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Abstract 

Windthrow remains as one of the most important constraints for forestry in the British 

uplands. To develop silvicultural systems and decision support tools that will minimise 

wmdthrow losses, we require an improved understanding of tree anchorage and root 

development. A series of studies was conducted to quantify the relative effects of 

species, soil, and rooting depth on anchorage; examine the effect of terrain on 

anchorage and root architecture; and examine the effects of changes in wind loading on 

radial growth in stems and structural roots. 

Firstly, a database was constructed of tree anchorage measurements from almost 2000 

trees of 12 conifer species. An analysis revealed that the anchorage of Sitka spruce was 

best on peat and poorest on gleyed mineral soils. Trees with root depths >80 cm had 

critical turning moments 10 to 15% larger than shallow rooted trees. There was better 

anchorage for grand fir and Douglas-fir than Sitka spruce with various soils and rooting 

depths. Lodgepole pine was less well anchored, as was shallow rooted (<40 cm) 

Norway spruce on gleyed mineral soil and Corsican pine on medium depth (40-80 cm) 

mineral soil. All other species had similar anchorage to Sitka spruce on equivalent soil. 

Secondly, as most tree pulling had been conducted on relatively horizontal sites, 

anchorage and root development of Sitka spruce was compared between a steep (Ca. 

30°) slope and an adjacent horizontal area with similar soil. No overall effect of terrain 

on anchorage was found, but trees pulled upslope had significantly better anchorage 

than those pulled downs lope. The coarse root systems of these trees were extracted and 

digitised in 3-1). Non-directional root architecture characteristics were similar between 

the slope and flat terrain. However, trees on the horizontal had more root mass on the 

leeward side relative to the prevailing wind, while those on the slope had more mass on 

the windward side, indicating a possible interaction between slope and wind action on 

root architecture. 

Finally, the radial growth response of tree stems and structural roots to wind loading 

were examined in two experiments: 1. Growth ring chronologies from stems and 

structural roots of 46-year-old Sitka spruce trees grown on an exposed upland site, were 
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compared with wind records. Wind speed was well correlated with radial growth of 

structural roots on the lee side of the tree. There was a positive relationship between 

structural root radial growth at 0.75 m from the tree centre and mean autumn wind 

speed. 2. Wind movement, light and photosynthate supply were manipulated on 10-

year-old Sitka spruce trees. After 4 years, disks were cut from stems and structural 

roots, and an analysis of annual radial growth showed that trees responded to reduced 

photosynthate supply (induced by branch girdling) with an immediate reduction in stem 

and root radial growth. Trees responded to a stand thinning treatment (increased light 

and wind movement), and to a thinning and guying treatment (increased light, reduced 

wind movement), with immediate increases in root radial growth, and increases in stem 

radial growth that were delayed by a year. The response to thinning alone was greater 

than the response to thinning and guying, and was considerably greater below-ground 

than above-ground. 

Results from these studies provide a basis for future development of models of tree 

stability and wind risk to forest stands. For the first time, anchorage can be compared 

objectively between a range of coniferous tree species, soil groups and rooting depth 

classes. The results of experiments conducted in forest stands on a steep slope and a 

neighbouring horizontal area indicate that it will not be necessary for models of tree 

stability to take the slope into account in anchorage calculations. However, the greater 

vulnerability of trees to downslope overturning indicates that the accuracy of these 

models will be considerably improved by incorporating directional differences in 

calculations of windthrow risk on complex terrain. The potential for extensive soil 

erosion following windthrow on steep terrain, indicated by this investigation, should be 

taken into account in future management plans for forest stands on complex or 

mountainous terrain. The thinning and guying experiment has provided results that can 

be used to explain and model the increased vulnerability of trees following stand 

thinning, and their subsequent re-stabilisation, in terms of changes in assimilate 

allocation between above- and below-ground components in response to mechanical 

stress. 
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1. Introduction - Anchorage, Stability and Windthrow 

of Forest Trees 

Wind damage to trees 

Wind damage is a natural disturbance process that is a necessary part of forest 

ecosystem dynamics (Putz et al. 1983). Forest gaps created by wind allow tree 

regeneration, and increased structural and species diversity (Quine et al. 1999; 

Schaetzl 1989). In addition, uprooting of trees disrupts soil horizons and causes 

beneficial mixing of the soil (Cremeans and Kalisz 1988; Kramer 2001). However, 

despite being an important feature in natural forests, wind damage in managed 

forests leads to considerable disruption to the industry (Savill 1983). Overturned 

trees are expensive to harvest and the risks to forest workers in clearing windthrown 

sites are increased. If trees snap instead of overturning, the most valuable saw logs 

from the lower part of the stem are lost (Nieuwenhuis and Fitzpatrick 2002). In 

addition, windthrow commonly damages stands of trees that have not yet reached 

their age of optimum economic return (Savill 1983), and as a result the profitability 

of commercial forests is limited by premature felling. 

The British Isles have a particularly windy climate compared to other parts of the 

world due to their location in the track of most north Atlantic depressions (Troen and 

Peterson 1989). Wind damage to forests in Britain and Ireland has been reported 

since the 13th  century (Quine et al. 1995), but it was not until the late 19" century 

that damage to forests caused a major oversupply to the timber market in the UK. 

With the widespread expansion of British forest cover in the 20th  century, the 

potential for storms to damage large areas of commercial forest was increased. As 

new forest plantations, commonly established in exposed upland areas, started to 

mature in the mid-20 th  century, wind emerged as the most important limiting factor 

for UK forestry (Savill 1983). Storms causing substantial forest damage, of 1 million 

in 3  or more, occurred approximately each decade of the second half of the 20th 

century (see Table 1-1). 



Table 1-1 The most damaging storms for the UK forest industry, 1950 to present (from 
Quine et aL 1995). 

Date of storm Wind speed of 

maximum recorded gust 

(m s') 

Volume of 

windthrown timber 

(m3  x 106) 

% of forest stock 

damaged 

31 January 1953 50 1.8 10-25 

15 January 1968 52 1.6 15-30 

2 January 1976 47 1.0 <5 

16 October 1987 51 3.9 13-24 

25 January 1990 48 1.3 1-3 

In other parts of Europe, wind speeds high enough to cause forest damage are less 

common, but the percentage of land cover devoted to forestry is greater. Wind causes 

substantial amounts of damage annually across Europe, with up to 10 million m 3  

timber being windthrown most years (ECE/FAO 2000). In addition, storms that have 

overturned 20 million m 3  or more of forest have occurred six times in the last 50 

years in Europe (Table 1-2), including storms of unusual severity during January 

1990 and December 1999 that overturned 120 million m 3  and 193 million m3  

respectively. The December 1999 damage resulted from two separate storm systems 

that tracked across France and then continued to cause substantial damage in 

Germany, Switzerland, Denmark and several countries in eastern Europe. The 

resulting damage to forests in overturned and snapped trees was equivalent to 2 years 

harvest of timber in the affected countries (ECE/FAO 2000). 

Management to reduce windthrow 

In Britain, forest management techniques have been modified to reduce the losses to 

windthrow. For example, deep ploughing that restricts root spread (Savill 1976), line 

thinning that allows wind to penetrate vulnerable crops (Quine et al. 1995), and 

planting next to the stumps of old trees that leads to the development of asymmetric 

root systems (Prest et al. 1991; Quine et al. 1991), are now discouraged, especially in 

areas where potentially damaging winds are frequent. In addition, trees are harvested 

before they reach a height where they would be particularly susceptible to damage. 

In the 1970s and 1980s the 'Windthrow Hazard Classification' developed by the 
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British Forestry Commission used data on site conditions and wind exposure to 

produce a 'critical' and 'terminal' height of a stand, at which damage would be 

expected to start, and at which damage would reach a level necessitating clearance, 

respectively (Miller 1985; Quine and Gardiner 1998). More recently, this was 

replaced by a windthrow risk model 'ForestGALES' (Quine and Gardiner 1998) that 

uses data on forest stands, soil and wind climate, to calculate the probabilities of tree 

snap and overturning (Dunham et al. 2000; Gardiner et al. 2004). 

Table 1-2. Forest damage caused by major storms in Europe from 1950 to present. 

Date Location Million m3  
JAN 1953 N.E. Scotland 1.8 

1954 Sweden 18 

NOV 1966 Austria & N. Italy 2.3 

JAN-FEB 1967 Central Europe 23.4 

OCT 1967 Denmark 2.4 

JAN 1968 Central Scotland 1.6 

1969 Sweden 36 

NOV 1972 N. France & N. Germany 25.9 

JAN 1976 Wales & C. England 1.0 

DEC 1976 France 2.0 

NOV 1981 Denmark 3.0 

NOV1982 C. France 12.0 

JULY 1984 N.E.France 1.8 

NOV 1984 C. Germany & S. Belgium 11.0 

OCT 1987 S. England & N. France 11.5 

JAN-MAR 1990 Britain, N. & C. Europe 120.0 

DEC 1999 Central Europe and Scandinavia 193.0 

JAN 2005 N Europe (esp. Sweden and Latvia) 86.5 

By applying these management techniques, losses to windthrow in conventional 

plantation forest stands have been reduced (Gardiner and Quine 2000; Quine et al. 

1995). However, the priorities of forest management in the 21 "  Century are changing 

towards lower impact silviculture, longer retentions of trees, wider spacings, and 

continuous cover forestry (CCF) with mixtures of species and irregular age structures 

(Mason and Quine 1995). These changes are expected to influence crop stability 

(Mason 2002), and it will therefore be necessary to improve our understanding of 

tree stability and growth responses to wind loading, so that we can quantify the risks 

to forests managed using these systems. 
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Restriction of rooting depth 

Tree root systems commonly have shallow development due to soil conditions that 

restrict root growth. In upland areas of the UK where soils have low hydraulic 

permeability, water-tables that fluctuate close below the soil surface for much of the 

year are common (King et al. 1986; Ray and Schweizer 1994). These restrict 

downward root growth (Kozlowski 1982) producing shallow root-soil plates 

(Armstrong et al. 1976) unless the water table is lowered by site drainage. In an 

investigation of 46-year-old Sitka spruce trees grown on peaty-gley and surface 

water gley soils, roots survived only 9 to 16 cm deeper than the shallowest winter 

water-table depth (Ray and Nicoll 1998). Nicoll and Coutts (1998) described Sitka 

spruce roots, in a controlled flooding experiment, surviving to between 18 and 27 cm 

below a static winter water-table, with trees that had earlier root dormancy in the 

autumn surviving deepest. Another factor limiting root depth in many forest sites is 

high soil density. Soils of bulk density greater than 1.6 g cm 3 , and penetrometer 

resistance of 2.3 MPa, are known to cause severe restriction to root growth (Day and 

Bassuk 1994) and commonly occur within a metre of the surface on upland forest 

sites. Without soil cultivation, tree root systems on these sites will remain shallow 

(Paterson and Mason 1999). 

Damage to root systems by wind movement 

On mature forest sites with restricted root depth, wind speeds as low as 2 m s 

produce sufficient stem movement to result in movement of shallow, horizontal, 

structural roots (Rizzo and Harrington 1988). Hintikka (1972) described a 3° stem 

displacement of spruce trees growing on clay soil, lifting the soil surface by up to 14 

mm. Rizzo and Harrington (1988) found that red spruce and balsam fir root 

movement could be recorded for 80% of the time during the six windiest months of 

the year, on exposed sites in New Hampshire, USA, with 30% of root movements 

exceeding 10 mm. Roots transmit the energy of the moving stem to the soil and assist 

in the damping of stem sway (White et al. 1976). The amount of mechanical 

damping in the root system will be affected by soil water content, and Mayer (1987) 
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described a reduced friction resistance of roots in moist soil compared to dry soil. 

Large scale damping by roots would however coincide with damage to the root 

system. Grace (1977), and O'Sullivan and Ritchie (1993) estimated that up to 20% of 

the energy in the system can be lost through roots and soil during each loading cycle 

of a wind damaged root plate. 

Stone (1977) described root damage caused by large tree movements that ultimately 

would risk the health and stability of the tree. Root damage creates entry sites for 

pathogens (Rizzo and Harrington 1988) and reduces the uptake of water and 

nutrients. Breakage of fine roots reduces the amount of soil held by the system, and 

the tree must divert resources to renew the roots (Rizzo and Harrington 1988). 

Damage to larger roots reduces the rigidity of the root system (Courts 1983b). When 

the roots and soil under the tree fail, the underside of the "root-soil" plate is formed, 

and most anchorage will now be provided by roots at the edge of the plate acting 

under tension (Coutts 1986). 

Figure 1-1. Components of anchorage of a shallow rooted tree (adapted from Coutts 
1986). 

Wind 

Weight 

Windward 
roots 
	 Hinge 

\ 
lever 

Soil resistance 
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The root-soil plate is now free to rock in its crater without the cohesion of soil under 

the plate, and anchorage is progressively reduced by fatiguing of the system 

(O'Sullivan and Ritchie 1993). On gleyed mineral soil, such trees are often described 

as 'pumping' (Armstrong et al. 1976; Booth and Mayhead 1973) as soil under high 

hydraulic pressure (Rodgers et al. 1995) is forced to the surface from the cavity that 

forms under the moving root-soil plate (Courts 1986). Such trees can become a large, 

vulnerable component of mature forest stands on shallow mineral soils. In a study of 

the anchorage of 46-year-old trees on gley soils (Ray and Nicoll 1998) in an upland 

plantation, 35% of trees showed some evidence of pumping (unpublished data) i.e. 

there was a smooth faced fracture in soil under part of the root system. Once the soil 

has failed under a tree, the tree is more vulnerable to windthrow in subsequent 

storms. O'Sullivan and Ritchie (1993) and Rodgers et al. (1995) reported a 25% 

reduction in anchorage resistance resulting from cyclic loading that fractured the soil 

under the plate. Some trees are however believed to partially recover from this 

destabilisation if drier and less windy conditions follow the period of soil 

disturbance, allowing new roots to grow through the fractured zone into deeper soil 

(Ray and Nicoll 1998). 

Components of root anchorage 

Large variability of anchorage is a common feature of 'tree pulling' experiments 

where trees are mechanically uprooted. The regression of critical resistive turning 

moment against tree size (stem mass or diameter) for trees mechanically overturned 

in studies conducted by the Forestry Commission, was linear, positive and 

significant, but, for example, values for 20 cm DBH trees on peaty gley soil ranged 

from 10 to 50 kNm (Nicoll, unpublished). Coutts (1986) states that "the magnitude 

of this variation on a single soil type indicates the possible scope for improving 

stability if a clearer understanding of the causes can be obtained". 

Coutts (1986) separated the resistance of a shallow root system to overturning into 

four components (Figure 1-1); weight of the root soil plate, tensile strength of the 

windward 'guy' roots, tensile strength of the soil, and resistance to bending of roots 
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at the hinge. The force needed to overturn the tree is this overall resistance multiplied 

by the length of the lever arm, that is, the distance from the tree centre to the hinge 

point on the root system. 

As a tree starts to overturn, roots on the lee-side act mechanically as a lever-arm, 

while those under tension on the windward side anchor in a similar way to guy lines 

(Figure 1-1). The length of the lever-arm is determined by the position of the largest 

structural roots and the variation in rigidity along their length (Coutts et al. 1999). 

Commonly the lever-arm structural roots fail at a point where they branch. This 

behaviour conforms to beam-theory. If a beam is circular in cross section, its second 

moment of area, I, is represented by the following equation (Gordon 1978): 

(1.1) 

The flexural stiffness of the beam is E (the Youngs modulus of the material) x I. 

Therefore, if a root is considered to be a beam with a circular cross-section, its 

stiffness will be proportional to the fourth power of its diameter (Coutts 1983b). 

After a branch point, even if the combined cross sectional area of branch roots 

remains the same as the 'parent' root, there is a considerable reduction in stiffness of 

the system, making it particularly vulnerable to failure at this point. The following 

calculation demonstrates the reduction in I for a 'parent' root with radius a that 

branches into two branch roots each with half the cross sectional area of the parent 

and with radius b. The relative cross sectional areas of the branch and parent roots 

are: 

(1.2) 	 27tb2 =ta2  

therefore; 

(1.3) 	 2b2 =a2  

and the relationship between length of radii a and b is; 

(1.4) 	 b= - = 

As for a circle with radius a; 

(1.5) 	 1a4 
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and therefore the relative values for I for the parent and branch roots will be; 

(1.7) 

Therefore, the two branch roots each have 0.25 x I of the parent root and assuming 

constant Young's modulus, their combined stiffness will be half that of the parent 

root. 

Fusing of roots 

Another feature of tree development that can be important for mechanical stability is 

the fusing of roots within and between root systems. Eis (1970) and Kozlowski 

(197 1) describe inter and intra-specific fusing between roots of a large variety of tree 

species. This behaviour, as well as providing the trees with the benefits of shared 

nutrient and water supply, will provide a large degree of mutual support between 

trees (Külla and LOhmus 1999). Conifers growing in plantations where the water-

table is shallow commonly have roots that are fused to those from neighbouring 

trees, especially where roots are forced together, such as in the constrained space of a 

plough ridge. Although fusing provides mutual support, it can ultimately lead to rows 

of plantation trees being overturned together and thereby increase the losses to 

windthrow (Quine etal. 1995). 

Root plate rigidity 

Roots are approximately three orders of magnitude stronger than soil under tension 

(Courts 1983b), for example, the load per unit area at failure for Sitka spruce roots is 

reported to be between 35 MPa (Courts 1983b) and 43.7 MPa (Parr 1994; Parr and 

Cameron 2004), while the mean strength of soil in the B horizon, A horizon and peat 

are reported to be 51 kPa, 27.2 kPa, and 18.3 kPa respectively (Ray and Nicoll 
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1998). However, the area of soil broken as a tree is uprooted is three orders of 

magnitude greater than the cross sectional area of the broken roots. Therefore, soil 

strength makes an important contribution to anchorage. Roots stretch by 10 - 20% of 

their length before failure while most soils stretch by less than 2% before failure. A 

load applied to the root system will therefore break the soil before the roots. 

In the study by Coutts (1986), roots broke in sequence rather than simultaneously 

and most roots that broke had diameters less than 0.5 cm. Courts (1986) 

demonstrated that shallow root-soil plates are not rigid during overturning, but 

flexible, and that soil breaks first close under the base of the tree, with cracks 

propagating outwards. Most soil under shallow plates will be broken by lifting the 

centre of the plate by only 2 cm (Ray and Nicoll 1998). Therefore, soil will shear 

under a flexible soil-root plate with a force comparatively less than a rigid plate of 

the same area where a larger area must shear to start overturning. 

With only a small displacement needed to fracture the soil under a root-soil plate, a 

particularly important function of horizontal structural roots is to provide rigidity to 

the plate and hence increase the force required to fracture the soil (Coutts et al. 

1999). The form of the structural root system develops through differences in the 

allocation of assimilates to individual roots undergoing secondary thickening (Fayle 

1975). Both the number and size of the major structural roots are important, as is the 

distribution of biomass around the tree (Courts et al. 1999; Nicoll et al. 1995). As 

the stiffness of roots is approximately proportional to the fourth power of their 

diameter (described earlier), a large number of thin roots would offer considerably 

less resistance to bending than a few thick roots with the equivalent cross sectional 

area (Coutts 1983b). However, where biomass is allocated predominantly to few 

roots, the effectiveness of anchorage will depend on the evenness of distribution of 

these roots around the stem (Courts 1983a; Courts et al. 1999). 
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Tree adaptive growth in response to wind 

The constant stress hypothesis 

An important factor in maintaining mechanical support of trees in a windy 

environment is the acclimation or 'adaptive' development of trees in response to 

wind action. The effects of wind on above-ground development of trees have been 

studied for many years. Knight (1803) restricted the wind movement of apple trees 

so that they could only flex back and forward without any sideways movement. After 

one growing season he observed increased thickening of the stem in the plane of 

flexing, compared to the perpendicular plane, with a ratio of 13:11. Several other 

researchers have since manipulated trees by shaking or flexing the stems and have 

observed a reduction in shoot height growth (Jacobs 1939; Rees and Grace 1980; 

Stokes et al. 1997b). Secondary thickening has been found to be restricted in the 

stem and branches by wind movement but accelerated in the stem base (Telewski 

1995), with again, greater thickening of the lower stem along the axis of the 

prevailing wind direction (Stokes et al. 1997b). Such developmental responses 

counteract increasing movement as the tree grows and will improve stability by 

allocating assimilate to parts of the tree where mechanical stress is greatest. 

Observations of tree growth responses to mechanical stress were developed by 

Schwendener (1874) and Mezger (1893) into the 'constant' or 'uniform' stress 

hypothesis which states that the development of stem form is optimised to give 

uniform bending stress over the whole stem surface. This hypothesis has recently 

been re-examined by many authors including Mattheck (1991), Morgan and Cannell 

(1994), Ennos (1995), Wood (1995), Blackburn (1997) and Dean et al. (2002). 

Although the stem form of a tree is sometimes close to representing a beam of 

constant resistance (Gaffrey and Sloboda 2001), the constant stress hypothesis is 

unlikely to hold as the forces acting on trees change. Morgan and Cannell (1994) 

found that the hypothesis largely held for Sitka spruce at low wind speeds, but failed 

when winds were greater than 10 in s. Gaffrey and Sloboda (2001), found that 

constant stress was not achieved over the stems of Douglas-fir, even at low wind 
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speeds (5 m 1)•  Instead of maintaining constant stress, it seems more likely that 

cambial growth is proportional to the mechanical stress that the stem experiences. 

Root radial growth of conifer species concentrated to the lee-side of the tree relative 

to the prevailing wind has been reported by Mason et al. (1986), Nielsen (1990), 

Nicoll etal. (1995), and Nicoll and Ray (1996). Leeward roots close to the tree must 

in particular resist bending under compression, and therefore require greater 

thickening than windward roots, and those further from the tree on all sides, that act 

more under tension. Enhanced leeward structural root development may be 

associated with the increased radial growth that has been observed on the lee side of 

conifer stem bases (Robertson 1991). 

Thigmomorphogenesis 

The physiological mechanism for adaptive growth in response to mechanical 

stimulation has been termed "thigmomorphogenesis" (Jaffe 1973). Increased stem 

radial growth in response to mechanical flexure is due to stimulated cell division in 

the vascular cambium (Telewski and Jaffe 1986c). This increase appears to be linked 

to production of ethylene by mechanically stressed tissue (Goeschl et al. 1966), and 

plants experimentally treated with ethylene have shown similar development (Eklund 

and Little 1998; Telewski 1990). 

Hydraulic and biomechanical requirements 

Secondary thickening in stems has also been described using hydraulic models of 

tree growth (Mencuccini 2002; Mencuccini et al. 1997; Spicer and Gartner 1998b). 

The 'pipe model' hypothesis of plant form (Shinozaki et al. 1964a; Shinozaki et al. 

1964b) states that the sapwood area remains in proportion to the needle mass above. 

However, not all authors have found this; for example, Huber (1928), Tyree and 

Ewers (1991) and Gaffrey and Sloboda (2001) found no such proportionality. Other 

hydraulic models of tree growth appear more useful, especially if considered in 



association with biomechanical models (Gaffrey and Sloboda 2001). If secondary 

thickening of tree components responds to both hydraulic and biomechanical 

requirements, an interaction or 'trade off might be expected (Spicer and Gartner 

1998a; Spicer and Gartner 1998b). However, Mencuccini et al. (1997) found that in 

Scots pine (Pinus sylvestris L.) specific hydraulic conductivity and modulus of 

elasticity ('Youngs modulus') were positively related to each other and that there 

appeared to be no trade-off between the two. Differentiating between the effects of 

these processes may be further complicated by a reduction of stem hydraulic 

conductivity induced by wind movement and damage. Fredericksen et al. (1993a) 

reported a reduction of functional xylem conducting area in wind bent trees, 

especially on the compression side of the stem. It will therefore be important to 

attempt to separate the developmental responses of the tree that maintain hydraulic 

function from those that maintain mechanical support. 

Root responses to stand thinning 

Adaptive growth may be more important below-ground than above-ground as a 

compensatory mechanism, but there is only limited information on the effects of 

mechanical stress on biomass allocation to and within the structural root systems of 

large forest trees (Coutts et al. 1999). Wilson (1975) found an increase in growth-

ring width in the lower stem and in the base of structural roots of Pinus strobus L. 

trees corresponding with increased wind movement after thinning of the stand. He 

found considerably less secondary thickening on these parts of trees if they were 

guyed to prevent stem movement after stand thinning. Urban et al. (1994) reported 

an immediate increase in thickening of structural roots but a 4-year delay in the 

increase of diameter growth in the stem in Picea glauca (Moench) exposed after 

removal of neighbouring trees, and comparable differences between stem and root 

secondary thickening after thinning of Pinus resinosa Ait. were reported by Fayle 

(1983). 
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Cross-sectional shapes of structural roots 

Resistance to bending also occurs by development of the shape of structural roots. In 

response to wind movement, trees with shallow structural roots have been reported to 

develop root cross-sectional shapes comparable in appearance to the 'I-beams' and 

'T-beams' used by engineers (Banks 1973; BUsgen and MUnch 1929; Hintikka 1972; 

Rigg and Harrar 1931; Wood 1995). Figure 1-2 shows examples of these root shapes. 

Engineering 1- and T-beams are constructed to maximise resistance to bending or 

flexing using a minimum of material (Gordon 1978). BUsgen and MUnch (1929) 

proposed that the development of such shapes in tree roots results from root 

movement induced by stem swaying, as an extension of the 'uniform stress 

hypothesis' to below-ground parts of the tree. The adaptive growth of structural roots 

can be analysed using a set of three descriptors of root shape (Figure 1-2), calculated 

from the dimensions of structural root cross sections: 'T-angle', 'I-angle', and V a/Vb 

ratio, (Nicoll and Ray 1996; Ruel et al. 2003). The T-angle describes the difference 

between lateral thickening in the upper and lower parts of the root section and hence 

the tendency towards a T-beam shape. Angles greater than 90° show more lateral 

thickening in the upper part of the root than the lower part of the root; angles less 

than 90° show the reverse. The further the angle deviates from 900  the more T-beam 

shaped the section. The I-angle describes the tendency towards an I-beam shaping of 

the root; angles greater than 180° indicate an 1-beam shape, angles less than 180° 

indicate an ovoid shape. The Va/Vb ratio compares thickening in the vertical plane, 

above (Va) and below (Vb) the biological centre of the root. A Va! Vb ratio of 1 

indicates equal vertical thickening above and below the biological centre and the 

higher the number, the greater the upward relative to downward thickening (Nicoll 

and Ray 1996; Ruel et al. 2003). 

Several studies of conifers (Deans 1981; Fayle 1968; Kozlowski 1971; Somerville 

1927) report greater growth on the upper side compared to the lower side of 

horizontal structural roots, i.e. 'epinastic growth'. However some species of pine are 

reported to show the opposite behaviour. Brown (1915) found growth rings of Pinus 

strobus L. to be thickest on the lower side of roots, and Wilson (1975) reported that 
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the greatest thickening varied between the upper and lower sides of roots of the same 

species. Nicoll and Ray (1996) found thickening of individual Sitka spruce roots in 

the vertical plane to be greater above the biological centre than below, especially 

close to the stem. This decreased with distance from the tree but the change in 

allocation pattern varied between windward and leeward sector roots. Leeward roots 

had greater Va / Vb ratios than windward roots up to 1.0 in from the stem centre. The 

analysis of cross sectional shape by Nicoll and Ray (1996) also found that within 1.0 

in of the stem centre, I-angles were larger (more 'I-beam' shaped) on windward than 

leeward roots. By 1.25 in from the tree, cross sectional shapes were more ovoid, i.e. 

they had smaller I-angles, and therefore these roots, as would be expected from 

Coutts (1986), appeared to be less adapted to resist flexing than to act under tension. 

Figure 1-2. Analysis of root cross sectional shape. Left, Typical Sitka spruce I- and T-
beam root cross sectional shapes. Right, a. A system for measurement of such sections 
relative to 'bc', the biological centre, and b. analysis of the development of I-beam (I 
angle) and T-beam shapes (T angle), from Nicoll and Ray (1996). 

V. 

Yb 

Buttress development 

Enhanced secondary thickening between the root and the stem, resulting in the 

development of supporting buttresses, may also reflect growth to equalise stress 

(Clair et al. 2003; Ennos 1995). The large tabular buttresses characteristic of many 

tropical tree species, and the smaller more rounded buttresses often observed on 
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temperate trees, make a rigid connection between the stem and the root system. 

These structures reduce bending and stress concentration at the base of the tree 

(Mattheck 1993). Buttresses also increase the leverage required for over-turning by 

moving the 'hinge' point of the root system further away from the base of the tree. 

The buttresses observed on coniferous trees characteristically have a 'T-beam' cross-

sectional shape. Analysis of root cross sections in the Nicoll and Ray (1996) study 

showed T-angles to be largest (i.e. having a pronounced 'T-beam' shape) up to 0.75 

in from the tree centre, and leeward roots had significantly greater T-angles than 

windward roots. Therefore, the development of buttresses is enhanced on the lee-side 

relative to the prevailing wind. 

An analysis of relative strength of root cross sectional 

shapes 

In modelling the development of structural roots systems in relation to tree stability, 

it is necessary to quantify the relative rigidity of various root cross sectional shapes 

(Coutts et al. 1999). Little is known about the relative strength properties of the 

various root shapes that have been observed. The effect on root stiffness of changing 

root cross sectional shape but maintaining cross-sectional area (CSA) has not 

previously been examined, but can be achieved by calculating second moment of 

area (1) of structural root transverse sections. The second moment of area of a shape 

measures the efficiency of that shape in respect of its resistance to bending. The 

magnitude of the bending moment of a beam is related to shape and the material 

modulus. Therefore, the magnitude of the moment M required to bend a beam to 

curvature K varies directly as the product of the modulus of elasticity, E (Young's 

modulus) and the Second moment of area 1: 

(1.8) M=EIK. 

The product of E and I is called 'flexural stiffness' or 'flexural rigidity'. 
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Second moment of area I was therefore calculated for 'I-beam' and 'T-beam' root 

shapes from trees examined in a previous study (Nicoll and Ray 1996). These shapes 

(see Table 1-3) were scaled to have the same area and values and were compared to I 

values for an ellipse and circle of the same area. Root cross sectional shapes were 

broken into parallel rectangles (5 mm deep, width to fit the shape at that point) and 

area calculated for each. I., x  (i.e. second moment of area for bending around a 

horizontal axis) and I, (bending around a vertical axis) were calculated for each 

rectangle relative to the centre of mass of the whole shape and were summed to 

produce overall l and l>.,  values. Flexural stiffness El was calculated for each of the 

sections assuming a mean Young's modulus in bending E for conifer roots from 

Fegel (1941) of 5990 MPa. 

Table 1-3. Second moment of area for flexing in the vertical plane (I) and horizontal 
plane (1,,), and estimated flexural stiffness (for flexing in the vertical plane), for 
different root cross sectional shapes with the same area. The shapes are not illustrated 
to scale. Percentage comparisons of I. and I, were made between the shapes by 
assigning 100% to the 'I-beam' root shape. 

Shape l (mi) I 	(md) %l %I Flexural stiffness 

El (Nm2) 

'I-beam' 	root 40.259 5.367 100 100 2.4x105  

section 	(12875 

mm2 , 	 depth 	195 

mm, width 87 mm) 

'T-beam' 	root 33.787 5.727 84 107 2.0 x105  

shape with 	same 

area as shape 1. 

Elliptical 	section 30.598 5.687 76 106 1.8 x105  

of same area as 1. 	0 (depth 195 mm) 

Circular section of 13.191 13.191 33 246 7.9x104  

same area as 1. 0 (diameter 128 mm) 
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The analysis revealed that J, was larger than I for all shapes except the circle 

(Table 1-3). The I, value was largest for the I-beam shape. The 'T-beam' shape had 

only 84% of the I-beam I,, but slightly larger (107%) 4.,. The ellipse and circle with 

the same area both had smaller l,, but larger 1yy  values. The '1-beam' root had a 

second moment of area (h)  that was 305% of the value for an equivalent sized 

circular root. The cross sectional area of a circle that would be required to give the 

same I,,x  as produced by the 'I-beam' root shape was 74% larger than the 'I-beam' 

root section. 

This analysis confirms that the 'I-beam' root shape is particularly suited to resisting 

vertical flexing. A root with this shape will have better flexural stiffness than would 

be provided by any of the other shapes (rectangular, elliptical, or circular section 

roots) with the same cross sectional area. These roots develop from being circular in 

section to being elliptical, and then 'I-beam' shaped as they thicken and therefore 

increase their flexural rigidity at a faster rate than would be achieved by laying down 

circular growth rings. The increased 1yy  value for T-beam roots relative to I-beams 

would give them resistance to torsional loading while at the same time being efficient 

at resisting vertical bending. For the tree to develop a root as rigid as the I-beam root 

without having any capability for 'adaptive growth' it would have to produce a 

circular section root with 74% more cross sectional area. This may be an extreme 

example, but such an increase in allocation of assimilates to the roots would have a 

major impact on above-ground development. Trees used for this study had root:shoot 

ratios of around 0.5. Even if the average adaptive value was half of the calculated 

74%, i.e. a 37% increase in root mass to compensate for a lack of adaptive growth, a 

tree with the same total biomass would have to increase its root:shoot ratio from 0.5 

to 0.8 and allocate 18% less biomass above ground. The development of adaptive 

root shapes is therefore a mechanism that maintains tree stability, while allowing 

maximum above-ground growth. Another strategy that would improve the flexural 

rigidity of a root would be to increase strength and stiffness properties of the wood 

itself. However, tree roots would have to increase their Young's modulus in bending 

three-fold to provide the same flexural stiffness in a circular cross-section root of the 

same cross-sectional area as the adapted root (Nicoll 2000). 
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Problems, hypotheses and objectives 

Our understanding of the biological, meteorological and mechanical processes 

involved in the windthrow of forest trees has progressed considerably since the early 

work on windthrow and tree stability conducted in the 1960s. Analyses of results 

from each strand of research have over the years been incorporated into a variety of 

models and decision support systems. Early tree pulling experiments provided data 

that were combined by Fraser and Gardiner (1967) into a comparison of anchorage of 

Sitka spruce on a variety of soils. Observations and surveys of windthrow in relation 

to site factors and exposure were developed into a windthrow hazard classification of 

British conifers by Booth (1977) and Miller (1985). Investigations of the mechanical 

components of tree anchorage by Coutts (1986) were developed by Blackwell et al. 

(1990) into a mechanical model of tree anchorage that allowed comparison of the 

relative importance of each component. Further analysis of data from tree pulling 

experiments and a detailed investigation of the wind climate in the British Isles using 

'tatter flags' (Quine and White 1994) were combined into a computer based decision 

support system for forest managers 'ForestGALES' (Dunham et al. 2000; Quine and 

Gardiner 1998) that provided an assessment of how the risk of windthrow changes as 

a forest stand develops. 

However, despite these substantial steps forward in understanding and modelling tree 

stability and windthrow, there remain a number of important unanswered questions. 

Firstly, although the tree pulling experiment data were analysed first by Fraser and 

Gardiner (1967) and then for incorporation in ForestGALES by Dunham et al. 

(2000), neither analysis included the complete set of tree pulling experiments 

conducted in Britain, or provided an adequate statistical analysis of the data. An 

analysis is required that compares anchorage of the most commonly planted 

coniferous species in Britain, in relation to tree size, the soil types found in the 

British Isles, and rooting depth. Secondly, models of tree anchorage and tree stability 

have, up to now, assumed a simplified system where trees are assumed to be on 

horizontal terrain. However, much of the forested land in the British Isles consists of 

complex terrain and no attempt has previously been made to compare the structural 
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root development or stability of trees grown on slopes with trees grown on horizontal 

ground. Thirdly, although thinning and respacing of forest stands are commonly 

practised management techniques, used to improve forest productivity and in the 

transformation to CCF systems, the ways in which trees adapt both above- and 

below-ground to the changed light and wind regimes are not understood. A detailed 

investigation of the growth responses of coniferous trees to stand thinning is required 

to improve the way that post-thinning stability is modelled. 

The following hypotheses will be tested: 

Anchorage varies between tree species and soil type and increases with 

rooting depth. 

The anchorage of trees is reduced on steep terrain and varies with direction of 

overturning. 

The architecture of the structural root system is modified by the terrain on 

which the tree grows. 

Above- and below-ground cambial growth is modified by wind action on the 

tree and is greatest in parts of the tree that experience the most mechanical 

stress. 

The anchorage of trees will be examined in relation to species, soil type and root 

depth, by performing a meta-analysis of data from tree-pulling experiments 

conducted in the British Isles. Then, the effect of terrain on tree stability will be 

examined by mechanically overturning trees on a steep slope. The effect of the slope 

on aspects of structural root architecture that are important for tree anchorage will be 

described. Finally, changes in above- and below-ground development of trees in 

response to changes in wind movement will be quantified, and the mechanical 

implications of these changes will be discussed. 
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2. Anchorage of coniferous trees in relation to 

species, soil type and rooting depth 

Abstract 

A database was constructed of tree anchorage measurements from experiments 

conducted on thirty-four sites in Britain between 1960 and 2000. The database 

contained results from almost 2000 trees from twelve conifer species; Corsican pine 

(Pinus nigra var. maritima), Douglas-fir (Pseudotsuga menziesii), European larch 

(Larix decidua), grand fir (Abies grandis), Japanese larch (Larix kaempferi), 

lodgepole pine (Pinus contorta), noble fir (Abies procera), Norway spruce (Picea 

abies), Scots pine (Pinus sylvestris), Sitka spruce (Picea sitchensis), western 

hemlock (Tsuga heterophylla), and western red cedar (Thuja plicata). Each tree was 

assigned to a soil group and root depth class. The soil groups were; freely-draining 

mineral soils, gleyed mineral soils, peaty mineral soils, peat soils. Root depth classes 

were; <40 cm (shallow rooting), 40-80 cm (medium rooting) and >80 cm (deep 

rooting). A meta-analysis of these experiments was conducted to compare anchorage 

between species, soil groups and root depth classes using regressions of critical 

turning moment against stem mass. As Sitka spruce formed the largest part of the 

database, with 1155 trees, and was the only species to have trees in all soil group and 

root depth class combinations, it was used as a benchmark. For Sitka spruce, the best 

anchorage was found on peat soils, and the poorest anchorage was on gleyed mineral 

soils. Trees with root depths deeper than 80 cm had critical turning moments that 

were 10 to 15% larger than trees of equivalent mass with shallower root depths. 

Significantly better anchorage was observed for grand fir than Sitka spruce with 

various rooting depths on free-draining and gleyed mineral soils, and for Douglas-fir 

on medium depth mineral soil. Poorer anchorage was observed over a range of soil 

groups and root depth classes for lodgepole pine, for shallow rooted Norway spruce 

on gleyed mineral soil, and for Corsican pine on medium depth mineral soil. Other 

combinations of tree species, soil group and root depth classes had similar anchorage 
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to the equivalent Sitka spruce. The implications of these results are discussed with 

respect to the development of wind risk models for forest management. 

Introduction 

Windthrow of trees is a major disturbance factor in forested areas of the world 

(Clinton and Baker 2000; Cremeans and Kalisz 1988; Ennos 1997; Jane 1986; 

Pontajiler et al. 1997; Putz et al. 1983; Rebertus et al. 1997; Schaetzl et al. 1989). 

The gaps created by wind are important for forest structural dynamics, and influence 

the diversity of tree species, structure and age. In addition, overturning of trees 

accelerates the mixing of soil horizons, and provides micro-sites with improved soil 

aeration and nutrition that favour tree regeneration (Beatty and Stone 1986; Schaetzl 

et al. 1990). However, windthrow reduces profitability in forest stands managed for 

timber production through reduced economic value of windthrown timber 

(Nieuwenhuis and Fitzpatrick 2002; Savill 1983) and increased harvesting costs 

(Quine et al. 1995). In addition, stands in particularly windy regions are commonly 

harvested before their age of optimum economic return to reduce the risk of 

windthrow (Gardiner and Quine 2000). The British Isles are located in the track of 

most north Atlantic depressions, and as a result have a windier climate than other 

parts of Europe (Troen and Peterson 1989). Within Britain, a large proportion of 

forest cover is located in the windiest parts of the country (Miller et al. 1987), and 

windthrow remains one of the most important problems that the forest industry must 

deal with. 

In order to predict and reduce forest losses due to windthrow, it has long been 

recognised that data are required that describe the stability and anchorage of trees in 

relation to species, tree characteristics, site, soil, climate and forest management 

techniques. 'Stability' is defined here as the overall resistance of the whole tree to 

overturning in the wind, and 'anchorage' as the resistance of the root system of the 

tree to uprooting. In 1960, A. I. Fraser and co-workers at the British Forestry 

Commission started investigations into factors that affect tree stability. They 

developed techniques for mechanically overturning trees, and gathered information 
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on soils, tree dimensions, rooting and tree anchorage (Fraser 1962). Trees were 

pulled over on the range of soil and cultivation types common to British forest 

plantations. Above- and below-ground tree dimensions, applied loads, and details of 

the pulling operation necessary for calculation of turning moment, were recorded for 

each tree. Sampled trees were from a variety of conifer species, the majority being 

Sitka spruce (Picea sitchensis (Bong.) Cam). In total, 1809 trees had been pulled by 

1974, 969 of which were Sitka spruce. Sitka spruce was then, and remains, the most 

economically important tree species in Great Britain, presently accounting for around 

29% of woodland tree cover and 49% of the conifer area (Anon 2003). The results of 

tree-pulling experiments conducted between 1960 and 1966 were described by Fraser 

(1967). Subsequent tree-pulling work up to 1974 was described in a series of brief 

progress reports (Booth 1974; Booth and Mayhead 1972; Booth and Mayhead 1973; 

Everard et al. 1970; Everard and Taylor 1969; Fraser and Henman 1966; Fraser and 

Neustein 1967; Pyatt and Booth 1973; Pyatt and Booth 1974) but no overall analysis 

of the data-set was published. Tree anchorage investigations recommenced in the 

early-1980s when Blackburn (1986) examined the effects of tree spacing on 

anchorage. The relationships between architecture of tree root systems and the 

biomechanics of tree stability were investigated by Coutts (1983b; 1986) and the 

stability of relatively mature trees was examined in relation to root architecture, 

rooting depth and root-soil plate flexibility by Ray and Nicoll (1998). 

A new impetus for gathering tree anchorage data was provided in the 1990s by the 

development of a predictive model of windthrow for the British forestry industry 

"ForestGALES" (Quine and Gardiner 1998). An anchorage module, that would be a 

central component of this model, was identified as a necessity. It was apparent that 

the existing tree pulling data-set would form a useful basis for this, but was 

inadequate in its current form. Most noticeably, at that time, there were few data 

describing the anchorage of trees larger than 20 in height and 30 cm diameter (DBH) 

at breast height (1.3 m) on most soils, and few data for trees of any size on deep peat 

soils. Although only 45% of data were for species other than Sitka spruce, the 

decision was made to continue to concentrate on this species due to its commercial 

importance. A new programme of tree pulling was initiated that concentrated on 
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anchorage of larger Sitka spruce trees, on various soil type and cultivation 

combinations. Experiments conducted as part of this programme added another 130 

trees to the data-set. Data from these tree pulling experiments have now been 

compiled into a database containing almost 2000 trees. Figure 2-1 shows the location 

of all tree-pulling experiments conducted in Britain between 1960 and 2000. 

The anchorage of trees can be expressed as the critical (maximum) resistive turning 

moment at the base of the stem during overturning. Turning moment is defined 

simply as force x length of a lever arm. Fraser and Gardiner (1967) provided 

equations relating anchorage, expressed as turning moment, to stem mass, for trees 

on a variety of soil types, and a number of subsequent studies, for example 

Blackburn (1986), Ray and Nicoll (1998), Moore (2000), Meunier et al. (2002) and 

Achim et al. (2005a) have characterised anchorage using the same approach. Other 

authors have described relationships based on related stem characteristics, including 

stem volume and DBH (Fredericksen et al. 1993b; Papesch et al. 1997). For 

example, Peltola et al. (2000) found significant correlations between maximum 

resistive turning moment and several above-ground characteristics of Scots pine 

(Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and birch (Betula sp). 

Meunier et al. (2002) used linear regressions to compare critical turning moment 

with a variety of above-ground characteristics and found the best regression with 

stem mass. Regressions of maximum resistive turning moment against stem mass 

therefore provide an effective means of making anchorage comparisons, for example 

between trees of different species or between different soils. 

This chapter describes a meta-analysis of the combined tree-pulling data-set from 

tree-pulling experiments conducted in Britain between 1960 and 2000, in order to 

test the hypothesis that root anchorage of conifers varies between species and soil 

group, and increases with rooting depth. The aim was to provide empirical models of 

the anchorage of a variety of conifer species in relation to tree size, soil group and 

rooting depth, that may be used in the development of wind risk decision support 

systems for forest managers. 
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Figure 2-1. Location of tree-pulling experiment sites. Details of trees pulled on each site 
are given in Table 2.4. 
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Methods 

Tree pulling methodologies 

Original method 

In the tree-pulling experiments that commenced in 1960, a sample of at least eight 

trees were selected at random for each soil type and silvicultural treatment examined. 

To overturn a tree, an almost horizontal force was applied at one third of the tree's 

height (Fraser and Gardiner 1967). This was achieved using a hand winch, a system 

of pulley blocks, and an adjustable pulley block spacer that raised a block to close to 

the pull height (Figure 2-2). Trees that obstructed the line of pull were removed 

before work started. As trees were pulled over, the force applied was recorded, by 

reading from the dial on a dynamometer, for every degree of movement of the tree. 

Figure 2-2. Original tree—pulling method. A - wire rope slings, B - D-shackles, C - 
Dynamometer, D - Hand winch, E - Chain sling on pull-tree, F - Adjustable pulley 
block spacer, G - Single sheave swivel snatch-blocks, H - Backstay wire ropes, I - 
Rigging screw, J - Chain sling with shortener hook, K - White paint marks on rope for 
measurement of pull-tree angle, L - end of wire rope. Illustration from Fraser and 
Gardiner (1967). 

Once the tree had been pulled over, the dimensions of the stem, the crown and the 

root plate were measured (Figure 2-3). Further details of the early tree pulling sites 

and methodology are given by Fraser and Gardiner (1967). This methodology was 
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used with only minor changes until the 1980s, and a modification where the top of 

the stem was removed before pulling was used by Ray and Nicoll (1998). 

Figure 2-3. Standard measurement of the overturned trees in tree-pulling experiments 
(adapted from Fraser and Gardiner (1967)). 

Diameter of 

Current method 

In tree pulling experiments conducted from 1997 onwards, eight subdominant, eight 

co-dominant and eight dominant trees were overturned, where possible, on each site. 

These trees were selected randomly from within diameter ranges based on quartile 

data from tariff plots. The direction of pull was as random as possible within the 
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practical constraints of the tree-pulling operation. If trees were on a ploughed site, 

they were pulled in a direction perpendicular to the plough furrow. Neighbouring 

trees were felled to avoid obstruction of pull or crown interference. 

Figure 24 a). Current tree-pulling method. A, inclinometers fixed at tree base and '/2 

tree height; B, load cell; C, datalogger; D, powered winch attached by nylon sling to the 
anchor tree; E, cable between the winch and a nylon sling on the pull-tree at V2  tree 
height; F, pull-tree; G, anchor tree. b). Measurements used in the calculation of critical 
turning moment: m, tree mass; F, force applied by the winch; d, distance between the 
anchor and pull-trees; x, horizontal displacement of the pull tree; I, the height of the 
centre of mass at time of maximum load; 01, angle of the winch cable relative to 
horizontal 02,  angle of the tree base at time of maximum load; 0 3, angle of the tree 
above the attachment point at time of maximum load. 

a . 

b. 

04 

X 	 d 	
10 

Digital biaxial clinometers (Applied Geomechanics, Santa Cruz, California, USA) 

were fixed to the stem near the base (1.3 m above soil level) and at half tree height. 

A chainsaw powered winch (Habegger, Thun, Switzerland) was attached to the 
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anchor tree using a 2 in polyester webbing round-sling (safe working load 5 t), and a 

load-cell (0 - 5 t) was positioned between the anchor tree and the winch (Figure 

2-4a). The clinometers and load-cell were connected to a datalogger. The pulling 

cable was fixed to a polyester round-sling placed at half tree height on the pull-tree. 

Distance was recorded between the anchor tree and the pull tree, and the angle 

(relative to horizontal) was recorded from the winch (or offset tree) to the attachment 

point on the pull-tree using a hand held clinometer (Suunto, Vantaa, Finland). After 

taking a zero reading from the load-cell and both clinometers, the strain was taken 

up, and the tree was pulled slowly using the winch. The datalogger was programmed 

to record maximum load from the load-cell, and angles from both clinometers at the 

time of maximum load (Figure 2-4b). Once the tree was on the ground, the crown 

width was measured, and instrument and cable attachment points were marked, as 

was the position of the lowest live branch and the lowest complete live branch whorl. 

Live and dead branches were removed and weighed in bundles by hanging them 

from a balance under a 3 in high steel tripod erected in the forest. After branches 

were removed, the height of the cable attachment point, height of both clinometers, 

lowest live branch, lowest live branch whorl position, height to 7 cm stem diameter 

(timber height) and tree height were recorded. These measurements were comparable 

with those described in the original method. Stem diameter was measured at 1 in 

intervals from the base to the top for calculation of stem volume as a series of 

truncated cones. A 1 m central section was cut from the stem, and diameters at each 

end were measured, before weighing for calculation of stem green density and mass. 

Soil grouping 

As there were insufficient data to compare tree anchorage between all of the soil 

types and phases that have been identified on British forest sites (Kennedy 2002; 

Pyatt 1982), it was necessary to combine soils into four groups with broadly similar 

physical properties, i.e; free-draining mineral soils "A", gleyed mineral soils "B", 

peaty mineral soils "C" and deep peat soils "D" (Table 2-1). 
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Table 2-1. Soil groupings used for tree anchorage comparisons. 

Free-draining Gleyed 	Peaty mineral Deep peats 
Rootable 	mineral soils 	mineral 	soils 
depth 	 soils 

Shallow 	I 
Al 	 1311 C11 Dl <40cm 

Medium 

40-80cm 
1A2 	 B2 	 C2 	 D2 
I 

Deep 

>80cm 	
A3 	 133 	 C3 	 D3 

The soil groups from A to D have increasing moisture on the soil moisture regime 

scale devised for the UK Ecological Site Classification (Pyatt et al. 2001). Free—

draining mineral soils (A) include brown earths, podzols, ironpan soils, calcareous 

soils, rankers and skeletal soils. Gleyed mineral soils (B) include ground-water and 

surface water gleys as well as gleyed brown earths, gleyed podzol and gleyed 

ironpans. Peaty mineral soils (C) are peaty gley soils, as well as peaty podzols and 

peaty ironpans. Deep peats, are defined as being >45 cm of organic matter, and 

include Juncus (flushed basin) bogs, Molinia (flushed blanket) bogs, sphagnum (flat 

or raised) bogs and unflushed blanket bogs (Kennedy 2002). 

Root depth is known to have a large influence on tree anchorage (Blackwell et al. 

1990) and comparisons in this chapter are therefore based on a separation of soil 

groups into ranges of potential or actual rooting depths; <40 cm, 40— 80 cm, and >80 

cm (see Table 2-1). These were chosen as rooting depth ranges as they were broad 

enough to allow for variation across a site and to make prediction possible based on 

soil classification. Trees were assigned a root depth class, based on actual 

measurements where they were available, or by using default rooting depths for 

individual soil types provided by Ecological Site Classification (Ray, D. and Rayner, 

B. personal communication). 
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Table 2-2. Tree stability database fields. 

Site and 	Soil, 	Stem 	Crown 	Below-ground 	Anchorage 
tree 	cultivation 

and stand 
management 

Tree 	Planting date 	Tree height Crown weight 	Root weight 	Pulling date 
Number 

Age 	Soil type 	Timber 	Crown diameter Maximum root 	Root/stem rot 
height depth 

Species 	Cultivation DBH Height to lowest Root plate depth Mode of failure: 
live whorl snap I overturn 

Forest 	Stability soil Stem Crown depth Root plate spread Attachment 
group weight mean height 

Country 	Rootable Taper Crown angle Root plate surface Maximum load 
depth code area 

Location Thinning 	Stem 
	

Crown volume 	Root plate volume Applied max. 
volume 
	

turning moment 

Expt. 	Spacing 	Stem 
	

Crown area 
number 	 density 

Standardisation of data 

Data from tree-pulling experiments conducted between 1960 and 2000 were 

compiled into a database (Table 2-2) that included dimensions and anchorage of 12 

tree species (Table 2-3), aged between 15 and 56 years old. As the experimental 

method had been modified over the years, and parameters were measured in varying 

units, all data were checked against the original experimental records and units were 

standardised to SI. Written experimental and site records (Table 2-4) were explored 

to find soil type, tree dimensions, anchorage data and other available information. 

Critical turning moments were recalculated for all trees. Critical turning moments 

were calculated at the stem base as follows: 

(2-1) M criücai = ''applied + M. 

where Mappi led (Nm) represents the maximum turning moment applied by the winch 

and Mmass  (Nm) represents the turning moment resulting from the overhanging 

weight of the leaning tree at the time and angle of stem when the maximum load was 

reached. Mmass  and Mapplied  were calculated from measurements shown in Figure 2-4b 

using the following equations; 
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(2.2) Mmass =m*x 

(2.3) Mapplied = F cos 01 * 

For the purposes of this calculation, the centre of mass of the tree was placed at half 

tree height (the pull height), and the stem was assumed to be a straight beam rotating 

around its base. For pre-1998 experiments where trees were pulled at % tree height, a 

single stem angle measurement was taken between the tree base and the pull height, 

and this measurement was taken to be the inclination of the beam between the stem 

base and the centre of mass. For experiments conducted from 1998 onwards, the 

inclination of the beam was taken as being the average of 02 and 83, the angles 

relative to vertical at the stem base and half tree height (Figure 2-4b). The lengths x 

and 1 were derived using simple trigonometry. 
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Table 2-3. Tree species, and codes of trees pulled in tree-anchorage studies in Britain 
between 1960 and 2000. The number of trees pulled, the number that overturned and 
snapped, mean height and mean DBH are shown for each species. 

Species Latin name Code # 

pulled 

# 

over- 
turned 

# 

snapped 

Mean 
height 
(m) 

Mean 
DBH
(cm) 

Corsican Pinus nigra var. CID 88 83 5 13.4 21.9 
pine maritima (Ait.) Melville. 

Douglas fir Pseudotsuga menziesii DF 40 40 0 16.0 22.8 
(Mirbel) Franco. 

European Larixdecidua Miller. EL 24 24 0 13.5 18.0 
larch 

Grand fir Abies grandis (Douglas GF 40 37 3 17.5 22.1 
ex D.Don) Lindley 

Japanese Lanxkaempferi JL 44 44 0 14.7 21.3 
larch (Lindley) Carriere. 

Lodgepole Pinus contorta Douglas LP 244 208 36 13.1 18.6 
pine ex Loudon. 

Noble fir Abies procera Rehder. NF 16 16 0 13.8 20.3 

Norway Picea abies (L.) NS 144 139 5 13.3 20.6 
Spruce Karsten. 

Scots pine Pinus sylvestris L. SP 137 130 7 13.5 21.1 

Sitka Picea sitchensis SS 1155 1045 110 14.6 21.0 
spruce (Bong.) Carriere 

Western Tsuga heterophylla WH 44 42 2 13.7 19.0 
Hemlock (Raf.) Sarg. 

Western Thuja plicata Donn ex RC 8 8 0 12.6 21.4 
red cedar D.Don 

Statistical analysis 

Data from trees that snapped during overturning (8.4% of the total dataset) or for 

which visible root or stem rot was recorded (1.5% of the total dataset) were excluded 

from the analysis. A series of mixed linear models were used to compare the effects 

of the soil and root depth factors, as well as tree species, stem mass and all 2-way 

interactions, on critical turning moment. Fixed and random effects were modelled 
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using residual maximum likelihood (REML) and included a function (the reciprocal 

of the variance) to down-weight trees with large stem mass to account for the greater 

variation in turning moments required to overturn such trees. Fixed effects were soil 

type, root depth and stem mass, and the random effect was 'forest' within each 

soil/depth class combination. 

Analyses for Sitka spruce were made using data from this single species, whilst 

differences in critical turning moments between Sitka spruce and the other tree 

species, were examined by fitting a series of linear mixed models to the full dataset 

and comparing parameter estimates for individual species. Rather than the usual R 2  

statistic, estimated standard errors of the regression lines were calculated as they 

were considered to be more informative. Not only do they take into account the 

highly variable number of trees used to estimate the slope but also the variation 

between forests in which the trees were sampled. 

Results 

Anchorage of Sitka spruce 

Sitka spruce was the only species with sufficient data to model the effects of all four 

soil groups (free-draining mineral, gleyed mineral, peaty mineral, deep peats) at three 

rooting depths (<40 cm, 40-80 cm, >80 cm). Stem mass.soil group and stem 

mass.rootable depth were both significant factors (p < 0.001) and the best estimate of 

critical turning moment, containing only significant effects, is given by the model in 

Table 2-5. Stem mass was the single most important variable in determining the 

critical turning moment required to overturn a tree. The intercept term in the model 

was not significantly different from zero and was therefore removed, forcing all 

regression lines to pass through the origin. On similar soils, trees with rootable 

depths >80 cm required 10 to 15% more force to overturn them, than trees with root 

depths less than 80 cm. For trees of similar mass, those growing on deep peats 

required the greatest force to overturn them. Trees growing on gleyed mineral soils 
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were most easily overturned, requiring only two-thirds of the turning moment of 

those growing on deep peats. 

The interaction term stem mass.rootable depth.soil type, although not included in the 

initial model above, was considered for inclusion as it had a level of significance ofp 

= 0.06. To provide regressions for use in windthrow risk models, critical turning 

moments were subsequently compared with stem mass for each soil group, root 

depth combination (Figure 2-5, Table 2-6) using the fully parameterised model. Sitka 

spruce on deep peats, at all rooting depths, had greater resistance to overturning than 

on other soil types. There was little difference in anchorage between trees with 

shallow and medium rooting depth on deep peats (Figure 2-5). Sitka spruce on 

gleyed mineral soils had similar anchorage when rooting within shallow and medium 

depth ranges, but when deep rooted they were better anchored and had similar 

anchorage to deep-rooted trees on mineral soils. On peaty mineral soils, anchorage of 

Sitka spruce was similar within the shallow and medium rooting depth ranges. 

Anchorage of other species 

There were considerably fewer data available for species other than Sitka spruce 

(Table 2-3), and commonly there was a poor spread of data between soil group and 

depth combinations. Therefore, data from each available species, soil group and root 

depth combination were compared with data from Sitka spruce using regression 

analysis. Table 2-6 shows the estimates of slope coefficients 'C reg ' for regression 

lines and p-values that indicate the significance of similarities with equivalent lines 

for Sitka spruce. Medium rooting depth (40-80 cm) Douglas-fir and deep rooted 

(>80 cm) grand fir on free draining mineral soils had significantly better anchorage 

(indicated by a larger Creg  value) than Sitka spruce (both p < 0.01). Shallow (<40 cm) 

and medium root depth grand fir on gleyed mineral soils were also significantly 

better anchored than Sitka spruce (p < 0.05). Species, soil group and root depth 

combinations that had significantly poorer anchorage than Sitka spruce on the same 

soil with the same rooting depth were: medium root depth Corsican pine on free 
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draining mineral soils (p < 0.01); shallow rooted Norway spruce on gleyed mineral 

soils (p = 0.01); deep rooted grand fir on peaty mineral soils (p < 0.001); medium 

depth lodgepole pine on mineral soil; and deep rooted lodgepole pine on peaty 

mineral and deep peat soils (p < 0.01). For other combinations of species, soil group 

and root depth, the comparison showed no significant difference, or there were no 

data (Table 2-6). 
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Table 24. Tree pulling sites, species, tree height and DBH range, number of trees 
pulled, and pulling year (see Figure 2-1 for forest locations). 

Forest Species Tree height range (m) DBH range (cm) No. trees Expt. years 

Ae NS 
Min 
9.14 

Max 
14.94 

Min 
13.34 

Max 
29.72 48 1963 

SS 10.97 18.90 10.80 41.91 152 1960, 61,69 
Alice Holt CID 12.19 15.54 15.49 20.32 8 1968 

DF 11.89 14.63 16.26 20.32 8 1968 
GF 18.29 20.12 18.54 24.38 8 1968 
RC 11.89 13.72 18.54 22.61 8 1968 
WH 12.80 15.24 15.49 19.30 8 1968 

Beddqelert SS 10.66 20.42 16.97 29.10 48 1962 
Brechfa SS 13.10 22.00 10.60 26.50 20 1982 
Brendon CP 13.41 15.85 17.78 27.43 8 1966 

DF 16.46 19.51 21.84 29.21 8 1966 
LP 9.75 12.50 17.78 24.38 8 1966 
NS 14.63 16.46 17.02 23.37 8 1966 
SS 9.14 18.90 16.26 23.37 16 1966 

Carron Valley SS 8.53 13.41 12.95 22.61 44 1965 
Castlemilk SS 18.60 23.65 21.40 31.80 24 1998 
Clashindaroch EL 9.45 12.19 13.34 17.37 12 1962 

JL 10.36 12.19 13.34 17.37 12 1962 
LP 9.14 11.89 	. 12.93 17.78 12 1962 
SP 8.84 10.67 12.93 14.96 7 1962 

Clocaenoq NS 9.75 12.95 15.36 24.25 32 1963 
SP 10.66 11.88 19.40 22.63 2 1963 
SS 6.71 17.37 10.16 27.48 122 1962,63,68 

Croft Pascoe LP 5.60 8.70 8.00 13.00 31 1972 
Crychan SS 8.23 11.28 10.92 16.51 16 1968 
Drummond Hill EL 13.41 18.29 16.18 23.85 12 1962 

JL 15.54 18.29 18.19 25.07 11 1962 
LP 13.72 14.63 15.37 24.26 7 1962 
SP 11.89 12.50 17.79 22.63 5 1962 

Eredine SS 13.41 15.85 15.49 26.67 8 1969 
WH 13.41 16.15 17.02 24.89 8 1969 

Glentrool SS 24.00 30.08 28.50 55.50 22 1998 
HaIwill GF 14.33 17.98 17.78 27.43 8 1968 

NS 12.19 22.50 18.54 31.00 16 1968,73 
SS 11.28 23.00 14.48 34.00 36 1965,68.73 
WH 12.50 14.02 17.78 25.91 8 1968 

Hamsterley LP 13.10 16.50 14.50 27.00 8 1972 
SS 12.60. 15.30 13.50 25.00 16 1972 

Hartland SS 13.72 16.46 16.26 31.52 32 1965 
WH 12.80 13.72 19.30 25.15 4 1965 

lnchnacardoch LP 10.50 21.60 11.43 40.50 92 1968,71 
SP 13.20 19.00 18.00 28.50 17 1971 
SS 9.50 15.20 14.00 24.00 28 1971 

Kershope SS 11.58 27.90 18.54 42.00 70 1966.93,94 
Kielder GF 12.50 18.29 15.75 27.18 16 1964,69 

LP 10.00 16.50 11.50 29.50 52 1969,71 
NF 9.80 14.50 15.00 24.50 8 1972 
NS 9.70 11.60 13.40 20.30 8 1969 
SS 9.00 17.00 10.00 35.50 196 1961. 64, 69, 71, 72, 

Leanachan SS 10.00 27.70 16.00 46.50 36 1998 
Lennox NS 10.36 13.72 14.48 25.40 8 1965 

SS 11.58 13.11 14.48 23.37 8 1965 
Millbuie LP 13.50 15.50 14.50 23.00 10 1974 

SP 11.00 13.50 15.50 26.00 10 1974 
SS 12.50 13.50 19.50 25.00 2 1974 

Mynydd ddu DF 15.85 20.12 24.38 32.26 8 1968 
GF 21.95 24.08 19.30 26.67 8 1968 
NF 14.33 15.24 17.78 25.91 8 1968 
NS 13.72 15.85 19.30 23.37 8 1968 
WH 16.46 19.20 18.54 26.67 8 1968 

Newcastleton NS 11.58 20.12 18.60 32.00 16 1964 
SS 10.06 24.69 14.48 35.56 72 1964 

Radnor SS 9.75 16.46 13.72 28.96 32 1963 
Redesdale SS 6.71 10.97 11.43 21.08 36 1964 
Rumster SS 20.21 27.30 24.50 40.10 15 1998 
Swaffham DF 11.13 18.29 12.12 32.33 16 1960 
Thetford SP 10.97 17.07 14.48 27.43 24 1966 
Thomthwaite SS 9.45 11.28 13.72 18.29 8 1968 

WH 8.23 9.75 12.45 14.48 8 1968 
Wareham CID 9.45 15.85 14.48 23.37 40 1969 
Wauchope SS 9.30 13.10 11.90 24.60 32 1998 
Wykeham CID 12.50 15.85 21.84 30.23 32 1968,70 

JL 13.41 16.76 21.08 35.56 21 1968.69,70 
LP 14.02 16.15 19.30 27.43 24 1968,69 
SP 11.28 18.29 16.51 30.73 72 1968,70 
SS 10.36 17.07 14.99 27.94 64 1969.70 
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Table 2-5. Solution for fixed effects of stem mass.root depth and stem mass.soil type for 
Sitka spruce critical turning moment'. 

Effect Soil type Root 
depth 

Estimate Standard 
error 

stem mass . root depth <40 cm 167.48 8.19 

stem mass . root depth 40-80 cm 167.83 6.97 

stem mass . root depth >80 cm 186.98 8.13 

stem mass . soil type Free-draining -18.94 8.37 
mineral 

stem mass . soil type Gleyed -55.69 7.51 
mineral 

stem mass . soil type Peaty mineral -39.85 8.78 

stem mass . soil type Deep peats 0 

To find the slope of the regression line (C reg) for critical turning moment against stem mass for a 
particular soil type and root depth combination, the relevant stem mass.root depth estimate should be 
added to the stem mass.soil type estimate. As regression lines were fitted through zero, the critical 
turning moment is simply the slope estimate multiplied by stem mass. 
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Table 2-6. Coefficient of regression line (Cr), number of samples (number of sites in 
brackets), p-value for the comparison with the equivalent regression for Sitka spruce, 
and standard error (s.e.), for each species, soil group and rooting depth. Coefficients 
significantly different (p < 0.05) from Sitka spruce are indicated with an asterix. Trees 
were excluded if they snapped during tree pulling, or if root rot was recorded. Soil 
groups and root depth codes are described in Table 2-1. 

Creg  

Root 1 	2 	3 
depth 

CD 	Soil 
OL 

(1) 	group 

n samples (sites) 

1 	2 	3 

p-value 

1 	2 	3 

s.e. 

1 	2 	3 

CP 	A 105.1 	125.5* 	131.0 1(1) 31(2) 24(3) 0.17 	<0.01 	0.10 
B 129.5 27(2) 0.39 
C 
D 

OF 	A 197 . 9* 	165.6 16(2) 15(2) <0.001 0.39 
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177.1 182.8 168.2 1(1) 12(1) 31(3) 0.29 0.19 0.35 

137.9 142.6*  140.1 6(4) 63(6) 25(6) 0.77 <0.05 0.33 
137.8 148.5 15(2) 5(2) 0.31 0.61 

94.1 119.0 123.2*  1(1) 12(1) 6(1) 0.72 0.78 <0.001 
141.3 132 .2* 7(1) 19(2) 0.73 <0.001 

107.5 8(1) 0.07 

78.5 105.6 195.8 2(1) 5(1) 1(1) 0.34 0.48 0.78 

127.8 154.6 160.9 7(1) 22(2) 22(4) 0.67 0.72 0.63 
62.9* 114.2 24(3) 64(5) <0.001 0.73 

171.7 193.9 6(1) 2(1) 0.13 0.41 

124.1 146.4 141.3 5(3) 71(5) 40(5) 0.31 0.17 0.27 
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129.0 126.0 202.4 120(7) 137(8) 8(3) - - - 

180.6 156.7 189.9 19(5) 50(7) 13(6) - - 

109.9 141.2 168.7 5(2) 7(1) 8(1) 0.14 0.36 0.52 
126.0 152.2 12(2) 10(3) 0.70 0.13 
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Figure 2-5. Relationship between critical turning moment and stem mass for Sitka 
spruce in each soil and root depth grouping. The model fitted contains the 
stem.soil.root interaction terms and the dotted lines give the 95% confidence interval 
for this estimate. 
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Discussion 

This study gives the first objective comparison of anchorage between a wide range of 

conifer species. The comparison has revealed important, yet complex differences 

between species, and their interactions with site conditions. Of conifer species 

commonly grown in the British Isles, grand fir was found to be the best anchored on 

deep, freely draining mineral soils and had significantly better anchorage than Sitka 

spruce. However, on peaty mineral soil it had significantly poorer anchorage than 

Sitka spruce. Sitka spruce was particularly well anchored on deep peat soils and had 

significantly better anchorage than lodgepole pine, the only other species examined 

on deep peat soils. On shallow rooted gleyed mineral soils, Sitka spruce had poor 

anchorage, and although most other species behaved similarly, Norway spruce had 

significantly poorer anchorage. Anchorage comparisons between species are 

therefore not simple, and depend on soil physical properties and rooting depth. 

It is important to remember that this study provides comparisons of root anchorage 

rather than tree stability. Modelling or measurement of crown characteristics, and 

hence wind-loading, is required to relate the former to the latter. However, anchorage 

may be expected to be a reasonable predictor of conifer tree stability if conifer 

species are assumed to have similar crown characteristics. There are comparisons in 

the literature of stability between some of the conifer species examined here, but 

most of these comparisons are based on windthrow records after storms, rather than 

experimental studies. For example, Neustein (1965) examined windthrow after a 

storm and reported better stability of Norway spruce compared to Sitka spruce. In the 

analysis presented in this chapter, Norway spruce had significantly poorer anchorage 

than Sitka spruce on one soil group, root depth combination, and similar anchorage 

on the remaining combinations, so the differences in the Neustein study may have 

resulted from stands being on different soils. Ruth and Yoder (1953) found that 

western hemlock had poorer stability than Sitka spruce and Douglas-fir, although this 

may have been associated with butt rot (Heterobasidium annosum) infection of the 

roots in the western hemlock. In the present analysis western hemlock was similarly 

anchored to Sitka spruce, but trees in the data-set with recorded root rot were not 

included. Similarly, Busby (1965) described greater vulnerability of Japanese larch 
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to wind damage compared to Sitka spruce, while in the present study anchorage of 

Japanese larch was not significantly different to Sitka spruce on mineral soils. 

In a tree-pulling experiment conducted on mineral soil in Finland (Peltola et al. 

2000), Scots pine was found to be better anchored than Norway spruce, while in the 

present investigation these species had similar anchorage. The difference between 

these results may reflect deeper rooting depths of Scots pine compared to Norway 

spruce in the Finnish study, in agreement with the finding that anchorage of Norway 

spruce is comparatively poorer on sites with restricted rooting depth. However, 

regressions in the Finnish study are based on critical turning moment against tree 

height x DBH 2, rather than stem mass as used in the present study. Results of tree-

pulling studies where stem mass is the predicting variable, and can therefore be more 

directly compared to this study, are described in Table 2-7. In the present study, 

Douglas-fir showed better anchorage than Sitka spruce for one soil group; i.e. 

medium depth mineral soil. Similarly, in a study conducted in New Zealand, 

Douglas-fir grown on a mineral soil was better anchored than radiata pine (Moore 

and Gardiner 2001). However, when the regression coefficient (Creg) is compared 

between Douglas-fir in the British and New Zealand tree-pulling experiments, this 

species appears to be considerably better anchored in Britain. Other conifer species 

described in the table are different from the species investigated in the present study, 

but again have lower Creg  values for equivalent soil group and root depth, except for 

maritime pine, a tap-rooted species, on deep mineral soil. Better anchorage of 

conifers in the British Isles, compared to other parts of the world, may be expected as 

they experience higher average wind speeds than many other forested areas (Troen 

and Peterson 1989), and tree root anchorage is known to be strengthened in response 

to wind movement (Nicoll and Ray 1996; Stokes etal. 1997a; Urban etal. 1994). 

The finding that Sitka spruce has better resistance to overturning on deep peats than 

on other soils is perhaps surprising but reinforces some observations in the literature. 

Pyatt (1966) reported negligible windthrow of Sitka spruce on deep peats after a 

storm, despite 6% damage on surface-water gley and 2% damage on peaty gley. Rigg 

and Harrar (193 1) reported that windthrow of conifers was rare on natural peat bogs, 
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although it was common on adjacent mineral soils. One explanation for this 

phenomenon is that the extraction force for Sitka spruce roots has been found to be 

nine percent greater in peat than in mineral soils (Anderson et al. 1989). An 

additional factor may be the tendency for conifer roots on peaty soils to develop 

eccentric 'I-beam' cross sectional shapes (BUsgen and MUnch 1929). This behaviour 

is important to tree stability because a root with such a shape can have 300 % of the 

flexural stiffness of a circular root with the same cross sectional area (see Chapter 1). 

Roots that are held rigidly in mineral soils would be expected to have a smaller 

stimulus for adaptive development in response to wind (Nicoll and Ray 1996) than 

that experienced in more plastic peat soils. However, during a storm, as the soil at the 

base of the root plate starts to fracture, anchoring roots are pulled from the soil, and 

the stiffness of the lateral structural roots becomes particularly important (Courts 

1986). Therefore, if roots of a tree on deep peat flex more as the tree sways than 

roots of a tree on mineral soils, they will adapt better to the wind environment and be 

better prepared to resist bending in the strongest winds when they occur. 

Table 2-7. Slopes of regression lines (C reg) for critical turning moment (Nm) against 
stem mass (kg) compared between species from studies described in the literature. 

Species 	 Name 	Soil 	 Soil C, 	Reference 
group 

Abies balsamea L. Balsam fir 

Picea glauca (Moench) White 
Voss spruce 

Picea mañana (Mill.) Black 
B.S.P. spruce 

Pinus banksiana Lamb. 	Jack pine 

Pinus pinaster Ait. 	Maritime 
pine 

Pinus radiate D. Don. 	Radiata 
pine 

Pseudo fsuga menziesii 	Douglas-fir 
(Mirb.) Franco 

A3 100.9 Achim etal. (2005b) 

A3 100.9 Achim etal. (2005b) 

Al 105.2 Elie and Ruel (2005) 

A3 108.9 

A3 130.9 Elie and Ruel (2005) 

Al 125.8 Cucchi etal. (2004) 

A3 168.8 

A3 83.0 Moore (2000)2 

A3 	91.0 	Moore and Gardiner 
(2001 )2 

Podzol 

Podzol 

Podzol 	-shallow/stony 

Podzol 	-deep/no stone 

Mineral soil -deep/no stone 

Podzol 	-shallow/hard pan 

Podzol 	-deep/no hard pan 

Orthic Pumice soil 

Orthic Pumice soil 

2 
 CrC9 calculated using regression of critical turning moment against stem volume, and stem green density data. 
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Conclusions 

The analysis described here has provided linear relationships between critical turning 

moment and stem mass that can be used to predict tree anchorage within windthrow 

risk models. Despite the analysis being based on a large number of tree-pulling 

experiments conducted over a 40-year period and with almost 2000 data points, there 

are still a number of gaps in the database. Ideally, tree-pulling experiments would 

continue until each possible combination of species, soil grouping and rooting depth 

range had been investigated. However, the practical difficulties and high cost of tree-

pulling experiments will limit work of this kind and it is likely that any similar work 

in the future will be small-scale studies to answer particular topical questions about 

tree anchorage. For example, as the importance of tree species diversity increases in 

commercial forestry, a better understanding may be required of the anchorage of 

trees that are currently considered to be minority species. This could be achieved by 

the development of critical turning moment regressions based on tree pulling 

experiments, or through the development of improved mechanical models of tree 

anchorage. However, Sitka spruce is now well understood in terms of anchorage, and 

the anchorage of other species commonly appears to be similar on comparable soils. 

It would therefore be acceptable for wind risk models to use the relevant Sitka spruce 

regression lines for other conifer species until better data become available. 
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3. Does steep terrain influence tree stability? - A field 

investigation 

Abstract 

The anchorage of 40-year-old Sitka spruce (Picea sitchensis (Bong.) Can.) trees 

grown in a plantation on a steep (ca. 30°) slope was compared with that of trees 

grown on an adjacent horizontal area. There was similar gleyed mineral soil on the 

sloping and horizontal areas. Trees were mechanically overturned using a winch, and 

anchorage was quantified by measuring load, stem angle and tree dimensions. Trees 

on the slope were overturned upslope, downslope or across-slope. Critical turning. 

moments were calculated around the tree base and the actual hinge point. Critical 

wind speeds required to uproot or snap trees in this stand were modelled to compare 

the vulnerability of trees to upslope and downslope winds. 

No overall difference was found in anchorage between trees grown on the horizontal 

and sloping parts of the site. However for trees on the slope, those pulled upslope 

showed significantly more resistance to overturning for a given stem mass than those 

pulled downslope. Critical turning moments calculated at the hinge point were 

smaller than those calculated at the stem base, but differences were small and had no 

effect on the comparison between treatments. Critical wind speeds for uprooting 

were estimated to be 28 in s 1  for an upslope wind and 24 in s for a downslope wind 

on this site. The implications of these results are discussed in relation to windthrow 

risk modelling and forest soil conservation. 
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Introduction 

Problems of managing forest stands in areas vulnerable to wind damage have 

necessitated the development of predictive models of windthrow, such as 

ForestGALES (Gardiner et al. 2004; Quine and Gardiner 1998), HWIND (Peltola et 

al. 1999; Peltola et al. 1997) and WINDA (Blennow and Sallnäs 2004). Although in 

the development of these models local wind climate has been adjusted to allow for 

topography (Peltola et al. 1999; Suárez et al. 1999), the assumption is made that 

there is no difference in anchorage between trees growing on horizontal and sloping 

sites. However, aerial photographs of wind damage to forest plantations taken after 

storms have shown more damage to trees on slopes and valley sides in some areas 

compared with trees grown on more horizontal sites (Quine, C.P. personal 

communication). It is not clear if these observations result from localised variation in 

wind exposure, funnelling of wind in valleys (Savill 1983), mechanical differences in 

anchorage resulting from variation in root architecture, or a combination of these 

effects. A number of studies of tree anchorage, including the analysis in Chapter 2 of 

this thesis, have related tree critical turning moments to measurable tree 

characteristics. All have shown good linear relationships between critical turning 

moment and stem mass, stem volume, or stem diameter for trees on particular soil 

types (Blackburn 1986; Fraser and Gardiner 1967; Fredericksen et al. 1993b; 

Meunier et al. 2002; Moore 2000; Papesch et al. 1997; Peltola et al. 2000; Ray and 

Nicoll 1998). These simple relationships are used within windthrow models to 

predict tree vulnerability based on measured or predicted tree dimensions for 

particular defined soil and site conditions. In improving the accuracy of forest 

windthrow models, it is important that we test whether the anchorage of trees is 

reduced on slopes compared to those grown on horizontal sites. 

Understanding the stability of trees on slopes is also important for the development 

of models to predict soil loss through erosion and landslides. Trees have a positive 

effect on soil stability of vulnerable slopes (O'Loughlin 1974; Swanston 1974), 

reducing soil losses through erosion and shallow landslides. The network of coarse 
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and fine tree roots close below the surface binds soil together, while sinker roots 

anchor the surface layers to the deeper, more stable, soil mass (Zhou et al. 1997). 

However, windthrow of trees has a negative effect on soil stability and may be the 

most important factor in downslope movement of soil on many forested slopes 

(Schaetzl 1986). Soil from upturned root-soil plates on steep slopes is frequently 

deposited downslope of the original tree position as windthrown trees are harvested 

or as the roots decompose (Beatty and Stone 1986). Recently disturbed, 

unconsolidated, soil that is unprotected by vegetation can easily be eroded by surface 

water flow (Schaetzl et al. 1990), and water penetrating into deeper soil horizons 

from craters formed under overturned root-soil plates may trigger shallow slides on 

unstable slopes (Swanston 1974). Increasing pressure on the forest industry to 

conserve soil and to minimise sediment input to streams and water courses, has led to 

calls for better assessment of risk of soil loss from forested sites (Montgomery and 

Dietrich 1994). 

Understanding the mechanics of tree anchorage on slopes will improve the accuracy 

of predicting of both economic loss and soil loss that result from windthrow events. 

An important development in our understanding of tree stability on sloping terrain 

will be to describe anchorage in relation to the direction in which wind blows during 

a storm, that is, upsiope, downslope or across-slope. Two hypotheses were tested in a 

field investigation: (1) trees on slopes are less stable than trees on horizontal terrain 

and (2) the stability of trees on slopes will vary with the direction of overturning. 

Trees on a steep (ca. 30°) slope were mechanically overturned either upslope, 

downslope or across-slope and their resistance to overturning was compared with 

that of trees grown on a horizontal part of the site with similar soil. Critical wind 

speeds required to overturn these trees were calculated using a version of the GALES 

method (Gardiner et al. 2000) modified for forest stands on slopes. Wind stability 

was compared among wind directions and a sensitivity analysis was performed to 

examine the relative influence of changes in parameters influenced by slope. In 

addition, measurement of uprooted root-soil plate dimensions allowed us to quantify 

the soil that could become available for erosion following windthrow of trees on 

sloping terrain. 
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Methods 

Site details 

Thirty-six Sitka spruce (Picea sitchensis (Bong.) Cam) trees were mechanically 

overturned in Leanachan Forest near Fort William, west Scotland (56° 51.95' N, 4° 

58.40' W). The site was an almost uniform north-facing slope, 300 in wide and 25 in 

deep, with an inclination of between 26° and 33°, and with horizontal areas at top 

and bottom. Trees were planted on the site in 1962 as 2-year-old '1+1' transplants. 

At the time of the investigation (November 2001), the mean tree height was 22.3 m, 

and mean diameter at breast height (DBH) was 23.4 cm. Trees were spaced on 

average 2.66 m apart, representing 1415 stems ha' in plan view, which equated to 

2.86 m between trees and 1225 stems ha d , parallel to the slope. Weather before and 

during the field investigation was wet, with periods of light to moderate rainfall. The 

soil on both the sloping and the horizontal areas was a mineral soil, classed as a 

surface water gley (Kennedy 2002) with some induration in places. Typically, the 

soil profile consisted of a thin leaf litter over a gleyed humic loamy A horizon (15-25 

cm thick), over a well drained loamy B horizon (40-100 cm thick), that extended 

down to an induration or to rock (A. Kennedy, unpublished report, 2005). The soil 

had a predominantly silty loam texture. Wind, monitored on open moorland 1 km 

from the experiment site between 1988 and 1999, had a prevailing direction of 255° 

from north. 

Treatments 

A total of nine trees were selected for each of four pulling treatments: pulled across-

slope, pulled downslope, pulled upslope, and pulled on the horizontal part of the site. 

In the across-slope treatment, four trees were pulled east, and five were pulled west. 

In the horizontal treatment, trees were overturned in random directions. To obtain a 
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consistent range of tree sizes in all pulling treatments, three dominant, three 

codominant and three sub-dominant trees were selected for each treatment. For the 

purpose of sample selection, dominant trees were defined as being close to the upper 

quartile of DBHs of trees measured in tariff plots, sub-dominant trees had DBHs 

close to the lower quartile, and co-dominant trees had DBHs close to the median. 

Trees were selected randomly within these constraints from across the site. 

Figure 3-1. Tree pulling on a slope, showing an example of a tree being overturned 
upslope (not to scale), and the method for calculation of turning moment using a co-
ordinate system. A , B and C are the stem base, cable attachment point and centre of 
mass on the pull tree, respectively. T is the applied force. 0 1  is the angle of the pull 
cable, 02 is the stem base angle, and 0 3  is the stem angle at half tree height. 
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Measurements and instrumentation 

The site slope angle was measured around each selected tree, and digital biaxial 

clinometers (Applied Geomechanics, Santa Cruz, California, USA) were fixed to the 

stem at 1.3 m above the base and at half tree height. Neighbouring trees were felled 

where necessary to avoid crown interference during tree-pulling. A chainsaw- 
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powered winch (Habegger, Thun, Switzerland) was attached to an anchor tree using 

a 2-rn long polyester round-sling (safe working load 5 t). Each anchor tree was 

selected to be more than one tree length in the selected direction from the pull tree. A 

load-cell (3 t maximum load) was positioned on an 8.2-mm diameter steel cable 

between the winch and the pull tree. Both clinometers and the load-cell were 

connected to a data logger. To protect the safety of the operator when the tree was 

pulled downslope, the winch was offset by up to 900  by attaching a pulley block to 

another tree in the pull direction. The pulling cable was fixed to the pull tree with a 

polyester round-sling placed on the tree at approximately half tree height. The 

distance between the anchor tree and the pull, or offset, tree was recorded. The angle 

of the cable was measured from the winch attachment point (or pulley on the offset 

tree) to the attachment point on the pull tree (Figure 3-1). 

Figure 3-2. Measurement of the root-soil plate; plate width (w), distance from stem 
centre (s) to windward edge (d i), distance from s to hinge (d 2), and plate thickness at 
three points (indicated by arrows, a, b and c) across the plate. 

After a zero reading was taken from the load-cell and both clinometers, the strain 

was taken up, and the tree was pulled over using the winch. The tree stem angles, 

measured from the clinometers, were recorded by the data logger when the maximum 

load was reached. Once the tree was on the ground, crown spread was measured, and 

instrument and cable attachment points were marked on the stem, as was the position 

of the lowest live branch whorl. Live and dead branches were removed and weighed 

in bundles by hanging them from a weighing balance suspended under a 3-rn high 
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steel tripod. The height of the winch-cable attachment point, height of attachment of 

both clinometers, position of the lowest live branch whorl, and height of the tree 

were then measured on the de-branched stem. Stem diameters were measured at 1-rn 

intervals up the stem from the base using measuring callipers with 1-mm resolution. 

A 1-rn central section of the stem was removed for green density (i.e., fresh mass per 

unit green volume) determination. The dimensions of the root-soil plate were then 

measured as shown in Figure 3-2, that is, width (w), distance from the top edge of the 

plate to the tree centre (di), distance from the tree centre to the hinge (d2) and soil 

depth at 3 points in a line across the plate at 0.5 x d 1 . The edge of the plate was 

defined as being where soil was no longer held by the roots (see Figure 3-2). The 

volume of the root-soil plate was estimated from these measurements, using the 

mean plate depth, and assuming a half ellipse shape for the area above the stem 

centre, and a rectangular shape below the stem centre. 

Calculation of the critical turning moment 

The relative positions (x, y co-ordinates in the vertical plane) of the base of the 

anchor tree, the hinge, the attachment point, and the centre of gravity of the pull tree 

were all determined for the moment in time when the maximum load was reached 

(Figure 3-1). From these, the length of the complete lever arm (stem plus part of the 

root-soil plate) and an accurate measurement of the angle of the pull-cable at 

maximum load (01) were calculated. The stem and root-soil plate were considered to 

be rigid for the purpose of this calculation. Critical turning moments were calculated 

at the stem base and at the hinge point (h), excluding trees that snapped as they 

overturned. The inclination of the stem was taken to be the mean of angles at the tree 

base (92) and at half tree height (93), when the maximum load was reached. The 

average hinge distance was used for three trees for which the hinge distance could 

not be measured on site. Critical turning moments were calculated as follows: 

(3.1) M applied =T. (YB'  _YA . ) +TY( X B 	A) 

(3.2) M totai = M applied + w (xc ,  - xA.) 
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where XA .YA', represents the coordinates (m) of the stem base or hinge position, 

xByB' the cable attachment point, and xC.yc the centre of gravity of the tree at the 

time when the maximum force was reached. Mappijea  (Nm) is the critical turning 

moment applied by the winch. T (N) and T (N) are the horizontal and vertical 

components of the applied force respectively, calculated from the wire pull angle at 

the time when the maximum applied load was reached (Figure 3-1). Mtotai (N m) is 

the total critical turning moment of both the force applied by the winch cable and the 

force resulting from the overhanging weight of the leaning tree. W (N) is the total 

weight of the tree. The centre of gravity of each tree was calculated from the mass 

data from the tree sections, with the crown mass added at half crown depth. 

Calculation of critical wind speed 

Critical wind speeds at which average trees in a stand would uproot (Uuproot) or snap 

(Usnap) were calculated using the GALES method (Gardiner et al. 2000), for the 

treatments that showed significant differences in anchorage. This analysis was based 

on mean site conditions, that is, 22.3 in tall Sitka spruce with DBH 23.4 cm, at a 

spacing of 2.86 m on a slope of 300.  These calculations assumed that only anchorage 

parameters varied between treatments. The equations given by Gardiner et al. (2000) 

for trees on flat ground were modified for slopes, and an idealised slope was assumed 

where the wind flowed parallel to the ground and was not influenced by topographic 

obstacles. The maximum bending moment applied to the base of the average stem in 

a stand by an hourly-averaged top wind speed in the canopy (uh, m S_ 1) was 

calculated using the following equation: 

2 

1 (3.3) M max  =dPG 
Duhk 

 

lnl 	Ii 
I\ ZO Li 

where d (m) is the zero plane displacement height, p (=1.226 g m 3) is air density, G 

(dimensionless) is a wind gust factor (the ratio of maximum to mean bending 
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moment), D (m) is the average spacing between trees, k is Von Karman's constant (= 

0.41), h (m) is canopy height, and zo (m) is the aerodynamic roughness (Gardiner et 

al. 2000). 

The constants k and p are not influenced by slope conditions. D is usually obtained 

from assessments of the number of trees per hectare, either from field surveys or 

aerial photography and assumes the ground to be horizontal. The calculation of D 

was therefore adjusted to make it representative of spacing across the real surface 

area of this sloping site. G may be expected to vary between horizontal and sloping 

terrain, and between parts of a slope, but as this variation has not been quantified, G 

was calculated as described by Gardiner et al. (1997) for horizontal terrain, assuming 

an airflow that is parallel to slope. The values of zo and d were derived from h and a 

frontal area index (X, dimensionless) with simple analytical expressions developed by 

Raupach (1994). Rather than being the mean height of the trees, hsiope  was the 

distance, perpendicular to the slope, between the top of the canopy and the ground. X 

was calculated by dividing the crown area of the average tree, assuming a diamond-

shaped crown profile (Gardiner et al. 2000), by the area of the surface the tree 

occupied on the ground. 

A sensitivity analysis was performed to examine the percent changes in Uuproot and 

Usnap, predicted using the GALES method, that result from variations in parameters 

that may be affected by slope, that is, slope inclination, G, crown area, stand density 

and stem deflection at maximum turning moment. Each parameter was increased and 

reduced by 20% as in Gardiner et al. (2000). Changes in crown area (± 20%) were 

calculated using a proportional change in width and depth. Changes in stem 

deflection were increases or decreases in the tree's deflection from vertical at the 

time when the maximum load was reached. 

Statistical analysis 

Means of above- and below-ground tree components were compared using one-way 

analysis of variance with 'across-slope', 'downslope', 'upsiope' and 'horizontal' as 
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the treatment structure. Critical turning moments were compared between treatments 

(excluding snapped trees) using linear regression analysis, with stem mass as the 

covariate. Regression lines were compared as a priori contrasts between trees pulled 

upslope, downslope and across-slope, and between trees grown on the slope and on 

the horizontal. 

Figure 3-3. Linear regressions of critical turning moment at stem base against stem 
mass. Data excludes trees that snapped during overturning, and all regression lines 
were fitted through zero. 
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Results 

Most trees in all treatments were uprooted, exposing a well-defined root-soil plate, 

but the stems of three trees pulled across-slope, and two from each of the other 

treatments (upslope, downslope and horizontal,) snapped as they were winched over. 

Above-ground characteristics were similar among trees subjected to the different pull 

treatments (Table 3-1). The root-soil plate depth of trees pulled downslope was 

greater than the depth of those in the other treatments (p = 0.02). The estimated 

80 
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volume of the root-soil plate (Table 3-1) was greatest for trees pulled downslope and 

smallest for trees pulled upslope (p = 0.04). The overall mean root-soil plate volume 

was 1.44m3 . 

The effect of the treatments on the relationship between critical turning moment, 

calculated at the stem base, and stem weight is shown in Figure 3-3 and Table 3-2. 

The intercept terms of the regressions were not significantly different from zero and 

were removed to correspond with the convention in previous tree anchorage studies 

(for example, see Chapter 2, Peltola et al. 2000 and Achim et al. 2005). 

For a given stem weight, no significant difference in the critical turning moment was 

found between trees on horizontal ground and those on slopes; that is, the average of 

across-slope, downslope, and upsiope (p = 0.98). However, significantly smaller 

moments (Figure 3-3, Table 3-2) were required to uproot trees downslope than 

upsiope (p < 0.05). The critical turning moments calculated at the hinge point of the 

root-soil plates were slightly smaller than those calculated at the base of the stem for 

all treatments, but the ranking remained the same with the upslope treatment having 

the largest moments, and the downslope treatment having the smallest moments. The 

hinge:stem base ratio of critical turning moments for the average tree was 0.91, 0.96, 

0.90 and 0.97 for across-slope, downslope, horizontal, and upslope treatments, 

respectively. 
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Table 3-1 Mean and standard error (s.e.) of tree characteristics and mean critical 
turning moments (t.m.) calculated at the stem base (F-test p-values from ANOVA are 
given for the comparison between means; n = 9 per treatment for above-ground 
characteristics and n for other characteristics are as in Table 3.2). 

treatment 	Across-slope Downslope 	Upslope 	Horizontal p 

characteristic 	 mean s. e. 	mean s.e. 	mean s.e. 	mean s.e. 

Above-ground 

Tree height (m) 22.69 0.50 22.89 0.47 22.95 0.84 20.82 1.02 0.16 

DBH (cm) 23.0 1.5 22.9 1.6 22.4 1.3 23.4 1.5 0.96 

Crown Diameter (m) 3.08 0.29 3.07 0.14 3.01 0.28 3.29 0.21 0.85 

Crown Depth (m) 11.98 0.75 12.86 0.70 12.22 0.81 11.24 0.71 0.50 

Stem volume (m) 0.45 0.07 0.46 0.07 0.46 0.07 0.42 0.06 0.97 

Total stem mass (kg) 422.9 63.7 405.6 60.7 421.5 64.7 368.2 57.0 0.91 

Crown mass live (kg) 66.7 13.7 69.5 14.4 68.3 13.7 69.9 15.4 1.00 

Crown mass dead (kg) 15.1 1.9 19.2 3.9 21.0 4.0 25.5 4.4 0.27 

Shoot mass total (kg) 504.6 77.1 494.3 75.8 510.8 79.3 463.6 73.6 0.97 

Stem wood density (kg m 3) 945.2 24.9 880.0 28.0 907.3 25.0 849.3 36.1 0.13 

Below-ground 

Max root depth (m) 0.94 0.10 1.24 014 0.92 0.07 0.89 0.07 0.06 

Root-soil plate depth (m) 0.66 0.11 0.78 0.11 0.43 0.04 0.48 0.04 0.02 

Root soil plate area (m) 2.40 0.47 2.52 0.22 1.90 0.37 3.05 0.49 0.25 

Root soil plate Volume  (m) 1.42 0.21 2.01 0.36 0.82 0.18 1.51 0.28 0.04 

Hinge dist. from stem centre(m) 0.57 0.06 0.48 0.04 0.59 0.07 0.70 0.08 0.17 

Critical turning moments 

Applied critical tm. at stem base (kNm) 38.818 7.452 28.992 5.444 38.640 6.567 34.249 4.632 0.64 

Total critical tm. at stem base (kNm) 46.987 8.763 36.501 6.390 47.933 8.427 40.152 5.065 0.64 

Table 3-2. Number of trees uprooted (excluding snapped trees), coefficient of the linear 
regression of critical turning moment against stem mass, and R 2  for each treatment. 

fl uprooted 	coefficient R2  

Pull treatment 

Across-slope 	6 	89.4 	0.24 

Downslope 7 83.7 0.84 

Upsiope 7 110.4 0.91 

Horizontal 7 88.6 0.39 
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As the only significant difference between critical turning moments was between 

trees pulled up- and downslope, critical wind speeds for overturning were calculated 

separately for trees pulled in these directions, and for all treatments combined 

(Figure 3-4). Although there was predicted to be little difference in the wind speed 

required to snap trees upslope (26.5 m s') and downslope (26.8 m 1),  a 

considerably greater wind speed would be required to uproot trees upslope (27.7 

m s') than downslope (23.6 m s 1 ). For all treatments combined, UL1100 was predicted 

to be 25.1 m and Usnap to be 25.5 m 

Figure 34. Critical wind speed required to uproot and snap average trees on the site, 
compared between those pulled upslope, downslope and all treatments combined, 
calculated using the modified GALES method. 
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The sensitivity analysis (Table 3-3) predicted a relatively small (<3%) increase or 

decrease in Uuprt and Usnap from +1- 20% changes in crown area and stem 

deflection. Changes of +1- 20% in the slope angle were predicted to cause a <7% 

increase or decrease in critical wind speed. The method was most sensitive to 

changes in G and stand density, and +1- 20% changes in these parameters were 

predicted to alter critical wind speed by up to 11 %. 
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Table 3-3. Sensitivity of the prediction of critical wind speed for uprooting (U,001) and 
stem snap (Usng,,) to +1- 20% changes in factors that may be affected by slope, using the 
modified GALES method and based on mean characteristics for the site. 

Variable 

Change % change in Uuproot 

ups lope 	downslope 

% change 

ups lope 

in Usnap 

downs lope 

Slope +20% 6.0% 5.9% 6.4% 6.4% 

-20% 4.4% 4.3% -4.7% 4.6% 

Gust factor (G) +20% -8.1% -8.1% -8.2% -8.2% 

-20% 11.0% 11.0% 11.0% 11.0% 

Crown area +20% 2.5% 2.5% 2.4% 2.4% 

-20% -2.9% -3.0% -2.8% -2.8% 

Stand density +20% 10.6% 10.6% 10.5% 10.5% 

-20% -11.4% -11.4% -11.3% -11.3% 

Stem deflection +20% 1.8% 1.8% 1.9% 1.9% 

-20% -2.0% -2.0% -1.9% -1.9% 

Discussion 

There was no overall difference in the critical turning moment of trees on horizontal 

and steeply sloping terrain. Based on these findings, there is therefore evidence to 

reject the first hypothesis and confirm the implicit assumptions in predictive models 

of windthrow (Blennow and SalInas 2004; Gardiner et al. 2000; Gardiner et al. 2004; 

Peltola et al. 1999; Quine and Gardiner 1998) that regressions of critical turning 

moment against stem mass remain unaltered by the terrain on which the stand is 

located, provided that soil type is constant. 

Trees in this study were significantly more vulnerable to overturning downslope than 

upslope, and the difference in critical turning moment was of the order of 25%. This 

supports the second hypothesis, that the stability of trees on slopes will vary with the 

direction of overturning. Increased anchorage of trees when a force is applied in an 

upslope compared with a downslope direction provides trees with better resistance to 

the more commonly experienced winds. Mean wind speeds on sites on hilly terrain 
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will tend to be less in a downslope than in an upsiope direction, owing to the shelter 

effect on the lee side (Finnigan and Brunet 1995). Airflow tracks the slope closely 

on the windward side of a hill as the wind travels upslope, but the flow commonly 

separates from the slope on the lee side. As a result, wind speeds are reduced in the 

'wake' region and wind direction can sometimes be reversed if a 'separation bubble' 

forms below the separated flow on the lee side (Finnigan and Brunet 1995). 

Root plate volume and root plate depth was less for trees overturned upslope than for 

those pulled downslope, directly reducing two of the components of tree anchorage 

defined by Coutts (1986): root-soil plate mass and soil strength. The increase in 

resistive turning moment of upslope trees must therefore result from increases in 

either, or both, of the remaining two components identified by Coutts (1986), that is, 

the pull-out resistance of roots, and the resistance to bending of structural roots at the 

'hinge'. Therefore, the observed difference between upslope and downslope 

anchorage could result from increased root growth on the down-hill side of the tree, 

providing better combined pull-out resistance of roots on the windward side of the 

tree. Alternatively the difference may result from relatively less structural root 

development on the downslope side, that would move the hinge point closer to the 

tree and hence reduce the downslope resistive turning moment (Achim et al. 2003; 

Coutts etal. 1999; Stokes et al. 1997b). As structural root mass has been found to be 

greater on the lee side of wind exposed trees (Nicoll and Ray 1996), we might expect 

to find more root mass on the upslope side of exposed trees on slopes. Therefore, 

adaptations of the root system in response to wind could explain the higher resistance 

to upslope overturning. However, the study described here examined the stability of 

trees on only one site, that was north facing and may therefore have been relatively 

sheltered. Future studies should examine trees grown on sloping sites that have more 

exposed aspects. 

The small decrease in critical turning moment calculated at the hinge point compared 

with the stem base results from differences in the length and angle of the lever arm 

induced by repositioning of the rotation point. Ideally, tree anchorage should be 

calculated at the position of the hinge, rather than at the stem base, because this most 
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accurately represents the moment resulting from soil and root resistance. However, 

when determining critical wind speeds it is important that turning moments are 

compared at a standard point, and turning moments calculated at the tree base (as in 

Figure 3-3) are most useful for comparison in models such as ForestGALES. 

In this study, Usnap was the same for trees pulled up- and downslope, but Uuproot 

upslope was greater than downslope. This result indicates that in storms where 

critical wind speeds are reached, more trees on this site may be snapped than 

overturned in an upslope wind, while more may be overturned than snapped in a 

downslope wind. However, an improved understanding of tree breakage and further 

modelling of the mechanics of tree stability on slopes are required to confirm these 

findings. 

The sensitivity analysis, presented here, used the GALES method (Gardiner et al. 

2000) to reveal the relative importance of each input parameter that is affected by 

slope. The smallest effect on critical wind speed was caused by changes in stem 

deflection at the time of maximum load. This indicates that there was little effect of 

rotating the stand on the sloping site to be horizontal for the purpose of calculating 

critical wind speed. Equally, the simple estimation of crown area, using a diamond 

shape, appeared to be adequate, as a 20% change in crown area resulted in a change 

of <3% in critical wind speed. Of the remaining parameters, slope and stand density 

were relatively important in the calculation, but should be measurable with a high 

level of precision. The other remaining parameter, G, the gust factor, made the most 

important contribution to the calculation, with a change of up to 11% in critical wind 

speed resulting from a 20% change in G. As the calculation assumed G to be the 

same on a slope as on horizontal terrain, the sensitivity analysis indicates that 

measurement or modelling of G on complex terrain should have the highest priority 

in future tree stability research. 

The findings of this study also have implications for soil conservation and for the 

prediction of soil loss from forest sites, during and following storm events. In some 

forest areas, the greatest loss of soil from forest sites is reported to result from root- 
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plate overturning during windthrow (Schaetzl 1986; Schaetzl et al. 1990). On this 

experimental site, average root-soil plate volume was calculated to be 1.44 m 3 . The 

average calculated root volume of trees on this site was 0.11 m 3  (see Chapter 4), that 

is 7.6% of the total root-soil plate volume, leaving 1.33 m 3  soil per root-soil plate. 

Therefore, the potential volume of soil displaced on this sloping site with 1415 stems 

ha' if all trees were overturned is in the order of 1882 m 3  ha'. This is the maximum 

volume of soil that could be displaced downhill from root-soil plates if all trees were 

uprooted downslope during a storm, and if the slope was steep enough for none of 

the soil to fall back into the craters. However, the volume of soil lost from the site 

may be expected to be greater if the initial disturbance was to lead to further erosion 

or slope instability, as described by Swanston (1974). The average soil dry bulk 

density for this site was 950 kg m 3, so soil displaced from the root-soil plates would 

be in the order of 1800 tonnes ha'. This compares to a 0.2 tonnes ha' increase in soil 

loss reported from sloping forest sites in the year following clear felling and an 

increase of between 0.03 and 1.3 tonnes ha during site cultivation (Carling et al., 

2001). Therefore, a catastrophic windthrow event on a steep slope theoretically has 

the potential to initiate soil loss at a rate in the order of 1000 times greater than 

harvesting and site cultivation combined. 

Displacement of soil as root-soil plates overturn will have some benefits for 

subsequent regeneration and growth of stands, in that the inversion of plates and 

mixing of soil (Schaetzl 1986) can provide nutritional benefits to trees planted or 

grown from seed on the site (Clinton and Baker 2000; Ruel and Pineau 2002). 

Overturning of root-soil plates can also contribute to accumulation of carbon in 

mineral soil horizons (Kramer et al. 2004). However soil conservation is a vital part 

of sustainable forestry practice (Carling et al. 2001), and the loss of large quantities 

of soil from forest stands on sloping terrain, with related damage to the ecology of 

water courses (Nisbet 2001; Stott and Mount 2004), should be avoided if at all 

possible (Forestry Commission 1993). The potential for increased soil erosion 

associated with extensive windthrow indicates that less risk of overturning should be 

tolerated on steeply sloping terrain, which in turn has implications for the structure of 

forests that should be maintained in such areas. 
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4. Development of the structural root systems of trees 

on horizontal and sloping terrain 

Abstract 

The coarse root systems of twenty-four Sitka spruce (Picea sitchensis Bong (Cam)) 

trees, from a 40-year-old plantation in west Scotland, were extracted, digitised in 

three dimensions, and root topology was recorded. Roots were from trees grown on a 

steep (Ca. 30°) north-facing slope, or from an adjacent horizontal area. The prevailing 

wind was across the slope and trees were growing on a gleyed mineral soil on both 

the sloping and horizontal parts of the site. 

Analysis of below-ground parts of the trees in comparison with those above-ground 

revealed a positive linear relationship between coarse root volume and stem volume. 

Most non-directional characteristics of root architecture were similar between trees 

on the slope and flat terrain. Allocation of root mass around trees was examined in 

relation to the slope and the prevailing wind direction. Trees on the horizontal area 

had more root mass in leeward sectors than other sectors, but trees on the slopes had 

more root mass in the windward sectors than other sectors. Centres of mass of the 

root systems from the horizontal part of the site were not significantly clustered in 

any direction, but root systems of trees on the slope had centres of mass significantly 

clustered across the slope in the windward direction. For trees on the slope, the mean 

direction of the largest sector without structural roots was 4° from north, i.e. 

downslope. The results are discussed in relation to soil characteristics and the 

biomechanical requirements of trees on slopes. 

Introduction 

The architectural pattern of plant root systems is a product of the number of roots, 

their position of origin, initial growth direction, deviation in direction, branching 

61 



pattern and turnover (Coutts et al. 1999). The form of woody structural root systems 

of trees and shrubs results from a pattern of secondary thickening superimposed on 

this framework. Despite genetic variation in architecture and allocation of biomass 

within tree root systems (Nicoll et al. 1995; Parr and Cameron 2004), the restrictions 

imposed on development by features of the soil environment appear to be a stronger 

determinant of root form (Drexhage and Gruber 1998; Gruber and Nick 1999; Stokes 

and Mattheck 1996; Wagg 1967). For example, roots of most species are capable of 

growing to several metres depth where the soil is easily penetrable, and is well 

aerated. However, root depth is commonly restricted by soil constraints such as: high 

bulk density (Moffat et al. 1998); indurations or restrictions such as iron-pans 

(Coutts 1989); limited water availability or nutrient supply; a water-table or bed-rock 

close below the soil surface (Armstrong et al. 1976); or a combination of these 

(McMinn 1963; Sainju and Good 1993). Similarly, root system symmetry is strongly 

influenced by factors such as uneven nutrition (Coutts 1987; Coutts and Philipson 

1976) or water supply (Coutts et al. 1999; Coutts and Philipson 1987), and the 

flexing of the roots during wind action on the tree (Nicoll and Ray 1996; Stokes et al. 

1995a; Stokes etal. 1997b). 

Another aspect of the soil environment that must influence the development of root 

architecture is the topography of the soil surface. The largest proportion of tree root 

mass is commonly found within a few centimetres of the soil surface, regardless of 

whether the tree is on horizontal or sloping terrain (Coutts 1989). Surface roots 

develop from lateral roots that grow plagiogravitropically, i.e. they maintain their 

growth direction at an angle relative to gravity (Rufelt 1965). Some surface roots 

have been shown to be inherently negatively gravitropic (Coutts and Nicoll 1991), 

allowing them to grow upwards and then track below an undulating surface. As they 

grow upwards and approach the surface they are deflected downwards or parallel to 

the surface by changing soil environmental conditions such as reduced moisture 

content and increasing light (Coutts and Nicoll 1993). A balance between upward 

growth and downward deflection appears to keep roots at an optimum depth below 

the soil surface for growth, and prevents them from emerging into the atmosphere. 

As surface roots commonly experience conditions more suitable for growth in terms 
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of aeration, nutrition and soil density, they develop into the largest roots within a 

structural root system (Fayle 1968). Despite a developing understanding of the 

physiological processes involved in development of tree roots on slopes, 

comparisons of root architecture between trees on sloping and horizontal terrain are 

limited (McMinn 1963), and the few root architecture studies of trees on slopes have 

provided inconsistent results in terms of asymmetry in relation to slope, (Di Iorio et 

al. 2005; Marler and Discekici 1997). Data on root architecture on sloping terrain are 

required to allow modelling of the contribution of soil holding by roots to slope 

stability (Ekanayake et al. 1997; Sakals and Sidle 2004; Watson et al. 1997; Zhou et 

al. 1997) and to develop models of tree stability on slopes (Achim etal. 2003; Nicoll 

etal. 2005). 

The hypothesis tested in this chapter is that trees grown on steep slopes show greater 

root architecture asymmetry than trees grown on horizontal terrain. Coarse root 

architecture is compared between trees described in Chapter 3, i.e. trees grown on a 

steep slope and on an adjacent horizontal area, on a uniform soil in a plantation of 

Sitka spruce (Picea sitchensis (Bong.) Can.). The site had a prevailing wind across 

the slope, which allowed a comparison of the effects of slope and wind action on tree 

root system development. 

Methods 

Sample and site details 

Sitka spruce root systems were removed from a mature plantation on a steep slope 

(26°-33°), and from a horizontal area at the bottom of the slope. The site was in 

Leanachan Forest, west Scotland (56° 51.95' N, 4° 58.40' W). The aspect of the 

slope was due North. Trees were planted on the site, without cultivation, in 1962. At 

the time of the investigation in November 2001, the mean tree height was 22.3 m, 

and mean diameter at breast height (DBH) was 23.4 cm. The final average spacing of 
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trees was 2.66 m, with 1415 stems ha' in plan view, which equated to 2.86 in 

spacing and 1225 stems ha-1 on the slope surface. 

Soil characteristics 

The soil on both the slope and the horizontal areas was a gleyed mineral soil, defined 

using the Forestry Commission soil classification (Kennedy 2002) as a surface-water 

gley. The soil had a sequence from an Ah horizon with abundant animal activity to a 

B horizon that was underlain by a stony layer at the transition to the C horizon (van 

Beek 2004). The stony layer formed a barrier to root penetration and large roots were 

observed to be deflected by it. The B and C-horizons were gleyed, indicating the 

occasional presence of a water-table. The soil structure became more massive with 

increasing depth, and fewer pores were found between and in the soil peds. Stoniness 

and stone size increased with depth. The topsoil was finer textured than deeper soil 

and contained the largest amount of clay and silt. The clay content decreased with 

depth, whilst the relative proportions of silt and sand remained the same throughout. 

The dry bulk density of soil increased with depth from 540 kg m 3  in the A horizon to 

1270 kg m 3  in the C horizon (Table 4-1). The stones formed a soil fabric that was 

locally filled with finer material, and there were many interstitial pores. Total 

porosity in the A horizon was 69% and close to 80% in the B and C horizons. Near 

the surface, the macro-pores were more uniform in size but included many that had 

originated as root conduits and animal burrows. Consequently, the upper soil layers 

had a high saturated hydraulic conductivity, in the order of several metres per day. 

Infiltrated water would be expected to cause waterlogging in the soil horizons above 

the underlying bedrock of this site. The organic carbon content was 22.5% in the A 

horizon and <1% in the B and C horizons (Table 4-1). The A and B horizons had 

mean shear strengths of 11.52 kPa and 28.44 kPa respectively (Table 4-1). 
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Table 4-1. Soil characteristics for A, B and C soil horizons at the Leanachan site (from 
van Beek 2004). Horizon depth, dry bulk density (given as mass over total volume), soil 
porosity, volumetric shrinkage after drying, saturated hydraulic conductivity, 
Volumetric water content (VWC) at saturation, field capacity and wilting point, with 
drainable and effective pore space, undrained shear strength, and % organic carbon. 

Horizon A B C 

Depth below surface (cm) 3-13 13-34 34-90 

Dry bulk density (x 1000 kg m) 0.54 0.88 1.27 

Porosity (m3 m 3 ) 0.69 0.81 0.78 

Shrinkage (%) 33 0 0 

Saturated hydraulic conductivity (m day) 5.85 1.46 0.54 

VWC Saturation 0.69 0.81 0.78 

VWC Field capacity 0.54 0.52 0.51 

VWC Wilting point 0.22 0.16 0.09 

Drainable pore space 0.15 0.29 0.27 

Effective pore space 0.32 0.36 0.43 

Undrained shear strength (kPa) 11.52 28.44 - 

Organic Carbon % 22.5 <1 <1 

Wind climate 

Wind was monitored using a 3-cup switching cup anemometer and windvane 

(A100R and W200G, Vector Instruments, Rhyl, North Wales, UK) mounted on the 

top of a 10 m guyed mast, between 31 October 1988 and 24 June 1999. The mast was 

located 1 km north from the experiment site (56° 52' 28" N, 4° 59' 02" W) at a 

similar altitude on moorland that was clear of trees. The anemometer gave 1 count 

for a passage of 0.8 m of air. The threshold of the anemometer was 0.2 m s '  with a 

maximum speed of >75 m s -1  and an accuracy of 1% between 10-55 m s'. The 

wmdvane had a resolution of 22.5° ±3° with a threshold of 0.3 m s - 1 . Output from the 

anemometer and windvane were logged every 8 seconds and stored every 30 minutes 
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in a datalogger (Holtech Associates, County Durham, UK) as frequency 

distributions. 

Tree uprooting 

Three dominant, three co-dominant and three sub-dominant trees were mechanically 

overturned on the slope, in each of three directions, upslope, downslope and across-

slope, i.e. nine trees per direction. On the horizontal part of the site, nine trees were 

overturned; three dominant, three co-dominant, and three sub-dominant, in random 

directions. These trees were all overturned as part of the tree stability experiment, 

described in Chapter 3 and Nicoll et al. (2005). The slope angle was measured 

around each selected tree, and a numbered label was fixed to the base the tree on the 

upslope side, before overturning by pulling at half tree height using a chainsaw-

powered winch (Habegger, Thun, Switzerland). After uprooting the tree, stem 

diameters were measured at 1 m intervals up the stem from the base using measuring 

callipers with 1 mm resolution. A 1 m central section of the stem was cut and 

removed, and diameters at each end were measured before weighing for calculation 

of green stem density. All study trees were uprooted on this site during November 

2001. Soil was removed from roots using hand picks, to leave the coarse root system. 

Root systems were extracted from the site using a tractor before returning them to the 

laboratory for architectural analysis. 

Root architecture measurements 

Time constraints prevented architectural analysis of all root systems, so a sub-sample 

of 24 root systems was examined. These were selected randomly from trees from 

each pull direction on the slope, and from horizontal treatment trees, leaving similar 

numbers of root systems from each of these treatments. 

Root systems were cleaned on return to the laboratory, inverted for measurement and 

levelled to make the stem point vertically downward. Coarse root architecture was 
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digitised using a Fastrack 3-D digitiser with a LongRanger transmitter (Poihemus 

Inc, Colchester, VT, USA) (Sinoquet and Rivet 1997). The 3D digitiser generates 

near-field, low-frequency, magnetic field vectors, from three orthogonal coils in the 

transmitter and detects the field vectors with a small triad of electromagnetic receiver 

coils in a hand held stylus. The signals are input to a mathematical algorithm that 

computes the receiver position (x, y, z co-ordinates) and orientation relative to the 

transmitter. The LongRanger sphere was placed within 3 in of the root system with 

the X+ arrow pointing towards the root system. Electromagnetic sources and metallic 

objects were removed from the work area, as they could have interfered with the 

electromagnetic field from the 3-D digitiser. The root system was positioned so that 

the reference direction marked on the root system pointed towards the sphere. The 

reference direction was the same for all trees in the experiment. Care was taken to 

avoid moving the sphere during digitising, but when it was necessary to move it, 

such as for storage at night, the sphere was replaced afterwards in exactly the same 

position and orientation. This position was checked by digitising the same reference 

points before and after storage. Data from the digitizer and root topology were 

logged using Diplami software (Sinoquet et al. 1997). Points were digitised and 

diameters recorded on roots until their diameter tapered down to 5 mm and after that 

only the end point of the root was digitised. Roots greater than 5 mm diameter are 

defined, for the purpose of this investigation, as 'coarse roots'. A measurement was 

taken approximately every 20 cm along each root when the root was straight and 

every 2 cm when it deviated. By digitising points on the root surface with the 

digitizer stylus pointing towards the root centre and inputing the root diameter 

(measured on the vertical and horizontal axes) at this point, the software calculated 

the x, y, z co-ordinates of the root central axis. The topological order of each root 

was recorded using tree graph coding (Godin 2000), modified for root topology as 

described by Danjon et al. (2005; 1999b), with the system updating the order for 

each ramification. 
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Root architecture analysis 

Data were transformed into 'mtg' files as required by AmapMod software (CIRAD, 

Montpellier, France). Amapmod routines were written and run to analyse 

characteristics of root architecture, and root volume, depth, extension, length and 

direction were extracted from the data using these routines. Total volume of the 

coarse root system was calculated assuming that roots were oval in cross sectional 

shape, and included the stump volume. Total depth of the system was calculated as 

being the maximum depth measured perpendicular to the soil surface. Maximum 

radial extension was taken to be the mean distance from the stump centre to the ends 

of extracted roots. The mean number of order lateral roots, and order lateral 

roots with diameter >10 cm, were extracted from the data to indicate the number of 

structural roots around trees in each treatment. Directional root deviation was 

calculated for each root as being the change in root azimuth angle between the origin 

and the end point. The size and azimuth (degrees) of the largest sector of the root 

system without 1st  order lateral roots was calculated to give an indication of 

asymmetry of the structural root system. The total length of measured order lateral 

roots and the total length of all measured roots including ramifications were 

calculated. The sum of 1St  order lateral root mean cross sectional areas (CSAs) was 

calculated, assuming cross sectional ovality, as the sum of length x CSA for all root 

sections divided by total root length. The total surface area of all measured roots and 

ramifications was calculated for each tree to give an indication of the area of 

interface between coarse roots and soil. 

Statistical analysis 

For comparisons of non-directional root architectural characteristics, trees from all 

pull directions on the slope were combined into a single slope treatment and 

compared with trees from the horizontal treatment. Means were compared using a 

Mann-Whitney test. For analysis of directional data, means were first compared 

between pull-direction treatments to examine if loss of roots during extraction had 
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affected the balance of root mass. Data from all treatments on slopes were then 

combined for comparison with horizontal treatment trees. 

Directional data were analysed using 'Oriana' software (KCS, Wales, UK), 

following the circular statistical techniques described by Mardia and Jupp (2000). 

The Watson-Williams non-parametric F-test was used to compare azimuths of centre 

of mass between pairs of treatments to determine if their mean angles differed 

significantly. This was applied to each combination of pairs of the groups of trees 

pulled in each direction, upslope, downslope and across-slope, and trees on the 

horizontal site, to investigate if loss of roots during the extraction process had 

influenced the balance of the root system. The resulting F statistic is equivalent to 

Fisher's variance ratio statistic, commonly used in linear statistics. Means were 

considered to be significantly different when the p-value was less than 0.05. The test 

was then used to compare the direction of the centre of mass and the centre of the 

largest sector without order 'structural' roots between trees from the slope and 

trees from the horizontal part of the site. The Rayleigh's Uniformity Test was used to 

calculate the probability that azimuths were distributed uniformly. A probability less 

than 0.05 was taken to indicate that data were not distributed uniformly, i.e. there 

was evidence of a preferred azimuth. Rao's Spacing Test was used to test the null 

hypothesis that the azimuths were uniformly distributed. This test is appropriate if 

directional data are bimodal. The null hypothesis of uniformity was again rejected if 

p < 0.05. The V-test (Mardia and Jupp, 2000) was used to test if the distribution was 

non-uniform in specified mean directions. In this case, the azimuth of centre of mass 

was tested against the westerly wind direction for the site and the largest sector 

without roots was tested against north. 
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Figure 4-1. Wind at Leanachan forest recorded between October 1988 and June 1999. 
a. Wind rose of frequency of mean hourly wind directions at Leanachan forest. The 
solid line from the centre indicates the mean wind direction at 255 1  from north. b. 
Scatter plot of mean hourly wind speed against direction, showing peaks of wind speed 
from east, south and west. The density of the plot obscures many hidden points, 
especially under the scatter between 220 and 280°. 
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Figure 4-2. Example plot from Amapmod of a root system from the Leanachan site. 
Side view (above) and plan view (below). Grid squares have 12-cm sides. 
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Table 4-2. Mean root architecture characteristics of woody roots of trees on the 
horizontal and sloping sites, based on analysis using Amapmod, 11 (horizontal) = 79  fl (slope) = 
17. The p-value for comparison of means is based on a Mann-Whitney test. 

Characteristic Horizontal 
treatment 

Mean 

Slope 
treatment 

Mean -value 

Total volume of all roots and stump (m) 0.120 0.105 0.62 

Root system depth (m) 1.04 1.14 0.42 

Maximum radial extension (m) 2.04 1.93 1.00 

Number of 1st order lateral roots 7.9 10.1 0.05 

Number of 1st order lateral roots with diameter> 5.1 4.9 0.85 
10cm 

Mean root deviation (°) 24 25 0.62 

Largest sector without roots (°) 134 163 0.49 

Total length of 1st order lateral roots (cm) 995 1330 0.09 

Total length of 1st order lateral roots and 6035 6938 0.49 

ramifications (cm) 

Sum of mean cross sectional area of 1st order lateral 617 509 0.42 

roots (cm2) 

Total surface area of 1st order lateral roots and 4.59 5.02 0.26 

ramifications (m) 

Total volume of 1st order lateral roots and 94362 90656 0.76 

ramifications (Cm) 
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Table 4-3. Circular statistical analysis of the azimuth of centre of mass and of the 
largest sector without l order lateral roots. 

Variable across 

Centre of mass 

down 	up horizontal slope 

Largest sector 
without roots 

horizontal 	slope 

Number of Observations 6 5 6 7 17 7 17 

Mean Azimuth (ii) (°) 315 277 292 115 294 10.5 3.8 

Median (°) 309 273 279 100 288 1.5 358 

Standard Error of Mean (°) 26 13 20 37 10 25.4 15 

Rayleigh Uniformity Test 2.93 4.32 3.96 1.45 10.29 2.39 5.89 

(Z) 

Rayleigh Uniformity Test <0.05 <0.01 <0.05 n.s <0.001 n.s <0.01 

(P) 

Rao's Spacing Test (U) 177.7 223.9 206.8 129.8 206.3 140.6 182.6 

Rao's Spacing Test (P) n.s <0.01 <0.01 n.s <0.01 n.s <0.01 

V Test (V; expected mean 0.49 0.92 0.75 - 0.71 - 0.59 

270°) 

V Test (P) <0.05 <0.001 <0.01 - <0.001 - <0.001 

Results 

Analysis of approximately 10 years wind data from the anemometer and wind vane 

to the north of the experimental site showed the average wind direction to be 255° 

from north (Figure 4-1). The mean wind speed was 4.14 in s 1 . As the slope of the 

experimental site ran almost exactly east-west, the prevailing wind may be expected 

to be diverted to flow across the slope and therefore to be from due west, although 

this was not confirmed. Although most wind was from the west, there were also 

strong winds from other directions although at much lower frequencies, and mean 

hourly wind speeds greater than 15 in s' were recorded from west, south and east 

(Figure 4-1b). 
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An example Amapmod plot (Figure 4-2) illustrates typical coarse root architecture on 

this site. Comparisons of root architecture characteristics (Table 4-2) indicate that 

root systems were largely similar between slope and horizontal sites. Root volume, 

including the stump, varied between 0.05 m 3  and 0.25 m3 . The effect of the treatment 

was non-significant, and slope and horizontal trees were therefore combined for the 

final regression. There was a strong positive linear relationship (Figure 4-3) between 

root volume and stem volume (R 2  = 0.74) for both treatments combined. The average 

ratio of root volume:stem volume was approximately 0.35. Root system depth was 

similar between treatments with slightly greater average depth on the slope (1 .14 m) 

than on the horizontal (1.04 m). Maximum radial extension was close to 2 in for both 

treatments, but as most roots had broken before the tip, this reflected the amount of 

root retrieved from the site rather than actual root spread. The number of roots 

defined as 1st  order laterals was on average eight on trees from the horizontal part of 

the site and ten on trees from the slope. This difference was significant (p = 0.05). 

However, when only roots greater than 10 cm diameter were counted (as an 

indication of the number of major structural roots that support the tree), there were 

on average five on trees from both treatments. Roots had grown away from the stump 

with little deviation from a straight line, the mean deviation being 23.6° and 25.1° for 

horizontal and slope trees respectively (difference not significant). Root systems of 

slope treatment trees appeared to have slightly poorer radial symmetry, indicated by 

larger sectors without roots, than horizontal treatment trees, but the difference was 

not significant. Total lengths of all 1St  order roots, and of all roots including 

ramifications were similar between treatments. The total lengths of measured roots, 

the sum of CSA of 1St  order lateral roots, and the surface area (area of interface 

between root and soil) were also similar between treatments (Table 4-2). 

Root taper plotted as a decrease in coarse root volume with distance from the tree 

(Figure 4-4) was similar between slope and horizontal treatments. Root volume 

decreased exponentially with distance, with almost no root volume at a greater 

distance than 2 in from the trees. Root volume also decreased rapidly with depth 

(Figure 4-5) with almost no mass deeper than 1.26 in below the soil surface, although 

this may partly reflect the loss of smaller roots at the base of the root-soil plate 
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during root extraction. Roots originating close below the surface within the A 

horizon and the upper part of the B horizon tended to grow parallel to the surface. 

Roots that grew into or through the C horizon, either from the stump or from the 

surface laterals, tended to grow steeply or vertically downwards (see example in 

Figure 4-2). Very few roots were observed to penetrate into the stonier parts of the C 

horizon or the R horizon below it. This architecture resulted in 86% of root volume 

of slope trees being within the top 36 cm of the soil surface in the A and B horizons, 

13% being between 36 cm and 70 cm in the C horizon and 1% penetrating deeper 

than 70 cm into the stony R horizon. Similarly, trees grown on the horizontal part of 

the site had 81% of root volume within the top 36 cm of the soil (A and B horizons), 

18% between 36 cm and 70 cm (C horizon) and 1% deeper than 70 cm (R horizon). 

There was no significant difference between horizontal and slope treatment trees in 

root volume depth distribution. The decrease in volume appeared to coincide with the 

observed increase in soil bulk density, stoniness, and periodic waterlogging, with 

depth. 

Centres of mass of root systems of horizontal treatment trees (Figure 4-6) had 

randomly directed azimuths. Table 4-3 shows results from Rayleigh's Z test, Rao's 

spacing test and Kuiper's V test, for horizontal treatment trees, indicating that there 

was no evidence of any clustering of centre of mass directions. In contrast, these tests 

all gave significant p-values (<0.05) for trees on the slope (Table 4-3), indicating that 

centres of mass were significantly clustered. These results were not affected by the 

pulling direction. The V test was applied to compare the clustering direction with 

270°, the expected prevailing wind direction for the site. The highly significant 

results indicate that root centres of mass were significantly clustered in this direction. 

To investigate if the direction of root extraction had altered the centres of mass 

through root loss in the pull direction, the Watson-Williams F-test was used to 

compare azimuths of centres of mass between pairs of treatments (Table 4-4). All 

comparisons between pull directions on the slope were non-significant, indicating 

that roots extracted in the different directions retained a similar directional 

asymmetry. Comparisons of each slope treatment with the horizontal treatment gave 
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significant p-values of between 0.001 and 0.003, indicating different directions of 

asymmetry between horizontal treatment root systems and root systems from all pull 

directions on the slope. When the pull directions were again combined and all slope 

trees were compared against horizontal treatment trees, there was a very highly 

significant difference in direction of centre of root mass. Figure 4-7 shows the root 

volume distribution between 45° sectors relative to north, compared between slope 

and horizontal treatment trees. The sector with the greatest root volume was 225-

270° in the slope treatment and 45-90° in the horizontal treatment. Overall, more root 

volume was in sectors toward the westerly prevailing wind direction on the slope and 

away from the prevailing wind on the horizontal, compared to other sectors. 

However, on the horizontal, root systems also had a relatively large volume in a 

sector directly towards the prevailing wind (Figure 4-7). 

The largest sectors of the root systems without 2 nd  order roots (Table 4-3) were not 

significantly clustered in any direction for trees grown on the horizontal part of the 

site. For trees on the slope, however, the directions of the largest sector without roots 

was significantly clustered. The mean size of this sector was 163° (standard error 

27°) and the mean azimuth was 3.8° from north (standard error 15°). The V-Test 

(Mardia and Jupp, 2000) was used to test the null hypothesis of uniformity against 

the alternative hypothesis that the distribution was non-uniform with a mean 

direction of 0° (north and downslope). The p-value for this test was <0.001, 

indicating a highly significant downslope clustering of sectors without roots. 
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Table 44. Watson-Williams F-tests for azimuths of centre of mass compared between 
pairs of treatments. The 'all slope' treatment is across, down and up combined and was 
only compared against the 'horizontal' treatment. F scores are shown in the lower half 
of the matrix and probabilities are shown in the upper half. P-values less than 0.05 are 
considered to indicate a significant difference between treatments in azimuth of centre 
of mass. 

treatment across down up horizontal 	all slope 

across 0.157 0.402 0.003 

down 2.39 0.475 0.002 

UP 0.767 0.556 0.001 

horizontal 14.541 17.563 17.752 <0.001 

all slope ------ ----- ----- 22.137 

Figure 4-3. Coarse root volume against stem volume for trees from slope and horizontal 
treatments. The regression line y= 0.354x - 0.014 is for both treatments combined 
(n=24, R2  =0.74). 

0.30 

• 	trees on slope 
0 	trees on horizontal 	 0 0.25 

E 0.20 

E 
0.15 

0 > 
0 

0.10 

0.05 14 

M  I is M 	

0.2 	 0.4 	 0.6 	 0.8 

Stem volume (m) 

77 



Figure 44. Distribution of coarse root volume with distance from the tree, shown for 
horizontal and slope treatments. The bars are means, with standard errors above and 
below the means. 
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Figure 4-5. Distribution of coarse root volume with depth below the soil surface, shown 
for horizontal and slope treatments. The bars are means, with standard errors above 
and below the means. 
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Figure 4-6. Vectors to root system centre of mass for each tree relative to north 
(downslope = 00). A mean direction (with 95% confidence intervals) is shown for the 
slope treatment, which has significant clustering of centres of mass. 
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Figure 4-7. Distribution of root volume in 450  sectors from north (mean and standard 
errors above and below the means) for trees on the slope and horizontal treatments. 
The circular insert on each graph illustrates the distribution relative to north. Upsiope 
on this site was 1800,  and the prevailing wind was from 255°. 
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Discussion 

The few previous studies of tree root development on steep slopes have provided 

inconsistent results. McMinn (1963) examined the characteristics of roots of twenty-

five year-old trees on level terrain, and ten- and forty-year-old Douglas fir 

(Pseudotsuga menziesii (Mirbel) Franco) trees grown on 25° to 35° slopes. On the 

horizontal terrain, lateral roots extended in approximately equal distances around 

trees. On sloping ground, downslope roots descended into the soil and did not extend 

far from the base of the tree, but roots growing upslope or across the slope followed 

under the soil surface for considerably greater distances. Marler and Discekici (1997) 

found that around 70% of roots of papaya (Canica papaya L.) plants growing on a 

30° hill slope had formed on the downslope side of the plants by 17 weeks after 

planting. Di Iorio (2005) found a tendency for roots of Quercus pubescens Willd. to 

cluster predominantly in the upsiope direction on 14 to 34° slopes. Watson et al. 

(1995) examined root development of kãnuka (Kunzia ericoides (A. Rich.) J. 

Thompson) and radiata pine (Pinus radiata D. Don.) trees grown on 15° to 32° slopes 

in New Zealand. Lateral roots of 6-, 16-, and 32-year-old kanuka trees were 

distributed unevenly around the stumps, growing predominantly up and across-slope. 

In the 16-year-old trees, this asymmetry was observed to relate to increased 

branching and taper of roots on the downslope side. The lateral roots of radiata pine 

on slopes were also distributed asymmetrically around the stump. The roots of 8-

year-old trees were predominantly across and upsiope, while 16- and 25-year-old 

trees on less steep slopes had more lateral root growth in the across and downslope 

direction. Sundström and Keane (1999) examined the symmetry of root systems of 

Douglas fir grown for 10 years on a shallow slope (7°- 12 0) with easterly to north-

easterly aspect where the prevailing wind was from the south-west. They found least 

root mass downslope, and root growth concentrated across the slope, parallel with 

the contour. 

Previous studies of Sitka spruce also showed no consistent effect of a shallow (<15°) 

slope on coarse root architecture, with concentrations of root mass in different 

investigations being either on the upslope (Nicoll and Ray 1996) or downslope side 

(Nicoll etal. 1995) of trees. On a steeper (ca. 20°) slope, Quine and Burnand (199 1) 
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reported that the root system centres of mass were strongly clustered upsiope. 

However, wind direction may be a more important factor in root system asymmetry 

of Sitka spruce. In both the Nicoll et al. (1995) and Nicoll and Ray (1996) studies, 

more structural root mass appeared to be clustered on the down-wind side of the tree 

relative to the prevailing wind. Stokes et al. (1995a, 1995b) found responses in the 

form of uneven radial development of lateral roots in seedlings of European larch 

(Larix decidua P. Mill.) and Sitka spruce that were exposed to continuous wind in a 

wind tunnel. In another study, Stokes et al. (1997b) described similar development of 

roots of young trees that were subjected to mechanical flexing as they grew. In both 

of these studies, roots thickened more on the sides of the tree in the direction of 

flexing and showed an increase in vertical compared to horizontal diameter. 

Mickovski and Ennos (2002) described a similar development of Pinus sylvestris L. 

seedling roots in response to unidirectional flexing of the stem. In the present study, 

trees were grown on a steep (ca. 300)  slope on a site with the prevailing wind across-

slope. Roots had their centres of coarse root mass and largest amounts of mass 

clustered towards the upwind direction, with sectors with most root mass and length 

in the same direction. The direction of clustering of centres of mass was also slightly 

downslope, although the largest sector without structural roots indicates that 

structural roots seldom grew directly downhill. Roots grown on the adjacent 

horizontal part of the site on the same soil had no significant clustering in any 

direction, but overall they had more root mass in sectors towards and away from the 

prevailing wind. The largest amount of root mass and length was in a downwind 

sector. Therefore, for trees grown on the horizontal part of the site, these results 

appear to conform with previous studies, but on the steep slope the results were 

surprising in that roots concentrated in the opposite direction, towards the prevailing 

wind. The possibility of an interaction between the effects of slope and wind should 

be investigated in further experiments. Interestingly, a re-examination of the data 

presented by Quine and Burnand (1991) indicates that the root centres of mass were 

on average obliquely upslope, towards the west. As the prevailing wind where Quine 

and Burnand (199 1) conducted their study was from the west, their results appear to 

correspond with the finding of the present study. 
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Why trees would put a larger allocation of assimilates into windward roots on slopes 

but leeward roots on the horizontal remains to be explained, but the mechanical 

characteristics of trees on steep slopes will undoubtedly be different to those on the 

horizontal. A possible cause of the difference would be the motion of the above-

ground part of the tree in the wind. Tree crowns do not flex back and forth in a 

straight line in the wind, but have a more complex motion that on average tends to 

resemble an ellipse (Gardiner 1995; Mayer 1987). The shape of this movement will 

be influenced by the root architecture as well as wind direction, and the interaction 

with crowns of other trees. However, the development of root secondary thickening 

may in turn be influenced by the pattern of motion. For a tree to remain upright on a 

slope, the mechanical requirements of roots will be different to those on the 

horizontal, and roots on the upslope side of a tree may be expected to act under 

tension more often than those downslope, while the roots downslope may commonly 

be under compression. The mechanical function of these roots will be further 

complicated by swaying of the tree that will alternately load roots under tension and 

then under compression (Hintikka 1972; Stokes and Mattheck 1996). Detailed 

modelling of the anchorage mechanics of trees on sloping and horizontal terrain may 

help to explain these results. 

Of course, the possibility remains that clustering of root centres of mass is related to 

factors other than wind on the site. Root system development may be expected to be 

influenced by variation in planting method, however Coutts et al. (1990) found that 

in Sitka spruce the original transplant root system is replaced rapidly by a new 

adventitious system and therefore initial root distortions tend not to be maintained. 

Henderson et al. (1983) suggested that the structural root system of Sitka spruce is 

inherently regular, but that heterogeneity of the soil environment causes the observed 

variability in the final pattern. Factors that may be expected to have an effect on the 

symmetry of a tree root system include; incidence of light on the crown (Coutts et al. 

1999), unevenness of nutrition and soil water (Coutts 1983a; Mou et al. 1997), site 

cultivation (Coutts et al. 1990; Quine and Burnand 1991; Quine et al. 1991; Savill 

1976), and variation in soil physical properties (Fayle 1980; McMichael and 

Quisenberry 1993). Trees on this site were planted without cultivation, and there was 
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no evidence of pronounced unevenness of any of the other factors around the study 

trees, except for light on the crown. Uneven exposure to light of the crowns of edge 

trees may be implicated in the development of large structural roots (Cucchi et al. 

2004) that grow outward from the forest stand. Edge trees of conifer plantations have 

pronounced crown asymmetry with branches from ground level to tree top on one 

side and branches only near the tree top on the other, and this imbalance would be 

expected to result in an unevenness of assimilate supply to the root system. However, 

as the stand used for the present study was dense, with crowns only slightly more 

exposed to light from the north, and with similar amounts of foliage on all sides of 

the trees, unevenness of assimilate was not expected to be a factor in the observed 

development of root asymmetry. 

The direction of the largest sector without structural roots on root systems may be 

particularly important for tree anchorage and would be expected to indicate a 

direction of increased vulnerability to windthrow (Coutts et al. 1999). The combined 

reduction in stiffness of roots at the hinge point and reduction of the length of the 

lever arm would be expected to result in a substantial reduction in anchorage if a tree 

is overturned in this direction (Coutts 1986). The highly significant clustering of 

azimuths of sectors without roots almost directly downhill in this investigation 

corresponds well with measurements of anchorage of the same trees reported 

previously (see Chapter 3). These trees were mechanically overturned in contrasting 

directions and were found to have significantly poorer resistance to overturning when 

they were overturned downslope than when overturned upslope. 

The pattern of root development in relation to depth corresponds with changes in soil 

characteristics. Soil bulk density and stoniness increased rapidly with depth on this 

site. The tendency of trees to produce large order lateral roots of structural 

importance near the surface, with 2nd  order 'sinker' roots emerging and growing 

downwards from them is similar to the architecture of a number of forest tree species 

studied on mineral soils. For example, Strong and La Roi (1983) found a similar 

pattern of root architecture of white spruce (Picea glauca (Moench) Voss), aspen 

(Populus tremuloides Michx), jack pine (Pinus banksiana Lamb.) and balsam fir 
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(Abies balsamea (L.) Mills.) growing on mineral soil. This root form can be defined 

as a 'sinker system' (Drexhage and Gruber 1998). Although plant roots can exert 

maximum axial and radial growth pressures of around 500 Pa (Misra et al. 1986), 

allowing them to penetrate highly compacted soil, their growth rate decreases as 

compaction increases (Gruber and Nick 1999; Materechera et al. 1991). For 

example, root elongation rate of radiata pine (Pinus radiata D. Don) decreased 

exponentially as soil strength increased from 0 to 3.0 MPa (Zou et al. 2000). Day and 

Bassuk (1994) suggested that the approximate soil strength critical limit for root 

growth is 2.3 MPa, when measured by a penetrometer, above which there will only 

be some very restricted growth. Tree roots can also grow through rock fissures, and 

although this behaviour allows roots to exploit an additional source of water and 

nutrients and provide improved anchorage for the tree, growth rates in rock are very 

slow compared to roots growing in soil (Zwieniecki and Newton 1995). Therefore, 

the rapid decrease in root mass with depth on the site described here may be 

predicted from the increasing soil bulk density and stoniness. 

The tendency for 1St  order lateral roots to follow the A and B soil horizons also 

conforms to the known behaviour of tree roots in relation to changes in soil 

properties. Lateral roots of trees growing at a slightly downward angle can be 

deflected upwards to grow horizontally when they encounter a more compacted soil 

horizon (Wilson 1971). Similarly where lateral roots grow at an upward angle they 

can deflect downwards as they encounter changes such as a reduction in soil 

moisture near the surface (Coutts and Nicoll 1991; Coutts and Nicoll 1993), but then 

resume their upward growth. These mechanisms together can maintain lateral roots 

in the soil horizons close to the surface. Some second order roots that emerge as 

branches of surface laterals will be directed downward (Coutts 1989) and develop 

into sinker roots that grow almost vertically downwards into the deeper soil horizons. 

The increased branching observed on these sinker roots with depth may result from 

increased stoniness and increased soil compaction in the deeper horizons (Deans 

1983; Materechera et al. 1991). Wilson and Horsely (1970) found that a reduction in 

the growth rate of root apices stimulates the production of lateral root branches. An 

additional factor limiting root depth under some trees on this site may have been 
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occasional waterlogging of the deeper soil horizons (Armstrong et al. 1976; Coutts 

and Nicoll 1990b). Root depth therefore appeared to be ultimately limited on this site 

by solid bedrock and in some parts of the site by periodic waterlogging in the C 

horizon. 

Root architecture of Sitka spruce has long been known to vary with soil type (Fraser 

and Gardiner 1967; Laing 1932; Yeatman 1955) but further studies of tree root 

architecture in relation to soil physical conditions will be required to improve models 

of below-ground carbon allocation (Hoffmann and Usoltsev 2001; Levy et al. 2004). 

The strong linear relationship found in the current study between stem volume and 

coarse root volume was similar to the relationships between stem diameter and root 

mass found in Norway spruce (Picea abies (L.) Karst.) and Douglas-fir by Drexhage 

and Cohn (200 1) and Thies and Cunningham (1996) respectively, and will be useful 

in prediction of below-ground biomass of Sitka spruce. However, the allocation of 

mass to roots growing in each soil horizon will have different impacts on long-term 

below-ground carbon storage. Root decomposition and carbon cycling below-ground 

varies with depth and soil aeration, and deeper roots will make a greater contribution 

to the accumulation of soil organic matter in mineral horizons (Kramer et al. 2004). 

The improved understanding of root architecture development in relation to terrain 

and climate provided by this experiment may also be used in models of soil holding 

and slope stability (Sakals and Sidle 2004; Wu et al. 1988), and for models of tree 

biomechanics and anchorage in relation to wind (Achim et al. 2003; Deans and Ford 

1983; Nicoll etal. 2005). 
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5. The effects of wind action on radial growth of tree 

stems and structural roots 

Abstract 

When forest stands are thinned, trees are exposed to increased light availability at the 

same time as increased wind movement, and are particularly vulnerable to 

windthrow during subsequent storms. The radial growth response of tree stems and 

structural roots to changes in wind action were examined in two experiments. 

In the first experiment, dendrochronological techniques were used to explore the 

relationships between wind loading on the tree and annual radial growth of the stem 

base and structural roots of 46-year-old Sitka spruce. Growth-ring chronologies 

constructed using measurements of annual growth ring widths from stem sections 

and from the largest structural roots, were compared to climate data (wind, 

temperature and rainfall) for the life of the trees. Separate chronologies were 

constructed from structural root growth-ring measurements from each quadrant 

around the trees relative to the prevailing wind direction, and at 0.5 m, 0.75 m, 1.0 m 

and 1.25 m horizontal distance from the tree centre. No significant correlations were 

found between detrended stem chronologies and wind speed. However, detrended 

chronologies based on root radial growth at 0.75 m from the tree centre on the lee-

side were strongly correlated with mean wind speeds in the previous autumn. 

Regression analysis revealed a positive relationship between root growth indices 

from this part of the structural root system and autumn wind speeds. 

In the second experiment, wind movement, light and photosynthate supply of 10-

year-old Sitka spruce trees were manipulated for 4 years before harvesting. The 

treatments applied were: 'Thinned' - Light and wind movement were increased by 

thinning to remove neighbouring trees; 'Thinned and Guyed' - Light availability was 

increased by thinning to remove neighbouring trees (as in the thinned treatment) and 

movement was decreased by guying the stem at half tree height; 'Pruned and 
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Girdled' - photosynthate supply was reduced by removing or girdling 50% of 

branches on each tree; and 'Control' - no treatment. Cross-sectional samples were 

removed from the stem at 0.1 m, 1.3 m, 3.0 m and 4.5 in above the base, and from 

the structural roots at 0.25 m, 0.5 in and 0.75 in horizontal distance from the stump 

centre. Growth rings were measured on these samples for an analysis of radial 

growth responses to the treatments. 

The response to the 'thinned' treatment was a small immediate radial growth 

increase below-ground followed by a much larger increase in the second year, and a 

growth decrease in the stem above 0.1 m in the first year, followed by a large growth 

increase in all parts of the stem in the second year. In the first year following 

application of the 'thinned and guyed' treatment, there was no response below-

ground, but there was a decrease in stem growth. In the second year, there was a 

large growth increase both above- and below-ground. The responses to the 'pruned 

and girdled' treatment was a large immediate growth reduction both above- and 

below-ground. The response to the 'thinned' treatment was greater than to the 

'thinned and guyed' treatment, in both the stems and structural roots. The response to 

the 'thinned' treatment was considerably greater in the structural roots than in the 

stems. Therefore, although trees responded immediately to a reduction in 

photosynthate supply, the response to increased photosynthate supply after stand 

thinning was most pronounced in the second year following treatment. Allocation 

appeared to be greatest to the parts of the tree that would have experienced the most 

mechanical stress. 

Introduction 

Schwendener (1874) and Mezger (1893) formulated a hypothesis that the cambium 

in the tree stem produces new wood in a way that equalises the mechanical stress on 

the outer surface - the 'uniform stress hypothesis' (see Chapter 1). Although this 

hypothesis still generates debate, for example see Morgan and Cannell (1994), a 

number of authors (reviewed by Telewski 1995) have described increased above-

ground cambial growth as a direct response to mechanical stress. Plant growth 
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responses to wind movement and other mechanical stress, termed 

'thigmomorphogenesis' (Jaffe 1973) were described in a series of studies by Jaffe 

(1980; 1984) and Telewski and Jaffe (1981; 1986a; 1986b; 1986c). These responses 

include reduced height growth, greater stem taper, and development of smaller 

branches. There is however less information on the growth of roots in response to 

mechanical stress. Roots move in the soil as a tree sways in the wind; for example, 

Hintikka (1972) described spruce roots in a clay soil lifting the surface by 13.6 mm 

for 3° of stem displacement, and by 3.1 mm for 1° of stem displacement. Rizzo and 

Harrington (1988) found that movement of surface lateral roots was significantly and 

positively correlated with wind speed, and with soil rootable depth. Conifers have 

been observed to allocate a larger proportion of total biomass below-ground when 

they experience increased wind loading (Fritzsche 1933; Nielsen and Mackenthun 

1991), and Sitka spruce (Picea sitchensis (Bong.) Can.) growing on exposed sites 

with shallow soils have been reported to allocate a larger proportion of root biomass 

to the lee-side relative to the prevailing wind direction (Nicoll et al. 1995; Nicoll and 

Ray 1996). Ruth and Harris (1979) also described the largest supporting buttresses as 

being on the lee-side of western hemlock (Tsuga heterophylla (Raf.) Sarg.) and Sitka 

spruce trees. This development on gymnosperm species contrasts with observations 

that buttresses develop predominantly on the windward side of angiosperm tree 

species (Baker 1973; Grace 1977; Henwood 1973; Navez 1930). Seedlings and 

newly planted trees show similar behaviour with increased thickening of roots on 

both windward and leeward sides, i.e. the roots along the axis of flexing (Stokes et 

al. 1995a; Stokes etal. 1997a). 

Reduction of root secondary thickening has been induced in a number of experiments 

by preventing stem sway (Fayle 1968; Fayle 1976; Jacobs 1939; Jacobs 1954; 

Wilson 1975). Seedlings of Sitka spruce and European larch (Larix decidua (Mill.) 

grown in a wind tunnel responded to flexing with greater stem radial growth on the 

windward and leeward sides, compared to non-moving controls (Stokes et al. 

1995b). Two-year-old Sitka spruce trees that were flexed back and forward in a 

machine during the growing season increased the vertical, compared to horizontal, 

diameter of their lateral roots (Stokes et al. 1997b). These studies indicate that there 
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is a localised response to mechanical stress that results in a reallocation of assimilates 

between, along and around individual roots. What remains unclear is if tree 

responses, and in particular root responses, to wind action are related to general 

patterns of movement throughout the life of a tree, or if the tree responds 

proportionally in each year to varying levels of stress as it grows in a variable wind 

climate. 

Dendrochronology techniques have been used to analyse root growth in a number of 

previous studies (Fayle 1976; Jacoby et al. 1995; Krause and Eckstein 1993; 

Schulman 1945; Urban el al. 1994). However, these techniques have not previously 

been used to correlate root secondary growth with measured wind intensity from 

corresponding years. Measurement of root growth rings is sometimes reported to be 

difficult due to the unevenness of growth around the root, and occasional missing 

rings (for example, Schulman 1945). However, in sections removed from the root 

systems of 46-year-old Sitka spruce trees described by Nicoll and Ray (1996), 

growth was characteristically greatest on the upper side of structural roots, regardless 

of shape, with clear, wide, well differentiated growth rings that were suitable for 

measurement (see Figure 5-1). As the upward ('epinastic') thickening of spruce roots 

close to the stem is believed to be partly an adaptive response to wind movement 

(Nicoll and Ray 1996), this part of the root is particularly suitable for an 

investigation of secondary growth responses to changes in wind movement. 

If trees exposed to increasing mechanical stress show an exponentially declining 

growth response, as in the dose-response curve for Ulmus americana L. described by 

Telewski and Pruyn (1998), trees already exposed to considerable wind movement 

on an exposed site may show little response to the increased movement associated 

with stand thinning. Thinning normally results in a large observable above-ground 

growth response, due to increased light availability and photosynthetic activity. 

However, the tree must quickly stabilise itself against the greater vulnerability to 

overturning from increased exposure and above-ground mass. Without faster below-

ground growth at this time, the tree would remain vulnerable to windthrow, and it is 

therefore important that its response mechanism is not already saturated. Previous 
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studies of above- and below-ground responses to stand thinning have not included 

control treatments that increase light without increasing wind action. Therefore, to 

understand tree responses to thinning in terms of C allocation and wind stability, it 

will be important to characterise dose response curves for conifer species, and to 

separate tree responses to increased light from the responses to increased mechanical 

stress. 

Aims and hypotheses 

This chapter describes two experiments that test the hypotheses that structural roots 

thicken by an amount that is related to the wind movement experienced in any year, 

and that trees can respond to sudden, large changes in their movement, such as after 

thinning, to stabilise themselves by adapting their root and stem growth. The species 

investigated in both experiments was Sitka spruce. The first experiment was a 

dendrochronological analysis of structural root growth rings of 46-year-old trees in 

comparison with wind records for the corresponding years. The second experiment 

examined secondary thickening of stems and structural roots of ten-year-old trees, in 

response to treatments in which wind movement, and assimilate supply, were 

modified. 

Methods 

Experiment 1 

Site details 

Structural root cross-sectional samples were analysed that had been extracted as part 

of an earlier investigation (Forest Research experiment Kershope 49) (Nicoll and 

Ray 1996; Ray and Nicoll 1998). Roots were from Sitka spruce trees selected from a 

24-ha upland plantation, planted in 1948, at Crookbum hill in Kershope Forest, 

Cumbria, North England (200-230 in altitude, south-east aspect; latitude 550  06', 
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longitude 2° 47', OS grid reference NY495790). The trees had been planted at 1.8 m 

spacing on manually spread turfs next to shallow furrows that were approximately 30 

cm deep and 3.6 m apart. Soils varied from surface-water gley, classified as 'stagno-

orthic gley' soil (Avery 1990) to peaty-gley 'humic stagno-orthic gley' soil (Avery 

1990), and were drained as part of a large drainage experiment (Forest Research 

experiment Kershope 10/65) described in detail by Pyatt et al. (1985). Drainage 

ditches were installed across the site at 10, 20 and 40 m spacing in 3.5-m wide racks 

that were cut through this part of the stand in 1966 and 1967 when trees were 

approximately 10 m tall. The site had a mean yearly rainfall of approximately 1300 

mm (Anon 1977). 

Table 5-1. Above and below-ground dimensions of trees from Expt. 1 at harvesting. 
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Mean 24.3 32.02 801.8 0.76 118.5 6.90 10.31 457.7 0.562 0.513 

Standard error 0.36 0.81 42.9 0.05 8.15 0.21 0.33 32.2 0.018 0.019 

Standard deviation 2.292 5.066 264.5 0.29 50.9 1.343 2.04 184.7 0.112 0.108 

Minimum 20.4 22.8 366.3 0.33 28.5 4.6 6.15 134.2 0.298 0.307 

Maximum 27.9 42.0 1365.8 1.38 298.5 11.1 15.1 950.9 0.796 0.720 

Experimental details 

Thirty-nine trees selected to have a range of potential root depths (based on 

underlying soil water-table depth) were felled leaving a 3 m high stump. These trees 

had a mean height of 24 m and mean stem diameter at 1.3 m ('DBH') of 0.32 m 

(other dimensions are given in Table 5-1). To overturn the trees, a nylon sling was 

attached to the tree stump, 2 m above the soil surface, and connected to the steel 

cable from a hydraulic winch on a tractor. All trees were pulled in a direction away 

from (perpendicular to) the plough furrow at a constant pull rate of approximately 2 

cm s.  Each tree was pulled over completely, and the stem was anchored to the 

ground to allow safe measurement of the root-soil plate. Complete details of the tree-

pulling method were described by Ray and Nicoll (1998) and the present study is a 
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re-analysis of the cross-sectional samples removed from root systems and stem bases 

of trees, described previously by Nicoll and Ray (1996). 

Annual growth ring measurements 

Sections were examined that had been cut from the stem base and from the four 

largest roots on each of ten trees selected randomly from the original sample. Sitka 

spruce trees usually have between 3 and 11 structural roots, with most trees having at 

least four (Coutts 1983a; Nicoll et al. 1995). The four largest roots were therefore 

expected to have the most structural importance and hence be most adapted to wind 

action. Root sections had been cut at 0.5, 0.75, 1.0, and 1.25 in from the tree centre. 

The distance from the tree centre, and direction relative to north to the section 

location, were recorded for each root section, and a mark indicated its original 

vertical orientation. Annual growth ring widths were measured from the upper outer 

surface of each section to the biological centre. Growth rings were often 

indistinguishable around the base and sides of root sections (see examples in Figure 

5-1). The rings were measured by placing the section on a motorised, movable table, 

under a microscope. The position was recorded electronically each time a growth 

ring was advanced under the microscope cross-hairs, producing a set of ring widths 

for each section. 

Figure 5-1. Examples of root cross sectional samples from Kershope used for the 
dendrochronological study. 
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Constructions of root growth ring chronologies 

Variation in growth ring widths can be separated into low-frequency variation that 

results from changes related to tree age, and high frequency variation that represents 

large year to year changes in ring width due to environmental factors (Cook and 

Kairiukstis 1990; Fritts 1970). To construct chronologies, growth curves were fitted 

through the data, and low frequency variation was removed to leave only the high 

frequency variation. Chronologies were constructed from growth ring data using the 

'ARSTAN' program (Cook and Holmes 1986), a subroutine of ITRDBLIB 

(Grissino-Mayer et al. 1992). Procedures in ARSTAN designed to eliminate non-

climatic variation were applied to the data. All data-sets were single detrended by 

applying a cubic smoothing spline function to the data with a 66% variance cut-off 

(Cook and Holmes 1986), to generate 'Standard' and 'Residual' chronologies. 

Standard chronologies represent the robust bi-weight mean of the detrended radius 

series. Auto-correlation was removed from each raw ring-width series by auto-

regressive (AR) modelling before computing the residual chronology. Stem 

chronologies were constructed using means of growth ring measurements taken in 

four directions (north, south, east and west) on each stem disk. Root chronologies 

were based on mean growth from the ten trees with separate chronologies for root 

sections at each of the four distances from the tree centre in four quadrants around 

the trees; north-east, south-east, south-west and north-west. There were therefore 16 

separate root chronologies of each type; raw data, standard and residual. The south-

west sector represented the windward side of the tree relative to the prevailing wind, 

and the north-east sector represented the leeward side. 

Climate data 

The closest meteorological station to the experiment site that had been in place for 

the life of the study trees was a UK Met Office station, 30 km to the north-east, at 

Eskdalemuir. This station has similar elevation (242 m) and aspect to the experiment 

site. Monthly mean air temperature, rainfall, monthly mean hourly wind speed and 

direction, and monthly mean of hourly maximum wind speed, were available from 

the Eskdalemuir station. To test the validity of using these data to represent wind 

climate on the Kershope experiment site, an anemometer was installed on a 10 in 
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mast adjacent to the experiment site at Crookbum, Kershope in February 1996, and 

wind speed and direction were monitored for the next 12 months. Mean daily wind 

speed and direction were compared between Kershope and Eskdalemuir using linear 

regression. There was a highly significant positive linear regression between wind 

speeds at the two sites (p < 0.001) and between wind directions at the two sites (p < 

0.001), indicating that data from Eskdalemuir could be used to represent the 

experiment site. The mean wind direction at Eskdalemuir was 250° (median 260°) 

and at Kershope it was 219° (median 235°). 

During the life of the study trees, over 70% of the maximum hourly wind speeds at 

Eskdalemuir were from the south-west, with least wind (less than 3%) from the 

south-east. Monthly maximum and average hourly wind speeds over the same period 

were highest in December and January, falling to lowest in June (Figure 5-2). 

Monthly mean air temperature varied between 1.7°C in January, and 13.3°C in July. 

Monthly average precipitation over the life of the trees, was lowest in May (91 mm), 

and highest in January (169 mm). 

Figure 5-2 Monthly mean wind speeds, wind maximum gusts, air temperature, and 
rainfall, based on 1947 to 1993 data from Eskdalemuir meteorological station. Error 
bars are standard errors above and below the means. 
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Statistical analysis 

For this analysis, each chronology was correlated with mean and maximum wind 

speed, air temperature and rainfall, for each season of the 46 corresponding years to 

1993. For the purpose of this analysis, seasons were defined as: 'Autumn' - previous 

September, October and November; 'Winter' - previous December, current January, 

current February; 'Spring' - current March, April and May; 'Summer' - current 

June, July and August. These correspond with the 'meteorological seasons' of the 

northern hemisphere defined by Battey (2000). Positive and negative correlations 

were classed as being significant when p < 0.05 or  < 0.01. Regression analysis was 

used to examine the relationships between chronologies and climatic variables where 

the correlations were significant at  < 0.01 

Experiment 2 

Site details 

Experiment 2 was designed to investigate the effects of a sudden change in tree wind 

movement, and of a change in supply of assimilates from the shoot, on the 

development of the stem and of the structural roots. The experiment site was adjacent 

to the Experiment 1 site at Crookburn in Kershope Forest, Cumbria, UK (220 in 

altitude; OS grid reference NY494794) on peaty-gley (humic stagno-orthic gley) soil. 

Site details are as described for Experiment 1. Trees were Sitka spruce (QCI 

provenance), planted as 1+1 transplants in early 1986. They were flat-planted, i.e. 

without site cultivation, and the stand was not brashed or thinned before the 

experimental treatments were applied. The site had a stocking density of 2500 stems 

per hectare. 

Experiment details 

Treatments were applied at the end of February 1996 when the trees were ten-years 

old. Four treatments were applied to the trees; 'pruned and girdled', 'thinned', 

'thinned and guyed', and unthinned 'control', with two plots per treatment. Six trees 
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were selected at random for treatment within each plot (i.e. 12 trees per treatment). 

Trees had a mean height of 5.3 m and a mean DBH of 7.5 cm at the time of 

treatment. Treatment details were as follows: 

'Pruned and girdled' treatment trees. All branches on one side of the tree were 

girdled if they were larger than 10 mm diameter, or removed if they were smaller 

than 10 mm diameter. The treated side was either east or west-facing, and was 

chosen at random. Branches were girdled by removing all tissue down to the 

wood, in a 5 cm wide band (Figure 5-3). 

'Thinned' treatment trees. Trees were exposed to increased light and wind 

movement by removing all immediately neighbouring trees in the plot (Fig. 5-3). 

'Thinned and guyed' treatment trees. Trees were exposed in the same way as in 

the Thinned treatment, i.e. the plots were thinned by removal of immediate 

neighbours. They were then guyed by attaching steel wires (3 mm diameter) to 

three eye-screws at 0.5 x tree height (Figure 5-3) and secured to 0.75 m long 

ground anchors hammered 0.65 m into the ground. The guy wires were hand 

tightened to similar tension on each tree and were re-tightened as necessary in 

each year of the experiment. 

Control trees. Trees were labelled and left untreated. 

Figure 5-3. Photographs of the experimental site and treatments. Clockwise from top-
left: 'Thinned' treatment, 'Thinned and Guyed' treatment, Cables attached to guyed 
tree; girdled branch in 'Pruned and Girdled' treatment. 
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Assessment and analysis 

Tree heights were measured when the treatments were applied in February 1996 (i.e. 

before the start of the 1996 growing season), and during the experiment in February 

1997 and 1998. Trees were harvested in early April 2000, four growing seasons after 

application of the treatments. Above-ground measurements were tree height (m), and 

growth ring analysis of stem radial growth on discs cut from the stem at four heights 

(0.1 m, 1.3 m, 3.0 m and 4.5 m). Below-ground measurements were root diameter, 

direction and depth of the ten largest structural roots on each tree at 0.25 m, 0.50 m 

and 0.75 m from the stump centre, and measurement of root growth rings on discs 

that were cut from these points. 

Growth rings were measured on the stem and root disks using WinDendro software 

(Regent Instruments, Chicoutimi, Quebec, Canada), described by Guay et al. (1992). 

Growth rings were measured on each stem section on four radii corresponding with 

the north, south, east and west sides of the tree. Root sections were measured from 

the upper surface to the biological centre. Growth rings in the four directions were 

averaged for each stem section, and root growth was averaged for all disks on each 

tree for each distance from the stem centre. Relative growth responses were 

calculated as follows: 

(5.1) 	Relative growth response = 100 x 
growth. - growth 0 

 

growth 0  

Where growtho  is mean growth of the two years before treatment, and growth1 is 

growth during the year i after treatment. Root and stem growth after treatment were 

analysed as repeated measures series as described by Meredith (199 1) and Ruel et al. 

(2003). The relative growth in each year and treatment was compared with growth 

before treatment using analysis of variance. 
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Results 

Experiment 1 

Stem radial growth increased rapidly for the first five years after planting, reaching a 

peak in 1952 (Figure 5-4). There was another peak in stem growth in 1958, followed 

by a steady decline in radial growth for ten years until 1968. An increase in growth 

after this date commenced between one and two years after the line thinning of the 

stand that was conducted in 1966 and 1967. Root radial growth showed peaks in 

1961, 1967, 1974, 1982 and 1992. While only the last of these growth peaks 

corresponded with an above-ground peak, growth troughs occurred both above- and 

below-ground in 1976, 1984 and 1989 (Figure 5-4). 

Figure 54. Mean stem and root ring widths with standard errors of the mean shown 
above and below the mean. 
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Growth ring chronologies from stem disks had few significant correlations with any 

seasonal climatic variables (Table 5-2). The only significant correlations were with 

the raw chronology, and there were none with either the standard or residual 

detrended chronologies. The correlation matrix shown in Table 5-3 relates each of 

the root growth ring chronologies (Figure 5-5) with mean climatic variables for each 

season in the corresponding years. There were a number of significant correlations, 

but most were with the raw data rather than the detrended standard or residual 

chronologies. There were however significant positive correlations (p < 0.01) with 

both winter temperature and autumn wind speed. The strongest significant 

correlations, and the only that were found with all three chronologies (raw, standard 

and residual), were between autumn wind speed and root radial growth in the 

leeward sector at 75 cm from the tree centre. At 1.25 in from the tree centre there 

was also a significant (p <0.05) relationship between autumn wind speed and root 

radial growth (standard chronology). However, in contrast to the correlation with the 

0.75 m chronology, this relationship was negative. Regression analysis showed a 

positive relationship between increasing root radial growth in this part of the system 

and previous autumn mean wind speed (Figure 5-6). The line of best fit was a second 

order polynomial (R2  = 0.5), with the equation: 

(5.2) 	y = -0.73 x2  + 7.62 x - 12.32 

where y = root radial growth (mm), and x = previous autumn mean wind speed 

(m s5.  There was a steep increase in growth response to mean autumn wind speed 

up to around 4.5 m s', but the relationship appeared to level off at higher mean wind 

speeds (Figure 5-6). 
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Table 5-2. Correlations between stem chronologies and climatic variables. Correlation 
coefficients are marked * where significant (p <0.05). 

stem chronologies raw standard residual 
Autumn mean wind 0.034 0.118 0.036 
Autumn mean max gust -0.088 -0.101 0.002 
Autumn mean temp -0.072 -0.053 0.132 
Autumn rainfall 0.099 0 0.046 
Winter mean wind -0.17 -0.113 -0.075 
Winter max gust -0.281 -0.226 -0.21 
Winter temp -0.173 -0.187 -0.207 
Winter rainfall 0.026 -0.148 0.003 
Spring mean wind 0 .33* -0.298 -0.287 
Spring max gust -0.309 -0.271 -0.261 
Spring mean temp 0.251 0.242 0.161 
Spring rainfall -0.067 -0.177 -0.145 
Summer mean wind -0.155 -0.064 -0.02 
Summer max gust 0.017 0.183 0.173 
Summer mean temp -0.062 -0.103 -0.12 
Summer rainfall 0.129 0.053 -0.027 

Table 5-3. Correlations between root chronologies and climatic variables. Coefficients 
marked * indicate a significant positive correlation at p  <0.05, coefficients marked ** 
indicate a significant positive correlation at  <0.01. 
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Figure 5-6. Regression of the raw windward root growth index (0.75 m) against mean 
autumn wind speed. 
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Experiment 2 

Climate 

Annual rainfall during the life of trees in Experiment 2 was between 1500 and 2000 

mm and annual mean air temperature was between 6° and 8°C, both at Eskdalemuir. 

Annual mean wind speed at Crookburn, Kershope was between 6 and 8 in s 1  (see 

Figure 5-7). Wind direction at Crookburn, Kershope between 2 February 1996 and 3 

April 2000 was from the south-west (mean 225°, median 234°, standard error of the 

mean 0.8°). A frequency distribution and wind rose are shown in Figure 5-8. 

Figure 5-7. Total yearly rainfall and mean air temperature at Eskdalemuir and mean 
wind speed at Crookburn, Kershope, for the duration of Experiment 2. Eskdalemuir 
data supplied by the Met Office. 
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Figure 5-8. Wind frequency distribution and wind rose for Crookburn, Kershope 
between February 1996 and April 2000. The line indicates the mean wind direction 
(with standard error bars). 
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Tree height 

In the first year after treatment, 'pruned and girdled' trees showed no height 

increment while the 'control' trees showed the fastest increment (Figure 5-9). By the 

end of the experiment, 'control' trees were the tallest and 'thinned' trees were the 

smallest, but differences were not statistically significant. 

Figure 5-9. Mean tree height (and standard error above and below the mean) at the end 
of 1995, 1996, 1997 and 1999 growing seasons. 
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Stem and root radial growth 

Trees on this site showed a rapid increase in radial growth at the stem base (Figure 

5-10) for the first four years of growth, peaking in 1993. This was followed by a 

slow decline that was broken, in the untreated control trees, by a smaller peak four 

years later in 1997 (Figure 5-10). The first radial growth peak was progressively later 

at increasing heights on the stem; 1995 at 1.3 m, 1997 at 3.0 m and 1999 at 4.5 m. 

Roots in the 'control' treatment showed a peak of radial growth simultaneously at all 

distances from the stem (0.25, 0.50 and 0.75 m) in 1997. 

In the year following treatment (1996), there was a decrease of stem radial growth at 

0.1 in and 1.3 in in all treatments, but this decrease was most pronounced in the 

'pruned and girdled' treatment. This coincided with a marked decrease in root 

growth at 0.25 m. The above- and below-ground growth reduction in 1996 

corresponded with a relatively large decrease in mean air temperature and rainfall 

(Figure 5-7). After the large initial decrease in growth in the pruned and girdled 

treatment, growth levelled out to be similar to that of the control (Figure 5-10). 

Below-ground, there was a positive growth response (85%) in the 'thinned' treatment 

in the first growing season after thinning (1996), but this was small compared to 

responses in the second growing season (see Figures 5-10 and 5-12). Trees in the 

'thinned', and 'thinned and guyed' treatments, showed large increases in stem 

relative growth at 0.1 and 1.3 in (Figure 5-1 1), and in root relative growth at all 

distances in the second growing season after treatment (Figure 5-12). These increases 

were greatest at 0.1 in in the stem (93% and 42% for 'thinned' and 'thinned and 

guyed' treatments respectively), and at 0.5 in in the roots (397% and 149% 

respectively), and decreased with increasing height on the stem and distance along 

the roots. 'Thinned' treatment trees showed a considerably greater growth response 

after treatment than 'thinned and guyed' treatment trees, both above- and below-

ground. The difference was significant in the lower stem at 0.1 and 1.3 m, and in the 

roots at 0.25 in and 0.5 in from the stem (all p < 0.05). After the second year, relative 

growth decreased slightly in the lower stem (Figure 5-11), and continued to increase 

slightly below-ground (Figure 5-12), in all treatments except for the control. 
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Figure 5-10. Mean (and standard error above and below the mean) radial growth in the 
stem (0.1 m, 1.3 m, 3.0 m and 4.5 m) and in the structural roots (0.25 m, 0.50 m and 
0.75 m from the tree centre) in each of the four treatments between the 1990 and 1999 
growing seasons. The dashed vertical lines mark the last growing season before 
treatment. 
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Figure 5-11. The relative growth response to treatments, in stems at 0.1 m, 1.3 m, 3.0 m 
and 4.5 m. Vertical bars are the least significant differences between means (p <0.05) 
for comparisons between treatments within a year and between years within a 
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Discussion 

Although, in Experiment 1, there were no significant correlations between wind 

speed and the detrended stem chronologies, there were several positive correlations 

with root chronologies. The analysis indicated that there was an overall increase in 

allocation of assimilates to the structural roots on the lee side of the tree in response 

to wind. The allocation of assimilates to structural roots on the lee-side at 0.75 m was 

positively correlated with wind speed, and appeared to be at the expense of growth in 

roots with less of a structural role further from the tree (where correlations were 

negative). Increased thickening of structural roots on the lee side of trees relative to 

the prevailing wind direction has been observed previously (Nicoll et al. 1995; Nicoll 

and Ray 1996). In wind tunnel and mechanical flexing studies, Stokes et al. (1995a; 

1997a) also found more growth of windward and leeward (flexed) roots, compared to 

perpendicular (twisted) roots. The correlation between wind action and root radial 

growth at 0.75 m from the stem in Experiment 1, and the larger growth response in 

roots at 0.5 in from the stem than at 0.25m or 0.75 m, appear to correspond with the 

part of the root systems that would be expected to bend most as trees sway in the 

wind. Close to the stem, in the 'zone of rapid taper' (Coutts 1987), buttresses are 

commonly large enough to minimise bending (Ennos 1993). Rizzo and Harrington 

(1988) found the greatest movement of surface roots to be between 40 and 80 cm 

from the stems of 10 - 19 cm DBH red spruce (Picea rubens Sarg.) and balsam fir 

(Abies balsamea (L.) Mill.). Stokes and Mattheck (1996) described structural root 

compression strength in >40 year old Norway spruce (Picea abies (L.) Karst.) (ca. 35 

cm DBH) as increasing with distance from the tree to a maximum at around 0.75 m, 

where bending was expected to be greatest. Ray and Nicoll (1998) recorded the 

bending during uprooting of the root plates that were the source of root material for 

Experiment 1, and found maximum bending to be approximately 0.8 in from the tree 

on both the compression and tension sides. 

The amount of secondary thickening at any part of the root system may be 

proportional to the amount of bending stress experienced at that point. This is 

compatible with, but not the same as, the 'uniform stress hypothesis', in which stress 

is kept constant over the stem and root surface as the tree undergoes secondary 
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thickening. More research is required to find the shape of the dose response curve for 

conifer roots in response to mechanical stress, but the relationship found in this study 

between mean wind speed and root radial growth, indicates that there may be a 

threshold above which increasing wind action no longer increases growth rate. 

The time of year at which the roots experience mechanical stress appears to be 

important. The most significant correlations between mean wind speed and root 

growth-ring chronologies were from wind movement during the autumn before the 

'current' growing season. As Sitka spruce roots are expected to show only minimal 

growth in upland Britain between September and November (Coutts and Nicoll 

1990a), these correlations may indicate the presence of a stored signal or resource. 

The growth promoter most commonly associated with plant responses to mechanical 

stress is ethylene, but as this is unlikely to persist long enough to be the signal 

involved here, a precursor or other growth promoter could be responsible. 

Alternatively, as Sitka spruce shows positive net photosynthesis throughout the 

autumn and winter while the temperature remains above -5°C (Ludlow and Jarvis 

1971; Neilson et al. 1972), a possible mechanism is the storage of assimilates during 

this period in ray parenchyma adjacent to the dormant cambium particularly in 

regions of the structural roots that experience the most stress. The stored assimilates 

would enhance radial growth in these regions when the cambium becomes active in 

the spring (Wargo 1979; Zimmerman 1964). Although this hypothesis remains to be 

tested, it is backed up by the observation that during spring and summer while most 

assimilates are being used directly in shoot extension growth and stem radial growth, 

there appeared to be little influence of wind speed on root development. Valinger et 

al. (1994; 1995) and Lundqvist and Valinger (1996) demonstrated similar responses 

above-ground in Scots pine. They found that tree stems had increased diameter 

growth after being subjected to mechanical loading in the dormant season, compared 

to unflexed controls. There would certainly be benefits to trees responding to wind 

movement during dormancy - the highest wind speeds are usually experienced in the 

autumn and winter, and the loads on the tree at this time of year can sometimes be 

further increased by snow and ice accumulation in the crown. Trees would therefore 
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adapt their above- and below-ground morphology to resist to the largest loads that 

they experience. 

It is important to remember that the effect of increased wind speeds on a tree is not 

purely to increase mechanical stress on its component parts. Wind decreases 

humidity around the leaves, and the plant can respond to this by increasing leaf 

diffusive resistance, which in turn decreases photosynthetic rate and growth (Grace 

et al. 1975). However, on the exposed upland site described here, thinned trees that 

were allowed to move more in the wind increased their growth faster that those that 

were restrained by guy wires. Therefore, any effect of increased wind movement 

around needles on swaying trees appeared to be more than offset by increased growth 

in response to improved light availability and in response to increased mechanical 

stress in the stem and roots. 

Growth reductions above- and below-ground in Experiment 1 in 1989 and 1993, 

followed between one and two years later by a marked growth increase, did not 

appear to correspond with any measured climatic variable. It is possible that these 

reductions resulted from partial defoliation by Elatobium abietinum (Walker), the 

green spruce aphid, that is a common forest insect in the British Isles. This insect can 

defoliate spruce trees by more than 50% of their older needles, resulting in a 

reduction in annual increment for between one and several seasons (Straw et al.). In 

the present study, growth reductions were in the order of 30%, with a growth 

recovery within 4-5 years. This is comparable to the symptoms of Elatobium attack 

reported in the literature, for example Seaby and Mowat (1993) reported an initial 

40% growth reduction with observable inhibited growth for 4 years in response to a 

severe Elatobium attack. These growth reductions were observed both above- and 

below-ground, and were similar to the pattern of growth reduction observed in 

Experiment 2, following what was effectively a 50% defoliation in the 'pruned and 

girdled' treatment. In Experiment 2, reduction of radial growth above-ground was 

also close to 30% in the first year, and growth was maintained as being less than the 

control trees for the following two years. These responses were also comparable to 

the stem and root ring-width decreases described by Krause and Morin (1999) 

112 



following defoliation of black spruce (Picea mariana (Mill.) BSP) by spruce 

budworm (Choristoneurafumferana (Clem.)) in Quebec, Canada. 

The observations in Experiment 1 of a response in root radial growth to previous 

autumn wind stress correspond well with results from Experiment 2 where there was 

little response in the growth season directly following treatment but a strong 

response in the next year. Other authors have found similar delays in response to 

thinning treatments, but the duration of the reported delay varies. Urban et al. (1994) 

used dendrochronological techniques to examine the response of 120-year-old white 

spruce (Picea glauca (Moench) Voss) to increased light and wind stress following 

road clearing. These trees showed an immediate 'release' in structural root radial 

growth and a release of above-ground growth (at 1.3 m) that was delayed by between 

3 and 9 years. Trees appeared to have allocated assimilates below-ground at the 

expense of that above-ground. Ruel et al. (2003) found a similar immediate response 

in structural roots of balsam fir to stand thinning at ages 17 and 22 years old, and a 

significant increase in stem growth (at 1.4 m) only after 2 years. The below-ground 

response in the Ruel et al. (2003) study was in the growing season following the year 

of treatment, and as the thinning treatment would have been in the summer (Achim, 

A. personal communication), the response is comparable to the present Experiment 2 

where the largest response followed the first autumn and winter after treatment. 

These results are also similar to those of Kneeshaw et al. (2002) who found a root 

radial growth response in the year following stand thinning, a one-year delay before 

a stem response, and 2-3 year growth reductions in branch radial growth and leader 

height growth. 

Fayle (1976) removed soil from around structural roots of eight, Ca. 3.4 in tall, Scots 

pine (Pinus sylvestris L.) trees to allow increased wind movement, and then guyed 

four of them to prevent movement. In the first year after treatment there was no 

effect on exposed free-standing trees (compared to guyed trees) on stem radial 

growth below guy height, but there was a large increase in the second year. Below-

ground there was a large response in both the first and second year after treatment. 

The decrease in response with height would lead to increased stem taper. It is 
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however, important to remember that following stand thinning, trees are exposed to 

an increase in both light and wind movement. The light effect was removed in a 

previous experiment where tree seedlings were mechanically flexed or kept relatively 

motionless as they grew in a glasshouse (Stokes et al. 1997b). Shoot extension 

growth was found to be reduced by the flexing treatment, while basal stem diameter 

and root mass were increased. 

The considerably greater growth response below-ground than above-ground, 

indicates that there was an alteration in the allocation of assimilates between above-

and below-ground components in response to increased mechanical stress. This may 

also explain the relatively slow shoot extension growth in the thinned trees that 

experienced increased movement. However, despite this alteration of allocation, 

growth was greater in the 'thinned' than in the 'thinned and guyed' treatment both 

above- and below-ground. Trees in these two treatments may be expected to have 

similar amounts of assimilate available for cambial growth, so if the greater growth 

response in the moving trees is not purely a reallocation to parts of the tree that 

experience the greatest stress, a possible explanation would be that the density of 

wood in the new growth rings is reduced in the moving tree. Koga et al. (2002) 

examined the effects of stand thinning on 14-year-old Balsam fir stem radial growth 

and wood density. They examined stem disks from 0.2 m, 0.7 m, 1.3 m, 5 m, 7 in and 

9 m, and found an immediate growth response that was greatest in the lower stem, 

and decreased, in relative terms, with increasing height. The increased stem radial 

growth corresponded with an increase in earlywood rather than latewood. As 

earlywood has lower density than latewood, the resulting smaller latewood 

percentage gave lower ring densities for these trees. Again, the thinning treatment 

was applied in July and the response was observed in the next year, so the response 

followed the first autumn and winter of increased exposure. The analysis by Koga et 

al. (2002) may therefore indicate a mechanism for the larger overall growth response 

of thinned, compared to thinned and guyed trees, in Experiment 2, but this should be 

tested in future experiments. 
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Experiment 2 was not maintained for long enough to enable an examination of any 

longer-term growth trends. After three years of treatment, stem relative radial growth 

had started to reduce, but at the end of the experiment, four years after treatment, 

root relative radial growth was still increasing. It is therefore impossible to predict 

from these data when root radial growth would start to slow. Peltola et al. (2002) 

reported that the fastest diameter growth of Scots pine (Pinus sylvestris L.) was 

observed close to the stem base, between seven and nine years after thinning. 

Similarly, Koga et al. (2002) found that balsam fir (Abies balsamea (L.) Mill.) 

showed a positive increase in stem base radial growth that lasted for seven years after 

stand thinning. Kneeshaw et al. (2002) found that stem and root radial increment 

peaked four years after stand thinning of Douglas fir (Pseudotsuga menziesii (Mirb.) 

Franco) and lodgepole pine (Pinus contorta Dougi.). Unfortunately, none of these 

studies included a comparison of trees in a thinned treatment with trees in a similarly 

thinned, but non-moving, control treatment. Therefore, to be able to adequately 

model whole tree responses to changes in wind action, controlled experiments should 

be established, and maintained for longer time periods. Ideally, the 'thinned' and 

'thinned and guyed' treatments that were applied to trees in Experiment 2 should be 

repeated in a new experiment that would run for 10 years or more. 
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6. General Discussion 

Models of tree anchorage and stability 

The results of four decades of windthrow and tree stability research in Britain have 

been incorporated into a variety of models and decision support systems. Following 

the earliest intensive period of investigation, Fraser and Gardiner (1967) described 

linear relationships between critical turning moment and stem mass for Sitka spruce, 

on a range of forest soils. This, for the first time, allowed the anchorage of trees to be 

predicted, based on site conditions. These relationships have been extended in 

Chapter 2 of this thesis, incorporating further tree-pulling experiments, into a system 

that describes anchorage of twelve of the most commonly planted conifer species, in 

all soil groupings and soil rooting depths encountered in British forests. The new 

system provides an objective means to compare the anchorage provided by the root 

systems of trees of different species, between soil groups. However, the models 

described by Fraser and Gardiner (1967), and those in the new system described in 

Chapter 2, can not be used on their own to compare vulnerability to windthrow as 

they ignore the effects of variation in above-ground characteristics, such as between 

species in crown sail area and height growth. 

In the 1970s and 1980s, a system was developed based on observations of 

windthrow, that allowed a simple prediction of the onset of windthrow. This is the 

Windthrow Hazard Classification ('WHC') (Booth 1977; Miller 1985) that can be 

used to estimate the 'critical' and 'terminal' heights of stands of trees on a particular 

site, based on windiness, exposure, elevation and soil. These are the heights at which 

damage would be expected to start, and at which the extent of damage would require 

clearance, respectively (Quine and Gardiner 1998). This system uses mostly wind 

climate and above-ground characteristics, and it avoids the use of any below-ground 

characteristics except soil type and drainage, which it interprets simply as rooting 

depth. Sites are scored based on wind zone (from a windiness map of Great Britain), 

elevation, Topex (degree of topographic exposure) and soil. Notably WHC takes no 

account of the variation of anchorage found by Fraser and Gardiner (1967), or that 
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could be found by analysing the tree-pulling data from other species and site types 

that had been generated in a continuation of Fraser and Gardiner's tree pulling 

experiments in the late 1960s and 70s. Therefore the grouping of soils for estimation 

of root development in WHC ignored the differences in physical properties between 

these soils and took no account of the resulting large differences in anchorage 

between different soils of the same depth described in Chapter 2. Although the WHC 

system was a beneficial tool for the British forest industry in that it reduced losses to 

windthrow, over time it was found to be deficient in a number of ways. In particular 

WHC was pessimistic in its predictions, and its use resulted in premature harvesting 

of crops, i.e. before their optimum age of economic return and before they would 

now be expected to be damaged by wind. In addition, as it was prescriptive in its 

approach, it included no opportunity for the user to decide an appropriate level of 

risk for a particular forest stand (Quine and Gardiner 1998). 

The WHC system was replaced in the 1990s with a more sophisticated decision 

support system, 'ForestGALES', that calculates the risk of windthrow to a stand 

(Quine and Gardiner 1998). Development of this model represented a substantial 

leap in understanding of windthrow. For the first time, the various strands of the 

windthrow process; the anchorage provided by the root system, the above-ground 

lever and sail area, and the wind climate and exposure of the stand, were 

incorporated into a single system. This provided a tool for the management of forest 

windthrow risk for the British Isles, that forest managers can use to compare 

developing risks to stands that have contrasting site, soil and environmental 

conditions. As the results are output as a return-time for a wind speed that is 

expected to damage the crop, the user is given the information needed to manage for 

the optimum combination of minimised windthrow and maximised economic return, 

without being forced to harvest at a fixed tree height. However, despite the 

advantages of ForestGALES compared to WHC, there remain some limitations to the 

underlying model that require attention. 

Firstly, the regressions of critical turning moment against stem mass that are the 

basis for the anchorage module within ForestGALES were based on a simplistic 
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analysis of the Forestry Commission tree-pulling data set, using soil groups that 

contained soils with very different physical properties, and made no distinction 

between trees that were deep and shallowly rooted. In addition, the analysis made no 

attempt to take into account the limited sample size for many of the minority species 

contained in the tree-pulling database, and used regression equations regardless of 

their significance. The analysis presented in Chapter 2 uses a more robust approach, 

making a logical separation between soil types and rooting depths, and compares 

minority species with Sitka spruce, which is still the dominant species in the data-set. 

This allows regressions for a particular conifer species to be used where there are 

adequate tree-pulling data, and where they are significantly different to Sitka spruce. 

But, where this is not the case, they can be replaced with the equivalent Sitka spruce 

regression equation until better data become available. The new soil grouping, 

rooting depth prediction, and corresponding critical turning moment against stem 

mass regressions in Chapter 2, should be implemented in a future version of 

ForestGALES. 

Secondly, although ForestGALES takes topography into account in the calculation of 

wind climate, there was no attempt in its construction to allow for any topographic 

effects on root anchorage. All data in the tree-pulling data-set were derived from tree 

pulling experiments conducted on either horizontal or shallowly sloping sites, and so 

it was necessary in building the model to make the assumption that terrain had no 

effect on tree anchorage. However, as some aerial photographs of windthrow have 

shown relatively greater damage within steep-sided valleys, it was important that the 

hypothesis was tested that this damage resulted from funnelling of wind, as opposed 

to an inherently poorer anchorage due to altered root architecture on slopes. In the 

experiment described in Chapter 3, anchorage of Sitka spruce was found to be the 

same on a steep slope as on the horizontal, therefore supporting the assumption in 

ForestGALES. However, there were directional differences in anchorage that imply 

that trees may be less stable when exposed to a downslope wind than an upslope 

wind (Chapter 3). This finding conformed with the observed root asymmetry of the 

same trees described in Chapter 4, where the largest sector without structural roots 

was downslope. Existing models of tree anchorage (Blackwell et al. 1990, Coutts et 
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al. 1999) would predict that such an asymmetry would result in a considerably 

reduced critical turning moment for downslope overturning. The anchorage effects of 

the asymmetry of root mass around these trees, with a greater concentration 

perpendicular to the slope, towards the west, remain to be quantified, as comparison 

of anchorage between the two across-slope directions was not part of the treatment 

structure. This should be investigated in further experiments, either by tree-pulling, 

or by modelling the changes in anchorage resulting from changes in root system 

asymmetry. As it stands, therefore, there is no evidence to suggest that ForestGALES 

will require any modification to allow for the topography of a stand. However, if 

directional differences in anchorage are confirmed by repetition of this experiment 

on other sites, there may be benefits of producing a version of ForestGALES in 

which risks are associated with, and can be varied according to, wind direction. 

Thirdly, although ForestGALES allows the user to input thinning treatments that 

have been, or will be, applied to the stand, these are used only to adjust the wind 

loading and above-ground growth characteristics, and not to adjust the anchorage of 

trees. The results of Chapter 5 indicate that trees are continually responding to 

changes in their wind environment. As trees grow, their sail area, above-ground lever 

arm length, and hence wind motion, increases. As mean wind speed varies from year 

to year, so does tree motion. And when a stand is thinned, there is a sudden increase 

in wind motion at the same time as a large increase in above-ground growth. Without 

mechanisms to respond to changes in mechanical stress, tree survival would be 

limited in windy locations. The results presented in Chapter 5 represent a starting 

point in understanding the scale of above- and below-ground responses to changes in 

wind motion and light regime. They show increasing allocation to roots on the lee-

side of a tree in response to increasing autumn wind speed, but only up to a point. 

Above a certain mean autumn wind speed, the response appears to remain constant. 

In addition, contrary to some previous studies, the results show rapid responses, both 

above- and below-ground, to changes in wind movement as a result of stand 

thinning. However, in the first year after thinning, above-ground growth was slightly 

reduced while there was a small increase in below-ground growth. In the second year 

after thinning there was a fast increase in radial growth both above- and below- 
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ground but with a very much larger below-ground than above-ground response. 

These results indicate that trees alter their allocation of available assimilates to 

shoots and roots in response to changes in wind motion, and thereby re-stabilise 

themselves following stand thinning. This, in turn, implies that the anchorage of trees 

will be modified rapidly following stand thinning or respacing, a hypothesis that 

should be tested in future experiments, to facilitate the development of a dynamic 

model of tree anchorage. 

Forest soil conservation 

Research into tree anchorage has largely been stimulated by the practical problems 

and economic costs that result from trees being uprooted by the wind. A related area 

of practical importance is the stabilisation of soil on slopes by tree roots. Research on 

this topic has focussed on the nature of the root-soil bond (for example, Waldron and 

Dakessian 1981; Waldron and Dakessian 1982). However, the effects of trees on soil 

stability are more complex than this. Trees provide considerable protection to slopes 

by sheltering the slope surface from the direct effects of wind and rain, by extracting 

soil water through transpiration, and by holding soil on both fine and course roots 

(Keim and Skaugset 2003). The combined benefits provided by trees on vulnerable 

slopes can easily be demonstrated in many parts of the world where deforestation has 

led to massive soil loss (Sidle et al. 1985). To maintain these benefits in upland 

plantation forests that are actively managed, consideration should be given to soil 

conservation at all stages during planning, managing and harvesting. The 

ForestGALES decision support system is used by managers to minimise windthrow 

risk whilst optimising economic returns from timber. To do this, the manager must 

decide what level of risk he or she can accept and must always be prepared to accept 

some loss through windthrow. However, on steep slopes, the risk is not only the loss 

of timber and increased harvesting costs following windthrow, but also the risk of 

substantial soil loss from the site. The investigation presented in Chapter 3 predicts 

that for dense forest stands on steep slopes, where windthrow overturns root plates 

downslope, the potential downslope displacement of soil is in the order of 1800 m 3  

ha from the displaced soil-root plates alone, even before additional soil is displaced 
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by erosion processes. This rate of soil loss is more than 1000 times the rate expected 

from standard forestry operations. As soil loss must be considered as an almost 

permanent degradation of the site, with considerably greater long-term consequences 

in terms of forest sustainability than windthrow, soil conservation should become the 

primary consideration on such sites. The results presented in Chapter 2 show that 

species choice, soil type, and rooting depth all influence anchorage. Therefore, these 

criteria may be used in conjunction with ForestGALES to decide how forest stands 

should be designed, established and managed on steep slopes. Species with relatively 

good predicted anchorage may be chosen for such sites, and the suitability of 

silvicultural treatments to be applied to them should be assessed based on the risks of 

windthrow and resulting soil loss. For example, particular care should be taken in 

applying thinning treatments or in respacing for conversion to continuous cover 

forestry (CCF) on vulnerable slopes. While CCF would, on the whole, be expected to 

be beneficial for soil conservation once established, the conversion process itself 

creates an immediate increase in windthrow risk. Therefore there is a strong 

argument for converting to CCF in a more sensitive manner on steep slopes, either by 

respacing when the trees are young enough not to show an increased windthrow risk, 

or by planting at an appropriate spacing to encourage natural regeneration and the 

development of an uneven-aged stand structure. 

Models of tree root architecture 

One research area that stands out from the work presented here, as requiring a 

substantial modelling effort, is the development of tree root architecture. There is 

clearly a requirement for methods to predict the development of root architecture in 

relation to establishment method, site type and forest management, to improve 

predictions of tree stability, below-ground carbon storage, and soil stability. 

An improved understanding of root development is particularly important in 

understanding tree stability because the root system provides anchorage and 

structural support. Where rooting depth is limited by soil conditions, the radial 

symmetry of the structural root system becomes critical for anchorage (Courts 
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1983b). Field observations have shown that root systems are often markedly 

asymmetric; for example, they develop less in the direction of plough furrows 

(Coutts et al. 1990) or nearby tree stumps (Prest et al. 1991; Quine et al. 1991). 

Even where there is no physical obstruction and the site is relatively even, root 

systems often have uneven development (Nicoll et al. 1995; Nicoll and Ray 1996). 

The analysis in Chapter 4 indicates that root asymmetry may result from both wind 

action on the tree and from the effects of steep terrain, and this appears to correspond 

with the directional instability of trees reported in Chapter 3. It must be remembered, 

however that not only the structural root part of the system, but also the fine roots, 

are necessary for tree anchorage. Fine roots hold the soil together within the soil-root 

plate and play a large part in defining the dimensions of the plate. They consolidate 

the soil within the plate, increasing the mass of the plate, and they act under tension 

to resist breakage of the soil at the edge of, and beneath, the plate. In a similar way, 

fine roots hold soil on slopes and enhance soil cohesion, thereby resisting landslips 

and soil erosion. In performing these functions, fine roots depend on the whole root 

system being held together by a structure of coarse roots, and it will therefore be 

necessary in future studies to consider ways to relate coarse root architecture to fine 

root mass. In addition to contributing to models that predict tree and slope stability, 

understanding the distributions of tree root sizes, and the ways that these 

distributions change with depth and vary between species and soil types, will be 

necessary in improving predictions of the accumulation of soil carbon (Kramer et al. 

2004). 

Modelling would be expected to improve our understanding of the many factors 

involved in root system development, and expose important areas where little is 

known. It should ultimately be possible to link a root development model to other 

mechanical models, for example the root anchorage model described by Blackwell et 

al. (1990), or to finite element models of root anchorage (Dupuy 2003; Fourcaud et 

al. 2003). It is therefore important that we start to collate the information on root 

system architecture and growth that will be required for modelling tree root system 

development. The internal and environmental factors that control the development, 

with respect to symmetry and rigidity, of shallow structural root systems are now 
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fairly well understood, at least for Sitka spruce (Coutts et al. 1999). Much of the 

relevant research has been carried out on this species because of problems of 

windthrow in upland Britain and Ireland, but information on other species is 

increasingly available. For example, recent developments in the technology available 

for 3-D digitising of root architecture (see Chapter 4), and in the methods for coding 

root topology (Danjon et al. 1999b), have stimulated research into tree root 

architecture on a range of species (for example, Danjon et al. 1999a; Danjon et al. 

2005; Di Iorio et al. 2005; Drexhage et al. 1999; Drexhage and Gruber 1998; 

Mickovski and Ennos 2002). 

There would clearly be benefits to building a process based model that will predict 

tree root architecture parameters, based on inputs including site properties, soil type, 

cultivation, management regime, species, and climate. Such a model could be 

designed to provide outputs that would benefit a range of research areas including: 

tree establishment, afforestation of reclamation sites, conversion of stands to CCF, 

tree pathology, forest C sequestration, tree improvement, tree stability and slope 

stability. 

A simple conceptual model has been developed that develops a woody root system, 

using physiological principles, as a set of roots that are variable in number and 

distribution around the stem, with mass and rigidity varying between and along them 

(Courts et al. 1999). Using this as a basis, and with the addition of root branching, 

the root system may be modelled as a zone of competition for assimilates, where 

allocation to individual roots depends upon their position and local variations in 

conditions. Important factors to include will be the effects of changing soil 

conditions, such as the supply of mineral nutrients and water, on the growth of 

primary and woody roots, the effects of terrain on primary root growth and on 

secondary thickening, and the effect of mechanical stress on growth of the cambium. 

As root system development is also substantially influenced by site cultivation, 

drainage, spacing, thinning and slope, the model should use these silvicultural 

influences and constraints to modify the development of the system. 
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However, root system symmetry with respect to tree stability, should not only be 

considered in terms of the allocation of biomass between roots and their distribution 

round the tree. Allocation within each individual root also varies, producing shapes 

of significance to mechanical stability (Nicoll and Ray 1996). In a root development 

model, root size and shape should be defined so that stiffness can be calculated (see 

the 2 moment of area calculation in Chapter 1) for the determination of the hinge 

position in a tree anchorage model, such as Blackwell etal. (1990). 

One benefit from attempting to model a complicated system is to highlight areas 

where research is most needed. Even before commencing the construction of a root 

development model, there are some areas that obviously lack adequate data. In 

particular it will be important to define the relationships between the fine and coarse 

root architecture of trees, and to obtain quantitative data on the effects of climatic 

changes on structural root radial growth and development of cross-sectional shape. 

Conclusion 

Overall, our understanding of tree responses to wind is now at a stage where useful 

models can be developed that integrate the various parts of the processes involved. It 

is evident that above- and below ground processes and responses should be 

considered together. Each component of a tree is dependent on each of the others and 

an examination of the development of any component in isolation will miss a large 

part of the story. In a similar way, it is important that the processes involved in the 

windthrow of trees, including soil properties, development of root architecture and 

anchorage, stem properties, canopy structure, wind profiles, and climate, are 

considered together. By improving our understanding of the interactions between tree 

components, and by integrating the models that exist of the various processes 

involved in windthrow, we will be able to make reliable predictions of windthrow 

risk to a range of forest structures, and of how the risk will change in a changing 

climate. 
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Overall findings 

Differences in anchorage between the range of coniferous tree species commonly 

grown in the British Isles, and their interactions with soil group and rooting 

depth, have been quantified for the first time. When implemented in decision 

support systems for forest stand management in relation to wind risk, the 

regressions of critical turning moment developed here will allow reliable 

predictions to be made of the return times to the critical wind speed required for 

windthrow. Revised risk assessments based on the new regression equations will 

result in modifications of forest harvesting schedules and timber production 

forecasts. 

Anchorage of Sitka spruce was found to be similar between a steep slope and a 

neighbouring horizontal site with the same soil. However trees overturned 

significantly more easily downslope than upsiope. The results indicate that the 

estimation of wind risk on complex terrain will be substantially improved by 

incorporating wind direction in relation to terrain into decision support systems 

Root architecture was found to be influenced by terrain. The centres of root mass 

of trees on a steep slope were concentrated across slope toward the prevailing 

wind, while on the horizontal there was more root mass on the lee side of trees 

relative to the prevailing wind. The largest sector without roots on root systems 

on slopes was directed downhill. The architecture data from this study should be 

incorporated into models of soil holding by tree roots, to assist in the 

development of appropriate forest management techniques for soil conservation. 

Measurements of soil displacement by trees overturned on steep slopes indicates 

that the risk of soil erosion on complex terrain following windthrow is 

considerably greater than from forest operations. The results indicate that steep 

forested slopes must be managed particularly sensitively, with the aim of 

minimising the risk of windthrow and therefore soil loss. 
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5. Analysis of tree development in a 'thinning' and 'guying' experiment showed 

that the largest proportion of assimilates were allocated to radial growth at the 

stem base, and in the structural roots, in response to increased mechanical stress 

following stand thinning. Allocation to the parts of the tree where stress is 

greatest, at the expense of height growth and thickening higher up the stem, will 

improve tree stability following stand thinning. Findings from this study should 

be used in the development of models to predict changes in wind risk to trees 

following the respacing of forest stands. 
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Does steep terrain influence tree stability? A field 
investigation 

Bruce C. Nicoll, Alexis Achim, Shaun Mochan, and Barry A. Gardiner 

Abstract: The anchorage of 40-year-old Sitka spruce (Picea sitc/zensis (Bong.) Carr.) trees grown in a plantation on a 
steep (ca. 300) 

 slope was compared with that of trees grown on an adjacent horizontal area. There was similar gleyed 

mineral soil on the sloping and horizontal areas. Trees were mechanically overturned using a winch, and anchorage 

was quantified by measuring load, stem angle, and tree dimensions. Trees on the slope were overturned upslope, 

downslope, or across-slope. Critical turning moments were calculated around the tree base and the actual hinge point. 

Critical wind speeds required to uproot or snap trees in this stand were modelled to compare the vulnerability of trees 

to upslope and downslope winds. No overall difference in anchorage was found between trees grown on the horizontal 

and sloping parts of the site. However, for trees on the slope, those pulled upslope showed significantly more resis-

tance to overturning for a given stem mass than those pulled downslope. Critical turning moments calculated at the 

hinge point were smaller than those calculated at the stem base, but differences were small and had no effect on the 

comparison between treatments. Critical wind speeds for uprooting were estimated to be 28 m-s' for an upslope wind 

and 24 ms for a downslope wind on this site. The implications of these results are discussed in relation to 
windthrow-risk modelling and forest soil conservation. 

Résumé : L'ancrage de tiges d'épinette de Sitka (Picea sirc/mensis (Bong.) Carr.) dans une plantation âgée de 40 ans 
établie sur pente abrupte (300)  a été compare a celui d'arbres croissant sur une surface horizontale adjacente. Dans les 
deux cas, le sol était semblable, soit un sol mineral gleyifme. Les arbres ont eté déracinés mécaniquement a ]'aide d'un 
treuil et l'ancrage a éte quantifié en mesurant Ia charge, l'angle de la tige et les dimensions de l'arbre. Les arbres si-

tués en pente ont été déracinés vers le haut de la pente, vers le bas et perpendiculairement it Ia pente. Les moments de 
flexion critiques ont éte calculés par rapport a la base de Farbre ainsi que par rapport a la charnière de déracinement. 
Les vitesses de vent critiques nécessaires au déracinement ou au bris de la tige ont éte modélisées pour comparer la 
vulnérabilité des arbres a des vents soufflant vets le haut ou vets le bas de la pente. Globalement, aucune difference 
d'ancrage n'a éte constatée entre les arbres du site qu'ils croissent sur une surface horizontale ou en pente. Toutefois, 

dans le cas des arbres situés en pente, ceux qui ont éte treuillés vers le haut de la pente étaient significativement plus 

résistants au déracinement que ceux qui ont été treuillés vers le bas pour une même masse de tige. Les moments de 
flexion critiques calculés a la charnière étaient inférieurs a ceux calculés a la base de la tige, mais les differences 
étaient faibles et n'avaient pas d'effet sur la comparaison entre les traitements. Sur le site étudié, les vitesses de vent 
critiques pour le déracinement ont ete estimées a 28 ms' pour un vent soufflant vets le haut de la pente et a 24 ms' 
pour un vent soufflant vers le bas de la pente. Les repercussions de ces résultats sur la modélisation du risque de cha-
blis et la conservation des sols forestiers sont discutées. 

[Traduit par la Rédaction] 
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Introduction 

Problems of managing forest stands in areas vulnerable to 

wind damage have necessitated the development of predic-

tive models of windthrow, such as ForestGALES (Gardiner 

et al. 2004; Quine and Gardiner 1998), HWIND (Peltola et 
al. 1997), and WINDA (Blennow and SalInas 2004). Al-

though in the development of these models local wind cli-

mate has been adjusted to allow for topography (Peltola et 
al. 1999; Suárez et al. 1999), the assumption is made that 

there is no difference in anchorage between trees growing on 

horizontal and sloping Sites. However, aerial photographs of  

wind damage to forest plantations taken after storms have 

shown more damage to trees on slopes and valley sides in 

some areas compared with trees grown on more horizontal 

sites (C.P. Quine, personal communication, 1999). It is not 
clear if these observations result from localized variation in 

wind exposure, funnelling of wind in valleys (SavilI 1983), 
mechanical differences in anchorage resulting from variation 

in root architecture, or a combination of these effects. A 

number of studies of tree anchorage have attempted to relate 

critical turning moments to measurable tree characteristics. 

All have shown good linear relationships between critical 

turning moment and stem mass, stem volume, or stem diam- 
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eter for trees on particular soil types (for example, see Fraser 
and Gardiner 1967; Fredericksen et al. 1993; Moore 2000). 
These simple relationships can be used within windthrow 
models to predict tree vulnerability based on measured or 
predicted tree dimensions for particular defined soil and site 
conditions. In improving the accuracy of forest windthrow 
models, it is important that we test whether the anchorage of 
trees on slopes is different from that of trees on horizontal sites. 

Understanding the stability of trees on slopes is also im-
portant for the development of models to predict soil loss 
and slope stability. Trees have a positive effect on soil stabil-
ity on vulnerable slopes (O'Loughlin 1974; Swanston 1974) 
by reducing soil losses through erosion and shallow land-
slides. The network of coarse and fine tree roots close below 
the surface binds soil together, while sinker roots anchor the 
surface layers to the deeper, more stable soil mass (Zhou et 
al. 1997). However, windthrow of trees has a negative effect 
on soil stability and may be the most important factor in 
downslope movement of soil on many forested slopes (Schaetzl 
1986). Soil from upturned root—soil plates on steep slopes is 
frequently deposited downslope of the original tree position 
as windthrown trees are harvested or the roots decompose 
(Beatty and Stone 1986). Recently disturbed, unconsolidated 
soil that is unprotected by vegetation can easily be eroded by 
surface water flow (Schaetzl et al. 1990), and water penetrating 
deeper soil horizons from craters formed under overturned 
root—soil plates may trigger shallow slides on unstable slopes 
(Swanston 1974). Increasing pressure on the forest industry 
to conserve soil and minimize sediment input to streams and 
water courses has led to calls for better assessments of the risk 
of soil loss from forested sites (Montgomery and Dietrich 1994). 

Understanding the mechanics of tree anchorage on slopes 
will therefore improve the accuracy of predicting both eco-
nomic loss and soil loss that can result from windthrow 
events. An important development in our understanding of 
tree stability on sloping terrain will be to describe anchorage 
in relation to the direction in which the wind blows during a 
storm, that is, upslope, downslope, or across-slope. Two hy-
potheses were tested in a field investigation: (I) trees on 
slopes are less stable than trees on horizontal terrain and (2) 
the stability of trees on slopes will vary with the direction of 
overturning. Trees on a steep (ca. 30°) slope were mechani-
cally overturned either upslope, downslope, or across-slope 
and their resistance to overturning was compared with that 
of trees grown on a horizontal part of the site with similar 
soil. Critical wind speeds required to overturn these trees 
were calculated using the GALES method (Gardiner et al. 
2000) modified for forest stands on slopes. Wind stability 
was compared among directions and a sensitivity analysis 
was performed to examine the relative influence of changes 
in parameters influenced by slope. In addition, measurement 
of uprooted root—soil plate dimensions allowed us to quan-
tify the soil that could become available for erosion follow-
ing windthrow of trees on sloping terrain. 

Materials and methods 

Site details 
Thirty-six Sitka spruce (Picea sitchensis (Bong.) Carr.) 

trees were mechanically overturned in Leanachan Forest near 
Fort William, west Scotland (56°51.95'N, 4°58.40'W). The  

site was an almost uniform north-facing slope, 300 in wide 
and 25 in deep, with an inclination of between 26° and 33° 
and with horizontal areas at top and bottom. Trees were 
planted on the site in 1962 as 2-year-old "1+1" transplants. 
Al the time of the investigation (November 2001), mean tree 
height was 22.3 in and mean diameter at breast height (DBH) 
was 23.4 cm. Trees were spaced, on average, 2.66 in apart, 
representing 1415 stemsha' in plan view, which equated to 
2.86 in between trees and 1225 stems-ha -1  parallel to the 
slope. Weather before and during the field investigation was 
wet, with periods of light to moderate rainfall. The soil on 
both the sloping and the horizontal areas was a mineral soil, 
classed as a surface-water gley (Kennedy 2002), with some 
induration in places. Typically, the soil profile consisted of a 
thin leaf litter over a gleyed humic loamy A horizon (15-
25 cm thick) over a well-drained loamy B horizon (40-
100 cm thick) that extended down to an induration or to 
rock. The soil had a predominantly silty loam texture. Wind, 
monitored on open moorland I km from the experiment site 
between 1988 and 1999, had a prevailing direction of 255° 
from north. 

Treatments 
We selected a total of nine trees for each of four pulling 

treatments: pulled across-slope, pulled downslope, pulled 
upslope, and pulled on the horizontal part of the site. In the 
across-slope treatment, four trees were pulled east and five 
were pulled west. In the horizontal treatment, trees were 
overturned in random directions. To obtain a consistent range 
of tree sizes in all pulling treatments, we selected three dom-
inant, three codominant, and three subdominant trees for 
each treatment. For the purpose of sample selection, domi-
nant trees were defined as being close to the upper quartile 
of DBHs of trees measured in tariff plots, subdominant trees 
had DBHs close to the lower quartile, and codominant trees 
had DBHs close to the median. Trees were selected ran-
domly within these constraints from across the site. 

Measurements and instrumentation 
The site slope angle was measured around each selected 

tree, and digital biaxial clinometers (Applied Geomechanics, 
Santa Cruz, California, USA) were fixed to the stem 1.3 in 

above the base and at half tree height. Neighbouring trees 
were felled where necessary to avoid crown interference dur-
ing tree-pulling. A chainsaw-powered winch (Habegger, Thun, 
Switzerland) was attached to an anchor tree using a 2 in long 
polyester round-sling (safe working load 5 t). Each anchor 
tree was selected to be more than one tree length in the se-
lected direction from the pull tree. A load-cell (maximum 
load 3 t) was positioned on an 8.2 mm diameter steel cable 
between the winch and the pull tree. Both clinometers and 
the load-cell were connected to a data logger. To protect the 
operator when the tree was pulled downslope, the winch was 
offset by up to 90° by attaching a pulley block to another 
tree in the pull direction. The pulling cable was fixed to the 
pull tree with a polyester round-sling placed on the tree at 
approximately half tree height. The distance between the an-
chor tree and the pull, or offset, tree was recorded. The angle 
of the cable was measured from the winch attachment point 
(or pulley on the offset tree) to the attachment point on the 
pull tree (Fig. 1). 
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Fig. 1. Tree-pulling on a slope, showing an example of a tree being overturned upslope (not to scale), and the method for calculating 
the critical turning moment using a coordinate system. A. B, and C are the stem base, cable-attachment point, and centre of mass on 
the pull tree, respectively; T is the applied force; 0 1  is the angle of the pull cable, 02 is the stem-base angle, and 03  is the stem angle at 
half tree height. 
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After a zero reading was taken from the load-cell and both 
clinometers, the strain was taken up and the tree was pulled 
over using the winch. The tree stem angles, measured from the 
clinometers, were recorded by the data logger when the maxi-
mum load was reached. Once the tree was on the ground, crown 
spread was measured and instrument- and cable-attachment 
points were marked on the stem, as was the position of the 
lowest live-branch whorl. Live and dead branches were re-
moved and weighed in bundles by hanging them from a 
weighing balance suspended under a 3 m high steel tripod. 
The height of the winch-cable attachment point, height of at-
tachment of both clinometers, position of the lowest live-
branch whorl, and height of the tree were then measured on 
the debranched stem. Stem diameters were measured at l-m 
intervals up the stem from the base using measuring callipers 
with 1-mm resolution. A I m long central section of the 
stem was removed for green  density (i.e., fresh mass per unit 
green volume) determination. The dimensions of the root—
soil plate were then measured as shown in Fig. 2, that is, 
width (w), distance from the top edge of the plate to the tree 
centre (d1 ), distance from the tree centre to the hinge (ci,), 
and soil depth at 3 points in a line across the plate at 0.5 x 
d1 . The edge of the plate was defined as being where soil 
was no longer held by the roots (see Fig. 2). The volume of 
the root—soil plate was estimated from these measurements, 
using the mean plate depth and assuming a half-ellipse shape 
for the area above the stem centre, and a rectangular shape 
below the stem centre. 

Calculation of the critical turning moment 
The relative positions (x, y coordinates in the vertical plane) 

of the base of the anchor tree, the hinge, the attachment 
point, and the centre of gravity of the pull tree were all de-
termined for the moment in time when the maximum load 
was reached (Fig. I). From these, the length of the complete 
lever arm (stem plus part of the root—soil plate) and an accu-
rate measurement of the angle of the pull-cable at maximum 

Fig. 2. Measurement of the root—soil plate: plate width (w), dis-
tance from the stem centre (s) to the windward edge (d 1 ), dis-
tance from s to the hinge (d,), and plate thickness at 3 points 
(indicated by arrows a—c) across the plate. 

root-soil 	
stem 

plate 
di 

S 	 surface 
,lateral rocts ~ 

crater 

load (0) were calculated. The stem and root—soil plate were 
considered to be rigid for the purpose of this calculation. 
Critical turning moments were calculated at the stem base 
and the hinge point (h), excluding trees that snapped as they 
overturned. The inclination of the stem was taken to be the 
mean of angles at the tree base (2)  and at half tree height 
(93) when the maximum load was reached. The average hinge 
distance was used for three trees for which the hinge dis-
tance could not be measured on site. Critical turning mo-
ments were calculated as follows: 

[I] 	MUPp II Cd = T(YB' - YA') + TY(xB. - XA) 

[2] 	Mtotai  = Mapp Ii ed + W(X c  - XA .) 

where XA',VA'  represents the coordinates (in) of the stem base 
or hinge position, XB',YB'  the cable-attachment point, and 
the centre of gravity of the tree at the time when maximum 
force was reached (see Fig. 0. MappIjed  (N.m) is the critical 
turning moment applied by the winch. T  (N) and T%. (N) are 
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the horizontal and vertical components of the applied force, 
respectively, calculated from the wire pull angle at the time 
when the maximum applied load was reached (Fig. 1). Mtotai  
(N.m) is the total critical turning moment of both the force 
applied by the winch cable and the force resulting from the 
overhanging weight of the leaning tree. W (N) is the total 
weight of the tree. The centre of gravity of each tree was 
calculated from the mass data from the tree sections, with 
the crown mass added at half crown depth. 

Calculation of critical wind speed 
Critical wind speeds at which average trees in a stand 

would uproot (U,0j or snap (Usnap) were calculated using 
the GALES method (Gardiner et al. 2000) for the treatments 
that showed significant differences in anchorage. This analy-
sis was based on mean site conditions, that is, 22.3 in tall Sitka 
spruce with DBH 23.4 cm at a spacing of 2.86 in on a slope 
of 30°. These calculations assumed that only anchorage pa-
rameters varied between treatments. The equations given by 
Gardiner et al. (2000) for trees on flat ground were modified 
for slopes, and an idealized slope was assumed, where the 
wind flowed parallel to the ground and was not influenced 
by topographic obstacles. The maximum bending moment 
applied to the base of the average stem in a stand by an 
hourly averaged top wind speed in the canopy (Ub,  m-s') 
was calculated using the following equation: 

2 

[3] 	M n. = dpG[Duhk 1 
I 

 

In I 	I 
[ I Zo 

where d (m) is the zero plane displacement height, p 
(1.226 g.m 3) is air density, G (dimensionless) is a wind-gust 
factor (the ratio of maximum to mean bending moment), D 
(m) is the average spacing between trees, k is Von Karman's 
constant (= 0.41), h (m) is canopy height, and ZJ (m) is aero-
dynamic roughness (Gardiner et al. 2000). 

The constants k and p are not influenced by slope condi-
tions. D is usually obtained from assessments of the number 
of trees per hectare, either from field surveys or aerial pho-
tography and assumes the ground to be horizontal. We there-
fore adjusted the calculation of D to make it representative 
of spacing across the real surface area of our sloping site. G 
may be expected to vary between horizontal and sloping ter-
rain, and between parts of a slope, but as this variation has 
not been quantified, G was calculated as described by Gardi-
ner et al. (1997) for horizontal terrain, assuming an airflow 
that is parallel to slope. The values of z0 and d were derived 
from h and a frontal area index (X, dimensionless) with sim-
ple analytical expressions developed by Raupach (1994). 
Rather than being the mean height of the trees, was the 
distance, perpendicular to the slope, between the top of the 
canopy and the ground; X was calculated by dividing the 
crown area of the average tree, assuming a diamond-shaped 
crown profile (Gardiner et al. 2000), by the area of the sur -
face the tree occupied on the ground. 

A sensitivity analysis was performed to examine the per-
cent changes in Uuproo*  and Usnap  predicted using the GALES 
method that result from variations in parameters that may be  

affected by slope, that is, slope inclination, G, crown area, 
stand density, and stem deflection at maximum turning mo-
ment. Each parameter was increased and reduced by 20% as 
in Gardiner et al. (2000). Changes in crown area (±20%) 
were calculated using a proportional change in width and 
depth. Changes in stem deflection were increases or de-
creases in the tree's deflection from vertical at the time 
when maximum load was reached. 

Statistical analysis 
Means of above- and below-ground tree components were 

compared using one-way analysis of variance with "across-
slope", "downslope", "upslope" and "horizontal" as the treat-
ment structure. Critical turning moments were compared 
between treatments (excluding snapped trees) using linear 
regression analysis with stem mass as the covariate. Regres-
sion lines were compared as a-priori contrasts between trees 
pulled upslope, downslope, and across-slope, and between 
trees grown on the slope and on the horizontal. 

Results 

Most trees in all treatments were uprooted, exposing a 
well-defined root—soil plate, but the stems of three trees 
pulled across-slope and two from each of the other treatments 
snapped as they were winched over. Aboveground character-
istics were similar among trees subjected to the different pull 
treatments (Table 1). The root—soil plate depth of trees pulled 
downslope was greater than the depth of those in the other 
treatments (p = 0.02). The estimated volume of the root—soil 
plate (Table 1) was greatest for trees pulled downslope and 
smallest for trees pulled upslope (p = 0.04). The overall 
mean root—soil plate volume was 1.44 m 3 . 

The effect of the treatments on the relationship between 
critical turning moment, calculated at the stem base, and 
stem weight is shown in Fig. 3 and Table 2. The intercept 
terms of the regressions were not significantly different from 
zero and were removed to correspond to the convention in 
previous tree-anchorage studies (for example, see Peltola et 
al. 2000; Achim et at. 2005). 

For a given stem weight, no significant difference in the 
critical turning moment was found between trees on horizontal 
ground and those on slopes, that is, the average of across-
slope, downslope, and upsiope (p = 0.98). However, signifi-
cantly smaller moments (Fig. 3, Table 2) were required to 
uproot trees downslope than upslope (p < 0.05). The critical 
turning moments calculated at the hinge point of the root—soil 
plates were slightly smaller than those calculated at the base of 
the Stem for all treatments, but the ranking remained the same, 
with the upslope treatment having the largest moments and 
the downslope treatment having the smallest moments. The 
hinge : stem base ratio of critical turning moments for the 
average tree was 0.91, 0.96, 0.90, and 0.97 for the across-
slope, downslope, horizontal, and upslope treatments, respec-
tively. 

As the only significant difference between critical turning 
moments was between trees pulled up- and downslope, criti-
cal wind speeds for overturning were calculated separately 
for trees pulled in these directions and for all treatments 
combined (Fig. 4). Although there was predicted to be little 
difference in the wind speed required to snap trees upslope 
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Table 1. Tree characteristics and mean critical turning moments calculated at the stem base for different pull treatments. 

Across-slope Downslope Upslope - Horizontal 
Characteristic Mean SE Mean SE Mean SE Mean SE p 
Above ground 
Tree height (in) 22.69 0.50 22.89 0.47 22.95 0.84 20.82 1.02 0.16 
DBH (cm) 23.0 1.5 22.9 1.6 22.4 1.3 23.4 1.5 0.96 
Crown diameter (m) 3.08 0.29 3.07 0.14 3.01 0.28 3.29 0.21 0.85 
Crown depth (m) 11.98 0.75 12.86 0.70 12.22 0.81 11.24 0.71 0.50 
Stem volume (m 3) 0.45 0.07 0.46 0.07 0.46 0.07 0.42 0.06 0.97 
Total stem mass (kg) 422.9 63.7 405.6 60.7 421.5 64.7 368.2 57.0 0.91 
Live crown mass (kg) 66.7 13.7 69.5 14.4 68.3 13.7 69.9 15.4 1.00 
Dead crown mass (kg) 15.1 1.9 19.2 3.9 21.0 4.0 25.5 4.4 0.27 
Shoot mass total (kg) 504.6 77.1 494.3 75.8 510.8 79.3 463.6 73.6 0.97 
Stem wood density (kg.m 3) 945.2 24.9 880.0 28.0 907.3 25.0 849.3 36.1 0.13 

Below ground 
Max. root depth (m) 0.94 0.10 1.24 0.14 0.92 0.07 0.89 0.07 0.06 
Depth of root-soil plate (m) 0.66 0.11 0.78 0.11 0.43 0.04 0.48 0.04 0.02 
Area of root-soil plate (m 2 ) 2.40 0.47 2.52 0.22 1.90 0.37 3.05 0.49 0.25 
Volume of root-soil plate (m) 1.42 0.21 2.01 0.36 0.82 0.18 1.51 0.28 0.04 
Distance of hinge from stem centre (m) 0.57 0.06 0.48 0.04 0.59 0.07 0.70 0.08 0.17 

Critical turning moment 
Applied critical turning moment at stem base (kN.m) 38.818 7.452 28.992 5.444 38.640 6.567 34.249 4.632 0.64 
Total critical turning moment at stem base (kN.m) 46.987 8.763 36.501 6.390 47.933 8.427 40.152 5.065 0.64 

Note: Values are given as the mean and standard error (SE). F test p values from ANOVA are given for the comparison between means. The sample 
size is n = 9 per treatment for aboveground characteristics; sample sizes for the other characteristics are given in Table 2. 

Fig. 3. Linear regressions of critical turning moment at the stem base against stem mass. Data exclude trees that snapped during over-
turning, and all regression lines are fitted through zero. 
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Table 2. Number of trees uprooted (excluding snapped trees), 
coefficient of the linear regression of critical turning moment 
against stem mass, and R2  for each treatment. 

Pull treatment No. of trees uprooted Coefficient R2  

Across-slope 6 89.4 0.24 
Downslope 7 83.7 0.84 
Upslope 7 110.4 0.91 
Horizontal 7 88.6 0.39 

most sensitive to changes in G and stand density, and ±20% 
changes in these parameters were predicted to alter critical 
wind speed by up to 11%. 

Discussion 

There was no overall difference in the critical turning mo-
ments of trees on horizontal and steeply sloping terrain. 
Based on these findings, therefore, we have evidence to reject 
our first hypothesis and confirm the implicit assumptions in 
predictive models of windthrow (Quine and Gardiner 1998; 
Peltola et al. 1999; Blennow and SalInas 2004) that regres-
sions of critical turning moment against stem mass remain 
unaltered by the terrain on which the stand is located, pro-
vided that soil type is constant. 

Trees in this study were significantly more vulnerable to 
uprooting downslope than upslope, and the difference in crit-
ical turning moment was of the order of 25%. This supports 
our second hypothesis, that the stability of trees on slopes 
will vary with the direction of overturning. Increased an-
chorage of trees when a force is applied in an upslope com-
pared with a downslope direction provides trees with better 
resistance to the stronger winds that tend to occur on the 
windward face of a hill. Mean wind speeds on sites on hilly 
terrain will tend to be lower in a downslope than in an 
upslope direction, owing to the shelter effect on the lee side 
of hills. Airflow tracks the slope closely on the windward 
side of a hill as the wind travels upslope, but the flow com-
monly separates from the slope on the lee side. As a result, 
wind speeds are reduced in the "wake" region and wind di-
rection can sometimes be' reversed if a "separation bubble" 
forms below the separated flow on the lee side (Finnigan 
and Brunet 1995). 

Root—soil plate volume and depth were less for trees over-
turned upslope than for those overturned downslope, directly 
reducing two of the components of tree anchorage defined 
by Coutts (1986): root—soil plate mass and soil strength. The 
increase in resistive turning moment of upslope trees must 
therefore result from increases in either, or both, of the re-
maining two components identified by Coutts (1986), that is, 
the pull-out resistance of roots and the resistance to bending 
of structural roots at the "hinge". Therefore, the observed 
difference between upslope and downslope anchorage could 
result from increased root growth on the downhill side of the 
tree, providing better combined pull-out resistance of roots on 
the windward side of the tree. Alternatively it may result from 
relatively greater structural root development on the upslope 
side, with a corresponding increase in rigidity that would 
move the hinge point farther from the tree and, hence, in-
crease the resistive turning moment (Stokes et al. 1997; Coutts 

Fig. 4. Critical wind speeds required to uproot and snap average 
trees on the site calculated using the modified GALES method 
and compared between those pulled upslope and downslope and 
all treatments combined. 
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et al. 1999; Achim et al. 2003). As structural root mass has 
been found to be greater on the lee side of wind-exposed 
trees (Nicoll and Ray 1996), we might expect to find more 
root mass on the upslope side of exposed trees on slopes. 
Therefore, adaptations of the root system in response to 
wind could explain the increase we found in resistance to 
upsiope overturning. The architecture of the excavated root 
systems from this site was measured and will be described 
in a subsequent paper. It is worth remembering that this 
study examined the stability of trees on only one site that 
was north-facing and may therefore have been relatively 
sheltered. Future studies should examine trees grown on slop-
ing sites that have more exposed aspects. 

The small decrease in critical turning moment calculated 
at the hinge point compared with the stem base results from 
differences in the length and angle of the lever arm induced 
by repositioning of the rotation point. Ideally, tree anchorage 
should be calculated at the position of the hinge rather than 
at the stem base, because this most accurately represents the 
moment resulting from soil and root resistance. However, 
when determining critical wind speed it is important that 
turning moments are compared at a standard point, and turn-
ing moments calculated at the tree base (as in Fig. I) are 
most useful for comparison in risk-assessment tools such as 
ForestGALES. 

In this study, Usnap  was the same for trees pulled up- and 
downslope, but ULproot  was greater upsiope than downslope. 
This indicates that in storms where critical wind speeds are 
reached, more trees on this site may be snapped than up-
rooted in an upslope wind, while more may be uprooted than 
snapped in a downslope wind. However, an improved under-
standing of tree breakage and further modelling of the me-
chanics of tree stability on slopes are required to confirm 
these findings. 

Our sensitivity analysis used the GALES method (Gardi-
ner et al. 2000) to reveal the relative importance of each in-
put parameter that is affected by slope. The smallest effect 
on critical wind speed was caused by changes in stem de-
flection at the time of maximum load. This indicates that 
there was little effect of rotating the stand on the sloping site 
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Table 3. Sensitivity of the prediction of critical wind speed for uprooting (U upr,,t) and 
snapping trees (U5 ) to ±20% changes in factors that may be affected by slope, using the 
modified GALES method and based on mean characteristics for the site. 

Uuproot  U, nap  

Variable % change Upslope Downslope Upslope Downslope 

Slope +20 6.0 5.9 6.4 6.4 
-20 -.4.4 -4.3 -4.7 -4.6 

Gust factor (G) +20 -8.1 -8.1 -8.2 -8.2 
-20 11.0 11.0 11.0 11.0 

Crown area +20 2.5 2.5 2.4 2.4 
-20 -2.9 -3.0 -2.8 -2.8 

Stand density +20 10.6 10.6 10.5 10.5 
-20 -11.4 -11.4 -11.3 -11.3 

Stem deflection +20 1.8 1.8 1.9 1.9 
-20 -2.0 -2.0 -1.9 -1.9 

to be horizontal for the purpose of calculating critical wind 
speed. Equally, our simple estimation of crown area, using a 
diamond shape, appeared to be adequate, as a 20% change in 
crown area resulted in a change of only <3% in critical wind 
speed. Of the remaining parameters, slope and stand density 
were relatively important in the calculation, but should be 
measurable with a high level of precision. The other remain-
ing parameter, G, the gust factor, made the most important 
contribution to the calculation, with a change of up to 11% 
in critical wind speed resulting from a 20% change in G. As 
our calculation assumed G to be the same on a slope as on 
horizontal terrain, the sensitivity analysis indicates that mea-
surement or modelling of G in complex terrain should have 
high priority in future tree-stability research. 

The findings of this study also have implications for soil 
conservation and for the prediction of soil loss from forest 
sites during and following storm events. In some forest areas, 
the greatest loss of soil from forest sites is reported to result 
from root-soil plate overturning during windthrow (Schaetzl 
1986; Schaetzl et al. 1990). On our experimental site, aver-
age root-soil plate volume was calculated to be 1.44 m 3 . The 
average calculated root volume of trees on this site was 
0.11 m3  (B.C. Nicoll, S. Berthier, A. Achim, K. Gouskou, F. 
Danjon, and L.P.H. van Beek, unpublished data), that is, 
7.6% of the total root-soil plate volume, leaving 1.33 m 3  
soil per root-soil plate. Therefore, the potential volume of 
soil displaced on this sloping site with 1415 stems-ha' if all 
trees were uprooted is in the order of 1882 m 3 ha 1 . This is 
the maximum volume of soil that could be displaced down-
slope from root-soil plates if all trees were uprooted during 
a storm, and if none of the soil was to fall back into the crat-
ers. However, the volume of soil lost from the site may be 
expected to be greater if the initial disturbance was to lead to 
further erosion or slope instability, as described by Swanston 
(1974). 

Displacement of soil as root-soil plate overturn will have 
some benefits for subsequent regeneration and growth of 
stands, in that the inversion of plates and mixing of soil 
(Schaetzl 1986) can provide nutritional benefits to trees planted 
or grown from seed on the site (Clinton and Baker 2000; 
Ruel and Pineau 2002). Overturning of root-soil plates can 
also contribute to accumulation of carbon in mineral-soil ho-
rizons (Kramer et al. 2004). However, soil conservation is a  

vital part of sustainable forestry practice (Carling et al. 2001), 
and the loss of large quantities of soil from forest stands on 
sloping terrain, with related damage to the ecology of water 
courses (Nisbet 2001; Stott and Mount 2004), should be 
avoided where possible (Forestry Commission 1993). The 
potential for increased soil erosion associated with extensive 
windthrow indicates that less risk of overturning should be 
tolerated on steeply sloping terrain, and this in turn has im-
plications for the structure of forests that should be main-
tained in such areas. 
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