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Abstract

The mucosal surfaces are a major site of pathogen entry and methods that stimulate
the local immune response to provide a barrier to infection are highly desirable. The

purpose of this study is to develop a novel intra-nasal vaccination strategy in sheep

specifically targeting the mucosal-associated lymphoid tissue (MALT) in the

nasopharyngeal tract. Initial studies demonstrated the location and composition of
ovine nasal-associated lymphoid tissue, which was shown to be characteristic of an
immune inductive site ofMALT. Specialised epithelial cells with sparse irregular
microvilli were revealed by electron microscopy within the follicle-associated

epithelium (FAE). These cells were closely associated with lymphocytes in the

underlying tissue and were characteristic of M cells, shown to be involved in the

uptake of particulate antigenic material. Attempts to mark these M cells using
lectins, alkaline phosphatase activity and antibodies against vimentin and

cytokeratins proved unsuccessful. However, uptake of fluorescent microparticles into
the epithelium could be demonstrated both in vitro and in vivo, suggesting that these
M cells were functionally active. These initial studies suggested there was potential
to stimulate an effective mucosal immune response by targeting ovine NALT with

particulate antigen. A particulate delivery system using poly(D,L-lactide-co-

glycolide) (PLG), a biodegradable polymer, was then developed to deliver antigen to

MALT through the M cells. Firstly, microparticles within the appropriate size range

were produced, and protein encapsulation into these microparticles was optimised

using BSA as a model protein. Protein encapsulation and release studies were

performed on microparticles made from low and high molecular weight PLG

polymers, and finally the stability and functionality of encapsulated proteins from
Listeria monocytogenes were determined. These results allowed the optimal methods
for particle preparation to be chosen.

An intra-nasal vaccination trial against Toxoplasma gondii was then

performed in sheep. Proteins were extracted from toxoplasma tachyzoites and

incorporated into PLG microparticles using the methods developed above. Sheep
were vaccinated intranasally with soluble or particulate toxoplasma antigen, with
blank particles as a negative control, or were infected with toxoplasma oocysts as a
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positive control. The potential for the use of cholera toxin as a mucosal adjuvant was
also investigated. All sheep were challenged with an oral infection of toxoplasma

oocysts at the end of the experiment. Sheep immunised with particulate toxoplasma

antigen produced enhanced levels of both local and systemic antigen-specific IgA

antibody. Some increase in systemic antigen-specific IgG antibody levels were

measured in sheep immunised with particulate toxoplasma antigen and cholera toxin.
After challenge with toxoplasma oocysts increased levels of both local and systemic

IgG were measured more rapidly in all animals immunised with toxoplasma antigen,

suggesting a secondary-type IgG response. Increased cellular immune responses and
a corresponding increase in interferon gamma production were measured in sheep
immunised with particulate toxoplasma antigens. A slight modification of the febrile

response to toxoplasma infection could be observed in animals immunised with

particulate toxoplasma antigen and cholera toxin, although none of the immunised
animals were protected against the challenge infection. These studies have shown
that the intra-nasal route stimulates both local and systemic immune responses, and
shows promise as an effective route for mucosal immunisation.
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CHAPTER 1

General Introduction
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1.1 HYPOTHESIS

Intranasal immunisation in sheep can stimulate antigen-specific mucosal and

systemic immune responses, involving both cell-mediated and humoral immunity.

1.2 THE MUCOSAL IMMUNE SYSTEM

The mucosal surfaces covering the intestinal, respiratory and urogenital tracts

represent the interface between the host and environment, and have a combined
surface area of up to 400m2 in humans (Brandtzaeg et al., 1999). Most pathogenic

organisms either inhabit or penetrate the mucosal membrane surface area, and
diseases affecting mucosal surfaces remain the greatest cause of mortality and

morbidity in both man and animals. The systemic immune response alone is not

adequate to control mucosal infection and the induction of specific immunity at the
site of pathogen invasion is desirable. Thus a large part of the immune system is
dedicated to protection from infection at these vulnerable mucosal sites. This
mucosal immune system is distinct from the systemic or blood-borne immune

system, as it is tightly regulated to maintain the integrity of the mucosal barrier, and
involves the majority (some 80%) of immunologically active cells. Recent
observations support the idea that induction of mucosal immune responses is
effective both in preventing infection at mucosal surfaces and in triggering a

systemic immune response. The lymphoid tissues of the mucosal immune system are

known as mucosa-associated lymphoid tissue or MALT, and are present throughout
the mucosal surfaces. This term was introduced by Bienenstock (1978) because the

lymphoid tissues of various mucosae possess a relatively uniform morphology and
are thought to function in a similar manner. MALT is found along all parts of the

gastrointestinal tract, in the oral cavity, along the upper and lower airways, in the

urogenital tract, in the mammary glands and in the conjunctiva of the eye. MALT is
characterised regionally depending at which mucosal surface it is located; the main
MALT are the gut-associated lymphoid tissue (GALT), the bronchus-associated

lymphoid tissue (BALT) and the nasal-associated lymphoid tissue (NALT). The

following data are largely derived from studies in rodent models or humans, apart
from where otherwise specified.
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1.3 THE MUCOSAL IMMUNE RESPONSE

The mucosal surfaces are protected by both innate and adaptive immune

systems. Innate mechanisms include the trapping of pathogens in mucus, the
destruction of pathogens by low pH or enzymatic activity in the GI tract, and the

production of proinflammatory cytokines e.g. IL-8 by epithelial cells (Jung et al.,

1995). Protection at mucosal sites due to adaptive immune responses is achieved to a

large extent by secretory immunoglobulin A (slgA), the most abundant antibody in
the body and the predominant antibody at these locations (Conley & Delacroix,

1987). slgA is resistant to endogenous protease activity, which makes it well suited
to protecting the mucosa (Steward, 1971; Lindh, 1975). The mucosal immune system

is separate from the systemic immune system, but antigenic material can be carried

by the lymphatics and blood vessels from the mucosae to lymph nodes, spleen and
bone marrow, where the appropriate systemic immune response can be initiated.

However, specific IgA antibodies that can protect against mucosal challenge when

they are present in mucosal secretions can be ineffective against systemic microbial

challenge when injected systemically (Michetti et al., 1992, Subbarao & Murphy,

1992).

The first step of a mucosal immune response may be the induction of helper
T cells (Bjerke et al., 1988). Once antigen is taken up by specialised epithelial cells
termed M cells in the mucosal epithelium (discussed in Section 1.5), it is processed

by antigen-presenting cells (APCs) and presented to T cells, which regulate the
mucosal IgA response (Dunkley et al., 1990) and stimulate the development of IgA-
committed antigen-specific B cells. T cells are required to provide an initial signal to
the B cell via cell contact, and by another signal provided by transforming growth
factor P (TGF-P). TGF-(3 in mucosal tissue switches B cells from the expression of
surface IgM to surface IgA while suppressing those cells responsible for IgG

production (van Vlasselaer et al., 1992; Lebman et al., 1990). The T cell cytokines
interleukin 4 (IL-4), IL-5 and IL-6 are necessary for the final differentiation of B
cells to IgA-secreting cells in the lamina propria (Beagley, et al., 1988, 1991).

Antigen-specific lymphocytes proliferate locally in mucosal germinal centres,

migrate via the bloodstream and eventually 'home' to mucosal sites (McDermott &

Bienenstock, 1979) where terminal differentiation into subepithelial plasma cells
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occurs (Kraehenbuhl & Neutra, 1992; Mestecky & McGhee, 1987). In this way IgA-
committed antigen-specific B cells become plasma cells in the mucosae that produce

polymeric IgA antibodies. IgA is not only enriched in the lamina propria, but also
secreted across the epithelial surface. Transport of IgA into mucosal secretions
occurs via transepithelial transport, a unique selective process mediated by specific

polymeric Ig receptors to ensure selective secretion onto mucosal surfaces (Apodaca
et al., 1991). Polymeric immunoglobulin receptors (plgR) are present on the
basolateral membranes of mucosal epithelial cells (Mestecky & McGhee, 1987).
Dimeric IgA antibodies bind to plgR, triggering internalisation and transport through
the epithelial cell to the surface where the plgR is cleaved to release the antibody at

the mucosal surface. Part of the plgR remains attached to the antibody and is known
as the secretory component and may help protect the antibody from enzymatic

cleavage. The majority of IgA released from plasma cells at effector sites is in the
form of a dimer, two IgA molecules linked at the constant regions of their heavy
chain by the J chain.

Secretory IgA specifically binds to luminal antigens and leads to

neutralisation, agglutination and/or opsonisation (reviewed in Brandtzaeg et al.,

1989; Neutra & Kraehenbuhl, 1992). slgA largely functions by binding and

preventing contact of the pathogen with epithelial cells, and preventing attachment

by blocking microbial surface molecules, a mechanism known as immune exclusion

(Mestecky & McGhee, 1987; Kilian et al., 1988; Tomasi, 1983). This is largely
achieved by specific IgA against surface antigens or secreted toxins that can cross¬

link target macromolecules and micro-organisms, thus inhibiting motility and

facilitating entrapment in the mucus and clearance by peristalsis in the gut or ciliated
cells in the upper and lower respiratory tract. slgA is highly glycosylated and can

also interact with bacteria in a non-specific fashion and can neutralise microbial
toxins. Binding of IgA to pathogens in the lamina propria may cause them to be

exported out to the epithelial surface as immune complexes (Kaetzel et al., 1994).

IgA may also promote phagocytosis by binding to Fca receptors and may have a role
in the intracellular neutralisation of virus in epithelial cells (Mazanec et al., 1992).

Despite all these effector functions the induction of slgA alone may yet be

inadequate for protection (Ermak et al., 1998).
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T cells are also crucial for the induction of an effective mucosal immune

response. Other cell-mediated mechanisms that have been found in MALT and may

play a role in mucosal effector sites are cell-mediated cytotoxicity, antibody-

dependent cytotoxicity involving IgA, natural killer cells, and functional cytotoxic T

lymphocytes (CTLs) (Staats & McGhee, 1996; VanCott et al., 1996; Klavinskis et

al., 1996).

1.4 ORGANISATION OF THE MUCOSAL IMMUNE SYSTEM

The mucosal immune system is anatomically and functionally divisible into
discrete inductive and effector tissues, demonstrated in Figure 1.1. In simple terms,

mucosal inductive sites are where foreign antigens are encountered and mucosal
immune responses are initiated, and effector sites are the more diffuse collections of
B and T lymphocytes, differentiated plasma cells, macrophages and other antigen-

presenting cells in the lamina propria where the immune response is produced.

pathogens

antigen uptake
by M cells

antigen-specific IgA

' s'/

A secretion of IgA

MALT

I
INDUCTIVE

SITE

emigration of
lymphocytes fy/*

lymphatics

EFFECTOR
SITE

antigen-specific
plasma cells

„ _ migration to
distant
mucosae

blood vessels

Figure 1.1 Schematic representation of the mucosal immune system, adapted
from Gebert (1997)
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1.4.1 Mucosal Inductive Sites

Inductive sites are localised in the organised lymphoid tissues along mucosal
surfaces where antigen is encountered and initial responses are induced, and can

consist of solitary or multiple lymphoid follicles, the most defined example of which
is the Peyer's patch in the small intestine. The number and location of inductive sites
varies among species and may change in individuals over time in response to

mucosal exposure to antigens (Owen & Ermak, 1990). Inductive sites contain all
cells necessary to induce and regulate immune responses, and have an organisational
structure to facilitate the development of both cell-mediated and humoral immunity

(reviewed in McGhee et al., 1992; Mestecky & McGhee, 1987).
MALT is covered by an area of specialised epithelium known as the follicle-

associated epithelium (FAE), that contains specialised M cells that transport antigen
to the underlying lymphoid tissue (Owen & Jones, 1974). These cells are discussed
in detail in Section 1.5. Underneath this epithelium, characteristic dome-like
accumulations of lymphocytes, macrophages and plasma cells are present,

strategically placed to respond to antigen transported to them by M cells. Beneath
this dome area groups of lymphoid follicles of varying number lie in the subepithelial
lamina propria or submucosa. The follicles are mainly populated by B lymphocytes,
and contain follicular dendritic cells and macrophages. Follicles may form around
follicular dendritic cells (MacDonald & Spencer, 1990) which function to present

antigen to B cells. These distinct B cell follicles contain actively dividing cells in

germinal centres, which are the site of expansion of B lymphocyte populations
committed to the IgA isotype (Ermak & Owen, 1986). Most B cells in the periphery
of the follicle and the corona express IgM surface receptors whereas B cells in

germinal centres have switched to the IgA isotype (Lebman & Coffman, 1988;
McGhee et al., 1989; Murray et al., 1987). Relatively few plasma cells are present in

comparison with similar follicles in lymph nodes and spleen.
T cell-dependent areas containing all major T cell subsets and interdigitating

dendritic cells are found surrounding and separating these B cell areas, in the
interfollicular or parafollicular regions. In humans the T cells present are mature

(contain a TCR/CD3 complex), and over 95% express the a(3 TCR while a small

subset exhibit a y8 TCR. In ruminants a higher proportion of y5 T cells are present
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than in humans or rodents (Hein & Mackay, 1991). Approximately 50-60% of the a(3
T cells are CD4+ cells (T helper cells) while the remainder are CD8+ cells (cytotoxic
T cells). CD4+ cells are predominantly found in the dome region between the follicle
and the epithelium and function to mediate B cells through cytokines (Coffman et al.,

1988; Stevens et al., 1988) while CD8+ T cells are more abundant in the

parafollicular zones (Bjerke et al., 1988; Ermak & Owen, 1986).

1.4.2 Mucosal Effector Sites

Effector sites are derived from organised MALT and represent effector and

memory lymphocytes that were generated from cells stimulated by antigen in
inductive sites. After initiation of the immune response at the inductive site, activated

lymphocytes and possibly antigen-presenting cells migrate via efferent lymphatics to

local draining lymph nodes where further maturation and expansion of immune

responses can occur. Activated 'effector' cells then enter the systemic circulation

through the thoracic duct and migrate or 'home' to the submucosa and mucosal

epithelium where they are selectively retained and perform their functions. Areas
where dispersed and diffuse effector lymphocytes are located are known as effector
sites or diffuse MALT, protecting the mucosal surfaces throughout the body

(Kraehenbuhl & Neutra, 1992).

Effector cells include lymphocytes and plasma cells dispersed in the lamina

propria and interstitial tissues of mucosae and glands, as well as intraepithelial

lymphocytes (IELs). T cells are the most frequently isolated cell type seen in the
lamina propria (Kanof et al., 1988; Bull & Bookman, 1977), mainly with CD4+
surface characteristics (Kanof et al., 1988), and B cells, represented mainly by IgA-

producing plasma cells, are also extremely common. A smaller fraction of plasma
cells in the lamina propria also produce IgM and IgG. Macrophages can also be
found in significant numbers in the lamina propria and may be involved with antigen

processing and presentation at this site.

Intraepithelial lymphocytes (IELs) located in the epithelium on the
basolateral side of mucosal epithelial cells may also be effector cells. The precise
functions of IELs are continuing to be defined, but evidence suggests that these cells
have both effector and immunoregulatory functions and may form the 'first line of
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defence' against mucosal infections (Simecka 1998). Most gut IELs from humans,

mice, and rats are T lymphocytes, mainly with CD8+ surface characteristics. In nasal
and respiratory mucosal surfaces in these species the number of IELs is smaller than
in the gut, and CD4+ T helper cells are more abundant than CD8+ cytotoxic T cells

(van der Brugge Gamelkoorn et al., 1986; Winther et al., 1987).

1.4.3 The Common Mucosal Immune System
The immune responses that arise as a result of stimulation by the mucosal

route do not only induce a response at the induction site, but also bring about
immune reactions detectable in the circulation and in the remote mucosal surfaces,

due to the proposed existence of the 'common mucosal immune system' (Mestecky,

1987). This is a circular cell redistribution pathway for the dissemination or 'homing'
of primed lymphocytes from mucosal inductive sites to widespread effector sites,

linking immune responses at different mucosal sites. Hence antibody secretion may

be detected at both the site of initial infection and at other mucosal sites, e.g.

stimulation of the gut immune system may result in the production and detection of

specific antibody in the trachea (Mestecky et al., 1994). It has also been
demonstrated that lymphocytes from the PP can repopulate lymphoid tissues of
irradiated animals (see evidence in McGhee et al., 1992). Stimulation ofMALT is

therefore likely to generate immune responses both locally and at more distant
mucosal sites.

The migration or 'homing' of primed lymphocytes provides for widespread
dissemination of effector and memory cells to distant mucosal surfaces to give body-
wide surveillance. Homing occurs by the specific binding of molecules on the
surface of the lymphocytes to molecules in the cells of the high endothelial venules

(HEVs) and small flat venules in mucosal tissue. Stimulated memory cells express

adhesion molecules or "homing receptors" specific for corresponding determinants

("addressins") on endothelial cells in mucosal and glandular tissues and therefore
extravasate preferentially at such exocrine sites (Duijvestijn & Hamann, 1989; Salmi
& Jalkanen, 1991). In human and mouse MALT this homing is largely mediated by
the expression of the a4(37 integrin on the surface of primed mucosal lymphocytes
which is the receptor for mucosal addressin cellular adhesion molecule 1 (MadCAM-
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1), the specific mucosal vessel adhesin localised on endothelial cells of mucosal

capillaries (Streeter et al., 1988). The interaction between a4(37 and MadCAM-1 has

also been shown to support, in the gut, the attraction of naive B cells in inductive
sites and the emigration of primed B cells in effector tissues. Most of the B and T
cells stimulated in GALT migrate to distant intestinal lamina propriae due to

prominent expression of a4(37 integrin (Picker 1994; Cepek, et al., 1993), and a

certain proportion end up in mucosal tissues and exocrine glands outside the gut.

Mucosal homing and extravasation may occur independently of the initial tethering
mediated by L-selectin, which is the first step in the emigration of circulating

leukocytes (Berlin et al., 1995). L-selectin is the primary receptor used for

preferential homing to peripheral rather than mucosal lymph nodes.

1.4.4 Compartmentalisation
There remains debate as to whether a regional specificity characterises this

mucosal homing, since primed B cells are thought to migrate preferentially into
effector tissues corresponding to the inductive site where they were initially
stimulated (Butcher & Picker 1996). This compartmentalisation within the mucosal
immune system may be due to the expression of different homing receptors and their

ligands at different sites. Some evidence, in mice and pigs, shows a dichotomy
between homing in the upper aerodigestive tract and the gut in that migration of
NALT or BALT induced B cells to the gut is negligible in terms of generating slgA

antibody (Nadal et al., 1991; Sminia et al., 1989; VanCott et al., 1994). In contrast

considerable indirect evidence suggests that dissemination of primed polymeric IgA

precursor cells takes place from NALT to regional secretory effector sites

(Brandtzaeg, 1999). In general immune responses are stronger at nearby mucosal
effector sites or those related in terms of lymph drainage (Moldoveanu et al., 1995).

This regionalisation of the mucosal immune system may be attributed to a

disparity in adhesion molecules expressed on the local microvascular endothelium
and lymphoid cells primed in different MALT structures, and perhaps by different
local chemokine profiles. Mucosal homing determinants appear to be shared among

PP, MLN and intestinal lamina propria, but another set of endothelial molecules may
be shared between the inductive sites in the upper aerodigestive tract. The a4(37-
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MadCAM-1 interaction has been clearly documented in homing from GALT to the
intestinal lamina propria, although it is believed that other adhesion molecules are

employed by immune cells primed in BALT and NALT. Some evidence suggests

that a4(37 is not an important homing receptor for lymphoid cells in the airways of
humans (Picker et al., 1994), mice (Wagner et al., 1996), sheep (Abitorabi et al.,

1996) or cattle (Rebelatto et al., 2000). The urogenital tract might employ similar
molecular homing mechanisms as those of the upper aerodigestive tract and appears

to receive primed immune cells from NALT, and GALT to some extent, as well.

High levels of specific IgA and IgG antibodies are detected in cervicovaginal
secretions of mice and Rhesus monkeys after intranasal vaccination with a variety of

antigens (Brandtzaeg, 1997). This putative heterogeneity may mean there is

compartmentalisation within the common mucosal immune system that must be
taken into consideration in the design of the appropriate type of mucosal vaccine.

1.4.5 Follicle-Associated Epithelium
The majority of mucosal epithelia are simple and composed of a single cell

layer in which highly polarised epithelial cells are joined by tight junctions, forming
a barrier generally effective in excluding peptides and macromolecules with

antigenic potential (Madara et al., 1990). In the gut the enterocyte membrane is
covered by the thick glycocalyx, a transmembrane coat composed of highly

glycosylated, stalked glycoprotein enzymes that can be up to 500nm thick. The

glycocalyx acts as the size-selective diffusion barrier, ensuring only soluble antigens
are taken up into the epithelium (Frey et al., 1996).

At all locations ofMALT, the epithelium that covers the dome area has a

modified structure compared to the surrounding epithelium; goblet cells and mucus
are largely absent and it is heavily infiltrated by lymphoid cells. This is known as

dome epithelium or follicle-associated epithelium (FAE) (Bockman & Cooper,

1973). In these specialised epithelial regions M cells (see Section 1.5) are

interspersed among the enterocytes, functioning to take up particulate antigenic
material. Certain modifications of the FAE serve to aid M cell function. Mucus

overlying normal mucosal epithelia physically holds micro-organisms away from the
mucosal surface, trapping particles so they can be removed either by peristalsis or
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ciliated epithelial cells. However, the absence of mucus in the FAE means that
interaction between pathogens and the epithelium can occur. In addition, FAE cells
lack plgR on their basolateral membrane and therefore do not participate in IgA
secretion (Pappo & Owen, 1988). This leads to localised reduction in the capacity for
the transport of IgA out of follicles, facilitating the increased uptake of antigens

normally excluded from the remainder of the intestinal surface by transported slgA.

1.5 M CELLS

In order for antigens and micro-organisms to be processed in mucosal

lymphoid tissues and elicit a mucosal immune response they must first be transported
from the mucosal surface into the mucosa (Owen, 1977; Neutra & Kraehenbul,

1992). For this to occur, intimate contact between MALT and the mucosal membrane

is essential and fulfilled by the M cells, specialised epithelial cells that occur

exclusively over organised MALT throughout the mucosal surfaces. M cells were

first identified in rabbit appendix (Bockman & Cooper, 1973) and named in human

Peyer's patches by Owen & Jones (1974), and the term M cell can refer to microfold
or membranous cell.

M cells have been detected at all locations of GALT along the digestive tract:

above isolated follicles (Rosner & Keren, 1984) and in the PP of the small intestine

(Owen & Jones, 1974), in the appendix (Bockman, 1983) and at different locations
of lymphoid tissue in the caecum (Gebert & Bartels, 1995), colon (Morfitt &

Pohlenz, 1989; Fujimura et al., 1992) and rectum (Liebler et al., 1991). M cells have
also been identified in the epithelium of BALT (Gebert & Hach, 1992) and in the

crypt epithelium of the palatine tonsils (Olah & Everett, 1975; Gebert, 1995). The

proportion of M cells in the FAE depends on the species and the location of the

MALT, and can range from 10% in humans and mice, 50% in rabbits and up to

100% in the terminal ileum of pigs and calves (Jepson & Clark, 1998). The

population density ofM cells is thought to be affected by antigen stimulation and
maturation as well as by species differences (Smith & Peacock, 1980; Smith et al.,

1987).
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1.5.1 M Cell Structure

M cells are epithelial cells: they express large amounts of the cytokeratins 8,
18 and 19, typical for the intestinal simple epithelia (Gebert et al., 1992, 1994;

Jepson et al. 1992; Rautenberg et al., 1996), and are connected to adjacent epithelial
cells by desmosomes and tight junctions (Madara et al., 1984; Gebert & Bartels,

1991). M cells have two key features that allow them to be distinguished from other

epithelial cells. They have an irregular apical border consisting of short, scattered
microvilli (Owen, 1977) compared to the typical brush border, and a basolateral

lymphocyte-containing cytoplasmic pocket (Wolf & Bye, 1984; Jarry et al., 1989).
The intracellular lymphocytes are IELs contained within endosomes (Jarry et al.,

1989) and are thought to originate from the follicular marginal zone and mantle, and

migrate into the FAE to interact with M cells. The phenotypes of the cells in the M-
cell pocket have been described in rodents (Jarry et al., 1989; Ermak & Owen, 1986),
rabbits (Ermak et al., 1990) and humans (Farstad et al., 1994). CD4+ a(3 TCR+ cells

are most commonly observed, in close contact with naive intraepithelial B cells

expressing IgM+ and IgD+ surface receptors, and to a lesser extent, dendritic cells
and macrophages (Farstad et al., 1994). In this cellular network antigens are likely to

be efficiently processed and presented. The other features that can be used to

describe M cells are the lack of a rigid internal cytoskeleton, a poorly developed and

greatly reduced glycocalyx only 20-30nm thick (Owen et al., 1986), a basally located
nucleus and apical cytoplasm rich in pinocytotic vesicles and mitochondria (Borghesi
et al., 1996). Figure 1.2 shows a schematic diagram of an M cell, including function.

response

Figure 1.2 Schematic representation $M cell structure and function,
adapted from Gebert et al. (1996)



1.5.2 M Cell Function

Evidence supports the theory that M cells function to transport antigens from
the mucosal surface to the underlying antigen-presenting cells and lymphoid tissue,

thereby initiating mucosal immune responses without compromising the integrity and

protective functions of the mucosal epithelial barrier (reviewed in Neutra, 1998 and

Hathaway & Kraehenbuhl, 2000). The passage of antigen through the M cell
therefore represents the first necessary step to generate an antigen-specific response

at the mucosal level. In this way antigens can be sampled in order to generate

specific immune responses even before the pathogen invades the host tissue. M cells
can transcytose soluble macromolecules, particles and even entire micro-organisms,
and the magnitude of the antibody response to certain antigens in the mucosa has
been shown to directly correlate to antigen capability to cross the epithelial barrier

(Amerongen et al., 1992). The M cell basolateral pocket diminishes the transcytotic
distance antigen has to travel, and therefore makes transcytosis more efficient

(Neutra et al., 1996) so that it can occur in as little as 10 min (Neutra et al., 1987).

M cells simultaneously contact cells of the lymphoid system with their
basolateral membrane and the lumen with their apical membrane and therefore

provide functional openings in the epithelial barrier through vesicular transport

activity (Neutra et al., 1996). The selective adherence of antigen to M cell surfaces

may be due to two factors: the accessibility of receptors due to the lack of thick coat
of complex glycoprotein enzymes, or the presence of unique receptors on the M cell

surface, although studies with the cholera toxin B subunit suggest the former (Frey et

al., 1996). The initial contact with the M cell apical surface is thought to involve

lectin-carbohydrate interactions, and the molecular structure of the M cell glycocalyx
is critical for the adhesion of antigen to the cell surface (Neutra et al., 1987). Uptake
is then by receptor-mediated adsorptive endocytosis (Frey et al., 1996) via clathrin-
coated pits and vesicles (Neutra et al., 1987), fluid-phase endocytosis (Gebert, 1995)
in coated (Neutra et al., 1987) or uncoated vesicles (Owen, 1977), or phagocytosis

(Gebert, 1995) involving the extension of cellular processes and reorganisation of
sub-membrane actin assemblies (Winner et al., 1991). The method of endocytosis is

likely to depend on the size and properties of the substance or particles, the charge
and the surface receptors present. Following antigen uptake the trafficking of
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vesicles or endosomes across the cytoplasm occurs, followed by exocytosis to the

invaginated basolateral membrane that forms the intracellular pocket, where uptake

by lymphocytes can occur (Owen, 1977; Neutra et al., 1987). The current accepted
view is that M cells merely transport and deliver antigens to the underlying lymphoid

tissue, not process and present them, and therefore antigens remain intact following
M cell transport (Neutra et al., 1996). M cells contain very few lysosomes (Owen,

Apple & Bhalla, 1986) and can therefore transport and deliver apparently unaltered

micro-organisms to the extracellular pocket. However, rat intestinal M cells have
been shown to contain acidic lysosomal-like vesicles in the cytoplasm and express

MHCII on their basolateral membrane consistent with a role in antigen processing
and presentation (Allan et al., 1993).

M cells are also able to export secretory immunoglobulins to mucosal
surfaces for defence (Neutra & Kraehenbuhl, 1992), offer a migration route for

lymphoid cells moving from lymphoid tissue to the intestinal lumen (Regoli et al.,

1994) and have been shown to release IL-1 (Pappo & Mahlman, 1993). Release of
IL-1 may be stimulated by LPS from bacteria as they are transcytosed by M cells. IL-
1 can act as a costimulatory signal for T and B cell proliferation in MALT and in this

way M cells may aid the immune response. A further additional function may lie in
the selective adherence of immunoglobulins and IgA-antigen complexes in the lumen
to apical membrane ofM cells (Weltzin et al., 1989). It is possible that the re-uptake
of these complexes not excluded by slgA could enhance or sustain the mucosal
immune response to pathogens not cleared from the lumen. M cells could also exert a

modulating effect in this manner by directing antigens to mucosal cells that display

IgA receptors or by masking immunogenic epitopes.
A disadvantage of the mucosal antigen sampling system is that it renders the

host vulnerable to invasive pathogens, and some micro-organisms exploit M cells as

a route of host invasion to breach the mucosal barrier and establish local and/or

systemic infections (Siebers & Finlay, 1996; Owen, 1994). Fourteen different

pathogenic and non-pathogenic bacteria and three different viruses have been shown
to selectively adhere to M cells, such as Escherichia coli, Salmonella, reovirus and

poliovirus (reviewed in Neutra et al., 1999). Despite the fact that these micro¬

organisms are highly immunogenic in the mucosal system, by the time an immune
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response is in place pathogens may have spread far beyond the reach of secretory

antibodies, e.g. entry of virus into target cells.

1.5.3 Isolating & Marking M Cells

Currently, no methods exist for obtaining cultured cells that exhibit M cell¬
like properties when grown in isolation from other cell types. M cells cannot be

separated from surrounding epithelial cells because they are disrupted during

enzymatic and/or mechanical separation due to their fragile structure and close
association with lymphocytes and enterocytes (Pappo et al., 1988; Pappo, 1989;

Pappo & Mahlman, 1993). In addition, M cells are end-stage differentiated cells and
therefore do not divide (Bye et al., 1984) and cannot be cultured.

Several attempts have been made to generate monoclonal antibodies against
M cell-specific epitopes, particularly in rabbits, however none of the antibodies

produced seem to be specific for M cells or bound to M cells of other species (Roy et

al., 1987; Pappo, 1989; Pappo et al., 1991). A number of cytochemical markers have
been successfully used to identify M cells in a number of species in a number of

locations, detailed in Table 1.1 (adapted from Jepson & Clark, 1998), although no

universal 'M cell receptor' has been established so far. At present three main options
for marking M cells exist, although there are problems associated with each method.

Firstly, in the intestine, the apical membranes of gut epithelial cells contain high
levels of digestive enzymes, such as alkaline phosphatase (AP), involved in the

absorption of nutrients. M cells are associated with low expression of these brush
border enzymes providing a negative M cell marker. However, there is extreme

variability in AP content in all FAE cells (Gebert, 1997; Jepson et al., 1993) and
often no clear cut-off between positive and negative cells. Other cell types such as

goblet cells, also have low alkaline phosphatase activity. This method is not

applicable at some sites, e.g. rabbit caecal M cells have higher AP activity than

enterocytes, and enterocyte AP activity in mouse caecum and rabbit appendix is

generally low. Secondly, M cells demonstrate different apical membrane lectin

binding, due to the fact that the M cell glycocalyx is composed of different

glycoconjugates than other epithelial cells, and the glycosylation patterns are

different. However, this appears to be very variable between species, strains and
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sites, suggesting that there are various local adaptations in the molecular composition
ofM cell membranes. Lectins that label M cells may also label other cell types,

although it may be possible to discriminate these cells by their morphology. No
lectins have been found that identify with specificity for M cells in PP of rabbit, rat,

guinea pig, cat or man (Gebert, 1997). In humans M cells show a more limited range

of lectin-binding sites than enterocytes. Thirdly, M cells demonstrate atypical

expression of intermediate filament proteins of the cytoskeleton, such as vimentin
and cytokeratin, related to both cellular shape and transport function of epithelial
cells (Ingber, 1993). The composition of the intermediate filaments closely correlates
with the cell type (Moll et al., 1982). For example, vimentin is characteristic of

fibroblasts, macrophages and other mesenchymal cells, and may help to retain the

integrity of M cells despite the deforming forces from migrating antigen. However
the expression of these filaments can be very variable between species and other cell

types may be labelled. Intermediate filaments of human M cells appear very similar
to enterocytes and therefore this method has not been used successfully in humans.
In rats and pigs the expression of the cytokeratins is merely higher than that in the

surrounding epithelial cells, not exclusive to the M cells.

Method Specific
Example

Species Sites References

Enzyme
activity

Alkaline

Phosphatase

Rabbit
Rat
Mouse
Human?

Peyer's
Patches

Gebert, Rothkotter &
Pabst, 1996

Lectins UEA-1, EEA Mouse Small
intestine

Jepson et al., 1996
Sharma et al., 1996

BS-I-B4, EEA Mouse Caecum/
colon

Clark et al., 1995

UEA-1, WGA,
BS-II

Rabbit Caecum Jepson et al., 1993
Gebert & Hach, 1993

UEA-1, HPA,
VVA

Rabbit Tonsil Gebert, 1996

BS-I-B4 Hamster NALT Giannasca et al., 1997
Intermediate
filament

proteins

Vimentin Rabbit PP, caecum,
BALT, tonsil,
etc.

Gebert et al., 1996

Cytokeratin 18 Pig PP Rautenberg et al.,
1996

Cytokeratin 8 Rat PP Kucharzik et al., 1998
Table 1.1 Methods ofmarking M cells, including location and species
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In humans the anti-sialyl Lewis A monoclonal antibody was shown to recognise
most M cells in the PP FAE, labelling both the apical and sub-cellular membranes

(Giannasca et al., 1999). The identification of an M cell specific marker would aid
their study and if atypically expressed may be a target for mucosal vaccines.

Investigation for further M cell specific markers is ongoing, including the
demonstration of their functional activity.

1.5.4 M Cell Development
In the gut, M cells originate at the periphery of lymphoid follicles from

surrounding crypts that also supply enterocytes and goblet cells to adjacent villi

(Bhalla & Owen, 1982). Restriction ofM cells to FAE sites is likely to be due to the
inductive influence of cells and/or secreted factors from the organised lymphoid
tissues on epithelial differentiation, and it is generally accepted that local factors
associated with MALT trigger M cell development. However, there remains some

controversy concerning whether M cells are derived from fully differentiated

absorptive enterocytes within the FAE upon interaction with immunocompetent cells

(Smith & Peacock, 1992) or whether they are derived from a separate cell lineage
and immature pre-programmed precursor cells originate from follicle-associated

crypts that supply epithelial cells to both FAE and adjacent villi (Siebers & Finlay,

1996; Gebert et al., 1996; Savidge, 1996) (Bye et al., 1984; Fujimura et al., 1990).
Gebert et al. (1999) demonstrated that certain types of crypts were specialised

to produce epithelial cells for domes including M cells, suggesting that M cells

represented a separate cell line deriving directly from undifferentiated crypt stem

cells. Other studies have indicated that differentiated absorptive enterocytes can be
induced to convert into M cells under appropriate conditions such as contact with

lymphocytes or antigenic stimulation. Exposure to some bacteria, e.g. Streptococcus

pneumoniae R36a (Meynell et al., 1999) or Salmonella typhimurium in germ-free
mice (Savidge et al., 1991) can increase the number ofM cells, showing that this

phenotype is inducible. Kemeis et al., (1997) showed that co-culture of a Caco-2, a
human intestinal epithelial cell line with lymphocytes caused epithelial cells to

acquire M cell like characteristics, including re-organisation of the brush border, and
enhanced transport of inert particles and Vibrio cholerae. The M cell phenotype does
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appear to be extremely plastic since a continuum of phenotypes between
differentiated enterocytes and M cells has been observed (Kerneis & Pringault,

1999).

1.6 THE MUCOSAL IMMUNE SYSTEM IN SHEEP AND OTHER

RUMINANTS

Most of the findings discussed above originate from studies in laboratory
animal models. It is generally assumed that similar systems operate in large animals
such as ruminants, although studies characterising the mucosal immune system in

sheep and other ruminants are more limited. The main difference in the ruminant
mucosal immune system is that IgGl plays an important role in mucosal defence in
addition to IgA (Butler, 1998), whereas the primary immunoglobulin for defence of
mucosal tissues in mice and humans is IgA. Many of the biological functions
attributed to IgA, such as neutralisation of virus, bacteria and toxins, are shared by

IgG (Brandtzaeg, 1984). Although IgG molecules do not have a selective mechanism
for secretion onto mucosal surfaces similar to IgA, serum derived and locally

produced IgG may reach the mucosal surfaces by passive diffusion between

epithelial cells or leakage through minor breaks in the mucosal epithelium

(Brandtzaeg, 1984).
The ovine small intestine contains two distinct types of PP that differ in their

ontogeny, cell composition and physiology (reviewed in Griebel & Hein, 1996). The
continuous ileal PP are very different from classical MALT, and are not thought to
function in mucosal immunity but to be a primary lymphoid organ, responsible for
the primary generation of B cells and the antigen-independent diversification of the

immunoglobulin repertoire (Reynaud et al., 1995). The jejunal PP, on the otherhand,
are the major site for the induction of mucosal immunity in the ovine gut. Jejunal PP
are analagous to PP in rodents and humans (Larsen & Landsverk, 1986; Hein, Dudler
& Mackay, 1989). They contain many CD4+ T lymphocytes in the follicles and
numerous CD4+ and CD8+ T cells in the interfollicular areas (Aleksandersen et al.,

1990) and the FAE contains M cells shown to be functionally active in the uptake of
bacilli (Momotani et al., 1988) and ferritin (Paar et al., 1992) in cattle. Vaccine

vector delivery to jejunal PP results in both mucosal and systemic immune responses,
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whereas delivery to ileal PP results in only systemic immune responses, showing that

only the jejunal PP are effective as mucosal inductive sites (Mutwiri et al., 1999).
In the sheep NALT distinct lymphoepithelium has been described in the

pharyngeal tonsil, the bronchioles, and the nasopharynx (Chen et al., 1989). The

lymphoid tissue of the ovine pharyngeal tonsil and its associated epithelium are

morphologically ready to cope with antigens in the extra-uterine environment at

birth, but their full development and maturation appear to be dependent on postnatal

antigen stimulation (Chen et al., 1991). The amount and location of BALT and the

presence of lymphoepithelium has been shown to be dependent on age, and may be
influenced by antigenic stimulation (Anderson et al., 1986). IgA has been shown to

be the major immunoglobulin in the respiratory tract of sheep (Smith et al., 1975).
There are a large number of IgA plasma cells populating the mucosa (Scicchitano et

al., 1984) and the bulk of IgA, approximately 81%, is locally derived (Scicchitano et

al., 1986). However, the ovine respiratory tract is a poor source of IgA precursors,

suggesting that the IgA plasma cell population may originate from distant mucosal
sites. Thus the ovine respiratory tract is qualitatively similar to the intestine with

respect to immunoglobulin synthesis. A smaller but significant local contribution of

IgGl and IgG2 also occurs, but most IgM and IgG are derived from the plasma.

1.7 MUCOSAL IMMUNISATION

Since the vast majority of pathogens establish infection in the host by

initiating colonisation or invasion of a mucosal surface there is great interest in

developing vaccination directly on these surfaces to induce local protective immune

responses. Although most currently available systemic or parenteral immunisation

strategies can clear systemic infections, they generally fail to elicit slgA responses or

local cell-mediated immunity and hence fail to protect mucosal surfaces (Mestecky,

1987). Immunisation via mucosal routes can however induce both systemic and
mucosal immunity and protect against mucosal infections (McGhee et al., 1992),

clearing organisms, and preventing colonisation and invasion of mucosal surfaces
and replication within the mucosal epithelium. Mucosal vaccines can also be used to
treat systemic inflammatory diseases through the induction of antigen-specific
mucosal tolerance (Eriksson & Holmgren, 2002). Furthermore, evidence suggests
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that immunisation at one mucosal surface can generate slgA production in the local
as well as distal mucosal surfaces due to the existence of the common mucosal

immune system. However the potential existence of subcompartmentalisation

suggests that delivery of vaccine to the site of infection may be required to generate

the most effective local immunity (Van Ginkel et al., 2000) and may have a major

impact on the choice of route for immunisation. The correct inductive site must be
stimulated to induce effective and optimal immune responses at a particular effector
site (Wu & Russell, 1997).

The success of mucosally administered vaccines is best exemplified by the
human Salk and Sabin oral poliovirus vaccines (Salk & Salk, 1977; Sabin, 1984) that
have been responsible for the near worldwide eradication of this disease. However,

despite the clear advantages of mucosal immunisation almost all currently marketed
vaccines are administered parenterally and only very few mucosal vaccines are

commercially available at present. The limited success of mucosal immunisation is

largely attributed to suboptimal mucosal stimulation (Holmgren, 1991), and many
mucosal vaccines are limited due to poor long-term efficacy and the requirement for

multiple doses to stimulate and maintain an immune response. Furthermore due to

the complexities of mucosal immune regulation efforts to stimulate immunity may

inadvertently induce tolerance instead.
Subunit vaccines are perceived to be safer and are favoured over live or

attenuated vaccines but they tend to be less immunogenic when delivered mucosally,

possibly because of their poor immunogenicity, low absorption efficiency or the
induction of tolerance. Typically mucosal immunisation requires higher doses of

antigen than systemic immunisation. The main barriers to effective immunisation are

the enzymatic degradation of antigens, mechanical clearance of antigens from the
mucosal surfaces, and low uptake efficiency of antigens by APCs. Enzymatic

degradation leads to alterations in antigenic structure due to the loss of critical

epitopes and irreversible conformational changes, and is a particular problem in oral

vaccination, resulting in precipitation, loss of binding affinity to M cell surfaces, or

presentation of inactive epitopes.
For successful mucosal immunisation antigen must be protected and

delivered effectively to a mucosal immune inductive site by selective, efficient M
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cell transport. A regime and route of immunisation must be chosen to induce

appropriate protective responses at the desired mucosal site and preferably

systemically as well. Induction of long-term immunological memory is also highly
desirable. Several new approaches to mucosal immunisation have been proposed to

address these issues, particularly for subunit vaccines. Most strategies combine the
use of an efficient delivery vehicle to facilitate antigen transfer across membranes,
with an effective mucosal adjuvant to enhance immune responses, given through the

optimal route of administration.
The focus of this project is mucosal immunisation through the intranasal

route, although numerous studies in mice and humans have shown that protective

immunity can be elicited by immunisation through the oral, intranasal, intravaginal
and intra-rectal routes of delivery (reviewed in Chen, 2000; Ogra et al., 2001). More
recent studies have focused on immunisation by mixed routes or a combination of
mucosal and parenteral routes. Most attention has been paid to the mucosal delivery
of protein antigens but more recently DNA vaccines are also being developed for
administration at mucosal surfaces, and intranasal delivery in mice leads to rapid and
even distribution of plasmid DNA throughout the body (Oh et al., 2001).

1.7.1 Intra-Nasal Immunisation

The nasal mucosa is often the first point of contact for inhaled antigens, and

organised lymphoid tissues are present in the upper respiratory tract of all species,
either as NALT or tonsils (Lemoine et al., 1998). When viewed in terms of its

structural organisation and cell phenotype NALT in rodents bears a resemblance to

GALT and BALT tissues (Kuper et al., 1992), and recent studies have shown that it
is a mucosal inductive site for humoral and cellular responses in the upper respiratory
tract (Zuercher et al., 2002). In addition, NALT in rodents and in human tonsils are

covered with a specialised FAE containing M cells morphologically and functionally

comparable to those found in the FAE overlying organised MALT in the gut (Kuper
et al., 1992; Karchev & Kabakchiev, 1984; Fujimura, 2000). NALT is therefore

clearly a potential target for mucosal vaccination, and nasal delivery of vaccines
offers the following key advantages over oral delivery.
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• The nasal mucosa is a common portal of entry for many infectious agents and

topical application of antigen may be the most efficient way of inducing a

protective local immune response at the site of pathogen entry. Numerous studies
have shown a correlation of protection against respiratory disease with high
levels of specific IgA antibodies in nasal secretions (Wilkie, 1982; Hjerpe, 1990).

• The micro-environment of the nasal mucosa is less harsh on antigens compared
with the oral route (Zhou & Po, 1991). It has a less acidic pH and a lower level of

proteolytic enzymes compared to the gastrointestinal tract. This is particularly
relevant in the ruminant system due to the harsh conditions of the four stomachs,

particularly the rumen, that could potentially interfere with the integrity of orally
delivered vaccine antigens.

• NALT is easily accessible and has a much smaller surface area and restricted
location than the GALT, therefore the uptake of antigens is less problematic and
lower doses of antigen are required, perhaps with less adjuvant. Antigen contact

with NALT is also likely to occur much more rapidly than with GALT.
• The intra-nasal route has been shown to induce immune responses in a broader

range of distant mucosal sites than the oral route, including the upper respiratory

tract, the genital tract and the GI tract (Almeida & Alpar, 1996; Lemoine et al.,

1998; McGhee et al., 1999), and nasal vaccination has emerged as the optimal
vaccination route for the induction of genital antibody responses. This may be
due to the fact that B cells generated after intranasal immunisation express a

greater variety of homing receptors (including L-selectin, 0.4(37 integrin and

CD44) than B cells induced after oral or rectal immunisation (Quiding-Jarbrink et

al., 1995, 1997). The concept of the common mucosal immune system is thus

supported and potential exists to develop nasal vaccines against infections

occurring at distant mucosal sites.
• The nasal mucosa is highly vascularised (Watanabe et al., 1980) and may

facilitate absorption of antigens into the blood circulation, which may induce

systemic immunity (Neutra et al., 1996) as well as mucosal immunity.

The recent review by Davis (2001) lists some of the more important studies
on the nasal administration of vaccines in recent years. Numerous studies have
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shown that intranasal administration of various antigens, particularly with adjuvants,
is an efficient way of inducing both mucosal IgA responses (saliva, nasal, tracheal,

gut and vaginal washings) and systemic IgG responses (Lemoine et al., 1998). Nasal
vaccine delivery is superior to oral delivery in inducing specific IgA and IgG

responses in the upper respiratory tract (Rudin et al., 1999). In addition, Wu &
Russell (1997a, b) have shown that intranasal vaccination is more effective than

intragastric immunisation at generating earlier and stronger mucosal and systemic
immune responses. Moreover, NALT may retain long-term memory, and intranasal

priming in mice has been shown to induce a strong primary IgA antibody secreting
cell (ASC) response in the NALT and an immunological memory that mediated a

strong secondary type ASC response following intranasal boosting (Asanuma et al.,

1998). Most studies have been conducted in rodent models, where the administration

of different vaccine formulations has established methods for increasing absorption
via the nasal epithelium, protecting antigens from proteolytic degradation and

inducing the desired type of immune response (McGhee et al., 1992; Partidos, 2000).

Many mouse studies show data in which the immune responses to nasally applied
vaccine particles are almost equivalent to injections (Ugozzoli et al., 1998;

Greenway et al., 1998). Some studies have been carried out in humans, but to date

only a very few have utilised large animal models.
There is very little information available concerning the fate of antigens and

the mechanisms by which local and systemic immunity are induced after intranasal
administration. It is thought that antigen is taken up by M cells or APCs overlying
NALT in rodents or the tonsils in humans, leading to the differentiation of NALT

lymphocytes into IgA-secreting cells (Wu et al., 1996; Quiding-Jarbrink et al., 1995;
Hata et al., 1996; Aggerbeck et al., 1997). FITC-labelled Salmonella typhimurium
can be detected in mouse NALT 24 h after nasal immunisation, and viral mouse

mammary tumour virus particles can efficiently reach the lymphoid cells of NALT
and initiate infection after nasal administration (Hopkins et al., 1998). Specific IgA
and IgG secreting cells then appear in local lymph nodes, presumably due to the

migration of either APCs or antibody-forming cells (Wu & Russell, 1993; Wu et al.,

1997). In rodents, specific IgA-secreting cells have also been detected at remote

sites, such as the salivary glands or the lamina propria of the small intestine, and
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specific IgG-secreting cells have been found in the spleen (Wu & Russell, 1993; Wu
et al., 1996; Wu et al., 1997). In humans IgA-secreting cells do not enter intestinal
mucosa suggesting there is some compartmentalisation of the human mucosal
immune system (Quiding-Jarbrink et al., 1995). The tonsil does play a role in

generation of systemic immune responses as specific IgG secreting cells can be
found in the serum following intranasal immunisation. Thus it appears there is a

dichotomy in the degree of compartmentalisation of the mucosal immune system

between rodents and humans. The degree of compartmentalisation of the ruminant
mucosal immune system is unknown.

1.7.2 Mucosal Delivery Systems
Mucosal delivery systems have intrinsic adjuvant activity and are used to

enhance the binding, uptake and half-life of antigens, as well as target the vaccine to

mucosal surfaces, thereby increasing immune responses. They can be manipulated to

incorporate variable amounts of antigen and/or adjuvants, used to protect antigen and
minimise degradation and chemically modified at the surface to improve site

specificity. Delivery systems may also be designed to provide sustained antigen
release following uptake, resulting in prolonged stimulation compared to a single
dose of antigen (Eldridge et al., 1991; Maloy et al., 1994).

Current delivery systems largely rely on improving antigen uptake by M

cells, as this is thought to be a crucial step in the development of an effective
mucosal immune response appears. Numerous living and non-living antigen delivery

systems have been designed that incorporate antigens into particles (Michalek et al.,

1999; Ryan et al., 2001) because M cells are more efficient in the endocytosis of

particulate antigens than soluble antigens. It is also thought that the efficiency of
mucosal vaccines can be improved by targeting to M cell-specific surface

components. Living delivery systems include the use of live attenuated and
commensal organisms as vectors for encoded antigens. Non-living vehicles used for

improving the efficiency of mucosal vaccines include liposomes (Gregory et al.,

1986; Wachsmann et al., 1986), ISCOMs (Mowat et al., 1993) and biodegradable

microspheres (O'Hagan et al., 1989, 1991a,b; Eldridge et al., 1991). Such non-

replicating delivery systems not only enhance M cell transport, but protect the
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antigen from degradation, and promote the appropriate type of immune response

required for protection. The results discussed below relate to mouse models unless
otherwise stated, and as far as possible examples using the intranasal route for
vaccination have been used.

1.7.2.1 Replicating Delivery Systems
Recombinant bacteria or viruses genetically engineered to express protective

proteins or epitopes from other pathogens can be utilised for mucosal delivery. These
live vectors are attenuated to render them avirulent, but retain the ability to populate
and invade mucosal surfaces and replicate in vivo to produce a large persistent

immunogenic dose. The key advantage is that antigen is presented in the context of a
live virus or bacterial infection, and protective immunity is produced against both the
carrier organism and the pathogen for which it codes. In addition, these organisms

may bind specifically to mucosal epithelial cells through receptor-ligand interactions.
The main disadvantage is that it is difficult to construct stable live vectors that are
safe in terms of non-reversion to more virulent organisms. Bacterial vectors used
include Salmonella strains, Mycobacterium bovis, Bacille Calmette-Guerin (BCG),

Streptococci, Lactobacilli, and Yersiniae (reviewed in Medina & Guzman, 2001).
BCG ofMycobacterium bovis has received considerable attention as a vector system

for intranasal immunisation (Stover et al., 1991, Langermann et al., 1994a,b), and
more recently, a highly attenuated Shigella flexneri vector was used to deliver

intracellular^ plasmid-DNA-encoding measles proteins after intranasal
immunisation (Fenelly et al., 1999). The viral vectors most often used for mucosal

delivery include vaccinia, adenovirus, pox viruses, yellow fever and poliovirus

(reviewed in Morrow et al., 1999; Olszewska & Steward, 2001). Adenoviruses show

the most promise and have been shown to induce long-lasting memory cytotoxic T-
cell responses in mucosal tissues (Gallichan & Rosenthal, 1996) and to enhance
serum and slgA responses to the encoded antigen (Gallichan et al., 1993) after
intranasal immunisation.
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1.7.2.2 Non-Replicating Delivery Systems
The main non-replicating delivery systems used for mucosal vaccination are

discussed below. Unless otherwise specified all have utilised specific proteins for
immunisation. Other systems that have been used include proteosomes,

meningococcal outer membrane protein vesicles that form hydrophobic complexes
with antigens, and the use of surfactants or bioadhesive molecules to enhance contact

of antigens with mucosal surfaces by altering the mucus layer or tight junctions.

1.7.2.2.1 Biodegradable Polymeric Particles
One approach to the mucosal delivery of vaccines involves the encapsulation

of protein antigens into polymeric devices. Polymeric microparticles are designed to

enhance the efficacy and immunogenicity of mucosally administered vaccines. They
can protect antigens from degradation, concentrate them in one area of the mucosal

tissue for better absorption, extend their residence time in the body, or target them to

specific sites of antigen uptake. It is also possible to adsorb DNA onto positively

charged microparticles for DNA vaccination at mucosal surfaces (Singh et al., 2000).
The ability of microparticles to enhance immune responses to entrapped antigens
delivered by mucosal routes is considered to be a consequence of their targeting to

MALT and uptake into M cells (Eldridge et al., 1989). Particles may also deliver

antigen directly to APCs. Factors controlling the absorption of particles include size,
nature of polymer, zeta potential, vehicle, and coating with lectins or other adhesion
factors (Delie, 1998).

A number of studies have been undertaken to quantify the optimum particle
size for uptake into MALT. Most of these studies have examined the uptake of

polystyrene particles in the rodent PP, and it is hoped that these results are applicable
for other types of microparticle in other locations of MALT. However, binding and

uptake of particles by M cells and enterocytes may have been over-estimated in

many intestinal loop instillation experiments (reviewed in Delie, 1998). In the gut a
number of cells may be capable of particle uptake using a variety of mechanisms but
the majority of evidence suggests that the MALT of the PP are the predominant site
of uptake for nanoparticles and microparticles (Hillery et al., 1994; Desai et al.,

1996). The upper size limit for M cell uptake in PP to induce strong mucosal immune
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responses has been suggested to be 10pm in diameter (Beier & Gebert, 1998;

Eldridge et al., 1990; O'Hagan, 1998). More recent studies (Tabata et al., 1996;
Jenkins et al., 1995) suggest that larger particles may translocate, but immune

responses are usually induced against smaller particles, and particle size may

determine the type of immune response produced. Smaller particles (<lpm) may
induce both mucosal and systemic responses because they disseminate to systemic

lymphoid tissue in the MLN and spleen, whereas larger particles 3-5pm may be
retained in the PP and induce predominantly a mucosal immune response (Eldridge
et al., 1990; Jenkins et al., 1995). Recently however, consensus has emerged that the

optimum particle size for M-cell absorption should ideally be less than 1pm in
diameter (Brayden & Baird, 2001). 600-750nm fluorescent latex are rapidly

transported into rabbit PP by M cells and released into lymphoid area of dome

(Pappo & Ermak, 1989; Jepson et al., 1993c; Ermak et al., 1995). The number of

nanoparticles (10-lOOOnm) which cross the intestinal epithelium is greater than the
number of microspheres, and both M cells and conventional epithelial cells may be
involved in the transport (Desai et al., 1996; McClean et al., 1998; Jung et al., 2000).

The most appropriate microparticle size for intranasal administration remains
to be determined (Rebelatto et al., 2001b) but there is good evidence to indicate that

following intranasal delivery and absorption, microparticle translocation to local

immunoresponsive tissues may occur (Kuper et al., 1992). Following intranasal
administration in rats the uptake of polymeric particles has been demonstrated (Alpar

et al., 1994), including the uptake of 1.0pm fluorescent polystyrene latex and 1.7pm
PLG microspheres into NALT and draining cervical lymph nodes (Carr et al., 1996;

Ridley Lathers et al., 1998). The transport of nanoparticles across the nasal
membrane is due mainly to transcellular transport mechanisms by NALT, especially
the M-cells, but also some paracellular transport (Brooking et al., 2001). Smaller

particles (20nm) showed greater uptake than larger particles (lOOOnm). Nothing is

currently known about the potential for uptake ofmicroparticles in the ovine nasal

cavity.

Polymer composition also has an effect on particle uptake and in general the

uptake of particles prepared from hydrophobic polymers seems to be higher than

particles made with more hydrophilic surfaces (Eldridge et al., 1990). Hydrophobic
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particles have a higher association with M cells and adhere much more avidly to M
cells than to enterocytes (Jung et al., 2000).

To further improve particle uptake, strategies to specifically target particles to

M cells may be employed. Lectin-binding studies have suggested that M cells display

regional and species variation in their glycosylation state (Clark et al., 1993, 1995;
Giannasca et al., 1994). Hence the lectin-conjugation of proteins or lectin-coating of

particles or liposomes can enhance M cell transport and subsequent immune

responses (Jepson et al., 1996; Chen et al., 1996; Giannasca et al., 1997; Ermak &

Giannasca, 1998). This has been demonstrated in the mouse PP (Giannasca et al.,

1994; Clark et al., 1995; Foster et al., 1998) and in hamster NALT (Giannasca et al.,

1997). An alternative approach is to use adhesive molecules that are used by bacteria
for mucosal colonisation. For example fibronectin-binding protein I, which is

responsible for mediating the binding of Streptococcus pyogenes to epithelial cells,
enhances immune responses to conjugated ovalbumin after intranasal immunisation

(Medina et al., 1998). M cell specific monoclonal antibodies have also been used to

increase uptake of fluorescent polystyrene microspheres by M cells in intestinal

loops in rabbits (Pappo et al., 1991). slgA also exhibits selective adherence to M
cells (Weltzin et al., 1989) and may be used as a vaccine delivery vector for foreign

epitopes (Corthesy et al., 1996).

Many different types of biodegradable polymers have been studied for mucosal

delivery, but in recent years, the principal polymers used for the preparation of

microencapsulated vaccines have been the aliphatic polyesters, the poly(lactide co-

glycolides) (PLGs). PLG polymers are biodegradable and biocompatible, and have
been used in humans for many years as suture material and as controlled release drug

delivery systems (Yamaguchi & Anderson, 1993), and offer the following

advantages for mucosal vaccination:
• The PLG polymeric sheath forms a protective coating for the antigen from the

harsh external mucosal environment.

• PLG polymers undergo non-enzymatic hydrolysis producing lactic and glycolic
acids without causing any inflammation, facilitating controlled release of the

antigen.
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• Different ratios of polylactide and polyglycolide or different molecular weight

polymers can be used to manipulate the release rate of the entrapped antigen to

provide a controlled release delivery system and reduce frequency of vaccination

required.
• The size can be easily manipulated and used to favour rapid uptake across

epithelium or prolonged retention over the mucosal lymphoid tissue.
• Immunogenicity studies using encapsulated viruses (Marx et al., 1993), proteins

(Eldridge et al., 1991), peptides (Partidos et al., 1996; Men et al., 1996), or DNA

(Jones et al., 1997) have confirmed the immunopotentiating properties of PLG

microparticles. Immune responses are often protective against re-infection.
• PLG microparticles can induce cell-mediated immunity as well as humoral

immunity following mucosal immunisation with proteins. A Thl response is

preferentially induced (Michalek et al., 1999).
The intranasal delivery of antigens entrapped in particles has been more successful
than oral immunisation, perhaps due to the diluting effects of the gut, and has been
shown to induce protective immunity against pathogen challenge. Following
intranasal administration microparticle-delivered antigens appear to activate the
NALT and draining lymph nodes in rodents (Heritage et al., 1998). Intranasal
administration of tetanus toxoid adsorbed onto or encapsulated in PLG microspheres
resulted in enhanced mucosal and systemic antibody responses to the antigen

(Almeida et al., 1993; Alpar & Almedia, 1994). Protective immune responses to

pathogen challenge have been produced via intranasal administration of PLG

encapsulated human parainfluenza type-3 virus (Ray et al., 1993), Bordetella

pertussis (Cahill et al., 1995; Shahin et al., 1995), ricin toxoid (Yan et al., 1996)
and Streptococcus pneumoniae (Trolle et al., 2000). The induction of strong cell
mediated immunity was demonstrated using a lipidated HIV-1 gpl20 peptide (Moore
et al., 1995) or ovalbumin (Simmons et al., 1999). The long-term in vivo release of

protein from PLG microparticles has been demonstrated after a single nasal
immunisation of glutathione S-transferase of Schistosoma mansoni which resulted in
sustained antigen-specific IgG and IgA responses (Baras et al., 1999). A comparative

study using gD2 from herpes simplex virus with different adjuvants and delivery

systems concluded that the intranasal immunisation with proteins entrapped in PLG
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microparticles was the most effective way of enhancing specific antibody responses

in various mucosal secretions, while also inducing strong systemic antibody

responses (Ugozzoli et al., 1998). Furthermore, recent developments in the
aerosolisation of PLG microparticles offer the potential of delivery of

microencapsulated vaccines to the lungs (Edwards et al., 1997; Masinde & Hickey,

1993).

The problems associated with the use of PLG microparticles mainly concern
the harsh production methods. PLG only dissolves in organic solvents, and exposure

of antigens to these solvents during microencapsulation may result in antigen
denaturation. Vaccine antigens may also be exposed to high shear, aqueous-organic

interfaces, cavitation and localised elevated temperatures during microencapsulation.

However, despite these harsh conditions a number of proteins have been successfully

entrapped in PLG microparticles with full maintenance of structural and

immunologic integrity (O'Hagan, 1998). The efficacy of microparticle uptake by the
mucosal epithelium may also be a problem, and PLG microspheres are known to

have an inherent weak capability to bind intestinal PP M cells (McClean et al.,

1998). Finally, stability of entrapped antigen during storage or production of sterile

preparations for human use may also be of concern. Current research efforts tend to

focus on the modification of PLG particles to improve uptake and combine the use of

particles with mucosal adjuvants.

1.7.2.2.2 Other Particulate Delivery Systems
A number of water-soluble biodegradable polymers have been devised to

circumvent the problems of using organic solvents in the antigen encapsulation

process. These include chitosan (Ilium, 1998), starch (Artursson et al., 1986), dextran

(Schroder & Stahl, 1984) and alginate (Bowersock et al., 1999). Lipid particles

including liposomes and ISCOMs have also been successfully used for the mucosal

delivery of antigens. Liposomes are spherical vesicles made of concentric lipid

bilayers encasing an aqueous core, made from cholesterol and phospholipids and
have been shown to increase the effectiveness of mucosally delivered protein and

peptide antigens (Vadolas et al., 1995). However they are generally less effective
than microspheres, and coadministration of antigens and adjuvants in liposomes can
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significantly improve immune responses (Baca-Estrada et al., 1999; Watarai et al.,

1998; Harokopakis et al., 1998; Okada et al., 1997). ImmunoStimulating COMplexes

(ISCOMs®) (Morein et al., 1984) are typically negatively charged, symmetrical
colloidal particles with an open cage-like structure in the size range of 30-100nm

composed of Quil A (a saponin extract from Quillaja saponaria Molina bark),

cholesterol, phospholipids and associated antigen. ISCOMs are efficient mucosal

adjuvants that induce strong cytotoxic T-cell responses typical of the Thl-type

response (Mowat & Donachie, 1991). The nasal route seems to be the most effective
and promising for mucosal vaccination using ISCOMs (Hu et al., 2001).

1.7.2.2.3 Transgenic Plants/ Edible Vaccines

Among the newest technologies for the mucosal delivery of antigens are the
edible vaccines. This strategy involves the synthesis of transgenic plants, by

incorporating genes encoding antigens from pathogenic organisms into plant species,
first introduced by Mason et al. (1992). The incorporation of vaccine into feed
remains an attractive strategy for the oral vaccination of domestic animals.

1.7.3 Mucosal Adjuvants
Most antigens tend to induce poor immune responses when given mucosally

and mucosal adjuvants or immunostimulants are often required to boost mucosal and

systemic immunity, and to prevent the induction of tolerance. An effective delivery

system may be combined with an adjuvant to optimise mucosal immune responses,

and an alternative to targeting antigen-loaded particles to M cells is to formulate

antigen-loaded particles with adjuvants, or to co-entrap an adjuvant with the protein
in an untargeted or targeted particle. The most recent mucosal adjuvants have been

designed based on bacterial toxins and their derivatives, CpG-containing DNA, and
different cytokines and chemokines, and are discussed below. There are a number of
other potential mucosal adjuvants, such as plant lectins. Mistletoe lectin 1 is a strong

mucosal adjuvant, perhaps due to its receptor-binding specificity combined with its

high immunogenicity and immunomodulatory activity (Lavelle et al., 2001).
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1.7.3.1 Bacterial Enterotoxins

In experimental animal models the most potent mucosal adjuvants under

investigation are the major enterotoxins, cholera toxin (CT) from Vibrio cholerae
and heat-labile toxin (LT) from Escherichia coli. Both are multi-subunit

macromolecules composed of two structurally, functionally and immunologically

separate A and B subunits (Spangler, 1992; Gill, 1976; Gill et al., 1981). The CTB
subunit consists of 5 identical 11.6kDa peptides that bind to GM1 ganglioside

receptors on the apical surface of mammalian epithelial cells (van Heyningen et al.,
1976; Frey et al., 1996). Following B subunit binding the single toxic A subunit
reaches the cytosol where it exerts ADP-ribosyltransferase activity (Spangler, 1992;

Rappuoli et al., 1999) leading to the elevation of cAMP resulting in diarrhoea (Field
et al., 1989). V. cholerae is known to bind to M cells resulting in efficient sampling

by the mucosal immune system and a strong secretory immune response (Jertborn et

al., 1986; Svennerholm et al., 1984).

Both enterotoxins are strong mucosal immunogens and act as effective

adjuvants to mucosally co-administered antigens by enhancing antigen-specific
serum IgG and serum and mucosal IgA antibody responses (Dickinson & Clements,

1995) and helper and cytotoxic T cell responses (Partidos et al., 1996, 1999;

Rappuoli et al., 1999). Particular attention shall be paid to CT which has been used

widely for intranasal vaccination with protein antigens, bacterial components, viruses
or virus-related peptides, inducing mucosal IgA responses and/or protection

(Yamamoto et al., 1997, 1998; Imaoka et al., 1998; Kurono et al., 1999; Reuman et

al., 1991). The adjuvanticity of CT has been demonstrated with antigens such as

KLH, Helicobacter pylori, Campylobacter jejuni, Pseudomonas aeroginosa,

ovalbumin, and BSA.

The mechanism of adjuvanticity is thought to be a multistep phenomenon

resulting from the interaction of the toxin with different cell types in the mucosa.

The first critical step is binding of CT to mucosal epithelial cells, which increases the
mucosal barrier permeability (Lycke, 1997) and allows CT to enter the submucosa
where it exerts immunomodulatory effects on different cell types. CT is able to

induce the maturation of DCs and stimulate antigen presentation (Anastassiou et al.,

1990; Bromander et al., 1991) and IL-1 production by APCs (Bromander et al.,
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1991). CT leads to altered regulation by T cells, stimulation of B-cell switching to

IgA and IgG and possibly enhancement of B cell clonal expansion (Holmgren et al.,

1994; Snider, 1995). Both mucosal and systemic immune responses are thought to be
mediated via a Th2 cell-dependent pathway perhaps due to the ability of CT to

inhibit EL-12 production (Gagliardi et al., 2002).
A major concern with the use of CT and LT, particularly in humans, is their

innate toxicity, and consequently much effort has focused on dissociating their

adjuvanticity from their toxicity. The first approach is to exploit the use of the non¬

toxic B subunit alone. The B subunit is likely to function as more than a simple
carrier protein (Dertzbaugh & Elson, 1993) and mucosal exposure of native CT
results in antibodies that are almost entirely restricted to CTB (Elson & Ealding,

1984). However both CTB and LTB subunits have been shown to be relatively poor

adjuvants compared with the holotoxins (Lycke et al., 1992). CTB has been reported
to act as an adjuvant in some cases (McKenzie & Halsey, 1984; Tamura et al., 1988)
but not in others (Czerkinsky et al., 1989; Liang et al., 1988; Lycke & Holmgren,

1986). These conflicting results may be due to the antigen used, the method of

conjugation, the dosage and route of immunisation, and whether CTB preparations
were contaminated with trace amounts of holotoxin.

An alternative approach is the genetic detoxification of CT and LT, which has
been relatively successful. Site-directed mutagenesis has permitted the generation of
CT mutants that have reduced toxicity but which retain significant adjuvanticity

(Pizza et al., 2001). In general, these mutants contain single amino acid substitutions
in the active site of the A subunit resulting in loss of ADP-ribosylating activity

(Douce et al., 1995). Such mutants of CT have been found to exert an adjuvant effect
to intranasally co-immunised pneumonococcal surface protein A, resulting in

protection (Yamamoto et al., 1998). However, there is concern that the ADP-

ribosylating activity is important for adjuvanticity (Agren et al., 1999) and that it can
add to the potency of the toxins as adjuvants for the induction of mucosal immune

responses (Douce et al., 1999). In general the use of enzymatically inactive mutant

toxins and B subunits alone is more effective following intranasal than oral
immunisation (Russell et al., 1999). To further enhance adjuvanticity of toxin
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mutants or B subunits, proteins may be coupled to the adjuvant or administered in
association with a delivery system.

1.7.3.2 CpG Motifs

CpG motifs are components of bacterial DNA that have been shown to

induce T-cell independent B cell proliferation, and to activate monocytes,

macrophages and dendritic cells (Davis et al., 1998; Hartmann et al., 1999). They are

specific single-stranded oligonucleotide sequences containing unmethylated

cytosine-phosphate-guanosine dinucleotides. The adjuvanticity of CpG-DNA results
from the binding of the CpG-rich DNA to the Toll-like receptor 9, and is associated
with the induction of both pro-inflammatory and Thl-inducing cytokines and
chemokines, and the induction of MHC and costimulatory molecules on APCs. The

resulting immune responses in mice are Thl dominated with high levels of CTLs,

IFNy production and IgG2a antibody production (Eriksson & Holmgren, 2002). CpG
motifs can enhance both antigen-specific serum IgG and slgA responses when
administered nasally with recombinant hepatitis B surface antigen (McCluskie &

Davis, 1998), or formalin-inactivated influenza virus (Moldoveanu et al., 1998).

1.7.3.3 Cytokines
The cytokine environment at the site of antigen delivery plays a critical role

in the induction of immune responses, and activation of the appropriate phenotype of
CD4+ T-cells (Thl or Th2) after intranasal immunisation is an important priority.
Therefore instead of adding an adjuvant to induce the appropriate Thl or Th2

cytokines for immunity a new approach is the direct addition of the desired type of

cytokine, either as protein or coding DNA. IL-12 is most commonly used for Thl

responses, and IL-6 for Th2 responses (Mosmann & Coffman, 1989).

1.8 MUCOSAL TOLERANCE

The major obstacle to mucosal immunisation is that mucosally delivered

antigens may induce tolerance rather than the desired protective immune response.

Mucosal tolerance is the specific systemic hyporesponsiveness that arises after
mucosal administration of an antigen, resulting in a diminished capacity to develop
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an immune response when re-exposed to the same antigen (Challacombe & Tomasi,

1980). It is an important immunological phenomenon that prevents the body from

overreacting to harmless antigens encountered at the mucosal surfaces and is
considered a useful approach to prevent or treat autoimmune diseases.

Mucosal tolerance is an active immunological process and is mediated by
more than one mechanism. It is characterised by a lack of peripheral immune

responses upon subsequent systemic challenge with the same antigen, but mucosal
immune responses are usually intact. Tolerance appears to affect most arms of

immunity but cell-mediated immunity and IgE responses are most easily tolerised

(Simecka, 1998). Three primary mechanisms have been proposed: clonal anergy or
deletion of antigen-specific cells, resulting in functional or actual elimination of
cells, or active suppression of immune responses mediated by regulatory T cell

populations. Low doses of antigen are thought to favour the induction of active
cellular regulation, probably due to the restricted distribution of antigen in an

immunoregulatory environment, whereas high doses of antigen may be spread in
APCs throughout the body favouring the induction of anergy or deletion. Clonal
deletion involves the physical elimination of antigen-specific cell populations by

apoptosis (Chen et al., 1995). Anergy is a state of unresponsiveness likely to result
from ignorance of antigen by the immune system, due to the absence of
costimulation or inflammatory signals, or proliferation at the time of initial antigen
encounter (Friedman, 1996). Active suppression results from the induction of

antigen-specific regulatory T cells that are capable of suppressing the development
and activity of effector cells. This can result not only in the suppression of naive T
cells but other antigen-reactive cells in the same microenvironment, irrespective of
their specificity, a phenomenon known as bystander suppression (Garside et al.,

1999, MacDonald, 1999). CD4+ T cells are suggested to be the principal regulatory
T cell population (Groux et al., 1997), largely due to the production of TGF(3 and EL-

10, cytokines with well-documented suppressive anti-inflammatory effects (Garside
& Mowat, 2001).

The balance between active immunity and tolerance greatly depends on the
nature of the antigen and its interaction with mucosal inductive sites, as well as on

the dose, frequency of antigen administration and the genetic background and
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immunological status of the host (Partidos, 2000). Therefore induction of tolerance

may be a reflection of how antigen in the mucosa is processed and presented to T

lymphocytes in inductive sites, and the factors that modulate and regulate this

response. Mechanisms that determine whether an immune response or tolerance

develops are still poorly understood and there are several possible sites where

antigen presentation and T cell activation could occur. In general soluble antigens are

known to be poor mucosal immunogens that are likely to induce tolerance (Waldo et

al., 1994). Soluble antigens are likely to be taken up by enterocytes which are

thought to have the capablity to present antigen directly (express MHCII) to CD4+ T
cells in the epithelium or lamina propria. However, although enterocytes have been
shown to present antigen to CD4+ T cell hybridomas in vitro they do not express the

costimulatory molecules CD80 or CD86 (Hershberg & Mayer, 2000). Antigen

presentation without costimulation would result in tolerance of CD4+ T cells (Bland
& Warren, 1986). Particulate antigens are thought to promote active immunity
because they are predominantly taken up by M cells and delivered to APCs in
inductive sites (Neutra, 1998). The most vigorous stimulators of T cells are dendritic
cells (DCs), and there are phenotypically distinct populations of DCs in the PP that
are proposed to undergo two distinct differentiation pathways depending on the
nature of antigen encountered. Innocuous antigens are thought to lead to Th3

responses dominated by IL-10 and TGF(3 production, whereas antigen encountered in
the context of microbial stimulus or an inflammatory signal leads to DC maturation
and migration to interfollicular T cell regions, where IL-12 secretion and T cell
stimulation occurs (Kelsall & Strober, 1996a,b; Iwasaki & Kelsall, 1999a,b). The

outcome of antigen encounter is therefore likely to depend on the presence of some
kind of inflammatory stimulus (Garside & Mowat, 2001).

Recent studies in pigs and mice have suggested that tolerance to mucosal

antigen may be regulated at the effector stage rather than the inductive stage (Bailey
et al., 2001). This theory stems from the observation that secretory IgA responses

accompany tolerance (Challacombe & Tomasi, 1980) suggesting the presence of

primed effector T cells, which could differentiate into effector or regulatory cells

depending on whether a 'damaged' or stable microenvironment is present in the
lamina propria. Tolerance could also be converted to active immune responses if the
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conditions in the microenvironment changed. Control of the balance in the lamina

propria in this model is likely involve secretion of cytokines such as IL-4 for effector
function and IL-10 for regulatory function, and apoptosis is essential to prevent

excessive accumulation of T cells in the mucosa. TGFf) is also likely to be involved.

Tolerance is a mechanism that is not yet completely understood. Most
research is based on oral tolerance, little is known the induction of tolerance in

NALT, and direct comparisons of nasal versus oral tolerance have not been

performed. Although there are differences the same basic principles appear to apply
to both routes in terms of the generation of regulatory cells and immune responses

that favour IL10 and TGF(3 (Khoury et al., 1992; Duchmann et al., 1996). There

appears to be less involvement of both anergy and clonal deletion in the nasal
mucosa, which may be due to differences in regulation or reflect the limited amount

of antigen in the nose. The lymph nodes that directly drain the nasal mucosa are

instrumental in the induction of mucosal tolerance (Wolvers et al., 1999), and the

balance between the activation in the posterior or superficial cervical lymph nodes is

thought to determine the outcome of a NALT stimulation (Hameleers et al., 1991;

Kuper et al., 1992; Wu & Russell, 1993). Intranasal immunisation has been shown to

induce specific systemic tolerance, e.g. OVA in rodents (Sedgwick & Holt, 1985) or
KLH in humans (Waldo et al., 1994). However, it is hoped that the use of particulate

delivery systems in combination with well-defined mucosal adjuvants will prevent
the development of tolerance to an intranasally delivered antigen.

1.9 THE POTENTIAL FOR INTRANASAL IMMUNISATION IN THE SHEEP

The results of the various intranasal immunisation studies that are discussed

here are fairly encouraging, in that mucosal and systemic antibody and cell-mediated

responses have been produced, and these responses are often protective. However
most of this work has been carried out using mouse models, and it is unclear whether
this data can translate to the situation in large animals or humans. Human NALT is

present as tonsils rather than the organised NALT organ found in rodents, and little is
known about ovine NALT. Thus it is unclear whether the principles of intranasal
administration of antigens in rodents can be transferred to other systems.
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Another problem is that some reports describing nasal administration in mice

may involve other mucosal surfaces. Large volumes administered into the nose may

be subsequently swallowed, leading to oral delivery. Moreover intranasal vaccines
are often administered to anaesthetised mice, which may result in the delivery of a

large proportion of the vaccine to the lung (McGhee et al., 1999). In the lung the
vaccine has relatively easy access to the systemic lymphoid tissue leading to the
induction of systemic immunity.

Large animal models such as the sheep, offer several key advantages over
rodent models. Sheep are outbred animals and show similar inter-individual
differences to those expected in human populations. The immune system of large
animals such as sheep is likely to be more similar to that in humans than rodents, and
the results may offer a more realistic reflection of the situation in humans. In addition

lymphatic cannulation studies may be performed in sheep to continuously monitor
the local immune responses produced following immunisation.

Mucosal vaccination strategies are desirable in domestic animals, and the
intranasal route seems the most viable in ruminants to avoid antigen passage through
the harsh environment of the rumen. To date only a handful of mucosal vaccination
studies have been conducted in ruminants. The intranasal delivery of inactivated

parainfluenza 3 virus in sheep did not result in protective immunity unless animals
were given an initial intra-muscular injection of inactivated virus (Smith, 1975), and
the intra-vaginal immunisation of sheep with an antigen from influenza virus

haemagluttinin in degradable starch microspheres did not result in the induction of
enhanced levels of antibodies in serum or vaginal wash samples (O'Hagan et al.,

1993). However alginate microspheres <10pm containing colloidal carbon have been
shown to attach only to the FAE in the GALT, and after 2 hours colloidal carbon was

visible within the lymphoid follicles of the PP (Kim et al., 2002). More recently
intranasal delivery of ISCOMATRIX® adjuvanted influenza vaccine in sheep
induced antibody responses in both serum and nasal secretions that surpassed the
levels obtained with unadjuvanted vaccine administered subcutaneously (Coulter et

al., 2003).

In cattle the oral administration ofOVA in alginate microspheres resulted in a

mucosal immune response in the respiratory tract, enhanced by subcutaneous
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priming (Bowersock et al., 1998). The intranasal immunisation with soluble Limulus

haemocyanin with cholera toxin adjuvant induced a weak LH-specific serum IgA

response and lymphocyte proliferative responses (Rebelatto et al., 2001a). A further

study showed that intranasal immunisation with pig serum albumin encapsulated into

alginate microparticles induced strong antigen-specific systemic and mucosal
humoral immune responses with IgGl being the predominant antibody isotype

generated in the serum, nasal secretions and saliva (Rebelatto et al., 2001b). The
results from these studies are encouraging, and suggest that intranasal vaccination in
farm animals may offer a new strategy for the control of livestock diseases.

1.10 TOXOPLASMA GONDII

To determine whether immunisation through the intra-nasal route in sheep
leads to the production of an effective immune response the use of a disease

challenge model is more useful than a model antigen. In this way the protectivity of
immune responses produced by immunisation against re-infection can be assessed.
The model disease to be used is the obligate intracellular protozoan parasite,

Toxoplasma gondii.

Toxoplasma gondii is a coccidian that causes abortion in sheep.

Approximately 28% of diagnosed cases of abortion in the UK are caused by T.

gondii, resulting in losses of £15-17 million per year (D. Buxton, personal

communication). Animal toxoplasmosis is also a public health risk. Tissue cysts in
the muscles of domestic farm livestock represent a very large reservoir of the

parasite, consumption of which can lead to human toxoplasmosis. There are good

assays available to monitor both cellular and humoral immune responses to T. gondii,
established at the Moredun Research Institute (Edinburgh, UK) and a well-defined
febrile response occurs following infection that can be used to assess whether these

responses are protective (McColgan et al., 1988; Buxton et al., 1991).

Sheep are thought to become infected following ingestion of sporulated

toxoplasma oocysts in contaminated food and water. Sporozoites are released from

oocysts in the gastrointestinal tract, invade the intestinal epithelium and disseminate

throughout the body. Here they become tachyzoites which multiply until the host cell

ruptures, causing acute infection. In most cases infection with T. gondii induces a
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rapid and effective immune response which will protect the host but not eliminate the

parasite. A persistent infection becomes established as the parasite accumulates in
tissue cysts as bradyzoites. Complications of the disease only arise in pregnant ewes,

where it causes abortion (Buxton, 1998).

Adoptive transfer experiments in mice have shown that protection can be
transferred by immune T cells but not serum (Pavia, 1986). The major mechanism
for protection against Toxoplasma is considered to be systemic cell-mediated

immunity (Khan et al., 1988; 1994) involving IFNy (Subauste & Remington, 1991),

produced by both CD4+ and CD8+ T cells. LFNy limits the amount of iron available
to the parasite, thereby inhibiting T. gondii replication. CD4+ T lymphocytes are

thought to be important in establishing immunity during early stages of infection

(Araujo, 1991). CD8+ T cells are the major effector T lymphocyte, through the

production of IFNy or direct lysis of infected cells, but their induction and optimal

activity is dependent on the production of Thl cytokines by CD4+ helper T (Chardes
et al., 1993; Denkers et al., 1993). In the sheep IFNy appears in the lymph at day 4

post-infection (Innes et al., 1995a). Initially the predominant population responding
to infection is CD4+ T cells, a switch then occurs at day 9-10 post-infection to CD8+
T cells, coinciding with the disappearance of parasite from the lymph (Innes et al.,

1995b; Innes & Wastling, 1995).
Infection with T. gondii most commonly occurs via the oral route (Frenkel et

al., 1969) and the site of penetration into the animal body is the intestinal mucosa.
The parasite is thus in intimate contact with the cells of the mucosal immune system.

Defined mucosal immunity can be elicited following toxoplasmosis and T. gondii

immunogens are potent inducers of a local immune response via IgA production, T-
cell stimulation and cytokine production: IFNy, IL-5 and IL-6 (McLeod et al., 1988).

IgA has been shown to inhibit the infection of host cells by T. gondii parasites (Mack
& McLeod, 1992; Mineo et al., 1993) and is therefore protective against subsequent

oral infection. In the mouse, IELs (mainly CD8+ a(3+ Thy-1+) also play a major role
at the mucosal surfaces as a first line of defence (Chardes et al., 1994) and when

transferred to naive mice can cause a reduction in tissue cysts.

There is a clear need for a veterinary vaccine to prevent animal toxoplasmosis
and as a result, human toxoplasmosis. Unlike many other parasitic diseases, primary
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exposure to T. gondii results in complete resistance to secondary challenge (Araujo,

1994; Alexander et al., 1996) and there is thus possibility to control the disease by
vaccination. Toxovax (Intervet) is a successful commercial vaccine that exists for

sheep. It is a live attenuated vaccine derived from non-cyst forming mutant strains of
T. gondii that induces good long-lasting immunity in sheep after only one injection,
without the persistent infection seen in naturally infected sheep (Buxton, 1993).
However the brief seasonal demand, high production costs and the short (2-3 weeks)
shelf-life of the vaccine present logistical problems in commercial production. The
vaccine also has the potential to cause human infection because it is live. A non¬

living vaccine for use in farm animals and in man is highly desirable, but no further
vaccination studies have taken place in sheep.

Vaccination against the fast-replicating tachyzoite stage of the life-cycle
should prevent the acute phase of the infection. Several studies in mice have shown
that immunisation with whole T. gondii tachyzoite extracts or specific native

antigens or excretory-secretory antigens can confer protection against tissue cyst or

tachyzoite challenge as assessed by reduction in a number of brain cysts (reviewed in

Jenkins, 2001). Protective immunity obtained after a natural infection with T. gondii

points to the importance of developing a vaccine that stimulates mucosal defences to

control further oral toxoplasmosis and a number of studies in mice have shown that
there is potential to stimulate protective immunity via the mucosal route (Bourguin et

al., 1991, 1993; Chardes et al., 1993, Debard et al., 1996). However, mice do not

mimic infection in humans and domestic animals particularly well, and clinical
disease in pregnant ewes offers a more useful model of the human infection.
Successful development of a killed vaccine for use in sheep would permit its wider
use and bring a vaccine for the prevention of human toxoplasmosis very much closer.

1.11 AIMS OF THIS THESIS

The basic aim of this thesis was to determine whether the intranasal route of

immunisation could be used to produce specific immune responses in the sheep, and
to determine whether these responses were protective. The model infection to be
used for this purpose is T. gondii. Sheep and other ruminants appear to have an

organised mucosal immune system, similar to that in rodents and humans, and initial
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studies using the intranasal route of vaccination in ruminants have produced

interesting and promising results that require further investigation. However, studies
on NALT and mucosal vaccination in sheep are very limited, despite the fact that
there is a clear need for alternative vaccination strategies to control the diseases of
domestic livestock. In addition, large animal models offer many advantages over
rodent models, such as the potential to use lymphatic cannulation techniques to
monitor localised responses in both afferent and efferent lymph. It is also hoped that

large animal models may provide a more realistic reflection of the results that may be

expected in humans. The list of mucosal immunisation studies conducted in mice and

other rodents is exhaustive, but very few studies report success using the mucosal
route of immunisation in humans.

One large vaccination trial was conducted as part of this study and a number
of variables were chosen, such as the antigen, delivery system and mucosal adjuvant.
The purpose of this work was the "proof of principle" to act as a basis for further

development and optimisation of the technique.
The primary aims of the work presented here were as follows:

1. To characterise mucosal-associated lymphoid tissue present in the ovine

nasopharyngeal tract, specifically examining the location, structure and composition
to determine whether it is an immune inductive site of the mucosal immune system

comparable to NALT in other species. In addition close examination of the follicle-
associated epithelium will determine whether M cells with the structural and
functional capabilities described in other species are present. In this way the potential
to stimulate a mucosal immune response using the intranasal route of immunisation

may be assessed.

2. To develop an appropriate delivery system to target protein antigens to M cells and
NALT. Work shall focus on the biodegradable PLG polymer microparticles due to

their success in other mucosal immunisation studies. Methods of optimising a

number of variables including protein encapsulation, protein release, and particle size
for M cell uptake shall be developed. In addition if possible the functionality and

antigenicity of encapsulated proteins shall be investigated.
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3. To choose an appropriate antigen from T.gondii tachyzoites for use in
immunisation studies, and to produce sufficient quantities of this antigen, and

encapsulate it into the optimal PLG delivery system developed as part of this study,
with and without the mucosal adjuvant cholera toxin.

4. To conduct an extensive intranasal immunisation trial in sheep using the antigen
from T. gondii and the delivery system developed. This will determine not only
whether this is a viable strategy for immunising sheep, but whether this route of
immunisation could offer potential for the development of a new vaccine against T.

gondii. Both humoral and cell-mediated responses shall be assessed, as well as the
level of protectivity afforded by these responses.
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CHAPTER 2

Characterisation of Ovine Nasal-associated
Lymphoid Tissue and M Cells
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2.1 INTRODUCTION

The aim of the research described in this chapter was to characterise mucosal-
associated lymphoid tissue present in the ovine nasopharyngeal tract. The respiratory

mucosa, particularly in the upper respiratory tract and nasal cavity, is in constant

contact with airborne antigenic material. Like other mucosal surfaces the nasal
mucosa is invested with, and immunologically protected by, NALT, which belongs
to the mucosal immune system (Spit et al., 1989; Kuper et al., 1992). NALT plays a

crucial role in trapping particulate matter and providing the first line of defence

against airborne pathogens, primarily with a protective mucosal IgA response, the
characteristic effector mechanism of the mucosal immune system (Neutra &

Kraehenbuhl, 1992).

Relatively few studies have focused on MALT in the respiratory tract in

comparison to GALT. In humans NALT is present as the Waldeyer's ring consisting
of the lingual, palatine and pharyngeal tonsils located in the posterior pharynx

(Howie, 1980; Karchev & Kabakchiev, 1984; Brandtzaeg & Halstensen, 1992) whilst
in rodents NALT is situated on both sides of the septal opening to the pharyngeal
duct (Spit et al., 1989; Kuper et al., 1992). NALT has been described in various
other species including monkeys and the horse (Loo & Chin, 1974; Harkema et al.,

1987; Mair et al., 1988). The NALT in the Waldeyer's ring in humans is composed
of primary B cell follicles and extrafollicular T cell areas, mainly consisting of the
CD4+ phenotype (Brandtzaeg & Halstensen, 1992). Nasal-associated lymphoid cell

populations have been described in the rat and other rodents and are of similar
structure (Spit et al., 1989; Koornstra et al., 1991, 1993; Kuper et al., 1990). In

general NALT has a similar structure to GALT, but some regional differences do

exist, e.g. NALT has a greater proportion of T cells than the PP in the mouse, with a

greater percentage of CD4+ compared to CD8+ cells, but similar numbers of mature

IgM+ IgA- B cells (Heritage et al., 1997). Both human and rodent NALT are now

considered to be immunologically fully equipped and active mucosal lymphoid

organs, similar to the GALT in the PP. Recent studies have proved that mouse NALT
is a mucosal inductive site for humoral and cellular responses in the upper respiratory
tract. Following intranasal reovirus infection the development of germinal centres,
the expansion of IgA+ and IgG2a+ B cells and the presence of virus specific CTL
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could be demonstrated in NALT, as well as local IgA production in the upper

respiratory tract and systemic IgG2a production (Zuercher et al., 2002).
In addition, the epithelium overlying NALT can be distinguished from the

surrounding respiratory epithelium by the presence of a specialised follicle-
associated epithelium. M cells have been identified overlying the nasopharyngeal

lymphoid tissue of humans (Karchev & Kabakchiev, 1984) and shown to be similar
to the M cells in the GALT both morphologically and functionally, by the
demonstration of HRP particle uptake (Fujimura, 2000). M cells have also been
identified overlying rodent NALT (Spit et al., 1989), and the nasal absorption of
fluorescent polystyrene particles has been observed, suggesting the mechanism of
solid particle uptake by the nasal mucosa is similar to that found in the gut (Alpar et

al., 1994). M cells are thus thought to be to be essential for the uptake of antigen and
the initiation of immunity in the upper aerodigestive tract.

Studies on MALT in the ovine nasopharyngeal tract are relatively scarce. The
distribution and gross morphological features of ovine respiratory tract-associated

lymphoid tissue (RTALT) including NALT have been previously described (Chen et

al., 1989). Lymphoid aggregations have been observed throughout the respiratory

tract, and are found most frequently in the pharyngeal tonsil, the mid-nasopharynx
and around the opening to the auditory tube, but only the ovine pharyngeal tonsil has
been studied further. MALT in the ovine pharyngeal tonsil is able to take up intra-

nasally administered colloid carbon (Chen et al., 1989), and the mucosal epithelium

overlying the ovine pharyngeal tonsil consists of predominantly non-ciliated cells,
the majority of which possess microvilli or microfolds of varying number, height and

density on their surface and are ultrastructurally similar to the M cells described in
other mucosal sites in other species (Chen et al., 1991). However, the cellular
structure and composition of the lymphoid follicles in the ovine nasal region have not
been studied in any detail, and the nature of local immune responses and the role of
NALT in these responses have also yet to be determined. This study investigates the
structure and composition of lymphoid tissue in the ovine nasopharyngeal tract,

including the distribution of B- and T-cell subsets and the presence of M cells in the
mucosal epithelium, as a prelude to future studies on intranasal vaccination.
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2.2 MATERIALS AND METHODS

2.2.1 Animals

Greyface cross Suffolk sheep, aged 0.5-1 year, were housed in a conventional
loose box, fed on hay and concentrates, and given free access to fresh water.

2.2.2 Collection and Preparation of Lymphoid Tissue

Sheep were stunned with a captive bolt and exsanguinated, and their spinal
cords severed. Each head was removed and sagitally sectioned at the atlanto-occipital

joint. The nasal septum was then removed, exposing both halves of the

nasopharyngeal cavity. In a pilot study, lymphoid nodules were located

macroscopically, in the nasopharyngeal cavity of two sheep, with 70% glacial acetic
acid (Cornes, 1965; Chauhan & Singh, 1970). The tissue containing nodules was

subsequently removed from the remaining experimental sheep. Where required

jejunal PP and pharyngeal tonsil were also removed. Blocks of tissue containing
nasal lymphoid nodules (area 1cm ) were fixed by immersion in glutaraldehyde 3%
v/v in 0.1M phosphate buffer (PB), pH 7.4 for scanning electron microscopy (SEM)
and individual nodules were fixed by immersion in glutaraldehyde 2.5% v/v in 0.1M
PB, pH 7.4 for transmission electron microscopy (TEM). The remaining tissue

samples were then placed in a non-formaldehyde zinc salts fixative (ZSF) as
described by Gonzalez et al. (2001). Briefly, tissues were immersed in ZSF solution

(0.1M Tris base buffer with 0.05% Ca acetate (pH 7-7.4), containing 0.5% Zn acetate

and 0.5% Zn chloride) for up to 72 h at room temperature. Following fixation, tissues
were transferred to 70% ethanol for at least 30 min, then processed by routine

methods and embedded in paraffin wax. Tissue sections (5 pm) were cut with a

microtome (Jung Biocut 2035, Leica Instruments GmbH, Germany), mounted on

glass slides pre-coated with poly-L-lysine and dried overnight. Tissue sections were

then dewaxed, hydrated and stained with haematoxylin and eosin (HE) by
conventional methods, and examined for the presence of lymphoid tissue. Serial
sections from appropriate blocks containing lymphoid tissue were then sectioned
further for immunohistochemical analysis.
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2.2.3 Demonstration of Reticulin

Slides were stained for reticulin using the Gordon & Sweet method detailed
in Bradbury & Rae (1996).

2.2.4 Immunohistochemistry

Specific binding of antibody was identified with the Envision Plus HRP

System (Dako, Ely, UK). Briefly, dewaxed sections were incubated with a

peroxidase "block" (0.03% hydrogen peroxide) for 5 min at room temperature, and
then in 25% normal goat serum for 30 min at room temperature to prevent non¬

specific labelling of tissue antigens. The slides were then incubated with lOOpl of the

appropriate monoclonal antibody dilution overnight at 4°C. Controls were provided

by replacing the primary antibody with the equivalent concentration of an IgG
fraction from normal mouse serum for the same length of time. The secondary

antibody (peroxidase-labelled polymer conjugated to goat anti-mouse

immunoglobulins) was then added to tissue sections for 30 min at room temperature.

The sections were finally incubated with substrate chromogen for 7.5 min at room

temperature, washed in distilled water, counterstained with haematoxylin, dehydrated
in graded alcohols, cleared and mounted. Tris buffered saline (TBS) (0.05M Tris

HC1, 0.15M NaCl, pH 7.2-7.6) was used to wash tissue sections between each
incubation and to prepare the normal goat serum and antibody dilutions. The
monoclonal antibodies employed, and their specificity, source and dilution, are
shown in Table 2.1 (see also Gonzales et al., 2001). Tissue sections were examined

and photographed using an Olympus BX50 microscope (Olympus, London, UK).

2.2.5 Electron Microscopy

2.2.5.1 TEM

After fixation for 48 h, the tissue samples were placed in 0.1M PB for 15
min. The PB was replaced by 2% osmium tetroxide for 2 h, and the tissue was then

dehydrated in graded water-acetone mixtures and embedded in an Epon-Araldite
mixture. After polymerization at 60°C for 48 h, ultrathin sections were cut and
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Table2.1Detailsofthemonoclonalantibodiesusedtoidentifyovinecellpopulations Monoclonal
Specificity
Cellularexpression

Material

Dilution*

Source

antibody

(ovine/

(1in)

designation
bovine)

36F

CD2

a(3Tcells

Ascites

5000

BaselInstituteforImmunology

CC15

WC1

y8Tcells

Ascites

12800

InstituteforAnimalHealth,Compton

17D

CD4

Thelpercells

Supernate
50

BaselInstituteforImmunology

SBUT8

CD8

CytotoxicTcells

Supernate
50

UniversityofMelbourne

CC21

CD21

Folliculardendriticcells,matureB cells

Ascites

25000

InstituteforAnimalHealth,Compton

VPM32

CD14

Macrophages

Ascites

3000

UniversityofEdinburgh

CC20

CD1

Dendriticcells

Ascites

5000

InstituteforAnimalHealth,Compton

SBUII49-1

MHCII

Bcells,activatedTcells,macrophages
Supernate
50

UniversityofMelbourne

73B

CD45R

Alllymphocytes

Supernate
100

BaselInstituteforImmunology

VPM13

IgM

Bcells

Ascites

100000

UniversityofEdinburgh

2F1

IgE

IgE+Bcells,mastcellsurface
Supernate
800

CSIRO,Prospect,NSW,Australia

K84.2F9

IgA

IgA-l-Bcells

Supernate
20000

SerotecLtd,Oxford

Notknown
IgG,

IgGi+Bcells

Supernate
700

CSIRO,Prospect,NSW,Australia

Notknown
IgG2

IgG2+Bcells

Supernate
400

CSIRO,Prospect,NSW,Australia

'Dilutionswereasrecommendedfromtitrationstudiesonlymphnode. CD=clusterdesignation WC-1=workshopcluster-1
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stained with uranyl acetate and lead citrate and examined with a Jeol JEM 1200EX
transmission electron microscope (Jeol UK Ltd., Herts, UK) operated at 80 kV.

2.2.5.2 SEM

After fixation for approximately 48 h the tissue was washed in 0.1M PB and

post-fixed in osmium tetroxide 1% w/v in 0.1M PB, by a method incorporating the
enhancement of osmium penetration with thiocarbohydrazide (Malick & Wilson,

1975). After post-fixation, the specimens were rinsed in several changes of PB,

dehydrated through a series of graded ethanols (to 100%), and placed in acetone. The

specimens were then subjected to critical point drying with liquid carbon dioxide,
attached to aluminium stubs by means of silver conductive paint, sputter coated with

gold and examined in a Stereoscan S250 Mark III scanning electron microscope at

10-20 kV.

2.2.6 Marking Ovine M Cells
For the following methods 5pm tissue sections of both pharyngeal tonsil and

nasal lymphoid nodules were used. All tissues were fixed in ZSF, embedded in

paraffin wax, processed and sectioned as described in Section 2.2.2. Following the

labelling procedure sections were examined using an Olympus BX50 microscope

(Olympus, London, UK).

2.2.6.1 FITC-Lectins

Slides were incubated in sufficient 3,3' diaminobenzidine (DAB) (Sigma
Fast™ DAB Tablet, Sigma, Dorset, UK) to cover the surface of each tissue section

(approximately lOOpl per slide) in order to quench background fluorescence, and

then washed in water. Slides were incubated in a lOpg/ml solution of each FITC-
lectin in phosphate buffered saline pH7.4 (PBS) for 1 h at room temperature. The
slides were then washed well in PBS, mounted in Citifluor (Citifluor Ltd., London,

UK) and examined using a blue (NB) filter at 470-490nm for evidence of lectin

binding to the epithelial surface of the tissues. A panel of lectins with differing

binding specificities purchased from Vector Laboratories (Peterborough, UK) was

employed, detailed in Table 2.2.
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Number Lectin Abbreviation Specificity
1 Concavalin A1'2 CON A a-man, a-glc
2 Dolichos biflorus agglutinin1"1 DBA a-galNAc
3 Peanut agglutinin1'2 PNA P-gal(l—>3)galNAc
4 Ricinus communis agglutinin 1201 '2 RCA 120 p-gal
5 Soybean agglutinin1'2 SBA galNAc
6 Ulex europaeus lectin I ' UEA I a-L-fuc

7 Wheat germ agglutinin1'2 WGA (glcNAc)2,
NeuNAc

8 Griffonia (Bandeiraea) simplicifolica lectin
I1'2

GSL I a-gal, a-galNAc

9 Lens culinaris agglutinin1'2 LCA a-man

10 Phaseolus vulgaris erythroagglutinin1'2 PHA-E oligosaccharide
11 Phaseolus vulgaris leucoagglutinin ' PHA-L oligosaccharide
12 Pisum sativum agglutinin ' PSA a-man

13 Sophora japonica agglutinin1'2 SJA P-galNAc
14 Succinylated wheat germ agglutinin1'2 Succinylated

WGA
glcNAc

15 Griffonia (Bandeiraea) simplicifolica lectin GSL II glcNAc

16 Datura stramonium lectin1'2 DSL (glcNAc)2
17 Erythrina cristagalli lectin1'2 ECL p-gal(l—»4)glcNAc
18 Jacalin1'2 a-gal—>OMe
19 Lycopersicon esculentum (tomato) lectin1'2 LEL (glcNAc)3
20 Solanum tuberosum (potato) lectin ' STL (glcNAc)3
21 Vicia villosa agglutinin ' VVA galNAc
22 JAmaranthus caudatus lectin ACL, ACA ?

23 Bauhinia purpurea lectin1 BPL P-gal( 1—»3)galNAc
24 Succinylated Concavalin A1 SConA a-man, a-glc
25 Eunonymous europaeus lectin1 EEL a-gal(l—>3)gal
26 Galanthus nivalis lectin1 GNL non-reduc, a-man
27 Griffonia simplicifolica lectin I - isolectin B41 GSLIB4 a-gal
28 Lotus tetragonolobus lectin LTL ?

29 Maackia amurensis lectin I1 MALI sialic acid
30 Maclura pomifera lectin MPL a-gal, a-galNAc
31 Sambucus nigra lectin1 SNA, EBL a-

NeuNAc (2—>6)gal,
galNAc

32 Wisteria floribunda lectin1 WFA, WFL galNAc
33 Anguilla anguilla lectin2 AAA a-L-fucose

Table 2.2 Panel of lectins used and their specificities

glcNAc = N-acetylglucosamine "FITC-lectin
galNAc = N-acetylgalactosamine 2biotinylated lectin
fuc =fucose
man = mannose

murNAc = N-acetylmuramic acid
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2.2.6.2 Biotinylated Lectins
Slides were incubated in 0.5% hydrogen peroxide in methanol for 15 min to

remove endogenous peroxidase activity. The slides were then washed well in water

and incubated in a 10pg/ml solution of the lectin-biotin complex in PBS for 1 h. The

biotinylated lectins used are shown in Table 2.2. Slides were then washed thoroughly
in PBS and incubated in a 1:500 dilution of a conjugate of streptavidin with
horseradish peroxidase (HRP) (Dako, Ely, UK) for 30 min. Slides were then washed

again in PBS, and incubated in DAB (Sigma Fast™ DAB Tablet, Sigma, Dorset,

UK) for 5 min to visualize the substrate. The slides were then washed in water,

counterstained with haematoxylin, dehydrated in a sequential series of alcohols,
cleared in xylene and mounted. Omitting the primary antibody incubation step

provided a negative control, and a positive control was provided by incubating
sections of mouse Peyer's patch with UEA I or AAA lectin.

2.2.6.3 Vimentin

Endogenous peroxidase activity was blocked by incubation with 0.5%

hydrogen peroxide in 100% methanol at room temperature for 15 min. The slides
were then rinsed in water and incubated in 4% bovine serum albumin (BSA) in PBS

for 15 min to reduce non-specific labelling. Sections were then incubated in anti-
vimentin monoclonal antibody (clone V9, Sigma, Dorset, UK) diluted to a

concentration of 1:40 in PBS for 1 h at room temperature. Slides were washed in
PBS and incubated in a 1:300 dilution of a rabbit anti-mouse monoclonal antibody

conjugated to horseradish peroxidase (Dako, Ely, UK). Slides were rinsed again in
PBS and developed in DAB (Sigma Fast™ DAB Tablet, Sigma, Dorset, UK) for 5
min, then washed in water, counterstained with haematoxylin, dehydrated in a

sequential series of alcohols, cleared in xylene and mounted. Omission of the

primary antibody was used to provide a negative control.

2.2.6.4 Cytokeratins
Four different monoclonal antibodies specific for different cytokeratin

peptides were used to label tissue sections. The antibodies were chosen on the basis
of wide species cross-reactivity and previous publications that showed specific
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labelling of M cells. The first antibody used was a mouse anti-pan cytokeratin made
from a mixture of monoclonal antibodies. The other three antibodies were

monoclonal antibodies specific for cytokeratin peptides 4, 8 and 18. All antibodies
were purchased from Sigma (Dorset, UK). The antibody signal was amplified with
the Envision Plus HRP System (Dako, Ely, UK) using the methods detailed in
section 2.2.4. Antibody dilutions (in TBS) are shown in Table 2.3 below.

Antibody Clone Isotype Dilution Used At

pan cytokeratin C-ll, PCK-26, CY-90,
KS-1A3, M20, A-53-B/A2

IgGl / IgG2a 1:5000

cytokeratin 4 6B10 IgGl 1:5000

cytokeratin 8 M20 IgG2b 1:650

cytokeratin 18 CY-90 IgGl 1:5000

Table 2.3 Antibodies and dilutions used for anti-cytokeratin labelling

2.2.6.5 Alkaline Phosphatase
Two methods were used to investigate the presence of alkaline phosphatase

within the epithelium. The first method used a kit designed for demonstrating
alkaline phosphatase in leukocytes in blood smears (85L-1, Sigma, Dorset, UK).

Briefly, a Fast Blue RR salt capsule was dissolved in 48ml of deionised water, and
2ml of a Naphthol AS-MX phosphate alkaline solution was added and mixed well.
The slides were incubated in the mixture for 30 min whilst protected from direct

light, rinsed for 2 min in deionised water and stained with Mayer's haematoxylin
solution for 10 min. The slides were then rinsed for 3 min in deionised water and

mounted in an aqueous mountant and examined. For the second method, an
immunohistochemical technique, tissue sections were treated with a 1:50 dilution of
an anti-alkaline phosphatase antibody (Sigma, Dorset, UK) using the methods
detailed in Section 2.2.6.3, using a 1:300 dilution of a goat anti-rabbit secondary

antibody conjugated to HRP (Dako, Ely, UK).

2.2.7 Demonstration of Functional Activity of M Cells

2.2.7.1 Organ Culture
The culture system used was based on the methods devised by Jackson et al.

(1996) to culture respiratory tissue. A sterile 3.5cm Petri dish was placed within a
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sterile 6cm diameter Petri dish (Corning Costar, Bucks, UK), and 4ml ofminimal
essential medium (MEM) (Gibco, Invitrogen, Paisley, UK) supplemented with

penicillin (50 IU/ml), streptomycin (50pg/ml), and gentamicin (50pg/ml) were

pipetted into the outer Petri dish. A strip of sterile filter paper 5mm x 8cm was

soaked in MEM and manipulated with sterile forceps so that each end adhered to the
base of the inner dish to act as a wick to draw the medium from the outer Petri dish

to the underside of the tissue (demonstrated in Figure 2.1). Epithelial tissue

containing lymphoid nodules or epithelium from the pharyngeal tonsil was dissected
into 3-4mm squares with a thickness of l-2mm, and a single tissue square was

placed, ciliated surface upwards, on the centre of the filter paper strip. Organ
cultures were incubated at 37°C in a humidified atmosphere containing 5% carbon
dioxide for a period of 0-4 h. Tissue was fixed after the 4 h culture period, fixed in
4% paraformaldehyde, sectioned and stained with HE to assess viability and tissue

morphology.

2.2.7.2 Application of Microparticles to Tissue Explants
A plastic isolation cylinder 2mm in diameter was pressed firmly on top of each tissue

explant to create a seal. IOjliI of a 1:100 dilution of yellow-green fluorescent latex

microparticles (Polysciences Inc., Eppelheim, Germany) were pipetted onto the
ciliated surface of each tissue explant within the isolation cylinder as shown in

Figure 2.1.

tissue

explant

Figure 2.1 Schematic representation of the application of fluorescent
microparticles to ovine NALT using the explant culture system

isolation
filter paper
wick

culture .

medium
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Microparticles of 0.1pm, 0.2pm, 0.5pm, 0.75pm or 1.0pm diameter were used.
Tissue explants were incubated with the microparticles for time periods of 30 min,
45 min, 1 h, 2 h or 3 h at 37°C in a humidified atmosphere containing 5% CO2. After

this time each explant was washed thoroughly 3 times in PBS at 37°C and fixed in

modified Bouins for confocal microscopy, or 4% paraformaldehyde for conventional

microscopy. Some explants were examined immediately under a fluorescent

stereomicroscope (Zeiss Stemi SV6, Carl Zeiss Ltd., Herts, UK) to determine the
surface distribution of the microparticles. The tissues were then cryoprotected in
25% sucrose, and frozen in OCT™ cryo-embedding matrix (CellPath, Wales, UK) in

liquid nitrogen. Sections between 5pm and 25pm thick were cut using a Cryostat

(Jung Frigocut 2800E, Leica Instruments GmbH, Germany), counterstained with a

1:5000 dilution of propidium iodide, mounted in Citifluor (Citifluor Ltd., London,

UK) and examined under a natural blue filter 470-490nm using an Olympus BX50

microscope (Olympus, London, UK) to determine the location of the microparticles.

2.2.7.3 In vivo Application of Microparticles
A crude intra-nasal spray was fashioned from a syringe and a length of tubing

in which a series of tiny holes had been punched and the end had been blocked. The
effectiveness of this spray was tested by inserting the catheter to a depth of 16-18cm
into the nasal tract of a dead sheep, and spraying 1ml of Evan's blue dye laterally
onto the epithelium. Following removal and sagittal sectioning of the head, the dye
was observed to stain both the pharyngeal tonsil and the area containing lymphoid
nodules. The spray was then used to apply 1ml of a 1:1000 dilution of fluorescent
latex microparticles (sizes 0.5pm, 0.75pm and 1.0pm) (Polysciences Inc.,

Eppelheim, Germany) to both nostrils of 6 sheep in vivo (2 sheep for each size of

microparticle). The sheep were left for 45 minutes before being euthanised, and the
area of nasopharynx containing lymphoid nodules and the pharyngeal tonsil were
then removed, fixed in 4% paraformaldeyde and cryoprotected in 25% sucrose.

Small serial blocks of epithelial tissue (approximately 2mm thick) were then frozen
in OCT™ cryo-embedding matrix (CellPath, Wales, UK) in liquid nitrogen,

sectioned, counterstained and mounted as before, and examined using a natural blue
filter 470-490nm with an Olympus BX50 microscope (Olympus, London, UK).
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Tissue sections found to contain particles within the epithelium were further
examined by confocal microscopy. Fluorescent images were acquired using an

MRC-600 confocal laser scanning microscope (CLSM, Bio-Rad Laboratories,)

mounted on an Axiovert 100 inverted microscope equipped with Plan-Apochromat

objective lenses (Carl Zeiss, Herts, UK). Fluorophores were excited using the 488nm

(FITC) lines from a 15mW Kr/Ar laser (Bio-Rad, Hemel Hempstead, Herts, UK).

2.3 RESULTS

2.3.1 Localisation and organisation of nasal lymphoid tissue
After fixation with acetic acid lymphoid nodules appeared macroscopically as

opaque white spots under the mucosal surface, located in the nasopharynx posterior
to the opening of the Eustachian tube leading to the inner ear, as demonstrated in

Figures 2.2-2.4. This is at a depth of approximately 16-18cm into the nasopharynx
from the nostril, depending on the age and size of the animal. While the majority of
nodules tended to be clustered in this area, individual nodules were observed

throughout the nasopharyngeal mucosa. The number, location and size of nodules
varied between animals, apparently regardless of age.

Sections stained with HE revealed that the lymphoid tissue was

unencapsulated and had a conventional follicular structure, consisting of tightly

packed cells in a germinal centre surrounded by a network of reticular cells and more

dispersed lymphocytes. A characteristic dome-like accumulation of lymphoid cells
was observed beneath the epithelium, demonstrated in Figure 2.5a. Serial sections
showed that at the periphery of the nodule the lymphoid material was discrete from
the epithelium (Figure 2.5b), but at the centre the epithelium became modified

(Figure 2.5a). This 'lymphoepithelium' (FAE) was attenuated, non-ciliated and

heavily infiltrated by cells with the appearance of lymphocytes, which may have
been trafficking out of the nodule itself. In comparison, normal pseudostratified
columnar epithelium was observed overlying the edge of the nodules and the

surrounding tissue (Figure 2.5c). A Gordon and Sweet stain revealed that each

lymphoid follicle was surrounded by a network of cytoskeleton and reticulin, a

typical feature of lymphoid follicles (Figure 2.5d).
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Figure 2.2 Sheep's head that has been sagitally sectioned to show
approximate location of lymphoid nodules in nasopharyngeal tract

Figure 2.3 Acetic acid fixation of nasopharyngeal tract. Lymphoid nodules
are visible as opaque white spots in the circular area. The arrow shows
the location of the opening to the Eustachian tube

' /

Figure 2.4 Close-up view of the nasal lymphoid nodules after acetic acid
fixation

57



Figure 2.5a-d Morphological characteristics of ovine NALT. a) Centre of nodule
where epithelium becomes attenuated and infiltrated with lymphocytes
'lymphoepithelium', x54 magnification, b) Edge of lymphoid nodule, where follicle
remains discrete from the epithelium, x54 magnification, c) Typical pseudostratified
columnar epithelium observed overlying the edge of lymphoid nodules (arrows show
possible lymphocytes within epithelium), x216 magnification, d) Gordon and Sweet
stain revealing conventional network of reticuIin around lymphoid nodule, x108
magnification
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2.3.2 Immunohistochemistry
All antibodies employed showed immunoreactivity, while no labelling was

observed in negative control sections. The section chosen for demonstration of serial

analysis with different monoclonal antibodies in Figures 2.6-2.8 appeared to have 2
follicular areas present. Sections appeared to be approaching the centre of the larger
follicle where dome-like accumulations of lymphocytes could be observed, whilst

simultaneously approaching the edge of the smaller follicle, allowing comparison of
cell populations in such areas. In general a similar distribution of cell populations
could be observed in lymphoid tissue in the nasopharyngeal tract and in the

pharyngeal tonsil, unless otherwise specified.
The nasal lymphoid nodules had the characteristics of an organised lymphoid

tissue structure, consisting of well-defined follicular B cell-containing areas that
included germinal centres, and parafollicular areas containing minor populations of

CD4+, CD8+ and y5 T cells. Numerous lymphocytes were observed in close
association with the epithelium, and frequently within the epithelium, particularly at

the centre of the dome. Strongly positive labelling by monoclonal antibody for MHC
class II and CD45R (Figure 2.6g) was observed on numerous small, round cells

throughout the lymphoid nodules. B lymphocytes and plasma cells, labelled for IgM,
were very numerous and clearly concentrated in the follicles, as demonstrated in

Figure 2.6a. Based on the appearance of the cells, B lymphocytes were concentrated
in the follicle and the immediate parafollicular area, whereas plasma cells were

scattered throughout the non-follicular areas.
B lymphocytes and plasma cells labelled for IgE, IgA, IgGi and IgG2 were

observed in varying numbers in the centre of the follicles, demonstrated in Figure
2.6. Those labelled for IgA were predominant in the centre of the follicle, and a

population of IgA-t- plasma cells was disseminated throughout the lamina propria

(Figure 2.6b). IgE was also present on large cells, scattered throughout the nasal

lymphoid tissue (Figure 2.6c), which had the distribution and morphological

appearance of mast cells (J.F. Huntley, personal communication). Interestingly in the

pharyngeal tonsil, isotype switching to IgE appeared to have occurred in the germinal
centres (Figure 2.6d). This was not the case in the nasal lymphoid nodules.
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Interstitial labelling for IgA, IgGi and IgGo was observed throughout the tissue, and
for IgA on the surface of the epithelium.

Immunohistochemical analysis of serial sections revealed numerous a(3 T
cells surrounding B-cell areas (Figure 2.8d). CD4+ T cells were typically
concentrated around one pole of the follicle and in the immediately surrounding

parafollicular area (Figure 2.7a), while CD8+ T cells were apparently clustered in

smaller numbers in the parafollicular area (Figure 2.7b). yS T cells were scattered
around the follicles and often seen within the overlying epithelium (Figure 2.7c).
There were significant numbers of all three T cell subsets, all of which shared

polarisation to some extent towards the epithelium. Dendritic cells (CD1+) were
scattered in small numbers around the follicles and appeared in particularly high
numbers in the smaller follicle that had been sectioned at the periphery (Figure 2.8a).

Large numbers of CD21+ cells were present in the central region of the follicle,

representing follicular dendritic cells and mature B lymphocytes (Figure 2.8b).

Macrophages were predominant in the centre of the follicular areas (Figure 2.8c).
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Figure 2.6a-h Serial sections of an ovine nasal lymphoid nodule labelled
for the different immunoglobulins (IgM, IgA, IgE, lgG1, lgG2), and CD45R
(mature B cells and naive T cells), pharyngeal tonsil (PT) labelled for IgE,
and negative control slide x50 magnification
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Figure 2.7a-c Immunohistochemical labelling for different T cell subsets in
serial sections of an ovine nasal lymphoid nodule. The left hand figures show
the distribution of T cells in the whole nodule at x56 magnification, while the
right hand figures show cells surrounding a follicle at x112 magnification
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Figure 2.8a-d Immunohistochemical labelling for dendritic cells (CD1),
follicular dendritic cells (CD21), macrophages (CD14), and aft T cells (CD2)
in serial sections of a nasal lymphoid nodule, x56 magnification
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2.3.3 Ultrastructure of the lymphoepithelium
SEM showed that both non-ciliated and ciliated cells were present in the

follicle-associated dome epithelium. Non-ciliated cells had varying numbers of short,

irregular microvilli or microfolds, which were sometimes flattened to form irregular

ridge-like microplicae. In the central area of the dome, a region of flattened,

relatively smooth epithelium was present; where this had been disrupted large
numbers of lymphocytes were seen, apparently extruding from the surface (Figures

2.9a,b). Outside this area (Figures 2.9c,d) the epithelium was composed of ciliated
cells, microvillous cells and goblet cells in varying proportions. Ciliated respiratory

epithelial cells and microvillous cells were approximately equal in number in the

region directly surrounding the flattened area, with microvillous cells often clustered

together (Figure 2.9d). Towards the edge of the dome epithelium, a higher proportion
of ciliated cells were present, with a few isolated microvillous cells scattered

amongst them (Figures 2.10a,b).
TEM showed that the epithelial cells overlying the NAET were

ultrastructurally heterogeneous. Respiratory epithelial cells with long, regular cilia
were interspersed with cells with mucus-producing cells and epithelial cells

displaying stumpy, irregular, fused microvilli. These microvillous cells were more

electron-dense and appeared darker than the respiratory epithelial cells and were

frequently seen in close association with lymphocytes in the underlying lymphoid
tissue (Figures 2.11 and 2.12). Tangential sections showed that desmosomes formed

tight junctions between both types of epithelial cell, and that lymphocytes were

present within or in close association with the more electron-dense cells. It seems

probable that these lymphocytes were contained within pockets of the microvillous
cells. Microvillous cells were notably absent from non-lymphoid associated areas.
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Figure 2.9a-d Scanning electron micrographs of the dome epithelium overlying nasal
lymphoid nodules, a) gross morphology of the dome; b) lymphoepithelium at the top
of the dome circled in a), showing close relationship between epithelial and lymphoid
cells; c) transitional area between lymphoepithelium and ciliated epithelium;
d) microvillous cells (arrows) and ciliated cells
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Figure 2.10 Scanning electron micrographs showing areas at the edge of the
dome epithelium where microvillous cells (arrows) are interspersed amongst
characteristic ciliated respiratory epithelial cells

Figure 2.11 Transmission electron micrograph showing epithelium overlying NALT
showing both microvillous cells (M) and ciliated respiratory epithelial cells (C) x1800.
Note the lymphocytes (L) in close association with the M cell.
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Figure 2.12 Further transmission electron micrographs showing ultrastructure of
the lymphoepithelium. Both ciliated and microvillous cells (arrows) are present.
The microvillous cells are more electron-dense and are closely associated with
underlying lymphocytes (arrowhead) x1500 and x800 magnification
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2.3.4 Marking Ovine M Cells

2.3.4.1 Lectins

The general patterns of lectin-labelling observed in the nasal lymphoid
nodules are summarised in Table 2.4. However, these represent generalised results,
as the labelling pattern of the different lectins was very variable, both between
animals and even between different locations within the same animal. Lectin-

labelling did appear to be specific in that the dilution only affected the intensity and
not the pattern of labelling, and similar patterns were observed for a lectin whether it
was biotinylated or fluorescently labelled. None of the lectins applied specifically
marked individual cells in a pattern that could be described as resembling the

expected distribution ofM cells in the nasopharyngeal tract region of the sheep.

Labelling was either too general or not related to the epithelium. Labelling patterns

were very different in the nasal lymphoid nodules, pharyngeal tonsil, and Peyer's

patches, but no lectin could be described to specifically identify M cells in any of
these regions. In the mouse PP tissue UEA I bound to the surface of individual cells

along the dome epithelium overlying the Peyer's patches and AAA identified
individual cells in their entirety along the dome epithelium. This is comparable to the

pattern of M cells previously described for these lectins in this type of tissue and

provided a useful positive control.
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Lectin Staining Pattern
CON A Mucus, whole epithelium, much of underlying tissue
DBA Virtually no labelling, occasionally mucus
PNA Mucus and goblet cells
RCA 120 Faint general epithelial binding
SBA Mucus and goblet/globular cells
UEA I General epithelium and mucus
WGA General epithelium and mucus
GSL I No epithelial labelling
LCA Strong general epithelial labelling, some mucus and goblet cells
PHA-E Stains most of epithelium and mucus
PHA-L Patchy epithelial labelling, including mucus
PSA General epithelial labelling, goblet cells and mucus
SJA Labelling some cells along epithelium, not restricted to

epithelium overlying lymphoid tissue
SuccinylatedWGA Mainly goblet cells and mucus
GSL II Patchy labelling along epithelium
DSL General faint epithelial labelling
ECL Patchy epithelial labelling, mucus and goblet cells
Jacalin General epithelium, goblet cells, mucus
LEL General epithelium and mucus
STL General epithelium
VVA Mucus

ACL, ACA All epithelial surface, goblet cells
BPL Nothing, no epithelial binding
SConA No epithelial labelling, everything in tissue
EEL Nothing, no epithelial labelling
GNL No epithelial labelling, faint mucus staining
GSLIp4 No epithelial binding
LTL No epithelial labelling
MALI Very faint general epithelial labelling
MPL Surface of goblet cells
SNA, EBL Mucus and goblet cells
WFA, WFL Faint general epithelial labelling
AAA General epithelial labelling
Table 2.4 General lectin labelling patterns observed in ovine nasal epithelium

2.3.4.2 Vimentin

Some specific labelling for vimentin was apparent within nasal lymphoid
follicles, but vimentin was not present in the epithelium overlying either lymphoid or

non-lymphoid tissue in the ovine nasopharynx. The epithelium above both ileal and

jejunal Peyer's patches was also completely negative for vimentin.
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2.3.4.3 Cytokeratins
The anti-pan cytokeratin antibody clearly identified all epithelial cells in the

nasal mucosa regardless of the type of epithelium or whether it was present over

lymphoid or non-lymphoid tissue. There was no labelling apparent within the

underlying tissue and no non-specific background staining. The wide variety of

cytokeratin peptides recognised by this mixture of monoclonal antibodies meant that
the whole epithelium was labelled, and therefore more specific antibodies were used.

The anti-cytokeratin peptide 4 antibody showed strong labelling of the

epithelium in specific areas, however this appeared to be unrelated to areas overlying
nasal lymphoid follicles and pharyngeal tonsillar tissue. Some cells within the

epithelium in these areas were more clearly identified than others but this

phenomenon was also observed in non-lymphoid associated areas. This peptide

appeared to be present in a variety of cells, and no specificity to M cells or lymphoid
tissue associated areas was observed.

No positive labelling was observed for the anti-cytokeratin peptide 8
monoclonal antibody in this location in the sheep, although faint background staining
was observed throughout the tissue sections. The anti-cytokeratin peptide 18
monoclonal antibody showed different labelling profiles in different animals. In
tissues from some sheep the whole epithelium was very strongly and specifically

labelled, whilst in tissues from other sheep a very similar binding pattern to that
observed with the anti-cytokeratin peptide 4 antibody was demonstrated. This

peptide appears to be patchily distributed and varies in quantity between animals, but
is not specific to M cells, or epithelial areas overlying lymphoid tissue.

2.3.4.3 Alkaline Phosphatase

Immunolabelling with the anti-alkaline phosphatase monoclonal antibody
resulted in a dark brown reaction product along the whole epithelium overlying ovine

jejunal Peyer's patches including lymphoid and non-lymphoid associated tissue. All

epithelial cells appeared to contain alkaline phosphatase. In the nasal epithelium

very faint brown colouration was visible above both lymphoid and non-lymphoid

tissue, but it was difficult to distinguish individual epithelial cells. With the alkaline

phosphatase kit very dark, bright purple colouration was visible along the whole
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epithelium above the Peyer's patches, demonstrated in Figure 2.13a. This colour
reaction was continuous above the lymphoid tissue, and no negative cells indicative
ofM cells were observed. In the nasal region, no purple colouration was visible

along the epithelium overlying lymphoid or non-lymphoid associated areas,

demonstrated in Figure 2.13b.
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Figure 2.13a-b Ovine jejunal PP fa) and nasal lymphoid follicle
(b) treated to demonstrate alkaline phosphatase activity, *147
magnification. Nasal epithelium is clearly negative for this
enzyme, whilst PP is strongly positive
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2.3.5 M Cell Functional Activity

2.3.5.1 In vitro Application of Fluorescent Microparticles
No visible signs of degeneration or shedding of the epithelium were observed

in epithelial tissue within the 4 hour culture period. Tissue sections stained with HE

provided further evidence that little or no degeneration had occurred during
incubation. Following the topical application and incubation with fluorescent latex

microparticles, tissue explants were examined under a stereomicroscope, and

aggregations of particles could be observed on the surface of the epithelial tissue.

Unfortunately with the magnification range of this microscope it was difficult to
determine the morphology of the tissue, and the position of dome epithelial areas

overlying lymphoid tissue, so it was difficult to relate these aggregations to areas

where M cells may be present. Interesting patterns of binding were often observed,
with particles clearly concentrated in a circular area that may have been the dome

epithelium overlying follicles where M cells were located, demonstrated in Figure
2.14. Particles were often clearly trapped in the mucus overlying the tissue. This was

more problematic in tissue that had been cultured for longer periods of time (>2 h)
where more mucus was observed on the epithelial surface.

No microparticles could be observed in sections from cultured tissues that
were fixed and processed routinely, but this was probably due to the dissolution of
the particles in xylene. However, microparticles were clearly visible on sections
from the tissue that had been pre-fixed, cryoprotected and frozen in liquid nitrogen.

Large numbers of particles were commonly found bound to the surface of the

epithelium and within the epithelium due to the large quantities that had been placed
on the surface of the explants, demonstrated in Figure 2.15. This particle uptake

appeared to be specific to areas of epithelium overlying mucosal lymphoid follicles
where M cells are present, and no uptake could be demonstrated in areas separate

from lymphoid areas. Particles of all sizes were clearly taken up into the FAE, but

quantification and comparison of uptake was difficult and no one size of particle

appeared to be optimally transcytosed. Following uptake most particles were present

within the epithelium, but occasionally a small proportion of the particles could be
observed in the underlying tissue.

72



Figure 2.14 Stereomicroscope images of NALT surface demonstrating potential
dome areas where the binding and uptake ofmicroparticles is concentrated (1.0pm
particles a) x8 magnification b) x2T magnification

a ■ h

Figure 2.15 Uptake of fluorescent latex microparticles following in vitro
application to NALT tissue explants. a) 0.75pm particles, x112 magnification,
b) 0.5pm particles, x224 magnification
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Figure 2.16 Uptake of fluorescent latex microparticles into FAE overlying
NALT following in vivo application, a) 0.5pm particles, x155 magnification, b)
0.5pm particles, x309 magnification, c) 1.0 pm particles x155 magnification
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It was not possible to distinguish individual cells that contained particles, and
therefore potential M cells could not be positively identified. The different lengths of
time of incubation of the tissue explants with the particles did not appear to greatly
alter the distribution of particles within the epithelial tissue. Particle uptake into the

epithelium could be demonstrated as early as 30 min, and particles were more often
observed at a greater depth in the tissue following longer incubation periods.

2.3.5.2 In vivo Application of Fluorescent Microparticles

Following the intra-nasal application of fluorescent latex microparticles in

vivo, particle uptake could be clearly demonstrated within the FAE overlying
follicular areas, demonstrated in Figure 2.16. It was not possible to determine

specific cells responsible for particle uptake or to identify potential M cell
candidates. Examination of tissues using confocal microscopy demonstrated that the

particles were internalised within cells, and were not associated with the surface of
the tissue sections. This observation indicated that the microparticles were being

actively transported rather than being dragged through the section with the
microtome blade. However, the distribution of areas where particles had been taken

up was very patchy and only small areas of particle uptake could be demonstrated

throughout the area of nasopharynx that contained lymphoid nodules. Encouragingly,
no particle uptake was observed in non-follicular areas. Sections of pharyngeal tonsil
revealed that the epithelium overlying follicles in this organ was also capable of

particle uptake, but areas where this could be demonstrated were also relatively
scarce. The infrequency of observed particle uptake was likely to be due to the
dilution effect of applying a small volume of microparticles to such a large area, and
made the comparison of uptake of different sizes of particles difficult. However,

uptake of all sizes of particles between 0.5-1.0pm in diameter could be demonstrated

within the epithelium. Particles that had been taken up penetrated the entire depth of
the epithelial cells and were occasionally observed within the dome area. Particles
often reached a greater depth into tissue than was observed when particles were

applied to tissue explants in vitro.
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2.4 DISCUSSION

The present study confirmed that lymphoid tissue found in the ovine

nasopharynx is an organised lymphoid tissue characteristic of the MALT, and may
be referred to as NALT. The concepts of mucosal immune protection can therefore
be applied to ovine NALT, which contains all the elements necessary to function as a

potent antigen sampling site. Ovine NALT, together with the pharyngeal tonsil, is the
main component of defence in the ovine upper respiratory tract and, due to its

strategic location and ability to trap, process and respond to inhaled antigens may

play an important role in the development of successful nasal vaccines.
In the sheep, the distribution of ovine NALT was relatively consistent

between animals. The nasopharyngeal lymphoid nodules were clustered posterior to
the opening to the Eustachian tube, in the proximity of the pharyngeal tonsil.

Lymphoid tissue has been observed in this location in many species, including the
horse (Mair et al., 1988), where it may help guard against infection spreading from
the pharynx towards the inner ear. This strategic location also allows immuno-
surveillance at the point where inhaled air, laden with antigenic material enters the

pharyngeal duct, the first tubular structure of the respiratory tract. The results

presented here are therefore in accord with the studies of Chen et al. (1989), which
detailed the distribution of lymphoid tissue throughout the ovine respiratory tract.

Immunohistochemical studies have demonstrated that the lymphoid nodules
in the ovine respiratory tract are characteristic of the simple follicular areas

traditionally described in mucosal lymphoid tissue (Hein, 1999), and are similar in
structure to the secondary lymphoid follicles observed at other mucosal sites in the

sheep, such as jejunal Peyer's patches (Landsverk et al., 1991) and rectal lymphoid
follicles (Sedgmen et al., 2002). The general composition of the lymphoid nodules
resembles that of a predetermined lymphoid organ, demonstrating that NALT in

sheep is a highly structured and organized secondary lymphoid tissue that has

specific functions within the mucosal immune system. Ovine NALT consists of
discrete B- and T- cell areas, as in rodent and human NALT (Kuper et al., 1990;

Brandtzaeg & Halstensen, 1992; Koornstra et al., 1993), and like rat NALT appears

to contain more B than T cells and more T helper cells than T suppressor/cytotoxic
cells (Koornstra et al., 1991). As described in other species mature B lymphocytes
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are common in the central area of the follicle, rather than the periphery or corona.

IgA antibody was clearly visible both within the tissue and on the epithelial surface,
where it may have been secreted, and it appeared that switching of B cells to IgA+

may have occurred at the centre of the follicles. There are large numbers of y8 T cells

present in ovine NALT when compared to MALT in rodents or humans, which is

likely to be a reflection of the larger number of y8 T cells present in the ruminant

immune system (y8 T cells may constitute up to 50% of all T cells) (Hein & Mackay,

1991). y8 T cells are thought to play a major role in the early defence of mucosal
surfaces against infectious agents (Hein & Mackay, 1991), and in ruminants are

capable of much greater diversity in antigen receptors and therefore may play a much
more important role than in other species (Evans et al., 1994; Hein & Dudler, 1997).

The cell populations described in ovine NALT are typical of those defined in
mucosal inductive sites. Mouse NALT, a well-defined inductive site, is similarly

composed of "unswitched" B cells and naive T helper cells that have the capacity to

provide help for B-cell maturation and differentiation, and to maintain immune

memory (Wu et al., 1996), and recent studies have shown that mouse NALT is a

mucosal inductive site for both cellular and humoral immune responses (Zuercher et

al., 2002). Evidence suggests that organised MALT in mucosal inductive sites, such
as NALT and Peyer's patches, are responsible for the initiation of antigen-specific

responses, characteristically involving IgA responses (Neutra & Kraehenbuhl, 1992).
The antigen-stimulated lymphocytes leave these tissues and migrate to mucosal
effector sites (diffuse MALT) where the immune response is expressed (Mestecky &

McGhee, 1987; Wu et al., 1997).

Ovine nasal lymphoid tissue is covered by a specialized epithelium consisting
of ciliated and non-ciliated cells, in which the cilia are replaced by short, irregular
microvilli. This modified lymphoepithelium can be easily distinguished from the

adjacent epithelium, both topographically and ultrastructurally, and has previously
been noted in related areas in many species, including the nasopharynx of the horse

(Mair et al., 1987) and overlying the nasopharyngeal tonsils of humans (Karchev &
Kabakchiev, 1984; Fujimura, 2000). A specialised lymphoepithelium is also seen

overlying lymphoid nodules in the caprine respiratory tract (Kahwa & Purton, 1996).
The epithelial cell types, proportions and distribution are similar to those described in
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a study of the ovine pharyngeal tonsil (Chen et al., 1991). Based on their

morphological features and relationship to underlying lymphoid tissue, these non-

ciliated microvillous cells resemble the antigen-sampling cells occurring in MALT in
other species, which are commonly known as M cells (Owen & Jones, 1974; Bye et

al., 1984; Wolf & Bye, 1984; Bienenstock, 1985). The close contact and
communication between the epithelium and the lymphocytes afforded by the

lymphocyte-containing pockets in these microvillous cells are crucial to their role in

antigen uptake and processing. The uptake of colloid carbon has been demonstrated
in MALT in the ovine pharyngeal tonsil (Chen et al., 1989). It seems probable that
the microvillous cells in ovine NALT are fully capable of taking up particulate

antigens, and demonstration of their functional activity is required to confirm that
these cells are functionally similar to M cells described in other species and in other
locations.

However, there are a number of problems associated with the identification of
M cells using electron microscopy. TEM only focuses on very small areas and small
numbers of cells, and misleading assumptions may be made regarding the larger cell

population (Jepson & Clark, 1998). SEM can only characterise the epithelial surface
and no information on the uptake of material can be provided. Therefore a marker for
ovine M cells would be very useful for further analysis of many aspects of their
distribution, function and development, and as a prerequisite for M cell culture to

provide reliable in vitro models. It may also provide a means for specifically

targeting ovine nasal M cells for mucosal vaccination. However, despite the wide

range of lectins, cytoskeletal intermediate filaments and enzymes tested in this study,
it appears that at present there is no specific marker for ovine nasopharyngeal M
cells. None of the published methods for other species were specific for M cells

overlying ovine nasal lymphoid nodules or pharyngeal tonsil. No reliable markers
have been discovered for human M cells and it appears that each marker is only

applicable to the limited range of species and or sites identified (Jepson et al., 1996;
Brinck et al., 1995; Sharma et al., 1996). In the nasopharyngeal region in other

species, UEA I has been shown to selectively label rabbit tonsillar M cells (Gebert,

1997), GS I-B4 is a specific marker for M cells in rat NALT (Takata et al., 2000) and
hamster NALT M cells can be distinguished from other epithelial cells by the
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expression of glycoconjugates possessing terminal a(l-3)-linked galactose

(Giannasca et al., 1997). These lectins did not display the required specificity in
ovine NALT providing further evidence that species specificity does exist.

None of the other lectins used in this study could be demonstrated to

specifically bind to the surface or label M cells in this location in the sheep, and there

may be a number of reasons to explain the lack of specificity for M cells. Firstly, the
thick overlying mucus layer in the nasal region may prevent contact between the
lectin and the epithelial surface, even though it may be largely absent from the FAE.
The majority of lectins bind to mucus itself because it has a carbohydrate rich milieu,
which may exclude access to M cells. Secondly, most lectins are capable of

recognising a hierarchy of related carbohydrate structures and therefore label a
number of different cell types with different intensities. Thirdly, it has only been

possible to utilise a limited number of the available lectins on ovine NALT and the

appropriate lectin for targeting ovine M cells may not have been included.
The problems of transferring lectin targeting data between species, and even

between different regions in the same species are well recognised. The large

variability in lectin binding indicates site and species specificity for M cell receptors,
and it may not be surprising that difficulties have been experienced in finding a lectin
that specifically targets ovine M cells. Attempts to find a lectin that specifically

targets glycoconjugates on the surface of human M cells have also been unsuccessful

(Sharma et al., 1996; Kucharzik et al., 1999). Both humans and sheep consist of

large outbred populations, and large inter-individual differences in the expression of
surface glycoproteins may exist that do not permit specific lectin binding. However,

epitopes on the apical surface ofM cells in the equine nasopharyngeal tonsil are
reactive with Griffonia simplicifolica lectin I - isolectin B4 (GSLI- B4) specific for
a-linked galactose (Kumar et al., 2001).

The reduction in expression of brush-border alkaline phosphatase in M cells
has successfully been used as a means of marking M cells in rat and mouse PP

(Owen & Bhalla, 1983; Smith et al., 1987, 1988). This study demonstrates that it is
not possible to use alkaline phosphatase as a marker for M cells in the ovine

nasopharyngeal tract. A comparison of the demonstration of this enzyme in the ovine
nasal region with the PP clearly demonstrates that this enzyme is either absent in the
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nasopharyngeal tract or present in very low quantities that cannot be detected. It is
clear that alkaline phosphatase is present in large quantities in the gut epithelium,

suggesting that it has a function in digestion, which is not required in the nasal

region. Alkaline phosphatase has been previously used to distinguish M cells in
ovine jejunal Peyer's patches (Press et al., 1991), but in this study all PP epithelial
cells appeared to contain alkaline phosphatase.

The expression of vimentin in M cells in rabbit GALT has been previously
demonstrated (Gebert et al., 1992, Jepson et al., 1992). However, the presence of
vimentin could not be demonstrated in epithelial cells in the ovine nasopharyngeal

tract, although it may be possible that the anti-vimentin clone used was not fully
cross-reactive with sheep vimentin. Similarly, cytokeratin 18 has been shown to

mark porcine PP M cells (Gebert et al., 1994) and cytokeratin 8 has been shown to

mark rat PP M cells (Rautenberg et al., 1996), but none of the anti-cytokeratin

peptides used in this study were specific for ovine nasal M cells. There appears to be
site and species specificity in the expression of these cytoskeletal intermediate

filaments, since there are no reports ofM cell labelling in NALT using the

expression of intermediate filaments.
Another means by which M cells may be identified is by demonstration of

their functional activity in the uptake of particulate material. Particle uptake into
ovine nasal epithelium could be demonstrated both in vitro and in vivo, and this

uptake appeared to be specific to areas of FAE overlying MALT. Particles not only
bound specifically to the surface of the epithelium but were also observed within

epithelial cells and in the dome area of the underlying MALT. Thus cells with the
functional activity of M cells were present in the epithelium overlying areas of
MALT in the ovine nasopharyngeal tract. However, in the absence of an M-cell

specific marker for ovine NALT, it was not possible to identify individual cells

responsible for particle uptake or prove that the cells had the morphological
characteristics ofM cells. Levels of uptake of microparticles of different sizes were

comparable, although it was not possible to quantify particle uptake. It was clear that

particles in the nanoparticle size range of 0.1 - LO^tm diameter were efficiently

transported across the epithelium.
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The in vitro application of microparticles on tissue explants was developed to

provide a useful model to optimise particle uptake. Many particles were taken up into
the FAE of these explants but quantification of this uptake was difficult. Particle

uptake was facilitated by the large numbers of particles placed on the surface of very
small areas of tissue. Relatively large numbers of microparticles could be seen within
the epithelium as little as 30 min after particles were applied, but they did not seem

to be translocated into the underlying lymphoid tissue within culture periods of up to

4 hours. This may have been due to the conditions of the tissue in the culture system,

although little or no degenerative changes were observed during this period of
incubation. Such in vitro work is often hampered by inadequate maintenance or

tissue viability, which leads to limited and non-selective particle uptake (Pietzonka et

al., 2002), but this did not appear to be relevant for the short culture times required to

allow the uptake of particles in this system.

The quantities of particles that could be demonstrated within the epithelium
from the in vivo experiments were considerably lower. This may have been because
few particles from the intra-nasal spray had contact with areas of FAE, or due to the
dilution effect of applying a small volume of particles to such a large target area. In
addition some particles may have been swallowed or removed by clearance
mechanisms operating in the upper respiratory tract. However, it was interesting to

note that particle uptake could be observed in the epithelium overlying both the nasal

lymphoid nodules and the pharyngeal tonsil following application of particles with
this intra-nasal spray. It was also encouraging to note that particle uptake appeared to

occur only in areas of FAE, and that particles had managed to penetrate the entire

depth of the epithelium within 45 min, and could occasionally be observed in contact

with lymphocytes in the dome epithelium. Similar sized particles have been shown to

be taken up into the nasal mucosa in the rat and mouse and have reached NALT,

draining cervical lymph nodes and the bloodstream in as little as 15 min (Alpar et al.,

1994; Brooking et al., 2001; Eyles et al., 2001). In the gut in vivo studies of particle

uptake using ligated gut loops have been employed to compare uptake into the

epithelium overlying PP in different conditions, and such gut loops have been used

successfully in sheep to model mucosal immune responses (Gerdts et al., 2001), but
are not applicable in the nasopharyngeal region.
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In conclusion, the present study has shown that particle uptake in the ovine
nasal epithelium occurs specifically in areas overlying MALT. The following chapter
describes the development of a microparticle delivery system to target and optimise

antigen uptake by ovine nasal M cells.
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CHAPTER 3

Development of a Biodegradable Microsphere
Delivery System for Mucosal Vaccination
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3.1 INTRODUCTION

The aim of the research described in this chapter was to develop an

appropriate delivery system to target M cells in the mucosal epithelium overlying
NALT in the sheep. Microparticles or nanoparticles prepared from the biodegradable
and biocompatible poly(D,L-lactide-co-glycolide) (PLG) polymer have been

extensively studied as delivery vehicles for protein and polypeptide antigens in
mucosal vaccination (reviewed in Brayden & Baird, 2001). The nasal absorption of
PLG particles has not been studied in the sheep, but the use of other bioadhesive

microsphere delivery systems has been shown to enhance nasal absorption and

bioavailability of a number of pharmaceutical compounds or drugs, such as

biosynthetic human growth hormone or desmopressin (Ilium et al., 1990; Critchley et

al., 1994).

Poly (L-lactide) is a crystalline polymer, whereas the glycolide monomer

forms an amorphous structure. Therefore the copolymer PLG contains a mixture of
both crystalline and amorphous features dependent on the ratio of lactide:

coglycolide. The chemical structure of PLG is shown in Figure 3.1. PLG degrades by
random hydrolysis of the ester linkages, initially to smaller polymeric fragments and

ultimately to the constituent monomeric acids.

o-

ch3

lactide monomer

ch; o

n

n=n

n'

glycolide monomer

Figure 3.1 Chemical structure of PLG

There are a number of techniques available for the preparation of PLG

microparticles. For the purpose of this study the water/oil/water (w/o/w) double

emulsion, solvent evaporation technique was used, demonstrated in Figure 3.2. This
is a phase separation process, and the most widely used technique for preparing

microparticles containing water soluble drugs and proteins (Rafati et al., 1997).
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Aqueous phase
Organic Phase (5% pva Evaporation of

Aqueous phase (protein Primary w/o Secondary w/o/w Particle
dissolved in water) emulsion emulsion Recovery

Figure 3.2 Diagrammatic representation of w/o/w double emulsion solvent
evaporation technique ofparticle production

Firstly a primary emulsion is produced by homogenising an aqueous phase

containing protein with an organic solvent phase consisting of PLG polymer
dissolved in dichloromethane (DCM). This primary emulsion is then homogenised
with a large volume of surfactant, polyvinyl alcohol (PVA), to produce a secondary
emulsion. PVA acts as an emulsion stabiliser by decreasing the interfacial tension
between the suspended organic polymer droplets and the continuous phase, thereby

preventing aggregation and reducing the coalescence of the droplets. Excess DCM
then partitions into the continuous phase and evaporates at the air-water interface for
several hours. As the solvent evaporates from the organic droplets the PLG

precipitates and hardens, forming microspheres and entrapping the protein. Finally
the particles are washed several times to remove excess PVA, and lyophilised. Figure
3.3 demonstrates the smooth spherical particles that are typically produced by the
w/o/w double emulsion solvent evaporation technique.

Figure 3.3 SEM images of typical PLG microspheres demonstrating their
smooth surface and spherical shape

Blank 2.62kx 10um
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The formulation conditions of microencapsulation in the water/oil/water

double emulsion, solvent evaporation technique are critical to the size and size
distribution of PLG particles, the amount and distribution of protein associated with

particles, and the protein release characteristics of particles (Jeffery et al., 1993;
Cohen et al., 1991; Yan et al., 1994; Hora et al., 1990). The properties of particles

produced are influenced by a range of key factors such as the concentration and type

of polymer, protein and stabiliser (Alonso et al., 1993; Arshady, 1990; Jeffrey et al.,

1993), shear conditions (Sah et al., 1994; Yan et al., 1994), and the stability of the

primary w/o emulsion (Nihant et al., 1994). Microspheres can be produced over a

wide size range, from less than 200nm to several hundred microns. The principle
factors that control particle size are the speed, equipment and technique used for

mixing the two phases and the concentration of polymer. Particle size tends to

decrease exponentially with increasing mixing speed, accompanied by a narrowing
of the particle size distribution, and tends to increase with polymer concentration

(Watts et al., 1990). The effect of a number of variables on protein encapsulation and

particle size are investigated in this study, with the aim of optimising formulation
conditions for the preparation of microparticles suitable for use as an intranasal

delivery system in sheep.

3.2 MATERIALS AND METHODS

3.2.1 Materials

Two 50:50 PLG copolymers of different molecular weights (MW) were used.
The low MW polymer (Resomer RG502H, Boehringer Ingelheim, Germany) and the

high MW polymer (P2191, Sigma, Dorset, UK) Mr 8,400-8,600 (Callacombe et al.,

1997; Park et al., 1998) and Mr 40,000-70,000 respectively. PVA (Mr 30,000-

70,000), bovine serum albumin (BSA) (Mr 67,000), BSA conjugated to fluorescein

isothiocyanate (FITC-BSA) and ovalbumin (OVA) (Mr 43,000) were obtained from

Sigma (Dorset, UK). Dichloromethane was obtained from Fisher Scientific

(Leicestershire, UK).

86



3.2.2 Development of Microparticles in the Appropriate Size Range
A reproducible method was required to produce microspheres in the size

range optimal for M cell uptake, whilst minimising damage to the encapsulated

protein. The desired size range was between 0.1 - 3.0p.m in diameter, but ideally less

than 1pm in diameter. The speed and length of time of homogenisation for both

primary and secondary emulsions were varied in an attempt to produce particles of
the desired size. No protein was used at this stage, instead the particles were made
with deionised water.

3.2.2.1 Particle Preparation
A primary emulsion was produced by homogenising 1ml of water with 5m!

of 5% PLG (Resomer RG502H lactide:glycolide 50:50, Boehringer Ingelheim,

Germany) in DCM at speeds ranging from 16,000rpm to 19,000rpm for 2 min. A

secondary emulsion was then produced by homogenising the primary emulsion with
50ml of 5% PVA at speeds of 19,000rpm, 21,000rpm or 24, OOOrpm for either 2 min
or 3 min. The homogeniser used was a T25 Basic Ultra-Turrax homogeniser (IKA-

Werke, Staufen, Germany). Secondary emulsions were maintained overnight under

magnetic stirring to facilitate the evaporation of excess DCM. Particles were then

centrifuged in a Beckman J2-21 centrifuge using a JA20.1 rotor (Beckman Coulter,

High Wycombe, UK) at 12,OOOrpm for 10 min. The supernatant was discarded and

particles were resuspended in 20ml distilled water, and centrifuged at 8,OOOrpm for 3
min. Particles were washed again by repeating this step, resuspended in

approximately 2ml distilled water, and lyophilised (Edwards Modulyo 4K freeze-

drier, Fred Baker Scientific, Cheshire, UK) for at least 48 hours.

3.2.2.2 Analysis of Particle Size
A small sample of the particles was suspended in water, and microparticle

size distribution was determined by laser diffractometry in a Coulter LS 230 particle
size analyser (Beckman Coulter, High Wycombe, UK). The average particle size was

expressed as the volume mean diameter.
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3.2.2.3 SEM

Particle size and surface morphology were examined using SEM. A small

sample of microparticles was suspended in a small volume of distilled water, placed
on aluminium stubs and allowed to air dry. The stubs were then sputter coated with

gold (SCD030 Balzers Union Ltd., Liechtenstein) and examined in a Phillips 505

scanning electron microscope (Phillips, Eidhoven, Netherlands). Size was evaluated
and demonstrated on the micrographs produced.

3.2.3 Optimising Protein Encapsulation into Microparticles
Once methods had been established to produce particles within the

appropriate size range, the effect of a number of variables on protein encapsulation
was investigated. Variables included the protein used, protein loading, the molecular

weight of the PLG polymer, and the length and time of homogenisation. The

parameters measured were the total amount of protein associated with the particles
and the ratio of surface-bound: encapsulated protein. BSA was used as a model

protein unless otherwise specified.

3.2.3.1 General Particle Preparation
The appropriate amount of protein was weighed out and hydrated in a volume

of either lOOp.1 or 200pl of distilled water (as detailed below). A primary emulsion
was made by homogenising this aqueous protein solution with 2ml of 5% PLG in
DCM in a glass test-tube at the speed and for the length of time specified below. The
low MW PLG polymer was used (Resomer RG502H, Boehringer Ingelheim,

Germany) unless otherwise specified. The primary emulsion was then homogenised
with 20ml of 5% PVA at the speed and for the length of time specified below to

create the secondary emulsion. Secondary emulsions were maintained overnight
under magnetic stirring to facilitate the evaporation of excess DCM, and then

centrifuged in a Beckman J2-21 centrifuge using a JA20.1 rotor (Beckman Coulter,

High Wycombe, UK) at 12,000rpm for 10 min. The microparticles were washed
twice to remove excess PVA by redispersion in 20ml of distilled water and

centrifugation at 8,000rpm for 3 min. Particles were then rehydrated in
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approximately 2ml of distilled water and lyophilised for at least 48 h. Variations in
this method are detailed in sections 3.2.4.2 - 3.2.4.6 below.

3.2.3.2 Effect of Homogenisation Speed
Both primary and secondary emulsions were homogenised for a constant time

of 2 min. The primary emulsion for each batch was made with lOOpl of a 20mg/ml
solution of BSA and a 5% PLG solution in DCM. The homogenisation speed was

varied for both the primary and secondary emulsions as detailed in Table 3.1 below.

Batch Primary Emulsion
Speed (rpm)

Secondary Emulsion
Speed (rpm)

1 6,000 14,000
2 6,000 19,000
3 11,000 19,000
4 16,000 11,000
5 16,000 14,000
6 16,000 16,000
7 16,000 19,000
8 19,000 14,000
9 19,000 19,000

Table 3.1 Variations in primary and secondary emulsion homogenisation speed

3.2.3.3 Effect of Length of Homogenisation
The length of time of the secondary emulsion homogenisation was

investigated for effect on protein encapsulation into the microparticles. The primary
emulsion homogenisation time was not increased further due to the localised heating
and high shear produced in the small volume of the primary emulsion which is likely
to lead to denaturisation of the protein. The primary emulsion for each batch was

made with lOOpl of a 20mg/ml solution of BSA and a 5% PLG solution in DCM.
The primary emulsion homogenisation was kept constant at 16,000rpm for 2 min,
and the secondary emulsion homogenisation speed and time were varied as detailed
in Table 3.2 below.

Primary Emulsion Secondary Emulsion
Speed (rpm) Time (min) Speed (rpm) Time (min)

16,000 2 11,000 2 or 3

16,000 2 14,000 2 or 3

16,000 2 16,000 2 or 3

16,000 2 19,000 2 or 3
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Table 3.2 Variation in secondary emulsion homogenisation speed and time

3.2.3.4 Effect of Molecular Weight of PLG Polymer Used
Different molecular weight PLG polymers have differences in polymer chain

length and hydrophobicity, and protein encapsulation into particles made from a

higher MW PLG polymer was investigated. Both polymers were 50:50

lactide/glycolide PLG copolymers. The low MW PLG polymer Mr 8,400-8,600

(Callacombe et al., 1997; Park et al., 1998) had an estimated half-life of 1 week. The

high MW PLG polymer Mr 40,000-70,000 had an estimated half-life of 1 month.
Each primary emulsion was made with 2mg of BSA in 100pl. Standard

homogenisations of 16,000rpm for 2 min in the primary emulsion, and 19,000rpm for
2 min in the secondary emulsion were used. 2 batches of particles were made with
each polymer.

3.2.3.5 Effect of Protein Loading
BSA loading was varied by altering the concentration and volume of protein

solution added to the primary emulsion. Standard homogenisations of 16,000rpm for
2 min in the primary emulsion, and 19,000rpm for 2 min in the secondary emulsion
were used. The comparisons of protein loading were as follows:

a) lOOjxl of a 20mg/ml BSA solution (~2mg)

b) 200pl of a 20mg/ml BSA solution (~4mg)

c) lOOpl of a 40mg/ml BSA solution (~4mg)

3.2.3.6 Comparison of Different Proteins
It has been documented that encapsulation efficiency varies for different

proteins (Blanco & Alonso, 1998; Takahata et al., 1998), and the encapsulation of
BSA was thus compared with OVA. All primary emulsions were made at 16,000rpm
for 2 min, and all secondary emulsions were made at 19,000rpm for 2 min. The
lower molecular weight PLG polymer was used. The amounts of protein used (BSA

versus OVA) were as detailed for BSA in section 3.2.4.5, with an additional 200pl of

a 40mg/ml OVA solution (~8mg).
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3.2.3.7 Quantification of the Ratio of Surface-Associated: Encapsulated
Protein

Surface-adsorbed protein is known to be displaced by sodium dodecyl sulfate

(SDS) which binds to hydrophobic regions of protein molecules causing them to

unfold and freeing them from association with other molecules. lOmg microparticles
were dispersed in 0.5ml of 0.01M PBS, pH 7.4 containing 2% w/v SDS. The

resulting suspension was rotated at room temperature for 1 h, and then centrifuged at

14,000rpm for 5 min. The supernatant was removed and analysed for protein content

to give a measurement of the amount of protein associated with the surface of the

microparticles. The microparticle pellet was then resuspended in 0.5ml of 0.5M
NaOH containing 5% w/v SDS and this suspension was rotated gently for 3-4 h at

room temperature until particles had completely dissolved. The increase in pH due to

the NaOH considerably enhances lactic/glycolic acid polymer degradation. This

suspension was then assayed for protein content to give a measurement of the
amount of protein encapsulated within the particles.

3.2.3.8 Quantification of Total Protein Content

5mg microparticles were dispersed in 0.5ml of 0.2M NaOH containing 5%
w/v SDS and gently mixed for 3-4 hours until the particles had completely dissolved.
This solution was then assayed for total protein content. Data is presented as the

encapsulation efficiency, which indicates the percentage of protein associated with
the particles compared to the original amount of protein used to make the primary
emulsion.

3.2.3.9 Pierce BCA Assay
Protein assays were performed with the bicinchoninic acid (BCA) enhanced

protein assay (Pierce Chemical Company, Rockford, Illinois, USA) using albumin
fraction V (Pierce Chemical Company, Rockford, Illinois, USA) as a standard as

described by the manufacturer's instructions. This assay is based on the reduction of
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copper (II) to copper (I) by protein under alkaline conditions. A colorimetric reaction
is produced with the BCA reagent that can be detected by reading the absorbance at

562nm.

3.2.4 Confirmation of Presence of Protein in Particles

A batch of microparticles was made using BSA conjugated to fluorescein

isothiocyanate (FITC-BSA) following the methods detailed in section 3.2.3.1. A

higher protein loading of 5% was used (5mg BSA-FITC in lOOmg PLG). The

primary emulsion was homogenised at 16,000rpm for 2 min, and the secondary
emulsion was homogenised at 19,000rpm for 2 min. Following lyophilisation

approximately lOmg of microparticles was rehydrated in approximately 50|al water,
and a 5-lOp.l of this suspension were allowed to dry on a microscope slide. The slide
was then mounted in Citifluor mountant (Citifluor Ltd., London, UK) and examined

using an Olympus BX50 microscope (Olympus, London, UK) with a Natural Blue
filter at 470-490nm, and a Leica TCS NT/SO series confocal system (Leica,

Germany). An argon-krypton ion gas laser with excitation lines at 491nm was used
to induce fluorescence.

3.2.5 Rate of Protein Release

A total of eight batches of microparticles were made to determine the rate of

protein release, four with the low MW PLG polymer and four with the high MW
PLG polymer. For each batch, the primary emulsion was made by homogenising

2mg of BSA in 100pl of water with lOOmg PLG in 2ml DCM at 16,000rpm for 2
min. The secondary emulsion was made by homogenising the primary emulsion with
20ml of 5% PVA at 19,000rpm for 2 min. After the particles had been washed and

lyophilised, 50mg of each batch were suspended in 250p,l of PBS and mixed gently

at 37°C for 15 min. The particles were then centrifuged at 8,000rpm for 3 min, and
each supernatant was collected for protein analysis. The remaining particles were

resuspended in 250)LtI of PBS and mixed gently at 37°C for a further 45 min before
the particles were centrifuged and the supernatant collected as before. Supernatant

samples were collected at the following time points after the particles had been

suspended: 15 min, 1 hr, 4 hr, 1 day, 2 days, 3 days, 1 week, 2 weeks, 3 weeks, 4

weeks, and 10 weeks. Two 100p.l aliquots from each supernatant sample were
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analysed for protein content by the Pierce BCA assay as detailed in Section 3.2.3.9
and an average of the two samples was taken.

3.2.6 Particles Made with Secreted Proteins from Listeria

monocytogenes
Further to the encapsulation of model proteins, BSA and OVA, the

encapsulation of a mixture of biologically active and functional proteins was

investigated. The secreted proteins from L. monocytogenes provided a useful model
for this purpose.

3.2.6.1 Listeria monocytogenes

Supernatant fluid was obtained from a dialysis sac culture containing

approximately 2 x 1010 colony forming units per ml of Listeria monocytogenes

serovar 4b (strain L1059) originally isolated from a sheep with listeric encephalitis at

the Moredun Research Institute, Edinburgh, UK (Low et at., 1992). This supernatant

contained a mixture of proteins secreted by L.monocytogenes, including listeriolysin
O (LLO), a secreted soluble protein against which there is a specific polyclonal
rabbit antibody (kindly gifted by W. Donachie, Moredun Research Institute,

Edinburgh, UK). LLO is a thiol-activated cytolysin which lyses red blood cells at a

pH of approximately 6.0 (Geoffroy et al., 1987) The functional activity of this

protein provides a useful means of assessing the functionality of encapsulated

proteins, using a simple haemolysin assay.

3.2.6.2 Particle Preparation
The secreted proteins from L. monocytogenes were concentrated to

approximately lOmg/ml using Centriprep® YM-10 concentrators (Amicon,

Stonehouse, UK) at 3,000 x g. Particles were prepared using 200pl of this protein
solution with both high and low MW PLG polymers using the methods detailed in
Section 3.2.3.1. The primary emulsion was prepared at 16,000rpm for 2 min, and the

secondary emulsion at 19,000rpm for 2 min. The protein content of these particles
was measured as detailed in Sections 3.2.3.7 - 3.2.3.9.
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3.2.6.3 Demonstration of LLO Within Particles

A small quantity of each batch of microparticles made in Section 3.2.6.2 was

rehydrated in distilled water, and 5jul or 1 Op.1 amounts of the suspensions were dotted

onto electrostatically charged microscope slides (SuperFrost® Plus, Menzel-Glaser®,
Germany). The particles were left for approximately 1 h to dry onto the slides. The
slides were then washed thoroughly with PBS containing 1% w/v BSA and 0.05%

v/v Tween®20 (Sigma, Dorset, UK), and incubated in a 1:1,000 dilution of the

polyclonal rabbit anti-LLO antibody for 1 h at room temperature (RT). The slides
were washed again in PBS and incubated in a 1:400 dilution of a goat anti-rabbit

antibody conjugated to biotin (Dako, Ely, UK) for 1 h at RT. The slides were washed

again and incubated in a 1:100 dilution of streptavidin conjugated to FITC (Dako,

Ely, UK) for 1 h at RT. Slides were then washed in PBS and mounted in Citifluor

(CitiFluor Ltd., London, UK). Slides were examined using an Olympus BX50

microscope (Olympus, London, UK) with a x40 objective and a natural blue (NB)
filter at a wavelength of 470-490nm.

3.2.6.4 Analysis of Proteins Within the Particles

Samples of surface-associated and encapsulated proteins were obtained from

high and low MW PLG microparticles containing proteins from L. monocytogenes as

detailed in Section 3.2.3.7, and then concentrated to a volume of approximately 50pl

using Centriprep YM-10 concentrators (Amicon, Stonehouse, UK) at 3,000 x g. For

comparison, samples of the original material were also used, diluted 1:10 in PBS.
Proteins were analysed initiall by SDS-PAGE and Western blots, and then by the

haemolysis of red blood cells.

3.2.6.4.1 Sodium Dodecylsulphate- Polyacrylamide Gel Electrophoresis

(SDS-PAGE)
Proteins were separated by gel electrophoresis as outlined by Laemmli (1970)

using the Mini-Protean II gel system (Bio-Rad, Hemel Hempstead, UK). 15ptl of
each sample were mixed with an equal volume of reducing sample buffer (62.5mM
Tris-HCl pH 6.8, 2% w/v SDS, 10% w/v glycerol, 0.002% w/v bromophenol blue,
5% v/v (3-mercaptoethanol) prior to loading into the wells of discontinuous SDS-
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PAGE minigels. 10% acrylamide gels that had been made in separating gel buffer

(0.375M Tris-HCl pH8.8, 1% w/v SDS, 0.1% v/v TEMED, 0.1% w/v ammonium

persulfate (APS)) were used for protein separation. The separating gel was overlaid
with a 4% acrylamide stacking gel made in stacking gel buffer (0.15M TrisHCl pH

6.8, 0.5% w/v SDS, 0.2% v/v TEMED, 0.2% w/v APS). Proteins were separated at

200V for 45-60mins in tank buffer (25mM Tris, 200mM glycine, 5mM SDS pH8.3)

until the dye front had reached the bottom of the gel. SeeBlue™ Plus2 Pre-Stained

Standards (Novex, Invitrogen, Paisley, UK) molecular weight markers were included
on all gels, consisting of phosphorylase B (Mr 148,000), BSA (Mr 98,000), glutamic

dehydrogenase (Mr 64,000), alcohol dehydrogenase (Mr 50,000), carbonic anhydrase

(Mr 36,000), myoglobin red (Mr 22,000) and lysozyme (Mr 16,000).

3.2.6.4.2 Protein Detection on SDS-PAGE Gels

Separated proteins were visualised by silver staining (Morrissey, 1981).

Firstly the proteins in the gels were fixed in 50% (v/v) methanol, 10% (v/v) acetic
acid in distilled water for 20 min, then twice in 5% (v/v) methanol, 7% (v/v) acetic

acid in distilled water for 10 min. After two 5 min washes in distilled water, proteins

were reduced in 5pg/ml dithiothreitol (DTT) in distilled water for 15 min, washed

again, and stained in 0.1% silver nitrate in distilled water for 20 min. Gels were then

washed briefly and finally developed for stained protein by immersion in 3% sodium
carbonate containing 0.05% formaldehyde. Development was terminated by the
addition of citric acid to 1% w/v.

3.2.6.4.3 Western Blot Analysis
Immuno-blot analysis was performed on proteins separated by SDS-PAGE

and electrotransferred to Protran BA 83 nitrocellulose membranes (Schleicher and

Schull, Anderman, Kingston upon Thames, UK) by semi-dry Western blot. The gel
and membrane were sandwiched between several sheets of 3mm filter paper soaked
in transfer buffer (24mM Tris, 192mM glycine, 20% v/v methanol, pH8.3) and

placed in the Western blot apparatus. Transfer took place at 70mA/gel (2mA/cm of

gel) for 1 h. The membranes were then blocked in PBS containing 5% non-fat milk

powder (Marvel, Chivers, Dublin, Ireland) for 30 min at RT and washed thoroughly
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in wash buffer (PBS containing 0.5M NaCl and 0.5% v/v Tween®80). The
membranes were then probed with a polyclonal rabbit anti-LLO antibody diluted to

1:500 in blot wash buffer for lh at RT. Negative controls were incubated in wash
buffer alone. After extensive washing of the blot, bound antibody was visualised by a

further 1 h incubation with a 1:2,000 dilution of goat anti-rabbit antibody conjugated
to biotin (Dako, Ely, UK) in wash buffer, followed by further washing and a 1 h
incubation in a 1:5,000 dilution of streptavidin conjugated to horseradish peroxidase

(HRP) (Dako, Ely, UK). After a final wash HRP was detected by treating blots with
the enhanced chemiluminescence (ECL) reagent (Amersham International, Little

Chalfont, UK) according to the manufacturer's instructions, and exposure to

Hyperfilm ECL (Amersham International, Little Chalfont, UK) for approximately 5
sec before development.

3.2.6.5 Functional Activity of Encapsulated LLO Protein
The surface-associated and encapsulated proteins from 15mg samples of both

high and low MW particles were obtained using the methods detailed in section
3.2.3.7. Following particle dissolution in NaOH the resulting suspensions were

dialysed in PBS, pH 6.0. All samples were concentrated to a volume of

approximately 250pl using Centriprep® YM-10 concentrators (Amicon, Stonehouse,

UK) at 3,000 x g. Haemolytic activity in L. monocytogenes broth culture supernatant

fluid (diluted 1:10) and the samples extracted from the particles were determined in a

haemolysis assay according to the method of Kreft et al. (1989). Briefly 200pl of test

samples were double diluted in lOOp.1 PBS, pH 6.0, in U-bottomed 96-well microtitre

plates and 1 Ojal of 0.1M dithioerythritol (DTE, Sigma, Dorset, UK) was added to all

wells. Plates were covered and incubated on an orbital shaker for 10 min at 37°C

before lOp.1 of a 10% suspension of washed sheep erythrocytes in PBS, pH 6.0, was

added to all wells and mixed thoroughly. Plates were covered and incubated for 30
min at 37°C then cells were allowed to settle overnight at 4°C. Positive control wells

consisted of lOjxl 10% washed sheep erythrocytes in 100p.l distilled water with lOpl

DTE. Negative control wells contained 10p.l of washed sheep erythrocytes in lOOp.1

PBS, pH 6.0, with lOju.1 0.1M DTE.
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3.3 RESULTS

3.3.1 Size Range of Microspheres Produced
The Coulter LS 230 particle size analyser revealed that the size distribution of

every batch of microparticles prepared in Section 3.2.2.1 was within the desired

range of 0.1pm - 3pm regardless of the length of homogenisation or the

homogenisation speed used. Not only were most particles within the desired size

range, but the majority of particles were approximately 1.0pm in diameter or less.

The average size of particles ranged between 0.5pm and 1.5pm, and a typical
bimodal distribution of sizes was produced. Figure 3.4 shows a typical particle size
distribution plot for microspheres prepared. A bimodal distribution is observed with
the main peak at approximately 0.5pm, and a secondary peak at 1.5pm diameter. In

this particular batch the average size of microparticle was approximately 0.7pm
diameter.

Size (um)

Figure 3.4 Size distribution plot of microspheres produced by the Coulter
LS 230 particle size analyser
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Particles prepared with higher secondary emulsion homogenisation speeds
tended on average to be slightly smaller, as did those that were homogenised for 3
min rather than 2 min. However, even the particles prepared using the slowest

homogenisation speed for the shortest time were within the desired size range, with a

considerable proportion being less than 1 pm in diameter. Some background variation
in size range existed between different batches of particles prepared using the same

emulsion times and speeds. Variation in primary emulsion homogenisation speed did
not appear to have any significant effect on the size of particles produced, above the

background levels previously mentioned.
SEM confirmed the size distribution of the microspheres as measured by the

particle size analyser. Figure 3.5 shows a typical micrograph of particles made using
the standard homogenisation of 16,000rpm for 2 min for the primary emulsion and

19,000rpm for 2 min for the secondary emulsion. Measurements were performed on

the particles under the electron microscope and are demonstrated on the micrograph,
and particles between 0.2pm and 1pm diameter can be observed. All microspheres
were spherical, but it was difficult to determine any surface details due to the poor
resolution achieved at high magnification. The SEM shows the typical spherical form
and smooth surfaces of the protein-loaded PLG microspheres.

8.80kx 2um

Figure 3.5 Scanning electron micrograph demonstrating the morphology and
size range of PLG particles
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3.3.2.1 Location of Protein Within the Particles

Particles incorporating FITC-BSA were clearly visible as small fluorescent

green spheres when examined under a NB filter at 470-490nm demonstrated in

Figure 3.6. This demonstrated that the FITC-BSA protein had been successfully

incorporated into the microparticles. The confocal images in Figure 3.7 also
confirmed the presence ofprotein as green fluorescence within the particles. The
exact location ofprotein within the microspheres could not be determined due to
their small size, but under this higher magnification the protein appeared to be evenly
distributed both inside the particles and on their surface.

Figure 3.6 PLG microspheres loaded with 5% w/w BSA-FITC x500 magnification

4

Figure 3.7 Confocal images of PLG microspheres prepared with 5% w/w
BSA-FITC x350 and x2700 magnification

99



their small size, but under this higher magnification the protein appeared to be evenly
distributed both inside the particles and on their surface.
3.3.2.2 Effect of Homogenisation Speed

The ratio of surface-bound to encapsulated protein and the total protein

encapsulation efficiency for each preparation of microparticles are detailed in Table
3.3 and demonstrated in Figure 3.8.

Primary
Emulsion

(rpm)

Secondary
Emulsion

(rpm)

Surface:

Encapsulated
Protein (%)

Total Protein

(pg/mg
particles)

Encapsulation
Efficiency (%)

6,000 14,000 49:51 15.49 77.45

6,000 19,000 37:63 11.33 56.65

11,000 19,000 65:35 12.37 61.85

16,000 11,000 39:61 14.82 74.10

16,000 14,000 59:41 13.81 69.05

16,000 16,000 67:33 14.54 72.70

16,000 19,000 40:60 17.39 86.95

19,000 14,000 60:40 16.76 83.80

19,000 19,000 66:34 19.25 96.25

□ Surface-Bound Protein

_ ^ Encapsulated Protein
$ 20

6000 6000 11000 "6000 16000 16000 16000 B000 BOOO

14000 "B000 "9000 11000 14000 16000 "9000 14000 "9000

Homogenisation Speeds (rpm)

Figure 3.8 Comparison of protein encapsulation ofmicroparticles prepared
using different homogenisation speeds for both primary and secondary
emulsions
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The variation of homogenisation speed for the preparation of both primary
and secondary emulsions had no obvious effect on the encapsulation efficiency, i.e.
the total amount of protein that became associated with the microparticles. The
results were variable but in general, the trend was that the higher the homogenisation

speed for the preparation of either primary or secondary emulsion, the greater the

encapsulation efficiency of the BSA protein. Encapsulation efficiencies ranged
between 56 - 96%, and the three batches containing the greatest amount of protein

Table 3.3 Effect of homogenisation speed on encapsulation efficiency
and ratio of surface-bound to encapsulated protein

are highlighted in red in Table 3.3.
Variation in homogenisation speed appeared to have a more marked effect on

the outcome of the ratio of protein loosely associated with the particle surface

compared to the protein encapsulated within the particles. In general it seemed that
the higher the homogenisation speed for the preparation of either the primary or

secondary emulsion, the higher the proportion of protein that remained surface-
bound rather than becoming encapsulated. This effect appeared to be more marked
on the increase of the secondary emulsion homogenisation speed. The three batches
with the maximum proportion of encapsulated protein are highlighted in blue in
Table 3.3. It would appear that homogenisation at 16,000rpm for 2 min for the

primary emulsion, followed by 19,000rpm for 2 min for the secondary emulsion
resulted in both maximum encapsulation of the protein into the particles rather than
loose association with the particle surface, and high total protein encapsulation

efficiency.

3.3.2.3 Effect of Homogenisation Time
The effect of the duration of homogenisation on the ratio of surface-bound to

encapsulated protein and the total protein encapsulation efficiency for each

preparation of microparticles are detailed in Table 3.4 and demonstrated in Figure
3.9. Increasing the length of time for the preparation of the secondary emulsion did
not appear to have a marked effect on the encapsulation efficiency of BSA into the
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microparticles. There were variations in the total amount of protein encapsulated into
the particles, but the encapsulation efficiency did not necessarily increase with

homogenisation duration. However, increasing the length of the secondary emulsion
tended to increase the ratio of protein that remained bound to the surface of the

microparticles.

Secondary Emulsion Surface:

Encapsulated
Protein (%)

Total Protein

(pg/mg)
Encapsulation
Efficiency (%)

Speed (rpm) Time (min)

11,000 2 39:61 14.82 74.10

11,000 3 62:38 15.21 76.05

14,000 2 59:41 13.81 69.05

14,000 3 73:27 19.73 98.65

16,000 2 67:33 14.54 72.70

16,000 3 68:32 12.87 64.35

19,000 2 40:60 17.39 86.95

19,000 3 61:39 12.13 60.65

Table 3.4 Effect of homogenisation speed on encapsulation efficiency
and ratio of surface-bound to encapsulated protein

f I

2 | 3
16000

Secondary Emulsion Homogenisation Speed(rpm) & Duration(min)

□ Surface-Bound
Protein

M Encapsulated
Protein

Figure 3.9 Comparison of protein encapsulation of microparticles prepared
using different lengths of time of homogenisation for the preparation of the
secondary emulsion

When the results from the variation of both homogenisation speed and time

were taken as a whole, the formulation in which the primary and secondary
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emulsions were prepared by homogenisation at 16,000rpm and 19,000rpm

respectively, for 2 min appeared to be the most efficient at protein encapsulation, and
were used for all further batches of particles. Not only was the total protein

encapsulation efficiency high for this formulation, but the majority of the protein was

encapsulated into the particles.
3.3.2.4 Effect of PLG Polymer MW

The ratio of surface-bound to encapsulated protein and the total protein

encapsulation efficiency for microparticles prepared with different MW PLG

polymers are detailed in Table 3.5 below and demonstrated in Figure 3.10 overleaf.
The encapsulation efficiency of BSA was slightly higher in particles made from the
lower MW PLG polymer (>80%) than the higher MW PLG polymer (approximately

70%). However when the higher MW PLG polymer was used, proportionally less

protein remained only loosely associated with the surface and more protein was

actually encapsulated into the particles.

Polymer
(MW)

Surface: Encapsulated
Protein (%)

Total Protein

(pg/mg)
Encapsulation
Efficiency (%)

Low 1 40:60 17.39 86.95
Low 2 52:48 16.50 82.50

High 1 30:70 13.73 68.65

High 2 40:60 14.25 71.25

Table 3.5 Comparison of encapsulation efficiency and the ratio of surface-
associated to encapsulated protein in particles made from low and high MW PLG
polymers
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Figure 3.10 Comparison of protein encapsulation ofmicroparticles prepared
using different molecular weight PLG polymers (2 batches for each polymer)
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3.3.2.5 Effect of Protein Concentration and Volume

The effect of the amount of protein included in the primary emulsion on the
ratio of surface-bound to encapsulated protein and the total protein encapsulation

efficiency of microparticles are detailed in Table 3.6 below and demonstrated in

Figure 3.11 overleaf. Protein loading of particles depended on the volume and
concentration of protein in the primary emulsion. However, above a certain level of

protein the encapsulation efficiency declined, such that proportionally less protein
became associated with the particles. The encapsulation efficiency was highest when
the standard amount of 2mg of BSA in lOOp.1 of solution was used. The proportion of
surface-bound to encapsulated protein remained approximately the same when the

protein amount was varied. When examined under SEM, more split and deformed

microspheres were observed following higher protein loading, perhaps due to the

higher volume of aqueous phase in the primary emulsion.

Amount of Surface: Encapsulated Total Protein Encapsulation
Protein Protein (%) (pg/mg) Efficiency (%)

2mg in lOOpl 48:52 14.97 74.85

4mg in 200pl 55:45 26.46 66.15

4mg in lOOpl 52:48 23.21 58.03

Table 3.6 Effect ofprotein loading on encapsulation efficiency and the ratio
of surface-associated to encapsulated protein
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Figure 3.11 Effect of protein loading on encapsulation efficiency and the ratio
of surface-associated to encapsulated protein

104



3.3.2.6 Encapsulation Efficiency of Different Proteins
The ratio of surface-bound to encapsulated protein and the total protein

encapsulation efficiency for microparticles prepared with BSA and OVA are detailed
in Table 3.7 and demonstrated in Figure 3.12 overleaf. The encapsulation efficiency
was much lower for OVA than for BSA for all the different amounts, volumes and

concentrations of protein used to make the primary emulsion. Less than half the
amount of OVA became associated with the particles than BSA. In addition,

proportionally more of the OVA became encapsulated than the BSA (60-78%). With

BSA, approximately half the protein became encapsulated, whilst the other half
remained surface-bound. The encapsulation efficiency of secreted proteins from L.

monocytogenes was approximately 54%, a level in between that of BSA and OVA.
Like OVA, most of the listeria protein became encapsulated, leaving only

approximately 20% surface-bound. These results are based on a mixture of proteins,
because specific L. monocytogenes proteins could not be quantified.

Protein Amount Surface: Total Protein Encapsulation
Encapsulated Content Efficiency (%)
Protein (%) (pg/mg)

BSA 2mg in lOOpl 48:52 14.97 74.85

OVA 2mg in lOOpl 35:65 7.23 36.15

BSA 4mg in 200pl 55:45 26.46 66.15

OVA 4mg in 200pJ 22:78 10.85 27.13

BSA 4mg in lOOpl 52:48 23.21 58.03

OVA 4mg in lOOpl 36:64 9.59 23.98

OVA 8mg in 200pl 40:60 23.67 29.59

Table 3.7 Comparison of the encapsulation efficiency and the ratio of
surface-associated to encapsulated protein for BSA and OVA

□ Surface-Bound Protein

Encapsulated Protein

Protein

Figure 3.12 Comparison of protein encapsulation of microparticles prepared
with ovalbumin and BSA at different protein volume and/or concentration
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3.3.3 Release of Protein from PLG Particles

The encapsulation efficiency of BSA and the ratio of surface-bound to

encapsulated protein for the 4 batches of microparticles prepared with the high MW
PLG polymer and the 4 batches prepared with the low MW PLG polymer are shown
in Table 3.8 overleaf. The method used resulted in encapsulation efficiencies for
BSA ranging from 65% to 85%. On average particles prepared with the higher MW
PLG polymer had better encapsulation efficiency of BSA (approximately 80%) than
those prepared with the lower MW PLG polymer (approximately 70%). Particles

prepared with the higher MW polymer had less protein bound to their surface and
more protein encapsulated within the particles, on average the ratio was 30%:70%,

compared to 50%:50% for the lower MW PLG polymer.

Batch Surface Encapsulated Ratio S:E Total Protein Encapsulation
Protein Protein Content Efficiency

pg/mg particles % pg/mg %

HI 5.99 11.07 35:65 17.06 85
H2 2.74 11.05 20:80 13.79 69
H3 5.40 11.49 32:68 16.89 85
H4 7.42 9.60 44:56 17.02 85
LI 7.99 5.10 61:39 13.09 65
L2 7.98 8.71 48:52 16.69 83
L3 5.57 7.91 41:59 13.48 67
L4 7.19 6.34 53:47 13.53 68

Table 3.8 Details of the different batches of particles prepared with BSA for
experiments examining the rate of protein release

The average rate of release of BSA protein from microparticles made from
the two different molecular weight polymers are shown in Figure 3.13a, and Figure
3.13b demonstrates the amount of protein released at each time point. For both PLG

polymers, there was an initial burst phase of protein release from the particles within
15 min to 1 h of being suspended in PBS, after which protein release continued at a

relatively slow rate for several weeks. The burst release was likely to be due to

surface-bound protein. More protein was released from the lower MW PLG particles
within this first hour, and by the end of the 10 week period these particles had
released more protein than the higher MW PLG microparticles. At the end of 10
weeks no further protein release appeared to occur from the lower MW particles.
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Figure 3.13a Cumulative protein release from high and low MW PLG
particles over 10 weeks at 37°C
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Figure 3.13b Cumulative protein release from high and lowMW PLG
particles over 10 weeks at 37°C

Table 3.9 demonstrates that when the higher proportion of surface-bound protein in
the lower MW PLG particles was accounted for (protein released within 1 h), the
amount of encapsulated protein released from particles made from the 2 different
MW polymers over the 10 week period of the experiment was very similar.
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PLG

Polymer
pg protein released from 50mg particles

Surface

(lh)
Total

(10 wk)
Encapsulated
(lOwk - lh)

Low 0.48 0.95 0.47

High 0.29 0.7 0.41

Table 3.9 Comparison of encapsulated protein release from high and low
molecular weight PLG particles

3.3.4 Particles Prepared With Proteins Secreted from L. monocytogenes
Particles were successfully prepared using the secreted supernatant proteins

from L. monocytogenes. The encapsulation efficiency was approximately 50% of the
total protein loaded. Of the protein associated with the particles, on average 23% was

surface-bound and 77% was encapsulated within the particles. The encapsulation
efficiencies are shown in Table 3.10 below. Particles were smooth and spherical

when examined by SEM and many particles were less than 1pm in diameter, as
demonstrated in Figure 3.14.

Batch Surface
Protein

Encapsulated
Protein

Ratio
S:E

Total
1

Total
2

Average
Total

Encapsulation
Efficiency

pg/mg particles % pg/mg particles %

LmHl 1.02 5.26 16:84 6.28 6.06 6.17 44

LmH2 1.71 6.08 22:78 7.79 10.13 8.96 64

LmLl 2.48 4.99 33:67 7.47 5.29 6.38 58
LmL2 2.26 4.37 34:66 6.63 5.50 6.07 46
Table 3.10 Protein encapsulation of particles incorporating secreted proteins
from L. monocytogenes

When the particles were incubated with a polyclonal antibody against LLO
and observed with an FITC label under a 470-490nm NB filter, the majority of

particles fluoresced strongly indicating the incorporation of LLO (Figure 3.15). No
differences could be observed in the labelling for LLO between the particles made
with the low and high MW PLG polymers.

Figure 3.16a shows proteins present in the original sample of secreted

proteins from L. monocytogenes separated on a 10% gel, and Figure 3.16b shows a

Western blot of these proteins probed with a monoclonal antibody against LLO.
There are a number of protein bands visible on the gel, and the anti-LLO antibody
reacted with two major bands on the blot at molecular weights of approximately
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58kDa and 45kDa, which probably represented LLO and a breakdown product of
LLO respectively. Both of these proteins were present on the surface and

encapsulated within particles prepared with the lower MW PLG, whereas these

proteins were encapsulated into but absent on the surface of particles prepared with
the high MW PLG. The Western blot of the surface-bound and encapsulated proteins
from both the high and low MW PLG particles, probed with the antibody against
LLO is demonstrated in Figure 3.16c.
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Figure 3.14 High MW PLG microparticles incorporating proteins from L. monocytogenes

Figure 3.15 Particles labelled with polyclonal anti-LLO antibody, x272 magnification

MW1
a

V 1 2 3 4 5

LLO

1 = original material

2 = low MW surface
3 = low MW encapsulated

4 = high MW surface
5 = high MW encapsulated

Figure 3.16 Molecular weight standards and secretory proteins from a culture of
L. monocytogenes a) silver stained, and b) Western blot probed with antibody
against LLO. c) Western blot of surface and encapsulated proteins from high
and low MW PLG particles probed with antibody against LLO
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1 = low MW surface
2 = low MW encapsulated
3 = high MW surface
4 = high MW encapsulated
7 = original material

+ positive control
- negative control

3.3.5 Functional Activity of Encapsulated LLO Protein
The microtitre plate from the haemolysis assay is shown in Figure 3.17

overleaf. The seventh column of wells contained the original culture supernatant

fluid, diluted 1:10 in PBS, pH 6.0, and double diluted down the plate. At all

dilutions, the red blood cells in all of the wells were completely lysed, demonstrating
that LLO was present and functionally active in sufficient quantities to lyse the

quantity of cells present.

Figure 3.17 Haemolysin assay demonstrating functional activity of surface-
bound and encapsulated LLO in both low and high MW PLG microparticles

Columns 1 and 2 show the proteins extracted from the low MW PLG microparticles,
double diluted down the plate. Red blood cells have been lysed in the first three wells
in column 1 and the first two wells in column 2, indicating that the LLO protein
extracted from the low MW PLG microparticles remained functionally active.
Columns 3 and 4 contain surface-bound and encapsulated proteins respectively from
the high MW PLG microparticles. The lack of lysis in column 3 supports the
evidence from the Western blots, indicating that LLO was absent on the surface of
the high MW particles. Red blood cells were lysed in the sample of encapsulated

protein from the high MW PLG microparticles, showing that LLO was present inside
the particles and had retained its functional activity. The amounts of LLO detected
were considerably lower than in the original material because a relatively small

aliquot of particles (15mg) was used.
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3.4 DISCUSSION

The results presented in this study demonstrate the generation of PLG

particles in the nanoparticle size range with maximum protein encapsulation and

long-term release properties for future mucosal immunisation studies. The range of
emulsification rates and times used in this study consistently resulted in the

production of microparticles within the optimal size range for M cell uptake (<2pm
in diameter) (Brayden & Baird, 2001). The different speeds and duration of

homogenisation were clearly appropriate for the development of sub-micron

particles. After a certain point increasing the homogenisation time or speed had no

further effect on particle size and the droplet size remained stable. The bimodal
distribution of particle size is typically associated with the use of relatively high
concentrations of PLG polymer and low concentrations of PVA in the double
emulsion technique (Rafati et al., 1997). Polymer droplets in the primary emulsion
contained variable amounts of the aqueous protein phase, resulting in non-uniform

droplet size reduction on solvent evaporation, non-uniform shrinkage of particles and
a heterogeneous particle size distribution. Microparticles of different dimensions
within a distinct defined size range may be beneficial as a mucosal delivery system

and should ensure that a proportion are taken up by M cells, as there is still debate

concerning the most appropriate size of particle to optimise M cell uptake.
The encapsulation efficiency for BSA was consistently relatively high for all

particle formulations, with on average a 50:50 ratio of surface:encapsulated protein.
This high proportion of surface-associated protein is associated with small

microspheres that have a large relative surface area (Watts et al., 1990; Rafati et al.,

1997). The concentrations of PVA and PLG used in these studies remained constant,

and were chosen with the aim of optimising protein encapsulation within a small

particle size range. A relatively high concentration of polymer was used, and is

thought to restrict migration of the inner aqueous/protein phase in emulsion droplets
to the external water phase to improve protein entrapment efficiency (Ogawa et al.,

1988; Yan et al., 1994). At this concentration of PLG, variation in PVA

concentration is thought to have minimal effect on protein loading (Rafati et al.,

1997).
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Variation in the speed and duration of the primary or secondary emulsion

homogenisation did not appear to have marked effects on protein encapsulation

efficiency, which may be a consequence of the considerable batch variation in

protein encapsulation that is commonly associated with the double emulsion solvent

evaporation technique. Increasing the homogenisation speed may tend to increase

protein encapsulation, by forcing more protein to become associated with the PLG.

However, it would appear that subtle differences in emulsification rate and time
within the range examined in this study have little bearing on the final amount of

protein that becomes associated with the PLG polymer. Further replications of each
batch are required to make more definitive conclusions, but the range of protein

encapsulation produced was relatively high (75% on average) and sufficient for the

encapsulation of protein antigen for immunisation studies. At lower concentrations of
PVA decreasing homogenisation rate in the secondary emulsion has been shown to

improve protein loading (Rafati et al., 1997), but this effect could not demonstrated
in this study using 5% PVA.

Protein loading of particles (in pg/mg particles) could be increased by the
addition of an increased amount of protein to the PLG polymer in the primary

emulsion, either by increasing the volume or protein concentration. However,

increasing the amount of protein decreased the encapsulation efficiency. Whilst

particles contained an increased amount of protein, the proportion of the original

protein that became associated with the polymer was significantly reduced,

suggesting that there may be a saturation level of protein that can be incorporated
into the polymer. This confirms previous findings that increasing the volume fraction
of the internal aqueous phase in the primary w/o emulsion lowers encapsulation

efficiency (Herrman & Bodmeier, 1995). In addition in the present study SEM
revealed more split and deformed microspheres at higher protein loading. Split

particles are likely to be due to the higher volume of aqueous phase in the primary
emulsion that leads to increased formation of aqueous channels and increased

porosity, particularly in the more hydrophilic low MW PLG.
In general there was a high proportion of surface-associated protein on

particles produced in this study. Considerable surface association of albumin with

sub-5(xm PLG microparticles has previously been documented using the double
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emulsion solvent evaporation technique (Coombes et al., 1996; Rafati et al., 1997).

Increasing the homogenisation speed and time tended to further increase the

proportion of surface-associated protein, suggesting smaller particles may have been

produced under these conditions with a larger relative surface area that facilitated
further surface association of protein. The role of the distribution of surfacexore

protein in immunisation is unclear, but it may exert a profound effect on the immune

responses produced. A higher proportion of encapsulated protein is desirable, as this

protein is more protected from the harsh mucosal environment and is retained within
the PLG particle until M cell uptake occurs.

BSA has been widely used as a model antigen for this type of study (e.g.
Rafati et al., 1997; Ho et al., 1998). BSA and PLG have been shown to interact

favourably and instantaneously by co-precipitation, forming an interfacial film that
has a stabilising effect on primary water/oil emulsions (Nihant et al., 1994, 1995).

However, other proteins may interact with the polymer differently, and hence the

encapsulation of BSA was compared with OVA, a protein related to BSA. Both

proteins are hydrophilic and should be structurally similar. However, the

encapsulation efficiency was much lower for OVA than for BSA (less than half), and

proportionally more BSA remained surface-bound than OVA. Similarly, in particles
made from a 75:25 PLG polymer BSA loading was more than doubled compared to

OVA (Takahata et al., 1998). However, a higher proportion of BSA than OVA was

encapsulated in the particles made from this polymer, possibly due its higher

hydrophobicity. The reasons for the differences in the association or the affinity of
the two proteins with PLG are unclear, but may be related to the structure of the

proteins, their relative hydrophilicity or molecular weight. These results demonstrate
that the encapsulation of individual proteins into the PLG microparticle delivery

system must be determined, and that the results from one protein may not necessarily
be translated to another protein.

The chemical composition of the polymer and its affinity for protein are also

thought to have an effect on protein encapsulation (Blanco & Alonso, 1997). Low
MW PLG is more hydrophilic than high MW PLG because it consists of shorter

polymer chains with more hydrophilic end carboxyl groups. Increased hydrophilicity
leads to increased influx of the aqueous phase containing protein into the dispersed
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polymer droplets during primary emulsification, and therefore better protein

encapsulation, as was demonstrated in the present study. In addition, as the lower
MW PLG is more water-soluble it precipitates more slowly out of the secondary

emulsion, so it takes longer for the protein to diffuse out of the microparticles into
the continuous aqueous phase, due to the osmotic pressure difference. The other
main difference between the two polymers was that particles prepared with the

higher MW PLG polymer had a lower proportion of surface-bound protein than the

particles prepared with the lower MW PLG. The more hydrophobic high MW PLG

polymer precipitates more quickly which leads to improved encapsulation of the

protein and slower release. Some of the high proportion of surface-associated protein
on the lower MW PLG particles may have been due to protein that had diffused out

of the particles as discussed above. In addition, higher MW PLG particles tend to be

slightly larger than lower MW PLG particles, because the high MW polymer solution
is more viscous and therefore more difficult to disperse (Gasper et al., 1998).
Therefore high MW PLG particles may have a smaller surface area for protein to

become associated with.

An initial burst phase of protein release occurred from both high and low

MW PLG particles when incubated at 37°C. This occurred within 24 hours, but the

majority was released within one hour. Burst release of protein from PLG particles is
a common phenomenon considered to be due to the release of protein loosely
associated with the surface of the particles (Wang et al., 1991). More protein was

released from particles made from the lower MW PLG polymer, reflecting the higher

proportion of surface-bound protein associated with these particles. Within the first
24 hours, 40% of protein had been released from particles made from the low MW
PLG polymer whereas 23% had been released from particles made from the high
MW PLG polymer. In concurrence with these figures, previous analysis had
demonstrated that 50% of protein was surface-associated with the low MW particles,
and 30% with the high MW particles.

Following this burst phase of release, encapsulated protein is released more

slowly from the particle core. Protein release initially occurs by diffusion through
fluid filled pores (McGinity & O'Donnell, 1997). The first stage in the

biodegradation process is a decrease in polymer MW, caused by random hydrolytic
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cleavage of the ester linkages. The second stage is onset of polymer mass loss (Pitt et

al., 1981). As degradation occurs protein is released through the polymer matrix.
Protein release depends on a number of factors, such as the degradation rate of the
PLG copolymer matrix, the denaturation and aggregation of protein molecules, and
the level of polymer-protein binding. The 50:50 lactide/glycolide copolymers are

thought to have the fastest degradation rate, and complete degradation occurs in
about 50-90 days in vivo.

Most protein release from the lower MW PLG particles occurred within the
first 4-5 weeks, after which time approximately 92% of the BSA associated with the

particles had been released. Particles made from the higher MW PLG polymer
released encapsulated protein more slowly. Protein release continued for the duration
of the experiment, by which stage approximately 69% of protein had been released.
This suggested that degradation of the higher MW PLG polymer matrix occurred
more slowly, perhaps due to increased polymer chain length and increased

hydrophobicity. Water ingress into more hydrophobic PLG is reduced, hence it takes

longer for the polymer to be broken down into smaller water-soluble molecules by

hydrolysis to the critical level at which protein release can occur. Incomplete protein
release from the low MW microparticles may be due to protein aggregation and non¬

specific adsorption (Lu & Park, 1995a,b). However, despite differences in the rate of

protein release between the two polymers, by the end of the experiment similar
amounts of encapsulated protein had been released from both types of particle.

Prolonged release of protein from particles is desirable for vaccination and may
result in prolonged stimulation of the immune system, minimising the need for
booster immunisations.

These results offer a reflection of the release characteristics of the PLG

particles following uptake into the MALT by M cells, but the different physiological
conditions in the body may alter the release properties. Recently, the rate of

degradation of PLG has been confirmed to be faster in vivo than in vitro (Gupta et

al., 1996). Historically, several investigators have reported that enzymes play a

significant role in the breakdown of the polymer and that the rate of degradation is

dependent on cell uptake (Herrman et al., 1970; Williams & Mort, 1977). Plasma

proteins have also been demonstrated to accelerate the degradation rate (Makino et
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al., 1987). The rate of degradation may also have an effect on the immune response

produced. Following oral vaccination with OVA in mice, a more rapidly degrading

polymer was shown to be effective for the induction of salivary IgA while a more

slowly degrading polymer was more effective for the induction of serum IgG

(O'Hagan et al., 1994).
A mixture of secreted proteins from L. monocytogenes was also successfully

encapsulated into sub-micron PLG particles, showing that the methods developed in
this chapter could be used to encapsulate a biologically relevant protein or mixture of

proteins with potential for use as antigens for mucosal immunisation. Most data

concerning protein encapsulation, stability and functionality focus on a single

commercially available protein, and there is little literature available concerning the

encapsulation of a mixture of proteins. Approximately 50% of the total secreted

proteins from L. monocytogenes added to the primary emulsion became associated
with both high and low MW PLG microparticles, an encapsulation efficiency
between OVA and BSA. As with BSA, more protein became associated with the
surface of particles made with the low MW PLG. Of particular interest was LLO,

clearly shown to be encapsulated in the particles by labelling with fluorescent

antibody. Western blot analysis and haemolysis assay revealed an interesting

discrepancy between the low and high MW PLG polymers. LLO was only present in
the core of particles made from the high MW particles but was present in the core

and on the surface of particles made from the low MW polymer.
A major challenge in the microencapsulation of proteins in PLG

microspheres is to retain their functional activity and tertiary structure (Gombotz &

Pettit, 1995). A number of structural modifications can occur due to denaturation,

aggregation, conformational changes, chemical degradation and adsorption onto

polymer surfaces. Such changes may be induced by solvent interactions or
mechanical processing. In addition, an acidic environment is created within the PLG

microparticles as they degrade due to the cleavage of ester groups during degradation
of the polymer matrix, which can denature proteins and impede their release (Park et

al., 1995). Despite these factors some evidence suggests that PLG microspheres can

protect enzyme from activity loss. Unencapsulated HRP can lose 80% of its activity
in solution at 37°C in a few days, whereas encapsulated enzyme can retain more than
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55% of its activity after 21 days incubation at 37°C (Cohen et al., 1991). LLO

appears to retain its stability and antigenicity and is clearly visible as a single band

on an SDS-PAGE gel following encapsulation. Furthermore, the haemolysis assay

demonstrated that LLO retained its functional activity following encapsulation,

despite the factors described above. Further investigation of the retention of
functional activity following particle degradation and protein release is now required.

These studies show that there is potential for proteins to retain antigenicity
and functionality following encapsulation into PLG microparticles. A range of

particle sizes can be produced, including particles below 1pm in diameter. This range

of sizes should ensure that particles of adequate size for M cell uptake are present in
the vaccine formulation. The high MW polymer was chosen to produce particles for
immunisation studies. Particles made from this polymer contained more core protein,
and the controlled release of protein from high MW PLG particles continued for

longer periods of time. In addition this polymer is more hydrophobic, and previous
work has demonstrated that increasing the hydrophobicity of antigen-associated

microspheres may improve the immune response (Alpar & Almeida, 1994). The

following chapter describes the use of the methods developed in this study to

encapsulate antigen from Toxoplasma gondii together with an adjuvant into PLG

nanoparticles. These particles shall be used to target M cells overlying ovine NALT
in intranasal immunisation studies.
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CHAPTER 4

Preparation of Antigen from Toxoplasma gondii
and Encapsulation into the Microsphere

Delivery System
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4.1 INTRODUCTION

The optimal formulation conditions developed in Chapter 3 shall now be

applied to the encapsulation of protein antigen for intranasal immunisation studies in

sheep. The model disease system to be used in these studies is Toxoplasma gondii.
The purification and encapsulation of antigen from the tachyzoite stage of the

parasite life cycle into PLG nanoparticles shall be investigated. Immunity against this
initial fast-replicating stage of the life-cycle is thought to be central to the prevention
of infection. Although there may be antigenic differences between tachyzoites,

bradyzoites and sporozoites (Lunde & Jacobs, 1983; Kasper et al., 1984; Suzuki et

al., 1988; Woodison & Smith, 1990), tachyzoite-derived antigens given

subcutaneously have been shown to stimulate substantial protective immunity against
an oral oocyst challenge in sheep (Buxton et al., 1991).

The main tachyzoite antigen of interest is the 30kDa major surface antigen

(SAG1), which is thought to be involved in the process of invasion (Mineo &

Kasper, 1994). SAG1 is the most abundant protein in the tachyzoite, constituting 5%
of the total protein (Kasper et al., 1983). It is also thought to be one of the
immunodominant proteins recognised by serum IgG and slgA antibodies (Chardes et

al., 1990). SAG1 is the principle vaccine candidate antigen of T. gondii and several
studies in mice have shown the value of SAG1 as a protective antigen following

parenteral and more recently mucosal immunisation (Bulow & Boothroyd, 1991;

Darcy et al., 1992; Khan et al., 1991; Debard et al., 1996; Velge-Roussel et al.,

2,000; Bonenfant et al., 2001). Vaccination with purified natural SAG1 (Debard et

al., 1996), with recombinant SAG1 (Petersen et al., 1998), or with SAG1 derived

peptides (Darcy et al., 1992; Velge-Roussel et al., 1997) have all demonstrated the

development of significant protection against lethal challenge in animal models.
The potential to use cholera toxin (CT) as a mucosal adjuvant for intranasal

immunisation in sheep will also be investigated. Vaccines consisting of homogenates
or soluble extracts of killed toxoplasma parasites are often less immunogenic than
live ones, and may not be able to induce a satisfactory level of protection (Bout et al.,

2002). Cholera toxin has been shown to be a potent mucosal adjuvant for both total

antigen of T. gondii and SAG1 using the oral or intranasal immunisation route in
mice (Bourguin et al., 1993; Debard et al., 1996). CT is thought to enhance both the

120



anti-T. gondii IgA response and mucosal cellular immunity with increased IFNy
secretion .

CT can either be co-entrapped with the toxoplasma antigen in the PLG

particles or it can be delivered with the particles. However co-entrapment of the

adjuvant with the antigen is likely to be superior for immunisation because the two

agents are maintained in close proximity at the time of release from particles to

antigen-presenting cells, and encapsulation protects the adjuvant from the mucosal
environment. CT present on the surface of particles may also directly interact with

the epithelial surface to enhance particle uptake. In mice a vaccine dose of 20p.g of

SAG1 and lpg of CT is effective for the induction of protective immunity (Debard et

al., 1996). This 20:1 ratio will be used to prepare PLG particles containing both

toxoplasma antigen and CT for intranasal delivery to sheep.
To the best of the author's knowledge the encapsulation of SAG1 or other

proteins from T. gondii into PLG microparticles has not been previously investigated.
It is hoped that the results presented in Chapter 3 will maximise protein

encapsulation into particles of the appropriate size for M cell uptake with long-term
controlled release properties.

4.2 MATERIALS AND METHODS

4.2.1 Mice

110 adult female Swiss White (outbred) and Porton mice (minimally inbred)
were used to passage and maintain T. gondii tachyzoites of the RH strain. Mice were

group housed and supplied with proprietary food and water ad lib.

4.2.2 Toxoplasma gondii

4.2.2.1 RH strain

T. gondii incomplete strain RH was originally isolated in Cincinnati (USA)
from mice inoculated with a tissue sample from the CNS of a 6 year old boy with a

fatal acute nonsuppurative encephalitis (Sabin, 1941).
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4.2.2.2 Maintenance of Tachyzoites
T. gondii tachyzoites of the RH strain were maintained by passage in female

mice. Five adult female Swiss White mice were each inoculated intraperitoneally

with c.2xl07 T. gondii tachyzoites (0.2ml inoculum) taken directly from storage in

liquid nitrogen, and examined daily for symptoms of disease, including fever, staring
coats and panting. Mice that appeared dull and lethargic were culled immediately to

avoid further distress. After 5 days mice were killed by carbon dioxide inhalation and

tachyzoites were harvested by repeatedly irrigating the peritoneal cavity with PBS

using a 26 gauge (26G) needle and syringe until the washes became clear.

Tachyzoites were then counted in an improved Neubauer haemocytometer using an

Olympus BX50 microscope with a x40 objective (Olympus, London, UK), and an

inoculum containing 107 tachyzoites/ml was prepared in 50% PBS and 50% tissue
culture strength penicillin/streptomycin. A further 5 adult female Swiss White mice
were then inoculated with 106 tachyzoites per mouse from the above inoculum

(0.1ml inoculum per mouse), left for 3 days, and checked daily for signs of disease.
The mice were then killed by carbon dioxide inhalation and tachyzoites harvested as

described above. Sufficient inoculum was prepared from these tachyzoites for a
batch of 100 adult female Swiss White or Porton mice, which were then inoculated

as described above. Mice were left for 3 days, culled and parasites harvested as

before. Peritoneal washings were now white in appearance and any that were

excessively contaminated by blood were discarded.

4.2.2.3 Extraction of Proteins from Toxoplasma Tachyzoites
The peritoneal washings collected from infected mice were given up to 10

alternate washes in PBS and Hank's Balanced Salt Solution (HBSS) pH7.4 (Gibco,

Invitrogen, Paisley, UK), by centrifugation at 500xg for 5 min and resuspension in
10ml of buffer, to minimise host cell contamination. After the final wash the pellet

was resuspended in 10ml of PBS, and a lOOpl aliquot was taken and diluted in 2%

glutaraldehyde either 1:10 to count cellular contamination or 1:1,000 to count

tachyzoites. The counts were performed in an improved Neubauer haemocytometer

using an Olympus BX50 microscope with a x40 objective (Olympus, London, UK).
The tachyzoites were then pelleted at 500xg for 5 min, stored at -20°C until required
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and freeze-thawed three times before use. A crude extract of proteins was prepared

by lysing 2xl08 RH tachyzoites per ml of extraction buffer (50mM TrisHCl pH8.3,
0.5% Nonidet P-40, 150mM NaCl, 2mM EDTA, ImM PMSF, 0.02% (w/v)

aprotinin) on ice (adapted from Debard et al., 1996). The lysates were centrifuged at

40,000xg for 1 h at 4°C and the supernatants were collected.

4.2.3 Protein Analysis

4.2.3.1 SDS-PAGE

Proteins were separated by gel electrophoresis as outlined by Laemmli (1970)

using the Mini-Protean II gel system (Bio-Rad, Hemel Hempstead, UK). 15pl of
each sample were mixed with an equal volume of non-reducing sample buffer

(62.5mM Tris-HCl pH 6.8, 2% w/v SDS, 10% w/v glycerol, 0.002% w/v

bromophenol blue) prior to loading into the wells of discontinuous SDS-PAGE

minigels. 12% acrylamide gels that had been made in separating gel buffer (0.375M
Tris-HCl pH8.8, 1% w/v SDS, 0.1% v/v TEMED, 0.1% w/v ammonium persulfate

(APS)) were used for protein separation. The separating gel was overlaid with a 4%

acrylamide stacking gel made in stacking gel buffer (0.15M TrisHCl pH 6.8, 0.5%
w/v SDS, 0.2% v/v TEMED, 0.2% w/v APS). Proteins were separated at 200V for
45-60mins in tank buffer (25mM Tris, 200mM glycine, 5mM SDS pH8.3) until the

dye front had reached the bottom of the gel. Molecular weight markers were included
in all gels, either Markl2™ Unstained Standards (Novex, Invitrogen, Paisley, UK) or

SeeBlue™ Plus2 Pre-Stained Standards (Novex, Invitrogen, Paisley, UK).

4.2.3.2 Protein Detection on SDS-PAGE Gels

Separated proteins were visualised by silver staining (Morrissey, 1981).

Firstly the proteins in the gels were fixed in 50% (v/v) methanol, 10% (v/v) acetic
acid in distilled water for 20 min, then twice in 5% (v/v) methanol, 7% (v/v) acetic

acid in distilled water for 10 min. After two 5 min washes in distilled water, proteins

were reduced in 5pg/ml dithiothreitol (DTT) in distilled water for 15 min, washed

again, and stained in 0.1% silver nitrate in distilled water for 20 min. Gels were then
washed briefly and finally developed for stained protein by immersion in 3% sodium
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carbonate containing 0.05% formaldehyde. Development was terminated by the
addition of citric acid to 1% w/v.

4.2.3.3 Western Blot Analysis
Immuno-blot analysis was performed on proteins separated by SDS-PAGE

and electrotransferred to Protran BA 83 nitrocellulose membranes (Schleicher and

Schull, Anderman, Kingston upon Thames, UK) by semi-dry Western blot. The gel
and membrane were sandwiched between several sheets of 3mm filter paper soaked
in transfer buffer (24mM Tris, 192mM glycine, 20% v/v methanol) and placed in the
Western blot apparatus. Transfer took place at 70mA/gel (2mA/cm of gel) for 1 hr.
The membranes were then blocked in PBS containing 5% non-fat milk powder

(Marvel, Chivers, Dublin, Ireland) for 30min at RT and washed thoroughly in wash
buffer (PBS containing 0.5M NaCl and 0.5% (v/v) Tween®80). The membranes were

then probed with a mouse IgG anti-SAGl monoclonal antibody (Couvreur et al.,

1988) diluted to 1:5,000 in blot wash buffer for lh at RT (Mab 1E5, kindly gifted by
J.F. Dubremetz, U42 INSERM, Villeneuve d'Ascq, France). Negative controls were

provided by omitting the primary antibody. Following extensive washing of the blot,
bound antibody was visualised by a further 1 h incubation with a 1:2,000 dilution of
a goat anti-mouse antibody conjugated to biotin (Dako, Ely, UK) in wash buffer,
followed by further washing and a 1 h incubation in a 1:2500 dilution of streptavidin

conjugated to horseradish peroxidase (HRP) (Dako, Ely, UK). After a final wash
HRP was detected by treating blots with either DAB (Sigma Fast™ DAB Tablet,

Sigma, Dorset, UK) or the enhanced chemiluminescence (ECL) reagent (Amersham

International, Little Chalfont, UK) according to the manufacturer's instructions, and

exposure to Hyperfilm ECL (Amersham International, Little Chalfont, UK) for

approximately 5 sec before development.

4.2.3.4 Protein Assays
Protein assays were performed with the bicinchoninic acid (BCA) enhanced

protein assay (Pierce Chemical Company, Rockford, Illinois, USA) using either the

microplate or the test-tube method as described by the manufacturer's protocol.
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4.2.3.5 Concentration of Proteins

Proteins were concentrated at least 10-fold using centrifugal filter units. For
volumes up to 2ml, proteins were concentrated in Centricon® YM-10 (molecular

weight cut-off 10,000 kDa) microconcentrator cells (Amicon, Stonehouse, UK) at

5,000 x g. For volumes up to 15ml, proteins were concentrated in Centriprep® YM-

10 concentrators (Amicon, Stonehouse, UK) at 3,000 x g.

4.2.4 Purification of SAG1

4.2.4.1 Gel Filtration Chromatography
Chromatography was carried out using a High Performance Liquid

Chromatography (HPLC) system (Waters, Milford, USA). Proteins were separated
on the basis of size by gel filtration chromatography. It has been established that
SAG1 has a molecular weight of approximately 30kDa (Couvreur et al., 1988).

Superose 12 (Amersham Pharmacia Biotech, Little Chalfont, UK), which separates

proteins between 1- 300 kDa, was chosen as the optimal chromatographic column for

separation of this protein.

200pl volumes of the toxoplasma protein extract were loaded onto a 10mm x

300mm Superose 12 HR column (Amersham Pharmacia Biotech, Little Chalfont,

UK) equilibrated with running buffer (50mM Tris-HCl pH8.3, 0.5% Triton-XlOO

reduced, 150mM NaCl, 2mM EDTA). Column flow rate was kept constant at
0.2ml/min and 0.4ml fractions were collected every two minutes. OD at 280nm was

monitored using an absorbance detector and fractions relating to peaks were retained

for further analysis.

4.2.4.2 Analysis of Fractions

2jx\ of each fraction collected and retained from the column were dotted on

small squares of Protran BA 83 nitrocellulose membrane (Schleicher & Schull,

Dassel, Germany) and allowed to dry completely for dotblot analysis. A positive
control of original material was also included. The nitrocellulose was then blocked in
PBS containing 5% non-fat milk powder (Marvel, Chivers, Dublin, Ireland) and

probed with the monoclonal anti-SAGl antibody as detailed in Section 4.2.3.3.
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Fractions which tested positive for SAG1 were pooled, concentrated 10-fold (Section

4.2.3.5) and analysed further by SDS-PAGE (Section 4.2.3.1) and Western blot

probed with the monoclonal anti-SAGl antibody (Section 4.2.3.3).

4.2.5 Preparation of PLG Microparticles for Immunisation Studies

4.2.5.1 Microparticles Incorporating Proteins from T. gondiiTachyzoites

Toxoplasma antigen was prepared according to the methods described in
Section 4.2.2.3 and concentrated to approximately 20mg/ml as detailed in Section

4.2.3.5. A primary emulsion was made by homogenising lOOpl of this protein
solution with 2ml of a 5% PLG solution in DCM (50:50 PLG copolymer, P2191, Mr

40,000-70,000, Sigma, Dorset, UK) in a glass test-tube at 16,000rpm for 2 min. The

primary emulsion was then homogenised with 20ml of a 5% solution of PVA at

19,000rpm for 2 min to create the secondary emulsion. The secondary emulsion was

maintained overnight under magnetic stirring to facilitate the evaporation of excess
DCM. Particles were then centrifuged in a Beckman J2-21 centrifuge using a JA20.1
rotor (Beckman Coulter, High Wycombe, UK) at 12,000rpm for 10 min. The

microparticles were washed twice to remove excess PVA by redispersion in 20ml of
distilled water and centrifugation at 8,000rpm for 3 min. Particles were then

rehydrated in approximately 2ml of distilled water and lyophilised for at least 48 h.
Three batches of particles were prepared using this method.

4.2.5.2 Microparticies Incorporating Proteins from T. gondii Tachyzoites and
Cholera Toxin

Cholera holotoxin (Sigma, Dorset, UK) was reconstituted to a concentration
of lOmg/ml. The primary emulsion for the microparticles was prepared using the

methods detailed in Section 4.2.5.1 incorporating 100pl of the toxoplasma antigen

and 10pl of the cholera toxin solution into the PLG solution in the primary emulsion
to give a 20:1 ratio of antigen:adjuvant in the particles. Three batches of particles
were prepared using this method.
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4.2.5.3 Negative Control Microparticles
Particles were made according to Section 4.2.5.1, using IOOjj.1 of distilled

water to make the primary emulsion. Three batches of blank microparticles were

prepared using this method.

4.2.6 Analysis of Particles

4.2.6.1 Analysis of Protein Content of Particles

lOmg microparticles were dispersed in 0.5ml of 0.01M PBS, pH 7.4

containing 2% w/v SDS. The resulting suspension was rotated at room temperature

for 1 h, and then centrifuged at 14,000rpm for 5 min. The supernatant was removed
and analysed to give a measurement of the amount of protein associated with the
surface of the microparticles. The microparticle pellet was then resuspended in 0.5ml
of 0.5M NaOH containing 5% w/v SDS and this suspension was rotated gently for 3-
4 h at room temperature until particles had completely dissolved. This suspension
was then assayed to give a measurement of the amount of protein encapsulated
within the particles. A further 5mg microparticles were dispersed in 0.5ml of 0.2M
NaOH containing 5% w/v SDS and gently mixed for 3-4 hours until the particles had

completely dissolved. This solution was then assayed to give a measure of protein

encapsulation efficiency. Protein contents were measured by the test tube method

using the Pierce BCA assay detailed in Section 4.2.3.4

4.2.6.2 Analysis of Particle Size and Morphology
Particle size and surface morphology were examined using SEM. A small

sample of microparticles was suspended in a small volume of distilled water, placed
on aluminium stubs and allowed to air dry. The stubs were then sputter coated with

gold (SCD030 Balzers Union Ltd., Liechtenstein) and examined in a Phillips 505

scanning electron microscope (Phillips, Eidhoven, Netherlands). The range of
diameter of the particles was assessed on the micrographs produced.
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4.2.6.3 Comparison of Surface and Encapsulated Proteins
Surface-associated and encapsulated protein samples were obtained from

microparticles as detailed in Section 4.2.6.1 and concentrated approximately 10-fold
as detailed in Section 4.2.3.5. Proteins were separated on 12% non-reducing gels as

detailed in Section 4.2.3.1 and visualised using silver stain as detailed in Section
4.2.3.2. Further gels were blotted and probed for SAG1 using the monoclonal anti-
SAG1 antibody as detailed in Section 4.2.3.3 or a 1:5,000 dilution of a rabbit anti-
cholera toxin antibody (C3062, Sigma, Dorset, UK).

4.2.6.4 Dual Staining of Particles with Antibodies Against SAG1 and CT
A small quantity of toxoplasma + cholera toxin microparticles was rehydrated

in distilled water, and 5pl or lOpl amounts of the suspension were dotted onto

electrostatically charged microscope slides (SuperFrost® Plus, Menzel-Glaser®,
Germany). The particles were then left for approximately 1 h to dry completely onto

the slides. The slides were washed thoroughly with PBS containing 1% BSA and
0.05% Tween®20 (Sigma, Dorset, UK), and then incubated in a 1:1,000 dilution of a

polyclonal rabbit anti-cholera toxin antibody (C3062, Sigma, Dorset, UK) for 1 h at

RT. The slides were washed thoroughly in PBS and incubated in a 1:50 dilution of a

goat anti-rabbit IgG antibody conjugated to tetramethyl rhodamine isothiocyanate

(TRITC) for 1 h at RT (T6778, Sigma, Dorset, UK). The slides were washed again
and incubated in a 1:1,000 dilution of the monoclonal mouse anti-SAGl antibody for
1 h at RT. The slides were washed in PBS and incubated in a 1:400 dilution of a goat

anti-mouse IgG antibody conjugated to biotin (Dako, Ely, UK) for 1 h at RT. The
slides were washed again and incubated in a 1:100 dilution of streptavidin

conjugated to fluorescein isothiocyanate (FITC) (Dako, Ely, UK) for 1 h at RT,
before being washed thoroughly in PBS and mounted in Citifluor® (CitiFluor Ltd.,

London, UK). Negative controls were produced by staining blank particles with the
same method, or by staining toxoplasma + cholera toxin particles with unrelated

isotype-matched monoclonal antibodies raised in both rabbit and mouse. Slides were

examined under an Olympus BX50 microscope microscope (Olympus, London, UK)

using a x40 objective. TRITC was visualised under a green (NG) filter at 530-

550nm, and FITC was visualised under a blue (NB) filter at 470-490nm.
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4.3 RESULTS

4.3.1 Extraction of Proteins from T. gondii Tachyzoites
In total 5.4xl09 tachyzoites were harvested from the peritoneal cavities of the

o

mice used in this study, and were divided into 10 aliquots, each of 6x10 tachyzoites.
Each aliquot of tachyzoites was lysed in 3ml of extraction buffer as described in
Section 4.2.2.3. The protein concentration of the extraction buffer from each aliquot
is shown in Table 4.1 below. Comparable amounts of protein were obtained from
each aliquot and in total approximately 38mg protein were obtained from the

toxoplasma tachyzoites harvested in this study. The average protein concentration of
each extraction was 1.25mg/ml, equating to approximately 3.75mg protein from each

aliquot of 6xl08 tachyzoites. The extracts were pooled and a small aliquot was kept
aside for later assays.

Aliquot Volume Protein Concentration Total Protein

(ml) (mg/ml) (mg)
1 3 1.032 3.096

2 3 1.34 4.02
3 3 1.421 4.263
4 3 1.409 4.227

5 3 1.381 4.143
6 3 1.147 3.441

7 3 1.447 4.341

8 3 0.952 2.856
9 3 1.153 3.459

10 3 1.245 3.735

Table 4.1 Protein concentration in extraction from each aliquot of tachyzoites

The extracted tachyzoite proteins are demonstrated in Figure 4.1. The silver-
stained gel in Figure 4.1a shows that there were a large number of proteins present in
the tachyzoite extract, in a wide range of molecular weights. There was a large,

darkly stained band visible at the approximate location of the carbonic anhydrase
marker (31kDa). This protein was the most likely candidate for SAG1, which has a

published molecular weight between 30kDa - 32kDa (Couvreur et al., 1988). The

intensity of the staining of the band shows that this protein was present in large

quantities and was one of the most abundant proteins in the extract.
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Figure 4.1 Extract ofproteins from toxoplasma tachyzoites separated on
12% non-reducing gels. Figure 4.1a shows a silver-stained gel while 4.1b
shows a Western blot probed with the anti-SAG1 monoclonal antibody,
visualised using DAB

When a Western blot of the extract was probed with the monoclonal

antibody, SAG1 was clearly visible as a large, darkly stained band at a molecular

weight of approximately 30kDa, shown in Figure 4. lb. The position of SAG1

corresponded to the location of the major band discussed on the silver stained gel,

confirming that this protein was SAG1. Some other proteins in the extract with

higher molecular weights appeared to show a small degree of cross-reactivity with
the antibody but this was negligible compared to the strong staining visible for
SAG1. No non-specific staining was visible on the negative control.
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4.3.2 Partial Purification of SAG1 using Gel Filtration Chromatography
The chromatogram produced by gel filtration of the tachyzoite extract using

Superose 12 is demonstrated in Figure 4.2. A small peak of protein was eluted from
the column at a retention time of 40 min (fraction 20), and a larger peak at a retention
time of approximately 56 min (fraction 28). The bulk of protein was eluted from the
column directly after this peak in one very large peak that had a shoulder (retention
time 65 min, fraction 32), suggesting that good separation of proteins may not have
been achieved. A very small amount of protein was also eluted from the peak at a

retention time of 84-90 min.

time (min)

Figure 4.2 Gel filtration chromatogram of toxoplasma tachyzoite proteins

Individual fractions were analysed by dotblot using the monoclonal anti-
SAG1 antibody and a positive result for the SAG1 protein was shown within the first
two peaks (represented by fractions 20-22 and 28-32), but not in the major peak. The
fractions within each of these two peaks were then pooled, concentrated and proteins
were separated on 12% non-reducing gels. The silver stained-gel shown in Figure 4.3
demonstrates the presence of an intensely stained band at approximately 30kDa,

likely to be SAG1, in the peak represented by fractions 28-32, as well as a number of
other proteins in a range of molecular weights. In comparison relatively few bands
were present in the peak represented by fractions 20-22 suggesting few proteins were

present. SAG1 appeared to be absent from fractions 20-22.
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Figure 4.3 Silver-stained gel of original toxoplasma tachyzoite extract, and fractions
20-22 and 28-32 from gel filtration chromatography

The Western blot probed with the anti-SAGl monoclonal antibody shown in

Figure 4.4 overleaf confirmed that SAG1 was present in the peak represented by
fractions 28-32 but not in the pool of fractions 20-22. An intensely stained band at

approximately 30kDa was observed in fractions 28-32 and the original extract, but
was absent in fractions 20-22. Visualisation of the SAG1 using the ECL reagent

resulted in the demonstration of more intense bands than with DAB, and the higher
molecular weight proteins that the antibody cross-reacted with were more clearly
visible. It seems likely that the positive result on the dotblot for fractions 20-22 was

caused by cross-reactivity of the antibody with some of these other proteins. A small
amount of non-specific background was observed in the negative control on the
Western blot.
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Figure 4.4 Western blot probed with anti-SAG1 antibody domonstrating presence
of SAG 1 within fractions 28-32 from gel filtration chromatography

Therefore the peak containing fractions 28-32 represented good partial

purification and enrichment of SAG1. However a number of other contaminating

proteins were also present within this fraction, and further purification steps were

required. Slowing the flow rate to O.lml/min did not result in better separation of the

protein. A Pierce BCA protein assay revealed that each column run of 200pJ of

tachyzoite extract returned approximately 25pg of protein in the pool of fractions 28-

32, representing approximately 10% of the total protein originally applied to the
column. Up to 50% of this protein may have been SAG1. However, further

purification of SAG1 was not attempted due to expected further losses of SAG1.
When the quantity of protein obtained from the partial purification was scaled up for
the total amount of protein obtained from the tachyzoite extraction insufficient

protein was available for the proposed immunisation studies. This resulted in the
decision to encapsulate the crude extract of toxoplasma tachyzoite proteins into the
PLG microsphere delivery system.
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4.3.3 Toxoplasma-Loaded Microspheres for Use in Vaccination Studies

4.3.3.1 Preparation of Antigen
The remaining toxoplasma tachyzoite extract, which contained approximately

33mg of protein, was concentrated to a volume of 1.7ml. This provided an antigen
with a protein concentration of approximately 20mg/ml for microsphere

development. Proteins in the concentrate and the original extract were separated and

compared on a 12% gel, demonstrating that concentration of the material had no

effect on the constituent proteins.

4.3.3.2 Morphology and Size Range
SEM revealed that all particles containing toxoplasma tachyzoite antigen

(with and without CT) were smooth and roughly spherical. A scanning electron

micrograph of particles incorporating toxoplasma antigen alone is demonstrated in

Figure 4.5a and a micrograph of particles incorporating toxoplasma antigen and CT
is demonstrated in Figure 4.5b. The size of particles is highlighted on Figure 4.5b but

particle size can also be compared to the scale bars on the micrographs.

Figures 4.5a and b Scanning electron micrographs demonstrating morphology and
size range of microparticles incorporating a) proteins from toxoplasma tachyzoites
and b) proteins from toxoplasma tachyzoites and cholera toxin



Particles were of comparable size to those produced in Chapter 3, maximum 2pm in

diameter with the majority below 1pm. Particles demonstrated in Figure 4.5a are

slightly larger than those in Figure 4.5b. A bimodal size distribution is apparent in

Figure 4.5a, but particles in Figure 4.5b have a more uniform size distribution. These
differences are likely to be due to the considerable batch variation associated with the
double emulsion solvent evaporation technique.

4.3.3.3 Protein Content

The protein contents of the different batches of microparticles were generally

relatively high, demonstrated in Table 4.2. No protein could be detected in the

negative control particles. The two methods used to determine the total protein
content of each batch ofmicroparticles produced similar protein concentrations in pg

protein/mg particles. Encapsulation efficiency for toxoplasma tachyzoite antigen was

relatively high, with an overall average encapsulation efficiency of 80%. The

majority of protein in every batch of toxoplasma-loaded microparticles was

encapsulated within the core of the particles. On average 80% protein was

encapsulated whilst 20% protein remained surface bound.

Batch Surface Enapsulated Ratio Total Total Average Encapsulation
Protein Protein S:E 1 2 Total Efficiency

pg/mg particles % pg/mg particles %

Toxol 3.42 12.90 21:79 16.32 12.64 14.48 60

Toxo2 3.01 16.06 16:84 19.07 17.86 18.47 77

Toxo3 3.41 16.68 17:83 20.09 22.02 21.01 88

T+CT1 3.01 18.48 14:86 21.49 21.94 21.72 90
T+CT2 3.08 13.76 18:82 16.84 19.64 18.24 76
T+CT3 4.35 16.26 21:79 20.61 22.91 21.76 91
Table 4.2 Protein content of toxoplasma-loaded PLG microspheres
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4.3.3.4 Comparison of Surface-Bound and Encapsulated Proteins
A silver-stained 12% non-reducing SDS-PAGE gel comparing the proteins

located on the surface and encapsulated within toxoplasma-loaded particles with and
without CT is shown in Figure 4.6. The first track of the gel shows the total mixture
of proteins present within the original tachyzoite extract for comparison, and the

position of SAGlat approximately 30kDa is highlighted. Tracks 2 and 3 are the

surface-bound and encapsulated proteins respectively from particles incorporating

toxoplasma tachyzoite antigen alone. Tracks 4 and 5 are surface-bound and

encapsulated proteins respectively from particles incorporating toxoplasma

tachyzoite antigen and cholera toxin.

1 = original extract

2 = toxo particles: surface proteins
3 = toxo particles: encapsulated proteins

4 = toxo+CT particles: surface proteins
5 = toxo+CT particles: encapsulated proteins

SAG1

1 2 3 4 5

Figure 4.6 Silver-stained 12% non-reducing gel showing surface bound and
encapsulated proteins from microparticles incorporating toxoplasma tachyzoite
antigen with and without CT

The encapsulated proteins from the different particles were not clearly

visible, perhaps due to the effects of the dissolved polymer on the separation of the

proteins within the gel. However, a number of bands were visible in the samples of
surface-associated proteins. Proteins on the surface of both types of particle appeared
to be identical, representing a range of proteins from the original extract in a wide

range of sizes. This suggested that no preferential encapsulation of proteins of certain
molecular weights had occurred. A faint band was visible at 30kDa in the surface-
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associated samples, suggesting that some SAG1 was located on the surface of both

types of particle. The band was much more weakly stained than in the original

extract, suggesting that only a small proportion of the total SAG1 remained surface-
bound. It was unfortunate that comparisons with encapsulated proteins could not be

performed, although it seems likely that proteins with a high affinity for the PLG

polymer are located both on the surface and inside the particles.
A Western blot of these samples probed with the monoclonal anti-SAGl

antibody is shown in Figure 4.7. Tracks 1 and 2 represent surface-bound and

encapsulated proteins respectively from particles incorporating toxoplasma protein

alone, and tracks 3 and 4 are from particles incorporating toxoplasma protein and
cholera toxin.
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1 = toxo particles: surface proteins
2 = toxo particles: encapsulated proteins

3 = toxo+CT particles: surface proteins
4 = toxo+CT particles: encapsulated proteins

SAG1

12 3 4

Figure 4.7 Western blot probed with monoclonal anti-SAG1 antibody, visualised
using chemiluminescence

SAG1, represented by the strongly stained band at 30kDa, was present on the
surface and encapsulated within both types of particles in significant detectable

quantities. Despite the fact that the dissolved polymer masked the proteins present in
the silver-stained gel, the antibody was still able to detect the protein on the blot. No
cholera toxin could be observed in identical Western blots probed with antibody
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against cholera toxin, probably due to dilution factors and the extremely small
amounts of CT present in the particles.

4.3.3.5 Detection of Cholera Toxin and SAG1 within the Particles

Both antibodies used in the dual staining procedure showed

immunoreactivity, and staining could be visualised simultaneously for the two
different antibodies using different coloured filters on the microscope. Positive

labelling clearly corresponded to the location of the microparticles, and no labelling
was observed on negative control slides. At this magnification the microparticles
were clearly visible as numerous small round spherical objects, which occurred
either individually or in small clusters. Cholera toxin, visualised using TRITC, was

clearly associated with the particles, shown in Figure 4.8b. Cholera toxin appeared to

be present both within the particles and bound to their surface. The perimeter of
individual microparticles appeared to be as intensely stained as the centre, suggesting
that a significant proportion of the cholera toxin was associated with the surface of
the microparticles.

SAG1 was also clearly associated with the microparticles and showed a very

similar distribution to the cholera toxin. SAG1, visualised using FITC, is shown in

Figure 4.8a. Again intense staining could be observed around the perimeter of the

particles suggesting a significant proportion of the protein was surface-bound as well
as internalised. The dual exposure photograph shown in Figure 4.8c demonstrated
that the same particles were stained for both cholera toxin and SAG1. There did not

appear to be any particles that were only labelled for one of the proteins. Thus the

particles contained both cholera toxin and SAG1 from the toxoplasma tachyzoites,
both encapsulated and on the surface. However, it was not possible to compare the
amounts of the two different proteins by their staining intensities.
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Figure4.8DualstainingofmicroparticleswithantibodiesforSAG1andcholeratoxin,a)anti-SAG1(FITC),b) anti-choleratoxin(TRITC),c)TRITCandFITCtogether,andd)negativecontrolx272magnification 139



4.4 DISCUSSION

Lysis of the toxoplasma tachyzoites resulted in the successful extraction of a
substantial amount of a number of proteins, including SAG1. However, insufficient

protein was available to provide enough purified SAG1-encapsulated microparticles
for the proposed immunisation studies, and it was therefore decided to encapsulate
the crude tachyzoite extract. This is the first demonstration that soluble toxoplasma

tachyzoite extract can be encapsulated with high efficiency into PLG nanoparticles,
both alone and with cholera toxin. Such whole extracts of soluble tachyzoite proteins
have been successfully used as an antigen in previous mucosal immunisation studies
in mice with CT as an adjuvant (Bourguin et al., 1991, 1993; Chardes et al., 1993).

The monoclonal antibody permitted confirmation that the major band in the

tachyzoite extract was SAG1 at approximately 30kDa. The molecular weight of
SAG1 has been published between 27kDa (Handman et al., 1980) and 32kDa

(Couvreur et al., 1988). The intensity of staining on SDS-PAGE gels revealed that
SAG1 was a major component of the tachyzoite extract and a good candidate protein
for purification because it was one of the most dominant proteins, and present in

relatively large quantities. Detergent was an essential component of the lysis buffer
to maintain the solubility of membrane-bound proteins such as SAG1. Non-reducing
conditions were used to separate proteins in the tachyzoite extract on SDS-PAGE
because under reducing conditions the SAG1 protein was not detected by the
monoclonal antibody on Western blot, suggesting that the tertiary structure of the

epitope may be important. Most of the surface proteins are thought to electrophorese
more slowly under reduced gel conditions (Tomavo, 1996). Other authors have

suggested that SAG1 is recognised following separation in reducing conditions

(Couvreur et al., 1988) and that the P35 and P30 (SAG1) proteins co-migrate under
non-reduced conditions (Tomavo, 1996).

The antibody appeared to exhibit some cross-reactivity with other higher
molecular weight proteins in the tachyzoite extract, which were more apparent on

Western blots developed with the ECL reagent. These cross-reactive proteins may
have been contaminants in the original inoculum, they could share the same epitope
as SAG1, or could be dimerised forms of SAG1. Some cross-reactivity was also
exhibited in protein complexes that were too large to enter the gel and remained in
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the wells at the top of the gel. It is probable that these protein complexes were

complexes of SAG1 with other proteins that were too large to run into the gel under

non-reducing conditions. Low levels of background staining could be observed on

the negative control with the ECL reagent, likely to be due a low level of cross-

reactivity between SAG1 and the secondary antibody. However, this cross-reactivity
was negligible when compared to the staining observed for SAG1 when the primary

antibody was included.
For the purpose of this study it was not possible to purify SAG1 as a single

band for use as an antigen in the proposed immunisation studies. Gel filtration

chromatography led to the elution of SAG1 in a small distinct peak visible on the

chromatogram that appeared to be distinct and separate from the majority of proteins
in the tachyzoite extract. However, SDS-PAGE analysis revealed the presence of
several contaminating proteins within the same peak as SAG1. Thus, further

purification steps were required to purify SAG1 as a single band, and ion-exchange

chromatography and immunoaffinity chromatography were considered. Purification
of SAG1 has been previously achieved using immunoaffinity chromatography

(Kasper et al., 1983) with the monoclonal anti-SAGl antibody used in this study.
However insufficient quantities of this antibody were available to purify enough of
the SAG1 protein.

Protein assays revealed that each column run of 200pl of the tachyzoite
extract resulted in a return of approximately one-tenth of the original protein in the

peak containing SAG1, representing an enrichment of SAG1 in which 90% of
contaminant proteins were removed. However, when this amount was scaled up for
the total number of tachyzoites produced for this study, only approximately 3.75mg
of protein could be obtained in total by gel filtration purification, and only a

proportion of this protein would be SAG1. On past experience by a number of
workers at the Moredun Research Institute (Edinburgh, UK) sheep normally generate

a good serum antibody response to subcutaneous injections of 100-500pg of protein

(J. Huntley, personal communication). However, the dose and frequency of
stimulation has not been previously established for the optimal mucosal stimulation
of sheep, and it was decided that 3 doses of 200pg per dose would provide a

reasonable and practical regime for stimulation. After gel filtration purification, it
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was apparent that insufficient SAG1 could be prepared for the proposed
immunisation studies and the crude extract, albeit with a major SAG1 component,

was encapsulated for immunisation. Other proteins in the extract may also be highly

immunogenic, and the mixture of proteins in their native form may be more

immunogenic than a single purified protein. SAG1 is one of the major proteins in the

tachyzoite extract and has been shown to be the immunodominant protein in

toxoplasma tachyzoites (Chardes et al., 1990), and it is therefore likely that the

majority of the immune response may be directed towards SAG1.

Microparticles prepared incorporating the toxoplasma tachyzoite extract were

smooth and spherical, and the incidence of split or damaged particles was low. The

majority of particles were below 1pm in diameter, and within the desired size range

to facilitate M cell uptake. The toxoplasma tachyzoite antigen was encapsulated with

high efficiency into the PLG microsphere delivery system that was developed in

Chapter 3 and these particles are now ready to use in the proposed intranasal
immunisation study. High encapsulation efficiencies, ranging between 60-91%, were
demonstrated for this mixture of proteins, suggesting there had been high affinity for
the polymer. The encapsulation efficiencies demonstrated for toxoplasma tachyzoite

antigen were comparable to those published for other bacterial and viral antigens. For

example, encapsulation efficiencies for Hepatitis B surface antigen were 80% (Singh
et al., 1997), for Helicobacterpylori whole lysates were between 62-75% (Kim et

al., 1999), for Vibrio cholerae were up to 97.8% (Yeh et al., 2002a) and for Japanese

encephalitis virus were up to 98% (Yeh et al., 2002b). The encapsulation efficiency
in the present study was approximately the same as for BSA, and much higher than
OVA (see Chapter 3) and meant that little protein was lost during particle

preparation. Most of the protein became encapsulated within the particles, with only

approximately 20% remaining surface-bound. This 20% of the protein will be
released rapidly from the particles following rehydration, but controlled release of
the majority of protein will occur as the particles biodegrade.

Only surface-bound proteins could be visualised following separation by

SDS-PAGE, clearly revealing the presence of SAG1 in small quantities on the
surface of particles. Samples of encapsulated proteins did not seem to separate into
distinct bands, likely to be due to the effects of the dissolved polymer in the sample.
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Neutralising the pH did not further improve protein separation in these samples.
Therefore it was not possible to determine whether certain proteins in the mixture
were preferentially encapsulated or surface-associated. The surface bound proteins
were clearly visible, and had a broad range of molecular weights, suggesting that

protein size did not have an effect on association with the polymer. The presence of

only low quantities of SAG1 on the surface suggested that the majority of SAG1 had
been encapsulated into the microparticles; and the presence of cholera toxin did not

seem to affect the constituent surface proteins. Western blot analysis confirmed that
SAG1 was present both on the surface and encapsulated within the microparticles,
and the intensity of antibody binding suggested that approximately equal amounts
were surface-associated and encapsulated. The fact that SAG1 was recognised by the
monoclonal antibody as a distinct band following encapsulation demonstrated that
the conformation of the protein had been retained and suggested that the protein had
remained antigenically intact, despite the harsh conditions of encapsulation. There is
no method available to determine whether functional activity of encapsulated

proteins was retained, but functionality is not necessary as long as proteins retain
their antigenicity. The presence of cholera toxin, both on the surface and

encapsulated within the particles, was clearly demonstrated with a dual labelling

technique. Surface-associated cholera toxin may enhance particle uptake across the

epithelium, and it is hoped that encapsulated cholera toxin will act as a mucosal

adjuvant when it is presented to the mucosal immune system at the same time as the

toxoplasma tachyzoite antigen.
These toxoplasma-containing microparticles will be used to deliver the

toxoplasma tachyzoite antigen to the mucosal immune system of the sheep, in the

hope of stimulating a protective immune response. The delivery system has been
tailored to achieve M cell uptake and mucosal delivery of antigen in the ovine

nasopharynx. As proteins are both surface-bound and contained within the particles,
there should be an initial burst of protein release immediately after delivery. As the

particles are processed and begin to degrade within the body further protein should
be released to boost the immune system. The particles may thus have an intrinsic

adjuvant effect, which may be enhanced by the presence of cholera toxin.
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CHAPTER 5

Intra-nasal Immunisation of Sheep with Soluble
and Particulate Forms of Toxoplasma gondii

Tachyzoite Antigen
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5.1 INTRODUCTION

The aim of the pilot immunisation study described in this chapter was to

determine whether intranasal immunisation could stimulate antigen-specific mucosal
and systemic immune responses. The model system used for this purpose was the

zoonotic protozoan parasite Toxoplasma gondii, which is an important cause of
abortion and neonatal mortality in sheep (Buxton, 1998). In addition, the

consumption of poorly cooked infected sheep meat can lead to human infection

(Jacobs et al., 1960). T. gondii was chosen for this purpose because there are good

assays available to monitor toxoplasma-specific immune responses, and a well-
defined febrile response occurs following infection that can be used to assess

whether these responses are protective (McColgan et al., 1988).
Several studies in mice have shown that immunisation with whole T. gondii

tachyzoite extracts, specific native antigens or excretory-secretory antigens can

confer protection against tissue cyst or tachyzoite challenge as assessed by reduction
in the number of brain cysts (reviewed in Jenkins, 2001). Immunity sufficient to
reduce foetal mortality caused by T. gondii infection in sheep can be induced by a

live attenuated vaccine (Buxton et al., 1991), but attempts with killed vaccines have
been essentially unsuccessful (Beverley et al., 1971; Wilkins et al., 1987). Most

recently, attempts to immunise sheep with T. gondii antigens incorporated into
ISCOMs have been shown to induce both humoral and cell-mediated responses.

However these responses were not protective when sheep were infected with oocysts

(Buxton et al., 1989; Lunden, 1995), and an alternative to the live attenuated vaccine

that currently exists for sheep remains highly desirable due to the short shelf-life and

high production costs associated with the live vaccine. In addition, a successful killed
vaccine in sheep would offer significant progress towards a human vaccine, since the
use of a live attenuated vaccine in humans is unacceptable. An effective vaccine

must stimulate protective immunity, which is thought to be due to a cytotoxic T cell

response involving fFNy (Khan et al., 1994; Subauste & Remington, 1991).

Mucosal immunisation strategies against T. gondii have not been previously

investigated in sheep, despite the fact that the natural route of infection occurs via the
mucosal surfaces, and a vaccine that stimulates mucosal defences to control further

infection may be highly effective. A number of studies in mice have shown that there
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is potential to stimulate protective immunity via the mucosal route and that mucosal
immunisation is a good way to stimulate both IgA and cell-mediated immunity

against T. gondii. Initial studies demonstrated that oral immunisation with a

toxoplasma sonicate combined with cholera toxin as a mucosal adjuvant induced
both cell-mediated and humoral responses leading to approximately 50% protection
assessed by a reduction in the number of cerebral cysts (Bourguin et al., 1991, 1993;
Chardes et al., 1993). Since then the potential of intranasal vaccination has been
assessed with promising results. Intranasal immunisation with SAG1 combined with
CT protected mice against T. gondii (Debard et al., 1996) with good correlation
between the level of protection and the immune response in the intestinal mucosa.
Protective immunity induced by this route was shown to be associated with a specific
cellular response in both the NALT and the GALT compartments (Velge-Roussel et

al., 2000). In addition, non-toxic mutant Escherichia coli heat-labile enterotoxin

(LT) as an adjuvant can induce protective immunity as good as the native toxin or

CT when delivered with SAG1 via this route (Bonenfant et al., 2001). All studies in

mice have used soluble antigen for intranasal delivery, and it is hoped that by using a

particulate antigen the immune response may be further improved.
The success of intranasal immunisation against T. gondii in mice indicates

that investigation of the potential of this strategy in larger animals would be
worthwhile. Sheep are a natural host, and in the future pregnant ewe studies may
offer a useful model of the human infection. Toxoplasma tachyzoite antigen,

containing a crude mixture of soluble tachyzoite proteins, has been successfully

encapsulated into PLG nanoparticles and microparticles. These particles will be used
as a delivery system to intranasally immunise sheep against T. gondii. Both humoral
and cell-mediated responses will be assessed in reponse to immunisation, and

compared to responses in sheep immunised with soluble toxoplasma tachyzoite

antigen, negative control sheep or sheep infected with oocysts. The efficacy of
cholera toxin as a mucosal adjuvant for the tachyzoite antigen will also be assessed.
As part of the experiment all sheep will be challenged orally with T. gondii oocysts
and the resulting febrile response used to determine whether immune responses

induced by intranasal immunisation were protective.
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5.2 MATERIALS AND METHODS

5.2.1 Animals

5.2.1.1 Sheep

Twenty-four entire male Scottish Blackface hoggs, aged approximately 6
months - 1 year old, were obtained from Moredun's Firth Mains farm (Edinburgh,

UK). Sheep were shown to be seronegative by ELISA for IgG antibodies to T. gondii
and non-responsive to toxoplasma antigen in lymphocyte stimulation assays.

Animals were housed under conventional conditions for the duration of the trial and

fed on concentrates and hay and water ad lib. Animal in each treatment group were

housed in separate pens.

5.2.1.2 Cats

Two male cats, under 6 months of age and seronegative for antibodies to T.

gondii were obtained from an approved supplier, and used to obtain viable T. gondii

oocysts of the Moredun M3 isolate. Cats were housed using barrier containment in
an SPF facility to minimise contamination of the environment with infective oocysts.

5.2.2 Toxoplasma gondii

5.2.2.1 Moredun M3 Isolate

The M3 isolate of T. gondii was originally isolated at the Moredun Research
Institute (Edinburgh, UK) on 25th April 1986 by the intraperitoneal (i.p.) inoculation
of 2 female Swiss White mice with the brain of a stillborn lamb. It was passaged for
the first time 3 months later, and maintained by once yearly passage in Porton mice

(each passage was an intraperitoneal inoculation of brain homogenate containing 40-
100 tissue cysts). The brains were aseptically removed and homogenised in Hank's
balanced salt solution (HBSS) (Gibco, Invitrogen, Paisley, UK) by passage through a

16 gauge (G) needle. The M3 isolate was chosen for this project because it is a

complete isolate, capable of causing clinical toxoplasmosis in sheep, and M3 tissue

cyst bradyzoites can induce oocyst formation in seronegative cats. Non-pregnant
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sheep, dosed orally with M3 oocysts, develop a very predictable febrile response to

provide a convenient model system for measuring the efficacy of a vaccine. This
isolate was used experimentally for the first time by Buxton et al. (1991).

5.2.2.2 M3 Tissue Cysts
Brains from four chronically infected Porton mice were removed and

homogenised in an equal volume of PBS using a 16G needle and syringe. Five 5pl

aliquots of this suspension were spotted onto a microscope slide and tissue cysts

were counted in each spot. Suspensions containing an estimated total of 103 M3 T.

gondii tissue cysts were prepared.

5.2.2.3 M3 Oocysts
Each cat was given an estimated 103 M3 T. gondii tissue cysts mixed in a

small amount of food. Thereafter faeces were collected daily and screened for the

presence of oocysts. Oocyst shedding normally commences 5 days post-infection,
and continues until day 10. Sporulated oocysts were obtained from infected cat

faeces using the Saturated Salt Flotation Technique described by Buxton et al.

(1988). Briefly, infected faeces were diluted 1:10 in water, homogenised thoroughly
and the resulting suspension sieved through a 1mm mesh. 50ml aliquots were

centrifuged for 10 minutes at lOOOxg, the supernatant was discarded, and the pellet

resuspended in 50ml of saturated sodium chloride. After the mixture was centrifuged

at lOOOxg for 10 minutes, the meniscus was removed (approximately 5ml) and

diluted 1:10 with water and centrifuged for a further 10 minutes at lOOOxg. The

pellet was resuspended in a small volume of water and oocysts were counted in an

improved Neubauer haemocytometer. Oocysts were allowed to sporulate in 2%

sulphuric acid at 22°C for 7 days and then stored at 4°C until required. The final

suspension contained 15000 oocysts in 2ml sulphuric acid, 50% of which were

viable. Prior to use the oocysts were pelleted at 500xg for 5 min and resuspended in
PBS.
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5.2.2.4 Titration of M3 Oocyst Dose
The 4 sheep to be given an oral infection of oocysts were housed in a separate

pen (for experimental design see Section 5.2.5). Two animals were given a dose of
200 oocysts and 2 animals were given a dose of 500 oocysts. For dosing, a gag was

used to open the mouth and depress the tongue and a tube was inserted down the

oesophagus into the rumen. A 2-way syringe was used to administer a 2ml aliquot of

oocysts into the stomach, which was then washed down with 50ml water. This

system is demonstrated in Figure 5.1. Rectal temperatures were recorded with a

clinical electronic thermometer in the sheep for the 2 days prior to any inoculation
and for 14 days following inoculation. Fever was defined as a temperature of 40°C or

higher.
These animals were also used as positive control animals for the

immunisation study. They were bled prior to dosing and weekly thereafter. Blood
collected from these animals was used to establish T cell proliferation assays

(including titration of antigen) and isotype-specific ELISAs. Approximately 8 weeks
after initial oocyst infection the animals were challenged with oocysts again to

provide a measure of secondary response to re-infection with T. gondii.

Figure 5.1 Delivery of an oocyst infection
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5.2.3 Intranasal Vaccine Spray
The intranasal spray used to deliver the vaccine was optimised to deliver a

liquid to the appropriate area of the ovine nasopharynx, and is demonstrated in

Figure 5.2. An Arnolds® dog catheter tube with female luer mount (2.6mm x 50cm)

(SIMS Portex Ltd, UK) was reduced to approximately half the original length. The
end of the tube was sealed with a small amount of Araldite® (Bostik Ltd., Leicester,

UK) and left to dry overnight. Five small holes were punched on one side of the
sealed end of the tube with a 16G needle (Microlance®, Becton Dickinson, Dublin,

Ireland).
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Figure 5.2 Delivery system for intra-nasal vaccination in sheep

Distances of 15, 16 and 17cm from the holes were marked on the tube with a

permanent marker so that depth of insertion into the nasal cavity could be measured.
A 6ml syringe with a male Luer lock (Monoject®, Sherwood Medical, Northern
Ireland) was attached to the corresponding female Luer lock on the tube. Before use

the spraying capacity of each tube was assessed using water. To apply the vaccine
the tubing was inserted to a depth of 16cm into the nasal cavity with the holes facing

away from the septum, and 1ml of the appropriate vaccine solution from the syringe
was applied to each nostril. Prior to the experiment the delivery system was tested on

several detached sheep heads. The spray was inserted to a depth of 16cm into the
nasal cavity and 1ml of a violet coloured dye (Serva Violet 17, Invitrogen, Paisley,

UK) was sprayed into each nostril using the delivery system. The heads were then

sagitally Sectioned and examined to determine the location of the dye in the

nasopharyngeal tract. Intra-nasal delivery is demonstrated in Figure 5.3.
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Figure 5.3 Intranasal vaccine delivery to sheep

5.2.4 Antigens

Toxoplasma tachyzoites were produced and lysed as described in Section
4.2.2.3 to provide a soluble extract of tachyzoite proteins. The protein concentration
of a proportion of this extract was adjusted to 0.2mg/ml for use as soluble antigen.
The remaining tachyzoite extract was concentrated and encapsulated into PLG

microparticles as described in Section 4.2.5.1. A 20:1 ratio of cholera toxin was also
included with the tachyzoite extract in half of these particles as described in Section
4.2.5.2. Finally PLG particles containing no protein were prepared as detailed in
Section 4.2.5.3 for delivery to negative control sheep.
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5.2.5 Experimental Design
The first treatment group, consisting of 4 sheep, were given an oral challenge

of oocysts (known as group 5) (see Section 5.2.2.4). The remaining 20 sheep were

randomly assigned into the groups detailed below. The individual animals in each

group and the dates of vaccination and challenge are shown in Table 5.1 overleaf.
1. Four sheep were given control inoculum. For each immunisation each animal

received 5mg of blank particles suspended in 1 ml of water into each nostril.
2. Eight sheep were dosed intranasally with soluble toxoplasma tachyzoite

antigen. For each immunisation, each animal received lOOpg of toxoplasma

antigen in a volume of 1ml into each nostril.
3. & 4. Eight sheep were dosed intranasally with toxoplasma tachyzoite antigen

encapsulated into the microparticulate delivery system, the preparation of
which is detailed in Chapter 4. For each immunisation, each animal received

particles containing lOOjxg of protein suspended in 1ml of water into each

nostril. The total protein content of the microparticles (in pg/mg particles)
was used to calculate the weight of each batch of particles that would contain
a dose of 200pg of protein, as detailed in Table 5.2. The particles were

suspended in 2ml water immediately prior to delivery to the animals. This

group was sub-divided as follows:
3. Four sheep given microparticles incorporating toxoplasma antigen
4. Four sheep given microparticles incorporating toxoplasma antigen and CT

Batch Particle Weight Batch Particle Weight
Toxo 1 13.8mg Toxo + CT 1 9.2mg
Toxo 2 10.8mg Toxo + CT 2 1 l.Omg
Toxo 3 9.5mg Toxo + CT 3 9.2mg

Table 5.2 Weight of each batch of PLG microparticles that contained 200jug
of toxoplasma tachyzoite protein antigen

Animals were immunised 3 times two-weeks apart. Each vaccine dose contained

200pg antigen (lOOpg delivered into each nostril). All animals were monitored for a
further 4 weeks after the final vaccine dose and were then each dosed orally with 200

oocysts. Animals that were initially infected with oocysts received a second dose at

week 8 post initial infection. Immune responses were monitored in all animals for a
further 2 weeks post-challenge and then euthanised.
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Group

Animals

n

Treatment

1stdose

2nddose

3rddose

Oocyst<8> challenge

Post-Mortem Examination

913N

3xi.n.dosesof

25JUN02

1.Negative

915N

4

lOmgblankPLG
12APR02
26APR02
10MAY02
11JUN02

25JUN02

Control

950N

microparticles

24JUN02

1048N

24JUN02

638N

26JUN02

748N

3xi.n.dosesof
12APR02

26APR02
10MAY02
11JUN02

25JUN02

2.Soluble

919N

200pgofsoluble

24JUN02

toxoplasma

923N

8

toxoplasma

26JUN02

antigen

993N

antigen

25JUN02

1031N

24JUN02

1034N

26JUN02

1117N

26JUN02

3.Particulate

715N

3xi.n.dosesof

27JUN02

toxoplasma

739N

4

particulate

12APR02
26APR02
10MAY02
13JUN02

28JUN02

antigen

764N

toxoplasma

28JUN02

1067N

antigen

27JUN02

4.Particulate

770N

3xi.n.dosesof

28JUN02

toxoplasma

989N

4

particulate

12APR02
26APR02
10MAY02
13JUN02

27JUN02

antigen+

1030N

toxoplasma

27JUN02

choleratoxin
1116N

antigen+CT

28JUN02

927N

1xdoseof

31MAY02

5.Oocyst

976N

4

toxoplasma

21MAR02

-

-

16MAY02

31MAY02

challenge

1032N

oocysts*

31MAY02

1084N

31MAY02

Table5.1Detailsofanimalsusedinimmunisationstudiesandtimingsofvaccinedoses,oocystinfectionsandpost-mortems *Either200(totwo)or500(totwo)sporulatedoocystsorally<8>200sporulatedoocystsorally
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5.2.6 Collection of Samples
Blood samples and nasal secretions were collected from each animal prior to

immunisation and weekly thereafter.

5.2.6.1 Serum

Approximately 7ml of blood was collected from the jugular vein of each

sheep into preservative-free evacuated blood collection tubes, (Vacutainer, Becton

Dickinson, Oxford, UK) and allowed to clot. Following retraction of the clot, serum
was obtained after centrifugation at 3000rpm (2060 x g) for 30 min and stored at

-20°C until required.

5.2.6.2 Peripheral Blood Mononuclear Cells (PBMCs) from Whole Blood

Approximately 10-14 ml of blood was collected from the jugular vein of each

sheep into preservative-free heparinised evacuated blood collection tubes

(Vacutainer, Becton-Dickinson, Oxford, UK) and mixed well.

5.2.6.3 Nasal Secretions

Nasal secretions were collected using non-applicator tampons (Lil-lets,

Accantia, Birmingham, UK). Regular size tampons were cut into 4 equal sized

pieces, and one of these pieces was inserted into the nostril of each sheep for

approximately 15min, before it was removed and the secretions squeezed out using a

5ml syringe. Nasal secretions were stored at -20°C.

5.2.6.4 Tissue Collection at Post-Mortem Examination

Retropharyngeal (RP LN), mediastinal (Med LN), pre-femoral (P-F LN) and
mesenteric lymph nodes (MLN), pharyngeal tonsil (PT) and a piece of spleen were

collected using aseptic precautions immediately after euthanasia and placed in wash

medium, consisting of HBSS supplemented with 2% heat inactivated foetal bovine
serum (FBS) (Labtech International, Sussex, UK), 100 U/ml penicillin and 100(ig/ml

streptomycin (Gibco, Invitrogen, Paisley, UK). The areas these lymph nodes drain
are detailed in Table 5.3.
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Lymph Node Draining From
Retropharyngeal NALT

Pharyngeal Tonsil -

Mediastinal Lungs
Mesenteric Gut
Pre-femoral Unrelated area

Spleen Systemic IS
Table 5.3 Lymph nodes collected and regions they drain

Small areas (approximately 1cm2) of the following tissues were also collected
from each animal: NALT, pharyngeal tonsil, trachea, bronchus, lung, abomasal fold,

duodenum, jejunum, ileum, Peyer's patch, large intestine, rectum, spleen, mesenteric

lymph node. The mucosa was scraped off the following tissues: duodenum, jejunum,

ileum, large intestine, rectum. Epithelium was dissected away from the cartilage of
the trachea. All tissues were stored separately at -20°C until required.

5.2.6.5 Tissue Homogenisation
Tissues were thawed at room temperature for 1 h, weighed and suspended in

1:5 ratio (w/v) of PBS containing 0.5M NaCl and 0.5% Tween 80® (Sigma, Dorset,

UK). They were then homogenised at 10,000rpm (Cat Homogenizer X1030D, M.

Zipperer GmbH, Staufen, Germany) for approximately 30 sec until fully disrupted.
This suspension was then centrifuged at 3,000rpm (2060 x g) for 15 min to remove

all remaining tissue. The supernatant was collected and stored at -20°C until use.

5.2.7 Humoral Immune Response

Antibody levels were measured using the enzyme-linked immunosorbent

assay (ELISA). Prior to the experiment the checkerboard technique was used to

optimise the concentrations of antigen, serum and antibodies in each isotype-specific

ELISA, using a T. gondii specific positive serum sample.
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5.2.7.1 ELISA for Antigen-Specific IgG Antibody
96 well ELISA plates (M129B, Greiner Laborotechnik, Dursley, UK) were

coated with 50(0.1 per well toxoplasma tachyzoite antigen at a concentration of

lpg/ml in 0.1M carbonate buffer pH 9.6 at 4°C overnight. Plates were washed twice

with wash buffer, consisting of PBS containing 0.05% Tween 20 (Sigma, Dorset,

UK), then non-specific binding sites were blocked for 30 min at RT with 50pl per

well PBS containing 0.5M NaCl and 0.5% Tween 80® (Sigma, Dorset, UK) and

washed again. Each serum sample was diluted serially to 1:10, 1:50, 1:100, 1:500,

1:1000, 1:4000, 1:16000 and 1:64000. Nasal secretions were diluted 1:2 and tissue

homogenates were diluted 1:100. Dilutions were prepared in PBS containing 0.5M

NaCl and 0.5% Tween 80® and 50(il/well of samples, controls or buffer alone were

added to the plate in duplicate. The plates were incubated for 1 h at RT, washed 3
times in wash buffer, then incubated for a further 1 h at RT with 50(xl per well

primary antibody diluted to 1:4000. The monoclonal antibody was VPM6 (Bird et

al., 1995) specific for the heavy chain of IgG. Plates were washed 3 times in wash

buffer, and incubated with 50pl per well of a 1:2000 dilution of a biotinylated goat

anti-mouse secondary antibody (Dako, Ely, UK). Plates were washed 3 times in wash

buffer, and incubated for 1 h at RT with 50pl per well of a 1:5000 dilution of

streptavidin conjugated to HRP (Dako, Ely, UK). All dilutions were prepared in PBS

containing 0.5M NaCl and 0.5% Tween 80®. The plates were washed as before and

the colour reaction was developed with 50pl per well of orthophenylene diamine

(OPD) substrate solution (Sigma, Dorset, UK) following the manufacturer's
recommendations. Colour was allowed to develop for approximately 10 min, before

being terminated by the addition of 25(tl per well 2.5M H2SO4. The optical density

(OD) of the reaction mixture was measured using a MRX Microplate reader (Dynex

Technologies, Billingshurst, UK) equipped with a 492nm filter. Samples were

unified to the positive control to control for between plate variation using the

following equation: Mean OD sample
Mean OD positive control

The results were either expressed as OD@492nm for serum samples at a dilution of

1:100, or the titre at which the 50% maximum/minimum OD was produced.
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5.2.7.2 ELISA for Antigen-Specific IgG 1 and lgG2 Antibody
Comparison of IgGl and IgG2 antibody levels was performed on serum and

nasal samples at week 2 post-infection, when high IgG antibody titres could be
measured. The method used was as detailed in Section 5.2.7.1. The primary antibody
used was a 1:25 dilution of a rat anti-ovine IgGl or IgG2 (lRShl and 2RSh2, kindly

gifted by J. Hopkins, University of Edinburgh).

5.2.7.3 ELISA for Antigen-Specific IgA Antibody
Alternate rows of 96 well ELISA plates (M129B, Greiner Laborotechnik,

Dursley, UK) were coated with 50pl per well toxoplasma tachyzoite antigen at a

concentration of lpg/ml in 0.1M carbonate buffer pH 9.6 at 4°C overnight. Control
rows were coated with carbonate buffer alone to control for non-specific background

binding. Plates were washed twice with PBS containing 0.05% Tween 20® (wash

buffer), then blocked for 30 min at RT with 50pl per well PBS containing 0.5M

NaCl and 0.5% Tween 80®. Each serum sample was diluted serially to 1:2, 1:5, 1:10,

1:20, 1:50, 1:100 and 1:1000. Nasal secretions were diluted 1:50 and tissue

homogenates were diluted 1:10 in PBS containing 0.5M NaCl and 0.5% Tween 80 .

Plates were washed twice with wash buffer and 50(xl/well of each sample were added
to the plate in quadruplicate (2 in wells that had been coated with antigen and 2 in
wells without antigen). A positive control sample was also included. The ELISA was

then carried out as described in Section 5.2.7.1, using a 1:500 dilution of monoclonal
anti-ovine/bovine IgA (K84.2F9, Serotec, Oxford, UK) as a primary antibody. The
OD value for wells that contained no antigen was subtracted from the OD value for

antigen specific binding in wells that contained antigen. Samples were unified to the

positive control.

5.2.7.4 ELISA for Antigen-Specific IgE Antibody
The method was adapted from the IgG ELISA method described in Section

5.2.7.1. Sera were diluted 1:10 and nasal secretions were diluted 1:2. The primary

antibody was a 1:500 dilution of the mouse anti-ovine IgE (2F1, Winden et al.,

Veterinary Immunology & Immunopathology, in press).
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5.2.8 Immunoblotting to Determine Antibody Specificity

Samples containing 20pg of the original tachyzoite extract were separated in
12% non-reducing gels and blotted as detailed in Section 4.2.3.1 and 4.2.3.3.
Western blots were probed with serum from animals as detailed in Tables 5.4 and
5.5. These sera were chosen on the basis of a strong IgA or IgG antibody response by
ELISA to tachyzoite antigen, and include day 0 samples as negative controls.

Animal Serum Dilution (1 in) Response
770N

Group 4
(toxo+CT particle)

week 0 100 -ve control

week 5 100 post-immunisation
week 11 1000 post-infection

739N

Group 3
(toxo particle)

week 0 100 -ve control
week 4 100 post-immunisation
week 11 1000 post-infection

1032N

Group5 (oocyst)
week 0 1000 -ve control
week 4 1000 post-infection

Table 5.4 Serum used to probe blots for antigen-specific IgG

Animal Serum Dilution (1 in) Response
770N

Group 4
(toxo+CT particle)

week 0 100 -ve control
week 3 100 post-immunisation
week 11 100 post-infection

715N

Group 3
(toxo particle)

week 0 100 -ve control
week 3 100 post-immunisation
week 11 100 post-infection

1084N

Group 5 (oocyst)
week 0 100 -ve control
week 2 100 post-infection

Table 5.5 Serum used to probe blots for antigen-specific IgA

Following extensive washing of the blot, bound antibody was visualised by a

further 1 h incubation in either a 1:500 dilution of the monoclonal mouse anti-IgA

antibody or a 1:2000 dilution of the monoclonal mouse anti-IgG antibody in wash
buffer. The blots were then washed thoroughly and incubated with a 1:2000 dilution
of a biotinylated goat anti-mouse antibody (Dako, Ely, UK) followed by further

washing and a 1 h incubation in a 1:2500 dilution of streptavidin conjugated to HRP

(Dako, Ely, UK). After a final wash HRP was detected by treating blots with the
enhanced chemiluminescence (ECL) reagent (Amersham International, Little

Chalfont, UK) according to the manufacturer's instructions, and exposure to

Hyperfilm ECL (Amersham International, Little Chalfont, UK) for approximately 5
sec before development.
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5.2.9 Cell-Mediated Immune Response

5.2.9.1 Preparation of PBMCs
Blood samples were diluted 1:2 in approximately 20ml of cold sterile PBS

and centrifuged for 20 min at 450xg in a CR422 Jouan centrifuge. The interface layer

(buffy coat) was removed using a sterile glass pipette and diluted in 2ml of wash

medium, consisting of HBSS (Gibco, Invitrogen, Paisley, UK) supplemented with
2% heat inactivated foetal bovine serum (FBS) (Labtech International, Sussex, UK),

100 U/ml penicillin and 100pg/ml streptomycin (Gibco, Invitrogen, Paisley, UK).
The cell suspension was gently layered over Lymphoprep (Nycomed, Solihull, UK)
in a 15ml conical centrifuge tube and centrifuged at 550xg for 30 min. PBMCs were

collected from the interface, washed three times in wash medium and resuspended in
culture medium, consisting of Iscove's modified Dulbecco's medium (IMDM)

(Gibco, Invitrogen, Paisley, UK) supplemented with 10% FBS (Labtech

International, Sussex, UK), lOOU/ml penicillin and lOOpg/ml streptomycin. A small

aliquot of cells was stained with 0.1% nigrosin and counted in a haemocytometer.
The cell concentration was adjusted to 2 x 106cells/ml for the assay.

5.2.9.2 Preparation of Cells from Lymph Nodes
The lymph nodes collected post mortem were transferred into 5ml of wash

medium in a 60mm petri dish, then trimmed and finely chopped with a scalpel blade.
This suspension was transferred to a stomacher bag and processed in a Stomacher 80

(Camlab Ltd., Cambridge, UK) for approximately 10 sec. The disrupted tissue was

filtered to remove any large lumps. Cells in this suspension were counted as

described above and the cell concentration was adjusted to 2 x 106cells/ml for the
assay.

5.2.9.3 Cell Proliferation Assay
Cells were cultured with toxoplasma tachyzoite antigen at a concentration of

lpg/ml and 2pg/ml, based on preliminary titration experiments. Positive control cells
were cultured with Concanavalin A (Con A) (ICN Biochemicals, Cleveland, Ohio,

USA) at a final concentration of 5pg/ml. Con A, the lectin of the jack bean
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0Canavalia ensiformis), was used as a positive control for the test, as it has been
described to selectively stimulate T lymphocytes (Janossy & Greaves, 1971; Rouse
& Babiuk, 1974). In contrast negative control cells were cultured with either culture
medium alone or Vero African green monkey (Cercopithecus aethiops) kidney cells
at a concentration of lpg/ml. Equal volumes of cells and antigen (lOOpl of each)

were set up in quadruplicate in 96 well round-bottomed tissue culture plates (Nunc,

Roskilde, Denmark) at 37°C in a humidified 5% CO2 incubator for 5 days. Cells
were pulsed for the final 18h with 18.5 kBq [3H]-thymidine (Amersham Bioscience,

Bucks, UK) per well before harvesting onto fibreglass filters (Canberra Packard,

Meriden, Connecticut, USA). Cell-associated radioactivity was quantified in a gas

proportional counter (beta scintillation counter) (Canberra Packard, Meriden,

Connecticut, USA).

5.2.9.4 Determination of Stimulation Index

The results reported as counts per minute (cpm) are the median value of

quadruplicate cultures. The differential incorporation of [3H]-thymidine between
treated and untreated cultures was used as a measure of proliferation expressed as

stimulation index (SI):

SI = cpm of test culture

cpm of medium control culture

5.2.9.5 Interferon Gamma (IFNy)
Cultures were set up as described above for cell proliferation assays and cell-

free supernatants were collected after 5 days of stimulation. The supernatants were

stored at -20°C prior to testing for the presence of IFNy using an ELISA kit (CSL

Veterinary, Parkville, Australia), a sandwich enzyme immunoassay capable of

detecting less than 50pg/ml of recombinant IFNy. ELISAs were performed as

described by the manufacturer's protocol. Briefly, samples were incubated on

microtitre plates coated with antibody to IFNy for 60 min at RT, and unbound
material was removed by extensive washing. Plates were incubated in HRP labelled
anti-bovine IFNy for 60 min at RT and washed as above. Plates were then incubated
with enzyme substrate containing H2O2 for 30 min at RT. The reaction was stopped
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with 0.5M H2SO4 and the amount of colour development was estimated

spectrophotometrically at 450nm.The ELISA was calibrated using standards of

recombinant bovine IFNy in concentrations of 2000pg/ml to lOpg/ml. A regression

line was calculated and pg/ml of IFNy present in each test sample was determined
from the standard curve.

5.2.10 Statistics

If necessary a small constant value was added to each data point for a
measured parameter to make all values positive. Data were transformed

logarithmically to ensure that observations within each group had an approximately
normal distribution with a common variance. Data were analysed firstly for weeks 0-
9 to compare the responses produced to immunisation with those produced to oocyst

infection, and secondly for the 2 weeks post-infection with oocysts.

A mixed model was fitted to the data using treatment group and week of

experiment (time) as fixed factors and individual animals within each group as a

random factor. The observations for individual animals over time may have been
correlated because the data are of the repeated measures type, hence the correlation
structure was modelled by fitting an auto-regressive correlation of order I. The
model was fitted using restricted maximum likelihood (REML) with a statistics

package (Genstat for Windows, 6th ed.). The significance of fixed effects (group,
time and the interaction between group and time) from the analysis of variance

(ANOVA) was assessed using the Wald statistic, and a P value of less than 0.05 was

regarded as significant. For variables measured at one time period only (e.g. tissues
collected at post-mortem), one-way ANOVAs were performed to examine between

group differences, and these were further analysed using the Tukey's test statistic

(Minitab version 13). Finally, sheep were classified as responders or non-responders
to each treatment on the basis of measurements over the first nine weeks for each

parameter. The proportion of animals responding and not responding to the treatment

in each group was compared using the Fisher's Exact Test.
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5.3 RESULTS

5.3.1 Preliminary Results

5.3.1.1 Titration of Oocyst Dose
The mean rectal temperatures for animals that received infective doses of

either 200 or 500 toxoplasma oocysts from the day prior to infection to day 14 post¬

infection are demonstrated in Figure 5.4. Values for individual animals are shown in

Appendix 5.1. There was no difference in the febrile response produced to infection
with 200 or 500 oocysts (Wald=7.43, d.f.=15, P=0.945). All animals produced the
classic temperature profile to infection with T. gondii, with a fever lasting from day 5
to day 9 post-infection (McColgan et al., 1988; Buxton et al., 1991), at levels

significantly higher than baseline values (Wald=229.92, d.f.=15, P<0.001). The
lower oocyst dose was used for all future challenge infections. There were no

differences between animals infected with 200 and 500 oocysts for any other

parameters measured.

Day

Figure 5.4 Mean rectal temperatures (±sem) of animals given an infective
dose of either 200 or 500 toxoplasma oocysts from the day prior to dosing to
day 14
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5.3.1.2 Area Targeted by Intra-Nasal Spray
The intra-nasal spray was effective at targeting the area of the nasopharynx

that contained NALT and the pharyngeal tonsil when inserted to a depth of

approximately 16cm into the nasal cavity, as demonstrated in Figure 5.5.

Figure 5.5 Location of Serva Violet 17 dye after 1ml was delivered at a
depth of 16cm in the nasopharyngeal tract of 2 sheep using the intranasal
spray

5.3.2 Clinical Response to Oocyst Infection

5.3.2.1 Clinical Observations

The first clinical signs occurred in the first week post-infection, when all
animals displayed an increase in respiratory rate, mild anorexia and a febrile

response. Animals in each treatment group fully recovered from the infection, apart
from animal 1048N in the control group (immunised with particles containing no
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protein) which developed the clinical symptoms of acute toxoplasmosis at day 10

post-infection. This animal had a febrile response that was maintained at or around

41 °C for the remainder of the experiment. This animal appeared lethargic, weak,
maintained a raised respiratory rate, and had a slight noticeable tremor and slowed
reflexes in its hind legs. At post-mortem examination ascitic fluid was noted in the

peritoneal cavity, and the brain and spinal cord were collected into formol saline for

histological examination. The pathology report showed that the animal had a

widespread non-suppurative meningoencephalitis. The inflammation consisted of

perivascular lymphoid cuffs in the cerebrum with associated focal meningitis and
small scattered foci of microgliosis. These findings are consistent with those seen in

protozoal infections such as toxoplasmosis.

5.3.2.2 Temperature Response
Rectal temperature data were analysed using the mean temperature values for

each group prior to infection, as baseline values. All five groups of animals showed
rectal temperatures below 40°C prior to infection. In naive animals the mean febrile

response lasted for an average of 4-5 days with values above 41°C. Daily

temperatures of individual animals are displayed in Appendix 5.2. The mean rectal

temperatures recorded from each treatment group for the 14-day period following
oral infection are demonstrated in Figure 5.6.

Statistical analysis of the temperature response revealed that there were

highly significant differences in the febrile responses observed between treatment

groups over time (Wald=306.40, d.f.=60, P<0.001). Naive animals that were orally
infected with oocysts produced the characteristic febrile response that has previously
been described in sheep (McColgan et al., 1988; Buxton et al., 1991). Fever began at

day 5 and lasted until day 9 post-infection, when levels began to slowly drop back
down to baseline levels. Following re-infection an increase in temperature to just
over 40°C was measured in animals on day 3 post-infection. Temperatures dropped
back to baseline values the next day where they remained for the rest of the

experiment. After day 3 temperatures were significantly lower than in all the other
treatment groups until day 11 post-infection.
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A similar febrile response to primary infection was measured in animals in
the control group and animals immunised with soluble toxoplasma tachyzoite

antigen. A fever was observed from day 5 to day 9 post-infection, after which time
the mean temperature returned progressively to baseline values by day 11 or 12 post¬

infection. In both groups immunised with particulate toxoplasma antigen fever
occurred earlier and temperature returned to normal more quickly than in the

negative control group. Animals immunised with particulate toxoplasma antigen
alone had a fever at day 4 to day 8 post-infection, and temperature returned to

baseline at day 11. Animals in the group immunised with particulate antigen and

cholera toxin produced a temperature response to infection that contained elements
of the response observed in both naive and immune animals. A slight increase in the
mean temperature to just over 40°C was observed on day 2 post-infection in three out

of the four animals in the group significantly higher than the baseline values.

Temperatures returned to baseline the following day and then increased markedly on

day 4. A fever was measured from day 5 to day 8 post-infection. The response in the
animal in this group that did not show an early rise in temperature was very similar
to the negative control animals, while the temperatures of the other three animals
were not as high as those recorded in the negative control and the soluble-antigen

group, and they also returned to baseline values sooner.

♦—control

day

Figure 5.6 Mean rectal temperatures (±sem) of animals in the different treatment
groups in response to an oral infection of toxoplasma oocysts from the day prior
to infection to day 14 post-infection
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5.3.3 IgA Antibody Responses

5.3.3.1 Antigen-Specific IgA Antibody in Sera
When sera were titrated no maximum OD values for antigen-specific IgA

could be demonstrated, suggesting that only low levels of IgA were present.

Therefore the titre at which 50% maximum/minimum OD was produced was not a

valid measurement to use, and the following results are presented as the OD@492nm

produced for sera at a dilution of 1:10. The mean weekly ODs for antigen-specific
serum IgA antibody in each treatment group are demonstrated in Figure 5.7. The
results for individual animals are detailed in Appendix 5.3. A sample that produced
an OD above 0.1 was considered to be positive. There was a high degree of within

group variation in serum IgA levels, and a small number of animals showed high

background levels of serum IgA despite efforts to control for this on ELISA plates.

0.7

0.6 -I

E
5 05
O)

®
o
O

| 0.3 |
<o
E
O 0.2 J

0.4

0.1

5 6

week

>— control

■—soluble toxo

toxo part
x— toxo + CT part

oocyst

9 10 11

^200 oocysts orally

Figure 5.7 Mean levels of antigen-specific serum IgA antibody (±sem) for
each treatment group

An infective dose of oocysts in naive animals elicited only a slight increase in
levels of antigen-specific IgA antibody in the serum, with peak levels observed at

week 2 post-infection, when all four animals had a positive OD above 0.1. Serum

IgA ODs quickly dropped down to baseline again after this initial increase for the
remainder of the experiment. Re-infection with oocysts 8 weeks later resulted in no
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further increase in serum IgA levels. The control animals, immunised with blank

particles, showed no increase in serum IgA levels for the duration of the trial. The

group immunised with soluble toxoplasma proteins showed only a very small mean
increase in serum IgA that was not significantly different from the baseline values
shown in the control group of animals.

A marked antigen-specific serum IgA response could be demonstrated in both

groups of animals immunised with particulate toxoplasma tachyzoite antigen,
characterised by peak IgA levels at weeks 3 and 5, significantly higher than those
observed in the other three groups (Wald=l 13.58, d.f.=35, PcO.OOl). This

represented a biphasic serum IgA response, with each peak occurring 1 week after
the second and third immunisation dose. Higher IgA ODs could be measured in the

group that had also received cholera toxin, although this difference was not

statistically significant. The numbers of animals from each group that produced a

serum IgA response are shown in Table 5.6 below. A responder animal was chosen
on the basis that IgA levels producing an OD above 0.1 could be detected by ELISA
for at least 4 weeks of the trial. A Fisher's Exact Test showed that there was no

significant difference in the number of animals responding and not responding to the
treatment in each group (P=0.172).

Group Control Soluble Particulate Particulate Oocyst
Toxo Toxo Toxo + CT

Responder 0 3 3 3 3

Non-Responder 4 5 1 1 1

Table 5.6 Number of animals from each treatment group that produced a
detectable serum IgA response

When the animals were infected with toxoplasma oocysts there was a general
increase in serum IgA levels in all immunised and control animals two weeks post¬

infection. This increase in IgA was significantly higher in all of these groups than in
animals that were re-infected with oocysts (Wald= 12.66, d.f.=5, P=0.027). In general
this increase in serum IgA was similar to that seen in naive animals infected with

oocysts.
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5.3.3.2 Antigen-Specific IgA Antibody in Nasal Secretions
The mean weekly ODs for antigen-specific nasal IgA levels in each treatment

group are demonstrated in Figure 5.8. The weekly ODs for individual animals are

shown in Appendix 5.4. A sample that produced an OD above 0.1 was considered to

be positive. Naive animals infected with toxoplasma oocysts showed no increase in

antigen-specific IgA antibody levels in nasal secretions. The animals in the control

group did not produce any local antigen-specific IgA antibody, and ODs remained at

baseline for the duration of the experiment. The mean ODs for nasal IgA in animals
immunised with soluble toxoplasma tachyzoite antigen did not differ from those in
the control group. However, two out of the eight animals in this group showed
increases in levels of local IgA antibody in nasal secretions for the last 5-6 weeks of
the vaccination trial. Nasal IgA ODs remained consistently very low in all other
animals in this group.

—•—control

week T 200 °°cysts orally

Figure 5.8 Mean levels of antigen-specific IgA antibody (±sem) in the nasal
secretions of the different treatment groups

High levels of local antigen-specific IgA antibody were observed in the nasal
secretions of all animals in both groups immunised with particulate toxoplasma

tachyzoite antigen. ODs for IgA were significantly higher in both of these groups

than in the other three groups (Wald=l 12.17, d.f.=33 P<0.001). In both groups nasal
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IgA levels became significantly higher in week 3 of the trial, after the second
immunisation, and remained higher than the other treatment groups for the rest of the

experiment. The use of cholera toxin had no significant effect on nasal IgA levels in
the groups immunised with particulate toxoplasma tachyzoite antigen.

The number of animals from each group that produced a nasal IgA response

are shown in Table 5.7 below. A responder animal was chosen on the basis that IgA
levels producing an OD above 0.1 could be detected by ELISA for at least 4 weeks.
A Fisher's Exact Test showed that there were significant differences in the number of
animals responding and not responding to the treatment in each group (P=0.002),
with proportionally more animals in the 2 groups immunised with particulate

toxoplasma tachyzoite antigen responding than in other groups.

Group Control Soluble Particulate Particulate Oocyst
Toxo Toxo Toxo + CT

Responder 0 2 4 4 1

Non-Responder 4 6 0 0 3

Table 5.7 Number of animals from each treatment group that produced a
detectable nasal IgA response

When the 2 groups that had been immunised with particulate toxoplasma

antigen were infected with toxoplasma oocysts, nasal IgA antibody levels increased

sharply by week 2 post-infection in all eight animals, to levels almost as high as the
maximum levels produced following immunisation. Nasal IgA ODs in both of these

groups were significantly higher than in the other three groups and the naive animals

given an equivalent dose of oocysts (Wald=11.41, d.f.=4, P=0.022). In the group

immunised with soluble toxoplasma antigen ODs above 0.1 were produced for IgA
in four out of the eight animals. However, when the mean OD for the group was

taken, the increase in IgA was not significant. Increase in nasal IgA could only be
detected in one animal in the control group following oocyst infection, a similar
situation to the naive animals that were initially infected with oocysts. When these
animals were re-infected with oocysts, no further increase in nasal IgA antibody
could be detected.
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5.3.3.3 Antigen-Specific IgA Antibody in Tissues Collected Post-Mortem
The mean ODs for antigen-specific IgA in each tissue in each treatment

group are detailed in Appendix 5.5, and demonstrated in Figures 5.9 and 5.10. In

general there appeared to be higher levels of antigen-specific IgA antibody in gut

tissues than respiratory tract tissues. There were no significant differences between
levels of antigen-specific IgA antibody between any of the groups in any of the
tissues taken, except the abomasal fold (F=3.58, P=0.025) where lower levels of IgA
were measured in the oocyst-challenged group than all 3 groups immunised with

toxoplasma tachyzoite antigen. As a general trend tissues from the group that were

initially infected with oocysts contained lower levels of IgA than all other treatment

groups. Tissues from the three groups immunised with toxoplasma tachyzoite antigen

(particulate or soluble) contained slightly higher levels of antigen-specific IgA than
the control group in all tissues sampled, however within-group variation was high.

In the respiratory tract tissues (Figure 5.9), the NALT and pharyngeal tonsil
contained lowest levels of antigen-specific IgA antibody, whilst the trachea,
bronchus and lung all displayed similar higher levels. Tissues from the group

immunised with particulate toxoplasma tachyzoite antigen generally contained

highest IgA levels, while the oocyst-infected group contained the lowest IgA levels.
The spleen and mesenteric lymph node also contained low levels of antigen- specific

IgA antibody in all treatment groups.

□ control

□ soluble

□ toxo part

■ toxo + CT part
□ oocyst

NALT Trachea Bronchus

tissue

Lung Spleen

Figure 5.9 Comparison ofmean IgA levels (±sem) in respiratory tract and lymphoid
tissue homogenates from each treatment group
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In the gastrointestinal tract (Figure 5.10), highest IgA levels were measured in the
duodenum and jejunum, closely followed by the abomasum and ileum, whilst only

very low levels were observed in the large intestine and rectum. The IgA levels were

very similar in all 5 groups of animals for each tissue apart from the abomasum.

□ control

□ soluble

□ toxo part
Htoxo + CT part

□ oocyst

Abo Fold Duodenum Jejunum Large Int. Rectum

Figure 5.10 Comparison ofmean IgA levels (±sem) in gastrointestinal tract
tissue homogenates from each treatment group

5.3.3.4 Specificity of IgA Antibody
Low levels of background could be observed with day 0 serum samples,

likely to be due to a low level of cross-reactivity between SAG1 and the secondary

antibody as discussed in Chapter 4. Serum contained IgA specific for a number of

toxoplasma proteins following immunisation, but the strongest response was against
a protein of approximately 30kDa, the molecular weight of SAG1, as demonstrated
in Figure 5.11. Similar proteins were recognised by IgA antibody following
immunisation and oocyst infection, demonstrating that the PLG particles contained
similar proteins to the soluble tachyzoite extract, and that the route of stimulation did
not affect which proteins antibody responses were mounted against. Stronger

responses were observed following infection than immunisation in the animals
immunised with particulate tachyzoite antigen. However in the naive animal infected
with oocysts (1084N) only a weak antibody response could be detected against

SAG1, reflecting the low OD detected by ELISA.
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Figure 5.11 Proteins recognised by IgA antibody from animals following
immunisation and oocyst infection

5.3.4 IgG Antibody Responses

5.3.4.1 Antigen-Specific IgG Antibody in Sera

Antigen-specific IgG antibody levels in the serum were analysed in two

different ways. Firstly the OD was measured in sera at a fixed dilution of 1:100 to

determine the effects of immunisation on the serum IgG response. Secondly, strongly

positive sera were further analysed to quantify the amount of antigen-specific

antibody in each sample. Sera were titrated in doubling dilutions and results were

expressed as the titres at which 50% maximum/minimum OD was achieved.
This measure was only relevant when the antibody response became strong enough
to reach a relatively high OD (>0.9), which only occurred after oocyst infection.

The mean weekly ODs for antigen-specific serum IgG antibody in each
treatment group for samples diluted to 1:100 are demonstrated in Figure 5.12 and the

weekly ODs for individual animals are detailed in Appendix 5.6.
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Figure 5.12 Mean levels of antigen-specific serum IgG antibody (±sem) for each
treatment group (results for serum samples diluted to 1:100)

All four animals that were initially infected with oocysts began to produce
detectable levels of antigen-specific IgG at week 2 post-infection. IgG levels then
rose quickly until they reached a maximum level at week 5, at which stage an OD of

approximately 1.0 at a serum dilution of 1:100 was attained. IgG ODs remained this

high for the remainder of the experiment and did not increase further when animals
were re-infected with oocysts at week 8 post-infection. None of the animals in the
control group or in the group immunised with soluble toxoplasma tachyzoite antigen
showed any increases in serum IgG antibody levels following immunisation. Two
animals in the group immunised with particulate toxoplasma tachyzoite antigen alone
showed very slight increases in serum IgG levels that were not significant. In the

group immunised with particulate toxoplasma tachyzoite antigen and cholera toxin
two of the animals produced detectable levels of IgG antibody. One of these animals

produced only very low levels of antibody, while the other animal produced

relatively high levels of IgG, reaching a maximum OD of 0.9 at week 6 of the
vaccine trial, making the mean OD values for this group higher than the other
immunised groups. Statistical analysis of the data demonstrated higher levels of
serum IgG in the group infected with oocysts than all other groups of animals from
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week 2 onwards, and that the group immunised with particulate toxoplasma antigen
and cholera toxin had higher levels of serum IgG than the other three immunised

groups at weeks 5, 6 and 8 (Wald=151.33, d.f.=35, P<0.001).
The number of animals in each group that produced a serum IgG response is

shown in Table 5.8 below. A responder animal was chosen on the basis that IgG
levels producing an OD above 0.1 could be detected by ELISA for at least 4 weeks.
A Fisher's Exact Test showed that there were significant differences in the number of
animals responding and not responding to the treatment in each group (P=0.012),
with proportionally more animals in the group infected with oocysts responding than
in any other groups.

Group Control Soluble Particulate Particulate Oocyst
Toxo Toxo Toxo + CT

Responder 0 1 2 2 4

Non-Responder 4 7 2 2 0

Table 5.8 Number of animals from each treatment group that produced a
detectable serum IgG response

Following oocyst infection the negative control group began to mount an IgG

response by week 2 post-infection, at similar levels to the naive animals initially
infected with oocysts. By week 2 post-infection much higher levels of serum IgG
could be detected in the three groups immunised with toxoplasma tachyzoite antigen.
The average ODs were similar between all three groups and at levels as high as the
maximum values reached post-infection in the group initially infected with oocysts.

IgG levels were significantly higher in all three immunised groups and the re¬

infected group than the control group and naive animals initially infected with

oocysts (Wald=29.39, d.f.=5, PcO.OOl). Therefore IgG levels in the three immunised

groups increased earlier than in naive animals infected with oocysts, independent of
whether IgG could be detected in the serum following immunisation. Serum samples
were thus titrated out so that amounts of antigen-specific IgG antibody could be

quantified. These results are shown in Figure 5.13 and detailed in Appendix 5.7.
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Figure 5.13 Average serum titre (±sem) at which 50% maximum/minimum OD
was reached for IgG in each treatment group

The titre of serum at which 50% maximum/minimum OD was reached was

approximately 1:1000 by week 6 post-infection in naive animals infected with

oocysts. This titre remained constant for the rest of the experiment, and did not

increase following re-infection. The serum titre for animals in the control group was

only 1:137 by week 2 post-infection, a similar titre to that measured at week 2 in
naive animals infected with oocysts, demonstrating that only very small amounts of

antigen-specific IgG antibodies had been produced. In contrast large amounts of IgG

antibody were present by week 2 post-infection in the three groups immunised with

toxoplasma tachyzoite antigen. The average titre at which 50% maximum/minimum
OD was reached for the soluble antigen group was 1:2487, for the particulate group

was 1:6376 and for the particulate group that also received cholera toxin was 1:4447.
There were significant differences in the average amounts of antigen-specific IgG in
the serum in each group post-infection (Wald=59.81, d.f.=5, P<0.001). Larger

quantities of antigen-specific IgG were produced in the three groups that had been
immunised with toxoplasma tachyzoite antigen than in the group initially infected
with oocysts.
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5.3.4.2 Comparison of Serum lgG1 and lgG2 Levels
In general the ODs produced in the IgGl and IgG2 specific ELISAs were

much lower than for IgG antibody, probably due to few sites being sub-class specific

(J. Hopkins, personal communication). Optimisation of the assay may further
enhance the sensitivity and the ODs produced. The average ODs for serum IgGl and

IgG2 in each treatment group week 2 post-infection are shown in Figure 5.14, and
data for individual animals are shown in Appendix 5.8.
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Figure 5.14 Comparison of antigen-specific serum IgGl and lgG2 antibody
levels (±sem) between treatment groups 2 weeks post-infection with oocysts

IgGl levels were higher in the 3 groups immunised with toxoplasma

tachyzoite antigen than the control group (F=4.58, d.f.=4, P=0.011). IgGl ODs
tended to be higher in animals immunised with particulate than soluble antigen, and

IgGl ODs in the oocyst-infected group tended to be in between those in the
immunised groups and the control group. No serum IgG2 was detected in the control

group or the group immunised with soluble toxoplasma tachyzoite antigen. Serum

IgG2 ODs were generally higher in animals immunised with particulate toxoplasma

tachyzoite antigen, and highest in animals infected with oocysts. These differences
were not statistically significant due to high within group variation.
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5.3.4.3 Antigen-Specific IgG Antibody in Nasal Secretions
The mean weekly ODs for antigen-specific IgG in nasal secretions in each

treatment group are demonstrated in Figure 5.15, and the weekly ODs for individual
animals are shown in Appendix 5.9. In general, nai've animals that were infected with

oocysts began to produce detectable levels of IgG antibody in their nasal secretions

by week 3 post-infection. IgG levels then rose steadily until week 6 when they began
to level out. When animals were re-infected with oocysts, nasal IgG levels increased
further. There was considerable variation in the amount of antigen-specific nasal IgG

produced between animals in this group.

—control

—■—soluble toxo

Figure 5.15 Mean levels of antigen-specific IgG antibody (±sem) in nasal
secretions in each treatment group

The oocyst-infected group had significantly higher levels of IgG in nasal
secretions than any of the other groups from week 3 onwards (Wald=55.49, d.f.=33,

P=0.008). No IgG antibody could be detected in any immunised or control groups
until animals were infected with oocysts. By week 2 post-infection IgG could be
detected in the nasal secretions of the majority of animals. Very low ODs were

produced in the nasal secretions of control animals, similar to those measured at the
same time in nai've animals infected with oocysts. Nasal secretions from the three

groups of animals that had been immunised with toxoplasma tachyzoite antigen
contained much higher levels of IgG than nai've animals infected with oocysts
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(Wald=123.35, d.f.=4, P<0.01). As a general trend animals immunised with

particulate antigen produced higher levels of nasal IgG than animals immunised with
soluble antigen, but this difference was not significant. In all three immunised groups

nasal IgG was produced more quickly and in greater amounts than in naive animals

given an equivalent dose of oocysts.

5.3.4.4 Comparison of Nasal IgG 1 and lgG2 Levels
The average ODs for antigen-specific IgGl and IgG2 antibody in nasal

secretions in each treatment group at week 2 post-infection are shown in Figure 5.16,
and data for individual animals are detailed in Appendix 5.8.
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Figure 5.16 Comparison of antigen-specific nasal lgG1 and lgG2 antibody
levels (±sem) between treatment groups 2 weeks post-infection

No statistically significant differences could be detected in nasal IgGl and

IgG2 ODs between the treatment groups. The two groups immunised with particulate

toxoplasma tachyzoite antigen tended to have higher levels of IgGl in nasal
secretions than the other groups. IgGl ODs were low in the groups immunised with
soluble toxoplasma antigen and the group infected with oocysts, and no IgGl could
be detected in the control group. IgG2 ODs were very low in the nasal secretions of
all animals.
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5.3.4.5 Antigen-Specific IgG Antibody in Tissues Collected Post-Mortem
The mean ODs for antigen-specific IgG in each tissue in each treatment

group are detailed in Appendix 5.10, and demonstrated in Figures 5.17 and 5.18
overleaf. In general similar levels of antigen-specific IgG antibody were detected in

gut and respiratory tract tissue homogenates. Lymph nodes contained slightly higher
levels of IgG. There were significant differences between groups in levels of antigen-

specific IgG antibody in all tissues sampled. The F and P values for the comparison
of IgG in each tissue between groups are shown in Table 5.9.

Tissue F value P value
NALT 24.41 <0.001

Pharyngeal Tonsil 16.33 <0.001
Trachea 10.69 <0.001
Bronchus 21.18 <0.001

Lung 38.00 <0.001

Abomasal Fold 43.15 <0.001

Duodenum 25.77 <0.001

Jejunum 33.07 <0.001
Ileum 14.35 <0.001

Peyer's Patch 26.00 <0.001

Large Intestine 26.37 <0.001
Rectum 13.59 <0.001

Spleen 18.75 <0.001
Mesenteric Lymph Node 19.06 <0.001

Table 5.9 Statistical analyses of between group differences in antigen-
specific IgG antibody in gut and respiratory tract tissues

In general, tissues from the control group contained significantly lower levels
of antigen-specific IgG than all other groups for all tissues sampled. The group that
were initially infected with oocysts tended to have lower levels of IgG in all tissues

sampled than the 3 groups immunised with toxoplasma tachyzoite antigen, however
this difference was only significant in the large intestine and the rectum. IgG levels
were highest in animals from the three groups immunised with toxoplasma

tachyzoite antigen in all tissues sampled.
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Figure 5.17 Comparison ofmean IgG levels (±sem) in respiratory tract and
lymphoid tissue homogenates from each treatment group
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Figure 5.18 Comparison ofmean IgG levels (±sem) in gastrointestinal tract tissue
homogenates from each treatment group
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5.3.4.6 Specificity of IgG Antibody
Low levels of background could be observed on day 0 serum samples, likely

to be due a low level of cross-reactivity between SAG1 and the secondary antibody
as discussed in Chapter 4. However, serum from animals that had a strong IgG

response following immunisation reacted strongly against a number of bands of

protein in the toxoplasma extract on the western blot, demonstrated in Figure 5.19.
Serum from all 3 animals contained antigen-specific IgG against a number of

toxoplasma proteins but the strongest response was against a protein of

approximately 30kDa, the molecular weight of SAG1. Serum IgG in the immunised
animals reacted against more bands of protein from the toxoplasma extract following
infection with oocysts. Antigen-specific responses were stronger following
immunisation than infection. The serum IgG from animals only infected with oocysts

appeared to be against SAG1 alone.
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Figure 5.19 Proteins recognised by IgG antibody from animals following
immunisation and oocyst infection

5.3.4.7 Antigen-Specific IgE Antibody
No detectable levels of antigen-specific IgE antibody were measured in the

serum or nasal secretions from any animals in any treatment group.
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5.3.5 Cell-Mediated Responses

5.3.5.1 PBMCs

PBMCs were tested for their ability to respond to toxoplasma tachyzoite

antigen in vitro to determine whether peripheral blood contained antigen-specific

lymphocytes following immunisation. Stimulation indices (SI) were determined by

dividing the arithmetic median of counts per minute (cpm) pulsed with 3[H]-
thymidine, by the arithmetic median of cpm of the background medium control
cultures. All results are discussed in terms of the logarithmic transformations of the
data (LogioSI), since cell proliferation occurs in a logarithmic manner. Actual cpm
values for proliferative responses to medium controls, vero cell antigen controls, Con
A positive controls, and toxoplasma antigen are presented in Appendices 5.11-5.15.
The proliferative responses of PBMCs to the toxoplasma antigen were highly
variable between animals within each treatment group, and even for the same animal
in different weeks, and the weekly responses for individual animals are illustrated in

Figures 5.20 - 5.24. The test is considered positive when the SI has a value above
2.5-3 according to Kristensen et al. (1982). This is represented in the graphs by a

continuous line at Logio3=0.47.

No animals presented SI values above 3 for toxoplasma antigen prior to
infection or immunisation. All animals produced a strong proliferative response to

the mitogen Con A, and were negative for the medium control and the vero cell

antigen, demonstrating that PBMCs were not proliferating in a non-specific manner.

The proliferative responses were very similar to both concentrations of toxoplasma

antigen, and for the purpose of statistical analysis the response to the higher

concentration of antigen (2pg/ml) was used. Positive proliferation in response to

toxoplasma tachyzoite antigen was demonstrated in PBMCs from all four animals
that were orally infected with oocysts at week 2 post-infection, demonstrated in

Figure 5.20. Two of the animals continued to show positive proliferation to the

antigen for the remainder of the experiment, and proliferation levels did not increase
further when the animals were re-infected with oocysts. The other two animals
demonstrated a positive response until week 5, after which Sis fluctuated between

positive and negative.
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Figure 5.20 Proliferation of PBMC from sheep infected with toxoplasma oocysts
following stimulation with with vero cell antigen, T. gondii tachyzoite antigen at
1pg/ml and 2/ug/ml, or Con A
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Figure 5.21 Proliferation of PBMC from sheep in control group immunised with blank
particles following stimulation with with vero cell antigen, T. gondii tachyzoite antigen at
1/ug/ml and 2jug/ml, or Con A
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Figure 5.22 Proliferation of PBMC from sheep immunised intra-nasally with soluble
toxoplasma tachyzoite antigen following stimulation with vero cell antigen, T. gondii
tachyzoite antigen at 1/ug/mi and 2/ng/mi, or Con A
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Figure 5.23 Proliferation of PBMC from sheep immunised intra-nasally with
particulate toxoplasma tachyzoite antigen following stimulation with vero cell
antigen, T. gondii tachyzoite antigen at 1/ug/ml and 2/ug/mi, or Con A
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Figure 5.24 Proliferation of PBMC from sheep immunised intra-nasally with
particulate toxoplasma tachyzoite antigen and cholera toxin following stimulation
with vero cell antigen, T. gondii tachyzoite antigen at 1jug/ml and 2pg/ml, or Con A
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PBMCs collected from animals in the control group that had been immunised with
blank particles showed no positive proliferation to toxoplasma antigen for the
duration of the experiment, apart from animal 950N, in which a borderline response

could be measured at weeks 7 and 8 (Figure 5.21). When the control group was

infected with oocysts three out of the four animals produced positive proliferative

responses to the antigen by week 2 post-infection. In general, PBMCs from animals
immunised with soluble toxoplasma tachyzoite antigen showed very low levels of

proliferation to toxoplasma antigen in vitro, demonstrated in Figure 5.22. No

proliferation could be detected in PBMCs from five out of the eight animals in the

group following immunisation. Of the remaining three animals, one produced a

borderline positive proliferative response and the other two animals fluctuated
between positive and negative proliferative activity to the antigen. Following oocyst

infection positive proliferation to the antigen was measured in PBMCs from six out

of the eight animals, some responses reaching almost as high as those observed to

Con A.

In comparison a greater proportion of animals, immunised with particulate

toxoplasma tachyzoite antigen, showed positive proliferation to the antigen in vitro.
In the group immunised with particulate antigen alone (Figure 5.23) three out of the
four animals showed positive proliferative activity to the antigen starting at weeks 3
or 4 after the first immunisation, and fluctuating between positive and negative
thereafter. A similar situation occurred in the animals that were immunised with

particulate antigen and cholera toxin (Figure 5.24), with PBMCs from 3 out of the 4
animals proliferating in response to the antigen as early as the first week after

vaccination, and the other animal showing borderline responses. Two of the animals
that responded in this group showed proliferative activity as high as the levels seen in
animals infected with oocysts. Following oocyst infection positive proliferative

activity to the antigen could be demonstrated in PBMCs from all 8 animals in these
two groups.

When the average responses for each treatment group were compared before

challenge infection, highly significant differences in the proliferative responses to the

antigen were observed (Wald=100.09, d.f.=35, P<0.001). The group infected with

oocysts showed increased levels of proliferation at weeks 2, 3, 4 and 8 post-infection,
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which were, on average, significantly higher than the levels seen in the control and
soluble antigen group but not the 2 particulate groups. Higher responses than the
control group could be demonstrated in the particulate group in weeks 4-5 and 8-9,
and in the cholera toxin group in weeks 3-4 and 8-9, however these increases in

proliferation were just below the level of significance due to high within group

variation.

The number of animals from each group that showed proliferative PBMC

responses to toxoplasma antigen are shown in Table 5.10 below. A responder animal
was chosen on the basis that an SI over 3 could be measured for at least 4 weeks of

the trial. A Fisher's Exact Test showed that there were significant differences in the
number of animals responding and not responding to the treatments in each group

(P=0.044). More animals showed positive proliferation in the two particulate groups

and the group infected with oocysts.

Group Control Soluble Particulate Particulate Oocyst
Toxo Toxo Toxo + CT

Responder 0 3 3 3 4

Non-Responder 4 5 1 1 0

Table 5.10 Number of animals in each treatment group that produced a
positive proliferative response to toxoplasma antigen in vitro

For the 2 weeks post-infection with oocysts, significant differences could be
observed between the treatment groups (Wald=83.89, d.f.=5, PcO.OOl). At week 2

post-infection the two groups immunised with particulate antigen and the group

initially infected with oocysts demonstrated higher levels of proliferation than the

control, soluble or group re-infected with oocysts. During the first week post¬

infection the control and soluble groups showed the highest proliferative responses to

the antigen.

5.3.5.2 Lymph Nodes, Tonsils and Spleen Collected Post-Mortem
Table 5.11 overleaf demonstrates whether positive proliferation to the

tachyzoite antigen could be measured in single cell suspensions from the lymph

nodes, tonsils and spleen collected post-mortem. Data are presented in Appendices
5.16-5.18. There were no significant differences between the treatment groups. In

general, positive responses were most frequently measured in cells from the pre-
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femoral lymph node and the spleen, more commonly in lymph nodes from animals
that were immunised with particulate toxoplasma antigen with or without cholera
toxin. Only one positive response was detected in PBMCs from animals in the
control group.

Group Animal RP LN P-F
LN

MLN Med
LN

PT Spleen

control
913N - - +/- - - -

915N - - - - - ++

950N - - - - - -

1048N - - - - - -

i.n. soluble

toxoplasma

638N - + ++ - - +/-
748N - - - - - +++

919N - ++ - - - -

923N ++ + + - - +++

993N - - - - - +

1031N - - - - - -

1034N - - + - - -

1117N - +/- - - - -

i.n.

particulate
toxoplasma

715N - - +/- - - +

739N +/- +++ - +++ - +++

764N + +/- + +/- - +++

1067N - ++ - ++ - -

i.n.

particulate
toxoplasma

+ CT

770N +/- ++ +/- - - +++

989N - ++ - - +/- +

1030N - - +/- - - +

1116N +/- ++ + - - -

oocyst 927N - +++ - ++ - -

976N - - - - ns ++

1032N - ns - - - ++

1084N - - +/- - ns +

Table 5.11 Positive (+), negative (-), and borderline (+/-) proliferative
responses to toxoplasma tachyzoite antigen in cells from lymph nodes, tonsil
and spleen collected post-mortem SI - stimulation index.
- Sl<3, +/- SI 3-5, + SI 5-10, ++ SI 10-20, +++ SI >20, ns no sample

5.3.6 Interferon Gamma Production

5.3.6.1 PBMCs

Cell free supernatants from PBMCs stimulated in vitro with toxoplasma

tachyzoite antigen, ConA, vero cell antigen or medium alone were collected and

analysed for the presence of IFNy by ELISA. The amount of IFNy (pg/ml) detected
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in these samples was calculated using standards of recombinant bovine IFNy. The

correlation coefficient for the relationship between the concentration of IFNy

produced in pg/ml and the stimulation index from the lymphocyte proliferation assay

was 0.64. Mean IFNy concentrations for each group are demonstrated in Figures 5.25
- 5.29, and actual data are detailed in Appendices 5.19 - 5.21.
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Figure 5.25 Mean IFNyproduction (±sem) in animals infected with toxoplasma
oocysts
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Figure 5.26 Mean IFNyproduction (±sem) in the control group immunised with
blank microparticles
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Figure 5.27 Mean IFNyproduction (±sem) In animals immunised with soluble
toxoplasma tachyzoite antigen
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Figure 5.28 Mean IFNyproduction (±sem) in animals immunised with particulate
toxoplasma tachyzoite antigen
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Figure 5.29 Mean IFNyproduction (±sem) in animals immunised with particulate
toxoplasma tachyzoite antigen and cholera toxin

Supernatant samples from cells cultured in medium alone or with vero cell

antigen were consistently negative for IFNy (background values of 0-50pg/ml could
be detected). PBMCs cultured with Con A consistently produced high concentrations

of IFNy, up to 2000pg/ml in cell-free supernatants in high-responding animals. In

general, supernatants from PBMCs collected from naive animals that were infected

with oocysts contained increased levels of IFNy from week 2 post-infection onwards,

demonstrated in Figure 5.25. However, IFNy was only produced in small quantities
in response to antigen following infection, with an average concentration of only

80pg/ml in cell-free supernatants. No further increases in IFNy levels were detected

after animals were re-infected with oocysts. No IFNy was produced by cells
stimulated by toxoplasma tachyzoite antigen in vitro from animals in the control

group until they were infected with oocysts at the end of the experiment,
demonstrated in Figure 5.26.

Increased levels of IFNy were produced by PBMCs stimulated by tachyzoite

antigen in vitro from two of the animals in the group immunised with soluble

toxoplasma antigen, demonstrated in Figure 5.27. No IFNy could be detected in cell-

free supernatants from the other animals in this group, therefore the mean LFNy

concentrations for the group were relatively low. Increased IFNy could only be

191



detected in supernatants from PBMCs from one of the animals in the group

immunised with particulate toxoplasma antigen (Figure 5.28), and two animals in the

group that were immunised with particulate tachyzoite antigen and cholera toxin

(Figure 5.29). PBMCs from one animal in this group consistently produced very high
concentrations of IFNy, much higher than those seen in animals infected with

oocysts. The mean IFNy concentrations for this group were significantly increased
from week 2 onwards.

Statistical analysis revealed only differences within groups across the time

period of the experiment, but not between the different treatment groups at any point
in the first nine weeks of the experiment (Wald=66.93, d.f.=1.97, P<0.001).

However, following oocyst infection, cell-free supernatants contained much higher
levels of IFNy in the control group and the group immunised with soluble protein in
the first week post-infection, and in the two groups immunised with particulate

antigen in the second week post-infection (Wald=62.51, d.f.=5, P<0.001).
The numbers of animals from each group that produced increased IFNy in

cell-free supernatants following in vitro stimulation with toxoplasma tachyzoite

antigen are shown in Table 5.12 below. A responder animal was chosen on the basis
that IFNy levels in supernatants from cells cultured with the antigen were

significantly higher than those from cells cultured with medium alone. A Fisher's
Exact Test showed that there were more animals producing an IFNy response in the

group infected with oocysts (P=0.038).

Group Control Soluble Particulate Particulate Oocyst
Toxo Toxo Toxo + CT

Responder 0 2 1 2 4

Non-Responder 4 6 3 2 0

Table 5.12 Number of animals from each treatment group that produced a
detectable IFNy response in cell-free supernatants

5.3.6.2 Lymph Nodes, Tonsils and Spleen Collected Post-Mortem
Table 5.13 below demonstrates whether increased production of IFNy

occurred in single cell suspensions from lymph nodes, tonsils and spleen collected

post-mortem, in response to stimulation with tachyzoite antigen. Data are presented
in Appendices 5.19-5.21. The stimulation index was calculated as in the lymphocyte
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proliferation assays and an IFNy response was considered positive when this value
was higher than 3. When no medium response had been measured a response greater

than 20 was considered to be positive. The results were highly variable but in general

increased IFNy levels could be detected more often in cells from lymph nodes than

the pharyngeal tonsil. Increased production of IFNy occurred more frequently in cells
from lymph nodes collected from animals immunised with toxoplasma tachyzoite

antigen, more commonly with particulate antigen. In particular, six or seven out of
the eight animals immunised with particulate antigen were positive in the mesenteric

lymph node, pre-femoral lymph node and spleen. Lymph nodes from animals in the
control group were generally negative for IFNy production, as were those from
animals initially infected with oocysts. However, this may have been due to the high

degree of fungal contamination observed in these cell cultures.

Group Animal RP LN P-F
LN

MLN Med
LN

PT Spleen

control
913N - - - - - -

915N - - - - - +

950N - + - - - +

1048N - +/- - - - -

i.n. soluble

toxoplasma

638N +/- - + + - +

748N - +/- - - - +

919N - + + - - -

923N + + + +/- +/- +

993N - - - - - +

1031N ns - - - - -

1034N +/- - + - - -

1117N + + - - - -

i.n.

particulate
toxoplasma

715N - - - - +/- +

739N + + + + - +

764N + + + + - +

1067N - + + + - -

i.n.

particulate
toxoplasma

+ CT

770N - + + + +/- +

989N - + + - - +

1030N + + + +/- - +

1116N + + + - +/- -

oocyst 927N - - - - + -

976N - ns - +/- ns +

1032N ns ns - +/- ns -

1084N ns ns + ns ns -

Table 5.13 Positive (+), negative (-), and borderline (+/-)IFNy responses to in
vitro stimulation with toxoplasma tachyzoite antigen in cells from lymph
nodes, tonsil and spleen collected post-mortem ns = no sample
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5.3.7 Summary of Results
The following tables summarise the immune responses produced following
immunisation and challenge infection in each treatment group.

Group 1 2 3 4 5
Treatment control i.n. soluble i.n. toxo i.n. toxo oocyst

toxo part part + CT
Serum IgA - - + + +/-
Nasal IgA - - + + -

Serum IgG - - - +/- +

Nasal IgG - - - - +

T cell - +/- + + +

IFNy - +/- +/- + +

Table 5.14 Summary of immune responses produced in each treatment
group following immunisation or oocyst infection

Group 1 2 3 4 5
Treatment control i.n. soluble i.n. toxo i.n. toxo oocyst

toxo part part + CT
Serum IgA + + + + -

Nasal IgA - - + + -

Serum IgG - ++ ++ ++ +

Serum lgG1 - + + + +

Serum lgG2 - - + + +

Nasal IgG - + + + +

Nasal lgG1 - +/- + + -

Nasal lgG2 - - - - -

Tissue IgG +/- + + + +

T cell + + + + +

IFNy + + +/- + +

Table 5.15 Summary of immune responses produced in each treatment
group following challenge infection

5.4 DISCUSSION

Mucosal immunisation in sheep using the intranasal route of administration
has been demonstrated for the first time to be efficient in the induction of T. gondii

specific immune responses. Both cell-mediated and humoral responses were

stimulated following immunisation, including both systemic and mucosal humoral

responses. Encapsulation of toxoplasma tachyzoite antigen into a biodegradable

particulate delivery system considerably enhanced these responses, but in this initial
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study they were not sufficient to protect against infection. Further, as yet undefined,
factors may also be required for protection.

The major obstacles encountered in the vaccination trial were the high degree
of between animal variability and the small numbers of animals in each treatment

group, due to cost and sample handling restrictions. The inter-individual variability
in this study was likely to be due to either the natural range of responsiveness in

large outbred animal populations, or uneven delivery of the particles or antigen to

NALT in different animals. Within each treatment group, variation between animals
occurred, but in general, animals that responded strongly for one parameter produced

responses for other parameters, whilst in other animals no immune responses were

detected.

In order for an ELISA to be quantitative each sample must be titrated out so

that the titre at which the 50% maximum/minimum OD is produced on the sigmoid
curve can be compared. However, in these studies maximum OD levels could only
be demonstrated following infection with oocysts. Sigmoid titration curves could not

be obtained following immunisation, suggesting that only low levels of antibody
were present. Therefore antibody responses prior to infection are discussed in terms

of the OD produced at a fixed dilution of sample. This provides a quantitative
measure of antibody with information on the presence or absence of antibody but no
indication of the amounts of antibody present.

Infection of sheep with M3 oocysts led to strong antigen-specific serum IgG

antibody responses and cell-mediated immune responses. T. gondii is known to

stimulate both humoral and cellular mechanisms in sheep, but protection is thought
to be largely cell-mediated (Buxton & Innes, 1995; Buxton, 1998). Antigen-specific

IgG antibody could be detected in the serum of infected animals 2 weeks post¬

infection, and reached maximum values shortly afterwards. A similar IgG response

profile has been previously demonstrated following infection with M3 oocysts

(Buxton et al., 1991, 1993). Antibody titres to complete isolates of T. gondii are

thought to rise to high values within 4 weeks of infection and to remain high for

many months (McColgan et al., 1988) or years (Buxton et al., 1991). This may be
due to the repeated antigenic challenge that may occur if tissue cysts were to break
down at intervals (Conley & Jenkins, 1981). The role of IgG antibody in immunity is
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unclear but a number of studies have led to the general assumption that serum

antibody responses play a partial role in protection against T. gondii infection

(Johnson et al., 1983; Buxton & Innes, 1995), particularly secondary infections.

Specific antibody can destroy tachyzoites in the presence of complement (Sabin &
Feldman, 1948), may facilitate killing by macrophages (Joiner et al., 1990) or may
inhibit the invasion of cells by blocking the activity of secretory-excretory substances
that enhance host cell penetration (Schwartzman, 1986). Immunoblotting revealed
that the serum IgG response following infection was predominantly against a protein
of 30kDa, likely to be SAG1, confirming its role as an immunodominant antigen.
The IgGl and IgG2 antibody isotypes have not been previously studied in sheep in

response to T. gondii infection, but it would appear from these studies that both
serum IgGl and IgG2 antibodies were involved in the response, although it was not

possible to compare the quantity or relevance of each isotype. The present study is
also the first demonstration that antigen-specific IgG antibody is present in ovine
nasal secretions following oral oocyst infection. Serum derived and locally produced

IgG may reach the mucosal surfaces by passive diffusion between epithelial cells or

leakage through minor breaks in the mucosal epithelium, a mechanism that is
enhanced by inflammatory processes of the nasal mucosa (Brandtzaeg, 1984). It is
unclear whether the nasal IgG was locally or systemically produced, but it seems

likely that high levels of nasal IgG may be a reflection of the high levels present in
the serum.

IgA levels following infection with T. gondii have not been previously

investigated in sheep, and this study demonstrates that antigen-specific IgA antibody
is not produced locally or systemically in the serum or in the nasal cavity following

oocyst infection. This may not be surprising as IgA functions at mucosal surfaces

(Mestecky & McGhee, 1987) and is likely to be produced at the gut surface

following oral infection in response to penetration of the parasite into the epithelium.

However, there are considerable difficulties with measuring local IgA production in
the ovine gut following infection and a response here may not be reflected in

increased systemic IgA antibody. No serum IgE antibody was detected following

oocyst infection.
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Protective immunity against T. gondii infection is generally considered to be
cell mediated, with a special involvement of CD8+ T cells and IFNy (Parker et al.,

1991; Khan et al., 1994; Gazzinelli et al., 1991, 1993). Proliferation of PBMCs to the

tachyzoite antigen occurred in vitro following infection, indicative of the cellular
immune response that may be central in resolving primary T. gondii infection.

However, proliferation in response to the antigen was at relatively low levels and
variable between animals. Previous studies have demonstrated low variable

responses similar to those presented here in sheep infected with much higher doses of
105 oocysts (Esteban-Redondo, 1997). More reproducible and stronger cellular

responses have been demonstrated in efferent lymphatic cannulation studies

following infection (Innes et al., 1995a). In such studies lymphocyte stimulation

assays can be performed on cells responding to the antigen locally. This suggests that

proliferation of ovine PBMCs in vitro in response to T. gondii antigen may offer a

poor reflection of the status of the animal in vivo. It is thought that proliferation is

greater when animals are actively responding to the antigen in vivo (weeks 2-4), after
which time proliferative responses decline as fewer memory T cells specific for the

antigen circulate systemically (Innes et al., 1995).

In general increased IFNy production was observed following in vitro

stimulation with tachyzoite antigen, but the amounts of IFNy produced were

relatively low. Ovine recombinant IFNy is known to inhibit T. gondii replication
within ovine fibroblasts and macrophages in vitro (Oura et al., 1993). Previous
studies have similarly shown only low levels of IFNy production by PBMCs
stimulated in vitro following infection with 105 oocysts (Esteban-Redondo, 1997).
Determination of LFNy levels in efferent lymph offers a more accurate reflection of

the kinetics of IFNy production in response to oocyst infection. IFNy appears in the

lymph of sheep 2-4 days following infection and persists for 6-9 days, and cells can

be demonstrated to produce IFNy in supernatants following stimulation with T.

gondii antigen from day 6-15 (Innes et al., 1995b).
In group 5 no further increases in cellular or humoral responses were

observed following a second challenge infection eight weeks after the primary
infection with oocysts. This may have been due to the short time interval between
infective doses if responses to the first infective dose were ongoing. Also no
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differences were detected between the immune responses produced to 200 and 500

oocysts. Following primary infection animals are immune to T. gondii, and do not

develop pyrexia when re-infected (McColgan et al., 1988). Immune sheep re-infected
in this study showed a slight early increase in temperature lasting one day at day 3

post-infection, but no sustained febrile responses were produced. Similarly, slight
increases in temperature can be observed following infection in sheep immunised
with the live S48 T. gondii vaccine (Buxton et al., 1991, 1993).

Animals in the control group that were immunised with blank microparticles
and infected with oocysts at the end of the study produced very similar immune

responses to those in the naive animals infected with oocysts, suggesting they had
had no previous exposure to T. gondii. Prior to this, no immune responses were

detected in these animals following immunisation with blank microparticles

demonstrating that no non-specific responses were produced.
In general, both cell-mediated and humoral responses could be demonstrated

following intranasal immunisation with toxoplasma tachyzoite antigen encapsulated
into a PLG microparticle delivery system. The initial aims of the project were thus

achieved, as systemic cell-mediated immunity and strong antigen-specific IgA

responses could be demonstrated following intranasal immunisation with particulate

antigen. The most striking difference between immune responses in immunised and
infected animals was that in infected animals IgG was the predominant antibody

isotype whilst IgA was predominant in immunised animals. Thus in the latter a

largely mucosal antibody response was produced, with a systemic antibody response

in the former. IgA was present in both the serum and nasal secretions suggesting it

may have been both locally and systemically produced. Serum IgA antibody was

detected transiently following the second and third immunisation, perhaps due to the
short half-life that IgA antibody has in the circulation (Mestecky & McGhee, 1987)).
Nasal IgA levels dramatically increased in all animals immunised with particulate

antigen, and persisted at high levels for several weeks, suggesting that antibody may
have been continually locally produced. The local IgA antibody response is normally
short-lived after either naturally acquired infection or mucosal vaccination (Kazanji
et al., 1994; Keren et al., 1982), but has been prolonged in this study by repeated
immunisation. Immunoblotting with sera from immunised animals revealed that the
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prominent antigenic band recognised by the IgA antibody at 30kDa was likely to be

SAG1, demonstrating that SAG1 is immunogenic following immunisation and a

relevant vaccine candidate. Similar specificity was demonstrated for the IgG

antibody produced following infection. SAG1 has been implicated in the stimulation
of both humoral and cellular immune responses in mice (Khan et al., 1988; McLeod
et al., 1991). Similarly, oral immunisation of mice with a toxoplasma sonicate and
CT has been shown to result in increased intestinal IgA, largely against the SAG1

protein (Bourguin et al., 1991), and intranasal immunisation of mice with SAG1 plus
CT leads to increased intestinal IgA antibody and IgA in nasal secretions (Debard et

al., 1996; Bonenfant et al., 2001). In this study, IgA levels increased further

following infection both locally and systemically, reflecting activation of the immune

system in response to the challenge infection.
The other major finding was that increased proliferation of PBMCs or lymph

node cells to the antigen could be observed in vitro in the majority of animals

following immunisation with particulate antigen, and that the responses in some were

as high as those measured in infected animals. Proliferative responses tended to

fluctuate, perhaps demonstrating the transient presence of antigen-specific

lymphocytes in the circulation as they migrated from the mucosal inductive site to

effector sites following each immunisation. Proliferative responses have been
demonstrated in spleen and MLN cells but not PBMCs in mice following intranasal
immunisation with SAG1 plus CT (Debard et al., 1996; Bonenfant et al., 2001).

Increased IFNy production also occurred in cells from a number of immunised
animals in response to antigenic stimulation, and in one animal (770N) levels of

IFNy production were much higher than those noted in animals infected with

oocysts. In general, IFNy levels were relatively low, as observed in oocyst-infected

animals. Similarly, only very low or barely detectable levels of IFNy production have
been demonstrated in lymph node cells from mice intranasally immunised with
SAG1 plus CT (Debard et al., 1996; Velge-Roussel et al., 2000). In one study
increased IL-2 and IL-5 production was noted. IFNy production and proliferative

responses also tended to be higher in lymph nodes from animals immunised with

particulate toxoplasma antigen, perhaps reflecting some priming of the cell-mediated
immune response, resulting in earlier and stronger responses following infection.
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There was a high degree of variability in proliferative responses and IFNy production
between animals in each group. In the future, it may be useful to examine the local
cell-mediated responses that occur following immunisation to further characterise the
kinetics of the cellular immune response.

In the present study, very little antigen-specific IgG antibody was produced in

response to intranasal immunisation with particulate antigens, and no IgG could be
detected in nasal secretions, reflecting the low levels in the serum. In contrast, high
levels of serum IgG antibodies were detected in protected mice following intranasal
immunisation with SAG1 plus CT (Debard et al., 1996). Only one animal immunised
with particulate antigen produced a significant IgG response, which was

demonstrated to be largely against a protein of 30kDa, likely to be SAG1. Following

infection, rapid increases in both serum and nasal IgG antibody could be measured.
The amount of antigen-specific IgG that was produced both locally and systemically
was much larger and occurred much more rapidly than in naive animals that had
been infected with oocysts. The kinetics of the IgG antibody response suggests that
the immune system of immunised animals had been primed to the antigen despite the
fact that only very low levels of IgG production had been demonstrated following
immunisation. Supporting this observation, levels of IgG antibody were higher in all
the tissues collected post-mortem in animals immunised with particulate antigen than
all other treatment groups. It is thought that IgG may have a more predominant role
in secondary than primary response to T. gondii infection because it is present early
in large quantities that can target the parasite before it enters host cells (Innes &

Wastling, 1995). The high levels of IgG antibody present in nasal secretions

following infection reflect the high levels present in the serum. It appeared that more

IgGl was present in nasal secretions in animals immunised with particulate

toxoplasma antigen than the other treatment groups, perhaps reflecting the mucosal

IgGl response that is known to participate in ruminant mucosal immunity (Butler,

1998). It is unclear whether this antibody was produced locally or systemically.
It is unclear from the present study as to whether cholera toxin has been

effective as a mucosal adjuvant for the toxoplasma tachyzoite antigen in conjunction
with the PLG delivery system. Similar immune responses were detected in animals
immunised with particulate antigen with or without CT, suggesting that a mucosal
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adjuvant was not essential for the generation of humoral and cell-mediated

immunity. The inherent adjuvanticity of the PLG particles may have been sufficient
for the induction of immune responses, or the quantities of CT present may have
been insufficient. Similarly, in mice, oral co-immunisation with soluble cholera toxin
and peptides from measles virus nucleoprotein encapsulated in 50:50 PLG

microparticles resulted in no further enhancement of the observed CTL responses to

the encapsulated peptide alone (Partidos et al., 1999). The responses produced in
animals immunised with CT tended to be slightly higher than in those immunised
with particulate antigen alone for most parameters measured, but differences were

not significant and the small animal numbers in each treatment group did not allow

significant comparisons to be made. However it is intriguing that an impact on the
febrile response produced to infection was noted only in animals that had been
immunised with antigen and cholera toxin, although the significance of this response

is not currently clear. In contrast, in mouse studies using soluble antigen, CT has
been shown to considerably enhance immune responses to oral immunisation with
whole toxoplasma sonicate or intranasal immunisation SAG1 (Bourguin et al., 1991,

1993; Debard et al. 1996). The adjuvant effect of CT may be strongly dependent on
the antigen dose (Lycke & Holmgren, 1986; Bourguin et al., 1991), thus the dose of

tachyzoite antigen used in this study may not have been optimal. Future studies may

usefully further investigate the potential of cholera toxin as an adjuvant using larger
numbers of animals. It may also be interesting to compare the adjuvant effect of both

encapsulated and soluble CT, or the adjuvant effect of CT on soluble tachyzoite

antigen. Quantification of the amount of CT associated with the particles is also

necessary.

The use of CT as an adjuvant may have an influence on whether a Thl or Th2

type of response is produced following immunisation, since a Thl type of response

involving IFNy is desirable for protection against T. gondii (Subauste & Remington,

1991). Although in vitro studies have clearly demonstrated that CT stimulates Th2
clones and inhibits Thl clones (Munoz et al. 1990), some debate exists as to whether

CT as a mucosal adjuvant favours the development of Th2-type responses or not.

Some investigators report consistently higher frequencies of antigen-specific Th2-

type cells, whereas others observed induction of both Thl and Th2 lymphokines
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(Hornquist & Lycke, 1993; Marinaro et al., 1995; Vajdy & Lycke, 1993; Xu-Amano
et al., 1993). The intranasal administration of CT with SAG1 in mice suggested that
both Thl and Th2 type response had been produced (Debard et al., 1996).

The responses to intranasal immunisation with soluble toxoplasma tachyzoite

antigen were variable. No immune responses to immunisation were observed for the

majority of animals in this group. This study confirms findings that in general
soluble antigens are poor mucosal immunogens (Waldo et al., 1994). Soluble antigen

may not be taken up by M cells, or may be processed or presented to the immune

system in different ways. However, the fact that these animals showed similar
immune responses to those induced by particulate antigen demonstrates that there is
some potential to stimulate both local and systemic immune responses following
intranasal administration of soluble antigen in sheep under appropriate conditions.
Particulate antigen, however, is preferable and superior for the generation of more

frequent and stronger immune responses. The variability in this treatment group may

be explained by differences in the ability of animals to respond to the soluble

antigen, or the amount of antigen that reached the appropriate area of NALT or the

underlying mucosal immune system. In general, poor immune responses have been

produced following oral immunisation of mice with soluble T. gondii sonicate alone

(Bourguin et al., 1991, 1993) or intranasal administration of soluble SAG1 alone

(Debard et al., 1996). Responses to these antigens were enhanced and protective
when CT was used as an adjuvant, however intranasal immunisation in ewes with
soluble SAG1 plus CT did not lead to protection (D. Bout, personal communication).

Despite the fact that no immune responses could be detected in the majority of
animals following immunisation, considerable increases in serum and nasal IgG

antibody could be detected in all animals following oocyst infection, much more

rapidly and in much larger quantities than in naive animals. In addition, levels of IgG

antibody were higher in all the tissues collected post-mortem in animals immunised
with soluble antigen than negative control animals or animals initially infected with

oocysts. This strongly suggests that some systemic priming of the immune system

had occurred in all animals following intranasal administration of soluble antigen, as
demonstrated in the animals immunised with particulate antigen. Rapid increases in

202



cell-mediated immunity were also observed in some animals in this group one week

post-infection.

Despite the increased mucosal IgA antibody and cell-mediated responses

following infection, and the priming of the IgG antibody response, immunised
animals were not protected against a challenge infection of oocysts, as assessed by
the febrile response. All animals demonstrated pyrexia, much higher than the normal

body temperature of 39.3°C, for several days following infection. This suggested that
the immune responses produced were not in sufficient quantity or quality for

protection. A febrile response around 4-6 days following infection of susceptible

sheep with T. gondii is a very consistent clinical finding (Miller et al., 1982; Dubey,

1984; McColgan et al., 1988; Buxton et al., 1991, 1994) and is correlated with a

detectable parasitaemia (Buxton, 1990). Pyrexia is thought to be due to the induction
of EL-1 (an endogenous pyrogen) and prostaglandin E2 (involved in suppression of a

variety of relevant immune factors) following macrophage activation by T. gondii

(Roitt & Delves, 2001). One of the negative control animals succumbed to acute

toxoplasmosis following infection, even though infective doses were low. It is

interesting to note that no immunised animals were affected in the same way.

An interesting increase in temperature, very similar to that observed in
immune animals, was measured in animals that had been immunised with particulate

tachyzoite antigen and cholera toxin. It is tempting to suggest that this early rise in

temperature might indicate the release of lymphokines by activated lymph node cells

demonstrating recognition of the parasite by the immune system. However, the

responses mounted were not able to clear the infection at this point and pyrexia
followed two days later. It is also interesting to note that the maximum temperature

reached tended to be lower in this group than in the negative control animals, and
that the temperature returned to baseline one day earlier. Thus intranasal
immunisation with particulate antigen plus CT had an impact on the febrile response,

despite the fact that protection could not be demonstrated. In mice, protection may be
assessed by the degree of reduction in the number of tissue cysts following infection.
This method is unlikely to produce meaningful results using such small infective
doses in large animals such as sheep, because accurate detection of tissue cyst

203



numbers would be difficult. A reduction of 85% in tissue cyst numbers in mouse

brain following infection with 100 cysts of the 76K strain, for at least 5 months, has
been demonstrated following intranasal immunisation with SAG1 plus CT (Debard
et al., 1996), however in these murine studies febrile responses following infection
were not monitored. It may have been interesting to compare the febrile response in

protected mice with that produced in sheep immunised with particulate antigen and
CT. In the future pregnant ewe studies would allow assessment of protection by a

reduction in the number of abortions, and therefore direct comparison with human
infection.

In summary this pilot study has shown that there is considerable potential for
intranasal immunisation against T. gondii in sheep, demonstrated by the high levels
of mucosal and systemic IgA antibody, and increased proliferation in response to the

antigen in conjunction with increased production of IFNy.
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CHAPTER 6

General Discussion
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This study has clearly demonstrated that the intranasal immunisation route in sheep
offers potential for the stimulation of both mucosal and systemic immunity,

involving both cell-mediated and humoral immune responses, and the original

hypothesis has been proved. These results are extremely encouraging and
demonstrate that mucosal immunisation in sheep has potential as a strategy for the
control of infectious disease. By stimulating an effective mucosal IgA response at

mucosal surfaces it is hoped that a barrier to infection may be created. A systemic

response is also stimulated to target pathogenic organisms that enter the circulation.
The majority of current vaccinations in sheep are delivered via the systemic route,

and although this may be effective at stimulating a systemic immune response that

targets the organism once it has entered the body, the prevention of pathogen entry

may be more effective for the control of infection. Previous studies that target the
ovine mucosal immune system are scarce, and this is the first demonstration that
immune responses can be produced following intranasal delivery of an antigen

encapsulated into PLG particles. Another study has demonstrated the potential of an
ISCOMATRIX® adjuvanted intranasal influenza vaccine in sheep to stimulate

antibody responses (Coulter et al., 2003). Similar to the present study strong mucosal

IgA responses could be detected in nasal secretions following immunisation, as well
as strong serum IgG responses. These responses were enhanced compared to

subcutaneous administration of unadjuvanted vaccine, but whether these responses

were protective was not assessed.
In addition to the fully competent mucosal immune system that exists in the

ovine jejunal Peyer's patches (Larsen & Landsverk, 1986; Hein et al., 1989; Mutwiri
et al., 2000), the present study has demonstrated that there is a fully developed arm

of the mucosal immune system in the ovine nasopharyngeal tract, similar to the
NALT described in other species. This lymphoid tissue has the characteristics of a
mucosal immune inductive site fully capable of the induction of a mucosal immune

response. In addition it appears that M cells are present in the epithelium overlying
this tissue that are fully capable of the uptake of particulate antigen and delivery to
the underlying lymphoid tissue. The nasal route of immunisation is preferable to the
oral route in sheep and other ruminants, due to the harsh conditions of pH and

enzymatic activity that antigen must encounter in the rumen before reaching MALT
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in the jejunal PP. However, intranasal immunisation may only be preferable if sheep
have a common mucosal immune system, so that stimulation of NALT results in the

production of generalised mucosal immune responses at other mucosal surfaces. A
number of studies in rodent models have suggested that the recirculation of activated

lymphocytes from NALT to GALT does occur following intranasal immunisation

(Wu & Russell, 1993, 1998; Velge-Roussel et al., 2000). However, in contrast there
is some evidence in both mice and pigs that although recirculation may occur from
GALT to NALT, migration of activated lymphocytes from NALT to GALT is

negligible (Sminia et al., 1989; Nadal et al., 1991; VanCott et al., 1994; Saif, 1996).
In the sheep there appears to be differential expression of homing molecules on

recirculating lymphocytes from the gut and the lung, suggesting that

compartmentalisation between the respiratory tract and gut-associated lymphoid
tissues may exist (Abitorabi et al., 1996).

Despite the mucosal and cell-mediated responses that were produced to

immunisation in this study, protection against oral infection with T. gondii oocysts
was not achieved. Similarly, some authors have suggested that intranasal
administration of antigens may induce mucosal and systemic immune responses but

may fail to trigger a strong protective immunity (Bonenfant et al., 2001), the reasons

for which are unclear. One possible reason for this may have been that the challenge
infection of T. gondii oocysts was delivered via the oral rather than the intranasal
route. It would have been interesting to determine whether intranasal administration
of the same dose of oocysts would have afforded better protection, since strong local
immune responses were detected in the nasal cavity. However, infection with T.

gondii generally occurs via the oral route and triggers a cellular response in the gut

(Chardes et al., 1990, 1993) and intranasal delivery of a challenge infection of

oocysts would not offer a realistic reflection of the natural route of infection.

Nevertheless, 85% protection against oral infection with T. gondii has been
demonstrated in similar intranasal immunisation studies in mice (Debard et al.,

1996). In the future it may be interesting to perform a similar immunisation study

against a respiratory pathogen or a model infectious agent that uses the nasal route as

the natural route of infection.
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Tolerogenic responses were not investigated following immunisation, but the

finding that animals were primed in response to a challenge infection, rather than

suppressed, suggests that tolerance had not been produced. Thus there is no evidence
that tolerance was induced but this matter will require further investigation in future
studies.

A drawback of this study was that it was not possible to determine whether
local immune responses were produced in the gut as well as the nasal cavity

following intranasal immunisation, and thus the degree of compartmentalisation of
the ovine mucosal immune system remains unknown. The aim of this initial

experiment was to determine whether protective immunity had been stimulated by
the immunisation regime, which required all animals to be dosed with a live

challenge of the organism. When gut samples were collected post-mortem the
immune responses that had been stimulated following immunisation were masked by
the responses produced to infection. Following oral infection, toxoplasma

sporozoites penetrate epithelial cells and stimulate the mesenteric lymph node and
the systemic immune system (Dubey, 1984), as was reflected in the lymph nodes and

spleens collected post-mortem. The fact that protective immunity against an oral
infection could not be achieved suggests that some compartmentalisation of the ovine
mucosal immune system does exist, or alternatively that intranasal immunisation did
not result in the production of a sufficiently robust mucosal immune response at the

gut surfaces. Despite this, it was interesting to demonstrate priming of the systemic

IgG response to infection in gut and respiratory tract tissues from immunised
animals. Systemic lymph nodes collected post-mortem from animals immunised with

particulate antigen were also able to respond better to in vitro stimulation with the

antigen, both in terms of proliferation and IFNy production. Studies in mice have

suggested that immune responses are generated both in the gut and the nasal cavity

following intranasal immunisation with SAG1 (Velge-Roussel et al., 2000).
However in these murine studies, animals were anaesthetised before intranasal

administration of antigen, which may have led to some antigen being swallowed,

resulting in direct stimulation of the GALT as well as the NALT.
Future studies should thus not only confirm the stimulation and priming of

the ovine mucosal and systemic immune responses, but investigate the degree of
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compartmentalisation of the mucosal immune system. For this purpose immune

responses in the nasal mucosa and at other mucosal sites to an inert antigen could be
monitored. Lymphatic cannulation experiments may be performed on afferent and
efferent lymph from lymph nodes draining both NALT and GALT to study

lymphocyte activation at local and more distant mucosal sites. ELISPOT and

lymphocyte stimulation assays could determine the degree of both B and T

lymphocyte activation. Although it may not be possible to cannulate the

retropharyngeal lymph node draining NALT, due to its location in the head, it may
be possible to cannulate the cervical lymph nodes or the pre-scapular lymph node.
The mesenteric lymph node may be cannulated to provide information on the
activation of cells in the GALT. In addition, activated lymphocytes could be
collected from the lymph, labelled, re-transfused and their presence monitored in
efferent lymph to determine recirculation and migration pathways. Such studies
would be difficult in small rodents, but similar experiments have been previously

performed in pigs (Rothkotter et al., 1999) and this is one of the advantages of

employing larger animals in these studies. Moreover, it is not possible to preclude the

overspill of intranasally administered antigen to the bronchus or the gut, but this is

likely to be minimal in large animals compared to rodent models.
One of the major problems encountered in large animal studies is the high

degree of between animal variability that is often encountered in immune responses.

In this study some animals could be shown to mount a number of different responses

following immunisation, whereas others failed to mount any response. It now
remains to be determined whether this was a genuine reflection of the range of
between animal variability, or whether a more sophisticated delivery system would
result in more even distribution of the antigen to NALT. There may be differences
between animals in the ability to take up or respond to particulate antigen, perhaps
due to the number of M cells present in the FAE. Some authors have shown that the
number ofM cells increase following antigen exposure (Savidge et al., 1991;

Meynell et al., 1999), and thus the number of M cells present and the ability of these
cells to take up particulate antigen may be due to the degree of previous antigenic

exposure in each animal. Differences in the quantity of antigen that was presented to

the immune system would be reflected in the immune responses produced. When
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inbred strains of laboratory animals are used, results are often more uniform but are
less likely to reflect the situation in large animal models and humans.

The PLG polymer microparticle delivery system has been shown to offer

good potential for the mucosal delivery of antigen in sheep and other ruminants,
demonstrated by the enhanced immune responses that were produced to encapsulated

antigen in this study. This system was chosen because it is the most widely used

strategy to optimise antigen delivery to MALT, the most well-defined in terms of the
characterisation of the immune responses produced following immunisation, and has
been shown to generate protective mucosal immune responses for a number of

pathogens in mouse models. It may also protect antigen on passage through the
rumen in future investigation of the oral immunisation route. This study has
demonstrated that nanoparticles that may optimise M cell uptake (Brayden & Baird,

2001) can be easily produced in large quantities. Results presented here also offer
useful information on the effect of a number of parameters on protein encapsulation
into sub-micron particles, although methods must be tailored to individual proteins.
Most importantly, the ability to encapsulate a mixture of biologically active and
functional proteins has been demonstrated, since most previous studies have focused
on the encapsulation of one model protein, and this is the first demonstration of

encapsulation of a soluble toxoplasma tachyzoite extract into particles made from the
PLG polymer. In addition, the demonstration of the co-encapsulation of SAG1 and
CT offers the possibility of simultaneous presentation of the mucosal adjuvant with
the antigen to the immune system, which is likely to be preferable to using a soluble

adjuvant alongside the particulate delivery system. The retained functional activity of

encapsulated LLO is also extremely encouraging and demonstrates that functionality
and antigenicity of proteins may be retained despite the harsh conditions of

encapsulation.
The theory that particulate antigen was taken up by M cells overlying the

NALT was central to these studies. However, the cells responsible for particle uptake
were not defined and future work should focus on further characterisation ofM cells

in this region in the sheep. The investigation ofM cell specificity and development

may allow optimisation of the uptake and delivery of antigenic material to NALT. A
method of isolating or culturing ovine M cells in vitro would be extremely useful for
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such studies, but to date efforts to culture M cells from other species or sites have
been largely unsuccessful.

T. gondii was the model disease chosen for the investigation of the potential
of intranasal immunisation in sheep because of the well-defined systems to measure

immune responses to the antigen, and protectivity of these responses by the febrile

response to infection. However, a subunit vaccine for the stimulation of protective

immunity in sheep is highly desirable for T. gondii in sheep, since the live attenuated
vaccine that currently exists (Buxton et al., 1991) has many associated drawbacks.
An effective vaccine in sheep may also offer potential as a control strategy for
human toxoplasmosis, since the pregnant ewe offers a good model of the human
disease. Vaccination with live organisms in humans is unlikely due to possible
reversion to virulence or the risk of vaccinating immunosuppressed individuals, and
mucosal delivery of subunit vaccines, particularly by the intranasal route, offers good

potential for the stimulation of protective immunity (Debard et ah, 1996). It has been

proposed that an acceptable and effective human vaccine would have to carry the

optimised synthetic vaccine (subunit or DNA) plus an appropriate adjuvant, and to

target the mucosal dendritic cells by means of an inert delivery system such as

polymer microparticles, which can be endocytosed by M cells of the gut or nasal-
associated lymphoid tissues (Bout et al., 2002). This study has provided initial

encouraging results towards this ultimate aim in sheep, which may now be further

developed. Strong antigen-specific local and systemic IgA responses were produced

following intranasal immunisation, as were cell-mediated responses with some IFNy

production. These are thought to be the most effective components of the immune

system in the control of toxoplasmosis (Subauste & Remington, 1991; Gazzinelli et

al., 1991, 1993), and offer real potential for protection against the disease.

It is clear that a great deal of further research is now required to investigate
the stimulation of protective immunity using the intranasal immunisation route in

sheep, since protection was not achieved in this pilot study. Protection against
infection is the obvious goal of any vaccination strategy, and if future improvements
to the techniques presented here could lead to the generation of fully effective
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immune responses this immunisation strategy could offer huge benefits to the

farming industry, not only for the control of toxoplasmosis, but for a wide range of
infectious agents. To be widely applicable an intranasal vaccine for sheep must be

developed to facilitate easy and quick immunisation of a large number of animals
with little technical expertise. In addition, the development of a single dose vaccine
to preclude the need for booster vaccinations is highly desirable. The possibility for
such a vaccine lies in the mucosal delivery of a combination of particles made from
different PLG polymers, with different release characteristics, to prolong antigen
release and stimulation of the immune system. Optimisation of the type and dose of
mucosal adjuvant is one of the main ways in which protective immune responses

may be stimulated, as is manipulation of the antigen and delivery system. Further to

this, there is potential to use this route of immunisation for DNA vaccination, and
PLG particles can be developed to encapsulate or surface-bind DNA. In addition, it
would be useful to use a viral or bacterial respiratory pathogen as a model system in
future studies to determine whether protective responses at the natural site of
infection could be detected.

212



References

213



Abitorabi, M. A., Mackay, C. R., Jerome, E. H., Osorio, O., Butcher, E. C., and Erie, D.
J. (1996). Differential expression of homing molecules on recirculating lymphocytes
from sheep gut, peripheral, and lung lymph. J.Immunol. 156, 3111-3117.

Aggerbeck, H., Wantzin, J., and Heron, I. (1996). Booster vaccination against diphtheria
and tetanus in man. Comparison of three different vaccine formulations—Ill. Vaccine 14,
1265-1272.

Agren, L. C., Ekman, L., Lowenadler, B., Nedrud, J. G., and Lycke, N. Y. (1999).
Adjuvanticity of the cholera toxin Al-based gene fusion protein, CTA1- DD, is critically
dependent on the ADP-ribosyltransferase and Ig- binding activity. J.Immunol. 162,
2432-2440.

Aleksandersen, M., Hein, W. R., Landsverk, T., and McClure, S. (1990). Distribution of
lymphocyte subsets in the large intestinal lymphoid follicles of lambs. Immunology 70,
391-397.

Alexander, J., Jebbari, H., Bluethmann, H., Satoskar, A., and Roberts, C. W. (1996).
Immunological control of Toxoplasma gondii and appropriate vaccine design.
Curr.Top.Microbiol.Immunol. 219, 183-195.

Allan, C. H., Mendrick, D. L., and Trier, J. S. (1993). Rat intestinal M cells contain
acidic endosomal-lysosomal compartments and express class II major histocompatibility
complex determinants. Gastroenterology 104, 698-708.

Almeida, A. J., Alpar, H. O., and Brown, M. R. (1993). Immune response to nasal
delivery of antigenically intact tetanus toxoid associated with poly(L-lactic acid)
microspheres in rats, rabbits and guinea-pigs. J.Pharm.Pharmacol. 45, 198-203.

Almeida, A. J. and Alpar, H. O. (1996). Nasal delivery of vaccines. J.Drug Target 3,
455-467.

Alonso, M. J., Cohen, S., Park, T. G., Gupta, R. K., Siber, G. R., and Langer, R. (1993).
Determinants of release rate of tetanus vaccine from polyester microspheres. Pharm.Res.
10, 945-953.

Alpar, H. O., Almeida, A. J., and Brown, M. R. (1994a). Microsphere absorption by the
nasal mucosa of the rat. J.Drug Target. 2, 147-149.

Alpar, H. O. and Almeida, A. J. (1994b). Identification of some physicochemical
characteristics of microspheres which influence the induction of the immune response
following mucosal delivery. Eur. J. Pharm. Biophartn. 4, 198-202.

Amerongen, H. M., Weltzin, R., Mack, J. A., Winner, L. S., Ill, Michetti, P., Apter, F.
M., Kraehenbuhl, J. P., and Neutra, M. R. (1992). M cell-mediated antigen transport and

214



monoclonal IgA antibodies for mucosal immune protection. Ann.N.Y.Acad.Sci. 664, 18-
26.

Anastassiou, E. D., Yamada, H., Francis, M. L., Mond, J. J., and Tsokos, G. C. (1990).
Effects of cholera toxin on human B cells. Cholera toxin induces B cell surface DR

expression while it inhibits anti-mu antibody-induced cell proliferation. J.Immunol. 145,
2375-2380.

Anderson, M. L., Moore, P. F., Hyde, D. M., and Dungworth, D. L. (1986). Bronchus
associated lymphoid tissue in the lungs of cattle: relationship to age. Res.Vet.Sci. 41,
211-220.

Apodaca, G., Bomsel, M., Arden, J., Breitfeld, P. P., Tang, K., and Mostov, K. E.
(1991). The polymeric immunoglobulin receptor. A model protein to study transcytosis.
J.Clin.Invest 87, 1877-1882.

Araujo, F. G. (1991). Depletion of L3T4+ (CD4+) T lymphocytes prevents development
of resistance to Toxoplasma gondii in mice. Infect.Immun. 59, 1614-1619.

Araujo, F. G. (1994). Immunization against Toxoplasma gondii. Parasitol.Today 10,
358-360.

Arshady, R. (1990). Microparticles and microcapsules. A survey of manufacturing
techniques. Part III. Solvent evaporation. Polym.Eng.Sci. 30, 915-921.

Artursson, P., Martensson, I. L., and Sjoholm, I. (1986). Biodegradable microspheres.
Ill: some immunological properties of polyacryl starch microparticles. J.Pharm.Sci. 75,
697-701.

Asanuma, H., Aizawa, C., Kurata, T., and Tamura, S. (1998). IgA antibody-forming cell
responses in the nasal-associated lymphoid tissue of mice vaccinated by intranasal,
intravenous and/or subcutaneous administration. Vaccine 16, 1257-1262.

Baca-Estrada, M. E., Foldvari, M., and Snider, M. (1999). Induction of mucosal immune
responses by administration of liposome- antigen formulations and interleukin-12.
J.Interferon Cytokine Res. 19, 455-462.

Bailey, M., Plunkett, F. J., Rothkotter, H. J., Vega-Lopez, M. A., Haverson, K., and
Stokes, C. R. (2001). Regulation of mucosal immune responses in effector sites.
Proc.Nutr.Soc. 60, 427-435.

Baras, B., Benoit, M. A., Dupre, L., Poulain-Godefroy, O., Schacht, A. M., Capron, A.,
Gillard, J., and Riveau, G. (1999). Single-dose mucosal immunization with
biodegradable microparticles containing a Schistosoma mansoni antigen. Infect.Immun.
67, 2643-2648.

215



Beagley, K. W., Eldridge, J. H., Kiyono, H., Everson, M. P., Koopman, W. J., Honjo, T.,
and McGhee, J. R. (1988). Recombinant murine IL-5 induces high rate IgA synthesis in
cycling IgA- positive Peyer's patch B cells. J.Immunol. 141, 2035-2042.

Beagley, K. W., Eldridge, J. H., Aicher, W. K., Mestecky, J., Di Fabio, S., Kiyono, H.,
and McGhee, J. R. (1991). Peyer's patch B cells with memory cell characteristics
undergo terminal differentiation within 24 hours in response to interleukin-6. Cytokine 3,
107-116.

Beier, R. and Gebert, A. (1998). Kinetics of particle uptake in the domes of Peyer's
patches. Am.J.Physiol 275, G130-G137.

Berlin, C., Bargatze, R. F., Campbell, J. J., von Andrian, U. H., Szabo, M. C., Hasslen,
S. R., Nelson, R. D., Berg, E. L., Erlandsen, S. L., and Butcher, E. C. (1995). alpha 4
integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80,
413-422.

Beverley, J. K., Archer, J. F., Watson, W. A. and Fawcett, A. R. (1971). Trial of a killed
vaccine in the prevention of ovine abortion due to toxoplasmosis. Brit. Vet.J.121, 529-
535.

Bhalla, D. K. and Owen, R. L. (1982). Cell renewal and migration in lymphoid follicles
of Peyer's patches and cecum~an autoradiographic study in mice. Gastroenterology 82,
232-242.

Bienenstock, J., McDermott, M., Befus, D., and O'Neill, M. (1978). A common mucosal
immunologic system involving the bronchus, breast and bowel. Adv.Exp.Med.Biol. 107,
53-59.

Bienenstock, J. (1985). Bronchus-associated lymphoid tissue. Int.Arch.Allergy
Appl.Immunol. 76 Suppl 1, 62-69.

Bird, P., Jones, P., Allen, D., Donachie, W., Huntley, J., McConnell, I., and Hopkins, J.
(1995). Analysis of the expression and secretion of isotypes of sheep B cell
immunoglobulins with a panel of isotype-specific monoclonal antibodies. Res.Vet.Sci.
59, 189-194.

Bjerke, K., Brandtzaeg, P., and Fausa, O. (1988). T cell distribution is different in
follicle-associated epithelium of human Peyer's patches and villous epithelium.
Clin.Exp.Immunol. 74, 270-275.

Blanco, D. and Alonso, M. J. (1997). Development and characterisation of protein-
loaded poly(lactic/glycolic acid) nanopsheres. Eur.J.Pharm.Biopharm. 43, 285-294.

216



Blanco, D. and Alonso, M. J. (1998). Protein encapsulation and release from
poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties
and of the co-encapsulation of surfactants. Eur.J.Pharm.Biopharm. 45, 285-294.

Bland, P. W. and Warren, L. G. (1986). Antigen presentation by epithelial cells of the rat
small intestine. I. Kinetics, antigen specificity and blocking by anti-la antisera.
Immunology 58, 1-7.

Bockman, D. E. and Cooper, M. D. (1973). Pinocytosis by epithelium associated with
lymphoid follicles in the bursa of Fabricius, appendix, and Peyer's patches. An electron
microscopic study. Am.J.Anat. 136, 455-477.

Bockman, D. E. (1983). Functional histology of appendix. Arch.Histol.Jpn. 46, 271-292.

Bonenfant, C., Dimier-Poisson, I., Velge-Roussel, F., Buzoni-Gatel, D., Del Giudice, G.,
Rappuoli, R., and Bout, D. (2001). Intranasal immunization with SAG1 and nontoxic
mutant heat-labile enterotoxins protects mice against Toxoplasma gondii. Infect.Immun.
69, 1605-1612.

Borghesi, C., Regoli, M., Bertelli, E., and Nicoletti, C. (1996). Modifications of the
follicle-associated epithelium by short-term exposure to a non-intestinal bacterium.
J.Pathol. 180, 326-332.

Bourguin, I., Chardes, T., Mevelec, M. N., Woodman, J. P., and Bout, D. (1991).
Amplification of the secretory IgA response to Toxoplasma gondii using cholera toxin.
FEMS Microbiol.Lett. 65, 265-271.

Bourguin, I., Chardes, T., and Bout, D. (1993). Oral immunization with Toxoplasma
gondii antigens in association with cholera toxin induces enhanced protective and cell-
mediated immunity in C57BL/6 mice. Infect.Immun. 61, 2082-2088.

Bout, D. T., Mevelec, M. N., Velge-Roussel, F., Dimier-Poisson, I., and Lebrun, M.
(2002). Prospects for a human Toxoplasma vaccine. Curr.Drug
Targets.Immune.Endocr.Metabol.Disord. 2, 227-234.

Bowersock, T. L., HogenEsch, H., Torregrosa, S., Borie, D., Wang, B., Park, H., and
Park, K. (1998). Induction of pulmonary immunity in cattle by oral administration of
ovalbumin in alginate microspheres. Immunol.Lett. 60, 37-43.

Bowersock, T. L., HogenEsch, H., Suckow, M., Guimond, P., Martin, S., Borie, D.,
Torregrosa, S., Park, H., and Park, K. (1999). Oral vaccination of animals with antigens
encapsulated in alginate microspheres. Vaccine 17, 1804-1811.

Bradbury, P. and Rae, K. (1996). Connective tissues and stains. In Bancroft J. D. and
Stevens A. (Eds) Theory and Practice ofHistological Techniques (4th ed.), Churchill
Livingstone, Oxford, pp. 135-136.

217



Brandtzeg, P. (1984). Immune functions of human nasal mucosa and tonsils in health
and disease. In Bienenstock, J. (Ed) Immunology of the Lung and Upper Respiratory
Tract, McGraw-Hill Book Company, USA pp. 28-95.

Brandtzaeg, P., Halstensen, T. S., Kett, K., Krajci, P., Kvale, D., Rognum, T. O., Scott,
H., and Sollid, L. M. (1989). Immunobiology and immunopathology of human gut
mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 97, 1562-
1584.

Brandtzaeg, P. and Halstensen, T. S. (1992). Immunology and immunopathology of
tonsils. Adv.Otorhinolaryngol. 47, 64-75.

Brandtzaeg, P. (1997). Mucosal immunity in the female genital tract. J.Reprod.Immunol.
36, 23-50.

Brandtzaeg, P., Farstad, I. N., and Haraldsen, G. (1999). Regional specialization in the
mucosal immune system: primed cells do not always home along the same track.
Immunol.Today 20, 267-277.

Brayden, D. J. and Baird, A. W. (2001). Microparticle vaccine approaches to stimulate
mucosal immunisation. Microbes.Infect. 3, 867-876.

Brinck, U., Bosbach, R., Korabiowska, M., Schauer, A., and Gabius, H. J. (1995).
Lectin-binding sites in the epithelium of normal human appendix vermiformis and in
acute appendicitis. Histol.Histopathol. 10, 61-70.

Bromander, A., Holmgren, J., and Lycke, N. (1991). Cholera toxin stimulates IL-1
production and enhances antigen presentation by macrophages in vitro. J.Immunol. 146,
2908-2914.

Brooking, J., Davis, S. S., and Ilium, L. (2001). Transport of nanoparticles across the rat
nasal mucosa. J.Drug Target 9, 267-279.

Bull, D. M. and Bookman, M. A. (1977). Isolation and functional characterization of
human intestinal mucosal lymphoid cells. J.Clin.Invest 59, 966-974.

Bulow, R. and Boothroyd, J. C. (1991). Protection of mice from fatal Toxoplasma gondii
infection by immunization with p30 antigen in liposomes. J.Immunol. 147, 3496-3500.

Butcher, E. C. and Picker, L. J. (1996). Lymphocyte homing and homeostasis. Science
272, 60-66.

Butler, J. E. (1998). Immunoglobulin diversity, B-cell and antibody repertoire
development in large farm animals. Rev.Sci.Tech. 17, 43-70.

218



Buxton, D., Blewett, D. A., Trees, A. J., McColgan, C., and Finlayson, J. (1988). Further
studies in the use of monensin in the control of experimental ovine toxoplasmosis.
J.Comp Pathol. 98, 225-236.

Buxton, D., Uggla, A., Lovgren, K., Thomson, K., Lunden, A., Morein, B., and Blewett,
D. A. (1989). Trial of a novel experimental Toxoplasma iscom vaccine in pregnant
sheep. Br.Vet.J. 145, 451-457.

Buxton, D. (1990). Ovine toxoplasmosis: a review. J.RoyalSoc.Med. 83, 509-511.

Buxton, D., Thomson, K., Maley, S., Wright, S., and Bos, H. J. (1991). Vaccination of
sheep with a live incomplete strain (S48) of Toxoplasma gondii and their immunity to
challenge when pregnant. Vet.Rec. 129, 89-93.

Buxton, D. (1993). Toxoplasmosis: the first commercial vaccine. Parasitology Today 9,
335-337.

Buxton, D., Thomson, K. M., Maley, S., Wastling, J. M., Innes, E. A., Panton, W. R.,
and Nicoll, S. (1994). Primary and secondary responses of the ovine lymph node to
Toxoplasma gondii: cell output in efferent lymph and parasite detection. J.Comp Pathol.
111,231-241.

Buxton, D. and Innes, E. A. (1995). A commercial vaccine for ovine toxoplasmosis.
Parasitology 110 Suppl, S11-S16.

Buxton, D. (1998). Protozoan infections (Toxoplasma gondii, Neospora caninum and
Sarcocystis spp.) in sheep and goats: recent advances. Vet.Res. 29, 289-310.

Bye, W. A., Allan, C. H., and Trier, J. S. (1984). Structure, distribution, and origin of M
cells in Peyer's patches of mouse ileum. Gastroenterology 86, 789-801.

Cahill, E. S., O'Hagan, D. T., Ilium, L., Barnard, A., Mills, K. FL, and Redhead, K.
(1995). Immune responses and protection against Bordetella pertussis infection after
intranasal immunization of mice with filamentous haemagglutinin in solution or
incorporated in biodegradable microparticles. Vaccine 13, 455-462.

Carr, R. M., Lolachi, C. M., Albaran, R. G., Ridley, D. M., Montgomery, P. C., and
O'Sullivan, N. L. (1996). Nasal-associated lymphoid tissue is an inductive site for rat
tear IgA antibody responses. Immunol.Invest 25, 387-396.

Cepek, K. L., Parker, C. M., Madara, J. L., and Brenner, M. B. (1993). Integrin alpha E
beta 7 mediates adhesion of T lymphocytes to epithelial cells. J.Immunol. 150, 3459-
3470.

Challacombe, S. J. andTomasi, T. B., Jr. (1980). Systemic tolerance and secretory
immunity after oral immunization. J.Exp.Med. 152, 1459-1472.

219



Chardes, T., Bourguin, I., Mevelec, M. N., Dubremetz, J. F., and Bout, D. (1990).
Antibody responses to Toxoplasma gondii in sera, intestinal secretions, and milk from
orally infected mice and characterization of target antigens. Infect.Immun. 58, 1240-
1246.

Chardes, T., Velge-Roussel, F., Mevelec, P., Mevelec, M. N., Buzoni-Gatel, D., and
Bout, D. (1993). Mucosal and systemic cellular immune responses induced by
Toxoplasma gondii antigens in cyst orally infected mice. Immunology 78, 421-429.

Chardes, T., Buzoni-Gatel, D., Lepage, A., Bernard, F., and Bout, D. (1994).
Toxoplasma gondii oral infection induces specific cytotoxic CD8 alpha/beta+ Thy-1+
gut intraepithelial lymphocytes, lytic for parasite- infected enterocytes. J.Immunol. 153,
4596-4603.

Chauhan, H. V. and Singh, C. M. (1970). The clinical pathology of maedi of sheep in
India. Br. Vet. J. 126, 364-367.

Chen, H., Torchilin, V., and Langer, R. (1996). Lectin-bearing polymerized liposomes
as potential oral vaccine carriers. Pharm.Res. 13, 1378-1383.

Chen, H. (2000). Recent advances in mucosal vaccine development. J.Contr.Rel. 67,
117-128.

Chen, W., Alley, M. R., and Manktelow, B. W. (1989). Respiratory tract-associated
lymphoid tissue in conventionally raised sheep. J.Comp Pathol. 101, 327-340.

Chen, W., Alley, M. R., Manktelow, B. W., Hopcroft, D., and Bennett, R. (1991). The
potential role of the ovine pharyngeal tonsil in respiratory tract immunity: a scanning
and transmission electron microscopy study of its epithelium. J.Comp Pathol. 104, 47-
56.

Chen, Y., Inobe, J., Marks, R., Gonnella, P., Kuchroo, V. K., and Weiner, H. L. (1995).
Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376, 177-180.

Clark, M. A., Jepson, M. A., Simmons, N. L., Booth, T. A., and Hirst, B. H. (1993).
Differential expression of lectin-binding sites defines mouse intestinal M-cells.
J.Histochem.Cytochem. 41, 1679-1687.

Clark, M. A., Jepson, M. A., and Hirst, B. H. (1995). Lectin binding defines and
differentiates M-cells in mouse small intestine and caecum. Histochem.Cell Biol. 104,
161-168.

Coffman, R. L., Seymour, B. W., Lebman, D. A., Hiraki, D. D., Christiansen, J. A.,
Shrader, B., Cherwinski, H. M., Savelkoul, H. F., Finkelman, F. D., Bond, M. W., and .

(1988). The role of helper T cell products in mouse B cell differentiation and isotype
regulation. Immunol.Rev. 102, 5-28.

220



Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L. H., and Langer, R. (1991). Controlled
delivery systems for proteins based on poly(lactic/glycolic acid) microspheres.
Pharm.Res. 8, 713-720.

Conley, F. K. and Jenkins, K. A. (1981). Immunohistological study of the anatomic
relationship of toxoplasma antigens to the inflammatory response in the brains of mice
chronically infected with Toxoplasma gondii. Infect.Immun. 31, 1184-1192.

Conley, M. E. and Delacroix, D. L. (1987). Intravascular and mucosal immunoglobulin
A: two separate but related systems of immune defense? Ann.Intern.Med. 106, 892-899.

Coombes, A. G., Lavelle, E. C., Jenkins, P. G., and Davis, S. S. (1996). Single dose,
polymeric, microparticle-based vaccines: the influence of formulation conditions on the
magnitude and duration of the immune response to a protein antigen. Vaccine 14, 1429-
1438.

Cornes, J. S. (1965). Peyer's patches in the human gut. Proc.R.Soc.Med. 58, 716.

Corthesy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl,
J. P. (1996). A pathogen-specific epitope inserted into recombinant secretory
immunoglobulin A is immunogenic by the oral route. J.Biol.Chem. 271, 33670-33677.

Coulter, A., Harris, R., Davis, R., Drane, D., Cox, J., Ryan, D., Sutton, P., Rockman, S.,
and Pearse, M. (2003). Intranasal vaccination with ISCOMATRIX((R)) adjuvanted
influenza vaccine. Vaccine 21 , 946-949.

Couvreur, G., Sadak, A., Fortier, B., and Dubremetz, J. F. (1988). Surface antigens of
Toxoplasma gondii. Parasitology 97 ( Pt 1), 1-10.

Critchley, H., Davis, S. S., Farraj, N. F., and Ilium, L. (1994). Nasal absorption of
desmopressin in rats and sheep. Effect of a bioadhesive microsphere delivery system.
J.Pharm.Pharmacol. 46, 651-656.

Czerkinsky, C., Russell, M. W., Lycke, N., Lindblad, M., and Holmgren, J. (1989). Oral
administration of a streptococcal antigen coupled to cholera toxin B subunit evokes
strong antibody responses in salivary glands and extramucosal tissues. Infect.Immun. 57,
1072-1077.

Darcy, F., Maes, P., Gras-Masse, H., Auriault, C., Bossus, M., Deslee, D., Godard, I.,
Cesbron, M. F., Tartar, A., and Capron, A. (1992). Protection of mice and nude rats
against toxoplasmosis by a multiple antigenic peptide construction derived from
Toxoplasma gondii P30 antigen. J.Immunol. 149, 3636-3641.

Davis, H. L., Weeratna, R., Waldschmidt, T. J., Tygrett, L., Schorr, J., Krieg, A. M., and
Weeranta, R. (1998). CpG DNA is a potent enhancer of specific immunity in mice
immunized with recombinant hepatitis B surface antigen. J.Immunol. 160, 870-876.

221



Davis, S. S. (2001). Nasal vaccines. Adv.Drug Deliv.Rev. 51, 21-42.

Debard, N., Buzoni-Gatel, D., and Bout, D. (1996). Intranasal immunization with SAG1
protein of Toxoplasma gondii in association with cholera toxin dramatically reduces
development of cerebral cysts after oral infection. Infect.Immun. 64, 2158-2166.

Delie, F. (1998). Evaluation of nano- and microparticle uptake by the gastrointestinal
tract. Adv.Drug Deliv.Rev. 34, 221-233.

Denkers, E. Y., Sher, A., and Gazzinelli, R. T. (1993). CD8+ T-cell interactions with
Toxoplasma gondii, implications for processing of antigen for class-I-restricted
recognition. Res.Immunol. 144, 51-57.

Dertzbaugh, M. T. and Elson, C. O. (1993). Comparative effectiveness of the cholera
toxin B subunit and alkaline phosphatase as carriers for oral vaccines. Infect.Immun. 61,
48-55.

Desai, M. P., Labhasetwar, V., Amidon, G. L., and Levy, R. J. (1996). Gastrointestinal
uptake of biodegradable microparticles: effect of particle size. Pharm.Res. 13, 1838-
1845.

Dickinson, B. L. and Clements, J. D. (1995). Dissociation of Escherichia coli heat-labile
enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect.Immun. 63, 1617-
1623.

Douce, G., Turcotte, C., Cropley, I., Roberts, M., Pizza, M., Domenghini, M„ Rappuoli,
R., and Dougan, G. (1995). Mutants of Escherichia coli heat-labile toxin lacking ADP-
ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc.Natl.Acad.Sci.U.S.A
92, 1644-1648.

Douce, G., Giannelli, V., Pizza, M., Lewis, D., Everest, P., Rappuoli, R., and Dougan,
G. (1999). Genetically detoxified mutants of heat-labile toxin from Escherichia coli are
able to act as oral adjuvants. Infect.Immun. 67, 4400-4406.

Dubey, J. P. (1984). Experimental toxoplasmosis in sheep fed Toxoplasma gondii
oocysts. Int. Goat Sheep Res. 2, 93-104.

Duchmann, R., Schmitt, E., Knolle, P., Meyer zum Buschenfelde, K. H., and Neurath,
M. (1996). Tolerance towards resident intestinal flora in mice is abrogated in
experimental colitis and restored by treatment with interleukin-10 or antibodies to
interleukin-12. Eur. J.Immunol. 26, 934-938.

Duijvestijn, A. and Elamann, A. (1989). Mechanisms and regulation of lymphocyte
migration. Immunol.Today 10, 23-28.

222



Dunkley, M. L., Husband, A. J., and Underdown, B. J. (1990). Cognate T-cell help in
the induction of IgA responses in vivo. Immunology 71, 16-19.

Edwards, D. A., Hanes, J., Caponetti, G., Hrkach, J., Ben Jebria, A., Eskew, M. L.,
Mintzes, J., Deaver, D., Lotan, N., and Langer, R. (1997). Large porous particles for
pulmonary drug delivery. Science 276, 1868-1871.

Eldridge, J. H., Meulbroek, J. A., Staas, J. K., Tice, T. R., and Gilley, R. M. (1989).
Vaccine-containing biodegradable microspheres specifically enter the gut-associated
lymphoid tissue following oral administration and induce a disseminated mucosal
immune response. Adv.Exp.Med.Biol. 251, 191-202.

Eldridge, J. H., Hammond, C. J., Meulbroek, J. A., Staas, J. K., Gilley, R. M. and Tice,
T. R. (1990). Controlled vaccine release in the gut-associated lymphoid tissues. 1. Orally
administered biodegradable microspheres target the Peyer's patches. J.Contr.Rel. 11,
205-214.

Eldridge, J. H., Staas, J. K., Meulbroek, J. A., McGhee, J. R., Tice, T. R., and Gilley, R.
M. (1991). Biodegradable microspheres as a vaccine delivery system. Mol.Immunol. 28,
287-294.

Eldridge, J. H., Staas, J. K., Meulbroek, J. A., Tice, T. R., and Gilley, R. M. (1991).
Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an
adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-
neutralizing antibodies. Infect.Immun. 59, 2978-2986.

Elson, C. O. and Ealding, W. (1984). Generalized systemic and mucosal immunity in
mice after mucosal stimulation with cholera toxin. J.Immunol. 132, 2736-2741.

Eriksson, K. and Holmgren, J. (2002). Recent advances in mucosal vaccines and
adjuvants. Curr.Opin.Immunol. 14, 666-672.

Ermak, T. H. and Owen, R. L. (1986). Differential distribution of lymphocytes and
accessory cells in mouse Peyer's patches. Anat.Rec. 215, 144-152.

Ermak, T. H., Steger, H. J., and Pappo, J. (1990). Phenotypically distinct subpopulations
of T cells in domes and M-cell pockets of rabbit gut-associated lymphoid tissues.
Immunology 71, 530-537.

Ermak, T. H., Dougherty, E. P., Bhagat, H. R., Kabok, Z., and Pappo, J. (1995). Uptake
and transport of copolymer biodegradable microspheres by rabbit Peyer's patch M cells.
Cell Tissue Res. 279, 433-436.

223



Ermak, T. H., Giannasca, P. J., Nichols, R., Myers, G. A., Nedrud, J., Weltzin, R., Lee,
C. K., Kleanthous, H., and Monath, T. P. (1998). Immunization of mice with urease
vaccine affords protection against Helicobacter pylori infection in the absence of
antibodies and is mediated by MHC class Il-restricted responses. J.Exp.Med. 188, 2277-
2288.

Ermak, T. H. and Giannasca, P. J. (1998). Microparticle targeting to M cells. Adv.Drug
Deliv.Rev. 34, 261-283.

Esteban-Redondo, I. (1997). A comparison of the immune response and pathogenesis in
sheep and cattle to Toxoplasma gondii infection. PhD Thesis, University of Edinburgh.

Evans, C. W., Lund, B. T., McConnell, I., and Bujdoso, R. (1994). Antigen recognition
and activation of ovine gamma delta T cells. Immunology 82, 229-237.

Eyles, J. E., Bramwell, V. W., Williamson, E. D., and Alpar, H. O. (2001). Microsphere
translocation and immunopotentiation in systemic tissues following intranasal
administration. Vaccine 19, 4732-4742.

Farstad, I. N., Halstensen, T. S., Fausa, O., and Brandtzaeg, P. (1994). Heterogeneity of
M-cell-associated B and T cells in human Peyer's patches. Immunology 83, 457-464.

Fennelly, G. J., Khan, S. A., Abadi, M. A., Wild, T. F„ and Bloom, B. R. (1999).
Mucosal DNA vaccine immunization against measles with a highly attenuated Shigella
flexneri vector. J.Immunol. 162, 1603-1610.

Field, J. B., Ribeiro-Neto, F., Taguchi, M., Deery, W., Rani, C. S., and Pasquali, D.
(1989). ADP ribosylation and G protein regulation in the thyroid. Adv.Exp.Med.Biol.
261,271-284.

Foster, N., Clark, M. A., Jepson, M. A., and Hirst, B. H. (1998). Ulex europaeus 1 lectin
targets microspheres to mouse Peyer's patch M- cells in vivo. Vaccine 16, 536-541.

Frenkel, J. K., Dubey, J. P., and Miller, N. L. (1969). Toxoplasma gondii: fecal forms
separated from eggs of the nematode Toxocara cati. Science 164, 432-433.

Frey, A., Giannasca, K. T., Weltzin, R., Giannasca, P. J., Reggio, H., Lencer, W. I., and
Neutra, M. R. (1996). Role of the glycocalyx in regulating access of microparticles to
apical plasma membranes of intestinal epithelial cells: implications for microbial
attachment and oral vaccine targeting. J.Exp.Med. 184, 1045-1059.

Friedman, A. (1996). Induction of anergy in Thl lymphocytes by oral tolerance.
Importance of antigen dosage and frequency of feeding. Ann.N.Y.Acad.Sci. 778, 103-
110.

224



Fujimura, Y., Kihara, T., Hosobe, M., Ohtani, K., Kamoi, R., Kato, T., Uehira, K., and
Suda, T. (1990). Measurement of microvilli ofmicrofold cells (M-cells) and absorptive
cells in follicle-associated epithelium of mouse Peyer's patches. Gastroenterol.Jpn. 25,
508.

Fujimura, Y., Hosobe, M., and Kihara, T. (1992). Ultrastructural study of M cells from
colonic lymphoid nodules obtained by colonoscopic biopsy. Dig.Dis.Sci. 37, 1089-1098.

Fujimura, Y. (2000). Evidence ofM cells as portals of entry for antigens in the
nasopharyngeal lymphoid tissue of humans. Virchows Arch. 436, 560-566.

Gagliardi, M. C., Sallusto, F., Marinaro, M., Vendetti, S., Riccomi, A., and De
Magistris, M. T. (2002). Effects of the adjuvant cholera toxin on dendritic cells:
stimulatory and inhibitory signals that result in the amplification of immune responses.
Int.J.Med.Microbiol. 291, 571-575.

Gallichan, W. S., Johnson, D. C., Graham, F. L., and Rosenthal, K. L. (1993). Mucosal
immunity and protection after intranasal immunization with recombinant adenovirus
expressing herpes simplex virus glycoprotein B. J.Infect.Dis. 168, 622-629.

Gallichan, W. S. and Rosenthal, K. L. (1996). Long-lived cytotoxic T lymphocyte
memory in mucosal tissues after mucosal but not systemic immunization. J.Exp.Med.
184, 1879-1890.

Garside, P., Mowat, A. M., and Khoruts, A. (1999). Oral tolerance in disease. Gut 44,
137-142.

Garside, P. and Mowat, A. M. (2001). Oral tolerance. Semin.Immunol. 13, 177-185.

Gasper, M. M., Blanco, D., Cruz, M. E., and Alonso, M. J. (1998). Formulation of L-
asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer
properties on enzyme loading, activity and in vitro release. J.Control Release 52, 53-62.

Gazzinelli, R. T., Hakim, F. T., Hieny, S., Shearer, G. M., and Sher, A. (1991).
Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and
protective immunity induced by an attenuated Toxoplasma gondii vaccine. J.Immunol.
146, 286-292.

Gazzinelli, R. T., Denkers, E. Y., and Sher, A. (1993). Host resistance to Toxoplasma
gondii: model for studying the selective induction of cell-mediated immunity by
intracellular parasites. Infect.Agents Dis. 2, 139-149.

Gebert, A. and Bartels, H. (1991). Occluding junctions in the epithelia of the gut-
associated lymphoid tissue (GALT) of the rabbit ileum and caecum. Cell Tissue Res.
266, 301-314.

225



Gebert, A. and Hach, G. (1992). Vimentin antibodies stain membranous epithelial cells
in the rabbit bronchus-associated lymphoid tissue (BALT). Histochemistry 98, 271-273.

Gebert, A., Hach, G., and Bartels, H. (1992). Co-localization of vimentin and
cytokeratins in M-cells of rabbit gut- associated lymphoid tissue (GALT). Cell Tissue
Res. 269, 331-340.

Gebert, A. and Hach, G. (1993). Differential binding of lectins to M cells and
enterocytes in the rabbit cecum. Gastroenterology 105, 1350-1361.

Gebert, A., Rothkotter, H. J., and Pabst, R. (1994). Cytokeratin 18 is an M-cell marker in
porcine Peyer's patches. Cell Tissue Res. 276, 213-221.

Gebert, A. and Bartels, H. (1995). Ultrastructure and protein transport ofM cells in the
rabbit cecal patch. Anat.Rec. 241, 487-495.

Gebert, A. (1995). Identification of M-cells in the rabbit tonsil by vimentin
immunohistochemistry and in vivo protein transport. Histochem.Cell Biol. 104, 211-220.

Gebert, A. (1996). M-cells in the rabbit tonsil exhibit distinctive glycoconjugates in their
apical membranes. J.Histochem.Cytochem. 44, 1033-1042.

Gebert, A., Rothkotter, H. J., and Pabst, R. (1996). M cells in Peyer's patches of the
intestine. Int.Rev.Cytol. 167, 91-159.

Gebert, A. (1997). The role ofM cells in the protection of mucosal membranes.
Histochem.Cell Biol. 108, 455-470.

Gebert, A., Fassbender, S., Werner, K., and Weissferdt, A. (1999). The development of
M cells in Peyer's patches is restricted to specialized dome-associated crypts.
Am.J.Pathol. 154, 1573-1582.

Geoffroy, C., Gaillard, J. L., Alouf, J. E., and Berche, P. (1987). Purification,
characterization, and toxicity of the sulfhydryl- activated hemolysin listeriolysin O from
Listeria monocytogenes. Infect.Immun. 55, 1641-1646.

Gerdts, V., Uwiera, R. R., Mutwiri, G. K., Wilson, D. J., Bowersock, T., Kidane, A.,
Babiuk, L. A., and Griebel, P. J. (2001). Multiple intestinal 'loops' provide an in vivo
model to analyse multiple mucosal immune responses. J.Immunol.Methods 256, 19-33.

Giannasca, P. J., Giannasca, K. T., Falk, P., Gordon, J. I., and Neutra, M. R. (1994).
Regional differences in glycoconjugates of intestinal M cells in mice: potential targets
for mucosal vaccines. Am.J.Physiol 267, G1108-G1121.

226



Giannasca, P. J., Boden, J. A., and Monath, T. P. (1997). Targeted delivery of antigen to
hamster nasal lymphoid tissue with M- cell-directed lectins. Infect.Immun. 65, 4288-
4298.

Giannasca, P. J., Giannasca, K. T., Leichtner, A. M., and Neutra, M. R. (1999). Human
intestinal M cells display the sialyl Lewis A antigen. Infect.Immun. 67, 946-953.

Gill, D. M. (1976). The arrangement of subunits in cholera toxin. Biochemistry 15,
1242-1248.

Gill, D. M., Clements, J. D., Robertson, D. C., and Finkelstein, R. A. (1981). Subunit
number and arrangement in Escherichia coli heat-labile enterotoxin. Infect.Immun. 33,
677-682.

Gombotz, W. R. and Pettit, D. K. (1995). Biodegradable polymers for protein and
peptide drug delivery. Bioconjug.Chem. 6, 332-351.

Gonzalez, L., Anderson, I., Deane, D., Summers, C., and Buxton, D. (2001). Detection
of immune system cells in paraffin wax-embedded ovine tissues. J.Comp Pathol. 125,
41-47.

Greenway, T. E., Eldridge, J. H., Ludwig, G., Staas, J. K., Smith, J. F., Gilley, R. M.,
and Michalek, S. M. (1998). Induction of protective immune responses against
Venezuelan equine encephalitis (VEE) virus aerosol challenge with microencapsulated
VEE virus vaccine. Vaccine 16, 1314-1323.

Gregory, R. L., Michalek, S. M., Richardson, G., Harmon, C., Hilton, T., and McGhee,
J. R. (1986). Characterization of immune response to oral administration of
Streptococcus sobrinus ribosomal preparations in liposomes. Infect.Immun. 54, 780-786.

Griebel, P. J. and Hein, W. R. (1996). Expanding the role of Peyer's patches in B-cell
ontogeny. Immunol.Today 17, 30-39.

Groux, H., O'Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vries, J. E., and
Roncarolo, M. G. (1997). A CD4+ T-cell subset inhibits antigen-specific T-cell
responses and prevents colitis. Nature 389, 737-742.

Gupta, R. K., Chang, A. C., Griffin, P., Rivera, R., and Siber, G. R. (1996). In vivo
distribution of radioactivity in mice after injection of biodegradable polymer
microspheres containing 14C-labeled tetanus toxoid. Vaccine 14, 1412-1416.

Hameleers, D. M., van, d. V., I, Biewenga, J., and Sminia, T. (1991). Mucosal and
systemic antibody formation in the rat after intranasal administration of three different
antigens. Immunol.Cell Biol. 69 ( Pt 2), 119-125.

227



Handman, E., Goding, J. W., and Remington, J. S. (1980). Detection and
characterization of membrane antigens of Toxoplasma gondii. J.Immunol. 124, 2578-
2583.

Harkema, J. R., Plopper, C. G., Hyde, D. M., Wilson, D. W., St George, J. A., and
Wong, V. J. (1987). Nonolfactory surface epithelium of the nasal cavity of the bonnet
monkey: a morphologic and morphometry study of the transitional and respiratory
epithelium. Am.J.Anat. 180, 266-279.

Harokopakis, E., Hajishengallis, G., and Michalek, S. M. (1998). Effectiveness of
liposomes possessing surface-linked recombinant B subunit of cholera toxin as an oral
antigen delivery system. Infect.Immun. 66, 4299-4304.

Hartmann, G., Weiner, G. J., and Krieg, A. M. (1999). CpG DNA: a potent signal for
growth, activation, and maturation of human dendritic cells. Proc.Natl.Acad.Sci.U.S.A
96, 9305-9310.

Hata, M., Asakura, K., Saito, H., Morimoto, K., and Kataura, A. (1996). Profile of
immunoglobulin production in adenoid and tonsil lymphocytes. Acta Otolaryngol.Suppl
523, 84-86.

Hathaway, L. J. and Kraehenbuhl, J. P. (2000). The role of M cells in mucosal
immunity. Cell Mol.Life Sci. 57, 323-332.

Hein, W. R., Dudler, L., and Mackay, C. R. (1989). Surface expression of differentiation
antigens on lymphocytes in the ileal and jejunal Peyer's patches of lambs. Immunology
68,365-370.

Hein, W. R. and Mackay, C. R. (1991). Prominence of gamma delta T cells in the
ruminant immune system. Immunol.Today 12, 30-34.

Hein, W. R. and Dudler, L. (1997). TCR gamma delta+ cells are prominent in normal
bovine skin and express a diverse repertoire of antigen receptors. Immunology 91, 58-64.

Hein, W. R. (1999). Organization of mucosal lymphoid tissue.
Curr.Top.Microbiol.Immunol. 236, 1-15.

Heritage, P. L., Underdown, B. J., Arsenault, A. L., Snider, D. P., and McDermott, M.
R. (1997). Comparison of murine nasal-associated lymphoid tissue and Peyer's patches.
Am.J.Respir.Crit Care Med. 156, 1256-1262.

Heritage, P. L., Brook, M. A., Underdown, B. J., and McDermott, M. R. (1998).
Intranasal immunization with polymer-grafted microparticles activates the nasal-
associated lymphoid tissue and draining lymph nodes. Immunology 93, 249-256.

228



Herrmann, J. B., Kelly, R. T., and Higgins, G. A. (1970). Polyglycolic acid sutures.
Laboratory and clinical evaluation of a new absorbable suture material. Arch.Surg. 100,
486-490.

Herrmann, J. and Bodmeier, R. (1995). The effect of particle microstructure on the
somatostatin release from poly(lactide) microspheres prepared by a w/o/w solvent
evaporation method. J.Contr.Rel. 36, 63-71.

Hershberg, R. M. and Mayer, L. F. (2000). Antigen processing and presentation by
intestinal epithelial cells - polarity and complexity. Immunol.Today 21, 123-128.

Hillery, A. M., Jani, P. U., and Florence, A. T. (1994). Comparative, quantitative study
of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J.Drug Target 2,
151-156.

Hjerpe, C. A. (1990). Bovine vaccines and herd vaccination programs. Vet.Clin.North
Am.FoodAnim Pract. 6, 167-260.

Ho, T., Wu, S., Hsiang, C., Hou, B. and Hsiang, C. (1998). Characterization and
morphologic analysis of bovine serum albumin-loaded poly (S.C.-lactide-co-glycolide)
microspheres. J.Chin.Soc.Vet.Sci. 24, 128-134.

Holmgren, J. (1991). Mucosal immunity and vaccination. FEMS Microbiol.Immunol. 4,
1-9.

Holmgren, J., Czerkinsky, C., Lycke, N., and Svennerholm, A. M. (1994). Strategies for
the induction of immune responses at mucosal surfaces making use of cholera toxin B
subunit as immunogen, carrier, and adjuvant. Am.J.Trop.Med.Hyg. 50, 42-54.

Hopkins, S., Fisher, G., Kraehenbuhl, J. P. and Velin, D. (1998). Nasal-associated
lymphoid tissue - A site for vaccination and pathogen entry. STP Pharma Sciences 8,
47-51.

Hora, M. S., Rana, R. K., Nunberg, J. H., Tice, T. R., Gilley, R. M., and Hudson, M. E.
(1990). Release of human serum albumin from poly(lactide-co-glycolide) microspheres.
Pharm.Res. 7, 1190-1194.

Hornquist, E. and Lycke, N. (1993). Cholera toxin adjuvant greatly promotes antigen
priming of T cells. Eur.J.Immunol. 23, 2136-2143.

Howie, A. J. (1980). Scanning and transmission electron microscopy on the epithelium
of human palatine tonsils. J.Pathol. 130, 91-98.

Hu, K. F., Lovgren-Bengtsson, K., and Morein, B. (2001). Immunostimulating
complexes (ISCOMs) for nasal vaccination. Adv.Drug Deliv.Rev. 51, 149-159.

229



Ilium, L., Farraj, N. F., Davis, S. S., Johansen, B. R., O'Hagan, D. T. (1990).
Investigation of the nasal absorption of biosynthetic human growth-hormone in sheep -
use of a bioadhesive microsphere delivery system. IntJ.Ph.arm. 63, 207-211.

Ilium, L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharm.Res. 15,
1326-1331.

Imaoka, K., Miller, C. J., Kubota, M., McChesney, M. B., Lohman, B., Yamamoto, M.,
Fujihashi, K., Someya, K., Honda, M., McGhee, J. R., and Kiyono, H. (1998). Nasal
immunization of nonhuman primates with simian immunodeficiency virus p55gag and
cholera toxin adjuvant induces Thl/Th2 help for virus- specific immune responses in
reproductive tissues. J.Immunol. 161, 5952-5958.

Ingber, D. E. (1993). Cellular tensegrity - defining new rules of biological design that
govern the cytoskeleton. J.Cell Sci. 104, 613-627.

Innes, E. A. and Wastling, J. M. (1995). Analysis of in vivo immune responses during
Toxoplasma gondii infection using the technique of lymphatic cannulation. Parasitology
Today 11, 268-271.

Innes, E. A., Panton, W. R., Sanderson, A., Thomson, K. M., Wastling, J. M., Maley, S.,
and Buxton, D. (1995a). Induction of CD4+ and CD8+ T cell responses in efferent
lymph responding to Toxoplasma gondii infection: analysis of phenotype and function.
Parasite Immunol. 17, 151-160.

Innes, E. A., Panton, W. R., Thomson, K. M., Maley, S., and Buxton, D. (1995b).
Kinetics of interferon gamma production in vivo during infection with the S48 vaccine
strain of Toxoplasma gondii. J.Comp Pathol. 113, 89-94.

Iwasaki, A. and Kelsall, B. L. (1999). Freshly isolated Peyer's patch, but not spleen,
dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2
cells. J.Exp.Med. 190, 229-239.

Iwasaki, A. and Kelsall, B. L. (1999). Mucosal immunity and inflammation. I. Mucosal
dendritic cells: their specialized role in initiating T cell responses. Am.J.Physiol 276,
G1074-G1078.

Jackson, A. D., Rayner, C. F., Dewar, A., Cole, P. J. and Wilson, R. (1996). A human
respiratory-tissue organ culture incorporating an air interface. Am.J.Respir.Crit.Care
Med. 153, 1130-1135.

Janossy, G. and Greaves, M. F. (1971). Lymphocyte activation. I. Response of T and B
lymphocytes to phytomitogens. Clin.Exp.Immunol. 9, 483-498.

230



Jarry, A., Robaszkiewicz, M., Brousse, N., and Potet, F. (1989). Immune cells associated
with M cells in the follicle-associated epithelium of Peyer's patches in the rat. An
electron- and immuno- electron-microscopic study. Cell Tissue Res. 255, 293-298.

Jeffery, H., Davis, S. S., and O'Hagan, D. T. (1993). The preparation and
characterization of poly(lactide-co-glycolide) microparticles. II. The entrapment of a
model protein using a (water-in- oil)-in-water emulsicfn solveet. evaporation technique.
Pharm.Res. 10, 362-368.

Jenkins, M. C. (2001). Advances and prospects for subunit vaccines against protozoa of
veterinary importance. Vet.Parasitol. 101, 291-310.

Jenkins, P. G., Coombes, A. G., Yeh, M. K., Thomas, N. W., and Davis, S. S. (1995).
Aspects of the design and delivery of microparticles for vaccine applications. J.Drug
Target 3, 79-81.

Jepson, M. A., Mason, C. M., Bennett, M. K., Simmons, N. L., and Hirst, B. H. (1992).
Co-expression of vimentin and cytokeratins in M cells of rabbit intestinal lymphoid
follicle-associated epithelium. Histochem.J. 24, 33-39.

Jepson, M. A., Simmons, N. L., Hirst, G. L., and Hirst, B. H. (1993a). Identification of
M cells and their distribution in rabbit intestinal Peyer's patches and appendix. Cell
Tissue Res. 273, 127-136.

Jepson, M. A., Clark, M. A., Simmons, N. L., and Hirst, B. H. (1993b). Epithelial M
cells in the rabbit caecal lymphoid patch display distinctive surface characteristics.
Histochemistry 100, 441-447.

Jepson, M. A., Simmons, N. L., Savidge, T. C., James, P. S., and Hirst, B. H. (1993c).
Selective binding and transcytosis of latex microspheres by rabbit intestinal M cells. Cell
Tissue Res. 271, 399-405.

Jepson, M. A., Clark, M. A., Foster, N., Mason, C. M., Bennett, M. K., Simmons, N. L.,
and Hirst, B. H. (1996). Targeting to intestinal M cells. J.Anat. 189 ( Pt 3), 507-516.

Jepson, M. A. and Clark, M. A. (1998). Studying M cells and their role in infection.
Trends Microbiol. 6, 359-365.

Jertborn, M., Svennerholm, A. M., and Holmgren, J. (1986). Saliva, breast milk, and
serum antibody responses as indirect measures of intestinal immunity after oral cholera
vaccination or natural disease. J.Clin.Microbiol. 24, 203-209.

Johnson, A. M., McDonald, P. J., and Neoh, S. H. (1983). Monoclonal antibodies to
Toxoplasma cell membrane surface antigens protect mice from toxoplasmosis.
J.Protozool. 30, 351-356.

231



Joiner, K. A., Fuhrman, S. A., Miettinen, H. M., Kasper, L. H., and Mellman, I. (1990).
Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-
transfected fibroblasts. Science 249, 641-646.

Jones, D. H., Corris, S., McDonald, S., Clegg, J. C., and Farrar, G. H. (1997). Poly(DL-
lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody
responses to encoded protein after oral administration. Vaccine 15, 814-817.

Jung, H. C., Eckmann, L., Yang, S. K., Panja, A., Fierer, J., Morzycka-Wroblewska, E.,
and Kagnoff, M. F. (1995). A distinct array of proinflammatory cytokines is expressed
in human colon epithelial cells in response to bacterial invasion. J.Clin.Invest 95, 55-65.

Jung, T., Kamm, W., Breitenbach, A., Kaiserling, E., Xiao, J. X., and Kissel, T. (2000).
Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to
affect mucosal uptake? Eur.J.Pharm.Biopharm. 50, 147-160.

Kaetzel, C. S., Robinson, J. K., and Lamm, M. E. (1994). Epithelial transcytosis of
monomeric IgA and IgG cross-linked through antigen to polymeric IgA. A role for
monomeric antibodies in the mucosal immune system. J.Immunol. 152, 72-76.

Kahwa, C. K. B. and Purton, M. (1996). Histological and histochemical study of
epithelial lining of the respiratory tract in adult goats. Small Ruminant Res. 20, 181-186.

Kanof, M. E., James, S. P., and Strober, W. (1988). The phenotype and function of T
cells in the lamina propria of the human intestine. Reg Immunol. 1, 190-195.

Karchev, T. and Kabakchiev, P. (1984). M-cells in the epithelium of the nasopharyngeal
tonsil. Rhinology 22, 201-210.

Kasper, L. H., Crabb, J. H., and Pfefferkorn, E. R. (1983). Purification of a major
membrane protein of Toxoplasma gondii by immunoabsorption with a monoclonal
antibody. J.Immunol. 130, 2407-2412.

Kasper, L. H., Bradley, M. S., and Pfefferkorn, E. R. (1984). Identification of stage-
specific sporozoite antigens of Toxoplasma gondii by monoclonal antibodies.
J.Immunol. 132, 443-449.

Kazanji, M., Laurent, F., and Pery, P. (1994). Immune responses and protective effect in
mice vaccinated orally with surface sporozoite protein of Eimeria falciformis in
ISCOMs. Vaccine 12, 798-804.

Kelsall, B. L. and Strober, W. (b). Distinct populations of dendritic cells are present in
the subepithelial dome and T cell regions of the murine Peyer's patch. J.Exp.Med. 183,
237-247.

232



Keren, D. F., Kern, S. E., Bauer, D. H., Scott, P. J., and Porter, P. (1982). Direct
demonstration in intestinal secretions of an IgA memory response to orally administered
Shigella flexneri antigens. J.Immunol. 128, 475-479.

Kerneis, S., Bogdanova, A., Kraehenbuhl, J. P., and Pringault, E. (1997). Conversion by
Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria.
Science 211, 949-952.

Kerneis, S. and Pringault, E. (1999). Plasticity of the gastrointestinal epithelium: the M
cell paradigm and opportunism of pathogenic microorganisms. Semin.Immunol. 11, 205-
215.

Khan, I. A., Smith, K. A., and Kasper, L. H. (1988). Induction of antigen-specific
parasiticidal cytotoxic T cell splenocytes by a major membrane protein (P30) of
Toxoplasma gondii. J.Immunol. 141, 3600-3605.

Khan, I. A., Ely, K. EL, and Kasper, L. H. (1991). A purified parasite antigen (p30)
mediates CD8+ T cell immunity against fatal Toxoplasma gondii infection in mice.
J.Immunol. 147, 3501-3506.

Khan, I. A., Ely, K. H., and Kasper, L. H. (1994). Antigen-specific CD8+ T cell clone
protects against acute Toxoplasma gondii infection in mice. J.Immunol. 152, 1856-1860.

Khoury, S. J., Elancock, W. W., and Weiner, H. L. (1992). Oral tolerance to myelin basic
protein and natural recovery from experimental autoimmune encephalomyelitis are
associated with downregulation of inflammatory cytokines and differential upregulation
of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the
brain. J.Exp.Med. 176, 1355-1364.

Kilian, M., Mestecky, J, and Russell, M. W. (1988). Defense mechanisms involving Fc-
dependent functions of immunoglobulin A and their subversion by bacterial
immunoglobulin A proteases. Microbiol.Rev. 52, 296-303.

Kim, B., Bowersock, T., Griebel, P., Kidane, A., Babiuk, L. A., Sanchez, M., Attah-
Poku, S., Kaushik, R. S., and Mutwiri, G. K. (2002). Mucosal immune responses
following oral immunization with rotavirus antigens encapsulated in alginate
microspheres. J.Control Release 85, 191-202.

Kim, S. Y., Doh, H. J., Ahn, J. S., Ha, Y. J., Jang, M. H., Chung, S. I., and Park, H. J.
(1999). Induction of mucosal and systemic immune response by oral immunization with
H. pylori lysates encapsulated in poly(D,L-lactide-co-glycolide) microparticles. Vaccine
17,607-616.

233



Klavinskis, L. S., Bergmeier, L. A., Gao, L., Mitchell, E., Ward, R. G., Layton, G.,
Brookes, R., Meyers, N. J., and Lehner, T. (1996). Mucosal or targeted lymph node
immunization of macaques with a particulate SIVp27 protein elicits virus-specific CTL
in the genito- rectal mucosa and draining lymph nodes. J.Immunol. 157, 2521-2527.

Koornstra, P. J., de Jong, F. I., Vlek, L. F., Marres, E. H., and Breda Vriesman, P. J.
(1991). The Waldeyer ring equivalent in the rat. A model for analysis of
oronasopharyngeal immune responses. Acta Otolaryngol. Ill, 591-599.

Koornstra, P. J., Duijvestijn, A. M., Vlek, L. F., Marres, E. H., and Breda Vriesman, P.
J. (1993). Immunohistochemistry of Nasopharyngeal (Waldeyer's ring equivalent)
lymphoid tissue in the rat. Acta Otolaryngol. 113, 660-667.

Kraehenbuhl, J. P. and Neutra, M. R. (1992). Molecular and cellular basis of immune
protection of mucosal surfaces. Physiol Rev. 72, 853-879.

Kreft, J., Funke, D., Schlesinger, R., Lottspeich, F., and Goebel, W. (1989a).
Purification and characterization of cytolysins from Listeria monocytogenes serovar 4b
and Listeria ivanovii. Acta Microbiol.Hung. 36, 189-192.

Kreft, J., Funke, D., Haas, A., Lottspeich, F., and Goebel, W. (1989b). Production,
purification and characterization of hemolysins from Listeria ivanovii and Listeria
monocytogenes Sv4b. FEMS Microbiol.Lett. 48, 197-202.

Kristensen, F., Kristensen, B., and Lazary, S. (1982). The lymphocyte stimulation test in
veterinary immunology. Vet.Immunol.Immunopathol. 3, 203-277.

Kucharzik, T., Lugering, N., Schmid, K. W., Schmidt, M. A., Stoll, R., and Domschke,
W. (1998). Human intestinal M cells exhibit enterocyte-like intermediate filaments. Gut
42, 54-62.

Kucharzik, T., Lugering, N., Rautenberg, K., Schmidt, M. A., Stoll, R. and Domschke,
W. (1999). Glycoconjugate expression and lectin binding sites on human intestinal M
cells. Gastroenterology 116, A755-A755.

Kumar, P., Timoney, J. F., and Sheoran, A. S. (2001). M cells and associated lymphoid
tissue of the equine nasopharyngeal tonsil. Equine Vet. J. 33, 224-230.

Kuper, C. F., Hameleers, D. M., Bruijntjes, J. P., van, d. V., I, Biewenga, J., and Sminia,
T. (1990). Lymphoid and non-lymphoid cells in nasal-associated lymphoid tissue
(NALT) in the rat. An immuno- and enzyme-histochemical study. Cell Tissue Res. 259,
371-377.

Kuper, C. F., Koornstra, P. J., Hameleers, D. M., Biewenga, J., Spit, B. J., Duijvestijn,
A. M., Breda Vriesman, P. J., and Sminia, T. (1992). The role of nasopharyngeal
lymphoid tissue. Immunol.Today 13, 219-224.

234



Kurono, Y., Yamamoto, M., Fujihashi, K., Kodama, S., Suzuki, M., Mogi, G., McGhee,
J. R., and Kiyono, H. (1999). Nasal immunization induces Haemophilus influenzae-
specific Thl and Th2 responses with mucosal IgA and systemic IgG antibodies for
protective immunity. J.Infect.Dis. 180, 122-132.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head
of bacteriophage T4. Nature 227 , 680-685.

Landsverk, T., Halleraker, M., Aleksandersen, M., McClure, S., Hein, W., and Nicander,
L. (1991). The intestinal habitat for organized lymphoid tissues in ruminants;
comparative aspects of structure, function and development.
Vet.Immunol.Immunopathol. 28, 1-16.

Langermann, S., Palaszynski, S., Sadziene, A., Stover, C. K., and Koenig, S. (1994a).
Systemic and mucosal immunity induced by BCG vector expressing outer- surface
protein A of Borrelia burgdorferi. Nature 372, 552-555.

Langermann, S., Palaszynski, S. R., Burlein, J. E., Koenig, S., Hanson, M. S., Briles, D.
E., and Stover, C. K. (1994b). Protective humoral response against pneumococcal
infection in mice elicited by recombinant bacille Calmette-Guerin vaccines expressing
pneumococcal surface protein A. J.Exp.Med. 180, 2277-2286.

Larsen, H. J. and Landsverk, T. (1986). Distribution of T and B lymphocytes in jejunal
and ileocaecal Peyer's patches of lambs. Res.Vet.Sci. 40, 105-111.

Lavelle, E. C., Grant, G., Pusztai, A., Pfuller, U., and O'Hagan, D. T. (2001). The
identification of plant lectins with mucosal adjuvant activity. Immunology 102, 77-86.

Lebman, D. A. and Coffman, R. L. (1988). The effects of IL-4 and IL-5 on the IgA
response by murine Peyer's patch B cell subpopulations. J.Immunol. 141, 2050-2056.

Lebman, D. A., Lee, F. D., and Coffman, R. L. (1990). Mechanism for transforming
growth factor beta and IL-2 enhancement of IgA expression in lipopolysaccharide-
stimulated B cell cultures. J.Immunol. 144, 952-959.

Lemoine, D., Francotte, M., Preat, V. (1998). Nasal vaccines - from fundamental
concepts to vaccine development. STP Pharma Sciences 8, 5-18.

Liang, X. P., Lamm, M. E., and Nedrud, J. G. (1988). Oral administration of cholera
toxin-Sendai virus conjugate potentiates gut and respiratory immunity against Sendai
virus. J.Immunol. 141, 1495-1501.

Liebler, E. M., Paar, M., and Pohlenz, J. F. (1991). M cells in the rectum of calves.
Res.Vet.Sci. 51, 107-114.

235



Lindh, E. (1975). Increased resistance of immunoglobulin A dimers to proteolytic
degradation after binding of secretory component. J.Immunol. 114, 284-286.

Loo, S. K. and Chin, K. N. (1974). Lymphoid tissue in the nasal mucosa of primates,
with particular reference to intraepithelial lymphocytes. J.Anat. 117, 249-259.

Low, J. C., Davies, R. C., and Donachie, W. (1992). Purification of listeriolysin O and
development of an immunoassay for diagnosis of listeric infections in sheep.
J.Clin.Microbiol. 30, 2705-2708.

Lu, W. and Park, T. G. (1995a). In vitro release profiles of eristostatin from
biodegradable polymeric microspheres: protein aggregation problem. Biotechnol.Prog.
11, 224-227.

Lu, W. and Park, T. G. (1995b). Protein release from poly(lactic-co-glycolic acid)
microspheres: protein stability problems. PDA.J.Pharm.Sci.Technol. 49, 13-19.

Lunde, M. N. and Jacobs, L. (1983). Antigenic differences between endozoites and
cystozoites of Toxoplasma gondii. J.Parasitol. 69, 806-808.

Lunden, A. (1995). Immune responses in sheep after immunization with Toxoplasma
gondii antigens incorporated into iscoms. Vet.Parasitol. 56, 23-35.

Lycke, N. and Holmgren, J. (1988). Mucosal immune response to cholera toxin—cellular
basis of memory and adjuvant action. MonogrAllergy 24, 274-281.

Lycke, N., Tsuji, T., and Holmgren, J. (1992). The adjuvant effect of Vibrio cholerae
and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase
activity. Eur.J.Immunol. 22, 2277-2281.

Lycke, N. (1997). The mechanism of cholera toxin adjuvanticity. Res.Immunol. 148,
504-520.

MacDonald, T. T. and Spencer, J. (1990). Ontogeny of the mucosal immune response.
Springer Semin.Immunopathol. 12, 129-137.

MacDonald, T. T. (1999). Effector and regulatory lymphoid cells and cytokines in
mucosal sites. Curr.Top.Microbiol.Immunol. 236, 113-135.

Mack, D. G. and McLeod, R. (1992). Human Toxoplasma gondii-specific secretory
immunoglobulin A reduces T. gondii infection of enterocytes in vitro. J.Clin.Invest 90,
2585-2592.

Madara, J. L., Bye, W. A., and Trier, J. S. (1984). Structural features of and cholesterol
distribution in M-cell membranes in guinea pig, rat, and mouse Peyer's patches.
Gastroenterology 87, 1091-1103.

236



Madara, J. L., Nash, S., Moore, R., and Atisook, K. (1990). Structure and function of the
intestinal epithelial barrier in health and disease. Monogr Pathol 306-324.

Mair, T. S., Stokes, C. R., and Bourne, F. J. (1987). Quantification of immunoglobulins
in respiratory tract secretions of the horse. Vet.Immunol.Immunopathol. 14, 197-203.

Mair, T. S., Batten, E. H., Stokes, C. R., and Bourne, F. J. (1988). The distribution of
mucosal lymphoid nodules in the equine respiratory tract. J.Comp Pathol. 99, 159-168.

Makino, K., Ohshima, H., and Kondo, T. (1987). Effects of plasma proteins on
degradation properties of poly(L-lactide) microcapsules. Pharm.Res. 4, 62-65.

Malick, L. E. and Wilson, R. B. (1975). Modified thiocarbohydrazide procedure for
scanning electron microscopy: routine use for normal, pathological, or experimental
tissues. Stain Technol. 50, 265-269.

Maloy, K. J., Donachie, A. M., O'Hagan, D. T., and Mowat, A. M. (1994). Induction of
mucosal and systemic immune responses by immunization with ovalbumin entrapped in
poly(lactide-co-glycolide) microparticles. Immunology 81, 661-667.

Marinaro, M., Staats, H. F., Hiroi, T., Jackson, R. J., Coste, M., Boyaka, P. N.,
Okahashi, N., Yamamoto, M., Kiyono, H., Bluethmann, H., and . (1995). Mucosal
adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells
and IL-4. J.Immunol. 155, 4621-4629.

Marx, P. A., Compans, R. W., Gettie, A., Staas, J. K., Gilley, R. M., Mulligan, M. J.,
Yamshchikov, G. V., Chen, D., and Eldridge, J. El. (1993). Protection against vaginal
SIV transmission with microencapsulated vaccine. Science 260, 1323-1327.

Masinde, L. E. and Hickey, A. J. (1993). Aerosolized aqueous suspensions of poly(L-
lactic acid) microspheres. Int.J.Pharm. 100, 123-131.

Mason, H. S., Lam, D. M., and Arntzen, C. J. (1992). Expression of hepatitis B surface
antigen in transgenic plants. Proc.Natl.Acad.Sci.U.S.A 89, 11745-11749.

Mazanec, M. B., Kaetzel, C. S., Lamm, M. E., Fletcher, D., and Nedrud, J. G. (1992).
Intracellular neutralization of virus by immunoglobulin A antibodies.
Proc.Natl.Acad.Sci.U.S.A 89, 6901-6905.

McClean, S., Prosser, E., Meehan, E., O'Malley, D., Clarke, N., Ramtoola, Z., and
Brayden, D. (1998). Binding and uptake of biodegradable poly-DL-lactide micro- and
nanoparticles in intestinal epithelia. Eur.J.Pharm.Sci. 6, 153-163.

McColgan, C., Buxton, D., and Blewett, D. A. (1988). Titration of Toxoplasma gondii
oocysts in non-pregnant sheep and the effects of subsequent challenge during pregnancy.
Vet.Rec. 123, 467-470.

231



McDermott, M. R. and Bienenstock, J. (1979). Evidence for a common mucosal
immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and
genital tissues. J.Immunol. 122, 1892-1898.

McGhee, J. R., Mestecky, J., Elson, C. O., and Kiyono, H. (1989). Regulation of IgA
synthesis and immune response by T cells and interleukins. J.Clin.Immunol. 9, 175-199.

McGhee, J. R., Mestecky, J., Dertzbaugh, M. T., Eldridge, J. H., Hirasawa, M., and
Kiyono, H. (1992). The mucosal immune system: from fundamental concepts to vaccine
development. Vaccine 10, 75-88.

McGhee, J. R., Kiyono, H., Kubota, M., Kawabata, S., Miller, C. J., Lehner, T., Imaoka,
K., and Fujihashi, K. (1999). Mucosal Thl- versus Th2-type responses for antibody- or
cell-mediated immunity to simian immunodeficiency virus in rhesus macaques.
J.Infect.Dis. 179 Suppl 3, S480-S484.

McGinity, J. W. and O'Donnell, P. B. (1997). Preparation of microspheres by the solvent
evaporation technique. Adv.Drug Deliv.Rev. 28, 25-42.

McKenzie, S. J. and Halsey, J. F. (1984). Cholera toxin B subunit as a carrier protein to
stimulate a mucosal immune response. J.Immunol. 133, 1818-1824.

McLeod, R., Frenkel, J. K., Estes, R. G., Mack, D. G., Eisenhauer, P. B., and Gibori, G.
(1988). Subcutaneous and intestinal vaccination with tachyzoites of Toxoplasma gondii
and acquisition of immunity to peroral and congenital toxoplasma challenge. J.Immunol.
140, 1632-1637.

McLeod, R., Mack, D., and Brown, C. (1991). Toxoplasma gondii—new advances in
cellular and molecular biology. Exp.Parasitol. 72, 109-121.

Medina, E., Talay, S. R., Chhatwal, G. S., and Guzman, C. A. (1998). Fibronectin-
binding protein I of Streptococcus pyogenes is a promising adjuvant for antigens
delivered by mucosal route. Eur.J.Immunol. 28, 1069-1077.

Medina, E. and Guzman, C. A. (2001). Use of live bacterial vaccine vectors for antigen
delivery: potential and limitations. Vaccine 19, 1573-1580.

Men, Y., Gander, B., Merkle, H. P., and Corradin, G. (1996). Induction of sustained and
elevated immune responses to weakly immunogenic synthetic malarial peptides by
encapsulation in biodegradable polymer microspheres. Vaccine 14, 1442-1450.

Mestecky, J. and McGhee, J. R. (1987). Immunoglobulin A (IgA): molecular and
cellular interactions involved in IgA biosynthesis and immune response. Adv.Immunol.
40, 153-245.

238



Mestecky, J. (1987). The common mucosal immune system and current strategies for
induction of immune responses in external secretions. J.Clin.Immunol. 7, 265-276.

Mestecky, J., Abraham, R., and Ogra, P. L. (1994). Common mucosal immune system
and strategies for the development of vaccines effective at the mucosal surfaces. In Ogra
P. L., Mestecky, J., Lamm, M. E., Strober, W., McGhee, J. R., Bienenstock, J. (Eds)
Handbook ofmucosal immunology. Academic Press, Orlando, Florida, pp. 357-372.

Meynell, H. M., Thomas, N. W., James, P. S., Holland, J., Taussig, M. J., and Nicoletti,
C. (1999). Up-regulation of microsphere transport across the follicle-associated
epithelium of Peyer's patch by exposure to Streptococcus pneumoniae R36a. FASED J.
13,611-619.

Michalek, S. M., O'Hagan, D. T., Gould-Fogerite, S., Rimmelzwaan, G. F., and
Osterhaus, A. D. M. E. (1999). Antigen delivery systems: nonliving microparticles,
liposomes, cochleates, and ISCOMs. In Ogra, P. L., Mestecky, J., Lamm, M. E., Strober,
W., Bienenstock, J., and McGhee, J. R. (Eds) Mucosal immunology (2nd ed.) Academic
Press, New York, USA, pp. 759-778.

Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J., and Neutra, M. R. (1992).
Monoclonal secretory immunoglobulin A protects mice against oral challenge with the
invasive pathogen Salmonella typhimurium. Infect.Immun. 60, 1786-1792.

Miller, J. K., Blewett, D. A., and Buxton, D. (1982). Clinical and serological response of
pregnant gimmers to experimentally induced toxoplasmosis. Vet.Rec. Ill, 124-126.

Mineo, J. R., McLeod, R., Mack, D., Smith, J., Khan, I. A., Ely, K. H., and Kasper, L.
H. (1993). Antibodies to Toxoplasma gondii major surface protein (SAG-1, P30) inhibit
infection of host cells and are produced in murine intestine after peroral infection.
J.Immunol. 150, 3951-3964.

Mineo, J. R. and Kasper, L. H. (1994). Attachment of Toxoplasma gondii to host cells
involves major surface protein, SAG-1 (P30). Exp.Parasitol. 79, 11-20.

Moldoveanu, Z., Russell, M. W., Wu, H. Y., Huang, W. Q., Compans, R. W., and
Mestecky, J. (1995). Compartmentalization within the common mucosal immune
system. Adv.Exp.Med.Biol. 371A, 97-101.

Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepler, R. (1982). The catalog
of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured
cells. Cell 31, 11-24.

Momotani, E., Whipple, D. L., Thiermann, A. B., and Cheville, N. F. (1988). Role of M
cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of
ileal Peyer's patches in calves. Vet.Pathol. 25, 131-137.

239



Moore, A., McGuirk, P., Adams, S., Jones, W. C., McGee, J. P., O'Hagan, D. T., and
Mills, K. H. (1995). Immunization with a soluble recombinant HIV protein entrapped in
biodegradable microparticles induces HIV-specific CD8+ cytotoxic T lymphocytes and
CD4+ Thl cells. Vaccine 13 , 1741-1749.

Morein, B., Sundquist, B., Hoglund, S., Dalsgaard, K., and Osterhaus, A. (1984).
ISCOM, a novel structure for antigenic presentation of membrane proteins from
enveloped viruses. Nature 308, 457-460.

Morfitt, D. C. and Pohlenz, J. F. (1989). Porcine colonic lymphoglandular complex:
distribution, structure, and epithelium. Am.J.Anat. 184, 41-51.

Morrissey, J. H. (1981). Silver stain for proteins in polyacrylamide gels: a modified
procedure with enhanced uniform sensitivity. Anal.Biochem. 117, 307-310.

Morrow, C. D., Novak, M. J., Ansardi, D. C., Porter, D. C., and Moldoveanu, Z. (1999).
Recombinant viruses as vectors for mucosal immunity. Curr. Top.Microbiol.Immunol.
236, 255-273.

Mosmann, T. R. and Coffman, R. L. (1989). Heterogeneity of cytokine secretion
patterns and functions of helper T cells. Adv.Immunol. 46, 111-147.

Mowat, A. M. and Donachie, A. M. (1991). ISCOMS—a novel strategy for mucosal
immunization? Immunol.Today 12, 383-385.

Mowat, A. M., Maloy, K. J., and Donachie, A. M. (1993). Immune-stimulating
complexes as adjuvants for inducing local and systemic immunity after oral
immunization with protein antigens. Immunology 80, 527-534.

Munoz, E., Zubiaga, A. M., Merrow, M., Sauter, N. P., and Huber, B. T. (1990). Cholera
toxin discriminates between T helper 1 and 2 cells in T cell receptor-mediated
activation: role of cAMP in T cell proliferation. J.Exp.Med. 172, 95-103.

Murray, P. D., McKenzie, D. T., Swain, S. L., and Kagnoff, M. F. (1987). Interleukin 5
and interleukin 4 produced by Peyer's patch T cells selectively enhance immunoglobulin
A expression. J.Immunol. 139, 2669-2674.

Mutwiri, G., Watts, T., Lew, L., Beskorwayne, T., Papp, Z., Baca-Estrada, M. E., and
Griebel, P. (1999). Ileal and jejunal Peyer's patches play distinct roles in mucosal
immunity of sheep. Immunology 97, 455-461.

Nadal, D., Albini, B., Schlapfer, E., Chen, C., Brodsky, L., and Ogra, P. L. (1991).
Tissue distribution of mucosal antibody-producing cells specific for respiratory syncytial
virus in severe combined immune deficiency (SCID) mice engrafted with human tonsils.
Clin.Exp.Immunol. 85, 358-364.

240



Neutra, M. R., Phillips, T. L., Mayer, E. L., and Fishkind, D. J. (1987). Transport of
membrane-bound macromolecules by M cells in follicle- associated epithelium of rabbit
Peyer's patch. Cell Tissue Res. 247, 537-546.

Neutra, M. R. and Kraehenbuhl, J. P. (1992). M cell-mediated antigen transport and
monoclonal IgA antibodies for mucosal immune protection. Adv.Exp.Med.Biol. 327,
143-150.

Neutra, M. R., Frey, A., and Kraehenbuhl, J. P. (1996). Epithelial M cells: gateways for
mucosal infection and immunization. Cell 86, 345-348.

Neutra, M. R., Pringault, E., and Kraehenbuhl, J. P. (1996). Antigen sampling across
epithelial barriers and induction of mucosal immune responses. Annu.Rev.Immunol. 14,
275-300.

Neutra, M. R. (1998). Current concepts in mucosal immunity. V Role ofM cells in
transepithelial transport of antigens and pathogens to the mucosal immune system.
Am.J.Physiol 274, G785-G791.

Neutra, M. R., Mantis, N. J., Frey, A., and Giannasca, P. J. (1999). The composition and
function of M cell apical membranes: implications for microbial pathogenesis.
Semin.Immunol. 11, 171-181.

Nihant, N., Schugens, C., Grandfils, C., Jerome, R., and Teyssie, P. (1994). Polylactide
microparticles prepared by double emulsion/evaporation technique. I. Effect of primary
emulsion stability. Pharm.Res. 11, 1479-1484.

Nihant, N., Schugens, C., Grandfils, C., Jerome, R,. and Teyssie, P. (1995). Polylactide
microparticles prepared by double emulsion evaporation. J.Colloid Interfac.Sci. 173, 55-
65.

O'Hagan, D. T., Palin, K., Davis, S. S., Artursson, P., and Sjoholm, I. (1989).
Microparticles as potentially orally active immunological adjuvants. Vaccine 7, 421-424.

O'Hagan, D. T., Jeffery, H., Roberts, M. J., McGee, J. P., and Davis, S. S. (1991).
Controlled release microparticles for vaccine development. Vaccine 9, 768-771.

O'Hagan, D. T., Rahman, D., McGee, J. P., Jeffery, H., Davies, M. C., Williams, P.,
Davis, S. S., and Challacombe, S. J. (1991). Biodegradable microparticles as controlled
release antigen delivery systems. Immunology 239-242.

O'Hagan, D. T., Rafferty, D., Wharton, S., and Ilium, L. (1993). Intravaginal
immunization in sheep using a bioadhesive microsphere antigen delivery system.
Vaccine 11, 660-664.

241



O'Hagan, D. T., Rahman, D., Jeffery, H., Sharif, S., and Challacombe, S. J. (1994).
Controlled release microparticles for oral immunisation. Int.J.Pharm. 108, 133-139.

O'Hagan, D. T. (1998). Microparticles and polymers for the mucosal delivery of
vaccines. Adv.Drug Deliv.Rev. 34, 305-320.

Ogawa, Y., Yamamoto, M., Okada, H., Yashiko, T. and Shimamoto, T. (1988). A new

technique to efficiently entrap leuprolide acetate into microcapsules of copoly
lactic/glycolic acid. Chem.Pharm.Bull. 36, 1095-1103.

Ogra, P. L., Faden, H., and Welliver, R. C. (2001). Vaccination strategies for mucosal
immune responses. Clin.Microbiol.Rev. 14, 430-445.

Okada, E., Sasaki, S., Ishii, N., Aoki, I., Yasuda, T., Nishioka, K., Fukushima, J.,
Miyazaki, J., Wahren, B., and Okuda, K. (1997). Intranasal immunization of a DNA
vaccine with IL-12- and granulocyte- macrophage colony-stimulating factor (GM-CSF)-
expressing plasmids in liposomes induces strong mucosal and cell-mediated immune
responses against HIV-1 antigens. J.Immunol. 159, 3638-3647.

Olah, I. and Everett, N. B. (1975). Surface epithelium of the rabbit palatine tonsil:
scanning and transmission electron microscopic study. J.Reticuloendothel.Soc. 18, 53-
62.

Olszewska, W. and Steward, M. W. (2001). Nasal delivery of epitope based vaccines.
Adv.Drug Deliv.Rev. 51, 161-171.

Oura, C. A., Innes, E. A., Wastling, J. M., Entrican, G., and Panton, W. R. (1993). The
inhibitory effect of ovine recombinant interferon-gamma on intracellular replication of
Toxoplasma gondii. Parasite Immunol. 15, 535-538.

Owen, R. L. and Jones, A. L. (1974). Epithelial cell specialization within human Peyer's
patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66,
189-203.

Owen, R. L. (1977). Sequential uptake of horseradish peroxidase by lymphoid follicle
epithelium of Peyer's patches in the normal unobstructed mouse intestine: an
ultrastructural study. Gastroenterology 72, 440-451.

Owen, R. L. and Bhalla, D. K. (1983). Cytochemical analysis of alkaline phosphatase
and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's
patch M cells. Am.J.Anat. 168, 199-212.

Owen, R. L., Apple, R. T., and Bhalla, D. K. (1986). Morphometric and cytochemical
analysis of lysosomes in rat Peyer's patch follicle epithelium: their reduction in volume
fraction and acid phosphatase content in M cells compared to adjacent enterocytes.
Anat.Rec. 216, 521-527.

242



Owen, R. L. and Ermak, T. H. (1990). Structural specializations for antigen uptake and
processing in the digestive tract. Springer Semin.Immunopathol. 12, 139-152.

Owen, R. L. (1994). M cells—entryways of opportunity for enteropathogens. J.Exp.Med.
180, 7-9.

Paar, M., Liebler, E. M., and Pohlenz, J. F. (1992). Uptake of ferritin by follicle-
associated epithelium in the colon of calves. Vet.Pathol. 29, 120-128.

Pappo, J. and Owen, R. L. (1988). Absence of secretory component expression by
epithelial cells overlying rabbit gut-associated lymphoid tissue. Gastroenterology 95,
1173-1177.

Pappo, J., Steger, H. J., and Owen, R. L. (1988). Differential adherence of epithelium
overlying gut-associated lymphoid tissue. An ultrastructural study. Lab Invest 58, 692-
697.

Pappo, J. (1989). Generation and characterization of monoclonal antibodies recognizing
follicle epithelial M cells in rabbit gut-associated lymphoid tissues. Cell Immunol. 120,
31-41.

Pappo, J. and Ermak, T. H. (1989). Uptake and translocation of fluorescent latex
particles by rabbit Peyer's patch follicle epithelium: a quantitative model for M cell
uptake. Clin.Exp.Immunol. 76, 144-148.

Pappo, J., Ermak, T. H., and Steger, H. J. (1991). Monoclonal antibody-directed
targeting of fluorescent polystyrene microspheres to Peyer's patch M cells. Immunology
73, 277-280.

Pappo, J. and Mahlman, R. T. (1993). Follicle epithelial M cells are a source of
interleukin-1 in Peyer's patches. Immunology 78, 505-507.

Park, T. G. (1995). Degradation of poly(lactic-co-glycolic acid) microspheres: effect of
copolymer composition. Biomaterials 16, 1123-1130.

Park, T. G., Yong, L. H., and Sung, N. Y. (1998). A new preparation method for protein
loaded poly(D, L-lactic-co- glycolic acid) microspheres and protein release mechanism
study. J. Control Release 55, 181-191.

Parker, S. J., Roberts, C. W., and Alexander, J. (1991). CD8+ T cells are the major
lymphocyte subpopulation involved in the protective immune response to Toxoplasma
gondii in mice. Clin.Exp.Immunol. 84, 207-212.

Partidos, C. D., Vohra, P., Jones, D. H., Farrar, G. H., and Steward, M. W. (1996).
Mucosal immunization with a measles virus CTL epitope encapsulated in biodegradable
PLG microparticles. J.Immunol.Methods 195, 135-138.

243



Partidos, C. D., Pizza, M., Rappuoli, R., and Steward, M. W. (1996). The adjuvant effect
of a non-toxic mutant of heat-labile enterotoxin of Escherichia coli for the induction of
measles virus-specific CTL responses after intranasal co-immunization with a synthetic
peptide. Immunology 89, 483-487.

Partidos, C. D., Salani, B. F., Pizza, M., and Rappuoli, R. (1999). Heat-labile enterotoxin
of Escherichia coli and its site-directed mutant LTK63 enhance the proliferative and
cytotoxic T-cell responses to intranasally co-immunized synthetic peptides.
Immunol.Lett. 67, 209-216.

Partidos, C. D. (2000). Intranasal vaccines: forthcoming challenges. Pharm.Sci.Technol.
Today 3, 273-281.

Pavia, C. S. (1986). Protection against experimental toxoplasmosis by adoptive
immunotherapy. J.Immunol. 137, 2985-2990.

Petersen, E., Nielsen, H. V., Christiansen, L., and Spenter, J. (1998). Immunization with
E. coli produced recombinant T. gondii SAG1 with alum as adjuvant protect mice
against lethal infection with Toxoplasma gondii. Vaccine 16, 1283-1289.

Picker, L. J. (1994). Control of lymphocyte homing. Curr.Opin.Immunol. 6, 394-406.

Picker, L. J., Martin, R. J., Trumble, A., Newman, L. S., Collins, P. A., Bergstresser, P.
R., and Leung, D. Y. (1994). Differential expression of lymphocyte homing receptors by
human memory/effector T cells in pulmonary versus cutaneous immune effector sites.
Eur.J.Immunol. 24 , 1269-1277.

Pietzonka, P., Walter, E., Duda-Johner, S., Langguth, P., and Merkle, H. P. (2002).
Compromised integrity of excised porcine intestinal epithelium obtained from the
abattoir affects the outcome of in vitro particle uptake studies. Eur.J.Pharm.Sci. 15, 39-
47.

Pitt, C. G., Gratzl, M. M., Kimmel, G. L., Surles, J. and Schindler, A. (1981). Aliphatic
polyesters. 2. The degradation of poly(DL-lactide), poly(epsilon-caprolactone), and their
copolymers in vivo. Biomaterials 2, 215-220.

Pizza, M., Giuliani, M. M., Fontana, M. R., Monaci, E., Douce, G., Dougan, G., Mills,
K. H., Rappuoli, R., and Del Giudice, G. (2001). Mucosal vaccines: non toxic
derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 2534-2541.

Press, C., McClure, S., and Landsverk, T. (1991). Computer-assisted morphometric
analysis of absorptive and follicle- associated epithelia of Peyer's patches in sheep
foetuses and lambs indicates the presence of distinct T- and B-cell components.
Immunology 72, 386-392.

244



Quiding-Jarbrink, M., Lakew, M., Nordstrom, I., Banchereau, J., Butcher, E., Holmgren,
J., and Czerkinsky, C. (1995). Human circulating specific antibody-forming cells after
systemic and mucosal immunizations: differential homing commitments and cell surface
differentiation markers. Eur.J.Immunol. 25, 322-327.

Quiding-Jarbrink, M., Nordstrom, I., and Ganstrom, G. (1997). Differential expression
of tissue-specific adhesion molecules on human circulating antibody-forming cells after
systemic, enteric and nasal immunizations. A molecular basis for the
compartmentalization of effector B-cell responses. J.Clin.Invest. 99, 1281-1286.

Rafati, H., Coombes, A. G. A., Adler, J., Holland, J. and Davis, S. S. (1997). Protein-
loaded poly(DL-lactide-co-glycolide) microparticles for oral administration:
formulation, structural and release characteristics. J.Contr.Rel. 43, 89-102.

Rappuoli, R., Pizza, M., Douce, G., and Dougan, G. (1999). Structure and mucosal
adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol.Today
20, 493-500.

Rautenberg, K., Cichon, C., Heyer, G., Demel, M., and Schmidt, M. A. (1996).
Immunocytochemical characterization of the follicle-associated epithelium of Peyer's
patches: anti-cytokeratin 8 antibody (clone 4.1.18) as a molecular marker for rat M cells.
Eur.J.Cell Biol. 71, 363-370.

Ray, R., Novak, M., Duncan, J. D., Matsuoka, Y., and Compans, R. W. (1993).
Microencapsulated human parainfluenza virus induces a protective immune response.
J.Infect.Dis. 167, 752-755.

Rebelatto, M. C., Mead, C., and HogenEsch, H. (2000). Lymphocyte populations and
adhesion molecule expression in bovine tonsils. Vet.Immunol.Immunopathol. 73, 15-29.

Rebelatto, M. C., Siger, L., and HogenEsch, H. (2001a). Kinetics and type of immune
response following intranasal and subcutaneous immunisation of calves. Res.Vet.Sci. 71,
9-15.

Rebelatto, M. C., Guimond, P., Bowersock, T. L., and HogenEsch, H. (2001b).
Induction of systemic and mucosal immune response in cattle by intranasal
administration of pig serum albumin in alginate microparticles.
Vet.Immunol.Immunopathol. 83, 93-105.

Regoli, M., Borghesi, C., Bertelli, E., and Nicoletti, C. (1994). A morphological study of
the lymphocyte traffic in Peyer's patches after an in vivo antigenic stimulation. Anat.Rec.
239, 47-54.

Reuman, P. D., Keely, S. P., and Schiff, G. M. (1991). Similar subclass antibody
responses after intranasal immunization with UV-inactivated RSV mixed with cholera
toxin or live RSV. J.Med.Virol. 35 , 192-197.

245



Reynaud, C. A., Garcia, C., Hein, W. R., and Weill, J. C. (1995). Hypermutation
generating the sheep immunoglobulin repertoire is an antigen-independent process. Cell
80,115-125.

Ridley Lathers, D. M., Gill, R. F., and Montgomery, P. C. (1998). Inductive pathways
leading to rat tear IgA antibody responses. Invest Ophthalmol. Vis.Sci. 39, 1005-1011.

Roitt, I. M. and Delves,P. J. (2001). Essential Immunology (10th ed.), Blackwell
Publishing, Oxford

Rosenthal, K. L. and Gallichan, W. S. (1997). Challenges for vaccination against
sexually-transmitted diseases: induction and long-term maintenance of mucosal immune
responses in the female genital tract. Semin.Immunol. 9, 303-314.

Rosner, A. J. and Keren, D. F. (1984). Demonstration ofM cells in the specialized
follicle-associated epithelium overlying isolated lymphoid follicles in the gut.
J.Leukoc.Biol. 35, 397-404.

Rothkotter, H. J., Hriesik, C., Barman, N. N., and Pabst, R. (1999). B and also T
lymphocytes migrate via gut lymph to all lymphoid organs and the gut wall, but only
IgA-i- cells accumulate in the lamina propria of the intestinal mucosa. Eur.J.Immunol. 29,
327-333.

Rouse, B. T. and Babiuk, L. A. (1974). Host responses to infectious bovine
rhinotracheitis virus. III. Isolation and immunologic activities of bovine T lymphocytes.
J.Immunol. 113, 1391-1398.

Roy, M. J., Ruiz, A., and Varvayanis, M. (1987). A novel antigen is common to the
dome epithelium of gut- and bronchus- associated lymphoid tissues. Cell Tissue Res.
248,635-644.

Rudin, A., Riise, G. C., and Holmgren, J. (1999). Antibody responses in the lower
respiratory tract and male urogenital tract in humans after nasal and oral vaccination
with cholera toxin B subunit. Infect.Immun. 67, 2884-2890.

Russell, M. W., Wu, H. Y., Hajishengallis, G., Hollingshead, S. K., and Michalek, S. M.
(1999). Cholera toxin B subunit as an immunomodulator for mucosal vaccine delivery.
Adv. Vet.Med. 41, 105-114.

Ryan, E. J., Daly, L. M., and Mills, K. H. G. (2001). Immunomodulators and delivery
systems for vaccination by mucosal routes. Trends Biotechnol. 19, 293-304.

Sabin, A. B. (1941). Toxoplasmic encephalitis in children. J.Am.Med.Assoc. 116, 801 -

807.

246



Sabin, A. B. and Feldman, H. A. (1948). Dyes as microchemical indicators of a new
immunity phenomenon affecting a protozoan parasite (Toxoplasma). Science 10, 660-
663.

Sabin, A. B. (1984). Strategies for elimination of poliomyelitis in different parts of the
world with use of oral poliovirus vaccine. Rev.Infect.Dis. 6 Suppl 2, S391-S396.

Sah, H. K., Toddywala, R. and Chien, Y. W, (1994). The influence of biodegradable
microcapsule formulation on the controlled release of a protein. J.Contr.Rel. 30, 201 -
211.

Saif, L. J. (1996). Mucosal immunity: an overview and studies of enteric and respiratory
coronavirus infections in a swine model of enteric disease. Vet.Immunol.Immunopathol.
54, 163-169.

Salk, J. and Salk, D. (1977). Control of influenza and poliomyelitis with killed virus
vaccines. Science 195, 834-847.

Salmi, M., and Jalkanen, S. (1991). Regulation of lymphocyte traffic to mucosa-
associated lymphoid tissus. In MacDermott, R. P., Elson, C. O. (Eds) Mucosal
immunology I: Basic principles. Gastroenterol. Clinics.North.Am. 20, 495-510.

Savidge, T. C., Smith, M. W., James, P. S., and Aldred, P. (1991). Salmonella-induced
M-cell formation in germ-free mouse Peyer's patch tissue. Am.J.Pathol. 139, 177-184.

Savidge, T. C. (1996). The life and times of an intestinal M cell. Trends Microbiol. 4,
301-306.

Schroder, U. and Stahl, A. (1984). Crystallized dextran nanospheres with entrapped
antigen and their use as adjuvants. J.Immunol.Methods 70, 127-132.

Schwartzman, J. D. (1986). Inhibition of a penetration-enhancing factor of Toxoplasma
gondii by monoclonal antibodies specific for rhoptries. Infect.Immun. 51, 760-764.

Scicchitano, R., Husband, A. J., and Cripps, A. W. (1984). Immunoglobulin-containing
cells and the origin of immunoglobulins in the respiratory tract of sheep. Immunology
52, 529-537.

Scicchitano, R., Sheldrake, R. F., and Husband, A. J. (1986). Origin of immunoglobulins
in respiratory tract secretion and saliva of sheep. Immunology 58, 315-321.

Sedgmen, B. J., Lofthouse, S. A., Scheerlinck, J. P., and Meeusen, E. N. (2002). Cellular
and molecular characterisation of the ovine rectal mucosal environment.

Vet.Immunol.Immunopathol. 86, 215-220.

247



Sedgwick, J. D. and Holt, P. G. (1985). Down-regulation of immune responses to
inhaled antigen: studies on the mechanism of induced suppression. Immunology 56, 635-
642.

Shahin, R., Leef, M., Eldridge, J., Hudson, M., and Gilley, R. (1995). Adjuvanticity and
protective immunity elicited by Bordetella pertussis antigens encapsulated in poly(DL-
lactide-co-glycolide) microspheres. Infect.Immun. 63, 1195-1200.

Sharma, R., van Damme, E. J., Peumans, W. J., Sarsfield, P., and Schumacher, U.
(1996). Lectin binding reveals divergent carbohydrate expression in human and mouse

Peyer's patches. Histochem.Cell Biol. 105, 459-465.

Siebers, A. and Finlay, B. B. (1996). M cells and the pathogenesis of mucosal and
systemic infections. Trends Microbiol. 4, 22-29.

Simecka, J. W. (1998). Mucosal immunity of the gastrointestinal tract and oral tolerance.
Adv.Drug Deliv.Rev. 34, 235-259.

Simmons, C. P., Mastroeni, P., Fowler, R., Ghaem-maghami, M., Lycke, N., Pizza, M.,
Rappuoli, R., and Dougan, G. (1999). MHC class I-restricted cytotoxic lymphocyte
responses induced by enterotoxin-based mucosal adjuvants. J.Immunol. 163, 6502-6510.

Singh, M„ Li, X. M„ McGee, J. P., Zamb, T„ Koff, W., Wang, C. Y„ and O'Hagan, D.
T. (1997). Controlled release microparticles as a single dose hepatitis B vaccine:
evaluation of immunogenicity in mice. Vaccine 15, 475-481.

Singh, M., Briones, M., Ott, G., and O'Hagan, D. (2000). Cationic microparticles: A
potent delivery system for DNA vaccines. Proc.Natl.Acad.Sci.U.S.A 97, 811-816.

Sminia, T., van der Brugge-Gamelkoorn GJ, and Jeurissen, S. H. (1989). Structure and
function of bronchus-associated lymphoid tissue (BALT). Crit Rev.Immunol. 9, 119-
150.

Smith, M. W. and Peacock, M. A. (1980). "M" cell distribution in follicle-associated
epithelium of mouse Peyer's patch. Am.J.Anat. 159, 167-175.

Smith, M. W., James, P. S., and Tivey, D. R. (1987). M cell numbers increase after
transfer of SPF mice to a normal animal house environment. Am.J.Pathol. 128, 385-389.

Smith, M. W., James, P. S., Tivey, D. R., and Brown, D. (1988). Automated
histochemical analysis of cell populations in the intact follicle-associated epithelium of
the mouse Peyer's patch. Histochem.J. 20, 443-448.

Smith, M. W. and Peacock, M. A. (1992). Microvillus growth and M-cell formation in
mouse Peyer's patch follicle- associated epithelial tissue. Exp.Physiol 77, 389-392.

248



Smith, W. D., Dawson, A. M., Wells, P. W., and Burrells, C. (1975). Immunoglobulin
concentrations in ovine body fluids. Res.Vet.Sci. 19, 189-194.

Smith, W. D. (1975). The nasal secretion and serum antibody response of lambs
following vaccination and aerosol challenge with parainfluenza 3 virus. Res.Vet.Sci. 19,
56-62.

Snider, D. P. (1995). The mucosal adjuvant activities of ADP-ribosylating bacterial
enterotoxins. Crit Rev.Immunol. 15 , 317-348.

Spangler, B. D. (1992). Structure and function of cholera toxin and the related
Escherichia coli heat-labile enterotoxin. Microbiol.Rev. 56, 622-647.

Spit, B. J., Hendriksen, E. G., Bruijntjes, J. P., and Kuper, C. F. (1989). Nasal lymphoid
tissue in the rat. Cell Tissue Res. 255, 193-198.

Staats, H. F. and McGhee, J. R. (1996). Application of basic principles of mucosal
immunity to vaccine development. In Kiyon, H., Ogra, P. F., and McGhee, J. R. (Eds)
Mucosal vaccines. Academic Press, San Diego, USA, pp. 17-39.

Stevens, T. F., Bossie, A., Sanders, V. M., Fernandez-Botran, R., Coffman, R. F.,
Mosmann, T. R., and Vitetta, E. S. (1988). Regulation of antibody isotype secretion by
subsets of antigen-specific helper T cells. Nature 334, 255-258.

Steward, M. W. (1971). Resistance of rabbit secretory IgA to proteolysis.
Biochim.Biophys.Acta 236, 440-449.

Stover, C. K., de, 1. C., V, Fuerst, T. R., Burlein, J. E., Benson, F. A., Bennett, L. T.,
Bansal, G. P., Young, J. F„ Fee, M. H., Hatfull, G. F„ and . (1991). New use of BCG for
recombinant vaccines. Nature 351, 456-460.

Streeter, P. R., Berg, E. L., Rouse, B. T., Bargatze, R. F., and Butcher, E. C. (1988). A
tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature 331,
41-46.

Subauste, C. S. and Remington, J. S. (1991). Role of gamma interferon in Toxoplasma
gondii infection. Eur.J.Clin.Microbiol.Infect.Dis. 10, 58-67.

Subbarao, E. K. and Murphy, B. R. (1992). A general overview of viral vaccine
development. Adv.Exp.Med.Biol. 327, 51-58.

Suzuki, Y., Thulliez, P., Desmonts, G., and Remington, J. S. (1988). Antigen(s)
responsible for immunoglobulin G responses specific for the acute stage of Toxoplasma
infection in humans. J.Clin.Microbiol. 26, 901-905.

249



Svennerholm, A. M., Jertborn, M., Gothefors, L., Karim, A. M., Sack, D. A., and
Holmgren, J. (1984). Mucosal antitoxic and antibacterial immunity after cholera disease
and after immunization with a combined B subunit-whole cell vaccine. J.Infect.Dis. 149,
884-893.

Tabata, Y., Inoue, Y., and Ikada, Y. (1996). Size effect on systemic and mucosal
immune responses induced by oral administration of biodegradable microspheres.
Vaccine 14, 1677-1685.

Takahata, H., Lavelle, E. C., Coombes, A. G., and Davis, S. S. (1998). The distribution
of protein associated with poly(DL-lactide co- glycolide) microparticles and its
degradation in simulated body fluids. J.Control Release 50, 237-246.

Takata, S., Ohtani, O., and Watanabe, Y. (2000). Lectin binding patterns in rat nasal-
associated lymphoid tissue (NALT) and the influence of various types of lectin on
particle uptake in NALT. Arch.Histol.Cytol. 63, 305-312.

Tamura, S., Samegai, Y., Kurata, H., Nagamine, T., Aizawa, C., and Kurata, T. (1988).
Protection against influenza virus infection by vaccine inoculated intranasally with
cholera toxin B subunit. Vaccine 6, 409-413.

Tomasi, T. B., Jr. (1983). Mechanisms of immune regulation at mucosal surfaces.
Rev.Infect.Dis. 5 Suppl 4, S784-S792.

Tomavo, S. (1996). The major surface proteins of Toxoplasma gondii: structures and
functions. Curr.Top.Microbiol.Immunol. 219,45-54.

Trolle, S., Chachaty, E., Kassis-Chikhani, N., Wang, C., Eattal, E., Couvreur, P.,
Diamond, B., Alonso, J., and Andremont, A. (2000). Intranasal immunization with
protein-linked phosphorylcholine protects mice against a lethal intranasal challenge with
Streptococcus pneumoniae. Vaccine 18, 2991-2998.

Ugozzoli, M., O'Hagan, D. T., and Ott, G. S. (1998). Intranasal immunization of mice
with herpes simplex virus type 2 recombinant gD2: the effect of adjuvants on mucosal
and serum antibody responses. Immunology 93, 563-571.

Vadolas, J., Davies, J. K., Wright, P. J., and Strugnell, R. A. (1995). Intranasal
immunization with liposomes induces strong mucosal immune responses in mice.
Eur.J.Immunol. 25, 969-975.

Vajdy, M. and Lycke, N. (1993). Stimulation of antigen-specific T- and B-cell memory
in local as well as systemic lymphoid tissues following oral immunization with cholera
toxin adjuvant. Immunology 80, 197-203.

van Ginkel, F. W., Nguyen, H. H., and McGhee, J. R. (2000). Vaccines for mucosal
immunity to combat emerging infectious diseases. Emerg.lnfect.Dis. 6, 123-132.

250



van Vlasselaer, P., Punnonen, J., and de Vries, J. E. (1992). Transforming growth factor-
beta directs IgA switching in human B cells. J.Immunol. 148, 2062-2067.

VanCott, J. L., Brim, T. A., Lunney, J. K., and Saif, L. J. (1994). Contribution of
antibody-secreting cells induced in mucosal lymphoid tissues of pigs inoculated with
respiratory or enteric strains of coronavirus to immunity against enteric coronavirus
challenge. J.Immunol. 152, 3980-3990.

VanCott, J. L., Staats, H. F., Pascual, D. W., Roberts, M., Chatfield, S. N., Yamamoto,
M., Coste, M., Carter, P. B., Kiyono, H., and McGhee, J. R. (1996). Regulation of
mucosal and systemic antibody responses by T helper cell subsets, macrophages, and
derived cytokines following oral immunization with live recombinant Salmonella.
J.Immunol. 15, 1504-1514.

van Heyningen, W. E., van Heyningen, S., and King, C. A. (1976). The nature and
action of cholera toxin. Ciba Found SympAl, 73-88.

Velge-Roussel, F., Moretto, ML, Buzoni-Gatel, D., Dimier-Poisson, I., Ferrer, M.,
Hoebeke, J., and Bout, D. (1997). Differences in immunological response to a T. gondii
protein (SAG1) derived peptide between two strains of mice: effect on protection in T.
gondii infection. Mol.Immunol. 34, 1045-1053.

Velge-Roussel, F., Marcelo, P., Lepage, A. C., Buzoni-Gatel, D., and Bout, D. T.
(2000). Intranasal immunization with Toxoplasma gondii SAG1 induces protective cells
into both NALT and GALT compartments. Infect.Immun. 68, 969-972.

Wachsmann, D., Klein, J. P., Scholler, M., Ogier, J., Ackermans, F., and Frank, R. M.
(1986). Serum and salivary antibody responses in rats orally immunized with
Streptococcus mutans carbohydrate protein conjugate associated with liposomes.
Infect.Immun. 52, 408-413.

Wagner, N., Lohler, J., Kunkel, E. J., Ley, K., Leung, E., Krissansen, G., Rajewsky, K.,
and Muller, W. (1996). Critical role for beta7 integrins in formation of the gut-
associated lymphoid tissue. Nature 382, 366-370.

Waldo, F. B., van den Wall Bake AW, Mestecky, J., and Husby, S. (1994). Suppression
of the immune response by nasal immunization. Clin.Immunol.Immunopathol. 72, 30-34.

Wang, H. T., Schmitt, E., Flanagan, D.R., and Linhardt, R. J. (1991). Influence on
formulation methods on the in vitro controlled release of protein from poly(ester)
microsphers. J.Contr.Rel. 17, 23-31.

Watanabe, K., Saito, Y., Watanabe, I., and Mizuhira, V. (1980). Characteristics of
capillary permeability in nasal mucosa. Ann.Otol.Rhinol.Laryngol. 89, 377-382.

251



Watarai, S., Han, M., Tana, and Kodama, H. (1998). Antibody response in the intestinal
tract of mice orally immunized with antigen associated with liposomes. J.Vet.Med.Sci.
60, 1047-1050.

Watts, P. J., Davies, M. C. and Melia, C. D. (1990). Microencapsulation using
emulsification/solvent evaporation: an overview of techniques and applications.
Crit.Rev.Ther.Drug Carrier Systems 7, 235-258.

Weltzin, R., Lucia-Jandris, P., Michetti, P., Fields, B. N., Kraehenbuhl, J. P., and Neutra,
M. R. (1989). Binding and transepithelial transport of immunoglobulins by intestinal M
cells: demonstration using monoclonal IgA antibodies against enteric viral proteins.
J.Cell Biol. 108, 1673-1685.

Wilkie, B. N. (1982). Respiratory tract immune response to microbial pathogens.
J.Am.Vet.Med.Assoc. 181, 1074-1079.

Wilkins, M. F., O'Connell, E. and Te Punga, W. A. (1987). Toxoplasmosis in sheep I.
Effect of a killed vaccine on lambing losses caused by experimental challenge with
Toxoplasma gondii. New Zealand Veterinary Journal 35, 31-34.

Williams, D. F. and Mort, E. (1977). Enzyme-accelerated hydrolysis of polyglycolic
acid. J.Bioengineering 1, 231-238.

Winner, L., ID, Mack, J., Weltzin, R., Mekalanos, J. J., Kraehenbuhl, J. P., and Neutra,
M. R. (1991). New model for analysis of mucosal immunity: intestinal secretion of
specific monoclonal immunoglobulin A from hybridoma tumors protects against Vibrio
cholerae infection. Infect.Immun. 59, 977-982.

Winther, B., Innes, D. J., Jr., Mills, S. E., Mygind, N., Zito, D., and Hayden, F. G.
(1987). Lymphocyte subsets in normal airway mucosa of the human nose.
Arch.Otolaryngol.Head Neck Surg. 113, 59-62.

Wolf, J. L. and Bye, W. A. (1984). The membranous epithelial (M) cell and the mucosal
immune system. Annu.Rev.Med. 35, 95-112.

Wolvers, D. A., Coenen-de Roo, C. J., Mebius, R. E., van der Cammen, M. J., Tirion, F.,
Miltenburg, A. M., and Kraal, G. (1999). Intranasally induced immunological tolerance
is determined by characteristics of the draining lymph nodes: studies with OVA and
human cartilage gp-39. J.Immunol. 162, 1994-1998.

Woodison, G. and Smith, J. E. (1990). Identification of the dominant cyst antigens of
Toxoplasma gondii. Parasitology 100 Pt 3, 389-392.

Wu, H. Y. and Russell, M. W. (1993). Induction of mucosal immunity by intranasal
application of a streptococcal surface protein antigen with the cholera toxin B subunit.
Infect.Immun. 61, 314-322.

252



Wu, H. Y., Nikolova, E. B., Beagley, K. W., and Russell, M. W. (1996). Induction of
antibody-secreting cells and T-helper and memory cells in murine nasal lymphoid tissue.
Immunology 88, 493-500.

Wu, H. Y., Nguyen, H. H., and Russell, M. W. (1997a). Nasal lymphoid tissue (NALT)
as a mucosal immune inductive site. Scand.J.Immunol. 46, 506-513.

Wu, H. Y. and Russell, M. W. (1997b). Nasal lymphoid tissue, intranasal immunization,
and compartmentalization of the common mucosal immune system. Immunol.Res. 16,
187-201.

Wu, H. Y. and Russell, M. W. (1998). Induction of mucosal and systemic immune
responses by intranasal immunization using recombinant cholera toxin B subunit as an
adjuvant. Vaccine 16, 286-292.

Xu-Amano, J., Kiyono, H., Jackson, R. J., Staats, H. F., Fujihashi, K., Burrows, P. D.,
Elson, C. O., Pillai, S., and McGhee, J. R. (1993). Helper T cell subsets for
immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin
as adjuvant selectively induces Th2 cells in mucosa associated tissues. J.Exp.Med. 178,
1309-1320.

Yamaguchi, K. and Anderson, J. M. (1993). In vivo biocompatibility studies of
Medisorb® 65/35 D,F-lactide glycolide copolymer microspheres. J.Contr.Rel. 24, 81-93.

Yamamoto, M., Briles, D. E., Yamamoto, S., Ohmura, M., Kiyono, H., and McGhee, J.
R. (1998). A nontoxic adjuvant for mucosal immunity to pneumococcal surface protein
A. J.Immunol. 161, 4115-4121.

Yamamoto, S., Kiyono, H., Yamamoto, M., Imaoka, K., Fujihashi, K., van Ginkel, F.
W., Noda, M., Takeda, Y., and McGhee, J. R. (1997). A nontoxic mutant of cholera
toxin elicits Th2-type responses for enhanced mucosal immunity.
Proc.Natl.Acad.Sci.U.S.A 94, 5267-5272.

Yan, C., Resau, J. H., Hewetson, J., West, M., Rill, W. F. and Kende, M. (1994).
Characterization and morphological analysis of protein-loaded poly (lactide-co-
glycolide) microparticles prepared by water-in-oil-in-water emulsion technique.
J.Contr.Rel. 32, 231-241.

Yan, C., Rill, W. F., Malli, R., Hewetson, J., Naseem, H., Tammariello, R., and Kende,
M. (1996). Intranasal stimulation of long-lasting immunity against aerosol ricin
challenge with ricin toxoid vaccine encapsulated in polymeric microspheres. Vaccine 14,
1031-1038.

Yeh, M. K., Coombes, A. G., Chen, J. F., and Chiang, C. H. (2002). Japanese
encephalitis virus vaccine formulations using PEA lamellar and PEG microparticles.
J.Microencapsul. 19, 671-682.

253



Yeh, M. K., Liu, Y. T., Chen, J. L., and Chiang, C. H. (2002). Oral immunogenicity of
the inactivated Vibrio cholerae whole-cell vaccine encapsulated in biodegradable
microparticles. J.Control Release 82, 237-247.

Zhou, X. H. and Po, A. L. W. (1991). Comparison of enzyme-activities of tissues lining
portals of absorption of drugs - species-differences. Int J.Pharm. 70, 271-283.

Zuercher, A. W., Coffin, S. E., Thurnheer, M. C., Fundova, P., and Cebra, J. J. (2002).
Nasal-associated lymphoid tissue is a mucosal inductive site for virus- specific humoral
and cellular immune responses. J.Immunol. 168, 1796-1803.

254



Appendices

255



Appendix5.1Comparisonoftemperatureresponsetooralinfectionwith200and500toxoplasmaoocysts
Oocyst Dose

Animal Number

Day

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Temperature(°C)

200

927N

39.51

39.34

39.73

39.11

39.41

40.31

42.09

42.13

41.45

40.6

40.44

39.55

39.35

39.21

39.39

39.25

200

976N

39.6

39.72

39.94

39.93

39.72

39.4

40.86

41.67

41.95

41.21

41.25

40.11

39.07

39.27

39.69

39.64

500

1032N

39.49

39.63

39.62

39.56

39.26

39.29

41.54

42.08

41.78

41.57

41.4

40.25

39.4

39.18

39.62

39.23

500

1084N

39.56

39.48

39.5

39.65

39.55

39.48

40.83

41.72

41.82

41.07

40.02

39.27

39.43

38.99

39.48

39.33
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Appendix5.2Temperatureresponsesfollowingoralinfectionwith200toxoplasmaoocysts Treatment Group

Animal Number

Day

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Temperature(°C)

1.control

913N

39.75

39.72

39.51

39.66

39.4

39.94

41.69

42.27

42.02

41.71

41.14

40.91

39.42

39.29

38.88

39.49

915N

39.82

39.63

39.75

39.87

39.71

39.95

40.88

41.77

41.81

41.59

41.33

41.06

40.14

39.82

39.31

39.74

950N

40.33

39.62

39.57

39.58

39.46

39.94

41.33

41.85

41.88

41.47

40.96

39.8

39.96

39.29

39.31

*

1048N

40.06

39.93

39.76

39.68

40.05

40.03

41.71

41.77

41.67

41.47

41.48

41.32

41.69

40.92

40.94

*

2.i.n. soluble toxo

638N

39.51

39.39

39.23

39.64

39.38

39.46

40.68

41.59

41.65

41.14

40.57

39.95

39.79

39.33

39.08

39.92

748N

39.84

39.93

39.67

39.7

39.68

39.75

41.34

41.46

41.8

41.54

41.06

40.39

40.05

39.74

39.66

40.2

919N

39.48

39.49

39.51

39.24

39.27

39.35

40.75

41.41

41.58

41.73

41.02

40.77

39.66

39.23

39.25

*

923N

39.43

39.46

39.52

39.72

39.29

39.71

41.33

41.89

41.46

41.47

40.99

40.72

39.64

39.52

39.34

39.35

993N

39.94

39.77

40.08

39.8

39.79

39.73

41.34

41.7

41.79

41.26

40.65

40.57

39.93

39.88

39.73

40.34

1031N

39.36

40.01

39.89

39.79

39.51

41.02

41.07

41.5

41.41

41

40.53

39.46

39.21

39.11

40.32

*

1034N

39.54

39.49

39.9

39.58

39.72

39.53

41.76

41.98

41.68

41.92

41.05

40.54

39.54

39.28

39.01

39.54

1117N

40.16

39.59

40.09

39.86

39.99

39.95

41.59

41.79

41.86

41.52

41.44

41.24

40.84

39.95

39.9

40.37

3.i.n.toxo particle

715N

39.88

40.09

40.04

39.86

39.92

41.16

41.93

42.19

41.96

41.48

41.54

40.78

39.99

39.2

39.27

39.57

739N

39.92

39.78

40.19

39.48

39.52

41.97

42.12

42.06

41.81

41.8

41.36

39.74

38.97

39.11

39.08

39.23

764N

39.75

39.67

39.78

39.68

39.93

40.52

41.1

42

42.32

41.21

40.41

40.38

40.09

39.63

39.11

39.56

1067N

39.52

39.72

39.67

39.48

39.68

40.51

41.46

41.8

41.43

41.38

40.46

39.76

39.43

39.24

39.32

39.45

4.i.n.toxo particle+ CT

770N

39.2

39.39

39.58

40.08

39.69

40.39

41.36

41.57

41.59

41.09

40.4

40.16

39.37

39.25

39.13

39.15

989N

39.48

39.37

39.52

40.38

39.51

41.13

41.64

41.37

41.37

41.34

40.61

39.91

38.64

38.9

39.07

39.7

1030N

39.51

39.41

39.51

40.07

39.35

40.19

41.91

41.87

41.67

41.19

41.09

40.1

39.1

39.09

39.34

39.7

1116N

39.55

39.43

39.48

39.45

39.32

40.23

41.37

41.89

42.21

41.95

41.12

40.68

40.04

39.24

39.22

39.04

5-oocyst challenge

927N

39.81

39.78

39.73

39.46

40.22

39.01

39.48

39.97

39.34

39.93

39.19

39.43

39.72

39.45

39.94

39.99

976N

39.69

39.63

39.76

39.75

40.44

39.85

39.9

39.88

39.56

39.75

39.56

39.52

39.46

39.38

39.61

39.78

1032N

39.72

39.61

39.67

39.87

39.97

39.81

39.54

39.52

39.6

39.69

39.31

39.42

39.34

39.5

39.78

39.25

1084N

39.73

39.47

39.53

39.5

40.07

39.14

39.16

39.31

39.46

39.48

39.17

39.12

39.04

39.14

39.47

39.31
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Appendix5.3SerumIgAresponses Treatment Group

Animal Number

NormalisedOD@492nm

Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7

Week8

Week9

Week10

Week11

1.control

913N

0.054

-0.031

0.050

0.050

-0.021

0.041

0.040

0.046

0.050

0.050

0.108

0.099

915N

0.061

0.065

0.081

0.071

0.039

0.055

0.067

0.071

0.094

0.039

0.064

0.122

950N

0.042

0.054

0.052

0.051

0.042

0.042

0.053

0.041

0.061

0.064

0.077

0.187

1048N

0.063

0.071

0.069

0.084

0.098

0.095

0.089

0.065

0.092

0.092

0.078

0.288

2.i.n. soluble toxo

638N

0.090

0.083

0.092

0.103

0.097

0.110

0.096

0.116

0.143

0.105

0.177

0.122

748N

0.183

0.134

0.126

0.138

0.075

0.091

0.068

0.074

0.073

0.059

0.145

0.162

919N

0.064

0.064

0.071

0.117

0.100

0.074

0.093

0.085

0.084

0.122

0.080

0.232

923N

0.053

0.045

0.045

0.192

0.099

0.195

0.107

0.080

0.091

0.075

0.139

0.357

993N

0.134

0.108

0.134

0.116

0.117

0.142

0.108

0.148

0.169

0.133

0.145

0.163

1031N

0.052

0.099

0.059

0.060

0.042

0.118

0.062

0.037

0.091

0.064

0.071

0.110

1034N

0.115

0.136

0.105

0.120

0.085

0.084

0.068

0.113

0.102

0.075

0.077

0.116

1117N

0.072

0.075

0.058

0.070

0.056

0.082

0.085

0.089

0.079

0.071

0.096

0.387

3.i.n.toxo particle

715N

0.135

0.098

0.122

0.540

0.184

0.501

0.261

0.133

0.157

0.179

0.068

0.461

739N

0.067

-0.003

0.059

0.090

0.046

0.068

0.060

0.064

0.063

0.026

0.052

0.083

764N

0.066

0.056

0.059

0.203

0.057

0.135

0.093

0.053

0.062

0.032

-0.053

0.108

1067N

0.167

0.155

0.239

0.251

0.159

0.281

0.187

0.189

0.212

0.203

0.178

0.426

4.i.n.toxo particle+ CT

770N

0.240

0.378

0.287

0.943

0.304

0.695

0.329

0.209

0.222

0.203

0.212

0.389

989N

0.067

0.055

0.060

0.121

0.048

0.076

0.063

0.051

0.060

0.040

0.092

-0.005

1030N

0.078

0.078

0.089

0.289

0.055

0.317

0.081

0.122

0.113

0.087

0.099

0.180

1116N

0.106

0.116

0.106

0.229

0.091

0.154

0.089

0.100

0.098

0.081

0.136

0.203

5.oocyst challenge

927N

0.238

0.268

0.173

0.134

0.110

0.099

0.106

0.127

0.099

0.094

0.106

♦

976N

0.054

0.078

0.188

0.073

0.059

0.066

0.063

0.059

0.067

0.078

0.034

*

1032N

0.062

0.114

0.087

0.054

0.052

0.064

0.075

0.069

0.082

0.070

0.046

*

1084N

0.076

0.115

0.292

0.077

0.032

0.052

0.050

0.191

-0.018

0.049

0.052

*
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Appendix5.4NasalIgAresponses Treatment Group

Animal Number

NormalisedOD@492nm

Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7

Week8

Week9Week10
Week11

1.control

913N

0.047

0.055

0.040

0.050

0.046

0.053

0.054

0.050

0.048

0.050

0.046

0.070

915N

0.052

0.054

0.062

0.057

0.049

0.050

0.051

0.055

0.048

0.046

0.048

0.074

950N

0.043

0.049

0.046

0.037

0.035

0.036

0.054

0.055

0.050

0.041

0.024

0.140

1048N

0.075

0.057

0.099

0.067

0.054

0.108

0.065

0.074

0.059

0.047

0.051

0.065

2.i.n. soluble toxo

638N

0.043

0.047

0.047

0.052

0.069

0.108

0.069

0.077

0.051

0.056

0.039

0.062

748N

0.021

0.047

0.051

-0.054

0.068

0.057

0.077

0.077

0.063

0.061

0.056

0.086

919N

0.045

0.040

0.051

0.061

0.056

0.064

0.063

0.059

-0.162

0.056

0.054

0.170

923N

-0.015

0.040

0.040

0.124

0.032

0.139

0.107

0.121

0.078

0.124

0.073

0.311

993N

0.020

0.044

0.058

0.051

0.129

0.155

0.114

0.118

0.083

0.120

0.124

0.299

1031N

0.044

0.052

0.066

0.050

0.084

0.180

0.082

0.061

0.059

0.063

0.074

0.082

1034N

-0.015

0.042

0.077

0.035

0.067

0.000

0.017

0.076

0.060

0.046

0.041

0.045

1117N

0.011

0.051

0.058

0.055

0.058

0.060

0.055

0.058

0.055

0.068

0.065

0.148

3.i.n.toxo particle

715N

0.054

0.067

0.126

1.028

0.780

0.713

0.899

1.130

0.978

0.640

0.946

1.167

739N

0.063

0.075

0.053

0.179

0.269

0.081

0.145

0.177

0.096

0.073

0.119

0.221

764N

0.079

0.149

0.121

0.789

0.377

0.306

0.419

0.143

0.096

0.110

0.146

0.635

1067N

-0.034

-0.001

0.041

0.575

0.214

0.499

0.399

0.684

0.137

0.130

0.184

0.345

4.i.n.toxo particle+ CT

770N

0.071

0.147

0.259

1.146

0.573

0.901

0.808

0.746

0.516

0.533

0.471

1.035

989N

0.012

0.053

0.060

0.347

0.094

0.203

0.115

0.104

0.061

0.060

0.056

0.107

1030N

0.052

0.058

0.112

0.526

0.178

0.549

0.431

0.303

0.188

0.114

0.180

0.408

1116N

-0.007

0.016

0.058

0.461

0.333

0.246

0.156

0.121

0.071

0.049

0.050

0.656

5.oocyst challenge

927N

*

*

0.045

0.009

0.056

0.037

0.059

0.055

0.051

0.056

0.048

*

976N

*

*

0.026

0.103

0.251

0.207

0.130

0.062

0.066

0.049

0.127

*

1032N

*

*

*

0.072

0.085

0.071

0.059

0.065

0.060

0.059

0.056

*

1084N

*

*

0.004

0.062

0.067

0.060

0.053

0.063

0.053

0.051

0.049

*

259



Appendix5.5TissueIgAresponses Treatment Group

Animal Number

NormalisedOD@492nm

NALT

PI

Trach ea

Bronc hus

Lung

Abo Fold

Duode num

Jejenu
m

Ileum

PP

LI

Rectu
m

Spleen

MLN

1.control

913N

0.086

0.109

*

0.076

0.043

-0.210

0.311

0.564

0.303

0.184

0.236

0.156

0.062

0.079

915N

0.086

0.090

0.214

0.150

0.190

0.198

0.331

0.676

0.327

0.225

-0.230

0.078

0.028

0.121

950N

0.096

0.067

0.100

0.141

0.227

-0.003

0.377

0.604

0.423

0.269

0.048

0.111

0.081

0.127

1048N

0.097

0.088

0.152

0.227

0.201

0.013

0.330

0.635

0.543

0.556

0.134

0.178

0.535

0.464

2.i.n. soluble toxo

638N

0.009

0.044

0.104

0.073

-0.056

0.153

0.421

0.560

0.210

0.234

0.081

0.012

0.053

0.066

748N

-0.009

0.892

0.196

0.134

0.352

0.917

0.951

1.020

0.844

0.739

0.136

0.035

0.090

0.067

919N

0.197

0.168

0.178

0.183

0.274

0.211

0.544

0.679

0.443

0.330

0.087

0.081

0.124

0.083

923N

0.112

0.134

0.509

0.392

0.376

0.449

0.445

0.504

0.473

0.270

0.792

0.125

0.104

0.182

993N

0.088

0.047

0.275

0.442

0.828

0.591

0.848

0.754

0.403

0.231

0.248

0.283

0.051

0.122

1031N

0.027

0.063

0.766

0.357

1.007

0.097

0.257

0.333

0.108

0.112

0.046

0.066

0.037

0.017

1034N

0.027

0.088

0.104

0.097

0.102

0.069

0.554

0.444

0.444

0.334

0.224

0.062

0.040

0.083

1117N

0.078

0.229

0.291

0.266

0.815

0.453

0.534

0.614

0.304

0.271

0.171

0.118

0.444

0.145

3.i.n.toxo particle

715N

0.409

0.372

1.208

0.831

1.126

1.006

0.917

0.595

0.392

0.355

0.735

0.372

0.478

0.232

739N

0.009

0.071

0.337

0.269

0.351

0.255

0.401

0.572

0.226

0.137

0.044

0.088

0.063

0.088

764N

-0.051

0.051

0.095

0.066

0.058

-0.035

0.242

0.182

0.068

0.035

0.031

0.020

0.041

0.061

1067N

0.137

0.121

0.156

0.124

0.328

1.270

1.412

1.349

1.211

0.611

0.007

0.112

0.113

0.116

4.i.n.toxo particle+ CT

770N

0.194

0.239

0.402

0.337

0.772

0.343

0.747

0.777

0.536

0.522

0.089

0.073

0.208

0.152

989N

0.061

0.050

0.173

0.062

0.090

0.198

0.115

0.187

0.074

0.033

0.062

0.016

0.037

0.063

1030N

0.039

0.120

0.098

0.068

0.078

0.484

0.407

0.596

0.596

0.278

0.280

0.076

0.069

0.249

1116N

0.033

0.041

0.248

0.102

0.223

0.221

0.639

0.541

0.234

0.165

0.074

0.017

0.048

0.034

5.oocyst challenge

927N

-0.022

0.037

0.084

0.050

0.060

0.021

0.430

0.601

0.936

0.369

0.223

-0.017

0.041

0.159

976N

0.048

0.039

0.089

-0.042

0.056

0.088

0.895

0.574

0.242

0.229

0.053

0.039

0.040

0.037

1032N

-0.018

0.055

-0.019

0.010

-0.007

0.003

0.071

0.133

0.088

0.043

0.046

0.031

0.038

0.029

1084N

0.012

0.042

-0.004

0.137

0.121

-0.150

0.240

0.259

0.126

0.076

0.009

0.065

0.044

0.026

260



Appendix5.6SerumIgGresponsesatafixeddilutionof1:100 Treatment Group

Animal Number

NormalisedOD@492nm

Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7Week8
Week9Week10
Week11

1.control

913N

-0.001

-0.002

-0.006

0.000

0.002

0.005

0.001

0.000

0.005

0.003

0.018

0.838

915N

-0.004

0.011

-0.005

0.005

-0.004

-0.008

-0.010

-0.001

0.003

-0.007

0.027

0.134

950N

-0.003

-0.001

0.001

-0.006

0.001

-0.005

-0.004

-0.002

0.025

0.001

-0.009

0.149

1048N

0.002

-0.002

0.008

0.004

0.006

0.001

-0.001

-0.003

0.011

-0.003

0.012

0.015

2.i.n. soluble toxo

638N

-0.017

-0.004

0.000

-0.006

0.000

-0.008

-0.002

0.000

0.010

-0.001

0.703

0.979

748N

-0.007

-0.008

-0.007

-0.013

-0.006

-0.005

-0.003

-0.001

-0.003

-0.004

0.096

0.956

919N

-0.002

-0.003

-0.002

-0.006

-0.008

-0.009

-0.007

-0.001

0.011

-0.001

0.043

0.953

923N

-0.001

-0.004

0.000

0.007

0.012

0.016

0.010

0.004

0.024

-0.003

0.548

1.039

993N

-0.008

0.000

-0.004

-0.010

0.010

0.003

-0.004

0.007

0.010

-0.002

0.133

0.964

1031N

-0.004

-0.003

-0.002

-0.012

-0.003

-0.009

-0.006

-0.010

-0.008

-0.002

0.750

0.984

1034N

-0.009

-0.002

0.001

-0.006

0.001

0.012

-0.003

-0.002

0.001

0.002

0.466

1.015

1117N

-0.009

-0.004

0.005

-0.005

0.004

-0.004

-0.003

-0.003

0.014

0.002

-0.005

0.968

3.i.n.toxo particle

715N

-0.014

-0.003

-0.007

-0.006

-0.004

0.000

0.003

0.001

0.048

0.005

0.056

0.968

739N

-0.018

-0.002

0.000

0.225

0.221

0.129

0.091

0.020

0.080

0.018

0.047

0.984

764N

0.007

0.000

0.005

0.037

0.085

0.067

0.083

0.018

0.081

0.020

0.078

0.994

1067N

-0.014

-0.008

-0.005

0.005

0.003

0.005

0.003

0.000

0.007

0.001

0.014

0.994

4.i.n.toxo particle+ CT

770N

0.010

0.006

0.077

0.087

0.235

0.930

0.839

0.434

0.781

0.459

0.388

1.048

989N

0.000

0.001

-0.006

0.019

0.038

0.016

0.032

0.003

0.014

0.003

0.007

1.065

1030N

0.000

0.000

-0.002

-0.004

0.012

0.097

0.103

0.015

0.078

0.028

0.047

1.037

1116N

-0.011

-0.006

-0.006

-0.005

0.003

-0.006

-0.005

0.001

0.003

0.000

-0.008

0.973

5.oocyst challenge

927N

0.270

0.314

0.674

1.028

0.974

1.031

1.079

1.040

1.001

1.000

1.070

*

976N

0.005

0.002

0.270

0.930

0.958

1.027

0.988

0.994

0.992

0.988

0.995

*

1032N

0.000

-0.004

0.299

0.951

0.955

0.975

1.045

0.980

0.973

0.970

0.995

*

1084N

0.028

0.001

0.047

0.616

0.800

0.926

0.934

0.941

0.883

0.907

0.870

*

261



Appendix5.7Titreofserumatwhich50%maximum/minimumODwasreachedforIgG Treatment Group

Animal Number

NormalisedOD@492nm

Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7

Week8

Week9

Week10

Week11

1.control

913N

0

0

0

0

0

0

0

0

0

0

50.0

399.6

915N

0

0

0

0

0

0

0

0

0

0

0

65.0

950N

0

0

0

0

0

0

0

0

0

0

0

35.8

1048N

0

0

0

0

0

0

0

0

0

0

0

50.0

2.i.n. soluble toxo

638N

0

0

0

0

0

0

0

0

0

0

121.9

3965.9

748N

0

0

0

0

0

0

0

0

0

0

50.0

1504.0

919N

0

0

0

0

0

0

0

0

0

0

40.0

1243.5

923N

0

0

0

30.0

40.0

40.0

40.0

50.0

50.0

40.0

142.8

6888.7

993N

0

0

0

0

0

0

0

0

0

0

60.0

1317.6

1031N

0

0

0

0

0

0

0

0

0

0

125.2

1990.1

1034N

0

0

0

0

0

0

0

0

0

0

43.4

1651.7

1117N

0

0

0

0

0

0

0

0

0

0

0.0

1340.5

3.i.n.toxo particle

715N

0

0

0

0

0

0

0

0

0

0

0

3756.9

739N

0

0

0

37.4

70.0

70.0

60.0

70.0

40.0

40.0

30.0

7150.0

764N

0

0

0

50.0

50.0

50.0

60.0

50.0

50.0

50.0

50.0

8663.2

1067N

0

0

0

0

0

0

0

0

0

0

40.0

5935.8

4.i.n.toxo particle+ CT

770N

0

0

40.0

50.0

50.0

227.5

131.9

102.5

156.2

42.5

38.6

7308.8

989N

0

0

0

0

0

0

0

0

0

0

0

4447.0

1030N

0

0

0

0

0

77.1

65.0

65.0

65.0

50.0

50.0

4661.1

1116N

0

0

0

0

0

0

0

0

0

0

0

1372.2

5.oocyst challenge

927N

28.8

35.7

75.4

188.5

575.1

835.3

1139.2

1144.0

1229.2

1386.3

1248.2

*

976N

0

0

70.0

125.2

303.6

607.7

1192.8

1182.8

1160.1

734.5

699.8

*

1032N

0

0

50.0

200.0

322.5

782.2

1121.4

1293.0

971.9

1179.7

1077.1

*

1084N

0

0

20.0

77.1

123.6

163.5

130.4

158.8

373.2

189.6

113.4

*

262



Appendix5.8IgG1andlgG2responsesatweek2post-infectionwithoocysts TreatmentGroup

AnimalNumber

Antibody

SERUMIgGl

SERUMIgG2

NASALIgGl

NASALIgG2

NormalisedOD@492nm

1.control

913N

-0.005

-0.0275

-0.001

-0.067

915N

-0.011

-0.0170

-0.013

-0.057

950N

0.003

-0.0145

-0.010

-0.046

1048N

0.031

-0.0290

*

*

2.i.n.solubletoxo

638N

0.096

-0.006

0.098

-0.020

748N

0.066

-0.003

0.003

-0.053

919N

0.311

-0.024

0.011

-0.056

923N

0.205

0.087

0.196

-0.040

993N

0.045

0.001

0.008

-0.059

1031N

0.068

-0.008

0.010

0.020

1034N

0.089

0.002

0.029

0.240

1117N

0.047

-0.008

0.014

-0.055

3.i.n.toxoparticle

715N

0.056

0.222

0.015

0.016

739N

0.211

0.228

0.106

0.031

764N

0.297

0.023

0.182

0.030

1067N

0.214

-0.009

0.130

0.028

4.i.n.toxoparticle+ CT

770N

0.432

0.878

0.064

0.153

989N

0.162

0.073

0.067

-0.019

1030N

0.129

0.069

0.044

-0.031

1116N

0.097

-0.003

0.032

-0.053

5.oocystchallenge

927N

0.234

0.059

0.016

-0.026

976N

0.051

0.930

*

*

1032N

0.107

0.093

0.033

-0.027

1084N

0.020

0.126

0.002

-0.017

263



Appendix5.9NasalIgGresponses Treatment Group

Animal Number

NormalisedOD@492nm

Week0

Week1

Week2

Week3

Week4

Week5Week6
Week7Week8
Week9Week10
Week11

1.control

913N

-0.011

0.002

0.003

-0.008

-0.010

-0.022

-0.015

-0.007

-0.013

-0.019

-0.016

0.190

915N

0.006

-0.002

0.002

0.018

-0.015

0.045

0.000

-0.002

0.014

-0.010

-0.002

0.043

950N

0.014

0.015

0.009

0.004

0.049

-0.001

0.008

0.002

0.020

0.002

0.010

0.084

1048N

-0.011

0.045

0.001

-0.013

0.085

-0.022

-0.015

-0.023

-0.010

-0.019

-0.016

*

2.i.n. soluble toxo

638N

-0.002

-0.009

-0.001

-0.004

-0.007

-0.011

-0.010

-0.007

0.006

-0.002

-0.011

1.399

748N

0.010

-0.002

0.005

0.014

-0.008

-0.011

-0.005

-0.011

-0.004

-0.005

-0.005

0.519

919N

-0.001

-0.002

-0.004

-0.005

-0.013

-0.014

-0.004

-0.008

-0.011

-0.019

-0.007

0.768

923N

0.004

0.075

-0.006

0.045

-0.017

-0.010

-0.009

-0.006

-0.009

-0.009

-0.007

1.499

993N

-0.008

-0.012

0.014

-0.016

-0.015

-0.018

-0.001

-0.021

-0.013

-0.010

-0.010

0.875

1031N

0.008

0.003

0.013

0.005

0.006

0.002

0.004

-0.009

0.088

-0.006

0.007

0.924

1034N

0.017

0.023

-0.001

0.013

-0.005

-0.012

0.023

0.002

0.002

0.002

0.022

1.348

1117N

-0.007

0.085

-0.006

-0.010

-0.020

-0.007

-0.012

-0.020

-0.014

-0.001

-0.002

0.906

3.i.n.toxo particle

715N

0.002

0.004

0.011

-0.001

0.187

-0.017

0.001

-0.004

-0.005

-0.006

0.020

1.182

739N

-0.010

-0.011

0.004

0.003

0.008

-0.015

-0.008

-0.005

-0.014

-0.011

0.002

1.494

764N

0.005

0.034

-0.005

-0.008

-0.007

-0.020

-0.008

-0.004

-0.011

-0.015

-0.007

1.497

1067N

-0.002

-0.004

0.011

*

-0.011

-0.020

-0.015

-0.016

-0.019

-0.014

-0.013

1.481

4.i.n.toxo particle+ CT

770N

0.025

0.015

0.027

0.033

-0.005

0.034

0.024

0.018

0.005

0.004

-0.003

1.527

989N

-0.006

-0.006

0.017

*

0.006

0.012

0.010

-0.006

-0.013

-0.008

-0.011

1.508

1030N

-0.012

-0.009

0.013

-0.004

-0.014

-0.023

-0.012

-0.020

-0.011

-0.011

-0.012

1.365

1116N

0.006

0.008

0.017

0.008

0.067

-0.011

0.001

-0.013

-0.003

-0.002

-0.001

0.917

5.oocyst challenge

927N

*

*

0.1945

0.139

0.177

0.271

0.853

0.6155

0.397

0.706

0.6305

*

976N

*

*

0.0235

0.425

0.466

1.1865

1.3295

1.1965

1.209

1.2765

1.5255

*

1032N

*

*

*

0.55

0.3485

0.4525

0.6335

1.231

0.99

1.1195

1.191

*

1084N

*

*

0.018

0.047

0.119

0.106

0.179

0.079

0.1565

0.1045

0.2365

*
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Appendix5.10TissueIgGresponses Treatment Group

Animal Number

NormalisedOD@492nm

NALT

PT

Trach ea

Bronc hus

Lung

Abo Fold

Duode num

Jejenu in

Ileum

PP

LI

Rectu
m

Spleen

MLN

1.control

913N

0.133

0.096

0.272

0.153

0.132

0.065

0.087

0.156

0.121

0.215

0.038

0.052

0.323

0.487

915N

0.042

0.032

0.062

0.035

0.035

0.036

0.058

0.068

0.016

0.061

0.035

0.062

0.087

0.111

950N

0.037

0.033

0.062

0.035

0.041

0.038

0.044

0.113

0.047

0.094

0.051

0.053

0.122

0.302

1048N

0.016

0.013

0.029

0.019

0.017

0.018

0.019

0.044

0.017

0.038

0.023

0.046

0.032

0.072

2.i.n. soluble toxo

638N

0.746

0.700

0.688

0.661

0.761

0.547

0.546

1.075

0.628

0.969

0.709

0.331

0.972

1.267

748N

0.435

0.422

0.486

0.500

0.612

0.579

0.453

0.654

0.360

0.735

0.278

0.265

0.664

1.054

919N

0.350

0.248

0.370

0.441

0.569

0.385

0.364

0.504

0.445

0.655

0.228

0.070

0.780

1.066

923N

0.781

0.780

0.743

0.816

0.847

0.870

0.882

1.232

0.728

0.964

0.807

0.824

1.005

1.334

993N

0.462

0.287

0.416

0.496

0.575

0.386

0.468

0.766

0.455

0.694

0.347

0.205

0.720

1.080

1031N

0.476

0.533

0.632

0.600

0.708

0.584

0.682

0.902

0.389

0.887

0.456

0.500

0.799

1.144

1034N

0.521

0.302

0.538

0.560

0.609

0.523

0.535

0.840

0.319

0.803

0.465

0.204

0.752

1.209

1117N

0.376

0.389

0.291

0.356

0.415

0.503

0.256

0.597

0.284

0.606

0.313

0.267

0.810

1.081

3.i.n.toxo particle

715N

0.564

0.680

0.522

0.573

0.711

0.764

0.750

1.160

0.603

0.959

0.695

0.720

0.908

1.190

739N

0.784

0.783

0.829

0.789

0.837

0.782

0.870

1.241

0.691

1.163

0.861

0.762

1.024

1.342

764N

0.860

0.761

0.987

0.808

0.834

0.804

0.892

1.169

0.756

0.987

0.919

0.643

0.935

1.390

1067N

0.764

0.604

0.777

0.861

0.843

0.656

0.589

1.211

0.703

0.900

0.810

0.692

0.840

1.301

4.i.n.toxo particle+ CT

770N

0.863

0.854

0.849

0.845

0.850

0.871

0.877

1.195

0.556

1.073

0.970

0.570

1.008

1.365

989N

0.680

0.685

0.699

0.720

0.809

0.689

0.786

1.167

0.755

1.134

0.695

0.786

0.917

1.332

1030N

0.654

0.608

0.655

0.658

0.753

0.657

0.659

1.124

0.630

0.898

0.721

0.670

0.935

1.351

1116N

0.466

0.398

0.438

0.441

0.643

0.286

0.384

0.809

0.324

0.663

0.300

0.300

0.625

1.066

5.oocyst challenge

927N

0.516

0.317

0.654

0.463

0.759

0.392

0.481

0.978

0.361

0.975

0.340

0.543

1.143

0.955

976N

0.469

0.324

0.141

0.308

0.700

0.465

0.503

0.609

0.246

0.603

0.298

0.109

1.013

0.755

1032N

0.651

0.461

0.468

0.414

0.768

0.590

0.355

0.604

0.696

0.852

0.418

0.146

1.226

1.001

1084N

0.156

0.039

0.084

0.078

0.292

0.176

0.125

0.235

0.047

0.239

0.068

0.130

0.412

0.447
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Appendix5.11ProliferativeresponsesofPBMCfromGroup1(control) Animal

Treat -ment

Mediancountsperminute(cpm)
Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7

Week8

Week9

Week10

Week11

913N

M

60.0

75.2

44.0

65.9

77.9

190.0

195.0

127.5

86.0

144.0

143.5

70.2

V

77.5

65.2

50.3

53.7

76.0

234.5

235.5

141.5

99.4

163.0

167.0

57.5

T2

77.0

57.0

40.9

66.0

81.5

167.0

147.5

138.0

91.5

162.5

295.0

50.2

T1

*

52.2

60.7

65.9

95.5

198.5

182.5

140.5

114.2

189.0

254.0

58.3

C

22968.0

23826.5

21025.5

23654.0

21207.0

18871.5

21097.5

24493.5

16873.5

25977.5

15889.5

1464.0

915N

M

141.0

139.5

85.7

124.0

101.0

192.0

156.5

127.5

195.0

174.5

154.5

165.5

V

136.5

109.5

75.7

102.9

113.5

177.5

138.0

121.0

140.0

209.5

172.5

176.5

T2

225.5

121.0

57.9

169.0

155.5

210.5

124.0

224.5

193.0

356.5

784.0

190.5

T1

*

166.0

85.5

124.0

144.0

255.0

225.5

185.01

247.0

283.5

470.5

190.5

C

25431.5

29476.0

19343.0

18307.5

16688.5

25247.0

17206.0

21450.5

25309.5

23094.0

18578.5

1023.5

950N

M

85.0

92.0

66.7

138.5

44.5

94.2

96.7

218.0

145.0

149.0

391.5

147.5

V

80.0

103.0

62.7

101.5

50.7

120.0

83.4

178.0

116.0

129.5

302.0

156.5

T2

100.2

68.4

53.9

348.0

77.7

127.5

101.5

1017.5

529.5

225.5

16054.5

3917.5

T1

*

80.5

71.9

157.0

69.9

116.5

87.4

812.0

194.0

168.0

15433.0

4654.0

C

23863.0

22884.0

26479.0

26874.5

16340.0

17064.0

21437.5

26149.5

20163.5

16775.0

17696.5

16145.0

1048N

M

617.0

344.5

118.0

128.0

96.9

206.5

142.0

198.0

293.5

222.0

329.0

291.5

V

401.5

337.0

102.4

108.5

79.5

189.5

131.5

178.0

314.5

166.5

283.5

278.5

T2

676.0

265.0

101.9

128.0

113.0

243.5

142.5

229.5

605.0

270.0

3307.5

514.0

T1

*

291.5

95.5

125.5

156.5

285.5

120.5

254.5

479.0

299.0

2809.0

390.5

C

27062.5

24274.5

30159.0

29686.0

21008.0

21991.5

24743.5

27118.0

23649.5

22712.0

25374.0

10314.0

M=mediumcontrol;V=verocellcontrol;T2=toxoplasmatachyzoiteantigenat2pg/ml;T1=toxoplasmatachyzoiteantigen
at1pg/ml;C=ConApositivecontrol
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Appendix5.12ProliferativeresponsesofPBMCfromGroup2(i.n.immunisationwithsolubleantigen) Animal

Treat -ment

Mediancountsperminute(cpm)
Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7

Week8

Week9

Week10

Week11

638N

M

114.0

462.0

73.3

111.5

53.3

94.0

70.2

97.9

57.3

79.5

116.5

62.4

V

142.5

563.5

81.5

83.7

58.8

127.5

61.7

86.5

154.9

84.5

139.0

56.2

T2

129.5

177.0

50.5

118.0

100.7

670.5

67.9

158.0

554.5

81.7

2158.5

76.0

T1

*

455.0

60.4

354.0

107.0

148.5

113.7

356.5

135.4

164.0

2365.0

68.0

C

32373.5

15981.0

30240.0

27404.0

25949.5

22775.0

23571.0

30675.0

20575.0

24296.5

22483.0

3944.5

748N

M

405.0

508.0

127.5

168.0

132.0

426.5

326.0

184.0

443.0

217.0

171.5

166.0

V

159.0

533.5

241.5

148.0

130.5

842.5

370.5

147.5

359.0

195.5

165.5

132.5

T2

389.5

308.0

143.5

117.0

140.0

684.5

280.0

494.0

249.5

259.0

5117.0

335.5

T1

*

532.5

154.0

177.5

220.0

486.0

336.0

329.5

362.5

345.0

3689.0

203.5

C

31290.0

31959.5

40087.5

33573.5

33085.0

28924.0

23705.0

32915.0

31182.0

29012.5

28868.0

33760.0

919N

M

139.0

555.5

58.4

90.2

68.7

168.5

116.0

218.5

138.0

96.2

160.0

147.0

V

127.5

343.5

62.0

116.5

66.5

121.5

102.5

138.5

111.5

88.7

168.5

160.5

T2

159.0

326.5

47.9

107.0

87.7

228.5

111.0

187.5

351.0

141.0

13778.5

6826.5

T1

*

300.0

59.4

106.4

82.4

184.0

111.0

325.5

186.5

106.0

12815.5

4479.0

C

34842.0

29690.5

22567.0

30537.0

23669.5

23214.5

23224.5

31218.5

23306.0

27158.0

17270.0

15979.5

923N

M

117.5

150.5

82.2

72.5

82.7

181.0

100.0

137.5

146.0

128.5

149.0

162.5

V

120.5

126.5

60.9

54.4

56.4

146.0

106.0

89.5

122.5

113.5

163.5

144.5

T2

1122.5

904.5

71.2

97.0

325.0

2647.5

424.0

215.5

2691.0

2456.5

12183.5

551.0

T1

*

954.5

137.0

79.2

262.5

2472.0

270.5

216.5

2619.5

2589.0

13390.0

276.5

C

29248.0

28710.5

21843.5

14166.5

25133.0

20811.0

23245.5

17010.0

21726.0

30339.5

26393.5

12578.5

993N

M

150.0

164.0

55.2

65.2

49.0

90.4

52.8

101.2

137.0

83.7

112.5

92.0

V

134.5

116.0

52.2

52.5

58.7

73.7

51.9

85.2

111.5

94.0

118.5

101.9

T2

170.0

110.5

55.4

57.0

69.0

91.2

55.7

155.5

205.5

108.0

285.0

116.0

T1

*

150.0

62.9

81.2

155.5

80.9

74.9

154.5

255.5

97.0

275.5

105.5

C

24317.0

28267.0

31810.0

28108.0

23415.5

23329.5

23147.0

29382.0

16477.5

24441.5

23536.5

25216.0
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1031N

M

175.5

135.5

72.4

103.2

64.7

186.5

204.5

253.0

220.5

384.0

531.0

63.9

V

190.0

127.0

64.2

89.2

65.0

185.0

189.5

227.5

200.5

270.0

430.0

67.9

T2

258.5

120.5

61.7

190.5

231.5

370.5

188.5

449.0

518.0

707.0

11257.5

216.5

T1

*

248.0

74.0

173.0

222.5

312.5

239.0

414.0

379.5

391.0

9878.0

247.5

C

31239.0

31847.5

29780.0

26198.0

23016.5

22232.0

23260.0

30651.0

24628.0

21734.5

24024.5

4469.5

1034N

M

153.0

300.5

104.5

89.5

113.0

149.5

85.9

119.0

251.5

139.5

246.5

147.5

V

146.5

212.0

114.0

78.7

55.5

135.5

73.0

98.2

194.5

87.9

238.5

172.5

T2

194.0

264.5

199.0

173.5

87.5

173.0

113.0

231.5

273.0

206.5

6005.0

260.5

T1

*

448.0

320.0

171.0

97.7

254.0

127.5

300.5

374.0

202.0

5346.0

193.0

C

25170.0

33953.0

34048.5

30385.0

24919.5

22043.5

27296.5

40230.0

22885.0

24981.0

28226.0

32743.5

1117N

M

989.0

518.5

61.9

113.0

90.5

189.5

153.5

177.5

414.0

132.0

189.0

74.2

V

380.0

498.5

47.2

123.0

78.5

167.5

91.9

119.5

314.0

115.0

233.5

36.0

T2

2508.5

793.5

47.7

238.0

93.5

327.5

190.0

429.5

2082.5

389.0

865.0

103.4

T1

*

1609.5

81.7

442.0

116.5

295.0

232.5

426.5

1109.5

289.5

758.0

76.7

C

32259.5

31416.5

24351.0

31534.0

27411.0

47212.0

25455.5

40453.0

25865.5

28707.0

24808.0

24824.0

M=mediumcontrol;V=veracellcontrol;T2=toxoplasmatachyzoiteantigenat2pg/ml;T1=toxoplasmatachyzoiteantigen
at1pg/ml;C=ConApositivecontrol
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Appendix5.13ProliferativeresponsesofPBMCfromGroup3(i.n.immunisationwithparticulatetoxoplasmaantigen) Animal

Treat -ment

Mediancountsperminute(cpm)
Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7

Week8

Week9

Week10

Week11

715N

M

155.5

1181.0

157.0

448.5

93.4

166.0

78.2

196.0

174.0

125.5

244.0

82.8

V

90.5

1140.0

127.5

311.0

137.4

166.0

93.9

134.0

254.5

130.5

270.5

93.4

T2

410.0

2376.5

304.5

1501.0

813.5

1495.0

234.5

489.0

442.5

341.0

652.5

6607.5

T1

*

4631.5

430.5

518.0

335.5

1198.0

217.0

342.5

447.5

269.0

429.5

5758.5

C

34078.0

30215.0

44547.5

33224.5

24921.0

28600.5

27360.0

32709.5

31149.5

35444.5

43782.5

26484.0

739N

M

81.9

136.5

77.4

136.5

60.5

119.5

91.4

63.7

107.5

230.0

217.5

148.0

V

78.4

106.5

69.3

60.0

47.7

181.0

78.9

66.7

109.4

101.9

190.5

129.0

T2

128.7

144.5

73.0

69.4

241.5

135.0

371.5

160.0

599.5

1399.0

533.5

1150.5

T1

*

234.5

84.4

73.0

135.9

129.5

268.5

565.0

713.0

663.0

592.0

739.5

C

31639.5

27654.5

28516.5

24167.0

24729.5

15419.0

21295.0

29710.5

25076.5

28239.0

23576.0

23108.5

764N

M

185.5

227.5

87.9

127.5

67.0

240.5

197.0

206.0

134.0

222.0

260.5

219.5

V

160.5

180.0

98.4

129.0

71.0

235.5

183.5

165.5

130.5

234.5

274.5

191.0

T2

233.0

184.5

79.2

127.0

100.7

560.5

162.5

332.5

196.0

327.5

467.5

3031.0

T1

*

247.0

100.4

144.0

91.8

297.0

189.0

221.5

147.0

646.5

638.5

2316.0

C

29727.5

29562.5

28865.5

26518.5

23936.0

23712.0

15564.0

28383.0

22219.5

24378.5

19686.0

28560.0

1067N

M

122.0

126.5

105.5

65.9

62.0

109.5

86.0

433.0

130.0

185.0

230.0

73.4

V

119.0

119.0

83.5

65.9

59.9

103.2

62.4

264.0

105.5

113.5

198.0

82.8

T2

657.5

262.5

105.7

84.0

265.5

336.5

83.9

1845.5

1120.5

2179.0

1467.0

292.0

T1

*

334.5

137.5

121.0

148.0

303.5

92.0

1052.5

377.0

1685.5

575.0

279.0

C

28825.5

34126.0

31296.5

29878.5

22763.5

44881.0

26923.0

35434.5

32064.5

22929.5

26337.0

29450.5

M=mediumcontrol;V=verocellcontrol;T2=toxoplasmatachyzoiteantigenat2pg/ml;T1=toxoplasmatachyzoiteantigen
at1pg/ml;C=ConApositivecontrol
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Appendix5.14ProliferativeresponsesofPBMCfromGroup4(i.n.immunisationwithparticulatetoxoplasmaantigen+CT) Animal

Treat -ment

Mediancountsperminute(cpm)
Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7

Week8

Week9

Week10

Week11

770N

M

163.5

197.0

101.7

127.5

137.0

234.0

161.5

337.0

164.5

256.5

234.5

101.9

V

114.0

156.0

85.8

109.5

165.5

157.5

157.0

247.0

140.5

174.0

290.0

78.5

T2

466.5

1647.0

239.5

375.0

3180.5

1932.0

1233.0

1570.0

1229.5

4400.5

665.0

1341.0

T1

*

1858.0

313.5

303.5

2017.5

2052.5

917.5

1334.5

901.5

5491.5

756.0

751.5

C

35627.0

31414.5

29298.0

29868.0

25104.0

22109.5

22570.0

30725.5

26416.0

28365.5

20654.5

15255.0

989N

M

140.5

164.0

39.8

83.4

53.5

157.0

156.0

152.5

315.0

298.5

251.5

187.0

V

134.0

193.5

50.0

78.5

43.7

145.0

144.0

134.0

239.5

219.0

242.0

156.5

T2

179.5

120.0

27.2

112.5

41.7

181.5

550.5

757.5

359.5

718.5

2707.5

3512.0

T1

*

121.5

57.2

119.0

117.2

134.5

496.0

483.5

681.5

769.5

2721.5

1637.0

C

30596.0

30180.0

20177.5

33878.5

11394.5

22045.0

22507.0

27178.5

26184.5

28719.0

30229.0

31252.5

1031N

M

182.5

94.3

57.5

74.2

128.9

183.0

88.0

195.0

158.0

185.0

151.5

77.0

V

131.5

80.2

43.7

68.0

57.4

136.5

84.0

113.5

172.0

113.5

140.5

91.2

T2

325.0

324.0

33.0

851.5

136.0

893.0

276.0

655.5

1642.5

2179.0

577.5

1512.0

T1

*

270.0

71.7

853.5

521.0

741.5

275.5

620.5

1945.5

1685.5

543.0

966.5

C

27040.0

27911.0

9547.0

29376.0

11777.0

20389.5

23799.0

27522.0

21817.5

22929.5

21044.5

26687.0

1116N

M

279.5

199.0

61.5

71.5

87.0

88.9

76.0

82.2

139.0

179.0

220.0

214.5

V

159.0

282.5

66.2

71.5

67.9

98.2

88.0

76.2

115.5

133.0

262.0

185.0

T2

357.0

241.0

52.5

172.0

277.0

139.5

123.5

87.9

568.5

1041.0

1391.0

6798.0

T1

*

406.5

62.9

229.0

206.0

101.5

115.5

124.0

544.5

407.5

1031.5

3912.5

C

23870.0

29103.5

31697.5

30650.0

21560.0

24263.0

23448.5

25295.5

30065.5

25492.5

26118.0

32442.0

M=mediumcontrol;V=verocellcontrol;T2=toxoplasmatachyzoiteantigenat2pg/ml;T1=toxoplasmatachyzoiteantigen
at1p,g/ml;C=ConApositivecontrol
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Appendix5.15ProliferativeresponsesofPBMCfromGroup5(oocystchallenge) Animal

Treat -ment

Mediancountsperminute(cpm)
Week0

Week1

Week2

Week3

Week4

Week5

Week6

Week7

Week8

Week9

Week10

927N

M

194.5

140.0

88.5

68.0

111.4

664.0

137.0

89.7

130.5

650.0

134.0

V

50.2

106.5

104.0

86.0

86.3

352.5

83.7

56.9

79.5

333.0

133.0

T2

322.5

121.0

2136.5

713.0

989.0

420.0

109.0

85.2

727.5

299.0

509.0

T1

*

102.4

2271.5

731.5

1472.5

269.5

122.5

125.5

664.5

232.5

383.5

C

25998.0

21629.0

29128.5

21307.5

29506.0

22663.5

22495.5

20710.0

21598.0

21023.0

28570.5

976N

M

72.0

155.0

123.0

83.4

92.0

76.0

156.0

83.5

71.8

160.5

205.5

V

46.7

157.5

140.5

96.0

112.5

68.0

125.5

78.7

103.0

96.3

123.0

T2

112.0

142.5

2252.5

351.0

907.5

437.5

752.5

580.5

537.5

873.5

935.0

T1

*

186.0

1807.5

345.0

1425.0

449.5

646.0

382.5

476.5

655.0

1097.0

C

12526.5

19189.5

29039.0

21102.5

35310.5

23253.0

28332.0

28221.5

21251.0

22517.5

24165.0

1032N

M

95.5

191.5

99.9

123.0

159.5

808.5

317.5

124.0

171.5

920.0

213.5

V

26.5

160.0

88.9

143.5

131.0

156.5

151.5

140.5

98.9

346.0

146.5

T2

85.7

146.0

724.0

1234.5

966.0

144.5

295.0

173.0

600.5

689.5

227.0

T1

*

179.0

517.0

986.0

1095.5

318.5

208.0

485.0

522.5

670.5

174.0

C

20030.5

25755.0

29789.5

17535.5

25763.0

27878.0

20661.5

18514.5

17260.0

21483.5

12516.0

1084N

M

738.0

279.5

252.0

102.5

160.5

109.5

142.5

140.0

146.5

343.5

317.0

V

299.5

264.0

159.0

144.5

139.5

98.9

183.0

135.0

152.0

195.5

204.0

T2

409.0

428.5

2641.5

1278.0

1933.0

721.5

1636.5

1291.0

2779.5

2013.5

2140.5

T1

*

400.5

4246.5

987.5

2616.0

1377.0

1271.0

810.0

3153.5

2092.0

1556.0

C

20716.0

29519.5

27246.0

34428.0

30307.5

33218.0

27619.0

22896.0

20053.5

20290.0

31655.5

M=mediumcontrol;V=verocellcontrol;T2=toxoplasmatachyzoiteantigenat2pg/ml;T1=toxoplasmatachyzoiteantigen
at1|ig/ml;C=ConApositivecontrol
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Appendix5.16ProliferativeresponsesoflymphnodecellsfromGroups1and5 GROUP 1 Animal

T

LymphNode

GROUP 5 Animal

T

LymphNode

MLN

RPLN

P-FLN

MedLN

PT

spleen

MLN

RPLN

P-FLN

MedLN

PT

spleen

Mediancpm

Mediancpm

913N

M

43.5

149.5

23.5

43.0

15.7

30.0

927N

M

277.0

144.0

21.7

27.0

85.5

39.2

V

71.4

190.0

22.0

49.9

22.0

47.5

V

738.0

1620.5

34.5

22.2

135.5

209.5

T2

232.0

313.0

40.9

101.4

23.9

63.5

T2

183.0

351.0

710.0

551.5

61.0

55.4

T1

216.0

372.0

31.7

58.4

24.7

57.0

T1

169.0

104.0

489.0

181.5

110.5

34.5

C

14732.0

22332.5

8500.5

10463.5

821.5

2169.0

C

5335.0

4765.0

1480.5

1021.5

8766.0

50.0

915N

M

72.2

57.4

50.9

48.3

25.7

46.7

976N

M

44.4

116.0

39.0

38.5

*

126.5

V

64.8

46.4

56.0

51.0

105.0

53.0

V

42.7

84.4

108.4

100.4

*

61.4

T2

84.0

42.4

36.9

60.7

42.7

1284.0

T2

123.0

152.0

125.0

37.9

*

2384.0

T1

87.9

57.4

62.7

50.9

93.3

465.0

T1

78.9

106.5

59.2

*

*

1784.5

C

5779.5

4708.0

10952.5

5734.5

4552.0

924.5

C

6904.0

7216.5

7236.5

*

*

18252.0

950N

M

16.5

27.4

17.3

24.0

30.3

114.4

1032N

M

86.8

97.0

*

86.7

848.5

46.9

V

13.4

15.2

22.9

18.0

49.4

61.4

y

188.0

184.5

*

64.0

1288.5

244.0

T2

20.9

14.2

23.7

18.7

39.9

421.5

T2

229.0

200.0

*

159.0

673.0

601.5

T1

23.0

16.7

19.3

23.2

51.2

240.5

T1

179.5

83.0

*

71.2

702.5

514.5

C

1266.5

85.5

2572.5

25.7

3634.5

841.0

C

*

3496.0

*

2899.0

8772.0

2919.0

1048N

M

165.5

47.9

18.5

14.2

31.0

43.9

1084N

M

116.5

393.0

185.5

55.0

*

26.0

V

150.5

43.0

17.8

19.0

22.3

39.4

V

93.2

358.0

179.0

101.0

*

23.8

T2

331.0

45.7

24.5

19.5

20.4

35.9

T2

612.0

1266.0

1127.0

63.2

*

226.0

T1

166.5

48.7

23.2

24.2

16.2

38.8

T1

596.0

979.5

17.7

61.9

*

97.2

C

9756.0

4699.0

93.2

3212.0

1215.5

2229.5

C

12423.5

7332.0

*

*

*

1460.5

T=invitrotreatment:M=mediumcontrol;V=verocellcontrol;T2=toxoplasmatachyzoiteantigenat2pg/ml; T1=toxoplasmatachyzoiteantigenat1jug/ml;C=ConApositivecontrol
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Append
ix5.17ProliferativeresponsesoflymphnodecellsfromGroup2

GROUP 2 Animal

T

LymphNode

GROUP 2 Animal

T

LymphNode

MLN

RPLN

P-FLN

MedLN

PI

spleen

MLN

RPLN

P-FLN

MedLN

PI

spleen

Mediancpm

Mediancpm

638N

M

97.0

112.0

239.5

57.5

492.0

64.5

993N

M

34.5

63.9

43.5

51.7

61.7

55.3

V

175.5

68.2

237.0

57.2

491.0

57.9

V

28.0

39.0

66.3

51.2

129.0

46.5

T2

1513.5

421.5

2300.5

32.0

516.5

355.0

T2

20.3

51.3

69.0

30.0

73.7

904.5

T1

841.0

204.5

1691.5

33.0

622.5

189.0

T1

28.4

52.4

72.0

32.2

*

190.0

C

14533.5

17724.0

20325.0

9377.5

12878.0

5808.0

C

4261.5

6349.0

18056.5

7792.0

1497.0

4949.0

748N

M

58.8

72.4

25.0

39.4

133.5

343.0

1031N

M

7.5

30.2

7.5

24.7

14.8

26.7

V

53.2

77.3

23.5

73.4

141.0

290.5

V

10.0

30.7

8.9

6.3

13.5

27.0

T2

54.2

76.7

34.4

32.8

136.0

8670.0

T2

6.2

12.9

8.7

4.7

12.8

29.2

T1

53.0

88.7

24.7

52.7

176.0

7156.5

T1

12.0

24.3

17.3

7.5

15.3

26.9

C

9561.0

19534.0

4284.0

1812.5

10341.0

12955.5

C

24.3

42.0

33.7

25.7

257.5

214.0

919N

M

53.3

43.9

19.2

42.0

21.0

19.5

1034N

M

308.0

120.5

59.5

48.0

147.0

49.8

V

96.2

35.2

27.4

30.2

26.2

16.9

V

296.0

95.7

67.8

33.5

217.0

38.7

T2

227.0

43.0

147.5

26.2

31.5

36.9

T2

2575.0

379.0

157.5

34.5

155.0

183.2

T1

132.5

33.0

365.5

46.4

29.8

31.7

T1

3255.5

135.0

145.5

36.0

290.5

114.4

C

11922.5

3849.5

11346.5

7024.0

645.0

709.5

C

13591.0

7528.0

16760.0

5652.5

17597.5

1507.5

923N

M

763.5

379.5

940.0

85.0

749.0

108.0

1117N

M

77.0

348.0

702.0

74.7

1060.5

66.5

V

536.5

304.5

992.5

70.0

700.5

105.9

V

91.8

268.0

694.5

62.4

981.5

48.2

T2

6012.0

5055.0

9000.5

221.5

1161.5

8882.0

T2

79.5

502.0

2733.5

41.2

802.5

45.5

T1

4407.5

4102.0

11027.0

106.7

999.0

6895.5

T1

90.7

626.0

2693.5

47.5

917.0

53.4

C

17637.5

19392.0

18920.0

3333.0

13594.5

14786.5

C

11757.5

22578.5

20639.0

17633.5

15546.5

10674.0

T=invitrotreatment:M=mediumcontrol;V=verocellcontrol;T2=toxoplasmatachyzoiteantigenat2pg/ml; T1=toxoplasmatachyzoiteantigenat1pg/ml;C=ConApositivecontrol
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Append
ix5.18ProliferativeresponsesoflymphnodecellsfromGroups3and4

GROUP 3 Animal

T

LymphNode

GROUP 4 Animal

T

LymphNode

MLN

RPLN

P-FLNMedLN
PT

spleen

MLNRPLN
P-FLNMedLN
PTspleen

Mediancpm

Mediancpm

715N

M

48.7

66.4

42.5

58.8

94.0

39.3

770N

M

2795.5

3485.5

923.5

393.5

1193.0

126.0

V

32.7

25.7

43.2

27.0

79.2

26.4

V

2537.5

3394.5

1075.5

408.5

1582.5

84.5

T2

226.5

155.0

114.9

28.7

110.5

332.5

T2

10473.0

10159.5

15110.0

622.5

3345.5

4622.5

T1

201.5

92.0

106.4

35.4

84.4

165.0

T1

8164.0

14111.5

14190.0

318.0

2897.5

5013.5

C

17940.5

15239.5

20525.0

19995.0

18480.0

2916.5

C

13993.5

13720.0

17045.0

18065.5

10021.5

9679.5

739N

M

1646.5

687.5

144.5

143.0

863.0

169.0

989N

M

95.4

219.5

159.0

173.0

136.5

84.9

V

1472.5

570.0

179.0

106.2

518.0

152.0

V

77.7

277.0

154.0

144.0

210.0

76.3

T2

3776.5

4330.5

3013.0

4356.0

786.0

4452.0

T2

212.5

197.5

2749.0

70.0

463.0

713.0

T1

2987.5

2502.5

3174.0

3225.5

1125.0

4377.0

T1

255.5

222.5

2625.0

101.7

529.0

660.5

C

17384.0

15223.5

15748.5

23911.5

15247.0

168.5

C

14812.0

15113.5

17360.0

10705.0

16957.5

12011.0

764N

M

517.0

918.0

1606.0

1049.0

4189.0

128.0

1030N

M

297.0

139.0

50.9

62.5

1083.0

63.0

V

368.5

1075.5

1624.5

928.5

3966.5

136.0

Y

218.0

151.0

67.4

44.9

324.0

65.4

T2

4391.5

5700.0

8258.0

5654.0

3175.0

8755.5

T2

1014.0

119.0

117.2

37.4

297.5

627.0

T1

3724.5

4736.5

7248.0

4449.5

3815.0

7076.5

T1

1221.5

131.7

84.9

145.4

519.0

606.5

C

11671.0

16539.0

16931.0

16514.5

13475.5

8714.0

C

16013.0

5424.5

14297.0

6385.5

8535.0

2113.0

1067N

M

108.0

129.5

124.0

94.7

135.0

54.0

1116N

M

248.5

504.5

293.0

548.0

1131.5

35.2

V

132.5

153.5

136.0

109.0

93.4

38.7

V

285.5

587.5

493.0

377.0

1181.0

28.5

T2

311.0

152.5

2371.5

2218.0

85.2

55.8

T2

3051.5

2528.5

5845.5

458.0

2221.0

20.2

T1

255.0

148.0

1259.0

1086.5

127.5

51.5

T1

2458.0

1288.5

4822.0

376.0

2045.5

33.0

C

15692.0

15964.0

19125.0

18266.0

11405.0

3118.0

C

20420.0

19578.0

19371.0

19463.0

17330.5

1175.5

T=invitrotreatment:M=mediumcontrol;V=verocellcontrol;T2=toxoplasmatachyzoiteantigenat2p,g/ml; T1=toxoplasmatachyzoiteantigenat"Ipg/ml;C=ConApositivecontrol
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Appendix5.19Interferongammaproductioninvitroingroups1and5 Animal

T

Week

LymphNode

0

1

2

3

4

5

6

7

8

9

10

11

RP

LN

P-F LN

Med LN

MLN

PI

spleen

IFNy(pg/ml)

GROUP1.CONTROLGROUP 913N

M

14.4

0.0

0.0

0.0

0.0

0.0

13.5

2.4

2.7

10.8

25.6

0.0

23.3

0

0

2.9

0

7.3

T2

12.8

17.5

19.3

12.8

17.0

6.1

55.4

19.3

40.4

20.3

52.5

7.6

43.24

0.0

9.1

0.0

0.0

10.1

C

584.1

641.9

411.2

347.5

690.3

203.4

1003

443.3

575.7

421.2

861.5

75.4

493.7

123.7

244.8

223.6

0.0

115.8

915N

M

19.3

14.0

28.5

13.9

19.0

11.5

39.1

21.0

55.7

20.5

49.3

10.0

0.0

0.0

33.1

0.8

0.0

17.1

T2

0.0

20.6

31.4

22.3

23.8

13.0

39.5

25.6

93.0

4.2

64.6

10.5

0.0

0.0

45.7

0.0

9.1

187.6

C

116.1

255.5

134.3

149.3

119.2

95.0

370.8

109.6

209.9

185.0

489.4

37.4

62.5

238.2

109.9

68.7

57.8

252.5

950N

M

0.0

0.0

0.0

0.0

0.0

12.6

97.0

0.0

0.0

0.0

49.9

0.0

7.6

4.0

0.0

14.9

48.2

2.6

T2

10.8

30.3

24.2

18.9

12.8

36.1

80.6

44.6

58.8

0.0

1731

307.5

23.0

63.8

9.3

18.6

5.6

171.6

C

699.3

334.5

468.1

457.8

324.7

150.6

234.2

403.9

284.5

210.7

1308

325.6

22.4

33.0

16.3

49.6

♦

250.3

1048N

M

17.4

0.0

0.0

0.0

0.0

0.0

13.9

2.4

0.0

0.0

0.0

0.0

54.7

10.8

37.8

55.9

13.5

39.9

T2

11.7

20.7

39.4

9.5

18.3

13.0

42.4

24.9

41.2

0.0

153.8

9.5

17.5

9.2

33.9

45.4

0.0

69.4

C

191.0

301.8

443.5

245.9

159.8

156.8

180.5

181.7

190.0

63.4

703.3

90.3

*

0.0

64.4

91.4

46.8

79.3

GROUP5.OOCYSTCHALLENGEGROUP 927N

M

*

0.0

0.0

9.6

48.2

12.7

15.2

16.7

27.9

9.9

21.2

*

15.8

27.0

20.0

25.7

4.4

20.7

T2

*

0.0

85.3

62.7

66.9

28.6

57.1

47.0

124.0

30.4

25.4

*

18.2

20.0

20.0

29.7

26.8

8.3

C

*

221.8

402.1

530.6

566.6

429.1

314.1

334.4

378.3

172.0

248.9

*

38.1

23.5

48.0

35.5

36.1

6.6

976N

M

*

0.0

0.0

10.3

22.1

10.6

15.2

13.5

15.7

12.8

20.0

*

*

*

10.3

13.0

*

17.6

T2

*

0.0

41.7

34.6

92.9

33.8

41.9

53.4

94.7

75.7

66.0

*

10.0

*

31.0

16.7

*

633.3

C

*

384.0

460.9

381.3

597.4

526.9

386.4

384.1

441.2

253.6

305.7

*

59.9

*

*

32.4

*

293.1

1032N

M

*

0.0

20.5

10.5

0.0

18.9

15.3

0.0

6.4

0.0

8.2

*

*

*

*

0.0

*

17.1

T2

*

9.0

10.3

92.1

108.7

0.0

11.5

0.0

48.7

17.4

0.0

*

*

*

19.7

22.2

*

28.0

C

*

283.4

398.9

473.4

329.2

266.9

193.9

171.7

174.9

149.9

158.1

*

*

*

45.7

*

*

35.6

1084N

M

*

0.0

8.1

9.6

16.1

9.5

8.0

17.4

12.3

0.0

15.4

*

*

*

*

♦

*

9.1

T2

*

8.8

150.7

83.3

160.4

54.1

144.6

20.8

499.7

245.4

246.1

*

*

*

*

77.7

*

9.5

C

*

693.7

732.4

782.8

780.2

811.3

637.4

552.7

460.2

244.0

729.8

*

*

*

*

93.1

*

21.3

T=invitrotreatment:
M=mediumcontrol;T2=toxoplasmatachyzoiteantigenat2pg/m
;C=ConA
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Appendix5.20Interferongammaproductioninvitroingroup2 Animal

T

Week

LymphNode

0

1

2

3

4

5

6

7

8

9

10

11

RP
LN

P-F LN

Med LN

MLN

PT

spleen

IFNy(pg/ml)

GROUP2.INTRANASALIMMUNISATIONWITHSOLUBLETOXOPLASMAANTIGEN 638N

M

0.0

9.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

7.0

31.8

2.9

0.0

0.0

0.0

T2

6.0

53.6

103.5

51.4

302.9

65.8

19.3

19.7

109.4

5.5

333.9

7.1

30.3

62.6

17.4

229.9

0.0

177.4

C

923.2

749.0

975.4

880.4

1353

743.1

981.2

965.8

807.1

958.8

1429

258.0

362.3

327.5

151.0

446.9

81.6

666.0

748N

M

16.5

48.9

23.2

11.3

23.3

2.8

20.7

25.1

48.4

1.6

0.0

6.3

*

0.0

21.2

24.3

0.0

0.0

T2

8.4

20.8

25.3

9.2

21.1

12.6

30.1

20.2

85.9

22.2

336.3

13.2

29.1

24.3

50.3

27.1

0.0

1205

C

300.9

434.4

251.9

164.5

380.3

106.8

180.2

273.0

380.5

343.8

1184

503.1

372.1

92.2

57.6

84.0

13.8

1522

919N

M

0.0

0.0

0.0

0.0

0.0

0.0

13.1

0.0

0.0

28.9

25.1

0.0

0.0

4.6

29.2

16.7

31.8

77.0

T2

15.0

16.0

18.2

13.3

16.1

14.0

50.5

24.2

47.9

0.0

881.4

336.5

13.3

34.6

13.3

179.6

16.9

0.0

C

453.9

331.2

243.2

396.5

309.9

290.4

530.5

364.2

358.6

272.6

1706

437.8

157.4

19.5

185.8

508.3

47.8

19.0

923N

M

16.5

12.8

30.0

19.8

24.4

4.8

46.3

22.2

44.9

17.0

59.3

5.9

0.0

4.4

5.4

5.6

3.0

10.4

T2

27.8

65.9

31.8

26.1

100.5

165.2

67.0

72.1

259.2

212.0

798.7

22.5

456.2

678.5

15.5

320.3

15.6

1537

C

331.8

480.5

276.5

130.9

313.5

159.1

277.0

148.8

102.7

267.9

1726

254.2

155.6

341.8

81.3

*

49.8

1484

993N

M

0.0

0.0

52.4

0.0

0.0

0.0

31.5

0.0

0.0

0.0

55.0

0.0

0.0

52.8

7.4

6.5

17.9

0.0

T2

0.0

16.0

50.2

11.5

13.7

7.0

69.2

36.9

60.1

17.3

83.7

13.3

0.0

4.3

20.6

0.0

11.1

59.3

C

194.2

372.6

322.3

270.2

281.9

213.3

256.1

353.8

173.2

282.0

628.1

340.5

22.4

27.1

41.2

40.7

103.3

103.8

1031N

M

5.9

0.0

2.2

0.0

0.0

0.0

42.9

8.0

0.0

6.3

79.2

0.0

*

26.1

12.4

35.8

25.4

0.0

T2

9.9

22.7

58.0

11.2

17.7

10.4

49.2

28.4

68.3

3.2

645.9

15.9

*

17.6

0.0

32.9

18.9

10.6

C

940.8

1029

928.3

546.0

683.6

433.0

508.4

581.8

645.0

489.4

871.9

177.4

*

63.3

11.9

15.3

13.6

37.2

1034N

M

0.0

24.3

22.8

23.2

22.6

21.9

46.8

30.2

66.7

1.3

133.4

5.7

*

15.6

6.7

96.5

14.5

9.4

T2

0.0

28.5

76.8

30.1

20.3

4.9

37.3

23.1

69.8

2.5

505.8

7.4

22.4

21.2

0.0

904.2

11.6

0.0

C

138.0

441.2

399.6

140.4

288.4

120.7

189.6

135.1

79.9

162.4

1237

215.4

*

134.2

34.4

*

126.5

23.0

1117N

M

13.0

14.1

21.1

12.8

21.5

9.0

15.1

12.0

15.0

2.5

53.0

7.6

5.6

26.2

0.0

8.8

38.4

46.3

T2

32.6

10.0

2.6

23.2

17.2

3.0

18.7

38.1

56.7

0.0

28.1

10.0

38.5

407.2

13.6

7.9

39.3

5.7

C

217.8

167.1

72.1

71.5

123.3

31.7

116.0

189.9

155.9

191.6

422.4

95.5

175.8

366.0

60.1

60.4

9.6

104.4

T=invitrotreatment:M=mediumcontro;T2=toxoplasmatachyzoiteantigenat2pg/m
;C=ConA

276



Appendix5.21Interferongammaproductioninvitroingroups3and4 Animal

T

Week

LymphNode

0

1

2

3

4

5

6

7

8

9

10

11

RP
LN

P-F LN

Med LN

MLN

PI

spleen

IFNv(pg/ml)

GROUP3.INTRANASALIMMUNISATIONWITHPARTICULATETOXOPLASMAANTIGEN 715N

M

21.1

40.3

26.1

24.3

24.4

10.5

21.6

21.5

40.6

13.7

0.0

7.5

0.0

1.6

3.5

11.8

0.0

4.8

T2

69.2

116.4

25.2

56.4

46.8

34.7

27.9

18.7

75.8

54.1

25.8

333.2

0.0

0.0

7.9

14.3

11.5

57.9

C

492.7

570.9

333.3

186.8

176.6

140.5

212.1

406.9

320.4

461.4

306.5

656.2

144.0

142.7

148.4

133.9

130.1

91.2

739N

M

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

39.9

0.0

26.8

0.0

0.0

0.0

0.0

552.4

*

0.0

T2

2.5

17.2

43.0

12.1

56.0

0.6

43.4

156.3

65.2

42.4

51.4

80.4

429.9

205.5

865.3

1179

0.0

1684

C

665.6

591.6

601.0

260.3

520.0

164.6

572.1

686.5

615.8

583.3

485.4

585.5

109.4

118.6

239.8

380.4

249.1

1034

764N

M

18.3

0.0

0.0

0.0

0.0

0.0

4.9

0.0

0.0

0.0

21.9

0.0

0.0

0.0

0.0

10.9

0.0

0.0

T2

8.9

15.0

19.1

16.5

13.5

8.8

46.2

16.8

42.4

6.9

42.4

256.1

468.3

132.9

904.4

309.4

19.2

835.9

C

234.5

449.5

354.5

236.0

241.2

432.8

249.8

314.6

255.9

453.2

242.5

425.7

251.5

292.7

1214

256.7

170.4

704.8

1067N

M

17.2

20.4

20.6

14.2

22.0

7.7

21.2

32.3

29.7

0.0

0.0

6.5

3.9

0.0

0.0

0.0

21.2

0.0

T2

0.0

30.2

0.0

24.2

31.1

4.1

28.4

81.5

62.4

16.4

25.8

16.7

0.0

107.9

107.8

70.8

1.9

12.0

C

399.5

479.8

448.8

206.6

273.3

259.8

171.7

227.1

244.1

201.3

266.5

247.1

39.8

87.8

98.4

64.5

36.2

30.8

GROUP4.INTRANASALIMMUNISATIONWITHPARTICULATETOXOPLASMAANTIGEN+CHOLERATOXIN 770N

M

0.0

3.0

21.8

12.9

25.0

10.7

29.6

24.7

53.9

41.8

68.9

6.6

1248

28.3

3.3

47.1

17.8

7.3

T2

0.0

72.5

37.4

101.0

1307

189.7

517.7

309.3

476.3

1366

65.9

120.9

1485

1017

199.8

1748

54.8

1558

C

949.9

1066

524.8

808.7

980.4

724.7

609.8

593.3

645.7

774.4

362.4

340.6

665.0

1010

300.4

495.7

149.9

815.5

989N

M

12.1

19.6

16.6

23.3

26.7

5.2

38.1

32.2

68.1

23.6

78.0

6.0

7.4

0.0

0.0

4.0

3.7

0.0

T2

18.9

26.1

35.2

15.9

67.5

12.8

68.7

34.1

69.7

30.5

158.7

152.7

15.7

53.6

0.0

26.1

0.0

149.8

C

213.5

341.8

131.0

187.0

71.8

106.9

144.0

132.1

138.5

155.7

375.6

611.7

70.7

124.4

64.3

105.8

157.1

298.4

1030N

M

5.9

20.0

15.8

12.9

26.3

8.4

37.5

28.1

0.0

1.4

0.3

6.9

2.2

0.6

3.3

6.4

5.4

0.7

T2

10.3

29.7

45.5

46.6

40.4

89.0

38.5

45.5

143.7

259.2

101.0

54.3

0.0

0.0

16.4

39.5

0.0

62.1

C

319.6

260.6

88.9

177.2

171.1

152.6

130.7

156.5

146.8

148.3

147.2

171.3

78.8

41.2

38.7

124.7

26.7

28.9

1116N

M

0.0

0.0

0.0

0.0

0.0

0.0

0.0

2.3

0.0

0.0

13.0

0.0

8.7

0.0

11.4

12.8

41.3

42.2

T2

13.8

15.3

33.5

13.5

23.5

9.0

24.4

11.4

18.5

8.9

29.4

154.3

238.9

1117

5.3

1120

217.7

2.0

C

593.5

643.7

662.4

398.7

390.1

294.0

296.0

512.6

325.9

425.3

581.7

475.4

195.6

137.3

252.7

390.9

484.4

20.3

T=invitrotreatment:M=mediumcontrol;T2=toxoplasmatachyzoiteantigenat2(xg/m
;C=ConA
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While the gross morphological features of ovine
respiratory tract-associated lymphoid tissue (RT-
ALT) have been described (Chen et al., 1989),
the present study investigates the structure and
composition of the lymphoid tissue in the ovine
nasopharyngeal tract, including the distribution of
B- and T-cell subsets and the presence of M cells
in the mucosal epithelium, as a prelude to future
studies on intranasal vaccination.

Materials and Methods

Animals

Ten Greyface cross Suffolk sheep, aged 0-5—1 year,
were housed in a conventional loose box, fed on

hay and concentrates, and given free access to fresh
water.

Collection and Preparation ofLymphoid Tissue

Sheep were stunned with a captive bolt and ex¬
sanguinated, and their spinal cords severed. Each
head was removed and sagitally sectioned at the
atlanto—occipital joint. The nasal septum was then
removed, exposing both halves of the naso¬
pharyngeal cavity. In a preliminary pilot study,
lymphoid nodules were located macroscopically in
the nasopharyngeal cavity of two sheep with glacial
acetic acid (Cornes, 1965; Chauhan and Singh,
1970). The tissue containing nodules was sub¬
sequently removed from the 10 experimental sheep.
Blocks of tissue (area 1 cm") were fixed by im¬
mersion in glutaraldehyde 3% v/v in 0-1 m phos¬
phate buffer (PB), pH 7-4 for scanning electron
microscopy (SEM) and individual nodules were
fixed by immersion in glutaraldehyde 2-5% v/v in
01 m PB, pH 7-4 for transmission electron micro¬
scopy (TEM). The remaining tissue samples were
then placed in a non-formaldehyde zinc salts fix¬
ative (Gonzales et al., 2001); after fixation, they
were processed by routine methods and embedded
in paraffin wax. Tissue sections (5 (im) were cut,
stained with haematoxylin and eosin (HE), and
examined for the presence of lymphoid tissue. Ap¬
propriate blocks were then sectioned further for
immunohistochemical examination.

Immunohistochemistry
The antibody signal was amplified with the En¬
vision Plus HRP System (Dako Ltd, Ely, UK).
Briefly, dewaxed slides were incubated in a per¬
oxidase "block" (0-03% hydrogen peroxide) for
5 mm at room temperature, and then in 25%

normal goat serum for 30 min at room temperature
to prevent non-specific labelling of tissue antigens.
The slides were then incubated with 100 pi of the
appropriate monoclonal antibody (Mab) dilution
overnight at 4°C. Controls were provided by re¬
placing the primary antibody with the equivalent
concentration of an IgG fraction from normal
mouse serum for the same length of time. The
secondary antibody (peroxidase-labelled polymer
conjugated to goat anti-mouse immunoglobulins)
was then applied to tissue sections for 30 min at
room temperature. The sections were finally in¬
cubated with substrate chromogen for 7-5 min al
room temperature, washed in distilled water, coun-
terstained with haematoxylin, dehydrated in
graded alcohols, cleared and mounted. Iris-
buffered saline (0-05 m i ris HC1, 0-15 m NaCl,
pH 7-2-7-6) was used to wash tissue sections be¬
tween each incubation and to prepare the normal
goat serum and antibody dilutions. The monoclonal
antibodies employed, and their specificity, source
and dilution, are shown in Table 1 (see also Gon¬
zales et al., 2001).

TEM

After fixation for 48 h, the tissue samples were
placed in 0-1 m PB for 15 min. The PB was replaced
by 2% osmium tetroxide for 2 h, and the tissue was
then dehydrated in graded water-acetone mixtures
and embedded in an Epon-Araldite mixture. After
polymerization at 60°C for 48 h, ultrathin sections
were cut and stained with uranyl acetate and lead
citrate and examined by a Jeol JEM 1200EX
transmission electron microscope operated at
80 kV.

SEM

After fixation for approximately 48 h the tissue was
washed in 0-1 m PB and post-fixed in osmium
tetroxide 1% w/v in 0-1 m PB. by a method in¬
corporating the enhancement of osmium pen¬
etration with thiocarbohydrazide (Malick and
Wilson, 1975). After post-fixation, the specimens
were rinsed in several changes of PB, dehydrated
through a series of graded ethanols (to 100%),
and placed in acetone. The specimens were then
subjected to critical point drying with liquid carbon
dioxide, attached to aluminium stubs by means of
silver conductive paint, sputter coated with gold
and examined in a Stereoscan S250 Mark III

scanning electron microscope at 10—20 kV.
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Fig. 1. Appearance of nasal lymphoid nodules after exposure to glacial acetic acid. Nodules appear as opaque white foci
(arrowheads) and are clustered posterior to the opening of the Eustachian tube (arrow), x 10.

Site#:

Fig. 2. B cells labelled with Mab VPM13 to surface IgM in a nasal-associated lymphoid follicle. B cells arc predominant in
the follicle and the immediate parafollicular area, x 107.

IgG2 was observed throughout the tissue, and for
IgA on the surface of the epithelium. Immuno-
histochemical analysis of serial sections revealed
numerous ot[3 T cells surrounding B-cell areas.

CD4+ T cells were typically concentrated around
one pole of the follicle and in the immediately
surrounding parafollicular area (Fig. 3A), while
CD8 + T cells were apparently clustered in smaller
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Fig. 4. Epithelium overlying NALT, showing the distribution of ciliated respiratory epithelial cells (C), microvillous cells (M)
and mucus-producing cells in the area directly surrounding the flattened area of the dome epithelium. SEM. x 2300.

numbers in the parafollicular area (Fig. 3B). y8 I
cells were scattered around the follicles and often
seen within the overlying epithelium (Fig. 3C).
Dendritic cells (CD1+) were scattered in small
numbers around the follicles, and follicular dend¬
ritic cells (CD21+) were present in the central
region of the follicle. Macrophages were dispersed
throughout the follicle.

U/trastructure of the Lymphoepithelium
SEM showed that both non-ciliated and ciliated
cells were present in the follicle-associated dome
epithelium. Non-ciliated cells had varying numbers
of short, irregular microvilli or microfolds, which
were sometimes flattened to form irregular ridge-
like microplicae. In the central area of the dome,
a region of flattened, relatively smooth epithelium
was present; where this had been disrupted, large
numbers of lymphocytes were seen, apparently
extruding from the surface. Outside this area the
epithelium was composed of ciliated cells, micro¬
villous cells and goblet cells in varying proportions
(Fig. 4). Ciliated and microvillous cells were ap¬
proximately equal in number in the region directly
surrounding the flattened area, with microvillous
cells often clustered together. Towards the edge of
the dome epithelium, a higher proportion ofciliated
cells was present, with a few isolated microvillous
cells scattered amongst them.
TEM showed that the epithelial cells overlying

the NALT were ultrastructurally heterogeneous.

Respiratory epithelial cells with long, regular cilia
were interspersed with mucus-producing cells and
epithelial cells displaying stumpy, irregular, fused
microvilli. These microvillous cells were more elec¬
tron-dense and appeared darker than the res¬
piratory epithelial cells, and were frequently seen
in close association with lymphocytes in the under¬
lying lymphoid tissue (Fig. 5). Tangential sections
showed that desmosomes formed tight junctions
between both types of epithelial cell, and that
lymphocytes were present within or in close
association with the more electron-dense cells.
Microvillous cells were absent from non-lymphoid
associated areas.

Discussion

Fhe present study confirmed that lymphoid tissue
found in the ovine nasopharynx is characteristic of
the MALT, and may be referred to as NALT.
The concepts of mucosal immune protection can
therefore be applied to ovine NALT, which con¬
tains all the elements necessary to function as a
potent antigen sampling site.
In the sheep, the nasopharyngeal lymphoid nod¬

ules were clustered posterior to the opening to
the Eustachian tube. Lymphoid tissue has been
observed in this location in many species, including
the horse (Mair et al., 1988), where it may help
guard against infection spreading from the pharynx
towards the inner ear. Our results are therefore in
accord with the report of Chen et al. (1989), which
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and demonstration of their functional activity is
now required to confirm that these cells are func¬
tionally similar to M cells described in other species
and in other locations.
On the basis of the composition of the lymphoid

tissue and the morphological characteristics and
particular localization of the microvillous cells, it
seems justified to conclude that this tissue belongs to
MALT and has a similar role in mucosal immunity.
Ovine NALT is strategically placed and contains
the necessary components required to sample nas¬
ally administered antigens or vaccines. Microvillous
cells will take up particulate antigens from inhaled
air and present them to MALT via classic antigen-
presentation pathways to generate effective mu¬
cosal and systemic immune responses. The in¬
duction of mucosal tolerance by soluble proteins
has been well described in the respiratory tract in
other animal models (reviewed in Lowrey et al.,
1998), but it remains to be determined whether
the application of particulate proteins via the naso¬
pharyngeal route elicits similar responses in the
sheep. It is hoped that by targeting M cells this
problem may be overcome. Ovine NALT, together
with the pharyngeal tonsil, is the main component
of defence in the ovine upper respiratory tract and,
due to its strategic location and ability to trap,
process and respond to inhaled antigens, may play
an important role in the development of successful
nasal vaccines.
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