS (salmon), and additive 
PRS and MRS (violet) in the bar graphs above. 

Figure 3. Receiver Operating Characteristic (ROC) curve indicating the sensitivity 
and specificity of MRS and PRS for MDD. The legend shows the AUC estimates for 
MRS and PRS. 
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2.4.2 Association of MRS and PRS with FA and MD 

Fractional anisotropy 

One white matter tract was found to be nominally significantly associated with 

PRS (FA; superior fronto-occipital fasciculus: β = -0.077, p = 0.022). Table 5 contains 

standardised effect size (β), standard error, nominal p-value, and R2 for the association 

of both MRS and PRS with global measures and individual white matter tracts. 

White 
matter 
tract 

MRS PRS 

 Effect 
size,  β 

SD P-value 
(nominal) 

R2 

(%) 
Effect 
size,  β 

SD P-value 
(nominal) 

R2 

(%) 

ACR 0.015 0.038 0.693 0.023 -0.014 0.034 0.673 0.021 

ALIC -0.004 0.039 0.901 0.003 -0.04 0.035 0.255 0.167 

CGC  0.01 0.038 0.776 0.012 -0.058 0.034 0.093 0.341 

CGH 0.023 0.033 0.488 0.054 -0.011 0.029 0.7 0.013 

CR 0.004 0.038 0.914 0.002 -0.025 0.034 0.469 0.065 

CST 0.007 0.04 0.856 0.005 0.018 0.035 0.612 0.033 

EC -0.027 0.038 0.469 0.08 -0.037 0.034 0.281 0.14 

FX / ST -0.015 0.032 0.64 0.024 -0.052 0.029 0.077 0.272 

IC -0.011 0.035 0.736 0.015 -0.032 0.031 0.302 0.108 

IFO -0.032 0.037 0.383 0.108 0.005 0.033 0.874 0.003 

PCR 0.024 0.039 0.534 0.061 -0.012 0.034 0.713 0.017 

PLIC -0.014 0.034 0.676 0.021 -0.026 0.03 0.388 0.07 

PTR 0.024 0.037 0.514 0.061 0.005 0.033 0.869 0.003 

RLIC -0.007 0.034 0.818 0.006 -0.013 0.03 0.667 0.018 

SCR -0.022 0.04 0.58 0.052 -0.031 0.036 0.387 0.101 

SFO 0.003 0.037 0.925 0.001 -0.077 0.033 0.022 0.598 

SLF -0.021 0.039 0.577 0.05 0.004 0.035 0.901 0.002 

SS 0.019 0.037 0.597 0.041 -0.042 0.033 0.207 0.186 

UF 0.012 0.039 0.759 0.015 -0.0004 0.035 0.987 0 

CC -0.026 0.039 0.503 0.071 -0.029 0.035 0.406 0.086 

BCC -0.038 0.042 0.362 0.152 -0.043 0.037 0.253 0.189 
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GCC -0.019 0.039 0.612 0.041 -0.016 0.035 0.64 0.027 

SCC -0.002 0.033 0.949 0 -0.006 0.03 0.821 0.005 

FX -0.009 0.037 0.802 0.009 -0.056 0.033 0.094 0.324 

Global 
FA 0.001 0.036 0.96 0 -0.038 0.032 0.242 0.153 

Average 
FA -0.014 0.038 0.712 0.02 -0.033 0.034 0.328 0.113 

Table 5. The association between MRS and PRS with white matter tracts (FA). 
Nominally significant p-values are shown in bold. The first column for MRS and PRS 
indicates standardised effect size (β). R2 = estimate of variance explained by each 
pathway in %. 

 
 

Figure 4.  The effects of MRS (above) and PRS (below) on fractional anisotropy (FA) 
values of white matter tracts. The x-axis indicates the standardized effect size of each 
score association, and the y-axis indicates the white matter tracts. The error bar 
represents the SD of the mean. 
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Mean diffusivity 

Table 6 contains standardised effect size (β), standard error, nominal p-value, 

and R2 for the association of both MRS and PRS with global measures and individual 

white matter tracts. 

White 
matter 
tract 

MRS PRS  

 Effect 
size,  β 

SD P-value 
(nominal) 

R2 

(%) 
Effect 
size,  β 

SD P-value 
(nominal) 

R2 

(%) 

ACR -0.074 0.041 0.068 0.578 0.002 0.036 0.945 0.001 

ALIC -0.061 0.038 0.113 0.39 0.04 0.034 0.24 0.166 

CGC  -0.054 0.034 0.115 0.31 0.026 0.03 0.391 0.071 

CGH -0.013 0.028 0.641 0.018 0.024 0.025 0.345 0.059 

CR -0.064 0.039 0.107 0.428 0.018 0.035 0.61 0.033 

CST 0.024 0.04 0.544 0.059 0.002 0.035 0.933 0.001 

EC -0.035 0.037 0.346 0.129 -0.005 0.033 0.874 0.003 

FX / ST -0.01 0.03 0.738 0.011 0.008 0.027 0.741 0.008 

IC -0.044 0.029 0.138 0.208 0.014 0.026 0.594 0.021 

IFO -0.008 0.035 0.816 0.007 0.04 0.031 0.194 0.167 

PCR -0.055 0.036 0.13 0.31 0.027 0.032 0.388 0.078 

PLIC -0.022 0.028 0.441 0.05 -0.004 0.025 0.874 0.002 

PTR -0.049 0.035 0.168 0.248 0 0.031 0.985 0 

RLIC -0.034 0.028 0.23 0.122 0.006 0.025 0.796 0.004 

SCR -0.037 0.038 0.329 0.147 0.026 0.034 0.437 0.072 

SFO -0.002 0.039 0.951 0.001 -0.008 0.035 0.802 0.008 

SLF -0.011 0.036 0.763 0.013 0.023 0.032 0.475 0.055 

SS -0.05 0.035 0.154 0.268 0.005 0.031 0.856 0.003 

UF -0.052 0.039 0.188 0.276 0.015 0.035 0.661 0.024 

CC -0.016 0.037 0.663 0.027 0.029 0.033 0.377 0.088 

BCC 0.007 0.04 0.853 0.006 0.038 0.035 0.281 0.149 

GCC -0.048 0.038 0.205 0.241 0.019 0.034 0.574 0.037 

SCC -0.016 0.035 0.642 0.028 0.017 0.031 0.572 0.032 
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FX -0.011 0.04 0.78 0.013 0.013 0.036 0.703 0.019 

Global 
MD -0.032 0.039 0.411 0.106 0.019 0.035 0.578 0.038 

Average 
MD -0.017 0.037 0.646 0.03 0.022 0.032 0.502 0.05 

Table 6. The association between MRS and PRS with white matter tracts (MD). The 
first column for MRS and PRS indicates standardised effect size (β). R2 = estimate of 
variance explained by each pathway in %. 

 
 

Figure 5. The effects of MRS (above) and PRS (below) on mean diffusivity (MD) 
values of white matter tracts. The x-axis indicates the standardized effect size of each 
score association, and the y-axis indicates the white matter tracts. The error bar 
represents the SD of the mean. 
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2.5 Discussion 

The aim of the current study was to investigate whether MDD poly-epigenetic 

risk scores were significantly associated with MDD and changes in white matter 

microstructure as measured by FA and MD in > 600 individuals and to observe 

whether these associations are independent from MDD polygenic risk scores. 

DNAm predictors for MDD were identified in a training dataset of 4,211 

individuals and were significantly associated with MDD in an independent testing 

dataset. The study showed that the MRS explained 2.11% of the phenotypic variance 

in MDD, as compared with MDD PRS, which only explained 0.69%. Together, the 

two risk scores explained 2.13% of the variance in MDD.  

PRS derived from GWAS have offered insight into how cumulative risk from 

a large number of common genetic variants of small effect relate to MDD (Howard et 

al., 2019). On the other hand, studies of differential DNAm in MDD have only recently 

become possible at sufficient scale with the availability of large datasets including 

epigenomic and diagnostic data. For instance, Jovanova et al. (2018) found 3 CpG sites 

associated with depressive symptoms at epigenome-wide significance in N = 11,256 

individuals.  

Moreover, MRS based on DNAm in large datasets have also recently shown 

interesting results implicating environmental and lifestyle factors in the relationship 

between DNAm and MDD. Clark et al. (2019) showed that an MDD MRS, in 

combination with 27 lifestyle characteristics, including smoking status, alcohol 

consumption, body mass index (BMI), and physical activity, could discriminate 

between MDD cases and controls with an area under the curve (AUC) of 0.742. 

Moreover, Barbu et al. (2019) showed associations between MDD MRS and MDD 

status as well as numerous lifestyle factors, including smoking status, pack years, 

alcohol consumption, and BMI, which are known to play a role in MDD (Paperwalla 

et al., 2004; De Wit et al., 2010; Briere et al., 2014; Opel et al., 2015). They concluded 

that MRS may reflect lifestyle factors, indicating that some of the variation in MDD 

may be explained by environmental factors through DNAm. Results here show that 

both MRS and PRS are significantly associated with MDD, although their contribution 

is not independent from each other. However, Barbu et al. (2019) show that MRS and 
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PRS do have an additive nature in MDD prediction, perhaps due to an increased 

sample size and statistical power. 

The findings here and in the studies above aid in elucidating a role played by 

DNAm in MDD. However, unlike fixed genetic factors, DNAm changes throughout 

life, which may either be a cause or a consequence of altered environmental and 

lifestyle factors. Due to the temporal variation of DNAm, reverse causality may arise 

in cross-sectional studies where DNAm samples are collected at the same time as a 

diagnosis is made (Walton et al., 2019). In other words, it may be that individuals with 

MDD have differentially methylated CpG sites as a result of disorder manifestation, 

leading to changes in their environment and lifestyle, or that  their altered lifestyle may 

lead to differential DNAm. It may be possible, in future, to investigate direction of 

causality using methods such as mendelian randomisation, which measures variation 

in genes with a known function to examine causality (Lawlor et al., 2008). However, 

this approach would need to be repeated longitudinally, due to the dynamic nature of 

DNAm across life. Future studies could also measure DNAm before a diagnosis is 

made, as this may reduce confounding by reverse causation, although this approach 

does not completely reverse the risk of confounding (Juvinao-Quintero et al., 2019). 

In the current study, MRS and PRS were not associated with white matter tracts 

as measured by FA or MD. To the author’s knowledge, this is the first study attempting 

to investigate the association between a DNAm-based risk score for MDD and white 

matter tracts. A previous study has shown that elevated levels of DNA methylation in 

SLC6A4, a gene previously associated with both depression and white matter 

microstructure, was associated with decreased FA in the body of corpus callosum in 

MDD patients, although this analysis was based on five focussed CpG sites within the 

gene (Won et al., 2016). Choi et al. (2015) also found that differential DNA 

methylation at four CpG sites in the BDNF promoter region, previously associated 

with both white matter microstructure and depression, was associated with decreased 

integrity in the right anterior corona radiata of MDD patients. Importantly, these 

previous studies used a priori hypotheses linking specific genes and methylation 

within them to both traits, unlike the current study, which used a less biased data-

driven approach. 
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PRS have previously shown associations with a wide range of neuropsychiatric 

traits and white matter microstructure measures, as indexed by FA and MD (Shen et 

al., 2019). Shen et al. (2019) conducted a phenome-wide association study in 21,888 

individuals to explore how PRS at different p-value thresholds associate with 

behavioural and neuroimaging traits. They showed that MDD PRS p ≤ 0.01 showed 

the largest effect sizes in neuroimaging phenotypes (Shen et al., 2019). This indicates 

that the PRS p-value threshold used here (p ≤ 0.05) may not be optimal in detecting 

meaningful associations, although the threshold was selected based on its ability to 

explain the most variance in MDD status (Howard et al., 2019). Moreover, in addition 

to significant associations between individual white matter tracts and MDD PRS, Shen 

et al. (2019) also found evidence of global and regional associations, for which effect 

sizes were larger. This may indicate that the effect of the two risk scores may be global 

rather than tract-specific, although this is not reflected in the global and average FA 

and MD associations with either score in the current study. 

Moreover, Barbu et al. (2019) investigated whether MRS and PRS for MDD 

capture different exposures to behavioural and environmental phenotypes. They found 

that the MDD MRS was more significantly associated with sociodemographic and 

lifestyle measures, while the MDD PRS was more significantly associated with disease 

and mental health variables (Barbu et al., 2019). In the current study, both risk scores 

were associated with MDD, but none with white matter microstructure. Given previous 

evidence relating MDD PRS to decreased white matter integrity and more robust 

associations with mental health variables, it may be that the genetic risk score is more 

well-suited to identify disruptions in white matter in relation to MDD, while epigenetic 

risk may exert its effect on MDD through environmental modifications, rather than 

through changes in white matter microstructure. 

Although associations are non-significant, this is also reflected in the direction 

of effect from each risk score; the PRS seem to relate to decreased FA and increased 

MD in most tracts, an indication of white matter microstructural disruptions. This 

reflects previous findings associating higher MDD PRS with decreased white matter 

microstructural integrity (Shen et al., 2019; Barbu et al., 2019). On the other hand, the 

MRS seem to indicate increased FA and decreased MD in a large number of tracts, 

suggesting increased white matter integrity. Moreover, the PRS explained a greater 
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proportion of the variance in multiple white matter tracts in FA (FA R2 = 0 – 0.6%; 

MD R2 = 0 – 0.17%), while the MRS explained a greater proportion of the variance in 

MD-measured tracts (FA R2 = 0 – 0.15%; MD R2 = 0.001 – 0.58%) (Tables 5 and 6). 

Previous studies investigating PRS and white matter microstructure 

associations have used sample sizes larger than 5,000 (Shen et al., 2019; Barbu et al., 

2019). In addition, lack of significant associations may be due to the current sample, 

which is a relatively healthy community-based sample that may not reflect severe 

depression or depressive symptoms. These results together indicate that a larger 

sample size might be needed to detect an association between increased risk of 

depression, both polygenic and poly-epigenetic, and white matter microstructure.  

A strength of the current study is the analysis between a novel MDD MRS and 

white matter microstructure as measured by FA and MD. Moreover, findings revealed 

an association between DNAm risk and MDD, indicating a potential to use such a 

score for further analyses, as well as for other traits which are implicated in MDD. 

In summary, results show that MDD MRS and PRS are associated with MDD. 

Results suggest that a larger sample may be needed to uncover robust associations 

between white matter microstructure and both MDD risk scores. Moreover, based on 

previous findings, DNAm may contribute to MDD via environmental and lifestyle 

factors, rather than through disruptions in white matter microstructure. Further testing 

and validation in clinically ascertained samples is needed, however the findings here 

may justify future efforts to collect DNAm in larger samples and investigate 

associations between DNAm risk and emotional, cognitive and other brain imaging 

traits related to depression. 

 

3. Chapter conclusion 

The study found an association between both MRS and PRS with MDD status, 

although no associations were found between the two risk scores and white matter 

microstructure post-FDR correction. A small-sized sample comprised of community-

based, generally healthy individuals, may reflect the non-significant findings here, as 

well as the fact that global and regional brain connectivity associations are generally 
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more robust than individual tracts, as reflected by previous studies. Moreover, as 

DNAm is environmentally modifiable, it may be that changes in lifestyle and 

environment, rather than disruptions in white matter microstructure, may connect 

DNAm to MDD prevalence. In conclusion, larger studies comprising genetic, 

epigenetic, and neuroimaging data will be needed in future to examine the role of an 

MRS in white matter microstructure and investigate whether this score is independent 

to MDD PRS. 
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Chapter 5: Discussion 
 

1. Introduction 

 The current thesis aimed to investigate the genetic relationship between white 

matter microstructure and gene expression, as well as to identify its association with 

stratified genetic and epigenetic risk for MDD. The thesis included two large-scale 

cohorts, UKB and GS (and sub-sample STRADL), which combine neuroimaging and 

genetic data, with samples ranging from 620 to 14,500. 

 In the past, white matter microstructure has been reported to be moderately 

heritable and associated with MDD, both globally and regionally. As white matter 

represents the brain’s connectivity network, having a far-reaching structural and 

temporal effect, there is rationale to study its relationship to psychiatric and 

neurological disorders. The aims of this thesis were therefore to (1) investigate the 

genetic basis of gene expression changes in relation to white matter microstructure, in 

order to form a basis for in-depth downstream analyses of disease- and trait-linked 

genes; (2) stratify genetic risk for MDD by a validated biological pathway and 

investigate its association with white matter microstructure; and (3) objectively 

investigate the effect of potential environmental insults by analysing epigenetic risk of 

MDD in relation to the disorder and white matter microstructure. To do this, 

increasingly specific genetic analysis approaches were used, all of which included 

computing scores that aggregate the cumulative effect of multiple genetic variants and 

CpG sites for (i) gene expression; (ii) genetic risk for MDD; and (iii) epigenetic risk 

for MDD.  

The three research chapters each include a discussion section which is 

specifically tailored to the analysis and findings presented there. Therefore, the aim of 

this chapter is to provide a broader discussion of the findings and how they 

interconnect in the investigation of MDD. The chapter then concludes with strengths 

and limitations, suggestions for future research, and conclusions. 
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2. Summary of main findings 

 

2.1 Genetic underpinnings of gene expression in white matter microstructure – 

specific and global findings 

To investigate the relationship between white matter microstructure and 

genetic risk of complex disorders, the genetic underpinnings of white matter were first 

explored. Although heritability of white matter microstructure has been previously 

established, the role of the genetic variants involved is unknown (Sprooten et al., 

2014). In the current thesis, to gain understanding of the functional effects of 

regulatory variants, the genetic basis of gene expression was investigated in relation 

to white matter tracts, globally and with increasing regional specificity.  

One of the main findings was the association between higher white matter 

microstructural integrity and genetic variants regulating neural development-linked 

genes, and lower white matter microstructural integrity and genetic variants regulating 

disease-linked genes. The genes found here are different in functionality, and findings 

from this chapter allow for in-depth insight into expression-based effects of regulatory 

loci on white matter microstructure. As a result, future studies may investigate 

differential genotypes at regulatory loci and differential gene expression between 

patients and healthy control participants in downstream analyses combining 

neuroimaging and genetic data. 

Furthermore, while all other white matter tracts were found to be associated 

with genetic variants regulating gene expression of either disease- or development-

linked genes, the forceps minor was found to be associated with both. Interestingly, 

the forceps minor forms the anterior part of the corpus callosum, and connects 

homologous prefrontal cortex regions between hemispheres, thus enabling 

communication between the two (Wakana et al., 2007). It is reported to be involved in 

numerous cognitive and behavioural skills, as well as neuropsychiatric and 

neurological disorders (Mamiya et al., 2018). This finding is therefore unsurprising, as 

the corpus callosum is less prone to errors during the imaging process and is arguably 

the largest white matter tract in the brain which connects a large number of brain 
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regions to each other (Hofer & Frahm, 2006). Undoubtedly, a large number of genes 

may be expressed in the formation, maintenance, and pathology of this tract. 

In addition to these specific findings, differences were also found globally for 

some of the genes investigated, suggesting that the expression of some genes has a 

more widespread effect on white matter microstructure than others. In addition to 

analysis of disease states and traits, these findings may be leveraged in downstream 

analyses to investigate loci implicated in the formation, development, and plasticity of 

white matter microstructure globally. 

As discussed in chapters 1 and 2, neuroimaging phenotypes provide a novel 

and sound opportunity to investigate the genetics of gene expression in relation to in 

vivo brain phenotypes. This method accounts for the increasing number of limitations 

in analysing gene expression in the brain directly, such as cause of death and post-

mortem expression level differences (McKenzie et al., 2014). For a comprehensive 

understanding, the findings discussed here involve changes in both FA and MD across 

tracts in relation to regulatory loci. However, these loci may implicate FA and MD 

measures of white matter microstructure across different tracts, regionally or 

specifically, as the two scalars capture different characteristics of white matter 

microstructural integrity (Jones et al., 2013).  

Lastly, the findings in chapter 2 uncovered novel associations which were not 

previously reported by GWAS (Elliott et al., 2018), suggesting that genetic loci 

important in white matter maintenance and pathology are regulatory. This is 

additionally important as future studies may leverage these regulatory loci to 

investigate their direct effects on both traits and disease states through the alteration of 

white matter microstructure.  

 

2.2 Thalamic radiations are key neurobiological markers in stratified genetic risk 

for MDD 

Polygenic risk of MDD has continuously been associated with white matter 

microstructure in the past (Whalley et al., 2017; Shen et al., 2017). However, findings 

have generally been inconclusive, with numerous tracts being associated with 
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increased risk of MDD. This has made it difficult to uncover genetic risk factors and 

their effect on brain connectivity in the context of MDD. Here, findings concerning 

thalamic radiations as both white matter tracts and stratified biological pathway 

process are discussed. 

As discussed previously, MDD is a highly heterogeneous disorder, both 

clinically and biologically. Methods to stratify MDD have been considered in order to 

gain an understanding in the aetiology and manifestation of the disorder. Here, genetic 

risk for MDD was stratified based on genetic variants aggregated within a biological 

pathway. The third chapter found higher general MD in thalamic radiations and 

superior and inferior longitudinal fasciculi, as well as lower FA in superior 

longitudinal fasciculus associated with PRS computed using variants aggregated 

within the NETRIN1 Signalling Pathway. While several white matter tracts including 

tracts pertaining to association and projection regional fibres were associated with PRS 

computed from variants outside the pathway, interestingly, they were not associated 

with thalamic radiations.  

This result is fitting as the NETRIN1 Signalling Pathway is responsible for 

neuronal migration and guiding axons branching from the thalamus to the rest of the 

cortex during neuronal development (Braisted et al., 2000). The thalamus is a 

subcortical structure located above the brain stem with widespread connections to both 

cortex & subcortical areas (Sherman, 2016). The thalamus is often referred to as the 

hub of the brain, as it is linked to cortical areas globally as well as to various subcortical 

structures, such as the hippocampus and amygdala, and uses these global connections 

to relay information between cortical and subcortical structures (Sherman, 2016). 

Therefore, the hub is implicated in negative emotional processing, cognitive 

functions such as memory, executive functions, attention, and information processing, 

and is known to regulate states of sleep and wakefulness (Herrero, Barcia & Navarro, 

2002; Saalmann & Kastner, 2011; Yousaf et al., 2018). These are all factors 

contributing to the MDD symptom profile (e.g. inability to concentrate, insomnia and 

hypersomnia, enhanced negative emotional states), so it is unsurprising that a 

heterogeneous disorder such as MDD is associated with a structure that is so 

widespread in its functionality.  
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Moreover, PRS confined to the NETRIN1 Signalling Pathway also showed 

associations with disrupted microstructural integrity in large association fibres, such 

as the superior and inferior longitudinal fasciculi, which connect different cortical 

areas across the four lobes to each other (Schmahmann et al., 2007). This finding fits 

well with the thalamocortical connections, indicating that stratified risk of MDD in 

this particular biological pathway is related to lower white matter microstructural 

integrity in tracts connecting cortical and subcortical regions throughout the brain.  

The findings in chapter 3 indeed show a strong connection between genetic 

risk for MDD aggregated in a biological process and brain connectivity, both 

implicating the thalamus. The results indicate that stratifying MDD by biology may 

uncover novel insights into specific connectivity deficits related to the disorder. In 

downstream analyses, stratification of both symptom profiles and genetic risk may 

lead to specific genetic variants linked to particular symptoms. In addition, future 

studies may attempt to investigate functional connectivity in relation to stratified MDD 

genetic risk. 

 

2.3 Whole-epigenome DNAm identified as a novel risk factor for MDD 

 Genetic studies have only recently garnered success in uncovering part of the 

genetic basis of psychiatric disorders (Howard et al., 2019). As MDD is a 

multifactorial, complex disorder, with both genetics and the environment playing a 

pivotal role in its development, it is safe to assume that research investigating the 

disorder would benefit from an integrated approach including both genetic and 

epigenetic risk factors. Moreover, MDD is reported to have a heritability of 37% based 

on family studies, however GWAS indicate that common genetic variants explain only 

part of this total heritability (Howard et al., 2019). Therefore, a proportion of variance 

in MDD may be explained by changes in gene expression induced by epigenetic 

factors. Support to this is lent in chapter 4, where both whole-genome and whole-

epigenome risk explained a small proportion of variance in MDD (additive R2 = 

2.13%), indicating that epigenetic mechanisms may be important in the formation and 

manifestation of MDD. 
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 Research has so far focused on DNAm alterations of specific genes posited to 

be associated with MDD, such as BDNF, SLC6A4, and NR3C1, although it is now 

widely believed that candidate genes may not be an optimal way to investigate MDD, 

due to its polygenicity and complex nature (Border et al., 2019). The findings in 

chapter 4 are one of the first to indicate that a whole-epigenome approach may be more 

indicative in uncovering novel risk factors for MDD. As it is one of the first studies to 

investigate epigenetic risk for MDD aggregated in a single variable, the research 

presented here provides a basis for future epigenetic-based analyses for MDD. For 

instance, future studies may investigate associations between environmental and 

lifestyle factors implicated in MDD, such as childhood trauma, smoking status, alcohol 

consumption, and body mass index (BMI) in relation to DNAm risk for MDD. 

Furthermore, DNAm signatures of antidepressants, one of the most widely-used 

treatments for MDD acting on biological pathways, may be investigated in future to 

observe whether differential DNAm exists between those who take and do not take 

antidepressants. 

 Moreover, it is perhaps unsurprising that epigenetic alterations, situated at the 

intersection between genetic and environmental factors, play a role in MDD. A number 

of lifestyle and environmental insults, such as childhood adversity, work-related stress, 

smoking, and alcohol, are associated with MDD, many of which may silence or 

activate specific genes through hyper- or hypo-methylation at promoter sites to give 

rise to the disorder. As this study is relatively novel due to the rarity of studies 

containing large DNAm data, it is presently unclear in what way epigenetic 

modifications influence MDD. Epigenetic alterations may well be one of the 

mechanisms integrating both environmental and genetic risk factors in MDD, and 

combined analyses that include a wide variety of environmental, genetic, and 

epigenetic risk factors, should be carried out. 

 

2.4 No association revealed between MRS for MDD and white matter 

microstructure 

 The study additionally set out to investigate links between whole-epigenome 

and whole-genome risk for MDD and white matter microstructure. As with MDD 
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diagnosis, the association between DNAm alterations at specific sites across the 

genome posited to be related to MDD and disrupted white matter microstructure has 

been previously established, providing a rationale to investigate links between the two 

(Won & Ham, 2016). However, in the current study, there was no association between 

a genetic or an epigenetic risk score for MDD and white matter microstructure, despite 

previous evidence associating whole-genome PRS for MDD with the brain 

connectivity network (Whalley et al., 2013; Shen et al., 2017).  

The null findings here may be due to a number of factors. Firstly, the sample 

size comprising non-clinically ascertained individuals used in the study (NFA = 621; 

NMD = 623) is small compared to usual neuroimaging genetics studies. Previous studies 

showing an association between genetic risk for MDD and white matter microstructure 

contained sample sizes of over 1,000 individuals (Shen et al., 2017; Shen et al., 2019). 

Reus et al. (2017) computed PRS for MDD, schizophrenia, and bipolar disorder, and 

associated them with subcortical brain volumes (N = 978) and white matter 

microstructure (N = 816). The authors found no link between subcortical volumes or 

white matter microstructure and PRS for either disorder, although their findings may 

be due to formerly underpowered GWAS which led to scarce common genetic variants 

for use in the calculation of PRS. In addition, the study used the first release of UK 

Biobank imaging data (Reus et al., 2017); later releases adding participants to this 

original number and the more successful findings indicated that the lack of findings 

may have been due to small sample size. 

 Secondly, previous studies investigating a whole-epigenome MRS in 

association with various traits used sample sizes of approximately 900 individuals, 

indicating the need for a larger sample size here (Shah et al., 2015; McCartney et al., 

2018). Moreover, it would be reasonable that genetic risk for MDD would be 

associated with white matter microstructure, which is also moderately heritable (Elliott 

et al., 2018), and epigenetic risk for MDD would be associated with lifestyle and 

environmental factors, which partly influence the epigenome. Barbu et al. (2019) 

found that an MDD MRS was more significantly associated with sociodemographic 

and lifestyle measures, while an MDD PRS was more significantly associated with 

disease and mental health variables (Barbu et al., 2019). The association between an 

MRS for MDD and lifestyle factors, including BMI, smoking and alcohol 
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consumption, and self-reported antidepressant use, was also shown in Barbu et al. 

(2019). It therefore remains to be seen, as sample sizes increase and analysis methods 

advance, whether whole-epigenome MDD risk is associated with brain connectivity. 

 

3. Strengths and limitations of the current thesis and suggestions for future 

research 

Two major strengths for the studies conducted in this thesis are (1) the large 

sample size within UK Biobank, which can accommodate both biological and clinical 

heterogeneity of MDD and (2) a combination of neuroimaging and genetic data in 

these large samples. Firstly, UK Biobank is an invaluable resource combining a vast 

amount of data; this includes neuroimaging data collected at only two sites, thus 

accounting for limitations and artefacts resulting from scanning individuals across 

multiple sites; and genetic data, which has now been released for approximately 

500,000 individuals, and permits investigation into a large number of phenotypes in 

relation to genotype. 

Moreover, although sample size within GS is small for genetic-neuroimaging 

associations, it is important to note that the cohort is a rich resource containing 

invaluable data, including a combination of genetic, neuroimaging, and DNAm in a 

carefully chosen sample. In addition to this, the individuals for which neuroimaging 

data is available were specifically chosen to study resilience and depression (Navrady 

et al., 2017), which adds to the value of investigating the above-mentioned data in 

relation to the disorder. 

As discussed in the introductory chapter, neurobiological markers implicated 

in psychiatric disorders may provide a mechanistic insight into the formation and 

manifestation of disease states. Integrating both neuroimaging and genetic data in the 

investigation of psychiatric disorders may therefore pave the way to further specialised 

studies and uncover therapeutic targets to be used for prevention and treatment. 

One of the limitations present in both datasets used in this thesis is the cohorts’ 

age range, which generally reflect older populations (Mean age: UKB: 56.52 +/- 8.09 

years; STRADL respondents of GS: 50.48 +/- 13.41 years), as well as the fact that 



 

117 
 

participants in both cohorts are generally healthier and wealthier than the rest of the 

population. This may induce some bias in the interpretation of the results implicating 

MDD, as the average age of onset is 25, a much younger age than those of participants 

in the studies, although MDD may appear at any age (WHO, 2017). Moreover, in a 

study presented in the introduction, Bromel et al. (2011) showed that MDD 12-month 

prevalence was similar between high- and low-income countries. While these factors 

may not have a great impact on MDD, it is still advised to carefully consider them 

when interpreting findings for further analyses.  

 Further, although the large sample sizes used here are lauded, data from a 

higher number of participants still must be collected in order to be able to conduct 

more complex and in-depth genetic and neuroimaging analyses. Stratification by 

biology or genetic factors, such as biological pathways, haplotype blocks, or genetic 

correlations, and even more general genetic analyses such as GWAS, may need 

hundreds of thousands of individuals, especially in the investigation of MDD, where 

different combinations of genes and SNPs act together to give rise to the disorder. 

Replication of findings between the already-existing large studies may strengthen the 

conclusions made so far and encourage further studies to carefully select participants 

for future investigation. These findings may also be used to generate hypotheses to test 

in smaller, but still substantial, genetic neuroimaging studies, incorporating a 

discovery and replication approach. 

 With regards to the neuroimaging data, two tractography-based methods, 

probabilistic tractography and TBSS, were used in the present thesis. As discussed in 

the introduction, the two methods are both highly validated and sound measures of 

capturing white matter microstructure. However, the two methods may well have 

different proportions of heritability (Elliott et al., 2018), and both utilise different 

methods to construct and annotate white matter tracts. Replication across both methods 

in the studies presented was considered beyond the scope of this thesis, although in 

future, studies should take into account the differences between the two and attempt to 

investigate both.  

 Moreover, findings were consistently different between the two scalars 

investigated, FA and MD. In some instances, significant findings were associated with 
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one scalar, but not the other. This is not a limitation in itself, however it should be 

mentioned that the two scalars may capture different characteristics of white matter 

microstructure and should be carefully considered when drawing conclusions from 

studies using such measures.  

 Finally, overall, very small effect sizes were reported in the three studies 

(Largest effect size: Chapter 2: -0.0561 (FA) and 0.0480 (MD); Chapter 3: -0.036 (FA) 

and 0.042 (MD); Chapter 4: 0.1440 (MDD MRS). While this may not necessarily be 

a limitation, it does provide a rationale for better-defined phenotypes in larger groups 

in future studies. Especially in MDD, stratification may provide an advantage in that 

more specific patient groups may show greater associations with particular 

phenotypes. 

 In addition to the suggestions for future studies made above, direct implications 

of the current thesis to be considered by further research are threefold. Firstly, more 

detailed investigation should be carried out in analysing genetic underpinnings of 

MDD. Future studies may wish to look at localised genetic effects aggregated in 

different functional and biological pathways and perhaps integrate gene expression-

based analyses of participating SNPs. For instance, the 8 eQTL scores uncovered in 

chapter 2 may further be analysed and tested in knockout animal models to investigate 

their possible role in MDD and white matter microstructure. Furthermore, in-depth 

investigation should be carried out into the NETRIN1 Signalling Pathway, and axon 

guidance pathways in general, as they seem to emerge in MDD analyses (Zeng et al., 

2016; Aberg et al., 2018).  

Moreover, novel developments in diffusion MRI measures, such as NODDI 

(neurite orientation dispersion and density imaging), which measures intra-neurite, 

extra-neurite, and cerebral spinal fluid volume fractions separately, may be employed 

by studies in the future to investigate more localised disruptions in white matter 

microstructure in relation to genetic and epigenetic risk for MDD (McCunn et al., 

2019). Lastly, white matter microstructure is the brain’s connectivity network, 

providing a complex mode of communication between brain regions. As such, it is 

important to add to previous literature and investigate specific functional connectivity 
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networks as well as cortical or subcortical areas connected by specific white matter 

tracts in relation to MDD genetic risk.  

 

4. Conclusions 

 MDD is a highly heterogeneous disorder with an unclear aetiology. Genetic 

and neuroimaging links to MDD have so far been vague, indicating the need for further 

stratification, by biology or symptom profile, as well as development of more 

advanced analysis techniques incorporating both types of data. The present thesis 

contributes three studies that aid in the understanding of MDD at the intersection 

between genetics and neuroimaging. Results provide evidence of white matter 

microstructure associations with expression of disease- and neurodevelopment-linked 

genes and propose thalamic radiations as a key neurobiological factor in genetic risk 

aggregated to a small portion of the genome. The findings presented here also suggest 

that whole-epigenome risk is associated with the presence of MDD. Evidence 

presented here may be used to guide future studies and implement large cohorts, with 

an emphasis placed on neuroimaging, genetics, and epigenetics in the context of MDD. 
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Appendix 1: Supplementary materials for Chapter 2: Expression quantitative 

trait loci-derived scores and white matter microstructure in UK Biobank: a novel 

approach to integrating genetics and neuroimaging 

 

Results for scores associated with FA (N = 17; table S1) and MD (N = 16; table S2) 
white matter tracts separately 

Score, white matter tract Effect size SD t value p value p value, FDR 
corrected 

ATG10_eQTL_cis, global FA 0.0341 0.0079 4.3106 1.64E-05 0.0273 
SF3A1_eQTL_cis, global FA -0.0327 0.0079 -4.1305 3.64E-05 0.0495 

SMARCAL1_eQTL_cis, global 
FA 0.0374 0.0079 4.7354 2.21E-06 0.0071 

SF3A1_eQTL_cis, association 
fibres -0.0334 0.0079 -4.2386 2.26E-05 0.0344 

SMARCAL1_eQTL_cis, 
association fibres 0.0326 0.0079 4.1375 3.53E-05 0.0495 

ATG10_eQTL_cis, thalamic 
radiations 0.0373 0.0080 4.6587 3.21E-06 0.0088 

PPP4R3A_eQTL_cis, thalamic 
radiations 0.0357 0.0080 4.4572 8.36E-06 0.0166 

SMARCAL1_eQTL_cis, thalamic 
radiations 0.0394 0.0080 4.9292 8.35E-07 0.0036 

CD14_eQTL_cis, projection 
fibres -0.0360 0.0079 -4.5691 4.94E-06 0.0116 

COG7_eQTL_cis, anterior 
thalamic radiation -0.0333 0.0076 -4.4005 1.09E-05 0.0337 

SMARCAL1_eQTL_cis, anterior 
thalamic radiation 0.0394 0.0076 5.2164 1.85E-07 0.0018 

LINC01605_eQTL_trans, 
cingulate gyrus -0.0337 0.0071 -4.7560 1.99E-06 0.0114 

ANXA1_eQTL_cis, corticospinal 
tract -0.0320 0.0074 -4.3218 1.56E-05 0.0416 

ZSCAN26_eQTL_cis, forceps 
major -0.0397 0.0081 -4.9048 9.45E-07 0.0070 

ATG10_eQTL_cis, forceps minor 0.0360 0.0078 4.5986 4.29E-06 0.0189 
CD14_eQTL_cis, forceps minor 0.0456 0.0078 5.8210 6E-09 0.0001 
SHTN1 / KIAA1598_eQTL_cis, 

forceps minor 0.0376 0.0078 4.8050 1.56E-06 0.0101 

ZNF282_eQTL_cis, forceps 
minor -0.0346 0.0078 -4.4224 9.83E-06 0.0337 

ENO4_eQTL_cis, forceps minor 0.0354 0.0078 4.5197 6.24E-06 0.0252 
COG7_eQTL_cis, forceps minor -0.0338 0.0078 -4.3127 1.62E-05 0.0416 
SMARCAL1_eQTL_cis, forceps 

minor 0.0361 0.0078 4.6056 4.15E-06 0.0189 

ASRGL1_eQTL_cis, inferior 
fronto-occipital fasciculus 0.0329 0.0077 4.2950 1.76E-05 0.0426 

ATG10_eQTL_cis, inferior 
fronto-occipital fasciculus 0.0355 0.0077 4.6291 3.7E-06 0.0179 
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Table S1. eQTL scores associated only with white matter tracts as measured 
by FA. The first column indicates standardised effect size (β). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMEM184B_eQTL_cis, inferior 
fronto-occipital fasciculus 0.0337 0.0077 4.3935 1.12E-05 0.0337 

SMARCAL1_eQTL_cis, inferior 
longitudinal fasciculus 0.0349 0.0076 4.5704 4.91E-06 0.0207 

ATG10_eQTL_cis, posterior 
thalamic radiation 0.0325 0.0075 4.3416 1.42E-05 0.0406 

ZBTB7B_eQTL_cis, superior 
longitudinal fasciculus -0.0329 0.0077 -4.2946 1.76E-05 0.0426 

GPT_eQTL_cis, superior 
longitudinal fasciculus 0.0339 0.0077 4.4153 1.02E-05 0.0337 

SMARCAL1_eQTL_cis, superior 
longitudinal fasciculus 0.0401 0.0077 5.2356 1.67E-07 0.0018 

GPT_eQTL_cis, superior 
thalamic radiation 0.0337 0.0079 4.2827 1.86E-05 0.0429 

AP2S1_eQTL_cis, superior 
thalamic radiation 0.0348 0.0079 4.4164 1.01E-05 0.0337 
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Figure S1. eQTL scores associated only with white matter tracts as measured by FA (fractional 
anisotropy). Indicates nominal p-values between each of the scores (shown in legend entitled 
“eQTL score”) and global and tract category measures (noted on the x-axis). All values in the 
figure met FDR correction. Some of the scores with an additional line around the points had an 
effect size in the opposite direction to all other scores (also indicated by +β for FA in figure legend). 
The colours of the plot points indicate the score to which they belong. Magnitude of effect is shown 
in the legend entitled “Effect size (absolute values)”.  

 



 

154 
 

Score, white matter tract Effect 
size SD t value p value p value, FDR 

corrected 
APOA1BP / NAXE_eQTL_cis, 

global MD 0.0311 0.0075 4.1331 3.6E-05 0.0423 

BTN3A2_eQTL_cis, global 
MD 0.0308 0.0075 4.0853 4.42E-05 0.0423 

UMPS_eQTL_cis, global MD -0.0319 0.0075 -4.2381 2.27E-05 0.0366 
CSF3R_eQTL_cis, global MD 0.0345 0.0075 4.5704 4.91E-06 0.0132 
TMEM154_eQTL_cis, global 

MD -0.0400 0.0076 -5.2970 1.19E-07 0.0015 

APOA1BP / NAXE_eQTL_cis, 
association fibres 0.0326 0.0077 4.2419 2.23E-05 0.0366 

BTN3A2_eQTL_cis, 
association fibres 0.0314 0.0077 4.0888 4.36E-05 0.0423 

SAMM50_eQTL_cis, 
association fibres -0.0311 0.0077 -4.0501 5.15E-05 0.0475 

UMPS_eQTL_cis, association 
fibres -0.0355 0.0077 -4.6219 3.84E-06 0.0124 

CSF3R_eQTL_cis, association 
fibres 0.0377 0.0077 4.9069 9.36E-07 0.0048 

TMEM154_eQTL_cis, 
association fibres -0.0402 0.0077 -5.2158 1.86E-07 0.0016 

HLA-C_eQTL_cis, association 
fibres -0.0342 0.0077 -4.4402 9.05E-06 0.0213 

MED15_eQTL_cis, thalamic 
radiations 0.0297 0.0072 4.1354 3.56E-05 0.0423 

KANSL1_eQTL_cis, thalamic 
radiations -0.0302 0.0072 -4.2041 2.64E-05 0.0401 

IL18RAP_eQTL_cis, projection 
fibres 0.0324 0.0078 4.1621 3.17E-05 0.0423 

C6orf106_eQTL_cis, projection 
fibres 0.0318 0.0078 4.0863 4.41E-05 0.0423 

RABEPK_eQTL_cis, acoustic 
radiation 0.0307 0.0069 4.4197 9.95E-06 0.0287 

CFDP1_eQTL_cis, anterior 
thalamic radiation 0.0298 0.0070 4.2749 1.92E-05 0.0447 

PTPN13_eQTL_cis, anterior 
thalamic radiation -0.0347 0.0070 -4.9756 6.58E-07 0.0044 

KANSL1_eQTL_cis, anterior 
thalamic radiation -0.0369 0.0070 -5.3005 1.17E-07 0.0016 

TMEM154_eQTL_cis, anterior 
thalamic radiation -0.0303 0.0070 -4.3269 1.52E-05 0.0372 

UMPS_eQTL_cis, cingulate 
gyrus -0.0323 0.0073 -4.3999 1.09E-05 0.0297 

PLEC_eQTL_cis, forceps minor 0.0335 0.0076 4.3887 1.15E-05 0.0297 
TMEM154_eQTL_cis, forceps 

minor -0.0384 0.0076 -5.0145 5.38E-07 0.0043 

TMEM154_eQTL_cis, inferior 
fronto-occipital fasciculus -0.0330 0.0075 -4.3971 1.1E-05 0.0297 

TMEM154_eQTL_cis, inferior 
longitudinal fasciculus -0.0337 0.0073 -4.5974 4.32E-06 0.0164 
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Table S2. eQTL scores associated only with white matter tracts as measured by MD. 
The first column indicates standardised effect size (β). 

 

  

 

 

 

 

 

 

 

 

 

SAMM50_eQTL_cis, 
parahippocampal part of 

cingulum 
-0.0303 0.0071 -4.2755 1.92E-05 0.0447 

BTN3A2_eQTL_cis, superior 
longitudinal fasciculus 0.0350 0.0076 4.6271 3.74E-06 0.0155 

UMPS_eQTL_cis, superior 
longitudinal fasciculus -0.0413 0.0076 -5.4562 4.94E-08 0.0008 

TMEM154_eQTL_cis, superior 
longitudinal fasciculus -0.0377 0.0076 -4.9633 7.01E-07 0.0044 

PTPN13_eQTL_trans, superior 
thalamic radiation -0.0336 0.0068 -4.9424 7.8E-07 0.0046 

TMEM154_eQTL_cis, superior 
thalamic radiation -0.0323 0.0068 -4.7333 2.23E-06 0.0106 

TMEM154_eQTL_cis, uncinate 
fasciculus -0.0308 0.0068 -4.5058 6.66E-06 0.0219 
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Figure S2. eQTL scores associated only with white matter tracts as measured by MD (mean 
diffusivity). Indicates nominal p-values between each of the scores (shown in legend entitled 
“eQTL score”) and global and tract category measures (noted on the x-axis). All values in the 
figure met FDR correction. Some of the scores with an additional line around the points had an 
effect size in the opposite direction to all other scores (also indicated by -β for MD in figure legend). 
The colours of the plot points indicate the score to which they belong. Magnitude of effect is shown 
in the legend entitled “Effect size (absolute value)”.  
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Brief gene look-up for genes whose expression was associated with FA (N = 17; table 
1) and MD (N = 16; table 2) separately 

 

Score name 
& eQTL type 

N SNPs 
in score 

Regulated 
gene 

Study from 
which score 
is calculated 

Gene function 

ATG10_eQTL
_cis 7 ATG10 Gusev et al. 

E2-like enzyme involved in 2 
ubiquitin-like modifications essential 

for autophagosome formation; 
expressed in brain (1) 

SF3A1_eQTL
_cis 23 SF3A1 Westra et al. 

Expressed in brain; gene encodes a 
subunit of the splicing factor 3a protein 

complex (2) 

SMARCAL1_
eQTL_cis 1 SMARCA

L1 Westra et al. 

Protein encoded by this gene is a 
member of SWI/SNP family of 

proteins; members have helicase and 
ATPase activities and are thought to 

regulate transcription of certain genes 
by altering chromatin structure around 

those genes; expressed in brain; 
associated with Schimke 

immunoosseous dysplasia (3) 
PPP4R3A_eQ

TL_cis 1 PPP4R3A Westra et al, Expressed in brain; may be involved in 
Alzheimer’s disease risk (4) 

CD14_eQTL_
cis 18 CD14 Gusev et al. 

Protein encoded by this gene is a 
surface antigen that is preferentially 

expressed on monocytes/macrophages; 
it cooperates with other proteins to 

mediate the innate immune response to 
bacterial lipopolysaccharide; expressed 

in brain (5) 

COG7_eQTL_
cis 1 COG7 Westra et al. 

Protein encoded by this gene resides in 
the golgi and is part of 8 subunits of the 

conserved oligomeric Golgi (COG) 
complex; expressed in brain; mutations 
in gene associated with microcephaly, 
adducted thumbs, growth retardation, 
VSD and episodes of hyperthermia (6; 

7)  

LINC01605_e
QTL_trans 1 LINC0160

5 Westra et al. 
RNA gene; affiliated with non-coding 

RNA class; expression of gene 
associated with bladder cancer (8) 

ANXA4_eQT
L_cis 5 ANXA4 Gusev et al. 

Little expression in brain; gene belongs 
to annexin family of calcium dependent 

phospholipid binding proteins (9) 
ZSCAN26_eQ

TL_cis 32 ZSCAN26 Westra et al. Expressed in brain; protein coding gene 

SHTN1 / 
KIAA1598_e

QTL_cis 
5 SHTN1 / 

KIAA1598 Gusev et al. 

Expressed in brain; involved in 
generation of internal asymmetric 

signals required for neuronal 
polarization and neurite outgrowth; 
mediated netrin-1-induced F-actin 

substrate coupling or clutch 
engagement within axon growth cone 
through activation of several genes & 

pathways (10) 
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Table S3. Information regarding eQTL scores with significant associations FA-measured 
tracts. 1 score (LINC01605_eQTL_trans) is trans, while all others are cis. 

 

Score name & eQTL 
type 

N SNPs 
in score 

Regulated 
gene 

Study from 
which score 
is calculated 

Gene function 

APOA1BP / 
NAXE_eQTL_cis 10 APOA1BP 

/ NAXE Gusev et al. 

Expressed in brain; diseases 
associated with gene: 

encephalopathy; brain edema 
(16) 

BTN3A2_eQTL_cis 42 BTN3A2 Gusev et al. 

May be involved in adaptive 
immune system response; may 
be involved in risk for gastric 

cancer (17) 

UMPS_eQTL_cis 5 UMPS Westra et al. 

Encoded protein is a 
bifunctional enzyme that 

catalyzes the final 2 steps of the 
de novo pyrimidine biosynthetic 

pathway (18) 

CSF3R_eQTL_cis 5 CSF3R Westra et al. 

Mutations in this gene are a 
cause of Kostmann syndrome / 

congenital neutropenia; not 
expressed in brain (19) 

TMEM154_eQTL_cis 20 TMEM154 Westra et al. Very little expression in brain 

ZNF282_eQT
L_cis 7 ZNF282 Gusev et al. Expressed in brain; diseases associated 

with gene: T-cell leukemia (11) 
ENO4_eQTL_

cis 7 ENO4 Westra et al. Expressed in brain 

ASRGL1_eQ
TL_cis 5 ASRGL1 Gusev et al. 

Expressed in brain; may be involved in 
production of L-aspartate, which can 

act as an excitatory neurotransmitter in 
some brain regions; may be implicated 
in endometrioid endometrial carcinoma 

(12) 

TMEM184B_
eQTL_cis 12 TMEM184

B Gusev et al. 
Expressed in brain; may be implicated 

in axon degeneration (13) 
 

ZBTB7B_eQT
L_cis 8 ZBTB7B Gusev et al. 

Expressed in brain; gene encodes a 
zinc finger-containing transcription 
factor that acts as a key regulator of 
lineage commitment of immature T-

cell precursors (14) 
GPT_eQTL_ci

s 5 GPT Westra et al. Little expression in brain 

AP2S1_eQTL
_cis 5 AP2S1 Westra et al. 

One of 2 major clathrin-associated 
adaptor complexes, AP-2 is a 

heterotetramer which is associated with 
the plasma membrane; complex is 

composed of 2 large chains, 1 medium 
chain and 1 small chain, and the gene 
encodes the small chain; expressed in 

brain (15) 
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SAMM50_eQTL_cis 15 SAMM50 Gusev et al. 

Gene encodes a component of 
the Sorting and Assembly 

Machinery of the mitochondrial 
outer membrane (20) 

HLA-C_eQTL_cis 38 HLA-C Westra et al. Expressed in nearly all cells 
MED15_eQTL_cis 6 MED15 Westra et al. Expressed in brain 

KANSL1_eQTL_cis 3 KANSL1 Westra et al. 

Gene encodes a nuclear protein 
that is a subunit of 2 protein 

complexes involved with 
histone acetylation (21) 

IL18RAP_eQTL_cis 12 IL18RAP Gusev et al. 
Mutations in this gene have 

been associated with Crohn's 
disease; expressed in brain (22) 

C6orf106_eQTL_cis 5 C6orf106 Westra et al. Expressed in cortex  
RABEPK_eQTL_cis 9 RABEPK Gusev et al. Expressed in brain 

CFDP1_eQTL_cis 4 CFDP1 Gusev et al. 
Expressed in brain; may be 

implicated in coronary artery 
disease risk (23) 

PTPN13_eQTL_trans 1 PTPN13 Westra et al. 

Protein encoded by this gene is 
a member of the PTP family, 

which are signalling molecules 
that regulate cellular processes 

(e.g. cell growth, differentiation, 
mitotic cell cycle, oncogenic 

transformation); disease 
associated with this gene: 

tropical spastic paraparesis, a 
disease of the nervous system 

affecting people living near the 
equator; expressed in the brain 

(24) 
 

EVL_eQTL_cis 1 EVL Westra et al. 

Expressed in brain; actin-
associated proteins involved in 

processes such as axon guidance 
and lamellipodial and filopodial 

dynamics in migrating cells; 
enhances actin nucleation and 

polymerization (25) 

PLEC_eQTL_cis 3 PLEC Westra et al. 

Prominent member of a protein 
family of proteins which 

interlink different elements of 
the cytoskeleton; expressed in a 

wide range of cell types and 
tissues (including brain) (26) 

Table S4. Information regarding eQTL scores with significant associations MD-measured 
tracts. 1 score (PTPN13_eQTL_trans) is trans, while all others are cis. 

 

 

 

 

 



 

160 
 

Results for 8 scores associated with both FA and MD (N = 8).  

White Matter 
Tracts 

Effect 
size SD t value p value p value, FDR 

corrected 
FA      

Global FA -0.0367 0.0079 -4.6474 3.39161E-06 0.0088 
Thalamic radiations -0.0403 0.0080 -5.0378 4.76577E-07 0.0025 
Anterior thalamic 

radiations -0.0429 0.0076 -5.6798 1.37465E-08 0.0002 

Forceps minor -0.0471 0.0078 -6.0115 1.88218E-09 0.0001 
Superior 

longitudinal 
fasciculus 

-0.0386 0.0077 -5.0327 4.89475E-07 0.0040 

MD      
Global MD 0.0404 0.0075 5.3762 7.72382E-08 0.0015 

Association fibres 0.0381 0.0077 4.9643 6.97256E-07 0.0045 
Thalamic radiations 0.0327 0.0072 4.5625 5.09715E-06 0.0132 
Acoustic radiation 0.0295 0.0069 4.2470 2.17989E-05 0.0472 
Anterior thalamic 

radiations 0.0403 0.0070 5.7964 6.91525E-09 0.0003 

Cingulate gyrus 0.0352 0.0073 4.7887 1.69554E-06 0.0085 
Forceps minor 0.0480 0.0076 6.3085 2.89925E-10 2.76005E-05 
Inferior fronto-

occipital fasciculus 0.0410 0.0075 5.4805 4.31258E-08 0.0008 

Inferior longitudinal 
fasciculus 0.0377 0.0073 5.1766 2.28961E-07 0.0024 

Superior 
longitudinal 
fasciculus 

0.0415 0.0076 5.4902 4.08256E-08 0.0008 

Uncinate fasciculus 0.0314 0.0068 4.6086 4.08933E-06 0.0162 
Table S5. Significant associations between DCAKD_eQTL_cis and FA and MD-measured 
white matter tracts. The first column indicates standardised effect size (β). 

White Matter Tracts Effect 
size SD t value p value p value, FDR 

corrected 
FA      

Global FA -0.0403 0.0079 -5.0996 3.44595E-07 0.0022 
Association fibres -0.0347 0.0079 -4.4036 1.07241E-05 0.0198 
Projection fibres 0.0453 0.0079 5.7612 8.51978E-09 0.0002 

Acoustic radiation -0.0326 0.0069 -4.7044 2.56987E-06 0.0133 
Corticospinal tract -0.0326 0.0074 -4.3945 1.11801E-05 0.0337 

Forceps minor -0.0561 0.0078 -7.1754 7.5595E-13 7.3217E-08 
Inferior longitudinal fasciculus -0.0335 0.0076 -4.3887 1.14829E-05 0.0337 
Superior longitudinal fasciculus -0.0367 0.0077 -4.7887 1.6956E-06 0.0103 

MD      

Global MD 0.0308 0.0075 4.0893 4.3502E-05 0.0423 
Forceps minor 0.0432 0.0076 5.6773 1.3949E-08 0.0004 

Inferior longitudinal fasciculus 0.0362 0.0073 4.9676 6.8552E-07 0.0044 
Table S6. Significant associations between SLC35A4_eQTL_cis and FA and MD-measured 
white matter tracts. The first column indicates standardised effect size (β). 
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White Matter 
Tracts 

Effect 
size SD t value p value p value, FDR 

corrected 
FA      

Global FA -0.0420 0.0079 -5.3199 1.0538E-07 0.0011 
Association fibres -0.0358 0.0079 -4.5425 5.6047E-06 0.0121 

Thalamic radiations -0.0388 0.0080 -4.8429 1.2928E-06 0.0048 
Projection fibres 0.0416 0.0079 5.2850 1.275E-07 0.0011 

Corticospinal tract -0.0320 0.0074 -4.3116 1.6311E-05 0.0416 
Forceps minor -0.0456 0.0078 -5.8270 5.763E-09 0.0001 

Inferior longitudinal 
fasciculus -0.0419 0.0076 -5.4773 4.3905E-08 0.0006 

Posterior thalamic 
radiation -0.0352 0.0075 -4.7014 2.6076E-06 0.0133 

Superior longitudinal 
fasciculus -0.0392 0.0077 -5.1143 3.1895E-07 0.0028 

MD      
Global MD 0.0326 0.0075 4.3299 1.5015E-05 0.0277 

Acoustic radiation 0.0339 0.0069 4.8778 1.0844E-06 0.0060 
Cingulate gyrus 0.0328 0.0073 4.4648 8.074E-06 0.0248 
Forceps minor 0.0348 0.0076 4.5604 5.1479E-06 0.0188 

Table S7. Significant associations between SEC14L4_eQTL_cis and FA and MD-measured 
white matter tracts. The first column indicates standardised effect size (β). 

White Matter 
Tracts 

Effect 
size SD t value p value p value, FDR 

corrected 
FA      

Projection fibres 0.0339 0.0079 4.3032 1.6943E-05 0.0273 
Forceps minor -0.0462 0.0078 -5.8981 3.7587E-09 0.0001 

MD      
Forceps minor 0.0353 0.0076 4.6349 3.6022E-06 0.0155 

Table S8. Significant associations between SRA1_eQTL_cis and FA and MD-measured white 
matter tracts. The first column indicates standardised effect size (β). 

White Matter 
Tracts Effect size SD t value p value p value, FDR 

corrected 
FA      

Anterior thalamic 
radiations 0.0324 0.0076 4.2863 1.8287E-05 0.0429 

Forceps minor 0.0352 0.0078 4.4956 6.992E-06 0.0271 
MD      

Global MD -0.0328 0.0075 -4.3626 1.2941E-05 0.0257 
Anterior thalamic 

radiations -0.0339 0.0070 -4.8703 1.1263E-06 0.0060 

Forceps minor -0.0392 0.0076 -5.1537 2.5879E-07 0.0025 
Inferior fronto-

occipital fasciculus -0.0335 0.0075 -4.4845 7.3652E-06 0.0234 

Inferior longitudinal 
fasciculus -0.0311 0.0073 -4.2695 1.9718E-05 0.0447 

Superior longitudinal 
fasciculus -0.0343 0.0076 -4.5355 5.7939E-06 0.0204 

Table S9. Significant associations between NMT1_eQTL_cis and FA and MD-measured 
white matter tracts. The first column indicates standardised effect size (β). 
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White Matter 
Tracts Effect size SD t value p value p value, FDR 

corrected 
FA      

Forceps major 0.0436 0.0081 5.3818 7.4908E-08 0.0009 
Forceps minor 0.0338 0.0078 4.3185 1.5817E-05 0.0416 

MD      
Global MD -0.0366 0.0075 -4.8650 1.1564E-06 0.0050 

Association fibres -0.0368 0.0077 -4.7868 1.7111E-06 0.0063 
Inferior longitudinal 

fasciculus -0.0309 0.0073 -4.2303 2.3485E-05 0.0497 

Superior longitudinal 
fasciculus -0.0356 0.0076 -4.7055 2.5555E-06 0.0116 

Table S10. Significant associations between CPNE1_eQTL_cis and FA and MD-measured 
white matter tracts. The first column indicates standardised effect size (β). 

White Matter 
Tracts Effect size SD t value p value p value, FDR 

corrected 
FA      

Forceps minor -0.0347 0.0078 -4.4321 9.4015E-06 0.0337 
MD      

Global MD 0.0330 0.0075 4.3859 1.1631E-05 0.0250 
Association fibres 0.0318 0.0077 4.1395 3.5002E-05 0.0423 

Thalamic radiations 0.0296 0.0072 4.1282 3.6762E-05 0.0423 
Anterior thalamic 

radiations 0.0356 0.0070 5.1101 3.2604E-07 0.0028 

Forceps minor 0.0334 0.0076 4.3876 1.154E-05 0.0297 
Superior longitudinal 

fasciculus 0.0342 0.0076 4.5223 6.1651E-06 0.0210 

Table S11. Significant associations between PLEKHM1_eQTL_cis and FA and MD-
measured white matter tracts. The first column indicates standardised effect size (β). 

White Matter 
Tracts Effect size SD t value p value p value, FDR 

corrected 
FA      

Forceps minor -0.0382 0.0078 -4.8721 1.1158E-06 0.0077 
MD      

Forceps minor 0.0331 0.0076 4.3465 1.3925E-05 0.0349 
Inferior fronto-

occipital fasciculus 0.0332 0.0075 4.4413 9.01E-06 0.0268 

Table S12. Significant associations between UBE3C_eQTL_cis and FA and MD-measured 
white matter tracts. The first column indicates standardised effect size (β). 
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GWAS quality check and parameters 

In order to determine whether any score SNPs were previously associated with 

global and tract category measures of interest (i.e. tract categories & global measures 

found to be significantly associated with the 8 eQTL scores), 8 GWAS were run locally 

(the 3 tract categories: association fibres, thalamic radiations, and projection fibres for 

both FA and MD, and global measures for FA and MD). BGENIE (1)  was used to 

conduct the association analysis and excluded related participants (up to the third 

degree using the KING toolset (2)), as well as those who also participated in 

Generation Scotland and PGC MDD GWAS. Only variants with a minor allele 

frequency (MAF) > 0.001 (0.1%), SNP information score (quality of imputation) > 

0.1, and Hardy-Weinberg equilibrium (HWE) p-value >= 1e-6 were examined. Sex, 

age, the first 8 principal components, genotyping array, and three head position 

coordinates were fitted as covariates in the analysis.  

The output summary statistics files contain information with regards to the 

chromosome, SNP ID, p-value and effect size of association with each phenotype. The 

SNPs significantly associated with the tracts of interest were noted and the effect size 

and p-value for each was extracted. 
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Individual white matter tracts and tract category to which they belong 

Fractional anisotropy and mean diffusivity 
Association fibres 
Inferior fronto-occipital fasciculus 
Uncinate fasciculus 
Parahippocampal cingulum 
Cingulate gyrus 
Superior longitudinal fasciculus 
Inferior longitudinal fasciculus 
Thalamic radiations 
Anterior thalamic radiation 
Posterior thalamic radiation 
Superior thalamic radiation 
Projection fibres 
Acoustic radiation 
Medial lemniscus 
Forceps major* 
Forceps minor* 
Middle cerebellar peduncle* 
Corticospinal tract 
Global FA & global MD 
Table S13. White matter tracts, global white matter 
and tract categories for FA and MD.  
* indicates unilateral regions. 
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P-values and effect size of each SNP for each individual white matter tract results 

(Elliott et al., 2018) and global and regional results (run locally); figure produced 

locally 

 

Figure S3. GWA between SNPs, individual white matter tracts of interest (Elliott et 
al., 2018) and global and tract category measures (run locally). Each point on the plot 
corresponds to one SNP. White matter tracts of interest are noted on the x-axis (L = 
left; R = right; FA = fractional anisotropy; MD = mean diffusivity). The 8 colours of 
the plot points indicate the score to which they belong (shown in “Scores (gene name, 
eQTL type)” legend). Magnitude of effect is shown in the legend entitled “Effect size 
(absolute values)”. The horizontal line indicates genome-wide significance (5e-8). 
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P-values and effect size for each SNP in association with gene expression as taken from 

GENOSCORES; these values were obtained in the two discovery datasets used in the 

current study (Gusev et al., 2016; Westra et al., 2013). 

Chromosome SNP Gene Effect size P-value 

17 rs4793119 DCAKD 0.188 3.98E-08 

17 rs17682536 DCAKD -0.114 1.20E-13 

17 rs962888 DCAKD 0.284 4.14E-19 

17 rs9898793 DCAKD 0.343 3.53E-240 

17 rs2040558 DCAKD -0.171 1.73E-52 

17 rs2239921 DCAKD 0.367 1.03E-28 

17 rs3744760 DCAKD 0.365 2.47E-184 

17 rs4986172 DCAKD 0.093 1.07E-24 

5 rs269783 SLC35A4 -0.114 6.55E-11 

5 rs13175916 SLC35A4 -0.025 1.33E-09 

5 rs2237077 SLC35A4 0.322 0 

5 rs1862176 SLC35A4 0.223 0 

5 rs6860077 SLC35A4 0.210 0 

5 rs17286676 SLC35A4 -0.041 9.04E-97 

5 rs250430 SLC35A4 0.087 4.09E-86 

5 rs250429 SLC35A4 0.208 0 

5 rs12517200 SLC35A4 0.061 7.19E-298 

5 rs1583005 SLC35A4 0.138 5.452E-06 

5 rs2286394 SLC35A4 -0.055 4.40E-39 

5 rs3733709 SLC35A4 -0.110 5.77E-24 

22 rs2267161 SEC14L4 -0.093 6.96E-06 

5 rs2237077 SRA1 -0.025 4.55E-19 

5 rs1862176 SRA1 -0.040 1.72E-39 

5 rs6860077 SRA1 -0.039 3.91E-41 

5 rs1835959 SRA1 -0.087 1.14E-20 

5 rs250430 SRA1 -0.087 1.12E-20 

5 rs250429 SRA1 -0.039 2.05E-42 



 

167 
 

5 rs2569163 SRA1 0.048 3.13E-24 

5 rs778582 SRA1 -0.016 2.08E-34 

5 rs12517200 SRA1 -0.013 6.77E-34 

5 rs1583005 SRA1 -0.005 1.10E-11 

5 rs2530241 SRA1 0.001 3.92E-14 

5 rs801186 SRA1 0.010 3.28E-18 

5 rs801171 SRA1 0.001 5.85E-15 

5 rs2531360 SRA1 0.000 6.17E-14 

5 rs2240696 SRA1 -0.007 6.31E-12 

17 rs9898793 NMT1 0.015 3.69E-08 

17 rs4793172 NMT1 0.029 1.41E-10 

17 rs2239916 NMT1 0.035 1.17E-14 

17 rs1053739 NMT1 0.032 2.77E-13 

17 rs3744760 NMT1 0.032 2.85E-10 

17 rs12946454 NMT1 0.028 8.33E-09 

17 rs4986172 NMT1 0.030 5.50E-09 

6 rs4324798 CPNE1 0.181 1.79E-06 

17 rs9898793 PLEKHM1 0.394 6.38E-78 

17 rs2239921 PLEKHM1 0.304 6.23E-13 

17 rs3744760 PLEKHM1 0.247 2.54E-79 

17 rs4986172 PLEKHM1 -0.138 3.73E-06 

17 rs1552458 PLEKHM1 0.317 2.91E-47 

7 rs17646960 UBE3C 0.342 1.49E-20 

7 rs1182398 UBE3C -0.285 1.07E-33 

7 rs1182393 UBE3C -0.298 9.37E-43 

7 rs2527866 UBE3C -0.297 2.95E-06 

Table S14. Associations between SNPs found in the 8 eQTL scores and gene 
expression (Ntotal = 53); effect size and p-values are taken from the two GWAS 
studies (Gusev et al., 2016; Westra et al., 2013) available in GENOSCORES. 
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eQTL score computation process 

 

Figure S4. eQTL score computation process. 
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Appendix 2: Supplementary materials for Chapter 3: Association of whole-

genome and NETRIN1 signaling pathway-derived polygenic risk scores for 

Major Depressive Disorder and white matter microstructure in UK Biobank 

Supplementary notes 

• Demographic data concerning complete dataset of individuals with DTI values 

• Descriptive statistics of imaging phenotype 

• NETRIN1 signalling pathway gene list 

• Demographic data and FA descriptive statistics of individuals excluded from 

the study (N = 19) 

• Demographic data and MD descriptive statistics of individuals excluded from 

the study (N = 30) 

• Statistical analysis of FA and MD values containing: 

1. Unpruned NETRIN1- and genomic-PRS with outliers excluded (6,401 

for FA and 6,390 for MD) at all 5 thresholds (0.01, 0.05, 0.1, 0.5, 1) 

and full sample (6,420) at threshold 0.5 

2. Pruned NETRIN1- and Genomic-PRS with outliers excluded (6,401 for 

FA and 6,390 for MD) at all 5 thresholds (0.01, 0.05, 0.1, 0.5, 1) and 

full sample (6,420) at threshold 0.5 

• White matter tracts significantly associated with both NETRIN1-PRS and 

genomic-PRS. 

1. Fractional anisotropy 

2. Mean diffusivity 
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Demographic data concerning complete dataset of individuals with DTI values 

Complete dataset (N = 6,420): N female = 3,345; N male = 3,075; mean age: 62.62 +/- 7.37 

years; age range: 45.92 – 78.42 

Descriptive statistics of imaging phenotype 

Fractional Anisotropy   

 Full dataset (N = 6,420) Outliers excluded dataset (N = 6,401) 

White matter tract Mean SD Mean SD 

Cingulate gyrus part of 
cingulum (left) 

0.535 0.035 0.535 0.033 

Cingulate gyrus part of 
cingulum (right) 

0.497 0.034 0.498 0.033 

Parahippocampal part 
of cingulum (left) 

0.314 0.029 0.314 0.028 

Parahippocampal part 
of cingulum (right) 

0.313 0.030 0.313 0.030 

Inferior fronto-occipital 
fasciculus (left) 

0.475 0.024 0.476 0.022 

Inferior fronto-occipital 
fasciculus (right) 

0.465 0.021 0.465 0.020 

Inferior longitudinal 
fasciculus (left) 

0.460 0.021 0.460 0.019 

Inferior longitudinal 
fasciculus (right) 

0.451 0.020 0.451 0.018 

Superior longitudinal 
fasciculus (left) 

0.440 0.022 0.440 0.020 

Superior longitudinal 
fasciculus (right) 

0.423 0.021 0.424 0.019 

Uncinate fasciculus 
(left) 

0.388 0.024 0.388 0.235 

Uncinate fasciculus 
(right) 

0.390 0.021 0.390 0.020 

Anterior thalamic 
radiation (left) 

0.399 0.019 0.399 0.017 

Anterior thalamic 
radiation (right) 

0.392 0.019 0.392 0.017 

Posterior thalamic 
radiation (left) 

0.458 0.022 0.458 0.020 

Posterior thalamic 
radiation (right) 

0.455 0.022 0.456 0.020 
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Superior thalamic 
radiation (left) 

0.422 0.019 0.423 0.018 

Superior thalamic 
radiation (right) 

0.422 0.020 0.422 0.018 

Acoustic radiation 
(left) 

0.419 0.023 0.420 0.021 

Acoustic radiation 
(right) 

0.411 0.022 0.412 0.020 

Corticospinal tract 
(left) 

0.545 0.024 0.545 0.022 

Corticospinal tract 
(right) 

0.539 0.025 0.539 0.022 

Medial lemniscus (left) 0.419 0.024 0.419 0.023 

Medial lemniscus 
(right) 

0.422 0.025 0.422 0.024 

Forceps major 0.580 0.029 0.580 0.027 

Forceps minor 0.465 0.022 0.465 0.020 

Middle cerebellar 
peduncle 

0.481 0.031 0.481 0.029 

Table S1. Descriptive statistics of FA values (mean and standard deviation). The full dataset 
contains 6,420 individuals, while the outliers-excluded dataset contains 6,401 individuals.  

 

Mean Diffusivity   

 Full dataset (N = 6,420) Outliers excluded dataset (N = 
6,390) 

White matter tract Mean SD Mean SD 

Cingulate gyrus part of 
cingulum (left) 

0.0007 0.00003 0.0007 0.00002 

Cingulate gyrus part of 
cingulum (right) 

0.0007 0.00003 0.0007 0.00002 

Parahippocampal part 
of cingulum (left) 

0.0008 0.00006 0.0008 0.00005 

Parahippocampal part 
of cingulum (right) 

0.0008 0.00006 0.0008 0.00005 

Inferior fronto-occipital 
fasciculus (left) 

0.0008 0.00003 0.0008 0.00003 

Inferior fronto-occipital 
fasciculus (right) 

0.0008 0.00003 0.0008 0.00003 

Inferior longitudinal 
fasciculus (left) 

0.0008 0.00003 0.0008 0.00003 

Inferior longitudinal 
fasciculus (right) 

0.0008 0.00003 0.0008 0.00003 

Superior longitudinal 
fasciculus (left) 

0.0007 0.00003 0.0007 0.00003 



 

176 
 

Superior longitudinal 
fasciculus (right) 

0.0007 0.00003 0.0007 0.00003 

Uncinate fasciculus 
(left) 

0.0008 0.00004 0.0008 0.00003 

Uncinate fasciculus 
(right) 

0.0008 0.00003 0.0008 0.00003 

Anterior thalamic 
radiation (left) 

0.0007 0.00003 0.0007 0.00003 

Anterior thalamic 
radiation (right) 

0.0007 0.00003 0.0007 0.00003 

Posterior thalamic 
radiation (left) 

0.0008 0.00004 0.0008 0.00004 

Posterior thalamic 
radiation (right) 

0.0008 0.00004 0.0008 0.00004 

Superior thalamic 
radiation (left) 

0.0007 0.00003 0.0007 0.00002 

Superior thalamic 
radiation (right) 

0.0007 0.00003 0.0007 0.00002 

Acoustic radiation 
(left) 

0.0007 0.00004 0.0007 0.00003 

Acoustic radiation 
(right) 

0.0007 0.00004 0.0007 0.00003 

Corticospinal tract 
(left) 

0.0007 0.00002 0.0007 0.00002 

Corticospinal tract 
(right) 

0.0007 0.00002 0.0007 0.00002 

Medial lemniscus (left) 0.0009 0.00004 0.0009 0.00003 

Medial lemniscus 
(right) 

0.0009 0.00004 0.0009 0.00003 

Forceps major 0.0009 0.00005 0.0009 0.00005 

Forceps minor 0.0008 0.00003 0.0008 0.00003 

Middle cerebellar 
peduncle 

0.0007 0.00006 0.0007 0.00006 

Table S2. Descriptive statistics of MD values (mean and standard deviation). The full dataset 
contains 6,420 individuals, while the outliers-excluded dataset contains 6,390 individuals. 

NETRIN1 signalling pathway gene list 

Gene name Description 
UNC5D unc-5 homolog D (C. elegans) 
HFE2 hemochromatosis type 2 (juvenile) 
DCC deleted in colorectal carcinoma 
DOCK1 dedicator of cytokinesis 1 
UNC5B unc-5 homolog B (C. elegans) 
ABLIM3 actin binding LIM protein family, member 3 
FYN FYN oncogene related to SRC, FGR, YES 
RGMB RGM domain family, member B 
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ABLIM1 actin binding LIM protein 1 
MYO10 myosin X 
NCK1 NCK adaptor protein 1 
NEO1 neogenin 1 
PITPNA phosphatidylinositol transfer protein, alpha 
PLCG1 phospholipase C, gamma 1 
PRKCQ protein kinase C, theta 
RGMA RGM domain family, member A 
TRPC7 transient receptor potential cation channel 
PTK2 PTK2 protein tyrosine kinase 2 
RAC1 ras-related C3 botulinum toxin substrate 1 percursor 
NTN4 netrin 4 
ROBO1 roundabout, axon guidance receptor, homolog 1 
SIAH1 seven in absentia homolog 1 (Drosophila) 
SIAH2 seven in absentia homolog 2 (Drosophila) 
SLIT1 slit homolog 1 (Drosophila) 
SLIT3 slit homolog 3 (Drosophila) 
SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene 
TRIO triple functional domain (PTPRF interacting) 
TRPC3 transient receptor potential cation channel 
TRPC4 transient receptor potential cation channel 
TRPC5 transient receptor potential cation channel 
TRPC6 transient receptor potential cation channel 
LOC730030 --- 
LOC730221 --- 
LOC730335 --- 
LOC730221 --- 
LOC730030 --- 
EZR ezrin 
UNC5C unc-5 homolog C (C. elegans) 
WASL Wiskott-Aldrich syndrome-like 
UNC5A unc-5 homolog A (C. elegans) 
SLIT2 slit homolog 2 (Drosophila) 
NTN1 netrin 1 
CDC42 cell division cycle 42 (GTP binding protein) 

Table S3. Gene list and brief gene description included in the NETRIN1 signalling pathway, 
composed of 43 genes. 

Demographic data and FA descriptive statistics of individuals excluded from the study 

(N = 19) 

N female = 11; N male = 8; mean age: 69.26 +/- 4.53 years; age range: 58.92 – 77.42 

Fractional Anisotropy  
 Outlier dataset (N = 19) 

White matter tract Mean SD 
Cingulate gyrus part of cingulum (left) 0.407 0.149 

Cingulate gyrus part of cingulum (right) 0.388 0.144 
Parahippocampal part of cingulum (left) 0.246 0.091 

Parahippocampal part of cingulum (right) 0.254 0.095 
Inferior fronto-occipital fasciculus (left) 0.354 0.127 

Inferior fronto-occipital fasciculus (right) 0.354 0.127 
Inferior longitudinal fasciculus (left) 0.348 0.124 



 

178 
 

Inferior longitudinal fasciculus (right) 0.338 0.122 
Superior longitudinal fasciculus (left) 0.325 0.117 

Superior longitudinal fasciculus (right) 0.309 0.112 
Uncinate fasciculus (left) 0.296 0.106 

Uncinate fasciculus (right) 0.301 0.107 
Anterior thalamic radiation (left) 0.306 0.110 

Anterior thalamic radiation (right) 0.306 0.109 
Posterior thalamic radiation (left) 0.358 0.127 

Posterior thalamic radiation (right) 0.350 0.126 
Superior thalamic radiation (left) 0.335 0.119 

Superior thalamic radiation (right) 0.336 0.120 
Acoustic radiation (left) 0.324 0.116 

Acoustic radiation (right) 0.320 0.116 
Corticospinal tract (left) 0.436 0.156 

Corticospinal tract (right) 0.431 0.155 
Medial lemniscus (left) 0.353 0.127 

Medial lemniscus (right) 0.353 0.130 
Forceps major 0.460 0.166 
Forceps minor 0.346 0.125 

Middle cerebellar peduncle 0.381 0.171 
Table S4. Descriptive statistics of FA values (mean and standard deviation) for individuals 
excluded from the study (N = 19).  

 

Demographic data and MD descriptive statistics of individuals excluded from the study 

(N = 30) 

N female = 18; N male = 12; mean age: 70.29 +/- 4.66 years; age range: 58.92 – 77.42 

Mean Diffusivity  
 Outlier dataset (N = 30) 

White matter tract Mean SD 
Cingulate gyrus part of cingulum (left) 0.0007 0.0002 

Cingulate gyrus part of cingulum (right) 0.0007 0.0002 
Parahippocampal part of cingulum (left) 0.0009 0.0002 

Parahippocampal part of cingulum (right) 0.0009 0.0002 
Inferior fronto-occipital fasciculus (left) 0.0008 0.0002 

Inferior fronto-occipital fasciculus (right) 0.0008 0.0002 
Inferior longitudinal fasciculus (left) 0.0008 0.0002 

Inferior longitudinal fasciculus (right) 0.0008 0.0002 
Superior longitudinal fasciculus (left) 0.0008 0.0002 

Superior longitudinal fasciculus (right) 0.0008 0.0002 
Uncinate fasciculus (left) 0.0008 0.0002 

Uncinate fasciculus (right) 0.0008 0.0002 
Anterior thalamic radiation (left) 0.0008 0.0002 

Anterior thalamic radiation (right) 0.0008 0.0002 
Posterior thalamic radiation (left) 0.0009 0.0002 

Posterior thalamic radiation (right) 0.0009 0.0002 
Superior thalamic radiation (left) 0.0007 0.0002 

Superior thalamic radiation (right) 0.0007 0.0002 
Acoustic radiation (left) 0.0008 0.0002 

Acoustic radiation (right) 0.0008 0.0002 
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Corticospinal tract (left) 0.0007 0.0002 
Corticospinal tract (right) 0.0007 0.0002 
Medial lemniscus (left) 0.0008 0.0002 

Medial lemniscus (right) 0.0008 0.0002 
Forceps major 0.0009 0.0002 
Forceps minor 0.0008 0.0002 

Middle cerebellar peduncle 0.0007 0.0002 
Table S5. Descriptive statistics of MD values (mean and standard deviation) for individuals 
excluded from the study (N = 30). 

 

Statistical analysis of FA and MD values containing: 

Unpruned NETRIN1- and genomic-PRS with outliers included (6,420) and outliers 

excluded (6,401 for FA and 6,390 for MD) at all 5 thresholds (0.01, 0.05, 0.1, 0.5, 1) 

PGRS THRESHOLD: 0.01 Value Std. Error t-value p-value 
NETRIN1 acoustic radiation -0.002 0.011 -0.166 0.868 

NETRIN1 anterior_thalamic_radiation -0.021 0.011 -1.833 0.067 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.013 0.011 -1.255 0.209 
NETRIN1 parahippocampal_part_of_cingulum -0.006 0.011 -0.526 0.599 

NETRIN1 corticospinal_tract -0.019 0.011 -1.701 0.089 
NETRIN1 inferior_fronto_occipital_fasciculus -0.019 0.012 -1.647 0.100 

NETRIN1 inferior_longitudinal_fasciculus -0.021 0.012 -1.813 0.070 
NETRIN1 medial_lemniscus -0.008 0.010 -0.735 0.462 

NETRIN1 posterior_thalamic_radiation -0.011 0.011 -0.981 0.326 
NETRIN1 superior_longitudinal_fasciculus -0.026 0.012 -2.254 0.024 

NETRIN1 superior_thalamic_radiation -0.015 0.012 -1.251 0.211 
NETRIN1 uncinate_fasciculus -0.018 0.011 -1.680 0.093 

NETRIN1 bl.FA.wm.forceps_major -0.017 0.012 -1.409 0.159 
NETRIN1 bl.FA.wm.forceps_minor -0.011 0.012 -0.934 0.351 

NETRIN1 bl.FA.wm.middle_cerebellar_peduncle -0.029 0.012 -2.333 0.020 
Genomic acoustic_radiation -0.011 0.011 -1.033 0.301 

Genomic anterior_thalamic_radiation -0.015 0.012 -1.315 0.188 
Genomic cingulate_gyrus_part_of_cingulum -0.016 0.011 -1.528 0.127 
Genomic parahippocampal_part_of_cingulum -0.019 0.011 -1.779 0.075 

Genomic corticospinal_tract -0.008 0.011 -0.666 0.505 
Genomic inferior_fronto_occipital_fasciculus -0.023 0.012 -2.008 0.045 

Genomic inferior_longitudinal_fasciculus -0.023 0.012 -1.959 0.050 
Genomic medial_lemniscus 0.003 0.010 0.306 0.760 

Genomic posterior_thalamic_radiation -0.021 0.011 -1.873 0.061 
Genomic superior_longitudinal_fasciculus -0.026 0.012 -2.244 0.025 

Genomic superior_thalamic_radiation -0.010 0.012 -0.867 0.386 
Genomic uncinate_fasciculus -0.028 0.011 -2.545 0.011 

Genomic bl.FA.wm.forceps_major -0.037 0.012 -3.042 0.002 
Genomic bl.FA.wm.forceps_minor -0.031 0.012 -2.600 0.009 

Genomic bl.FA.wm.middle_cerebellar_peduncle -0.009 0.012 -0.730 0.465 
     

PGRS THRESHOLD: 0.05 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.009 0.011 0.819 0.413 

NETRIN1 anterior_thalamic_radiation -0.015 0.011 -1.282 0.200 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.011 0.011 -1.065 0.287 
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NETRIN1 parahippocampal_part_of_cingulum -0.013 0.011 -1.197 0.232 
NETRIN1 corticospinal_tract -0.003 0.011 -0.276 0.782 

NETRIN1 inferior_fronto_occipital_fasciculus -0.005 0.011 -0.473 0.636 
NETRIN1 inferior_longitudinal_fasciculus -0.010 0.011 -0.841 0.400 

NETRIN1 medial_lemniscus -0.005 0.010 -0.456 0.649 
NETRIN1 posterior_thalamic_radiation -0.002 0.011 -0.205 0.838 

NETRIN1 superior_longitudinal_fasciculus -0.015 0.012 -1.265 0.206 
NETRIN1 superior_thalamic_radiation -0.001 0.012 -0.049 0.961 

NETRIN1 uncinate_fasciculus -0.009 0.011 -0.876 0.381 
NETRIN1 bl.FA.wm.forceps_major -0.008 0.012 -0.644 0.520 
NETRIN1 bl.FA.wm.forceps_minor -0.005 0.012 -0.397 0.691 

NETRIN1 bl.FA.wm.middle_cerebellar_peduncle -0.018 0.012 -1.461 0.144 
Genomic acoustic_radiation -0.012 0.011 -1.151 0.250 

Genomic anterior_thalamic_radiation -0.017 0.011 -1.459 0.145 
Genomic cingulate_gyrus_part_of_cingulum -0.019 0.011 -1.739 0.082 
Genomic parahippocampal_part_of_cingulum -0.019 0.011 -1.771 0.077 

Genomic corticospinal_tract -0.012 0.011 -1.037 0.300 
Genomic inferior_fronto_occipital_fasciculus -0.026 0.012 -2.292 0.022 

Genomic inferior_longitudinal_fasciculus -0.026 0.012 -2.252 0.024 
Genomic medial_lemniscus 0.000 0.010 0.037 0.970 

Genomic posterior_thalamic_radiation -0.026 0.011 -2.357 0.018 
Genomic superior_longitudinal_fasciculus -0.029 0.012 -2.500 0.012 

Genomic superior_thalamic_radiation -0.015 0.012 -1.296 0.195 
Genomic uncinate_fasciculus -0.030 0.011 -2.725 0.006 

Genomic bl.FA.wm.forceps_major -0.037 0.012 -3.083 0.002 
Genomic bl.FA.wm.forceps_minor -0.034 0.012 -2.834 0.005 

Genomic bl.FA.wm.middle_cerebellar_peduncle -0.012 0.012 -0.983 0.326 
     

PGRS THRESHOLD: 0.1 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.005 0.011 0.443 0.658 

NETRIN1 anterior_thalamic_radiation -0.018 0.011 -1.580 0.114 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.016 0.011 -1.528 0.127 
NETRIN1 parahippocampal_part_of_cingulum -0.006 0.011 -0.580 0.562 

NETRIN1 corticospinal_tract -0.004 0.011 -0.314 0.753 
NETRIN1 inferior_fronto_occipital_fasciculus -0.013 0.011 -1.090 0.276 

NETRIN1 inferior_longitudinal_fasciculus -0.013 0.012 -1.091 0.275 
NETRIN1 medial_lemniscus -0.016 0.010 -1.569 0.117 

NETRIN1 posterior_thalamic_radiation -0.005 0.011 -0.481 0.631 
NETRIN1 superior_longitudinal_fasciculus -0.024 0.012 -2.065 0.039 

NETRIN1 superior_thalamic_radiation -0.010 0.012 -0.827 0.408 
NETRIN1 uncinate_fasciculus -0.008 0.011 -0.756 0.450 

NETRIN1 bl.FA.wm.forceps_major -0.014 0.012 -1.145 0.252 
NETRIN1 bl.FA.wm.forceps_minor -0.011 0.012 -0.934 0.350 

NETRIN1 bl.FA.wm.middle_cerebellar_peduncle -0.013 0.012 -1.049 0.294 
Genomic acoustic_radiation -0.012 0.011 -1.147 0.251 

Genomic anterior_thalamic_radiation -0.014 0.011 -1.186 0.236 
Genomic cingulate_gyrus_part_of_cingulum -0.018 0.011 -1.699 0.089 
Genomic parahippocampal_part_of_cingulum -0.017 0.011 -1.552 0.121 

Genomic corticospinal_tract -0.016 0.011 -1.379 0.168 
Genomic inferior_fronto_occipital_fasciculus -0.025 0.012 -2.177 0.030 

Genomic inferior_longitudinal_fasciculus -0.024 0.012 -2.121 0.034 
Genomic medial_lemniscus 0.001 0.010 0.139 0.890 

Genomic posterior_thalamic_radiation -0.022 0.011 -2.002 0.045 
Genomic superior_longitudinal_fasciculus -0.026 0.012 -2.267 0.023 

Genomic superior_thalamic_radiation -0.014 0.012 -1.188 0.235 
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Genomic uncinate_fasciculus -0.032 0.011 -2.915 0.004 
Genomic bl.FA.wm.forceps_major -0.033 0.012 -2.753 0.006 
Genomic bl.FA.wm.forceps_minor -0.031 0.012 -2.572 0.010 

Genomic bl.FA.wm.middle_cerebellar_peduncle -0.018 0.012 -1.465 0.143 
PGRS THRESHOLD: 1 Value Std. Error t-value p-value 

NETRIN1 acoustic_radiation 0.003 0.011 0.294 0.769 
NETRIN1 anterior_thalamic_radiation -0.023 0.011 -2.051 0.040 

NETRIN1 cingulate_gyrus_part_of_cingulum -0.029 0.011 -2.720 0.007 
NETRIN1 parahippocampal_part_of_cingulum -0.007 0.011 -0.692 0.489 

NETRIN1 corticospinal_tract 0.001 0.011 0.120 0.905 
NETRIN1 inferior_fronto_occipital_fasciculus -0.024 0.011 -2.070 0.039 

NETRIN1 inferior_longitudinal_fasciculus -0.023 0.011 -1.978 0.048 
NETRIN1 medial_lemniscus -0.008 0.010 -0.757 0.449 

NETRIN1 posterior_thalamic_radiation -0.015 0.011 -1.360 0.174 
NETRIN1 superior_longitudinal_fasciculus -0.035 0.012 -3.017 0.003 

NETRIN1 superior_thalamic_radiation -0.006 0.012 -0.517 0.605 
NETRIN1 uncinate_fasciculus -0.019 0.011 -1.799 0.072 

NETRIN1 forceps_major -0.016 0.012 -1.333 0.183 
NETRIN1 forceps_minor -0.018 0.012 -1.537 0.124 

NETRIN1 middle_cerebellar_peduncle -0.016 0.012 -1.294 0.196 
Genomic acoustic_radiation -0.013 0.011 -1.230 0.219 

Genomic anterior_thalamic_radiation -0.016 0.011 -1.386 0.166 
Genomic cingulate_gyrus_part_of_cingulum -0.021 0.011 -1.943 0.052 
Genomic parahippocampal_part_of_cingulum -0.022 0.011 -2.022 0.043 

Genomic corticospinal_tract -0.018 0.011 -1.604 0.109 
Genomic inferior_fronto_occipital_fasciculus -0.028 0.012 -2.444 0.015 

Genomic inferior_longitudinal_fasciculus -0.025 0.012 -2.135 0.033 
Genomic medial_lemniscus -0.004 0.010 -0.401 0.689 

Genomic posterior_thalamic_radiation -0.022 0.011 -1.923 0.054 
Genomic superior_longitudinal_fasciculus -0.022 0.012 -1.927 0.054 

Genomic superior_thalamic_radiation -0.014 0.012 -1.202 0.229 
Genomic uncinate_fasciculus -0.032 0.011 -2.957 0.003 

Genomic forceps_major -0.031 0.012 -2.589 0.010 
Genomic forceps_minor -0.031 0.012 -2.573 0.010 

Genomic middle_cerebellar_peduncle -0.020 0.012 -1.585 0.113 
Table S6. The effect of unpruned NETRIN1- and Genomic-PRS at thresholds 0.01, 0.05, 
0.1, 0.5 and 1 on individual white matter tracts (FA) (N = 6,401). 

 

PGRS THRESHOLD: 0.01 Value Std. Error t-value p-value 
NETRIN1 gFA -0.025 0.012 -2.065 0.039 

NETRIN1 Association fibres -0.024 0.012 -2.024 0.043 
NETRIN1 Thalamic radiations -0.020 0.012 -1.615 0.106 

NETRIN1 Projection fibres -0.024 0.012 -1.963 0.050 
Genomic gFA -0.029 0.012 -2.431 0.015 

Genomic Association fibres -0.031 0.012 -2.574 0.010 
Genomic Thalamic radiations -0.020 0.012 -1.685 0.092 

Genomic Projection fibres -0.021 0.012 -1.716 0.086 
     

PGRS THRESHOLD: 0.05 Value Std. Error t-value p-value 
NETRIN1 gFA -0.012 0.012 -1.030 0.303 

NETRIN1 Association fibres -0.016 0.012 -1.333 0.183 
NETRIN1 Thalamic radiations -0.007 0.012 -0.590 0.555 

NETRIN1 Projection fibres -0.007 0.012 -0.552 0.581 
Genomic gFA -0.033 0.012 -2.776 0.006 
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Genomic Association fibres -0.034 0.012 -2.845 0.004 
Genomic Thalamic radiations -0.026 0.012 -2.128 0.033 

Genomic Projection fibres -0.025 0.012 -2.073 0.038 
     

PGRS THRESHOLD: 0.1 Value Std. Error t-value p-value 
NETRIN1 gFA -0.018 0.012 -1.494 0.135 

NETRIN1 Association fibres -0.020 0.012 -1.684 0.092 
NETRIN1 Thalamic radiations -0.014 0.012 -1.125 0.261 

NETRIN1 Projection fibres -0.012 0.012 -1.032 0.302 
Genomic gFA -0.032 0.012 -2.656 0.008 

Genomic Association fibres -0.032 0.012 -2.728 0.006 
Genomic Thalamic radiations -0.022 0.012 -1.820 0.069 

Genomic Projection fibres -0.026 0.012 -2.201 0.028 
     

PGRS THRESHOLD: 1 Value Std. Error t-value p-value 
NETRIN1 gFA -0.027 0.012 -2.288 0.022 

NETRIN1 Association fibres -0.034 0.012 -2.903 0.004 
NETRIN1 Thalamic radiations -0.019 0.012 -1.590 0.112 

NETRIN1 Projection fibres -0.011 0.012 -0.881 0.379 
Genomic gFA -0.034 0.012 -2.824 0.005 

Genomic Association fibres -0.035 0.012 -2.927 0.003 
Genomic Thalamic radiations -0.023 0.012 -1.863 0.062 

Genomic Projection fibres -0.029 0.012 -2.443 0.015 
Table S7. The effect of unpruned NETRIN1- and Genomic-PRS at thresholds 0.01, 0.05, 
0.1, 0.5 and 1 on tract categories (FA) (N = 6,401). 

 

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.002 0.011 0.222 0.824 

NETRIN1 anterior_thalamic_radiation -0.021 0.012 -1.800 0.072 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.024 0.011 -2.199 0.028 
NETRIN1 parahippocampal_part_of_cingulum -0.008 0.011 -0.731 0.465 

NETRIN1 corticospinal_tract 0.001 0.011 0.125 0.900 
NETRIN1 inferior_fronto_occipital_fasciculus -0.022 0.012 -1.899 0.058 

NETRIN1 inferior_longitudinal_fasciculus -0.021 0.012 -1.853 0.064 
NETRIN1 medial_lemniscus -0.009 0.010 -0.826 0.409 

NETRIN1 posterior_thalamic_radiation -0.013 0.011 -1.162 0.245 
NETRIN1 superior_longitudinal_fasciculus -0.034 0.012 -2.897 0.004 

NETRIN1 superior_thalamic_radiation -0.006 0.012 -0.466 0.641 
NETRIN1 uncinate_fasciculus -0.019 0.011 -1.698 0.090 

NETRIN1 forceps_major -0.014 0.012 -1.197 0.231 
NETRIN1 forceps_minor -0.018 0.012 -1.489 0.136 

NETRIN1 middle_cerebellar_peduncle -0.016 0.012 -1.270 0.204 
Genomic acoustic_radiation -0.016 0.011 -1.464 0.143 

Genomic anterior_thalamic_radiation -0.018 0.012 -1.530 0.126 
Genomic cingulate_gyrus_part_of_cingulum -0.020 0.011 -1.859 0.063 
Genomic parahippocampal_part_of_cingulum -0.022 0.011 -2.042 0.041 

Genomic corticospinal_tract -0.022 0.012 -1.878 0.060 
Genomic inferior_fronto_occipital_fasciculus -0.030 0.012 -2.579 0.010 

Genomic inferior_longitudinal_fasciculus -0.026 0.012 -2.258 0.024 
Genomic medial_lemniscus -0.006 0.011 -0.580 0.562 

Genomic posterior_thalamic_radiation -0.025 0.011 -2.224 0.026 
Genomic superior_longitudinal_fasciculus -0.025 0.012 -2.095 0.036 

Genomic superior_thalamic_radiation -0.018 0.012 -1.487 0.137 
Genomic uncinate_fasciculus -0.034 0.011 -3.111 0.002 
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Genomic forceps_major -0.034 0.012 -2.781 0.005 
Genomic forceps_minor -0.033 0.012 -2.717 0.007 

Genomic middle_cerebellar_peduncle -0.023 0.012 -1.828 0.068 
Table S8. The effect of unpruned NETRIN1- and Genomic-PRS at threshold 0.5 on 
individual white matter tracts (FA) (N = 6,420). 

 

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 gFA -0.002 0.001 -2.197 0.028 

NETRIN1 Association fibres -0.002 0.001 -2.762 0.006 
NETRIN1 Thalamic radiations -0.001 0.000 -1.482 0.138 

NETRIN1 Projection fibres 0.000 0.001 -0.904 0.366 
Genomic gFA -0.002 0.001 -2.769 0.006 

Genomic Association fibres -0.002 0.001 -2.836 0.005 
Genomic Thalamic radiations -0.001 0.000 -1.855 0.064 

Genomic Projection fibres -0.001 0.001 -2.415 0.016 
Table S9. The effect of unpruned NETRIN1- and Genomic-PRS at threshold 0.5 on tract 
categories (FA) (N = 6,420). 

 

PGRS THRESHOLD: 0.01 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.008 0.011 0.772 0.440 

NETRIN1 anterior_thalamic_radiation 0.018 0.011 1.694 0.090 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.013 0.011 1.257 0.209 

NETRIN1 parahippocampal_part_of_cingulum -0.007 0.011 -0.621 0.535 
NETRIN1 corticospinal_tract 0.003 0.011 0.270 0.787 

NETRIN1 inferior_fronto_occipital_fasciculus 0.021 0.011 1.905 0.057 
NETRIN1 inferior_longitudinal_fasciculus 0.019 0.011 1.727 0.084 

NETRIN1 medial_lemniscus 0.007 0.011 0.659 0.510 
NETRIN1 posterior_thalamic_radiation 0.016 0.011 1.466 0.143 

NETRIN1 superior_longitudinal_fasciculus 0.023 0.011 2.046 0.041 
NETRIN1 superior_thalamic_radiation 0.016 0.010 1.589 0.112 

NETRIN1 uncinate_fasciculus 0.011 0.010 1.033 0.302 
NETRIN1 bl.MD.wm.forceps_major 0.013 0.012 1.083 0.279 
NETRIN1 bl.MD.wm.forceps_minor 0.022 0.012 1.946 0.052 

NETRIN1 bl.MD.wm.middle_cerebellar_peduncle 0.003 0.012 0.239 0.811 
Genomic acoustic_radiation 0.015 0.011 1.453 0.146 

Genomic anterior_thalamic_radiation 0.020 0.011 1.878 0.060 
Genomic cingulate_gyrus_part_of_cingulum 0.038 0.011 3.529 0.000 
Genomic parahippocampal_part_of_cingulum 0.030 0.011 2.846 0.004 

Genomic corticospinal_tract 0.030 0.011 2.654 0.008 
Genomic inferior_fronto_occipital_fasciculus 0.032 0.011 2.879 0.004 

Genomic inferior_longitudinal_fasciculus 0.029 0.011 2.618 0.009 
Genomic medial_lemniscus 0.012 0.011 1.145 0.252 

Genomic posterior_thalamic_radiation 0.016 0.011 1.493 0.135 
Genomic superior_longitudinal_fasciculus 0.028 0.011 2.490 0.013 

Genomic superior_thalamic_radiation 0.023 0.010 2.320 0.020 
Genomic uncinate_fasciculus 0.033 0.010 3.148 0.002 

Genomic bl.MD.wm.forceps_major 0.033 0.012 2.733 0.006 
Genomic bl.MD.wm.forceps_minor 0.020 0.012 1.692 0.091 

Genomic bl.MD.wm.middle_cerebellar_peduncle 0.004 0.012 0.362 0.718 
     

PGRS THRESHOLD: 0.05 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation -0.006 0.010 -0.561 0.575 
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NETRIN1 anterior_thalamic_radiation 0.015 0.011 1.426 0.154 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.014 0.011 1.354 0.176 

NETRIN1 parahippocampal_part_of_cingulum 0.004 0.011 0.347 0.729 
NETRIN1 corticospinal_tract -0.003 0.011 -0.226 0.821 

NETRIN1 inferior_fronto_occipital_fasciculus 0.015 0.011 1.303 0.193 
NETRIN1 inferior_longitudinal_fasciculus 0.017 0.011 1.538 0.124 

NETRIN1 medial_lemniscus 0.002 0.011 0.160 0.873 
NETRIN1 posterior_thalamic_radiation 0.016 0.011 1.509 0.131 

NETRIN1 superior_longitudinal_fasciculus 0.023 0.011 1.998 0.046 
NETRIN1 superior_thalamic_radiation 0.014 0.010 1.420 0.156 

NETRIN1 uncinate_fasciculus 0.008 0.010 0.752 0.452 
NETRIN1 bl.MD.wm.forceps_major 0.014 0.012 1.172 0.241 
NETRIN1 bl.MD.wm.forceps_minor 0.015 0.012 1.292 0.196 

NETRIN1 bl.MD.wm.middle_cerebellar_peduncle -0.002 0.012 -0.138 0.890 
Genomic acoustic_radiation 0.021 0.011 1.959 0.050 

Genomic anterior_thalamic_radiation 0.025 0.011 2.359 0.018 
Genomic cingulate_gyrus_part_of_cingulum 0.040 0.011 3.734 0.000 
Genomic parahippocampal_part_of_cingulum 0.033 0.011 3.108 0.002 

Genomic corticospinal_tract 0.034 0.011 2.999 0.003 
Genomic inferior_fronto_occipital_fasciculus 0.037 0.011 3.327 0.001 

Genomic inferior_longitudinal_fasciculus 0.032 0.011 2.890 0.004 
Genomic medial_lemniscus 0.012 0.011 1.091 0.275 

Genomic posterior_thalamic_radiation 0.016 0.011 1.527 0.127 
Genomic superior_longitudinal_fasciculus 0.032 0.011 2.819 0.005 

Genomic superior_thalamic_radiation 0.028 0.010 2.812 0.005 
Genomic uncinate_fasciculus 0.032 0.010 3.116 0.002 

Genomic bl.MD.wm.forceps_major 0.032 0.012 2.663 0.008 
Genomic bl.MD.wm.forceps_minor 0.024 0.012 2.103 0.036 

Genomic bl.MD.wm.middle_cerebellar_peduncle 0.006 0.012 0.515 0.607 
     

PGRS THRESHOLD: 0.1 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation -0.005 0.010 -0.458 0.647 

NETRIN1 anterior_thalamic_radiation 0.020 0.011 1.868 0.062 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.014 0.011 1.334 0.182 

NETRIN1 parahippocampal_part_of_cingulum -0.007 0.011 -0.710 0.478 
NETRIN1 corticospinal_tract 0.002 0.011 0.204 0.838 

NETRIN1 inferior_fronto_occipital_fasciculus 0.020 0.011 1.800 0.072 
NETRIN1 inferior_longitudinal_fasciculus 0.020 0.011 1.832 0.067 

NETRIN1 medial_lemniscus 0.011 0.011 1.018 0.309 
NETRIN1 posterior_thalamic_radiation 0.018 0.011 1.638 0.102 

NETRIN1 superior_longitudinal_fasciculus 0.030 0.011 2.611 0.009 
NETRIN1 superior_thalamic_radiation 0.021 0.010 2.073 0.038 

NETRIN1 uncinate_fasciculus 0.009 0.010 0.879 0.379 
NETRIN1 forceps_major 0.017 0.012 1.407 0.159 
NETRIN1 forceps_minor 0.018 0.012 1.597 0.110 

NETRIN1 middle_cerebellar_peduncle 0.004 0.012 0.298 0.766 
Genomic acoustic_radiation 0.022 0.011 2.107 0.035 

Genomic anterior_thalamic_radiation 0.023 0.011 2.143 0.032 
Genomic cingulate_gyrus_part_of_cingulum 0.038 0.011 3.601 0.000 
Genomic parahippocampal_part_of_cingulum 0.033 0.011 3.098 0.002 

Genomic corticospinal_tract 0.032 0.011 2.802 0.005 
Genomic inferior_fronto_occipital_fasciculus 0.034 0.011 3.081 0.002 

Genomic inferior_longitudinal_fasciculus 0.030 0.011 2.689 0.007 
Genomic medial_lemniscus 0.005 0.011 0.489 0.625 

Genomic posterior_thalamic_radiation 0.009 0.011 0.884 0.377 
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Genomic superior_longitudinal_fasciculus 0.030 0.011 2.617 0.009 
Genomic superior_thalamic_radiation 0.024 0.010 2.442 0.015 

Genomic uncinate_fasciculus 0.034 0.010 3.320 0.001 
Genomic forceps_major 0.028 0.012 2.358 0.018 
Genomic forceps_minor 0.021 0.012 1.783 0.075 

Genomic middle_cerebellar_peduncle 0.008 0.012 0.666 0.505 
     

PGRS THRESHOLD: 1 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.004 0.010 0.347 0.729 

NETRIN1 anterior_thalamic_radiation 0.028 0.011 2.669 0.008 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.022 0.011 2.023 0.043 

NETRIN1 parahippocampal_part_of_cingulum 0.000 0.011 -0.023 0.981 
NETRIN1 corticospinal_tract 0.017 0.011 1.525 0.127 

NETRIN1 inferior_fronto_occipital_fasciculus 0.028 0.011 2.551 0.011 
NETRIN1 inferior_longitudinal_fasciculus 0.029 0.011 2.553 0.011 

NETRIN1 medial_lemniscus 0.005 0.011 0.428 0.669 
NETRIN1 posterior_thalamic_radiation 0.026 0.011 2.453 0.014 

NETRIN1 superior_longitudinal_fasciculus 0.033 0.011 2.953 0.003 
NETRIN1 superior_thalamic_radiation 0.027 0.010 2.763 0.006 

NETRIN1 uncinate_fasciculus 0.020 0.010 1.900 0.058 
NETRIN1 forceps_major 0.018 0.012 1.519 0.129 
NETRIN1 forceps_minor 0.021 0.012 1.791 0.073 

NETRIN1 middle_cerebellar_peduncle 0.011 0.012 0.890 0.373 
Genomic acoustic_radiation 0.019 0.011 1.841 0.066 

Genomic anterior_thalamic_radiation 0.021 0.011 2.021 0.043 
Genomic cingulate_gyrus_part_of_cingulum 0.036 0.011 3.332 0.001 
Genomic parahippocampal_part_of_cingulum 0.034 0.011 3.223 0.001 

Genomic corticospinal_tract 0.023 0.011 1.997 0.046 
Genomic inferior_fronto_occipital_fasciculus 0.032 0.011 2.828 0.005 

Genomic inferior_longitudinal_fasciculus 0.025 0.011 2.262 0.024 
Genomic medial_lemniscus 0.005 0.011 0.470 0.639 

Genomic posterior_thalamic_radiation 0.002 0.011 0.142 0.887 
Genomic superior_longitudinal_fasciculus 0.024 0.011 2.156 0.031 

Genomic superior_thalamic_radiation 0.018 0.010 1.804 0.071 
Genomic uncinate_fasciculus 0.030 0.010 2.844 0.004 

Genomic forceps_major 0.029 0.012 2.447 0.014 
Genomic forceps_minor 0.021 0.012 1.858 0.063 

Genomic middle_cerebellar_peduncle 0.012 0.012 0.965 0.335 
Table S10. The effect of unpruned NETRIN1- and Genomic-PRS at thresholds 0.01, 0.05, 
0.1, 0.5 and 1 on individual white matter tracts (MD) (N = 6,390). 

 

PGRS THRESHOLD: 0.01 Value Std. Error t-value p-value 
NETRIN1 gMD 0.018 0.012 1.574 0.116 

NETRIN1 Association fibres 0.013 0.012 1.086 0.277 
NETRIN1 Thalamic radiations 0.019 0.011 1.781 0.075 

NETRIN1 Projection fibres 0.013 0.012 1.087 0.277 
Genomic gMD 0.037 0.012 3.248 0.001 

Genomic Association fibres 0.043 0.012 3.707 0.000 
Genomic Thalamic radiations 0.022 0.011 2.027 0.043 

Genomic Projection fibres 0.026 0.012 2.180 0.029 
     

PGRS THRESHOLD: 0.05 Value Std. Error t-value p-value 
NETRIN1 gMD 0.016 0.011 1.380 0.168 

NETRIN1 Association fibres 0.015 0.012 1.320 0.187 
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NETRIN1 Thalamic radiations 0.018 0.011 1.669 0.095 
NETRIN1 Projection fibres 0.004 0.012 0.322 0.748 

Genomic gMD 0.041 0.011 3.607 0.000 
Genomic Association fibres 0.047 0.012 4.033 0.000 

Genomic Thalamic radiations 0.025 0.011 2.334 0.020 
Genomic Projection fibres 0.030 0.012 2.478 0.013 

     
PGRS THRESHOLD: 0.1 Value Std. Error t-value p-value 

NETRIN1 gMD 0.018 0.011 1.596 0.111 
NETRIN1 Association fibres 0.013 0.012 1.106 0.269 

NETRIN1 Thalamic radiations 0.022 0.011 2.055 0.040 
NETRIN1 Projection fibres 0.011 0.012 0.920 0.358 

Genomic gMD 0.038 0.011 3.342 0.001 
Genomic Association fibres 0.046 0.012 3.934 0.000 

Genomic Thalamic radiations 0.020 0.011 1.822 0.069 
Genomic Projection fibres 0.029 0.012 2.391 0.017 

     
PGRS THRESHOLD: 1 Value Std. Error t-value p-value 

NETRIN1 gMD 0.029 0.011 2.524 0.012 
NETRIN1 Association fibres 0.023 0.012 2.014 0.044 

NETRIN1 Thalamic radiations 0.031 0.011 2.944 0.003 
NETRIN1 Projection fibres 0.020 0.012 1.686 0.092 

Genomic gMD 0.034 0.011 2.974 0.003 
Genomic Association fibres 0.043 0.012 3.666 0.000 

Genomic Thalamic radiations 0.013 0.011 1.229 0.219 
Genomic Projection fibres 0.030 0.012 2.494 0.013 

Table S11. The effect of unpruned NETRIN1- and Genomic-PRS at thresholds 0.01, 0.05, 
0.1, 0.5 and 1 on tract categories (MD) (N = 6,390). 

 

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.005 0.011 0.484 0.628 

NETRIN1 anterior_thalamic_radiation 0.023 0.011 2.171 0.030 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.019 0.011 1.682 0.093 
NETRIN1 parahippocampal_part_of_cingulum 0.000 0.011 -0.004 0.997 

NETRIN1 corticospinal_tract 0.014 0.012 1.232 0.218 
NETRIN1 inferior_fronto_occipital_fasciculus 0.025 0.011 2.242 0.025 

NETRIN1 inferior_longitudinal_fasciculus 0.027 0.011 2.377 0.017 
NETRIN1 medial_lemniscus 0.003 0.011 0.288 0.774 

NETRIN1 posterior_thalamic_radiation 0.024 0.011 2.213 0.027 
NETRIN1 superior_longitudinal_fasciculus 0.030 0.011 2.649 0.008 

NETRIN1 superior_thalamic_radiation 0.024 0.010 2.345 0.019 
NETRIN1 uncinate_fasciculus 0.017 0.011 1.559 0.119 

NETRIN1 forceps_major 0.019 0.012 1.599 0.110 
NETRIN1 forceps_minor 0.019 0.012 1.592 0.111 

NETRIN1 middle_cerebellar_peduncle 0.012 0.012 0.984 0.325 
Genomic acoustic_radiation 0.010 0.011 0.949 0.342 

Genomic anterior_thalamic_radiation 0.011 0.011 1.009 0.313 
Genomic cingulate_gyrus_part_of_cingulum 0.021 0.011 1.852 0.064 
Genomic parahippocampal_part_of_cingulum 0.027 0.011 2.485 0.013 

Genomic corticospinal_tract 0.009 0.012 0.800 0.424 
Genomic inferior_fronto_occipital_fasciculus 0.019 0.011 1.630 0.103 

Genomic inferior_longitudinal_fasciculus 0.013 0.011 1.138 0.255 
Genomic medial_lemniscus -0.004 0.011 -0.378 0.705 

Genomic posterior_thalamic_radiation -0.006 0.011 -0.505 0.613 
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Genomic superior_longitudinal_fasciculus 0.013 0.012 1.113 0.266 
Genomic superior_thalamic_radiation 0.007 0.011 0.653 0.514 

Genomic uncinate_fasciculus 0.017 0.011 1.588 0.112 
Genomic forceps_major 0.020 0.012 1.624 0.104 
Genomic forceps_minor 0.012 0.012 0.982 0.326 

Genomic middle_cerebellar_peduncle 0.005 0.012 0.437 0.662 
Table S12. The effect of unpruned NETRIN1- and Genomic-PRS at threshold 0.5 on tract 
categories (MD) (N = 6,420). 

 

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 gMD 3.4E-06 1.4E-06 2.4E+00 1.6E-02 

NETRIN1 Association fibres 2.0E-06 1.1E-06 1.9E+00 5.8E-02 
NETRIN1 Thalamic radiations 2.2E-06 7.9E-07 2.8E+00 5.4E-03 

NETRIN1 Projection fibres 1.4E-06 8.0E-07 1.8E+00 7.7E-02 
Genomic gMD 4.2E-06 1.4E-06 2.9E+00 3.5E-03 

Genomic Association fibres 3.9E-06 1.1E-06 3.6E+00 3.3E-04 
Genomic Thalamic radiations 9.8E-07 7.9E-07 1.2E+00 2.2E-01 

Genomic Projection fibres 1.9E-06 8.1E-07 2.4E+00 1.7E-02 
Table S13. The effect of unpruned NETRIN1- and Genomic-PRS at threshold 0.5 on tract 
categories (MD) (N = 6,320). 

 

Pruned NETRIN1- and Genomic-PRS with outliers included (6,420) and outliers 

excluded (6,401 for FA and 6,390 for MD) at all 5 thresholds (0.01, 0.05, 0.1, 0.5, 1) 

 

PGRS THRESHOLD: 0.01 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation -0.004 0.011 -0.349 0.727 

NETRIN1 anterior_thalamic_radiation -0.020 0.011 -1.709 0.087 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.008 0.011 -0.704 0.482 

NETRIN1 parahippocampal_part_of_cingulum -0.007 0.011 -0.641 0.521 
NETRIN1 corticospinal_tract -0.022 0.011 -1.923 0.055 

NETRIN1 inferior_fronto_occipital_fasciculus -0.024 0.012 -2.058 0.040 
NETRIN1 inferior_longitudinal_fasciculus -0.024 0.012 -2.047 0.041 

NETRIN1 medial_lemniscus -0.012 0.010 -1.131 0.258 
NETRIN1 posterior_thalamic_radiation -0.014 0.011 -1.238 0.216 

NETRIN1 superior_longitudinal_fasciculus -0.028 0.012 -2.408 0.016 
NETRIN1 superior_thalamic_radiation -0.020 0.012 -1.677 0.094 

NETRIN1 uncinate_fasciculus -0.023 0.011 -2.156 0.031 
NETRIN1 bl.FA.wm.forceps_major -0.014 0.012 -1.137 0.255 
NETRIN1 bl.FA.wm.forceps_minor -0.009 0.012 -0.784 0.433 

NETRIN1 bl.FA.wm.middle_cerebellar_peduncle -0.028 0.012 -2.257 0.024 
Genomic acoustic_radiation -0.010 0.011 -0.942 0.346 

Genomic anterior_thalamic_radiation -0.017 0.011 -1.440 0.150 
Genomic cingulate_gyrus_part_of_cingulum -0.008 0.011 -0.785 0.432 
Genomic parahippocampal_part_of_cingulum 0.009 0.011 0.810 0.418 

Genomic corticospinal_tract -0.010 0.011 -0.889 0.374 
Genomic inferior_fronto_occipital_fasciculus -0.014 0.012 -1.249 0.212 

Genomic inferior_longitudinal_fasciculus -0.012 0.012 -1.023 0.306 
Genomic medial_lemniscus 0.000 0.010 0.010 0.992 
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Genomic posterior_thalamic_radiation -0.011 0.011 -0.965 0.335 
Genomic superior_longitudinal_fasciculus -0.013 0.012 -1.080 0.280 

Genomic superior_thalamic_radiation -0.016 0.012 -1.332 0.183 
Genomic uncinate_fasciculus -0.019 0.011 -1.793 0.073 

Genomic bl.FA.wm.forceps_major -0.013 0.012 -1.086 0.278 
Genomic bl.FA.wm.forceps_minor -0.018 0.012 -1.475 0.140 

Genomic bl.FA.wm.middle_cerebellar_peduncle 0.017 0.012 1.369 0.171 
     

PGRS THRESHOLD: 0.05 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.008 0.011 0.770 0.441 

NETRIN1 anterior_thalamic_radiation -0.012 0.011 -1.047 0.295 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.007 0.011 -0.627 0.531 

NETRIN1 parahippocampal_part_of_cingulum -0.014 0.011 -1.335 0.182 
NETRIN1 corticospinal_tract -0.002 0.011 -0.146 0.884 

NETRIN1 inferior_fronto_occipital_fasciculus -0.007 0.011 -0.590 0.555 
NETRIN1 inferior_longitudinal_fasciculus -0.010 0.011 -0.865 0.387 

NETRIN1 medial_lemniscus -0.006 0.010 -0.574 0.566 
NETRIN1 posterior_thalamic_radiation -0.003 0.011 -0.304 0.761 

NETRIN1 superior_longitudinal_fasciculus -0.015 0.012 -1.290 0.197 
NETRIN1 superior_thalamic_radiation -0.003 0.012 -0.275 0.783 

NETRIN1 uncinate_fasciculus -0.011 0.011 -1.030 0.303 
NETRIN1 bl.FA.wm.forceps_major -0.004 0.012 -0.292 0.770 
NETRIN1 bl.FA.wm.forceps_minor -0.002 0.012 -0.178 0.858 

NETRIN1 bl.FA.wm.middle_cerebellar_peduncle -0.015 0.012 -1.200 0.230 
Genomic acoustic_radiation -0.005 0.011 -0.462 0.644 

Genomic anterior_thalamic_radiation -0.010 0.011 -0.901 0.367 
Genomic cingulate_gyrus_part_of_cingulum -0.004 0.011 -0.350 0.726 
Genomic parahippocampal_part_of_cingulum 0.001 0.011 0.103 0.918 

Genomic corticospinal_tract -0.014 0.011 -1.272 0.203 
Genomic inferior_fronto_occipital_fasciculus -0.016 0.011 -1.351 0.177 

Genomic inferior_longitudinal_fasciculus -0.015 0.011 -1.281 0.200 
Genomic medial_lemniscus -0.006 0.010 -0.569 0.569 

Genomic posterior_thalamic_radiation -0.019 0.011 -1.716 0.086 
Genomic superior_longitudinal_fasciculus -0.012 0.012 -1.076 0.282 

Genomic superior_thalamic_radiation -0.019 0.012 -1.596 0.110 
Genomic uncinate_fasciculus -0.017 0.011 -1.557 0.119 

Genomic bl.FA.wm.forceps_major -0.013 0.012 -1.093 0.275 
Genomic bl.FA.wm.forceps_minor -0.014 0.012 -1.186 0.236 

Genomic bl.FA.wm.middle_cerebellar_peduncle -0.003 0.012 -0.271 0.786 
     

PGRS THRESHOLD: 0.1 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.005 0.011 0.452 0.652 

NETRIN1 anterior_thalamic_radiation -0.017 0.011 -1.442 0.149 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.013 0.011 -1.238 0.216 

NETRIN1 parahippocampal_part_of_cingulum -0.007 0.011 -0.681 0.496 
NETRIN1 corticospinal_tract -0.003 0.011 -0.225 0.822 

NETRIN1 inferior_fronto_occipital_fasciculus -0.016 0.012 -1.381 0.167 
NETRIN1 inferior_longitudinal_fasciculus -0.014 0.012 -1.221 0.222 

NETRIN1 medial_lemniscus -0.018 0.010 -1.730 0.084 
NETRIN1 posterior_thalamic_radiation -0.007 0.011 -0.601 0.548 

NETRIN1 superior_longitudinal_fasciculus -0.026 0.012 -2.205 0.027 
NETRIN1 superior_thalamic_radiation -0.010 0.012 -0.871 0.384 

NETRIN1 uncinate_fasciculus -0.010 0.011 -0.896 0.370 
NETRIN1 forceps_major -0.012 0.012 -1.004 0.316 
NETRIN1 forceps_minor -0.013 0.012 -1.041 0.298 
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NETRIN1 middle_cerebellar_peduncle -0.011 0.012 -0.922 0.356 
Genomic acoustic_radiation 0.001 0.011 0.080 0.936 

Genomic anterior_thalamic_radiation 0.002 0.011 0.146 0.884 
Genomic cingulate_gyrus_part_of_cingulum -0.001 0.011 -0.075 0.940 
Genomic parahippocampal_part_of_cingulum -0.002 0.011 -0.188 0.851 

Genomic corticospinal_tract -0.015 0.011 -1.345 0.179 
Genomic inferior_fronto_occipital_fasciculus -0.008 0.011 -0.723 0.469 

Genomic inferior_longitudinal_fasciculus -0.009 0.012 -0.760 0.447 
Genomic medial_lemniscus -0.001 0.010 -0.131 0.896 

Genomic posterior_thalamic_radiation -0.009 0.011 -0.770 0.441 
Genomic superior_longitudinal_fasciculus -0.007 0.012 -0.580 0.562 

Genomic superior_thalamic_radiation -0.011 0.012 -0.951 0.342 
Genomic uncinate_fasciculus -0.017 0.011 -1.572 0.116 

Genomic forceps_major -0.008 0.012 -0.632 0.528 
Genomic forceps_minor -0.006 0.012 -0.518 0.605 

Genomic middle_cerebellar_peduncle -0.016 0.012 -1.281 0.200 
     

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.006 0.011 0.520 0.603 

NETRIN1 anterior_thalamic_radiation -0.021 0.011 -1.811 0.070 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.023 0.011 -2.201 0.028 

NETRIN1 parahippocampal_part_of_cingulum -0.006 0.011 -0.583 0.560 
NETRIN1 corticospinal_tract 0.002 0.011 0.204 0.839 

NETRIN1 inferior_fronto_occipital_fasciculus -0.021 0.011 -1.824 0.068 
NETRIN1 inferior_longitudinal_fasciculus -0.021 0.012 -1.790 0.074 

NETRIN1 medial_lemniscus -0.011 0.010 -1.061 0.289 
NETRIN1 posterior_thalamic_radiation -0.011 0.011 -0.981 0.327 

NETRIN1 superior_longitudinal_fasciculus -0.035 0.012 -3.031 0.002 
NETRIN1 superior_thalamic_radiation -0.006 0.012 -0.521 0.603 

NETRIN1 uncinate_fasciculus -0.018 0.011 -1.702 0.089 
NETRIN1 forceps_major -0.009 0.012 -0.740 0.459 
NETRIN1 forceps_minor -0.013 0.012 -1.071 0.284 

NETRIN1 middle_cerebellar_peduncle -0.017 0.012 -1.363 0.173 
Genomic acoustic_radiation -0.005 0.011 -0.488 0.625 

Genomic anterior_thalamic_radiation -0.007 0.011 -0.607 0.544 
Genomic cingulate_gyrus_part_of_cingulum -0.008 0.011 -0.780 0.435 
Genomic parahippocampal_part_of_cingulum -0.013 0.011 -1.189 0.235 

Genomic corticospinal_tract -0.022 0.011 -1.926 0.054 
Genomic inferior_fronto_occipital_fasciculus -0.018 0.011 -1.581 0.114 

Genomic inferior_longitudinal_fasciculus -0.014 0.012 -1.242 0.214 
Genomic medial_lemniscus -0.011 0.010 -1.055 0.291 

Genomic posterior_thalamic_radiation -0.015 0.011 -1.346 0.178 
Genomic superior_longitudinal_fasciculus -0.012 0.012 -1.014 0.311 

Genomic superior_thalamic_radiation -0.016 0.012 -1.381 0.167 
Genomic uncinate_fasciculus -0.023 0.011 -2.172 0.030 

Genomic forceps_major -0.015 0.012 -1.270 0.204 
Genomic forceps_minor -0.014 0.012 -1.184 0.237 

Genomic middle_cerebellar_peduncle -0.016 0.012 -1.334 0.182 
     

PGRS THRESHOLD: 1 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.006 0.011 0.554 0.579 

NETRIN1 anterior_thalamic_radiation -0.022 0.011 -1.896 0.058 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.026 0.011 -2.428 0.015 

NETRIN1 parahippocampal_part_of_cingulum -0.006 0.011 -0.558 0.577 
NETRIN1 corticospinal_tract -0.001 0.011 -0.057 0.954 
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NETRIN1 inferior_fronto_occipital_fasciculus -0.020 0.011 -1.765 0.078 
NETRIN1 inferior_longitudinal_fasciculus -0.019 0.011 -1.629 0.103 

NETRIN1 medial_lemniscus -0.011 0.010 -1.020 0.308 
NETRIN1 posterior_thalamic_radiation -0.011 0.011 -0.991 0.322 

NETRIN1 superior_longitudinal_fasciculus -0.034 0.012 -2.959 0.003 
NETRIN1 superior_thalamic_radiation -0.007 0.012 -0.582 0.560 

NETRIN1 uncinate_fasciculus -0.018 0.011 -1.635 0.102 
NETRIN1 forceps_major -0.008 0.012 -0.678 0.497 
NETRIN1 forceps_minor -0.013 0.012 -1.116 0.264 

NETRIN1 middle_cerebellar_peduncle -0.015 0.012 -1.195 0.232 
Genomic acoustic_radiation -0.005 0.011 -0.502 0.616 

Genomic anterior_thalamic_radiation -0.009 0.011 -0.755 0.450 
Genomic cingulate_gyrus_part_of_cingulum -0.010 0.011 -0.976 0.329 
Genomic parahippocampal_part_of_cingulum -0.015 0.011 -1.373 0.170 

Genomic corticospinal_tract -0.021 0.011 -1.826 0.068 
Genomic inferior_fronto_occipital_fasciculus -0.018 0.011 -1.588 0.112 

Genomic inferior_longitudinal_fasciculus -0.014 0.011 -1.231 0.218 
Genomic medial_lemniscus -0.011 0.010 -1.044 0.296 

Genomic posterior_thalamic_radiation -0.013 0.011 -1.151 0.250 
Genomic superior_longitudinal_fasciculus -0.010 0.012 -0.848 0.396 

Genomic superior_thalamic_radiation -0.015 0.012 -1.263 0.207 
Genomic uncinate_fasciculus -0.024 0.011 -2.174 0.030 

Genomic forceps_major -0.014 0.012 -1.167 0.243 
Genomic forceps_minor -0.012 0.012 -1.017 0.309 

Genomic middle_cerebellar_peduncle -0.017 0.012 -1.344 0.179 
Table S14. The effect of pruned NETRIN1- and Genomic-PRS at thresholds 0.01, 0.05, 0.1, 
0.5 and 1 on individual white matter tracts (FA) (N = 6,401). 

 

PGRS THRESHOLD: 0.01 Value Std. Error t-value p-value 
NETRIN1 gFA -0.026 0.012 -2.186 0.029 

NETRIN1 Association fibres -0.025 0.012 -2.066 0.039 
NETRIN1 Thalamic radiations -0.022 0.012 -1.853 0.064 

NETRIN1 Projection fibres -0.025 0.012 -2.098 0.036 
Genomic gFA -0.015 0.012 -1.226 0.220 

Genomic Association fibres -0.013 0.012 -1.068 0.285 
Genomic Thalamic radiations -0.018 0.012 -1.488 0.137 

Genomic Projection fibres -0.009 0.012 -0.766 0.444 
     

PGRS THRESHOLD: 0.05 Value Std. Error t-value p-value 
NETRIN1 gFA -0.011 0.012 -0.943 0.346 

NETRIN1 Association fibres -0.015 0.012 -1.245 0.213 
NETRIN1 Thalamic radiations -0.008 0.012 -0.635 0.526 

NETRIN1 Projection fibres -0.004 0.012 -0.367 0.714 
Genomic gFA -0.017 0.012 -1.385 0.166 

Genomic Association fibres -0.013 0.012 -1.074 0.283 
Genomic Thalamic radiations -0.021 0.012 -1.740 0.082 

Genomic Projection fibres -0.015 0.012 -1.283 0.200 
     

PGRS THRESHOLD: 0.1 Value Std. Error t-value p-value 
NETRIN1 gFA -0.018 0.012 -1.518 0.129 

NETRIN1 Association fibres -0.020 0.012 -1.720 0.085 
NETRIN1 Thalamic radiations -0.014 0.012 -1.147 0.251 

NETRIN1 Projection fibres -0.012 0.012 -0.981 0.327 
Genomic gFA -0.010 0.012 -0.855 0.393 
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Genomic Association fibres -0.008 0.012 -0.714 0.476 
Genomic Thalamic radiations -0.008 0.012 -0.666 0.505 

Genomic Projection fibres -0.013 0.012 -1.105 0.269 
     

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 gFA -0.023 0.012 -1.966 0.049 

NETRIN1 Association fibres -0.031 0.012 -2.567 0.010 
NETRIN1 Thalamic radiations -0.016 0.012 -1.327 0.184 

NETRIN1 Projection fibres -0.008 0.012 -0.668 0.504 
Genomic gFA -0.021 0.012 -1.794 0.073 

Genomic Association fibres -0.020 0.012 -1.656 0.098 
Genomic Thalamic radiations -0.017 0.012 -1.376 0.169 

Genomic Projection fibres -0.024 0.012 -1.983 0.047 
     

PGRS THRESHOLD: 1 Value Std. Error t-value p-value 
NETRIN1 gFA -0.024 0.012 -1.991 0.047 

NETRIN1 Association fibres -0.031 0.012 -2.585 0.010 
NETRIN1 Thalamic radiations -0.017 0.012 -1.387 0.166 

NETRIN1 Projection fibres -0.009 0.012 -0.715 0.475 
Genomic gFA -0.021 0.012 -1.793 0.073 

Genomic Association fibres -0.021 0.012 -1.741 0.082 
Genomic Thalamic radiations -0.016 0.012 -1.296 0.195 

Genomic Projection fibres -0.023 0.012 -1.899 0.058 
Table S15. The effect of pruned NETRIN1- and Genomic-PRS at thresholds 0.01, 0.05, 0.1, 
0.5 and 1 on tract categories (FA) (N = 6,401). 

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.002 0.011 0.198 0.843 

NETRIN1 anterior_thalamic_radiation -0.022 0.012 -1.922 0.055 
NETRIN1 cingulate_gyrus_part_of_cingulum -0.024 0.011 -2.234 0.025 
NETRIN1 parahippocampal_part_of_cingulum -0.007 0.011 -0.644 0.520 

NETRIN1 corticospinal_tract -0.001 0.011 -0.100 0.920 
NETRIN1 inferior_fronto_occipital_fasciculus -0.023 0.012 -1.957 0.050 

NETRIN1 inferior_longitudinal_fasciculus -0.022 0.012 -1.865 0.062 
NETRIN1 medial_lemniscus -0.013 0.011 -1.240 0.215 

NETRIN1 posterior_thalamic_radiation -0.013 0.011 -1.120 0.263 
NETRIN1 superior_longitudinal_fasciculus -0.035 0.012 -3.029 0.002 

NETRIN1 superior_thalamic_radiation -0.008 0.012 -0.693 0.488 
NETRIN1 uncinate_fasciculus -0.020 0.011 -1.841 0.066 

NETRIN1 forceps_major -0.011 0.012 -0.908 0.364 
NETRIN1 forceps_minor -0.016 0.012 -1.299 0.194 

NETRIN1 middle_cerebellar_peduncle -0.017 0.012 -1.360 0.174 
Genomic acoustic_radiation -0.008 0.011 -0.773 0.439 

Genomic anterior_thalamic_radiation -0.010 0.012 -0.894 0.371 
Genomic cingulate_gyrus_part_of_cingulum -0.010 0.011 -0.925 0.355 
Genomic parahippocampal_part_of_cingulum -0.014 0.011 -1.309 0.191 

Genomic corticospinal_tract -0.025 0.012 -2.154 0.031 
Genomic inferior_fronto_occipital_fasciculus -0.021 0.012 -1.758 0.079 

Genomic inferior_longitudinal_fasciculus -0.017 0.012 -1.436 0.151 
Genomic medial_lemniscus -0.015 0.011 -1.382 0.167 

Genomic posterior_thalamic_radiation -0.018 0.011 -1.586 0.113 
Genomic superior_longitudinal_fasciculus -0.014 0.012 -1.193 0.233 

Genomic superior_thalamic_radiation -0.019 0.012 -1.613 0.107 
Genomic uncinate_fasciculus -0.025 0.011 -2.284 0.022 

Genomic forceps_major -0.019 0.012 -1.521 0.128 
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Genomic forceps_minor -0.017 0.012 -1.370 0.171 
Genomic middle_cerebellar_peduncle -0.019 0.012 -1.545 0.122 

Table S16. The effect of pruned NETRIN1- and Genomic-PRS at threshold 0.5 on 
individual white matter tracts (FA) (N = 6,420). 

 

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 gFA -0.002 0.001 -1.966 0.049 

NETRIN1 Association fibres -0.002 0.001 -2.567 0.010 
NETRIN1 Thalamic radiations -0.001 0.000 -1.327 0.184 

NETRIN1 Projection fibres 0.000 0.001 -0.668 0.504 
Genomic gFA -0.002 0.001 -1.794 0.073 

Genomic Association fibres -0.001 0.001 -1.656 0.098 
Genomic Thalamic radiations -0.001 0.000 -1.376 0.169 

Genomic Projection fibres -0.001 0.001 -1.983 0.047 
Table S17. The effect of unpruned NETRIN1- and Genomic-PRS at threshold 0.5 on tract 
categories (FA) (N = 6,420). 

 

PGRS THRESHOLD: 0.01 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation 0.006 0.011 0.544 0.586 

NETRIN1 anterior_thalamic_radiation 0.008 0.011 0.773 0.439 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.013 0.011 1.241 0.215 

NETRIN1 parahippocampal_part_of_cingulum -0.012 0.011 -1.116 0.264 
NETRIN1 corticospinal_tract -0.002 0.011 -0.206 0.837 

NETRIN1 inferior_fronto_occipital_fasciculus 0.017 0.011 1.482 0.138 
NETRIN1 inferior_longitudinal_fasciculus 0.017 0.011 1.543 0.123 

NETRIN1 medial_lemniscus 0.013 0.011 1.225 0.220 
NETRIN1 posterior_thalamic_radiation 0.008 0.011 0.773 0.439 

NETRIN1 superior_longitudinal_fasciculus 0.018 0.011 1.556 0.120 
NETRIN1 superior_thalamic_radiation 0.008 0.010 0.851 0.395 

NETRIN1 uncinate_fasciculus 0.014 0.010 1.387 0.165 
NETRIN1 bl.MD.wm.forceps_major 0.009 0.012 0.741 0.459 
NETRIN1 bl.MD.wm.forceps_minor 0.016 0.012 1.390 0.165 

NETRIN1 bl.MD.wm.middle_cerebellar_peduncle -0.004 0.012 -0.350 0.726 
Genomic acoustic_radiation -0.004 0.011 -0.353 0.724 

Genomic anterior_thalamic_radiation 0.019 0.011 1.833 0.067 
Genomic cingulate_gyrus_part_of_cingulum 0.024 0.011 2.263 0.024 
Genomic parahippocampal_part_of_cingulum 0.008 0.011 0.715 0.475 

Genomic corticospinal_tract 0.012 0.011 1.041 0.298 
Genomic inferior_fronto_occipital_fasciculus 0.019 0.011 1.711 0.087 

Genomic inferior_longitudinal_fasciculus 0.008 0.011 0.758 0.449 
Genomic medial_lemniscus 0.001 0.011 0.117 0.907 

Genomic posterior_thalamic_radiation -0.001 0.011 -0.100 0.920 
Genomic superior_longitudinal_fasciculus 0.017 0.011 1.503 0.133 

Genomic superior_thalamic_radiation 0.018 0.010 1.831 0.067 
Genomic uncinate_fasciculus 0.023 0.010 2.213 0.027 

Genomic bl.MD.wm.forceps_major 0.014 0.012 1.138 0.255 
Genomic bl.MD.wm.forceps_minor 0.018 0.012 1.602 0.109 

Genomic bl.MD.wm.middle_cerebellar_peduncle 0.010 0.012 0.821 0.411 
     

PGRS THRESHOLD: 0.05 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation -0.010 0.010 -0.947 0.344 

NETRIN1 anterior_thalamic_radiation 0.006 0.011 0.571 0.568 
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NETRIN1 cingulate_gyrus_part_of_cingulum 0.014 0.011 1.273 0.203 
NETRIN1 parahippocampal_part_of_cingulum 0.001 0.011 0.082 0.935 

NETRIN1 corticospinal_tract -0.006 0.011 -0.575 0.565 
NETRIN1 inferior_fronto_occipital_fasciculus 0.010 0.011 0.883 0.377 

NETRIN1 inferior_longitudinal_fasciculus 0.014 0.011 1.274 0.203 
NETRIN1 medial_lemniscus 0.004 0.011 0.395 0.693 

NETRIN1 posterior_thalamic_radiation 0.011 0.011 0.993 0.321 
NETRIN1 superior_longitudinal_fasciculus 0.018 0.011 1.549 0.122 

NETRIN1 superior_thalamic_radiation 0.007 0.010 0.741 0.458 
NETRIN1 uncinate_fasciculus 0.008 0.010 0.780 0.435 

NETRIN1 bl.MD.wm.forceps_major 0.011 0.012 0.937 0.349 
NETRIN1 bl.MD.wm.forceps_minor 0.009 0.012 0.752 0.452 

NETRIN1 bl.MD.wm.middle_cerebellar_peduncle -0.007 0.012 -0.600 0.549 
Genomic acoustic_radiation 0.004 0.010 0.428 0.669 

Genomic anterior_thalamic_radiation 0.018 0.011 1.754 0.079 
Genomic cingulate_gyrus_part_of_cingulum 0.021 0.011 1.993 0.046 
Genomic parahippocampal_part_of_cingulum 0.013 0.011 1.222 0.222 

Genomic corticospinal_tract 0.019 0.011 1.674 0.094 
Genomic inferior_fronto_occipital_fasciculus 0.024 0.011 2.168 0.030 

Genomic inferior_longitudinal_fasciculus 0.013 0.011 1.160 0.246 
Genomic medial_lemniscus 0.008 0.011 0.724 0.469 

Genomic posterior_thalamic_radiation 0.001 0.011 0.091 0.928 
Genomic superior_longitudinal_fasciculus 0.017 0.011 1.492 0.136 

Genomic superior_thalamic_radiation 0.017 0.010 1.735 0.083 
Genomic uncinate_fasciculus 0.015 0.010 1.418 0.156 

Genomic bl.MD.wm.forceps_major 0.016 0.012 1.298 0.194 
Genomic bl.MD.wm.forceps_minor 0.020 0.012 1.703 0.089 

Genomic bl.MD.wm.middle_cerebellar_peduncle 0.010 0.012 0.791 0.429 
     

PGRS THRESHOLD: 0.1 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation -0.008 0.011 -0.727 0.468 

NETRIN1 anterior_thalamic_radiation 0.014 0.011 1.297 0.195 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.014 0.011 1.352 0.176 

NETRIN1 parahippocampal_part_of_cingulum -0.009 0.011 -0.899 0.369 
NETRIN1 corticospinal_tract -0.001 0.011 -0.071 0.943 

NETRIN1 inferior_fronto_occipital_fasciculus 0.018 0.011 1.641 0.101 
NETRIN1 inferior_longitudinal_fasciculus 0.020 0.011 1.774 0.076 

NETRIN1 medial_lemniscus 0.015 0.011 1.377 0.169 
NETRIN1 posterior_thalamic_radiation 0.014 0.011 1.334 0.182 

NETRIN1 superior_longitudinal_fasciculus 0.027 0.011 2.413 0.016 
NETRIN1 superior_thalamic_radiation 0.016 0.010 1.652 0.099 

NETRIN1 uncinate_fasciculus 0.010 0.010 0.991 0.321 
NETRIN1 forceps_major 0.014 0.012 1.205 0.228 
NETRIN1 forceps_minor 0.015 0.012 1.284 0.199 

NETRIN1 middle_cerebellar_peduncle 0.004 0.012 0.359 0.720 
Genomic acoustic_radiation 0.002 0.011 0.161 0.872 

Genomic anterior_thalamic_radiation 0.011 0.011 1.023 0.306 
Genomic cingulate_gyrus_part_of_cingulum 0.014 0.011 1.306 0.191 
Genomic parahippocampal_part_of_cingulum 0.016 0.011 1.537 0.124 

Genomic corticospinal_tract 0.013 0.011 1.167 0.243 
Genomic inferior_fronto_occipital_fasciculus 0.014 0.011 1.228 0.219 

Genomic inferior_longitudinal_fasciculus 0.006 0.011 0.516 0.606 
Genomic medial_lemniscus -0.003 0.011 -0.323 0.747 

Genomic posterior_thalamic_radiation -0.008 0.011 -0.791 0.429 
Genomic superior_longitudinal_fasciculus 0.009 0.011 0.832 0.405 
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Genomic superior_thalamic_radiation 0.008 0.010 0.776 0.438 
Genomic uncinate_fasciculus 0.013 0.010 1.246 0.213 

Genomic forceps_major 0.009 0.012 0.751 0.453 
Genomic forceps_minor 0.010 0.012 0.852 0.394 

Genomic middle_cerebellar_peduncle 0.009 0.012 0.712 0.476 
     

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation -0.002 0.010 -0.187 0.852 

NETRIN1 anterior_thalamic_radiation 0.020 0.011 1.854 0.064 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.017 0.011 1.586 0.113 

NETRIN1 parahippocampal_part_of_cingulum -0.009 0.011 -0.813 0.416 
NETRIN1 corticospinal_tract 0.008 0.011 0.694 0.488 

NETRIN1 inferior_fronto_occipital_fasciculus 0.025 0.011 2.193 0.028 
NETRIN1 inferior_longitudinal_fasciculus 0.025 0.011 2.221 0.026 

NETRIN1 medial_lemniscus 0.004 0.011 0.338 0.736 
NETRIN1 posterior_thalamic_radiation 0.020 0.011 1.878 0.060 

NETRIN1 superior_longitudinal_fasciculus 0.030 0.011 2.603 0.009 
NETRIN1 superior_thalamic_radiation 0.020 0.010 2.051 0.040 

NETRIN1 uncinate_fasciculus 0.015 0.010 1.421 0.155 
NETRIN1 forceps_major 0.014 0.012 1.181 0.237 
NETRIN1 forceps_minor 0.014 0.012 1.202 0.229 

NETRIN1 middle_cerebellar_peduncle 0.009 0.012 0.759 0.448 
Genomic acoustic_radiation -0.002 0.010 -0.177 0.860 

Genomic anterior_thalamic_radiation 0.013 0.011 1.216 0.224 
Genomic cingulate_gyrus_part_of_cingulum 0.014 0.011 1.359 0.174 
Genomic parahippocampal_part_of_cingulum 0.018 0.011 1.678 0.093 

Genomic corticospinal_tract 0.002 0.011 0.205 0.838 
Genomic inferior_fronto_occipital_fasciculus 0.014 0.011 1.238 0.216 

Genomic inferior_longitudinal_fasciculus 0.006 0.011 0.495 0.621 
Genomic medial_lemniscus -0.002 0.011 -0.204 0.839 

Genomic posterior_thalamic_radiation -0.010 0.011 -0.972 0.331 
Genomic superior_longitudinal_fasciculus 0.008 0.011 0.667 0.505 

Genomic superior_thalamic_radiation 0.006 0.010 0.582 0.561 
Genomic uncinate_fasciculus 0.010 0.010 0.960 0.337 

Genomic forceps_major 0.014 0.012 1.202 0.230 
Genomic forceps_minor 0.016 0.012 1.425 0.154 

Genomic middle_cerebellar_peduncle 0.011 0.012 0.870 0.384 
     

PGRS THRESHOLD: 1 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation -0.003 0.010 -0.333 0.739 

NETRIN1 anterior_thalamic_radiation 0.022 0.011 2.070 0.039 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.018 0.011 1.698 0.089 

NETRIN1 parahippocampal_part_of_cingulum -0.006 0.011 -0.608 0.543 
NETRIN1 corticospinal_tract 0.009 0.011 0.789 0.430 

NETRIN1 inferior_fronto_occipital_fasciculus 0.024 0.011 2.176 0.030 
NETRIN1 inferior_longitudinal_fasciculus 0.023 0.011 2.018 0.044 

NETRIN1 medial_lemniscus 0.004 0.011 0.355 0.723 
NETRIN1 posterior_thalamic_radiation 0.020 0.011 1.875 0.061 

NETRIN1 superior_longitudinal_fasciculus 0.029 0.011 2.576 0.010 
NETRIN1 superior_thalamic_radiation 0.021 0.010 2.132 0.033 

NETRIN1 uncinate_fasciculus 0.016 0.010 1.562 0.118 
NETRIN1 forceps_major 0.013 0.012 1.067 0.286 
NETRIN1 forceps_minor 0.016 0.012 1.403 0.161 

NETRIN1 middle_cerebellar_peduncle 0.008 0.012 0.664 0.507 
Genomic acoustic_radiation -0.003 0.010 -0.318 0.750 
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Genomic anterior_thalamic_radiation 0.013 0.011 1.202 0.229 
Genomic cingulate_gyrus_part_of_cingulum 0.014 0.011 1.292 0.196 
Genomic parahippocampal_part_of_cingulum 0.019 0.011 1.780 0.075 

Genomic corticospinal_tract 0.003 0.011 0.258 0.796 
Genomic inferior_fronto_occipital_fasciculus 0.013 0.011 1.167 0.243 

Genomic inferior_longitudinal_fasciculus 0.005 0.011 0.471 0.638 
Genomic medial_lemniscus -0.004 0.011 -0.396 0.692 

Genomic posterior_thalamic_radiation -0.013 0.011 -1.172 0.241 
Genomic superior_longitudinal_fasciculus 0.006 0.011 0.549 0.583 

Genomic superior_thalamic_radiation 0.005 0.010 0.464 0.643 
Genomic uncinate_fasciculus 0.010 0.010 0.983 0.326 

Genomic forceps_major 0.015 0.012 1.282 0.200 
Genomic forceps_minor 0.012 0.012 1.044 0.296 

Genomic middle_cerebellar_peduncle 0.012 0.012 1.006 0.314 
Table S18. The effect of pruned NETRIN1- and Genomic-PRS at thresholds 0.01, 0.05, 0.1, 
0.5 and 1 on individual white matter tracts (MD) (N = 6,390). 

 

PGRS THRESHOLD: 0.01 Value Std. Error t-value p-value 
NETRIN1 gMD 0.011 0.012 0.998 0.318 

NETRIN1 Association fibres 0.009 0.012 0.737 0.461 
NETRIN1 Thalamic radiations 0.010 0.011 0.896 0.370 

NETRIN1 Projection fibres 0.005 0.012 0.429 0.668 
Genomic gMD 0.018 0.011 1.546 0.122 

Genomic Association fibres 0.020 0.012 1.690 0.091 
Genomic Thalamic radiations 0.011 0.011 1.041 0.298 

Genomic Projection fibres 0.015 0.012 1.205 0.228 
     

PGRS THRESHOLD: 0.05 Value Std. Error t-value p-value 
NETRIN1 gMD 0.010 0.011 0.844 0.399 

NETRIN1 Association fibres 0.012 0.012 0.995 0.320 
NETRIN1 Thalamic radiations 0.010 0.011 0.916 0.360 

NETRIN1 Projection fibres -0.003 0.012 -0.268 0.789 
Genomic gMD 0.021 0.011 1.798 0.072 

Genomic Association fibres 0.022 0.012 1.913 0.056 
Genomic Thalamic radiations 0.012 0.011 1.091 0.276 

Genomic Projection fibres 0.019 0.012 1.595 0.111 
     

PGRS THRESHOLD: 0.1 Value Std. Error t-value p-value 
NETRIN1 gMD 0.015 0.011 1.327 0.184 

NETRIN1 Association fibres 0.011 0.012 0.970 0.332 
NETRIN1 Thalamic radiations 0.017 0.011 1.583 0.114 

NETRIN1 Projection fibres 0.010 0.012 0.796 0.426 
Genomic gMD 0.012 0.011 1.064 0.287 

Genomic Association fibres 0.018 0.012 1.539 0.124 
Genomic Thalamic radiations 0.001 0.011 0.120 0.904 

Genomic Projection fibres 0.012 0.012 1.010 0.312 
     

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 gMD 0.020 0.011 1.783 0.075 

NETRIN1 Association fibres 0.015 0.012 1.328 0.184 
NETRIN1 Thalamic radiations 0.023 0.011 2.169 0.030 

NETRIN1 Projection fibres 0.014 0.012 1.171 0.242 
Genomic gMD 0.012 0.011 1.045 0.296 

Genomic Association fibres 0.018 0.012 1.526 0.127 
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Genomic Thalamic radiations 0.001 0.011 0.050 0.960 
Genomic Projection fibres 0.014 0.012 1.174 0.240 

     
PGRS THRESHOLD: 1 Value Std. Error t-value p-value 

NETRIN1 gMD 0.021 0.011 1.829 0.068 
NETRIN1 Association fibres 0.016 0.012 1.412 0.158 

NETRIN1 Thalamic radiations 0.024 0.011 2.263 0.024 
NETRIN1 Projection fibres 0.013 0.012 1.060 0.289 

Genomic gMD 0.011 0.011 0.979 0.328 
Genomic Association fibres 0.018 0.012 1.533 0.125 

Genomic Thalamic radiations -0.001 0.011 -0.091 0.928 
Genomic Projection fibres 0.015 0.012 1.206 0.228 

Table S19. The effect of pruned NETRIN1- and Genomic-PRS at thresholds 0.01, 0.05, 0.1, 
0.5 and 1 on tract categories (MD) (N = 6,390). 

 

PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 acoustic_radiation -0.002 0.011 -0.223 0.824 

NETRIN1 anterior_thalamic_radiation 0.015 0.011 1.434 0.151 
NETRIN1 cingulate_gyrus_part_of_cingulum 0.013 0.011 1.153 0.249 

NETRIN1 parahippocampal_part_of_cingulum -0.008 0.011 -0.762 0.446 
NETRIN1 corticospinal_tract 0.004 0.012 0.341 0.733 

NETRIN1 inferior_fronto_occipital_fasciculus 0.020 0.011 1.764 0.078 
NETRIN1 inferior_longitudinal_fasciculus 0.020 0.011 1.779 0.075 

NETRIN1 medial_lemniscus 0.001 0.011 0.059 0.953 
NETRIN1 posterior_thalamic_radiation 0.017 0.011 1.588 0.112 

NETRIN1 superior_longitudinal_fasciculus 0.023 0.011 2.036 0.042 
NETRIN1 superior_thalamic_radiation 0.015 0.010 1.456 0.145 

NETRIN1 uncinate_fasciculus 0.012 0.011 1.102 0.271 
NETRIN1 forceps_major 0.014 0.012 1.146 0.252 
NETRIN1 forceps_minor 0.011 0.012 0.949 0.342 

NETRIN1 middle_cerebellar_peduncle 0.007 0.012 0.573 0.567 
Genomic acoustic_radiation -0.009 0.011 -0.817 0.414 

Genomic anterior_thalamic_radiation 0.003 0.011 0.261 0.794 
Genomic cingulate_gyrus_part_of_cingulum 0.003 0.011 0.234 0.815 
Genomic parahippocampal_part_of_cingulum 0.010 0.011 0.980 0.327 

Genomic corticospinal_tract -0.008 0.012 -0.656 0.512 
Genomic inferior_fronto_occipital_fasciculus 0.002 0.011 0.164 0.870 

Genomic inferior_longitudinal_fasciculus -0.005 0.011 -0.427 0.669 
Genomic medial_lemniscus -0.009 0.011 -0.790 0.430 

Genomic posterior_thalamic_radiation -0.018 0.011 -1.651 0.099 
Genomic superior_longitudinal_fasciculus -0.002 0.012 -0.187 0.851 

Genomic superior_thalamic_radiation -0.004 0.011 -0.335 0.738 
Genomic uncinate_fasciculus 0.000 0.011 -0.035 0.972 

Genomic forceps_major 0.005 0.012 0.440 0.660 
Genomic forceps_minor 0.004 0.012 0.352 0.725 

Genomic middle_cerebellar_peduncle 0.006 0.012 0.455 0.649 
Table S20. The effect of unpruned NETRIN1- and Genomic-PRS at threshold 0.5 on 
individual white matter tracts (MD) (N = 6,420). 
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PGRS THRESHOLD: 0.5 Value Std. Error t-value p-value 
NETRIN1 gMD 2.53E-06 1.42E-06 1.78E+00 7.47E-02 

NETRIN1 Association fibres 1.43E-06 1.08E-06 1.33E+00 1.84E-01 
NETRIN1 Thalamic radiations 1.71E-06 7.87E-07 2.17E+00 3.01E-02 

NETRIN1 Projection fibres 9.36E-07 8.00E-07 1.17E+00 2.42E-01 
Genomic gMD 1.50E-06 1.43E-06 1.04E+00 2.96E-01 

Genomic Association fibres 1.66E-06 1.09E-06 1.53E+00 1.27E-01 
Genomic Thalamic radiations 3.99E-08 7.93E-07 5.02E-02 9.60E-01 

Genomic Projection fibres 9.47E-07 8.06E-07 1.17E+00 2.40E-01 
Table S21. The effect of unpruned NETRIN1- and Genomic-PRS at threshold 0.5 on tract 
categories (MD) (N = 6,420). 

 

Results depicted in tables S6 – S21 indicate secondary analyses which complement the 

primary analyses. These consist firstly of the effect unpruned NETRIN1- and genomic-

PRS on FA and MD values, conducted on both the full dataset (N = 6,420) and the 

dataset with excluded outliers (N = 6,401 and 6,390 for FA and MD, respectively). 

Secondly, the effect of pruned NETRIN1- and genomic-PRS on FA and MD values 

was also investigated, again conducted on both the full dataset and dataset with 

excluded outliers. The analyses consist of PRS at all five p-value thresholds (0.01, 

0.05, 0.1, 0.5 and 1). A similar pattern is observed for significance in white matter 

tracts associated with both PRS lists across PRS thresholds within the dataset with 

outliers removed. Some tracts remain significant within the full sample dataset as 

compared to the sample with outliers removed at PRS threshold 0.5, however there is 

a trend towards more significant results when outliers are removed. Please refer to 

tables S8-S9, S12-S13, S16-S17 and S20-S21 for an account of results at PRS 

threshold 0.5 within the full dataset, which are directly comparable to the primary 

results depicted in the manuscript (PRS threshold 0.5 with outliers removed). 
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White matter tracts significantly associated with both NETRIN1-PRS and genomic-PRS. 

Fractional anisotropy 

Tract categories 

Significantly lower FA values in association fibres were found for both NETRIN1-PRS (β = -

0.032, pcorrected = 0.023) and genomic-PRS (β = -0.033, pcorrected = 0.011). 

 

Mean diffusivity 

Global measures 

Significantly higher gMD was associated with both NETRIN1-PRS (β = 0.027, pcorrected = 

0.031) and genomic-PRS (β = 0.033, pcorrected = 0.006). 

Individual white matter tracts 

Significantly higher MD in the inferior fronto-occipital fasciculus was found for both 

NETRIN1-PRS (β = 0.027, pcorrected = 0.046)  and genomic-PRS (β = 0.031, pcorrected = 0.018). 
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Appendix 3: Supplementary materials for Chapter 4: Genetic and epigenetic 

prediction of Major Depressive Disorder and associations with white matter 

microstructure in Generation Scotland 

Details of exclusion process in TBSS pre-processing pipeline 

 

Figure S1. At time of pre-processing, 983 individuals had raw DTI data available. The 
figure above indicates the two visual QC steps. At the DTIFIT QC step, the main 
reason for exclusion was enlarged ventricles in individuals. These individuals were 
excluded as in later steps in the pre-processing pipeline, a mean FA image would be 
compiled, which could be skewed due to enlarged ventricles. At the skeleton QC step, 
two images were flipped, and would be unable to be passed through the pipeline.  
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Individual white matter tracts included in global FA and MD PCA analyses 

White matter tract Abbreviation 
Cingulum (hippocampus) CGH 

Cingulum (cingulate gyrus) CGC 
Fornix* FX 

Fornix (cres) / Stria terminalis FX / ST 
Inferior fronto-occipital fasciculus IFO 
Superior fronto-occipital fasciculus SFO 

External capsule EC 
Superior longitudinal fasciculus SLF 

Sagittal striatum SS 
Uncinate fasciculus UNC 

Body of corpus callosum* BCC 
Genu of corpus callosum* GCC 

Splenium of corpus callosum* SCC 
Anterior corona radiata ACR 
Posterior corona radiata PCR 
Superior corona radiata SCR 

Corticospinal tract CST 
Anterior limb of internal capsule ALIC 
Posterior limb of internal capsule PLIC 

Posterior thalamic radiation PTR 
Retrolenticular limb of internal capsule RLIC 

Table S1. White matter tracts used as dependent variables in statistical analyses 
outlined below. * = unilateral tracts. 

 

The following tracts were excluded from the global FA and MD PCA derivation: (1) 

corpus callosum; (2) corona radiata; and (3) internal capsule. This is because TBSS 

outputs subsets of these three tracts, as well as the entire tract, as indicated below. 

Including the subsets as well as the entire tract output would have resulted in over-

inclusion of these regions; including the three sub-sets of tracts within these overall 

tracts aided in observing whether there is an association of the two risk scores with 

specific, individualised white matter tracts, rather than a more regional estimate 

comprising all three. 

1. For corpus callosum: body, genu, and splenium of corpus callosum. 

2. For corona radiata: anterior, posterior, and superior corona radiata. 

3. For internal capsule: anterior, posterior, and retrolenticular limbs of internal 

capsule. 
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CpG site Beta CpG site Beta 
cg20116804 -0.015421634 cg18751657 0.027288385 
cg15971980 0.006942908 cg04821375 0.024358727 
cg01049205 0.067276206 cg02634584 0.757509208 
cg12736206 0.036873976 cg19143959 -0.266215326 
cg22225420 0.278735199 cg02203922 -0.053844111 
cg11044575 0.113164134 cg03903647 -0.353215677 
cg24254177 0.26284975 cg25610515 0.019056411 
cg22407822 0.001719539 cg02822381 0.069731732 
cg20984994 -0.028034876 cg18200311 -0.003902515 
cg26063721 -0.064925727 cg17943757 -0.13338057 
cg24173182 0.093449601 cg11463427 0.228010283 
cg10539371 -0.266530585 cg27653901 -0.21325932 
cg17250537 0.114100798 cg08744097 -0.075534229 
cg25985659 -0.016420323 cg13483916 0.113879106 
cg02576528 -0.008732521 cg25821785 0.045204034 
cg21124940 0.125069705 cg26621790 -2.09E-05 
cg01038738 0.09211571 cg10435816 -0.114915234 
cg21022949 -0.122922677 cg09490565 0.064310355 
cg18197594 -0.037357869 cg01170758 0.743479881 
cg18090197 0.275197436 cg13278241 -0.244617463 
cg14728380 0.000910739 cg17775332 -0.046708676 
cg15248828 0.004431601 cg27404676 0.08042557 
cg03859186 0.182232759 cg20528583 -7.91E-05 
cg13247663 -0.131885152 cg15770238 0.036076248 
cg13529291 0.172056972 cg07920739 -0.032823893 
cg14996929 -0.053869123 cg07861790 -0.064235819 
cg04191989 0.134906691 cg01950844 0.2704649 
cg09906991 -0.003536151 cg07971952 0.025230404 
cg06482498 -0.002781115 cg06157334 -0.05587217 
cg18035255 -0.234119678 cg05592146 -0.02029348 
cg22044566 -0.052043377 cg14210405 0.065082199 
cg02459042 -0.005130736 cg26579032 -0.03597194 
cg02055264 0.020186238 cg07323350 -0.322253068 
cg25242471 0.095306294 cg21562656 -0.073532389 
cg07548512 -0.389017708 cg10139443 -0.908790082 
cg10928544 0.00597106 cg03736774 0.181528807 
cg24072885 0.174686087 cg03827626 -0.495993086 
cg08464831 -0.077103695 cg09614389 0.001449656 
cg17054674 -0.109492909 cg25600478 -0.013482982 
cg26172211 -0.75833086 cg04029366 -0.08658678 
cg26038465 0.065443581 cg25394505 0.075190223 
cg06833732 -0.032487218 cg13494933 0.012216425 
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cg16081176 0.099548626 cg26720682 0.032298882 
cg24601536 0.084188501 cg10401489 -0.01351181 
cg27332938 -0.075262664 cg12962542 -0.132560179 
cg20674014 0.204549134 cg26422761 -0.072979904 
cg23986470 0.110633334 cg12461092 0.012583705 
cg08873940 0.390595732 cg00298921 -0.025104852 
cg16605431 -0.067886882 cg21974358 -0.057762198 
cg26416971 0.017162464 cg04349815 -0.048879526 
cg10438391 0.017884374 cg19421526 0.059908283 
cg01305745 0.182066587 cg05924543 0.236377006 
cg18355902 -0.108723476 cg08912860 0.071151194 
cg26099134 0.049722806 cg22024931 0.007790324 
cg22237300 -0.078493498 cg23817627 0.035000194 
cg20545941 -0.214689878 cg13999210 0.105935225 
cg14443301 -0.070153977 cg21621114 -0.03694387 
cg10451078 -0.162129625 cg03839794 -0.028866007 
cg20984053 -0.13668675 cg12160741 0.012219106 
cg20273485 -0.119750057 cg08805821 0.044670337 
cg05176970 0.012997037 cg03055837 -0.053989788 
cg07244098 -0.067200919 cg24456846 0.066426026 
cg02613370 0.129967025 cg01297383 -0.065075788 
cg03079761 -0.105643912 cg25949304 0.07527537 
cg12138286 0.186379821 cg05621218 -0.018744792 
cg12654519 -0.218628548 cg21292008 -0.076694204 
cg24583766 0.042427484 cg15207669 0.063024294 
cg25707767 0.002092093 cg23214464 -0.011578311 
cg04772025 -0.007247445 cg04758026 0.007067428 
cg13463245 -0.104253112 cg09865955 -0.038167735 
cg19866673 -0.03368796 cg13751872 0.001763831 
cg16761754 0.01285452 cg15046935 0.067951209 
cg14375923 -0.039366583 cg12609526 0.13350385 
cg09910998 0.028668133 cg19698976 0.005413523 
cg24948792 -0.090876298 cg00828721 0.03947539 
cg17537844 0.00997141 cg01494348 0.033054139 
cg12140144 0.056099238 cg27168858 -0.028599887 
cg10515332 0.160491599 cg26146184 0.086514453 
cg02770534 -0.017156512 cg00555420 -0.022829456 
cg07296835 0.035630636 cg27129029 0.022538802 
cg06781788 -0.026267442 cg24367957 -0.030035942 
cg18944924 -0.068730008 cg11507780 -0.004280805 
cg03230711 -0.037727384 cg20821187 -0.030688714 
cg24185124 0.219559925 cg09552652 -0.060135871 
cg05070690 -0.160686747 cg24769830 0.001766541 
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cg17983217 0.070366023 cg22539189 -0.050789338 
cg20711828 0.163479128 cg09935388 -0.041843214 
cg07733920 -0.046450328 cg15849154 0.005918876 
cg00287370 -0.713805334 cg22738642 -0.017391434 
cg21601837 0.031436265 cg14157549 0.038867665 
cg22210337 0.01654544 cg06360820 -0.011082584 
cg09320113 0.192740454 cg08800396 -0.004683139 
cg07163389 -0.174219338 cg18815120 -0.002973236 
cg05828191 -0.085560334 cg02082929 0.008323224 
cg22430972 0.860620796 cg09557034 -0.093897544 
cg08821669 -0.014756084 cg00344422 -0.007259721 
cg24252746 -0.709664177 cg00318111 0.08602903 
cg00474840 -0.505416185 cg21549285 -0.060031127 
cg18811093 -0.054353706 cg05141400 -0.018150327 
cg23889772 0.028348977 cg24425727 -0.002068791 
cg04884395 -0.216310791 cg09768983 -0.002262711 
cg19047068 -0.07625118 cg19806221 0.005584262 
cg16088894 -0.019705825 cg07576632 -0.017198847 
cg15673187 -0.110154478 cg07801181 -0.011335721 
cg14337472 -0.237370309 cg02211983 0.000787545 
cg23878564 0.040093287 cg17542176 -0.087123853 
cg14959820 0.094109238 cg25189904 -0.052305954 
cg07076105 -0.080253123 cg16685388 0.005120511 
cg08747591 -0.171259744 cg07620573 -0.053164589 
cg06819963 0.060736712 cg15374515 -0.080333691 
cg24754199 0.244701222 cg17109042 -0.069025755 
cg02505588 0.045103077 cg16322792 0.0101152 
cg16442574 -0.118103539 cg14164492 0.027446766 
cg17517128 -0.02734914 cg16434510 -0.026626517 
cg23273834 0.103155906 cg22507558 -0.045030822 
cg02813644 -0.147179559 cg27304415 0.006514712 
cg21848117 0.067060087 cg21243459 -0.030101755 
cg24476033 0.028594309 cg17568934 -0.006180372 
cg07761822 0.066217342 cg24487940 -0.066777461 
cg14070323 0.036294258 cg01859717 -0.218157298 
cg13422261 0.225832858 cg08754268 -0.042172831 
cg01893681 -0.024661955 cg11864774 -0.048926955 
cg21033440 0.054716338 cg10185424 -0.017677734 
cg05544413 -0.057264219 cg14156792 -0.002430209 
cg25982965 -0.021451257 cg15611176 0.152441437 
cg14556303 -0.020044439 cg07211220 -0.105345409 
cg26326298 0.341406175 cg06754079 -0.002567777 
Table S2. CpG sites selected by the LASSO penalised regression model for the MDD 
DNAm predictor and their beta weights. 
 




