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ABSTRACT

Nitric oxide (NO) is a critical free radical messenger that is synthesised by a wide
variety of cell types within the body. NO has numerous functions throughout the
cardiovascular system, including vasodilation, inhibition of smooth muscle
proliferation and inhibition of platelet aggregation and adhesion. Many of the
cellular effects of NO are known to be caused through NO-mediated stimulation of
the intracellular enzyme soluble guanylate cyclase (sGC), leading to increased 3’,5°-
cyclic guanosine monophosphate (¢cGMP) production. However, it has recently
become clear that NO -can inhibit platelet activation via mechanisms independent of
cGMP generation. Interestingly, the ability of NO to induce cGMP-independent
effects may be related to the alternative redox species that NO is able to adopt under
physiological conditions, including the formation of S-nitrosothiols.

An important aim of this thesis was to investigate the role of cGMP-
independent mechanisms in NO-mediated inhibition of platelet function. In
particular, emphasis was given to the impact of different NO-related species on
cGMP-independent antiplatelet effects and the characterisation of potential
intracellular targets for NO. Furthermore, the role of S-nitrosothiol reservoirs in
prolonging NO-mediated antiplatelet activity and their mechanisms of formation
were also assessed. A final aim of this thesis was to assess the therapeutic potential
of novel NO donor materials as agents to reduce platelet adhesion to prosthetic graft
conduits that are sometimes used for peripheral ischaemia.

Ex vivo aggregometry and intracellular Ca** measurements combined with

experiments utilising a NO-sensitive electrode were adopted to investigate NO-



mediated cGMP-independent inhibition of platelet activation. Data obtained
following pharmacological inhibition of sGC indicated that NO radical is the species
required to elicit ¢cGMP-independent antiplatelet effects. Furthermore, results
revealed that plasma factors that cause extracellular generation of NO from NO-
donors induce cGMP-independent antiplatelet effects to these donors. Further
experiments were performed to identify possible intracellular targets for NO-
mediated cGMP-independent antiplatelet effects. Platelet cyclooxygenase and the
prevention of Ca** signalling events were both identified as likely intracellular
targets for NO-mediated cGMP-independent inhibition of platelet function.

To explore mechanisms involved in the formation of an antiplatelet NO
reservoir, platelets were treated with a bolus dose of NO donor. Aggregometry data
in conjunction with chemiluminescent S-nitrosothiol measurements indicated that
low molecular weight thiols present in PRP may play an important role in the
formation and activation of an S-nitrosothiol NO reservoir.

Final experiments aimed to assess the therapeutic potential of novel NO
donors as antiplatelet surfaces showed that the pre-treatment of prosthetic graft with
a novel S-nitrosothiol, S-nitroso-N-valerylpenicillamine (SNVP), can reduce platelet
adhesion, while NO-loaded zeolites may also form a high capacity NO-store with
potent antiplatelet activity.

Taken together, these data indicate novel NO signalling pathways that may
occur both in the plasma environment and within platelets, further defining the
inhibitory role of NO on platelet function. The pre-treatment of prosthetic grafts
with SNVP and/or construction of grafts or stents with zeolites may prove to be

potentially useful in the clinical setting as potent antiplatelet surfaces.
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e s , Sarco-endoplasmic reticulum
NO, Nitric oxide-related species SERCA Ca? ATPase
NONOate Diazeniumdiolate sGC Soluble guanylate cyclase
NOS Nitric oxide synthase SIN-1 3-morpholinosydnonomine
o S-nitroso-N-acetyl-D,L-
ns Not significant SNAP geatéillsmitie
(07} Superoxide ion SNOC S-nitrosocysteine
0CS Open cannalicular system SNP Sodium nitroprusside
1-H-[1,2,4]oxodiazolo[4,3- S-nitroso-N-valeryl-D,L-
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1.1 INTRODUCTION

Platelets are tiny cell fragments that circulate in the bloodstream, where they maintain
vascular haemostasis. In the healthy vascular system, platelets are quiescent until they
encounter an area of vascular damage, whereupon they rapidly change their shape,
adhere and aggregate, forming a plug to prevent blood loss (Gear, 1994; Packham &
Mustard, 1984; Zucker & Nachmias, 1985). Endothelial cells that line blood vessels
provide an antithrombogenic surface and secrete a number of mediators that prevént
inappropriate adhesion and activation (Gordon, 1985; Mason et al., 1977; Pearson,
1999). Of these, the free radical nitric oxide (NO) is arguably the most important.
Although originally described as an endothelium-derived relaxing factor and potent
antiplatelet agent, NO is now recognised to be a crucial mediator not only in the
cardiovascular system, but also the immune and nervous systems (Moilanen &
Vapaatalo, 1995; Moncada et al., 1991; Zhang & Snyder, 1995).

Although platelet activity is essential to maintain vascular viability and prevent
blood loss, inappropriate platelet activation and deposition in vessels is a major cause of
thrombosis, leading to heart attacks and strokes (Eisenberg & Ghigliotti, 1999; Harker,
1998) and increased platelet activation is observed in a number of cardiovascular
conditions, including vascular disease (Furman et al., 1998; Reininger et al., 1999; van
Zanten et al., 1994). An important contributing factor in many of these disease states is
a lack of NO bioavailability (Busse & Fleming, 1996; Poredos, 2002; Vanhoutte, 1998),
ultimately leading to a more systemically active population of platelets. One possible

means to alleviate this problem is to supplement endogenous levels of NO by
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administration of NO-donor drugs; indeed, organic nitrates have been used in clinical
medicine since the late 19" century. However, organic nitrates have some major
disadvantages, the most notable of which is that they cause tolerance and are poor
inhibitors of platelet activation (Chirkov et al., 1997; Gerzer et al., 1988; Mangione &
Glasser, 1994). In more recent times, several new classes of NO donor drugs have been
developed, each with different chemical properties and distinct NO-release mechanisms
(Megson, 2000; Megson & Webb, 2002). In addition to offering greatly increased
therapeutic potential, these new NO donors are excellent investigative tools, which can
be used to great advantage in deciphering complex NO signalling pathways. The aim of
this thesis is to characterise the mechanism of action of some novel NO-donor drugs in
human platelets, with respect not only to their pharmacological potential, but also as
tools to further our understanding of NO-dependent physiological and pharmacological

mechanisms.

1.2 PLATELETS

1.2.1 PLATELET FORMATION

Platelets are formed from highly specialized progenitor cells called megakaryocytes,
themselves products of haematopoietic stem cells (Golde, 1991; Ogawa, 1993). In
humans, each megakaryocyte can form ~10° platelets, generating a total of ~10'!
platelets each day (Hartwig & Italiano, 2003). During development, megakaryocytes
undergo numerous DNA replications and organisational events before the production of

an elaborate series of membrane channels called the demarcation membrane system



Chapter One: Introduction

(DMS; Behnke, 1968a; Behnke, 1968b; Nurden et al., 1997). The exact function of the
DMS is unclear, but it may serve as a membrane reserve for the formation of
proplatelets (Radley & Haller, 1982), which are long ‘pseudopod-like’ extensions driven
out by microtubule forces (Handagama et al., 1987; Tablin et al., 1990). Platelet
formation occurs at the tips of proplatelets, where microtubule coiling and sliding drives
platelet release (Hartwig & Italiano, 2003; Italiano & Shivdasani, 2003).
Thrombopoietin is the major hormonal regulator of platelet production (Bartley et al.,
1994; de Sauvage et al., 1994; Kaushansky et al., 1994), although NO can also stimulate

their production from megakaryocytes (Battinelli ez al., 2001).

1.2.2 PLATELET STRUCTURE

1.2.2.1 RESTING STATE

Resting state platelets are a rounded discoid shape with dimensions of approximately 3
um x 0.5 pm (figure 1.1-A). The platelet surface is largely featureless, except for the
openings of the open canalicular system (OCS; White & Clawson, 1980a; White &
Clawson, 1980b), a complex membranous network that runs throughout the platelet,
vastly increasing the platelet surface area. Platelets lack a nucleus and replicative
machinery, but they contain many of the usual cellular organelles such as mitochondria
and lysosomes. Despite their lack of nuclei, platelets are known to contain messenger
RNA and are reported to be capable of synthesising a wide variety of proteins (Bugert et
al., 2003; Lindemann et al., 2001). In addition, they are packed with secretory granules,

broadly classified into two types: a-granules (0.2-0.4 um diameter) and dense granules
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(~0.15 pm diameter; White & Clawson, 1980a). «a-granules generally store large
adhesive proteins and tissue growth factors, while dense granules contain Ca®** and
activators of platelet function (table 1.1; Harrison & Cramer, 1993; McNicol & Israels,
1999). Many of these factors play a critical role in the adhesion of platelets to the

subendothelium and their subsequent activation following tissue injury (chapters 1.2.3 &

1.2.4).
a-granules Dense granules

* Fibrinogen * Platelet-derived growth factor o Ca**

¢ Vitronectin * Endothelial cell growth factor * Adenosine diphosphate (ADP)

¢ Albumin * Coagulation factors V and VIII | ¢ Adenosine triphosphate (ATP)

* von Willebrand factor + IgG * Serotonin (5-HT)

* von Willebrand antigen + IgA * Pyrophosphate

* Thrombospondin s IgM

* p-thromboglobulin * Neutrophil-activating protein II

Table 1.1 Contents of platelet granules. Adapted from McNicol & Israels, 1999,

In addition, platelet granules contain large numbers of adhesive molecules such as
glycoprotein (GP) IIb/Illa (Nurden ef al., 1996; Suzuki et al., 1992; Youssefian et al.,
1997), P-selectin (Israels et al., 1992; Stenberg et al., 1985), and GP IV (Berger et al.,
1993); chapter 1.2.3). Platelets also possess a dense tubular system (DTS), the
equivalent of the smooth endoplasmic reticulum in other cells, which is tightly

associated with the OCS (White & Clawson, 1980b) and is the site at which a major

proportion of Ca** is sequestered (Horiguchi et al., 1998).
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1.2.2.2 ACTIVATED STATE

Platelet activation is associated with a rapid shape change from a discoid shape to a
larger spherical conformation before finally adopting an irregular shape characterised by
extensions of pseudopodia (fig 1.1-B; Hartwig, 1992). Cytoskeletal actin reorganisation
is crucial to drive platelet spheration and the extension of filopods (Fox et al., 1984;
Hartwig, 1992; Jennings ef al., 1981; Nachmias, 1980; Nachmias et al., 1980). During
activation, platelets also degranulate, releasing their contents primarily into the OCS
(Hols et al., 1985), and thereby into the extracellular environment. Platelet shape
change is important in adhering to sites of vessel injury, and in recruiting additional

platelets for thrombus development (Kuwahara et al., 2002).

Figure 1.1 Micrograph of a resting (A) and active (B) platelet. The scale bar represents 1 pm.
Original source from Lind, 1994, taken with permission from www.images.md.

1.2.3 PLATELET ADHESION

Platelets bind to the subendothelial matrix at sites of injury (Sixma et al., 1979), a

process which is tightly controlled through a number of receptor-ligand interactions
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(table 1.2). Platelet adherence is a two-step process, where they undergo an initial

‘rolling’ event prior to stable adhesion (Moroi et al., 1997; Savage et al., 1996).

Receptor 3 . | Ligand(s)
GP Ib/V/IX Von Willebrand Factor (vWF)
GP Ia/lla (o2B,) Collagen
GP Ic/Ila (asPy, otsPy) Fibronectin, Laminin
GP IIb/Ila (oupf3) vWEF, Fibronectin, Vitronectin
a.Bs vWF, Fibronectin, Vitronectin
GP IV Collagen
Platelet-endothelial cell adhesion molecule 1 PECAM-1
(PECAM-1)

Table 1.2 Some of the main receptors and ligands involved in platelet adhesion.

In vessels that have a high shear stress, von Willebrand Factor (vWF) is essential in
providing a direct link between the subendothelium and the platelet (Sakariassen et al.,
1979; Sixma et al, 1984; Turitto et al, 1985). VvWF is a complex multimeric
glycoprotein composed of identical disulphide-linked units with a molecular mass
between 540-10,000 kDa (Dent et al., 1991; Ruggeri, 1999; Ruggeri, 2001). vWF is
stored in a-granules (table 1.1) and is also synthesised by endothelial cells (Mayadas &
Wagner, 1991). It undergoes a conformational unravelling when attached to cellular
surfaces with high shear (Siedlecki ef al., 1996) that may aid its binding to the
subendothelium. In vessels with lower shear rates, vWF is less important because other
adhesive molecules such as vitronectin and fibronectin may form bonds strong enough
to withstand the lower shear forces (Savage ef al., 1998; Savage ef al., 1996). Collagen
is another strongly adhesive component of the vessel wall (Baumgartner, 1977,

Baumgartner et al., 1977; Saelman et al., 1994). Specific roles for platelet adhesion
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receptors have been defined in many cases: for example, GP Ib/V/IX is important in the
initial ‘loose’ tethering of platelets to the subendothelium during the rolling phase
(Moroi et al., 1997; Savage et al., 1996), while anchoring to GP IIb/Illa or GP Ia/lla
allows tight adhesion of platelets to the matrix (Kunicki ef al., 1988; Kuwahara et al.,

2002; Nieuwenhuis et al., 1985).

1.2.4 PLATELET ACTIVATION

During adhesion, platelets become activated by a number of factors (table 1.3); they
change shape, release their granule contents (table 1.1) and undergo signalling events
that result in the exposure of the active conformation of the GP IIb/Illa receptor (see
figure 1.2 for summary). Although high concentrations of platelet activators may induce
sufficient intracellular signals to complete platelet activation, lower levels of these
agents require the positive feedback generated by platelet degranulation and
thromboxane A; (TxA;) synthesis (chapter 1.2.4.3) to drive exposure of GPIIb/IIla and
complete platelet activation (Blockmans et al, 1995; Willoughby et al, 2002).
GPIIb/IIa is a member of the integrin receptor family, containing receptors for proteins
with the tripeptide sequence arginine-glycine-aspartate (RGD), including fibrinogen,
vWEF, vitronectin and fibronectin (Phillips et al., 1988; Plow et al., 2000; table 1.3).
Platelets possess ~ 80,000 copies of GPIIb/IIla (Wagner et al., 1996), the highest density
for any platelet membrane protein. Under basal conditions, GPIIb/IIIa has low affinity
for fibrinogen (Shattil ef al., 1985; Sims et al., 1991). However, when platelets become

activated, GPIIb/Illa undergoes a conformational change that greatly increases its
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affinity for the RGD epitope (inside-out signalling; Hato er al., 1998; Phillips et al.,
1991; Sims et al., 1991). In addition, ligand binding induces clustering of GPIIb/Illa
(Isenberg et al., 1987; Simmons et al., 1997), which activates intracellular signals to
cause further platelet activation (outside-in signalling; Banfic er al., 1998; Fox et al.,

1993; Haimovich et al., 1993; Huang et al., 1993).

P,Y,, P,Y,; receptors ADP
G-protein TP receptor TxA,
coupled Protease-activated receptor (PAR) 1, PAR4 Thrombin
receptors 5-HT,- receptors 5-HT
) Platelet activating factor (PAF) receptor PAF
Leucine- —{ | GP Ib/V/IX vWF, thrombin, P-selectin
rich repeat GP VI/F.R y-chain Collagen
Immuno- Platelet-Endothelial Cell Adhesion Molecule- | PECAM-1
globulin 1 (PECAM-1)
Fiogri { GP Ia/Ila (1) Collagen
GP IIb/I11a (ouypPs) Fibrinogen, vWF, fibronectin, vitronectin.
Scavenger {_ | GP IV Thrombospondin, collagen

Table 1.3 Some of the main receptors and ligands involved in platelet activation.

1.2.4.1 INTRACELLULAR MESSENGERS

Activation of phospholipase C (PLC) is an important signalling event in platelet
aggregation by numerous agonists including thrombin, ADP, PAF, TxA,, thrombin and
collagen (Blockmans et al., 1995). ADP, thrombin and TxA, activate PLCP through
Ggq signalling (Offermanns, 2000; Offermanns ez al., 1997), while activation of PLCy2
is absolutely essential for platelet activation by collagen (Wang et al., 2000; Wonerow et
al., 2003). Furthermore, GP Ib/V/IX and GP IIb/Illa receptor occupation also stimulates

PLCy2 activation (Marshall et al., 2002; Wonerow et al, 2002). PLC converts
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phosphatidylinositol 4,5-bisphosphate (PIP;) to the intracellular messengers 1,2-

diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3; Fukami, 2002; fig 1.2).

Collagen
Thrombin
PAF

@ TXA,

ADP

!

Shape change
Degranulation
+ve feedback

Aggregation
Adhesion

24
Ca

Figure 1.2 Overview showing the complexity of platelet activation. Abbreviations: 5,6-EET, 5,6-
Epoxyeicosatetraenoic acid; AA, arachidonic acid; CCE, capacitative Ca** entry;
COX, cyclooxygenase; DAG; diacylglycerol; IP;, inositol 1,4,5-trisphosphate; PGH,,
prostaglandin H,; PIP,, phosphatidyl inositol 4,5-bisphosphate; PKC, protein kinase
C; PLA;; phospholipase A;; PLC phospholipase C; TRPC, transient receptor potential
channel.

10
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IP; mediates Ca®* release froﬁl intracellular stores (Ferris & Snyder, 1992; Furuichi &
Mikoshiba, 1995) through platelet IP; receptors (type I) located on the membranes of the
DTS (El-Daher et al., 2000). DAG activates protein kinase C (PKC), which is essential
for platelet shape change and degranulation (Dandona et al., 1996; Rozenvayn &

Flaumenhaft, 2003).

1.24.2 CALCIUM SIGNALLING

An increase in platelet intracellular Ca®* is required for platelet activation (Davies et al.,
1989; Sargeant & Sage, 1994). Resting platelet intracellular Ca® levels (50-150 nM)
are maintained by Ca®* pumps on the external membrane, including the plasma
membrane Ca®* ATPase (PMCA; Dean et al., 1997; Monteith et al., 1998; Paszty et al.,
1998) and Ca**/Na* exchanger (Kimura et al., 1999; Rengasamy et al., 1987), and on the
DTS, including the sarco-endoplasmic reticulum Ca®* ATPase (SERCA; Bokkala et al.,
1995; Martin et al., 2002). Following platelet activation and the release of Ca** from the
DTS, extracellular Ca? entry occurs (Rink & Sage, 1990; Rink et al., 1982). In
platelets, Ca®* entry is controlled via two distinct mechanisms: (1) store operated Ca**

entry or capacitative Ca>* entry (CCE), and (2) store-independent Ca**entry.

1.2.4.2.1 CAPACITATIVE CALCIUM ENTRY (CCE)

In CCE, depletion of intracellular Ca®* stores by IP; induces a signalling event that
opens plasma membrane Ca?* channels, thereby linking Ca** entry to the filling state of
the intracellular stores (Parekh & Penner, 1997; Putney, 1986). There are many possible

mechanisms for coupling between Ca”* stores and Ca** entry channels (Putney et al.,

11
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2001), including direct conformational coupling of the endoplasmic reticulum and
plasma membrane through the IPs-receptor (Berridge, 1990; Irvine, 1990), or through
the release of a diffusible cytosolic messenger (calcium influx factor; CIF) upon Ca**
store depletion (Putney, 1990; Randriamampita & Tsien, 1993).  Interestingly,
evidence suggests that CIF is a cytochrome P450 metabolite (Alonso et al., 1991;
Alvarez et al., 1991; Xie et al., 2002) and recently 5’6’-epoxyeicosatetraenoic acid (5,6-
EET), a product of cytochrome P450 epoxygenase activity, has been identified as a
component of CIF (Graier et al., 1995; Rzigalinski et al., 1999). Regardless of the
mechanism involved, the transient receptor potential channel (TRPC) 1 on the plasma

membrane is involved in CCE in platelets (Rosado et al., 2002; Rosado & Sage, 2001).

1.2.4.2.2 STORE-INDEPENDENT CALCIUM ENTRY

A store-independent Ca* entry pathway has been identified in human platelets (Hassock
et al., 2002; Rosado & Sage, 2000). Although this mechanism can be activated by
DAG, it is unclear whether this is through a direct effect of DAG on Ca®* channels
(Hassock et al., 2002; Hofmann et al., 1999), or via DAG-mediated activation of PKC
(Rosado & Sage, 2000). TRPC6 has been identified in human platelets, and is involved

in store-independent Ca* entry (den Dekker et al., 2001; Hassock et al., 2002).

1.24.3 THROMBOXANE SYNTHESIS
Increased platelet Ca®* levels activate cytosolic phospholipase A, (PLAy) in platelets
(Clark et al., 1995; Kramer et al., 1993). PLA; catalyses the hydrolysis of membrane

glycerophospholipids, resulting in the generation of arachidonic acid (AA; Clark ef al.,

12
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1995; McKean et al., 1981). Following its synthesis, AA concentrates in the DTS
(Laposata et al., 1987), where it is converted via the membrane haemoprotein COX-1 to
prostaglandin (PG) H; (Carey et al., 1982; Smith et al., 1996b). COX-1 is homodimeric
(Garavito & DeWitt, 1999; M; ~ 70 kDa) and plays a vital role in platelet activation
because it catalyses the first committed step in prostanoid synthesis (Smith et al.,
1996b). Subsequent conversion of PGH,, primarily to TxA; via the action of TxA;
synthase then occurs (Needleman et al., 1976a; Needleman et al., 1976b), which along
with granule release maintains a positive feedback loop to drive platelet aggregation

(Blockmans et al., 1995).

1.2.4.4 ENDOGENOUS INHIBITORS OF PLATELET ACTIVATION

A number of factors can inhibit platelet activation (table 1.4), the most notable of which
are prostacyclin (PGIL;) and NO, which act synergistically to prevent platelet activation
(Radomski et al., 1987a). PGI,, a product of the vascular endothelium, has long been
known to be a potent inhibitor of platelet aggregation (Moncada et al., 1976; Whittaker

et al., 1976).

...... =
Soluble gﬁanylate cyclase (SGC) NO

PGI; receptor PGI,, PGE;

PGD; receptor PGD,

A, receptor Adenosine

Table 1.4 Some of the main ‘receptors’ and ligands involved in inhibition of platelet activation.

13
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PGI, inhibits platelet aggregation via activation of adenylate cyclase, leading to cyclic-
3’5’-adenosine monophosphate (cCAMP) synthesis and activation of protein kinase A
(PKA; Mustard et al., 1980; Wise, 2003). The use of PGI, in the preparation of washed
platelets prevents activation and prolongs platelet viability (Blackwell et al., 1982; Read
et al., 1985). However, PGI, is a weak inhibitor of platelet adhesion (Krishnamurthi et
al., 1984; Radomski et al., 1987d), while NO is an efficient inhibitor of both platelet
adhesion and aggregation (Radomski et al., 1987b; Radomski ef al., 1987c). PGD; is
also able to prevent platelet aggregation (Nishizawa et al., 1975), although it is
considerably less efficient than PGL, (Whittle et al., 1978). Similarly, adenosine has also
long been known to inhibit platelet aggregation (Born et al., 1964; Caen et al., 1972)
through G-protein-mediated activation of adenylate cyclase and production of cAMP

(Paul et al., 1990).

1.2.5 PLATELET PHYSIOLOGY

A role for platelets in haemostasis has been implied for well over 100 years (Bizzozero,
1881; Bizzozero, 1882). They adhere and aggregate at sites of vascular damage, thereby
plugging breaches in the vascular wall and preventing excessive blood loss. In addition
to this role, platelets are also active participants in inflammation and host defence
against infection (Mannaioni ef al., 1997; Weyrich et al., 2003). Platelets release
numerous bactericidal factors (Hirsch, 1960; Weksler & Nachman, 1971; Yeaman et al.,
1992), and can bind and internalise various micro-organisms including bacteria

(Clawson & White, 1971a; Clawson & White, 1971b), pathogenic fungi (Christin ef al.,

14
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1998; Kennedy et al., 1992; Robert et al., 2000) and viruses (Bik et al., 1982; Davis &
Zauli, 1995). Platelet adhesion and activation is important in assisting leukocyte
function and in the initiation of vascular repair through the wide variety of mediators

released during activation (table 1.1; Anitua et al., 2004).

1.2.6 PLATELET PATHOPHYSIOLOGY

Platelets are a crucial element in haemostasis, and dysfunction can lead to excessive
bleeding on one hand, or increased thrombosis on the other. Furthermore, inappropriate
platelet activity may contribute to various inflammatory conditions, exacerbating tissue

damage. Therefore, platelets are a legitimate therapeutic target in a number of disorders.

1.2.6.1 REDUCED PLATELET ACTIVITY

Reduced platelet function may be caused by genetic defects in genes that code for
proteins involved in platelet adhesion, activation or production. Bernard-Soulier
syndrome is an autosomal recessive disorder (Lopez et al., 1998; Nurden & Nurden,
2001) characterised by reduced platelet adhesion, due to a genetic defect in the
GP1b/V/IX receptor (Kunishima et al., 1994; Sae-Tung et al., 1996; Simsek et al.,
1994). Glanzmann-thrombasthenia, which is due to a defect in GPIIb/IIla (Basani ef al.,
1996; Grimaldi et al., 1998; Ruan et al., 1999), is associated with the complete absence
of platelet aggregation, and is associated with purpura, epistaxis and gastrointestinal
bleeding (French & Seligsohn, 2000; Nurden & Nurden, 2001). The main treatment for

these disorders is transfusion, although gene therapy may be of possible use in the future
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(Wilcox et al.,, 2000). Reduced platelet function may also be acquired via other
haematological defects such as myeloproliferative disorders (Landolfi et al., 1997) or

extended drug therapy (e.g. heparin; Despotis et al., 1996).

1.2.6.2 INCREASED PLATELET ACTIVITY

Increased platelet reactivity has been observed in patients with diabetes (Knobler et al.,
1998; Mandal et al., 1993; Tomaselli et al., 1990), hypertension (Chen et al., 1984;
Lande et al., 1987; Thomas et al., 1992), stable/unstable angina (Kabbani et al., 2001;
Kusui et al., 1989; Smitherman et al., 1981) and peripheral/coronary artery disease
(Furman et al., 1998; Reininger et al., 1999; van Zanten et al., 1994). In diabetics,
hyperglycaemia may increase vWF-dependent platelet activation at high shear rates
(Gresele et al., 2003), possibly through a glucose-mediated rise in plasma osmolarity
leading to interference of the platelet membrane and increased reactivity (Keating et al.,
2003). Oxidised low density lipoprotein tLDL), a key mediator in the progression of
atherosclerosis (Navab et al., 1996), directly activates platelets (Aviram, 1989; Aviram
et al., 1989). Thrombotic disorders are also increased in hyperhomocysteinemia (Bos &
den Heijer, 1998; Coppola et al., 2000; de Jong et al., 1998), which is an independent
predictor of atherosclerosis and coronary artery disease (Kang et al., 1986; Montalescot
etal., 1997; Yoo et al., 1999). Homocysteine has been hypothesised to increase platelet
activation through enhanced vessel and platelet TxA, synthesis (Bagi et al., 2001;
Ungvari et al., 2000). Furthermore, increased platelet reactivity is also associated with
risk factors for atherosclerosis including smoking (Schmidt & Rasmussen, 1984;

Schmidt et al., 1990). A common factor in many disease states that are linked to platelet
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hyperactivity is the manifestation of endothelial dysfunction (chapter 1.3.8.2), a
condition characterised by a reduction in NO bioavailability. As mentioned, platelets
also play an active role in the progression of inflammatory conditions, including
atherosclerosis. Platelet adhesion to the endothelium coincides with inflammation-
induced gene expression and precedes the development of atherosclerotic lesions in
ApoE deficient mice (Massberg et al., 2002). Indeed, adhered platelets instigate and
propagate lesion formation through P-selectin-mediated leukocyte recruitment (Burger
& Wagner, 2003; Huo et al., 2003). In this situation, platelets are at the heart of a self-
propagating system in which platelet adhesion and activation drive inflammation,
creating positive feedback to further increase platelet activation, deposition and tissue

damage.

1.2.7 ANTIPLATELET THERAPY

Aspirin has been the major antiplatelet agent of choice for many years. Secondary
prevention with antiplatelet agents, primarily aspirin, reduces the risk of vascular
occlusion by 25% (ATC, 1994); furthermore aspirin treatment for the primary
prevention of coronary heart disease decreases cardiovascular events by 15%
(Sanmuganathan et al., 2001). Aspirin primarily exerts its effect via acetylation of the
substrate pocket of COX, thereby inactivating the enzyme and leading to an inability of
platelets to synthesise TxA, (Schror, 1997; Vane et al., 1990), although other
mechanisms such as increasing NO bioavailability exist (Awtry & Loscalzo, 2000;

Lopez-Farre et al., 1995). However, limitations of aspirin include gastrointestinal
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haemorrhage (Derry & Loke, 2000), and aspirin resistance, which can occur in up to
40% of patients (Gum et al., 2001). Other commonly used antiplatelet agents include
the ADP receptor (P,Y12) antagonist clopidogrel, and GPIIb/IIla inhibitors, such as
abciximab and tirofiban. Clopidogrel coinpared favourably to aspirin in terms of
reducing stroke and myocardial infarction in a trial involving patients at risk of
ischaemic events (CAPRIE, 1996). Furthermore, the combination of aspirin and
clopidogrel can result in a synergistic inhibition of platelet activation, (Moshfegh et al.,
2000), and is of benefit in preventing acute coronary syndromes in patients with unstable
angina (Peters et al., 2003). Intravenous GPIIb/Illa inhibitors are also useful in
preventing acute coronary syndromes in patients undergoing percutaneous coronary
intervention (Bhatt & Topol, 2000), however oral GPIIb/IIla antagonists can increase
mortality (Chew et al., 2001), possibly via activation of the GPIIb/IIla receptor (Cox et
al., 2000), resulting in the generation of outside-in signals (Du & Ginsberg, 1997,
Haimovich ef al., 1993). NO donor drugs offer an alternative to these existing therapies,

with potential use in the treatment of a wide range of vasculopathies (chapter 1.3.9).

1.3 NITRIC OXIDE

The discovery of NO as a crucial signalling molecule in the cardiovascular system led to
the 1998 Nobel award to Robert F Furchgott, Louis J Ignarro, and Ferid Murad. Their
seminal work identified the central role of the endothelium in vascular function and
delineated the pathway of production of NO from the endothelium to its activation of the

intracellular enzyme, soluble guanylate cyclase.
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1.3.1 EDRF & NITRIC OXIDE

In the 1980s, the importance of the vascular endothelium in eliciting relaxation to a wide
range of agonists including acetylcholine, bradykinin, and thrombin was realised (Busse
et al., 1985; Furchgott, 1984; Furchgott & Zawadzki, 1980). These agonists were
observed to cause the release of an endothelium-derived relaxing factor (EDRF) that, as
well as inducing a profound vasodilatation (Furchgott, 1984; Furchgott & Zawadzki,
1980), induced a potent inhibition of platelet aggregation and adhesion (Azuma et al.,
1986; Busse ef al., 1987; Radomski et al., 1987a; Radomski et al., 1987c). EDRF was
observed to have a short biological half life (~ 6 seconds; Cocks et al., 1985; Griffith et
al., 1984), and to stimulate soluble guanylate cyclase (Rapoport et al., 1983; Rapoport &
Murad, 1983), resulting in 3°,5’-cyclic guanosine monophosphate (¢cGMP) production.
Subsequently, EDRF was found to have chemical and pharmacological properties that
were indistinguishable from the free radical, NO (Furchgott, 1988; Ignarro et al., 1988;

Moncada et al., 1988; Palmer et al., 1987).

1.3.2 SYNTHESIS OF NITRIC OXIDE

In mammals, NO is synthesised by isoforms of the enzyme, nitric oxide synthase (NOS)
(Griffith & Stuehr, 1995; Knowles & Moncada, 1994). NOS isozymes catalyse the
formation of NO and L-citrulline from the substrates L-arginine and O, in the presence
of the electron donor, nicotinamide adenine dinucleotide phosphate (NADPH; fig 1.3;
(Marletta, 1993). Studies in the early 1990s isolated 3 major NOS isoforms: neuronal

NOS (nNOS or NOS [; Bredt et al., 1991b; Bredt & Snyder, 1990), inducible NOS
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(iNOS or NOSII; Hevel et al., 1991; Lyons et al., 1992; Stuehr et al., 1991; Xie et al.,
1992), and endothelial NOS (eNOS or NOSIII; Janssens et al., 1992; Lamas et al., 1992;
Nishida et al., 1992; Sessa et al., 1992). In addition to these isoforms, a 4™ NOS
isoform has béen identified in mitochondria (mtNOS; Lacza et al., 2003; Tatoyan &
Giulivi, 1998), although this may be a splice variant of nNOS or iNOS (Eissa et al.,

1996; Elfering et al., 2002; Kanai et al., 2001).

1.3.2.1 NOS LOCALISATION

While nNOS and eNOS are expressed constitutively, iNOS expression is induced in
response to infection or inflammatory stimuli (Geller et al., 1993; Griffith & Stuehr,
- 1995; Koprowski et al., 1993; Szabo & Thiemermann, 1995). nNOS is found in both
central and peripheral (non-adrenergic non cholinergic; NANC) neurones (Bredt ef al.,
1991a; Bredt et al., 1991b; Chakder et al., 1997), skeletal muscle (Silvagno et al., 1996),
and in kidney macula densa cells (Wilcox et al., 1992). iNOS was originally isolated in
macrophages (Hevel et al., 1991; Stuehr et al., 1991), but is now known to be inducible
in almost all cell types, including vascular smooth muscle and endothelial cells (Koide et
al., 1993; MacNaul & Hutchinson, 1993). While eNOS is highly expressed in the
vascular endothelium (Forstermann et al., 1993), it is also expressed by various
epithelial tissues (Tseng et al., 1996; Xue et al., 1996) and skin cells (Sakai et al., 1996;
Shimizu et al., 1997). Platelets also express eNOS (Muruganandam & Mutus, 1994;
Radomski et al., 1990a; Radomski et al., 1990b; Sase & Michel, 1995), which in
combination with endothelium-derived NO plays an .important role in modulating

thrombus formation.
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1.3.2.2 NOS STRUCTURE AND CATALYTIC MECHANISM
NOS enzymes exist as homodimers, with each monomer containing an oxygenase
domain linked to a reductase domain by a Ca”*/calmodulin-binding region (fig 1.4;
Alderton et al., 2001). Within the reductase domain are the binding sites for flavin
mononucleotide (FMN), flavin adenine dinucleotide (FAD) and NADPH (Ghosh &
Stuehr, 1995; Richards & Marletta, 1994), while the oxygenase domain contains the
binding sites for L-arginine (L-Arg) and tetrahydrobiopterin (BH4) along with the haem
prosthetic group (Crane et al., 1998; Raman et al., 1998). Electrons donated from
NADPH flow through the flavin cofactors to the haem group (fig 1.4), reducing ferric
(Fe**) haem to the ferrous (Fe**) form and allowing the binding of O, (Abu-Soud et al.,
1997; Adak et al., 1999; Poulos et al., 1999). Bound calmodulin (CaM) has been
proposed to be required for electron flow across the dimer interface to the haem group
(Abu-Soud et al., 1994; Matsuda & Iyanagi, 1999). It has been proposed that electrons
flow from the reductase domain in one subunit to the oxygenase domain in the other
subunit, in a head-to-tail fashion (Siddhanta et al., 1996; fig 1.4). CaM is permanently
bound to iNOS (Cho et al., 1992), while an increase in intracellular Ca®* levels is
required for CaM binding to eNOS and nNOS (Griffith & Stuehr, 1995; Marletta, 1993).
Thus, increased intracellular Ca** is not required for iNOS, but is essential for eNOS and
nNOS activity.

The first step in NO synthesis is a 2-electron oxidation of arginine to N®-
hydroxy-L-arginine (NHA). BHj is essential for NHA formation, and may function as a

redox active electron donor in this process (Bec et al., 1998; Hurshman et al., 1999;
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Witteveen et al., 1999). BH4 also has numerous other roles in NOS function, including
increasing the coupling between NAPDH oxidation and NO synthesis (Vasquez-Vivar et
al., 1999; Vasquez-Vivar et al., 1998) and promoting NOS dimer stabilisation (Baek et
al., 1993; Klatt et al., 1995). NO is formed when NHA undergoes a further 3-electron
oxidation catalysed at the haem centre of the NOS enzyme (Alderton ef al., 2001; Korth

et al., 1994).

1.3.23 NOS REGULATION

As mentioned previously, cellular output of NO may be increased through upregulation
of NOS protein expression or by an increase in intracellular Ca**. The latter effect is of
particular importance within platelets given that the induction of platelet activation and
Ca** signalling events will also result in the activation of eNOS and the generation of
NO. Indeed, platelet-derived NO plays a prominent role in reducing platelet recruitment
following activation (Freedman et al., 1997; Freedman ef al., 1999). In addition to
protein expression and Ca”* effects, eNOS activity is both positively (Butt et al., 2000;
Chen et al., 1999; Dimmeler ef al., 1999; Wang et al., 2004) and negatively (Chen et al.,
1999; Harris et al., 2001; Michell et al., 2001) regulated by phosphorylation. Activation
of eNOS by phosphorylation can increase eNOS output and significantly lower Ca**
sensitivity (Boo e.t al., 2003; Dimmeler et al., 1999; Fulton et al., 1999), an important
component in the activation of NO production by shear stress (Boo et al, 2002;
Fisslthaler et al., 2000; Li et al., 2004). eNOS activity is also controlled by N-
myristoylation and palmitoylation, which aids the targeting of eNOS to caveolae

domains on the membrane surface (Garcia-Cardena et al., 1996; Liu et al., 1996).
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NH 0 0 )
JJ\ + 1.5 NADPH j\ + 1.5 NADP
HNT N OH ILSH  — HN N OoH T 2H0
NH, 20, NH: NO
L-arginine L-citrulline

Figure 1.3 Structure of L-arginine and L-citrulline, indicating the reaction stoichiometry for the
formation of NO.

NADPH NADP' + H Citrulline + NO

Arginine + O,

NH, COOH

Figure 1.4 General structure of the NOS enzyme, showing the flow of electrons from NADPH to
haem. Adapted from Alderton et al, 2001.

In addition to their presence in the endothelium, caveolae have been identified in

platelets (Jayachandran & Miller, 2003). Localisation of eNOS to caveolae inhibits
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eNOS activity (Feron et al., 1996; Ju et al., 1997); agonists such as bradykinin cause
dissociation and translocation of eNOS to the cytosol (Prabhakar ef al., 1998), allowing
CaM to bind to eNOS (Michel et al., 1997a; Michel et al., 1997b) and activate NO

synthesis.

1.3.3 SOLUBLE GUANYLATE CYCLASE

Following its synthesis by NOS, the classically defined ‘receptor’ for NO is soluble
guanylate cyclase (sGC). sGC catalyses the conversion of guanosine 5’- triphosphate
(GTP) to 3’,5’-cyclic guanosine monophosphate (¢cGMP), which causes downstream
signalling events via protein kinase G (PKG), phosphodiesterases (PDEs) and ion
channels (Lucas et al., 2000; Waldman & Murad, 1987). In addition to cGMP-
dependent effects, it is clear that NO also signals through a number of cGMP-

independent signalling pathways, which are discussed in a later section (chapter 1.3.5).

1.3.3.1 sGC STRUCTURE AND FUNCTION

sGC is expressed in the cytoplasm of almost all mammalian cells including platelets
(Chhajlani et al., 1989; Collier & Vallance, 1989) and exists as a heterodimer consisting
of a and P subunits (Harteneck et al., 1990; Kamisaki et al., 1986). Several different
isotypes of sGC are expressed within cells, the most common types being al and f1
(Koesling & Friebe, 1999). sGC monomers are divided into 3 functional domains (fig
1.5): a C-terminal catalytic domain, a central dimerisation region and an N-terminal

haem binding domain (Andreopoulos & Papapetropoulos, 2000; Schulz et al., 1991).
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The catalytic and dimerisation domains in sGC display high homology with particulate
guanylate cyclase (Thorpe & Garbers, 1989; Wilson & Chinkers, 1995), which
synthesises cGMP in response to natriuretic peptides such as atrial natriuretic peptide
(Tremblay et al., 2002). Interestingly, a proportion of platelet sGC is associated with the
membrane fraction, and subsequent activation has been observed to increase the
membrane-bound fraction (Kempfert & Behrends, 2003; Zabel et al, 2002).
Furthermore, membrane-bound sGC has greater sensitivity towards NO (Zabel et al.,
2002), suggesting that redistribution of sGC to membranes may increase cellular
responsiveness to NO. The haem element of sGC is responsible for transmitting NO-
dependent activation of cGMP synthesis (Craven & DeRubertis, 1978; Craven et al.,
1979). The haem-binding domain is co-ordinated by His105, which is present on the -
subunit (Wedel et al., 1994; Zhao & Marletta, 1997), although many other residues
including Cys78 & 214 (Friebe et al., 1997), and Tyr 125 and Arg 139 (Schmidt et al.,
2004) on the B-subunit are also important for haem binding and the activation of sGC by
NO. Interestingly, a number of compounds that activate sGC via an NO-independent
mechanism have also been described. These compounds include YC-1, BAY 41-2272
and BAY 58-2667, all of which are potent antiplatelet agents (Stasch et al., 2001; Stasch
et al., 2002; Wu et al., 1995). In addition to the haem-Fe, sGC also binds Cu2+, which
may act as a co-enzyme for enzyme activity (Schrammel et al., 1996), possibly via
catalysing the release of NO from S-nitrosothiols (Singh et al., 1996; chapter 1.3.6.4).
NO radical, and not nitrosonium (NO") or nitroxyl (NO") is the only proven NO-related

species capable of direct sGC activation (Dierks & Burstyn, 1996). The binding of NO
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to the ferrous haem of sGC results in the formation of a nitrosyl-haem complex, which
breaks the axial bond between haem and His105 (Deinum et al., 1996; Ignarro et al.,
1982; Stone et al., 1995). The resulting conformational change causes a ~400 fold
activation of sGC (Stone & Marletta, 1996), and a reduction in the K, of sGC for GTP

(Wolin et al., 1982).

NH;

Haem-binding
domain

Dimerisation region

Catalytic domain

HOOC COOH

GTP cGMP

Figure 1.5 Structure of sGC showing the 3 main domains and His 105 which provides an axial
ligand to the haem group. Adapted from Hobbs, 1997.

There is considerable debate as to the half-life of NO-sGC signalling. Purified nitrosyl-
sGC has a half life between 5 s and 3 min at 37 °C (Brandish et al., 1998; Kharitonov et

al., 1997; Margulis & Sitaramayya, 2000), the deactivation rate increasing in the
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presence of factors such as GTP, oxy-haemoglobin and low molecular weight thiols
including glutathione (GSH; Brandish et al., 1998; Margulis & Sitaramayya, 2000).
However, in intact cells, the deactivation rate of sGC has been estimated to have a half-
life of 190 ms (Bellamy & Garthwaite, 2001), and sGC has been observed to undergo
rapid desensitisation in experiments performed in human platelets (in the order of
seconds), with a recovery half-life of ~1.5 min (Bellamy et al., 2000). Thus sGC seems

well equipped to rapidly modulate its activity in response to changing NO transients.

1.3.4 TARGETS FOR cGMP

There are two main cellular effectors for cGMP in platelets, namely protein kinase G
(PKG) and phosphodiesterases (PDEs). In addition to PKG and PDEs, cGMP also
signals through non-selective, voltage gated cyclic nucleotide-gated (CNG) channels,
which are important in phototransduction in rod photoreceptors and signal transduction
throughout the brain (Matulef & Zagotta, 2003). However, CNG channels have not

been identified in platelets to date.

1.3.4.1 PROTEIN KINASE G

PKG is the primary effector for cGMP signals in platelets. Binding of cGMP to PKG
activates adenosine 5’-triphosphate (ATP)-dependent phosphorylation of key signalling
proteins on serine or threonine residues (Hofmann ef al., 1992). Mammals possess two
different isoforms of PKG (Jarchau et al., 1994; Lohmann et al., 1997, Wemet et al.,

1989). PKG I is a 76 kDa soluble form that exists as a homodimer and is widely
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expressed throughout the body, including platelets (Eigenthaler et al., 1992; Keilbach et
al., 1992). Splicing of PKG I gives rise to o and P isoforms (Pfeifer et al., 1999);
platelets primarily contain the P isoform (Eigenthaler et al, 1992). PKG II is a
particulate form that is heavily expressed in the intestine (Jarchau et al., 1994; Markert
et al., 1995), where it plays a role in mediating fluid homeostasis (Vaandrager et al.,
1997).  Platelets lacking functional PKG I demonstrate increased adhesion and
aggregation following ischaemia-reperfusion (Massberg et al., 1999). PKG is a potent
inhibitor of Ca®* signalling in human platelets (Geiger et al., 1992; Heemskerk et al.,
1994; Menshikov et al., 1993) and has been demonstrated to phosphorylate platelet IP3
receptors (Cavallini et al., 1996; El-Daher et al., 2000) resulting in the inhibition of Ca**
efflux from the DTS. ¢cGMP analogues also inhibit IP; production in platelets, probably
through PKG activation (Nakashima et al., 1986; Takai ef al., 1981). The inhibition of
Ca®" signalling in platelets has far-reaching consequences due to the Ca®* requirement of
many of the proteins needed for platelet activation. Furthermore, PKG can
phosphorylate platelet TxA, receptors (Wang et al., 1998), resulting in receptor
desensitisation (Reid & Kinsella, 2003) and preventing further positive feedback and
Ca®* signalling events. In addition to Ca** signalling, PKG can phosphorylate proteins
involved with the cytoskeleton. A major phosphorylation target for PKG (and PKA) in
platelets is the vasodilator-stimulated phosphoprotein (VASP; Butt et al., 1994;
Halbrugge et al., 1990; Meinecke et al., 1994; Smolenski et al., 1998). VASP is present
in high concentrations in human platelets (Eigenthaler et al., 1992), and is associated

with microfilaments at areas of focal contact (Reinhard et al., 1992), where it regulates
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actin polymerisation and organisation (Reinhard et al., 2001). Phosphorylation of VASP
decreases its ability to nucleate and interact with actin filaments (Harbeck et al., 2000),
and correlates with GPIIb/IIla receptor inhibition in intact human platelets (Horstrup et
al., 1994). Furthermore, studies utilising VASP knockout mice indicate that VASP
increases susceptibility to cGMP-mediated inhibition of platelet aggregation (Aszodi et
al., 1999), and that it is absolutely essential for NO-mediated inhibition of platelet
adhesion (Massberg et al., 2004). Heat shock protein 27 (Hsp27), which is also
involved in the organisation of the platelet cytoskeleton, is also phosphorylated by PKG
in platelets (Butt et al., 2001). Hsp27 polymerises actin following activation by the
mitogen-activated protein (MAP) kinase pathway following platelet activation, and
phosphorylation of Hsp27 by PKG reduces this actin polymerisation (Butt et al., 2001).
An additional target for PKG in platelets is the small GTPase Rap1lb (Reep & Lapetina,
1996). Raplb potentiates GPIIb/Illa mediated interactions in platelets and
megakaryocytes (Bertoni ef al., 2002; de Bruyn et al., 2003), and has been identified as
a key mediator in GPVI-mediated platelet aggregation (Larson et al., 2003).
Phosphorylation of Raplb by PKG correlates with the inhibition of collagen-induced
platelet aggregation (Reep & Lapetina, 1996). Other potential substrates for PKG
include myosin light chain kinase (MLCK; Nishikawa et al., 1984) and myosin
phosphatase (MP; Nakamura et al., 1999), which are involved in the platelet shape
change response (Bromberg ef al., 1985; Daniel et al., 1984). However, PKG-mediated

phosphorylation of MLCK or MP has yet to be demonstrated in intact platelets.
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1.3.4.2 PHOSPHODIESTERASES

PDEs catalyse the hydrolysis of the cyclic nucleotides cGMP and cAMP to their
corresponding inactive 5’-nucleotides, and therefore also influence intracellular cGMP
levels. Mammals possess at least 11 different PDE isozymes (Beavo, 1995; Fawcett et
al., 2000; Soderling & Beavo, 2000), 3 of which are important in platelets; types 2, 3
and 5 (Haslam et al., 1999; Hidaka & Asano, 1976). Selective PDE inhibitors for these
isozymes are available and many are potent antiplatelet agents (table 1.5; Berkels et al.,
2001; Holbrook & Coker, 1989; Kimura et al., 1985; Muller et al., 1990). PDE2
hydrolyses both cGMP and cAMP, and its activity is stimulated by cGMP (Martins et
al., 1982; Mumby et al., 1982). PDE3 selectively hydrolyses cAMP, and cGMP inhibits
enzyme activation (Degerman et al., 1997), while PDES binds and selectively

hydrolyses only cGMP (Haslam et al., 1999; Thomas et al., 1990).

PbElsozyme | 2 Inhibifors

PDE 2 Erythro-9-(2-hydroxyl-3-nonyl)adenine (EHNA)

PDE 3 Cilostazol, Enoxamone, Milrinone, Siguazodan
PDE 5 Dypyridamole, MY-5445, Sildenafil, Zaprinast

Table 1.5 Selective inhibitors of PDE isozymes found in platelets. Adapted from Essayan, 1999.

The ability of cGMP to inhibit PDE3 and increase cAMP levels demonstrates a degree
of crosstalk between the cAMP/cGMP systems, and may explain the synergism
observed between cGMP and cAMP elevating agents in smooth muscle relaxation and
the inhibition of platelet activation (Maurice & Haslam, 1990a; Maurice & Haslam,

1990b). Interestingly, PKG has recently been demonstrated to phosphorylate PDES and
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increase enzyme activation in platelets (Corbin et al., 2000; Mullershausen et al., 2003).
Thus, PKG-mediated phosphorylation of PDES may be a mechanism providing long

term feedback to modulate platelet responses to NO.

1.3.5 NO-MEDIATED cGMP-INDEPENDENT

SIGNALLING

Several lines of evidence indicate that NO can inhibit platelet activation via a
mechanism that does not rely on an increase in intracellular cGMP concentration
(Gordge et al., 1998; Gordge et al., 1995; Sogo et al., 2000b; Trepakova et al., 1999;
Tsikas et al., 1999a; fig 1.6). Inhaled NO has been demonstrated to inhibit human
platelet aggregation via a cGMP-independent mechanism (Beghetti et al., 2003).
Moreover, a stimulatory role for PKG in platelet activation has been identified (Li et al.,
2003). Despite the clear existence of cGMP-independent antiplatelet effects of NO, very
few molecular targets have been conclusively proven in human platelets. A tool that has
significantly aided the investigation of cGMP-independent effects is 1-H-
[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one (ODQ), a potent and relatively selective
inhibitor of sGC (fig 1.7; Moro et al., 1996). ODQ rapidly oxidises the ferrous haem of
sGC to the ferric form (Zhao et al., 2000), resulting in a persistent inhibition of sGC that
may only be partially overcome by a 100-fold excess of the NO donor S-nitroso-N-

acetylpenicillamine (SNAP; Moro et al., 1996).
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&

GTP cGMP

Inhibition

Figure 1.6 Mechanisms involved in NO-mediated inhibition of platelet activation. Abbreviation:
IP;R, IP; receptor.

ODQ offers significant advantage over other previously used sGC inhibitors such as
methylene blue and LY 83583 which can generate superoxide anions and interfere with
prostanoid biosynthesis (Hasegawa ef al., 2004; Martin et al., 1989; Wolin et al., 1990).
Using ODQ, NO has been shown to increase the refilling of Ca®* back to the DTS via
acceleration of SERCA through a cGMP-independent mechanism (Homer & Wanstall,
2002; Pernollet ef al., 1996; Trepakova ef al., 1999). Although recent studies performed
in vessels suggest that the NO-mediated chemical modification of SERCA involves
peroxynitrite-dependent S-glutathiolation of a critical cysteine residue in the protein

(Adachi et al., 2004), it is unclear whether a similar mechanism exists in platelets.
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Figure 1.7 Structures of the sGC inhibitors ODQ, methylene blue and LY 83583.

Furthermore, while one group has reported that NO exerts a biphasic effect on SERCA
(Pernollet ef al., 1996), where low concentrations of NO stimulated SERCA activity and
high concentrations had the opposite effect, another group have reported only an
acceleratory effect of NO on SERCA activity (Trepakova er al, 1999). S-
nitrosocysteine has been reported to inhibit collagen-induced TxA- synthesis in platelets
via a ¢GMP-independent mechanism (Tsikas er al, 1999a). This effect may be
explained via NO-mediated inhibition of COX-1 (Kanner et al., 1992; Tsai et al., 1994)
or TxA» synthase (Wade & Fitzpatrick, 19“9?). However, it is likely that other cGMP-
independent pathways exist in platelets (Gordge ef al, 1998; Sogo et al., 2000b;
Trepakova et al., 1999). Interestingly, a correlation exists between the amount of NO
released in the extracellular environment and cGMP-independent inhibition of platelet
aggregation (Sogo ef al., 2000b), a finding extended to NO-mediated vasodilatation
(Homer et al., 1999; Miller et al., 2004). These data highlight a possible role for an
extracellular plasma membrane-located target for ¢cGMP-independent inhibition of

platelet activation by NO (Gordge et al., 1998; Sogo et al., 2000b).
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1.3.6 NO BIOCHEMISTRY

It is becoming increasingly evident that the chemistry and biochemistry of NO is central
to its role as a mediator in the cardiovascular, nervous and immune systems. NO
signalling in a particular tissue or organ can be dramatically altered in response to
different physiological or pathophysiological conditions, which is highly dependent on

the interaction of NO with numerous biological species.

1.3.6.1 REACTION WITH HAEM

Arguably the most important biological reaction of NO is with haem, resulting in sGC
activation and the generation of cGMP (chapter 1.3.3). In addition to sGC haem, NO
also reacts rapidly with haem groups on haemoglobin and myoglobin (Doyle &
Hoekstra, 1981; Herold et al., 2001; Herold & Rehmann, 2001). NO can react with both
oxy and deoxy-haemoglobin, resulting in the genération of methaemoglobin and nitrate
(NO3), or iron-nitrosyl-haemoglobin respectively. Although the reaction between NO
and oxy-haemoglobin is a likely route of NO inactivation (Kosaka et al., 1989,
Schechter & Gladwin, 2003), recent evidence suggests that the NO-deoxyhaemoglobin
reaction may be important in the preservation of NO-bioactivity, via the formation of S-
nitrosohaemoglobin (Datta et al., 2004; Jia et al., 1996; Luchsinger et al., 2003). Other
haemoproteins that NO has been shown to interact with and inhibit include cytochrome
P450 (Khatsenko et al., 1993; Oyekan, 2002; Quaroni et al., 1996), NOS (Buga et al.,
1993; Hurshman & Marletta, 1995), and COX (Goodwin et al., 1998; Goodwin et al.,

1999a; O'Donnell et al., 2000).
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1.3.6.2 REACTION WITH MOLECULAR OXYGEN
In physiological solutions at low concentrations of NO (nM), the reaction between NO
and molecular oxygen (0O,) is relatively slow (pseudo 2™ order; rate constant ~ 4 x 10°
MZsec’") and yields nitrogen dioxide NO, (equation 1; Lewis & Deen, 1994; Wink et
al., 1994). Although NO; can react with water to generate nitrite (NO") and nitrate
(NOs’; equation 2; Butler ef al., 1995), it preferentially reacts with NO to generate N,Os
(equation 3; Espey ef al., 2001; Wink et al., 1993).

NO + 02 —— NO; (1)

2NO, + H,0 — NO, + NO; +2H" )

NO, + NQ: ———" N20O; 3)
Given the low concentrations of NO generated under physiological conditions and the
slow rate of NO autooxidation, the contribution of N,Os; to NO physiology has
previously been questioned. However, it is now clear that N,O; formation may be
accelerated in the hydrophobic interiors of proteins and membranes (Goss et al., 1999;
Liu er al.,, 1998a; Nedospasov et al., 2000), which greatly concentrate reacting NO
species. N>O; has been the subject of much interest because it is a powerful S-
nitrosating agent (chapter 1.3.6.4); however it also reacts with water, resulting in the
generation of NO,™ (equation 4).

N,O; + H,0 ———» 2NO; + 2H" 4)

1.3.6.3 REACTION WITH SUPEROXIDE
Superoxide (O2), a reactive oxygen species (ROS), is generated by mammals through a

number of different enzymes including NAD(P)H oxidases, xanthine oxidases,
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cyclooxygenase, NOS and enzymes of the respiratory chain (Griendling et al., 2000;
Lander, 1997; Porasuphatana et al., 2003; Turrens, 1997). Although O, is usually
removed via the action of superoxide dismutase (SOD) and catalase (equation 5), excess
05 generation can lead to endothelial dysfunction (chapter 1.3.8.2). Oj reacts with NO
at almost diffusion limited rates (rate constant: 6.7 x 10° M"'s™'; Huie & Padmaja, 1993;

Jourd'heuil et al., 2001), resulting in the generation of peroxynitrite (ONOO’; equation

6).
|

OF -+ Dirt 300 0;+H0, —% 0,+H0 (5)

Oy + NO ——» ONOO (6)

Peroxynitrite is a potent cytotoxic agent (Radi et al., 1991a; Radi et al., 1991b; Szabo,
1996), and undergoes rapid decomposition via peroxynitrous acid (equation 7) to form
NO; and hydroxyl radicals (OH'; equation 8; Butler ef al., 1995; Kharitonov et al., 1994,
Wink et al., 1993).

ONOO"+ H' ——» ONOOH @)

ONOOH —_— NO, + HO (8)
Under physiological conditions, ONOO™ can also react with CO,, ultimately generating
further NO; and NO;" (Espey et al., 2002; Jourd'heuil et al., 1999). Thus, multiple

mechanisms exist for the conversion of NO to NO; and subsequently N,Os.

1.3.6.4 REACTION WITH THIOLS
NO itself is a poor nitrosating agent: the principal NO-derived species involved in the
biological nitrosation of thiols is N,O3 (Keshive et al., 1996; Kharitonov ef al., 1995).

N,O; reacts with thiols (general formula R-SH) to generate S-nitrosothiols (RSNO;
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équation 9). RSNOs undergo rapid transnitrosation reactions (equation 10; (Hogg, 1999;
Liu et al., 1998b), shown to occur in vivo (Scharfstein et al., 1994), resulting in the
transfer of an NO" moiety from one thiol to another. Furthermore, RSNOs are
extremely susceptible to catalysis by agents including Cu” and light (Gorren et al., 1996;

Sexton ef al., 1994; Singh et al., 1996), resulting in the liberation of NO (equation 11).

N,O; + RSH ——» RSNO+ H" + NOy )
R;SNO + R,SH ——  R;SH + R,SNO (10)
C +
2RSNO T“—v 2RSSR+ 2NO (11)
v

The interaction of NO with protein thiols (such as cys 34 of albumin) results in the
generation of species with considerably longer half-life than NO-itself (Stamler et al.,
1992a; Stamler et al., 1992¢). Thus, species such as S-nitrosoalbumin are candidates for
a potential ‘NO reservoir’ that may prolong NO bioactivity. Furthermore, low
molecular weight (LMW) thiols such as cysteine form unstable RSNOs (Mathews &
Kerr, 1993) that are prone to rapidly deCOI';'IPOSE with the subsequent generation of NO.
Therefore, transnitrosation reactions resulting in the transfer from protein-bound NO to
LMW thiols may result in the potentiation of RSNO activity and the rapid release of NO

(Scharfstein et al., 1994).

1.3.6.5 REACTION WITH TYROSINE

ONOO' is a potent nitrating species, resulting in the addition of an NO," equivalent to a
site of electron density, often on protein tyrosine residues (Sawa et al., 2000; van der
Vliet er al., 1995). The ability of ONOO to nitrate critical tyrosine residues and

interfere with phosphorylation events is a mechanism implicated in the antiplatelet
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activity of ONOO"™ (Low et al., 2002; Mondoro et al., 1997). Furthermore, ONOO'-
mediated nitration of tyrosine residues in COX may inhibit platelet COX activity
(Boulos et al., 2000), although it is clear that NO itself is also able to nitrate COX

(Goodwin et al., 1998).

1.3.6.6 OTHER REACTIONS

NO can react with non-haem iron-sulphur centres such as those found in the respiratory
chain, leading to inhibition of respiration (Brown & Cooper, 1994; Butler & Megson,
2002; Welter et al., 1996). NO is also a potent inhibitor of lipid peroxidation and
interacts with lipid-derived radicals at diffusion-limited rates to terminate damaging
lipid peroxidation propagation reactions (Maricq & Szente, 1996; O'Donnell et al., 1997,
Rubbo et al., 1994). However, both ONOO™ and NO, can oxidise and nitrate
unsaturated lipids (D'Ischia et al., 1999; Gallon & Pryor, 1994; O'Donnell & Freeman,
2001; Patel & Block, 1986), which may play a role in the pathogenesis of inflammatory

conditions such as atherosclerosis (Lusis, 2000; Maxwell & Lip, 1997).

1.3.7 NO PHYSIOLOGY

NO functions not only as an important inhibitor of platelet function but also as a key
signalling molecule throughout the cardiovascular system. Furthermore, NO has far-
reaching roles throughout both the nervous and immune systems, with wide

physiological implications on bodily function.
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1.3.7.1 PLATELETS

The basal release of NO is critical in modulating platelet reactivity in vivo (Golino et al.,
1992; Yao et al., 1992). Importantly, NO derived from both the endothelium and
platelets contributes to the antiplatelet effect (Freedman et al., 1997; Freedman et al.,
1999; Simon et al., 1995). Platelet-derived NO in particular seems to play a role to
prevent further platelet recruitment following activation (Freedman et al, 1997,
Freedman et al., 1999), in line with the known Ca**-mediated activation of platelet NOS
during the aggregation response. Indeed, platelets from patients with acute coronary
syndromes generate less NO than those with stable angina (Freedman et al., 1998),
implying that platelet NO production protects against thrombosis. Similarly, the
importance of endothelium-derived NO in preventing inappropriate platelet adhesion
and aggregation is underpinned in endothelial dysfunction (chapter 1.3.8.2), which is a

root cause in many disease states associated with excessive thrombosis.

1.3.7.2 BLOOD VESSELS

As mentioned above, NO accounts for at least some of the properties of EDRF and
relaxes vascular smooth muscle leading to a profound vasodilation (Busse et al., 1985;
Furchgott, 1984; Furchgott & Zawadzki, 1980; Palmer et al., 1987). As in platelets, NO
induces vasodilation via both cGMP-dependent and independent mechanisms (Homer et
al., 1999; Miller et al., 2004; Rapoport et al., 1983; Rapoport & Murad, 1983). Infusion
of NOS inhibitors such as N“-monomethyl-L-arginine (L-NMMA) in humans causes

vasoconstriction, particularly in arterial conduits, indicating that tonic NO production by
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the endothelium contributes to basal vascular tone (Haynes et al., 1993; Vallance et al.,
1989a; Vallance et al., 1989b). Interestingly, resting platelets may also synthesise
sufficient quantities of NO to significantly affect vascular tone and modulate vascular
blood flow (Zhou et al, 1995). It is therefore unsurprising that reduced NO
bioavailability has been identified as a contributory factor in the pathogenesis of
hypertension (Linder et al., 1990; Panza et al., 1993) although controversy still reigns as

to whether such endothelial dysfunction is a cause or effect of hypertension.

1.3.7.3 THE HEART

Cardiomyocytes can express all 3 isoforms of NOS (Balligand ef al., 1994; de Belder et
al., 1993; Xu et al., 1999). The effects of NO on the heart are complicated and
dependent on the underlying activity of the heart. In unstimulated hearts, NO induces a
biphasic effect, exerting a positive inotropy at low concentrations, while causing a
negative inotropy at higher concentrations (Kojda et al., 1996; Mohan et al., 1996;
Wegener et al., 2002a). Interestingly, the positive inotropic effect may be mediated via
cGMP-independent mechanisms (Campbell et al., 1996; Paolocci et al., 2000), while the
negative inotropic effect is likely mediated through the activation of PKG (Wegener et
al., 2002b). In hearts stimulated by P-adrenergic agonists, NO-dependent negative
inotropic effects are more evident (Gyurko et al, 2000), and may form a negative
feedback system to regulate contractility via f3-mediated stimulation of eNOS (Barouch
et al., 2002; Kanai et al., 1997). In addition to inotropic effects, NO also increases

cardiac relaxation (Grocott-Mason et al., 1994; Layland et al., 2002), decreases heart
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rate (Balligand et al., 1993; Choate et al., 2001), and through its vasoactive properties is

able to modulate cardiac preload and afterload.

1.3.7.4 KIDNEYS

NO plays a central role in the kidney, regulating glomerular filtration, sodium
haemostasis and blood pressure. (Blantz et al., 2002; Cowley et al., 2003; Kone &
Baylis, 1997). NO is important in maintaining adequate circulation within the renal
medulla (Mattson et al., 1992; Navar et al., 1996), a reduction of which can lead to the
development of hypertension (Mattson et al., 1994). It is clear that one of the central
roles of NO within the kidney is to counteract the renin-angiotensin system (De Nicola
et al., 1992; Sigmon et al., 1992). NO is able to inhibit Na* reabsorption throughout
kidney tubules (Liang & Knox, 2000; Ortiz & Garvin, 2001), and has been shown to
decrease the sensitivity of tubuloglomerular feedback (Thomson & Deng, 2003; Thorup
& Persson, 1994), a process which is notably enhanced in spontaneously hypertensive

rats (Welch et al., 2000).

1.3.7.5 THE IMMUNE SYSTEM

NO can prevent inflammatory cell adhesion, activation and chemotaxis (Chello et al.,
1998; May et al., 1991; Sato et al., 1996; Thomazzi et al., 2004). Following infection,
iNOS expression is upregulated and NO production is substantially increased (Nicholson
et al., 1996; Ochoa et al., 1991; Stenger et al, 1996; Wheeler et al., 1997).
Upregulation of iNOS primarily occurs in inflammatory cells, although numerous cell

types have also been shown to express iNOS under inflammatory conditions (Rao,

41



Chapter One: Introduction

2000). Although NO itself is antimicrobial (Assreuy et al., 1994; Fernandes & Assreuy,
1997), the cytotoxic effects of NO are often mediated via the generation of other
intermediates such as S-nitrosothiols (Incze et al., 1974) or ONOO™ (De Groote et al.,
1995; Vazquez-Torres et al., 1996), resulting from the simultaneous generation of Oy’
and NO by inflammatory cells (Rodenas ef al., 1995). Numerous mechanisms of NO-
mediated cytotoxicity have been identified, including direct damage of DNA (Maragos
et al., 1993; Wink et al., 1991) and inhibition of respiration (Castro et al., 1994;
Hausladen & Fridovich, 1994). NO is also involved in the inflammatory process, but its
role is complex. Although NO may contribute to vasodilation and vascular leakage
(Vallance & Moncada, 1994), it may also decrease leukocyte recruitment by decreasing
the expression of various cell adhesion molecules on endothelial cells (Khan et al., 1996;
Spiecker et al., 1997). These effects may be mediated through NO-dependent effects on
the activity of nuclear transcription factor kB (NF-xB; Lander et al., 1993; Park et al.,
1997; Peng et al., 1995), an important regulator of inflammatory gene expression
(Ghosh et al., 1998; May & Ghosh, 1998). In chronic inflammation, as occurs in
conditions such as atherosclerosis, NO, and particularly iNOS, may have a positive or
negative effect on the inflammatory process (Detmers et al., 2000; Rikitake et al., 1998;
Russell ef al., 1995), which is likely to be dependent on the relative conversion of NO to

cytotoxic ONOO™ (chapter 1.3.6.3; Buttery et al., 1996; Luoma et al., 1998).
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1.3.7.6 THE NERVOUS SYSTEM

NO functions as a neurotransmitter in both peripheral and central nerves. In the
periphery, NO constitutes an important effector of inhibitory NANC neurones (Bult et
al., 1990; Li & Rand, 1989), which induce relaxation of smooth muscle in blood vessels
(Cederqvist et al., 1991; Persson et al., 1991) and tissues, including the gut and penis
(Boeckxstaens et al., 1991a; Boeckxstaens et al., 1991b; Desai et al., 1991; Kim et al.,
1991). In the central nervous system (CNS), nNOS is highly expressed, particularly in
the cerebellum and hypothalamus (Schilling ez al., 1994; Vanhatalo & Soinila, 1995).
NO seems to have a number of roles within the CNS, including the central control of the
cardiovascular system (Chikada et al., 2000), and in long term potentiation and memory
formation (Bohme et al., 1993; Holscher & Rose, 1992). NO may also function as a
neuroprotector through its antioxidant effects (Mohanakumar et al., 2002). While many
of the effects of NO in the nervous system are mediated through the sGC-cGMP
signalling axis, NO can also regulate signalling through modulation of the numerous ion

channels via S-nitrosation reactions (Ahem et al., 2002).

1.3.7.7 OTHER ORGANS AND TISSUES

As mentioned, NO is an important regulator of gut motility, primarily mediated via
NANC neurones. NO enhances gastric accommodation and emptying (Konturek et al.,
1995), while scavengers of NO increase oesophageal peristalsis (Murray ef al., 1995).
In the liver, basal NO has been demonstrated to be hepatoprotective via a mechanism not
solely dependent on its vasorelaxation properties (Cottart et al., 1999). Similarly, NO

released from epithelial cells within the lungs is bronchoprotective (Ricciardolo et al.,
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1996) and prevents agonist-induced bronchoconstriction (Figini et al., 1996; Taylor et
al., 1998; Yoshihara ef al., 1998). Many of the protective roles of NO are likely to be
mediated via antioxidant mechanisms (Wink ef al., 2001). Other important
physiological roles of NO include the modulation of salivary secretion (Looms et al.,

2002) and a wide variety of reproductive functions (Dixit & Parvizi, 2001).

1.3.8 PATHOPHYSIOLOGICAL IMPACT OF NO

Due to the participation of NO in numerous physiological processes, a significant
reduction or increase in NO synthesis or bioavailability can contribute to numerous

pathophysiological events.

1.3.8.1 INCREASED NO PRODUCTION

Enhanced NO synthesis has been implicated in the pathogenesis of septic shock
(Fleming et al., 1990; Thiemermann et al., 1993), a condition characterised by the rapid
onset of hypotension in response to severe infection that can lead to systemic vascular
collapse (Parrillo et al., 1990). Increased NO synthesis appears to be mediated via an
early activation of eNOS, followed by induction of iNOS (Fleming et al., 1990;
Kilbourn et al., 1990; Sato et al., 1995). Enhanced NO production may also be involved
in the pathophysiology of anaphylactic shock and haemorrhagic shock (Amir & English,
1991; Zingarelli et al., 1992). In the central nervous system, excess NO generation may
be responsible for glutamate-induced neuronal death (Dawson et al., 1991; Yamauchi et

al., 1998), while a pathophysiologic role for eNOS-derived NO in portal hypertension
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has also been identified (Sieber & Groszmann, 1992; Theodorakis et al., 2003).

Although iNOS expression is increased in numerous cardiovascular conditions including
atherosclerosis (de Belder et al., 1995; Dusting, 1996), these conditions are also often
associated with increased synthesis of oxygen-derived radicals such as O, (Kojda &
Harrison, 1999), resulting in the formation of ONOO™ and destructive hydroxyl radicals
(chapter 1.3.6.3; Kontos & Hess, 1983). Indeed, a likely source for increased Oy is
NOS itself, which under reduced substrate or cofactor availability can generate O
(Miller et al., 2000a; Stroes et al., 1998; Xia et al., 1998). Thus, an increase in iNOS

expression can cause a paradoxical depression of NO bioavailability.

1.3.8.2 REDUCED NO PRODUCTION/ BIOAVAILABILITY

Endothelial dysfunction is often defined by a reduction in the bioavailability of NO in
the vasculature as a result of reduced NO synthesis and/or accelerated NO destruction.
Endothelial dysfunction has been observed in numerous cardiovascular conditions
including atherosclerosis and its associated risk factors (Bellamy et al., 1998; Bossaller
et al., 1987; Drexler & Zeiher, 1991; Pepine et al., 1998), diabetes (Cosentino &
Luscher, 1998; Johnstone et al., 1993), heart failure (Drexler et al., 1992; Katz et al,
1993), and hypertension (Linder et al., 1990; Panza et al., 1993). Furthermore, platelet
synthesis of NO predicts coronary syndromes such as unstable angina and myocardial
infarction (Freedman et al., 1998), of which thrombosis is a major precipitating cause
(Rentrop et al., 1981; Vetrovec et al., 1982). Numerous mechanisms have been
identified that might contribute to reduced NO bioavailability. In diabetes, decreased

NO may be a direct consequence of the reduced ability of glycated red blood cell
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haemoglobin to deliver NO (James e al., 2004). Reduced eNOS expression is observed
in patients with atherosclerosis (Oemar et al., 1998), and decreased endogenous levels of
L-arg and BH, are implicated in the development of endothelial dysfunction (Drexler et
al., 1991; Tiefenbacher et al, 2000). Synthesis of NO can also be reduced by
asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NOS, which is
increased in atherosclerotic disease (Boger et al., 1998; Miyazaki et al., 1999). As
mentioned above, reduced levels of L-Arg and BH,4 can also lead to the generation of O,
by NOS. This, in combination with increased generation of O, by enzymes such as
NAD(P)H oxidase (Meyer & Schmitt, 2000), not only reduces NO bioavailability but
results in the formation of ONOO’, which chemically denudes the endothelium, leading
to the exposure of a pro-thrombotic surface. Moreover, high concentrations of O, and
ONOO" directly activate platelets (Brown et al., 1998; Leo et al., 1997). These
observations, coupled with data from animal thrombosis models showing that
modulation of endogenous NO synthesis markedly modifies platelet responses in vivo
(Stagliano et al., 1997; Yao et al., 1992) emphasise the importance of a fully functional

NO generating system in maintaining normal platelet function and haemostasis.

1.3.9 NITRIC OXIDE THERAPY

Drugs that deliver NO provide an obvious means of treating thrombotic disorders and
other conditions characterised by endothelial dysfunction and a lack of NO
bioavailability. In addition, NO-donor drugs are excellent investigative tools for

delineating complicated NO-mediated signalling pathways. Recent approaches in the
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development of NO-donor drugs have led to the development of a number of novel NO-

based therapies that may prove useful antiplatelet agents.

1.3.9.1 INHALED NITRIC OXIDE

Inhaled NO (iNO) inhibits platelet aggregation and prolongs bleeding in vivo (Beghetti
et al., 2003; Gries et al., 1998; Gries et al., 2000). Interestingly, iNO appears to inhibit
platelet activation via a cGMP-independent mechanism (Beghetti et al., 2003).
Furthermore, it also prevents platelet P-selectin expression, an effect likely to account
for its ability to inhibit platelet-leukocyte interaction (Gries et al., 1998; Gries et al.,
2003). Animal-based studies indicate that iNO may be useful in the treatment of
_ conditions such as acute pulmonary embolism and acute lung inflammation (Gries et al.,
1997; Kermarrec et al., 1998). However, iNO is rapidly inactivated by haemoglobin,
and can lead to methaemoglobinaemia (Weinberger et al., 2001), although this risk is
preventable by close monitoring. Indee_d, the rapid inactivation of iNO by oxy-
haemoglobin may explain why some groups have found that iNO has only modest, or no

effect on platelet function (Albert et al., 1999a; Albert et al., 1999b; Albert et al., 1996).

1.3.9.2 ORGANIC NITRATES

Organic nitrates have been in clinical use for over 100 years. Glyceryl trinitrate (GTN)
and isosorbide dinitrate (ISDN; fig 1.8) are commonly used in the treatment of angina
and heart failure (Vlay & Cohn, 1985). Nitrates dilate veins, collaterals and coronary
arteries, reducing cardiac preload and increasing oxygenation of the heart respectively

(Parker & Parker, 1998). In vivo administration of GTN and ISDN inhibits platelet
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aggregation and adhesion in patients with angina and myocardial infarction (Diodati et
al., 1990; Gebalska et al., 2000) and reduces platelet deposition in pig arteries following
balloon angioplasty (Lam ef al., 1988) but not in rabbits (Miller ef al., 2003). Nitrates
such as GTN inhibit platelet activation through a mechanism completely dependent on
activation of sGC (Sogo et al., 2000b). One of the main caveats with organic nitrates is
tolerance (Mangione & Glasser, 1994), which can prevent the antiplatelet action of
nitrates even at very low doses (Chirkov et al., 1997). Nitrate tolerance is primarily due
to the fact that these compounds require bioactivation, although the cellular mechanisms
responsible are still not clear. Previous evidence has implied a role for enzymes such as
glutathione-S-transferase and cytochrome P450 reductase (McGuire ef al., 1998; Simon
et al., 1996) and for thiols, which may be required as a cofactor (Fung et al., 1992).
However, more recent data indicate that tolerance may be at least partly due to nitrate-
mediated inhibition of vascular aldehyde dehydrogenase and increased generation of
reactive oxygen species within mitochondria (Chen et al., 2002; Sydow et al., 2004).
Nevertheless, mechanisms independent of nitrate bioactivation may also be responsible
for tolerance, including plasma volume expansion, upregulation of PDE 1A1 activity,
increased vascular synthesis of endothelin-1, and desensitisation of sGC (Artz et al.,

2002; Kim et al., 2001; Klemsdal et al., 1996; Munzel et al., 1995).

GTN o O ISDN

O,N NO

2 2 02N’0

Figure 1.8 Structure of the organic nitrates GTN and ISDN.
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Platelets also appear to be poor at metabolising organic nitrates to their active form
(Weber er al., 1996; Weber er al., 1993), which may explain why nitrates only
demonstrate weak antiplatelet activity in some studies (Drummer ef al., 1991; Gerzer et

al., 1988).

1.3.9.3 SODIUM NITROPRUSSIDE

Sodium nitroprusside (SNP; fig 1.9) has long been known to be an inhibitor of platelet
activation (Glusa et al., 1974; Saxon & Kattlove, 1976). Similarly to organic nitrates,
SNP requires biological factors to generate NO in vivo (Butler & Megson, 2002;
Rochelle er al., 1994), and inhibits platelet function via a mechanism dependent on
c¢GMP formation (Kawabata, 1996; Sogo ef al., 2000b). The exact molecular candidate
responsible for bioactivation of SNP is unclear, but it may involve a membrane bound
NADH/NADPH oxidoreductase (Kowaluk er al, 1992; Mohazzab et al., 1999).
Although SNP may also induce tolerance (Papapetropoulos et al., 1996; Zhang et al.,
1993), its clinical use as an antiplatelet agent is mainly limited by difficulties in dose
titration and the risk of cyanide poisoning (Friederich & Butterworth, 1995; Smith &

Kruszyna, 1974).

F— e
NO
NC ‘ CN 2Na*
\ /
/Fe 2H,0
NC ‘ \CN
CN

Figure 1.9 Structure of sodium nitroprusside.
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1.3.9.4 SYDNONOMINES & MESOIONIC OXATRIAZOLES

Sydnonomines and mesoionic oxatriazoles (MOTA) are two closely related classes of
NO donors with similar chemical characteristics. 3-morpholinosydnonomine (SIN-1; fig
1.10), the active metabolite of molsidomine (Reden, 1990), was originally believed to be
a pure NO donor drug. However, SIN-1 is now known to simultaneously generate O’
(Feelisch et al., 1989; Hogg et al., 1992); given the near instantaneous rate of reaction
between NO and O, (chapter 1.3.6.3), SIN-1 is now more correctly regarded as a
ONOO™ generator. From a mechanistic standpoint, SIN-1 undergoes an initial
hydroxylation reaction followed by O,-mediated conversion to its metabolite SIN-1C,
resulting in the formation of NO and O, (Feelisch et al., 1989; Noack & Feelisch,
1989). SIN-1 is considerably more potent at inhibiting platelet activation than nitrates
(Bult ez al., 1995; Gerzer et al., 1988), and has been shown to act by increasing platelet
c¢GMP synthesis (Gerzer et al., 1988; Karrenbrock et al., 1990). Interestingly, ONOO
itself exerts dual effects on platelets, inhibiting activation at lower concentrations, while

inducing activation at higher concentrations (Brown ef al., 1998).

OONH.,\KS,NH Clcp\,{-”\?/w
N—O N—O

SIN-1 GEA-3162

Figure 1.10 Structures of SIN-1 and GEA-3162.

The conversion of ONOO™ back to NO appears to be a critical step in the inhibitory

action of ONOO™ (Brown et al., 1998; Moro et al., 1994), although ONOO -mediated
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nitration of platelet tyrosine residues may also play a role in the inhibitory action (Low
et al., 2002). Nevertheless, SIN-1 has been shown to reduce platelet adhesion and
thrombosis in a pig model of balloon angioplasty (Groves et al., 1993).

MOTA such as GEA 3162 (fig 1.10) and GEA 3175 have also been shown to
increase cGMP and inhibit platelet function (Grenegard et al., 1996; Kankaanranta et al.,
1996). The mechanism of NO generation by these compounds is not clear, but may be
accelerated by plasma factors (Kankaanranta et al., 1996). Similarly to SIN-1, MOTA
also seem to generate O, concurrently with NO (Schmidt et al., 2001; Taylor et al.,
2004), which may again limit their clinical potential, given the likely deleterious effects

of ONOO' in atherogenesis (Demiryurek et al., 1998; White et al., 1994).

1.3.9.5 DIAZENIUMDIOLATES

Diazeniumdiolates (or NONOates) have the general formula X[N(O)NO] and constitute
a class of NO donor that are synthesised by exposing nucleophiles to pressurised NO gas
(Keefer et al., 1996; Morley & Keefer, 1993). One of the major advantages of the
diazeniumdiolates is their highly predictable NO donating properties. They do not
require bioactivation, but spontaneously release NO at a rate dependent on pH,
temperature and the nature of the nucleophile (X; Davies et al., 2001; Morley & Keefer,
1993). A further benefit of the diazeniumdiolates is that they do not induce tolerance
(Hinz & Schroder, 1998; Homer & Wanstall, 1998). In platelets, the ability of
diazeniumdiolates to inhibit aggregation correlates with their predicted rate of NO
release (Raulli, 1998). Diethylamine diazeniumdiolate (DEA/NO) and methylamine

hexamethylene methylamine diazeniumdiolate (MAHMA/NO; fig 1.11) are two
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examples with short half-lives at physiological temperature and pH (1-2 min; Homer &
Wanstall, 1998; Morley & Keefer, 1993). Although DEA/NO and MAHMA/NO can
both increase cGMP, both donors have also been shown to inhibit platelet activation by a
c¢GMP-independent ﬁlechanism (Homer & Wanstall, 2002; Sogo et al., 2000b). Another
commonly used compound in this class, spermine diazeniumdiolate (SPER/NO; fig
1.11), has also been shown to inhibit platelet aggregation, although it is considerably
less potent on account of its longer half-life under physiological conditions (~ 40 min;
Diodati ef al., 1993; Morley & Keefer, 1993). Although few in vivo studies on the
antiplatelet activity of the diazeniumdiolates have been performed, results so far indicate
a potential role for them as antiplatelet agents in vivo (Homer & Wanstall, 2003;

Saavedra et al., 1996).

0
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DEA/NO O N MAHMA/NO N

| \‘N/\/\/\/N\
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< W W \/\/\m/\/\NH2

Figure 1.11 Structures of DEA/NO, MAHMA/NO and SPER/NO.
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1.3.9.6 S-NITROSOTHIOLS

As mentioned previously, some RSNOs including S-nitrosoalbumin and S-
nitrosoglutathione (GSNO; fig 1.12), are formed endogenously. RSNOs may also be
synthesised via S-nitrosation of reduced thiols (Williams, 1985). RSNOs have received
much interest as antiplatelet agents, owing to the fact that they exert some degree of
selectivity for platelets over blood vessels (de Belder et al., 1994; Ramsay et al., 1995;
Vilahur et al.,, 2004). In the clinical setting, GSNO has been shown to reduce
embolisation in patients undergoing carotid endarterectomy and angioplasty (Kaposzta
et al., 2001; Kaposzta et al., 2002). The inhibition of platelet aggregation and adhesion
mediated by RSNOs has been shown to correlate with increased cGMP formation
(Lieberman et al., 1991; Mellion et al., 1983; Mendelsohn et al., 1990; Radomski et al.,
1992; Simon et al., 1993). However, it appears that cGMP-independent mechanisms
also play an important role in the inhibition of platelet function by some of these
compounds (Gordge et al., 1998; Sogo et al., 2000b; Tsikas ef al., 1999a). Recently, a
number of novel analogues of the well characterised RSNO, S-nitroso-N-acteyl-D,L-
penicillamine (SNAP; fig 1.12), have been described (Megson et al., 1997; Megson et
al., 1999). These novel RSNOs may offer considerable advantage over SNAP and other
RSNOs, on account of their improved stability and selectivity for areas of endothelial
damage (Megson et al., 1997; Miller et al., 2003; Sogo et al., 2000c). Indeed, S-nitroso-
N-valeryl-D,L-penicillamine (SNVP; fig 1.12) has been shown to exert a prolonged and

selective antiplatelet effect in rabbits following balloon angioplasty (Miller et al., 2003).

53



Chapter One: Introduction
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Figure 1.12 Structures of GSNO, SNAP and SNVP.

Despite the improved stability of novel S-nitrosothiols such as SNVP compared to
exisiting S-nitrosothiols, the ability of SNVP to readily undergo transnitrosation
reactions with other cysteine-containing compounds (equation 10; chapter 1.3.6.4;
(Megson et al., 1999) will mean that unstable low molecular weight S-nitrosothiols such
as S-nitrosocysteine are rapidly formed. Therefore, within biological media such as
plasma, SNVP is likely to be highly unstable and give rise to substantial quantities of
NO (radical) and nitrite (chapters 1.3.6.2-4). Indeed, in some instances even SNVP
diluted in phosphate buffer may be unstable at -80 °C in the presence of metal ion
chelator (EDTA; James P.E., personal communication). It is therefore important to note
that as a class of molecule, S-nitrosothiols are chemically unstable and decompose at a

rate that is highly dependent upon the environment in which they are placed.

1.3.9.7 HYBRID NITRIC OXIDE DONORS

A recent development in NO-based therapy is the addition of NO-donating moieties to
existing pharmaceutical agents. NCX-4016, a NO-releasing derivative of aspirin, has
been shown to maintain the platelet inhibitory effects of aspirin, whilst demonstrating a

gastrosparing effect compared to the parent compound (Fiorucci et al., 2003; Lechi et
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al., 1996; Wallace et al., 1995). Importantly, both the aspirin and NO containing
moieties contribute to its biological effects (Wallace et al., 2002). Further advances in
NO-hybrid therapy include the S-nitrosation of tissue plasminogen activator (tPA), an
endogenous fibrinolytic agent, and vWF fragment, an inhibitor of platelet adhesion to
vWF (Dardik et al., 2000; Delyani et al., 1996, Gurevitz et al., 2000; Stamler et al.,
1992b). S-nitrosation of tPA bestowed antiplatelet activity upon the enzyme, while it

also markedly increased the antiplatelet activity of vWF fragment.

1.3.9.8 NITRIC OXIDE DONORS AS A COATING FOR GRAFTS, STENTS
& EXTRACORPOREAL CIRCUITS
Another recent advancement in NO-based therapy is the generation of modified
prosthetic materials with an inbuilt capacity to donate NO. Although many prosthetic
graft surfaces such as those made from Dacron or expanded polytetrafluoroethylene
(ePTFE) are generally regarded to have minimal prothrombotic activity, they firmly
remain second choice behind autologous vein for the bypass of occluded arteries in
patients with peripheral artery disease on account of higher failure rates (Bergan et al.,
1982; Londrey et al., 1991; Van de Pavoordt et al., 1986). The production of NO
generating prosthetic grafts is therefore a potential means to reduce platelet deposition
and increase graft patency. Furthermore, NO releasing materials may also have a use as
a coating for stents or extracorporeal circuits such as those utilised in cardiopulmonary
bypass (CPB) or dialysis. Procedures such as CPB require systemic heparinisation
(Frederiksen, 2000) and are associated with platelet degranulation and the presence of

‘spent’ platelets within the bloodstream (Harker et al., 1980; Rinder et al., 1991; Rinder
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et al., 1994), while the use of stents following balloon angioplasty may increase
thrombosis (Schatz et al., 1991). Although an obvious limitation to the application of
NO-producing surfaces will be their temporary duration of action, there may still be
significant benefit in reducing platelet adhesion in the perioperative period. Moreover,
this caveat is unlikely to limit their use in short-term procedures such as CPB or dialysis.

To date, numerous approaches to the production of NO-generating surfaces have
been adopted. These include the incorporation of SNP into polyelectrolyte microlayers
(Thierry et al, 2003), NO-releasing silicone rubbers (Zhang et al, 2002),
diazeniumdiolate-containing polymers (Batchelor et al., 2003; Mowery et al., 2000;
Parzuchowski et al., 2002), and the coating of surfaces with S-nitrosated albumin
(Maalej et al., 1999). Indeed, novel S-nitrosothiols including SNVP may also be useful
antiplatelet coatings for artificial surfaces, given their increased lipophilicity above other
commonly used S-nitrosothiols such as GSNO (Megson et al., 1999). However,
alternative approaches to NO donating materials also merit further investigation, in order
that the NO-donating properties of these materials may be optimised. In this arena, one
possible alternative is the use of zeolites, nanoporous solids that are often used in
catalytic converters to remove atmospheric pollutants, including NO (Pontikakis et al.,
2001; Yahiro & Iwamoto, 2001). However, their potential as a store of NO that may be

applied for use in prosthetic grafts and extracorporeal circuits has yet to be assessed.
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1.4 PROJECT AIMS

Against this background, the main aim of this thesis is to further characterise the
antiplatelet effects of NO and NO donor drugs, and to assess their therapeutic potential
as antiplatelet agents.

The primary hypotheses that will be addressed are:

* Extracellular NO generation is required for cGMP-independent inhibition of
platelet activation, and that this response may be modulated by plasma
antioxidants

o NO inhibits platelet Ca** signalling via a cGMP-independent mechanism
o COX is an important cGMP-independent target for NO in platelets

* Plasma thiols, such as albumin and low molecular weight thiols, play a crucial role
in prolonging the antiplatelet effect of NO

* SNVP is an NO-donor that may be used to coat artifical grafts to prevent platelet
activation

» Zeolites are a novel means of storing NO and can be used to generate surfaces

with potent antiplatelet properties
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2.1 PREPARATION OF PLATELETS

2.1.1 PLATELET RICH PLASMA & WASHED

PLATELETS

Permission to take blood from normal volunteers was granted by the Royal Infirmary of
Edinburgh Research Ethics Committee (1702/95/3/11) and consent was obtained from
each donor. Venous blood was drawn through a 19 gauge needle from the antecubital
fossa of healthy human volunteers aged between 21 and 63. Volunteers had not taken
medication known to affect platelet function for at least 10 days prior to sampling.
Blood was drawn into 50 ml Falcon tubes containing sodium citrate (0.38% final
concentration) and centrifuged (120 g; 20 min; fig 2.1). Platelet rich plasma (PRP) was
aspirated and the remaining fraction centrifuged (1200 g; 10 min) to obtain platelet poor
plasma (PPP). Washed platelets (WP) were prepared by centrifugation of PRP (1200 g;
10 min; fig 2.1) in the presence of prostacyclin (PGI;; 300 ng/ml), and the platelet pellet
resuspended in an equal volume of modified HEPES-tyrode buffer (pH 7.4) containing
(in mM): 137 NaCl, 2.7 KCl, 1.05 MgSOy, 0.4 NaH,POy4, 1.8 CaCl,, 12.5 NaHCO;3, 5.6
glucose, 10 HEPES, and 10.9 trisodium citrate. Following a secondary centrifugation
(1200 g; 10 min) in the presence of 300 ng/ml PGI,, platelets were resuspended in an
equal volume of PGIl,-free HEPES-tyrode. Platelet count was determined using a
Coulter A°T 8 Haematology Analyser (Coulter Electronics, Luton, U.K.), and

standardised to 250 x 10° L™ via dilution with PPP (PRP) or HEPES-tyrode (WP).
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Chapter 3
Ca* measurements Chapter 6
Adhesion studies
Citrated Whole T
Blood /‘
Fura-2
WP Calcein
Centrifuge WP
Wash PGls;
+ fura-2 AM
Wash PGI;
Centrifuge Aspirate il P
—» | PRP

Aspﬂ‘afé/ \ Chapters 3 & 4
Wash; ELISA

PPP PGi; measurements

Reference \ Chapters 3, 4. 5 & 6 /'
Aggregometry | | WP

Figure 2.1 Schematic diagram showing the main phases of platelet preparation and their use
within this thesis. Abbreviations: AM, acetoxymethyl ester; ELISA, enzyme-linked
immunosorbent assay.

2.1.2 PREPARATION OF FLUORESCENT INDICATOR

LABELLED PLATELETS

Platelets were labelled with acetoxymethyl (AM) ester derivatives of the fluorescent
indicators fura-2 and calcein for Ca®" measurements and platelet adhesion studies
respectively (fig 2.1). Intracellular cleavage of the AM functional group by esterases
traps these indicators within cells (Haworth & Redon, 1998; Liminga et al., 2000).
Briefly, aliquots (2 ml) of PRP were centrifuged in the presence of PGI, (300 ng/ml) and
resuspended in HEPES-tyrode (0.25ml). Fura-2 AM (2 pM) or calcein-AM (10 pM)

were added and the suspension incubated at room temperature for 30-min. Pluronic F-
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127 (final concentration 0.1%), a mild detergent, was also co-incubated with platelets
loaded with calcein to prevent the formation of micelles that occurs with fluorescent
indicators (Yates et al., 1992), which can decrease loading efficiency. Following
incubation, platelets were diluted to their original volume with HEPES-tyrode, PGI;
added (300 ng/ml) and the mixture centrifuged (1200 x g, 10 min). The supernatant was
aspirated and discarded to remove extracellular fluorescent marker prior to resuspenion
in HEPES-tyrode. Platelet count was determined and standardized to 250 x 10°/ L via

dilution with HEPES-tyrode as described previously.

2.2 NO ELECTRODE MEASUREMENTS

NO generation was measured using an isolated NO electrode (World Precision
Instruments, Stevenage, U.K.). Data were captured by an Apollo 4000 Free Radical
Analyser (World Precision Instruments) or via a MacLab 4e analogue digital converter
(AD Instruments, Sussex, U.K.). The electrode was calibrated using DEA/NO (100-
1600 nM) in phosphate buffer (pH 4.0; fig 2.2.a). DEA/NO decomposition is extremely
rapid at pH =< 5.0 (Davies et al., 2001). Using this calibration, the limit of detection of
the NO electrode was found to be ~ 10 nM NO. The change in peak NO signal was
measured and used to generate the calibration graph (fig 2.2.b). Stirred (600 rpm)
aliquots (2 ml) of PRP or WP were equilibrated to 37°C for a minimum of 15 min, until
a stable baseline was achieved. Precise experimental protocols are as outlined in the

experimental chapters.
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Figure 2.2 Example calibration trace (a) and graph (b) for the NO electrode. Additions of
DEA/NO (in nM) are indicated.

2.3 AGGREGOMETRY

Aggregometry was carried out using either a two channel (Chronolog Ca560,
Labmedics, Stockport, U.K.) or four-channel platelet aggregometer (Chronolog 470 VS)
at 37°C with stirring (1000 rpm). Aggregation was recorded as a change in turbidity
(light transmission) in PRP or WP measured against a PPP or HEPES-tyrode reference
respectively (fig 2.1). Data were captured via an analogue digital converter (MacLab 4e,
AD Instruments, Sussex, U.K.) and recorded using MacLab Chart v3.3.7. Aliquots (0.5
ml) of PRP or WP were equilibrated in the aggregometer at 37°C for 10-min before the
addition of any drugs. Inhibition of platelet aggregation by various NO-donors was
assessed by incubating PRP or WP with the donors prior to stimulating platelet
aggregation with peri-maximal concentrations of collagen (type I fibrils; 2.5 pg/ml),
U46619 (a TxA; analogue; 8 uM), arachidonic acid (AA; 100 uM) or PGH, (100

ng/ml). These concentrations of agonists were used in order that any inhibitory effect of
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the NO donors would be ciearly observed. Aggregation was measured for 5-min
following the addition of agonist, and the peak change in response noted. Specific

protocols are as described in the experimental chapters.

2.4 FLUORESCENCE STUDIES

All fluorescence measurements detailed below were made using a Perkin Elmer LS50B

luminescence spectrometer (Perkin Elmer, Berkshire, U.K.).

2.4.1 MEASUREMENT OF INTRACELLULAR Ca*

LEVELS

To study platelet Ca®" signalling events, aliquots (1.5 ml) of Fura-2 loaded platelets (fig
2.1) were equilibrated to 37°C in the spectrometer for 10 min or until a stable baseline
was achieved. The spectrometer was set at excitation wavelengths of 340 and 380 nm
and an emission wavelength of 510 nm. Following equilibration, a baseline was
recorded for 1-min prior to the addition of NO donor and/or agonist, and the response
recorded for a further 5-min. To calculate the intracellular Ca** levels, ratio values were
converted to Ca*" concentrations using FL WinLab software (Perkin Elmer, Berkshire,

U.K.), according to the Grynkiewicz equation (Grynkiewicz et al., 1985):

Where:
(Re Ru) e [Ca™"], = Ca®" concentration at time point t
3 c e K, = Dissociation constant of fura-2 at 37 °C
[}y = Ky x = 5 SFB

® R, = Fluorescence intensity ratio at time t
(Rmax - Ry) ® R,avmin = Fluorescence intensity ratio of
completely Ca** bound/unbound Fura-2
o SFB = Ratio of the fluorescence intensities for
Ca**-bound/unbound Fura-2 at As4
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Platelets were solubilised in 1% Triton-X-100 to calculate R, followed by Ca™

chelation with 20 mM EGTA to determine Rpi. The specific protocol is as described in

chapter 3.

2.4.2 ADHESION STUDIES

Calcein-labelled platelets (fig 2.1) were used to determine platelet adhesion to expanded
polytetrafluoroethylene (ePTFE) prosthetic graft (6mm; Gore-Tex®, Arizona, U.S.A.).
To calibrate platelet loading of calcein AM, aliquots (18 ul) of platelets were solubilised
in Triton-X-100 (1% final concentration) and the fluorescence measured using an
excitation wavelength of 494 nm and an emission wavelength of 517 nm. In all cases, a

linear correlation was observed between platelet count and fluorescence measured (fig

2.3).
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Figure 2.3 Calibration for platelet loading of calcein-AM.
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To examine the effect of NO donors on platelet deposition on ePTFE graft, segments
(3.0 cm) of prosthetic graft were bathed in either HEPES-tyrode or NO donor for 30-min
prior to mounting in an open tubing circuit maintained at 37 °C connected to a 50 ml
digital syringe pump (Vickers Medical Treonic IP3 Digital Syringe Pump, Stirling,
U.K.). Following mounting, the prosthetic graft was perfused with 15 ml HEPES-tyrode
at a flow rate of 100 ml/hour, followed by 10 ml of calcein-labelled platelets. The graft
was then perfused with a further 15 ml of HEPES-tyrode to flush out non-adhering
platelets prior to its removal and placement in a HEPES-tyrode solution containing 1%
Triton-X-100 to lyse adhered platelets. The number of adhered platelets was then

measured by fluorescence as outlined above.

2.5 SPECTROPHOTOMETRIC

MEASUREMENTS

2.5.1 MEASUREMENT OF HAEMOGLOBIN

The haemoglobin content of PRP, PPP and WP was determined using an assay kit
(Sigma Diagnostics, Dorset, U.K.) based on the haemoglobin catalysed oxidation of
3,3°,5,5’-tetramethylbenzidine by hydrogen peroxide, with absorbance measured at 600
nm (Lijana & Williams, 1979; Standefer & Vanderjagt, 1977). Aliquots (10 ul) of PRP,
PPP or WP were used, and the concentration of haemoglobin calculated using a 15
mg/dl haemoglobin standard (Sigma Diagnostics, Dorset, U.K.) as a reference (assay

sensitivity: 100 nM haemoglobin). All tests were performed in duplicate.
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2.5.2 MEASUREMENT OF PLASMA THIOLS

The reduced thiol content of plasma and solutions of human serum albumin (HSA) +
low molecular weight thiols (LMW) were quantified via reaction with 5,5’-Dithiobis(2-
nitrobenzoic acid; DTNB) and colorimetric determination at 412 nm by a well
established method (Ellman, 1959). Briefly, 0.1 ml samples were incubated in 0.8 ml
potassium phosphate-EDTA buffer (KPE buffer) containing (in mM): 16 KH,PO4, 84
K,HPO,, and 5 EDTA, pH 7.5. The reaction was started with the addition of 0.1 ml of 2
mg/ml DTNB, and the resulting mixture incubated for 1 hr (room temperature) prior to

spectrophotometric determination at 412 nm against a KPE buffer reference.

2.6 CHEMILUMINESCENT MEASUREMENTS

2.6.1 CYCLOOXYGENASE ASSAY

The effect of NO donors on COX-1 activity in vitro was assessed via a luminometry
assay based on COX-1 catalysed luminescence of the luminol derivative 7-
dimethylaminonaphthalene-1,2-dicarboxylic acid hydrazide (DNH; Forghani et al.,
1998). Luminescence was measured by a Lumac Biocounter M2500 (Lumac,
Landgraaf, Netherlands). Samples were performed in 0.5 ml reaction mixtures. Briefly,
COX-1 (100 U/ml; Sigma; ovine, purified from ram seminal vesicle) were pre-incubated
with an equimolar concentration of hematin for 10-min at room temperature in HEPES-
tyrode. Hematin was added to COX-1 to replace haem that is lost during the purification

of COX-1 (Malkowski et al., 2000). Following incubation, 17.2 ul DNH solution
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(Cayman Chemicals) was added, and the reaction mixture placed into the luminometer.
Arachidonic acid (100 pM) was injected via the luminometer, and the luminescent
signal immediately integrated for 10-sec to measure product formation (Forghani et al.,
1998). To examine the effect of NO on COX-1 activity, NO donors were pre-incubated
with the COX-1 enzyme reaction mixture for 1-min prior to assay, as outlined in chapter

4.

2.6.2 MEASUREMENT OF S-NITROSOTHIOLS

S-nitrosothiols (RSNOs) were quantified at University College London, Royal Free
Campus in a collaboration with Professor Kevin Moore and Richard Ollosson via a
method based on copper/iodide-induced cleavage of the S-NO bond and measurement
by chemiluminescence (Marley et al., 2000). To establish baseline RSNO levels, 0.5 ml
aliquots of PRP or WP were transferred to vials containing N-ethylmaleimide (NEM)
and EDTA (final concentration 5 mM and 2 mM respectively) dissolved in phosphate
buffered saline. Samples were centrifuged (1800 g; 5 min), and the supernatant
aspirated. Acidified sulfanilamide (2.5% dissolved in 0.1 M HCIl) was added to the
supernatant to remove nitrite before storage at —70 °C prior to RSNO detection. RSNO
formation following NO-donor treatment was also determined, each time using NEM/
EDTA to stop the reaction. Samples were centrifuged, the supernatant and pellet treated
with acidified sulfanilamide and stored at =70 °C as before. For RSNO detection, 8 ml
glacial acetic acid and 2 ml KI (50 mg/ml) were added to a reaction vessel maintained at

70 °C and constantly purged under a stream of N,. Following equilibration, Cu(I)SO4
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(200 mM) was added for 1-min, prior to the injection of the RSNO sample through a

Hamilton® syringe. RSNO-derived NO released in the purge vessel was measured by its
chemiluminescent reaction with ozone by a Sievers Nitric Oxide Analyser (NOA 280,
Sievers, Colorado, U.S.A.). Data collection and analysis was performed using NO
Analysis software (Sievers) and RSNO concentrations calculated against a sodium
nitrite standard (fig 2.4). Although there is an inherent danger in extrapolating RSNO
concentrations from a sodium nitrite standard, previous evidence indicates that the
efficiency of NO cleavage from RSNOs in this system is extremely high and results in
the generation of a chemiluminescent signal that is 99% of that achieved with an
equimolar nitrite standard (Marley et al., 2000). Therefore, the use of a sodium nitrite

standard within this system is a wuseful indicator for approximating RSNO

concentrations.
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Figure 2.4 Sodium nitrite calibration for RSNO determination. Abbreviation: AUC, area under
curve.
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2.7 ENZYME-LINKED IMMUNOSORBENT

ASSAYS (ELISA)

2.7.1 MEASUREMENT OF cGMP

Samples (0.5 ml) of PRP or WP (fig 2.1) for cGMP analysis were initially treated with
300 pl of 10% trichloroacetic acid (TCA) to lyse platelets and precipitate proteins. The
resulting mixture was centrifuged (2000 x g; 10-min) and the supernatant aspirated and
diluted 1:10 in 0.1 N HCI before storage (-20 °C; < 2 weeks) prior to cGMP ELISA (low
pH, R&D systems, Abington, U.K.). The non-acetylated form of ELISA was used, and
samples assayed in duplicate using a Mulitskan Ascent plate reader (Thermo
Labsystems, South Trentham, U.K.) with Ascent v 2.6 software (Thermo Labsystems),
reading at an absorbance of 405 nm. An example calibration is included (fig 2.5). Inall
experiments, platelets were pre-treated with the PDE inhibitor 3-Isobutyl-1-methyl
xanthine (IBMX; 1 mM; 20-min) to inhibit metabolism of cGMP, prior to NO donor

treatment and cell lysis with TCA.
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Figure 2.5 Calibration for cGMP ELISA.
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2.7.2 MEASUREMENT OF THROMBOXANE B: (TxB))

TxB, is generated by non-enzymatic hydration of TxA, (Viinikka & Ylikorkala, 1980)
and is the accepted index of TxA, formation, given the short half-life of TxA, under
physiological conditions (~ 37 sec; Smith, 1989). Aliquots (0.5 ml) of WP were assayed
for TxB, formation by ELISA (R&D Systems; fig 2.1) usiug' a Multiskan Ascent with
Ascent software v 2.6, measuring absorbance at 405 nm as described above. A sample
calibration is included (fig 2.6). Samples of WP treated with NO donors or aspirin
(chapter 4) were stimulated with either arachidonic acid (100 uM) or PGH, (100 ng/ml)
at 37 °C for 5-min prior to treatment with indomethacin (100 uM) or ozagrel (20 uM)
respectively to prevent further TxB, generation. Following 5-min incubation, WP were

frozen in liquid nitrogen and stored at -70 °C prior to assay.
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Figure 2.6 Calibration for TxB, ELISA.

2.8 ELECTRON MICROSCOPY

Scanning electron microscopy was performed to examine platelet deposition on

zeolite/PTFE discs. Following the incubation of zeolite/PTFE discs with platelets,
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samples were fixed in 3 % glutaraldehyde in 0.1 M sodium cacodylate buffer (SCB; pH
7.4) overnight. Following a 1 hour wash in glutaraldehyde-free SCB, discs were post-
fixed in osmium tetroxide in SCB for 2 hours before undergoing dehydration in graded
acetone (50-100%; 10 min intervals) and critical point drying with CO, (E3000 SII
CPD, Polaron Equipment Ltd, Watford U.K.). Samples were then coated with gold-
palladium alloy (SC500 Sputter Coater, Emscope Laboratories Ltd, Kent, U.K.) prior to
examination under a scanning electron microscope (Phillips 505, Eindhoven,
Netherlands). The preparation of the discs for scanning electron microscopy and
development of negatives was kindly carried out by Steve Mitchell in the Royal School

of Veterinary Studies.

2.9 MATERIALS

General laboratory reagents (buffer salts, EDTA, TCA etc.) were supplied by Fisher.
Other reagents were diluted in either HEPES-tyrode, phosphate buffered saline (PBS),
0.01 M NaOH, dimethyl sulphoxide (DMSO), or H;O (table 2.1). Some reagents were

supplied as a water soluble solution (Sol). Company locations are detailed in table 2.2.

2.10 STATISTICS

Statistical analyses are as stated throughout the experimental chapters. Data were
analysed using GraphPad Prism software v3.03 (GraphPad Software, San Diego,
U.S.A). Degrees of significance are abbreviated as follows: *** = P<0.001;

** = P< 0.01; * = P<0.05. In all cases, P>0.05 was not considered to be statistically
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significant (ns; not significant). Where expressed, data are in the form mean * standard

error of the mean (S.E.M.).

T R'&agent?- “Vehicle - S_upp_lier
Arachidonic Acid (AA) DMSO' Sigma
Caeruloplasmin (CP; human) Sol Sigma
Calcein AM DMSO Molecular Probes
Collagen (type I; fibrils; equine) | Sol (suspension) Labmedics
COX-1; ovine HEPES-tyr Sigma
L-Cysteine (cys) PBS Sigma
Cysteinyl-Glycine (cys-gly) PBS Sigma
DEA 0.01 M NaOH* Sigma
DEA/NO 0.01 M NaOH’ Alexis
DTNB DMSO Sigma
Fura-2 AM DMSO Sigma
Glutathione (GSH) PBS Sigma
Haemoglobin (Hb; bovine) H,0’ Sigma
Hematin (bovine) DMSO Sigma
Human serum albumin (HSA) HEPES-tyr Sigma
Indomethacin DMSO Sigma
DNH Sol Cayman
NEM Ethanol Sigma
0ODQ DMSO Tocris Cookson
Ozagrel PBS Sigma
PGH, Sol Cayman
PGI, PBS Sigma
Pluronic F-127 DMSO Molecular Probes
SNP HEPES-tyr Sigma
SNVP HEPES-tyr Synth*
Sulfanilamide 0.1 M HCl Sigma
Triton-X-100 HEPES-tyr Sigma
U46619 HEPES-tyr Sigma
VP HEPES-tyr Synth*
Zeolite/PTFE discs - Synth’

Table 2.1 Suppliers and vehicles for reagents.

72



Chapter Two: Methods

Supplementary information for table 2.1:

"For the COX chemiluminescent assay, AA was converted to the sodium salt via the addition of
NaOH (ODonnell et al., 2000), followed by dilution in HEPES-tyrode and pH adjustment to 7.4.
*Aliquots of DEA or DEA/NO stored in 0.01 M NaOH were pre-diluted in PBS prior to its addition
to platelet suspensions.

*Met-haemoglobin was reduced to the ferro form by sodium dithionite (57.4 puM), and excess
dithionite removed by dialysis (Martin et al., 1985). Spectrophotometry indicated that Hb existed
primarily in the oxygenated (Fe II) form.

“SNVP and VP were kindly donated by Dr A.R. Butler and Dr F.A. Mazzei, University of St.
Andrews. Synthesis was via a published method (Megson et al., 1999; Miller ef al., 2000b).
*Zeolite/PTFE discs were synthesised by Dr P.S. Wheatley and Prof R.E.Morris, University of St.
Andrews. Briefly, cobalt zeolite-A was prepared from as-synthesised sodium zeolite-A via ion
exchange in cobalt-acetate. Following filtration, the zeolite was ground with PTFE (75% Zeolite:
25% PTFE) and pressed into 5 mm discs (~ 20 mg) under 2 tons for 30 s. Discs were then
dehydrated and exposed to 3 atm of a mixture of NO and Helium (10 % NO: 90 % He) and stored in

sealed Schlenk tubes prior to use.

Company Location
Alexis Biochemicals Nottingham, U.K.
Cayman Chemical Company Michigan, U.S.A
Fisher Loughborough, U.K.
Labmedics Salford, U.K.
Molecular Probes Paisley, UK.
Tocris Cookson Bristol, U.K.
Sigma Aldrich Poole, U.K.

Table 2.2 Companies and locations.
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3.1 INTRODUCTION

NO has long been recognized to inhibit platelet activation by increasing the synthesis of
cyclic-3’5’-guanosine monophosphate (¢cGMP) via stimulation of the enzyme soluble
guanylate cyclase (sGC; Busse et al., 1987; Mellion et al., 1981). Activation of G-
kinase by cGMP inhibits platelet function through phosphorylation of key proteins
including vasodilator-stimulated phosphoprotein (VASP; Butt et al., 1994; Halbrugge et
al., 1990), thromboxane A; (TxA;) receptors (Wang et al., 1998) and proteins involved
in the Ca* signalling pathway (Busse et al., 1987; Cavallini et al., 1996; Kawahara et
al., 1984; Matsuoka et al., 1989; McDonald & Murad, 1995; Nakashima et al., 1986).
An elevated cytosolic Ca®* concentration following agonist stimulation is a critical
signalling event required for platelet shape change and aggregation (Blockmans et al.,
1995; Gerrard et al., 1978; Murer, 1985; Rink, 1988). Recently, several cGMP
independent signalling mechanisms have been identified (Ahern ef al., 2002; Gordge et
al., 1998; Homer & Wanstall, 2002; Thyagarajan et al., 2002; Trepakova et al., 1999;
Tsikas et al., 1999a; White et al., 2002). In platelets, NO accelerates sarco-endoplasmic
reticulum Ca®* ATPase (SERCA)-dependent refilling of internal Ca** stores (Homer &
Wanstall, 2002; Trepakova et al., 1999), and the unstable S-nitrosothiol, S-
nitrosocysteine, inhibits agonist-induced TxA; synthesis in human platelets (Tsikas et
al., 1999a). Furthermore, the importance of cGMP-independent mechanisms is
underpinned by the recent discovery that protein kinase G has an excitatory role in

platelet activation (Li et al., 2003).
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An important aspect in assessing cGMP-independent mechanisms is
identification of the exact NO-related (NO,) species responsible for the effect.
However, studies in platelets are complicated by a number of factors. Firstly, blood
plasma contains antioxidants such as ascorbate (~100 uM; Esteve et al., 1997) and low
molecular weight thiols (10-20 uM; Mansoor et al., 1992), which can catalyse the
release of NO from S-nitrosothiols (Ignarro et al., 1981; Singh et al., 1996). Secondly,
NO and its higher oxides can interact with plasma proteins such as albumin and
haemoglobin, resulting in the formation of S-nitrosated proteins with considerably
different properties to NO itself (Crane et al., 2002; Gow et al., 1997; Gow et al., 1999;
Kharitonov et al., 1995; Pawloski et al., 1998; Scharfstein et al., 1994; Simon et al.,
1993; Stamler et al., 1992a). Plasma is also an abundant source of the Fe?*/Cu**
transporting protein caeruloplasmin (CP), which catalyses S-nitrosothiol formation and
decomposition (Dicks & Williams, 1996; Inoue et al., 1999). Thirdly, NO can react
with superoxide (O;) at almost diffusion limited rates, leading to the generation of
peroxynitrite (ONOO'; chapter 1.3.6.3; Espey et al., 2002; Jourd'heuil et al., 2001).
ONOO' has been reported to exert both inhibitory and excitatory effects in platelets
(Brown et al., 1998; Moro et al., 1994). In the case where the simultaneous generation
of NO and O;’ is desired to create ONOO', plasma may contain enough antioxidants to
remove at least a proportion of O, before it has the opportunity to react with NO.
Finally, endogenous pathways exist for the conversion of ONOO™ to potent nitrosating
species such as N>O3, which can lead to formation of S-nitrosothiols and NO (Espey et

al., 2002; Mayer et al., 1998).
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To date, a number of studies in both platelets and blood vessels have indicated a
correlation between the amount of NO (radical) released by an NO donor, and the level
of cGMP-independent activity observed (Homer et al., 1999; Miller et al., 2004; Sogo et
al., 2000b). The aim of the studies described in this chapter was to perform systematic
experiments to test the hypothesis that extracellular generation of NO, but not ONOO
or S-nitrosothiols is the most important determinant for cGMP-independent inhibition of
platelet activation. Furthermore, we hypothesised that extracellular generation of NO
instils antiplatelet effects via inhibition of Ca®* mobilisation. To test this hypothesis, the
c¢cGMP independent effects of the predictable NO donor DEA/NO (chapter 1.3.9.5;
(Davies et al., 2001), the relatively stable S-nitrosothiol SNVP (chapter 1.3.9.6; Megson
et al., 1999) and the ONOO™ generator SIN-1 (chapter 1.3.9.4; Feelisch et al., 1989)
were tested. Furthermore, plasma proteins CP and SOD were used as membrane
impermeant tools to specificially elicit the extracellular release of NO from SNVP and
unmask that from SIN-1 respectively, to probe the role of extracellular NO in cGMP-

independent inhibition of human platelet activation.
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3.2 METHODS

3.2.1 cGMP MEASUREMENTS

cGMP measurements were performed to assess the concentration of the sGC inhibitor
ODQ (chapter 1.3.5) required to completely inhibit platelet cGMP synthesis to a
maximal concentration of DEA/NO (10 uM). Platelet rich plasma (PRP) and washed
platelets (WP) were prepared as described in the methods section (chapter 2.1.1).
Aliquots (0.5 ml) of PRP or WP were equilibrated in the platelet aggregometer and
incubated with the phosphodiesterase inhibitor 3-Isobutyl-1-methyl xanthine (IBMX; 1
mM) for 20-min prior to the addition of DEA/NO (10 uM). To assess the inhibitory
action of ODQ on cGMP formation, WP or PRP were pre-incubated with ODQ (20 uM
or 100 uM) for 15-min prior to the addition of DENNO. In all cases, DEA/NO was
incubated in the platelets for 30 s prior to the addition of 300 ul of 10% trichloroacetic
acid to lyse platelets and precipitate the proteins. The 30 s time-point was used so that
c¢GMP measurement occurred shortly after the peak cGMP synthesis (Bellamy et al.,
2000). The resulting mixture was then centrifuged and the supernatant aspirated and
stored (-20 °C; < 2 weeks) prior to cGMP ELISA as described in the methods section

(chapter 2.7.1; n = 5).

3.2.2 NO ELECTRODE MEASUREMENTS

NO generation was measured using a calibrated NO electrode described in the methods

section (chapter 2.2). Nitric oxide-related (NOyx) donors DEA/NO (3 uM), SNVP (100
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uM) or SIN-1 (100 puM) were added to 2 ml aliquots of PRP or WP and the NO
generation recorded for 6-min. In experiments involving sGC inhibition, PRP was
treated with a supramaximal concentration of ODQ (20 uM) for 15-min, as determined
in the preliminary cGMP measurements, before the addition of NOy donor. In further
experiments, the effect of plasma factors on the release of NO from SNVP and SIN-1
was investigated. WP were incubated with levels of caeruloplasmin (CP) that
approximate plasma concentrations (0.4 g/L; Prakasam et al., 2001; Ravin, 1961) for 1-
min prior to the addition of SNVP (100 uM). CP, a membrane impermeant protein that
has previously been shown to catalyse the release of NO from S-nitrosothiols (Dicks &
Williams, 1996), was incubated specifically with SNVP to investigate the effect of
generating NO from SNVP in the extracellular compartment. Similarly, WP was
incubated with superoxide dismutase (SOD, 500 U mlI™), ascorbate (ASC, 100 uM), and
human serum albumin (HSA, 4%) for 1-min prior to the addition of SIN-1 (100 uM) to
examine the effect of plasma factors on the generation of NO by SIN-1 (n= 4 for all

experiments).

3.2.3 AGGREGOMETRY

Aggregometry was carried out as described in the methods section (chapter 2.3).
Aliquots (0.5 ml) of PRP or WP were equilibrated in the aggregometer at 37°C before
the addition of DEA/NO (1 nM-10 uM), SNVP (10 nM-100 uM) or SIN-1 (3 nM-300
uM). Following incubation of drug for 1-min, U46619 (a TxA; analogue; 8 uM) was

added to the platelets to induce aggregation, and the response measured for 5-min.
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U46619 was used in these experiments because it activates a signalling pathway
downstream of platelet TxA, synthesis, minimising the effect of cGMP-independent
inhibition of endogenous TxA; synthesis (Tsikas et al., 1999a). In experiments designed
to investigate cGMP-independent mechanisms, ODQ (20 uM) was pre-incubated with
platelets for 15-min before the addition of DEA/NO, SNVP or SIN-1. In further
experiments, aliquots of WP pre-treated with ODQ were incubated with various plasma
factors to determine the effect of releasing NO on cGMP-independent inhibition of
platelet activation. In these experiments, CP (0.4 g L) was added to WP for a 1-min
period prior to SNVP (0.1-100 uM), which was added 1-min prior to U46619. As
described previously, CP was incubated specifically with SNVP to investigate the effect
of generating NO from SNVP in the extracellular compartment. Similarly, WP pre-
incubated with ODQ were treated with supra-maximal SOD (500 U ml™) for 1-min
before the addition of SIN-1 (3 nM-300 uM), 1-min prior to U46619. Supramaximal
concentrations of SOD were added to WP to remove superoxide generated in the
extracellular compartment by SIN-1, thereby preventing its rapid reaction with NO and
thus allowing investigation of the antiplatelet effects of extracellular NO derived from

SIN-1 (n=6 for all experiments).

3.2.4 Ca** STUDIES

Fura-2 labelled WP were prepared as described in the methods section (chapter 2.1.2)
and intracellular Ca®* measured via fluorescence as described previously (chapter 2.4.1).

Aliquots (1.5 ml) of Fura-2 loaded WP were equilibrated at 37°C before the addition of
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DEA/NO (10 uM), SIN-1 (100 uM), or SNVP (100 uM). After a 1-min incubation
period, U46619 (8 uM) was added and the response measured for 5-min. These
experiments were also repeated in platelets pre-incubated with ODQ (20 uM) for 15
min. Analogous to aggregometry experiments, aliquots of WP pre-treated with ODQ
were incubated with CP (0.4 g L") for a 1-min period prior to the addition of SNVP
(100 uM), which was added 1-min prior to U46619. Similarly, ODQ-treated WP pre-
incubated with SOD (500 U ml™) for 1-min before the addition of SIN-1 (100 uM), 1-

min prior to U46619 (n = 4-6 for all experiments).

3.2.5 HAEMOGLOBIN MEASUREMENTS

The haemoglobin content of PRP and WP was determined by spectrophotometry as

described in the methods section (chapter 2.5.1; n=3-5).
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3.3 RESULTS

3.3.1 cGMP MEASUREMENTS

Incubation of platelets with DEA/NO (10 uM) caused a significant (P < 0.01; one-way
ANOVA followed by Dunnett’s multiple comparison test) ~ 2-fold increase in platelet
cGMP levels in both PRP and WP (in pmol/10® platelets: PRP control: 22.4 + 4.9, +
DEA/NO: 42.5 * 4.3; WP control: 47.3 = 3.0, + DEA/NO: 97.2 + 9.8). Pre-incubation
of platelets with ODQ at both concentrations tested (20 uM and 100 pM) completely
prevented the DEA/NO-induced increase in ¢cGMP in PRP and WP (in pmol/10°®
platelets: PRP: + 20 uM ODQ: 21.9 + 2.7, + 100 uM ODQ: 22.3 + 3.2; WP: + 20 uM
ODQ: 43.2 + 2.1, + 100 uM ODQ: 41.1 = 2.9). In both cases, no significant difference
to baseline cGMP levels was observed (P > 0.05; one-way ANOVA followed by
Dunnett’s multiple comparison test). Since 20 puM ODQ was sufficient to completely

prevent DEA/NO-induced cGMP accumulation, this concentration was used in

subsequent experiments to reduce non specific effects caused by vehicle (DMSO).

3.3.2 GENERATION OF NO IN PRP & WP BY DEA/NO,

SNVP & SIN-1

Addition of DEA/NO (3 uM), SNVP (100 uM) and SIN-1 (100 uM) to PRP at
concentrations with maximal antiplatelet activity resulted in measurable NO generation

from each compound (fig 3.1.a). In all samples tested, there was a short lag phase (60-
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90 s) before NO was detected. In a parallel series of experiments, DEA/NO (3 uM),
SNVP (100 uM) or SIN-1 (100 uM) was added to WP. High levels of NO were
detected with DEA/NO (fig 3.1.b), while only a transient, low level of NO was detected
with SNVP (< 50 nM; fig 3.1.b inset). NO was not detected with SIN-1, even under

conditions of maximum electrode sensitivity (threshold ~ 10 nM; fig 3.1.b inset).

PRP
d
NO,, donor HEANG
SNVP
1 uM:[ / SIN-1
—_—....
_
100s
m!
donor
P
WP M"I {\\ »
~—r—r——
b Tws \ SN
DEA/NO
NO,
donor
SIN-1
o] | /
—
100s SNVP

Figure 3.1 Generation of NO by DEA/NO, SNVP and SIN-1 in PRP and WP. Platelets were
equilibrated at 37°C before the addition of DEA/NO (3 uM), SNVP (100 uM) or SIN-1
(100 uM) to PRP (a) or WP (b). Experiments involving the addition of SNVP (100 uM)
and SIN-1 (100 uM) to WP are also shown on a smaller scale (inset). Data shown are
the mean of 4-5 experiments.
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3.3.3 DEA/NO-MEDIATED INHIBITION OF PLATELET

AGGREGATION IN PRP & WP

DEA/NO (1 nM-10 pM) inhibited U46619-induced platelet aggregation in PRP and WP
in a concentration dependent manner (fig 3.2.a.i-iii). DEA/NO was approximately 100-
fold more potent in WP compared to PRP. Pre-incubation of the sGC inhibitor (ODQ;
20 pM) with PRP for 15-min did not affect DEA/NO-mediated inhibition of platelet
aggregation (control ICso: 131 nM, +ODQ: 340 nM; P > 0.05; two-way ANOVA).
However in WP, ODQ inhibited DEA/NO-mediated inhibition of platelet aggregation,

causing a right-shift of the concentration response curve (control ICsp: 6.9 nM, +ODQ:

1.43 uM).

3.3.4 SNVP-MEDIATED INHIBITION OF PLATELET

AGGREGATION IN PRP & WP

SNVP (10 nM-100 uM) also caused a concentration dependent inhibition of U46619-
induced platelet aggregation in PRP and WP (fig 3.2.b.i-ii)). Similarly to DEA/NO,
SNVP (10 nM-100 uM) also inhibited platelet aggregation in WP at substantially lower
concentrations than in PRP. Incubation of platelets with ODQ did not affect the
inhibition of U46619-induced aggregation in PRP (control ICsp: 20 uM, +ODQ: 26 uM;
P > 0.05; two-way ANOVA). However, ODQ abolished SNVP-mediated inhibition of

aggregation in WP at all concentrations of SNVP tested (control ICso: 270 nM).
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Figure 3.2.a Inhibition of platelet aggregation by DEA/NO in PRP (i) and WP (ii) in the
presence and absence of ODQ. [Platelets were equilibrated to 37°C before
treatment with DEA/NO for 1-min prior to stimulation with U46619 (8 uM). ODQ
(20 pM) was pre-incubated with platelets for 15-min before the addition of
DEA/NO, followed by U46619 1-min later. A representative trace of experiments
conducted in PRP (control) is included (n= 6).
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Figure 3.2.b Inhibition of platelet aggregation by SNVP in PRP (i) and WP (ii) in the presence
and absence of ODQ. Platelets were equilibrated to 37°C before treatment with
SNYVP for 1-min prior to stimulation with U46619 (8 puM). ODQ (20 uM) was pre-

incubated with platelets for 15-min before the addition of SNVP, followed by
U46619 1-min later (n=6).
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Inhibition of platelet aggregation by SIN-1 in PRP (i) and WP (ii) in the presence
and absence of ODQ. Platelets were equilibrated to 37°C before treatment with
SIN-1 for 1-min prior to stimulation with U46619 (8 pM). ODQ (20 pM) was pre-
incubated with platelets for 15-min before the addition of SIN-1, followed by
U46619 1-min later (n=6).

87



Chapter Three: Extracellular NO & cGMP-independent effects

3.3.5 SIN-1-MEDIATED INHIBITION OF PLATELET

AGGREGATION IN PRP & WP

SIN-1 (3 nM -300 uM) also inhibited U46619-induced platelet aggregation in PRP and
WP in a concentration-dependent manner (fig 3.2.c.i-ii). SIN-1 was a considerably more
potent inhibitor of platelet aggregation in WP compared to PRP. Incubation of ODQ
caused a significant (~10-fold) rightward shift in the concentration response curve for
SIN-1 in PRP (control ICsp: 1.4 uM, +ODQ: 17 uM; P < 0.05; two-way ANOVA). In
WP, ODQ abolished SIN-1 mediated inhibition of plateiet aggregation at all

concentrations tested (control ICsy: 54 nM).

3.3.6 EFFECT OF PLASMA FACTORS ON THE

GENERATION OF NO BY SNVP AND SIN-1

In experiments designed to establish the effect of plasma factors and extracellularly
generated NO on SNVP and SIN-1, WP was reconstituted with CP at a level that
approximates its concentration in plasma (0.4 g/L; Prakasam et al., 2001; Ravin, 1961).
CP was used specifically in combination with SNVP in these experiments because it is a
membrane impermeant protein and will catalyse NO generation from S-nitrosothiols
within the extracellular compartment (Dicks & Williams, 1996). CP was observed to
greatly enhance the release of NO from SNVP (fig 3.3.a). Similarly, SOD was utilised
only in combination with SIN-1 to investigate the effect of removing superoxide,

thereby allowing NO generated by SIN-1 in the extracellular compartment to persist.
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Incubation of WP with SOD (500 U ml™) prior to the addition of SIN-1 resulted in

measurable NO generation (fig 3.3.b). Furthermore, incubation of WP with the plasma
components ascorbate (100 uM) and HSA (4%) prior to SIN-1 also resulted in

measurable NO generation from SIN-1 (fig 3.3.b).

a SNVP WP
SNVP
SNVP + CP
1 “MI l /"_; SNVP
oos
b SIN-1 WP
SIN-1
SIN-1 + SOD
1 "”'I 1 / SIN-1 + ASC
- +—SIN-1 + HSA
e o1

Figure 3.3 Effect of plasma factors on the generation of NO from SNVP and SIN-1 in WP.
Platelets were equilibrated to 37°C before the addition of SNVP (100 pM; a) or SIN-1
(100 uM; b). In experiments involving SNVP, WP were pre-incubated with CP (0.4
g/L) for 1-min prior to the addition of SNVP. In SIN-1 experiments, WP were pre-
incubated with SOD (500 U/ml), ASC (100 uM) or HSA (4%) for 1-min before the
addition of SIN-1. Data shown are the mean of 4 experiments.

89



Chapter Three: Extracellular NO & cGMP-independent effects

3.3.7 EFFECT OF CP & SOD ON SNVP & SIN-1-
MEDIATED INHIBITION OF PLATELET

AGGREGATION

To assess the effect extracellular NO generation from SNVP on cGMP-independent
antiplatelet effects, WP were reconstituted with CP (0.4 g L") in the presence of ODQ
prior to treatment with SNVP. In the presence of ODQ and CP, SNVP caused a
concentration-dependent inhibition of platelet aggregation (fig 3.4.a; ICsp: 3.3 puM).
Similarly, to investigate the effect of preventing superoxide generated by SIN-1 reacting
with NO in the extracellular compartment on cGMP-independent inhibition of platelet
aggregation, WP were reconstituted with SOD (500 U/ml) in the presence of ODQ
before treatment with SIN-1. In these conditions, SIN-1 concentration-dependently

inhibited platelet aggregation (fig 3.4.b; ICso: 3.0 x 10° M).

3.3.8 EFFECT OF NOx DONORS ON Ca** SIGNALLING

IN FURA-2 LOADED WP

Addition of U46619 to fura-2 loaded WP caused an expected rapid Ca**spike, followed
by a sustained elevation of intracellular Ca*’levels. Pre-incubation of WP with
DEA/NO (10 uM) inhibited this Ca**signalling, an effect that was not blocked by ODQ
(fig 3.5.a.i; P > 0.05; Student’s paired t-test). Incubation of WP with SNVP (100 uM)
also inhibited U46619-induced Caz+signallil1g, but this effect was blocked by ODQ (fig

3.5.a.ii, P < 0.01; one-way ANOVA followed by Dunnett’s multiple comparison test).
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Pre-incubation of ODQ-treated WP with CP 1-min prior to SNVP reversed the

antagonistic effect of ODQ on SNVP (P<0.01; one-way ANOVA followed by Dunnett’s
multiple comparison test), to a similar level observed with the S-nitrosothiol alone (fig
3.5.a.ii). Similarly, incubation of WP with SIN-1 (100 pM) resulted in an inhibitory
effect on U46619-induced Ca®* signalling that was reversed by ODQ (fig 5.a.iii; P <
0.01; one-way ANOVA followed by Dunnett’s multiple comparison test). Pre-
incubation of ODQ-treated WP with SOD also prevented the inhibitory action of ODQ
on SIN-1 (fig 3.5.a.iii; P<0.01; one-way ANOVA followed by Dunnett’s multiple

comparison test). Summary data showing this trend are also presented (fig 3.5.b).

3.3.9 EFFECT OF ODQ ON NO GENERATION BY NOx

DONORS IN PRP

In experiments investigating the effect of ODQ (20 pM) on NO generation by the NOy
donors in PRP, ODQ was observed to substantially reduced the length of the lag phase
observed with all three donor drugs, without altering the maximum concentration of NO

detected (fig. 3.6.a-c).

91



Chapter Three: Extracellular NO & cGMP-independent effects

SNVP WP

1251
—a—U46619 + SNVP
§ 1001 A~m—F—p g —0—U46619 + SNVP + ODQ
= —e— 46619 + SNVP + ODQ + CP
2 751
o
50-
=2
25
G L ] T L} L
9 8 -7 6 -5 -4 .3
Log [SNVP] (M)
SIN-1 WP
128 —a—U46619 + SIN-1
£ 100 —— U46619 + SIN-1 + ODQ
2 —o— 46619 + SIN-1 + ODQ +
S 754 SOD
e
=
< 501
2
254
c T ] ‘:'_‘ ] L) 1
9 8 -7 6 -5 -4 -3
Log [SIN-1] (M)

Figure 3.4 Effect of plasma factors on cGMP-independent inhibition of platelet aggregation by
SNVP and SIN-1 in WP. Platelets equilibrated to 37°C were pre-incubated with ODQ
(20 pM) for 14-min before the addition of CP (0.4 g/L) 1-min prior to the addition of
SNVP (a). SOD (500 U/ml) was also added to ODQ-treated WP 1-min before the
addition of SIN-1 (b). After incubation with SNVP or SIN-1 for 1-min, U46619 (8 uM)
was added to induce aggregation. Previous data are added as a comparison (n=6).
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Figure 3.5.a Representative traces showing the effect of DEA/NO, SNVP and SIN-1 on
Ca’*signalling in Fura-2 labelled WP. Platelets loaded with Fura-2 were
equilibrated to 37°C before the addition of DEA/NO (10 pM - a.i), SNVP (100 pM
— a.ii) or SIN-1 (100 pM - a.ii). In experiments involving ODQ, WP were pre-
incubated with ODQ (20 pM) for 15-min before the addition of NO, donor. In
other experiments, ODQ-treated WP were reconstituted with CP (0.4 g/L) or SOD
(500 U/ml) before the addition of SNVP or SIN-1 respectively.
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Figure 3.5.b Summary data showing the effect of NO, donors on U46619-induceCa® signalling

in Fura-2 labelled WP. Data were obtained by measuring the area under curve
(AUC; ns = P>0.05; ** = P<0.01; n = 4-6).

3.3.10 HAEMOGLOBIN MEASUREMENTS

The haemoglobin concentration in PRP was 0.35 *+ 0.03 uM, while no haemoglobin was

detected in WP (limit of detection: 100 nM).
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Figure 3.6 Effect of ODQ incubation on NO generation by DEA/NO, SNVP and SIN-1 in PRP.

Platelets were equilibrated to 37°C before the addition of DEA/NO (3 uM; a), SNVP
(100 uM; b) or SIN-1 (100 pM; c). In experiments involving ODQ, PRP was treated
with ODQ (20 pM) for 15-min before the addition of DEA/NO, SNVP or SIN-1. Data
shown are the mean of 4 experiments,
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3.4 DISCUSSION

These results suggest that NO-mediated cGMP-independent antiplatelet effects are
reliant on the generation of detectable (>30 nM) NO (radical) in the extracellular
compartment. DEA/NO inhibited platelet aggregation via cGMP-independent
mechanisms in both PRP and WP, implying a role for exogenous NO in cGMP-
independent inhibition of activation. SNVP, however, inhibited platelet aggregation via
a cGMP-independent mechanism in PRP, but inhibition in WP was entirely dependent
on cGMP. Analysis of NO generation by a high concentration of SNVP (100 pM) using
an isolated electrode revealed that SNVP generated significant amounts (~ 1 uM) of NO
in PRP sustained throughout a 5-min period, but in WP only generated a small transient
increase in extracellular NO (~ 30 nM) that persisted for only ~ 2-min. Reconstitution
of WP with the copper-containing protein, CP, at similar levels to those found in plasma
elicited extracellular release of NO from SNVP and conferred cGMP-independent
inhibition of platelet aggregation to SNVP. Incubation of platelets with SIN-1 revealed
a similar trend to that observed with SNVP, with cGMP-independent inhibition of
aggregation only observed in PRP and not WP. SIN-1 only generated detectable NO in
PRP, but incubation of WP with SOD resulted in detectable generation of extracellular
NO from SIN-1, and also caused cGMP-independent inhibition of aggregation.
Experiments with Fura-2 loaded platelets demonstrated that both CP and SOD conferred
cGMP-independent inhibition of Ca®* signalling by SNVP and SIN-1 respectively,
indicating that the cGMP-independent target(s) play a role in the regulation of platelet

Ca®'signalling. Taken together, these data suggest a potential requirement for
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exogenous NO in the generation of cGMP-independent inhibition of platelet activation

through inhibitory effects on Ca**mobilisation.

3.4.1 ODQ-MEDIATED INHIBITION OF sGC

Confidence in the inhibitory effects of ODQ on sGC is essential to facilitate
interpretation of the data derived from this study. Initial experiments were performed to
assess the concentration of ODQ required to prevent cGMP formation to a maximal
concentration of DEA/NO (10 uM). Previous data have shown that 100:1 excess of the
NO donor SNAP can result in a partial reversal of ODQ-mediated inhibition of sGC
(Moro et al., 1996). In these experiments, a theoretical maximum of 20 pM NO will be
released by 10 uM DEA/NO, which is equivalent to the concentration of ODQ used
here, and unlikely to be sufficiently high to overcome ODQ-mediated inhibition. cGMP
measurements revealed that 20 uM ODQ was sufficient to completely prevent NO-
mediated cGMP formation and that no added benefit was observed when the ODQ
concentration was increased to 100 uM. Furthermore, the observation that 20 uM ODQ
was sufficient to completely prevent SNVP and SIN-1-mediated inhibition of
aggregation in WP at concentrations 1000-fold greater than that required to inhibit
aggregation confirms the notion that these NO-donors do not release sufficient NO
intracellularly to overcome ODQ-mediated inhibition of sGC. These experiments
therefore support the hypothesis that the inhibition of aggregation observed in the

presence of 20 uM ODQ represent genuine cGMP-independent responses.
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There is an issue regarding the specificity of ODQ, and it now seems clear that ODQ is
able to oxidise the haem group of other haemoproteins including haemoglobin (Zhao et
al., 2000), a finding supported by data here (fig 3.6). Indeed, it is therefore plausible
that ODQ could oxidise the haem centres of platelet COX-1 or TxA; synthase, and
therefore impede platelet TxA, synthesis and the positive feedback response that
promotes aggregation. However, previous data obtained within this laboratory indicate
that ODQ does not prevent collagen-induced platelet aggregation, while results
presented later in this thesis indicate that pre-incubation of platelets with the COX-1
inhibitor aspirin completely inhibits collagen-induced platelet aggregation in calcein-
labelled WP (chapter 6.3.2 & fig 6.3). These observations therefore support the
hypothesis that ODQ does not significantly interfere with platelet prostanoid synthesis,

and provides further support for its use as a sGC inhibitor in experiments outlined here.

3.4.2 NOx DONORS, EXTRACELLULAR NO & cGMP-
INDEPENDENT INHIBITION OF PLATELET

AGGREGATION

The NOy donors used in this study were purposefully selected to allow examination of
the NOy species responsible for the cGMP-independent antiplatelet effect. DEA/NO
hydrolyses in physiological solutions with a half-life of ~ 2 min at physiological
temperature and pH (Davies et al., 2001). Importantly, biological factors are not
required to drive DEA/NO hydrolysis, therefore DEA/NO will generate equivalent

amounts of NO in both PRP and buffer. SNVP, a more stable and lipophilic analogue of
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the well-recognized S-nitrosothiol, SNAP, was chosen for these studies because it is
relatively stable but nevertheless undergoes transnitrosation reactions (Megson et al.,
1999): it is a useful tool in establishing a role for transnitrosation in cGMP-independent
effects. SIN-1 was originally believed to be a NO donor, but is now known to generate
O, concurrently with NO (Feelisch et al., 1989; Noack & Feelisch, 1991; Taylor et al.,
2004). The reaction rate between NO and O; is near diffusion limited (6.7 x 10° M's™;
chapter 1.3.6.3; Huie & Padmaja, 1993), making SIN-1 an effective and convenient
ONOO' donor.

Our results indicate that in WP, all three NO, donors stimulate sGC, inhibit Ca*
signalling and prevent platelet aggregation. The ECso for DEA/NO in WP was ~ 10 nM
(fig 3.2.a.ii.), indicating that low nM concentrations of NO (= 20 nM) are sufficient to
stimulate sGC. A key finding in these experiments is that cGMP-independent
antiplatelet effects are only observed in conditions where extracellular NO is detectable.
Thus, while all NO; donors generated extracellular NO in PRP and induced cGMP-
independent inhibition of aggregation, only DEA/NO generated substantial and
sustained levels of NO and induced cGMP-independent antiplatelet effects in WP (ECs
<2 uM NO; figs 3.1 & 3.2). At this juncture, it is therefore unclear whether the absolute
NO concentration or the site of its release is the important factor for cGMP-independent
antiplatelet effects. This supposition may be answered most clearly via analysis of the
data obtained for SIN-1. In WP, SIN-1 exhibited only cGMP-dependent inhibition of
platelet aggregation (ECso ~ 50 nM; fig 3.2.c.ii) and even at high concentrations (100

uM) did not generate detectable levels of extracellular NO (limit of detection ~ 10 nM;
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fig 3.1.b). Thus, 50 nM SIN-1 is sufficient to generate the low nM amounts of
intracellular NO required to stimulate sGC. Assuming that the addition of maximal
concentrations of SIN-1 (300 uM) to WP results in a similar-fold increase in
intracellular NO (i.e. a 6000-fold increase of intracellular NO to levels in the uM range),
the manifestation of cGMP-independent effects would be expected if the concentration
of NO is the sole limiting factor. However, cGMP-independent effects with SIN-1 are
only observed when extracellular NO is detected (i.e. in PRP or when extracellularly
generated NO is unmasked by the membrane-impermeant protein SOD). These data
therefore support the hypothesis that the site of NO generation is an important factor
governing cGMP-independent antiplatelet effects. This premise is further supported by
the SNVP data. Although the addition of SNVP to WP resulted in a small, transient
increase in extracellular NO (~ 30 nM from 100 uM SNVP; fig. 3.1.b), this was
insufficient to elicit cGMP-independent effects, suggesting that concentrations of
extracellular NO exceeding 30 nM are required for cGMP-independent antiplatelet
effects. The addition of the plasma protein CP induced the release of extracellular NO
and stimulated cGMP-independent inhibition of platelet aggregation, implying a role for
extracellular NO in cGMP-independent antiplatelet effects. However, it is important to
acknowledge that NO can rapidly move across biological membranes, and the
experimental design adopted here cannot ascertain the origin of the NO, whether it is
from extracellular, intracellular or both sources. It is thus difficult to conclusively

determine a role for extracellular NO in cGMP-independent antiplatelet effects.
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3.4.3 ONOO AND PLATELET ACTIVATION

Interestingly, high concentrations of ONOO™ (= 150 puM) can activate human WP
(Brown et al., 1998; Moro et al., 1994). The concentrations of SIN-1 we have used here
are likely to result in the formation of much smaller concentrations of ONOO™ (a 1 mM
SIN-1 solution has been demonstrated to release ~ 7 uM/ min O, and ~ 4 uM/ min NO
in PBS at 37°C, pH 7.2; Hogg et al., 1992). The use of SIN-1 and the comparatively
low concentrations of ONOO" that it generates may explain why others that have used
preformed ONOO™ have found that it induces cGMP-independent inhibition of platelet
aggregation (Low ef al., 2002). Our results suggest that at low concentrations, ONOO
exerts anti-platelet effects via stimulation of sGC and production of cGMP, in agreement
with previous observations that ONOO™ mediated cGMP accumulation can be achieved

through intracellular conversion to S-nitrosothiols and NO (Mayer et al., 1998; Mayer et

al., 1995).

3.4.4 cGMP-INDEPENDENT INHIBITION OF PLATELET

Ca?* SIGNALLING

These results indicate that NO inhibits Ca®* signalling via a cGMP-independent
mechanism. To date, numerous potential targets for cGMP-independent inhibition have
been established. There is convincing evidence that NO can activate the platelet
sarcoendoplasmic reticulum Ca** ATPase (SERCA; Homer & Wanstall, 2002;

Trepakova et al., 1999). Data presented here suggest that the cGMP-independent effects
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of NO do indeed impact on Ca* trafficking (fig 3.5), in agreement with earlier findings.
However, the apparent role for extracellular NO in cGMP-independent inhibition of
platelet activation might suggest that NO-mediated modification of cell surface
components is a more likely target than an intracellular component that has to compete
for NO with high affinity sGC found throughout the cytoplasm. This discrepancy may
be explained by the observation that SERCA is located in the dense tubular system
(Horiguchi et al., 1998), in close proximity to the open cannalicular system and plasma
membrane (chapter 1.2.2.1). Therefore in platelets, SERCA may be in an ideal position
proximal to the outer surface of the platelet to detect NO generated in the extracellular
environment and respond to increases in NO by enhancing sequestration of Ca®* back
within the dense tubular system. However, other cGMP-independent mechanisms
including the interaction of NO with platelet surface thiols may also play a role as

previously implied (Gordge et al., 1998; Sogo et al., 2000D).

3.4.5 PHYSIOLOGICAL & PHARMACOLOGICAL

IMPLICATIONS

The physiological implications of data presented here are unclear. Concentration-
response curves in PRP + ODQ are difficult to compare on a quantitative level on
account of the fact that ODQ will oxidise residual haemoglobin present in PRP (fig 3.6;
Zhao et al., 2000), reducing its ability to bind NO and thereby effectively increasing the
NO dose received by these platelets. Indeed, results presented here demonstrate that

washing procedure results in the removal of haemoglobin, indicating that the majority of
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haemoglobin present within PRP was cell-free. Although there is controversy regarding
the fate of NO following its interaction with haemoglobin, evidence indicates that while
red blood cells may conserve NO and increase its delivery within hypoxic tissues (Datta
et al., 2004; Jia et al., 1996) cell-free haemoglobin inactivates NO (Nakai et al., 1996;
Olson et al., 2004; Reiter et al., 2002). The observation that WP, which are devoid of
haemoglobin, demonstrate increased sensitivity to the NOy donors agrees with these
findings. It is interesting that cell-free haemoglobin is present within blood in vivo
(Lentener, 1984) and will represent a significant barrier for NO-mediated platelet
effects, irrespective of the NO source. The fact that physiological concentrations of
plasma constituents such as CP and ascorbate or HSA accelerate the release of NO from
SNVP and SIN-1 respectively (fig 3.3) and that haemoglobin-mediated scavenging of
NO will likely have to be overcome before any antiplatelet effects are observed will

mean that cGMP-independent effects of these drugs are likely to be evoked.
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3.4.6 SUMMARY

In summary, our data suggest a requirement for the extracellular generation of NO (> 30
nM) to stimulate cGMP-independent inhibition of platelet activation. Plasma
antioxidants and proteins such as CP can evoke cGMP-independent antiplatelet activities
on S-nitrosothiols and ONOO™ generators by accelerating the extracellular release of NO
from these compounds, suppressing platelet Ca>* signalling events and inhibiting platelet

function (see fig 3.7 for summary).

DEA/NO

%P SOD
RSNO —@* NO «—— SIN-1

@®
\@
o Membrane

protein

@
SERCA
T

Platelet

Figure 3.7 Summary of proposed mechanism for the requirement of extracellular NO for
c¢GMP-independent effects. NO inhibits platelet activation via cGMP-independent
mechanisms, possibly involving acceleration of SERCA-mediated sequestration of
Ca®" into the platelet DTS or via other unspecified effects on the platelet membrane.
Plasma antioxidants prevent the reaction between NO and O,, and catalyse the
release of NO from S-nitrosothiols, thereby accentuating cGMP-independent
antiplatelet effects. NO produced in the intracellular environment by the
intracellular conversion of S-nitrosothiols and peroxynitrite primarily binds to sGC,
resulting in cGMP-dependent inhibition of platelet activation.

104



Chapter Four: NO & the TxA; Pathway

CHAPTER FOUR
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4.1 INTRODUCTION

A critical early signalling event in platelet aggregation is the activation of the
arachidonic acid (AA)/ thromboxane A; (TxA;) signalling pathway, which forms a
positive feedback system to drive platelet shape change and the aggregation response
(chapter 1.2.4.; Blockmans et al, 1995; Zucker & Nachmias, 1985). Physiological
agonists such as collagen activate the pathway by increasing intraplatelet Ca®" levels (fig
4.1), resulting in phospholipase A; (PLA;) activation and synthesis of AA from
glycerophospholipids (GPL) present within the platelet membrane (Clark et al., 1995;
Kramer et al.,, 1993). Intracellularly synthesised, or exogenously added AA induces
platelet aggregation via its sequential conversion to prostaglandin H, (PGH;) and TxA;
via the membrane-bound enzymes COX-1 and TxA» synthase respectively (chapter
1.2.4.3; fig 4.1, Carey et al., 1982; Needleman et al., 1976b; Smith ef al., 1996b). TxA,
receptor (TP) stimulation then activates phospholipase C, leading to the liberation of
Ca®* from the dense tubular system (DTS), activation of protein kinase C (PKC) and the
initiation of platelet shape change and aggregation (chapter 1.2.4; Blockmans et al.,
1995; Dandona et al., 1996; Ferris & Snyder, 1992; Fukami, 2002; Jackson ef al., 2003).

At the molecular level, both COX-1 and TxA; synthase are haemoproteins (M, ~
70,000 and ~ 58,000 respectively) and are located within the DTS (Carey et al., 1982;
Needleman et al., 1976b; Nusing et al, 1990; Smith & Marnett, 1991). COX-I1
catalyses a two-step conversion of AA to PGH,: the first (cyclooxygenase) step involves

conversion of AA to the hydroperoxide PGG,, while the second phase involves the
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reduction of PGG; to PGH,, which occurs at a distinct peroxidase catalytic site (Marnett

et al., 1999; Smith et al., 1996b).

/A

L\ 3 fea — pxc

Collagen

Figure 4.1 Overview of the arachidonic acid signalling pathway in platelets. For details, see text.

However, the haem prosthetic group is an absolute requirement for both the
cyclooxygenase and peroxidase activities of COX-1 (Ogino et al., 1978). Similarly,
haem is essential for the conversion of PGH; to TxA; by TxA; synthase (Hecker &
Ullrich, 1989). The importance of COX-1 and TxA; synthase to platelet activation is
underlined by the ability of non-steroidal anti-inflammatory drugs such as aspirin (ASA)
and TxA, synthase/receptor antagonists (e.g. ridogrel) to inhibit platelet activation to a
wide range of agonists (De Clerck et al., 1989; Gallus, 1985; Hoet et al., 1990; Smith et
al., 1980).

Numerous lines of evidence indicate that NO and its related species (NOy)
modulate prostaglandin biosynthesis (Goodwin et al., 1999a; Goodwin et al., 1999b).

However, a concensus over the effects of NO on prostaglandin synthesis has yet to be
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reached. NO has been shown to either directly stimulate (Davidge et al., 1995; Hajjar et
al., 1995; Maccarrone et al., 1997) or inhibit COX-1 activity (Kanner ef al., 1992; Tsai
et al., 1994), while other evidence suggests that NO does not affect COX activity (Curtis
et al., 1996). Furthermore, while NO-mediated nitrosation of the catalytic domain of
COX-1 has previously been implicated as a mechanism resulting in the activation of
COX-1 (Hajjar et al., 1995), the S-nitrosothiol, S-nitrosocysteine (SNOC), has been
shown to inhibit TxA, synthesis in human platelets (Tsikas ef al., 1999a). In addition,
NO has been shown to directly nitrate the catalytically active tyrosine 385 residue of
COX-1 (Goodwin et al., 1998), while ONOO", generated by the reaction between NO
and Oy (equation 5, chapter 1.3.6.3), may activate PG biosynthesis via the provision of
peroxides that are required for the initial activation of COX (Landino et al., 1996).
Finally, NO has also been shown to inhibit the activity of TxA, synthase in intact
platelets (Wade & Fitzpatrick, 1997), adding a further level of complexity.

Given the unclear effects of NO, S-nitrosothiols and ONOO™ on the AA/TxA,
signalling pathway, the aim of this series of experiments was to examine the effect of
different NOy species on COX activity using a novel, commercially available in vitro
chemiluminescent assay. Utilising a similar approach to that adopted in chapter 3, we
performed experiments to test the hypothesis that NO inhibits COX-1 activity by
examining the effect of the NO donor DEA/NO, the stable S-nitrosothiol SNVP and the
ONOO’ generator SIN-1 on COX-1 activity. Similarly, we extended this study to
examine the effect of the Cu**-containing protein caeruloplasmin (CP) and superoxide
dismutase (SOD), found within human plasma (Prakasam et al., 2001; Sun ef al., 1988),

to modulate the effects of SNVP and SIN-1 on COX-1 activity respectively. A further
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aim of these experiments was to examine the effect of NO on the AA/ TxA; pathway in
intact platelets. To this end, the effect of DEA/NO on AA and PGH,-induced platelet
activation and TxA; formation by means of ex vivo aggregometry and ELISA techniques

was assessed.
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4.2 METHODS

4.2.1 MEASUREMENT OF COX-1 ACTIVITY

The activity of ovine COX-1 purified from ram seminal vesicles (Sigma Aldrich) was
assayed in vitro via a chemiluminescent method (Cayman chemical) based on the COX-
catalysed luminescence of a cyclic naphthalene hydrazide derivative (7-
dimethylaminonaphthalene-1,2-dicarboxylic acid hydrazide; DNH; chapter 2.6.1.;
(Forghani et al., 1998). To examine the effect of NO on COX-1 activity, DNH was
added to hematin-reconstituted COX-1 (chapter 2.6.1) prior to the addition of DEA/NO
(0.1-10 uM) or its NO-free parent nucleophile diethylamine (DEA; 10 uM) for 1-min at
room temperature. Following incubation of DEA/NO or DEA, AA was injected via the
luminometer and luminescence measured as described in the methods section (chapter
2.6.1). To serve as controls, COX-1 activity in the absence of hematin was assayed, as
was the activity of COX-1 incubated in the presence of ASA (200 uM) for 15-min at
room temperature. In further experiments, the effect of SNVP (30 uM) = CP (0.4 g/L)
and SIN-1 (30 uM) = SOD (1000 U/ml) on COX-1 activity was also assessed to
examine the effect of S-nitrosothiols and ONOO™ on enzyme activity respectively (n=6
for all experiments). CP and SOD were utilised in these experiments simply to generate
NO and/or unmask NO produced by SNVP and SOD respectively, akin to chapter 3, and
were added immediately prior to the addition of SNVP and SIN-1 to the reaction
mixture. The concentration of CP in plasma is ~ 0.4 g/L (Prakasam et al., 2001) and

previous data had shown this concentration capable of catalysing the release of NO from
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SNVP (chapter 3, fig 3.3.a). 1000 U/ml SOD, a concentration supramaximal to that
found in plasma (5-25 U/ml; Aydin et al., 2004; Sun et al., 1988), was used in order to

prevent the rapid reaction between O, and NO (chapter 1.3.6.3) derived from SIN-1.

4.2.2 AGGREGOMETRY

WP were prepared and aggregometry performed as described in the methods section
(chapters 2.1.2 & 2.3 respectively). To examine the effect of NO on AA and PGH,-
mediated platelet aggregation, WP were incubated with DEA/NO (10 uM) or its NO-
free parent nucleophile, DEA (10 uM), for 1-min prior to activation of platelets with
either AA (100 uM) or PGH; (100 ng/ml). Platelet aggregation was then measured for
5-min as described (chapter 2.3). In further experiments, WP were pre-incubated with
ODQ (20 uM) for 15-min prior to the addition of DEA/NO (10 pM) for 1-min following
platelet activation with AA or PGH; as described above. Finally, the ability of ASA
(200 puM; pre-incubated in WP for 5-min) to inhibit AA-induced platelet aggregation

was also assessed (n=6 for all aggregometry experiments).

4.2.3 MEASUREMENT OF AA AND PGH>INDUCED TXA:;

FORMATION

AA and PGH,-induced TxA; formation was estimated via an ELISA for the detection of
TxB; (chapter 2.7.2), a marker for TxA, formation on account of its rapid formation

from the non-enzymatic hydration of TxA, (Smith, 1989; Viinikka & Ylikorkala, 1980).
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The same samples as had been used for the aggregometry (chapter 4.2.2) were processed
for the TxB, assay. Briefly, following a 5-min incubation of WP with AA or PGH,,
indomethacin (100 uM; a COX-1 inhibitor; Smith et al., 1994) or ozagrel (20 uM; a
TxA, synthase inhibitor; Naito ef al., 1983) was added respectively for 5-min to prevent
further TxA, formation. Samples were then immediately frozen in liquid nitrogen and
stored at -70 °C prior to TxB, ELISA as described (chapter 2.7.2; n=5-6 for TxB,

measurements).
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4.3 RESULTS

4.3.1 EFFECT OF ASA AND HEMATIN ON COX-1

ACTIVITY

Addition of AA (100 uM) to hematin-reconstituted COX-1 in the presence of the
chemiluminescent substrate DNH resulted in the generation of a chemiluminescent
signal (fig 4.2.a). Incubation of ASA (200 pM) for 15-min significantly inhibited COX-
1 activity (fig 4.2.a; P < 0.01; Dunnett’s multiple comparison test following one-way
ANOVA). Incubation of AA with COX-1 in the absence of hematin also prevented AA-
stimulated COX-1 activity (fig 4.2.a; P < 0.01; Dunnett’s multiple comparison test

following one-way ANOVA).

4.3.2 EFFECT OF DEA/NO ON COX-1 ACTIVITY

Incubation of DEA/NO (0.1-10 pM) with hematin-reconstituted COX-1 resulted in a
concentration-dependent inhibition of COX-1 activity (fig 4.2.b). While incubation of
COX-1 with both 1 and 10 uM DEA/NO significantly inhibited COX-1 activity
(P<0.01; Dunnett’s multiple comparison test after one-way ANOVA) incubation with
0.1 uM DEA/NO was without effect (P > 0.05; Dunnett’s multiple comparison test
following one-way ANOVA). Furthermore, incubation of COX-1 with the NO-free
nucleophile DEA (10 uM) did not affect COX-1 activity (P > 0.05; Dunnett’s multiple

comparison test following one-way ANOVA).
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Figure 4.2 Effect of ASA, hematin, and NO, donors on AA-stimulated COX-1 activity. A control
response was generated via the addition of AA (100 uM) to hematin-reconstituted
COX-1 in the presence of the chemiluminescent substrate, DNH. The effect of ASA
(200 uM), pre-incubated with COX-1 for 15-min and the effect of omission of hematin
from the reaction mixture was investigated (a). The ability of the NO, donors
DEA/NO (0.1-10 pM), SNVP (30 uM) = CP (0.4 g/L) and SIN-1 (30 uM) = SOD (1000
U/ml) to inhibit COX-1 activity following a 1-min incubation was also assessed (b-d).
The effect of DEA (10 uM), incubated with COX-1 for 1-min was also investigated (b;
ns = P>0.05; ** = P<0.01; n=6). Abbreviation: RLU; relative luminescence units.
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4.3.3 EFFECT OF SNVP = CP ON COX-1 ACTIVITY

Incubation of SNVP (30 uM) with hematin-reconstituted COX-1 did not significantly
affect COX-1 activity (fig 4.2.c; P>0.05; Dunnett’s multiple comparison test following
one-way ANOVA). Co-incubation of CP (0.4 g/L), which catalyses the generation of
NO from SNVP (fig 3.3.a.; chapter 3.3.6), significantly inhibited AA-induced COX-1

activity (P < 0.01; Dunnett’s multiple comparison test after one-way ANOVA).

4.3.4 EFFECT OF SIN-1 + SOD ON COX-1 ACTIVITY

Incubation of SIN-1 (30 uM) with COX-1 did not affect COX-1 activity (fig 4.2.d;
P>0.05; Dunnett’s multiple comparison test following one-way ANOVA). Co-
incubation of a high concentration of SOD (1000 U/ml), to remove superoxide and
therefore unmask NO generated by SIN-1, significantly inhibited AA-induced COX-1
activity (fig 4.2.d; P<0.01; Dunnett’s multiple comparison test following one-way

ANOVA).

4.3.5 EFFECT OF DEA/NO ON AA-INDUCED

AGGREGATION

Incubation of WP with the NO-free nucleophile, DEA, prior to stimulation with AA
resulted in an aggregation response that was 93.4 + 9.5 % of the control AA-induced
aggregation response (P>0.05; Student’s paired t-test). Addition of DEA/NO (10 uM)

or ASA (200 uM) to WP inhibited AA-induced platelet aggregation compared to DEA
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(fig 4.3; P < 0.01; Dunnett’s multiple comparison test following one-way ANOVA).

Pre-incubation of ODQ (20 uM) with platelets for 15-min prior to the addition of

DEA/NO did not reverse the aggregation response to levels observed with DEA (P >

0.05; Dunnett’s multiple comparison test after one-way ANOVA).
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Figure 4.3 Effect of DEA, ASA and DEA/NO + ODQ on AA-induced platelet aggregation.
DEA/NO (10 puM) or DEA (10 pM) was incubated with WP for 1-min prior to the
addition of AA (100 uM) to induce aggregation. Where ODQ was used, it was pre-
incubated with WP for 15-min prior to the addition of DEA/NO, followed by the

addition of AA 1-min later. ASA (200 pM) was pre-incubated for 5-min with WP
before the addition of AA. Summary data (a) and a representative trace (b) are
included (** = P<0.01; n=6).

116



Chapter Four: NO & the TxA; Pathway

4.3.6 EFFECT OF DEA/NO ON PGH>INDUCED

AGGREGATION

Addition of DEA to WP for 1-min prior to stimulation with PGH, (100 ng/ml) resulted
in an aggregation response that was 103.7 * 9.2 % of the control aggregation response
(P>0.05; Student’s paired t-test). DEA/NO (10 uM) significantly inhibited PGH,-
induced platelet aggregation compared to DEA (fig 4.4; P<0.01; Dunnett’s multiple
comparison test following one-way ANOVA). Pre-incubation of ODQ (20 uM) for 15-
min prior to the addition of DEA/NO did not reverse aggregation to levels observed with

DEA (P>0.05; Dunnett’s multiple comparison test following one-way ANOVA)).

4.3.7 EFFECT OF DEA/NO ON AA-INDUCED TXB:

FORMATION

Stimulation of platelets with AA (100 uM) resulted in the formation of TxB; (145.5 *
16.0 ng/10® platelets). Incubation of WP with DEA (10 uM) did not significantly affect
AA-induced TxB, formation (fig 4.5.a.; P>0.05; Dunnett’s multiple comparison test
following one-way ANOVA) while DEA/NO (10 pM) inhibited AA-induced TxB,
formation in both the presence and absence of 20 uM ODQ (fig 4.4.a.; P<0.01;
Dunnett’s multiple comparison test following one-way ANOVA). Incubation of WP
with ASA (200 uM) also resulted in a significant inhibition of TxB, formation (fig

4.5.a.; P<0.01; Dunnett’s multiple comparison test following one-way ANOVA).
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Figure 4.4 Effect of DEA and DEA/NO + ODQ on PGH,-induced platelet aggregation. DEA/NO
(10 pM) or DEA (10 uM) was incubated with WP for 1-min prior to the addition of
PGH,; to induce aggregation. Where OD(Q was used, it was pre-incubated with WP for
15-min prior to the addition of DEA/NO, followed by the addition of PGH, 1-min later.
Summary data (a) and a representative trace (b) is included (** = P<0.01; n=6).

4.3.8 EFFECT OF DEA/NO ON PGH»>INDUCED TXB:

FORMATION

Addition of PGH; (100 ng/ml) to WP also resulted in TxB; formation that was
significantly increased (~ 2-fold) compared to AA-stimulated platelets pre-incubated

with ASA (PGHy-induced TxB, formation: 12.5 *+ 1.7 ng/10° platelets vs 5.3 + 1.4

118



Chapter Four: NO & the TxA, Pathway

ng/10° TxB, formed for ASA-treated AA-stimulated platelets; P<0.05; Student’s

unpaired t-test). Incubation of WP with DEA (10 uM), DEA/NO (10 uM) or DEA/NO

+ ODQ (20 uM) did not affect PGH,-induced TxB, formation (fig 4.5.b; P>0.05;

Dunnett’s multiple comparison test following one-way ANOVA).
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Figure 4.5 Effect of DEA, ASA and DEA/NO * ODQ on AA and PGH,-induced TxB, formation.
DEA/NO (10 uM) or DEA (10 pM) was incubated with WP for 1-min prior to the
addition of AA (100 pM) or PGH; (100 ng/ml) to induce aggregation. Where ODQ was
used, it was pre-incubated with WP for 15-min prior to the addition of DEA/NO,
followed by the addition of AA 1-min later. ASA (200 pM) was pre-incubated for 5-
min with WP before the addition of AA. Following a 5-min incubation of AA or PGH,,
indomethacin (100 M) or ozagrel (20 pM) were added respectively for 5-min prior to
freezing and TxB, ELISA (** = P<0.01; n=5-6).
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4.4 DISCUSSION

Taken together, these results indicate an inhibitory role for NO on COX-1 activity.
Experiments performed in vitro utilising a chemiluminescence COX-1 assay indicated
that DEA/NO inhibits COX-1 in a concentration-dependent manner. The effects of
DEA/NO may be attributed to the generation of NO because the NO-free parent
nucleophile, DEA, was ineffectual. Further experiments revealed that the relatively
stable S-nitrosothiol, SNVP (30 uM), was also without effect on COX-1 activity.
However, when SNVP was co-incubated with a physiological concentration of the
copper-containing plasma protein CP (0.4g/L), an inhibitory effect on COX-1 was
observed. Similarly, while the incubation of the ONOO™ generator, SIN-1 (30 uM), did
not affect COX-1 turnover, co-incubation of SIN-1 with SOD (1000 U/ml) prevented
COX-1 activity, suggesting that NO (radical) inhibits COX-1 activity in vitro.
Experiments performed in WP revealed that DEA/NO (10 uM) inhibited both AA and
PGH,-evoked platelet aggregation compared to DEA (10 uM). Furthermore, pre-
incubation of WP with ODQ (20 uM) did not affect DEA/NO-mediated inhibition of
aggregation by either agonist, indicating the inhibitory response was cGMP-
independent. Analysis of TxB, formation indicated that DEA/NO inhibited AA-induced
TxB, formation, but not PGH,-evoked TxB; formation, suggesting that COX-1 was the
site of NO-mediated inhibition of TxB, synthesis. As observed with the aggregometry
data, ODQ (20 uM) did not reverse DEA/NO-mediated inhibition of AA-induced TxB,

synthesis, indicating that the inhibitory effect was cGMP-independent. Taken together
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these data indicate a direct inhibitory role for NO (radical), but not necessarily S-

nitrosothiols or ONOO™ on COX-1 activity.

4.4.1 ASSAY OF COX-1 VIA CHEMILUMINESCENCE

COX-1 enzyme activity was assayed utilising a chemiluminescent technique based on
the COX-1 peroxidase-site catalysed oxidation of a luminol derivative DNH (Forghani
et al., 1998). This assay is a sensitive, real-time indicator of COX-1 activity, with the
cyclooxygenation step rate-limiting for the generation of luminescence (Forghani et al.,
1998). Importantly, the haem prosthetic group is absolutely required for both the
cyclooxygenase and peroxidase activities of COX-1 (Ogino et al., 1978). During
purification of COX-1, dissociation of the haem cofactor occurs (Malkowski et al.,
2000) and therefore haem must be added for enzyme activity. Our results indicate that
the presence of hematin is required for enzyme activity (fig 4.2.a) in agreement with
these findings. Importantly, control experiments also indicated that incubation of COX-
1 with ASA (200 uM) for 15-min inihibited the chemiluminescent signal (fig 4.2.a), in
line with the known inhibitory action of ASA on COX-1 (Gallus, 1985; Schror, 1997).
These data therefore support the use of the chemiluminescent assay as a measure of
COX-1 activity. In addition, although ovine COX-1 was used in these in vitro
experiments because it is readily available, amino acid sequence homology between the
human and sheep form is extremely high (91 %; Yokoyama & Tanabe, 1989) and
therefore NO-mediated effects on sheep COX-1 are likely directly applicable to the

human isoform. Nevertheless, there is an inherent danger with extrapolation of results
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between species and cell types, and further experiments would be required to confirm

these results in human platelet COX-1.

4.4.2 INHIBITION OF COX-1 ACTIVITY BY NO DONORS

IN VITRO

Data obtained from in vitro experiments suggest that NO is a potent inhibitor of COX-1
activity (fig 4.2). This conclusion is supported by a number of observations. Firstly, the
NO donor, DEA/NO, produced a concentration-dependent inhibition of
chemiluminescence, whereas the NO-free nucleophile DEA did not. Secondly, the
relatively stable S-nitrosothiol, SNVP, that nevertheless can undergo transnitrosation
reactions (Megson et al., 1999), did not inhibit COX-1 activity. However, when SNVP
was incubated with the plasma protein, CP, which has previously been shown to catalyse
the release of NO from SNVP and other S-nitrosothiols (chapter 3; fig 3.3.a; Dicks &
Williams, 1996), an inhibition of COX-1 activity was observed. Finally, when the
ONOO' generator SIN-1 was incubated with COX-1, no inhibitory effect on COX-1
activity was noted. However, as with SNVP, when NO generation was unmasked by the
addition of SOD, inhibition of COX-1 activity was also observed. Previous data indicate
that NO may either increase (Davidge et al., 1995; Hajjar et al., 1995; Maccarrone et al.,
1997) or decrease COX-1 activity (Kanner ef al., 1992; Tsai et al., 1994). Interestingly,
reports indicate that concentrations of NO as high as 2 mM are sufficient to result in
only a small inhibition of COX-1 activity (Tsai et al., 1994). Experiments here were

conducted at room temperature, at which DEA/NO will have a half-life significantly
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lower than the 2-min predicted at 37°C (Morley & Keefer, 1993). Given that DEA/NO
was incubated with COX-1 for only a short period of time (1-min), these data suggest
that low nM concentrations of NO may be sufficient to inhibit COX-1 activity.
However, data presented here may be reconciled against these conflicting reports by
evidence indicating that NO may act as a reducing substrate for peroxidase turnover
(Curtis et al., 1996; ODonnell et al., 2000). In this capacity, NO would be competing
with the chemiluminescent substrate, DNH, for the provision of electrons to reduce the
COX-1 haem following its oxidation by PGG, (fig 4.6). Thus, higher concentrations of
NO supplied by DEA/NO may in fact out-compete DNH and prevent its oxidation and
subsequent chemiluminescence. Indeed, in this sense NO would be expected to greatly
stimulate COX-1 turnover, as occurs with other peroxidase reducing substrates
(Kulmacz & Lands, 1983; Markey et al., 1987), although this hypothesis would need to
be confirmed by the measurement of COX-1 activity via alternative techniques such as
oxygen electrode (Bambai & Kulmacz, 2000) or immunoassay (Reitz et al., 1994).
Nevertheless, data from experiments performed ex vivo indicate that DEA/NO inhibits
TxA; formation via a cGMP-independent inhibition of COX-1 activity, albeit at higher
concentrations (ECso~ 10 uM).

The observation that SNVP did not affect COX-1-induced chemiluminescence
argues against a role for S-nitrosothiols accelerating COX-1 turnover as previously
implicated (Hajjar et al., 1995), unless a specific endogenous S-nitrosothiol such as
SNOC is required. Similarly, data obtained here did not indicate that ONOO" increased

COX-1 activity as reported (Landino et al., 1996). It is well known that peroxides are
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required for the initial activation of COX; they are needed to oxidise the haem prosthetic
group prior to the oxygenation of AA (fig 4.6; step 1; Kulmacz & Lands, 1983; Ohki er

al., 1979).
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Figure 4.6 Hypothetical mechanism for COX-1 catalysis including possible sites of NO
interaction. (1) PGGs,, or other available hydroperoxides (ROOH), are required to
initially oxidise resting COX-1 haem (Fe III) to Fe V, resulting in the generation of
PGHj,, or equivalent hydroxyl compound (ROH). (2) Electron transfer from Tyr 385
results in the formation of a tyrosyl radical (Tyr*), which then oxidises AA and
initiates the cyclooxygenase reaction cycle (3-5). PGG; is then reduced to PGH; at the
peroxidase site on either the same enzyme or on a different COX-1 enzyme (1). (6-7)
Reducing substrates are required to reduce Fe V to the resting state (Fe III) in order
that the peroxidase site can catalyse the reduction of PGG; to PGH; (1). Reducing
substrates can also reduce the tyrosyl radical, resetting the enzyme to the ferric state
(not shown on diagram). In this assay, the chemiluminescent substrate, DNH, acts as
the reducing substrate, resulting in the generation of excited DNH (DNH*) and the
liberation of light. NO may interact with the COX-1 reaction mechanism also by
acting as a reducing substrate, resulting in the generation of nitrosonium ion (NO").
NO also interacts with the tyrosyl radical, ultimately resulting in the formation of
nitrated tyrosine (chapter 4.4.4). Adapted from Tsai ef al., 1995.

However, preparations of AA contain sufficient levels of hydroperoxide impurities (in
the nM range; Kulmacz & Lands, 1983) within them to achieve activation of COX, thus
requiring the presence of antioxidant systems to prevent COX-1 activation via these

peroxides (Hemler et al., 1979; Kulmacz & Lands, 1983). Therefore, it seems likely that
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in this system, COX-1 is already turning over at a maximal rate and thus ONOO'-

mediated acceleration of COX-1 was not observed.

4.4.3 NO-MEDIATED INHIBITION OF PLATELET

AGGREGATION AND TXA:> SYNTHESIS

Data presented here indicate that DEA/NO (10 uM) inhibits both AA and PGH,-induced
platelet aggregation (figs 4.3 & 4.4). Furthermore, these data demonstrate that DEA/NO
can inhibit AA, but not PGHz-induced TxA;, formation (fig 4.5), implying that NO
inhibits COX-1 activity in intact human platelets. The hypothesis that the inhibitory
effect of DEA/NO was a cGMP-independent response was confirmed by the lack of
effect of 20 uM ODAQ in reversing DEA/NO-mediated inhibition of platelet aggregation
and TxA, formation. Importantly, previous data indicated that this concentration of
ODQ effectively suppresses cGMP production from 10 uM DEA/NO (chapter 3.3.1).
Although in the future it would be necessary to examine whether ODQ itself directly
affects COX-1 or TxA; synthase activity, as discussed in chapter 3.4.1, ODQ does not
affect collagen-induced platelet aggregation, whereas aspirin pre-treatment completely
prevents this aggregation, supporting the hypothesis that ODQ does not significantly
interefere with platelet TxA; synthesis. Interestingly, SNOC has previously been shown
to inhibit TxA, synthesis in platelets by a cGMP-independent mechanism (Tsikas et al.,
1999a). Although results from in vitro experiments suggest that S-nitrosothiols do not
affect COX-1 activity, the inhibitory activity of SNOC on TxA; activity may be

explained by its highly unstable nature in physiological solutions (Mathews & Kerr,
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1993), decomposing to generate high levels of NO. Results here indicate that DEA/NO
(10 puM) is as effective as ASA (200 uM) in inhibiting AA-induced aggregation,
although at the concentration tested it is clearly not as potent in preventing TxA;
production. One possible explanation for this is that platelet concentration-response
curves to agonists are typically steep, and it is therefore plausible that the ~2-fold
reduction in TxA, production is sufficient to result in a near-complete inhibition of
platelet aggregation. However, these results show that that incubation of platelets with a
concentration of PGH, sufficient to induce aggregation results in ~10-fold decreased
TxB, levels compared to those platelets stimulated with AA. This difference may be
explained by the fact that PGH; is a potent agonist at TP receptors (Coleman et al.,
1994) and in this situation will be stimulating TxA-dependent signalling events
independently of its conversion to TxA;. However, the observation that DEA/NO was
without effect on PGH,-evoked TxA, synthesis, but caused near maximal inhibition of
PGH,-induced aggregation, strongly supports the existence of other downstream cGMP-
independent routes for the inhibition of platelet aggregation (Homer & Wanstall, 2002;
Trepakova et al., 1999). Although it is difficult to firmly establish whether NO inhibits
TxA; synthase activity given the relatively low proportion of AA that is converted from
PGH; to TxA;, PGH,-induced TxA; formation in the control group resulted in a > 2-fold
increase in TxA; over levels observed with AA-stimulated TxA; formation in the
presence of ASA (PGH;-induced TxB, formation: 12.5 + 1.7 ng/10° platelets vs 5.3 +
1.4 ng/10° TxB, formed for ASA-treated AA-stimulated platelets), indicating that PGH,

induced TxA, formation over basal levels. Furthermore, these experiments were
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performed in WP to remove basal levels of TxB, formed in vivo. These data, therefore,
do not support the hypothesis that NO directly modulates TxA, synthase activity as
suggested previously (Wade & Fitzpatrick, 1997), although it is likely to indirectly

affect TxA, synthase activity via modulation of PGHj availability.

4.4.4 TARGETS FOR NO

A number of potential interactions between NO and COX-1 exist. As mentioned above,
NO may act as a reducing substrate for COX-1 peroxidase activity (Curtis ef al., 1996;
ODonnell et al., 2000), a finding at least partially supported by data presented here.
However, by acting as a co-substrate to reduce COX-1 haem, NO is expected to support
COX-1 activity. Indeed, in the absence of reducing substrates, reductibli of PGG, to
PGH; cannot occur; although this does not directly affect the cyclooxygenase cycle of
COX-1, accumulation of PGG; (ICso ~ 600 nM) leads to a rapid and permanent
inactivation of COX-1, allowing only a few enzymatic cycles (Markey et al., 1987; Wu
et al., 2003). Alternatively, NO may interact with sulphydryl groups present on COX-1
(Hajjar et al., 1995). However, data presented here indicate that SNVP did not affect
COX-1 activity, suggesting that nitrosation of sulphydryl groups on COX-1, at least by
this S-nitrosothiol, does not play a role. Although we cannot rule out that a specific
endogenous S-nitrosothiol such as S-nitrosoglutathione or SNOC will affect COX-1
activity, the use of such compounds, particularly SNOC, is unlikely to produce a clear
result because these S-nitrosothiols are prone to spontaneously generate NO, thereby

confusing S-nitrosothiol and NO (radical)-mediated effects. A further hypothesis is that
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NO interacts with COX-1 haem, which has been demonstrated in vifro (Tsai et al.,
1994). However, the Ky for the interaction of NO with native (ferric) COX-1 is ~ 1 mM
(Tsai et al., 1994), a concentration much greater than will be achieved in experiments
here. Although NO interacts with artificially-reduced ferrous COX-1 haem with much
greater efficiency (Tsai et al., 1994), there is no evidence that ferrous COX-1 is formed
in vivo (Goodwin et al., 1999a) suggesting that interaction of NO with COX-1 haem is
unlikely to be responsible for the inhibitory effect in intact platelets. Perhaps, therefore,
the most likely route to inhibition of COX-1 is the interaction of NO with tyr 385, as has
been shown to occur in the active site of both COX-1 and COX-2 (Goodwin et al., 1998;
Gunther et al., 1997). Tyr 385 forms a tyrosyl radical following peroxide-induced
oxidation of COX haem (fig 4.6; Dietz et al., 1988; Tsai ef al., 1995), which is essential
for the oxidation of AA to PGH; (Shimokawa ef al., 1990). Interestingly, the reaction of
NO with the COX-1 tyrosyl radical results in the formation of 3-nitrosotyrosine, prior to
undergoing a molecular rearrangement to the stable 3-nitrotyrosine (Goodwin et al.,
1998). Although ONOO' is the species usually implicated in the nitration of residues
such as tyrosine (chapter 1.3.6.5; Sawa et al., 2000; van der Vliet et al., 1995), the
generation of a tyrosyl radical permits a much more rapid reaction between NO and
tyrosine in COX-1, as has been observed in other tyrosyl radical-dependent proteins
(Lepoivre et al., 1994; Lepoivre et al., 1992; Szalai & Brudvig, 1996). Indeed, the
observation here that ONOO™ did not inhibit COX-1 activity in vitro, coupled with
previous data indicating that SOD does not affect NO-mediated COX-1 nitration
(Goodwin et al., 1998) argue against a role for ONOO" in the modification of tyr 385 of

COX-1 and inhibition of PGH, synthesis. Furthermore, reports indicate that high
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concentrations of AA may out-compete NO for the tyr 385 radical (Goodwin et al,
1998; Goodwin et al., 1999a), explaining why only a partial effect of DEA/NO on COX-
1 activity was observed in the ex vivo experiments performed here. In addition, the
ability of NO to inhibit COX-1 activity may also be offset by its ability to act as a
reducing substrate and accelerate enzyme turnover as described above. It seems likely,
therefore, that the effect of NO on COX-1 activity in a particular system will be highly
dependent on the presence of endogenous reducing substrates, AA levels and NO

availability.

4.4.5 PHYSIOLOGICAL AND PHARMACOLOGICAL

IMPLICATIONS

Although a relatively high concentration of DEA/NO was used in these experiments (10
uM; releasing a theoretical maximum of 20 uM NO), it is conceivable that sufficient NO
may be generated within the local environment to inhibit COX-1 activity. From this
standpoint it is interesting that following platelet activation and an increase in cytosolic
Ca®* levels, both COX-1 and platelet-NOS will be simultaneously activated.
Furthermore, assuming that the inhibitbry effect of NO is mediated via nitration of tyr
385, its effect is likely to be essentially irreversible, given the high stability of nitrated
tyrosine (Shigenaga et al., 1997; van der Vliet et al., 1995). Therefore, it is possible that
platelet-derived NO may reduce platelet TxA; synthesis through a covalent modification
of the COX-1 active site. In addition to the physiological situation, these data imply that

pharmacological concentrations of NO donors may inhibit platelet function via a cGMP-
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independent inhibition of COX-1 synthesis. The observation that plasma components,
including CP and SOD, can catalyse and/or unmask NO from S-nitrosothiols and
ONOO’ donors respectively (chapter 3; figs 3.1 & 3.3) imply that plasma and/or cellular
components may also be able to induce COX-1 inhibition effects by these donors.
However, the in vivo situation would be further complicated by cellular and cell-free

haemoglobin, which would alter NO donor bioavailability.
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4.4.6 SUMMARY

In summary, these data indicate that NO (radical) inhibits TxA, synthesis in intact
platelets, most likely via an inhibitory effect on COX-1 activity. While these results
support previous reports indicating that NO is a reducing substrate for COX-1 activity,
further experiments are required to confirm this. Data obtained here do not support a
role for S-nitrosothiols (at least SNVP) or ONOO" as inhibitors of COX-1 activity, nor
do they support a previous finding that NO directly inhibits the TxA, synthase enzyme
in intact platelets. A likely site for the NO-mediated inhibition of COX-1 activity is the

catalytically active residue tyr 385 (Goodwin et al., 1998).
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CHAPTER FIVE

NOVEL ROLE FOR LOW
MOLECULAR WEIGHT
THIOLS IN NITRIC OXIDE-
MEDIATED CONTROL OF
PLATELET FUNCTION
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5.1 INTRODUCTION

Despite the fact that NO is a powerful antiplatelet agent (Radomski et al., 1987a;
Radomski et al., 1987d), its ability to prevent platelet activation is limited by its short
half-life under physiological conditions (~3-10 sec; Cocks et al., 1985; Griffith ez al.,
1984). Such observations suggest that NO bioactivity should rapidly dissipate and only
impact on cells within close diffusable range of the site of production (Lancaster, 1994;
Lancaster, 1997). However, a number of studies suggest that NO can be incorporated
into relatively stable endogenous reservoirs that modify its biological activity (Datta et
al., 2004; Jia et al., 1996; Mulsch et al., 1991; Scharfstein et al., 1994; Stamler et al.,
1992a; Stamler et al., 1992c; Stamler et al., 1992d; Vedemikov et al., 1992). S-
nitrosothiols rank highly amongst the likely candidates for such a reservoir, on account
of the relative abundance of suitable thiols in the biological environment (Jocelyn,
1972). A physiological role for S-nitrosothiols has been implicated following
identification of endogenous S-nitrosothiols at relevant concentrations (Akaike et al.,
1997; Datta et al., 2004; Goldman et al., 1998; Marley et al., 2000; Stamler et al.,
1992a; Tsikas et al., 1999c), together with plausible pathways that could result in their
formation (Gow ef al., 1997; Hogg et al., 1996; Kharitonov et al., 1995; Mayer et al.,
1998). In plasma, it has been shown that the majority of the S-nitrosothiol pool exists in
the form of the high molecular weight species S-nitrosoalbumin (Matley ef al., 2001;
Stamler et al., 1992a; Tsikas et al., 1999b). However, low molecular weight thiols such
as glutathione are also present in plasma in the low micromolar range, and have

previously been shown to potentiate the antiplatelet action of S-nitrosoalbumin (Simon
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et al., 1993). Given the close proximity of platelets to the vascular endothelium, and the
unique sensitivity of platelets towards S-nitrosothiol mediated inhibition, it is important
to dissect the role of plasma-borne thiols in the modification of NO activity in platelets.
The aim of experiments conducted within this chapter was to test the hypothesis
that the activity of a short-acting NO donor drug, diethylamine diazeniumdiolate
(DEA/NO), is prolonged in the presence of plasma albumin through formation and
subsequent activation of an S-nitrosoalbumin NO reservoir. Furthermore, these
experiments explored the hypothesis that low molecular weight thiols have a unique role
in both the formation and activation of an S-nitrosoalbumin reservoir, potentiating NO-

mediated inhibition of platelet aggregation.
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5.2 METHODS

5.2.1 NO ELECTRODE MEASUREMENTS

PRP, PPP and WP were prepared as described in the methods section (chapter 2.1.1).
Samples (2 ml) of PRP and WP were pre-warmed to 37°C, before addition of DEA/NO
(2 uM). NO concentration was measured for 30 min by a calibrated NO electrode as
described in the methods section (chapter 2.2; n=6). In a different series of experiments,
WP were reconstituted with 0.46 uM hemoglobin derived from red blood cell (RBC)

lysate, prior to addition of DEA/NO (2 uM) and recording for 30-min (n=6).

5.2.2 HAEMOGLOBIN MEASUREMENTS

The haemoglobin content of PRP and PPP was quantified as described in the methods

section (chapter 2.5.1; n=5).

5.2.3 AGGREGOMETRY

Platelet aggregometry was performed as described in the methods section (chapter 2.3).
Aliquots (0.5 ml) of PRP and WP were equilibrated at 37°C before the addition of 2 pM
DEA/NO (~ICgy for DEA/NO in PRP; Sogo et al., 2000b). Platelet aggregation was
~ then induced via the addition of collagen (2.5 ug/ml) 1-30 min later. Aggregation was
monitored for 5 min, and the maximum response recorded. In a different series of

experiments, WP were reconstituted with the low molecular weight (LMW) thiols
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glutathione (GSH; 5 uM), cysteinyl-glycine (cys-gly; 10 uM) and cysteine (cys; 10 uM)
to approximate plasma concentrations (Mansoor et al., 1992). Thiol-reconstituted WP
was also incubated in the absence and presence of 1 % human serum albumin (HSA);
higher concentrations of HSA that approximate plasma levels (4%) were found to have
non-specific effects in platelets, even after extensive dialysis. Platelets were incubated
with DEA/NO (2 uM) before stimulation with collagen (2.5 pg/ml) 30 min later. In
further experiments, WP reconstituted with GSH (5 uM) =+ HSA (1%) were pre-
incubated with donor RBC lysate to produce a final hemoglobin concentration of 0.46
uM. DEA/NO (2 uM) was added to WP for 30-min prior to addition of collagen (2.5
ug/ml) 30 min later. In control experiments, DEA/NO (2 uM) was added to WP 25 min
before the addition of oxy-hemoglobin (10 uM). Platelets were then stimulated with

collagen (2.5 ug/ml) 5 min later, and aggregation measured (n=8 for all experiments).

5.2.4 THIOL MEASUREMENTS

The reduced thiol content of plasma and HSA (1%)-reconstituted tyrodes = the LMW
thiols GSH (5 uM), cys-gly (10 uM) or cysteine (10 uM) was quantified as described in

the methods section (chapter 2.5.2; n=5).

5.2.5 S-NITROSOTHIOL DETECTION

Baseline S-nitrosothiol formation was quantified via a chemiluminescent method

described in the methods section (chapter 2.6.2). To determine S-nitrosothiol formation
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after bolus NO injection, WP and PRP samples were pre_wanned as before and 2 uM
DEA/NO added. Aliquots (0.5 ml) of DEA/NO-treated WP or PRP were aspirated 1-30
min later and added to vials containing NEM/EDTA (5 mM and 2 mM respectively) to
stop the reaction. Samples were then processed and quantified as described in the

methods section (chapter 2.6.2; n=6).
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5.3 RESULTS

5.3.1 HAEMOGLOBIN MEASUREMENTS

Haemoglobin (Hb) concentration in PRP was 0.46 + 0.18 uM, and did not differ
significantly from the hemoglobin concentration determined in PPP (0.39 + 0.01 pM; P

> 0.05; Student’s paired t-test).

5.3.2 NO ELECTRODE STUDIES

Addition of 2 uM DEA/NO to WP resulted in a rapid increase in NO concentration,
which reached a maximum of 3.2 £ 0.18 uM NO before it declined to basal levels within
20-25 min (fig 5.1). Administration of 2 uM DEA/NO to PRP showed that DEA/NO-
derived NO was partially quenched in plasma, reaching a maximum extracellular
concentration of 0.53 £ 0.11 uM. Addition of 2 uM DEA/NO to WP reconstituted with
0.46 uM hemoglobin derived from donor RBC lysate produced a profile matching that

observed in PRP, with a maximum extracellular NO-concentration of 0.59 + 0.05 pM.

DEA/NO 10 ik

Figure 5.1 Generation of NO by DEA/NO (2 pM) in WP, PRP, and WP reconstituted with
autologous cell-free Hb (0.46 pM). Data are expressed as the mean of six experiments.
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5.3.3 EFFECT OF DEA/NO ON INHIBITION OF

PLATELET AGGREGATION IN PRP & WP

Bolus administration of DEA/NO (2 uM) to PRP resulted in sustained inhibition of
collagen-induced platelet aggregation that was maintained for at least 30 min (fig 5.2.a).
In WP, however, inhibition of collagen-induced platelet aggregation by DEA/NO (2
uM) was attenuated at 20 min and abolished after 30 min (fig 5.2.a). The difference
between inhibition of aggregation in PRP and WP was significant (P<0.001; two-way
ANOVA followed by Bonferroni post-test). Representative traces from each time point

in both PRP and WP are included (fig 5.2.b).
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Figure 5.2.a Inhibition of platelet aggregation by DEA/NO in WP and PRP. WP or PRP were
equilibrated to 37°C before the addition of DEA/NO (2 uM). Platelet aggregation
was then stimulated via the addition of collagen (2.5 ug/ml) 1-30 min later (*** =
P<0.001; n=8).
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Figure 5.2.b Representative traces showing DEA/NO (2 pM)-mediated inhibition in PRP and WP.

5.3.4 EFFECT OF THIOLS ON DEA/NO-MEDIATED

INHIBITION OF PLATELET AGGREGATION IN WP

Reconstitution of WP with the LMW thiols GSH (5 uM), cys-gly (10 pM), and cys (10

puM) did not alter the inhibition of platelet aggregation by DEA/NO after 30 min (fig 5.3;
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P>0.05; one-way ANOVA followed by Dunnett’s post hoc analysis). However,
reconstitution of WP with 1% HSA resulted in a modest restoration of the inhibitory
effect of DEA/NO after 30 min (fig. 5.3; P<0.01; one-way ANOVA followed by
Dunnett’s post hoc test). Co-incubation of WP with 1% HSA and either GSH, cys-gly
or cys fully restored the inhibitory effect of DEA/NO after 30 min (fig 5.3; P<0.001;
two-way ANOVA followed by Dunnett’s post hoc analysis). In order to investigate the
role of cell-free haemoglobin in the prolonged antiplatelet effect of DEA/NO, the ability
of GSH = HSA to prolong the DEA/NO-mediated antiplatelet activity in WP was
assessed in the absence and presence of cell-free haemoglobin derived from donor red
blood cells, at a concentration that was found to be present in PRP (0.46 pM). Inhibition
of platelet aggregation by DEA/NO at 30 min in the presence of HSA and GSH was
partially quenched by pre-incubation of 0.46 uM RBC-derived hemoglobin in WP
(P<0.01; two-way ANOVA followed by Bonferroni post-test), although inhibition was

still enhanced when compared to WP alone (fig 5.4).

5.3.5 EFFECT OF OXY-HB ON PROLONGED INHIBITION

OF PLATELET AGGREGATION

To confirm that the prolonged (30 min) inhibition of platelet aggregation in PRP and
WP was mediated by NO, the NO scavenger oxy-Hb (10 uM; bovine; reduced to Fe (II)
by dithionite) was added to PRP and WP reconstituted with HSA alone, or with HSA
and any of the LMW thiols. In each case, oxy-Hb abolished the prolonged inhibition

observed (P<0.001; two-way ANOVA followed by Bonferroni post-test; fig 5.5).
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zZz Collagen + DEA/NO at 30-min
I Collagen + DEA/NO + 1% HSA at 30-min
gzA Collagen + DEA/NO in PRP at 30-min

% Aggregation

Figure 5.3 Effect of LMW thiols and HSA on inhibition of platelet aggregation by DEA/NO.
LMW thiols GSH (5 uM), cys-gly (10 pM), cys (10 pM) + HSA (1%) were pre-
incubated in WP before the addition of 2 tM DEA/NO. Platelet aggregation was then

stimulated via the addition of collagen (2.5 ug/ml) 30 min later. PRP data are also
added as a comparison (*** = P<0.001; n=8).
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Figure 5.4 Effect of cell-free Hb on DEA/NO mediated inhibition of platelet aggregation. WP +
RBC-derived Hb (0.46 uM) were incubated with GSH (5 uM) + HSA (1%) before the
addition of DEA/NO (2 uM). Aggregation was then induced by the addition of
collagen (2.5 pg/ml) 30 min later (** = P<0.01; n=8).
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Figure 5.5 Effect of oxy-Hb on DEA/NO mediated inhibition of platelet aggregation. WP
reconstituted with HSA (1%) = LMW thiols GSH (5 uM), cys-gly (10 uM), cys (10 pM)
were pre-incubated with oxy-Hb (10 pM) before the addition of 2 ptM DEA/NO.

Platelet aggregation was then stimulated via the addition of collagen (2.5 pg/ml) 30 min
later. The effect of Hb on PRP is also included (*** = P<0.001; n=8).

5.3.6 THIOL MEASUREMENTS

The concentration of reduced thiol in plasma was 0.32 + 0.01 mM. In HEPES-tyrode
buffer containing1% HSA, thiol concentration was 0.11 = 0.01 mM and did not differ
significantly from 1% HSA containing GSH (5 pM; 0.12 +0.01 mM), cys-gly (10 uM;

0.10 = 0.01 mM) or cys (10 uM; 0.11 = 0.01 mM).

5.3.7 S-NITROSOTHIOL DETECTION

Incubation of DEA/NO in PRP caused a rapid increase in S-nitrosothiol production

which reached a maximum of 73.5 = 15.4 nM after 10 min and diminished gradually
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over the 30 min incubation period (fig. 5.6). Addition of DEA/NO to WP + 1% HSA
resulted in a slower increase in S-nitrosothiol concentration, which reached a level cldse
to that observed in PRP after 30 min (46.0 = 8.8 nM). The presence of 5 uM GSH
increased the formation of S-nitrosothiol approximately two-fold after a 30 min
incubation of DEA/NO (104.5 = 18.7 nM). There was no significant difference in S-
nitrosothiol formation in WP + 1 % HSA compared to 1 % HSA alone (P>0.05; two-

way ANOVA followed by Bonferroni post-test).

150~ ——DEA/NO in PRP

—a— DEA/NO in WP + HSA

—e— DEA/NO in WP + HSA + GSH
—a— DEA/NO in tyrodes + HSA

[S-NO] (nM)

Time (min)

Figure 5.6 S-nitrosothiol formation in PRP, 1% HSA HEPES-tyrode and reconstituted WP
after treatment with DEA/NO. DEA/NO (2 pM) was added before the addition of
NEM/ EDTA 1-30 min later to stop the reaction. Samples were then centrifuged,
and the supernatant treated with acidified sulfanilamide (2.5% in 0.1M HCl) before
S-nitrosothiol detection (n=6).
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5.4 DISCUSSION

These results clearly demonstrate that the biological activity of DEA/NO, a short acting
NO-donor drug with a half-life of ~2 min at physiological temperature and pH, is
significantly prolonged in platelet rich plasma (PRP) compared to washed platelets
(WP), where activity closely mirrored NO concentration. Importantly, the prolonged
inhibition of aggregation observed in PRP is mediated by NO, despite the clear decay of
DEA/NO-derived NO to undetectable levels within the 30 min incubation period.
Reconstitution of WP with human serum albumin (HSA) caused a partial restoration of
DEA/NO-mediated inhibition after 30 min but, when combined with the low molecular
weight (LMW) thiols GSH, cys-gly, or cys, the inhibitory action was fully restored to
that seen in PRP, despite no tangible increase in total thiol content. Furthermore, the
degree of Mﬁibition of aggregation was associated with S-nitrosothiol formation in PRP
and reconstituted platelets, indicating a crucial role for both protein and LMW thiols in

prolonging the biological availability of NO.

5.4.1 GENERATION OF NO BY DEA/NO

NO was clearly detected in both WP and PRP treated with DEA/NO, a compound
known to generate a maximum of two molar equivalents of NO upon hydrolysis (chapter
1.3.9.5). Importantly, while there was a clear divergence in the concentration of NO
detected in PRP and WP, DEA/NO-derived NO declined to undetectable levels after a

20 min incubation period in both PRP and WP. As observed in chapter 3, there was a
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delay in the appearance of NO in PRP after bolus injection of NO, indicating that plasma
has some NO-scavenging ability. Analysis of Hb concentration revealed that PRP
contained 0.46 pM Hb, with a potential capacity to scavenge ~1.5-2 uM NO, assuming
all 4 heme groups are available for reaction with NO. Given that the delay in
appearance of extracellular NO in PRP is approximately 2 min, during which time ~2
uM NO is released, these data indicate that Hb-mediated scavenging is responsible for
the discrepancy between extracellular NO in PRP and WP. The concentration of Hb in
PRP equated with that in PPP, indicating that the vast majority of Hb was cell-free.
Although blood sampling and platelet isolation is likely to cause significant haemolysis

ex vivo, cell-free Hb is known to limit the availability of NO in vivo (Reiter et al., 2002).

5.4.2 PROLONGATION OF NO-MEDIATED INHIBITION

BY PRP AND THIOLS

The ability of plasma components to prolong the antiplatelet effects of bolus DEA/NO is
profound. While inhibition of platelet aggregation was sustained in PRP, substitution of
plasma with HEPES-tyrode buffer resulted in a marked reduction in the duration of the
inhibitory effect. Predictably, there was a close correlation between extracellular NO
concentration and inhibition of platelet aggregation in WP, indicating that the degree of
inhibition is closely defined by the extracellular NO concentration. In PRP, however,
inhibition of aggregation was maintained, despite the progressive loss of extracellular
NO from the system. The NO scavenger, oxy-Hb, abolished the sustained inhibitory

effect in PRP, confirming that the effect was entirely NO-mediated. Given that human
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plasma is an abundant source of reduced thiol (Jocelyn, 1972), and that the concentration
of S-nitrosothiols in human plasma is relatively high (30-120 nM; Marley et al., 2000;
Tsikas et al., 1999b; Tsikas et al., 1999c), we hypothesised that thiols may have a role in
the prolongation of NO bioactivity observed here. In human plasma, the single free
cysteine residue present on serum albumin (cys 34) accounts for the majority of reduced
thiol. However, LMW thiols are present in human plasma in the low micromolar range
(Mansoor et al., 1992), and S-nitrosothiols have previously been shown to undergo thiol-
nitrosothiol exchange in vivo (Scharfstein et al., 1994). Therefore, WP was
reconstituted with albumin and LMW thiols to dissect thiol function on the antiplatelet
activity of NO. These results clearly indicate that incubation of the LMW thiols GSH,
cys-gly, and cys did not alter the duration of antiplatelet action of DEA/NO, but
reconstitution with 1% HSA significantly prolonged inhibition of aggregation.
Crucially, while DEA/NO-mediated aggregation was only partially restored with HSA,
co-incubation of HSA with each of the LMW thiols completely restored the inhibitory
action of DEA/NO at 30 min despite a negligible increase in the thiol pool.
Furthermore, oxy-Hb completely reversed this inhibition, indicating that the LMW

thiol/HSA effect is entirely NO-mediated.

5.4.3 LMW THIOLS & S-NITROSOTHIOL FORMATION

The correlation observed between S-nitrosothiol formation and inhibition of platelet
aggregation strongly indicates that the role of thiols in prolongation of NO-mediated

inhibition of platelet aggregation is through provision of a substrate for S-nitrosation.
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Interestingly, our results indicate that there is a clear difference in the rate by which S-
nitrosothiols are generated in PRP compared to thiol-reconstituted solutions. In PRP, S-
nitrosothiol formation was very fast compared to that observed in reconstituted WP, with
significant amounts being formed (~ 60 nM) after 1 min incubation with DEA/NO.
Conversely, 1 min incubation of DEA/NO in HSA-reconstituted WP resulted in very
low level S-nitrosothiol formation (<10 nM), which gradually increased to a maximum
concentration of 50.5 = 6.7 nM after 20-30 min. Despite rather different kinetics of
formation of S-nitrosothiols in PRP and HSA-reconstituted WP, by 30 min, total S-
nitrosothiol concentration is the same (~ 50 nM). However, inhibition of platelet
aggregation is markedly different in PRP and HSA reconstituted WP after a 30 min
incubation of DEA/NO. Previous data indicating that LMW thiols such as GSH can
increase the antiplatelet action of S-nitrosoalbumin (Simon et al., 1993) is supported by
our results. These results suggest that S-nitrosoalbumin formed in reconstituted WP is
an inefficient NO donor, and requires the presence of low molecular weight thiols such
as those found in PRP to efficiently control physiological function, as has previously
been proposed (Scharfstein et al., 1994; Simon et al., 1993; Stamler et al., 1992a;
Stamler et al., 1992d). However, data obtained here emphasise an additional role for
GSH and other LMW thiols in the formation of S-nitrosothiols. Co-incubation of GSH
with HSA-reconstituted WP resulted in an increase in S-nitrosothiol concentration by
approximately two fold. Furthermore, this increase was accompanied by a large

augmentation of DEA/NO-mediated inhibition of platelet aggregation.
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5.4.4 MECHANISMS LEADING TO S-NITROSOTHIOL

FORMATION

The mechanism for formation of S-nitrosothiols in vivo is a source of considerable
debate; NO itself is a weak nitrosating agent, but higher oxides of NO such as N;O3 are
potent nitrosating species (chapter 1.3.6.4; Espey et al., 2001). The rate limiting step in
the formation of N>Oj3 is the reaction of NO with molecular oxygen, which is pseudo
second order (k ~ 4 x 10° M'2sec'1; Lewis & Deen, 1994; Wink ef al., 1994). Although
originally thought too slow to account for endogenous levels of S-nitrosothiols, the
reaction between NO and O, can be catalysed by caeruloplasmin (Inoue et al., 1999), a
Cu-containing protein abundant in plasma. Moreover, accelerated formation of S-
nitrosothiols has been observed in the presence of biological membranes (Espey et al.,
2001; Liu et al, 1998a) and in the hydrophobic core of proteins such as albumin
(Rafikova et al., 2002), which act as ‘NO sinks’ to concentrate nitrosating species.
Whilst recognising that the pharmacological levels of NO used here are sufficiently high
to facilitate significant formation of N,O; that might subsequently nitrosate thiols, the
results presented here with GSH and HSA confirm previous findings that the ability of
albumin to catalyse S-nitrosothiol formation is greatly increased in the presence of low
molecular weight thiols (Rafikova et al., 2002). A modest increase (~x1.05) of thiol
pool through addition of GSH to HSA-treated WP failed to significantly affect total thiol
concentration, while causing a disproportionate increase in S-nitrosothiol formation
(approximately two-fold). Our data demonstrate that the presence of platelets did not

significantly alter S-nitrosothiol production, suggesting that plasma membrane mediated
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acceleration does not play a part in this system. Given that we observed more rapid
production of S-nitrosothiols in plasma than in reconstituted WP, these data suggest that
S-nitrosothiol formation catalysed by plasma components like ceruloplasmin may be a
key factor in the difference observed. Alternatively, the full complement of thiols in
plasma may be required to provide an efficient pathway for the incorporation of NO into
S-nitrosothiols. These results indicate that cell-free Hb at plasma concentrations has a
net scavenging effect, implying that cell-free Hb functions to remove NO rather than to
conserve NO bioactivity through the formation of additional S-nitrosated species.
However, many pathways for S-nitrosothiol formation exist (Gow et al., 1997; Mayer et

al., 1998), and may play a significant role in this system.

5.4.5 PATHOPHYSIOLOGICAL IMPLICATIONS

It is noteworthy that low serum GSH levels are an independent predictor of coronary
heart disease (Morrison et al., 1999) and that thiol supplementation in humans has been
shown to cause an increase in both endothelium-dependent and independent relaxation
(Creager et al., 1997; Kugiyama et al., 1998; Vita et al., 1998), especially in subjects at
risk of coronary artery disease (Kugiyama et al., 1998). Furthermore, a number of
potential mechanisms for the cardioprotective role of thiols have been identified,
including scavenging of oxygen-derived free radical species (Vita et al., 1998), and
direct stimulation of NO synthase itself (Hofmann & Schmidt, 1995). These results
imply that the bioavailability of LMW thiols may have a significant impact in the ability

of plasma to form S-nitrosothiols and, therefore, prolong the antiplatelet action of
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endothelium-derived NO (fig 5.7). Moreover, in light of evidence that S-
nitrosoglutathione is relatively platelet selective (de Belder er al., 1994), these data
suggest that the ability of GSH and other LMW thiols to assist in S-nitrosothiol
formation and delivery may be of crucial importance in the maintenance of haemostasis
and might be compromised in coronary artery disease.

Data presented here also have important implications with respect to the potential
for NO donor-mediated antithrombotic therapy. Formation of a durable plasma
reservoir of NO that is slowly liberated through the action of LMW thiols suggests that
prolonged antiplatelet activity might be afforded by delivery of short acting NO donor

drugs that were previously considered too labile for this purpose.
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5.4.6 SUMMARY

In summary, results presented here support the hypothesis that plasma thiols may play

an important role to prolong the antiplatelet activity of NO. In particular, LMW thiol-

mediated acceleration of S-nitrosoalbumin formation and delivery at the platelet surface

may represent an efficient system to prolong NO bioactivity, which may have important

consequences for NO derived from physiological and pharmacological means.
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Summary of proposed mechanism for the prolonged DEA/NO-mediated inhibition of
aggregation observed in PRP and reconstituted WP. DEA/NO hydrolyses in aqueous
solution to generate NO. NO diffuses into the platelet where it activates various
cellular processes leading to inhibition of platelet aggregation (path a). Alternatively,
DEA/NO-derived NO reacts with molecular oxygen to form nitrosating species such
as N,O;, which react with the sulphydryl group on HSA to form relatively stable
SNO-HSA. SNO-HSA inhibits aggregation via generation of NO at the platelet
membrane surface (path b). In the presence of LMW thiols, N,O; preferentially
reacts with LMW thiols to form LMW S-nitrosothiols (RSNO). LMW S-
nitrosothiols transnitrosate with HSA to form the S-nitrosoalbumin reservoir.
Bioactive NO can be delivered to the platelet via a reverse of the previous process,
leading to prolonged inhibition of aggregation (path c).
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6.1 INTRODUCTION

Bypass grafts are commonly used to improve blood flow in patients with peripheral
ischaemia, with autologous vein the primary choice of graft (Bergan et al., 1982;
Londrey et al., 1991; Van de Pavoordt et al., 1986). However, a lack of vein availability
and/or suitability occurs in up to 30 % of cases (Sayers et al., 1998), requiring the need
for prosthetic grafts such as those derived from Dacron or expanded
polytetrafluoroethylene (ePTFE). One reason for the decreased patency of these
prosthetic grafts compared to autologous vein is probably due to increased
thrombogenicity of these artificial surfaces (Goldman et al., 1982a; Goldman et al.,
1982b). Indeed, the role of platelet deposition in prosthetic graft failure is highlighted
by the observation that antiplatelet agents such as aspirin (ASA) can increase graft
patency (Adam et al., 2001; Dorffler-Melly et al., 2003a; Dorffler-Melly et al., 2003b).
However, ASA therapy has some disadvantages, most notably gastric toxicity (Derry &
Loke, 2000) and the development of ASA resistance (Gum et al., 2001), which may be
associated with major adverse events in the long-term (Gum et al., 2003). An alternative
to aspirin therapy is to decrease the thrombogenicity of the graft surface itself. Given
the potent ability of NO to prevent platelet adhesion (Radomski et al., 1987c; Radomski
et al., 1987d), coating of surfaces with drugs with NO-donating capacity is a possible
therapeutic strategy to reduce platelet deposition (Batchelor et al., 2003; Fleser et al.,
2004; Maalej et al., 1999; Mowery et al., 2000; Parzuchowski et al., 2002; Thierry et al.,
2003; Yoon et al., 2002; Zhang et al., 2002). Despite the fact that these surfaces are

likely to be limited by the finite supply of NO that they are able to deliver, they
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nevertheless merit investigation as tools to prevent platelet adhesion, at least in the short
term.

S-nitroso-N-valeryl-D,L-penicillamine (SNVP) is an S-nitrosothiol that has
previously been shown to cause prolonged and selective antiplatelet effects in regions of
vascular injury (Miller ef al., 2003), a property that may be explained by the relatively
high lipophilicity and stability of the S-nitrosothiol (Megson et al., 1999). These
intriguing properties may also make SNVP a useful NO donor for the coating of graft or
extracorporeal circuits such as those used in dialysis or cardiopulmonary bypass. An
alternative approach is the generation of materials with an inbuilt ability to donate NO.
In a collaboration with Professor Russell Morris and Dr Paul Wheatley at the University
of St. Andrews, ion-exchanged NO-loaded zeolite/PTFE discs were generated as
described in methods chapter 2.9. Of the zeolite-A/PTFE discs (fig 6.1), Co**-
exchanged discs were found to contain the highest capacity for NO when placed into a
water saturated atmosphere as measured using an isolated NO-electrode (fig 6.2).
Moreover, these discs were observed to be stable in a dry atmosphere.

The aim of this series of experiments was to examine a possible therapeutic role
for novel NO-donors to reduce platelet activation and adhesion to artificial surfaces. In
order to investigate the potential therapeutic application of these compounds, the

antiplatelet ability of these materials were tested in a series of ex vivo experiments.
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Figure 6.1 Crystal structure of dehydrated Na-zeolite-A. The structure consists of
alternating Si (blue) and Al (purple) centred tetrahedra with sodium cations
(green) bound to the oxygen atoms (red) of the framework. The sodium cations
can be readily exchanged with transition metal ions (e.g. Co’*). For clarity, only
the AIFO and Si-O bonds are drawn. Figure obtained from Professor Russell
Morris, original data from Zhang ef al., 2003.
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Figure 6.2 Generation of NO by ion-exchanged zeolite-A (LTA) in water saturated vapour as
measured using an isolated NO-electrode. The control is a Co**-exchanged zeolite
that has not been exposed to NO, and results are standardised per mg of zeolite.
Experiments were performed by Dr P Wheatley.

Initially, experiments were conducted to test the hypothesis that pre-treatment of ePTFE
graft with SNVP reduced adhesion of human platelets to the surface following drug

washout. The effect of SNVP was compared to the well established NO donor sodium
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nitroprusside (SNP; chapter 1.3.9.3) and also tested against the treatment of platelets
with a maximal dose of aspirin. Secondly, experiments were performed to examine the
antiplatelet effects of NO-loaded zeolites following the stimulation of platelet activation

with a maximal concentration of the TxA; analogue U46619.
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6.2 METHODS

6.2.1 MEASUREMENT OF PLATELET ADHESION TO

PROSTHETIC GRAFT

Calcein-labelled platelets were prepared as described in the methods section (chapter
2.1.2) with platelet-calcein loading calibrated on a daily basis (chapter 2.4.2). To
examine the ability of SNVP and SNP to reduce platelet adhesion to prosthetic graft,
ePTFE graft (length: 3 cm; diameter 6 mm) was bathed in either HEPES-tyrode
(control), SNVP (1 mM) or SNP (1 mM) for 30-min prior to mounting on the perfusion
circuit maintained at 37°C (chapter 2.4.2). The effect of incubation of ePTFE with
valeryl-pelnicillamine (VP), the NO-free parent compound of SNVP, was also tested.
Following an initial perfusion with HEPES-tyrode (15 ml), calcein-labelled platelets (10
ml) were perfused (100 ml/hr) through the circuit before a final HEPES-tyrode washout
(15 ml) to remove non-adhering platelets. Adhered platelets were removed and lysed by
Triton-X-100 treatment (1% final concentration) and quantified by fluorimetry as
described earlier (chapter 2.4.2). In further experiments, calcein-labelled platelets were
treated with ASA (100 puM) for 1 hr prior to perfusion through the ePTFE graft
following HEPES-tyrode washout. Platelet adhesion was then measured as before

(chapter 2.4.2; n=5 for all experiments).
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6.2.2 AGGREGOMETRY

To assess the function of calcein-labelled WP compared to normal WP, platelets were
stimulated with a peri-maximal concentration of collagen (2.5 pg/ml) and aggregation
measured for 5-min as described in the methods section (chapter 2.3; n=4). The effect of
ASA (100 pM incubated for 1-hr) on collagen-induced platelet aggregation was also
investigated (n=4). To assess the anti-aggregatory activity of zeolite-A, NO-loaded
Co**-exchanged zeolite/PTFE discs were generated at the University of St. Andrews as
described in the methods section (chapter 2.9). Discs were then suspended in platelet
rich plasma (PRP; chapter 2.1.1) in the aggregometer in a stainless steel wire holder,
with care taken to avoid interference of the light beam. Following a 1-min incubation of
NO-loaded zeolite/PTFE discs, peri-maximal U46619 (8 uM) was added to activate
platelets. Zeolite/PTFE discs not exposed to NO were used as a control alongside
agonist-only treated PRP. The effect of the NO scavenger oxy-Hb (40 uM), incubated
in PRP for 1-min prior to the zeolite/PTFE discs, was also examined to assess the

involvement of NO from NO-loaded zeolite/PTFE discs on platelet function (n=5).

6.2.3 ELECTRON MICROSCOPY

Electron microscopy (EM) was performed to examine the ability of NO-loaded
zeolite/PTFE discs to reduce platelet adhesion against control zeolite/PTFE discs.
Control or NO-loaded zeolite/PTFE discs were incubated with PRP in the aggregometer
for 1-min and 8 uM U46619 added. Discs were then removed and gently rinsed in PBS,

prior to fixation and visualisation by electron microscopy (chapter 2.8; n=2).
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6.3 RESULTS

6.3.1 EFFECT OF SNVP, SNP & ASPIRIN ON PLATELET

ADHESION TO PROSTHETIC GRAFT

Pre-incubation of ePTFE graft with SNVP significantly reduced platelet adhesion to the
graft compared to untreated ePTFE (P<0.05; Student’s paired t-test; table 6.1).
However, pre-treatment of ePTFE graft with either SNP or VP, or treatment of platelets

with ASA was without effect (P>0.05; Student’s paired t-test; table 6.1).

Platelet adhesion (10" platelets / cm®)
Treatment _ o
Untreated : Treated
SNP (graft) 209+ 1.4 23.6+3.2
VP (graft) 227+42 22847
SNVP (graft) 227+1.7 10.8 = 1.3*
ASA (platelets) 19.7 4.2 188 5.0

Table 6.1 Effect of SNP, SNVP, VP and aspirin on the adhesion of platelets to prosthetic graft.
ePTFE was bathed in SNP, SNVP or VP for 30-min prior to mounting on a circuit and
perfusion of platelets as described in the methods section. ePTFE bathed in HEPES-
tyrode served as an untreated control. Platelets were also incubated with ASA (100
1M for 1 hr) prior to perfusion through HEPES-tyrode-bathed graft (* = P<0.05; n=5).

6.3.2 EFFECT OF CALCEIN LOADING & ASPIRIN ON

COLLAGEN-INDUCED PLATELET AGGREGATION

Stimulation of calcein-labelled WP with peri-maximal collagen resulted in a maximal

aggregation response that was 96.9 + 2.7 % of that observed in normal WP. Incubation
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of calcein-labelled WP with ASA abolished collagen-induced platelet aggregation in

these platelets (fig 6.3; P < 0.001; Student’s paired t-test).
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Figure 6.3 Effect of calcein loading and aspirin on collagen-induced platelet aggregation.
Platelets were equilibrated in the aggregometer before the addition of collagen and the
response recorded for 5-min. Where used, ASA (100 pM) was incubated with platelets
for 1 hr prior to the addition of collagen. Summary data (a) and a representative trace
(b) are included (*** = P<0.001; n=4).

6.3.3 EFFECT OF NO-LOADED ZEOLITE/PTFE DISCS

ON PLATELET AGGREGATION

Incubation of NO-loaded zeolite/PTFE discs in PRP significantly inhibited U46619-
induced platelet aggregation (fig 6.4; P<0.01; non parametric Kruskal-Wallis test
followed by Dunn’s multiple comparison for samples with different variances), while no
significant inhibitory effect was observed when Hb was co-incubated with the NO-
loaded zeolite/PTFE discs (P>0.05; Kruskal-Wallis test followed by Dunn’s multiple

comparison).
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Figure 6.4 Effect of NO exposure and Hb on the inhibition of U46619-induced platelet
aggregation by zeolite/PTFE discs. Control and NO-exposed discs were incubated in
PRP for 1-min prior to the addition of U46619. Where used, Hb (40 M) was added to
PRP 1-min before the addition of zeolite/PTFE disc, followed by the addition of
U46619 1-min later. Summary data (a) and a representative trace (b) are included (**
= P<0.01; n=5).

6.3.4 VISUALISATION OF PLATELET ADHESION TO
ZEOLITE/PTFE DISCS BY ELECTRON

MICROSCOPY

Representative micrographs showing platelet adhesion to control (A) and NO-exposed

(B) zeolite/PTFE discs are included (fig 6.5).
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Figure 6.5 Representative micrographs showing the effect of NO exposure on adhesion of
platelets to zeolite/PTFE discs. Discs were pre-incubated with PRP for 1-min prior to
the addition of U46619. The micrographs show platelet aggregates (PA) adhering to a
control zeolite/PTFE disc (Z-PTFE; A) and of a platelet (P) adhering to an NO-loaded

zeolite/PTFE disc (NO-Z/PTFE). The white bar represents 10 pm (n=2).
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6.4 DISCUSSION

These results show that in an in vitro perfusion system, platelet adhesion to ePTFE graft
can be inhibited by incubating the ePTFE graft in SNVP, but not the well-established
NO donor, SNP. Incubation of ePTFE graft with VP, the NO-free parent compound of
SNVP, did not affect platelet adhesion to ePTFE graft, identifying a critical role for NO
in the inhibition of platelet adhesion by SNVP. Moreover, incubation of platelets with
ASA was also without effect on platelet adhesion to ePTFE graft, despite a clear ability
of ASA to prevent collagen-induced platelet activation. Results obtained in these
experiments also indicate a role for NO-loaded zeolite/PTFE materials as high capacity
NO-stores that can prevent platelet aggregation following maximum stimulation of
activation. Furthermore, electron microscopy revealed that exposure of zeolite/PTFE

discs to NO reduced platelet adhesion to the discs.

6.4.1 CALCEIN-LABELLING AS A MARKER FOR

PLATELET ADHESION

Preliminary studies confirmed calcein labelling as a reproducible technique to measure
platelet adhesion, as observed in other studies (Alfon ez al., 2001; Bombeli ef al., 1998).
The limit of detection was < 10,000 platelets (equivalent to 25-50 nl PRP), verifying
high sensitivity of the technique. Calcein-labelling of platelets in this system has
considerable advantages over other labelling techniques employed. These include

labelling platelets with europium trichloride (Toes et al., 1999), which may result in
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platelet activation due to the hypotonic shock required to induce cellular uptake of
europium, or radioactive-labelling with indium'"* (Dewanjee et al., 1981) or chromium®'
(Ito et al., 1989), which require large volumes of platelets and/or special handling due to
the radioactivity involved. Data presented here indicate that the addition of collagen at a
concentration that causes maximal aggregation in WP also elicited a maximal

aggregatory response in calcein-labelled WP, indicating that calcein-labelled platelets

are both functional and responsive to physiological stimuli.

6.4.2 SNVP-MEDIATED INHIBITION OF PLATELET

ADHESION TO PTFE

Data presented here clearly indicate that the incubation of ePTFE graft in a solution (1
mM) of SNVP reduces platelet adhesion. This effect was found to persist despite an
initial 15 ml (~ 10 min) washout period with HEPES-tyrode prior to the perfusion of
platelets. Importantly, incubation of ePTFE graft with SNP was without effect on
platelet deposition, indicating that the ability of SNVP to reduce platelet adhesion to
ePTFE following washout is not a property shared by all NO donor drugs. SNP is a
potent inhibitor of platelet activation in WP (Doni et al., 1991) and has been shown to
inhibit platelet aggregation via cGMP-dependent mechanisms (Sogo et al., 2000b). In
these experiments, SNP clearly does not persist on ePTFE graft following the washout
protocol, rendering it incapable of preventing platelet adhesion to ePTFE. Interestingly,
SNP has previously been shown to prevent platelet adhesion on endovascular stents

when incorporated into polyelectrolyte multilayers (Thierry et al., 2003). However, the
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observation here that SNVP can inhibit platelet adhesion by incubating it with ePTFE
graft for a short period of time means that such technically difficult procedures may be
avoided by much simpler measures.

Results presented in table 6.1 indicate that incubation of platelets with ASA did
not affect platelet adhesion to ePTFE graft, despite the observation that the concentration
of ASA used was clearly sufficient to prevent collagen-induced platelet aggregation (fig
6.3). Previous data demonstrate a beneficial role for ASA treatment in patients with
artificial prostheses, although it may be of little use in patients with autologous vein
grafts (Dorffler-Melly et al., 2003b; Mahmood et al., 2003; Watson et al., 2000).
Although ASA did not affect platelet adhesion to ePTFE in this in vitro perfusion
system, the effect of platelet activation was not investigated in these experiments.
Furthermore, collagen deposition, which occurs on transplanted prosthetic grafts in vivo
(Seeger et al., 1990; Watase et al., 1992), will not occur in this system, limiting any
potential benefit of ASA treatment. Indeed, it is interesting to speculate that in a system
with significant platelet activation, where presumably platelet deposition and
recruitment will be greatly increased, the beneficial effects of SNVP (and ASA) may be
considerably more pronounced.

A further important observation here is that VP, the un-nitrosated parent
compound of SNVP, failed to affect platelet adhesion to ePTFE graft, indicating that the
ability of SNVP to reduce platelet deposition can be attributed to the S-NO moiety of the
compound. This finding was important in order to exclude the possibility that SNVP

may induce unwanted non-specific effects on platelet function. Thus, the incubation of
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ePTFE graft with SNVP results in the generation of a NO-releasing surface that can

reduce platelet adhesion.

6.4.3 ROLE OF LIPOPHILICITY ON THE INHIBITION OF

PLATELET ADHESION TO ePTFE

SNVP and other N-substituted analogues of SNAP have been shown to induce sustained
vasodilation in human veins and arteries (Sogo et al., 2000a; Sogo et al., 2000c) and
induce a prolonged and selective inhibition of platelet adhesion at sites of vascular injury
(Miller et al., 2003). Interestingly, the ability of SNAP analogues to exhibit prolonged
effects in areas of damaged endothelium correlates with the relative lipophilicity of the
compound by the length of the sidechain (Megson et al., 1999). Moreover, another
recently described lipophilic S-nitrosothiol, RIG 200, has also shown to be selective for
areas of endothelial damage and induces a prolonged vasodilation in human vessels that
persists for > 4 hr (Sogo et al., 2000a; Sogo et al., 2000c). One of the reasons we used
SNVP for this study was its high lipophilicity and favourable stability (Megson et al.,
1999). It is interesting to speculate that the covalent modification of NO donors with
lipophilic sidechains may facilitate their interaction with, and adsorption upon,
prosthetic grafts such as those derived from ePTFE, presumably by increasing
hydrophobic interactions. It remains an interesting question whether this S-carbon
valeryl functional group confers the prolonged antiplatelet properties of SNVP on

ePTFE graft.
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6.4.4 INHIBITION OF PLATELET FUNCTION BY NO-

LOADED ZEOLITES

Data presented here clearly indicate a role for zeolites as high-capacity NO stores that
have potent antiplatelet activity. Importantly, control zeolite discs did not exhibit
antiplatelet activity, while the inhibitory activity of NO-loaded discs incubated in
combination with the NO scavenger oxy-Hb was all but abolished, indicating that NO
was responsible for the inhibitory action. Significantly, just a small NO-loaded
zeolite/PTFE disc containing ~ 15 mg zeolite was sufficient to prevent platelet activation
to a maximal concentration of the TxA, analogue U46619. Although the ability of
zeolite/PTFE discs to inhibit platelet activation induced by other agonists (e.g. collagen)
was not tested, the observation that these discs inhibit platelet activation via an NO-
dependent mechanism supports the hypothesis that they will prove to have platelet-
inhibiting activity against a wide range of physiological agonists via the inhibition of
Ca®* signalling and receptor function (chapters 1.3.4-5). Moreover, the observation that
NO-loading of the zeolite/PTFE disc visibly prevented the adhesion 6f platelets to the
surface of the disc supports a potential therapeutic role for zeolites as a coating to

increase the biocompatibility of artificial surfaces.

6.4.5 THERAPEUTIC POTENTIAL OF NOVEL NO

DONOR MATERIALS

The high levels of platelet deposition that occurs on prosthetic grafts makes them second

choice behind autologous graft (Bergan ef al., 1982; Goldman et al., 1982a; Goldman et
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al., 1982b; Van de Pavoordt et al., 1986). Although the infusion of NO donors may also

be a useful therapeutic strategy to prevent platelet activation and adhesion following
transplantation of artificial devices (Kaul et al., 1996), unwanted systemic effects such
as global vasodilation may be difficult to avoid (Homer & Wanstall, 2003). Therefore,
the transplantation of NO generating prosthetic surfaces will ensure that the NO is
delivered to the precise location where it is required.

The novel NO delivery methods described here have a wide variety of potential
therapeutic applications for the prevention of platelet adhesion to prosthetic materials.
While data here indicate a potential role for these materials as a coating for prosthetic
graft, they may also be useful as a coating for stents. Despite the fact that stents reduce
restenosis and the need for repeat revascularisation following percutaneous transluminal
coronary angioplasty (PTCA; Serruys et al., 1994b; SOS, 2002), their use is associated
with the development of subacute thrombosis (Haude et al., 1993; Schatz et al., 1991,
Schomig et al., 1994; Serruys et al., 1994a). Therefore, even NO donor-releasing
materials with a finite capacity to donate NO may be potentially beneficial. However,
given the presumption that the NO-releasing surfaces will only be able to prevent
adhesion until their NO is exhausted, the use of these NO-delivery systems may be best
suited as a coating for temporary-use extracorporeal circuits such as those employed in
cardiopulmonary bypass (CPB) or dialysis. In these situations, NO generation would
only be required for a period of hours, rather than months or years. Patients undergoing
procedures such as CPB and dialysis require systemic heparinisation (Breiterman-White,
1995; Frederiksen, 2000), although recent progress has been made on the generation of

heparin-coated surfaces for use on extracorporeal devices (Lin et al., 2004; Wendel et
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al., 1999; Wendel & Ziemer, 1999). However there are notable limitations associated
with heparin use. Heparin does not prevent platelet activation induced by non-
physiological surfaces (Rinder et al, 1991; Rinder et al, 1994) but conversely
contributes to platelet activation and thrombocytopenia (Mehta & Mehta, 1982;
Warkentin, 2004), which plays a role in the manifestation of haemostatic abnormalities
observed following procedures such as CPB. Moreover, patients that are repeatedly
exposed to heparin, such as those undergoing dialysis, are at risk of heparin-induced
thrombocytopaenia (HIT; Luzzatto et al.,, 1998; Yamamoto ef al., 1996). HIT is an
immune-mediated disorder that results in the generation of antibodies against the
heparin/platelet factor 4 complex, which interact on the platelet surface resulting in
activation of both platelets and the coagulation cascade, leading to a high risk (up to 75
%) of thrombosis (Warkentin, 2003; Warkentin & Greinacher, 2003; Warkentin &
Kelton, 1996). The coating of extracorporeal circuits with NO donating materials may
therefore have substantial advantage over heparin within this arena. Indeed, preliminary
studies are positive and have indicated that NO generating materials can prevent
thrombus formation on a silicone graft in baboons (Smith et al., 1996a) and remove the
need for heparinisation following venovenous extracorporeal circulation in rabbits

(Annich et al., 2000).

6.4.6 LIMITATIONS & FUTURE DIRECTIONS

Despite the usefulness of the in vitro perfusion system adopted here to probe a potential

role for SNVP in reducing platelet adhesion to ePTFE graft, there are caveats associated
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with its use. One obvious limitation of this system is the slow flow rate used (0.1 L/hr;
~1073 m/sec), which is likely to be substantially lower than that observed in equivalent
diameter vessels in vivo (blood flow through brachial artery of ~ 5 mm diameter is ~ 1.5
L/hr; Newcomer et al., 2004). Here, a low flow rate was used because the volume of
platelets from each blood donor was limited. However, one alternative to reducing the
flow rate is to run platelets through a closed-loop perfusion system, in which platelets
would be repeatedly recycled through the ePTFE. Indeed, it would be interesting to
investigate the ability of SNVP to prevent platelet adhesion in such a system, given that
such procedures appear to activate platelets (Jung et al., 2001).

As mentioned above, from a therapeutic standpoint, one of the main caveats of
NO-coated materials is likely to be longevity, given that these materials are able to only
release a finite supply of NO. Although this may not limit the potential of these
materials as coatings for extracorporeal circuits where NO generation is only required
for a period of hours, it may limit their application on stents and grafts where platelet
accumulation continues over longer timeframes (Goldman et al., 1982a; Wakefield et
al., 1989). Experiments performed here did not address the longevity of action of
SNVP; it would be interesting to observe the effect of increasing the washout period
prior to the perfusion of platelets to examine precisely for how long SNVP treatment
may offer protection. Moreover, while data illustrated in figure 6.1 indicate that NO-
loaded zeolites generate NO and may therefore offer some antiplatelet effect for up to 10
hr, it is intriguing to note that these NO-loaded zeolites appear to be stable within a dry
atmosphere. Thus, it may be possible to create more stable and longer lasting

derivatives by limiting the access of water to these NO-loaded zeolite materials, for
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example, by the coating of zeolites with a hydrophobic layer. It seems clear that more
work in this field is required to optimise the NO-generating properties of NO-releasing

surfaces to maximise their potential therapeutic scope.
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6.4.7 SUMMARY

In summary, these data indicate that SNVP can reduce adhesion to ePTFE graft via an
NO-dependent mechanism, while NO-loaded zeolites can form a high-capacity NO-store
that can prevent platelet activation and adhesion when combined with PTFE. Although
more work is required to fully assess their NO-generating and platelet inhibiting
capacity, these approaches show good promise and may be particularly useful in a
therapeutic arena as a coating for temporary-use extracorporeal circuits such as used in

CPB and dialysis.
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7.1 NO DONORS AS A THERAPEUTIC
STRATEGY FOR INHIBITING PLATELET

FUNCTION

Although NO donors such as glyceryl trinitrate (GTN) and sodium nitroprusside (SNP)
have been in clinical use for years, their value as antiplatelet agents is limited for reasons
including weak antiplatelet activity and problems with dose-titration or tolerance
(Drummer et al., 1991; Mangione & Glasser, 1994; Smith & Kruszyna, 1974; Zhang et
al., 1993). Many compounds have been developed that can increase cellular cGMP
levels via NO-independent mechanisms, including direct stimulators of sGC (Stasch et
al., 2002; Straub et al., 2002; Wu et al., 1995), inhibitors of PDE enzymes (Kim, 2003;
Palacios et al., 1995; Rabe et al., 1995) and non-hydrolysable cGMP analogues
including 8-bromo cGMP (Laustiola et al., 1984). In the clinical setting, PDE inhibitors
have met with success, at least for the treatment of conditions out-with platelet disorders.
An obvious example is the PDE V inhibitor, sildenafil (Viagra™), which has
demonstrated success rates of = 95% for the treatment of erectile dysfunction (Carson et
al., 2002; Derry et al., 2002). Recently, however, with the emergence of a number of
novel NO donor drugs, it has become clear that many of the effects of NO may be
mediated through signalling events that are not dependent on the stimulation of sGC and
production of cGMP. In particular, cGMP-independent effects appear to play a

prominent role in NO-mediated inhibition of platelet aggregation (Beghetti et al., 2003;
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Gordge et al., 1998; Sogo et al., 2000b). Furthermore, PKG, the primary target for
cGMP in platelets, has a stimulatory role in platelet activation (Li et al, 2003).
Therefore, there may be significant benefit in investigating NO-mediated, cGMP-
independent signalling events within platelets, in order that the most effective NO donor
therapies are developed and that novel antiplatelet targets may be identified. In addition,
investigation of the antiplatelet activities of novel NO donor drugs, including
exploration into the effectiveness of new applications of NO-based therapies will
provide invaluable information on physiological signalling pathways and future potential
clinical uses respectively. However, the use of NO donor drugs as therapeutic agents
has difficulties. These include the short half-life of NO (3-10 s; Cocks et al., 1985;
Griffith et al., 1984), difficulty in generating stable drugs with a desirable duration of
action, and the possibility that cGMP-independent effects may cause unwanted or

detrimental events.

7.2 cGMP-INDEPENDENT SIGNALLING IN

PLATELETS

Data presented within this thesis identify a key role for NO radical in the production of
c¢GMP-independent antiplatelet effects by NO donors (Chapters 3 & 4). Given the
potent ability of species such as S-nitrosothiols and ONOO™ to modify protein cysteine
and tyrosine residues respectively (Sawa et al., 2000; Scharfstein ef al., 1994; van der

Vliet et al., 1995), one may have previously hypothesised that the formation of such
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species would be important for cGMP-independent antiplatelet effects. However, the
observation that cGMP-independent antiplatelet effects correlate with NO (radical)
generation raises an intriguing question as to the chemical modification responsible for
these inhibitory events. It is important to note that while data here indicate that SNVP is
not sufficient to induce cGMP-independent antiplatelet effects, it does not denote that
the cGMP-independent activity of NO is not mediated by S-nitrosation of critical protein
cysteine residues. It may be the case that S-nitrosothiols such as SNVP cannot gain
access to crucial modulatory cysteine sites, whereas NO may freely diffuse and interact
with these residues. Alternatively, given the observation that NO is a relatively weak
nitrosating agent (chapter 1.3.6.4), other smaller S-nitrosothiols such as S-
nitrosocysteine (SNOC) may be important intermediates of cGMP-independent
signalling. However, the use of low molecular weight S-nitrosothiols such as SNOC
was avoided in these experiments because their high instability in physiological
solutions (Mathews & Kerr, 1993) is unlikely to provide clarification between NO and
S-NO-mediated effects.

At a molecular level, it seems clear that NO is able to accelerate the activity of
platelet SERCA, thereby reducing intracellular Ca® levels (Homer & Wanstall, 2002;
Trepakova et al., 1999). This is a finding supported by data presented in chapter 3. By
accelerating SERCA activity and decreasing Ca®* availability, NO would be expected to
be able to inhibit platelet aggregation to a wide variety of activating substances via
cGMP-independent mechanisms. Indeed, this may make the development of NO-
independent activators of platelet SERCA an attractive therapeutic option for the

treatment of thrombotic disorders, provided that platelet-specific agents can be
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generated. Interestingly, very recently, NO has been shown to activate vascular smooth
muscle SERCA via ONOO'-dependent modification (glutathiolation) of a critical
cysteine residue (cys 674; Adachi et al., 2004). Data presented in this thesis clearly
indicate that in platelets, NO, rather than ONOO/, is responsible for cGMP-independent
antiplatelet effects (chapter 3), as evidenced by the lack of effect of SIN-1 to inhibit
platelet function in WP in the presence of the sGC inhibitor, ODQ (fig 3.2.c).
Interestingly, Adachi and colleagues observed that low levels (10-50 uM) of ONOO
accelerated SERCA, and that superoxide scavengers decreased NO-dependent relaxation
and glutathiolation of cys 674, further supporting a role for ONOO" in acceleration of
SERCA. In experiments performed in this thesis, levels of ONOOQO™ are unlikely to reach
10-50 uM, even at the highest concentrations of SIN-1 used (300 uM). However, data
here clearly show that when SOD was added to WP in the presence of SIN-1, cGMP-
independent inhibition of aggregation was achieved. Therefore, while ONOO™ may
indeed cause cGMP-independent acceleration of SERCA, it appears that NO is more
potent. The reason underlying the requirement for NO in c¢GMP-independent
antiplatelet effects, as opposed to ONOO" in vascular smooth muscle, is unclear; these
tissue-dependent effects of NO and ONOO™ on SERCA require further characterisation.
Although it is likely that NO may exert specific effects on different SERCA isoforms,
both platelets and vascular smooth muscle express SERCA 2 and SERCA 3 (Anger et
al., 1993; Enouf et al., 1992; Khan et al., 2000; Kovacs et al., 1997). It may be the case
that alternative cGMP-independent mechanisms exert a more dominant role than

SERCA-mediated effects in cGMP-independent inhibition of platelet activation.
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Nevertheless, it is interesting to note that in SERCA-1 purified from skeletal muscle, NO
is significantly more effective than ONOO™ in modifying cysteine residues in the
enzyme, primarily resulting in the formation of disulphide and S-nitrosated cysteine
residues (Viner et al., 2000).

A further cGMP-independent target for NO in platelets is COX-1, as
characterised in chapter 4. Similarly to data described in chapter 3, NO (radical) was
required for an inhibitory effect. It is interesting that data presented in chapter 3
suggests a role for the extracellular generation of NO for cGMP-independent effects, yet
both SERCA and COX-1 are intracellular proteins. Certainly, it is difficult to
unambiguously rule out the possibility that it is merely a high concentration of NO that
is required to evoke cGMP-independent antiplatelet effects. If this is the case, it is
perhaps less important from a physiological standpoint, although such high
concentrations may be required to overcome the scavenging effect of cell-free
haemoglobin, meaning that cGMP-independent effects are relevant in the physiological
scenario. However, as discussed in chapter 3, both COX-1 and SERCA are located in
the dense tubular system (Carey et al., 1982) and as such may be in close proximity to
the plasma membrane via its connections with the open cannalicular system. Pathways
may exist for the transfer of NO from the plasma membrane to nearby intracellular
targets, as has been proposed for the transport of S-nitrosothiols across membranes
(Ramachandran et al., 2001; Zai et al., 1999; Zhang & Hogg, 2004). Nevertheless, the
possibility that NO induces cGMP-independent modification of protein(s) present on the
surface of platelets, including crucial cysteine residues, still remains. In this setting, it is

interesting that sulphydryl-rich proteins such as protein disulfide isomerase (PDI) are
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necessary for integrin activation, and that the treatment of platelets with membrane-
impermeant agents that covalently modify cysteine residues inhibit platelet adhesion and
aggregation (Essex et al, 2001; Lahav et al., 2002; Lahav et al., 2003). Indeed, GP
IIb/Illa expresses external sulphydryl residues in its activated conformation (Lahav et
al., 2002; Yan et al., 2000; Yan & Smith, 2000); moreover a cysteine-rich region in the
extracellular domain of the f (Illa) subunit may act as a redox ‘switch’ for integrin
activation (Yan & Smith, 2000). The interaction of NO with cysteine at such sites may
be a cGMP-independent route to the inhibition of platelet activation and would be in line
with data presented here that indicate a requirement for the generation of extracellular

NO for cGMP-independent antiplatelet effects.

7.3 NO & S-NITROSOTHIOL SIGNALLING

Data presented in chapter 5 indicate a role for endogenous S-nitrosothiols in prolonging
the biological activity of NO in platelets. Although the ability of NO to interact with
protein thiols such as cys 34 on human albumin has been previously demonstrated
(Simon et al., 1993; Stamler et al., 1992a; Stamler et al., 1992c¢), results presented here
clearly illustrate that the presence of low molecular weight thiols such as cysteine or
glutathione greatly increase the efficiency of the delivery system. This finding has
considerable consequences for the use of NO donors as antiplatelet agents, implying that
NO from donors such as the diazeniumdiolates (chapter 1.3.9.5) may have substantially
longer biological activity than predicted by kinetics of NO generation in vitro. Indeed,

given the profound ability of plasma factors such as CP to induce the release of NO from
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S-nitrosothiols, including relétively stable analogues such as SNVP (chapter 3; Megson
et al., 1999), it would be interesting to compare the biological half-lives of these
compounds. It may be the case that longer lasting diazeniumdiolates such as DETA/NO
(t Y2 ~ 20 hr; Mooradian et al., 1995) may prove extremely effective long-term NO
donors via generation of slow NO-release coupled with low molecular weight thiol-
mediated nitrosothiol formation.

A further role for low molecular weight thiol-assisted S-nitrosothiol formation to
prolong NO bioactivity may be to prevent NO degradation within the vasculature.
Although, as discussed earlier, the interaction of NO with haemoglobin may result in
either the cessation or prolongation of NO bioactivity, other mechanisms exist that may
remove NO from the vascular system. While data presented in chapter 4 indicate that
NO can inhibit COX-1 activity, they also agree with reports demonstrating that NO may
act as a reducing substrate for peroxidase turnover (Curtis ef al., 1996; ODonnell ef al.,
2000). The rapid consumption of NO by reducing COX-1 haem in this manner has been
previously proposed to represent a significant route for the disposal of bioactive NO
(ODonnell et al., 2000). Given the lack of ability of SNVP to act in the same manner as
NO, these data support the hypothesis that S-nitrosothiol formation may protect NO
from COX-1-mediated consumption. Although the effect of other S-nitrosothiols (e.g.
SNOC) were not investigated for reasons discussed earlier, it is reasonable to assume
that endogenous S-nitrosothiols, particularly bulky adducts such as S-nitrosoalbumin,
are equally protected from COX-1-mediated NO consumption. Indeed, it is possible that
one of the reasons why COX-1 inhibitors such as aspirin are effective in the treatment of

thrombotic disorders may be that, in addition to preventing the synthesis of the pro-
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thrombotic mediator TxA,, they also prevent the consumption of bioactive NO. Platelet-
derived NO plays a crucial role in preventing platelet recruitment following activation
(Freedman et al., 1997; Freedman et al., 1999) and aspirin has been demonstrated to
prevent platelet recruitment ex vivo (Valles et al., 2002). Furthermore, platelet adhesion
and activation is increased in numerous cardiovascular conditions (Furman ef al., 1998;
Reininger et al., 1999; van Zanten et al., 1994) and are more likely to have active COX-
1 enzyme. Indeed, increased TxA, synthesis is observed in both hypertension and
diabetes (Guimaraes et al., 1998; Jain et al., 1998; Minuz et al., 2002). Therefore, a
positive feedback loop may be created whereby increased platelet activation and COX-1
activity results in greater consumption of NO, which then precipitates further platelet
recruitment and activation. It is interesting to speculate that if such a system were
evident, then NO-aspirin hybrid drugs such as NCX-4016 may provide an additional

benefit over the treatment of these conditions than with aspirin alone.

7.4 NOVEL NO-GENERATING BIOMATERIALS

Results presented in chapter 6 highlight a potential role for SNVP and NO-loaded
zeolites as coatings/materials to reduce platelet deposition on prosthetic conduits. The
design of prosthetic surfaces such as ePTFE to act as NO-delivery systems is a useful
therapeutic strategy for a variety of reasons. Benefits include the targeting of NO to the
exact area where it is required and also aversion of requirement for systemic
anticoagulants such as heparin, which can ultimately lead to platelet activation.

Furthermore, the laminar flow of blood through vessels (Aarts et al., 1988; Wootton &

182



Chapter Seven: Discussion & future directions

Ku, 1999) will force platelets towards the graft surface, meaning that surfaces that
release NO are likely to be more efficacious than NO donors that distribute evenly
throughout the bloodstream.

Results presented in chapter 6 indicate that zeolites can form a high capacity
store of NO (radical). Given that these zeolites will form a source of extracellular NO,
data from chapter 3 would argue that their antiplatelet effect is likely to include a cGMP-
independent element. Moreover, it is also likely that low molecular weight thiols may
catalyse S-nitrosoalbumin formation from NO derived from these zeolites, although
whether sufficient NO would be generated to generate a significant antiplatelet action
out-with the proximity of the graft is perhaps unlikely. More experiments are required
to examine the mechanism and duration of the inhibitory action of NO-loaded zeolites.

The use of SNVP as an NO-generating coating for ePTFE graft is an attractive
therapeutic strategy because ePTFE is a material with a proven track record for use as
graft material. As discussed earlier, the use of SNVP-coated artificial surfaces and/or
the construction of conduits with NO-loaded zeolites described in chapter 6 are likely to
be limited to short-term inhibition of platelet adhesion and activation on prosthetic grafts
or extracorporeal circuits including those used in cardiopulmonary bypass (CPB) and
dialysis. However, if the synthesis of longer lasting preparations is possible, then the
therapeutic potential of these materials may be greatly increased. For example, NO is a
potent inhibitor of intimal hyperplasia (IH; Kown et al., 2001), a process driven by a
lack of endothelium (LoGerfo et al., 1983; Spaet et al., 1975), which may begin within
24 hr following vascular injury or transplant (Lemson et al., 2000). IH has been

demonstrated to occur on ePTFE grafts (Florian ef al., 1976), resulting in the appearance
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of smooth muscle cells and collagen-generating fibroblasts (Watase et al., 1992). IH is
recognised as the main cause of thrombotic complications in the short to mid term
following vascular intervention (Clowes, 1993), and is associated with activation of
inflammatory genes and platelet and leukocyte deposition (Waltham & Harris, 2004)
that result in progressive vessel stenosis. NO may prevent IH by inhibiting smooth
muscle cell proliferation (Garg & Hassid, 1989; Janssens ef al., 1998) and by enhancing
programmed cell death (Best et al., 1999; Taylor et al., 2003) and may therefore be of
use to increase graft patency. Furthermore, prosthetic surfaces such as Dacron activate
monocytes (van Aalst et al, 2000); NO can prevent monocyte adhesion to both
endothelial and vascular smooth muscle cells (Bath et al., 1991; Osanai et al., 2001),
adding a further potential benefit of NO-eluting materials to improve graft viability. At
any rate, the synthesis of NO-generating preparations that release NO over a period of
weeks or months may prove beneficial, given evidence that ePTFE prostheses lose much
of their thrombogenicity over a period of ~ 6 months due to endothelialisation (Ariyoshi
et al., 1997; Jeschke et al., 1999). Indeed, some polyurethane prostheses demonstrate
complete endothelialisation within a month of transplant (Jeschke ef al., 1999) and may
prove particularly useful in combination with similar NO-delivery methods to those

detailed here.

7.5 FUTURE DIRECTIONS

The main aim of experiments performed within this thesis was to investigate the

mechanisms of action of existing and novel NO donor drugs on platelet aggregation and
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adhesion in in vitro systems. Therefore, while these experiments have provided useful
information on the antiplatelet signalling events mediated by NO and donor drugs within
these artificial situations, the next logical step is to further study the potential of these
drugs in an in vivo setting.

Chapters 3 and 4 indicate that NO donors including DEA/NO and SNVP, and
ONOO' generators such as SIN-1, inhibit platelet activation via cGMP-independent
mechanisms that involve the inhibition of platelet Ca** signalling and/or inhibition of
TxA; formation. However, the ability of these compounds to affect platelet function in
vivo, particularly via cGMP-independent mechanisms, is not clear.  Although
diazeniumdiolates such as MAHMA/NO may be more potent inhibitors of platelet
function in vivo than S-nitrosothiols such as GSNO (Homer & Wanstall, 2003), the
contribution of cGMP-independent signalling events to the inhibitory effect has not been
discerned. It may be the case that short-lived NO donors such as MAHMA/NO induce
long-term antiplatelet effects by permanently modifying critical proteins (e.g. SERCA),
although the observation that platelets treated with a concentration of DEA/NO (2 uM)
sufficient to induce cGMP-independent signals (chapter 3; fig 3.2.a.ii) recovered from
DEA/NO-mediated inhibition (chapter 5; fig 5.2) suggests that ¢cGMP-independent
effects are fully reversible. Nevertheless, investigation into the temporal aspects of
c¢GMP-independent effects merits further investigation. Moreover, further experiments
are required to characterise whether the induction of cGMP-independent signals within
platelets is a desirable event. Perhaps the best way to address these issues is to perform

comparative experiments between NO donors that inhibit platelet activation via purely
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cGMP-dependent effects (e.g. SNP) and ones that are known to stimulate cGMP-
independent events (e.g. DEA/NO). Indeed, these experiments could also address
whether novel NO donors including the diazeniumdiolates and S-nitrosothiols such as
SNVP are useful as antiplatelet agents at concentrations that do not induce global
vasodilation. On this front, results for the selective inhibition of platelet activation by
SNVP (Miller et al, 2003) and for a short-acting diazeniumdiolate
(dimethylhexanediamine diazeniumdiolate; Kaul et al., 1996) look promising.

The observation in chapter 5 that low molecular weight thiols accelerate S-
nitrosoalbumin formation mean that the time-course of NO donor-mediated inhibition of
platelet activation cannot be predicted by its observed half-life in vitro. However, it will
be important to assess the ability of both cell-free and red blood cell haemoglobin to
modulate the effects of these NO donor in vivo, to rule out the possibility that the
prolonged inhibition of platelet activation is an in vitro artefact. The finding that
infusion or supplementation of low molecular weight thiols enhances GTN and
endothelium-dependent relaxation (Kugiyama et al., 1998; Vita et al., 1998) suggests
that this pathway may play a role in vivo. Indeed, the supplementation of endogenous
levels of low molecular weight thiols requires more investigation as a therapeutic
strategy in conditions where levels of these thiols are decreased, such as coronary heart
disease (Morrison et al., 1999).

Results outlined in chapter 6 identify a potential therapeutic role for SNVP and
NO-loaded zeolites as biocompatible agents to reduce platelet adhesion. It is clear that
these materials require further scrutinisation before their full potential can be evaluated.

These include trials designed to test the longevity of antiplatelet action and the ability of
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these biomaterials to prevent platelet activation under physiological conditions in vivo.
In addition, more work is required to establish the properties responsible for SNVP-
mediated inhibition of platelet adhesion and to determine whether the chemical
properties of SNVP may be improved upon to further decrease the'thrombogenjcity of
artificial prostheses. For example, should the 5 C valeryl chain on SNVP prove essential
for its retention within ePTFE, then increasing chain length may afford greater
hydrophobic interaction and retention with such materials. On a similar note, it is worth
comparing the effect of SNVP on other prosthetic materials (e.g. Dacron), with which
SNVP may show greater efficacy. Further experiments are also required to investigate
how practical zeolites are for the construction of grafts and whether or not they may be
used to generate mechanically stable prostheses for long term use. In particular, the
development of longer lasting NO-releasing surfaces and/or their combination with
prosthetic surfaces that exhibit rapid endothelialisation is likely to have significant
impact on the construction of biocompatible surfaces with improved long-term patency.

Ultimately, it is important to assess the long-term therapeutic potential of novel NO
donor drugs in conditions where increased platelet activity and/or reduced NO
bioavailability is a problem. As mentioned, platelet activity is increased in
coronéry/peripheral vascular disease, atherosclerosis and hypertension (Furman et al.,
1958; Kabbani et al., 2001; Lande et al., 1987; Reininger et al., 1999), usually in
association with endothelial dysfunction and decreased NO bioavailability (Bossaller et
al., 1987; Linder et al., 1990; Makin et al., 2003; Werns ef al., 1989). It remains to be
seen whether novel NO donors may afford protection against such conditions and

improve patient outcome.
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7.6 SUMMARY

In summary, data presented within this thesis characterise the inhibitory action of a
number of NO donor drugs in human platelets and describes the antiplatelet action of
novel NO-generating surfaces. In plasma, NO donors can inhibit platelet activation via
cGMP-independent mechanisms provided sufficient extracellular NO radical is
generated (see fig 7.1 for summary). Potential cGMP-independent targets within
platelets include the Ca** pump, SERCA, and the prostaglandin generating protein,
COX-1. Similarly, plasma low molecular weight thiols modulate the antiplatelet activity
of NO by accelerating S-nitrosoalbumin formation and subsequent NO-delivery by
means of transnitrosation reactions (fig 7.1). Finally, the coating of prosthetic graft
materials with SN'VP and/or the production of grafts and extracorporeal tubing with NO-
loaded zeolites offer a potential means of increasing the biocompatibility of artificial

prostheses and improving their function.
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LMW-SNO

e.g. GSNO, SNOC

Plasma
cpP antioxidants

e.g. S-nitrosoalbumin, cr e.g. DEA/NO iOSOD e.g. SIN-1

SNVP

Figure 7.1 Summary of the mechanisms proposed in this thesis. NO can inhibit platelet activation
by binding to sGC resulting in ¢cGMP-dependent inhibition of platelet activation.
Alternatively, NO generated in the extracellular environment inhibits COX-1 or
increases SERCA-dependent Ca’* reuptake into the DTS, resulting in c¢GMP-
independent antiplatelet effects. The interaction of NO with O, results in ONOO
generation, although plasma antioxidants and SOD can prevent this reaction and
favour the conversion of ONOO" back to NO. NO can also react with thiols resulting
in the generation of S-nitrosothiols (R-SNO). In plasma however, NO preferentially
reacts with low molecular weight thiols, resulting in the formation of low molecular
weight S-nitrosothiols (LMW-SNO). LMW-SNO can undergo transnitrosation
reactions with protein thiols such as cys 34 in serum albumin, resulting in the
formation of stable S-nitrosothiol species that may prolong NO bioactivity. The
acceleration of S-nitrosothiol decomposition by plasma factors such as CP, and the
prevention of ONOO™ formation by SOD, may induce cGMP-independent inhibition of
platelet activation, provided sufficient extracellular NO is generated.
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Nitric oxide (NO) is a powerful antiplatelet agent, but
its notoriously short biological half-life limits its poten-
tial to prevent the activation of circulating platelets.
Here we used diethylamine diazeniumdiolate (DEA/NQO)
as an NO generator to determine whether the antiplate-
let effects of NO are prolonged by the formation of a
durable, plasma-borne S-nitrosothiol reservoir. Prein-
cubation of both platelet rich plasma (PRP) and washed
platelets (WP) with DEA/NO (2 pm) for 1 min inhibited
collagen-induced platelet aggregation by 82 + 5 and 91 =
2%, respectively. After 30 min preincubation with DEA/
NO, NO was no longer detectable in either preparation,
but aggregation remained markedly inhibited (72 = 7%)
in PRP. In contrast, the inhibitory effect in WP was
almost completely lost at this time (5 = 3%) but was
partially restored (39 = 10%) in WP containing human
serum albumin (1%) and fully restored by co-incubation
with albumin and the low molecular weight (LMW) thi-
ols, glutathione, (56 um), cysteinyl-glycine (10 um), or cys-
teine (10 um), This NO-mediated effect was not seen with
LMW thiols in the absence of albumin and was associ-
ated with S-nitrosothiol formation. Our results demon-
strate that LMW thiols play an important role in both
the formation and activation of an S-nitrosoalbumin res-
ervoir that significantly prolongs the duration of action
of NO.

Nitric oxide (NO)! is a crucial free radical messenger with
potent antiplatelet activity (1-5). NO synthesized in vascular
endothelial cells and platelets is recognized to be a key medi-
ator that protects against both atherogenesis and thrombosis
(6). In platelets, NO primarily acts to stimulate soluble guany-
late cyclase, ultimately resulting in a cyclic guanosine mono-
phosphate (¢cGMP) and G kinase-mediated reduction in calcium
mobilization (7, 8), although cGMP-independent inhibitory ef-
fects have also been identified (9). Under physiological condi-
tions, the half-life of NO is short (—3-10 s) (10, 11), suggesting
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! The abbreviations used are: NO, nitric oxide; ¢GMP, cyclic
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poor plasma; WP, washed platelets; RBC, red blood cell; HSA, human
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that NO bioactivity should rapidly dissipate and only impact on
cells within close diffusible range of the site of production (12,
13). However, a number of studies suggest that NO can be
incorporated into relatively stable endogenous reservoirs that
modify its biological activity (14—19). S-Nitrosothiols rank high
among the likely candidates for such a reservoir because of the
relative abundance of suitable thiols in the biological environ-
ment (20). A physiological role for S-nitrosothiols has been
implicated following identification of endogenous S-nitrosothi-
ols at relevant concentrations (14, 21-24), together with plau-
sible pathways that could result in their formation (25-28). In
plasma, it has been shown that the vast majority of the S-
nitrosothiol pool exists in the form of the high molecular weight
species S-nitrosoalbumin (14, 29, 30). However, low molecular
weight (LMW) thiols such as glutathione are also present in
plasma in the low micromolar range and have previously been
shown to potentiate the antiplatelet action of S-nitrosoalbumin
(31). Given the close proximity of platelets to the vascular
endothelium and the unique sensitivity of platelets toward
S-nitrosothiol-mediated inhibition, it is important to dissect
the role of plasma-borne thiols in the modification of NO activ-
ity in platelets.

Here, we tested the hypothesis that the activity of a short-
acting NO donor drug, diethylamine diazeniumdiolate (DEA/
NO), is prolonged in the presence of plasma albumin through
formation and subsequent activation of an S-nitrosoalbumin
NO reservoir. Furthermore, we explored the hypothesis that
low molecular weight thiols have a unique role in both the
formation and activation of an S-nitrosoalbumin reser-
voir, potentiating NO-mediated inhibition of platelet
aggregation.

EXPERIMENTAL PROCEDURES

Materials—(Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate so-
dium salt (DEA/NO; Alexis Biochemicals, Lausen, Switzerland) was
dissolved in 0.01 M NaOH and stored at —20 °C. DEA/NO was diluted in
phosphate-buffered saline (pH 7.4) immediately before use. Bovine met-
hemoglobin was reduced to the ferro (Fe?") form by sodium dithionite as
previously described (32). Spectrophotometric analysis indicated that
ferrohemoglobin existed primarily in the oxygenated form. Collagen
reagent was purchased from Labmedics (Stockport, UK). All other
chemicals were purchased from Sigma.

Platelet Preparation—Venous blood was drawn from the antecubital
fossa of healthy volunteers (age 20—40 years) into citrated tubes (0.38%
final concentration). Volunteers had not taken any medication known to
affect platelet aggregation within the last 10 days. Platelet-rich plasma
(PRP) and platelet poor plasma (PPP) were prepared as previously
described (34). Washed platelets (WP) were prepared by centrifugation
of PRP (1200 X g; 10 min) in the presence of PGI, (300 ng/ml), and the
platelet pellet resuspended in an equal volume of modified HEPES-
tyrode buffer containing (in mm): 137 NaCl, 2.7 KCl, 1.05 MgS0,, 0.4
NaH,PO,, 1.8 CaCl,, 12.5 NaHCO,, 5.6 glucose, 10 HEPES, and 10.9
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trisodium citrate. Following a secondary centrifugation (1200 X g; 10
min) in the presence of 300 ng/ml PGIL,; platelets were resuspended in
an equal volume of PGI,-free HEPES-tyrode. Platelet count was deter-
mined using a Coulter A°.T 8 Hematology Analyzer (Coulter Electron-
ics, Luton, UK) and standardized to 250 x 10 liter ' via dilution with
PPP (PRP) or HEPES-tyrode (WP).

NO Electrode Measurements—Samples (2 ml) of PRP and WP were
prewarmed to 37 °C before addition of DEA/NO (2 um). NO concentra-
tion was measured for 30 min by an isolated NO electrode (World
Precision Instruments, Stevenage, UK). The electrode was calibrated
using DEA/NO (0.1-3.2 um) in phosphate buffer (pH 4.0); DEA/NO
spontaneously decomposes at pH = 5 (33). In a different series of
experiments, WP were reconstituted with 0.46 umM hemoglobin derived
from red blood cell (RBC) lysate, prior to addition of DEA/NO (2 um) and
recording for 30 min.

Hemoglobin Measurements—Plasma hemoglobin was quantified
using an assay (Sigma Diagnostics) based on the hemoglobin cata-
lyzed oxidation of 3,3',5,5'-tetramethylbenzidine by hydrogen perox-
ide and colorimetric determination at 600 nm as described (34, 35).

Aggregometry—Aggregometry studies were performed via turbido-
metric analysis using a two-channel platelet aggregometer (Chronolog
Cab60, Labmedics, Stockport, UK). Signals were processed by a Ma-
cLab/4e analogue-digital converter (AD Instruments, Sussex, UK) and
displayed through Chart software (AD Instruments, Sussex, UK). Ali-
quots (0.5 ml) of PRP and WP were equilibrated at 37 °C before the
addition of 2 um DEA/NO (~IC,, for DEA/NO in platelets (9)). Platelet
aggregation was then induced via the addition of collagen (2.5 pg/ml)
1-30 min later. Aggregation was monitored for 5 min, and the maxi-
mum response recorded. In a different series of experiments, WP were
reconstituted with the LMW thiols glutathione (GSH; 5 um), cysteinyl-
glycine (Cys-gly; 10 um), and cysteine (Cys; 10 um) to approximate
plasma concentrations (36). Thiol-reconstituted WP was also incubated
in the absence and presence of 1% human serum albumin (HSA); higher
concentrations of HSA that approximate plasma levels (4%) were found
to have nonspecific effects in platelets, even after extensive dialysis.
Platelets were incubated with DEA/NO (2 um) before stimulation with
collagen (2.5 pg/ml) 30 min later. In further experiments, WP reconsti-
tuted with GSH (5 um) = HSA (1%) were preincubated with donor RBC
lysate to produce a final hemoglobin concentration of 0.46 um. DEA/NO
(2 uM) was added to WP for 30 min prior to the addition of collagen (2.5
pg/ml) 30 min later. In control experiments, DEA/NO (2 uM) was added
to WP 25 min before the addition of oxy-hemoglobin (10 um). Platelets
were then stimulated with collagen (2.5 pg/ml) 5 min later, and aggre-
gation measured.

Thiol Measurements—The reduced thiol content of plasma and HSA
(1%)-reconstituted tyrodes * the LMW thiols GSH (5 um), Cys-gly (10
uM), or cysteine (10 uM) was quantified via reaction with 5,5'-dithio-
bis(2-nitrobenzoic acid) and colorimetric determination at 412 nm, as
previously described (37).

S-Nitrosothiol Detection—Samples of PRP and WP were equilibrated
in the aggregometer for 15 min. To establish baseline S-nitrosothiol
levels, 0.5-ml aliquots of PRP or WP were transferred to vials contain-
ing N-ethylmaleimide (NEM) and EDTA (final concentration 5 mm and
2 mM, respectively). Samples were centrifuged (1800 X g; 5 min), and
the supernatant aspirated. Acidified sulfanilamide (2.5% dissolved in 1
M HCl) was added to the supernatant, and the mixture stored at =70 °C
prior to S-nitrosothiol detection. To determine S-nitrosothiol formation
after bolus NO injection, WP and PRP samples were prewarmed as
before and 2 um DEA/NO added. Aliquots (0.5 ml) of DEA/NO-treated
WP or PRP were aspirated 1-30 min later and added to NEM/EDTA to
stop the reaction. Samples were centrifuged (1800 X g; 5 min), and the
supernatant and pellet treated with acidified sulfanilamide and stored
at =70 °C. S-Nitrosothiols were quantified by copperfiodide-induced
cleavage of the S-NO bond and subsequent measurement by chemilu-
minescence as described (21).

RESULTS

Hemoglobin Measurements—Hemoglobin (Hb) concentration
in PRP was 0.46 = 0.18 um (n = 5) and did not differ signifi-
cantly (p > 0.05) from the hemoglobin concentration deter-
mined in PPP (0.39 *+ 0.01 pm).

NO Electrode Studies—Addition of 2 ym DEA/NO to WP
resulted in a rapid increase in NO concentration, which
reached a maximum of 3.2 + 0.18 um (mean * S.E.) NO before
it declined to basal levels within 20-25 min (Fig. 1; n = 6).
Administration of 2 um DEA/NO to PRP showed that DEA/NO-
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Fic. 1. Generation of NO by DEA/NO in WP, PRP, and Hb
reconstituted WP. Platelets were equilibrated at 37 °C before the
addition of 2 um DEA/NO. Recording was stopped after a 30-min incu-
bation of DEA/NO. Data are expressed as the mean of six experiments.

derived NO was partially quenched in plasma, reaching a max-
imum extracellular concentration of 0.53 * 0.11 um. Addition of
2 um DEA/NO to WP reconstituted with 0.46 pm hemoglobin
derived from donor RBC lysate produced a profile matching
that observed in PRP with a maximum extracellular NO con-
centration of 0.59 *+ 0.05 uM (n = 6). Reconstitution of WP with
1% HSA + GSH (56 um) produced a NO trace similar to that
observed with WP (results not shown).

Effect of DEA/NO on Inhibition of Platelet Aggregation in
PRP and WP—DBolus administration of DEA/NO (2 um) to PRP
resulted in sustained inhibition of collagen-induced platelet
aggregation that was maintained for at least 30 min (Fig. 24;
n = 8). In WP, however, inhibition of collagen-induced platelet
aggregation by DEA/NO (2 um) was attenuated at 20 min and
abolished after 30 min (Fig. 24; n = 8). The difference between
inhibition of aggregation in PRP and WP was significant (p <
0.001). Representative traces from each time point in both PRP
and WP are included (Fig. 2B).

Effect of Thiols on DEA/NO-mediated Inhibition of Platelet
Aggregation in WP—Reconstitution of WP with the LMW thiols
GSH (5 um), Cys-gly (10 pm), and Cys (10 um) did not alter the
inhibition of platelet aggregation by DEA/NO after 30 min (n
8; p > 0.05). However, reconstitution of WP with 1% HSA
resulted in a modest restoration of the inhibitory effect of
DEA/NO after 30 min (Fig. 3; p < 0.001). Co-incubation of WP
with 1% HSA and either GSH, Cys-gly, or Cys fully restored the
inhibitory effect of DEA/NO after 30 min (Fig. 3; p < 0.001).
Inhibition of platelet aggregation by DEA/NO at 30 min in the
presence of HSA and GSH was partially quenched by preincu-
bation of 0.46 pm RBC-derived hemoglobin in WP (p < 0.01),
although inhibition was still significantly enhanced when com-
pared with WP alone (Fig. 4; n = 8).

Effect of Hemoglobin on Prolonged Inhibition of Platelet Ag-
gregation—Prolonged inhibition of platelet aggregation in WP
reconstituted with HSA alone or with HSA and any of the LMW
thiols was abolished by addition of the NO scavenger oxy-Hb
(10 um; p < 0.001, n = 8).

Thiol Measurements—The concentration of reduced thiol in
plasma was 0.32 = 0.01 mm (n = 5). In HEPES-tyrode buffer
containing 1% HSA, thiol concentration was 0.11 = 0.01 mm
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Fic. 2. Inhibition of platelet aggregation by DEA/NO in WP
and PRP. WP or PRP were equilibrated to 37 °C before the addition of
DEA/NO (2 pm). Platelet aggregation was then stimulated via the
addition of collagen (2.5 pg/ml) 1-30 min later. Data are expressed as
mean *+ S.E. of eight experiments. (*, p < 0.05; **, p < 0.001; A).
Representative traces obtained from PRP and WP are also included (B).

(n = 5) and did not differ significantly from 1% HSA containing
GSH (5 um; 0.12 = 0.01 mm), Cys-gly (10 pm; 0.10 = 0.01 mm),
or Cys (10 um; 0.11 + 0.01 mm).

S-Nitrosothiol Detection—Incubation of DEA/NO in PRP
caused a rapid increase in S-nitrosothiol production which
reached a maximum of 73.5 + 15.4 nM after 10 min and dimin-

Plasma Thiols, NO, and Platelet Function

ished gradually over the 30-min incubation period (Fig. 5; n =
6). Addition of DEA/NO to WP + 1% HSA resulted in a slower
increase in S-nitrosothiol concentration, which reached a level
close to that observed in PRP after 30 min (46.0 + 8.8 nm). The
presence of 5 um GSH increased the formation of S-nitrosothiol
~2-fold after a 30 min-incubation of DEA/NO (104.5 = 18.7
nM). There was no significant difference in S-nitrosothiol
formation in WP + 1% HSA compared with 1% HSA alone
(p = 0.05).

DISCUSSION

Our results clearly demonstrate that the biological activity of
DEA/NO, a short-acting NO-donor drug with a half-life of ~2
min at physiological temperature and pH, is significantly pro-
longed in PRP compared with WP, where activity closely mir-
rored NO concentration. Importantly, the prolonged inhibition
of aggregation observed in PRP is mediated by NO, despite the
clear decay of DEA/NO-derived NO to undetectable levels
within the 30-min incubation period. Reconstitution of WP
with HSA caused a partial restoration of DEA/NO-mediated
inhibition after 30 min, but when combined with the LMW
thiols GSH, Cys-gly, or Cys, the inhibitory action was fully
restored to that seen in PRP. Furthermore, the degree of inhi-
bition of aggregation was associated with S-nitrosothiol forma-
tion in PRP and reconstituted platelets, indicating a crucial
role for both protein and LMW thiols in prolonging the biolog-
ical activity of NO.

NO was clearly detected in both WP and PRP treated with
DEA/NO, a compound known to generate two molar equiva-
lents of NO upon hydrolysis. Importantly, while there was a
clear divergence in the concentration of NO detected in PRP
and WP, DEA/NO-derived NO declined to undetectable levels
after a 20-min incubation period in both PRP and WP. There
was a delay in the appearance of NO in PRP after bolus injec-
tion of DEA/NO, suggesting that plasma has some NO scav-
enging ability. Analysis of Hb concentration revealed that PRP
contained 0.46 um Hb, with a potential capacity to scavenge
~1.5-2 pm NO, assuming that all four heme groups are avail-
able for reaction with NO. Given that the delay in appearance
of extracellular NO in PRP is ~2 min, during which time ~2 um
NO is released, our data indicate that Hb-mediated scavenging
is responsible for the discrepancy between extracellular NO in
PRP and WP. The concentration of Hb in PRP equated with
that in PPP, indicating that the vast majority of Hb was cell-
free. The physiological relevance of these findings is, as yet,
unclear because blood sampling and platelet isolation is likely
to cause significant hemolysis. However, increased scavenging
of NO by cell-free Hb might have important implications in
conditions where hemolysis is increased in vivo, such as in
subarachnoid hemorrhage (38).

The ability of plasma components to prolong the antiplate-
let effects of bolus DEA/NO is profound. While inhibition of
platelet aggregation was sustained in PRP, substitution of
plasma with HEPES-tyrode buffer resulted in a marked re-
duction in the duration of the inhibitory effect. Predictably,
there was a close correlation between extracellular NO con-
centration and inhibition of platelet aggregation in WP, in-
dicating that the degree of inhibition is closely defined by the
extracellular NO concentration. In PRP, however, inhibition
of aggregation was maintained, despite the progressive loss
of extracellular NO from the system. The NO scavenger,
oxy-Hb, abolished the sustained inhibitory effect in PRP,
confirming that the effect was entirely NO-mediated. Given
that human plasma is an abundant source of reduced thiol
(20) and that the concentration of S-nitrosothiols in human
plasma is relatively high (30-120 nm) (21, 24, 30), we hypoth-
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and Cys (10 um) = HSA (1%) were preincubated in WP before the
addition of 2 um DEA/NO. Platelet aggregation was then stimulated via
the addition of collagen (2.5 pg/ml) 30 min later. PRP data are also
included for a comparison. Data are expressed as mean + S.E. of eight
experiments. (¥** p < 0.001).
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Fic. 4. Effect of Hb on DEA/NO mediated inhibition of platelet
aggregation. WP + RBC-derived Hb (0.46 uM) were incubated with
GSH (5 um) = HSA (1%) before the addition of DEA/NO (2 um). Aggre-
gation was then induced by the addition of collagen (2.5 pg/ml) 30 min

later. Data are expressed as mean * S.E. of eight experiments. (**, p <
0.001).

esized that thiols may have a role in the prolongation of NO
bioactivity observed here. In human plasma, the single free
cysteine residue present on serum albumin (Cys-34) accounts
for the majority of reduced thiol. However, LMW thiols are
present in human plasma in the low micromolar range (36),
and S-nitrosothiols have previously been shown to undergo
thiol-nitrosothiol exchange in vivo (15). Therefore, WP was
reconstituted with albumin and LMW thiols to dissect thiol
function on the antiplatelet activity of NO. Our results
clearly indicate that incubation of the LMW thiols GSH,
Cys-gly, and Cys did not alter the duration of antiplatelet
action of DEA/NO, but reconstitution with 1% HSA signifi-
cantly prolonged inhibition of aggregation. Crucially, while
DEA/NO-mediated aggregation was only partially restored
with HSA, co-incubation of HSA with each of the LMW thiols
completely restored the inhibitory action of DEA/NO at 30
min despite a negligible increase in the thiol pool. Further-
more, hemoglobin completely reversed this inhibition, indi-
cating that the LMW thiol/HSA effect is entirely
NO-mediated.

The correlation observed between S-nitrosothiol formation
and inhibition of platelet aggregation strongly indicates that
the role of thiols in prolongation of NO-mediated inhibition of
platelet aggregation is through provisicn of a substrate for
S-nitrosation. Interestingly, our results indicate that there is a
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Fi1c. 5. S-nitrosothiol formation in PRP and reconstituted WP
after treatment with DEA/NO. DEA/NO (2 uM) was incubated in
PRP or reconstituted WP before the addition of NEM/EDTA 1-30 min
later to stop the reaction. Samples were then centrifuged, and the
supernatant treated with acidified sulfanilamide (2.5% in 1 M HCI)
before S-nitrosothiol detection. Data are expressed as mean * S.E. of
six experiments.

clear difference in the rate by which S-nitrosothiols are gener-
ated in PRP compared with thiol-reconstituted solutions. In
PRP, S-nitrosothiol formation was very fast compared with
that observed in reconstituted WP, with significant amounts
being formed (~60 nm) after 1 min of incubation with DEA/NO.
Conversely, 1 min of incubation of DEA/NO in HSA-reconsti-
tuted WP resulted in very low level S-nitrosothiol formation
(<10 nm), which gradually increased to a maximum concentra-
tion of 50.5 * 6.7 nM after 20—30 min. Despite rather different
kinetics of formation of S-nitrosothiols in PRP and HSA-recon-
stituted WP, by 30 min, total S-nitrosothiol concentration is the
same (~50 nM). However, inhibition of platelet aggregation is
markedly different in PRP and HSA reconstituted WP after a
30-min incubation of DEA/NO. Previous data indicating that
LMW thiols such as GSH can increase the antiplatelet action of
S-nitrosoalbumin (31) are supported by our results. We suggest
that S-nitrosoalbumin formed in reconstituted WP is an inef-
ficient NO donor and requires the presence of low molecular
weight thiols such as those found in PRP to efficiently-control
physiological function as has previously been proposed (14, 15,
17, 31). However, data obtained here emphasize an additional
role for GSH and other LMW thiols in the formation of S-
nitrosothiols. Co-incubation of GSH with HSA-reconstituted
WP resulted in an increase in S-nitrosothiol concentration by
~2-fold. Furthermore, this increase was accompanied by a
large augmentation of DEA/NO-mediated inhibition of platelet
aggregation.

The mechanism for formation of S-nitrosothiols in vivo is a
source of considerable debate; NO itself is a weak nitrosating
agent, but higher oxides of NO such as N,O, are potent nitro-
sating species (39). The rate-limiting step in the formation of
N,O, is the reaction of NO with molecular oxygen, which is
third order (& ~ 4 X 10° M™% s7) (40, 41). Although originally
thought too slow to account for endogenous levels of S-nitroso-
thiols, the reaction between NO and O, can be catalyzed by
ceruloplasmin (42), a copper-containing protein abundant in
plasma. Moreover, accelerated formation of S-nitrosothiols has
been observed in the presence of biological membranes (39, 43)
and in the hydrophobic core of proteins such as albumin (44),
which act as “NO sinks” to concentrate nitrosating species. We
recognize that the pharmacological levels of NO used here are
sufficiently high to facilitate significant formation of N,O, that
might subsequently nitrosate thiols. However, our results with
GSH and HSA confirm previous findings that the ability of
albumin to catalyze S-nitrosothiol formation is greatly in-



46862
N‘Os >\‘
b
o, RSH  RSNO
c
DEANO — NO  HSA (SNO-HSA HSA
a s| RSH  RSNO
c
FIG. 6. Su vy of proposed hanism. DEA/NO hydrolyzes in

aqueous solution to generate NO. NO diffuses into the platelet where it
activates various cellular processes leading to inhibition of platelet
aggregation (path a). Alternatively, DEA/NO-derived NO reacts with
molecular oxygen to form nitrosating species such as N,0,, which react
with the sulfhydryl group on HSA to form relatively stable SNO-HSA.
SNO-HSA inhibits aggregation via generation of NO at the platelet
membrane surface (path b). In the presence of LMW thiols, N,O,
preferentially reacts with LMW thiols to form LMW S-nitrosothiols
(RSNO). LMW S-nitrosothiols transnitrosate with HSA to form the
S-nitrosoalbumin reservoir. Bioactive NO can be delivered to the plate-
let via a reverse of the previous process, leading to prolonged inhibition
of aggregation (path c).

creased in the presence of low molecular weight thiols (44). A
modest increase (~5%) of thiol pool through addition of GSH to
HSA-treated WP failed to significantly affect total thiol concen-
tration, while causing a disproportionate increase in S-nitroso-
thiol formation (~2-fold). Our data demonstrate that the pres-
ence of platelets did not significantly alter S-nitrosothiol
production, suggesting that plasma membrane-mediated accel-
eration does not play a part in this system. Given that we
observed more rapid production of S-nitrosothiols in plasma
than in reconstituted WP, we suggest that S-nitrosothiol for-
mation catalyzed by plasma components like ceruloplasmin
may be a key factor in the difference observed. Alternatively,
the full complement of thiols in plasma may be required to
provide an efficient pathway for the incorporation of NO into
S-nitrosothiols. Our results indicate that cell-free Hb at plasma
concentrations has a net scavenging effect, implying that cell-
free Hb functions to remove NO rather than to conserve NO
bioactivity through the formation of additional S-nitrosated
species. We recognize that many pathways for S-nitrosothiol
formation exist (26, 28), and thus may play a significant role in
this system.

It is noteworthy that low serum GSH levels are an independ-
ent predictor of coronary heart disease (45) and that thiol
supplementation in humans has been shown to cause an in-
crease in both endothelium-dependent and -independent relax-
ation (46-48), especially in subjects at risk from coronary
artery disease (46). Furthermore, a number of potential mech-
anisms for the cardioprotective role of thiols have been identi-
fied, including scavenging of oxygen-derived free radical spe-
cies (48) and direct stimulation of NO synthase itself (49). Our
results imply that the bioavailability of LMW thiols may have
a significant impact on the ability of plasma to form S-nitroso-
thiols and, therefore, prolong the antiplatelet action of endo-
thelium-derived NO (Fig 6). Moreover, in light of evidence that
S-nitrosoglutathione is relatively platelet-selective (50), we
suggest that the ability of GSH and other LMW thiols to assist
in S-nitrosothiol formation and delivery may be of crucial im-
portance in the maintenance of hemostasis and might be com-
promised in coronary artery disease.

Plasma Thiols, NO, and Platelet Function

Our results have important implications with respect to the
potential for NO donor-mediated antithrombotic therapy. For-
mation of a durable plasma reservoir of NO that is slowly
liberated through the action of LMW thiols suggests that pro-
longed antiplatelet activity might be afforded by delivery of
short acting NO donor drugs that were previously considered
too labile for this purpose.
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