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Abstract

The growth and development of an ovarian follicle is a long and complex process during
which time the few successful follicles that are permitted to ovulate must pass through
several checkpoints and selection mechanisms. The final process of selection, achieving
the appropriate ovulatory number, is referred to as 'dominance'. To date, most of the

research into follicular dominance has concentrated on its endocrine regulation. While
endocrine control of follicle dominance can explain much of the later processes that
occur (such as ensuring that subordinate follicles ultimately undergo atresia), intra-
ovarian interactions are also involved in its regulation. Follicle-follicle interactions have
various possible roles both at early stages when follicles are being selected from

amongst a cohort or cluster of follicles and/or later, when dominant follicles are 'holding
back' challengers. Furthermore, intra-follicular processes also mediate the response of a
follicle to endocrine changes. These intra-ovarian processes have received less attention
than endocrine changes, perhaps because they are less amenable to investigation. Further

understanding of intra-ovarian interactions will help us to determine how each species
selects the correct number of follicles for continued development during an ovulatory

cycle.
In an attempt to begin to extend our knowledge in this area, this thesis had two

principle goals: I. To establish if direct contact between follicles may play a part in
the selection of the ovulatory follicle(s) in vivo, and if this appeared to be the case, II.

To investigate the precise nature of direct follicle-follicle communication in vivo
and in vitro. I. To investigate how follicles are positioned in respect to one another in

vivo, histological sections from a diverse range ofmammalian species were examined,
which clearly demonstrated that follicles are closely positioned in the ovary, making
direct follicle-follicle contact mediated selection feasible. Furthermore, a numerical

analysis ofmouse ovaries was undertaken and revealed that pre-antral follicle 'clusters'
are the norm in young mice. II. Investigations branched at this point, a) Culture

experiments that regulated follicle-follicle contact determined that there was not an

absolute requirement for contact to establish dominance, providing evidence for a very
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locally acting diffusible factor, b) A molecular approach was taken in an attempt to

identify possible genes involved in juxtacrine communication between follicles, c) Other

experiments examined the role of FSH and LH as survival factors for follicles at

different stages of development, using apoptotic laddering of genomic DNA as a

sensitive assay for atresia. Early antral follicles were unable to utilise LH and became

apoptotic in low levels of FSH, in contrast with the more mature antral follicles that
remained healthy when provided with LH in these low FSH concentrations. These
observations have implications for follicle selection, with the possibility that inter-
follicular communication could result in a subordinate follicle being held in a retarded

stage of development rendering it vulnerable to decreased systemic FSH.
In conclusion this thesis has demonstrated that geography-dependent follicle-

follicle communication is feasible in vivo. Culture experiments demonstrated that it has a

diffusible component and can be effected by the gonadotrophin environment of the
follicle. Additionally the Notch family of neuro-genes were shown to be present in the

ovary, although their expression and function remains to be clarified.
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Chapter 1

1.1. FORMATION OF THE OVARY

1.1.1. Migration of the primordial germ cells to colonize the gonad
Primordial germ cells (PGCs) can be seen outside the embryo in the epithelium of the

yolk sac on embryonic day 8 (E8) in the mouse and at about 3 weeks post-fertilization in
the human. From here they migrate through the dorsal mesentery of the hind gut,

reaching the genital ridge (mouse: El 1-12; human: ~E30) and colonizing the indifferent

gonad (Snow and Monk, 1983). The PGCs have defined pseudopodia and migrate by
amoeboid movement, possibly directed by the secretion of a chemotactic substance from
the genital ridge. It is the mesenchymal tissue of the embryonic indifferent gonad that

gives rise to the somatic components of the ovarian follicle.

1.1.2. Proliferation and quiescence

Following invasion of the indifferent gonad, the PGCs lose theirmotility (Donovan et

al., 1986) and both they and the somatic cells undergo rapid proliferation (mouse: Snow
and Monk, 1983). The mitotically active PGCs are now termed oogonia and continue to

proliferate until shortly before birth when influenced by meiosis initiation factor, mitosis
terminates and the oogonia enter the first meiotic division thereby becoming primary

oocytes. During the first meiotic prophase the primary oocytes become surrounded by
clusters of somatic mesenchymal or pre-granulosa cells (Gondos, 1970) that secrete a

basal lamina thus forming the primordial follicles. The timing of this process differs
between species and has been reported to occur both pre-partum (human: Gillman, 1948;
rat: Mauleon, 1978) and post-partum (mouse and rabbit: Peters, 1978; rat: Ueno et al.,

1989). At this stage meiosis is arrested in diplotene of the first meiotic prophase

(Bacharova, 1985), the chromosomes being enclosed in a nuclear membrane and
referred to as the germinal vesicle. The majority of oocytes found within the adult ovary
are housed in these primordial follicles (mouse: Peters et al., 1973a; human: Forabosco
et al., 1991) and can remain in this quiescent state for the duration of a females'

reproductive life span.
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Chapter 1

1.1.3. Early attrition of PGCs and primordial follicles

During both mitosis and meiosis vast numbers of PGCs are lost by atresia resulting in
less than a third ofpotential follicles being formed (rat: Beaumont and Mandl, 1962;
reviewed: Hirshfield, 1991a). During the formation of primordial follicles those PGCs
that are not surrounded by somatic cells (50-70% in the rat) will also degenerate (Olino
and Smith, 1964). This loss of oocytes continues with the attrition of primordial follicles
in early post-natal life but is rarer in older animals (mouse: Edwards et al., 1977). The

molecular, biochemical and cellular characteristics of the atretic process will be
considered below.
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1.2. GENERAL MORPHOLOGY OF THE OVARY

Chapter 1

Histological studies of the bovine ovary (which is similar to that of the human) show
that the ovary contains at least five zones (Vigne et al., 1994; van Wezel and Rodgers,

1996). Zone 1, the ovarian surface, is covered by epithelial cells (ovarian surface

epithelium, OSE) which are separated from the ovarian stromal cells by a dense basal
lamina. Both the OSE and the stromal cells appear to contribute to the production of this
extra-cellular matrix (Nicosia and Nicosia, 1988). Encapsulated by this continuous basal

lamina, zone 2 contains a sparse population of ovarian surface stroma cells (the inner
tunica albuginea), frequently spindle shaped and parallel to the epithelium (van Wezel
and Rodgers, 1996). Zone 3 cells (the outer tunica albuginea) tend to be more rounded
and have a less regimented orientation. Both zones 2 and 3 are rich in matrix

components. Similarly, zone 4 is rich in collagen fibrils, but unlike the more cortical

areas, has a denser stroma cell population. Large numbers of primordial and primary
follicles are found in this region. Zone 5 contains less densely arranged stroma cells.

Large antral follicles are observed in this region (van Wezel and Rodgers, 1996).

Analogous zones have not been identified in the mouse ovary.
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1.3. FOLLICLE STRUCTURE

As detailed previously, the majority of follicles found within the ovary are at the

primordial stage and consist of an oocyte arrested in prophase I of the first meiotic
division, surrounded by flattened pre-granulosa cells and a basal lamina (Figure 1.1). In
the young mouse these follicles are found in closely packed clusters, at synchronized

stages of development and frequently connected to each other by inter-follicular bridges

(Zamboni and Merchant, 1973). An observation also found in the cat ovary (J. Mullan,

personal communication. Figure 1.2). The oocytes in these follicles are approximately

m1

fa

Figure 1.2 Photomicrograph of a string of cat primordial/
primary follicles. Scale bar represents 50 pm. Kindly
supplied by J. Mullan.

15pm in diameter in the mouse and 30pm in humans (Gosden and Telfer, 1987). Thecal
cells are generally regarded as being indistinguishable until the follicle attains a multi-
laminar stage, although recent work has indicated that pre-thecal cells associated with a

specific follicle may also be present from the outset of follicular growth, at least in the
rat (Hirshfield, 1991b). A steady trickle of primordial follicles become activated and
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Chapter 1

leave the resting pool, forming primary follicles. Due to the avascular nature of zone 4
where the primordial follicles are located, locally produced growth factors are more

likely to regulate this process than systemic factors (Greenwald and Terranova, 1988;
van Wezel and Rodgers, 1996; Hirshfield, 1991a).

1.3.1. The oocyte and granulosa cells

During pre-antral development, the oocyte enlarges and the zona pellucida is formed
between the oocyte and the granulosa cells (Figure 1.1). At this time the granulosa cells
become cuboidal and are the site of rapid synthesis ofmatrix components, including the
basal laminae. As the follicle continues its growth it acquires a fluid-filled antral cavity.
Antral formation begins when the granulosa cell population numbers around 2000 cells
for all species studied (Gosden et al., 1993). It is during antral development that

granulosa cells differentiate to form two major populations, the mural granulosa cells
which are proximal to the basal lamina, and the cumulus granulosa cells which surround
the oocyte (cells in the stalk may possess characteristics of both). The granulosa cells

regulate oocyte development, for example, 85% of oocyte metabolites are of granulosa
cell origin (Heller et al., 1981). Conversely the mural granulosa cells are the recipients
of instruction from the oocyte, e.g. GDF-9 an oocyte-secreted factor that is involved in

granulosa cell development (Dong et al., 1996).

1.3.2. Theca cells

The mature follicle has many associated theca cells (Figure 1.1). The highly vascularised
theca interna, the layer most closely associated with the convex surface of the basal

lamina, is readily identifiable, the cells containing prominent lipid droplets and being
more rounded than the theca externa (O'Shea, 1971). There is a marked change in extra¬

cellular matrix composition at the interface between the interna and externa.

Distinguishing between theca externa and stroma interstitial cells is hampered by the

presence of an intermediate population of cells bearing both thecal and stromal
characteristics (O'Shea, 1971). Whether these cells constitute a distinct population or are

in the process of differentiating from stroma to theca cell types is unclear. In general, the
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Chapter 1

theca externa consists of several layers of fusiform cells, some ofwhich posses

cytoplasmic processes. Tight junctions are found between the cells. Examining the
theca/stroma interface at a molecular level shows a clearer division of cell type. Long

term in vivo infusion of [ HJthymidine into rats resulted in a distinct boundary between
cell compartments, the theca cells being considerably more active than their neighbours

(Hirshfield, 1991b). Whether the intermediate population identified by O'Shea (1971)
are labelled or not is unclear. Similarly, topical autoradiograph localization studies can

show distinct compartmentalization of the theca externa (e.g. IGF-1 binding sites,

Eckery et al., 1997).
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1.4. THE OVARIAN EXTRA-CELLULAR MATRIX

Chapter 1

In the ovary, as in all other tissues, the extra-cellular matrix (ECM) provides the
architectural framework that supports and compartmentalizes the different cell types.

Increasingly, research is highlighting the additional role of the ECM in regulating cell
behaviour in all aspects of development and maintenance. This seems to be particularly
true of the ovary, a highly dynamic organ which exhibits rapid tissue remodelling

throughout reproductive life (Luck, 1994).

1.4.1. Composition of the ECM
The ECM consists of two principal classes of extra-cellular macromolecules,

glycosaminoglycans usually protein linked to form proteogylcans, and fibrous proteins

(Alberts et al.; 1994, Luck, 1994).

1.4.2. Location of ECM in the ovary

The basal lamina separating the thecal and granulosa cell compartments contains

collagen type IV, laminin, fibronectin and heparan sulphate proteoglycan. During
follicular growth and expansion there is a rapid production of basal lamina, the

regulation ofwhich is unclear. Granulosa cells are capable ofmanufacturing and

assembling the components of a basal lamina in vitro (Rodgers et al., 1995). Recent
evidence shows that there are subtypes of granulosa cells, differing in their abilities to

produce ECM, making the mechanism of basal lamina expansion complex. This may
involve an increase in the number ofECM-secreting granulosa cells, rather than
increased synthesis by each cell (Rodgers et al., 1995; 1996). Despite being less closely
associated with the ECM, the role of possible thecal contribution to the basal lamina
should not be dismissed, as these cells also produce basal lamina components such as

collagen type IV, although these components could be destined for the thecal vasculature

(Zhao and Luck, 1995). During follicle growth, basal lamina undergoes a 30 x 103 fold
increase in the mouse and a 600 x 106 increase in the human (Gosden et al., 1993).
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The follicular theca contains laminin and collagen fibrils types I, III and IV (reviewed by

Luck, 1994) and fibronectin in some species (e.g. sheep: Huet et al., 1997; rat:

Bagavandos et al., 1983). This ECM used to be thought of as primarily supportive, but is
now also considered to act as a binding and storage site for many factors that regulate
the growth, development and function of follicular cells (Armstrong & Webb, 1997;
Mclntush & Smith, 1998).

In the periphery of the ovary, the ovarian capsule and the ovarian surface

epithelium consist of collagen types I, III and IV, with type V also found in the ovarian
surface epithelium (Luck, 1994). Other specialized ECMs in the ovary include the zona

pellucida, the follicular fluid and Call Exner Bodies found in the granulosa cells of some

species and sites of glycosaminoglycan production.

1.4.3. Extra-cellular proteases

ECM is constantly remodeled by the action of extra-cellular proteases, mainly matrix

metalloproteinases (MMPs) (such as collagenase and gelatinase) and the plasminogen

activator/plasmin family (Luck, 1994; Mclntush & Smith, 1998). Around the follicles,

degradation of the ECM results in release of sequestered ovarian factors. Inhibition of
these proteases, such as through the action ofTIMPs (tissue inhibitors of

metalloproteinases), maintains the ECM and hence favours retention of growth factors
and cytokines. This site of storage and release may represent a fundamental control
mechanism of follicle development.
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1.5. STEROIDOGENESIS

The ovary is the principal site of oestrogen production in the female body, with up to

90% of systemic oestrogen at times being produced by the one, dominant follicle in the
human (Hillier et al.,1994). The principal oestrogens, oestradiol 17(3 (E2) and oestrone,
have crucial roles in reproductive function, including stimulation of the secondary
sexual characteristics during puberty and the selection of follicles destined to ovulate
each ovulatory cycle. Oestradiol is produced in the ovarian follicles (Figure 1.3) by an
interaction between granulosa and theca cells known as the 2-cell, 2-gonadotrophin

theory (Armstrong and Dorrington, 1979), as described below.

Theca cell Granulosa cell

Figure 1.3 The two-cell two-gonadotrophin theory for oestrogen (E2)
synthesis. LH/IGF stimulates androgen synthesis in the theca interna. The
androgen moves to the granulosa cells which convert it to oestrogen,
stimulated by FSH and later LH (after Hillier 1991).

1.5.1. Production of androgen in the theca cells
The vascularised theca interna is able to convert systemic acetate and cholesterol to

androgen (Gwynne and Strauss, 1982). C2i steroids (progestagens) are converted to C19
steroids (androgens) in the theca cells by the cleavage of the C17-C20 bond by

cytochrome P450 (P450Cn), expressed by the CYP17 gene (Nebert 1991). This is
the rate-limiting step in androgen synthesis. P450cn is regulated by LH, via its binding
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to LH receptors located on the theca cells, during antral development (Erickson et al.,

1985; Richards et al., 1987). This binding activates cAMP / protein kinase A mediated

signalling, ultimately catalysing the steroidogenic conversion. In vitro experiments have
demonstrated that IGF-1 can enhance both basal and LH stimulated androgen production

(rat: Cara and Rosenfield, 1988; human: Hillier et al., 1991) acting via IGF-1 receptors

(Bergh et al., 1993). The resultant androgens either enter the systemic circulation

following drainage into the venous effluent or pass through the granulosa cell layer
towards the antral cavity.

1.5.2. Production of oestradiol in the granulosa cells

As granulosa cells lack P450cn, they are unable to synthesize androgens themselves,

however, ifprovided with an androgen substrate (i.e. from the neighbouring theca cells)

they are suitably equipped to metabolize it further (Tamura et al. 1992). Another

cytochrome P450, aromatase (P450arom), is expressed exclusively in the granulosa cell

compartment (particularly the mural cells) by the CYP19 gene (Nebert et al., 1991),
where it is regulated by FSH (Hickey et al., 1988; Whitelaw, 1992). Following

activation, P450arOm converts androstenedione into oestradiol.
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1.6. ATRESIA, AN APOPTOTIC PROCESS

Chapter 1

Greater than 99% of follicles that are laid down in the developing ovary are destined to

an atretic fate (Byskov 1978). This is an essential process that ensures that only the
correct number of oocytes reach maturity and are ovulated in each cycle. While much
debate and research attempts to gain an understanding ofwhat regulatory signals and
mechanisms determine which follicles will become atretic, and conversely which will

ovulate, it is well established that atresia itself is an apoptotic event (Tilly et al., 1991;
reviewed: Hurwitz and Adashi, 1993; Hsueh et al., 1994; Tilly, 1996; Tilly 1998).

Apoptosis is a clearly defined process of physiological cell death, the mechanisms of
which show conservation across all species in the animal kingdom. Since the term was

first coined and the differences between apoptotic and necrotic cell death distinguished

(Kerr et al., 1972), there have been many comprehensive reviews detailing the apoptotic

process and its various roles in tissue regulation (e.g. central nervous system: Naruse and

Keino, 1995; developing limb bud: Hurle et al., 1996). The 'classic' biochemical and

morphological markers of a cell undergoing apoptosis are detailed in Table 1.1.

Phase I Internucleosomal cleavage of nuclear DNA

Nuclear and cytoplasmic condensation
Membrane 'blebbing'
Formation of apoptotic bodies

Phase II Release of apoptotic bodies

Phagocytosis by neighbouring cells / macrophages

Table 1.1 Markers of apoptotic cell death

Long before the documentation of the apoptotic process and its subsequent widespread

'discovery' in virtually all mammalian tissue, detailed morphological and histological
examination of ovaries revealed characteristics that we would now attribute to apoptosis.
One of the first morphological markers of a follicle undergoing atresia is the appearance
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ofpyknotic nuclei in the granulosa cells most adjacent to the antral cavity. This is due to
the condensation ofnuclear DNA into caps at the nuclear periphery, and as such

represents one of the key steps during Phase I of apoptosis. A further atretic process,

karyorrhexis, has been reported (Freeman, 1988) which is equivalent to nuclear

disruption and subsequent formation of apoptotic bodies (Hirshfield, 1989). In the atretic
follicle these are released into the antral follicular fluid where they are phagocytosed by

macrophages or macrophage-like granulosa cells (Hay 1976), an homologous

process to apoptotic Phase II. More recently, investigators have examined ovarian tissue
with the specific aim of looking for apoptosis. An early biochemical marker of this

process is the generation of (185)n base pair oligomers from the nuclear DNA (Figure

1.4). This occurs as a result ofCa++/Mg++-dependent endonuclease, DNase I (Boone
al., 1995; Boone and Tsang, 1997), cleaving the DNA duplex in the vulnerable linker

Figure 1.4 Laddering of nuclear DNA A. Vulnerable linker regions of DNA
either side of nucleosomal cores are cleaved by DNase I. B. The digested DNA
can be extracted and run by agarose gel electrophoresis and viewed with a
suitable visualisation protocol.

regions either side of nucleosomal cores comprising ofhistone proteins (Wyllie et al

1986). Where the duplex is in contact with the histone proteins it is afforded protection
from the endonucleases, sparing approximately 185 base pair (bp) sections ofDNA.

14



Chapter 1

When DNA from apoptotic tissue is extracted and run by electrophoresis on an agarose

gel a characteristic 'laddering' pattern is seen when the DNA is visualised, each 'rung'
of the ladder representing a stretch of protected DNA, i.e. 185 bp, 370 bp, 555 bp, etc. It
is thought that Ca++/Mg++ endonuclease activity is inhibited by Zn++(e.g. Giannakis et

al., 1991) so it is likely that the intra-cellular ratio of Ca++/Mg++ to Zn++ may be the
determinate as to whether a cell undergoes apoptosis or not. This fine balance of intra¬
cellular ions may represent a conserved mechanism of apoptotic control common to all

cells, with proceeding signal transduction cascades varying between different cell types
and physiological environments.
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1.7. DEVELOPMENT OF FOLLICLES: CHECKPOINTS AND SELECTION

1.7.1. Resumption of follicle growth
A constant trickle of quiescent follicles from the primordial resting pool continually
resume growth and development. The factors that control this process are unknown but
it has been shown to be independent of gonadotrophic support (Peters et al., 1973b).

Upon the resumption of growth the granulosa cells begin to proliferate and 'round up' to
form a cuboidal shape, and the oocyte exhibits a dramatic increase in cytoplasmic
volume and nuclear content (Lintern-Moore and Moore, 1979).

1.7.2. Reaching the late pre-antral / early antral stage: temporal selection
Most follicles will develop at least until the acutely FSH-dependent early antral stage. At
that point, if FSH levels are low the follicles will undergo atresia (Hirshfield, 1991a).

Conversely, if FSH levels are suitably elevated at that time (in response to the decline in

oestrogen production from the regressing corpus luteum of the previous cycle: Le
Nestour et al., 1993), a certain number of follicles in the cohort will continue

development to the later antral stages. This is probably the first process of selection
which follicles undergo after leaving the resting pool and it is temporally regulated, i.e.
if a follicle reaching the FSH-dependent stage finds itself in the 'window' when FSH is
elevated it can proceed to the next developmental stage. Although temporally selecting
follicles for a relatively discreet period of the oestrous cycle, work on follicle
recruitment in the pig has shown that there can be considerable heterogeneity in terms of

morphology and biochemical activity among the recruited cohort (Grant et al., 1989).
The implications of this work are that there may already be a degree of selection

amongst the cohort at this stage of the developmental pathway. Despite significantly

reducing the number of contenders, the number of follicles in the cohort that continue to

develop is greater than the desired ovulatory number, so a further process of reduction
occurs.
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1.7.3. Antral development and the emergence of dominance
The second phase of selection involves the emergence of dominant follicles amongst the

growing cohort. Confusion frequently arises when making comparisons between multi-
and mono- ovular species although the processes involved are broadly similar. The key
difference is the extent of the final stage of selection: the emergence of the dominant

follicle(s). In cattle and humans the final selection process results in just one follicle

attaining dominance in comparison to 6-8 in mice and rats. Henceforth I shall refer to
this second selection process as follicular dominance. Dominant follicles continue to

the final stages of development while the remaining subordinate follicles in the cohort

ultimately undergo atresia and regress.

The emergence of dominant and subordinate follicles is the result of complex

interplay between a range of factors, and our understanding ofmany of these is still

poor. I have defined follicular dominance as having two principle components: indirect
endocrine actions and direct intra-ovarian regulation. The latter can modulate endocrine

regulation of dominance within a follicle (intra-follicular) or can initiate or exacerbate
differences between follicles (inter-follicular).

1.7.3.1. Endocrine action via the hypothalamic-pituitary system

This is the aspect of follicular dominance into which most research has been conducted
to date. The larger follicles in a cohort indirectly cause the cessation of growth and

development in subordinate members of the same cohort by releasing increasing levels
of oestradiol and inhibin into systemic circulation (Zeleznik and Hillier, 1984; Gibbons
et al., 1997). These act on the hypothalamic-pituitary system to decrease FSH
concentrations to levels that will not support the continued growth and development of
the highly FSH-dependent, less-developed subordinate follicles (Brown, 1978). The

slightly more mature follicles that initiated the fall in FSH will withstand this decline in

trophic support due to an up-regulation in functional LH receptors (Webb and England,

1982; Ireland and Roche, 1983) coupled to the aromatase systems in granulosa cells, and
a possible increase in FSH receptor levels (Ireland and Roche, 1983; Zeleznik and

Hillier, 1984). The ovary is also the site of extremely high levels of angiogenesis (for
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recent review, see Redmer & Reynolds, 1996), and the dominant follicles acquire more

vascular theca perhaps due to an increase in bFGF, positively correlated with oestradiol
levels (Schams et al., 1996). This allows dominant follicles to obtain an increased

uptake of serum gonadotrophins (Zeleznik et al., 1981). The dominant follicles have,

therefore, several mechanisms for sequestering more of the available gonadotrophins
and surviving the decline in circulating FSH levels. In contrast, subordinate follicles are

highly susceptible to a decline in circulating gonadotrophins: granulosa cells undergo

apoptosis, and follicular atresia results (Hughes and Gorospe, 1991; Hsueh et al., 1994;

Tilly, 1996; Tilly, 1998).
It seems likely that the FSH decline is the major endocrine selection mechanism

by which the ovulatory quota is determined, with dominant follicles proceeding to

ovulation and subordinate follicles being forced down the atretic pathway. However, I
believe that this mechanism alone fails to adequately explain how the appropriate
number of follicles first emerges as dominant.

1.7.3.2. Endocrine action between ovaries

Ovulation had been considered to occur from alternating ovaries in mono-ovular species

since original observations by Riihl (1925), an opinion bolstered by appearances in

seminal reproductive texts (e.g. Knobil and Neill, 1988). If this is the case, it could be
due to a locally suppressive effect of the corpus luteum from the previous cycle, or

alternatively it is possible that some as yet undefined communication mechanism is

acting between the bilateral ovaries to regulate this 'turn about' process. Similarly in
multi-ovular species this ovary-to-ovary 'talk' could divide up the total number of

ovulatory follicles ensuring that each uterine horn receives equal numbers of fertilized

embryos. Evidence in the literature regarding consecutive ovulation sites is conflicting.

Support for the contra-lateral theory comes from a histological study of ovaries obtained

from 25 women by Gougeon and Lefevre (1984) in which corpora lutea were identified

and assigned an age on the basis ofmorphology. A chronological order of ovulations
was then calculated which suggested that ovulation occurred in a turn about manner.
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Other studies in the human (Marinho et al., 1982) and non-human primate (Dukelaw,

1977; Hodgen, 1982) also implicate contra-lateral ovulation. In contrast, Werlin et al.

(1986) suggests that ipsi-lateral ovulations are the norm in women.

A third possibility is that selection of the ovary containing the dominant follicle
is random. Considerable weight was lent to this hypothesis by the sonographic data of
Check et al. (1991), due to its large sample size. Obtained from a study of 572 cycles in
92 women, they demonstrated a 52.4% incidence of ipsi-lateral ovulation and a 47.6%
incidence of contra-lateral ovulation which is a non-significant difference. This study

supported an earlier finding by Wallach et al. (1973) in the rhesus monkey. Doubt has
also been cast on the incidence of contra-lateral ovulation by the observation that
ovulation in the primate appears to be more common from the right ovary, than from the
left. Thus, Morse and van Wagenen (1936) report a bias towards ovulation in the right

ovary of 60% in a study of eight rhesus monkeys, and the results of Potashnik et al.

(1987) support this finding in humans. Even studies that do not demonstrate a statistical
bias toward the right ovary report a slight trend towards that side (e.g. Check et al.,

1991; Fukuda et al., 1996). In all the literature examined detailing side of ovulation in
the primate, I found no trend, statistically significant or otherwise, toward the left ovary.
In some species, the trend towards one or other ovary is taken to an extreme with one

ovary becoming totally inactive (e.g. the mountain viscacha: Pearson, 1949), or even

regressing (as in the domestic hen: Gilbert, 1979). There seems to be little discussion as

to why there should be a bias towards one ovary, although anatomical asymmetries

possibly bought about by genes like Pitx2 (Ryan et al., 1998), such as the origin and

drainage of vasculature and development of other organs such as the kidneys (and
adrenal glands) may effect the development and function of the ovaries, favouring one

side.

The main body of evidence would seem to suggest that, despite what is written in
text books, contra-lateral ovulation is not the physiological norm in mono-ovulatory

species. The detailed histological examination conducted by Gougeon and Lefevre

(1984) presents the strongest argument in support of this proposal, although this would

appear to conflict with the larger clinical investigations ofPotashnik et al. (1987) and
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Check et al. (1991). Difficulties in accurately aging the corpora lutea and consequently

determining the sequence of ovulations may offer an explanation of these different

findings. Transient increases in local progesterone concentration of the ovary most

recently bearing the ovulatory follicle only appear to affect the choice of subsequent

ovary when cycle length is short (Wallach et al., 1973). It still remains unclear whether
choice of ovary housing the next dominant follicle in the primate is a truly random event

or if there is a bias towards the ipsi-lateral or right handed side, the last two proposals

being mutually compatible. Even less clear is an understanding of how dominance is
established between ovaries if ovulation does not occur in a turn about manner driven

by the intra-ovarian environment. Interestingly from a clinical viewpoint, whether
ovulation is from the contra- or ipsi- lateral ovary may have implications for subsequent

oocyte retrieval, fertilization, cleavage and embryo transfer during assisted fertility
treatments: Fukuda et al. (1996) demonstrated that the success rate of all these

procedures was significantly higher if ovulation was on the contra-lateral side. Whatever
the mechanism(s) at work, extrapolating these findings to non-primate species,

particularly to multi-ovulatory species, may be harder. The ability of embryos to migrate

along the uterine homs in some species means that bilateral ovulation is not an absolute

requirement for evenly-distributed embryonic implantation. However, it seems unlikely
that the majority of the oocytes released in multi-ovular species originate from one

ovary. Instead it seems more probable that both ovaries contribute to a similar degree
with perhaps a marginal bias towards one side, depending on species.

1.7.3.3. Intra-ovarian regulation
It would seem essential that intra-ovarian communication is involved in selection of the

dominant follicle(s) from a growing cohort. This could occur via three possible

pathways: paracrine regulation, the 'talk' between different cells, involving the local
diffusion of a chemical messenger produced in one cell to another 'target' cell;
autocrine regulation, a self-regulatory mechanism whereby a certain cell type produces
factors that act back on the cell of origin; and juxtacrine regulation, communication
between cells as the result of direct cell-cell or cell-matrix contact, allowing cell- or
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matrix surface-associated molecules to interact with one another. All of these types of
communication may subsequently lead to signal transduction cascades within the cell,

giving rise to functional alterations.
The endocrine regulation of follicular dominance, discussed briefly above,

results in a lowering ofFSH levels. The response of a follicle to that drop in FSH is

dependent on its dominant or subordinate status, with differential alterations in FSH-

dependent growth factor and hormone levels directing ultimate follicle fate (Mihm et al.,

1997). Dominant follicles continue to grow and produce oestradiol in an environment of
decreased FSH (Ireland and Roche, 1983; Sunderland, 1994) whereas subordinate

follicles exhibit markedly reduced oestradiol production. That the dominant follicle
continues to grow and increase its steroidogenic output is thought to be due to the
increased bioavailability of the insulin-like growth factors (IGF-1 and 2) (Spicer et al.,

1988; Mihm et al., 1997; Gong et al., 1993) following enhanced secretion of this peptide
and a decrease in IGF binding protein (IGFBP) production (Echternkamp et al., 1994).

During this period of selection, the subordinate follicles exhibit increased IGFBP

production reducing the concentration of available IGF-1 (Mihm et al., 1997). As a

result of these differential responses to the reduced levels of FSH, the dominant follicles
continue to grow and develop whilst the subordinate follicles undergo follicular atresia
and die. The role of such intra-follicular factors on follicle dominance has been the

subject of several comprehensive reviews, e.g. Adashi and Rohan (1992); Erickson and
Danforth (1995); Campbell and McNeilly (1996) and Armstrong & Webb (1997).

There is, however, an additional method of intra-ovarian regulation of follicular

dominance, namely through interactions between follicles. Such interactions could
enhance the effect of endocrine regulation of follicular dominance, with the dominant
follicle also producing factors that will directly affect the development of subordinate
ones. For example, inter-follicular interactions may have a role in maintaining
dominance once it has been established, by 'holding back' challengers. This could

explain the phenomenon of follicular waves exhibited by some species. If the dominant
follicle found itself in a hostile environment upon reaching the ovulatory stage and

consequently regressed, the inhibitory influence would be removed and the follicles that
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had been held in check could resume development and contend for the dominant

position (Matton et al., 1981; Ko et al., 1991). Alternatively, follicle-follicle interactions
could initiate differences between follicles upon which endocrine action can

subsequently act. These possibilities are explored more fully later.
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1.8. INTRA-OVARIAN INTERACTIONS AND FOLLICLE FATE

I believe that selection of the correct number of follicles for ovulation cannot easily be
achieved by endocrine mechanisms alone. Variations in systemic concentrations of
follicular trophic factors do not seem subtle enough, or targeted in any way, making it
hard to envisage how they could account for such precise and regimented control of

ovulatory number. If this is the case, it seems essential that intra-ovarian factors play a

role in regulating the development of the correct number of follicles. These factors could
be acting in two ways, predisposing certain follicles for successful growth culminating
in ovulation and/or condemning the unsuccessful contenders to an atretic pathway. Once
follicle dominance has been established, intra-ovarian factors could also 'hold back' any

challengers (as discussed in 1.7.3.3).

Such follicle-follicle interactions could either establish differences between a

group of initially equivalent follicles or, at a later stage, allow a follicle to influence the
fate of another non-equivalent (subordinate) follicle group. These processes bear striking
resemblance to methods of cell fate determination commonly described in

developmental biology, namely those of inductive signalling and of lateral specification.

1.8.1. Inductive signalling and lateral specification
Inductive signalling is a method of communication between adjacent, non-equivalent
cell populations, whereby one cell type influences the fate of another, and can thus

generate new cell types. Lateral specification (also called lateral inhibition) is the short

range cell-cell 'talk' between initially equivalent cells, an example ofjuxtacrine
communication. This cell-cell dialogue may give rise to signal transduction cascades
within the cells causing functional alterations. Thus, from an initially equivalent and

equipotent group of cells, interactions between these cells leads to the generation of two
distinct cell fates.

Examples of inductive signalling can be found in many developing systems in a

diverse range of organisms that includes plants, invertebrates and mammals. One

example recently reviewed by Horster et al. (1997) describes the cell-cell interactions
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that bring about the formation of the mammalian metanephric kidney. Two types of
tissue with distinct embryological origins, the metanephric mesenchymal blastema and
the ureteric bud, come into contact with one another at the site of the future kidney. The

mesenchymal cells aggregate around the branching ureteric bud tip, allowing the two
cell types to communicate with each other via inductive signalling (Figure 1.5). The

signalling between the different cell populations is successful as the two cell types

express ligands and receptors in a complementary pattern (Birchmeier and Birchmeier,

1993). Interactions with the ureteric bud tip cause the mesenchymal cells in contact with
the ureteric bud to adopt epithelial morphology and function. These newly created

epithelial cells subsequently differentiate into the variety of cell populations that

comprise the nephron.
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Figure 1.5 Inductive signalling A Two different cell types are adjacent to each other. B
Cells from one population in immediate contact with the cells from the other population
communicate with each other. C Cells at the population border are pushed down a different
developmental pathway (e.g. to become a third cell type, or to undergo programmed cell
death).

Lateral specification is involved in the patterning of differentiated cell types. An
often-cited example of lateral specification can be found in the developing Drosophila
bristles where evenly spaced sensory mother cells are created from an initial population
of equivalent proneural ectodermal cells. These cells would all differentiate to become

sensory mother cells unless prevented from doing so. As the ectodermal cells begin
down the pathway to sensory differentiation they send an inhibitory signal to their

neighbours. A 'battle' is then fought as each cell attempts to suppress the differentiation
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of the adjacent cells and gain a slight developmental edge, allowing it to escape the

inhibitory influence. Consequently this eminence is enhanced as the cell becomes more
differentiated and produces a stronger inhibitory signal, preventing the contacting cells
themselves from becoming sensory mothers and producing an inhibitory signal (Figure

1.6). These 'weak' cells consequently develop into epidermal cells (Hartenstein and

Posakony, 1990; Heitzler and Simpson, 1991).
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Figure 1.6 Lateral specification A. An initially equivalent population of cells
all possessing the ability to differentiate and simultaneously send an inhibitory
signal to the neighbouring cells. B. A few cells have been able to differentiate to
a greater degree than their neighbours. They produce a stronger inhibitory signal
preventing the further differentiation of the surrounding cells which in turn lose
the ability to inhibit the dominant cell. C. Two distinct cell types have arisen
from an initially equipotential population. A regular 'pattern' has been generated.

Some of the genes regulating local cell interactions necessary for inductive

signalling and lateral specification are known, more so for the latter process. These will
be discussed further in Chapter 7.

1.8.2. 'inductive signalling' and follicular dominance

The traditional view of inter-follicular regulation of follicular dominance is that an

already dominant follicle secretes some factor(s) that inhibits the development of its
subordinate neighbours. As this is one population of cells affecting the fate of another,

non-equivalent population of cells, it is analogous to inductive signalling, and the factors

produced by the dominant follicles can be thought of as 'inductive signalling' molecules.
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Several putative 'dominance' factors have been reported. Di Zerega et al. (1982)
identified a protein with a molecular weight between 14 000 and 18 000 kDa secreted by
the dominant follicle in humans which suppressed the follicular response to

gonadotrophins. Cahill et al., (1985) demonstrated that ovine follicular fluid inhibited
the development of follicles greater than 2mm in diameter in the ovary and reduced the
mitotic index of the granulosa cells of follicles <2mm. Later, substances with molecular

weights of 180 000 and <10 000 kDa were identified in ovine follicular fluid that
inhibited the mitotic activity ofmurine embryonic lung fibroblasts (Carson, 1988).

Campbell et al., (1991) report a substance in the ovine pre-ovulatory follicle that is

atresia-inducing and results in a loss of steroidogenic activity following injection into
the cycling sheep. How a follicular fluid derived factor would act on neighbouring
follicles was called into question when Driancourt (1994) failed to demonstrate inter-
follicular interactions in the Booroola sheep. Using aromatase activity as a measure of
follicle development, no positive role of the largest atretic follicle or negative role of the
dominant follicle was found on other follicles following his experiments using ovarian
serum or conditioned media. However, he substantiated the previous literature reporting
the presence of an inhibitory factor in the follicular fluid, which was shown to

significantly reduce the activity of aromatase in large follicle pieces, as compared to

cultures with serum or conditioned medium. Perhaps then his failure to observe either an

inhibitory or stimulatory effect was an in vitro artefact, the mechanisms by which the
follicular fluid factors are transported from the antrum being absent or disabled in vitro.

Another possibility is that such factors were indeed present but not at sufficient
concentrations in culture to exert an effect.

Most recently, work on the bovine follicle resulted in the characterisation of

granulosa cell-inhibitory factor (GCIF) which was shown to inhibit the proliferation of
small and medium follicles (Hynes et al., 1996 a, b). Steroid-free bovine follicular fluid
was separated into high and low molecular weight fractions and purified. A factor with a

molecular weight <5kDa was shown to inhibit granulosa cell proliferation in vitro,

inhibit the proliferation of granulosa cells taken from small and medium follicles but not

large follicles, and following systemic administration to cycling rats, inhibit the
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formation of large follicles and increase the number of small follicles. In a further study,
it was demonstrated that immunization of rats against GCIF increased the number of

large follicles and decreased the number of small follicles. Immunization of sheep

against GCIF resulted in a significant increase in ovulation rate (Hynes et al., 1999). The
authors report similarities between GCIF and factors found in porcine (Kigawa et al.,

1986) and rat follicular fluid (granulosa cell mitostatic protein GCMP, Chakrovorty et

al., 1993). Gore et al. (1997) note the disappearance of'challenger' follicles from
around dominant follicles and speculate that oestrogen may be responsible for this

phenomenon. They cite the studies ofDierchke et al. (1985) and Koering et al. (1994)
which demonstrated a detrimental role of oestrogen on follicles in vivo.

1.8.3. 'Lateral specification' and early determination of follicular fate
While a process analogous to that of inductive signalling can help explain how follicle
dominance is maintained once established, it does not address the issue of how

dominance has arisen (with the correct, species-specific number of follicles continuing
to develop). Based on morphological criteria, the emergence of dominant and
subordinate follicles would seem to arise from a cohort of initially equipotential
follicles. Whilst we cannot discount the possibility that differences are established at the
time of gonadal formation, marking the follicles destined to ovulate, this must at the

very least be a readily reversible designation, as the number of ovulating follicles can be

manipulated with ease. Experiments where the dominant follicle is ablated (e.g. Matton
et al., 1981; Ko et al., 1991) show that a new dominant follicle rapidly emerges from the
cohort of antral follicles. Presumably, had the original dominant follicle been allowed to

ovulate, the 'new' replacement dominant follicle would have become atretic. Similarly,

superovulation (e.g. Baird, 1987) results in a far greater number of follicles than would
be expected in a normal cycle, suggesting that at least some, if not the majority of
follicles have been deflected from an atretic fate. In a recent review article (Baker and

Spears, 1999), we propose that differences in follicle development may have arisen

through a process early in follicle development equivalent to lateral specification.
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At the onset of follicle development, a cohort of primordial follicles enters the

growth phase. At this point they are most likely equipotential. As they start to grow,

there are presumably fluctuations in the production of signalling molecules setting up

transient differences between neighbouring follicles. These differences could become

magnified as selected 'stronger' follicles inhibit development of their immediate

neighbours. In this manner, a pattern of selected and non-selected follicles, or later, of
dominant and subordinate follicles would emerge (Figure 1.7): the endocrine loop would
then act on those differences.

Figure 1.7 Lateral specification and determination of follicle fate Follicles are
selected for continued growth from a larger cluster of pre-antral follicles in a
manner analogous to lateral specification.

Recent work has highlighted a contact-mediated mechanism whereby
'dominance' is established between co-cultured murine follicles in vitro (Spears et al.,

1996), although this may be more analogous to the process of selection in vivo,

particularly in large mammals. Using a whole follicle culture system which allows the

growth of follicles from the pre-antral to the Graafian stage (as detailed in Chapter 2),

experiments were conducted to investigate the influence of follicle-follicle interactions
on growth and development. It was found that when pairs of follicles were co-cultured in

contact, one follicle invariably became dominant over its partner (Figure 1.8). When
follicles were cultured in identical conditions but placed slightly apart (Figure 1.9), this

phenomenon was not seen, implying a requirement for follicle-follicle contact. It would
seem plausible that this observation may be an example of'lateral specification' between

neighbouring follicles, resulting in the initially equivalent follicles adopting different
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fates and only the successful follicle being selected for further development and
maturation.

Figure 1.8 Photomicrograph of sections through follicles co-cultured
with contact d: dominant follicle; s: subordinate follicle. 2 pm plastic
sections, haematoxylin and eosin stained. Scale bars represent 40 pm.
From Spears etal., 1996.
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Figure 1.9 Whole follicle co-culture experiments (Spears et
1996). Co-cultured follicles not in contact both attain sizes
comparable with single controls. When cultured in contact one follicle
becomes dominant over its partner.
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1.9. OVULATION AND BEYOND

With increasing levels of E2 being produced by late antral follicles a positive feedback

loop leads to the generation of an LH surge. Approximately three days prior to the LH

surge in the rat the dominant follicles prepare for ovulation (Hirshfield, 1991a). The

systemic concentration of oestradiol rises dramatically as the steroidogenic output of the
dominant follicles increases. This elevated oestradiol concentration acts on the

hypothalamic pituitary system and causes a surge of LH secretion. 24 hours prior to the

ovulatory LH surge, granulosa cells acquire LH receptors. The bolus of LH terminates

granulosa cell proliferation (Yong et al., 1992), inhibits oestradiol production, initiates
the ovulatory process, induces luteinisation and the production ofprogesterone. The
ovulated granulosa-oocyte complex is then guided into the oviduct by the fimbrae where
the oocyte meets its ultimate fate: fertilization or death.
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1.10. RESEARCH AIMS

The growth and development of an ovarian follicle is a long and complex process.

During this time, the few successful follicles that are permitted to ovulate must pass

through several checkpoints and selection mechanisms. Despite having a relatively

comprehensive picture of the large scale, endocrine role in follicle selection, less is
known about the vital local mechanisms which underpin this process. Whilst current

knowledge can explain how local events can modulate follicular response to systemic

factors, we are still in a position of speculation as to how differences initially arise
between equivalent follicles, i.e. how does a follicle emerge as dominant? The aim of
this thesis was to investigate this local selection process. To this end I had two principle

goals:

I. To establish if direct contact between follicles plays a part in the selection of the

ovulatory follicle(s), and if this appeared to be the case,

II. To investigate the precise nature of direct follicle-follicle communication.

These goals were addressed by a series of experiments that aimed:

1. To investigate how follicles are positioned in respect to one another in vivo, indicating
if direct, follicle-follicle contact-mediated selection is feasible (Chapter 3).

2. To investigate the nature of communication between 'contacting' follicles in vitro and
determine if absolute physical contact is a requirement for the dominance effect

(Chapter 4).

3. To determine the effects of declining FSH on follicles at different developmental

stages (Chapter 5), and then demonstrate how an FSH decline could bring about follicle
selection by acting on follicular differences already established by contact-mediated
mechanisms (Chapter 6).
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4. To take leads from developmental biology and investigate the expression in the ovary
of genes known to be involved in lateral specification. The aim of this work was to
determine if these genes could be involved in the regulation of follicle selection (Chapter

7).
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2.1. FOLLICLE ISOLATION

2.1.1. Dissection medium

Leibovitz L-15 dissection medium (Gibco) supplemented with 0.3% B.S.A. (fraction V,
tissue culture grade. Sigma) was used for all bench top manipulation of ovarian material.
Unused medium from freshly opened 100 ml bottles was discarded after 5 days. The

osmolarity of each bottle opened was measured by an osmometer (Roebling) and

adjusted to 285-292 mOsm/kgFLO by the addition of sterile water (Phoenix
Pharmaceuticals Ltd.). Following the addition of B.S.A., the medium was filter sterilised

(syringes: Becton Dickinson and Co.; 0.25 jum filters: Iwaki) into sterile flasks (Iwaki)
and heated to 37°C.

2.1.1. Gross dissection

Three-week old mice (CBA/ C57 Black crosses, referred to as Fi mice henceforward)
were killed by cervical dislocation and the ovaries removed following a ventral incision
and displacement of the abdominal viscera. This and all subsequent procedures were

performed in a laminar airflow hood (Astecair). The ovaries were transferred to pre-

warmed dissection medium in embryo dishes and 'cleaned up' under magnification on a

heated stage (Linkam) using insulin syringes (Sherwood) to remove pieces of non-
ovarian tissue such as oviduct and fat.

2.1.3. Micro-dissection

Using a dissecting microscope (Zeiss) fitted with a 37°C heated stage (Linkam), base
illumination and a graticule eyepiece, pre-antral follicles were dissected from halves of
ovaries using insulin syringes (Sherwood) and acupuncture needles (Acumedic)
mounted in steel holders. Ovary halves were dissected in pre-warmed embryo dishes

containing dissection medium. Tissue was worked on for a maximum of 30 minutes post

mortem, with isolated follicles being placed in culture within 45 minutes.
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2.2. STANDARD FOLLICLE CULTURE

2.2.1. Standard Culture Medium

a-Minimum Essential Medium (a-MEM) (Gibco BRL) was supplemented with 5%
serum taken from mature F] mice. rhFSH was added at a concentration of 1 IU ml"1.
Medium was then filtered (as for dissection medium, above), 30 fi\ pipetted into U

bottomed 96-well plates, overlaid with 75 /u\ silicon fluid and allowed to equilibrate in a

37°C, 5% CO2 atmosphere, humidified incubator. At the start of this research project this
medium was sufficient to routinely facilitate follicle growth from the pre-antral to
Graafian stages over a six day culture period, however at the start of later experiments
ascorbic acid was also added, as detailed below.

2.2.1.1. The role ofascorbic acid in culture
Since its development, this culture technique would suffer from unexpected 'down'

periods, during which time it would not be possible to sustain the growth of follicles
much beyond the early antral stage. Follicular growth and cellular proliferation would

appear to proceed as normal until approximately 72 hours of culture when bursting
would occur in virtually all follicles. This appeared to be due to loss of basement
membrane integrity characterised by a 'fuzzy' appearance around the follicle's

periphery. This phenomenon was prevented by the addition of ascorbic acid into the

culture medium at a concentration of 50 /ug ml"1 (Murray et al., in preparation). The

growth rate of cultured follicles was not effected in these experiments. In addition to its
role in preventing rupture, I found that ascorbic acid added at this concentration has a

protective effect against a strongly apoptotic stimulus (absence of serum), as determined

by analysis ofDNA fragments (Figure 2.1) Methodology and discussion of this

technique are detailed in Chapter 5. Following these discoveries, ascorbic acid was

added to culture media used for any new experiments. Investigations that had
commenced before this time were completed without this addition. This meant that
culture numbers were increased to compensate for a higher rate of follicle loss.
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Figure 2.1. Apoptotic fragmentation in follicles cultured without serum, +/-
ascorbic acid, a) 'Laddering' of nuclear DNA into -185 base pair multiples, b) Relative
densities of apoptotic bands between culture groups. Ascorbic acid significantly reduces
DNA fragmentation in the absence of serum, a strong apoptotic stimulus (p<0.01). Data
normalised so that control = 1.

2.2.2. Follicle incubation

Following isolation healthy follicles were transferred into the equilibrated culture
medium using fine drawn pipettes coated with B.S.A. to avoid sticking to the pipette
barrel. Caution was taken to ensure that the culture trays were maintained at 37°C whilst
out of the incubator and bench top time was kept at a minimum. Culture trays were

returned to the incubator (Forma Scientific) and left undisturbed for 24 hours.

2.2.3. Media changes and assessment of follicle morphology and growth
Follicles were moved everyday using a glass pipette into a new well containing fresh
medium. Daily measurements of follicle diameter and developmental stage were taken

using a graticule eyepiece. In addition any abnormalities were noted, such as an

unusually thick theca layer. In all experiments conducted, at least one control group of

single follicles was included. If these failed to develop as expected the entire experiment
was abandoned.
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Figure 2.2. Culture of pre-antral follicles. Following isolation from three week
old ovaries, pre-antral follicles are incubated in culture medium at 37°C, 5% CO2

atmosphere.
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2.3. HISTOLOGY

2.3.1. Fixation of follicles

If histological examination was required, follicles were placed in 4% paraformaldehyde

(BDH) at 4°C for ~24 hours, then transferred into 70% ethanol for storage until

processing.

2.3.2. Processing of follicles for morphological assessment
2.3.2.1. Processing ofsamples
Follicles where dehydrated by being moved through a series of ethanols (70%; 90%;

95%; 100%; 100%, 30 minutes each). Material was then left overnight at room

temperature in LR White (TAAB). The following day the follicles were transferred to

gelatine capsules containing LR White and incubated overnight at 60°C. Once the resin
had hardened the gelatine capsule was dissolved in running hot water for ~4 hours and
the resin block mounted on a wooden chuck.

2.3.2.2. Sectioning and mounting
Blocks were cut using a plastic-section microtome (Reichert-Jung), floated out on a

50°C water bath and transferred to gelatine coated slides (see Appendix B). Sections
were then dried on a hotplate overnight at 60°C.

2.3.2.3. Staining
The dried sections were stained in haematoxylin for 5 minutes, rinsed in running tap

water then placed into Scotch Tap Water Substitute (STWS) for 2 minutes; running
water for 2 minutes; eosin for 1 minute; dipped in running tap water; potassium alum for
1 minute; rinsed in tap water before being left to air dry. Once dry the sections were

cover-slipped with DPX.
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2.3.3. Fixation of whole ovaries

Whole ovaries were placed in freshly made 4% paraformaldehyde (BDH) for 3-5 hours
for processing for in situ hybridisation experiments, or Bouin's fixative for periods of
time ranging from 24-72 hours depending on tissue size. Ovaries were then transferred
to 70% ethanol for storage until processing.

2.3.4. Processing ofwhole ovaries for morphological assessment
2.3.4.1 Processing ofsamples
Ovaries where dehydrated by being moved through a series of ethanols of increasing

purity up to absolute alcohol (70%; 90%; 95%; 100%; 100%, one hour in each), before

clearing in toluene (~2 hours). Tissue was then placed in plastic moulds containing
molten wax and allowed to impregnate at 60°C for 3-5 hours before being orientated for

sectioning and the wax allowed to set.

2.3.4.2. Sectioning and mounting
Wax blocks containing the tissue to be sectioned were melted onto metal chucks and

quickly hardened under running water. The blocks were then cut on wax-section
microtomes (Reichert-Jung) and floated out onto a 50°C water bath before transfer to

gelatine coated slides. Sections were then heated overnight at 37°C.

2.3.4.3. Staining
Sections were dewaxed in xylene, re-hydrated in descending alcohol concentrations to
water before staining for 5 minutes in haomatoxylin. Sections were then acidified in acid

alcohol, washed, moved into STWS, washed again, stained with eosin for two minutes,
fixed with potassium alum, washed, dehydrated through an alcohol series then placed in

xylene prior to cover-slipping with DPX.

2.3.5. Processing whole ovaries for in situ hybridisation

Paraformaldehyde fixed ovaries were processed, sectioned and heated as for

morphological assessment, with the following exceptions. Care was taken to ensure a
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clean, RNase free environment including the use of latex gloves and fresh dt^O in
alcohol-cleaned water baths. All equipment that came into contact with the material,

including the microtome blade, was thouroughly swabbed with alcohol. Sections were
floated onto TESPA-coated slides (see Appendix B).
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Histological evidence for clustering of like-sized
follicles in vivo
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3.1. INTRODUCTION

Chapter 1 detailed recent work that highlighted a contact-mediated mechanism

whereby 'dominance' is established between co-cultured murine follicles in vitro

(Spears et al., 1996). In this study, an intact-follicle culture system was used to

investigate the influence of follicle-follicle interactions on growth and development.
It was found that when pairs of follicles were co-cultured in contact, one follicle

invariably became dominant over its partner (Figure 3.1). When follicles were
cultured in identical conditions but placed slightly apart, this phenomenon was not

seen, implying a requirement for follicle-follicle contact. The authors hypothesise
that this in vitro contact-dependent process may represent a paradigm for a selection
mechanism in vivo, with 'lateral specification' between adjacent follicles resulting in

initially equivalent follicles adopting different developmental fates. For this in vitro
observation and proposed hypothesis to be relevant in vivo, there would be a

requirement for follicles to be in direct contact with others at the same stage for at
least part of their development.

Whilst reports in the literature describe the location in the ovary of follicles at

different developmental stages (briefly discussed in 1.2), there tends to be little
discussion of the geographical relationship between follicles. Merchant and Zamboni

(1972) describe interconnections between primordial follicles in newborn animals,
which Hirshfield (1991) suggests may be a result of incomplete fragmentation of

germ cell 'cords' at an earlier developmental stage. These interconnections may

persist into adulthood with the follicles appearing to be arranged into cord-like

patterns, although no detail of the developmental stage of these follicles is given

(Merchant and Zamboni, 1972). I was unable to find any reference that discussed the

precise position of further developed follicles in relation to each other. To address

this, I undertook an histological examination of the ovaries from a diverse range of

species and identified the location of pre-antral follicles and their proximity to

neighbouring follicles at similar stages of development. If follicles are

geographically intimate (with directly contacting basal laminae or theca cells), it is
feasible that lateral specification is involved in intra-ovarian follicle selection.

Conversely, if developmentally similar follicles do not assume these close
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a) start of culture

Figure 3.1. Contacting co-cultured follicles at various intervals of
culure. Scale bars represent 100 pm.
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relationships in vivo, it would seem unlikely that lateral specification or some such
similar process has a significant role in follicle selection at that developmental stage.
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3.2. MATERIALS AND METHODS

3.2.1. Source of material

When possible, fresh ovaries were obtained and processed (mouse; rabbit, and cat),

although some archived material was also used (kitten and marmoset).

3.2.2. Processing of tissue: mouse and other mammals

Tissue specimens were fixed, wax embedded, sectioned and stained according to the

protocols outlined in Chapter 2.

3.2.3. Computer capture of histological images: mouse

Using a video camera attached to a microscope, sequential images were captured of

serially sectioned (6pm) ovaries taken from 3 three-week-old mice. Every fourth

section through the ovary was imaged in this way. The images were processed on a

computer (Apple Macintosh) using NIH Image 1.49 software, and then printed out

to make an ovary 'atlas' (Figure 3.2 A and B).

3.2.4. Numerical analysis ofmouse ovarian sections
Each ovary section in the atlas was looked at in detail and all follicles that were
between 150 - 250 pm were identified and marked (Figure 3.2 C). This size range

was chosen as it represents follicles from the late pre-antral stage to the beginnings
of antral development. Greatest diameter was measured across the centre of the
follicle which, for the purposes of this investigation, was taken to be where the
nucleus of the oocyte could be seen. It was assumed that the follicles were spherical.

Having identified a suitably sized follicle, its location was marked in all preceding
and subsequent sections. In this way it was possible to map the whereabouts of all
the follicles in the ovary that fell into the chosen size range. From this 3-dimensional

map, the numbers of like-sized follicles that were directly in contact with one another
and the total cluster size of all connecting follicles were calculated.
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Figure 3.2 Numerical analysis of mouse ovary sections. (A) Ovaries
from 3-week-old mice were fixed, processed and sectioned. (B) Using a
video camera attached to microscope sequential sections were 'captured'
and printed out in order to make an entire ovary atlas. (C) Every follicle
in the atlas was measured and marked if found to be between 150 - 250

pm at its greatest diameter. Identified follicles were then traced
backward and forward through all of the sections and marked (Each
follicle has been given a different colour in C). All identified follicles
were then numbered and the numbers of contacting, neighbouring
follicles recorded, e.g. in section vi. follicle 4 appears to have no
contacting neighbours, however, looking through preceding sections it
can be seen that it makes contact with follicle 2.
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3.3. RESULTS

3.3.1. Photomicrographs of contacting pre-antral follicles in vivo

Histological examination of sections from a range ofmammalian species (mouse:

Figures 3.3-3.6; rabbit: Figures 3.7 and 3.8; cat: Figures 3.9-3.11, and marmoset:

Figures 3.12 and 3.13) reveals that pre-antral follicles are frequently found in close
contact with each other, often with a very thin dividing theca layer.

3.3.2. Numerical analysis of contacting follicles in the young mouse ovary

Detailed analyses of serial sections from three 3-week-old mice revealed that most

pre-antral/early antral follicles are found in clusters of 10-50 follicles (Figure 3.14),

frequently in contact with two or more like-sized follicles (Figure 3.15).
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Figure 3.3. Photomicrograph of a wax section through a 3-week-old mouse

ovary (haematoxylin and eosin stained). Scale bar represents 100 pm. The
arrows show clusters ofpre-antral follicles.
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Figure 3.4. Photomicrograph of a wax section through a 3-week-old mouse

ovary, haematoxylin and eosin stained. Scale bar represents 100 pm. The arrows
show clusters ofpre-antral follicles.
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Figure 3.5. Photomicrograph of a wax section through a 3-week-old
mouse ovary. Contacting pre-antral follicles clustered around a mid-antral
follicle. Scale bar represents 100 jam.

Figure 3.6. Photomicrograph of a wax section through a 3-week-old
mouse ovary. Contacting pre-antral follicles. Scale bar represents 50 jam.
The arrow shows the thin, shared theca layer between follicles.
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Figure 3. 7. Photomicrograph of a wax section taken from a rabbit
ovary (haematoxylin and eosin stained). Scale bar represents 50 pm.
The arrow shows the thin theca layer between contacting pre-antral
follicles.

Figure 3. 8. Photomicrograph of a wax section taken from a rabbit
ovary (haematoxylin and eosin stained). Scale bar represents 100
jam. The arrow shows the basal lamina between contacting primary
follicles.
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Figure 3.9. Photomicrograph of a wax section of a kitten ovary (haematoxylin and
eosin stained). Scale bar represents 200 jam. The cat ovary is a very organised organ
with primordial follicles (PF) being located in tightly packed clusters towards the
periphery. Moving inwards, primary (Pr) and early pre-antral follicles (PA) tend to be
found next to these clusters. Antral follicles are located more centrally in the ovary (not
shown).
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Figure 3.10. Photomicrograph of a wax section taken from a kitten ovary

(haematoxylin and eosin stained). Scale bar represents 50 pm. Granulosa cells (G) and
the oocyte (O) are marked. The arrow shows the basal lamina between contacting pre-
antral follicles.

Figure 3.11. Photomicrograph of a wax section taken from a kitten ovary

(haematoxylin and eosin stained). Scale bar represents 50 pm. Granulosa cells (G) and
the oocyte (O) are marked. The arrow shows the basal lamina between contacting pre-
antral follicles.
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Figure 3.12. Photomicrograph of a wax section (haematoxylin and eosin
stained), taken from a marmoset ovary. Scale bar represents 100 pm. The
arrow shows contacting pre-antral follicles.

Figure 3.13. Photomicrograph of a wax section (haematoxylin
and eosin stained), taken from a marmoset ovary. Scale bar
represents 100 pm. The arrow shows contacting pre-/early antral
follicles.
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Figure 3.14 Cluster size of contacting follicles, 150-250 pm in diameter.
The ovaries from three 3-week-old mice were analysed. Follicles were deemed
to be contacting if they had either an absent, or thin shared theca layer.

30 n

Number of contacting follicles

Figure 3.15 Incidence of directly contacting like-sized follicles, 150-250 pm

in diameter. The ovaries from three 3-week-old mice were analysed. Follicles
were deemed to be contacting if they had either an absent, or thin shared theca

layer.
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3.4. DISCUSSION

The ovary sections clearly illustrate the degree of closeness that neighbouring
follicles assume. These follicles often have a very thin, or occasionally absent,

dividing theca layer. This raises the interesting question ofwhether follicles have
their 'own' theca cells or whether these cells are recruited by the follicle from the

interstitial cell population. Work by Hirshfield (1991b) has suggested that theca cells

may be associated with a specific follicle from the outset, possibly giving rise to the

theca population that comprises the theca interna. How this hypothesis would fit with
the histological observations made earlier in this chapter is unclear. Using Figure 3.6
as an example, it can be clearly seen that two of the pre-antral follicles pictured have
a theca mono-layer between them (indicated by the white arrow). In this instance
which follicle 'owns' that theca layer? Or is the theca population in that region
contributed to by both follicles? The upper follicle has a two-cell theca layer around
the remainder of it's periphery. This would suggest that either some of the theca

layer has moved away from the follicle-follicle junction, or that it has failed to

develop in this region. Interestingly, this thin shared theca layer is also observed in
co-cultured follicles (Figure 1.8). That this phenomenon is seen in vitro in the intact-
follicle culture system may be important as it could offer a relatively simple

paradigm to investigate the issue of theca 'ownership' further. This is an important

question to address as it has implications for several areas of follicle research.

Presumably, if'lateral specification' is involved in follicle regulation at any stage of

development, this must occur at the follicle boundary, wherever that it delimited. It is

possible that this changes as the follicle progresses developmentally, initially being
at the basal lamina, then later at the edge of the theca interna. It seems unlikely that
the theca externa would provide a clear enough border to present a unified follicle

'front', as various studies have reported a 'blending' of theca and stroma cells with
an intermediate theca/stroma population bearing some characteristics of both cell

types (e.g. O'Shea 1971). A second area of research that will require knowledge of
follicle boundaries is that of follicle migration. If a follicle migrates within the ovary
which structures move with the core granulosa-oocyte unit? Further discussion will
be devoted to this process in Chapter 4.
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Zamboni and Merchant (1973) report that bi- and tri-laminar follicles are

found interconnected by granulosa cell projections in young mice, presumably as a

result ofpersisting intercellular bridges between primordial germ cells. Connected

'strings' ofprimordial/primary follicles have also been reported in young cats (J.

Mullan, personal communication; Figure 1.2). It would be interesting to see if these

'strings' of follicles resume growth as a unit, giving rise to closely contacting pre-
antral follicles at equivalent stages of development. Our understanding about the
initiation ofprimordial/primary follicle growth is in its infancy.

A recent paper discusses the possible role of activin, secreted by secondary

follicles, in maintaining primary follicle quiescence in the mouse (Mizunuma et al.,

1999). Co-culture experiments revealed that the presence of a secondary follicle

(300-350 pm) inhibited the response of a smaller pre-antral follicle to FSH, but that
this inhibition was removed when the secondary follicle was taken away. The
addition of follistatin, an activin binding protein, resulted in both the small and large
follicles responding to FSH, with both groups showing a significant increase in
follicle diameter. The authors conclude that although the initiation of follicle growth
is not dependent on FSH, early pre-antral follicles are susceptible to FSH and GH
and that these factors are potent stimulators that enhance the first stages of follicle

development. However, not all early pre-antral follicles are able to respond to these
factors due to inhibitory control by activin released by secondary follicles. They
continue by suggesting that this presents a mechanism that could regulate the number
of follicles leaving the resting pool to enter the growing cohort. Atresia of the

secondary follicles would remove the source of activin in a very localised area and

permit those primordial/primary follicles that were ready to continue development to

proceed. Combining this hypothesis with the observations ofZamboni and Merchant

(1973) it seems highly feasible that a string of developmentally similar follicles, by
default geographically restricted, would all be under the same paracrine influence
from a larger follicle. In this way, the demise of a secondary follicle producing
activin would permit a whole string of follicles to resume development at the same

time. Even if interconnections between the follicles had broken down, they would
still be very closely associated. This would result in a cluster of follicles growing
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together, presumably in concert, until such time as additional developmental

influences, such as lateral specification, come into play.
The numerical analysis of the three 3-week-old mouse ovaries indicates just

how common close contact between late pre-antral follicles is (at least at that age),
with greater than 90% being found associated with a cluster of 10 or more like-sized
follicles. These findings, together with the pictorial evidence from the histological

study clearly show that pre-antral follicles do develop in contact with one another.
This fact makes it at least feasible that lateral specification (or an equivalent process)
could influence follicular fate, resulting in only certain follicles from within each
cluster proceeding on to further stages of follicular development. For the purposes of
this thesis and given the time constraints that were imposed, I was satisfied that this
evidence was strong enough to proceed with the investigations detailed in subsequent

chapters. In the future I would like to see this work consolidated with a more

comprehensive analysis ofmouse ovaries at a variety of ages, and extended to
examine differences in the organisation of ovaries from different species. This thesis
has been concerned with follicle-follicle interactions at a temporally discreet period
of development. It would seem likely that contact-dependent mechanisms have roles
to play at all stages of a follicles' life span. Cursory examination of ovary sections
shows not only primordial and late pre-antral follicles in contact with one another,
but antral follicles at all stages including pre-ovulatory follicles also being very

closely associated.
I believe that there are important anatomical data to be obtained from earlier

studies of the ovary: publications from the beginning of this century hold many

examples ofmeticulously recorded observations. A re-examination of this rich data¬

base, with the benefit of contemporary knowledge, may offer a short-cut to

understanding how anatomically dependent relationships influence ovarian function.
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4.1. INTRODUCTION

Previous experiments have shown that contacting co-cultured follicles establish a

dominant-subordinate relationship (Spears et al., 1996). This relationship is not seen
when same-sized follicles are co-cultured slightly apart implying that a) the 'dominance'
factor is not a diffusible factor, and b) there is therefore a requirement for direct physical
contact for this dominance mechanism to be seen. It is important to be cautious when

interpreting these observations. As the authors state, it is possible that the volume of
culture medium used resulted in a diffusible factor becoming so dilute that it was unable
to exert an effect over even a short distance. This problem would be overcome if
follicles are cultured in contact, as any diffusible factor released by one follicle would be
able to pass to the neighbouring follicle without having to diffuse through the

surrounding medium. One problem of the original paradigm is that the contacting co-

cultured follicles form such a close and extensive bond that they assume an abnormal

morphology (Figure 3.1). Ideally a culture system used to investigate follicle-follicle
interactions would maintain normal morphology as much as possible, removing the

possible influence of abnormal surface area to volume ratios on follicle health.

To further investigate the dominance effect, I conducted a series of experiments

utilizing an adapted version of the whole-follicle culture system detailed in Chapter 2.
Previous work on other physiological systems has demonstrated that

polycarbonate membranes can be used effectively to examine the nature of
communication between co-cultured tissue (e.g. Saxen and Lehtonen, 1978, Slack,

1992). These membranes are thin (7pm) and have pores of known size and number
which directly traverse the membrane, unlike standard cellulose membranes which have

very winding pores. It has been shown that pore sizes as low as 0.2 pm permit cell-cell
contact via cellular processes. Any size lower than this should prevent direct contact but
allow the passage of diffusible factors. This is ideal for the investigation of contact-
mediated follicle dominance. Two follicles can be juxtapositioned either side of these
membranes and cultured as normal. By varying the pore size is possible to either allow
direct cell-cell contact between follicles or permit two follicles to be very close to each
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other without actually touching. This use ofpolycarbonate membranes in culture has the
additional advantage ofpreserving the spherical shape of the follicle as the co-cultured
follicles are unable to 'mould' together. My aim was simply to establish whether or not
there is an absolute requirement for contact for the development of co-cultured follicles
to be influenced by one another.
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4.2. MATERIALS AND METHODS

4.2.1. Scanning electron microscopy (S.E.M.) and light microscopy

Polycarbonate membranes ('Isopore' from Millipore) are supplied coated with a wetting

agent, polyvinylpyrrolidone (PVP), which was found to encourage adhesion of cultured
follicles resulting in spreading, distortion and finally rupture. Boiling these membranes
in de-ionised water for >1 hour successfully removes the PVP coating and consequently
abolishes abnormal follicle growth. Once treated to remove the PVP coating, membranes
were wrapped individually in aluminium foil and autoclaved, then allowed to dry.

It is well documented that 0.1 pm pores will prohibit the growth of cellular

processes across the membrane and conversely that 10 pm pore membranes should

permit this cellular growth. It is possible that incomplete removal of the PVP wetting

agent might result in the pores becoming blocked. To ensure that the PVP removal

protocol is adequate the undersides of 10 pm pored membranes were examined by

scanning electron microscopy (S.E.M.) for evidence of cellular protrusions following the
culture of pre-antral follicles for 48 hours on these membranes. The intact membrane-
follicle complex was fixed and sent to the Electron Microscope Unit at the Royal (Dick)
School ofVeterinary Studies, University of Edinburgh, which provides an S.E.M.
commercial service. Once the material had been processed and was in the S.E.M. I was
assisted by Mr. Stephen Mitchell in scanning the tissue and taking photomicrographs.
Co-cultured follicle-membrane-follicle complexes were also fixed, plastic embedded,
sectioned and haematoxylin and eosin stained for light microscopy according to

protocols outlined in Chapter 2.

4.2.2. Polycarbonate membrane experiments

4.2.2.1. Making membrane constructs

Under sterile conditions, membranes with 0.1 pm and 10 pm pore-sizes were cut into

rectangles approximately 2 mm x 4 mm. In both groups, 50% of these were folded in
half using forceps, ensuring that a crisp crease was formed. The folded membrane pieces

61



Chapter 4

were stuck to unfolded rectangles of the same membrane type using a surgical adhesive

(Histoacryl Blue, B. Braun Melsungen AG). The two-piece assembly could then be
stuck into flat-bottomed 96-well plates (Corning). A silicon based sealant (RTV 32,
Dow Corning) was used after trials showed that it presented no toxicity problems for
follicle growth. Once a row ofwells had been filled with either 0.1 pm or 10 pm inserts
the tray was left for at least 24 hours at 37 °C to allow the sealant to cure. As a final
assurance of sterility, the trays were UV irradiated for ~15 minutes immediately prior to
the addition of culture medium.

4.2.2.2. Follicle culture

Standard culture medium containing ascorbic acid (see Chapter 2 for materials and

methods) was used for all of these membrane culture experiments. 150 pi ofmedium
was pipetted into each well and overlaid with silicon fluid (Corning) to prevent

evaporation. The medium was equilibrated for an hour in a humidified incubator, 5%

CO2, before follicles were added.

A typical experiment contained equal numbers of pairings over 0.1 pm and 10

pm membrane constructions and a tray of single control follicles. Data was also obtained
from paired control follicles cultured in separate wells. Like-sized pre-antral follicles
-185 pm were paired and placed either side of the membrane upright (Figure 4.1). After
three hours the wells were checked to ensure that the follicles were still positioned

opposite one another. If they had moved away from their starting position they were

replaced using a bent acupuncture needle then returned to the incubator and left
undisturbed until the following day. After 24 hours, the pairs were examined by an

unbiased observer who assessed if they were still suitably juxtapositioned.
Measurements of growth were recorded and any pairs that had moved apart repositioned.

Following a further 24 hours of culture the follicle pairs were examined again by an

unbiased observer and measurements taken if they were still opposite. In wells that
contained opposing follicle pairs, 50% of the medium was carefully extracted using an

angled gel-loading pipette, and replaced with the same volume ofpreviously

equilibrated medium. Any follicles that did not remain in contact after the first 48 hours
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were excluded. The culture continued for a further 48 hours at which time all follicles

still included in the study were transferred to a watch glass for a more accurate

assessment of growth and measured.

Figure 4.1 Diagram of follicles placed on either side of the

polycarbonate membrane upright.

4.2.3 Statistics

For each experimental group the mean final size of the follicles was calculated together
with the S.E.M. To determine if there was an effect of co-culture on growth a Chi-

squared test was performed, comparing each experimental group with controls. The
student's t-test was used to establish if there was a bimodal population present by

comparing the difference is size between co-cultured, paired follicles in the same well,
and paired follicles grown in separate wells. Dominant and subordinate follicle final size
was compared to singly cultured control follicles using the student's t-test. A Chi-

squared test was a used to assess if there was any difference between experimental

groups.
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4.3. RESULTS

4.3.1. Scanning electron microscopy (S.E.M.) and light microscopy

Figure 4.2 clearly shows that cellular processes can pass through the 10 pm pores in the

polycarbonate membranes. It is unclear from these photomicrographs if these process

originate from theca or granulosa cells, as Figure 4.3 shows that in some cases the theca
cells either draw back, or are absent from the area of the follicle that makes contact with

the membrane. This is reminiscent of the theca mono-layer seen between some pre-

antral follicles (Chapter 3, Figure 3.6).

Figure 4.3 A Haematoxylin and eosin stained follicle-
membrane-follicle complex One follicle has become partially
detached during processing. Cellular processes are growing

through the membrane pores, allowing the two follicles to make
direct contact throughout the culture. The theca layer is absent or

very thin where it comes into contact with the membrane. This is
similar to the theca mono-layers seen between pre-antral follicles
in vivo (see chapter 3).
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Figure 4.2 Scanning electron
photomicrograph of follicle growth
on 10 pm pore membranes A. The
underside of the membrane after
follicle culture. A cell mono-layer has
grown on the underside. B. 1.5x 103
magnification showing cellular
processes growing through the
membrane pores. The follicle has fallen
off during processing. C. Enlargement
of cellular protrusion.
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4.3.2. Polycarbonate membrane experiments
This investigation was greatly hampered by the slow acquisition of results due to follicle
movement. The 'success' rate, i.e. follicles pairs that stayed juxtapositioned until the end
of the culture period, was less than 6%. As preparing the membrane inserts was time

consuming in itself the number of cultures that could be realistically accomplished was

limited to one a week (assisted by Mrs. Vivian Allison in culture tray preparation,
dissection and follicle maintenance). Over 500 follicle pairs were set up, yielding just 28
valid results, making this a very labour intensive study.

4.3.2.1. 10 pm pore experiments

A total of 16 follicle pairs met the criteria to be included in the final analysis of growth.

Figure 4.4A shows the final size of all follicles (both subordinate and dominant) versus

frequency. The raw data from these membrane experiments suggests that a dominant-
subordinate relationship is established within each pair. Given that the starting size of all
follicles cultured is approximately the same, it follows that if a dominance phenomenon
is exerting an effect it will 'sort' the follicles into larger (dominant) and smaller

(subordinate) groups. This should be seen as two distinct peaks on the frequency versus
size graph (Figure 4.4A), which is the case. The single control follicles have been

plotted in the same manner and are shown by the orange line.

Figure 4.5A shows a graph of dominant and subordinate follicle growth within
each co-cultured pair. The average difference in size between the co-cultured pair is 63.8

pm S.E.M. ± 11.1. The two populations touch at 360 pm: this is the largest size recorded
for a subordinate follicle, and the smallest size recorded for a dominant follicle. It is

interesting to note that the distribution of the subordinate follicles is within a very

narrow range. The differences in size between paired, singly cultured controls is shown
in Figure 4.6. The average difference in size between pairs is 18 pm S.E.M. ±4.1. The
data from these experiments are also illustrated as a box and whisker plot (Figure 4.7)
which allows an easy visual comparison of the different experimental groups. Again, it
can be clearly seen that the range of final size values that the subordinate follicles in the
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Subordinate foiiicie
mean size 324.2 p.m ± 9.4

Dominant foiiicie
mean size 370 nm ± 9.6
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Figure 4.4A Final growth sizes of all follicles co-cultured in pairs across 10
pm pore polycarbonate membranes, as compared to single control follicles.
The vertical orange line shows the mean size of controls (326.4 pm ± 0.2).
Shading denotes S.E.M. Growth of co-cultured follicles is significantly
different from controls (p<0.001).

Subordinate follicle
mean size 333.1 |j.m ± 7.4

Dominant follicle
mean size 396.9 jxm ± 4.3

225 245 265 405 425 445285 305 325 345 365 385

Size (pm)

Figure 4.4B Final growth sizes of all follicles co-cultured in pairs across 0.1
pm pore polycarbonate membranes, as compared to single control follicles.
The vertical orange line shows the mean size of controls (326.4 pm ± 0.2).
Shading denotes S.E.M. Growth of co-cultured follicles is significantly
different from controls (p<0.01).
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Figure 4.5A Graph showing the final sizes of dominant and
subordinate follicles within a pair co-cultured across a polycarbonate
membrane with 10 pm pores.
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Figure 4.5B Graph showing the final sizes of dominant and
subordinate follicles within a pair co-cultured across a polycarbonate
membrane with 0.1 pm pores.
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Figure 4.6 Graph showing the final sizes of paired, singly cultured
control follicles.
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10 pm membrane group span is very limited (320-360 pm, excluding outlier) as

compared to controls.

4.3.2.1.1. Further analysis
Statistical analysis of this type of culture is hampered by the fact it is difficult to
establish which follicle is affecting which (e.g. experiments that use one follicle to

condition medium then move a second follicle into the vacated well rather than having
both follicles in the same well at the same time, have a clearly defined experimental
follicle. This allows a student's t-test to be used to assess differences in growth). To
determine if the growth of co-cultured follicles is significantly different from the
controls (thereby illustrating an effect of co-culture on growth) a Chi-squared test was

performed. Single control follicle size at the end of culture was divided into bins so that

approximately equal numbers of follicles fell into each bin. These were: <285 pm; 286-

310 pm; 311-335 pm; 336-355 pm and >356 pm. (e.g. in the control group 20 follicles

from a total of 79 fell into the 311-335 pm bin). The Chi-squared test returned a highly

significant difference (p<0.001, degrees of freedom = 4). This test shows that co-culture
does have an effect on growth, but cannot confirm that a bimodal population is present.
To ascertain if there are distinct dominant and subordinate populations a student's t-test

was performed, comparing the differences in size between dominant and subordinate
follicles within each pair in the experimental group with the difference in size between

paired, singly cultured controls. This returned a highly significant difference between the
two groups (p<0.001) and shows that there is a bimodal distribution. When both
dominant and subordinate follicle final size was compared to that obtained by single

controls, the subordinate follicles showed no significant difference (subordinate: 324.2

pm S.E.M. ± 9.4; control: 326.4 pm S.E.M. ± 0.2), however, the dominant follicles were

significantly larger (dominant: 370 pm S.E.M. ± 9.6; control: 326.4 pm S.E.M. ± 0.2,

p<0.001).
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4.3.2.2. 0.1 pm pore experiments

In these experiments 12 follicle pairs (all ofwhich were assessed by an unbiased
observer to be juxtapositioned during each day of culture) were included in the final

growth analysis. Figure 4.4B shows the final size of the total co-cultured follicle

population versus frequency. Figure 4.5B shows a graph of the final sizes attained by
dominant and subordinate follicles within each pair. Unlike the 10 pm pore experiments
there was a considerable overlap between the dominant and subordinate populations,
between 330-440 pm. Although this only represents 29.4% of the entire growth range,

66.7% (16 of 24) of the combined follicle population fall into this band. The average

size difference within a co-cultured pair is 45.8 pm S.E.M. ± 6.8. This data is also

represented as a box and whisker plot in Figure 4.7.

4.3.2.2.1. Further analysis

Statistical analysis was conducted as described previously for the 10 pm pore

experiments. Again, the Chi-squared test returned a highly significant result (p<0.01)
when co-cultured follicle growth was compared to single controls. When difference in
size between paired control and experimental follicles was compared, the student's t-test
returns a highly significant difference between the populations (p<0.001) again

illustrating that there is a bimodal distribution. Comparing dominant and subordinate
follicle growth to controls, the subordinate follicles show no significant difference

(subordinate: 333.1 pm S.E.M. ± 7.4; control: 326.4 pm S.E.M. ± 0.2), however, the

dominant follicles are significantly larger (dominant: 396 pm S.E.M. ± 4.3; control:

326.4 pm S.E.M. ± 0.2, p<0.001).

4.3.2.3. Comparison of0.1 pm and 10 pm pore co-cultures
A Chi-squared test for contingency tables was performed to establish if there was an

overall statistical difference between the two experimental groups or not. This test failed
to find any significant difference between the groups.
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Figure 4.7 A box and whisker plot showing the final sizes of follicles co-cultured
across membranes and controls. Coloured boxes represent the first to third inter¬
quartile ranges (Q1-Q3). The median follicle size is denoted by the diamonds. The
distribution of sizes within each group are represented by the whiskers. Outlying
follicles (upper limit defined as Q3 -1.5{Q1-Q3}, lower limit Q1-1.5{Q3-Q1}) are
shown by asterisks. It can be clearly seen that the growth of dominant follicles in
both the 0.1 jam and 10 jam membrane groups is greater than controls. It is
interesting to note that the final size range of the subordinate follicles in the 10 jam
is very tightly distributed (from 320-360 jam, excluding outlyer).
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4.4. DISCUSSION

4.4.1. Follicle dominance

These experiments have shown that co-culturing same-sized follicles has an effect on
follicle growth when follicles are able to make direct physical contact and when

physical contact is prevented. The 10 pm experiments, which were in essence a repeat of
the original co-culture experiments (Spears et al., 1996) with spherical follicle

morphology maintained throughout the culture period, show a dominance effect with
dominant and subordinate follicle populations being clearly distinct. Interestingly, the
subordinate follicles grew as well as controls and the dominant follicles were

significantly larger than controls. This observation suggests that contact has a positive
effect on growth for the dominant follicle, but no negative effect on the subordinate
follicle. This finding is at odds with earlier observations. The Spears et al. cultures

(1996) clearly show a suppression of growth ofboth the dominant and subordinate
follicles compared to controls, with subordinate growth being so retarded that there was

little increase over the culture period. The most likely explanation for these different

findings is follicle morphology. When co-cultured follicles are allowed to make contact

freely, with no membrane barrier, they become so closely associated that as much as

50% of their surface area is in contact with the neighbouring follicle (probably more for
the subordinate follicle once differences in size become pronounced). This represents a

significant loss of area available for diffusion of nutrients in, and metabolites out, of the
culture medium. Given this it seems likely that in the original experiments the loss of
available surface area significantly compromised follicle growth. The dominance effect
is caused by a growth enhancing factor that the dominant follicle is receptive to - this
would increase the growth of the dominant follicle in the original experiments, causing a

significant difference in growth compared to the subordinate follicle, however, the
dominant follicle would be unable to realize it's full potential (equal to, or greater than

controls) as it is nutritionally compromised.

Again contrasting with the earlier experiments, the 0.1 pm pore co-cultures also

produced dominant and subordinate follicles, providing strong evidence for a diffusible
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dominance factor. As with the 10 (am pore experiments, the subordinate follicles were
not significantly different in size compared to the controls, but dominant follicle growth
was significantly enhanced. These experiments have provided evidence that pre-antral
follicles produce a diffusible factor that enhances growth (this could be directly, or by

modulating response to other factors such as FSH). One effect that co-culturing in
contact does appear to have is the synchronising of subordinate follicle growth, with the
subordinate follicles in the 10 pm pore experiments distributed across a very narrow size

range. Unfortunately it is impossible to know if this is coincidence or a direct result of

contact, due to the small sample size.
The results and conclusions from these membrane experiments have been based

on the small number (less than 6%) ofpaired follicles that stayed together. While I have
made the assumption that these 'static' follicle pairs are normal and that conclusions
made following the analysis of their growth are true for all cultured murine follicles it is

important to remember that the majority of follicles did not stay together. In many

experiments it would be the 94%+ that were chosen as representative of growing
follicles. It is impossible to know if the follicles I have included in this experiment are

'normal', however other factors, such as healthy morphology and growth rates suggest

that these follicles are typical of others at the same developmental stage. I have made the

assumption that when adjacent follicles are allowed to make contact through the large

pored membranes that they form connections similar to those in vivo. Further

investigations could examine this, perhaps by looking at the expression of proteins such
as the connexin family (Wright et al., 1997) in co-cultured follicles in direct contact,
across membranes and in vivo and make comparisons between these.

This experimental design has served its purpose and given us an insight into the
nature of the dominance mechanism, however, the accumulation of these data has been

laborious due to the technical difficulties associated with preparing the membrane

constructs and the need to perform so many experiments to obtain reasonable numbers.
For these reasons, further work to investigate this diffusible factor has utilised other

experimental techniques. Recent investigations by others in this laboratory have used
follicle-conditioned medium in an attempt to characterise growth-affecting substances
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produced by the follicle, also finding evidence of diffusible factors released by follicles
which affect the development of others.

The membrane co-culture results are novel in that they are the first to
demonstrate a diffusible factor(s) secreted by late pre-antral follicles that is stable in
culture and can influence the growth of like-follicles. It is reasonable to speculate that
this factor(s) is involved in the establishment of differences between growing follicles
within a cohort. It is possible that the same factor(s) also has a role in the maintenance of
these developmental differences once established and as such may have been
characterised previously (see chapterl, 1.8.2 for discussion of identified inductive

signalling factors).

4.4.2. Follicle migration in vitro

The fact that greater than 94% of co-cultured follicle pairs were excluded from this

study due to movement is an interesting observation in itself. From the outset great care

was taken to ensure that mechanical trauma to the culture trays was avoided. The trays

were housed in incubators that were left undisturbed for long periods of time and
movement of the trays for follicle assessment was slow and fluid. Despite this, follicles
were still found to move from were they had been positioned. After several successive
cultures I was satisfied that the observed movement was not due to mechanical

perturbation and concluded that the follicles themselves were actively moving on the

polycarbonate membrane. This movement was not confined to the horizontal: the
follicles also frequently moved vertically, adhering to the upright portion of the
membrane construct. A search of the literature in an attempt to find documentation of
follicle migration found no specific references, although one likely candidate for follicle

migration is the horse. Equids have an ovulation fossa, into which ovulatory follicles are

always released (Carnevale et al., 1988). This requires that the ovulatory follicle must

make its way to the fossa to release the oocyte, regardless of its site of development.
Tracks of connective tissue can be clearly seen in ovarian sections (Prickett, 1962),

radiating across the ovary towards the fossa.
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There are two possible ways that follicles could move to an appropriate sight for

ovulation, a) follicles could expand sufficiently during the late antral stages to ensure

that they reach the ovary's edge, or b) follicles could migrate to ensure that they are at

the correct location (the ovarian periphery) for oocyte release. Follicle migration could
be either active, with the follicle directing its own movement, or passive, with the
follicle being pushed to the correct location by other movement within the ovary. In
either case there would be a need for radical remodeling of the extracellular matrix, a

point highlighted by Song et al. (1999) working on equine tissue. Their work implicates
the production of gelatinases and TIMPs by stromal cells as permitting this re¬

arrangement of follicle geography. Histological examination of the ovaries from a

variety of species for the studies detailed in Chapter 3, showed that large follicles can be

fully contained within the ovary, making no contact with the surface, despite their size.
It would seem feasible therefore, that these follicles may have a migratory requirement if

they are to release their oocytes outside the ovary. If follicles do migrate, this poses the

question ofwhich cells do they take with them? Does the theca externa delimit the
follicle boundary and everything contained within those cells moves? Or does the basal
lamina mark the edge of the 'core' follicle that moves? Although too time consuming to

be pursued further during the course of this thesis investigation, this topic is currently

receiving further attention from others in this laboratory. Investigations are underway to
document the movement ofmouse follicles in vitro (my previous observations had
indicated that this occurred most noticeably on culture day 3, typically the time that
antrum formation is first seen). Investigative strategies include attempts to identify
follicle chemo-attractants and record patterns of follicle movement. A molecular

approach can also be taken to investigate the role of genes known to be involved in

migration in other developmental systems (an area that may overlap with the genes

being investigated for possible roles in follicle selection detailed in Chapter 7).
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5.1. INTRODUCTION

As discussed in Chapter 1, section 1.7.1.1., the major force involved in follicle selection
is the systemic concentration ofFSH. Governed by negative feedback acting on the

hypothalamic-pituitary system, the amount of FSH released into circulation is dependent
on the level of oestradiol and inhibin produced by the ovary (Zeleznik and Hillier, 1984;
Gibbons et al., 1997). This provides a relatively straight-forward model for follicle
selection. As certain follicles become more advanced in their development, the amount

of oestradiol and inhibin that they produce increases, resulting in an elevated systemic
concentration of these factors. They act on the pituitary-hypothalamic axis resulting in a

decreasing amount ofFSH released by the pituitary gland. In this way circulating levels
ofFSH decline to a concentration that is insufficient to support the growth ofmost

gonadotropin dependent follicles (Brown, 1978), other than those late antral follicles that
are able to survive by sequestering what FSH there is (Zeleznik et al., 1981) and

transferring dependence to LH, via up-regulated LH receptors on the granulosa cell layer

(Webb and England, 1982; Ireland and Roche, 1983). The lesser developed follicles are

pushed down the atretic pathway, reducing the number of follicles in the growing cohort

(possibly to the desired ovulatory number in the mouse and other multi-parous

mammals). This mechanism is likely to form the broad framework by which the

ovulatory number is regulated, with intra-ovarian processes under-pinning this process

by locally selecting the follicles which become most developed within the growing
cohort. It is feasible that the dominance mechanism under investigation during the

course ofwork for this thesis is involved early on in the selection 'cascade' by

establishing differences between equivalent follicles. Other processes may then maintain
these differences (e.g. Campbell et al., 1991), either independently or in adjunct with
this mechanism, holding non-selected follicles in a retarded stage of development until
the declining FSH concentration pushes them down the atretic pathway.

The central tenet of the endocrine mechanism for follicle selection is that mature

(late antral) follicles are able to withstand low concentrations of FSH by utilising
available LH, but less developed counter-parts do not posses this ability. To test that this

77



Chapter 5

hypothesis holds true for mouse follicles in vitro I conducted experiments to investigate

very early and later antral follicle FSH dependency. Follicles were cultured in a range of
FSH concentrations with a constant level ofLH, at two different stages of development.
At the end of the culture period these follicles were examined for evidence of apoptosis,

by examining gel electrophoresis separated labelled DNA, a sensitive assay for the early
detection of atresia (discussed in Chapter 1).

While it has been widely held that antral follicles are highly susceptible to

undergo atresia in vivo (Hirshfield and Midgley, 1978; Hirshfield, 1988; Hirshfield,

1991a), most likely via an apoptotic process (Hsueh et al., 1994; Tilly et al., 1991;

Hughes and Gorospe, 1991) also demonstrated in vitro (Chun et al., 1996), it is less clear
to what extent pre- and early antral follicles are vulnerable to apoptosis in vivo. Using in

situ techniques for the localisation of apoptotic cells, Billig et al. (1994) and Palumbo
and Yeh (1994) report granulosa cell apoptosis in pre-antral follicles, however this
method can generate false positive results as other forms ofDNA damage can be
labelled. In the rat, it has been shown by DNA fragment analysis that pre-antral follicles

undergo apoptosis in serum free conditions (McGee et al., 1997). It is possible that
mouse pre-antral follicles are not developmentally competent to undergo atresia via an

apoptotic pathway. In addition to examining the effect of low FSH concentrations of
cultured murine follicles these experiments should offer an insight into whether or not
cultured mouse pre- /early antral follicles are competent to undergo apoptosis.
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5.2 MATERIALS AND METHODS

5.2.1. Follicle cultures

A whole follicle culture technique was used, as detailed in Chapter 2. The culture

medium used was a-Minimum essential medium supplemented with 5% mature F]
mouse serum and 0.01 IU ml"1 of rLH. rFSH was also added at the following
concentrations:

Tray 1: OFSH

Tray 2: 0.1 IU ml"1 FSH

Tray 3: 0.25 IU ml"1 FSH

Tray 4: 0.5 IU ml"1 FSH

Tray 5: 1 IU ml"1 FSH (standard control concentration).

In the first part of the experiment, which examined the effect of FSH concentration on

the growth and health of small follicles, pre-antral follicles -185 pm in diameter were
cultured for two days in the five different FSH levels. In the second part of the

experiment, all pre-antral follicles were cultured for three days with the standard
concentration of FSH (1 IU ml"1) then randomly assigned to the experimental
concentrations. This experimental design allowed the follicles to reach antral stages of

development before being affected by the decrease in trophic FSH. At the end of the
culture period the follicles were examined under the microscope and discarded if they

displayed any obvious morphological signs of damage or abnormal development. A

sample size of 10 antral follicles was sufficient to extract enough DNA for the

subsequent procedures. All experiments were repeated at least four times.

5.2.2. Detection ofDNA ladders in cultured follicles

To assess the effect of differing FSH concentrations on follicles at different stages of

development, genomic DNA was examined for evidence of apoptosis.
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5.2.2.1. Extraction ofgenomic DNA
After removal from the culture medium, follicles were snap-frozen on dry ice in

eppendorfmicro-centrifuge tubes to halt all cell function (thereby reducing the risk of

artificially inducing apoptosis). Samples were then lysed with 100 pg mf1 Proteinase K
in 400 pi ofmouse tail solution (0.5% SDS, 0.1M NaCl, 0.05M tris, pH 8.0, 2.4mM

EDTA) at 55°C for 5-6 hours. After this process, samples could be stored indefinitely at

-70 °C if required. To extract DNA from the digest, 75 pi 8M Potassium Acetate and
500 pi chloroform was added, vortexed briefly (so as not to shear the DNA), frozen at -

20 °C for 1 hour then centrifuged for eight minutes at 10 000 g (4 °C). The aqueous layer
was then removed and transferred to a clean micro-centrifuge tube, 500 pi isopropanol
added then precipitated at -70 °C for two hours. Centrifugation for 30 minutes at 14 000

g (4 °C) resulted in a small DNA pellet collecting at the bottom of the tube. Working on

ice, the isopropanol was removed and the pellet washed with 80% ethanol prior

centrifugation at 14 OOOg for ten minutes. The ethanol was then removed and the pellet
allowed to air dry for ~15 minutes before resuspension in ddEEO. A spectrophotometer
was used to estimate the amount ofDNA extracted.

5.2.2.2. DIG 3 '-end labeling ofextracted DNA
A digoxygenin (DIG) 3'-end labelling kit was used to tag the extracted DNA

(Boehringer Mannheim). Equivalent amounts ofDNA were end-labelled within each

experimental group, made up to a final volume of 10 pi with ddBbO, e.g. if sample A
had 40 ng ml"1 DNA, and sample B had 20 ng ml"1 DNA, 10 pi of undiluted sample B

would be taken for end-labelling and 5 pi of sample A (made up to 10 pi with ddKEO).
To the 10 pi DNA sample, 4 pi of 5x reaction buffer; 4 pi ofC0CI2; 1 pi of

terminal transferase and 1 pi of lmM DIG-ddUTP was added. This was incubated at 37

°C for ~3 hours. The reaction was stopped with 5pl of 0.25mM EDTA. 2 pi of glycogen
was added (this acted as a carrier for the low weight DNA) and the DNA precipitated
with 5 pi 4M LiCl and 150 pi absolute ethanol at -70 °C for 1 hour. Centrifugation at 13

OOOg for 15 minutes produced a visible DNA/glycogen pellet which was washed with
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70% cold ethanol, centrifuged at 13 OOOg for five minutes and allowed to air dry after
removal of the ethanol. The dried pellet was re-suspended in 50 pi ddH20.

5.2.2.3. Agarose gel electrophoresis
A 75 ml, 2% agarose gel was prepared by dissolving 1.5g of agarose in TAE. The gel
was poured taking care to remove any air bubbles, and allowed to set for 30 minutes

prior to use. 15 pi of the labelled-DNA solution was loaded onto the gel, mixed with 5

pi of gel loading buffer (200 pi bromophenol blue-xylene cyanole dye mixture, Sigma),
300 pi glycerol, 10 pi 0.5M EDTA made up to 1 ml with ddH20). The gel was run at 75

volts until adequate separation of the DNA bands was achieved.

5.2.2.4. Southern blotting
The separated DNA was transferred from the agarose gel onto a positively charged

nylon membrane (Boehringer Mannheim) by capillary action. The gel was placed on a

20x SSC saturated wick (QuickDraw™ blotting paper, Sigma) that covered a gel

support. The edges of the wick sat in a 20x SSC reservoir. The nylon membrane was

placed on top of the gel and any air bubbles caught between the two layers removed with

gentle pressure. Further sheets ofblotting paper were placed on top of the membrane and

finally the whole stack weighed down (~500g) and left overnight. The following day the
stack was dismantled and the membrane baked at 120 °C for 30 minutes to adhere the

DNA.

5.2.2.5. Detection ofDNA bands
The following buffers were prepared:

Buffer 1 (lOOmM maleic acid and 150mM NaCl).

Washing buffer (49.5 ml Buffer 1, 0.5 ml 3% Tween 20).

Blocking solution (3 ml 10% blocking reagent (Boehringer Mannheim) in
27 ml washing buffer).
Detection solution (3 ml 1M NaCl; 3 ml 1M Tris-HCl pH 9.5, and 1.5 ml 1M
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MgCb made up to 30 ml with ddH20).
Baked membranes were placed in heat-sealing plastic bags and washed in 10 ml washing
buffer then incubated in 20 ml blocking solution for 30 minutes with shaking. To the

remaining 10 ml blocking solution Anti-DIG AP was added at a concentration of 1:5000

(2 pi). The membrane containing bags were emptied and replaced with the Anti-DIG

solution and shaken for 30 minutes, before 3x10 minute washes in the remaining

washing buffer. The membrane was then equilibrated briefly in 20 ml detection buffer
while 200 pi NBT/BCIP (Boehringer Mannheim) was added to the remaining 10 ml.
The membranes were incubated in this colour reagent solution for 2-24 hours at 37 °C
until the DNA bands were visible to the naked eye. The reaction was stopped with

copious washing in TE pH 8.0 and the plastic bags sealed.

5.2.2.6. Computer analysis ofband intensity (degree ofapoptosis)
The colour-reacted membrane was scanned using an optical densitometer (Bio-Rad) and
the band density calculated using the Molecular Analyst (Bio-Rad) software. The

density of the bands in each experimental group was calculated relative to the control

group (see Figure 5.1).

5.2.2.7. Statistical analysis
All data was normalized so that the control results equaled 1. The student's t-test was
used to compare experimental groups with the appropriate control group (1 IU FSH ml"1
throughout).
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Figure 5.1 A. The colour developed membranes are scanned into a computer. B.
The apoptotic bands are manually highlighted (illustrated with the red boxes) and
a value calculated for the density of each band. The density value for the 370 bp,
550 bp and 735 bp bands are amalgamated for each treatment (different
concentration ofFSH as denoted at the bottom of the membrane in IU/ml) to give
one overall value. C. This data can be shown on a histogram to give a clear
representation of the differences between groups.
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5.3. RESULTS

5.3.1. Follicle culture growth

Two day cultures (follicles cultured in experimental levels ofFSHfrom the outset).
No record of growth was taken for these short-term cultures. At the end of the culture

period, follicles from all the groups appeared to be healthy when examined by light

microscopy.

Five day cultures (follicles culturedfor three days in 1IUml'1 FSH, then in

experimental FSH levels for a further two days).

Figure 5.2 shows the growth of the cultured follicles. By the end of the culture period
the follicles cultured in the absence ofFSH, or with only 0.1 IU ml"1 had grown

significantly less than the control (1 IU ml"1) follicles (p<0.05 and p<0.001,

respectively). There was no significant difference in antral development between the

groups (see table 5.1).

5.3.2. Detection of DNA ladders in cultured follicles

5.3.2.1. Two day cultures (follicles cultured in experimental levels ofFSHfrom the

outset).

When the degree of apoptosis within each experimental group (different levels ofFSH)
is displayed graphically (Figure 5.3) it can be clearly seen that apoptosis increases as

FSH concentration decreases. These data are displayed numerically as the percentage

increase relative to controls in Table 5.2, e.g. there was a 312% increase in the degree of

laddering in the 0 IU ml"1 group. When each experimental concentration was compared
to controls (1 IU ml"1) using the student's t-test, the 0.1 IU and 0 IU ml"1 groups show

significantly higher levels of apoptosis (p<0.05 and p<0.01, respectively).
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Day 0 Day 1 Day 2 Day 3 Day 4 Day 5

Figure 5.2 Growth of follicles over the culture period. The shaded area
illustrates when follicles were moved into experimental levels of FSH. The
0.1 IU ml*1 and zero FSH groups grew significantly less than control
follicles (P<0.001 and p<0.05, respectively).

Early antral (%) Mid antral (%) Graafian (%)

0 IU FSH 17.2 44.8 37.9

0.1 IU FSH 16.1 54.8 29.0

0.25 IU FSH 16.7 56.7 26.7

0.5 IU FSH 3.4 48.3 48.3

1 IU FSH 14.3 31.4 54.3

Table 5.1 Antral development of follicles cultured in 1 IU ml*1 FSH for three
days then experimental FSH levels for a further three days. Chi-squared
analysis failed to find any statistical differences between control follicles and
experimental groups.
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**

FSH levels during days 0-2 of culture
FSH levels during days 3-5 of culture

1 IU 0.5 IU 0.25 IU 0.1 IU 0 IU

FSH

Figure 5.3 The density of apoptotic fragment ladders following extraction from
cultured follicles, DIG 3'-end labelling, agarose gel electrophoresis, Southern
blotting and DIG visualisation. Data is normalised so that the density of bands from
the 1 IU ml"1 FSH cultures are assigned a value of 1. *=p<0.05; **=p<0.01;
***=p<0.001

1 IU FSH
(control)

0.5 IU
FSH

0.25 IU
FSH

0.1 IU
FSH

0IU
FSH

2 day
cultures

- 25.6 99.1 150.9 312.5

5 day
cultures

- -0.7 19.9 42.3 73.4

Table 5.2 Percentage increase (relative to controls) ofband density in each treatment.
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5.3.2.2. Five day cultures (follicles culturedfor three days in 1IU ml'1 FSH, then in

experimental FSH levels for a further two days).
As for the shorter cultures, the degree of apoptosis within each group is displayed

graphically (Figure 5.3) and numerically (Table 5.2). In these experiments there was a

less marked increase in the degree of apoptosis as FSH levels were decreased, e.g. in
these experiments the 0 IU ml"1 group showed a 73% increase in laddering intensity.
When each experimental concentration was compared to controls (1 IU ml"1) using the
student's t-test, the 0.1 IU and 0 IU ml"1 groups show significantly higher levels of

apoptosis (p<0.05 and p<0.001, respectively).

5.3.2.3. Comparison of two day andfive day cultures.
When the data is normalised so that the 1 IU ml"1 groups in both experiments are

assigned the value of one it appears that the follicles in the five day cultures are more

tolerant of an FSH drop (comparing the 0 IU ml"1 groups there is a 73% increase in the

degree of apoptotic laddering in the longer cultures compared to 312% in the short

cultures). While it is in keeping with the proposed hypothesis that the more mature

follicles are able to utilise the available LH and so protect themselves against the FSH
decline it is not possible to directly compare the two cultures. The end point of the

experiment is different for the two cultures, with the follicles taken for molecular

analysis being at different developmental stages. It is possible that the extent of

laddering in the control group is a lot higher in one of the experiments (this could be
viewed as the base-line). Thus although it may appear that there is a relatively small
increase in laddering in one of the experimental treatments, it is not possible to know
whether or not this represents a significant increase if compared to the control in the

parallel experiment.
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5.4. DISCUSSION

The results from these experiments clearly show that late pre-antral/early antral follicles
in vitro do have a requirement for FSH as a survival factor and are competent to undergo

apoptosis in insufficient concentrations of this gonadotropin, despite the presence of LH.

Apoptosis has previously been detected in mouse pre-antral follicles taken from 12 day-
old animals and grown in vitro (Robertson and Telfer, 1994). This finding is in
accordance with an earlier report by the same authors who observed apoptosis in vivo in

primordial and pre-antral follicles taken from mice up to 20 days of age (Telfer and

Robertson, 1993). Follicles taken from older mice did not display signs of apoptosis (as
characterised by laddering). The culture ofmore developed antral follicles in different
concentrations ofFSH (the five day cultures) support the role of LH in maintaining
antral follicle health. These follicles also have a requirement for FSH and become

increasingly apoptotic as it is withdrawn. However, they display a markedly lower
increase in apoptosis relative to their controls than do the less-developed pre-/early
antral follicles. This is presumably a result of their ability to respond to LH via

granulosa LH receptors. These findings support previous work which demonstrated that
FSH and LH are effective inhibitors of apoptosis in cultured rat antral follicles (Tilly et

al., 1993). This inhibition of apoptosis is likely to be as a result of intra-cellular

signalling involving the adenyl cyclase-cAMP pathway (Tilly et al., 1993) and IGF-1

(Tilly and Furuta, 1993). Given the hypothesis that LH dependence is the principle way

in which antral follicles are able to withstand the FSH decline in vivo it is perhaps

suprising that there is any detectable increase in apoptosis in these more developed
follicles. There are two main reasons that could explain this. Firstly, the DIG 3'-end

labelling assay for apoptosis is very sensitive and so is able to detect very small changes
in DNA laddering. There is less than a two-fold increase in the degree of apoptosis in the
zero FSH group as compared to controls. This could be an increase from 10 to 20

apoptotic cells in a total population ofmany hundreds - which may represent a

significant increase in apoptosis but have no serious ramifications for overall follicle, or

perhaps most importantly, oocyte health. Secondly, the follicles in these cultures were
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transferred into the experimental FSH concentrations after three days in culture with 1
IU ml"1. These follicles would have been in the early-mid stages of antral development.

Although LH receptors should start to be manufactured on granulosa cells at this

developmental stage (Peng et al., 1991) they might not be in sufficiently high numbers
to allow the follicles to transfer their dependence to LH. Additionally, at least ten
follicles are pooled for each ladder analysed which may be at different stages of

maturity. It would only take one less developed, more acutely FSH-dependent follicle to

increase the combined ladder intensity for the whole group.

Together, this series of experiments has shown that follicles are developmentally

competent to undergo apoptosis-mediated cell death from the pre-/early antral stage

onwards, at least in vitro. Furthermore, the addition ofLH into the culture medium

provides a survival factor that follicles are able to respond to, dependent on their

developmental stage. These findings tie-in with the gonadotrophin hypothesis for follicle
selection. What these results are unable to tell us is the follicle compartment(s) that are

undergoing apoptosis. The genomic DNA extractions from the cultured follicles are

from theca and granulosa cells, and the oocyte. It is entirely possible that as a follicle
matures the cell population's susceptibility to apoptotic death changes. It has been

reported that pre-antral follicle oocyte degeneration preceeds atresia in the rest of the
follicle (Hakuno et al., 1996). It is possible therefore that laddering seen from the pre-
antral cultures might be contributed to predominantly from the oocyte. Co-culturing

oocytes with granulosa cells results in an increase in the incidence of apoptosis in the

granulosa cell population possibly as a result of activation of Fas on the granulosa cells

following expression of Fas ligand on the oocyte surface (Quirk et al., 1995; Hakuno et

al., 1996). This would imply that atresia in these follicles starts at the oocyte and moves
outwards to the follicle periphery. Conversely, studies of cell death in antral follicles
show that apoptosis originates in the peripheral areas first, moving inwards from the
mural granulosa cells and finally the oocyte, a reversal of observations in pre-antral
follicles. Despite the possibility that these experiments have encompassed different

patterns of cell death, I believe it is justifiable to compare the two developmental stages
as the end point is presumably the same (atresia of the entire follicle). It is entirely
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however, that the two follicle populations undergo apoptosis initially in different cell

compartments, possibly stimulated by different extra- and intra-cellular messengers.
While it is possible to separate mouse follicles into individual cell populations and

analyse them separately, their size would make this a difficult and time consuming

pursuit. Other possibilities include in situ DNA fragment labelling of follicle sections,

although again size makes this approach problematic, and whole follicle TUNEL

labelling and visualisation using confocal microscopy, an approach taken throughout the

experiments detailed in Chapter 6. This has the advantage of relatively easy processing

(once a follicle permeablisation and fixation protocol has been constructed) and
localisation of fragmented DNA within individual cells. As with all in vitro work, it is

important to consider that cultured follicles may behave differently in vivo, although I
believe that the whole follicle culture system is as near to physiological as is possible. In
situ analysis ofwhole ovaries, fixed immediately post mortem looking specifically at

pre- and early antral follicle health would indicate whether apoptosis in these follicles is
a physiological event.
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6.1 INTRODUCTION

Chapter 5 discussed the major endocrine component of follicle selection in vivo. In

essence, circulating levels ofFSH decline to a concentration that is inadequate to

support the growth of FSH-dependent follicles (Brown, 1978). Some late antral follicles
are able to survive by being better equipped to use what FSH there is (Zeleznik et al.,

1981) and by transferring dependence to LH, via up-regulated LH receptors on the

granulosa cell layer (Webb and England, 1982; Ireland and Roche, 1983). The lesser

developed follicles have not developed these survival mechanisms and are pushed down
the atretic pathway. In this way the number of follicles in the growing cohort is reduced.
It is likely that intra-ovarian processes, possibly including the dominance mechanism
under investigation, under-pin this process by locally selecting the follicles which
become most developed within the growing cohort.

The cornerstone of the hypothesis for endocrine follicle selection is that mature
follicles are able to withstand low concentrations of FSH by utilising available LH, an

ability lacking in less developed follicles. I have hypothesised that the dominant-
subordinate relationship established and maintained when follicles are co-cultured in
contact is responsible for holding non-selected follicles in a retarded state of

development so that the systemic FSH decline has a clearly defined 'target' population
of less healthy follicles. To test this hypothesis I exposed co-cultured follicles to

different concentrations of FSH during the culture period and observed the effect on
dominant (selected) and subordinate (non-selected) follicle health.

Follicle pairs were chosen with an initial size difference as this meant that culture
time could be reduced, circumventing problems of bursting due to the absence of
ascorbic acid addition to the culture medium. Ascorbic acid was not added to these

cultures as earlier experiments showed it to be a powerful inhibitor of apoptosis even in

strongly atretogenic environments (Chapter 2, 2.2.1.1). Previous work from this

laboratory has shown that co-culturing follicles with an initial size difference is a

reasonable strategy for bypassing the initial setting up of 'dominance'.
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In Chapter 5, apoptotic-associated cleavage of genomic DNA (laddering) was
used as an assay to determine relative follicle health in the single follicle cultures. To

gain a clearer picture ofwhere apoptosis was occurring in the co-cultured follicles a

different protocol was adopted. The co-cultures were terminal deoxynucleotidyl
transferase-mediated dUTP nick-end labelled (TUNEL) using a commercially available
kit. The follicles could then be looked at using a confocal microscope as the TUNEL kit

puts a fluorescent tag onto genomic DNA strand breaks (ladders). This apoptosis assay

is in keeping with previous experiments (detailed in Chapter 5) which also quantified the
amount of genomic DNA laddering present in follicles. Furthermore, it has three clear

advantages. Firstly, it is possible to look at individual intact follicles enabling clear
identification of the cells most affected by FSH deprivation. Secondly, the spectrum of
follicle response to FSH withdrawal can be seen: differences between follicles in the

same treatment are unidentifiable when DNA is extracted from several follicles. Finally,
there is no danger ofDNA from the other co-cultured follicle contaminating the DNA

preparation from the first follicle and hence leading to false results. To individually

assay dominant and subordinate follicles that have been co-cultured using the total DNA

extraction protocols means that the follicle pair has to be separated. This is technically
difficult and even meticulous separation is likely to result in some mixing of each
follicles' peripheral cell population. One negative aspect of using the TUNEL protocol is
that results reflect fewer follicles due to the fact that analysis of each follicle is very time

consuming.
Before embarking on the co-culture experiments a small-scale repeat of the

experiments detailed in Chapter 5 was carried out. This enabled comparisons between
the two assay techniques to be made.
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6.2 MATERIALS AND METHODS

6.2.1. Follicle cultures

Follicles were dissected from the ovaries of three-week-old mice according to the

protocols outlined in Chapter 2. Before co-culture experiments were started small scale
cultures (6 follicles in each group) were set up as described previously (Chapter 5,

5.2.1). These were single follicles either cultured for 48 hours in different concentrations
of FSH or single follicles cultured for three days in 1 IU ml"1 FSH then transferred to

experimental concentrations ofFSH. For the co-culture experiments, freshly dissected
follicles were accurately measured and 160 pm and 220 pm follicles paired. These pairs
were then cultured in standard medium (see Chapter 2) containing 1 IU ml"' FSH,
without ascorbic acid, for three days (media was changed after the first 48 hours). After
this time halfof the pairs were moved into medium containing either 0 IU ml"1 FSH
whilst the other half remained in medium containing 1 IU ml"1 FSH for a further two

days. A tray of single control follicles that remained in 1 IU ml"1 FSH for the duration of
the culture period was also included in these experiments. At the end of culture, all the
follicles were fixed, permeabilised and stained for confocal microscopy according to the

protocols detailed below.

6.2.2. Staining for confocal microscopy

6.2.2.1. Permeabilisation andfixation
At the end of culture, follicles were washed for 10 minutes in PBS, pH 1.2-1A at 37 °C
before being transferred into 0.5% Triton X-100 and 0.25% paraformaldehyde in PBS
for 30-40 minutes. The follicles were then fixed in 4% paraformaldehyde for 30 minutes,
washed twice for 10 minutes in PBS. At this point they could be stored overnight (or

longer if required) in PBS with 0.02 % sodium azide at 4 °C. After removal from
overnight storage the follicles were washed in PBS for 10 minutes and transferred into
17.1 pg ml"1 Proteinase K for 25 minutes at 37 °C. They were then washed in PBS with
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0.01% Triton X-100 for 10 minutes and fixed in 3% paraformaldehyde at room

temperature for 30 minutes. Follicles were then washed twice in PBS for 20 minutes.

6.2.2.2. TUNEL andpropidium iodide staining

Following 10 minutes pre-incubation in 50 pi of terminal deoxynucleotidyl transferase

(TdT) buffer (30 mM Tris-HCl pFl 7.2, 140 mM sodium cacodylate, 1 mM cobalt

chloride), each follicle/double follicle unit was placed in -15 pi of a commercially
available terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling

(TUNEL) reaction mixture (Roche) for 2.5 hours at 37 °C. TdT catalyses polymerization
of nucleotides to free 3'-OH DNA ends with incorporated fluorescein labels which can

be seen using fluorescence microscopy in the green channel. Following a 10 minute
wash in PBS the follicles were moved into RNase buffer containing 200 pg ml"1 DNase-
free RNase and 2.5 pg ml"1 of propidium iodide and left at room temperature for one

hour. They were then washed in PBS containing 0.01% Triton X-100 for 20 minutes
followed by two washes in PBS for 20 minutes. To preserve fluorescence the follicles

were equilibrated in 50% Vectashield™ (Vector). They could be stored overnight at 4 °C
at this stage or transferred into 100% Vectashield™ (~ 50 pi) on a concave microscope

slide, cover-slipped and sealed with nail polish for microscopic analysis.

6.2.3. Confocal microscopy
Follicles were examined using the Leica TCSNT Confocal system (Leica

Microsystems). Using a 63x water corrected PL APO lens, a single scan was taken

through the centre of each follicle as determined by central positioning of the propidium
iodide stained germinal vesicle in the oocyte. Simultaneous scans at 488 nm (the green

channel which shows any TUNEL labelled DNA) and 568 nm (the red channel which
shows propridium iodide stained nuclear material) were taken to produce an

amalgamated true colour RGB image. Each channel could also be viewed separately.
Four accumulations were taken for each image saved which averaged the fluorescent
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signal and removed electronic noise to produce a sharper image. Images were saved for
later analysis.

6.2.4. Analysis of confocal images
A section through each follicle of interest was identified where the germinal vesicle
within the oocyte could be clearly seen. A mosaic of images were scanned and stored at

a 63x magnification that covered the entire section. Looking at each image in turn the

complete number of cells present were counted. Only those that were sharply in focus
were included. The number of TUNEL labelled cells that were in focus was also

counted. In this way the proportion of apoptotic to healthy cells could be calculated

(Figure 6.1).

6.2.5. Statistical analysis
The chi-squared test was used to compare follicles between different treatments.
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Figure 6.1 Apoptotic cell counting protocol. The confocal microscope scanned
image (top photomicrograph) can be split into red and green channels (A and C
respectively). Using Image Tool software (UTHSCA) the total number of cells can be
counted and tagged in the red channel (B). By switching to the green channel the
number of apoptotic TUNEL labelled cells within that population can be easily
calculated. Only the green stained cells that have a tag are counted.
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6.3 RESULTS

6.3.1. Single follicle cultures using TUNEL as an assay for atresia
Table 6.1 shows comparisons between follicles assayed using TUNEL labelling and
those assayed using whole follicle DNA extraction and subsequent 'ladder' analaysis

following agarose gel electrophoresis (see Chapter 5 for materials and methods). The
data has been normalised in each case so that the follicles in the 1 IU ml"1 group are

assigned a value of 1. The range and mean percentage of apoptotic cells counted using
the TUNEL protocol is shown in Table 6.2. As before, the TUNEL assay shows that
there is an increase in the degree of apoptosis as FSH concentration declines. There is a

marked increase in the degree of apoptosis recorded when using the TUNEL protocol

(e.g. a 21.1 fold increase in apoptosis recorded using the TUNEL method versus 4.1
when using the DNA extraction protocol when follicles are cultured in the absence of
FSH for 24 hours). This suggests that TUNEL is a much more sensitive method for

determining atresia. A key difference is that the TUNEL labelled cell count only
includes granulosa cells. The DNA extraction method involves the digestion of the entire

follicle, including the theca layer and the oocyte.

Short
cultures

Long
cultures

DNA TUNEL DNA TUNEL
extraction labelling extraction labelling

1IU - - - -

0.5 lU 1.3 - 1.0 3.4
0.25 IU 2.0 0.8 1.2 3.8
0.1 IU 2.5 5.1 1.4 3.9
OIU 4.1 21.1 1.7 6.6

Table 6.1 Comparisons between TUNEL labelling and DNA extraction protocols
for determining atresia. The data are normalised so that the 1 IU ml"1 FSH groups

are assigned a value of 1. The 0.5 IU ml"1 FSH two-day culture follicles were lost

during processing.

98



Chapter 6

Short
r* uCultures

Long
Cultures

% Apoptotic Range (%) % Apoptotic Range (%)
1 1 IU 0.3 (5) CDdIo 0.4 (4) CDdICVjo
0.5 IU - - 1.2 (2) CDI00o
0.25 IU 0.2 (4) 0 1 o Cj 1.4 (4) 0.1 -3.9
0.1 IU 1.6 (5) 0-2.6 1.4 (4) 0.2-2.3
0 IU 6.5 (5) 0.6-21 2.3 (3) CDdIC\l

Table 6.2 The percentage of granulosa cell apoptosis calculated using the
TUNEL protocol. The number of follicles included in the analysis is shown in
brackets. The range of apoptosis between individual follicles is also shown.

6.3.2. The effect of FSH withdrawal on co-cultures

Figure 6.2 shows examples of co-cultured follicles cultured for five days in 1 IU ml"1
FSH (A), cultured for three days in 1 IU ml"1 FSH then for a further two days in the
media prepared without FSH (B), and single control follicles cultured in 1 IU ml"1 FSH
for five days (C). Cells showing green fluorescence have a high incidence ofDNA

laddering (apoptosis). It is of interest that the heaviest region of apoptosis appears to be
in the mural granulosa cell region in the dominant follicle cultured for two days in the
absence ofFSH (B). The single control follicle in 1 IU ml"1 FSH also contains apoptotic
cells. Complete granulosa cell counts from a cross-section through the middle of each
follicle (as determined by central positioning of a clearly visible germinal vesicle) and
the number of those cells staining positive for apoptosis were recorded. The percentage

of apoptotic cells in each case is shown in Figure 6.3.
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Figure 6.2 Confocal photomicrographs of follicles co-
cultured for A: five days with 1 IU ml"1 FSH; B: three
days with 1 IU ml-1 FSH then two days with 0 FSH, and
C: single follicles cultured with 1 IU ml-1 FSH for five
days. G = germinal vesicle; O = oocyte; D = dominant
follicle; S = subordinate follicle, and A = antral cavity.
Scale bar represent 125 pm.
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C.

B.

1IU ml1FSH
to 0 FSH

1 IU ml1 FSH

Figure 6.3 Percentage of apoptotic granulosa cells in cultured follicles. A.
Single control follicles; B. co-cultured follicles in 'high' FSH throughout, B.
co-cultured follicles in 'high' FSH for three days, then no FSH for two days.

The incidence of apoptosis in dominant follicles from both treatment groups was

compared using the chi-squared test. This returned a highly significant difference

(p<0.001) between the groups with a 10.4-fold increase in apoptosis in the dominant
follicles from the 2-day zero FSH group in comparison with the 1 IU ml"1 FSH

throughout group. Similarly, comparison of the subordinate follicles also returned a

significant difference (p<0.001) with a 13.8-fold increase in apoptosis in the subordinate
follicles from the FSH-deprived group compared with the 1 IU ml"1 FSH throughout

group.

Follicles at different stages of development (such as the dominant and subordinate
follicle within each co-cultured pair) have different characteristics and may behave

differently in response to the same stimuli. Therefore, it cannot be assumed that it is

possible to make comparisons of follicle health following FSH withdrawal between
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follicles at different developmental stages (i.e. comparing the dominant and subordinate
follicle after FSH withdrawal), unless it can be clearly demonstrated that they have the
same 'baseline' in normal conditions (i.e. comparing dominant and subordinate follicles
maintained in high FSH). A chi-squared test was therefore carried out first to compare

the dominant and subordinate follicles maintained in high FSH levels throughout culture

(control group). This comparison returned a significant difference (p<0.005) making the
further comparison between dominant and subordinate follicle in the experimental (0

FSH) group meaningless.
A comparison of the proportional increase in the incidence of apoptosis when

moving from 1 IU ml*1 FSH to 0 IU ml"1 FSH between dominant and subordinate
follicles was made (10.4- and 13.8-fold respectively), also using the chi-squared test. In
the context of these experiments, this was the most important test, as this illustrates the
effect of co-culture on the subordinate follicle. Although a follicle group may exhibit a

high percentage of apoptosis, this may represent the developmental stage of those
follicles as much as their response to an environmental stimulus. Consequently it is the

proportional increase in the incidence of apoptosis in follicles with FSH withdrawal as

compared to 'normal' follicles maintained in high FSH levels, at the same

developmental stage, that gives an indication of the effect of environmental change on

follicle health. This statistical analysis returned a clearly significant result (p<0.01).

Comparison of the percentage of apoptosis in co-cultured follicles with single
follicles from the initial experiments showed similarities between the subordinate
follicles and the single follicles from the two-day cultures. The subordinate follicles
cultured for five days in 1 IU ml"1 FSH exhibited 0.4% apoptosis, with the single
follicles cultured for two days (without the influence of the dominance mechanism)

exhibiting 0.3% apoptosis. The chi-squared test showed no significant difference
between these groups. Subordinate follicles cultured without FSH for the last two days
of culture exhibit 5.5% apoptosis, with single follicles cultured for two-days without
FSH showing a 6.5% incidence of apoptosis. Again, the chi-squared test found no

significant difference between these groups. No such correlation is seen when

comparing dominant follicles from either group with singly cultured follicles. The
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dominant follicles cultured with 1 IU ml"1 FSH throughout exhibited 1.3% apoptosis

compared to 0.4% in single follicles also cultured for five days in the same FSH

concentration, a significant difference, p<0.001. Dominant follicles subjected to FSH
withdrawal displayed 11.7% apoptosis compared with 2.3% in the singly cultured

equivalent follicles (p<0.001). Of note is the fact that the control, single follicles
cultured in 1 IU ml"1 FSH at the same time as the co-cultured follicles, exhibited 1.8%

apoptosis, an increase of 1.4% above follicles cultured in the same conditions during the
initial TUNEL versus DNA extraction experiments. Comparing these control follicles
with the dominant follicles cultured with 1 IU ml"1 FSH throughout, returns a narrowly

significant difference, p=0.05.
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6.4 DISCUSSION

The development of the whole follicle TUNEL labelling protocol with confocal

microscope visualisation has provided a powerful tool for rapid follicle analysis.

Currently, there are no reports in the literature documenting the use of this protocol for
ovarian follicles, although a similar technique has been reported for the analysis of

blastocysts (Brison and Schultz, 1997). From a technical standpoint, the use of this
method for analysing follicles cultured in vitro, perhaps in combination with an existing

protocol for in situ TUNEL labelling of in vivo sections (e.g. Billig et al., 1994), offers a

relatively simple indicator of follicle health.

The comparison between the TUNEL labelling method and the DNA extraction

protocol clearly indicated that the former is a more sensitive assay for the detection of
atresia. The higher incidence of apoptosis recorded when using this method could be
attributed to the fact that only granulosa cells are included in the analysis. The DNA
extraction assay reflects apoptosis in the entire follicle. Given that apoptosis in follicles
at the developmental stages found in these cultures is found primarily in the granulosa

cells, it is possible that the amount of apoptosis being detected is being 'diluted' by the

healthy DNA from theca cells and the oocyte. Technically, DNA is more likely to be lost

during processing of the DNA extractions and subsequent DIG labelling. There are

several DNA precipitation and re-suspension steps throughout the protocol and varying

quantities of the DNA will be lost at each of these. Additionally, the 'success' rate using
the DNA extraction method was variable with 'blank' runs being a common occurrence.

The TUNEL assay reveals that within the same treatment group, follicles display
a considerable range of apoptosis (e.g. when cultured for two days in 0.1 IU ml"1 FSH
the percentage of granulosa cell apoptosis ranges from 0 - 2.6%). This is an observation
that is lost when using the DNA extraction protocol, the follicle all being assayed

together. This range of response to environment may reflect naturally occurring
biochemical heterogeneity amongst the follicle population (Grant et al., 1989). It is also

possible that the follicles have experienced different degrees ofmechanical trauma

during the culture set-up which is being reflected in the variance of apoptotic profile.
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The co-culture results build on previous work (detailed in Chapter 5) that

investigated the response of follicles at different stages of development to FSH
withdrawal. Large, singly cultured follicles were more able to withstand a decrease in
FSH (as assessed by follicle apoptosis) presumably by being able to utilise available LH.
Smaller follicles are unable to respond to environmental LH as they are unlikely to have
functional LH receptors on their granulosa cells. I hypothesised that these findings could
be extended to co-cultured follicles. The dominant follicle would behave like the singly
cultured large follicles when subjected to FSH withdrawal. The dominance mechanism
under investigation would retard the development of the subordinate follicle (despite the

previous three days culture in 1 IU ml"1 FSH). The subordinate follicle would be

expected to respond to the FSH removal in a manner analogous to the small, singly
cultured follicles, with an increased incidence of apoptosis.

Statistical analysis of the results clearly shows that both dominant and
subordinate follicles exhibit significantly more apoptosis when FSH is withdrawn. There
is an increase from 0.4% to 5.5% in apoptotic granulosa cells in the subordinate follicles
and from 1.3% to 11.7% in the dominant follicles. The singly cultured control follicles
had 1.8% apoptotic granulosa cells. Although the dominant follicles in the absence of
FSH have the highest proportion of apoptotic cells (11.7%), when viewed as a

proportional increase in apoptosis, there is less of a rise than that shown by the
subordinate follicle (p<0.01). Despite being a significant difference, it is perhaps less

pronounced than might be expected if the dominant follicles were developmentally

competent to rely on LH for trophic support. These results would suggest that the
dominant follicles are not sufficiently mature enough to be completely FSH-independent
at the time of FSH withdrawal. Alterations in the experimental design to extend the

length of time follicles are cultured in 'high' FSH before withdrawal (perhaps by 24-48

hours) may be sufficient to allow the dominant follicle to become FSH-independent,

revealing a more marked difference between subordinate and dominant follicle health.
The hypothesis that co-cultured subordinate follicles (pre-/early antral) might

behave like single follicles cultured for a short time (also pre-/early antral), and

conversely that co-cultured dominant follicles might be similar to single follicles
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cultured for a longer time (both antral) is only partly substantiated. While there is a good
correlation between the subordinate follicles and the small single follicles, the dominant
follicles and the larger single follicles behave significantly differently. This may be a

reflection on the nature of co-cultured follicles. It has been shown that dominant follicles

from freely-contacting co-cultured pairs fail to achieve comparable sizes to those of

single control follicles (Spears et al., 1996). Presumably this means that the dominant
follicles are less developmentally advanced than the single follicles despite starting the
culture period at equivalent sizes and being cultured for comparable lengths of time. At
the time of FSH withdrawal, it is possible that these dominant follicles are being

'caught' at an especially vulnerable time - the majority of the granulosa cells are

capable of undergoing apoptosis and are highly FSH-dependent, but the population of

LH-receptor-bearing granulosa cells is insufficient to sustain the follicle on LH alone.
One way to test this theory would be to repeat the experiments but co-culture follicles
across large-pored polycarbonate membranes (see Chapter 4 for materials and methods).
This would have the advantage ofmaintaining follicle morphology and not

compromising development but maintaining the influence of the dominance mechanism,
but would be technically difficult due to the movement of follicles in these cultures.

The subordinate follicles cultured in 1 IU mF1 FSH throughout exhibited less

apoptosis than the single control follicles cultured at the same time in identical
conditions (0.4% and 1.8% respectively). This may demonstrate a protective effect of
the dominant follicle on its smaller partner, although I believe that this observation is
more likely to be illustrative of differences in developmental stage and response to

environment. While it has been reported that pre-/early antral follicle cells are capable of

undergoing apoptosis in vitro (Robertson and Telfer, 1994), this may happen less readily
than in more mature follicles. Apoptosis is a normal process of cell elimination in most

healthy tissues (Hsueh et al, 1994). Large ovarian follicles have more cells than less

developed follicles, many ofwhich may play different roles in the follicular syncitium.

Consequently there is more of a requirement for strict follicular organisation, including
the elimination of unhealthy; inappropriately located, or unwanted cells. This may
account for a higher baseline of apoptosis in more developmentally advanced follicles.
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Of interest is the difference in the incidence of apoptosis in the two groups of

single follicles cultured for five days in 1 IU ml"1 FSH (from the TUNEL versus DNA

extraction experiments (0.4%) and the controls for the co-culture experiments, 1.8%).
This would suggest that there may be poor reproducibility between repeat experiments

using the TUNEL protocol (as compared to the DNA extraction method which requires a

minimum of three different cultures to obtain a single result, thus averaging culture-to-
culture variance). These differences may be attributable to the small sample size of the
former group or variability in the effectiveness of the TUNEL labelling kits. If further

experiments continue to show culture-to-culture variability caution should be used when

comparing experiments conducted at different times, however, there is no problem when

comparing treatments within the same culture.
The findings of these experiments offer support to the hypothesis that contact-

mediated communication between follicles may play a role in follicle selection by

holding back development of smaller follicles, rendering them more vulnerable to

systemic changes in FSH concentration.
In the future these experiments should be consolidated with further studies

looking at different concentrations ofFSH and perhaps with a longer culture period
before FSH levels are dropped. A complete absence ofFSH in the culture medium after
the initial culture period was used in these experiments as it was thought that the effects
of this extreme would be easiest to detect. Confocal microscope analysis of TUNEL
labelled whole follicles offers a straight-forward and sensitive method for assessing
follicle health. Consequently even subtle changes in follicle health can be easily
recorded. Systemically in the mouse we are unsure what circulating levels of FSH are at

various times in the oestrous cycle. It may be that follicles are never subjected to such
low levels. Reducing the FSH concentration to 0.1 IU or 0.25 IU ml"1 may still be
sufficient to observe a significant affect on follicle health and would make the contact-

mediated selection hypothesis more robust.
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Chapter 7

1.1. INTRODUCTION

The terms inductive signalling and lateral specification were introduced in Chapter 1
and some discussion given to the appropriateness of applying them to aspects of
follicle dominance. A diagrammatic summary of these communication mechanisms
is given in Figure 7.1.
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Figure 7.1 Lateral specification and inductive signalling: their speculative
role in follicle selection In a process analagous to lateral specification (the
process by which a group of cells forms two different populations in a patterned
process), juxtacrine communication between an initially equivalent population of
follicles results in some follicles emerging as dominant (A). Later, these
dominant follicles maintain their eminence by holding back the growth of
subordinates until the systemic FSH decline pushes them down the atretic
pathway and/or or by directly inducing atresia. This later stage is analagous to
inductive signalling between developing cells. (B).

A considerable body of evidence in the literature reports various factors that
are secreted by an already dominant follicle to inhibit the development of

neighbouring subordinates. These could be classified as examples of inductive

signalling, as follicles at different developmental stages could be viewed as non-

equivalent cell populations: one group of differentiated cells (the dominant follicle)
communicates with another group of less differentiated cells (the subordinate

follicle) to influence further development. In these cases the identified factor, e.g.
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GCIF (Hynes et al., 1996a, b), is itself the signalling molecule. Towards the end of

Chapter 1,1 hypothesised that a direct, contact-dependent mechanism acting between
like-sized follicles is a vital process involved in follicle selection, and further that
this may be a process analogous to lateral specification (since in both cases there is
short range cell-cell communication between equivalent cells/follicles). Subsequent

chapters have investigated the feasibility of a contact-mediated mechanism in vivo

(Chapter 3), and shown how this might act in concert with systemic factors to cause

atresia of subordinate follicles (Chapters 5 And 6). What is still lacking is an

understanding of the signalling molecules involved in this process.

Signalling molecules in the Notch family of transmembrane receptor proteins
are attractive candidates for this role. This family was one of the first group of

regulatory genes to be isolated in Drosophila, and were initially implicated in the

regulation of lateral specification. Signaling via the Notch receptor can control the

ability of non-differentiated cells to respond to differentiation and proliferation cues,

and is able to block the action of other differentiation signals. The Notch receptor
contains a large extracellular domain that contains 36 EGF-like repeats and three

cysteine-rich Notch/Lin-12 repeats (reviewed by Artavanis-Tsakonas et al., 1995).

These receptors have an array ofpossible ligands, including membrane-anchored
extracellular ligands (each with EGF-like repeats) such as Delta and Serrate (Fehon

et al., 1990; Jonsson and Knust, 1996). Notch was first discovered due to its role in

neurogenic cell fate in the developing Drosophila, an example ofwhich was detailed
in Chapter 1 with the formation of evenly spaced sensory bristles. It has since been
shown to play a key role in both inductive signalling and lateral specification in the

developing Drosophila: null mutations result in embryonic lethality. Notch, Delta
and Serrate homologues have been found in C. elegans and in non-mammalian and
mammalian vertebrates, including mice and humans (reviewed by Artavanis-
Tsakonas et al., 1995). In the mouse these are: Notch 1 and Notch 2 (Lardelli and

Lendahl, 1993); Notch 3 (Lardelli et al., 1994); Notch 4 (Uyttendaele et al., 1996);
Delta-like 1 (Bettenhausen et al., 1995); Delta-like 3 (Dunwoodie et al., 1997). In the

rat, the Serrate homologues Jagged 7(Lindsell et al, 1995) and Jagged 2 (Shawber
et al., 1996) have been identified.

Lateral signalling is usually defined as direct cell-cell communication within
an initially equivalent population of cells which leads to those cells adopting
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different developmental fates. In contrast, the ovarian follicle is a functional

syncitium comprised of hundreds of cells from at least three distinct populations. If
there are follicle-follicle communication mechanisms that are analogous to the

process of lateral signalling there must be a requirement for the boundary of the
follicle to be clearly delineated. In this way the follicle has a distinct 'edge' that
makes contact with the 'edge' of neighbouring follicles. Signalling molecules

expressed along these 'edges' would then have a clearly defined target. This

boundary could be presented by the basal lamina or theca cells (see Chapter 4. for

discussion) which would act in concert and express an appropriate gene(s).
Given that the Notch family of genes are known to be involved in juxtacrine

communication between cell types in many developing systems, they seem plausible
candidates as factors regulating follicle selection. Indeed, Notch has been shown to

play vital roles in the Drosophila ovary (Xu et al. 1992), including evenly spacing
the developing egg chambers. Notch 4 has been previously reported to be present in
the mouse ovary (Uyttendaele, et al., 1996), however, there are no previously

published reports of expression ofNotch 1-3 in the mammalian ovary, or any of the
other associated genes. Drawing parallels with the development of the Drosophila

sensory bristle (see Chapter 1, Section 1.8.1) one possibility might be that Notch is
activated in one follicle by the expression ofDelta in the neighbouring follicle

leading to enhanced development in the 'Notch-activated' follicle and retarded

development in the 'Delta-activated' one.
More recent work has highlighted a further complexity in the 'Notch story'.

This is due to the fact that, in some situations Notch can be widely expressed but

only activated if co-expressed with other proteins. Looking again at Drosophila

development, specifically boundary determination of the wing imaginal disc, it has
been shown that Delta and Notch are broadly expressed during early wing

development (Irvine and Wieschaus, 1994). Fringe and Serrate are restricted to

dorsal cells. Fringe allows dorsal cells to respond to Delta which results in the
activation ofNotch (Panin et al., 1997). Once activated, Notch initiates the

transcription of downstream genes, one ofwhich is Serrate (Figure 7.2). Serrate

protein acts as a signal from the imaginal disc dorsal cells that causes activation of
Notch in the ventral cells. Fringe blocks the ability of Serrate to signal to other dorsal
cells (Panin et al., 1997). Serrate and Delta expression becomes restricted to the
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dorsal-ventral boundary with the proteins maintaining each others expression through
a positive feedback loop (Figure 7.2). It is important that this expression is limited to

the boundary or Notch would be activated throughout the wing resulting in abnormal

development. This modulation of function may be achieved by altering glycosylation
of cell-surface and/or secreted molecules (Yuan et al., 1997).

The ability to mark a clear boundary within a large cell population makes
mammalian homologues of the fringe gene particularly attractive candidates for

having an involvement in follicle boundary determination and subsequent follicle-
follicle 'lateral specification'.

Murine homologues ofD-fng have been cloned in the mouse and the human

(Cohen et al., 1997; Johnston et al., 1997). The murine homologues are: Lunatic

fringe (L-fng); Manic fringe (M-fng), and Radicalfringe (R-fng). The N-termini of
the expressed proteins differ in length and sequence from the Drosophila homologue,
but the C-termini 270 amino acids are highly conserved (Irvine and Wieschaus,

1994). The fringe genes have been shown to be widely expressed in both developing
and adult tissues (Cohen et al., 1997; Johnston et al., 1997) at developmentally

important boundaries. The expression ofL-fng seems primarily restricted to

undifferentiated cells, in contrast to both M-fng and R-fng which are usually

expressed in cells that are undergoing or have completed terminal differentiation.
This often results in the generation of an L-fng versus M-fng/R-fng boundary. An

example of this is in the tongue epithelium (Cohen et al., 1997). The basally located
stem cells express L-fng initially but then switch to M-fng and R-fng expression as

they move and differentiate to supra-basal cells. The resultant fringe expression

boundary coincides with a AGtc/z-ligand expression boundary, with the Serrate

homologue Jag2 mirroring L-fng expression in the basal stem cells and Jagl

mirroring M-fng/R-fng in the supra-basal cells. Dill and DU3 are likely to function

together (Dunwoodie et al., 1997) and are found coincident with L-fng at boundaries
in the developing neural tube (Cohen et al., 1997).

I have set out to use molecular biology techniques to investigate if the Notch

family and related genes are being expressed in the ovary, and if so at which

developmental stages. When a gene has been found to be expressed I have tried to

establish if its pattern is one that might be meaningful in the context of follicle
selection. Given the diverse range of influence that the expression and activation of
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the Notch gene family has in the mammal, it is unproductive to speculate in depth
about possible expression patterns. In broad terms, however, it would seem plausible
that the expression of genes know to be delimited to boundaries, such as the fringe',

Jagged, and Delta families, may be found at the periphery of follicles. Thefringe

genes could also be considered markers of development, with M-fhg and R-fhg being
found in terminally differentiated cells and L-fng in less developed cells. Within the
context of the follicle, this could mean that mural granulosa cells might express L-fng
with the terminally differentiated granulosa cells lining the antral cavity expressing

M-fnglR-fng\ granulosa cells between these populations might then be expected to
show a gradient of expression of these three genes.

If the Notch family and related genes do have a role to play in the selection of
follicles it would be reasonable to assume that they would be found expressed in
areas of the ovary where cohorts of follicles are found close together. This could be
within clusters ofpre-/early antral follicles like those illustrated throughout Chapter
3, or in clusters of follicles at early stages of development such as tightly packed

primordial/ primary follicles.

Figure 7.2 The fringe gene regulates
Notch expression at developmentally
important boundaries. Schematic
representation of signalling interactions
at the dorsal-ventral compartment border
of the Drosophila wing imaginal disc.
Delta (Dl) and Notch (N) are broadly
expressed during early wing
development, while fringe (Fng) and
Serrate (Ser) are restricted to dorsal cells.
Expression of fringe allows dorsal cells
to respond to Dl, resulting in Notch
activation. This leads to transcription of
downstream genes, including Ser. Ser
signals back from dorsal to ventral cells,
activating Notch, and leading to the
transcription of downstream genes
including Dl. Fng blocks the ability of
Ser to signal to other dorsal cells. After
Panin etal. 1997.
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7.2. MATERIALS AND METHODS

7.2.1. Reverse transcription polymerase chain reaction (RT-PCR)
RNA gel electrophoresis, Northern blotting and hybridisation with P32 labeled probes
failed to detect Notch 1, Notch 2 or Notch 3 in ovarian tissues. Consequently a more

sensitive approach was taken in an attempt to detect these, and other associated

mRNAs, in mouse ovaries at different stages of development.

7.2.1.1. Extraction ofmRNA from tissue

Messenger RNA (mRNA) was extracted from 12-13 day old ovaries, 3-4 week old

ovaries, mature ovaries (greater than 8 weeks) and young brain (E19-P2). All tissue
was taken from Fi mice. Following aseptic dissection of the appropriate tissue (as
detailed in Chapter 2, 2.1.1) the material was rapidly homogenized using a glass

pestle and mortar which had been baked overnight to eliminate the risk of possible
RNase contamination. mRNA was then extracted using a commercially available kit

(mRNA Tissue Extraction kit, Pharmacia Biotech). Briefly, this involved the binding
of the mRNA poly-A tail to microbeads, multiple washing steps to remove protein,
DNA and other contaminants, and finally elution of the purified mRNA into 200 pi
ofbuffer. The quantity ofmRNA extracted was calculated following

spectrophotometry. Typically, 20-80 ng ofmRNA was recovered. To ensure that
there was no DNA contamination, a PCR run was set up using primers that are
known to amplify sections of genomic DNA. Ifno amplification occurred (with a

convincing positive control) it was assumed that the mRNA sample was pure.

7.2.1.2. cDNA synthesis

Complementary DNA (cDNA) was constructed from the mRNA template using a

commercially available kit (First-Strand cDNA synthesis, Pharmacia Biotech). A Not
I oligo d(T)ig primer was used in the reverse-transcriptase reaction. 20-150 ng of
mRNA was denatured at 65 °C for 10 minutes then quenched on ice before addition
to the kit reagents. The reaction mix was incubated at 37 °C for one hour, then stored
at -20 °C. cDNA was constructed in a final volume of 33 pi.
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7.2.1.3. RT-PCR

cDNA was heated to 95 °C for 5 minutes then chilled immediately on ice. This step

denatures any enzyme still active from in vitro transcription and separates the

cDNA:RNA duplex. 2-5 pi (-10-25 ng) of cDNA is then added to the following
mixture:

1 OX Reaction buffer (Gibco) 5 pi

dNTPs (20 mM) 0.5 pi

Primer A (300 pmol pf1) 3.4 pi

Primer B (300 pmol pf1) 3.4 pi

Taq polymerase (Platinum™, Gibco) 0.25 pi

MgCl2 To a final concentration of 1-1.5 mM

ddEBO up to 50 pi

The primers used were designed to span an intron to prevent the spurious

amplification of any genomic DNA contaminant present in the cDNA sample, and
manufactured commercially (MWG-Biotech). These were:

Notch 1 A' 5'-GTG AGG GTG ATG TCA ATG-3'

Notch 1 B1 5'-TGA AGT TGA GGG AGC AGT-3'

Notch 2 A1 5'-TAC AAC TGT ATC TGC CG-3'

Notch 2 B1 5'-GTC TTT GAA GTG GTC TGC-3'

Notch 3 A2 5'-ACA CTG GGA GTT CTC TGT-3'

Notch 3 B2 5'-GTC TGC TGG CAT GGG ATA-3'

Delta like 1 A3 5'-TGG ACT ATA ACC TCG TTC G-3'

Delta like 1 B3 5'-GAA AGA CTG GCT CAT A-3'

Delta like 3 A 5'-CAC TCA ACA ACC TGA G-3'

Delta like 3 B 5'-AGA AGC AGG TGG ATC T-3'

Jagged 1 A 5'-TCC AGC TGA CAG AGG TTT CC-3'

Jagged 1 B 5'-GAC CAG AAT GGC AAC AAA ACC TGC-3'

Jagged 2 A 5'-CCT GCC CAG ATG GCT A-3'

Jagged 2 B 5'-TAA CGC AGT GCC CGT G-3'
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Lunatic fringe A
Lunatic fringe B

Manic fringe A
Manic fringe B

Radical fringe A
Radical fringe B

P-actin A1
P-actin B1

5'-GCG CCT GCT GCT GGC G-3'

5'-CAC ATT GCC TGT GAG C-3'

5'-AGC CGT CAC ACC CAC A-3'

5'-CAG CCC AAG ACC CCA T-3'

5'-ACA TCT ACC TGG GGC G-3'

5'-AGT TAC TGG AAA GCT C-3'

5'-TAC CTC ATG AAG ATC CTG ACC GAG-3'

5'-CTC CTG CTT GCT GAT CCA CAT CTG-3'

1 Taken from Lardelli and Lendahl, 1993
2 Taken from Lardelli et al., 1994
3 Taken from Bettenhausen et al, 1995

The 50 jLtl reaction mix was contained in thin-walled PCR tubes (Alpha), overlaid
with three drops ofmineral oil to prevent evaporation and placed into the standard
heat block of a thermocycler (Techne or Hybaid). The PCR cycle consisted of 35

cycles of denaturation at 95 °C for 1 minute, annealing at 55 °C for 1 minute, and
extension at 72 °C for 1 minute.

For each gene of interest the following RT-PCR reactions were performed.

Tube 1: cDNA from 13 day-old ovaries, specific primers

Tube 2: cDNA from 13 day-old ovaries, P-actin primers
Tube 3: cDNA from 3 week-old ovaries, specific primers
Tube 4: cDNA from 3 week-old ovaries, P-actin primers
Tube 5: cDNA from mature ovaries, specific primers
Tube 6: cDNA from mature ovaries, P-actin primers

Tube 7: ddH20, specific primers (internal control)
Tube 8: genomic DNA, specific primers (primers control)
Tube 9: cDNA from young brain, specific primers (positive control)

Tube 10: cDNA from young brain, p-actin primers (positive control)
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P-actin primers were included for each tissue sample as this is an almost ubiquitously

expressed gene. Following agarose gel electrophoresis, crisp bands of the correct size
for P-actin show that the cDNA is intact. Tube 7 is a 'blank' control. If any

amplification occurs then there has been a possible contamination of the other tubes
and the run is abandoned. Tube 8 acts as a control for the primers. If they have been

designed correctly they should cross an intron and so should be unable to amplify
DNA of the correct size from the genomic DNA.

7.2.1.4. Agarose gel electrophoresis
RT-PCR products were mixed with loading buffer (Orange G in glycerol, Sigma) in
a ratio of4:1 and loaded onto a 1-1.5% agarose gel made with Tris-borate/EDTA

electrophoresis buffer (TBE), and containing 0.5 mg ml"1 ethidium bromide. 100 bp
DNA markers (Gibco) were also loaded. The gels were run at 55 volts until the PCR

products became satisfactorily separated. DNA bands could then be examined under
ultraviolet illumination and compared to the DNA weight markers. Polaroid

photographs were taken of the illuminated gels as a permanent record.

7.2.2. In situ hybridisation
The recipes for all solutions used during these procedures are contained in Appendix
C.

7.2.2.1. Histology

6 pm sections of ovarian tissue were prepared according to protocols previously
outlined (Chapter 2.3.5).

7.2.2.2. Making riboprobes
7.2.2.2.1. Transformation ofcells with plasmids containing cDNA sequence of
interest

A 1 pi volume ofplasmid and insert (corresponding to ~ 10 ng DNA) was added to
100 pi of CaCh competent DH5a cells on ice and left for 30 minutes. The mixture
was then heat shocked at 42 °C for exactly two minutes before being returned to ice.
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Two volumes of Luria-Bertani broth (LB) were added before vigorous shaking for 30
minutes at 37 °C. The broth was then plated out on agarose plates containing LB and

L-Ampicillin and left overnight.

7.2.2.2.2. Amplifying the cDNA containingplasmid
A single colony was taken from the L-Ampicillin plates using a sterile wooden tooth

pick and dropped into 5 ml ofLB in a sterile tube, also containing L-Ampicillin at a

concentration of 50 pg ml"1, and shaken vigorously at 37 °C for 6 hours. After this
time 1 ml ofbacteria containing broth was removed and spun for one minute at 5000
r.c.f.. A pellet ofbacterial cells was formed at the bottom of the eppendorf. The

supernatant was removed and the pellet washed twice in sterile LB broth before

being resuspended in 100 pi of broth and transferred to 50 ml of sterile LB broth

containing 50 pg ml"1 of L-Ampicillin in a conical flask. The broth was shaken

overnight at 37 °C. The following day the amplified plasmid was purified from the
bacterial cells using a commercially available kit (Midi Prep Purification Kit,

QIAgen).

7.2.2.2.3. Making a cDNA template and synthesising DIG labelled riboprobes
The purified plasmid was linearised by digestion with appropriate restriction

enzymes. These were:
Anti-sense Sense

Notch 1 Hind III (T7) Xba I (T3)

Notch 2 Bam HI (T3) Eco RI (T7)

Notch 3 Bam HI (T3) Hind III (T7)
Delta like 1 Sal I (T7) Eco RI (SP6)
Delta like 3 Not I (T7) Kpn (T3)
Lunatic fringe

(Egan laboratories) Eco RI (T7) Bgl II (SP6)
Manic fringe

(Egan laboratories) Xba I (T7) Hind III (T3)

Radical fringe

(Egan laboratories) Bam HI (T7) Not I (T3)
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Lunatic fringe

(Vogt laboratories) Hind III (T7)
Manic fringe

(Vogt laboratories) Not I (T3)
Radical fringe

(Vogt laboratories) Not I (T3) Hind III (T7)

Xba (T3)

Eco RI (T7)

25 (al (-25 (og) was digested with 100 units of enzyme in a total volume of 250 |ol

(made up with 10 x appropriate enzyme buffer and ddH20). A double digest was also

performed to release the inserted cDNA fragment. After digestion for 2.5 hours at 37

°C the linearised DNA was extracted by the addition of an equal volume (250 pi) of a

phenol: chloroform: isobutyl acid (PCIA) mixture, removal of the DNA containing

aqueous layer (repeated twice to maximize the yield) and precipitation by the
addition of one tenth volume of 3M Na Acetate pH 5.5, two volumes of absolute
ethanol and cooling to -70 °C for at least 30 minutes. The mixture was then spun at

14 000 r.c.f. for 30 minutes to form a DNA pellet which was washed with chilled
70% ethanol, spun at 14 000 r.c.f. for a further 10 minutes and allowed to air dry
before resuspension in sterile ddH20. A small volume of the linearised DNA and the
'released' inserted fragment were run by agarose gel electrophoresis, stained with
ethidium bromide and visualised using UV light as a check that enzymatic digestion
had been complete and that the fragment was of the right size i.e. that the correct

plasmid had been amplified and purified. A commercially available in vitro

transcription kit (DIG in vitro transcription kit, Roche) was used to manufacture

riboprobes that contained a DIG label. The polymerase enzymes used are denoted in
brackets next to the appropriate restriction enzymes in the list above. The riboprobes
were cleaned by ethanol precipitation as before with the exception that 4M LiCl was
used in place of 3M Na Acetate. A dot blot was performed to ascertain the
concentration of the riboprobes.

7.2.2.3. Pre-hybridisation treatment

Wax was removed from the histological sections by immersion in xylene for 10

minutes, twice, then they were hydrated through an ethanol series (100%; 100%;
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95%; 90%; 70%; 50% and 30%). Following a five minute wash in 2 x SSPE the

sections were permeabilised in 20 pg ml"1 Proteinase K (Roche) in 1 x P buffer for
7.5 minutes at 37 °C, washed for 30 minutes in 2 X SSPE then fixed in 4%

paraformaldehyde made up in PBS for 15 minutes. A further five minute 2 x SSPE
wash preceded 15 minutes acidification in 0.2M E1C1, followed by another five
minute 2 x SSPE wash. The mRNA was acetylated in 0.5% acetic anhydride in 0.1M

TEA, with continuous stirring, then washed for at least five minutes in 2 x SSPE.

7.2.2.4. Hybridisation

For each slide, 2 pi of riboprobe (see section 7.2.3.2 for preparation) was added to 60

pi of hybridisation mix. This mixture was then heated to 80 °C for five minutes then

quenched immediately on ice before addition to the slides which were then

coverslipped. The slides were incubated overnight at 50 °C in a humid atmosphere

(50% formamide in 1 x salts).

7.2.2.5. Post-hybridisation
The slides were soaked in 2 x SSC at 50 °C for at least 10 minutes to let the

coverslips detach, before a 45 minute incubation at 65 °C in 2 x SSC made with 50%
formamide. Sections were then washed in 4 x SSPE at 50 °C for five minutes

followed by RNase A digestion (20 pg ml"1 in 4 x SSPE) for 30 minutes at 37 °C.
This step removes any unbound mRNA and riboprobe but is unable to affect bound

mRNA/riboprobe duplexes. The slides were incubated in 2 x SSC in 50% formamide
at 65 °C for 45 minutes before being allowed to cool to room temperature in 2 x SSC

initially at 50 °C. Slides were washed in PBST for 10 minutes then equilibrated in
1% blocking buffer in PBST for 30 minutes before being incubated in antibody
solution which had been pre-absorbed overnight (1 x blocking reagent; 2% heat
inactivated sheep serum; 1 x PBS; 0.1% Tween 20 and 0.02% anti-digoxygenin anti¬

body, in ddH20). Slides were left overnight in a dark place at 4 °C. The following
day the slides were thoroughly washed (three 20 minute washes in PBST),

equilibrated in alkaline phosphatase buffer for five minutes then transferred to colour
detection buffer (0.4% NBT/BCIP in alkaline phosphatase buffer with a few crystals
of levamisole to block endogenous alkaline phosphatase activity) and left overnight
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at 25 °C. After colour development the slides were counter-stained in Nuclear Fast
Red (Vector) for three seconds, rinsed in ddFhO, dehydrated through an ethanol
series (70%; 90%; 95%; 99%; 100%, twice), equilibrated in xylene (twice for 30

minutes) and coverslipped with DPX.
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7.3 RESULTS

7.3.1. The presence of developmental neuro-genes: RT-PCR
Table 7.1 summarises the results of the RT-PCR reactions as shown by agarose gel

electrophoresis and staining with ethidium bromide. Figures 7.3-7.11 show photographs
made of these gels. Southern blots followed by probing with DIG-labelled

oligonucleotides were also performed as a verification that the correct sequence had been

amplified. These results are not shown as they were only intended as an in-house check
before proceeding to the in situ hybridisation experiments. They in each case confirmed
the results of the RT-PCRs. It was not possible to obtain a definitive answer as to

whether Delta-like 3 is present in the mouse ovary at any of the developmental stages

examined, due to technical difficulties. The primers used produced multiple bands of
similar sizes to the product of interest. Attempts to clarify the RT-PCR results by
excision of the band at the appropriate size, DNA extraction from the agarose and

subsequent nested PCR also failed to produce a clear band. Southern blotting and probing
with DIG labelled DNA sequences were unable to produce a convincing result.

7.3.2. The expression of developmental neuro-genes: in situ hybridisation

Optimisation of the in situ hybridisation protocol for ovaries took considerable time.

Consequently it has, to date, only been possible to gather results for two of the Notch

gene family, Notch 2 and Notch 3. These results are shown in Figure 7.12 and 7.13

respectively. The anti-sense probes for Notch 2 resulted in the 3-week-old ovary sections

developing a dark colour in all cell compartments, an observation not found in the sense-

probed sections (Figure 7.12). Within the sections, the granulosa cells appeared to stain
more darkly than the neighbouring theca layer (marked as 'g' and't' respectively in all

sections). Both granulosa and theca layers were more darkly coloured than the oocyte. A
small number of the granulosa cells adjacent to developing antral patches stained very

darkly (marked as 'w' on Figure 7.12, B and C) compared to other neighbouring

granulosa cells (marked 'y') in the anti-sense sections. Some 'antral' granulosa cells in
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660-
-600

Figure 7.3 Notch 1 RT-PCR results. The amplified
product is 660 bp. Lanes A are: 13-day-old ovary; B:
3-week-old ovary; C: mature ovary; D: ddH20; E:
genomic DNA, and F: young brain. The right lane
shows (3-actin in each case.
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Figure 7.4 Notch 2 RT-PCR results. The amplified
product is 684 bp. Lanes A are: 13-day-old ovary; B:
3-week-old ovary; C: mature ovary; D: ddH20; E:
genomic DNA, and F: young brain. The right lane
shows p-actin in each case.
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Figure 7.5 Notch 3 RT-PCR results. The amplified
product 466 bp. Lanes A are: 13-day-old ovary; B: 3-
week-old ovary; C: mature ovary; D: ddH20; E:
genomic DNA, and F: young brain. The right lane
shows p-actin in each case.
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466-

-600

Figure 7.6 Lunatic fringe RT-PCR results. The
amplified product is 466 bp. Lanes A are: 13-day-old
ovary; B: 3-week-old ovary; C: mature ovary; D:
ddH20; E: genomic DNA, and F: young brain. The
right lane shows p-actin in each case.

Figure 7.7 Manic fringe RT-PCR results. The
amplified product is 646 bp. Lanes A are: 13-day-old
ovary; B: 3-week-old ovary; C: mature ovary; D:
ddH20; E: genomic DNA, and F: young brain. The
right lane shows P-actin in each case.

496-
-600

Figure 7.8 Radical fringe RT-PCR results. The
amplified product is 496 bp. Lanes A are: 13-day-old
ovary; B: 3-week-old ovary; C: mature ovary; D:
ddH20; E: genomic DNA, and F: young brain. The
right lane shows P-actin in each case.
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Figure 7.9 Jagged 1 RT-PCR results. The
amplified product is 937 bp. Lanes A are: 13-day-old
ovary; B: 3-week-old ovary; C: mature ovary; D:
ddH20; E: genomic DNA, and F: young brain. The
right lane shows (3-actin in each case.
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840-
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Figure 7.10 Jagged 2 RT-PCR results. The
amplified product is 840 bp. Lanes A are: 13-day-old
ovary; B: 3-week-old ovary; C: mature ovary; D:
ddH20; E: genomic DNA, and F: young brain. The
right lane shows (1-actin in each case.
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586- »T| -600

Figure 7.11 Delta like 1 RT-PCR results. The
amplified product is 586 bp. Lanes A are: 13-day-old
ovary; B: 3-week-old ovary; C: mature ovary; D:
ddH20; E: genomic DNA, and F: young brain. The
right lane shows [1-actin in each case.
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the sense control also appeared to stain more darkly than neighbouring cells (marked 'x'
and 'z' respectively). Unlike the Notch 2 in situ experiments, there was no apparent

'background' or general staining in either the anti-sense or sense probed sections for
Notch 3 (Figure 7.13). At high magnification there appears to be staining in the theca
cell layer (marked 'v' in Figure 7.13 A, B and C, controls marked 'r'). Figure 7.13C was

a result obtained from an early in situ experiment at the time the protocol was being
refined. Consequently there was no sense control slide for this run.
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Figure 7.12 In situ hybridisation results for Notch
2 in three-week-old mouse ovary sections. A-C
have been hybridised with anti-sense probes, D-F are

corresponding sections hybridised with sense probes.
Black boxes illustrate the subsequent section.
G=granulosa cell, t=theca cell, w=condensed stained
cell, x=condensed control, y='normal' stained cell,
z= 'normal' control. Scale bars represent 50 pm,

except A and D which represent 125 pm.
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Figure 7.13 /« situhybridisation results for Notch 3 in three-
week-old mouse ovary sections. A, C and E have been
hybridised with anti-sense probes, B and D are sections from the
same ovary as A and C, hybridised with sense probes.
g=granulosa cells, t=theca cells, v=positive staining, r=un-stained
control. Black boxes illustrate the subsequent section. Scale bars
represent 125 pm in sections A and B, 50 pm in sections C and E,
and 20 pm in E .
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7.4 DISCUSSION

This pilot investigation into the expression of the Notch family and associated genes in
the ovary has clearly demonstrated that all of the genes examined are being expressed

during at least one developmental stage (with the presence/absence of the DU3 product
still to be clarified). Furthermore some of the results from the RT-PCR investigation
concur with previous investigations in other systems. L-fng and Dill are found to be co-

expressed in the developing neural tube (Cohen et al., 1997): in the 13-day-old ovary
both these gene products are absent, however they are both found in the 3-week-old and
mature ovaries. All of the genes under investigation were found in the 3-week-old ovary.

This is perhaps not surprising (assuming that the genes have a role in ovarian function) as
this is the age when the mouse is very close to completing puberty and undergoing the
first oestrous cycle. Consequently the morphology of the ovary reflects this

developmental transition with many small follicles still present (as in the 13-day-old

ovary) but also containing much larger antral follicles (reflecting the adult state). This
transition stage may mean that genes that are only expressed early-on in the animals

development may still be active but genes that are only active during adulthood have

begun to be expressed. It is feasible that this age of ovary reflects a unique period of gene

expression. While it is likely that gene expression levels will be consistent across mRNA
extractions at different times from the 13-day-old and 3-week-old animals there may be
much greater variability between mature ovary mRNA extractions. The extent of gene

expression will depend on the timing of the extraction relative to the oestrous cycle, as
the cycling ovary is a highly dynamic organ and will have rapidly changing proportions
of pre-antral and antral follicles and corpora lutea.

It is unclear what role these genes are having in the ovary, with the possibility
that any given gene might perform multiple functions (as mentioned previously, Notch 1
has been shown to play a variety of roles in other developing tissue). This thesis

investigation is concerned primarily with follicle selection and dominance via contact-

mediated mechanisms. Looking at the in situ hybridisation results within that context it is

encouraging that the expression ofNotch 3 seems limited to the theca layer (at least in
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the 3-week-old mouse). Figure 7.13 C and E show theca cells that have stained more

darkly than neighbouring cells (marked 'v'). The presence ofNotch 3 in the theca layer
makes it feasible that this gene has a role in direct follicle-follicle communication.

However, this is highly speculative as Notch 3 may equally be involved in different

processes such as theca cell organisation.
The nature ofNotch 2 expression is harder to interpret. The observation that the

entire ovary section seems to stain in the anti-sense sections, but not the sense controls,
would suggest that Notch 2 is widely expressed in all cell compartments. The granulosa
cell layers (marked as 'g') have stained more strongly than either the oocyte or the theca
cells in the lower magnification sections (Figure 7.12.A and B), although differences in
theca and granulosa staining are less evident in the high magnification section (Figure
7.12 C).

Looking at the anti-sense sections, the strongest staining cells would appear to be
found in some of the granulosa cells found around the developing antrum (marked 'w'),
in so far as they exhibit the darkest staining of all cells in the ovary. Comparing these
cells to equivalents found in the sense control section (marked 'x') it can be seen that
some granulosa cells in the same region are also staining more darkly with the counter-
stain. It can also be seen that these cells are condensed. Caution should be used

therefore, before attributing too much significance to the condensed cells in the anti-
sense probed section. It is entirely possible that these cells are undergoing apoptosis,

picking up more background stain and appearing more 'positive' as a result, rather than

actually expressing more Notch 2 protein. Conversely, it is possible that the reason they
are staining so darkly is due to the Notch 2 protein being more concentrated on the
reduced cell membrane surface. This would give a darker signal as there would be more

probe bound in that area. A clearer result is presented with the comparison of non-
condensed granulosa cells (marked 'y' in the anti-sense sections and 'z' in the sense

control). The anti-sense probed cells clearly exhibit a higher degree of staining than the

controls, providing the most compelling evidence that Notch 2 is being expressed in
these cells.
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IfNotch 2 is being broadly expressed throughout ovarian tissue it would have to
exhibit a specific pattern of activation to be directly involved in follicle selection. This
could be bought about by the patterned expression of other associated genes, such as the

fringe family. If follicle selection (or other processes of intra-ovarian organisation) do
involve an inter-play between such genes, this would be analagous to gene interactions
in the developing Drosophila which bring about limitation of the wing imaginal disc.
From an evolutionary standpoint it is highly feasible that gene product interactions of
this nature have been conserved between species, with homologous signalling cascades

having different consequences from species to species and from tissue to tissue. I believe
the fact that the products of the Notch family and associated genes are present in the

ovary makes it highly likely that the resultant proteins will interact in ways already
documented in other systems. To what end these interactions influence ovarian function
still remains a matter of conjecture.

In conclusion, I believe that this work has offered a promising start to a much

larger investigation into the gene expression behind juxtacrine communication in the

ovary. I had begun this work with the intention of seeing ifNotch!Delta regulated
contact-mediated follicle selection, however, during the course of the investigation it
became clear that other gene products (such as Jagged and Fringe) could also be
involved. In view of this, it became evident that to examine the possible role of this

group of genes in follicle selection would be a major project in itself. Having shown that
these genes are being expressed in the ovary, a full investigation of their roles (whatever
these are) is surely warranted. A comprehensive program ofwork is underway to

perform in situ hybridisation reactions for each of the genes, looking at ovary sections at

different developmental stages. Ifnecessary this investigation will be extended to

developing in situ RT-PCR protocols for genes that are being expressed at a low copy

number. This study will be extended to incorporate follicles cultured in vitro, singly and
in pairs. Hopefully these investigations will be able to offer an insight into possible gene

function through distinct geographical localisation. It would then be possible to begin

testing hypothesised function by altering in vitro culture conditions, or manipulating the
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systemic environment in vivo (e.g. would superovulated animals express more/less of

genes hypothesised to be involved in selection?).
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8.1 GENERAL DISCUSSION

The aims of this thesis were:

I. To establish if direct contact between follicles plays a part in the selection of the

ovulatory follicle(s), and if this appeared to be the case,

II. To investigate the precise nature of direct follicle-follicle communication.

I believe that this investigation has gone some way towards addressing the first aim of
this thesis, offering further insight into the role of follicle-follicle communication in
selection. Whilst the precise nature of direct follicle-follicle contact is likely to involve a

complex interplay between various factors, this investigation has clarified the

requirement for the 'dominance mechanism' to be observed in vitro. Figure 8.1

summarises the experimental chapters and puts them into the overall context of follicle
selection.

Starting with a histological examination of ovaries taken from several different
mammalian species, it was revealed that it is the norm for pre-antral and early antral
follicles to be found in close contact with one another in vivo. This makes 'contacting'
follicle-follicle interactions in vivo feasible, consolidating the hypothesis of Spears et al.

(1996) that intra-ovarian communication of this nature might have a role in follicle
dominance and selection. Furthermore, these contacting follicles in vivo frequently had a

very thin, shared theca layer separating them, an observation reflected in vitro when pre-

antral follicles are co-cultured in contact. This adds further evidence that the use of

whole follicle culture systems offers a close physiological paradigm.
With the knowledge that co-culturing follicles in close contact was reflecting a

situation found in vivo I used polycarbonate membrane constructions to regulate the
nature of communication between adjacent follicles. These experiments revealed that

pre-/early antral follicles produce a locally diffusible factor that is capable of effecting
the development ofnear, similarly-sized follicles. In contrast to the original publication
from this laboratory (Spears et al., 1996) the dominance effect appeared to be growth

enhancing. Addressing the second aim of this thesis, these experiments have highlighted
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Endocrine regulation intra-ovarian regulation

Intra-ovarian regulation selects a
group of those growing follicles
(Chapters 3, 4 and 7)

Follicles selected from the original cohort reach early antral
stages of development

Endocrine conditions allow further
follicle development (Chapter 5) E

Selected follicles proceed through antral development

HO© #1@1©©

Dominant follicle(s)
continue antral

development ■

Negative feedback
via estrogens and
inhibins lead to a

fall in FSH

Dominant follicle(s)
survive the fall in FSH
and proceed to develop
to the
Graafian

stage

Intra-ovarian regulation further
selects dominant follicle(s) from
that group, whilst remaining
follicles become subordinate
(Chapters 3, 4 and 7)

Subordinate follicles exhibit
retarded development. Removal of
the dominant follicle(s) or
administration of FSH allows
selected subordinate follicles to
move into the dominant group

\
Dominant follicle(s) secretes
factors that directly
influence the development
of the subordinate ones

(Chapters 4 and 6)

Subordinate follicles are

affected by both direct and
indirect, endocrine effects of the
dominant follicles and are finally
pushed into atresia

(f§|l (fS|} (ij (iflll (|®|

Diagram 8.1 Hypotheses for the selection of ovulatory follicles from a growing cohort,
with references to areas investigated during the course of this thesis. Taken from Baker
and Spears 1999.
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a novel inter-follicular factor that may be involved in the selection of follicles from a

growing cohort, and as such could represent an important intra-ovarian regulatory

process. Currently there are no other reports in the literature regarding follicles at this

developmental stage influencing the development of other like-sized follicles. The
elucidation of a locally acting diffusible factor(s) acting between developmentally
similar follicles opens up the potential for extensive further investigations. Recent work

by others in this laboratory has shown that this factor(s) is/are stable in culture medium.
This should make it possible to further investigate its/their effect on the development of
follicles at various developmental stages and ultimately to characterise the factor(s).
This could be a very time consuming pursuit with the likelihood that these follicles are

secreting more than one factor making it difficult to identify a specific factor as having a

particular function. It may be that an investigation of this nature would not represent a

productive investment of time and resources.

Although it is possible to observe the emergence of dominance within co-

cultured follicles without direct physical contact it can be seen in vivo that follicles do
make close contact with one another. This makes the involvement of cell surface

signalling molecules in follicle-follicle communication feasible. Investigation of genes
known to be involved in lateral specification in other developmental systems has shown
that some of these genes are being expressed in the ovary. While their expression

patterns still largely remain to be established and their precise role is unclear, this work
offers a start to an exciting investigation into the role ofneuro-genes in the ovary and as

such may ultimately be an extension of the second aim of this thesis.

Addressing the first aim of this thesis, the role of follicle-follicle contact in the
selection of ovulatory follicles, is still speculative. However, I believe this investigation
has provided compelling evidence suggesting that this may be the case. Confirming

reports in the literature relating to other species, I have shown that murine antral follicles
are less vulnerable to a decline in FSH than less developed pre-/early antral follicles in

vitro, when a source of LH is available. This provided the backdrop to investigating the

inter-relationship between follicle-follicle contact, environmental (systemic)

gonadotrophin concentration and follicle health. These experiments clearly showed that
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being co-cultured in contact with an antral follicle made pre-/early antral follicles

susceptible to decreased FSH, with a marked negative effect on follicle health. These
results offer strong evidence that follicle-follicle contact could have an important role to

play in follicle selection, under-pinning the gonadotrophin hypothesis for follicle
selection.
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8.2. CONCLUDING REMARKS

To date, most of the research into follicular dominance has concentrated on its endocrine

regulation. While endocrine control of follicle dominance can explain much of the later

processes that occur (such as ensuring that subordinate follicles ultimately undergo

atresia), intra-ovarian interactions are also involved in its regulation. Follicle-follicle
interactions have various possible roles both at early stages when follicles are being
selected from amongst a cohort or cluster of follicles and/or later, when dominant
follicles are 'holding back' challengers. Furthermore, intra-follicular processes also
mediate the response of a follicle to endocrine changes. I believe this thesis has been
successful in highlighting the possible importance of follicle-follicle interactions in

ovary regulation. However, as such it could be viewed as a starting point for a much

larger investigation into this little understood component of ovarian function.
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Appendix A. Suppliers Addresses

All chemicals used during this thesis investigation from Sigma-Aldrich, Merck Ltd or

Fisher Scientific UK.

Acumedic Ltd London. U.K.

Apple Macintosh Scotsys Computer Systems, Edinburgh, U.K.

Astecair Weston-Super-Mare, U.K.

B. Braun Melsungen AG. Aesculap, Sheffield, U.K.

Becton Dickinson and Co. New Jersey, USA.

BDH Supplies see Merck Ltd

Bibby Sterilin Ltd Aberbargoed, U.K.

Bio-Rad Hemel Hempstead, U.K.

Boehringer Mannheim see Roche

Corning Costar Cambridge, MA. USA

Dow Corning see Merck Ltd

Fisher Scientific UK Loughborough, U.K.

Forma Scientific Marietta, OH, USA
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Gibco BRL Renfrew, U.K.

Iwaki see Bibby Sterilin Ltd

Leica UK Ltd Milton Keynes, U.K.

Linkam Tadworth, U.K.

Merck, Lutterworth, U.K.

Milliporc Watford, U.K.

Pharmacia Biotech St. Albans, U.K.

Phoenix Pharmaceuticals Ltd

QIAgen Ltd Crawley, U.K.

Reichert-Jung see Leica UK Ltd

Roche Lewes, U.K.

Roebling Berlin, Germany

Sigma-Aldrich Company Ltd Poole, Dorset. U.K.

Sherwood-Davis and Geek Gosport, U.K.

TAAB Laboratories Ltd Aldermaston, U.K.
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Vector Burlingame, CA, USA

Zeiss (Carl Zeiss Ltd.), Hertfordshire, U.K.
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Appendix B

a) Coating slides with gelatine for

histology.

1 g powdered gelatine

O.lg chromic potassium sulphate
200 ml H20

Mix and microwave -30 seconds until

the gelatine has dissolved. Slides can

either be wiped with the solution or

completely immersed before being left
to dry.

b) TESPA coating slides for in situ

hybridisation.

1) Wash slides in sulphur chromic acid
over night.

2) Wash each slide individually in tap

water.

3) Leave overnight in running tap

water.

4) Rinse in ethanol (can be stored like

this).

5) Bake overnight at 180°C.

6) Mix 8ml of TESPA (Sigma) with
392ml acetone (BDH).

7) Dip slides and allow to dry (~ 1

minute).

8) Dip slides in acetone and allow to

dry. Repeat.

9) Rinse in ddH20 (10 minutes) and air

dry.
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Appendix C Solutions required for wax in situ hybridisation

20 x P buffer

lMTris HCL, pH 7.5
0.1MEDTA

20 x SSPE

3.6M NaCl

0.2M NaH2P04

0.02M EDTA

(pH 7.4)

Hybridisation mix

5ml formamide

lml 20 x SSPE

500pl 100 x Denhardts
2ml 50% dextran sulphate

200pl lOmg/ml tRNA

500pl 10% SDS

800pl depC H20

20 x SSC

3M NaCl

0.3M NajCitrate

10 x Salts

3M NaCl

O.lMTris pH6.8
50mM EDTA

0.1M Na/P04

PBST

1 x PBS with 0.1% Tween 20

Alkaline Phosphatase buffer

3.75ml 4M NaCl

7.5ml 1M MgCl2
7.5ml 2M Tris, pH9.5

150p.l Tween 20

ddH20 upto 150ml
15 drops levamisole
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The role of mammalian neuro-genes in follicle development
Stuart J. Baker, Helen I. Cameron and Norah Spears

Throughout a female's reproductive life, a continual trickle ofprimordial follicles leave
the ovarian resting pool to resume growth. Development continues unheeded until the
follicles reach the early antral stage, at which time they become highly FSH sensitive. If
FSH is sufficiently elevated to maintain growth, the follicles are selected to develop
further: in the absence of this gonadotropic effect they will become atretic and die. The
number of follicles that make it past this checkpoint is greater than the desired species-
specific ovulatory number, so a second phase of selection occurs, known as follicular
dominance. Recently, co-culture experiments from this laboratory have highlighted a
contact-mediated dominance mechanism in vitro, leading to the idea that dominant
follicles may be actively and directly involved in inducing atresia in neighbouring
subordinates. This poses an interesting question: what is the nature of this follicle-
follicle communication?

With this phenomenon in mind, we have begun to look for the involvement of
mammalian homologues of genes regulating development via cell-cell contact in
Drosophila. We have used RT-PCR and oligonucleotide probing of Southern blots and
shown that a number of genes belonging or related to the Notch family are expressed in
the ovary at different developmental stages. These genes are known to be vital in the
establishment of boundaries and the divergence of cell/tissue fate. We hypothesise,
therefore, that a dominant follicle might express certain members of this gene family
resulting in the neighbouring follicle adopting a subordinate fate. Expression analysis by
in situ hybridisation is currently under way. Although the role of these genes in follicle
dominance is highly speculative, this expression analysis may give us a clearer insight to
their roles within the ovary.
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Follicle Stimulating Hormone inhibits apoptosis in pre- and early- antral
murine follicles in vitro.

Stuart J Baker and Norah Spears, Department ofPhysiology, Edinburgh University
Medical school, Teviot Place, Edinburgh. EH8 9AG

A whole follicle culture system was used to investigate the role of Follicle
Stimulating Hormone (FSH) as a survival factor for pre- and early- antral murine
follicles. Following microdissection from the ovaries of three week old mice, pre-
antral follicles (-190 pm in diameter) were cultured after Boland et al (1993) in
standard medium with serum and varying concentrations of FSH. Concentrations
used ranged from 1 IU/ml, the standard level for optimal growth and oestradiol
output, to 0.1 IU. Follicles were also cultured in the absence of FSH.
After 48 hours in culture, follicles were collected on dry ice (~ 8-10 per sample), and
genomic DNA extracted and purified prior to 3' end-labelling with digoxygenin
(DIG). Once labelled, samples were run by electrophoresis on a 2% agarose gel and
Southern blotted over night. Visualisation of the resultant blot was conducted in
accordance with the 'DIG users Handbook' protocol (Boehringer Mannheim).
DNA 'ladders', a well documented biochemical marker of apoptosis, and therefore
atresia, were clearly evident in the samples collected from follicles cultured in low
levels or the absence ofFSH. Follicles cultured in FSH concentrations greater than
0.25 IU FSH exhibited little evidence of genomic DNA laddering. These results give
support to the role of FSH as an important survival factor and back up previous
findings in the rat (Chun et al 1996). We believe that this is the first time DIG has
been used to visualise DNA ladders from such small sample sizes.
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The role of intra-ovarian interactions in the
regulation of follicle dominance

S.J.Baker and N.Spears1
- Department of Biomedical Sciences (Physiology), Edinburgh University Medical School, Teviot Place, Edinburgh EH8
9AG, UK

The processes that precisely control the selection ofovulatory follicles from a growing cohort are poorly understood. This
reduction in follicle number occurs through several phases of selection, consequently we limit the use of the term
'selection' to the first major reduction of growing follicles, at the pre- to early antral stage. The final process of selection,
achieving the appropriate ovulatory number, is referred to as 'dominance'. We discuss possible mechanisms that could
bring about these reductions and highlight intra-ovarian involvement, particularly via follicle-follicle interactions.
Analogies are drawn between local ovarian events and processes commonly reported in the determination of cell fate in
developmental biology. Two facets of intra-follicular interactions are proposed: initially that follicle-follicle interactions
mediate early selection processes at the preantral stage, and later that during antral development dominant follicles

a directly affect the fate of the subordinate cohort members.

Key words: cell fate/follicular dominance/follicle-follicle interactions/follicle selection/ovary
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"Introduction

Follicle dominance

By or shortly after birth, the mammalian ovary contains a
. female's complete supply of oocytes or potential eggs. These
oocytes (which are arrested in prophase of the first meiotic
division) are housed within supporting cells to form primor-
•dial follicles. Throughout reproductive life, a small proportion
of primordial follicles continually escape their arrested state
and resume growth and development, in response to unknown
cues (Baker, 1982). From this point onwards development
continues until the oocyte reaches maturity and is ovulated or,
more commonly, until the follicle becomes atretic. More than
99% of follicles entering the growing phase are destined to
undergo an atretic fate, thus ensuring that only an appropriate
species specific number will successfully ovulate (Gougeon,
1996). Correct regulation of this process is vital as this is the

main way by which most mammals regulate their litter size
(e.g. sheep: Hanrahan and Quirke, 1985).
Following recruitment from the primordial resting pool, a

gonadotrophin independent process (Peters etal., 1973),most
follicles will develop at least until the acutely follicle stimulat¬
ing hormone (FSH) dependent early antral stage (Figure 1). At
that point, if FSH concentrations are low the follicles will
undergo atresia (Hirshfield, 1991a). Conversely, if FSH con¬
centrations are suitably elevated at that time (in response to the
decline in oestrogen production from the regressing corpus
luteum of the previous cycle: Le Nestour et al., 1993), a cer¬
tain number of follicles in the cohort will continue develop¬
ment to the later antral stages. This is probably the first
process of selection which follicles undergo after leaving the
resting pool and it is temporally regulated, i.e. if a follicle
reaching the FSH-dependent stage finds itself in the 'window'
when FSH is elevated it can proceed to the next develop¬
mental stage. Despite significantly reducing the number of
contenders, the number of follicles in the cohort that continue
to develop is greater than the desired ovulatory number, so a
further process of reduction occurs. This is the second phase
of selection, involving the emergence of dominant follicles
among the growing cohort. Confusion frequently arises when
making comparisons between multi- and mono-ovular
species although the processes involved are broadly similar.
The key difference is the extent of the final stage of selection:

'To whom correspondence should be addressed. E-mail: Norah.Spears@ed.ac.uk
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Figure 1. The different developmental stages of ovarian follicles. More than 99% of primordial follicles that resume growth and development
will become atretic.

the emergence of the dominant follicle(s). In cattle the final
selection process results in just one follicle attaining domi¬
nance in comparison with six to eight in mice. Henceforth we
shall refer to this second selection process as follicular domi¬
nance. Dominant follicles continue to the final stages of de¬
velopment while the remaining subordinate follicles in the
cohort ultimately undergo atresia and regress (Figure 2).
The emergence of dominant and subordinate follicles is the

result of complex interplay between a range of factors, and our
understanding ofmany of these is still poor. For the purpose of
this review we shall define follicular dominance as having two
principle components: indirect endocrine actions and direct
intra-ovarian regulation. The latter can modulate endocrine
regulation of dominance within a follicle (intra-follicular) or
can initiate or exacerbate differences between follicles (inter-
follicular). This review focuses mainly on effects of intra-
ovarian follicle-follicle interactions, concentrating on both
primate and murine species where data are available.

Endocrine regulation via the
hypothalamic-pituitary system

This is the aspect of follicular dominance into which most
research has been conducted to date. The larger follicles in a
cohort indirectly cause the cessation of growth and develop¬
ment in subordinate members of the same cohort by releasing
increasing concentrations of oestradiol and inhibin into the
systemic circulation (Zeleznik and Hillier, 1984; Gibbons et
al., 1997). These act on the hypothalamic-pituitary system to
decrease FSH to concentrations that will not support the con¬
tinued growth and development of the highly FSH-dependent,
less-developed subordinate follicles (Brown, 1978). The
slightly more mature follicles that initiated the fall in FSH will
withstand this decline in trophic support due to an up-regula-
tion in functional LH receptors (Webb and England. 1982;
Ireland and Roche, 1983) coupled to the aromatase systems in
granulosa cells and a possible increase in FSH receptor con¬

centrations (Ireland and Roche, 1983; Zeleznik and Hillier.
1984). The ovary is also the site of extremely high levels of
angiogenesis (for recent review, see Redmer and Reynolds,
1996), and the dominant follicles acquiremore vascular theca,
perhaps due to an increase in basic fibroblast growth factor
(bFGF), positively correlated with oestradiol concentrations
(Schams etal., 1996). This allows dominant follicles to obtain
an increased uptake of serum gonadotrophins (Zeleznik etal.,
1981). The dominant follicles have, therefore, several mech¬
anisms for sequestering more of the available gonadotrophins
and surviving the decline in circulating FSH concentrations
(Figure 2). In contrast, subordinate follicles are highly suscep¬
tible to a decline in circulating gonadotrophins: granulosa
cells undergo apoptosis and follicular atresia results (Hughes
and Gorospe, 1991; Hsueh et al., 1994; Tilly, 1998).
Artificially increasing systemic FSH concentrations can

result in greater-than-normal numbers of follicles reaching
maturity and hence subsequent superovulation (Baird, 1987),
a technique with enormous clinical, veterinary and agricul¬
tural applications. It seems likely that the FSH decline is the
major endocrine selection mechanism by which the ovulatory
quota is determined, with dominant follicles proceeding to
ovulation and subordinate follicles being forced down the
atretic pathway. However, we believe that this mechanism
alone fails adequately to explain how the appropriate number
of follicles first emerges as dominant.

Endocrine action between ovaries

Ovulation had been considered to occur from alternating
ovaries in mono-ovular species since original observations by
Riihl (1925), an opinion bolstered by appearances in seminal
reproductive texts (e.g. Knobil and Neil, 1988). If this is the
case, it could be due to a locally suppressive effect of the
corpus luteum from the previous cycle, or alternatively it is
possible that some as yet undefined communication mechan¬
ism is acting between the bilateral ovaries to regulate this
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Cohort of follicles is recruited into preantral growth

Intra-ovarian regulation selects a
group of those growing follicles
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stages of development
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affected by both direct and
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dominant follicles and are finally
tushed into atresia

Figure 2. Both endocrine and intra-ovarian regulation are involved in the selection of ovulatory follicles. FSH = follicle stimulating hormone.

'turn-about' process. Similarly in multi-ovular species this
ovary-to-ovary 'talk' could divide up the total number of ovu-

. latory follicles ensuring that each uterine horn receives equal
numbers of fertilized embryos. Evidence in the literature re¬

garding consecutive ovulation sites is conflicting. Support for
the contralateral theory comes from a histological study of
ovaries obtained from 25 women by Gougeon and Lefevre
(1984) in which corpora lutea were identified and assigned an
age on the basis of morphology. A chronological order of
ovulations was then calculated which suggested that ovula¬
tion occurred in a turn-about manner. Other studies in the
human (Marinho et al., 1982) and non-human primate

(Dukelow, 1977; Hodgen, 1982) also implicate contralateral
ovulation. In contrast,Werlin etal. (1986) suggest that ipsilat-
eral ovulations are the norm in women.

A third possibility is that selection of the ovary containing
the dominant follicle is random. Considerable weight was lent
to this hypothesis by the sonographic data of Check et al.
(1991), due to its large sample size. Obtained from a study of
572 cycles in 92 women, they demonstrated a 52.4% inci¬
dence of ipsilateral ovulation and a 47.6% incidence of
contralateral ovulation which is a non-significant difference.
This study supported an earlier finding by Wallach et al.
(1973) in the rhesus monkey. Doubt has also been cast on the
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incidence of contralateral ovulation by the observation that
ovulation in the primate appears to be more common from the
right ovary, than from the left. Thus. Morse and van Wagenen
(1936) report a bias towards ovulation in the right ovary of
60% in a study of eight rhesus monkeys, and the results of
Potashnik et al. (1987) support this finding in humans. Even
studies that do not demonstrate a statistical bias toward the

right ovary report a slight trend towards that side (e.g. Check
etal., 1991; Fukuda etal., 1996). In all the literature examined
detailing side of ovulation in the primate, we found no trend,
statistically significant or otherwise, toward the left ovary. In
some species, the trend towards one or other ovary is taken to
an extreme, with one ovary becoming totally inactive (e.g. the
mountain viscacha; Pearson, 1949) or even regressing (as in
the domestic hen, Gilbert, 1979). There seems to be little
discussion as to why there should be a bias towards one ovary,
although anatomical asymmetries possibly brought about by
genes such as Pitx2 (Ryan etal.. 1998), such as the origin and
drainage of vasculature and development of other organs such
as the kidneys (and adrenal glands) may affect the develop¬
ment and function of the ovaries, favouring one side.
The main body of evidence would seem to suggest that,

despite what is written in text books, contralateral ovulation is
not the physiological norm in mono-ovulatory species. The
detailed histological examination conducted by Gougeon and
Lefevre (1984) presents the strongest argument in support of
this proposal, although this would appear to conflict with the
larger clinical investigations of Potashnik et al. and Check
et al. (Potashnik et al., 1987; Check et al., 1991). Difficulties
in accurately ageing the corpora lutea and consequently deter¬
mining the sequence ofovulations may offer an explanation to
these different findings. Transient increases in local proges¬
terone concentration of the ovary most recently bearing the
ovulatory follicle only appear to affect the choice of subse¬
quent ovary when cycle length is short (Wallach etal., 1973).
It still remains unclear whether choice of ovary housing the
next dominant follicle in the primate is a truly random event or
if there is a bias towards the ipsilateral or right-handed side,
the last two proposals being mutually compatible. Even less
clear is an understanding of how dominance is established
between ovaries if ovulation does not occur in a turn-about
manner driven by the intra-ovarian environment. Interesting¬
ly from a clinical viewpoint, whether ovulation is from the
contra- or ipsilateral ovary may have implications for subse¬
quent oocyte retrieval, fertilization, cleavage and embryo
transfer during assisted fertility treatments: Fukuda et al.
demonstrated that the success rate of all these procedures was
significantly higher if ovulation was on the contralateral side
(Fukuda et al., 1996). Whatever the mechanism(s) at work,
extrapolating these findings to non-primate species, particu¬
larly to multi-ovulatory species, may be harder. The ability of
embryos to migrate along the uterine horns in some species
means that bilateral ovulation is not an absolute requirement
for evenly distributed embryonic implantation. However, it

seems unlikely that the majority of the oocytes released in
multi-ovular species originate from one ovary. Instead it
seems more probable that both ovaries contribute to a similar
degree with perhaps a marginal bias towards one side, de¬
pending on species.

Intra-ovarian regulation

It would seem essential that intra-ovarian communication is
involved in selection of the dominant follicle(s) from a grow¬

ing cohort. This could occur via three possible pathways:
paracrine regulation, the 'talk' between different cells, involv¬
ing the local diffusion of a chemical messenger produced in
one cell to another 'target' cell; autocrine regulation, a self-
regulatory mechanism whereby a certain cell type produces
factors that act back on the cell of origin; and juxtacrine re¬
gulation, communication between cells as the result of direct
cell-cell or cell-matrix contact, allowing cell- or matrix sur¬
face-associated molecules to interact with one another. All of
these types of communication may subsequently lead to sig¬
nal transduction cascades within the cell, giving rise to func¬
tional alterations.
The endocrine regulation of follicular dominance, dis¬

cussed briefly above, results in a lowering of FSH concentra¬
tions. The response of a follicle to that drop in FSH is
dependent on its dominant or subordinate status, with differ¬
ential alterations in FSH-dependent growth factor and hor¬
mone concentrations directing ultimate follicle fate (Mihm
etal., 1997). Dominant follicles continue to grow and pro¬
duce oestradiol in an environment of decreased FSH (Ireland
and Roche, 1983; Sunderland and Crowe, 1994) whereas sub¬
ordinate follicles exhibit markedly reduced oestradiol produc¬
tion. That the dominant follicle continues to grow and
increase its steroidogenic output is thought to be due to the
increased bioavailability of the insulin-like growth factors
(IGF-1 and -2) (Spicere/a/., 1988; Gong etal., 1993: Mihm et
al., 1997) following enhanced secretion of this peptide and a
decrease in IGF binding protein (IGFBP) production (Ech-
temkamp et al., 1994). During this period of selection, the
subordinate follicles exhibit increased IGFBP production re¬

ducing the concentration of available IGF-1 (Mihm et al.,
1997). As a result of these differential responses to the re¬
duced concentrations of FSH, the dominant follicles continue
to grow and develop whilst the subordinate follicles undergo
follicular atresia and die. The role of such intra-follicular fac¬
tors on follicle dominance has been the subject of several
comprehensive reviews, (e.g. Adashi and Rohan, 1992; Er-
ickson and Danforth, 1995; Campbell and McNeilly, 1996;
Armstrong and Webb, 1997).
There is, however, an additional method of intra-ovarian

regulation of follicular dominance, namely through interac¬
tions between follicles. Such interactions could enhance the
effect of endocrine regulation of follicular dominance, with
the dominant follicle also producing factors that will directly
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affect the development of subordinate ones. For example,
interfollicular interactions may have a role in maintaining
dominance once it has been established, by 'holding back'
challengers. This could explain the phenomenon of follicular
waves exhibited by some species. If the dominant follicle

, found itself in a hostile environment upon reaching the ovula¬
tory stage and consequently regressed, the inhibitory influ¬
ence would be removed and the follicles that had been held in

- check could resume development and contend for the domi¬
nant position (Matton et al., 1981; Ko et al., 1991). Alterna¬
tively, follicle-follicle interactions could initiate differences
between follicles upon which endocrine action can subse¬
quently act. These possibilities are explored more fully later.

General morphology of the follicle
Follicle structure

The majority of follicles found within the ovary are in the
primordial stage (mouse: Peters etal., 1973; human: Forabos-
co et al., 1991). These follicles consist of an oocyte arrested in
prophase I of the first meiotic division, surrounded by flat-

. tened pregranulosa cells (Hirshfield, 1991a), and a basal lami¬
na. In the young mouse these follicles are found in closely
packed clusters, at synchronized stages of development and
frequently connected to each other by interfollicular bridges
(Zamboni and Merchant, 1973). The oocytes in these follicles
are -15 pirn in diameter in the mouse and 30 Lim in humans
(Gosden and Teller, 1987). Thecal cells are generally re¬
garded as being indistinguishable until the follicle attains a
multilaminar stage. A steady trickle of primordial follicles
becomes activated and leaves the resting pool, forming pri¬
mary follicles (Figure 1). Due to the avascular nature of the
part of the ovary in which the primordial follicles are located,
locally produced growth factors are more likely to regulate

„ this process than systemic factors (Greenwald and Terranova,
1988; Hirshfield, 1991a; van Wezel and Rodgers, 1996). Dur¬
ing preantral development, the oocyte enlarges and the zona

* pellucida is formed between the oocyte and the granulosa
cells. The granulosa cells become cuboidal and are the site of
rapid synthesis of matrix components, including the basal

- laminae. As the follicle continues its growth it acquires a
fluid-filled antral cavity. Antral formation begins when the
granulosa cell population reaches -2000 cells for all species

' studied (Gosden etal., 1993). It is during antral development
that granulosa cells differentiate to form two major popula¬
tions, the mural granulosa cells which are proximal to the
basal lamina, and the cumulus granulosa cells which surround
the oocyte (cells in the stalk may possess characteristics of
both). The granulosa cells regulate oocyte development, for
example, 85% of oocyte metabolites are of granulosa cell
origin (Heller et al., 1981). Conversely the mural granulosa
cells are the recipients of instruction from the oocyte, e.g.
growth differentiation factor-9 (GDF-9), an oocyte secreted

factor that is involved in granulosa cell development (Dong
etal., 1996).
The mature follicle also has many associated thecal cells.

The highly vascularized theca interna, the layer most closely
associated with the convex surface of the basal lamina, is
readily identifiable, the cells containing prominent lipid
droplets and being more rounded than the theca externa
(O'Shea, 1971). Likewise, there is a marked change in
extracellular matrix composition at the interface between the
interna and externa.

The ovarian extracellular matrix (ECM)

In the ovary, as in all other tissues, the ECM provides the
architectural framework that supports and compartmentalizes
the different cell types (Alberts et al., 1994). Increasingly,
research is highlighting the additional role of the ECM in
regulating cell behaviour in all aspects of development and
maintenance. This seems to be particularly true of the ovary, a
highly dynamic organ which exhibits rapid tissue remodelling
throughout reproductive life (Luck, 1994). An illustration of
this is provided by the ECM found in the follicular theca. This
contains laminin and collagen fibrils types I, III and IV (re¬
viewed by Luck, 1994) and fibronectin in some species (e.g.
sheep: Huet et al., 1997: rat: Bagavandos et al., 1983). This
ECM used to be thought of as primarily supportive, but is now
also considered to act as a binding and storage site for many
factors that regulate the growth, development and function of
follicular cells (Armstrong and Webb, 1997; Mclntush and
Smith, 1998).

Extracellular proteases

ECM is constantly remodelled by the action of extracellular
proteases, mainly matrix metalloproteinases (MMP) (such as
collagenase and gelatinase) and the plasminogen activator/
plasmin family (Luck, 1994; Mclntush and Smith, 1998).
Around the follicles, degradation of the ECM results in re¬
lease of sequestered ovarian factors. Inhibition of these pro¬
teases, such as through the action ofTIMP (tissue inhibitors of
metalloproteinases), maintains the ECM and hence favours
retention of growth factors and cytokines. This site of storage
and release is a fundamental control mechanism of follicle

development.

Intra-ovarian interactions help determine
follicle fate

We consider that selection of the correct number of follicles
for ovulation cannot easily be achieved by endocrine mechan¬
isms alone. Variations in systemic concentrations of follicular
trophic factors do not seem subtle enough, or targeted in any
way, making it hard to envisage how they could account for
such precise and regimented control of ovulatory number. If
this is the case, it seems essential that intra-ovarian factors
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Figure 3. Lateral specification, (a) An initially equivalent population of cells all possessing the ability to differentiate and simultaneously send
an inhibitory signal to the neighbouring cells, (b) A few cells have been able to differentiate to a greater degree than their neighbours. They
produce a stronger inhibitory signal preventing the further differentiation of the surrounding cells which in turn lose the ability to inhibit the
dominant cell, (c) Two distinct cell types have arisen from an initially equipotential population. A regular 'pattern' has been generated.

play a role in regulating the development of the correct
number of follicles. These factors could be acting in two ways,
predisposing certain follicles for successful growth culminat¬
ing in ovulation and/or condemning the unsuccessful con¬
tenders to an atretic pathway (Figure 2). Once follicle
dominance has been established, intra-ovarian factors could
also 'hold back' any challengers.

Such follicle-follicle interactions could either establish dif¬
ferences between a group of initially equivalent follicles or, at
a later stage, allow a follicle to influence the fate of another
non-equivalent (subordinate) follicle group. These processes
bear striking resemblance to methods of cell fate determina¬
tion commonly described in developmental biology, namely
those of inductive signalling and of lateral specification. We
discuss below whether they may indeed be analogous, citing
examples to draw parallels, and consider the use of these
terms in ovarian physiology.

Inductive signalling and lateral specification

Inductive signalling is a method of communication between
adjacent, non-equivalent cell populations, whereby one ceil
type influences the fate of another, and can thus generate new
cell types. Lateral specification (also called lateral inhibition)
is the short-range cell-cell 'talk' between initially equivalent
cells, an example of juxtacrine communication. This cell-cell
dialogue may give rise to signal transduction cascades within
the cells causing functional alterations. Thus, from an initially
equivalent and equipotent group of cells, interactions between
these cells lead to the generation of two distinct cell fates.
Examples of inductive signalling can be found in many

developing systems in a diverse range of organisms that in¬
cludes plants, invertebrates and mammals. One example re¬
cently reviewed by Horster et al. describes the cell-cell
interactions that bring about the formation of the mammalian
metanephric kidney (Horster etal., 1997 ). Two types of tissue
with distinct embryological origins, the metanephric mesen¬
chymal blastema and the ureteric bud, come into contact with
one another at the site of the future kidney. The mesenchymal

cells aggregate around the branching ureteric bud tip, allow¬
ing the two cell types to communicate with each other via
inductive signalling. The signalling between the different cell
populations is successful as the two cell types express ligands
and receptors in a complementary pattern (Birchmeier and
Birchmeier, 1993). Interactions with the ureteric bud tip cause
the mesenchymal cells in contact with the ureteric bud to
adopt epithelial morphology and function. These newly
created epithelial cells subsequently differentiate into the var¬
iety of cell populations that comprise the nephron.
Lateral specification is involved in the patterning of differ¬

entiated cell types. An often-cited example of lateral specifi¬
cation can be found in the developing Drosophila bristles
where evenly spaced sensory mother cells are created from an
initial population of equivalent proneural ectodermal cells.
These cells would all differentiate to become sensory mother
cells unless prevented from doing so. As the ectodermal cells
begin down the pathway to sensory differentiation they send
an inhibitory signal to their neighbours. A 'battle' is then
fought as each cell attempts to suppress the differentiation of
the adjacent cells and gain a slight developmental edge, allow¬
ing it to escape the inhibitory influence. Consequently this *
eminence is enhanced as the cell becomes more differentiated

„

and produces a stronger inhibitory signal, preventing the con¬
tacting cells both from becoming sensory mothers and from
producing an inhibitory signal (Figure 3). These 'weak' cells .

consequently develop into epidermal cells (Hartenstein and
Posakony, 1990; Heitzler and Simpson, 1991).
Some of the genes regulating local cell interactions necess- ►

ary for inductive signalling and lateral specification are
known, more so for the latter process. The first group of regu¬
latory genes to be isolated, in Drosophila, were initially impli¬
cated in the regulation of lateral specification. These encode
for the Notch family of transmembrane receptor proteins. Sig¬
nalling via the Notch receptor can control the ability of non-
differentiated cells to respond to differentiation and
proliferation cues, and is able to block the action of other
differentiation signals. The Notch receptor contains a large
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extracellular domain that contains 36 epidermal growth factor
(EGF)-like repeats and three cysteine-rich Notch/Lin-12 re¬
peats (reviewed by Artavanis-Tsakonas et al., 1995). These
receptors have an array of possible ligands, including mem¬
brane-anchored extracellular ligands (each with EGF-like re¬
peats) such as Delta and Serrate and those implicated in
intracellular signalling, such as Deltex or Suppressor of Hair-

, less (SuH). Some downstream genes (or gene cascades) have
also been identified. Notch was first discovered due to its role
in neurogenic cell fate in the developing Drosophila, an
example of which is given above. It has since been shown to
play a key role in both inductive signalling and lateral specifi¬
cation in the developing Drosophila: null mutations result in
embryonic lethality. Homologues have been found in C.ele-
gans and in non-mammalian and mammalian vertebrates, in¬
cluding mice and humans (reviewed by Artavanis-Tsakonas
et al., 1995). Their expression in the mammalian ovary is
described below. Notch mutations in humans have been
linked to cancer (Ellisen et al., 1991; Robbins et al., 1992),
and one of its human ligands, Jagged, has been implicated in
Alagile syndrome, an autosomal dominance disorder with a
range of developmental abnormalities (Li et al., 1997; Oda et

'

al., 1997).

'Inductive signalling' and follicular dominance

The traditional view of interfollicular regulation of follicular
dominance is that an already dominant follicle secretes some
factor(s) that inhibits the development of its subordinate
neighbours. As this is one population of cells affecting the fate
of another, non-equivalent population of cells, it is analogous
to inductive signalling, and the factors produced by the domi¬
nant follicles can be thought of as 'inductive signalling' mol¬
ecules.

Several putative 'dominance' factors have been reported.
Di Zerega identified a protein with a molecular weight be¬
tween 14 000 and 18 000 kDa secreted by the dominant fol-

. licle in humans which suppressed the follicular response to
gonadotrophins (di Zerega. 1982). Cahill et al. demonstrated
that ovine follicular fluid inhibited the development of fol-

. licles >2 mm in diameter in the ovary and reduced the mitotic
index of the granulosa cells of follicles <2 mm (Cahill et al.,
1985). Later, substances with molecular weights of 18 000

• and < 10 000 kDa were identified in ovine follicular fluid that
inhibited the mitotic activity of murine embryonic lung fibro¬
blasts (Carson et al., 1988). Campbell et al. reported a sub¬
stance in the ovine pre-ovulatory follicle that is
atresia-inducing and results in a loss of steroidogenic activity
following injection into the cycling sheep (Campbell et al.,
1991). How a follicular fluid-derived factor would act on

neighbouring follicles was called into question when Drian-
court (Driancourt, 1994) failed to demonstrate interfollicular
interactions in the Booroola sheep. Using aromatase activity
as a measure of follicle development, no positive role of the

largest atretic follicle or negative role of the dominant follicle
was found on other follicles following his experiments using
ovarian serum or conditioned media. However, he substan¬
tiated the previous literature reporting the presence of an in¬
hibitory factor in the follicular fluid, which was shown to
significantly reduce the activity of aromatase in large follicle
pieces, as compared to cultures with serum or conditioned
medium. Perhaps then his failure to observe either an inhibi¬
tory or stimulatory effect was an in-vitro artefact, the mechan¬
isms by which the follicular fluid factors are transported from
the antrum being absent or disabled in vitro. Another possibil¬
ity is that such factors were indeed present but not at sufficient
concentrations in culture to exert an effect.
Most recently, work on the bovine follicle resulted in the

characterization of granulosa cell-inhibitory factor (GCIF)
which was shown to inhibit the proliferation of small and
medium follicles (Hynes et al., 1996a,b). Steroid-free bovine
follicular fluid was separated into high and low molecular
weight fractions and purified. A factor with a molecular
weight <5 kDa was shown to inhibit granulosa cell prolifer¬
ation in vitro, inhibit the proliferation of granulosa cells taken
from small and medium follicles but not large follicles, and,
following systemic administration to cycling rats, inhibit the
formation of large follicles and increase the number of small
follicles. The authors report similarities between GCIF and
factors found in porcine (Kigawa et al., 1986) and rat follicu¬
lar fluid (granulosa cell mitostatic protein, GCMP; Chakra-
vorty et al., 1993). Gore et al. note the disappearance of
'challenger' follicles from around dominant follicles in hu¬
mans and speculate that oestrogen may be responsible for this
phenomenon (Gore et al., 1997). They cite the studies of
Dierchke et al. (1985) and Koering et al. (1994) which dem¬
onstrated a detrimental role of oestrogen on follicles in vivo.

'Lateral specification' and early determination of
follicular fate

While a process analogous to that of inductive signalling can
help explain how follicle dominance is maintained once es¬
tablished, it does not address the issue of how dominance has
arisen (with the correct, species-specific number of follicles
continuing to develop). Based on morphological criteria, the
emergence of dominant and subordinate follicles would seem
to arise from a cohort of initially equipotential follicles. Al¬
though we cannot discount the possibility that differences are
established at the time of gonadal formation, marking the
follicles destined to ovulate, this must at the very least be a

readily reversible designation, as the number of ovulating
follicles can be manipulated with ease. Experiments where the
dominant follicle is ablated (e.g. Matton etal., 1981; Ko etal.,
1991) show that a new dominant follicle rapidly emerges from
the cohort of antral follicles. Presumably, had the original
dominant follicle been allowed to ovulate, the 'new' replace¬
ment dominant follicle would have become atretic. Similarly,
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follicle(s) edging ahead

Figure 4. Follicles are selected for continued growth from a larger cluster of preantral follicles in a manner analogous to lateral specification.

superovulation (e.g. Baird, 1987) results in a far greater
number of follicles than would be expected in a normal cycle,
suggesting that at least some, if not the majority, of follicles
have been deflected from an atretic fate. We propose that
differences in follicle development may have arisen through a
process early in follicle development equivalent to lateral
specification.
At the onset of follicle development, a cohort of primordial

follicles enters the growth phase. At this point they are most
likely equipotential. As they start to grow, there are presuma¬
bly fluctuations in the production of signalling molecules set¬
ting up transient differences between neighbouring follicles.
These differences could become magnified as selected
'stronger' follicles inhibit development of their immediate
neighbours (similar to the differentiation of cell types in the
developing Drosophila, as detailed previously). In this
manner, a pattern of selected and non-selected follicles, or
later, of dominant and subordinate follicles, would emerge

(Figure 4): the endocrine loop would then act on those differ¬
ences.

Recent work from this laboratory has highlighted a contact-
mediated mechanism whereby 'dominance' is established be¬
tween co-cultured murine follicles in vitro (Spears et al.,
1996), although this may be more analogous to the process of
selection in vivo, particularly in large mammals. Using a
whole follicle culture system which allows the growth of fol¬
licles from the preantral to the Graafian stage, experiments
were conducted to investigate the influence of follicle-follicle
interactions on growth and development. It was found that
when pairs of follicles were co-cultured in contact, one follicle
invariably became dominant over its partner. When follicles
were cultured in similar conditions but placed slightly apart,
this phenomenon was not seen, implying a requirement for
follicle-follicle contact. We believe that this observation may
be an example of 'lateral specification' between neighbouring
follicles, resulting in the initially equivalent follicles adopting
different fates and only the successful follicle being selected
for further development and maturation (Figure 5a,b).
For our in-vitro observations and proposed hypothesis to be

relevant in vivo, there would be a requirement for follicles to
be in direct contact with others at the same stage for at least

part of their development. Histological examination of sec¬
tions from a range of mammalian species (including the
mouse, rat, rabbit, cat, pig, tiger and marmoset) reveals that
preantral follicles are frequently found in close contact with
each other, as shown in some of the examples in Figure 5c-e.
Zamboni and Merchant report that bi- and tri-laminar follicles
are found interconnected by granulosa cell projections in
young mice (Zamboni and Merchant, 1973), presumably as a
result of persisting intercellular bridges between primordial
germ cells. Connected 'strings' of primordial/primary fol¬
licles can be seen in mice ~3 weeks of age (S.Baker and
N.Spears, unpublished observation), and in young cats
(J.Mullan, personal communication; Figure 50- It would be
interesting to see if these 'strings' of follicles resume growth
as a unit, giving rise to closely contacting preantral follicles at
equivalent stages ofdevelopment. Whole ovary sections illus¬
trate the degree of closeness that neighbouring preantral fol¬
licles assume, often with a very thin dividing thecal layer
(Figure 5c-e), which would enhance the possibility of juxta-
crine communication. Interestingly, this thin shared theca
layer was also observed in our co-cultured follicles (Figure
5b). Detailed analyses of serial sections from 3-week-old
mice revealed that most preantral/carly antral follicles are
found in clusters (of up to 20-50 follicles), frequently in con¬
tact with two or more like-sized follicles (Figure 6). Similar
clusters of like-sized preantral follicles have also been de¬
scribed in the rat (Hirshfield and De Santi, 1995). It is thus
clear that preantral follicles do develop in contact with other
similar-sized follicles, making it at least feasible that 'lateral
specification' (or an equivalent process) could influence fol¬
licular fate, resulting in only certain follicles from within each
cluster proceeding on to further stages of follicular develop¬
ment.

As discussed previously, the Notch family of genes is
known to be involved in juxtacrine communication between
cell types in many developing systems. As such, they seem
plausible candidates as factors regulating follicle selection.
Indeed, Notch has been shown to play vital roles in the Droso¬
phila ovary (Xu et al., 1992) including evenly spacing the
developing egg chambers. There are four mammalian Notch
genes identified to date (Notch 1-4). Although Notch 4 has
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FigureS. Preantral follicles are frequently found in close contact with one another, with similar characteristics toco-cultured follicles, (a) Photo¬
micrograph of a pair of co-cultured murine follicles after 48 h in culture, (b) Photomicrograph of a histological section of co-cultured follicles

< showing a thin, shared theca layer (follicles were embedded in resin and sections stained with haematoxylin and eosin). (c) Photomicrograph of a
section through a 3 week old mouse ovary showing that preantral follicles tend to grow in clusters (arrowheads), (d) Photomicrograph of contact¬
ing preantral follicles in a kitten ovary, (e) Photomicrograph of closely contacting preantral follicles in a marmoset ovary, (c-e were obtained
from wax sections of ovaries and stained with haematoxylin and eosin.) (f) Photomicrograph of a connecting 'string' of primary follicles dis¬
sected from a young cat ovary. All scale bars represent 100 |im except (d) which represents 30 prn.

been reported to be expressed in the mouse ovary (Uytten-
daele, et al„ 1996), there are no previously published reports
of expression ofNotch 1-3 in the mammalian ovary. As a first
step towards examining the role of Notch genes in the mam¬
malian ovary, we have used reverse transcriptase-polymerase
chain reaction to examine expression of Notch 1-3 in the
mouse ovary (Figure 7). All three genes are expressed in the
ovary and we are currently examining their expression
patterns with a view to possible involvement in follicle fate
(Baker, Cameron and Spears, manuscript in preparation).

Inductive signalling, lateral specification and
interfollicular interactions

The major differences between lateral specification and in¬
ductive signalling in developing systems and the processes
that are occurring in the ovary are those of scale and maturity.
Lateral specification has been described to date only as occur¬
ring between individual cells and inductive signalling be¬
tween populations of cells. Each follicle will have several
hundred or even several thousand cells. For equivalent pro-
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Figure 6. Serial sections ofovaries from three 3 week old mice were examined sequentially and all follicles around the stage of antrum formation
were identified and marked. For each highlighted follicle, numbers ofcontacting similarly sized follicles were noted. It was found that: (a) >95%
of late preantral follicles are in direct contact with other like-sized follicles; (b) calculations of total cluster size reveal that >90% of late pre-an-
tral follicles are found in groups of 11-50 follicles.
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Figure 7. Reverse transcriptase-polymerase chain reaction (PCR) gels (upper row) and probed Southern blots (lower row) showing the expres-
seion ofNotch 1, 2 and 3 in 3-week-old murine ovaries, kidney and skeletal muscle. Band a has been produced using primer pairs specific for
each gene's mRNA sequence, band b shows expression of (3-actin message in each tissue. mRNA was extracted from the three tissue types and
cDNA synthesized using Pharmacia Biotech kits (St Albans, UK), prior to amplification by PCR using specific primers for Notch 1, 2 and 3
mRNA (as in Lardelli and Lendahl, 1993). PCR products were run by electrophoresis and visualized under UV light following staining with
ethidium bromide. Notch 1 primers yielded a 660 bp product; Notch 2 a 684 bp product and Notch 3 a 466 bp product. To check for specificity
gels were then blotted overnight onto nylon membranes, transferred DNA fixed by baking and then hybridized with digoxigenin (DIG)-labelled
oligonucleotide probes specific to the gene of interest (Notch 1: CTGGCCACACTGGACGC; Notch 2: CAAGGCTCGGGA; Notch 3: CCATG-
CAGCGCATACTC), according to the DIG users Handbook (Boehringer Mannheim. Lewes, UK). Final detection of hybridized probe was by
reaction to CDP-Star (Boehringer Mannheim) and subsequent exposure to X-ray film.

cesses to be viable between adjacent follicles there would be a
requirement for many thousands of cells to act in concert and
present a unified front towards the neighbouring follicle. The
oocyte has a profound effect on the somatic follicular cells
(e.g. Dong etal., 1996), so it is possible that the process could
be oocyte-driven. Thus despite being comprised of thousands
of cells, the follicle could behave in a manner analogous to
that of an individual cell. Furthermore, the population of
granulosa cells arises from a small number of progenitors in

the primordial follicle (Boland and Gosden, 1994). Recent
work by Hirshfield (Hirshfield, 1991b) has even suggested
that the theca cell population may have arisen from a few
follicle-associated interstitial cells. If populations have arisen
from few progenitor cells, that syncytium of cells—all being
of similar characteristics—could act in concert.

The other key dissimilarity between our proposed follicle-
follicle communication mechanisms and the classical

examples of inductive signalling and lateral specification is
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the age of the animal. We are suggesting that this form of cell
fate determination is present in the ovary throughout repro¬
ductive life, whereas examples of inductive signalling and
lateral specification in the literature appear to be confined to
developing embryos. However, the mature ovary can be re¬

garded as being in a constant state of development. As previ¬
ously mentioned, the ovary is the site of the most rapid
angiogenesis and apoptosis in the female body, processes nor¬
mally associated with development. Growth and development
of follicles continues and indeed only recommences fully in
adult life.
We are only beginning to understand aspects of the molecu¬

lar regulation of follicle dominance, while regulation of in¬
ductive signalling and lateral specification during embryonic
development is fairly well understood. If analogies between
the systems are close, it would be productive to look for
further parallels, at the molecular/genetic level: such an ap¬
proach has proved invaluable in many other areas of biology.

Conclusion

To date, most of the research into follicular dominance has
concentrated on its endocrine regulation. While endocrine
control of follicle dominance can explain much of the later
processes that occur (such as ensuring that subordinate fol¬
licles ultimately undergo atresia), intra-ovarian interactions
are also involved in its regulation. Follicle-follicle interac¬
tions have various possible roles both at early stages when
follicles are being selected from a cohort or cluster of follicles
and/or later, when dominant follicles are 'holding back' chal¬
lengers (Figure 2). Furthermore, intrafollicular processes also
mediate the response of a follicle to endocrine changes. These
intra-ovarian processes have received less attention than
endocrine changes, perhaps because they are less amenable to
investigation. Further understanding of intra-ovarian interac-

• tions will help us to determine how each species selects the
correct number of follicles for continued development during
an ovulatory cycle.
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