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Abstract 

 
 

Haematopoiesis is the process to produce haematopoietic stem cells (HSCs), 

haematopoietic progenitors (HPCs) and terminally differentiated cell types. In the 

adult, HSCs resided in bone marrow while in the embryo, haematopoiesis occurred 

sequentially in several niches including yolk sac, aorta-gonad-mesonephros (AGM) 

region, placenta and fetal liver. The AGM region is the first place where HSCs arise 

in vivo and therefore should provide important factors to induce haematopoiesis. The 

mouse embryonic stem cells (mESC) system is a powerful platform to mimic the 

development process in vitro and is widely utilized to study the underlying 

mechanisms because they are pluripotent and can be genetically manipulated. A 

novel co-culture system has been established by culturing differentiating mESCs 

with primary E10.5 AGM explants and a panel of clonal stromal cell lines derived 

from dorsal aorta and surrounding mesenchyme (AM) in AGM region. Results of 

these co-culture studies suggested that the AM-derived stromal cell lines could be a 

potent resource of signals to enhance haematopoiesis. Molecular mechanism 

involved in haematopoiesis is a key research direction for understanding the 

regulation network of haematopoiesis and for further clinical research. A series of 

studies have demonstrated involvement of the Notch signalling pathway in 

haematopoiesis during development but with controversial conclusions because of 

the difference of models concerning various time windows and manipulating 

populations. 

 

This project aimed to investigate the role of Notch signalling pathway during 

haematopoiesis in the AGM environment. We analyzed the expression of Notch 

ligands in AGM-derived stromal cells with or without haematopoietic enhancing 

ability. No correlation was observed between ligand expression and haematopoietic 

enhancing ability in stromal cell lines or between Notch activity in EBs and 

haematopoietic enhancing ability. We demonstrated that inhibition of the Notch 
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signalling pathway using the γ-secretase inhibitor could abrogate Notch activity in 

both mES-derived cells and the haematopoietic enhancing AM stromal cell line. To 

better understand the involvement of the Notch signalling pathway in a more specific 

spatial-temporal environment, we established a co-culture system of haemangioblast 

like cells (Flk1+) with one of AM region derived stromal cell lines with 

haematopoietic enhancing ability . We found that the AM stromal cell line could 

enhance Flk1+ derived haematopoiesis as assessed by haematopoietic colony 

formation activity and production of CD41+cKit+ progenitor cells. Based on the issue 

that the inhibitor could potentially affect both the ES cells and stromal cells, we 

carried out genetic approaches to overexpress or knock down Notch signalling 

pathway in this Flk1+/AM co-culture system. Interestingly, it was found that when 

Notch activity was enhanced in Flk1+ cells, the production of haematopoietic 

progenitors was inhibited and the number of cells expressing the pan-haematopoietic 

marker CD45 was reduced. By using the inducible dominant negative MAML1 

system to knock down Notch activity, it was found that the haematopoiesis in the 

Flk1+/AM co-culture system was not affected, which could be accounted for the low 

Notch activity in this system. These results supported the hypothesis that the Notch 

signalling pathway plays a role in modulating Flk1+ derived haematopoietic 

differentiation within the AGM microenvironment. 
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1.1 Introduction 

Haematopoiesis is the process of producing haematopoietic stem cells (HSCs), 

haematopoietic progenitors (HPCs) as well as differentiation to terminal lineages to 

form the mature blood and immune system. In vitro haematopoietic differentiation 

using embryonic stem cells (ESCs) has been developed as a pivotal model to 

investigate the steps of haematopoietic differentiation and the underlying molecular 

mechanisms, to identify novel cytokines and/or markers for haematopoiesis, to 

optimize strategies for haematopoietic induction and expansion in vitro, and finally 

to provide alternative sources of haematopoietic stem cells (HSCs) for use in clinical 

applications. 

 

A number of models utilizing the addition of cytokines cocktails or gene 

modification have produced an extraordinary induction and expansion of 

haematopoietic cells and based on this, molecular mechanisms have been analyzed, 

but these in vitro systems, although very powerful are possibly not reflecting the 

precise mechanisms that exist in the in vivo environment. Thus, this project 

developed a culture system to direct haematopoietic differentiation using ESC 

system that more closely mimics in vivo microenvironment without exogenous 

powerful induction factors and we carried out a series of investigation for 

understanding how the Notch signaling pathway- a widely published pathway related 

to haematopoietic differentiation was involved in this system. This introduction 

reviews the background of adult haematopoiesis, embryonic haematopoiesis, mouse 

embryonic stem (ES) cell derived haematopoietic differentiation and the published 

evidence to date for the role of Notch signaling in haematopoiesis in vivo and in 

vitro. 
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1.2 Ontogeny of haematopoiesis 

During mammalian embryogenesis and adult development, haematopoiesis occurs at 

different niches. Here we introduce the ontogeny of haematopoiesis according to the 

spatiotemporal sequence during development (Figure 1.1). 

 

1.2.1 Niches for embryonic haematopoiesis  

During embryonic development, haematopoiesis is reported to take place at discrete 

anatomical niches including yolk sac (YS), aorta-gonad-mesonephros (AGM), 

umbilical and vitelline, placenta, fetal liver and bone marrow. So far based on the 

characteristics of haematopoietic cells produced, haematopoiesis is widely defined as 

being established in primitive and definitive waves. However during the long history 

of research on haematopoiesis, the definition of primitive and definitive are still 

ambiguous among different reports. Here, haematopoiesis was categorized according 

to the function of haematopoietic cells or the origin of haematopoietic tissues. 

 

1.2.1.1 Primitive and definitive haematopoiesis 

In mammals, the primitive wave is initiated in the yolk sac at E7 in the 

extra-embryonic region, which is marked by the formation of blood islands. This 

process produces nucleated primitive erythrocytes expressing a defined set of 

hemoglobins (ζ, β-H1 and ε) (Kingsley et al., 2004; McGrath et al., 2003; Silver and 

Palis, 1997). Other primitive cell lineages have been described in the early YS, 

including primitive megakaryocytes which could rapidly mature with an accelerated 

production of platelets as well as bi-potential progenitors for megakaryocytes and 

primitive erythrocytes at E7.25 (Tober et al., 2007; Xu et al., 2001). In addition, a 

unique type of macrophage which differentiates bypassing the monocyte stage during 

their maturation is also defined as a primitive lineage (Bertrand et al., 2005b; Naito 

et al., 1989). 

 

Following primitive haematopoiesis, definitive haematopoiesis develops, which can 

be further divided into two separate waves. The formation of multi-potential 
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progenitors is defined as the first wave of definitive haematopoiesis. These 

multi-potential progenitors that originate from the yolk sac and P-Sp (earlier AGM 

region) have the potential to form erythroid, myeloid and lymphoid lineage in in vitro, 

ex vivo culture and in transplantation (Cumano et al., 1996; Godin et al., 1995; Palis 

et al., 1999; Yoder, 2001; Yoder et al., 1997a; Yoder et al., 1997b; Yoshimoto et al., 

2011). These definitive haematopoietic progenitors can be further categorized as Pro 

(erythroid-myeloid progenitor), Meso (lymphoid-erythroid-myeloid progenitor or 

multipotent low level repopulating progenitor), and Meta (neonatal repopulating 

HSC or CFU-S) as summarized by Dzierzak and Speck before E10.5 (Dzierzak and 

Speck, 2008) (Figure 1.1). 

 

Finally, the long-term adult repopulating HSCs are formed in the AGM at E10.5, 

which is defined as the permanent-definitive haematopoiesis (Medvinsky and 

Dzierzak, 1996; Medvinsky et al., 1996; Muller et al., 1994). 

 

1.2.1.2 Niche for embryonic haematopoiesis 

a) Yolk sac 

In the 1970s, Moore and Metcalf suggested that the yolk sac was the source of the 

adult haematopoietic system by demonstrating the presence of primitive erythrocytes, 

erythro-myeloid progenitors, colony-forming unit-spleen (CFU-S) and HSCs in the 

yolk sac at E7, E8, E8.5 and E11 respectively (Moore and Metcalf, 1970). Primitive 

erythrocytes which mark primitive haematopoiesis emerged at E7 in the yolk sac 

exclusively and declined sharply at E9. Following the first wave of primitive 

erythropoiesis and before the circulation is established at E8.5, definitive 

haematopoiesis is established when erythro-myeloid progenitors are detected in the 

yolk sac as detected in vitro colony formation assay and explant culture, which then 

enter the embryo proper via the circulation without lymphoid potential (Cumano et 

al., 1996; Palis, 2001). Cumano and colleagues demonstrated that yolk sac cells 

between E7.5 and E8.5 could only provide myeloid short-term reconstitution in 

Rag2γc−/− models lacking NK cells before circulation happened (Cumano et al., 

2001). Recent two knock out models, Cdh5−/− and Ncx1−/− that abrogate circulation 
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revealed that erythro-myeloid progenitors are generated autonomously in the yolk 

sac within the in vivo system (Lux et al., 2008; Rampon and Huber, 2003). 

Furthermore, two recent reports using this model revealed the lymphoid potential of 

yolk sac cells independent of the intra-embryonic sites before HSC formation in 

AGM (Yoshimoto et al., 2011; Yoshimoto et al., 2012). Thus, these recent data 

provides evidence that the yolk sac is a haematopoietic site for both primitive and 

definitive haematopoiesis including lymphopoiesis. 

 

After circulation, potent myeloid progenitors capable of forming colonies in the 

spleen in irradiated mice (CFU-S) are identified in both the yolk sac and AGM 

region from E9 (Medvinsky et al., 1993). Furthermore, a cKit+CD34+ population 

from yolk sac was identified at E9 with the potential to long-term reconstitute 

newborn mice with erythro-myeloid and lymphoid potential, which was different 

from E10.5 AGM derived HSCs with adult reconstitution ability (Yoder et al., 1997a; 

Yoder et al., 1997b). However, these progenitors could originate from cells migrating 

from intra-embryonic haematopoietic tissues because circulation has been 

established by E8.5. The inability to reconstitute adult mice indicates that these 

multi-potential progenitors need to circulate within the embryo proper for further 

maturation which indicates that they might be preHSCs or that these progenitors are 

less efficient compared to E10.5 AGM derived HSCs in homing or responding in the 

adult haematopoietic microenvironment. Although recently, contribution of yolk sac 

to produce long-term adult reconstituting HSCs was proposed by Samokhvalov and 

colleagues using Runx1 (a marker for definitive haematopoiesis) lineage tracing 

model based on Cre/loxP system (Samokhvalov et al., 2007). However, the 

interpretation of this data is highly dependent on the variable timing of expression of 

Runx1. At E11.5, long term adult reconstitutive HSCs could be detected in yolk sac, 

while which could also be based on migration from other origins (Kumaravelu et al., 

2002). Thus, yolk sac cells relative contribution to adult haematopoiesis remains 

unclear.  

b) Aorta-Gonad-Mesonephros (AGM) 

In the 1970s, the yolk sac was thought to be the origin of haematopoiesis in the 

embryo. However this notion was challenged by quail-chick engraftment experiment 
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(quail embryos on to chick yolk-sacs) by Dieterlen-Lievre in 1975 demonstrating an 

intra-embryonic origin of haematopoiesis (Dieterlen-Lievre, 1975). A series of 

studies have since been carried out to identify the intra-embryonic sites critical for 

the ontogeny of haematopoiesis (Godin et al., 1995). It is widely accepted that 

definitive haematopoiesis in the mouse initiates from intra-embryo tissue para-aortic 

splanchnopleura (P-Sp) (E8.5 to E10), which first originates from lateral plate 

mesoderm (LPM) and later develops into the aorta-gonad-mesonephros (AGM) (E10 

to E11.5). A progenitor with lymphoid-myeloid potential is also found in the P-Sp 

region of the embryo following explant culture as early as E7.5 prior to circulation 

(Cumano et al., 1996). These progenitors from explant culture could further achieve 

low level but multilineage repopulation including lymphoid lineages in adult 

immunodeficient Rag2γc−/− mice, in which yolk sac cells could only achieve 

short-term myeloid repopulation (Cumano et al., 2001). 

 

After circulation, the cKit+CD34+ population with capacity to repopulation newborn 

mice but not adult mice was also identified in E9 P-Sp region, while with a lower 

repopulation ability compared to yolk sac (Yoder et al., 1997a). After identification 

of multi-potential progenitors in the AGM region at E9 with CFU-S formation ability 

higher than yolk sac (Medvinsky et al., 1993), Definitive HSCs with long-term 

multilineage repopulation ability in adult recipient were first identified in E10 AGM 

region as shown by explant culture for 2 to 3 days or direct cell transplantation 

(Medvinsky and Dzierzak, 1996; Muller et al., 1994). Therefore, E10.5 AGM region 

is believed to be the earliest site within the embryo proper for generating definitive 

long-term HSCs autonomously. Slightly thereafter, HSCs are found in other tissues; 

the placenta, arteries, yolk sac, and liver. 

 

c) Placenta, circulation in arteries and fetal liver 

In addition to the AGM and yolk sac, multi-potent progenitors and HSCs are also 

found to harbor other embryonic sites. During mammalian development, two main 

circulatory routes, vitelline and umbilical, develop to connect the fetal 

haematopoietic organs during midgestation. The yolk sac is connected to the upper 

dorsal aorta and the fetal liver via the vitelline artery. The placenta is connected to 
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the caudal dorsal aorta and the fetal liver via theumbilical vein. Pools of definitive 

HSCs have been identified in these arteries (de Bruijn et al., 2000). Onset of 

erythro-myeloid progenitors within the placenta were identified at E9 and HSCs at 

E10.5- E11 with an expansion until E12.5- E13.5 indicating that the placenta has an 

important role in the establishment of HSCs (Alvarez-Silva et al., 2003; Gekas et al., 

2005; Ottersbach and Dzierzak, 2005). A recent study using the Ncx−/− model to 

abrogate circulation suggested that HSCs could also initiate independently in 

placenta (Rhodes et al., 2008). 

 

At E9.5-10.5, the fetal liver is first seeded by erythro-myeloid progenitors which 

probably derive from yolk sac through circulation as the yolk sac microenvironment 

did not support terminal differentiation into definitive blood cell lineages,. 

Furthermore, fetal liver is the primary fetal haematopoietic organ where HSCs 

expand and differentiate without HSCs initiation but could be colonized by HSCs 

circulated from AGM, yolk sac and placenta from E11.5 (Kumaravelu et al., 2002). 

Thereafter, HSCs are generally stated to exhibit significant expansion from E12.5 

then colonize the spleen, thymus and bone marow before birth. 

 

1.2.2 Development of HPCs and HSCs in haematopoiesis 

As introduced above, during embryogenesis, haematopoiesis occur in consecutive 

waves to form erythro-myeloid progenitors, lymphoid-erythro-myeloid progenitors, 

CFU-S, neonatal repopulating HSCs with long-term repopulating HSCs relatively 

late in this process. To better understand how these progenitors or HSCs originate, 

studies have focused on the cell origin during embryogenesis. So far, only blood 

island in yolk sac consisting of erythrocytes and endothelial cells and the ventral 

aorta in P-Sp/AGM have been identified unambiguously as the in situ origin of 

haematopoiesis. Thus, we review the studies on how haematopoietic cells emerge in 

vivo in these two sites. 

 

1.2.2.1 Formation of mesoderm 

In mice both embryonic haematopoiesis in yolk sac and intra-embryonic sites start 

after gastrulation which initiates at E6.5. During gastrulation, mesoderm cells emerge 
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from the posterior part of primitive streak, a posterior midline structure of the 

epiblast, and then migrate posteriorly into extra-embryonic yolk sac to differentiate 

into blood islands. During mid-streak stage and late-streak stage in the 

intra-embryonic site, nascent mesoderm cells within the primitive streak migrate 

anteriorly and laterally to further form lateral and paraxial mesoderm (Kinder et al., 

2001; Mikawa et al., 2004; Tam and Behringer, 1997). The lateral plate mesoderm 

later evolves into AGM region. However, how mesoderm cells differentiate to HPCs 

or HSCs is still full of controversies. So far, two major notions are proposed: 

haemangioblast and haemogenic endothelium. 

 

1.2.2.2 Haemangioblast 

Co-localization of haematopoietic cells and endothelial cells in blood islands in yolk 

sac, emergence of haematopoietic cluster in the endothelium layer in dorsal aorta, 

and a series of observation in embryonic development in vivo revealed a close 

developmental relationship between the haematopoietic and endothelial lineages. In 

light of this direct ontogenic link, a bi-potent precursor for these two lineages, the 

“haemanbioblast”, was could be traced back early in 1924. 

 

Failure to form blood islands and no haematopoietic cells in fetal liver was observed 

in the vascular endothelial growth factor receptor 2 (VEGFR2, Flk1) deficient mice 

model, indicating the existence of haemangioblast related to both primitive and 

definitive haematopoiesis in vivo as well as the involvement of Flk1 (Shalaby et al., 

1997; Shalaby et al., 1995). A series of in vitro studies by Keller’s group from 1997 

first identified blast colony-forming cells (BL-CFCs) with bi-potential forming 

haematopoietic and endothelial cells using ES cells system in vitro co-expressing 

Barchyury and Flk1 (Choi et al., 1998; Fehling et al., 2003; Kennedy et al., 1997). 

Later, Huber and colleagues (2004) first detected an equivalent population in vivo 

with haemangioblast potential in the posterior primitive streak at mid-streak stage 

from E7 to E7.5, with co-expression of Barchyury and Flk1 (Huber et al., 2004). Yao 

et al also supported the notion of the haemangioblast by demonstrating a bi-potential 

cell located in the P-Sp region at E8.5 till AGM at E10.5-E12.5, but not in yolk sac, 

which was able to differentiate to endothelial and haematopoietic cells (Yao et al., 
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2007). However, these two studies both measured the potential using the in vitro 

colony assay after removal from the in vivo microenvironment, which did not 

provide direct evidence to demonstrate the existence of the haemangioblast in vivo. 

Cell tracking techniques have also been applied to solve this problem. So far, a 

bi-potential progenitor for haematopoietic and endothelial lineages have been 

identified in developing zebrafish using a Flk1+ single-cell tracking strategy 

supporting the existence of the haemangioblast (Vogeli et al., 2006). Plus, by 

permanently marking Flk1+ cells and their progenies using Cre/loxP system in a 

mouse model, it was noted that both primitive and definitive blood cells originated 

from Flk1+ cell (Lugus et al., 2009). These studies together suggest that Flk1 is a 

critical marker for haemangioblast cells. 

 

Interestingly, Ueno and Weissman demonstrated that yolk sac blood islands did not 

have a clonal origin by co-injecting three ES cell lines marked with different colours 

into blastocysts and analyzed individual blood islands from yolk sac at E7.5. It was 

noted that each blood island was contributed by more than one ES cell line, 

indicating the polyclonal nature of the blood islands (Ueno and Weissman, 2006). 

Correlated to studies by Huber claiming the existence of the haemangioblast in the 

posterior primitive streak from E7 to E7.5 with another potential to vascular smooth 

muscle cells (VSMCs), it was revealed that haemangioblast could have already 

undergone differentiation into endothelial and haematopoietic progenitors before 

seeding the  yolk sac (Huber et al., 2004). Studies using a Cre/loxP strategy to track 

Flk1+ cells progeny in mice also provided the evidence that Flk1+ cells are 

progenitors for muscles (Alvarez-Silva et al., 2003). Therefore, these evidences 

indicate that the “haemangioblast” as defined by Flk1 or Brachyury and Flk1 

co-expression could be a multi-potent progenitors that gives rise to more than 

haematopoietic and endothelial lineages.  

 

Lineage tracing carried out by Jaffredo et al in chick embryos at later stages during 

definitive haematopoiesis by cardiac injection of LacZ-expressing retroviral vector 

demonstrated that haematopoietic progenitors are derived from the aortic 

endothelium, suggesting a more specific definition of strict bi-potent precursor for 
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haematopoietic and endothelial cells—“haemogenic endothelium” (Jaffredo et al., 

2000). Thus, “haemangioblast” could possible endeavor more potentials than 

“haemogenic endothelium” which suggesting an early role in the development of 

haemangioblast. Alternatively, based on the fact that studies of the haemangioblast 

are so far mostly based on the extra-embryonic microenvironment or ES cell system, 

it is possible that the origin of extra-embryonic and intra-embryonic haematopoiesis 

could be different. 

 

1.2.2.3 Haemogenic endothelium 

It was first identified in mouse E9.5 embryos that the VE-Cadherin+ endothelial cells 

derived from yolk sac and intra-embryo co-expressed PECAM1, Flk1, and CD34 and 

could further differentiate into lympho-erythromyeloid progenitors expressing CD45 

in vitro (Nishikawa et al., 1998b).  

 

A series of in vivo or de novo studies investigating the emergence of HSCs in the 

AGM region have revealed the close association of HSCs or haematopoietic cells 

with endothelium (Jaffredo et al., 1998; Yokomizo and Dzierzak, 2010). When AGM 

was sub-dissected into dorsal aorta and urogenital ridge segments for transplantation 

into irradiated adult recipients, it was noted that HSCs first appeared in the dorsal 

aorta and the surrounding mesenchyme subregion (AM) but not urogenital ridge 

(UGR, UG) (de Bruijn et al., 2000) (Appendix Figure S1.1). Further cell tracing 

using transgenic mice carrying GFP under regulation of Sca1 promoter, a 

well-known HSCs marker, showing that the first definitive HSCs were raised in the 

endothelial layer or dorsal aorta, though Sca1 could not solely define the adult 

repopulating HSCs (de Bruijn et al., 2002). Taoudi et al have identified a 

PECAM1high CD45+ VE-Cadheren+ population containing definitive HSCs which 

predominantly localized to the intra-aortic clusters attached to the endothelial layer 

of the ventral domain of dorsal aorta (Taoudi et al., 2008; Taoudi and Medvinsky, 

2007; Taoudi et al., 2005). Indeed, reviewed by Dzierzak and Speck, HPCs and 

HSCs shared many markers in common with some or all endothelial cells in the 

ventral domain of the dorsal aorta in the AGM region at E10 to E11, including Sca1, 

cKit, CD34, Runx1, SCL and Gata2. VE-Cadherin, the marker for endothelial cells, 
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was also expressed in intra-aortic cluster in AGM (Dzierzak and Speck, 2008). 

Therefore, these studies revealed the close association of haematopoietic cells and 

endothelial cells at locations in vivo. 

 

In light of this, a cell tracing strategy was widely applied to investigate the origin of 

haematopoietic cells from endothelium. Zovein et al tracked the progeny of 

VE-cadherin+ cells, which was supposed to be endothelial-specific, in AGM region 

before the onset of definitive haematopoiesis using inducible Cre/loxP system. It was 

noted that these VE-cadherin+ population could give rise to adult haematopoietic 

cells (Zovein et al., 2008). As what has been carried out in avian model by Jaffredo 

revealing origin of haematopoietic from endothelium layer, in mice model, the same 

strategy was applied to confirm this. AclDL-Dil was applied to label endothelial cells 

coexpressing PECAM1 and CD34 with cardiac injection. These endothelial cells 

could then give rise to an adult type of erythroid cells in clonal culture and in vivo 

after longer development suggesting the origin of haematopoietic cells from 

endothelium (Sugiyama et al., 2003). A de novo slice culture of mouse AGM region 

with live imaging at the dynamic emergence of HSCs population defined by 

PECAM1+Sca1+CD41+ directly from ventral aortic haemogenic endothelial cells 

supported this theory (Boisset et al., 2010). Correlately, two zebrafish models of cell 

tracking at Flk1 or cMyb strategy also suggested that haematopoietic cells emerged 

from haemogenic endothelium (Bertrand et al., 2010a; Kissa and Herbomel, 2010). 

 

Hirschi’s group also carried out a series of studies to find the haemogenic 

endothelium like cells in the yolk sac. They succeeded in defining a haemogenic 

endothelial population within the yolk sac as well as embryo proper which were 

Flk1+cKit+CD45− and with dye-efflux properties (so-called “side population”, SP 

cells) exhibiting haematopoietic potential at clonal level (Goldie et al., 2008; Nadin 

et al., 2003). In agreement with this, Tie2+ Flk1dim CD41- population was identified in 

E8.25 yolk sac with potential to haematopoietic lineages expressing CD41. Tie2 was 

widely used as a late differentiation marker for vascular morphogenesis (Li et al., 

2005; Suri et al., 1996). Together with studies by Ema et al demonstrating that during 

gastrulation, an endothelial like population co-expressing Flk1, PECAM1, 
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VE-cadherin, CD34, endoglin, and Tie2 within the extra-embryonic mesoderm layer 

of the yolk sac could give rise to primitive erythroid colonies in vitro, these data 

supporting the notion of haemogenic endothelium in the extra-embryonic site (Ema 

et al., 2006).  

 

1.2.2.4 Progenitors in mesenchymal area 

Several studies also raised progenitors in mesenchyaml area as another plausible 

origin for this HPCs and HSCs, or the mesenchymal area could provide the 

microenvironment for differentiation of haemangioblast or haemogenic endothelium. 

Some studies have suggested that HSCs existed within the mesenchymal area 

underneath the endothelium of the ventral domain of dorsal aorta as detected by 

Runx1 (a definitive haematopoietic transcription factor) expression in mesenchymal 

area, or the discrete patches ventral-lateral to the dorsal aorta (sub-aortic patches) 

according to the observation that repopulation ability into immune-deficient adult 

recipients of HSCs defined by CD45-cKit+AA4.1+, though at low engrafting 

efficiency (Bertrand et al., 2005a; North et al., 2002). Interestingly, a recent study 

suggested that, the VE-Cadherin+CD45+ pre-HSCs in the intra-aortic clusters 

enriched HSCs could be derived from an earlier population defined by 

VE-Cadherin+CD45-CD41+ (Taoudi et al., 2008; Rybtsov et al., 2011 ). More 

importantly, they noted that this earlier population was located in luminal endothelial 

lining and intra-aortic clusters, however also in the subluminal compartment of the 

dorsal aorta (Rybtsov et al., 2011). These data suggested that mesenchymal area 

could be a potential environment for production of HSCs. Thus, it is also possible 

that the so called “haemogenic endothelium” represents the transient state that 

pre-HSCs progress through from the underlying mesenchyme to form haematopoietic 

clusters. More importantly, this suggests that microenvironment provided by the 

mesenchyme could be critical for formation or maturation of HSCs, perphaps from 

mesoderm, or haemangioblast stage. 

 

1.2.3 Lineage commitments of HPCs and HSCs 

As introduced above, after HSCs emerge from embryonic niches, they colonized the 
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bone marrow. These HSCs are a rare population residing in the adult bone marrow 

and are mostly quiescent with the ability to repopulate the whole haematopoietic 

system when transplanted into irradiated adult recipient. When necessary, LT-HSCs 

are able to differentiate into terminal lineages to form blood and immune system, 

through a series of steps losing multi-potential finally restricting to unipotent 

lineages (Orkin and Zon, 2008). Although LT-HSCs sit at the top of this hierarchy, it 

should be the same for embryonic derived pre-HSCs (ie, erythro-myeolid progenitors, 

lymphoid-erythromyeolid progenitors) to follow the same diagram becoming more 

limited in potential as differentiation proceeds (Figure 1.2). 

 

  



14 
 

 
 
 

 

 

 

 

Figure 1.1 Sites of embryonic to adult haematopoiesis and possible migration 
and colonization.  

Upper figure represented the connection of niches for embryonic haematopoiesis 
before birth; Lower figure represented the timing and sites of specification, 
emergence, maturation and migration of HSCs from primitive streak. Abbreviations: 
Pro, erythroid-myeloid progenitor; meso, lymphoid-erythroid-myeloid progenitor or 
multipotent low level repopulating progenitor; meta, neonatal repopulating HSC or 
CFU-S; HSCs, haematopoietic stem cells; LTR-HSCs, long-term repopulating HSCs. 
These diagrams were adapter from figures in the following review articles: 
Medvinsky et al., 2011; Dzierzak and Speck, 2008.  
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Figure 1.2 Hierarchy of haematopoietic differentiation from LT-HSCs. 
This is a classical model and there is some evidence for slight differences. This 
diagram was adapted from figure in reiews by Orkin and Zon (2008). 
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1.3 Detection of embryonic derived HPCs and HSCs 

As introduced above about the niches and origins of haematopoiesis, a series of 

strategies are required to detect and assess the function of HPCs and HSCs. Here we 

briefly summarised the mainly used methods for determining HPCs and HSCs. 

 

1.3.1 In vivo repopulation 

1.3.1.1 Adult repopulating assay 

In vivo repopulating assays can be applied to assess the presence of long-term HSCs 

(LTR-HSCs) with full and long term reconstitution ability into all haematopoietic 

lineages in irradiated or immunodeficiency adult recipients, for more than 6 months 

after transplantation. Based on this, limiting dilution and competitive long-term 

repopulation assays have been developed to determine the number of LTR-HSCs 

(Orlic and Bodine, 1994; Szilvassy et al., 1990; Szilvassy et al., 1989). 

 

1.3.1.2 Neonatal repopulating assay (Newborn repopulating assay) 

This assay has been widely applied to repopulate neonatal (new born) mice treated 

with busulfan to enhance engraftment efficiency with HSCs or HPCs. The cells able 

to repopulate neonatal mice are long lived multilineage progenitors but are not 

necessarily able to repoplulate adult irradiated recipients because they could lack 

homing receptors that are required to migrate to adult bone marrow (Yoder and Hiatt, 

1997). 

 

1.3.1.3 CFU-S 

First proposed by Till and McCulloch, the single multipotent haematopoietic 

progenitors can be identifed by injecting donor bone marrow cells into lethally 

irradiated recipient mice and the number of colonies formed in the spleen calculated 

8-12 days later. Each colony (often composed of granulocyte/megakaryocyte and 

erythroid precursors) represents one single progenitor with multi-potential and is thus 

defined as the colony forming unit in spleen (CFU-S). This assay first provided the 

evidence of clongenity of haematopoietic progenitors (Becker et al., 1963; 

Siminovitch et al., 1963; Till and Mc, 1961). The progenitors forming colonies 

slightly later after transplantation (CFU-S11-14) represent a less committed state than 
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the CFU-S8 (Magli et al., 1982). Some but not all of primary colonies in spleen could 

further reconstitute secondary irradiated recipient indicated that CFU-S likely 

represent a short-term repopulating HSCs, not the LTR-HSCs (Jones et al., 1989; 

Jones et al., 1990; Siminovitch et al., 1963). 

 

1.3.2 In vitro colony assay 

During the evolvement of strategies to measure HSCs and HPCs in vitro, several in 

vitro colony assays have been developed. 

 

1.3.2.1 Cobblestone-area forming cells (CAFC) 

Co-culture of tested cells on stromal layers (ie OP9) has been used for long-term 

culture in vitro. HSCs or HPCs co-cultured on stromal layers form cobblestrone-area 

(CA) through differentiating and migration. These CAs have been analysed to 

determining their potency and at different time points. The longer it takes for a CA to 

appear, the less commited and more potent the originating cell is likely to be (Dexter 

et al., 1984; Dexter and Testa, 1976; Ploemacher et al., 1989). 

 

1.3.2.2 Methylcellulose-based colony assay 

More recent studies have used colony assay of semi-solid medium supplemented 

with a combination of cytokines as the the major assay to determine haematopoietic 

progenitors in which progenitors could differentiate and proliferate to form colonies. 

Each colony is the product of a single progenitor and is known as a colony forming 

unit/cell (CFU/CFC). Colony forming unit-A (CFU-A) and HPP-CFC (high 

proliferative potential colony forming cell) assays have been applied in the past to 

measure haematopoietic progenitors. However CFU-A are only able to detect more 

mature cells and HPP-CFC only distinguish HPCs of various committed states. 

 

Methylcellulose-based colony assays have been widely used to detect haematopoietic 

progenitors at the single cell level in semi-solid medium methylcellulose 

supplemented with combination of cytokines including IL-3 (Interleukin-3), IL6 

(Interleukin-6), stem cell factor (SCF) and erythropoietin (Epo) at specific 

concentrations. In these assays, individual progenitors called colony-forming 
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units/cells (CFU/CFC) form cell clusters or colonies consisting of one or more types 

of mature haematopoietic lineages: BFU-E/CFU-E (erythrocytes), CFU-GM 

(granulocyte and macrophage), CFU-M (macrophage), as well as CFU-GEMM 

(granulocyte, erythrocytes, macrophages, megakaryocytes). This assay gives 

information about the types of progenitors with different potentials, however, do not 

well distinguish primitive or definitive by morphology. 

 

1.3.3 Surface phenotyping by flow cytometry 

So far, flow cytometric analysis for surface phenotypes has been applied as a pivotal 

tool to define haematopoiesis along the roadmap from mesoderm to hematopoietic 

fate. A brief summary was shown to summarize the studies on surface phenotypes of 

embryonic-derived HSCs and HPCs, which are mostly based on in vivo observation 

(Figure 1.3). 

 

Flk1 (VEGF receptor 2) is expressed in the yolk sac at E7 later than gastrulation and 

is strictly required for the establishment of haematopoietic and endothelial cells in 

both extra- and intra-embryonic compartment: the migration induction ability 

responding to the VEGF (Vascular endothelial growth factor) being expressed by the 

underlying endoderm (Schuh et al., 1999; Shalaby et al., 1997; Shalaby et al., 1995). 

Based on this, Brachyury and Flk1 have been applied together to define the 

haemangioblast or the in vitro-equivalent, BL-CFC (Fehling et al., 2003; Huber et al., 

2004). 

 

Haemogenic endothelium, as an alternative origin of haematopoietic cells or an 

intermediate stage between the haemangioblast and haematopoietic cells, has been 

defined by Tie2highc-Kit+CD41- as observed in yolk sac (Lancrin et al., 2009). This 

population was also confirmed in extra-embryonic Flk1+ population as having an 

endothelial phenotype co-expressing a series of endothelial markers including 

PECAM1, Flk1, MECA32, CD34, VE-Cadherin and endoglin and also able to give 

rise to primitive haematopoietic cells (Ema et al., 2006). 
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HSCs are derived from pre-HSCs, which emerge and mature from haemangioblast, 

haemogenic endothelium or mesenchyme under the dorsal aorta endothelium. As 

described above, haematopoietic and endothelial lineages share a series of markers in 

common. CD41 is originally identified as a cell adhesion molecule expressed in the 

megakaryocytic lineage. However CD41 is later characterized as the first and most 

specific surface marker distinguishing cells committed to the haematopoietic lineage 

from the endothelial lineage and is widely expressed in haematopoietic progenitors 

and embryonic HSCs (Corbel and Salaun, 2002; Corbel et al., 2005; Ferkowicz et al., 

2003; Mikkola et al., 2003; Mitjavila-Garcia et al., 2002). Corbel et al found that a 

CD41+cKit+ population from the embryo has erythroid, myeloid, and lymphoid 

potential but has very low repopulating ability when purified from bone marrow 

(Corbel and Salaun, 2002; Corbel et al., 2005). In support of this, Mikkola et al 

demonstrated that CD41 was co-expressed with embryonic HSC markers cKit and 

endothelial/haematopoietic marker CD34 in yolk sac as well as embryoid bodies 

(EBs) formed from ES cells. Using in vitro colony forming assay, they also 

confirmed that definitive haematopoietic progenitors enriched in CD41 and cKit 

co-expressing population from E9.5 yolk sac and day6 EBs, though repopulating 

assays were not carried out to confirm whether they represented long term 

repopulating HSCs. Furthermore, this work also investigated CD45, a 

pan-haematopoietic cells marker, claiming that HPCs with multi-potential were 

enriched in the cKit+CD41+CD45- compartment in E9.5 yolk sac and ES cell derived 

EBs. Interestingly, in E14.5 fetal liver HPCs were found to be enriched in the 

CD45+CD41- population which suggests down regulation of CD41, but also indicates 

potential differences in cell surface marker expression between the HPCs that appear 

before and after LT-HSCs have emerged. In agreement, Ferkowicz et al also 

suggested that competitive repopulating HSCs were enriched in CD41lo/- cells from 

bone marrow and fetal liver cells (Ferkowicz et al., 2003). CD34+cKit+ cells from E9 

yolk sac have been defined as multi-potent progenitors able to repopulate newborn 

recipients but not adults (Yoder and Hiatt, 1997; Yoder et al., 1997a; Yoder et al., 

1997b). 

 



20 
 

Medvinsky’s group also carried out a series of studies to investigate the surface 

phenotype definition of pre-HSCs in the intra-embryonic region. They demonstrated 

that in the E11.5 AGM region the VE-cadherin+CD45+PECAM1high fraction in the 

intra-aortic cluster were enriched for HSCs that did not have endothelial potential. 

VE-cadherin expression was lost during maturation to adult BM type HSCs (Taoudi 

et al., 2008; Taoudi and Medvinsky, 2007; Taoudi et al., 2005). Based on this, 

Medvinksy’s group further identified a novel earlier pre-HSCs 

VE-cadherin+CD45-CD41+ located in mesenchyme area which could further develop 

into VE-cadherin+CD45+ CD41- pre-HSCs (Rybtsov et al., 2011). Similarly to this, 

Bertrand and colleagues suggested another potential origin of HSCs from 

mesenchyme area around aorta, they identified a pre-HSCs which was 

CD41+cKit+CD45-PECAM1+AA4.1+ with limited repopulation ability (Bertrand et 

al., 2005a). 

 

Sca1 (Ly-6A), a critical marker for adult HSCs together with cKit, was also defined 

as a marker for embryonic derived HSCs. This was demonstrated using a transgene 

mouse model in which only Sca1-GFP population from AGM region were able to 

repopulate irradiated recipient post explant culture (de Bruijn et al., 2002). In 

addition, the SLAM family of receptors (CD150+CD244–CD48–) has been widely 

used to define HSCs from fetal liver to adult haematopoiesis (Kiel et al., 2005). 

Combining the SLAM family phenotype together with the CD41, CD45, cKit and 

CD34 it was reported that with cKit expressed consistently, CD41 and CD34 

decreased while CD45 and CD150 increased during HSCs development 

(McKinney-Freeman et al., 2009). 

 
For lineage commitment from HPCs and HSCs, Ter119 has been used to monitor 

mature erythroid differentiation. Mac1 (CD11b) and GR1 (Ly-6G) have been used to 

monitor the myeloid lineage. CD45, as a pan-haematopoietic cells marker, was 

expressed by haematopoietic cells except mature erythrocytes. B220, CD4 or CD8 

expressed by lymphoid lineages. These markers are not expressed by the LT-HSCs 

which should be cKit+Thy1.1lowLin-Sca1+ (Okada et al., 1991). 
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Figure 1.3 Development of HSCs from mesoderm stage and surface 
phenotypes of each differentiation stages as assessed by vivo studies. 

Red highlighted markers represent widely applied surface markers in this project. 
Dashed arrows represent the process not confirmed by experiments solidly. 
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1.4 In vitro haematopoiesis with embryonic stem (ES) cells 

Embryonic stem (ES) cells system provides a platform to understand the 

development of haematopoietic system and haematopoietic disorders as well as make 

it easier to apply a genetic modification or treatment to overcome certain specific 

disorders. 

 

1.4.1 Mouse Embryonic Stem cells (mES cells) 

Mouse embryonic stem cells (mES cells) are derived from the inner cell mass (ICM) 

of the day3.5 embryo known as the blastocyst, which are rigorously defined by their 

ability to self-renew in vitro and to differentiate into a variety of cell lineages and 

tissues derived from all three germ-layers of the embryo once injected into host 

blastocysts or induced under proper factors in vitro. (Bradley et al., 1984; Evans and 

Kaufman, 1981; Martin, 1981). ES cells can be maintained as undifferentiated cells 

with pluripotent potential in vitro by co-culturing on murine embryonic fibroblasts 

(MEF) or in the presence of exogenous leukaemia inhibitory factor (LIF) (Smith et 

al., 1988; Williams et al., 1988). Later, a combination of LIF and bone morphogenic 

protein 4 was confirmed able to maintain mouse ES cells in vitro bypassing the use 

of serum or a feeder layer (Ying et al., 2003). Upon withdrawal of LIF, mouse ES 

cells are able to differentiate spontaneously into a variety of cell types of ectodermal, 

mesodermal and endodermal origin, including the haematopoietic, vascular and 

cardiac lineage. 

 

For therapeutic purposes and to investigate the ontogeny of haematopoiesis, in vitro 

differentiation systems using mES cells have been developed to mimic the in vivo 

pattern of haematopoietic differentiation as described above (Section 1.2, 1.3). Here 

we briefly summarize the current studies in the mES cells system on haematopoietic 

ontogeny and differentiation. 

 

1.4.2 mES cells derived haematopoietic progenitors (HPCs) 

To date, haematopoietic differentiation of mES cells has been mostly carried out in 
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two microenvironments, a 3-dimensional structure of formation of embryoid bodies 

(EBs) or a 2-dimensional co-culture of ES cells on stromal cells from haematopoietic 

niches. Based on these two systems, addition of defined cytokines, targeting of 

transcription factors or combination of EBs with stromal cell lines were further 

applied for increasing efficiency, investigating molecular mechanisms and 

discovering novel factors related to haematopoiesis. 

 

1.4.2.1 HPCs induced in embryoid bodies by mES cells 

Upon withdrawal of LIF or feeder cells, EBs are formed by ES cells in suspension 

aggregating spontaneously or using a hanging drop strategy to obtain cell aggregates 

of uniform size. Initiated by Doetschman and colleagues in 1985, they observed that 

blood precursors formed in EBs and could further differentiate into “blood islands” 

analogous to those found in the embryonic yolk sac indicating the autonomous 

emergence of haematopoietic differentiation in EBs. Progenitors for myeloid and 

erythroid lineages were also present in EBs (Burkert et al., 1991; Doetschman et al., 

1985; Hole et al., 1996; Keller et al., 1993; Kennedy et al., 1997; Wiles and Keller, 

1991). This haematopoietic differentiation was further confirmed by assaying surface 

phenotypes or transcription marker expression as well as function assays (ie 

methylcellulose assay). It was suggested that the EBs formed in the presence of 

serum could synthesize cytokines autonomously to initiate haematopoiesis at an early 

stage because exogenous addition of cytokines like interleukin-3 (IL-3), IL-1, IL-6, 

IL-11, erythropoietin, and Kit ligand did not affect haematopoietic initiation in EBs 

before day10 (Keller et al., 1993). However addition of cytokines has been helpful to 

increase the efficiency of terminal lineages production. It was noted that addition of 

erythropoietin (Epo) and IL-3 could increase erythropoietic activity as well as 

myeloid mature cells production within EBs (Wiles and Keller, 1991).  

 

In light of the in vivo ontogenesis from mesoderm formation, increasing studies 

focused on haematopoietic differentiation in EBs in the absence of serum with 

addition of exogenous cytokines. In EBs cultured in serum-free condition, it was 

found that bone morphogenetic protein 4 (BMP4) was required for the production of 

haematopoietic progenitors (erythro-myeloid progenitors and lymphoid progenitors) 
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formation synergized by vascular endothelial growth factor (VEGF) (Nakayama et 

al., 2000). In support of this, Park and colleagues demonstrated that BMP4 was 

critical for Flk1+ mesoderm and SCL+ progenitor formation while VEGF functions in 

the expansion of these progenitors (Park et al., 2004). Recently, Pearson and 

colleagues have reported a step-wise addition of BMP4, Activin A, bFGF and VEGF 

(Pearson et al., 2008). Bmp4 promotes the formation of mesoderm with an induction 

to haemangioblast by bFGF and activin A. VEGF mediated maturation of 

haemangioblast cells into committed haematopoietic progenitors as confirmed by 

surface phenotypes and colony assays. Thus, these serum-free systems provided a 

clean and stable platform for research into the molecular mechanism involved in 

haematopoiesis, though no reconstitution assay being further investigated to measure 

production of HSCs in this system (Pearson et al., 2008). 

 

1.4.2.2 HPCs induced by co-culture of stroma or stromal cell line with mES cells 

In addition to EBs cultured in serum with autonomous haematopoiesis or serum-free 

condition with cytokines induction, co-culture of ES cells with stroma, stromal cells 

or extracellular matrices have also been used to provide a microenvironment for 

haematopoietic induction. A co-culture system was first described by Nakano’s 

group in 1994 in which formation of EBs or exogenous cytokines was replaced by 

co-culture on the OP9 stromal cell line. This cell line was derived from calvaria of 

newborn osteopetrotic op/op mice, which do not express functional macrophage 

colony-stimulating factor (M-CSF) to minimize macrophage differentiation and 

allow differentiation of mES cells into other haematopoietic cell types (Kodama, et 

al., 1994). It was demonstrated that co-culturing OP9 stromal cell lines with mES 

cells could induce mES cells differentiation into erythroid, myeloid, B cell lineages. 

Furthermore, application of stromal cell lines could enable identification of novel 

factors for haematopoiesis. For example, Ueno and colleagues reported a membrane 

protein mKirre expressed by OP9 which could contribute haematopoietic supporting 

ability of OP9 (Nakano et al., 1994; Ueno et al., 2003). 

 

With regards to the theory that E10.5 days AGM region is a putative region to give 

rise to the first long term repopulation HSCs, it is highly possible that this niche can 
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provide essentially inductive signals for haematopoiesis. Based on this, several 

groups have set up co-culture system with AGM-derived stromal cell lines to 

investigate their influences on embryonic and adult haematopoiesis. Oostendorp and 

colleagues derived a panel of stromal clones from E10.5 and E11.5 AGM region 

(AM and UGR region separately) (Appendix Figure S1.1), yolk sac and fetal liver 

(Oostendorp et al., 2005; Oostendorp et al., 2002a; Oostendorp et al., 2002b). Based 

on this, our group reported a co-culture system of AGM explants with EBs showing 

enhancing effects on haematopoiesis (Krassowska et al., 2006). Furthermore, 

haematopoietic differentiation of ES cells was significantly enhanced when EBs 

were co-cultured with a stromal cell line AM20.1B4 derived from dorsal aorta and 

the surrounding mesenchyme subregion (AM). This was confirmed by in vitro 

colony assay and surface marker expression (Gordon-Keylock et al., 2010). 

Furthermore, it was found that this haematopoietic enhancement could be mediated 

post mesoderm. In light of this, brachyury+ and brachyury- fractions by a GFP-Bry 

reporter ES cell line were co-cultured on another AM-derived stromal cell line 

AM14.1C4 and of note, the enhancing effect of AM14.1C4 applied on brachyury+ 

fraction according to colony assay (Fehling et al., 2003; Gordon-Keylock et al., 

2010). In agreement with this, another E10.5 AGM-derived stromal cell line 

AGM-S62 was also published as a potent inducer of haematopoietic differentiation 

of mES cells to induce haematopoietic differentiation (Weisel et al., 2006) 

 

1.4.3 mES cells derived haematopoietic stem cells (HSCs) 

So far, formation of EBs and co-culture of stromal cells as well as addition of 

cytokines have been applied to induce HPCs formation as described above or 

haematopoietic lineages as summarized by Olsen et al (Olsen et al., 2006). However, 

efficient ES cell systems to induce transplantable HSCs are still limited. Initiated by 

Muller in 1993, it has been reported that transplantation of EB-derived cells into 

irradiated recipient is only able to obtain a limited level of reconstitution, existing for 

a short time in vivo, and/or require purification and direct intra-femoral cavity 

injection (Burt et al., 2004; Hole et al., 1996; Muller and Dzierzak, 1993). This could 

be possibly be accounted for by the lack of a suitable microenvironment for 

induction, maturation of HSCs to enable them to home to bone marrow as suggested 
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for preHSCs from yolk sac. Alternatively there could be a limited frequency of 

transplantable HSCs due to the lack of suitable culture conditions required for 

expansion at the HSCs stage. 

 

Several transcription factors critical for HSCs self-renewal have been introduced into 

ES cell system in attempt to improve haematopoietic reconstitution. For example, 

HoxB4 was a transcription factor shown to be pivotal for mouse HSCs expansion 

(Antonchuk et al., 2001; Antonchuk et al., 2002; Bjornsson et al., 2003). A 

co-culture system of EBs with OP9 co-culture and overexpression of HoxB4 in the 

presence of SCF, VEGF, TPO and Flt-3 ligand has been developed and shown to 

produce HSCs able to repopulate irradiated primary and secondary recipients, 

however, with low levels of lymphoid reconstitution ability. Based on this, a 

combination HoxB4 and Cdx4, a modulator of Hox genes, was further applied and 

derived HSCs successfully repopulating primary and secondary recipient and 

expressed SLAM surface markers (Kyba et al., 2002; McKinney-Freeman et al., 

2009; Wang et al., 2005). 

 

1.4.4 Haematopoietic ontogeny in mES cell system 

The mES cell system could provide an alternative source for HSCs, HPCs, and 

haematopoietic cells. Establishment and optimization of these systems in vitro were 

basically parallel to, or even supplement in vivo observation. Herein, we reviewed a 

series of in vitro studies on ontogeny of haematopoiesis in mES cell system. 

 

Analysis of the temporal production of haematopoietic precursor and lineages in 

differentiating EBs showed a similar development pattern to yolk sac and early fetal 

liver haematopoiesis (Keller et al., 1993). More detailed analysis of early stage EBs 

(day2.5 to day 4) identified a progenitor known as the blast colony-forming cell 

(BL-CFC) co-expressing Flk1 and Bry which could form colonies consisted of 

haematopoietic (primitive and definitive )and endothelial precursors in response to 

VEGF and SCF (Choi et al., 1998; Fehling et al., 2003; Kennedy et al., 1997). Later 

a study by Ema suggested a smooth muscle potential of BL-CFC population, which 

could be abrogated by SCL (Ema et al., 2003). This progenitor was assumed to 
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represent the early stage haematopoeisis and comparable to the haemangioblast in 

vivo.  

 

As the controversies in vivo about haemangioblast and haemogenic endothelium, in 

vitro ES cell system, an alternative theory was proposed by Nishikawa’s group. They 

applied a 2-dimensional mESC differentiation system on collagen IV to induce 

Flk1+VE-cadherin- and Flk1+VE-cadherin+ population. Further co-culture of these 

two populations on OP9 with addition of Epo, SCF, IL-3 and G-CSF revealed their 

bi-potential of haematopoietic and endothelial cells. Flk1+VE-cadherin+ represented 

a diverging point of haematopoietic and endothelial lineages (Nishikawa et al., 

1998a). Eilken and colleagues also demonstrated that nascent blood progenitors 

could derive from endothelial cells by detatching from an endothelial colony. Plus, 

not all the colonies transformed into haematopoietic cells but also contributed to 

endothelial cells. This further supported the existence of endothelial cells with 

haematopoietic potential (Eilken et al., 2009). Thereafter, the concepts of the 

haemangioblast and the haematogenic endothelium were first connected by Lancrin 

et al in 2009 that haemangioblast (Bry+Flk1+) first generated the haematogenic 

endothelium (Tie2highcKit+CD41-) then further produced haematopoietic cells 

(Lancrin et al., 2009). 

 

Of note, the Flk1+ population displayed a better progeny to haematopoietic direction 

than Bry according to a series of studies in EB differentiation. Kouskoff and 

colleagues demonstrated that Bry+ cells had differential Flk1 expression and that 

BL-CFC activity was enriched in Bry+Flk1+ from day 3.25 EBs while Bry+Flk1- had 

a preference for cardiac differentiation. Later studies revealed a re-specification by 

Notch4 on Bry+Flk1+ to cardiac direction (Chen et al., 2008; Kouskoff et al., 2005). 

Purified Flk1+ population from EBs could re-aggregate in serum-free media 

supplemented with VEGF to undergo primitive and definitive haematopoiesis 

(Cheng et al., 2008). Interestingly, Keller’s group further reported that Flk1+ cells 

derived from EBs at day3.25 and day5.25 displayed characteristics of haematopoiesis 

in yolk sac and P-Sp region in the early embryo (Irion et al., 2010). 
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As mentioned in section 1.3.3 Mikkola and colleagues, also screened surface 

phenotypes during haematopoiesis not only in yolk sac but also differentiating EBs. 

Using the ES cell system, they confirmed that CD41 was expressed in EBs from 4.25 

to 4.75 till day7. CD45 was expressed in EBs from day6.75 but with very low level 

at around 2%. Definitive haematopoietic progenitors were enriched in CD41+ 

fraction from EBs co-expressing CD34 and cKit. Of note, colony assays revealed 

that haematopoietic activity was more highly enriched in the CD41+CD45- cKit+ 

fraction compared to CD41+CD45+cKit+ fraction from day6 EBs, suggesting CD41 

as an earlier marker than CD45 in EB system (Mikkola et al., 2003). Thus, 

CD41+cKit+ can be used as a convincing surface phenotype to define definitive 

haematopoietic progenitors in the EB system. CD45 can be applied to measure a later 

stage of haematopoietic differentiation in this system. 
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1.5 Molecular mechanism involved in regulation of 

haematopoiesis 

The induction, maturation and lineage specification of HPCs and HSCs in embryonic 

and adult haematopoiesis are essentially regulated by a molecular network consisting 

of transcription factors, regulators and signaling pathways. Herein, we briefly 

summarized studies on effects of these key regulators on haematopoietic ontogeny 

and differentiation during the development based on in vivo and in vitro studies 

(Figure 1.4, 1.5). 

 

1.5.1 Transcription factors and regulators of haematopoiesis 

1.5.1.1 Runx1 and Gata2 

According to in vivo studies, the transcription factor Runx1 is an essential regulator 

in definitive haematopoiesis, while being dispensable for primitive haematopoiesis. 

Deletion of Runx1 in the mouse embryo results in embryonic lethality with internal 

bleeding at around E12.5. These embryos have the ability to produce primitive 

erythrocytes but they have a complete lack of haematopoiesis in fetal liver or 

definitive HPCs formation in E10 yolk sac indicated its role in definitive 

haematopoiesis (Okuda et al., 1996; Wang et al., 1996). Runx1 reporter mice were 

developed and demonstrated Runx1 expression in intra-aortic clusters, the ventral 

endothelial layer of the dorsal aorta and underlying mesenchyme in AGM region as 

well as in the endothelial cells of the yolk sac, the vitelline and umbilical arteries. 

Thus loss of Runx1 abrogated formation of intra-aortic clusters and sequentially 

inhibited HSCs formation (Cai et al., 2000; North et al., 1999; North et al., 2002). In 

support of this, it was noted that embryoid bodies generated from Runx1-/- ES cells 

failed to commit to definitive haematopoiesis but not primitive one (Lacaud, 2002). 

Further studies in vitro or in vivo using conditional knock out or rescue models of 

Runx1 suggested that Runx1 was required for haematopoietic differentiation only 

from haemogenic endothelium marked by Tie2 or VE-cadherin (Chen et al., 2009; Li 

et al., 2006; Liakhovitskaia et al., 2009). In addition, Runx1 was also widely 

expressed in the adult haematopoietic cells except erythroid lienages (de Bruijn and 

Speck, 2004; North et al., 2004).  
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Gata2 was found to essential for early stage of haematopoiesis in embryo and 

expansion of multi-potential hematopoietic progenitors (Tsai et al., 1994; Tsai and 

Orkin, 1997). It was reported to be involved into erythroid and megakaryocytes 

differentiation later from HSCs (Dore and Crispino, 2011). Interestingly, 

Robert-Moreno and colleagues demonstrated that Gata2 was crucial for the onset of 

definitive haematopoiesis in AGM region which functioned upstream of Runx1 and 

was regulated by the Notch signaling pathway (Robert-Moreno et al., 2005). Gata2 

being downstream of Notch signaling was also confirmed in 32D myeloid 

progenitors (Kumano, 2001; Robert-Moreno et al., 2005). Conditional induction of 

Gata2 in the ES cells system indicated that Gata2 could promote haemangioblast 

generation, precocious commitment to erythroid lineages and increased endothelial 

cell generation (Lugus et al., 2007). 

 

1.5.1.2 SCL and Lmo2 

SCL (T-cell leukaemia oncoprotein, Tal-1) was first identified through its 

involvement in a chromosomal translocation in human leukaemia. During 

embryogenesis, SCL is widely expressed in the vascular endothelium and in 

primitive and definitive haematopoietic cells (Elefanty et al., 1999; Kallianpur et al., 

1994). Deficiency of SCL causes the failure of yolk sac haematopoiesis and SCL null 

animals die at E8-10.5 due to the lack of primitive haematopoiesis resulting in severe 

anaemia (Robb et al., 1995; Shivdasani et al., 1995). Analysis of chimeric mice 

generated by injecting SCL-/- ES cells into a wild type blastocyst demonstrated the 

contribution of SCL-/- only to non-haematopoietic lineages revealing a crucial role 

for the SCL in definitive hematopoiesis (Porcher et al., 1996; Robb et al., 1996). 

Thus SCL was invovled in both primitve and definitive haematopoiesis. Of note, in 

murine and ES cells models, it has been confirmed that SCL is required for the 

transition of the haemangioblast into haemogenic endothelium, but not later 

haematopoietic commitment from haemogenic endothelium (D'Souza et al., 2005; 

Gering et al., 1998; Lancrin et al., 2009; Schlaeger et al., 2005).  
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Lmo2 knockout mice die at E10.5 due to anaemia with failure of primitive 

erythropoiesis in yolk sac. Chimeric analysis also revealed its contribution to 

definitive haematopoiesis. It has been suggested that this regulator could interact 

with SCL to form a complex regulating haematopoietic lineage specification 

(Lecuyer et al., 2007; Warren et al., 1994; Yamada et al., 1998).  

 

1.5.1.3 Gata1 and PU.1 

A number of studies on thaematopoietic fate decisions have focused on the action of 

Gata1 and PU.1. It was found that Gata1 could promote erythroid/megakaryocytic 

differentiation while PU.1 promoted myeloid differentiation. These two proteins 

could physically interact and antagonize each other in fate decisions of HPCs. In the 

zebrafish model, inhibition of Gata1 expression by morpholinos resulted in the 

conversion of HPCs to a myeloid fate while inhibition of PU.1 converted HPCs to an 

erythroid fate (Galloway et al., 2005; Orkin, 2000; Rhodes et al., 2005). 

 

1.5.2 Regulation of haematopoiesis by Notch signaling pathway 

In addition to the transcription factors and regulators involved in haematopoiesis, 

signaling pathways such as Notch, Wnt and BMP signaling have been reported to 

regulate haematopoiesis at differentiation stages and to interact with each other as 

well as other regulators. Here we summarized the studies on Notch signaling 

pathway and its role in haematopoiesis. 

 

1.5.2.1 Transduction of Notch signaling pathway 

Notch is a transmembrane protein that acts as a signal receptor. The Notch signaling 

pathway is supposed to be an evolutionarily conserved mechanism that is widely 

used by invertebrates and vertebrates to control cell fate decisions, including 

proliferation, differentiation and apoptosis (Artavanis-Tsakonas et al., 1995; 

Artavanis-Tsakonas et al., 1999; Lai, 2004; Lewis, 1998). So far, a series of specific 

trans-membrane ligands including Delta-like1, Delta-like3, Delta-like4, Jagged1 and 

Jagged2 have been identified to activate the Notch signaling pathway (Lai, 2004). 

Four Notch receptors (Notch1, Notch2, Notch3, Notch4) have been found in 

mammalian cells with different expression patterns and roles which are tissue and 
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cytokine dependent (Bigas et al., 1998; Lardelli et al., 1994; Uyttendaele et al., 1996; 

Weinmaster et al., 1992). Generation of function Notch ligands depend on the E3 

ligase, Mib1. The Notch receptors consist of an extracellular domain, which 

functions in ligand binding and an intracellular domain (NotchIC) to interact with a 

number of cytoplasmic and nuclear proteins to permit signal transduction. Upon 

ligand binding, proteolytic cleavage occurs by a membrane-associated protease 

complex (γ–secretase) containing presenilin at the cell membrane (Karlstrom et al., 

2002; Schroeter et al., 1998). After that the intracellular domain is released and 

interacts with a series of cytoplasmic and nuclear proteins. In the prevailing models 

for Notch signal transduction, the majority of studies have mainly focused on nuclear 

transduction where the transcription factor RBP-Jκ family protein (also known as 

CSL or CBF1/ Su(H)/ Lag-1) is involved. After translocation into the nucleus, 

NotchIC bind to and turns the RBP-Jκ co-repressor complex into a RBP-Jκ 

co-activator complex that then modulates downstream gene expression and cell fate 

decisions (Figure 1.4) (reviewed by Lai, 2004). 

 

The main Notch downstream target genes activated by the interaction of NotchIC and 

RBP-Jκ co-activator complex belong to basic helix-loop-helix (bHLH) transcription 

factor family, such as the Hes (Enhancer of Split) and Hey (Hes related repressor) 

families which are supposed to mainly act as transcriptional repressors of lineage 

commitment genes (Iso et al., 2003). In addition to these basic components, a number 

of other Notch-associated proteins interact at various stages. For example, 

mastermind-like protein (MAML), p300 and SKIP are confirmed to positively affect 

Notch signaling, while Numb, Numb-like and Sel-10 (cdc4) act as negative 

regulators (Hansson et al., 2004; Kadesch, 2004). It has been reported that 

dominant-negative Mastermind-like1 (DNMAML), a truncated MAML, is a potent 

inhibitor of Notch signal pathway (Weng et al., 2003). DNMAML only encodes 

amino acids 13 to 74, providing the binding site to NotchIC but cannot recruit other 

co-activators such as p300 to form the RBP-Jk activator complex. Several studies 

have used DNMAML to inhibit Notch signaling pathway in haematopoietic 

differentiation (Maillard et al., 2008; Mercher et al., 2008; Yu et al., 2008).  
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1.5.2.2 Role of Notch signalling pathway in Haematopoiesis 

A series of in vitro and in vivo models have been established to investigate the role of 

the Notch signaling pathway in the ontogeny of primitive and definitive 

haematopoiesis as well as haematopoietic differentiation from haematopoietic 

progenitors. As introduced in section 1.2, primitive haematopoiesis arises in the yolk 

sac from E7.5 to E8.5 followed by a definitive process to produce definitive HPCs 

able to form colonies in CFU assays and short-term HSCs in both yolk sac and 

P-Sp/AGM region. Finally, LTR-HSCs derived from the AGM region at E10.5 is 

defined as the later stage of definitive haematopoiesis. 

 

a) Notch signaling in embryonic haematopoietic ontogeny 

It was reported that Notch1, Notch4, Jagged1, Jagged2 and Delta-like4 are expressed 

in the ventral endothelium of the P-Sp/AGM aorta through E 9.5 to E10.5 in the 

mouse embryo before the appearance of LTR-HSCs (Robert-Moreno et al., 2005). 

Furthermore, Notch receptors and ligands are expressed in fetal liver from E12 to 

E17 indicating a role of Notch in definitive haematopoiesis (Walker et al., 2001). To 

investigate the role of Notch signaling, several knockout mouse models have been 

established including RBP-Jκ, Notch1, Jagged1, Dll1, Dll4, Hey1/Hey2 or Mib 1. 

Lethality at around E10.5 was observed caused by vascular defects indicating a 

critical involvement of Notch signaling in vascular development but abrogating a 

direct analysis of embryonic haematopoiesis (Duarte et al., 2004; Fischer et al., 2004; 

Hrabe de Angelis et al., 1997; Koo et al., 2005; Krebs et al., 2004; Krebs et al., 2000; 

Xue et al., 1999). Thus, ES cell system, explants culture, colony forming assay, 

chimaeras, heterozygous as well as conditional knock out/knock down have been 

used overcome early lethality and address the role of Notch in early haematopoiesis. 

 

For primitive haematopoiesis: It was noted that Notch signaling did not affect yolk 

sac derived primitive haematopoiesis as assessed using colony assays from cells 

derived from Notch1-/- and Mib1-/- embryos. Although yolk sac from both models 

were taken from E9.5 and E8 to E8.5, respectively, when definitive HPCs had 

already been generated, these two studies confirmed primitive haematopoiesis was 

not dependent on Notch by determining expression of β-H1 (Kumano et al., 2003; 
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Yoon et al., 2008). CFU-EryP, the primitive erythroid colony formation units from 

whole embryo E7.5 to E8.5 were also measured and compared in Notch1-/- with wild 

type or heterozygous showing no difference, which further supported Notch 

signaling was dispensable for primitive haematopoiesis (Hadland, 2004). Other 

primitive lineages like primitive macrophages were also not affected in RBP-Jκ-/- 

yolk sacs at E9.5, however with an increase of both yolk sac derived primitive 

erythroid differentiation and adult erythrocytes formation due to reduced apoptosis. 

Erythrocytes increase observed in RBP-Jκ-/- model could be that it is a stronger 

model to block Notch signaling compared to Notch1 deficient model, which could be 

compensated by other receptors (Robert-Moreno et al., 2007). Therefore, Notch 

signaling did not affect or inhibit primitive haematopoiesis in yolk sac. This was also 

confirmed in the ES cell system, in which Flk1+ derived primitive haematopoiesis 

was inhibited by ectopic Notch1 but definitive haematopoiesis not affected (Cheng et 

al., 2008). 

 

For definitive haematopoiesis: As introduced above in Figure 1.1, definitive 

haematopoiesis could be further devided into several steps, including formation of 

erythro-myeloid progenitor (pro), lymphoid-erythro-meyloid progenitors (meso), 

preHSCs for newborn mice repopulation (meta) and long-term definitive HSCs. It 

has been reported by different groups that haematopoietic colony forming units 

(CFUs) from RBP-Jκ-/- P-Sp or Mib1-/- P-Sp at E9.5 were reduced which indicated 

that Notch is crucial for the production of definitive multi-potential progenitors in 

P-Sp/AGM region (Robert-Moreno et al., 2005; Yoon et al., 2008). When explant 

culture of E9.5 P-Sp region on OP9 or cytokines were used to obtain later definitive 

progenitors, a severe reduction of CFUs was observed in these deficient models 

(Kumano et al., 2003; Robert-Moreno et al., 2005; Yoon et al., 2008). Compared to 

wild type mice, cells from both E9.5 yolk sac and P-Sp in Notch1-/- mice lost the 

ability to repopulation newborn animals (Kumano et al., 2003). Interestingly, a later 

study by Robert-Moreno using a Jag1Δ/Δ/Sca1–GFP model showed a reduction of 

Sca1+ cells and CFUs in E10.5 AGM, however with normal arterial development 

indicating a non-cell autonomously regulation by Notch signaling (Robert-Moreno et 

al., 2008). Therefore, Notch signaling pathway was critical for definitive 
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haematopoiesis of P-Sp/AGM (CFUs and newborn repopulating preHSCs) and yolk 

sac (newborn repopulating preHSCs). 

 

To confirm whether Notch could affect haematopoiesis in a cell autonomous manner, 

Hadland and colleagues developed chimaeras with the LacZ as the tag for Notch1-/- 

ES derived cells. They showed that Notch1-/- cells could also contribute to yolk sac 

definitive CFUs till E11.5 but dropped dramatically afterwards in yolk sac, fetal liver 

and bone marrow indicating Notch1 was critical for definitive haematopoiesis at later 

stage, which could possibly derived from long-term definitive HSCs production. To 

support this, they demonstrated that in Notch1-/- models definitive CFUs produced in 

yolk sac from E7 to E8.5 were not affected. This study revealed that Notch did not 

affect early definitive haematopoiesis as measured in yolk sac, but was critical for 

later definitive haematopoiesis in a cell-intrinsic way (Hadland, 2004). 

 

Addition of inhibitor of Notch signalling pathway abrogated the emergence of 

haematopoietic cells from VE-cadherin+ haemogenic endothelium cells from the 

E9.5 P-Sp region (Kumano et al., 2003). Conditional knock out of Notch signaling in 

Tie2+ endothelial cells also resulted in reduced CFUs (Yoon et al., 2008). 

Furthermore, expression of Runx1, Gata2, and SCL, which were expressed by 

endothelial-like cells with potential to generate intra-aortic clusters were reduced in 

RBP-Jκ-/- P-Sp at E9.5. (Minegishi et al., 1999; North et al., 2002; Porcher et al., 

1996; Robert-Moreno et al., 2005; Tsai and Orkin, 1997). These studies suggested 

that regulation of Notch signalling in definitive haematopoiesis was relevant to 

haematopoietic process post haemogenic endothelium formation. 

 

Taking these in vivo studies together, in P-Sp/AGM region, Notch signaling is critical 

for definitive haematopoiesis which could possible mediate intra-aortic cluster 

formation from haemogenic endothelium activated by Jagged1. In yolk sac, early 

definitive CFU formation was not affected but later definitive haematopoiesis to 

produce newborn repopulating preHSCs and CFUs after E11.5 was impaired by 

Notch deficiency. Thus, role of Notch signaling pathway in haematopoiesis in vivo 

was spatial and temporal dependent. More likely, Notch1 is required for the 
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development of the newborn repopulatin preHSCs and long-term definitive 

hematopoietic stem cell compartment while does not affect earlier, short-term 

definitive hematopoietic. This was supported by Bertand’s group demonstrating 

Notch signaling pathway distinguished two waves of definitive haematopoiesis in 

zebrafish model (Bertrand et al., 2010). 

 

b) Notch signaling in haematopoietic commitments 

A series of studies have reported that Notch signaling could affect fate decision of 

HPCs or HSCs via regulating apoptosis, proliferation, cell cycles and so on. For 

example, it was reported that Notch could inhibit further differentiation of 

haematopoietic stem and progenitor cells and maintain their self-renewal (Milner et 

al., 1996; Varnum-Finney et al., 2000). Co-culture of fetal liver derived HPCs with 

OP9 expressing ectopic Detla-like 1 could increase T cell development in vitro 

(Schmitt and Zuniga-Pflucker, 2002). Notch1 or Notch2 activation inhibited myeloid 

differentiation in a cytokine-dependent manner. Similarly, stimulation of Notch 

activity by Delta-like 1 from OP9 stromal cells resulted in inhibition of myeloid 

differentiation (reviewed by (Bigas et al., 2010)). As mention above, RBP-Jκ-/- 

mutation leads to higher erythroid differentiation due to reduce of apoptosis 

(Robert-Moreno et al., 2007). Megakaryocyte differentiation from HSCs could be 

promoted by Notch signaling when co-cultured on OP9 expressing ectopic 

Delta-like1 (Mercher T et al., 2008). 

 

c) ES cell models to investigate Notch signaling in haematopoiesis 

Because of the limitations of mouse models where deficient mice die at an early 

embryonic stage, in vitro studies using ES cells has become a major tool in the 

investigation of Notch signalling pathway during haematopoiesis. It was reported 

that activation of Notch inhibited ES cell differentiation into the mesoderm lineage 

(Lowell et al., 2006; Schroeder et al., 2006). On the other hand using the Notch1-/- 

ES cell line, it was suggested that Notch1 deficiency did not affect Flk1+ mesoderm 

formation (Hadland et al., 2004). These data suggested that Notch could be 

dispensable for mesoderm formation, while overexpression of Notch could abrogate 

it.  
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During haematopoietic differentiation of ES cells Notch1-/- did not affect early 

definitive haematopoiesis but inhibited primitive erythroid formation in suspension 

EBs as assessed by colony formation assays (Hadland et al., 2004). In contrast, when 

GSI was applied to inhibit Notch after the formation of mesoderm, the number of 

multi-potential CFUs from EBs co-cultured on AGM-derived stromal cells were 

reduced (Figure 1.6) (Gordon-Keylock et al., 2010). This could be accounted for by 

the fact that these are different microenvironments, which is in support of the in vivo 

studies revealing difference of Notch signaling on haematopoiesis in yolk sac and 

AGM (section 1.5.2.2-a). Inducible ectopic NotchIC in ES cells inhibits the 

generation of cardiomyocytes, endothelial cells and haematopoietic cells from 

mesoderm progenitor cells (Schroeder et al., 2006). However, it was also reported 

that ectopic Notch4 could respecify Bry+Flk1+ haemangioblasts to a cardiac fate 

(Chen et al., 2008). For lineage commitment, overexpression of Notch1 in Flk1+ cells 

re-aggregation inhibited primitive erythropoiesis by interacting with Wnt signaling 

via Numb but this did not affect definitive haematopoiesis (Cheng et al., 2008). It 

was also reported that ectopic NotchIC could promote myeloid maturation and 

reduced immature progenitors in HPCs derived from ES cells co-culture on OP9 

stromal. This observation correlated to their earlier observation in in 32D myeloid 

progenitor cells. In addition, reduced self-renewal of multipotent haematopoietic 

progenitor cells (FDCP-mix cell line) and accelerated commitments to mature 

myeloid cells were initiated by overexpression of NotchIC via up-regulating PU.1 

(Schroeder and Just, 2000; Schroeder et al., 2003; Schroeder et al., 2006). We 

assumed that the role of Notch signalling pathway in haematopoiesis using ES cell 

system are context dependent and determined by manipulation strategies. 

 
d) A co-culture system of EBs and AGM-derived stromal cells to investigate 

Notch signalling pathway 

As introduced above, studies suggested regulation of Notch signalling pathway in 

primitive or definitive, yolk sac-derived or AGM-derived haematopoiesis could be 

different indicating that role of Notch signaling in haematopoiesis is 

microenvironment, modulation strategies and differentiation stages dependent.  
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By using ES cell system, it will overcome the early lethality of knock out mutation 

models and provide a relatively simplified microenvironment compared to mice 

models. However ES cell system were considered to represent the yolk sac derived 

haematopoiesis. Although a number of efficient ES models with addition of 

cytokines cocktails, gene modification or OP9 stromal co-culture have been 

developed to induce haematopoietic cells, these in vitro systems are possibly not 

reflecting the precise mechanisms that exist in the in vivo environment.  

 

To mimic the AGM-derived haematopoiesis using ES cell system, a co-culture 

system of EBs with AGM-derived stromal cells without exogenous powerful 

induction factors has been established with suggestion the involvement of Notch 

signalling pathway post mesoderm formation using pharmacological approaches with 

GSI, though γ–secretase cleavage could happen not only to Notch receptor but also 

other trans-membrane proteins, such as amyloid precursor protein (APP), ErbB-4, 

SREBP-1, N-cadherin, and CD44 (Figure 1.6) (Gordon-Keylock et al., 2010). Based 

on this work, we suggested that Notch signalling pathway could regulate ES-derived 

haematopoiesis post mesoderm formation in the AM supporting microenvironment. 

A referred above, surface marker Flk1 could mark haemangioblast cells, the 

population formed after mesoderm and for further differentiation into haematopoietic 

lineages. Thus this project further specify this co-culture system and focused on the 

involvement of Notch signaling in Flk1+ population derived haematopoiesis. 

1.6 Thesis Aims 

1.6.1 Hypothesis 

Notch signalling pathway is involved in the ES-derived haematopoiesis in 

microenvironment provided by AGM-derived stromal cells. 

 

1.6.2 Experiment strategy 

To expand the work published by Gordon-Keylock in 2010 and determine how 

Notch signalling pathway regulates ES-derived haematopoiesis in AGM 

microenvironment after mesoderm formation, we carried out experiments to further 
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investigate the correlation between haematopoietic activity and ligands expression or 

Notch activity in the co-culture system. We also set up a co-culture system to focus 

on Flk1+ haematopoiesis and determine how Notch signalling pathway affects this 

process using genetic modified ES cell lines.  

 

To assess the correlation of haematopoietic activity with Notch activity in the 

EB/AGM-derived stromal co-culture system: 

 Ligand expression in stromal cells was analyzed and compared with quantitative 

RT-PCR, flow cytometry, immunochemistry and western blots; 

 Notch activity in EBs or stromal cells from co-cultures upon addition of GSI 

were analyzed with quantitative RT-PCR; 

 Notch activity in EBs sorted from co-cultures was monitored throughout 

co-culture period with quantitative RT-PCR. 

 

To analyze effect of Notch signalling pathway post mesoderm more specifically and 

avoid affecting other population or early differentiation: 

 A novel co-culture system was established by co-culturing Flk1+ cells derived 

suspension EBs on AGM-derived stromal cells with haematopoietic activity 

assessed by colony forming assay and surface phenotypes; 

 

To analyze whether Notch signalling pathway could affect Flk1+ derived 

haematopoiesis in AGM microenvironment: 

 A tamoxifen inducible ES cell line, R26-NotchIC, was applied to induce Notch 

activity in Flk1+/AM co-culture system with assessing haematopoietic activity in 

colony forming assay, surface phenotypes and related gene expression. 

 

To analyze whether Notch signalling pathway is required for Flk1+ derived 

haematopoiesis in AGM microenvironment: 

 A doxycycline inducible ES cell line to knock down Notch activity was 

established. 
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Figure 1.4 Brief summary of RBP-Jκ dependent Notch signalling pathway. 
Figure adapted from review by Lai (2004) 
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Figure 1.5 Brief summary of development of haematopoiesis established in 
ES cell system in vitro with surface phenotypes and key regulators noted. 

Figure modified based on review by Lancrin et al., 2009.  
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Figure 1.6 Inhibition of multipotent haematopoietic colonies in EBs 
differentiated to 6 days on gelatin, AM20.1B4, AM14.1C4 or OP9 by addition 
of γ-secretase inhibitor (GSI) between Days 4 and 6. 

Error bars represent standard deviation of 3 independent experiments. P-values were 
calculated with Wilcoxon matched pairs tests (*p<0.002, ns, not significant 
difference). Figure reproduced with raw data supporting Gordon-Keylock et al., 
2010. 
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Chapter 2: Materials and Methods 
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2.1 Molecular strategies 

2.1.1 Plasmid construction 

Plasmids information was listed in Appendix Table 2.1. Digestion and ligation was 

carried out with restriction digestion enzyme (Roche or NEB) and T4 ligase 

(Invitrogen) respectively according to the manual instruction.  

 

2.1.2. Transformation of bacterial cells  

For transformation, up to 1µg plasmid DNA or 1-2ul ligation product (20ul reaction 

volume) was added into 25µl of DH5α library Competent E. coli (Invitrogen) and 

gently mixed then incubated on ice for 30 minutes, heat shocked for 45 seconds at 

42 °C followed with another incubation on ice for 2 minutes. 250µl room 

temperature Super Optimal broth with Catabolite repression (S.O.C.) medium 

(Invitrogen) was added and shaken at 225rpm at 37 °C for 1 hour. 20-100µl of the 

transformation reaction was plated on Luria-Bertani (LB) agar containing antibiotics 

(100µg/ml ampicillin or 50µg/ml kanamycin). Plates were incubated at 37 °C in 

incubator for 14hr – 20hr and single colony was picked up for further validation.  

 

2.1.3 Plasmid preparation (Minipreps and Maxipreps)  

A single colony was picked up and cultured in 3ml (for minipreps and starter cultures) 

LB containing antibiotic or 250 ml LB (for maxipreps) containing antibiotics 

(100µg/ml ampicillin or 50µg/ml kanamycin) then incubated overnight at 225rpm in 

an orbital shaker at 37 °C. The cultures were harvested using centrifuges and DNA 

extracted using either a miniprep kit, maxiprep kit or a HiSpeed plasmid maxi kit 

(Qiagen) according to manual instruction. 

 

2.1.4 RNA extractions and cDNA synthesis for quantitative RT-PCR 

Total RNA was extracted from frozen or fresh cell pellets with RNeasy Mini kit 

(Qiagen) following the manual instructions. DNAse I (Qiagen) was applied directly 

onto column to remove residual genomic DNA (Qiagen). cDNA was synthesised 
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using the reverse transcription Superscript III kit or SuperScript® VILO™ Master 

Mix  (Invitrogen). The reaction was set up with up to 600 ng (for Superscript III kit) 

or 1.25µg (for SuperScript® VILO™ Master Mix) of RNA per reaction at 10µl then 

incubated at 25 °C for 10 minutes for primer annealing, then 42 °C for 60 minutes 

for cDNA synthesis then inactivated at 85 °C for 5 minutes. cDNA was normally 

stored at -20 °C.  

 

2.1.5 Quantitative Reverse Transcriptase PCR (qRT-PCR) 

QPCR primers and probes were self-designed thensynthesized by MWG Eurofins, or 

purchased from Aplied Biosystems. QPCR was performed on an ABI 7500 FAST 

qPCR machine (Applied Biosystems) with 10ng cDNA per reaction. Housekeeping 

gene Hprt (hypoxanthine-guanine phosphoribosyl transferase) or 18s (18S ribosomal 

RNA) were used as the endogenous control for relative quantitation of gene 

expression to the amount of cDNA loaded. Reactions were set up in triplicate in 96 

well plates following the default Taqman programme for universal condition: 95 °C 

for 3 seconds, followed by 35- 45 cycles of 95 °C for 20 seconds to denature the 

cDNA and 60 °C for 30 seconds to allow annealing and extension. For sybergreen 

primer, a dissociation step was added up to check specificity of primer. Relative 

quantitation was calculated with the ΔΔCT method using SDS v1.4 software by 

Applied Biosystems. Using this software the gene expression in each reaction was 

first normalized to the endogenous control and the data was then shown as fold 

change to a calibrator chosen according to each experiment.  

 

Primers and probes for qPCR were listed in Appendix Table 2.2 
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2.2 Cell Culture and manipulation 

2.2.1 Maintenance of cells 

2.2.1.1 Culture of Mouse Embryonic Stem cells (mESCs) 

Mouse embryonic stem cells (mESCs) were routinely cultured on 0.1% gelatin 

(Sigma) coated 25cm2 tissue culture flasks and maintained in 1 x Glasgow Minimum 

Essential Medium (GMEM) (Invitrogen) supplemented with 10% Fetal calf serum 

(Lonza), 2mM sodium pyruvate (Invitrogen), 1% non-essential amino acids 

(Invitrogen), and 0.1mM β-mercaptoethanol (Sigma). This media was supplemented 

with 100U/ml Leukaemia Inhibitory Factor (LIF). Addition of another 4mM 

L-glutamine (Invitrogen) is optional based on the growth and differentiating of cells. 

1U/ml of LIF (Leukaemia Inhibitory Factor) was defined as the lowest concentration 

to maintain CP1 ES cells at undifferentiated state (Bradley et al., 1984).  

 

LIF was prepared from the condition medium of COS7 cells transfected with the 

pCAGGSLIF-418 plasmid (from Professor Austin Smith). LIF concentration was 

determined by serial titration to test the ability to maintain CP1 ES cells at 

undifferentiated state according to the morphology. Batch testing for FCS chosen for 

maintenance and differentiation were carried out in toxicity test, self-renewal assay 

and mesoderm differentiation (Routinely carried out by Helen Taylor, Julie Wilson). 

 

When ES cells were 80- 90 % confluent in culture which normally taking 48 hours, 

cell passage was applied. Start with gelatinizing flasks, 2ml/25cm2 of 0.1% Gelatin 

in PBS (Invitrogen) was added to the flasks and left for another 5 minutes then 

aspirated away. Old medium was aspirated and washed with 2ml pre-warmed PBS to 

remove the remaining medium. Cells were then treated with 2ml trypsin solution 

(0.025 % trypsin (Sigma), 1 % chick serum (Gibco) and 1.3mM EDTA (BDH) in 

PBS) for 3-5 minutes at 37 ˚C. The flasks were tapped 5 times to lift the cells then 

cell suspension was added into 8ml of ES medium to neutralize the trypsin with the 

serum in the medium and centrifuged at 130 x g for 5 minutes. The supernatant was 

aspirated and the pellet was re-suspended with 10 ml fresh medium to get single cell 

suspension and counted using a Nebauer haemocytometer. 1 x106 per 25 cm2 ES 
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cells were seeded onto gelatinized flask and supplemented with fresh medium to 

10mls with the addition of LIF at 100U/ml then incubated at 37°C in humidified 5% 

CO2 atmosphere in a Galaxy incubator (Wolf Laboratories). The ES cells number 

will reach up to 4-8x106 cells after 48 hours.  

 

ES cell lines applied in this project were listed in Appendix Table 2.3. 

 

2.2.1.2 Maintenance of Stroma-derived cells 

a) Maintenance of embryo-derived stromal cells 

Stromal cell lines used in this project were derived from haematopoietic tissues of 

mid-gestational mouse embryos as previously described (Oostendorp et al., 2002a; 

Oostendorp et al., 2002b) (Appendix Table 2. 4). Generally, AM20.1A4, AM20.1B4, 

UG26.1B6 and UG26.2D3 were derived from the E10 transgenic mouse embryos 

(C57BL/10xCBA background) carrying the temperature-sensitive SV40 T-antigen 

Taq (tsA58) which is active at the temperature of 33 ˚C as the immortalizing gene 

under the control of the β-actin or PGK (phosphoglycerate kinase) gene promoters. 

AM14.1C4 was derived from the AM subregion of AGM reguions from a control 

E11 BL1b transgenitc emryos. The BL1b was Ly-6E (Sca-1) lacZ transgene line 

(C57BL/10xCBA background). EL08.1D2 was derived from the fetal liver of BL1b 

E11 embryo as well. 

 

All the stromal cell lines derived from embryo as described above were maintained 

on gelatinized flasks or wells in stromal medium consisting of 50% MyeloCult 

long-term culture medium M5300 (Stem Cell Technology), 40% alpha minimal 

essential medium (Invitrogen), 10% FCS (Lonza), an additional 1mM L-glutamine 

(Invitrogen) and 0.05 mM beta-mercaptoethanol. Cells were split at 1:2 to 1:6 ratio 

every 2-3 days when got around 90% confluent with trypsin solution. Stromal cell 

lines derived from tsA58 mice were culture at 33 ˚C while cell lines derived from 

BL1b were culture at 37 ˚C with a humidified 5% CO2 atmosphere. 

 

b) Mainteneance of bone marrow-derived OP9 stromal cells 

OP9 stromal cell line was established from newborn B6C3F1 op/op mouse calvaria 
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do not produce functional M-CSF due to the osteopetrotic mutation in the gene 

encoding M-CSF (Macrophage Colony Stimulating Factor) (Kodama et al., 1994). In 

the presence of M-CSF, ES cells could easily differentiated into macrophages 

compared to other mature blood lineages. Therefore, ES cells co-cultured on the 

M-CSF null OP9 stromal cell monolayer could efficiently divert the 

differentiation into blood cells of erythroid, myeloid, and B cell lineages. OP9 

stromal cell line were maintained in OP9 culture medium (80% alpha-minimal 

essential medium (Invitrogen) and 20% FCS, an addition 2mM L-Glutamine and 

0.1mM β-mercaptoethanol),  passaged every 2-3 days when got around 90% 

confluent and cultured at 37 ˚C with a humidified 5% CO2 atmosphere 

 

c) Maintenance of Cos7 cells 

COS 7 cells were routinely cultured directly on 25cm2 tissue culture flasks and 

maintained in 1 x ES cells culture medium and incubated at 37 ˚C with 5 % CO2 in a 

Galaxy incubator (Wolf Laboratories). COS 7 were passaged as ES cells but seeded 

at 1:5 ratios when getting 70%-80% confluent. 

 

2.2.2 Thawing and Freezing of cells 

To thaw cells, cryovials were held in 37˚C water bath to thaw quickly and cell 

suspensions were transferred immediately into 8ml pre-warmed culture medium and 

centrifuged at 1200rpmx3mins. After aspirating medium, the cell pellet was 

re-suspended in 10ml fresh culture medium and transferred into a gelatinized 25cm2 

flask (plus 100U/ml LIF for ES cells). The medium was replaced around 4 hours 

later or the second day. 

 

To freeze cells, cells getting 80%-90% confluent was harvested using the trypsin 

solution as routine and pelleted down. Cell pellet was re-suspended in the freezing 

medium (culture medium consisting 10% dimethyl sulphoxide (DMSO) (Sigma)). 

For each 25cm2 flask, cells pellet was resuspended in 1ml freezing medium and 

devided into 2 cryovials. Cells were frozen in -80˚C overnight and moved into -140 

˚C or liquid nitrogen for long-term storage. 
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2.2.3 Differentiation of ES cells 

In this project, the differentiation of ES cells were carried out in several different 

ways, including the formation of Embryoid bodies (EB), further culture of EBs or 

subpopulation from EBs in suspension or on stromal cells or gelatin. 

 

2.2.3.1 ES cells differentiation in Embryoid body (EB) -Hanging drop method 

In this hanging drop method, ES cells were differentiated in the 3-dimentioanl 

aggregates of uniform size. Basically, cells were passaged following the normal 

routine and 6x105 cells were re-suspended in 20ml ES cells medium plus 100U/ml 

LIF. 10ul droplets (300 cells per droplet) were seeded onto the lid of square petri 

dishes with multi-channel pipette. Lids with droplets were turned over and placed 

back onto the dish bases, holding 10ml tissue culture grade water (Invitrogen). Then 

the hanging drops were cultured in 37 ˚C (humidified 5% CO2 atmosphere). After 

another 48hours, EBs were harvested by tapping the edge of lids against the surface 

of hood and collected with a pipette then centrifuged in 20ml universal at 1000 rpm 

for 3 minutes. The supernatant was aspirated and pellets of EBs were re-suspended in 

20ml fresh ES cells medium without LIF. The EBs were then cultured in 90mm 

bacterial grade petri dish which could prevent the EBs from attach to dish and allow 

the EBs to differentiate in suspension. Penicillin/streptomycin was added at a 

dilution of 1:100 (Sigma, 2,000 units for penicillin and 2mg for streptomycin) to 

prevent any bacterial contamination. For every 2days, the medium was changed and 

EBs were transferred to a new petri dish for further differentiation. 

 

2.2.3.2 ES cells differentiation in Embryoid Bodies (EBs) –Suspension method 

The hanging drop method of EB formation could force ES cell to form aggregates of 

uniform size however which would take longer time to prepare and less efficiency 

for larger scale experiments. ES cells can form aggregates spontaneously in 

suspension culture, although with different sizes but could prepare higher number of 

cells available for further sorting. 

 

Basically, ES cells were harvested as normal routine and 6x105 cells were 
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re-suspended in 20ml ES cells medium then placed in a 90mm bacteriological grade 

peter dish and incubated at 37 ˚C (humidified 5% CO2 atmosphere). LIF was not 

added into the culture and the day of seeding was defined as day0. Every 48 hours, 

EBs were harvested and transferred into a universal tube and centrifuged at 

80gx3mins. Then supernatant were aspirated and EBs pellet was re-suspend in 20ml 

fresh ES cell medium and placed into a new sterile petri dish.  

 

2.2.3.3 ES cells differentiation in co-culture system of EBs or defined population 

derived from EBs on stromal cells 

For investigation of role of stromal cells in haematopoietic differentiation, intact EBs 

generated using hanging drop method or defined population derived from suspension 

EBs were co-cultured on stromal cells for further differentiation. Labelling and 

irradiation of stromal cells were required. 

 

a) Labelling of stromal cells for co-culture 

Basically stromal cells were passaged several times and grown to confluence in 

flasks or wells for staining and irradiation. For most experiments, labeling of the 

stromal cells was required to distinguish ES-derived cells from stromal cells using 

flow cytomertry for further data analysis. The Vybrant DiD labeling system 

(Invitrogen) was applied throughout the project. Vybrant DiD is a carbocyanine dye 

with the low cytotoxicity and high resistance to intercellular transfer. It can be added 

directly into normal culture media to uniformly label attached culture cells with the 

absorption around 644nm and fluorescence Emission around 665nm, which could be 

easily detected in APC channel excited by 633 laser using flow cytometery. Stromal 

cells were stained when became confluent. Cells were washed once with PBS. After 

aspirating the PBS, Vybrant DiD was diluted at 1:250 in PBS. 2ml of dilution was 

added per 25cm2 flak and 800ul dilution was added per well (6 well plate). The cells 

were incubated in the dilutions for 20min at 37 ˚C then aspirated. The cells were then 

washed with 5ml PBS per 25cm2 and 2ml PBS per well for three times. Finally the 

PBS was aspirated and 10ml fresh ES cell medium were added and ready for 

irradiation. 

 



51 
 

 

b) Irradiation of stromal cells 

The γ-irradiation (40Gy) should be carried out no longer than 48 hours prior to the 

co-culture. Irradiator used cesium 137 as a source of unstable atoms to decay and 

emit beta and gamma radiation. After the irradiation, the cells were washed with PBS 

and then supplemented with fresh ES medium and incubated 37 ˚C (humidified 5% 

CO2 atmosphere) ready for use. 

 

c) Co-culture of EBs or defined population derived from EBs on stromal cells 

Intact EBs-stroma co-culture 

Intact Day 1 EBs (24 hours after the day when EBs were harvested from hanging 

drop and LIF was withdrawn) were picked up from suspension with yellow tips. 

Around 50-100 EBs per 25cm2 were seeded directly onto stromal cells or gelatinized 

coated flasks as the control. After co-culture, mixture cells were harvested with 

trypsin solution. 

 

Defined population-stroma co-culture using Magnetic-activated cell sorting 

(MACS) 

Defined population was separated from EBs prepared in suspension methods using 

Magnetic-activated cell sorting (MACS) according to manual instruction then seeded 

directly onto stromal cells for further differentiation. 

 

ES-derived Flk1+ and Flk1- population were isolated from day 4 suspension EBs 

using anti-biotin MicroBeads (Miltenyi Biotec). Basically day 4 suspension EBs 

were collected into 50ml falcon tubes and centrifuged at 1000 rpm x 3mins. EB 

pellets were washed in PBS then treated with trypsin solution for 5mins at 37 ˚C. 

Trypsin solution was then quenched using ES medium and resuspended in fresh 

medium to get single cells and counted. Cells were pelleted down then resuspended 

in DPBS (PBS without Mg+ and Ca+) containing 10%FCS at 2x107/ml and incubated 

at room temperature for 10min to block unspecific antibody binding. Then 

biotin-conjugated anti-mouse-Flk1 antibody (eBioscience) were added at 1:75 
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dilution and incubated at 4 ˚C for 30mins with interval mix. Cells were then washed 

with 2ml MACS sorting buffer (DPBS containing 2% FCS, 1% Pen/strep and 2mM 

EDTA) per 1x107 cells and ready for sorting. Flk1+ and Flk1- cells were isolated 

using anti-biotin MicroBeads (Miltenyi Biotec) according to the manufacturer’s 

protocol. For co-culture for another 24 to 48 hours, sorted cells were plated directly 

onto labeled and irradiated stromal cells or gelatin control at 4x104/cm2. For 

co-culture to day9, sorted cells were plated down at 1x104/cm2. For co-culture to 

day11, 4x103/cm2 were palted. Cells were culture in the EBD medium (IMDM 

supplemented with 15% FCS, 200μg/mL iron-saturated transferrin (Roche), 4.5mM 

monothiolglycerol (Sigma), 50μg/mL ascorbic acid (Sigma), penicillin/streptomycin 

(Gibco), and 2 mM glutamine) in at 37°C in 5% CO2. (Iacovino et al., 2011a)  

 

After co-culture, mixture cells were harvested with trypsin solution for further 

analysis. For longer time of co-culture, cells could become sticky in which case the 

mechanical method would be applied to get single cell by running cell suspensions 

through a 23-gauge needle to disaggregate. 

 

2.2.4 Methylcellulose-based haematopoietic colony assay and normalization 

2.2.4.1 Methylcellulose-based haematopoietic colony assay 

In in vitro system, haematopoietic progenitors could proliferate and differentiate to 

different mature lineages as erythroid, granulocytic, monocyte-macrophage, 

megakaryocyte-myelopoietic as well as lymphoid cells responding to the 

combination of suitable cytokines. Colony assay was widely used for detecting 

haematopoietic progenitors at single cell level in semi-solid medium such as 

methylcellulose supplemented with cytokines, in which individual progenitor called 

colony-forming cells (CFCs) could form cell clusters or colonies consisting of one or 

more types of mature haematopoietic lineages. 

 

To set up Methylcellulose-based haematopoietic colony assay, cells from culture 

were harvested using trypsin solution (mechanic dissociation using needles could be 

applied when cells got stick after long co-culture) to get single cell suspension. 5x104 
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or 1x105 cells were plated into 35mm dishes (Stem cell technology, SCT) containing 

1ml MethoCult® M3434 (SCT) (IMDM containing 1% methylcellulose, 15% FBS, 1% 

BSA, 10 μg/mL Insulin 200 μg/mL transferrin supplemented with 50 ng/mL rm SCF, 

10 ng/mL rm IL-3, 10 ng/mL rh IL-6, 3 U/mL rh EPO, 10-4 M 2-Mercaptoethanol 

and 2 mM L-glutamine). The dishes were placed in big round dish containing an 

60mm petri dish containing 10ml tissue culture grade water (Invitrogen) to prevent 

the methylcellulose from drying out. The dishes were incubated at 37°C with a 

humidified 5% CO2 atmosphere for another 10 days. The colonies were classified 

based on the morphology at light microscopy and scored between day7 to day12 

according to the manual. 

 

2.2.4.2 Normalization of colony assay readout to exclude irradiated stromal cells 

present in cells from co-culture 

When applying colony assay, the cells seeded into assays from co-culture consisted 

ES-derived cells and irradiated cells. It has been determined that the irradiated 

stromal cells could not give rise to colonies in the assays (Gordon-Keylock thesis 

2009). It is necessary to normalize the percentage of ES-derived cells. After seeding 

cells into colony assay, rest cells were resuspended in PBS containing 2% FCS and 

run through BD™ FACSCalibur and BD™ LSRFortessa cell analyzer. When 7a-GFP 

cells were used, percentage of ES-derived cells were decided based on the percentage 

of GFP positive cells at fluorescence channel 1 (FL-1) in Calibur or which was 

excited by 488 nm laser. When wildtype ES cells like E14IV or other non-fluorescent 

ES cell lines were used for the co-culture, stromal cells were labeled with Vybrant 

DiD prior to co-culture which would be positive at FL-4 in Calibur excited by 633nm 

lase or R670/14 in LSRFortessa. ES could be distinguished from stromal cells by 

negative selection. n this project, all the numbers of colonies produced by cells from 

co-culture were calculated by dividing number of colonies scored by percentage of 

ES-derived cells in the total cells harvested from co-culture. 
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2.3 Construction of A2lox.DNMAL-EGFP and A2lox.EGFP 

ES cell lines 

2.3.1 G418 concentration kill curve 

To determine the optimal concentration of G418, 4 x103 A2lox.cre ES cells were 

plated into each well of 6 well plates with 5 ml of media plus LIF. The second day 

the media was replaced with fresh media containing different concentrations (0, 50, 

150, 250, 350, 500 µg/ml) of G418 (Geneticin, PAA) and LIF. The media was 

replaced daily and cells monitored to determine the optimum G418 concentration. 

Dramatic cell death turned up at day3. 270 µg/ml G418 was used for the selection of 

clones. This was defined as the minimum amount of G418 required to kill all 

A2lox.cre ES cells and for colonies to turn up at around day7-9. 

 

2.3.2 ES cell electroporation  

A2lox.cre ES cells passaged twice before electroporation and grew at log rate. 

A2lox.cre ES cell line was designed to express Cre recombinase in the presence of 

doxycycline, therefore, co-electroporation of the Cre expression plasmid was not 

required. ES cells were grown in 1ug/ml doxycycline in 75 cm2 flasks for 24 hours 

before electroporation with the targeting plasmid. The second day, cells were washed 

with PBS, trypsinised for 5 minutes at 37 ˚C, added to media and centrifuged at 1000 

rpm for 5mins. Cells were then resuspended in cold PBS and counted. Cell 

concentration was adjusted to 1x107/ml. 30 µg (1ug/ul) of circulate plasmid 

p2lox.DNMAML-EGFP or p2lox.EGFP was electroporated into 1 x 107 cells in a 

770ul volume in a electroporation cuvette using a BIORAD gene pulser 

electroporator (set up at 0.25KV, 900uF). The electroporated ES cells were then left 

in 4 ˚C for 10mins. Afterwards cell suspension was added into 20ml pre-warmed ES 

medium plus LIF and then aliquoted into 10 gelatinised 100 mm plates containing 10 

ml ES medium plus LIF. 24 hours later the media was replaced with ES medium plus 

LIF and 270 ng/ ml G418 in 9 plates. The remaining plate was set up without G418 

as the control. Medium was replaced every one or two days for 9 days until G418 

resistant colonies turned up and grew big enough for picking up. Single ES clones 
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with different colony morphology were picked into to grow in 96 well gelatinised 

plates containing ES cell medium with LIF and G418 selection until confluent then 

passaged as routine into 24 well plates and finally got expanded into 25cm2. Cells 

were then frozen down and 4 colonies from each electroporation were picked up and 

get ready for further testing. Here only two colonies were presented in the thesis. 

 

2.3.3 Karyotyping of ES clones 

ES cells were grown and passaged twice to get 70% confluent at a log growing stage. 

10µl/ml KaryoMax (Colcemid) (Invitrogen) was added to ES cells (at 10µl/ml ES 

medium) and incubated for 3 hours at 37 ˚C to arrest cells at metaphase of mitosis. 

The cells were then harvested with trypsin and resuspended slowly in 8mls 

pre-warmed hypotonic 0.075M KCl solution. The cells were then incubated at 37 ˚C 

for approximately 12 minutes with interval gentle mix and then 2 ml of fresh fixative 

(3:1 v/v methanol/ acetic acid solution) were added. The cells were pelleted down 

and treated with KCl and fixative buffer for another two times then cell solutions 

were dropped onto cold 100% ethanol pre-treated glass slides. The slides were 

allowed to dry and stored at room temperature. The slides were stained with 1 µg/ml 

DAPI (Sigma) and observed on a Zeiss Axioskop2 microscope using a 40x or 63x 

objective lens. Approximately 30 spreads were photographed using a ProgRes C14 

camera from Jenoptik and the numbers of chromosomes per cell counted.   

 

2.3.4 ES cells self-renewal assay 

500 ES cells were plated down in 6 well plates with LIF. The second day wells were 

washed with PBS twice and replaced with fresh ES cell culture medium with or 

without LIF. After 5 -7 days of incubation in 37 ˚C, cells were fixed and stained with 

Leukocyte Alkaline Phosphatase Kit (Sigma) according to the manual instruction.  
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2.4 Luciferase assay 

To test whether DNMAML-EGFP could function properly to inhibit Notch 

transcriptional activity, dual luciferase assay was carried out to measure Notch 

downstream transcriptional factor RBP-Jk promoter transcriptional activity.  

 

2.4.1 Plasmids co-transfection to cells 

12xRBP-Jk-binding sites-luciferase reporter was a gift from Lowell, S. 2x105 

iDNMAML-EGFP or iEGFP cells were plated into 24 well plates minus or plus 

Doxycycline (1ug/ml) without LIF. The second day cells were transfected with was 

transfected with 0.25μg of pCAG-NotchIC plasmid to induce Notch activity. For 

testing Notch transcription activity, 0.75μg 12xRBPJk-luciferase plasmid plus 15ng 

of SV40 renilla plasmid were transfected together. For negative control, 0.75μg 

pGL3 plasmid plus 15ng of SV40 renilla plasmid were transfected. For positive 

control, pEGFP-DNMAML-N3 was co-transfected without adding Doxycycline. 

Transfection was carried using Lipofectmine2000 (Invitrogen) 

 

2.4.2 Measuring luciferase activity via Dual-Luciferase Reporter Assay 

Cells were collected 72 hours later after transfection and analyzed with Promega 

Dual Luciferase Kit (Promega) a protocol modified based on manual instruction. 

Basically, cells were lysated with the passive methods: 80μl 1X PLB/well was added 

to completely cover the cell monolayer in 24 well plate. Plates were placed rocking 

platform with gentle shaking at room temperature for 15mins. Lysates were 

transferred to a 0.5ml eppendorf vials and got frozen and thawed twice in the -80 ˚C. 

Luminometer was programmed to perform a 2-second premeasurement delay 

followed by a 10-second measurement period for each reporter assay. 30μl LARII 

was added into luminometer tubes. 20μl cell lysate was added into LAR II, mixed by 

pipetting 2 or 3 times. Place the tube in the luminometer and initiate reading then the 

firefly luciferase activity measurement was recorded on the printer. After that another 

30μl 1x Stop & GloR reagent was added and pipetted several times to mix then 

initiated reading. Readout was recorded on the printer with a ratio calculated. 
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2.5 Flow cytometry and Fluorescent-activated cell sorting 

2.5.1 Flow cytometry analysis of surface marker expression 

All the flow cytometry data presented in this thesis were collected with the BD™ 

FACSCalibur flow cytometer (with 488nm and 633nm laser, Becton Dickinson) in 

Scottish National Blood Transfusion Service (SNBT) with help of Kay Samuel, or 

BD™ FACSCalibur and BD™ LSRFortessa cell analyzer (with 5 laster: 488nm, 

561nm, 633nm, 405nm and 351nm Becton Dickinson) at Centre for Inflammation 

Research, Queen’s Medical Research Institute (QMRI), Edinburgh. 

 

For determining the proportion of ES-derived cells in co-culture, cells were 

harvested as routine and resuspended in PBS with 2% FCS then run through the 

FACSCalibur or LSRFortessa directly. For detecting the expression of Notch ligands 

and receptor expression in stromal cell lines and lineage-specific surface markers 

from co-culture, cells were harvested and blocked in PBS with 10%FCS for 10min at 

room temperature. For each FACS tube, up to 1x106 cells were added and incubated 

with antibody with optimal dilution at 4 ˚C for 20mins. Cells then washed in 4mls 

FACS PBS with (PBS with 2%FCS) and centrifuged at 400g x 5min. For biotin 

labeled antibodies requiring streptavidin binding, cells were washed and resuspended 

in 150ul FACS PBS. Streptavidin conjugated with PE, APC or Percp-efluor710 

(tritration for optimal dilution) was added for another 15min at 4 ˚C then wash with 

FACS PBS again. Samples were ready and analyzed at BD™ FACSCalibur and 

BD™ LSRFortessa cell analyzer. Dead and apoptotic cells were excluded from 

analysis using an electronic ‘viable’ gate on FSC and SSC. Data were analyzed using 

FACSDiva or flowjo. 

 

2.5.2 Reagents for flow cytometry and apoptosis assay 

Antibodies for flow cytometry and AnnexinV kit were purchased from eBioscience 

or BD Bioscience and used according to manual instruction. 
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2.5.3 Fluorescent-activated cell sorting (FACS) 

Fluorescent-activated cell sorting was carried out by Shonna Johnson and Fiona 

Rossi at QMRI or Simon Monard at MRC Centre for Regenerative Medicine with 

BD™ FACSAria II cell sorter or BD FACS Jazz™. 

For sorting at GFP positive ES-derived cells, cells from co-culture were harvested 

and resuspended at the concentration of 5x106/ml in PBS with 2% FCS and filtered 

through the BD strainer to avoid blocking the machine. Cells were then sorted at FL1 

channel at GFP expression exited at 488nm laser then harvested into PBS containing 

10% FCS and pelleted down and frozen in dry ice for further analysis. 

 

For sorting at human-CD2 (hCD2) expression, cells from co-culture were harvested 

and resuspended at 2x107/ml in PBS with 10% FCS and 1% Pen/strep to block 

unspecific antibody binding at room temperature. Then anti-hCD2-PE were added at 

1:40 dilution to cell suspension, mixed well and incubated at 4 ˚C for 20mins. Cells 

were gently mixed every 10mins. After antibody incubation, cells were washed with 

4ml FACS PBS per 1x107 cells and centrifuged down at 1000rpm x 5mins. Cells 

were then resuspended in FACS PBS with 1% Pen/Strep at 5x106/ml and run through 

sorter. CD2 negative and positive cell population was defined at PE staining at FL2 

channel which is exited at Yellow Green laser (561nm). Sorted cells were collected 

into FACS tube or 15ml falcon tube containing PBS with 10% FCS and 1% 

Pen/Strep then back to colony assay or pelleted for RNA extraction. Normally 3x105 

cells were collected for colony assay and 2 to 5x105 cells for RNA analysis. 
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2.6 Protein Analysis 

2.6.1 Protein extraction from cells 

Cells were harvested using trypsin solution and pelleted down in 0.5ml eppendorf 

tubes. Cell pellets were washed with PBS and ice cold RIPA buffer (25mM tris-HCl, 

pH7.6, 150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) 

(ThermoScientific) was applied with addition of 1%protease inhibitor (Sigma). 

Typically 80ul RIPA buffer was added into confluent cells from a well in 6 well plate. 

Cell pellets were lysed in RIPA buffer in ice for 30mins with a short vortex every 

10mins and then centrifuged at 13000rpm x 20min at 4˚C. Supernatants were 

transferred to a new eppendorf tube for further storage in -20˚C or determining 

protein concentration using standard Bradford protein assay. 

 

2.6.2 Gel electrophoresis and western blotting 

Protein samples were separated using NuPAGE® SDS-PAGE Gel System 

(Invitrogen) with NuPAGE® 4-12% Bis Tris Gels. Gels were run at 200 V for 

approximately 35-45 minutes with 1 x MOPS or MES buffer (Invitrogen) and then 

semidry electro-transfer onto nitrocellulose membranes was performed at 15 V for 1 

hour with cold transfer buffer (25 mM Tris, 192 mM glycine and 20% methanol) The 

blots were then blocked for 1 hour in 5 % dried milk powder (Marvel) or 5% BSA in 

1 x TBST (25mM Tris-HCl, pH 8.0, 125mM sodium chloride, 0.1% Tween-20) 

before hybridization with the primary antibodies in blocking solution overnight at 

4 °C. After 3x 15 minute washes in TBST the membranes were then incubated with 

Horseradish -conjugated secondary antibody (1:1000) for 1 hour at room temperature. 

Equal volume of ECL solution A (0.1M Tris-HCl pH 8.6, 25mM luminal, 0.4mM 

coumaric acid) and solution B (0.1M Tris-HCl pH 8.6 and 0.02% hydrogen peroxide) 

were mixed and added to the membrane which was exposed to light-sensitive film 

(Kodak) to visualize the antibody-antigen reactions. Antibodies applied in this 

projects for western blots were purchased from Cell Signaling Technology 

(anti-Jagged1, anti-STAT3, anti-EGFP), Abcam (anti-Delta-like1) or Santa-Cruz 

(anti-Delta-like4). 
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2.6.3 Immunochemistry 

Stromal cells were grown on glass coverslips in 24 well plates coated with 0.1% 

gelatin. When getting around 100% confluent, cells were irradiated with γ-irradiator 

as irradiation routine then incubated for another 24 hours. Cells were washed with 

PBS and fixed with 4 % PFA (Sigma) in PBS for 10 minutes at room temperature, 

followed by 3 x 5 minute PBS washes. Because we were interested in the ligands and 

receptors expression on the cell membrane, permeabiliztion was not required. 

Samples were then blocked in 5 % donkey serum (Sigma) in PBST (0.001 % 

TtritonX-100 in PBS) for 1 hour at room temperature. Primary antibodies were 

diluted at 1:100 ratio in blocking solution and incubated at 4 °C overnight in a 

humidified chamber. 3 x 5 minute PBST washes were applied next day followed by 

an incubation with a 1: 200 dilution of secondary antibodies for 1 hour at room 

temperature in the dark. 1μg/ ml DAPI was added into the secondary antibody 

incubation. After 3 x 5 minute PBST washes coverslips were mounted on glass 

microscope slides using a drop of Prolong Gold mounting medium (Invitrogen) and 

left overnight in the dark at room temperature. The slides were subsequently stored at 

4 °C in the dark. 
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Chapter 3: Notch signalling pathway in the co-culture 

system of EBs and stromal cell lines 
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3.1 Aims 

To dissect the co-culture system of stromal cell lines and EBs and investigate how 

Notch signalling is involved in the co-culture system 

 

3.2 Introduction 

Previous work suggested that inhibition of the Notch signaling pathway using the 

gamma secretase inhibitor (GSI) could abrogate the haematopoietic enhancing 

activity of the AM20.1B4, AM14.1C4 and OP9 stromal cell lines. Furthermore, it 

had been reported that direct contact was required for the haematopoietic enhancing 

stromal cell lines to enhance haematopoietic differentiation supporting a direct 

interaction between stromal cells and EBs (Figure 1.6, Gordon-Keylock et al., 2010). 

Taken together, these findings support the hypothesis that the Notch signaling 

pathway plays a role in the haematopoietic enhancing activity of the co-culture 

system, either in EBs or stromal cell lines, or both.  

 

Numerous studies have also shown that the expression of Notch ligands in a stromal 

microenvironment can affect haematopoiesis, including proliferation, survival ability 

and differentiation. For example, Li L et al., found that human Jagged1 expressed by 

human marrow stroma inhibited differentiation of 32D myeloid progenitors through 

interaction with Notch1 and could be mediated to maintain haematopoietic 

progenitors (Li et al., 1998); Schmitt and his colleagues proved that overexpression 

of Delta-like1 in OP9 stromal cells could activate T cell lineage differentiation from 

fetal liver derived haematopoietic progenitors (Schmitt and Zuniga-Pflucker, 2002) 

and overexpression of Jagged2 in NH3T3 could delay differentiation of CD34+ cells 

through alerting cell cycle (Carlesso et al., 1999). Especially, co-culture of AGM 

cells from Jagged1-/- mice on OP9 with endogenous Jagged1 could rescue the 

non-haematopoiesis phenotype indicated a non-cell autonomous regulation by Notch 

signaling (Robert-Moreno et al., 2008). Combined with the inhibitory effect of GSI 

on haematopoietic enhancing activity in our system, we hypothesized that the 

haematopoietic enhancing stromal cell lines enhanced haematopoiesis by activating 

higher Notch activity in the EBs, either by providing more Notch ligands directly or 
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by upregulating Notch signalling molecules in EBs via other factors. Furthermore, 

Notch activity in stromal cells could be also relevant because GSI could affect both 

stromal cells and EBs. Thus, experiments described here were designed to ask: 

 

(a) whether the expression level of Notch ligands of these haematopoietic niche 

derived stromal cell lines correlated with their haematopoietic enhancing abilities, 

in which case we assumed the haematopoietic enhancing stromal cell lines could 

possibly provide a higher dose of Notch ligands to stimulate Notch signal in EBs; 

 

(b) whether the Notch activity in stromal cell lines is active and responsible for the 

enhancing effect of EBs-derived haematopoiesis through its downstream genes or 

target factors; 

 
(c) whether the haematopoietic enhancing ability of AM14.1C4 is determined by 

activating higher Notch activity in EBs than non-enhancing system, in which 

case we assumed that the Notch activity in EBs co-culture on enhancing stromal 

cell lines would be higher than those on non-enhancing stromal cell lines. 

3.3 Experimental strategy 

 To determine whether there is any correlation between the expression of Notch 

ligands in stromal cells and their haematopoietic enhancing abilities, flow 

cytometry, western blotting and immunostaining were carried to measure the 

ligands expression at the protein level. Quantitative RT-PCR was also carried to 

measure the ligand transcripts level. 

 

 To determine whether the Notch signaling is active in stromal cell lines, Notch1 

and Hey1 was analyzed in AM14.1C4, UG26.1B6 and OP9 at the RNA level. 

To test whether stromal cell lines could respond to GSI, co-culture of EBs with 

AM14.1C4 was carried out with addition of GSI from day4 to day 6. FACS was 

then applied to separate EBs and stromal cells at day6 then the expression of 

Notch downstream genes were measured in both populations. 

 

 To determine whether the haematopoietic enhancing ability of AM14.1C4 is 
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determined by inducing higher Notch  activity in EBs compared to the 

non-enhancing stromal cells, EBs were separated from stromal cells at different 

time points during the differentiation and quantitative RT-PCR was used to 

assess expression levels of the Notch ligands, receptors and known target genes. 

  



65 
 

3.4 Results 

3.4.1 There were no direct correlation between Notch ligand expression and the 

haematopoietic enhancing abilities of stromal cell lines  

In previous work, methylcellulose assays were applied to assess the ESC-derived 

haematopoietic activity by counting the haematopoietic colonies (CFU-GEMM, 

CFU-GM, Ery/Mac and CFU-M). These results suggested that OP9, AM20.1A4, 

AM20.1B4 and AM14.1C4 stromal cell lines (from AM region) had haematopoietic 

enhancing/supporting ability whereas the UG26.1B6, UG26.2D3 (from UG region) 

and EL08.1D2 (from fetal liver) did not (Figure 3.1) (Gordon-Keylock, et al., 2010). 

Here we screened the Notch ligand expression at both the RNA and protein level in 

these stromal cell lines to assess whether their ligand expression correlated with their 

haematopoietic enhancing ability. 

 

3.4.1.1 Notch ligand mRNA could be detected in stromal cell lines but expression 

levels did not correlate to haematopoietic enhancing activity 

Quantitative real-time RT-PCR (qPCR) was first applied to measure ligand gene 

transcripts. Stromal cells including AM20.1A4, AM20.1B4, AM14.1C4, UG26.1B6, 

UG26.2D3, EL08.1D2 and OP9 were analyzed. As a control, pooled samples from 

adult bone marrow and spleen (C57/B16) were measured for Jagged1 and Delta-like1 

expression (data not shown). For all the experiments, UG26.1B6 was set as the 

calibrator. All the cDNA level raw data of the samples were expressed as fold change 

over the calibrator, which was assigned as a value of “1”. HPRT was used as the 

endogenous control.  

 

All the stromal cell lines expressed Notch ligand: Jagged1, Jagged2, Delta-like1, 

Delta-like 4 (Figure 3.2). Statistically, there was no significant variance in Jagged1, 

Jagged2, Delta-like1 and Delta-like4 expression level among these stromal cell lines 

(p=0.09337; p=0.3608; p=0.5778; p=0.1773 respectively). By looking at each ligand 

individually, we noted several consistent trends: Jagged1 RNA level in OP9 stromal 

cell line was relatively higher compared to other stromal cell lines; AM14.1C4 

expressed relatively higher Jagged1; For the Delta-like1, non-enhancing stromal cell 
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lines UG26.2D3 and EL08.1D2 expressed higher levels of Delta-like 1. Despite these 

differences, when correlated to their haematopoietic enhancing ability by plotting 

ligand expression levels to number of haematopoietic colonies in 

methylcellulose-based colony assay, it was found that there were no direct 

correlation between the ligand expression and the HPCs formation ability in the 

AGM-derived stromal cell lines (p>0.5). Although not conclusive, these data 

indicated the ability of the haematopoietic enhancing AM stromal cell lines to 

enhance ESC-derived haematopoiesis was not dependent on their expression level of 

Notch ligands. 

 

However, there were several interesting points worthy of further investigation. High 

expression of Jagged1 in OP9 could properly reflect the difference of site of origin. 

In the bone marrow microenvironment, the Notch signaling pathway could be 

important for either enhancing or supporting the haematopoiesis via Jagged1 

activation; although for each ligand, we could not observe any correlation between 

the enhancing ability and the ligand expression level, the complexity of the stroma 

suggests more possibilities. It could be the combination of the ligands or preference 

of one of the ligands which is really mediating the activation of Notch signaling 

pathway in the EBs. Alternatively, stromal cells enhance the haematopoiesis in 

combination with other active or repressive signaling pathways. 
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Figure 3.1 Comparison of haematopoietic enhancing ability of 
haematopoietic niche derived stromal cell lines in EB/stromal co-culture 
system. 

The total number of haematopoietic colonies per 3 × 10 5 ES-derived cells (7a-GFP 
ESC) from co-cultures with stromal cell lines to 6 days differentiation was compared 
to gelatin control. AM20.1B4, AM20.1A4 and AM14.1C4 are derived from AM 
sub-region of AGM, UG26.1B6 and UG26.2D3 are derived from UG sub-region, 
EL08.1D2 is derived from fetal liver, OP9 is derived from from calvaria of newborn 
osteopetrotic op-/- mice. Data represented mean of between 3 and 11 independent 
experiments. Remaining colonies such as definitive erythroid and CFU-mast were 
categorized as “other”. Figure adapted from Gordon-Keylock et al., 2010. 
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Figure 3.2 Quantitative RT- PCR measuring Notch ligand transcripts of 
embryonic niche -derived stromal cell lines with OP9 as a control (left panel); 
Correlation of ligand RNA level in embryonic niche derived stromal cell lines 
with haematopoietic enhancing activity (right panel). 

Red bars and dots represent haematopoietic enhancing stromal cell lines, blue bars 
and dots represent non-enhancing stromal cell lines. Error bars represent the range of 
2 independent experiments. For gene transcripts, p-values were calculated by 
Kruskal-Walis test. For correlation, p-values were calculated by Spearman test. 
Calibrator: UG26.1B6=1; Endogenous control: HPRT. 
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3.4.1.2 Notch ligands detected in stromal cells at protein level but their 

expression does not correlate to haematopoietic enhancing ability 

It is possible that the gene transcripts do not reflect the active protein level exactly 

because of several factors such as the post-transcriptional modification, protein 

degradation and subcellular localisation. It is therefore necessary to measure the 

Notch ligand expression at the protein level. Jagged1, Delta-like1 and Delta-like 4 

have been widely investigated their roles in the haematopoiesis. Here we measured 

their expression using immunochemistry, western blots and flow cytometry assays. 

Because of the limitation and sensitivity of antibodies, Jagged1 expression was 

measured with flow cytometry and western blot, while Delta-like 1 Delta-like 4 were 

measured by immunostaining. 

  

a) Jagged1 is expressed highly in OP9 stromal cell lines 

According to the qPRC data, it was suggested that Jagged1 was highly expressed in 

OP9 and AM14.1C4. To confirm the expression of Jagged1 in the stromal cell lines 

at the protein level, flow cytometry was applied to determine Jagged1 expression at 

the cell surface. According to the flow cytometry data, Jagged1 was expressed in all 

the stromal cell lines to some extent with OP9 having the highest proportion of 

positive cells (77.9%±2.5%) (Figure 3.3 A). Jagged1 was detected on a lower 

proportion of cells in all the other stromal cell lines: AM20.1A4 (16.15%), 

AM20.1B4 (4.4%±0.9%), AM14.1C4 (25.0%±10.1%), UG26.1B6 (18.4%±4.1%), 

UG26.2D3 (8.08%), EL08.1D2 (12.38%) (Fig 3.3A). The enhancing cell line 

AM14.1C4 and non-enhancing cell line UG26.1B6 expressed higher proportion of 

Jagged1 than other embryonic niche -derived stromal cell lines. Here statistics was 

not available because of limited repeats at 1 to 3 times. 

 

Jagged1 expression at protein level was also determined by western blotting (Figure 

3.3 B). The molecular weight shown on the blotting was around 180Kd (134Kd is the 

predicted MW of the unprocessed precursor), which could be down to glycosylation. 

Jagged1 was detected in Cos7 cells transfected with pCAG-Jagged 1 plasmid (A gift 

from Lowell, S.) and in OP9 cells but not in untransfected Cos7. Very weak bands 

were observed in the other three AGM-derived stromal cell lines, but with a much 
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stronger loading control indicated by GAPDH. 

 

Taken together our Flow cytometry and Western Blots results, it was suggested that 

Jagged1 is widely expressed by these haematopoietic niche-derived stromal cell lines 

but it is not the key regulator for the enhancing AM cell lines to enhance 

haematopoiesis because of the relatively low expression level compared to bone 

marrow derived stromal cells OP9. Jagged1 could be an important regulator for bone 

marrow microenvironment-based haematopoiesis as previously suggested (Calvi et 

al., 2003). 
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Figure 3.3 Detecting of expression of Jagged1 in stromal cell lines with flow 
cytometry and western blots. 

(A) According to flow cytometry, Jagged1 is expressed in a higher percentage of OP9 
cells compared to than other stromal cell lines. Error bars represent standard error 
mean (SEM) from 3 independent experiments. 

(B) According to western blot, OP9 expressed higher Jagged1 than other three 
AGM-derived stromal cells. Cos7 trasfacted with pCAG or pCAG-Jagged1 
plasmid were applied as the positive control. 
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b) Delta-like1 is widely expressed in stromal cell lines 

Immunochemistry was carried out to detect Delta-like 1 expression and cell 

subcellular location in OP9, AM20.1B4, AM14.1C4 and UG26.1B6 stromal cells. 

Cells were grown and irradiated before immunochemistry was carried out. All four 

stromal cell lines expressed Delta-like 1 in the cytoplasm (Figure 3.4A). Although 

this assay is not quantitative, we noted that the OP9 and AM20.1B4 cell lines 

appeared to express higher levels of Delta-like1 compared to AM14.1C4 and 

UG26.1B6.   

 

c) Delta-like4 is widely expressed in stromal cell lines 

Similarly, Delta-like 4 was detected in all the four stromal cell lines at different 

levels but the observed level of expression was not obviously related to their 

enhancing ability (Figure 3.4B). It was interesting to note that in addition to 

cytoplasmic staining, there was bright inclusion-like staining around the nucleus. 

Under certain circumstance when cells do not require Delta-like 4 to be transported 

to the cell membrane to function as a ligand, it is possible that Delta-like 4 

accumulated on the rough endoplasmic reticulum (rER) around the nucleus. This 

phenomenon suggests that even though the mRNA and protein are detected, the 

location of the protein is crucial in determining whether the ligands could 

functionally activate a receptor at the cell surface. Therefore, in light of this, it would 

be interesting to monitor the sub-cellular location of Notch ligands of the stromal cell 

lines during the co-culture period. 
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Figure 3.4 Immunochemistry of Delta-like1 (A) and Delta-like4 (B) in OP9, 
AM20.1B4, AM14.1C4 and UG26.1B6. 

FITC staining indicated Delta-like 1 or Delta-like4 staining. DAPI stained the 
nucleus. Secondary antibody only was applied as the negative control. 



74 
 

3.4.2 Notch signaling is active in stromal cells and can be inhibited by GSI 

We previously demonstrated that inhibition of the Notch pathway with GSI 

abrogated the haematopoietic enhancing effects of stromal cell lines. Because 

stromal cells and EBs in co-culture were both exposed to GSI, Notch activity was 

potentially inhibited in either the ESC-derived or the stromal cells or both. Alteration 

of cell fate in EBs could be caused by the target genes regulated by Notch within the 

stromal cell lines themselves. Thus, to extend the investigation of the role of Notch 

signalling in the co-culture, we measured the Notch activity of stromal cell lines and 

tested their response to the GSI compared to the EBs. 

 

Stromal cell lines were seeded, irradiated then left for another 3 or 4 days. Cells were 

harvested and analyzed by quantitative RT-PCR at the expression level of Notch 

receptor Notch1 and downstream gene Hey1. Enhancing stromal cell line AM14.1C4 

(AM14 as abbreviation) expressed a higher level of Notch1 as well as the 

downstream target Hey1 compared to both the non-enhancing cells line UG26.1B6 

and control OP9 stromal cells (Figure3.4A). These data suggest that the higher 

inherent Notch activity in AM14.1C4 could in part explain its haematopoietic 

enhancing activity.  

 

To determine whether Notch activity in stromal cell could also be affected by GSI in 

the co-culture system, we co-cultured day1 hanging drop EBs on irradiated AM14 

stromal cells to day6 with treatment of GSI from day4 to day6 then harvested and 

FACS sorted based on GFP expression. Purified GFP+ ES-derived cells and GFP- 

AM14 stromal cells were both analyzed in quantitative RT-PCR. Hes1 and Hey1 

have been widely used as the downstream genes of Notch signaling pathway. Runx1 

is reported to be important for definitive haematopoiesis and regulated by another 

Notch downstream gene GATA2. We demonstrated that the expression levels of all 

three genes, Hes1, Hey1 and Runx1 are inhibited by GSI in stromal cells in one 

preliminary experiment (Figure 3.5B). Significant inhibition of these three 

downstream genes was also observed in sorted EBs from EB/AM14 co-culture 

(Figure 3.5 C). Indeed inhibition of the direct Notch target genes Hes1 and Hey1 by 

GSI is greater in stromal cells compared to in ESC-derived cells. Our preliminary 
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data revealed that Hes1 were reduced by 90% whereas in EBs a 50% reduction in 

expression of these genes was observed (Figure 3.5 B, C). Inhibition of Runx1 levels 

was comparable in the two cell types. Based on these results, we concluded that in 

the co-culture system Notch signaling pathway is active in both stromal cells and 

EBs and this signalling could be inhibited by GSI in both cell populations. Thus the 

inhibitory effect of GSI on AM14 haematopoietic enhancement could be caused by 

inhibition of Notch signaling pathway either in EBs or AM14 stroma, or both. A 

further finding from our study supported the notion that Notch could be a key 

regulator for definitive haematopoies, which was mediated by Runx1 in the 

EB/AM14 co-culture system. 
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Figure 3.5 Measurement of Notch activity in AM14.1C4, UG26.1B6 and OP9 and 
effect of GSI on both stromal and ES-derived cells from co-culture by 
quantitative RT-PCR. 
(A) AM14.1C4 has a higher level of Notch activity than OP9 and UG26 according to 
Notch1 and Hey1 expression. Calibrator: UG26.1B6. (B) Notch activity in 
AM14.1C4 stromal cells was inhibited by GSI according to Hes1, Hey1 and Runx1 
expression; (C) Notch activity in EBs co-cultured on AM14.1C4 stroma was 
inhibited by GSI. Calibrator: GSI treatment sample. Endogenous control: 18s. Data 
represent 3 to 6 repeated reactions from 1 to 2 independent experiments. Error bars 
represent SEM. P-values were calculated with Mann-Whitney test. (*p<0.05, 
**p<0.01) 
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3.4.3 Investigation of Notch activity in the EBs co-cultured on the stromal cell 

lines during differentiation 

Our analysis of Notch ligand, receptor and downstream gene expression suggested 

that the haematopoietic enhancing activity of AM stromal cell lines was not due to 

higher levels of expression of Notch ligands, but possibly related to Notch activity in 

the stromal cells. This led us to consider Notch activity of the ESC-derived cell 

populations within the co-culture system. We measured the Notch activity in the EBs 

from co-cultures by analysing the expression of the Notch receptors, ligands and 

downstream genes transcripts by quantitative RT-PCR through FACS sorting. 

 

3.4.3.1 Confirming the activity of the Notch signaling pathway in the AM14 

co-culture system 

AM14.1C4 stromal cell line demonstrated the best haematopoietic enhancing ability 

of all cell lines tested. Although in Figure 3.4 C, we have claimed the inhibition of 

Notch activity by GSI on EBs from EB/AM14 co-culture, here we further monitored 

the Notch activity of EBs co-cultured on the AM14.1C4 through the whole co-culture 

period. EBs derived from ESCs that constitutively expressed GFP (7a-GFP) were 

co-cultured on irradiated AM14.1C4. At defined time points (Day3, 4, 5, 6), the 

mixture of co-culture cells including EBs and stromal cells were harvested, 

disaggregated into single cells then GFP-expressing ESC-derived cells were sorted 

by FACS (Figure 3.6). Real-time PCR was carried out to determine the levels of 

expression of Jag1, Notch1, Hey1 and Hes5 during the 6 day differentiation period 

(Figure 3.7). Notch activity of undifferentiated ES cells, day0 EBs from hanging 

drops, Day1 EBs were also measured and compared to the differentiated cells.  

 

There was no variance of in the level of expression of the ligand Jag1 during 

differentiation (p=0.0542) (Figure 3.7 A) However expression of the receptor Notch1 

increased during differentiation from Day0 EBs. Notch1 increased 2 fold in Day3 

EBs compared to Day0 EB (*p<0.05) while there were no significant variance of 

Notch1 level from day3 to day6 (p=0.11) (Figure 3.7B). We also measured the Notch 

downstream target genes Hey1 and Hes5. Interestingly, Hey1 increased at day3 
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significantly compared to day0 EBs (p=0.0005) and remained at a stable level 

without significant variance (p=0.26), which was similar to the expression pattern of 

Notch1 (Figure 3.6C). In contrast, the Hes5 level was not enhanced during 

differentiation (Figure 3.6D). These results suggested that in the EBs co-cultured on 

the AM14.1C4 stromal cell line, the Notch signaling pathway is active in 

ESC-derived cells and increased (according to Hey1) during the co-culture period 

supporting previous data demonstrating the potential role of Notch in haematopoiesis 

(Gordon-Keylock et al., 2010). Furthermore, these data demonstrated that this 

increase in Notch activity is not due to an increase in expression of the ligand Jag1 

ESC-derived cells. Hes5 might not be active or not be able to respond to the RBP-Jκ 

transcriptional activator during co-culture with AM14.1C4. 
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Figure 3.6 Scheme of quantitative RT-PCR to test Notch activity in ES-derived 
cells in EB-stromal co-culture system during the differentiation time course. 
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Figure 3.7 Quantitative RT-PCR analysis of Notch signaling pathway 
components in sorted ESC-derived cells during differentiation when co-cultured 
on AM14.1C4. 
(A) Jag1 expressed at relative stable level during differentiation; (B) Notch1 
increased from day0 to day3 then expressed at stable level; (C) Hey1 increased from 
da0 to day3 then expressed at relative stable level; (D) Hes5 did not change during 
differentiation from day0 to day6. Calibrator: day1 EBs; endogenous control 18s. 
Data represent 9 repeated PCR reactions from 3 independent co-culture experiments. 
Non-parametric Mann-Whitney tests were used to calculate p-values. Error bars 
represents the standard error of the mean (SEM) (***p<0.001). 
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3.4.3.2 There was no direct correlation between Notch activity in EBs throughout 

the co-culture period and its haematopoietic activity in the co-culture system 

Our data suggested that Notch activity was active and increased during the early 

stages of differentiation then stablised from day 3-6 when cultured on AM14-1C4 

stromal cells. In order to investigate whether this increased Notch activity in EBs 

was related to the haematopoietic enhancing effects of the stromal cell lines we 

tested Notch activity in sorted ESC-derived cells after culture in enhancing and 

non-enhancing conditions. EBs co-cultured on gelatin control, OP9 positive control 

or the non-enhancing stroma control UG26.1B6 were therefore screened for Notch1, 

Notch downstream genes (Hey1, Hes5) and compared to EBs in AM14.1C4 

co-culture from day3 to day6. Here we noted some convincing trends in Notch1, 

Hey1 and Hes5 expression.  

 

Notch1 was widely expressed in the EBs during differentiation in all 4 co-culture 

systems (Figure 3.8A). We noticed that the expression pattern is quite similar in the 

gelatin control, UG26.1B6 negative control and the AM14.1C4 co-culture system 

(p>0.05 from day3 to day6). Interestingly, EBs co-cultured on OP9 stroma expressed 

higher levels of Notch1, which could be caused by higher expression of Notch ligand 

Jagged1 in OP9 stroma that we showed previously (Figure 3.2, 3.3) (OP9 vs gelatin 

*p<0.05, ***p<0.001).  

 

As for Notch downstream genes, compared to EBs from AM14.1C4 co-culture, Hey1 

was expressed at relatively similar level through differentiation from day3 to day6 in 

these four co-culture, except at day3, EBs in gelatin had a higher level of Hey1 

expression (Figure3.8 B). Although Hes5 was expressed at low or basal levels in the 

EBs co-culture on AM14.1C4 without any significant change throughout the 

co-culture period (Figure 3.6 D), Hes5 was increased significantly when co-cultured 

on non-enhancing UG26.1B6 compared to EBs from gelatin or AM14.1C4 

co-cultures at day 5 and day6 (Figure 3.8 C).  

 

These data demonstrated that although the Notch pathway is active in ESC-derived 

cells during AM14 co-culture, its activity in EBs was not higher than that from 
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negative control or non-enhancing stromal cell co-culture system. Thus, Notch 

activity in EBs and haematopoietic activity were not correlated. Interestingly, as a 

non-enhancing stromal cell line, UG26.1B6 was reported to support adult HSCs via 

Wnt5a secretion (Buckley et al., 2011). Thus, the significantly higher level of 

expression of Hes5 in EBs cultured on this cell line suggested a possible involvement 

of Notch signaling pathway of UG26.1B6 in supporting adult HSCs. 
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Figure 3.8 Quantitative RT-PCR to measure Notch activity in EBs co-cultured on 
AM14.1C4, Gelatin, UG26.1B6 and OP9 from day1 to day6. 
Day1 EBs were used as the calibrator, assigned as “1”. Endogenous control: 18s. 
Error bar represent SEM from 6 repeated reactions from two independent 
experiments. P-values were calculated with Kruskal-Wallis test with Dunn’s multiple 
comparison tests. (*p<0.05, **p<0.01, ***p<0.001) 
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3.5 Conclusion 

 
The aim of this chapter was to explore any correlation between Notch signaling 

pathway and haematopoietic enhancing ability in stromal cell lines or EBs 

co-cultured on stromal cell lines. To address this question, we applied FACSorting to 

fraction the mixture of ESC-derived cells and stromal cells in the co-culture and 

assessed components of the Notch signaling pathway including ligands, receptors, 

downstream genes as well as responding ability to GSI in each. Based on the results, 

we concluded that: 

 

 Notch ligand expression in stromal cell lines did not correlate with their 

haematopoietic enhancing ability (Figure 3.2-3.4); 

 

 Stromal cell line AM14 with haematopoietic enhancing ability displayed 

higher Notch activity than non-enhancing stromal cell line UG26 and also 

responded to GSI indicating the correlation between Notch activity in stromal 

cells with haematopoietic enhancing ability. Thus Notch activity in stromal 

cell lines could determine their haematopoietic enhancing ability on ES cells 

(Figure 3.5). 

 

 Notch activity increased in EBs co-cultured on AM14 stromal cells during 

differentiation. Definitive haematopoietic marker Runx1 was inhibited when 

Notch activity blocked by GSI. These together suggested that Notch signaling 

was required in haematopoietic differentiation in EBs co-cultured on AM14 

(Figure 3.5, 3.7). 

 
 No correlation found between Notch activity in EBs and haematopoietic 

differentiation ability. This suggested that stromal cell lines did not determine 

EB-derived haematopoiesis via modulating Notch activity in EBs. Other key 

signaling pathways are likely to be involved and responsible for 

haematopoietic enhancing ability of stromal cells (Figure 3.8). 
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3.6 Discussion 

3.6.1 Notch Ligands in stromal cell lines-- different target cell population; 

coordination with other signaling pathways and dose of expression level.  

In this thesis, we measured the ligand expression pattern in the stromal cells at RNA 

and protein level. However it is well recognized that level of RNA may not 

accurately reflect the level of functional protein within a cell. The immunostaining 

assay or flow cytometry is necessary to measure the level of protein but not 

particularly sensitive nor quantitative. In contrast quantitative RT-PCR has the 

strength to measure very small differences and is more sensitive compared to the 

other assays. Our findings suggested that the haematopoietic-enhancing AM stromal 

cell lines did not express the Notch ligands at a higher level comparing to the 

non-enhancing stroma. This could be explained by: 

 

(a) The expression of Notch ligands in haematopoietic enhancing stromal cell lines 

does not determine their haematopoietic enhancing activity; 

 

(b) Signal Coordination, different microenvironment and target population: Although 

isolated stromal cell lines are better simplified and specified for investigation of 

factors controlling cell decisions compared to an explant culture, there still 

represent a combination of several regulators including cellular and ECM 

(Extracellular Matrix) interactions, secreted factors, direct cell-cell contact or 

short-distance factors. These factors could have already altered the fate of 

co-cultured EBs or their ability to respond to the Notch ligands; or the Notch 

ligand should coordinate with these factors to function. In this case, we could 

assume that under some circumstances, the Notch ligands expressed by certain 

stromal cells are functional while some stromal cell lines expressed the ligands 

are abundant, reflecting their origin difference or even colony difference. Schmitt 

et al., found that when Delta-like1 was expressed in OP9 and S17, they behaved 

differently to induce the T cell differentiation from HPCs, suggesting that 

although derived from similar niche and expressed similar level of ectopic 

Delta-like1, OP9 provide a better microenvironment for Delta-like1 to mediate 
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induction of T cell lineage commitment (Schmitt et al., 2002). Thus, in our 

system, although not expressing higher dose of ligands, the ligands expressed in 

the haematopoietic enhancing stromal cell lines could be more efficient than the 

non-enhancing ones; 

 

(c) Dose issue. Contradict to our finding that Delta-like1 is expressed in OP9 using 

both quantitative RT-PCR and immunostaining assay, Schmitt’s et al reported that 

Delta-like 1 could not be detected in OP9 by RT-PCR and when ectopic 

Delta-like 1 was expressed they observed the phenotype (Schmitt et al., 2002). 

Not considering about the sensitivity of detecting technique, this could support 

our theory that the dose of Notch ligands is important and that low levels of 

expression of ligands might not be functional. 

 

(d) Preference to different ligands. A series of studies have focused on the difference 

of Notch ligands effects on haematopoiesis (Neves et al., 2006). The RNA and 

protein measurement in our study revealed these four ligands were widely 

expressed which further study is necessary to figure out the functional and 

critical ligand, which could be different among these four co-culture systems. 

 

Effect of Jagged1 in the co-culture system 

Jagged1 is highly expressed in OP9 stromal cell lines by both quantitative RT-PCR 

and protein assays. This finding is also observed in Schmitt’s work demonstrating 

that Jagged1 and Jagged2 were expressed in OP9. It is also consistent with previous 

studies demonstrating that Jagged1 is expressed in primary bone marrow stroma and 

in bone marrow stromal lines including PA6 from new born mice calvaria andHS-27a 

from human bone marrow. Jagged1 could support or promote the proliferation of 

haematopoietic progenitors through the interaction with Notch1 (Jones et al., 1998; 

Varnum-Finney et al., 1998) (Li et al., 1998; Carlesso et al., 1999; Neves et al., 2006). 

According to our qPCR results, AM14.1C4 also expressed a relatively high level of 

Jagged1. Although this is not observed in AM20.1A4 or AM20.1B4, it is possible 

that AM14.1C4 is derived from AGM region of E11 wildtype mice C57BL/6, which 

is different from AM20 lines. Charbord and colleagues (2002) have already 
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compared a panel of stromal cell lines derived from different developmental niches 

and found that these AM lines did differ and represented different stages from 

mesenchymal to vascular smooth muscle cells (VSMCs) pathway (Charbord et al., 

2002). A series of work by Oosterdorp et al have also screened a batch of stromal cell 

lines from AGM and fetal liver and clarified many differences in surface phenotype 

and cytokine expression (Oostendorp et al., 2002a; 2002b; 2005). Recent work by 

Robert-Moreno in 2008 claimed that Jagged1 is important for haematopoiesis in 

AGM region (Robert-Moreno et al., 2008). In light of these work, we could predict 

that Jagged1 expressed by AM14.1C4 could be one key factor to enhance 

haematopoietic differentiation. 

 

3.6.2 Notch activity in EBs and stroma in co-culture system 

We could detect the Notch ligand Jagged1, receptor Notch1 and two downstream 

genes Hey1 and Hes5 in the EBs co-cultured on AM14.1C4. Surprisingly, Hey1 was 

expressed at similar level across the four co-culture systems. However it should be 

noted that the co-culture system is a mixture of stromal cell lines and ES-derived 

cells at different stages and cell fates. It is highly possible that certain population in 

the EBs maintains higher Notch activity while other populations have lower activity. 

 

High Notch activity in EBs from non-enhancing co-culture 

Interestingly, although being non-enhancing stromal cells, Hes5 was found to be 

expressed higher in EBs co-cultured on UG26.1B6 co-culture from day 5. Higher 

Notch activity in non-enhancing population seem to contradict several studies 

claiming that Notch signaling pathway activated by Jagged1 could promote 

haematopoietic progenitor formation or proliferation (Milner et al., 1996; 

Robert-Moreno et al., 2008; Varnum-Finney et al., 2000). There are several 

explanations for this:  

(a) In the EBs of mix of cells, Hes5 expression is not contributed by expression in 

haematopoietic progenitors, but in the stromal-like cells or other cell population;  

(b) It is possible that a high level of Hes5 expression affected the ability of seeded 

cells to respond to the colony assay. According to studies by Kawamata and 

colleagues, overexpression of Hes1 or Hes5 can function in a comparable manner to 
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Notch1 to prevent the myeloid maturation from bone marrow haematopoietic 

progenitors (Kawamata et al., 2002). Thus, the high level of Hes5 at late stage (day5 

to day6) just before seeding into the colony assay may inhibit myeloid progenitors to 

mature into colonies upon cytokines stimulation as suggested by Kawamata; 

(c) Controversially, Schroeder et al., in 2000 published that mNotch1 overexpression 

could inhibit the proliferation but promote maturation of myeloid progenitors 

(Schroeder et al., 2000). According to this, higher Hes5 could have promoted 

maturation of progenitors before being assayed in the colony assay so less colonies 

are detected;  

(d) Alternatively, there are other signaling pathways in the UG26.1B6 which could 

compensate the effect of Hes5. In addition, others have reported that the UG26.1B6 

cell line has the ability to support the haematopoietic stem cells proliferation, 

probably through the secreted Wnt5a (Oosendorp et al., 2002; Buckley et al., 2011). 

In light of this, the increment of Hes5 indicated a potential role of Notch in the 

haematopoietic stem cell maintenance, probably via interaction with Wnt5a.  

 

Notch activity in microenvironment affected HPCs formation 

We found that the Notch signaling pathway was active in both EBs co-culture on 

AM14.1C4 or AM14.1C4 itself and that both cell populations responded to the 

inhibitor. Furthermore, the Notch1 and Hey1 were expressed at higher level in 

AM14.1C4 compared to the UG26.1B6. This result implied a potential effect of 

stroma-derived Notch activity on haematopoietic enhancement.  

 

So far, most research working on haematopoiesis claiming the importance of Notch 

signaling pathway are based on in vivo study or in vitro study of mixed cell 

populations. However it is possible that it is not the Notch activity in the “pre- 

HSCs/HPCs” cells that is important, but rather the Notch activity of the surrounding 

cells or supporting stromal cell like cells. More intriguingly, as described in the 

introduction, in embryonic haematopoiesis, it was still unclear whether HSCs emerge 

from haemogenic endothelium, haemangioblast, or mature from a precursor at the 

mesenchyme and then migrate through the aorta wall. Recently, some studies have 

focused on the role of mesenchymal cells supporting the haematopoiesis because the 
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secreted factors by mesenchymal did affect haematopoiesis. In addition, the Notch 

signaling pathway has been found to affect the integrin family so it is also possible 

that AM14.1C4 can alter or affect cell adherence which could ultimately affect 

haematopoietic differentiation (Hodkinson et al., 2007). In future studies, it would be 

interesting to knock down Notch activity in the AM14.1C4 to see whether its ability 

to enhance haematopoiesis could be abrogated. 
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Chapter 4: Investigation of response of ES-derived 

Flk1+ cells to haematopoietic niche derived stromal 

cell lines 
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4.1 Aim 

To test whether AM stromal cell line could affect haematopoietic commitment of 

Flk1+ cells. 

 

4.2 Introduction 

The in vitro enhancing AM stromal cell line (AM14.1C4) provides a haematopoietic 

enhancing microenvironment that mimics AGM-derived haematopoiesis in vivo. In 

this EB/stroma co-culture system, inhibition of Notch activity from day4 to day6 

abrogated haematopoietic differentiation implicating the involvement of Notch 

signaling in the enhancement by AM stromal cells post mesoderm formation. 

However, this EB/stroma co-culture system is complex, consisting of stromal cells 

and ES-derived cells of different cell fates making it difficult to dissect the 

underlying mechanisms. Furthermore it has been demonstrated by a number of 

studies that the Notch signaling pathway can function differently throughout the 

differentiation stages and is cell type dependent. In light of several models proposed 

by other groups focusing on the origins of HSCs in the AGM region in vivo, it is 

widely accepted that the AGM region could provide the microenvironment for the 

further differentiation of post-mesoderm cells into HSCs. It is also known that 

mesoderm derived from primitive streak could commit to different sub-regions 

including chordamesoderm, intermediate mesoderm as well as lateral plate 

mesoderm where haematopoietic cells are derived from and paraxial mesoderm that 

gives rise to somites and mesenchymal cells that ultimately form the haematopoietic 

niche. Several genes have been known to emerge sequentially during mesoderm 

development: Brachyury, a primitive streak mesoderm marker expressed in all 

nascent mesoderm (Herrmann, 1991; Kispert and Herrmann, 1994); Flk1 (VEGFR2), 

a receptor of VEGF, a marker of lateral plate mesoderm and the haemangioblast (or 

haemogenic endothelium) defined as the common precursor of haematopoietic and 

endothelial cells. To better understand how Notch signaling pathway is involved in 

haematopoietic differentiation in the AGM region, we chose to focus on the time 

window before mesoderm formation in the first instance and to ask whether AM 

stromal cells could affect haematopoietic differentiation after this stage. 
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A previous study in our lab suggested that the co-culture system could not affect 

commitment to mesoderm cells from ES cells by assessing early mesoderm marker 

Brachyury expression by flow cytometery using a Brachyury reporter cell line. 

Instead AM stromal cells were able to induce haematopoiesis derived from 

Brachyury+ fraction (Gordon-Keylock et al., 2011). To focus on the effect of 

co-culture on mesoderm formation, we measured the effects of stromal cells on 

mesoderm commitment and assessed the expression of Brachyury and Flk1 using 

quantitative RT-PCR analysis. We then established a Flk1+/stroma co-culture system 

to test the effect of haematopoietic niche-derived stromal cell on the fate of Flk1+ 

cells. Experiments were carried out to answer: 

(a) Whether the enhancing AM stromal cell line affects the commitment of ES cells 

to Brachyury and Flk1 mesodermal fates 

 

(b) Whether the AM stromal cell line could modulate the later haematopoietic 

differentiation from Flk1+ cells. 

 

4.3 Experimental approach 

 To determine whether the enhancing AM stromal cell line affects the 

commitment of ES cells to mesodermal fates, differentiating EBs were 

co-cultured on AM stromal cell line then FACS sorted and the expression of 

Brychyury and Flk1 was analyzed using quantitative RT-PCR; Flk1 expression 

was also analyzed with flow cytometry during differentiation. 

 

 To determine whether AM stromal cells affect cell fate decision after Flk1+ 

formation, Flk1+ cells were differentiated and isolated from EBs then co-cultured 

on several different haematopoietic niche derived stromal cell lines including: 

AGM-derived enhancing cell line AM (AM14.1C4), AGM derived 

non-enhancing cell line UG (UG26.1B6) and the bone marrow derived OP9. 

Haematopoietic colony formation activity, haematopoietic surface marker 

expression, haematopoietic progenitors and pan-haematopoietic cell proliferation 

and survival were measured using methylcellulose assays and flow cytometry. 
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4.4 Results 

4.4.1 Kinetics of mesodermal marker expression in co-culture 

To test whether the haematopoietic enhancing AM stromal cell line enhanced 

haematopoiesis by promoting mesoderm formation or post mesoderm differentiation, 

we carried the co-culture of EBs with AM or gelatin as the control. One day old 

hanging drop EBs with 7a-GFP ES cell line were co-cultured on gelatin or AM 

stromal cell line to day6. Between day3 and day6, EBs were separated from stromal 

cells by FACS and Brychyury and Flk1 was assessed by quantitative RT-PCR 

analysis (Described in Figure 3.4). Purified EBs were analyzed using quantitative 

RT-PCR and gene expression level was expressed as fold increase relative to a 

calibrator (day1 old EBs), which was assigned a value of “1”. 

 

Brachyury expression increased significantly in EBs from both gelatin controls and 

AM co-cultures at day3, 4 and 5 compared to undifferentiated ESC (*p<0.05) 

(Figure 4.1 A). However when comparing these two co-culture systems at day 3, EBs 

on gelatin showed a higher (3 fold) level of Brachyury expression than EBs on AM 

stromal cell lines (*p<0.02). There was no significant difference between gelatin and 

AM condition at day 4 and 5 (p>0.05) (Figure 4.1 A). A possible explanation could 

be that the microenvironment provided by the AM stromal cells promoted the 

Brachyury positive cells to leave the early mesoderm stage and enter the later 

differentiated state but without changing the overall kinetics of Brachyury. 

Brachyury is a relatively early marker when we considered the haematopoietic 

related mesoderm so next we focus on the Flk1 expression kinetics which was more 

related to haematopoiesis. 

 

Flk1 expression kinetics in EBs cultured on gelatin and AM stromal cells displayed 

comparable patterns from ESC to day5, with a peak at day4. This result suggested 

that AM did not affect the formation of Flk1+ formation in the co-culture. However at 

day 6, EBs cultured on gelatin expressed Flk1+ significantly higher (2 fold) than EBs 

on AM stromal cell lines, suggesting that AM stromal cell line could possibly force 

the further differentiation into haematopoietic commitment from Flk1+ after day4 
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(*p<0.05) (Figure 4.1 B). In conclusion, the screen of mesodermal like genes 

suggested that Flk1+ formation were not affected in the microenvironment provided 

by AM stromal cell line, which indicated that AM may provide the haematopoietic 

enhancing microenvironment for the later haematopoietic differentiation from 

haemangioblast.  

 

To further confirm the conclusion based on the quantitative RT-PCR analysis, we 

analyzed the expression Flk1 at the protein level using flow cytometry. One day 

hanging drop EBs generated from E14IV ES cells were co-cultured on irradiated 

Vybrant DiD labeled stromal cells to day6. From day3 to day8, cells from co-culture 

were harvested and analyzed by flow cytometry. ES-derived cells which should be 

negative at FL-4 channel in FACS Calibur or R670/14 in BDFortessa were 

distinguished from the Vybrant DiD-stained stromal cells. From day3 to day5, the 

Flk1+ expression kinetics in both conditions had a similar pattern: there was no 

significant difference of Flk1+ proportion between gelatin control and haematopoietic 

enhancing AM co-culture prior to day6 which supported the notion that AM 

microenvironment did not enhance or block the emergence of Flk1+ cells.  However 

at day6, Flk1+ expression in cells cultured on gelatin was slightly higher compared to 

AM co-culture then at day8 this difference was more pronounced (*p<0.05) 

(Figure4.1 C). Thus the difference in Flk1 expression in the two culture systems is 

observed at both the RNA and protein level with the difference in protein being 

detected slightly later. This could be explained by the timing difference between 

RNA level and protein level. Protein difference could appear later than the transcripts. 

It is possible that at the later stages the AM microenvironment may be promoting 

ES-derived cells Flk1+ cells to further differentiate possibly into haematopoietic 

lineage suggesting a later effect on haematopoiesis by AM stromal cells.  

 

Alternatively, AM could maintain microenvironment consisted of non-Flk1+ cells, for 

example the paraxial mesoderm niche, to support the haematopoiesis after the 

formation of Flk1+, but not to affect the haematopoiesis from Flk1+ directly. These 

two possibilities could also function together to promote ES-derived haematopoiesis. 

This point will be borne in mind but this project will first focus on the effect of AM 
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stromal cells on Flk1+ further differentiation.  
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Figure 4.1 Quantitative RT-PCR and flow cytometry analysis to compare 
mesodermal gene expression kinetics in EBs cultured in haematopoietic 
enhancing AM microenvironment and Gelatin control. 
One day hanging drop EBs were co-cultured to day6 and sorted from AM stroma or 
gelatin by FACS and qRT-PCR carried out for Brachyury (A), Flk1 (B) expression 
kinetics. One day EBs were used as calibrator (value assigned as 1); 18s was used as 
the endogenous control; Flk1 expression at the protein level was analysed with flow 
cytometry (C). Day 1 hanging drop EBs were co-cultured on gelatin and AM stroma 
then analyzed by flow cytometry at days 3, 4, 5, 6 and 8 of differentiation. Data 
represent 3 independent experiments. Error bars represented SEM. P-values were 
calculated with Friedman test or Mann-Whitney test.  
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4.4.2 Investigation of Flk1+ haematopoietic differentiation on AGM-derived 

stromal cell lines 

In order to address the role of Notch signaling pathway on haematopoietic 

differentiation in the AM microenvironment (AM14.1C4), it is necessary to specify 

the population responsive to AM stromal cell line. According to the results 

suggesting that AM stromal cell line did not affect the Flk1+ formation, we asked the 

question whether the AM stroma promoted haematopoiesis after the stage. To test 

this, Flk1+ were differentiated in suspension EBs. Flow cytometry was applied to 

monitor the emergence of Flk1+ cells during differentiation. Flk1 positive and 

negative cells were purified by MACS sorting from day 4 suspension EBs and 

co-cultured on gelatin control or stromal cell lines. Methylcellulose assay and flow 

cytometry were applied to assess the haematopoietic enhancing effect of stromal cell 

lines on Flk1 positive and negative cells. We carried out these tests with wildtype ES 

cell line E14IV and a genetically modified ES cell line R26-NIC-C5, a tamoxifen 

inducible ES cell line. When tamoxifen was applied, ectopic NotchIC in ROSA26 

locus will be expressed. This cell line is widely applied in this project and will be 

described in detail in Chapter5. 

 

4.4.2.1 Differentiation of Flk1+ in suspension Embryoid Bodies. 

Choi and colleagues carried out a kinetics analysis and demonstrated that blast 

colony-forming cell (BL-CFC), the in vitro equivalent to haemangioblast, expressed 

Flk1 and was present in the EBs between day 2.5 and 4 of differentiation (Choi et al., 

1998). In light of this, we simply differentiated ES cells in suspension EBs and 

monitored emerge of Flk1+ cells. 

 

Flk1+ cells were generated in both differentiating E14IV and R26-NIC-C5 ESC cell 

lines with similar kinetics. During differentiation, Flk1+ emergence peaked at day4. 

Statistically, for E14IV ES cell line, around 55% ES-derived cells expressed Flk1, 

which was significantly higher than day2 at around 2% (*p<0.03) (Figure 4.2 A). 

The NIC-C5 ES cell line generated a higher proportion of Flk1+ at 60% than day2 

(*p<0.03) (Figure 4.2 B).  
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The surface marker CD41 and cKit have been used together to define ES cell-derived 

definitive haematopoietic progenitors in vitro (Mikkola et al., 2003; Mitjavila-Garcia 

et al., 2002). Low levels (<1%) of CD41+cKit+ cells were present at day 4 and began 

to increase to 2-3% at day 5 (Figure 4.2 C, D). Therefore, these results suggest that 

Flk1+ could be differentiated in suspension EBs and day 4 would be a suitable time 

point to purify Flk1+ population with a low committed haematopoietic potential as 

determined by CD41+cKit+. 
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Figure 4.2 E14IV and NIC-C5 ES cell lines produced Flk1+ and CD41+cKit+ with 
similar kinetics. 
Data represented 3 independent experiments. Error bars represented SEM. P-values 
were calculated with Friedman test with post paired test (*p<0.05).  
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4.4.2.2 Investigation of colony formation ability of Flk1+ derived cells co-cultured 

on AGM-derived stromal cell lines. 

 

a) Haematopoietic progenitors with colony formation ability are enriched in 

cells derived from Flk1+ population 

The methylcellulose assay is a colony-forming assay consisting of methylcellulose, 

serum and a series of cytokines (EPO, IL-3, IL-6, SCF, insulin etc) and is widely 

used to measure haematopoietic activity in vitro. When single cells are seeded into 

the methylcellulose medium, haematopoietic progenitors respond to the cytokines 

and form colonies. Colonies can be categorized according to the morphology and cell 

types existing in the colonies: CFU-GEMM (granulocytes, erythrocytes, 

macrophages and megakaryocytes) (Figure 4.3 A), CFU-GM (granulocytes and 

macrophages) (Figure 4.3 B), BFU-E (bigger red colonies of erythrocytes with high 

proliferation ability) (Figure 4.3 C), CFU-E (smaller red or brown colonies of 

erythrocytes with low proliferation ability), CFU-M (macrophages) (Figure 4.3 D) 

and Mac/Ery (macrophages and erythrocytes) (not shown). These colonies can be 

easily identified with white light microscopy and haematopoietic progenitors can 

thus be functionally quantified. 

 

To investigate the effect of stromal cells on the cell fate of Flk1+, we co-cultured 

Flk1+ cells on stromal cells and assessed the emergence of haematopoietic colonies. 

Many previous studies have demonstrated that Flk1+ was a convincing marker of 

haemangioblast. To confirm this in our system we separated Flk1+ and Flk1- 

compartments from day 4 EBs and performed co-culture with stromal cells or gelatin 

control then assessed haematopoietic activity in methylcellulose assay (Figure 4.4 A). 

Basically, Flk1+ or Flk1- were purified by MACS sorting (Figure 4.4 B) then 

co-cultured at the density of 4x104cells/cm2 on Vybrant DiD pre-stained irradiated 

stromal cells or gelatin control. At specific time points, cells were harvested and 

assayed in methylcellulose. Colonies were scored and haematopoietic activity was 

measured by counting the number of each type of haematopoietic colony. In addition, 

haematopoietic activity was also assessed using flow cytometry and quantitative 

RT-PCR (Figure 4.4 A). In preliminary experiments it was observed that at day6 (48 
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hours post co-culture), both in gelatin or stromal cell line co-culture systems, Flk1+ 

derived cells could commit to more haematopoietic progenitors than Flk1- control 

(Figure 4.5). Thus, as expected, haematopoietic progenitors were enriched in the 

Flk1+ compartment. Flk1- cells produced a very low baseline number of 

haematopoietic colonies but this level was not altered significantly by co-culture on 

any of the stromal cell lines.  

 

b) Haematopoietic progenitors with colony formation ability derived from 

Flk1+ population peaked at day6 

To determine the kinetics of haematopoietic progenitor formation from Flk1+ cells in 

co-culture we carried out the methylcellulose assay to measure haematopoietic 

activity at day4, day6 and day9. E14IV ES cells were differentiated in suspension 

EBs. After 4 days of differentiation, Flk1+ cells were isolated and plated in 

methylcellulose colony assays at the density of 1x105 per dish. Flk1+ cells were also 

co-cultured to day6 and day9 then seeded into colony assay (Figure 4.6). Compared 

to day4 Flk1+, cells derived from Flk1+ at day6 showed higher haematopoietic 

colony production. At day9, the colony activity of Flk1+ derived cells was reduced 

compared to day6, even lower than day4 in gelatin control. This indicated that 

progenitors with colony formation ability derived from day 4 Flk1+ cells peaked at 

day6. More importantly, this result demonstrated that there was no difference in the 

kinetics of haematopoietic activity in the four co-culture systems. These data led us 

to measure the haematopoietic activity with colony assay and compare different 

co-culture systems at day6 in all further experiments. 
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Figure 4.3 Examples of colonies observed in the methylcellulose colony formation 
assay. 
(A) CFU-GEMM colony containing granulocytes, erythrocytes, macrophages and 
megakaryocytes (X10); (B) CFU-GM containing granulocytes and macrophages 
(X10); (C) BFU-E containing erythrocytes with high proliferation ability (X20); (D) 
CFU-M containing macrophages (X20). 
  



103 
 

 

 

Figure 4.4 Scheme of differentiation of Flk1+ and Flk1- compartments from day 4 
suspension EBs co-cultured on stromal cells or gelatin control. 
(A) Flk1+ and Flk1- population further co-cultured and assessed by methylcellulose 
assay, flow cytometry or qRT-PCR post FACSorting at haematopoietic activity; (B) 
Flk1+ and Flk1- population were fractioned from day 4 suspension EBs with MACS 
sorting. 
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Figure 4.5 Haematopoietic progenitors with colony formation ability is enriched 
in Flk1+ population at day6. 
Flk1+ maintained higher haematopoietic colony formation ability than Flk1- in both 
gelatin control and stromal co-culture systems. Data represents one experiment. Error 
bars represented deviations of duplicate dishes. 
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Figure 4.6 Methylcellulose-based haematopoietic colony assays for day4 Flk1+ 
fraction and Flk1+ derived cells after co-culture with AM UG, OP9 and Gelatin 
to day 6 and day 9. 
Flk1+ cells were purified from day4 suspension EBs using E14IV ES cell line then 
co-cultured on gelatin control or stromal cells to day6 and day9. Data represents 1 
experiment. Error bars represented the deviation of duplicate dishes in the same 
experiment. 
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c)  AM stromal cell lines could partially enhance haematopoietic colony 

formation ability of Flk1+ derived cells 

In order to determine whether the AM enhancing cell line could also enhance 

haematopoietic activity of Flk1+ cells, purified Flk1+ cells from day4 suspension EBs 

were co-cultured on irradiated AM stromal cells. Cells were harvested and seeded 

into methylcellulose colony assay at day6. Ten days later colonies were scored and 

compared to gelatin control. Effects of stromal cell lines on EBs could be different 

from their effects on the Flk1+ cells. Thus, non-enhancing cell line UG and positive 

OP9 stromal cell line defined in the EB/stroma system were included here and 

screened for enhancing activity as well. In light of many previous work claiming that 

ESC differentiation in vitro was ES cell line dependent, two ES cell lines, E14IV and 

NIC- C5 were both tested in the Flk1+ /stroma co-culture system. Because of the 

large variation observed in the differentiating efficiency between experiments, 

Wilcoxon matched pairs test was applied to compare number of colonies in pairs 

from the same experiment to exclude the effect of experiment variability. 

 

HPCs formation with E14IV cell line (Figure 4.7; 4.8):  

Compared to gelatin control, no significant difference was found in the frequency of 

CFU-M, CFU-GEMM or Mac/Ery in the Flk1+/ stroma co-culture systems (p>0.05) 

(Figure 4.7 A, C, D); Statistically, both AM and UG line could promote higher 

CFU-GM production than gelatin (*p<0.05); BFU-E frequency was enhanced in the 

UG co-culture system compared to gelatin control (*p<0.05) (Figure 4.7 E); CFU-E 

frequency was enhanced in the AM and OP9 co-culture systems compared to gelatin 

control (*p<0.05) (Figure 4.7 F). Thus assessment of the numbers of the different 

types of colonies indicated that AM and UG could provide the microenvironments to 

enhance both myeloid and erythorid progenitors differentiated from Flk1+. 

 

To address the haematopoietic enhancing capacities of AM, UG and OP9 stromal cell 

lines on Flk1+ cells in a more direct way, all the types of colony were added up and 

compared to gelatin control and to each other (Figure 4.8). It was found that only AM 

could enhance the overall number of haematopoietic CFU over that of gelatin control 

at day6 (422±407 for AM vs 119±76 for gelatin, n=6, *p<0.05). However no 
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difference was observed when CFU frequencies in UG (257±250) and OP9 (190±162) 

co-cultures were compared to gelatin control. Furthermore, the CFU frequencies 

among AM, UG and OP9 co-cultures were comparable. These data demonstrated that 

AM stromal cells could enhance haematopoietic differentiation from Flk1+ cells 

compared to gelatin, at a moderate level. 
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Figure 4.7 Haematopoietic colonies formed by Flk1+ derived cells (E14IV ES cell 
line) co-cultured to day6. 
(A) CFU-M; (B) CFU-GM; (C) CFU-GEMM; (D) Mac/Ery; (E) BFU-E; (F) CFU-E. 
Data represent 6 independent experiments. Error bars represent the min to max. 
P-values were calculated with Wilcoxon matched pairs test (*p<0.05 compared to 
gelatin control ). 
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Figure 4.8 Total number of haematopoietic colonies in methylcellulose assay by 
Flk1+ derived cells (E14IV ES cell line) in co-culture at day6. 
AM stromal cells enhanced Flk1+ derived haematopoiesis at moderate level 
compared to gelatin control. UG and OP9 did not enhanced haematopoiesis 
significantly compared to gelatin. Data represent 6 independent experiments. Error 
bars represent standard deviation. P-values were calculated with Wilcoxon matched 
pairs tests (*p<0.05, ns: not significant different). 
. 
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HPCs formation with NIC- C5 ES cell line (Figure 4.9; 4.10):  

Similarly, the frequency of CFU-M in OP9 co-culture was comparable to gelatin 

control (p>0.05), which was consistent to the EB/stromal system that OP9 inhibit the 

formation of CFU-M. Both AM and UG cell line could enhance CFU-M production 

significantly higher than gelatin (**p<0.05). (Figure 4.9 A); UG stromal cell line 

could enhance a significant greater frequency of CFU-GM than gelatin control 

(Figure 4.9 B); Compared to gelatin control, AM could provide microenvironments 

to promote CFU-GEMM production (*p<0.05) (Figure 4.9 C). No differences were 

observed in frequencies of Mac/Ery obtained from co-culture with AM, UG or OP9 

stromal cell line compared to gelatin (p>0.05) (Figure 4.9 D); Frequency of BFU-E 

were both enhanced in the AM and UG stromal co-culture systems compared to 

gelatin control (*p<0.05) (Figure 4.9 E). Frequency of CFU-E were enhanced in the 

AM and OP9 stromal co-culture systems compared to gelatin control (*p<0.05) 

(Figure 4.9 F). According to the comparison of individual colonies frequencies to 

gelatin, it is suggested that AM could enhance the multi-potential haematopoietic 

progenitors from Flk1+ cells; AM and UG stromal cell line could promote the 

frequency of haematopoietic progenitors which could commit to myeloid or 

erythroid lineages. OP9 could promote the frequency of erythroid progenitors.  

 

All these colonies were piled up and statistically compared in pairs as shown in 

Figure 4.10. It is showed that both AM and UG stromal cell line enhanced the 

number of the overall haematopoietic colonies over that of gelatin control at day6 

(AM vs Gel: 500±423 vs 165±86; UG vs Gel: 372±195 vs 165±86; n=7, *p<0.05). 

OP9 could not further enhance Flk1+ derived haematopoiesis compared to gelatin 

(223±165 vs 165±86, n=7, p>0.05). AM microenvironment enhanced significantly 

greater haematopoietic activity than OP9 (*p<0.05), while with a comparable 

capacity to UG stromal line. The number of CFU present in UG co-culture was 

comparable to OP9 co-culture (p>0.05). These data demonstrate that both AM 

stromal cells and UG stromal cells could enhance haematopoietic differentiation 

from Flk1+ cells compared to gelatin. Combing data generated from the two ES cell 

lines, it is confirmed that AM stromal cell line could enhance Flk1+ derived 

haematopoiesis. The reason that UG haematopoietic enhancing effect was not 
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observed using E14IV cell line could be accounted for the limited number of 

experiments or variance of haematopoietic enhancement efficiency in repeats. More 

repeats will be necessary for further statistical analysis. 
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Figure 4.9 Haematopoietic colonies formed by Flk1+ derived cells (NIC- C5 ES 
cell line) co-cultured to day6. 
(A) CFU-M; (B) CFU-GM; (C) CFU-GEMM; (D) Mac/Ery; (E) BFU-E; (F) CFU-E. 
Data represent 7 independent experiments. Error bars represent min to max value. 
P-values were calculated with Wilcoxon matched pairs test (*p<0.05 compared to 
gelatin control). 
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Figure 4.10 Total number of haematopoietic colonies in methylcellulose assay by 
Flk1+ derived cells (NIC- C5 ES cell line) in co-culture at day6. 
AM and UG stromal cells enhanced Flk1+ derived haematopoiesis at moderate level 
compared to gelatin control. OP9 did not enhance haematopoiesis significantly 
compared to gelatin.Data represent 7 independent experiments. Error bars represent 
standard deviation. P-values were calculated with Wilcoxon matched pairs tests 
(*p<0.05, ns: not significant different). 
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d)  Measurement of haematopoietic progenitors and pan-haemaotpoietic cells 

production in Flk1+/stroma co-cultures by surface markers with flow 

cytometry analysis 

 

AM stromal promote frequency of CD41+cKit+ haematopoietic progenitors from 

Flk1+ cells 

To further characterize the haematopoietic activity in the Flk1+/stroma co-culture 

system, cells from co-cultures were analyzed by flow cytometry at defined time 

points during differentiation. CD41+cKit+ was used to define haematopoietic 

progenitors and CD45 as a marker for pan-haematopoietic cells which was not 

expressed by mature erythrocytes. E14IV ES cell line and NIC-C5 ES cell line were 

both applied for the analysis. Basically, Flk1+ cells were fractioned from day 4 

suspension EBs then co-cultured on gelatin control or stromal cell lines at 1x104/cm2. 

Cells were harvested at day6, day9 and day 11 then analyzed by flow cytometry. It 

was noted that the peak of emergence of CD41+cKit+ at day6 and CD45 at around 

day8 to day9 in co-cultures (data not shown). At day 6, by using either E14IV or 

NIC- C5 ES cell line there were no significant differences in the proportion of Flk1+ 

derived cells co-expressing CD41 and cKit in the UG or OP9 co-culture systems 

compared to gelatin control (p>0.05), while AM stromal cell lines enhanced the 

proportion of CD41+cKit+ progenitors significantly up to 2 fold in both ES cell lines 

(*p<0.05) (Figure 4.11 A, B). Flow cytometry analysis at a later differentiation stage 

(day9) revealed that co-culture with stromal cell lines did not increase the proportion 

of CD45-expressing haematopoietic cells compared to gelatin (p>0.05) (Figure 4.11 

C, D). Thus, surface marker expression suggested that the AM stromal cells could 

further promote the differentiation of haematopoietic progenitors at a moderate level, 

which is consistent with the the CFU enhancement observed in colony assay by AM 

stromal cells. However the CD41+cKit+ compartments produced in each co-culture 

systems has not been tested in functional assay. To further determine this, it will be 

interesting to purify CD41+cKit+ from each co-culture and measure their colony 

formation ability in methylcellulose assay. 

  



115 
 

 

 

 

 

 

 

 

Figure 4.11 Flow cytometry analysis of CD41+cKit+ haematopoietic progenitors 
and CD45+ pan-haematopoietic cells production in Flk1+/stroma co-culture 
system. 
This data represent between 3 and 7 independent experiments. Error bars represented 
SEM. P-values were calculated with Wilcoxon matched pairs test (*p<0.05). 
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AM and OP9 co-culture increased the number of Flk1+ derived cells. 

To further investigate the effect of stromal cell lines on Flk1+ cells, we assessed the 

proliferation and survival of Flk1+ derived cells. Flk1+ were differentiated on 

Vybrand DiD stromal cells or gelatin control then harvested and counted at the 

defined time points. After normalization to the Flk1+ derived cells percentage to 

exclude stromal cells, the number of Flk1+ derived cells was recorded and plotted 

(Figure 4.12). 

 

At day6, the total number of cells derived from both ES cell lines in OP9 co-culture 

was higher than the gelatin control (*p<0.05). At day9, the total number of cells 

derived from E14IV Flk1+ cells in AM co-culture and UG co-culture was 

significantly higher than that of gelatin control (*p<0.002) (Figure 4.12 A). For NIC- 

C5, number of cells derived from Flk1+ cells in AM co-culture was significant higher 

than gelatin control (*p<0.002) (Figure 4.12 B). This result suggested that AM line 

could promote proliferation or survival of the cells derived from Flk1+ cells at later 

stage. 

 

AM could increase number of Flk1+ derived progenitors (day6) or 

pan-haematopoietic cells (day9) in co-culture 

To determine whether the proliferation or survival ability of haematopoietic 

progenitors and haematopoietic cells could also be promoted by co-culturing with 

stromal cells, we calculated the exact cell number of CD41+cKit+ at day6 and CD45+ 

at day9 from each culture (Figure 4.12 C-F). AM and OP9 stromal cell lines could 

enhance the number of CD41+cKit+ cells compared to gelatin control (*p<0.01), in 

both ES cell lines (Figure 4.12 C, D). Combined with the frequency shown in Figure 

4.11 and the overall cell number in Figure 4.12 A-B, it is suggested that at day6 both 

AM and OP9 could enhance the number of CD41+cKit+ cells, but with different 

mechanisms. AM stromal cells promoted the CD41+cKit+ exact numbers by 

promoting the CD41+cKit+ percentage, while OP9 stromal cells promoted the 

CD41+cKit+ exact number by enhancing the overall cell proliferation.  

 

At day9, it is found that AM could promote the CD45+ proliferation or survival 
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ability significantly higher than gelatin control in both ES cell lines (*p<0.01). 

However there were no difference by comparing UG or OP9 co-cultures to gelatin 

control (p>0.05). Overall, microenvironment provided by AM stromal cells could 

promote formation and proliferation/survival of CD41+cKit+ at day6 and 

proliferation/survival of pan-haematopoietic cells (CD45+) at day9. This could be 

mediated by apoptosis, which will be discussed later. 
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Figure 4.12 Analysis of total cell numbers and exact numbers of CD41+cKit+ at 
day6 and CD45+ cells at day9 from Flk1+/stroma co-culture system. 
This data represent between 3 and 7 independent experiments. Error bars represented 
SEM. P-values were calculated with Friedman test with post paired test or Wilcoxon 
matched pairs test (*p<0.05). 
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4.4.2.3 Inhibition effect on Flk1+ cells formation from ES cells by UG26.1B6 

Of note, although not significant, UG stomal cells have shown a limited 

enhancement of haematopoiesis from Flk1+ cells compared to gelatin control (Figure 

4.8, 4.10). However, in EB/stromal co-culture system, UG did not enhance 

haematopoietic differentiation compared to gelatin control (Krassowska et al., 2006; 

Gordon-keylock et al., 2010). To better analyze this, we measured the early effect of 

UG stromal cells on ES-derived differentiation by detecting Flk1+ expression kinetics 

on UG stromal cells. Day1 EBs by E14IV ES cells was plated on gelatin control and 

UG stromal cells to day8. Flk1 expression was measured with flow cytometric 

analysis. Interestingly, it was shown that UG stromal cell line inhibited Flk1+ 

formation significantly at day4 and day5 compared to gelatin control (Figure 4.13). 

This result suggested that in EB/stromal co-culture system, UG stromal cells 

inhibited haematopoietic differentiation from ES cells via inhibiting Flk1+ formation 

while enhanced haematopoiesis from Flk1+ cells at limited level, which supported 

the notion that the effect of stromal cell lines was spatiotemporal and targeting 

population dependent. 

 

It was reported that UG26.1B6 could expressed high level of Wnt5a to support the 

self-renewal of HSCs (Buckley et al., 2011). The Wnt5a is known to inhibit the 

canonical Wnt signaling pathway, a key regulator for mesoderm formation. In light 

of this, it is highly possible that UG26 stromal cell line inhibited Flk1+ formation via 

inhibiting Wnt signaling pathway. Furthermore, one novel enhancer of Flk1+ has 

been identified which could respond to canonical Wnt signals (Ishitobi et al., 2011). 

Therefore, secretion of Wnt5a to inhibit canonical Wnt signals could be an essential 

reason for the inhibition of Flk1+ formation in EB/UG co-culture system. 
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Figure 4.13 UG26.1B6 inhibited Flk1+ formation in EB/UG co-culture system 
compared to gelatin control. 
Day 1 haning drop EBs by E14IV ES cells were co-cultured on Vybrant-DiD 
pre-stained and irradiated UG26.1B6 (UG) stromal cells or gelatin control to day8. 
Co-cultures from day3, 4, 5, 6, and 8 were harvested for flow cytometric analysis at 
Flk1+ frequency Error bars represented SEM. P-values were calculated with 
Mann-Whitney test (*p<0.05).   
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4.5 Conclusion  

To set up a more specific co-culture system to ask how Notch signaling pathway is 

involved in haematopoiesis post mesoderm formation, Flk1+ cells were co-cultured 

on AM14.1C4 (AM) stromal cell line. Results in this chapter suggested that: 

 

 AM co-culture did not affect commitment to Flk1+ from day1 EBs in EB/stromal 

system (Figure 4.1). 

 

 Flk1/AMl system was established with moderate haematopoietic enhancing 

ability according to CFU formation (Figure 4.7-4.10). 

 

 AM stromal cells could promote formation and expansion of CD41+cKit+ (day6) 

and CD45+ expansion (day9) derived from Flk1+ cells (Figure 4.11-4.12). 

 
 Though not enhance CD41+cKit frequency or exact number, comparable 

enhancing effects to AM stromal cells according to CFU formation indicated UG 

stromal cells was also supportive on Flk1+ derived haeamtopoiesis (Figure 

4.9-10, 4.11-12). 

 

 UG stromal cells inhibited commitment to Flk1+ cells from ES cells in 

EB/stromal co-culture system, however, it enhanced Flk1+ derived CFU 

formation suggesting effects of stromal cells are spatiotemporal and target 

dependent (Figure 4.9, 410, 4.13). 
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4.6 Discussion 

4.6.1 Two possible models for AM stromal cell lines to promote haematopoietic 

differentiation in EB/stroma system? 

Previous studies revealed that primary E10.5 AGM explants and stromal cell lines 

derived from the aorta and surrounding mesenchyme (AM subregion of AGM region) 

could promote haematopoietic differentiation from ES cells (Krassowska et al., 2006; 

Gordon-Keylock et al., 2011). In light of this we carried out further investigation on 

when and how the AM stromal cell lines promoted haematopoiesis to define a time 

window and specific responding population for further analysis of the molecular 

mechanisms. Using quantitative RT-PCR and flow cytometry, we noticed that 

expression of mesodermal related genes in EBs co-cultured on AM stromal lines was 

comparable to the gelatin control. Although Brachyury expression in AM co-culture 

was lower than gelatin control at day3, Gordon-Keylock et al., 2011 suggested that 

the co-culture with AM stromal cell line did not change the Brachyury expression 

pattern using flow cytometry at the protein level. Quantitative RT-PCR analysis to 

investigate the expression is more sensitive but does not reflect the real functional 

protein level. Although a difference was detected at day3, the later expression pattern 

in AM co-culture was comparable to the gelatin control indicating the overall 

differentiation from ESC to early mesoderm was not significantly affected (Figure 

4.1 A).  

 

Furthermore, it makes more sense to focus on the Flk1 expression which marks the 

haemangioblast representing a later stage than Brachyury. Based on the result that 

commitment to Flk1 from ES cells was not affected by AM co-culture, we suggested 

one model that the haematopoietic enhancing effect of AM stromal cell line could be 

acting on Flk1+ cells. Although it was confirmed both in qRT-PCR and flow 

cytometry that Flk1+ was not affected by AM stromal cell line, it did not reflect 

whether the function of Flk1+ cells were comparable. We therefore tested the ability 

of Flk1+ cells to differentiate further by simply seeding the sorted Flk1+ population 

from each EB co-culture system into methylcellulose colony assay and used more 

surface markers to define and compare the Flk1+ function between AM co-culture 
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and gelatin (Figure 4.1 B, C). 

 

Our data suggest that AM could directly enhance haematopoiesis from Flk1+ cells. 

However, to explain the mechanism of AM to enhance haematopoiesis from ESCs in 

EB/AM system, we cannot exclude the possibility that the Flk1- cells produced in the 

EB/AM co-culture could also provide the microenvironment to support 

haematopoietic differentiation of the Flk1+ population. In light of in vivo studies 

demonstrating that HSCs emerge at the ventral endothelia layer in the dorsal aorta, 

the haematopoietic enhancing effect of the AM stromal cell line could be reflecting 

its region of origin in AGM from where HSCs emerge. Unknown factors or surface 

ligands could be the key regulators to directly induce HSCs emergence or maturation, 

While alternatively, the AM stromal cell line could support or enhance a 

haematopoietic niche consisting of ES-derived non-haematopoietic cells such as 

mesenchymal cells or endothelial cells. The higher expression of paraxial mesoderm 

related genes such as Delta-like 3 and HoxB4 could support this hypothesis 

(Appendix Figure S4.1). It will be interesting to look at other paraxial mesoderm or 

endothelial related genes especially at protein level. Moreover, it would be 

informative to screen gene expression within the Flk1- fraction from co-culture. 

 

4.6.2 Reliable system to enhance Flk1+ by co-culturing with AM stroma cells, but 

not as efficient as EB system 

In Flk1+/stroma co-culture using the NIC-C5 ES cell line, the increase in the number 

of haematopoietic colonies by comparing AM co-culture to gelatin was around 

2.6±1.5 fold. The UG stromal cell line could also enhance the overall haematopoietic 

activity by around 2.3±0.4 fold. However OP9 did not have the enhancing effect on 

Flk1+ derived haematopoiesis compared to gelatin. In the previously published work 

using EB/stroma using 7a-GFP ES cell line, it was claimed that AM stromal cell line 

could enhance haematopoietic activity with a higher efficiency which was 

comparable to OP9. UG stromal cell line was non-enhancing (Gordon-Keylock et al., 

2011). Though the difference could be caused by the responsive ability of different 

ES cell line, the more plausible reason could be the difference between these two 

systems. 
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Thus, to better compare the enhancing efficiency of EB/stroma system with 

Flk1+/stroma system, we also carried out the EB/stroma co-culture using NIC-C5 and 

E14IV ES cell line. Thereafter, we simply compared the AM stroma haematopoietic 

enhancing effect on frequency of haematopoietic progenitors (CFU) (measured by 

normalization number of CFU formed in AM co-culture to CFU formed in gelatin 

control) present in Flk1+/stroma with EB/stroma co-culture system (Appendix Figure 

S4.2). For NIC- C5 ES cell line, we noted that the effect of AM stromal cell line on 

Flk1+ was significantly lower than that in EB/stromal system, while E14IV was 

relatively similar. This comparison implied the possible requirement of the Flk1- 

which could be the haematopoietic supporting niche for further haematopoietic 

differentiation on Flk1+ fraction. It has been predicted that in the in vivo environment, 

mesodermal-like cells are able to migrate through the surrounding mesenchyme then 

to the endothelial layer of dorsal aorta in the AGM region, which supported the 

notion that cells without haematopoietic commitment in the in vitro EB system were 

important for haematopoiesis. It is also reported that VEGF was important for the 

hematopoietic induction of Flk1+ cells especially in the serum free system (Nostro et 

al., 2008) (Choi et al., 1998; Park et al., 2004; Pearson et al., 2008). It would be 

necessary to test VEGF expression by AM stromal cell line and by the Flk1- cells 

from EB/AM co-culture.  

 

OP9 could not enhance Flk1+ haematopoietic differentiation in the Flk1+/stromal 

system. However it has been shown in several studies that OP9 could induce 

haematopoiesis from ES cell stage (Nakano et al., 1994; Gordon-Keylock et al., 

2011). One possibility is that OP9 induces haematopoietic differentiation by 

providing a supporting enviroment for ES-derived Flk1- cells. Thus Flk1+ cells may 

not repond directly to OP9 but rather to the to the Flk1- ES-derived niche. In contrast, 

Nishikawa and colleagues in 1998 reported that OP9 could enhance Flk1+ derived 

haematopoietic differentiation effciently (Nishikawa et al., 1998a). By comparing the 

haematopoietic enhancing efficiency published in our lab system in 2011 by 

Gordon-Keylock with the data published by Nakano in 1994 or Nishikawa in 1998, 

we noticed that the OP9 haematopoietic enhancing efficiency is much lower in our 

lab system. This difference could indicated that OP9 was not working at the best 
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status in our hands. 

4.6.3  Heterogenety of Flk1+ cells in ES differentiation. 

In our study, we investigated role of Notch signaling pathway in haematopoiesis in 

the specified Flk1+ population, in which the side-effects from Flk1- fraction for 

example, paraxial mesoderm, ectoderm or endoderm were excluded. However Flk1+ 

population from day4 EBs was still a heterogenic population with several cell types. 

As demonstrated by a series of studies charactizing Flk1+ expression during ES cell 

differentiation, Flk1 could mark different population in combination with other 

marker. Flk1 was reported to widely express on lateral mesoderm-like cells, which 

could further differentiate into Flk1+/SCl+ precursor for haematopoietic/endothelial 

cell lineages and Flk1+/SCL- precursor for endothelial/ smooth muscle cell lineages. 

(Chung et al., 2002; Ema et al., 2003; Nishikawa et al., 1998a) Flk1+ was also 

applied to mark haemangioblast from day2.5 to day4 EBs (Bry+/Flk1+) and 

haemogenic endothelium (Flk1+/Tie2+/cKit+ or Flk1+/VE-cad+) during EB 

differentiation (Fehling et al., 2003; Iacovino et al., 2011b; Lancrin et al., 2009; 

Nishikawa et al., 1998a). In addition, Flk1+ was an endothelial cell marker and also 

reported to be present on haematopoietic precursors in day 4 and day6 suspension 

EBs (Hirai et al., 2003; Kabrun et al., 1997). Thus, Flk1+ sorted from day4 EBs in 

our system could possibly represent a mix population including lateral mesoderm, 

haemangiolbast, haemogenic endothelium, early haematopoietic progenitors as well 

as endothelial cells. 

 

To better clarify the Flk1+ fraction we purified from day4 EBs in our system, we 

measured CD41+cKit+ frequency and haematopoietic colony formation ability in 

which low CD41+cKit+ frequency and low colony numbers indicated that Flk1+ cells 

at day4 were still enriched by earlier progenitors (Figure 4.2, 4.6). Therefore, Flk1+ 

from day 4 EBs possibly represented lateral mesoderm, haemangioblast or 

haemogenic endothelium. It will be necessary to apply BL-CFC assay to quantify the 

proportion of haemangioblast in the day4 EBs derived Flk1+ cells and include other 

markers like Brachyury, SCL, Tie2 or VE-Cad to further characterize and purify 

Flk1+ population for co-culture.  
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4.6.4  Do Flk1+ cells seeded on stroma from day 4suspension EBs represent 

YS-derived or AGM-derived haematopoiesis? 

A series of in vitro studies have investigated Flk1+ derived haematopoiesis, although 

at a different time window compared to this study.  For example it was suggested 

that day3.25 Flk1+ cells derived from EBs represent the primitive (yolk sac derived) 

haematopoiesis while day5.25 Flk1+ cells more closely resemble AGM-derived 

haematopoiesis. These two processes could be distinguished by Sox17 expression in 

Flk1+ or CD93 co-expressing CD41 post aggregation culture of Flk1+ cells (Fehling 

et al., 2003; Irion et al., 2010; Bertrand et al., 2005a; de Bruijn et al., 2002). It was 

noted in our previous study that the timing to the peak Brachyury expression is one 

day later than that published by Fehling’s et al. (Fehling et al., 2002; 

Gordon-Keylock et al., 2011) using the same ES cell line, revealing distinct  

differences between the two systems. It is therefore difficult to address here whether 

the Flk1+ at day 4 using E14IV ES cell line in our system represented YS-derived or 

AGM-derived haematopoiesis. Screening the Sox17 expression in purified Flk1+ 

cells during the differentiation might address this issue. By using a powerful 

induction system of combination of activin A, BMP4 and VEGF (AVB), CD93 could 

be detected from Flk1+ aggregation (Irion et al., 2010). CD93 has been tested in our 

system at day6 and day9 post co-culture of day 4 Flk1+ with stromal cells. However 

very weak expression of CD93 was detected which indicated that the yolk-sac 

haematopoiesis could be the dominant process in our culture. Alternatively, the 

stromal cell lines could not provide the microenvironment for haematopoiesis as 

efficient as the serum-free system with AVB cytokines. 

 

4.6.5  Mechnism of effects of AM on proliferation/survival of Flk1+ derived cells 

Promotion of haematopoietic activity by colony assay and flow cytometry was 

observed in AM stromal cell line. We also observed that AM and OP9 could promote 

Flk1+ derived cells proliferation/survival compared to gelatin control. Thus we 

measured whether this could be initiated by apoptosis. In preliminary experiment, 

AnnexinV/DAPI double staining on the overall cells from co-culture has shown that 

Flk1+ derived cells from gelatin control committed a more extensive apoptosis 
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process than cells from AM co-culture, which indicated that the AM could possibly 

enhance haematopoietic progenitors and cells by increasing cell survival ability 

(Figure S4.3). 

 

4.6.6  CD41+cKit+ function? Definitive? Primitive?  

We notice UG26 could also enhance CFU formation using NIC-C5, while no 

enhancement was observed according to the frequency of CD41+cKit+. In light of 

this, CD41+cKit+ formed in different co-culture may have different ability to form 

colonies in the methylcellulose assay, and so it would be worthwhile to test this 

possibility. 

 

In addition, many studies have been using CD41+cKit+ mostly based on the in vitro 

work with ESC system to measure definitive haematopoiesis. Both the primitive and 

definitive progenitors could respond to the methylcellulose colony assay, which 

could explain the difference between surface marker expression and colony 

formation ability in Flk1+/UG co-culture.  
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Chapter 5: Investigation of effects of ectopic NotchIC 

on Flk1+ cells derived haematopoiesis in Flk1+/AM 

co-culture 
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5.1 Aim 

To investigate how ectopic NotchIC affects haematopoietic differentiation of Flk1+ 

derived cells in the AM microenvironment. 

 

5.2 Introduction 

A co-culture system of Flk1+ cells and AM stromal cells (AM14.1C4) derived from 

the AGM region has been set up to promote haematopoietic progenitor production. 

This system could provide a powerful platform to investigate the molecular 

mechanisms that regulated haematopoiesis in the AGM region. In light of previously 

published work that ES-derived haematopoiesis in the EB/AM co-culture system was 

abrogated by blocking Notch signaling with the γ-secretase inhibitor post mesoderm, 

probably via Runx1 (Gordon Key-lock et al., 2011), we further determined whether 

Notch signaling was involved in the Flk1+ derived haematopoiesis in the Flk1+/AM 

co-culture system. As discussed in Chapter 3, γ-secretase inhibitor (GSI) could affect 

Notch activity in both ES-derived cells and in stromal cells, so the abrogation effect 

could be caused by inhibition of Notch activity in either cell population or both. To 

determine the effect of Notch signaling in ES-derived cells more specifically, a 

genetic modified ES cell line, R26-NotchIC, was used to overexpress the Notch 

intracellular domain (NotchIC) to activate ectopic Notch activity (Lowell et al., 

2006). This ES cell line was established based on an E14Tg2a derivative, 

R26CreERT2 ES cell line, which was set up by Grotewold, L. 

 

In this cell line, one allele of the ROSA26 locus was targeted with Cre-ERT2 (Cre 

recombinase fused to a mutated ligand-binding domain of the human estrogen 

receptor) (Vallier, 2001) (Grotewold, L. unpublished data). A floxed triple-polyA 

termination sequence under PGK promoter followed by NotchIC sequence and 

IRES- human CD2 (hCD2) was then targeted into the other ROSA26 allele in a 

Rosa26 targeting construct (Zambrowicz et al., 1997). When 4'hydroxy-Tamoxifen 

(4-OHT) was added into the culture, the termination sequence was excised by 

Cre-mediated recombination and the expression of ectopic NotchIC was driven under 

the Rosa26 promoter with hCD2 as a tag (Figure 5.1). As described in Chapter 4, 
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Flk1+ cells formed by this ES cell line were able to respond to the AM stromal cell 

stimulation and haematopoietic differentiation was increased compared to gelatin 

control, as assessed by both cell surface phenotype and colony formation assay. 

However in this system, constitutive expression of NotchIC after treatment of 4-OHT 

is irreversible because importing of Cre-ERT2 into the nucleus results in the excision 

of the termination sequence. Daughter cells therefore express NotchIC with hCD2 

and the effect of NotchIC cannot be withdrawal. To overcome this issue and to 

determine the role of NotchIC signaling in Flk1+ derived haematopoiesis in a more 

specific spatiotemporal window, 4-OHT was added at different time windows. 

Overall, experiments were designed to answer the following questions:  

 

(a) Whether the R26-NotchIC ES cell line could respond to 4-OHT and express 

NotchIC together with hCD2 leading to increased Notch activity;  

 

(b) Whether ectopic NotchIC affect haematopoietic differentiation of Flk1+ cells.  

 

5.3 Experimental approach 

 To determine whether R26-NotchIC ES cell line could respond to 4-OHT and 

result in enhanced Notch activity, Notch transcription activity was measured 

using a luciferase assay and by quantitation RT-PCR of downstream gene 

expression. Two sub-clones, R26-NotchIC-B5 and R26-NotchIC-C5, were tested 

to determine whether human CD2 expression could be detected by flow 

cytometry upon 4-OHT treatment and to optimize the dose and time length of 

addition; 

 

 To determine whether ectopic NotchIC could affect Flk1+ derived 

haematopoiesis by surface marker expression, Flk1+ cells were purified from 

day4 suspension EBs and co-cultured on AM stromal cells with or without 

4-OHT to day 6 and Day9 followed with flow cytometric analysis; 

 
 To assess the effects of ectopic NotchIC on Flk1+ derived haematopoiesis 

including number of HPCs in co-cultures and subsequent proliferation and 
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differentiation, haematopoietic colony assays were performed in the presence 

and absence of 4-OHT at different time windows. 

 

 FACS sorting was applied to purify the hCD2- and hCD2+ fraction from the 

same co-culture treated with 4-OHT. Comparisons of these two populations were 

carried out to measure the effect of NotchIC using flow cytometry analysis, 

haematopoietic colony assay and quantitative RT-PCR. 
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Figure 5.1 Construction of 4-OH-Tamoxifen inducible RC-NotchIC ES cell line.  
One allele of the ROSA26 locus is targeted with Cre-ERT2 and the other is targeted 
with a cassette containing a floxed transcription termination sequence followed by 
NotchIC sequence and IRES- human CD2 (hCD2). In Cre-ERT2 system, Cre-ERT2 
protein is constitutively expressed in cytoplasm and inactive by binding to heat shock 
protein (Hsp90). When 4-OH-Tamoxifen (4-OHT) is added into the culture, Hsp90 
protein is dissociated and Cre-ERT2 protein is released from the inactive complex and 
imported into nucleus to mediate the subsequent excision of loxP-flanked 
termination sequence. Finally expression of ectopic NotchIC was driven under the 
Rosa26 promoter together with hCD2 (Lowell et al., 2006). 
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5.4 Results 

5.4.1 Validation of RC-NotchIC ES cell line 

As described in Figure 5.1, RC-NotchIC ES cell line is predicted to express 

NotchIC-IRES-hCD2 upon the addition of 4-OHT. To confirm this, we tested the 

effect of 4-OHT on RC-NotchIC ES cell line. We first tested the enhancement of 

Notch activity using a luciferase assay for transcription activity and by quantitative 

RT-PCR of Notch downstream target genes. In luciferase assays, 12xRBP-Jκ binding 

site Luciferase reporter (a gife from Lowell, S.) and renilla internal control vector 

were co-transfected into RC-NotchIC-B5 ES cell line. The luciferase readout was 

compared between minus 4-OHT and plus 4-OHT. After 72 hours of treatment, there 

was a 2.5-fold increase of RBP-Jκ transcriptional activity in the ES cells treated with 

1μM 4-OHT comparing to the control culture (Figure 5.2 A, Black column). As the 

positive control, a pCAG-NotchIC expression vector, which constitutively expressed 

NotchIC at a high level, was co-transfected into cells with the 12xRBP-Jκ binding 

site Luciferase reporter.  A 1200 fold increase in the transcriptional activity was 

observed in this positive control culture (Figure 5.2 A, Red column). These results 

indicated that addition of 4-OHT is able to enhance the Notch activity in 

RC-NotchIC-B5 ESC at a moderate level. It has been suggested in several previous 

studies a high level of ectopic Notch activity could be toxic or could not reflect 

physiological conditions, so this moderate enhancing system might provide a better 

platform for the further investigation of Notch signaling pathway in the 

haematopoiesis. In quantitative RT-PCR analysis, the Notch downstream target genes 

Hes1 and Hes5 were increased upon addition of 4-OHT by 2 folds and 6 folds, 

respectively, compared to the control culture (Figure 5.2 B). 

 

4-OHT was added to two sub-clones, RC-NotchIC-B5 and RC-NotchIC-C5 at 0μM, 

0.25μM or 1μM for 1 day, 2 days and 5 days to determine the optimal conditions 

required for induction of NotchIC expression in undifferentiated ES cells (Figure 5.2 

C, D).  As the human CD2 (hCD2) marks NothIC expression we used the detection 

of CD2 expression by flow cytometry to monitor the realtime induction of 

Cre-mediated excision upon 4-OHT. For RC-NotchIC-B5 ES cell line, the proportion 
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of hCD2+ cells increased to around 20% after 24 hours and 35% after 48 hours. 

Longer treatment to 5 days did not have any significant effect. For RC-NotchIC-C5, 

the proportion of hCD2+ cells increased to 40% then reached 80% after two days. 

Longer addition of 4-OHT did not further increase the frequency either. It was noted 

with both ES cell lines that 0.25μM and 1μM had the same efficiency of induction. 

This result suggested that addition of 0.25μM of 4-OHT for 48 hours was sufficient 

to induce optimal frequency of NotchIC expression. RC-NotchIC-C5 had better 

induction efficiency than RC-NotchIC-B5. Thus, the majority of overexpression 

experiments were carried out with this ES cell line. 
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Figure 5.2 Validation of RC-NotchIC ES cell line. 
(A) RBP- Jκ transcription activity was enhanced upon addition of 4-OHT by 2.5 fold 
(black columns). Positive control pCAG-NotchIC enhanced transcription activity by 
1200 fold (red column); (B) Hes1 and Hes5 were enhanced upon addition of 4-OHT 
in quantitative RT-PCR; (C, D) Two sub-clones could respond to 4-OHT according to 
hCD2 expression. 4-OHT dose at 0.25 μM for 2 days was sufficient to reach 
optimum of hCD2+ cells. 
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5.4.2 Overexpression of NotchIC inhibited the formation of CD41+cKit+ 

haematopoietic progenitors and myeloid differentiation 

 

To analyze how Notch signaling is involved in the haematopoietic differentiation of 

Flk1+ cells in the AM microenvironment, we activated ectopic NotchIC expression in 

the Flk1+/AM co-culture. RC-NotchIC-C5 ES cells were differentiated in suspension 

EBs to day4, Flk1+ cells were purified and then co-cultured on irradiated AM stromal 

cells with or without 4-OHT to day6, day9 and day11. Flow cytometry for cell 

growth rate, surface marker expressions and methylcellulose assays for 

haematopoietic colony formation abilities were assayed (Figure 5.3). The E14IV ES 

cell line was used as a control.  

 

5.4.2.1 Effect of addition of 4-OHT on cell growth rate of Flk1+ derived cells 

To measure whether the addition of 4-OHT would affect cell growth, we quantified 

the exact number of cells derived from Flk1+ population at day6, day9 and day11. In 

both ES cell lines, no significant difference was observed between minus and plus 

4-OHT to day6 and day9 (p>0.05). However when 4-OHT was added to day11, we 

noticed that addition of 4-OHT start to inhibit the growth of C5 ES cell line (Figure 

5.4). Although experiments were carried out only twice at day11, we observed a 

reduction on cell number in both experiments at around 20% and 25% (data not 

shown). 4-OHT did not affect the growth of control cell line E14IV. This result 

suggested that addition of 4-OHT at 0.25 μM for up to 5 days (ie from day 4-9) did 

not affect the cell growth rate, either by inhibiting cell proliferation or promoting cell 

apoptosis. The inhibition of growth by longer exposure to 4-OHT could be caused by 

overexpression of NotchIC or by importing of Cre-ERT2 into the nucleus. 
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Figure 5.3 Scheme of ectopic NotchIC expression in Flk1+/AM co-culture system. 
ES cells were differentiated in suspension EBs to day4. Flk1+ cells were purified and 
co-cultured on AM stromal cells. 4-OHT were added into co-culture to day 6, day9 
and day11 followed with flow cytometry and methylcellulose assay analysis. 
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Figure 5.4 Growth rates of R26-NotchIC-C5 and E14IV Flk1+/AM co-culture 
with or without addition of 4-OHT at 0.25μM. 
Cell growth was not affected by 4-OHT to day9. There was a slight inhibitory effect 
of 4-OHT on cell number on day11 in R26-NotchIC-C5 ES cell line but not in the 
E14IV control cell line. 
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5.4.2.2 Ectopic NotchIC reduced the proportion of CD41+cKit+ at day6 

A series of studies initiated by Mikkola et al (2003) demonstrated that the 

CD41+cKit+ population formed in the ES cell differentiation system represented the 

definitive haematopoietic progenitors consisting of common multi-potential 

progenitors, myeloid progenitors, and erythroid progenitors. We therefore assessed 

the production of this cell type by flow cytometry to measure the effect of ectopic 

NotchIC in our co-culture system. Flk1+ cells were co-cultured on Vybrant DID 

stained and irradiated AM stromal cells at day4 to day6 and day9. Flow cytometry 

was applied to screen for the co-expression of CD41 and cKit to measure the 

haematopoietic progenitor formation at day6, which was suggested previously to be 

the peak of CD41+cKit+ production (data not shown). We observed that the addition 

of 4-OHT to Flk1+/AM co-culture with NIC-C5 ES cell line significantly inhibited 

the production of CD41+cKit+ cells by approximately 30% percent (*p<0.05) (Figure 

5.5 A). This result indicated that ectopic NotchIC reduced the number of 

haematopoietic progenitors determined by CD41+cKit+ from Flk1+ cells at day6, at a 

moderate level (Figure 5.5 B).  

 

To characterize the effect of NotchIC on later stages of haematopoietic differentiation, 

CD45, CD11b and Ter119 expression at day 9 were assessed for the production of 

pan-haematopoietic cells, myeloid lineages and erythroid lineages, respectively. 

Overexpression of NotchIC did not affect the frequency of CD45+, CD45+CD11b+ 

and Ter119+ (Figure 5.6). Interestingly, although CD41+cKit+ formation was 

abrogated by ectopic NotchIC, no effect of myeloid lineages was detected according 

to CD45 and CD11b expression. 

 

Nonetheless, although not statistically significant, ectopic NotchIC inhibited Ter119+ 

formation in 3 independent experiments at 30%, 64% and 75% (data not shown), 

while no difference was observed in E14IV control cell lines (Figure 5.6). This result 

indicated an inhibiting effect of NotchIC on erythroid lineage commitment. The 

reason for the lack of statistical significance could be that the inhibition effects 

varied between experiments, limited number of repeats or more likely, the low 

production of Ter119+ in this system lacking exogenous EPO. 
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Figure 5.5 Ectopic NotchIC inhibited CD41+cKit+ formation from Flk1+ in 
co-culture with AM stromal cells. 
(A) Frequency of CD41+cKit+ was inhibited significantly when 4-OHT was applied 
to co-culture from day 4 to day 6. E14IV was used as the control. (B) A model for 
inhibition on CD41+cKit+ from Flk1+ by ectopic NotchIC. CD41+cKit+ represented a 
mix population of haematopoietic progenitors (Multi-potential progenitors, myeloid 
progenitors and erythroid progenitors). Data represented 7 independent experiments. 
Error bars represented SEM. P value was calculated with Wilcxon matched pairs test. 
(*p<0.05) 
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Figure 5.6 Effect of ectopic NotchIC on myeloid and erythroid differentiation 
from Flk1+ cells in Flk1+/AM co-culture. 
At day9, ectopic NotchIC did not affect formation of CD45+ or CD45+CD11b+ cells 
but did inhibit Ter119+ cells production. Data showed average of 3 to 5 independent 
experiments. Error bars represent SEM. P value was calculated with Wilcxon 
matched pairs test (not significant when p>0.05).  
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5.4.2.3 Ectopic NotchIC reduced number of myeloid progenitors derived from 

the Flk1+ cells at day6 

Although analysis of haematopoietic surface marker expression pattern has been a 

critical assay to determine the haematopoietic differentiation, it could not be assumed 

that the ES-derived HSCs or HPCs shared the exact same pattern as it was 

discovered in vivo systems. Therefore, functional assays ultimately provide a better 

definition of the cell fate and function. In our system, characterization of the surface 

phenotype of cells derived from Flk1+ by overexpression of NotchIC demonstrated 

the inhibition effect of ectopic NotchIC on haematopoietic progenitor formation 

defined by CD41+cKit+. To determine how NotchIC affected Flk1+ derived cells 

haematopoiesis functionally, cultures were seeded into methylcellulose assay to 

measure number of HPCs including myeloid progenitor (CFU-M, CFU-GM), 

erythroid progenitor (BFU-E, CFU-E) and multi-potential progenitor (CFU-GEMM, 

Mac/Ery). Of note, with this strategy the whole differentiation process included 

formation of HPCs (also defined as colony forming units/CFUs) in co-cultures and 

subsequent colony formation in colony assay determined by HPCs abilities to 

proliferate and differentiate to terminal lineages. Thus, 4-OHT was added at different 

time points to determine the spatiotemporal effects of NotchIC as followed:  

a) To understand how ectopic NotchIC affected production of HPCs (CFUs) from 

Flk1+ cells in co-cultures and subsequent proliferation and differentiation of these 

HPCs in colony assay, 4-OHT was added to the co-culture for 2 days then 

withdrawn in colony assay (Figure 5.7 A);  

 

b) To understand how ectopic NotchIC affected ability of HPCs from co-cultures to 

proliferate and differentiate to form colonies in the colony assay, 4-OHT was 

only added in the colony assay (Figure 5.7 B); 

 

c) To overcome the irreversible effect of NotchIC in colony assay and understand 

how ectopic NotchIC affected production of haematopoietic progenitors from 

Flk1+ cells in co-cultures, cells from co-cultures with or without 4-OHT were 

both seeded into colony assay with 4-OHT, in which case, the later irreversible 

effects of NotchIC in colony assay could be counteracted (Figure 5.7 C). 
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Figure 5.7 Scheme of addition of 4-OHT at different time points during 
differentiation including HPCs (CFUs) production in co-culture and later colony 
formation in colony assay. 
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a) Overexpression of NotchIC prevented both myeloid and erythroid 

differentiation from Flk1+ cells 

To determine the effect of ectopic NotchIC on haematopoiesis of Flk1+ cells to 

terminal lineages, we activated NotchIC overexpression from the Flk1+ stage. Flk1+ 

cells were co-cultured on AM stromal cells with or without 4-OHT for 2 days (day6), 

and then seeded into methylcellulose assay at 1x105/dish without 4-OHT for another 

10 days (Figure 5.8 A). E14IV ES cell line was used as the control.  

 

It was noted that the number of overall haematopoietic colonies including 

multi-potent and uni-potent was reduced significantly upon activation of NotchIC 

(Figure 5.8 B, *p<0.05). When CFU-GEMM and Mac/Ery colonies that had both 

myeloid and erythroid potential were stacked, we noted that ectopic Notch could 

inhibit the number of these multi-potential colonies (Figure 5.8 C, *p<0.05). No 

difference was observed in E14IV control (Figure 5.8 B, C). Ectopic NotchIC 

inhibited myeloid differentiation or proliferation according to the reduction of 

CFU-M and CFU-GM (Figure 5.8 D, *p<0.05). Overexpression of NotchIC also 

significantly decreased the number of erythroid colonies at a very limited level 

(Figure 5.8 E, p>0.05). Therefore, these results suggested that during the Flk1+ 

derived haematopoiesis including haematopoietic progenitors production and 

subsequent colony forming in colony assay, ectopic NotchIC expression could inhibit 

both myeloid and erythroid differentiation. 
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Figure 5.8 Ectopic NotchIC expression inhibited myeloid and erythroid 
commitment of Flk1+ cells. 
(A) Scheme of inducing NotchIC expression with 4-OHT in Flk1+/AM co-culture. 
Significant reduction of number of haematopoietic colonies (B), multi-potential 
colonies (C), myeloid colonies (D) and limited reduction of erythroid colonies (E) by 
ectopic NotchIC in co-culture. Error bars represented SEM from 7 independent 
experiments. P values were calculated by Wilcoxon matched pairs test (*p<0.05). 
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b) Overexpression of NotchIC did not affect myeloid colony formation but 
inhibited erythroid colony formation ability from haematopoietic 
progenitors 

 
Next, we assessed the effect of NotchIC on abilities of haematopoietic progenitor to 

proliferate and differentiate in methylcellulose assay. Flk1+ was cultured on AM 

stromal cells without 4-OHT addition for 2 days to produce haematopoietic 

progenitors then seeded into colony assay with or without 4-OHT (Figure 5.9 A).  

 

In this cytokine-induced haematopoietic environment (ie the methylcellulose-based 

colony forming assay), the number of overall colonies was reduced by 28% (Figure 

5.9 B). Multi-potent progenitors (CFU-GEMM, Mac/Ery) were reduced by 60% 

(Figure 5.9 C). Although the difference was not significant, the inhibition was 

observed in all 5 independent experiments with various levels of inhibition (data not 

shown). Interestingly, addition of 4-OHT in the colony assay did not abrogate the 

number of myeloid colonies formed by myeloid progenitors as mentioned above 

(Figure 5.9 D). Statistically, significant inhibition of erythroid colonies formed by 

erythroid progenitors was observed (Figure 5.9 E, *p<0.05). This result suggested 

that addition of 4-OHT on haematopoietic progenitors from co-cultures could inhibit 

the colony formation of erythroid but not myeloid progenitors in these colony assays. 

Thus, number of multi-potential progenitors (CFU-GEMM and Mac/Ery) reduction 

observed in this circumstance could be accounted for the inhibition on erythroid 

colony forming potential. 
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Figure 5.9 Effects of ectopic NotchIC on colony formation ability from 
haematopoietic progenitors. 
(A) Scheme of NotchIC induction with 4-OHT in colony assay. NotchIC inhibited 
proliferation/ differentiation of haematopoietic progenitors (B), multi-potential progenitors 
(C) and erythroid progenitors (E) but not affected proliferation/differentiation of myeloid 
progenitors in colony assay. Error bars represented SEM for 5 independent experiments. P 
values were calculated by Mann-whitney test (*p<0.005) 
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c) Overexpression of NotchIC could prevent myeloid progenitor formation 

from Flk1+ cells 

 

In this enhancing system, NotchIC is expressed constitutively upon 4-OHT addition 

and therefore when 4-OHT is added at the Flk1+ stage, the effect of NotchIC would 

be present in the co-culture and persist in the methylcellulose colony assay. To better 

elucidate the effect of NotchIC on haematopoietic progenitor formation ability from 

Flk1+ in the co-culture, we compared the haematopoietic activity when 4-OHT was 

present throughout the co-culture AND the methylcelllose assay with conditions 

where 4-OHT was added to the methylcellose culture alone (Figure 5.10 A).  

 

Experiments were only carried out twice so statistic comparison was not available. 

However, in both experiments (Experiment1 and Experiment2) we observed that 

addition of 4-OHT could inhibit the number of myeloid colonies (CFU-GM and 

CFU-M). Because the irreversible effect of ectopic NotchIC in methylcellulose assay 

has been overcome by adding 4-OHT to both cultures, it could be assumed that 

ectopic NotchIC reduced number of myeloid progenitors from Flk1+ in the co-culture 

(Figure 5.10 B). 
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Figure 5.10 Effects of ectopic NotchIC on myeloid progenitor formation from 
Flk1+ cells in co-cultures. 
(A) Scheme of ectopic NotchIC induction with 4-OHT addition in both co-cultures 
AND colony assay. (B) NotchIC inhibited myeloid commitment in repeated 
experiments. Data represent 2 independent experiments. Error bars represent SEM of 
duplicate dishes. 
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5.4.3 Overexpression of NotchIC inhibited myeloid differentiation in hCD2+ 

fraction compared to hCD2- fraction in the same culture microenvironment 

 

As described in Figure 5.2, the NotchIC induction efficiency of 4-OHT was around 

70%. However in the co-culture system, it was found that the induction efficiency 

was around 50% (Figure 5.11 A). Therefore, after treatment of 4-OHT in the 

co-culture, Flk1+ derived cells consisted of 2 fractions: one with ectopic NotchIC 

-hCD2 expression, the other without ectopic NotchIC being hCD2 negative. The data 

described so far on the effects of ectopic NotchIC was determined by comparison 

between the treated group and untreated group (Figures 5.5 to Figure 5.10). 

Nevertheless the excision efficiency cannot be assumed as 100% in every system. 

The ectopic NotchIC in hCD2+ population could potentially change the whole 

microenvironment of the co-culture system by secreting factors or ligands and in turn 

modulate the fate of hCD2- population. It is also possible that the hCD2- fraction in 

the 4-OHT treated culture could also change cell fate and contribute to the myeloid 

differentiation inhibition observed above. To better elucidate the difference between 

NotchIC- (hCD2-) and NotchIC+ (hCD2+) fraction, we compared haematopoietic 

activities directly between NotchIC- and NotchIC+ populations (based on hCD2 

expression) which were derived from the same co-culture treated with 4-OHT. 

 

5.4.3.1 Ectopic NotchIC inhibit CD41+cKit+ formation and further myeloid 

differentiation 

It has been demonstrated previously that in the surface phenotype analysis at day6, 

CD41+cKit+ population was moderately reduced by ectopic NotchIC, while no 

significant change was observed for later haematopoietic marker CD45 or CD11b at 

day9. To better compare the NotchIC negative and positive population at 

haematopoietic differentiation, we stained the Flk1+ derived cells from co-culture 

treated with 4-OHT with PE-conjugated hCD2 antibody to distinguish these two 

fractions. Further flow cytometric analysis of surface markers were carried out with 

these two populations from the same co-culture (Figure 5.11 A). At day6, it was 

found that the frequency of CD41+cKit+ in hCD2+ population (NotchIC+) was 
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significantly lower (25%) than that of hCD2- population (NotchIC-) (Figure 5.11 B, 

*p<0.05). When the co-culture was treated with 4-OHT longer to day9, it was 

revealed that expression of CD45 was reduced to around 60% in hCD2+ compared to 

the  hCD2- population, suggesting that ectopic NotchIC could inhibit formation of 

CD45 (Figure 5.11 C, *p<0.05). Therefore, these results indicated that 

overexpression of NotchIC could inhibit the formation of CD41+cKit+ 

haematopoietic progenitor formation and pan-haematopoietic cells (CD45+) 

formation. Because CD45 is expressed by pan- hematopoietic cells except mature 

erythrocytes and platelets, in which case CD45 could more likely represent the 

myeloid direction. It will be interesting to look at the co-expression of CD45 with 

other myeloid markers like CD11b, GR1, F4/80 or lymphoid markers. 

 

5.4.3.2 Ectopic NotchIC abrogated myeloid differentiation via inhibiting myeloid 

progenitor formation 

Our result demonstrating that haematopoietic differentiation of the 

NotichIC-expressing, hCD2+ fraction was lower than that of the hCD2- fraction, 

which was consistent with our previous flow analysis of whole cultures (Figure 5.5). 

In light of this, we carried out methylcellulose assays to measure whether hCD2+ 

would give rise to less haematopoietic cells than hCD2-. In addition, quantitation 

RT-PCR was applied to determine whether related haematopoietic genes were 

affected. Thus, Flk1+ cells were co-cultured on Vybrant DiD stained AM stromal 

cells with the addition of 4-OHT to induce NotchIC+ (hCD2+) and NotchIC- (hCD2-) 

population. At day6, stromal cells were excluded according to the APC channel then 

NotchIC- and NotchIC+ fractions were separated by FACS based on CD2 expression. 

The purified fractions were then seeded into methylcellulose assay or for quantitation 

RT-PCR analysis (Figure 5.12). 

 

When hCD2- and hCD2+ cell populations were seeded into methylcellulose assay, it 

was found that hCD2+ fraction (with higher Notch activity) formed significantly less 

myeloid colonies (Figure 5.13 A, *p<0.05). To elucidate whether the inhibition on 

myeloid differentiation was caused by inhibition of myeloid progenitor formation in 

co-cultures or colony formation ability of these progenitors, we tested the effect of 
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ectopic NotchIC on the colony formation ability in hCD2- fraction. Interestingly, 

ectopic NotchIC expression did not affect the myeloid colony formation ability in 

colony assay indicating that NotchIC abrogated myeloid differentiation via inhibiting 

the formation of myeloid progenitors (Figure 5.13 B). To confirm this, hCD2- and 

hCD2+ fractions were seeded into colony assay with addition of 4-OHT to counteract 

the effect of NotchIC in methylcellulose assay. Similarly to Figure 5.13 A, the 

number of myeloid colonies were reduced significantly (Figure 5.13 C, *p<0.05). 

Therefore, in the co-culture treated of 4-OHT, the myeloid differentiation ability of 

the hCD2+ fraction was reduced compared to hCD2-. This inhibition effect of ectopic 

NotchIC took place at the stage of myeloid progenitor formation from Flk1+ cells in 

the Flk1+/AM co-culture system. 

 

5.4.3.3 Ectopic NotchIC inhibited the molecular characteristics of myeloid 

differentiation, without affecting early haematopoietic markers 

Furthermore, we applied quantitative RT-PCR on the sorted hCD2- and hCD2+ 

fraction to screen a series of critical genes related to haematopoiesis and cell fate 

decisions. The Notch downstream gene, Hey1, was confirmed to be increased 8 fold 

in the hCD2+ fraction compared to the hCD2- fraction. Gata2 and Runx1, which are 

reported to be downstream of Notch signaling and regulate definitive haematopoiesis 

in the AGM region, were not affected (Figure 5.14 A). It could be possible that Gata2 

and Runx1 do not function as the downstream genes in the molecular network 

existing in this Flk1+/AM co-culture system or the moderate enhancement of Notch 

activity as indicated in Figure 5.2 could not reach the threshold to affect Gata2 or 

Runx1. Thus, ectopic NotchIC in the Flk1+/AM system did not affect Flk1+ 

haematopoiesis via Gata2 or Runx1. Furthermore, detection of Gata2 and Runx1 as 

well as an increase of Runx1 at day6 compared to Flk1+ cells at day4 (data not 

shown) suggested that definitive haematopoiesis existed in this Flk1+/AM co-culture 

system. 

 

In light of the effects of ectopic NotchIC on myeloid and erythroid differentiation, 

we measured the other haematopoietic progenitor and lineage related genes. PU.1, a 

haematopoietic-specific ETS family transcription factor that regulates many 
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lymphoid and myeloid-specific gene promoters was inhibited by ectopic NotchIC as 

well (Figure 5.14 B). SCL is involved in a complex with Lmo2, Gata1, E2A, and 

Ldb1 to form a complex which is critical for erythroid differentiation. Here we tested 

the gene expression by qPCR at SCL, Lmo2, Gata1 to check effects of ectopic 

NotchIC on erythroid differentiation. Hemoglobin β-H1 and β-major were also 

included. Interestingly, we noticed that these myeloid and erythroid related genes 

decreased significantly in hCD2+ fraction compared to hCD2- (Figure 5.14 B). Thus, 

this result supported that ectopic NotchIC upon 4-OHT addition could abrogate 

further myeloid and erythroid differentiation from Flk1+ cells. In addition, detection 

of β-H1 and β-major with a sharp increase compared to day4 Flk1+ (data not shown) 

indicated that both primitive and definitive haematopoiesis existed in this Flk1+/AM 

co-culture system. 

 

In addition to regulate erythroid differentiation, SCL is an important transcription 

factor for early embryonic haematopoiesis and could identify the sub-population of 

mesoderm which was reported to determine the haemogenic endothelium formation 

from haemangioblast cells. Thus the inhibition of SCL suggested that haematopoietic 

inhibition in our system could be inhibited at an early stage when Flk1+ formed the 

haemogenic endothelium.  

 

To investigate the underlying mechanisms of the inhibition effect of ectopic NotchIC, 

we screened other genes which were related to haematopoietic differentiation. We 

first hypothesized that the suppression of haematopoietic differentiation from Flk1+ 

could be compensated by converts to other lineages. For the haemogenic 

endothelium cell fate, Flk1 and VE-Cad were not affected. Cell fates were not 

converted to paraxial mesoderm according to Tbx6 and Dll3 expression. Sox17, 

which was not affected either, was also tested because it was a marker for endoderm 

and found to be critical to distinguish the AGM-derived haematopoiesis from the 

yolk sac (Irion et al., 2010) (Figure 5.14 C). This result indicated that ectopic 

NotchIC did not maintain Flk1+ cells at haemangioblast or haemogenic endothelium 

stage or convert cell fate to the paraxial mesoderm. Interestingly, we noticed that 

Wnt5a, which has been demonstrated to maintain HSCs /HPCs survival and 
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proliferation (Austin et al., 1997), was reduced at a moderate level. This implied a 

possibility that ectopic NotchIC could inhibit haematopoietic progenitor 

proliferation/survival via inhibiting Wnt5a, which caused reduction of number of 

myeloid progenitors (Figure 5.14 C). Further rescue experiment by adding Wnt5a 

into the co-culture will be necessary to verify this possibility. 
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Figure 5.11 Ectopic NotchIC inhibited CD41+cKit+ formation and further 
myeloid differentiation. 
(A) Scheme of flow analysis of surface phenotypes of Flk1+ derived cells in hCD2- 
and hCD2+ fraction from co-culture at day6 and day9. (B, C) CD41+cKit+ and CD45+ 
frequency was reduced in hCD2+ compared to hCD2- fraction. Data represented 6 
and 7 independent experiments. Error bars represented SEM. P values was calculated 
with Wilcoxon matched pairs test (*p<0.05). 
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Figure 5.12 Scheme of ectopic NotchIC induction with 4-OHT in co-culture (A) 
with following FACS sorting on hCD2- and hCD2+ fraction for methylcellulose 
assay and quantitative RT-PCR at day6 (B). 
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Figure 5.13 Comparison of Flk1+ derived myeloid differentiation in sorted hCD2- 
and hCD2+ fraction. 
(A) NotchIC inhibited myeloid commitments; (B) NotchIC did not affect colony 
formation ability of myeloid progenitors; (C) NotchIC inhibited myeloid progenitors 
forming from co-culture; (D) No effect observed in E14IV control cells. Data 
represented 3 independent experiments. Error bars represented SEM. P value was 
calculated with Mann-Whitney test (*p<0.01) 
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Figure 5.14 Quantitative RT-PCR at gene expression in hCD2- and hCD2+ 
fraction.  
(A) Hey1 was upregulated in hCD2+. Gata2 and Runx1 were not affected. (B) 
Myeloid related gene PU.1 and erythroid related genes SCL, Lmo2, Gata1, β-H1 and 
β-major were suppressed. (C) Comparison of genes of other lineages in hCD2- and 
hCD2 fraction. Wnt5a was suppressed. Gene expressions in hCD2+ fraction were 
related to hCD2- fraction, assigned as “1”. HPRT was used as the endogenous control. 
Data represented 3 independent experiments. Error bars represented SEM. P values 
were calculated with Mann-Whitney test (*p<0.05) 
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5.4.4 Models of modulation of ectopic NotchIC at Flk1+ derived haematopoiesis 

In light of the results above, ectopic NotchIC could potentially function differently 

on the myeloid and erythroid differentiation. Here we summarize the cell response 

upon addition of 4-OHT at different time windows and draw a brief conclusion 

(Figure 5.15). Induction of ectopic NotchIC in co-culture from day4 to day6 

inhibited CD41+cKit+ frequency at morderate level (Figure 5.5). Further sorting to 

purify hCD2- and hCD2+ fraction supported that the inhibition effect was specific to 

NotchIC induced population (hCD2+) (Figure 5.11). Inhibition on CD41+cKit+ 

formation suggested inhibitory effect of NotchIC on Flk1+ derived haematopoiesis in 

co-culture. Of note, CD41+cKit+ could be co-expressed on a mix population of 

haematopoietic progenitors including multi-potential (CFU-GEMM, Mac/Ery), 

myeloid progenitor (CFU-GM, CFU-M), erythroid progenitor (BFU-E, CFU-E) and 

etc. However, no difference of definitive haematopoietic genes Gata2 or Runx1 

indicated the inhibition could possibly occurred at later stage when myeloid 

progenitor or erythroid progenitor formation, not multi-potential progenitors (Figure 

5.14). 

 

For the myeloid lineage, ectopic NotchIC had an inhibitory effect on myeloid 

differentiation from Flk1+ cells when 4-OHT was added into the co-culture then 

withdrawn from the colony assay (Figure 5.8). This was also confirmed by a 

decrease in the proportion of CD45+ cells observed by comparing sorted hCD2- and 

hCD2+ compartments (Figure 5.12). However, later differentiation and proliferation 

of myeloid progenitors to form colonies (CFU-GM, CFU-M) in colony assay was not 

affected (Figure 5.9). Furthermore, addition of 4-OHT into the colony assay to 

counteract the effect of NotchIC in colony assay revealed that ectopic Notch 

inhibited the production of myeloid progenitors from Flk1+ (Figure 5.10). 

Comparison of purified hCD2- and hCD2+ compartments in colony formation assays 

as well as down-regulation of PU.1 at day6 from co-culture supported this hypothesis 

(Figure 5.13). Thus, ectopic NotchIC abrogate myeloid differentiation from Flk1+ by 

inhibiting myeloid progenitor formation in co-culture (Figure 5.15). 

 

For the erythroid lineage, ectopic NotchIC inhibited erythroid differentiation from 
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Flk1+ cells at very limited level when 4-OHT was added into co-culture then 

withdrawn from the colony assay (Figure 5.8). However, a more prounced inhibitory 

effect was observed in the later colony formation by erythroid progenitors in colony 

assays (Figure 5.9). Thus, ectopic NotchIC abrogated erythroid differentiation, 

specifically by inhibiting the ability of erythroid progenitors to proliferate or 

differentiate and to form colonies in the methylcellulose assay. The early effect of 

NotchIC on erythroid production still needs to be elucidated (Figure 5.15). 

Downregulation of erythroid differentiation genes Gata1, SCL/Lmo2 and 

hemoglobin at day6 from co-culture also supported the inhibitory effect of ectopic 

NotchIC on erythroid differentiation as observed from colony assay. Of note, 

inhibition caused by toxicity of Cre-ERT2 will be discussed later in discussion part. 
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Figure 5.15 Modulation models of ectopic NotchIC on haematopoietic 
differentiation from Flk1+ cells 
Ectopic NotchIC inhibited CD41+cKit+ formation in co-culture to day6 at morderate 
level (indicated by thin red bar). NotchIC inhibited myeloid differentiation via 
myeloid progenitor formation in co-culture and erythroid lineage termination at later 
stages in colony forming assay (indicated by thick red bar).  
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5.5 Conclusion 

In this chapter, we applied a tamoxifen inducible system to overexpress ectopic 

NotchIC and measure its effect on Flk1+ derived haematopoiesis according to CFUs, 

surface markers and gene expression in Flk1+/AM co-culture system. The results in 

this section indicated that: 

 

 Ectopic NotchIC inhibited CD41+cKit+ haematopoietic progenitor formation 

from Flk1+ cells (Figure 5.5). 

 

 Ectopic NotchIC inhibited myeloid differentiation via inhibiting myeloid 

progenitor (CFU-GM/CFU-M) formation from Flk1+ at day6 while not affecting 

colony forming ability of myeloid prognitors (Figure 5.8-5.10, 5.13) 

 
 Ectopic NotchIC inhibited erythroid differentiation from Flk1+ cells (Figure 5.9, 

5.14). 

 
 Comparing hCD2- and hCD2+ fraction, inhibition effects on CD41+cKit+ and 

CD45+ frequency, myeloid and erythroid differentiation were enriched in hCD2+ 

(NotchIC+) population (Figure 5.11, 5.13,5.14). 
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5.6  Discussion 

5.6.1 A moderate inducible system to express ectopic NotchIC 

Advantages and disadvantages of 4-OHT inducible system 

So far, a series of gain- of- function systems have been developed to express ectopic 

NotchIC to investigate Notch signaling at different aspects in development. In this 

chapter, we have applied a 4-OHT inducible system to overexpress NotchIC during 

differentiation (Lowell et al., 2006). By comparing to other systems, this system is 

characterized by a very low background that ectopic NotchIC was repressed 

efficiently in the absence of 4-OHT and could be activated once 4-OHT was added at 

relatively high recombination efficiency (R26-NotchIC-C5); Secondly, targeting of 

Cre-ERT2 and NotchIC into each allele of Rosa26, a locus displayed ubiquitous 

activity during embryonic development assured the expression of both during 

differentiation in our system without silencing. Zambrowicz and his colleagues also 

confirmed that Rosa26 locus was active for haematopoietic differentiation in vivo 

during development (Friedrich and Soriano, 1991; Zambrowicz et al., 1997). 

Furthermore, targeting into Rosa26 locus avoided affecting other gene expression 

which have been discovered in other studies by random integrations; Thirdly, 

expression of NotchIC was under regulation of Rosa26 promoter, which was 

constitutively active during differentiation and moderate compared to other 

combination of promoters like CAG, in which case expression of NotchIC was 

moderate and not toxic during differentiation (Lowell et al., 2006). Fourthly, 

expression of hCD2 as a tag enabled us to monitor induction efficiency, as well as 

separate the hCD2- and hCD2+ fraction and investigated effect of ectopic NotchIC on 

each, which provided a platform to further understand intrinsic or extrinsic way of 

Notch signaling to modulate haematopoiesis. Overall, in our differentiating system, 

we achieved stable and moderate ectopic NotchIC expression being controlled tightly 

in response to 4-OHT. Nevertheless, the shortfall of this system is that ectopic 

NotchIC is irreversible once activated by 4-OHT, which was overcome to some 

extent in our study. In addition, moderate expression level of NotchIC by Rosa26 

promoter could possibly not reach the threshold to stimulate a strong phenotype upon 

induction. 
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Dosage of ectopic NotchIC induction 

Thus, characteristics of this system, likely explains why the phenotypic changes 

observed in this study were moderate compared to other studies. Of note, compared 

to the constitutively ectopic NotchIC expression under the CAG promoter, the 

transcription activity in 4-OHT inducible cell line under ROSA26 promoter 

displayed a limited enhancement (Figure 5.2), which was also confirmed by Lowell 

and her colleagues (Lowell et al., 2006). The reason for the partial inhibition on 

CD41+cKit+ at 30% as observed in Figure 5.4 could also be accounted for the limited 

enhancement of Notch activity regulated by ROSA26 promoter.  

 

Furthermore, emerging evidence suggests that the “dosage” of Notch signaling 

influences haematopoietic precursor cell-fate outcomes (Dallas et al., 2005; Delaney 

et al., 2005). We have tested whether NotchIC could inhibit the formation of Flk1+ 

from ES cells as reported by Schroeder’s study using the OP9/ES cell co-culture 

system (Schroeder et al., 2006a), in which case no change in Flk1+ formation from 

suspension EBs was observed in our system (data not shown). This was not 

surprising because in Schroeder’s study, ectopic NotchIC was driven under the 

promoter of CAG to yield a high level of robust NotchIC expression. The influence 

on Flk1+ could be caused by either inhibitory effects on mesoderm formation by 

NotchIC, or the extremely high NotchIC levels interfering with the early 

differentiation potential of ES cells as discussed by Lowell and Schroeder (Lowell et 

al., 2006; Schroeder et al., 2006a). 

 

5.6.2 Effect of ectopic NotchIC on primitive and definitive haematopoiesis in 

Flk1+/AM co-culture 

Embryonic haematopoiesis can be defined into three stages: primitive erythropoiesis 

for primitive erythrocytes, megakaryocytes and myeloid cells in yolk sac; the first 

wave of definitive haematopoiesis in early AGM and yolk sac with limited 

self-renewal capacity but multi-potent including myeloid, definitive erythroid and/or 

lymphoid differentiation and second definitive haematopoiesis for long-term 

definitive HSCs production in AGM region with a later migration to fetal liver. 

Based on the results of detection of CD41+cKit+ population, expression of Runx1, 
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β-H1 and β-major expression at day6 with an increase compared to day4 Flk1+ cells 

(data not shown), we proposed that primitive and definitive co-existed in our system. 

Whether long-term HSCs exist in our system is still ambiguous until transplantation 

is carried out. So far studies on Notch signaling on haematopoiesis suggested 

complicated involvements of Notch signaling in primitive, definitive and long-term 

haematopoiesis. Due to high complexity of the Notch signaling pathway and 

interacting with other pathways, the effects of Notch varies in different systems 

based on experimental models, timing, signal strength and developmental context. 

 

According to our results, ectopic NotchIC did not affect Gata2 or Runx1 expression 

but inhibited critical genes for later commitment. Furthermore, we also suggest that 

inhibition on definitive haematopoiesis defined by CD41+cKit+ could be initiated by 

a later inhibition effect on myeloid or erythroid progenitor numbers. Thus, it is 

possible that Flk1+ derived definitive haematopoiesis in AM microenvironment was 

not affected by ectopic NotchIC at early stage (ie formation of CMP from 

haemangioblast/haemogenic endothelium), while later formation of both primitive 

and definitive terminal lineages were abrogated.  

 

This assumption correlates to work published by Ganapati et al by overexpressing 

NotchIC in a Tet-off system finding that ectopic NotchIC could inhibit formation of 

CD34+cKit+ followed with lower myeloid marker CD11b expression in OP9 

co-culture system (Ganapati et al., 2007). In convert, Hadland and his colleagues’ 

work using knock down system claiming that Notch1 deficiency in EB 

differentiation did not affect the production of definitive colony formation cells but 

increase CFU-EryP (Hadland et al., 2004). However Kumano and colleagues 

demonstrated that Notch1 deficiency could interrupt AGM-derived haematopoiesis 

but not yolk sac-derived haematopoiesis in colony forming assay with an inhibition 

on Runx1, Gata2 at RNA level (Kumano et al., 2003). Accordingly, Robert-Moreno 

and his colleagues also revealed the absence of haematopoietic cells but increase of 

endothelial cells in RBP-Jκ mutant in AGM region by downregulating GATA2, 

Runx1 and SCL expression (Robert-Moreno et al., 2005). These two loss- of function 

systems emphasized the critical role of Notch for definitive haematopoiesis, which 
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seemed to be controversial to our result. However these reported abrogation effect on 

AGM-derived haematopoiesis or definitive transcription factors could be accounted 

by inhibition on long-term HSCs potential (the second definitive wave), which was 

not determined yet in our system. Moreover, gain-of function could be not opposite 

to loss- of function.  

 

Alternatively, ectopic NotchIC did affect definitive haematopoiesis at early stage (ie 

formation of CMP from haemangioblast or haemogenic endothelium) while not via 

Gata2 or Runx1 because these two genes were not function as Notch downstream 

target in this molecular network in co-culture, or ectopic NotchIC was too moderate 

to reach the threshold to affect Gata2 or Runx1. 

 

5.6.3 Inhibition effect of ectopic NotchIC on myeloid differentiation via 

abrogating MYELOID PROGENITOR formation from Flk1+ cells 

In our system, we noted that ectopic NotchIC abrogate myeloid differentiation via 

inhibiting the number of MYELOID PROGENITOR but not affecting later 

differentiation or proliferation of MYELOID PROGENITOR in colony assay. This 

inhibitory effect was also confirmed by CD41+cKit+ and CD45 expression and could 

possibly via inhibiting PU.1.  This conclusion agreed with some previous studies but 

also controversial to other studies, though most of which were based on the adult 

haematopoiesis system. A recently published work suggested that ectopic NotchIC 

could suppress RNA level of several critical myeloid transcription factors including 

PU.1 in mouse HSCs (Klinakis et al., 2011). de Pooter et al demonstrated that 

co-culture with OP9-Delta like1 could inhibit maturation of myeloid cells from both 

ES cells and primary haematopoietic progenitors mediated by GATA2 (de Pooter et 

al., 2006). Walker also proved that stimulation of Jagged1 could inhibit myeloid 

colony formation from CD34+ cells in the absence of cytokine stimulation (Walker et 

al., 1999). To better understand the reason for inhibitory effect, increasing evidences 

suggested Notch signaling favored progenitor proliferation over differentiation. Siter 

reported that activation of NotchIC in bone marrow derived HSCs could increase 

HSC self-renew in vivo and favour T lineage commitment but inhibit myeloid 

differentiation (Stier, 2002). Carlesso and Buono demonstrated that increase or 
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accumulation of Notch activity could promote haematopoietic progenitor 

proliferation and inhibit further differentiation (Buono et al., 2010; Carlesso et al., 

1999) 

 

Although inhibition on myeloid differentiation has been widely reported, the exact 

stage when inhibitory effect takes place is still of controversial. In our system, Notch 

inhibited myeloid differentiation via abrogating MYELOID PROGENITOR 

formation. However, as reported by other groups, Notch signaling was proposed to 

interrupt myeloid differentiation via promoting myeloid progenitor accumulation and 

inhibiting later terminal differentiation or maturation (Bigas et al., 1998; Kawamata 

et al., 2002b; Qyang et al., 2004; Saleem and Conrad, 2011). In light of this, it will be 

necessary to check whether colonies in colony assay formed by the induced 

population were more immature compared to the untreated population in our system. 

 

In contrast, several studies using overexpression systems to activate Notch signaling 

by either exogenous stimulation of ligands or ectopic NotchIC in bone marrow 

derived HSCs or HPCs (FCDP-mix cells or 32D) suggested that Notch signaling 

pathway could promote myeloid differentiation or maturation but inhibited 

haematopoietic progenitor proliferation, possibly via upregulating PU.1 expression 

and other transcription factors critical for proliferation, differentiation or apoptosis 

(Kawamata et al., 2002a; Schroeder, 2003; Schroeder and Just, 2000a; Schroeder and 

Just, 2000b; Schroeder et al., 2003; Schroeder et al., 2000; Schroeder et al., 2006b; 

Schwanbeck et al., 2008). This observation correlates to suppression on myeloid 

differentiation to GR-1 derived from Notch1-/- ESC in vitro (Yan et al., 2010; Zhou, 

2012). Therefore, the role of Notch signaling in MYELOID PROGENITOR 

formation and later commitment is still controversial and context, timing, cytokines, 

and modulation strategy dependent. More important, embryonic sites of 

hematopoiesis represented environments distinct from adult hematopoiesis, with 

unique regulatory requirements. Thus, ectopic NotchIC modulation on myeloid 

differentiation in our system provided a novel idea about the potential of Notch 

signaling in the myeloid differentiation in AGM-derived microenvironment without 

addition of exogenous cytokines. 
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5.6.4 Erythroid differentiation in Flk1+/AM co-culture system 

To better understand how ectopic NotchIC affects Flk1+ derived haematopoiesis and 

to consider the complexity of Notch signaling, we analysed the effects on both 

myeloid and erythroid. As summarized in Figure 5.15, when 4-OHT was added to the 

co-culture and withdrawn two days later, an inhibition effect was observed but at a 

very limited level (Figure 5.8 E). We noted a larger inhibitory effect of NotchIC on 

erythroid progenitor to form colonies in the colony assay compared to Figure 5.8 E, 

which indicated ectopic NotchIC could abrogate proliferation and differentiation 

ability of erythroid progenitors (Figure 5.9 E). Thus, ectopic NotchIC showed an 

inhibitory effect on erythroid differentiation. However it was difficult to distinguish 

how NotchIC acted between the process of erythroid progenitor formation in 

co-culture and later colony formation by erythroid progenitorss. Comparison was 

carried out between culture treated with 4-OHT in colony assay with culture treated 

in co-culture AND colony assay, which displayed a better inhibitory in longer 

treatment as well in Appendix Figure S5.1. It was highly possible that induction of 

Notch activity in co-culture stimulated the responding ability of erythroid progenitors 

in colony assay to form colony or simply increased number of erythroid progenitors. 

 

Effect of ectopic NotchIC on erythroid differentiation 

As we noted, NotchIC inhibited erythroid differentiation, more likely at terminal 

commitment. This inhibitory effect was also confirmed by quantitative RT-PCR at 

SCL, Lmo2, Gata1 and β-globin level decrease upon induction of NotchIC. So far, a 

series of studies investigating effect of Notch signaling have been reported but are 

also controversial. Comparable to our study in ES system, it was found that 

Notch1-/- ES cells increased numbers of primitive erythroid colony forming 

progenitors (EryP) in EBs in vitro culture, but not in vivo (Hadland et al., 2004). 

Similarly, overexpression of NotchIC abrogated EryP formation from EBs but not 

affect definitive colonies (Cheng et al., 2008). This was also supported by several 

studies using adult HSCs models ex vivo or in vivo demonstrating the inhibitory 

effect of Notch signaling on erythroid differentiation and maturation or apoptotic 

inducing effect, possibly via suppressing Gata1 activity through Hes1 (Elagib et al., 

2004; Ishiko et al., 2005; Lam et al., 2000; Maeda et al., 2009; Okuhashi et al., 2010; 
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Robert-Moreno et al., 2007; Ross et al., 2012; Tachikawa et al., 2006). Conversely, 

several other groups suggested the induction effects of Notch signaling on erythroid 

differentiation and maturation (Henning et al., 2008; Henning et al., 2007; Sugimoto 

et al., 2006). The controversies are probably not surprising because of the differences 

between the systems with different cytokine stimulation or types of progenitors. For 

example, Notch signaling could regulate erythroid differentiation via modulating 

cytokine-dependent signal pathways like EPO.  

 

Toxicity of Cre on erythroid differentiation 

Inhibition of erythroid differentiation was demonstrated in our studies by using flow 

cytometry at mature erythrocyte marker Ter119 expression and BFU-E and CFU-E 

formation in colony assay as well as inhibition of erythroid related genes. However, 

toxicity of Cre has been reported in several studies on several cell types, in which 

case toxicity could be another potential reason for the abrogation of erythroid 

differentiation in our system. It was reported that Cre recombinase could cause 

growth inhibition and DNA damage (Loonstra et al., 2001; Silver and Livingston, 

2001). 

 

To determine whether this suppression was caused ectopic NotchIC or Cre, we 

simply seeded the FACS sorted hCD2+ fraction in to the methylcellulose assay with 

or without 4-OHT. In theory, loxp -termination sequence- loxp in hCD2+ cells have 

been removed with Cre so that further addition of 4-OHT into cells should not drive 

more NotchIC expression. hCD2- fraction and E14IV were used as the control. As it 

has been shown previously, addition of 4-OHT could inhibit erythroid colony 

formation in hCD2- fraction. However this inhibition effect was observed in hCD2+ 

fraction as well. Addition of 4-OHT did not affect colony formation by E14IV 

(Appendix Figure S5.2). Therefore, by taking suppression of mature erythrocytes 

marker Ter119 and critical genes for erythrocytes commitment into account together, 

it could be explained as the importing of Cre into nucleus causing the inhibition of 

erythroid differentiation at terminal stage. Introducing another control cell line with 

Cre-ERT2 targeted into the ROSA26 locus will be critical and necessary. 
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5.6.5 Possible explanation for suppression of Flk1+ derived haematopoiesis 

During differentiation, multi-potential hematopoietic progenitors could undergo a 

series of commitment decisions to choose between survival and apoptosis, between 

proliferation and lineage commitment, or between differentiation directions. 

 

Survival and proliferation of Flk1+ derived HPCs and haematopoietic cells 

Increasing evidence has emerged to suggest that Notch signaling is involved in 

haematopoiesis via regulating cell survival, proliferation and differentiation. In our 

system, Flk1+ differentiation into myeloid progenitors or erythroid lineages was 

abrogated. This result could be caused by the cell survival and proliferation ability. 

Preliminary data of apoptosis analysis on day6 and day8 indicated a slight higher 

percentage of AnnexinV+DAPI- staining in Flk1+ derived cells (Appendix Figure 

S5.3). It will be necessary to measure the total number of Flk1+ derived 

haematopoietic progenitors and cells to measure whether overexpression of NotchIC 

could inhibit myeloid and erythroid differentiation via affecting cell survival or 

proliferation ability, probably through apoptosis of the Flk1+ derived HPCs and 

haematopoietic cells. In light of Schroeder’s studies, it will also be interesting to 

check whether ectopic NotchIC could affect cell cycle of HPCs and haematopoietic 

cells in our system (Schroeder and Just, 2000a). 

 

Potential of Flk1+ cells to other lineages including lymphoid, cardiac, endothelial 

and VSMCs development 

A series of studies have demonstrated that activation of Notch signaling could prime 

haematopoietic differentiation into T lineages (de Pooter and Zuniga-Pflucker, 2007; 

Henning et al., 2007; Jaleco et al., 2001; Kutleša et al., 2009; Mohtashami et al., 

2010; Sambandam et al., 2005; Schmitt and Zuniga-Pflucker, 2002; Stier et al., 2002). 

Although no measurement of T lineages has been carried out in our system, it will be 

interesting to investigate whether ectopic NotchIC favours haematopoietic 

differentiation to lymphoid lineage over myeloid and erythroid lineages. 

 

Except for cell survival, proliferation ability or converting to lymphoid lineages from 

haematopoietic progenitors, ectopic NotchIC could possibly convert cell fate to other 
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lineages from Flk1+ cells. We noted that in our system, ectopic NotchIC could inhibit 

SCL/Lmo2 expression, which was critical for formation of haemogenic endothelium 

from Flk1+ haemangioblast cells (Lancrin et al., 2009). Thus Notch could possibly 

affected early commitment of Flk1+ cells to haemogenic endothelium by inhibiting 

SCL in our system, though no difference of Flk1 or VE-Cadherin RNA level was 

affected. It is worthwhile to include other markers for early haematopoisis in flow 

cytometry analysis. 

 

It has been reported by a series of studies that Flk1+ cells were able to differentiate to 

haematopoietic, endothelial, vascular smooth muscle as well as cardiac lineages 

(Ema et al., 2006; Huber et al., 2004; Ishitobi et al., 2011; Kattman et al., 2006; 

Kouskoff et al., 2005; Lugus et al., 2009; Wu et al., 2006; Yang et al., 2008). For 

example, ectopic Notch4 has been reported to respecify Flk1+ haemangioblast cells 

to a cardiac fate over a haematopoietic fate (Chen et al., 2008). In our system, Flk1+ 

cells by Notch-C5 ES cell lines were also co-cultured on OP9 stroma to induce 

cardiomyocytes in this project. However in our co-culture system of Flk1+ with OP9 

cells, beating colonies were observed but no difference was detected when 4-OHT 

was added to induce ectopic NotchIC. This could be explained that ectopic NotchIC 

was moderate compared to Chen’s system. Alternatively, induction using serum-free 

system with addition of cytokines determined the different molecular network 

different from the OP9 co-culture system in our system. In addition, Notch1 and 

Notch4 could function differently. In the same research, overexpression of Notch4 

was also found to moderately increase the level of genes related to endothelial and 

VSMCs development including Flk1, VE-Cadherin, SM22 and pDGF-β from Flk1+ 

haemangioblast (Chen et al., 2008). Notch activation mediated by Cre recombination 

in specific lineages also supported the involvement of Notch signaling in definitive 

haematopoiesis by regulating the cardiac, endothelial and VSMCs differentiation. 

(Tang et al., 2012; Venkatesh et al., 2008). Thus, based on the inhibitory effect of 

NotchIC on haematopoietic differentiation from Flk1+ cells, it would be interesting to 

further investigate whether Notch could convert cell fate to cardiac, endothelial or 

VSMCs fate. 
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5.6.6 Microenvironment for haematopoiesis affected by ectopic NotchIC 

As discussed in 5.6.5, ectopic NotchIC could potential convert the fate decision from 

Flk1+ cells. Moreover, the function of non-haematopoietic priming cells to alter the 

haematopoietic microenvironment could be affected by Notch activation. For 

example, Tang and colleagues noted that Notch1 activation in endothelial cells 

(VE-cadherin+) could abrogate haematopoiesis (Tang et al., 2012). It is plausible as 

they addessed that activtion of Notch1 imbalanced the fate decision of 

endothelial/haematopoietic from endothelial cells, or alternatively structural 

endothelial cells which are also VE-cadherin+ overexpressing NotchIC provide an 

inhibitory microenvironment for haematopoietic differentiation. Thus, modulation of 

Notch activity in more specified population like endothelial cells or haemogenic 

endothelium cells and check its effect on haematopoietic differentiation will be 

interesting. 
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Chapter 6: Investigate whether Notch signalling 

pathway is required for Flk1+ cells derived 

haematopoietic differentiation in Flk1+/AM 

co-culture 
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6.1 Aim 

To set up a system to measure whether Notch signaling was involved during the 

haematopoietic differentiation of Flk1+ cells in AM supporting microenvironment. 

 

6.2 Introduction 

In previous chapters, we demonstrated that AM stromal cells could enhance 

haematopoietic differentiation of Flk1+ cells. Of note, overexpression of Notch 

intracellular domain (NotchIC) to activate Notch signaling abrogated formation of 

CD41+cKit+ haematopoietic progenitors and myeloid differentiation. To further 

understand the involvement of Notch signaling pathway during haematopoietic 

differentiation in the Flk1+/AM co-culture, we knocked down Notch signaling using 

a dominant negative strategy. In many studies, knock down or knock out of the 

components of Notch signaling have been used to modulate Notch activity. 

Dominant-negative MAML1 (DNMAML1 or DML), a truncation of MAML1 which 

functions as a component to form the RPB- Jκ co-activator, provides the binding site 

for NotchIC but does not recruit other co-activators. So far several studies have used 

DNMAML1 (DML) to inhibit the Notch signaling pathway (Gonzalez-Garcia et al., 

2009; Maillard et al., 2008). As reported in several published studies, the Notch 

signaling pathway controls cell fate decisions at different stages during development 

both in vivo and in vitro. To investigate the effect of Notch signaling on cell fate at a 

particular stage on specific cells, we set out to establish a system whereby we could 

knock down Notch signaling using DNMAML1 at defined time windows in 

ESC-derived cells without an inhibitory effect on stromal cells. We chose the 

doxycycline inducible system (Iacovino et al., 2011a). To set up this inducible 

system, we carried out the following experiments:  

(a) ES cell clones expressing doxycycline-inducible DML-EGFP or EGFP alone 

were generated; 

(b) Each ES cell clone was tested for Doxycycline-inducibility and screened in a 

series of assays designed to assess self-renewal and differentiation; 

(c) The efficiency of inhibition of Notch activity was measured; 

(d) The effect of DML-EGFP on haematopoietic differentiation of Flk1+ cells in 
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AM supporting microenvironment was tested. 

6.3 Experimental approach 

 To generate the doxycycline inducible DML-EGFP ES cell line (iDML) and 

control EGFP cell line (iEGFP), DML-EGFP and EGFP in p2lox plasmid were 

electroporated into A2lox.cre parental ES cell line; 

 

 To validate ES clones, western blot and flow cytometric analysis were applied to 

assess the expression of DML-EGFP and EGFP expression. The dose of 

doxycycline was optimized. Karyotyping and self-renewal assays were carried 

out to characterize these ES cell clones for ES cells properties; 

 

 To determine whether DML-EGFP could abrogate Notch signaling, Notch 

transcription activity was assessed using the luciferase reporter system and 

quantitative RT-PCR of Notch downstream genes.  

 

 To measure whether iDML and iEGFP ES clones could respond to AM stromal 

cells in EB/AM and Flk1+/AM co-cultures, methylcellulose assays were applied 

to determine the haematopoietic activity; 

 

 To test whether DML-EGFP could affect Flk1+ derived haematopoiesis, 

DML-EGFP was induced in Flk1+/AM co-culture system and haematopoietic 

activity were measured in both colony assay and flow cytometry. 
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6.4 Results 

6.4.1. Generation of doxycycline inducible DNMAML1-EGFP ES cell lines for 

knocking down Notch activity 

6.4.1.1 Construction of two Doxycycline inducible ES cell lines 

iDNMAML1-EGFP (iDML) and iEGFP. 

DNMAML1-EGFP fragment was excised from pEGFP-DNMAML1-N3 plasmid (a 

kind gift from Maillard, I.) with BglII and NotI sites then cloned into p2lox-EGFP 

plasmid digested with XhoI and NotI with blunting strategy. According to sequence 

of p2lox plasmid and DML-EGFP, the correct clone should only contain one EcoRI 

site. Clones were screened by EcoRI digestion (Figure 6.1 A). The 

p2lox-DML-EGFP plasmid was also sequenced after construction to confirm the 

correct integration of DML-EGFP. 

 

A2lox.cre parental cell line (kindly provided by the Kyba lab) was constructed based 

on A17 ES cell line, a derivative of E14Tg2a ES cell line, in which reverse 

tetracycline-controlled transcriptional activator (rtTA) has been inserted into the 

Rosa26 locus. This A17 ES cell line was then targeted in the HPRT locus with 

tetracycline- responsive promoter (TRE) followed with a Cre transgene flanked by 

two incompatible loxP and loxM sites together with Δneo, a G418 resistance gene 

lacking ATG start codon and promoter to construct the A2lox.cre ES cell line 

(Iacovino et al., 2011a). To obtain inducible DML-EGFP ES cell lines, 1μg/ml 

Doxycycline was added to induce Cre expression 24 hours prior to electroporation of 

p2lox-DML-EGFP, a plasmid bearing PGK promoter and two heterozygous loxP 

sites followed with inserted DNMAML1-EGFP fragment. In correct clones, 

DML-EGFP expression was regulated by the TRE promoter so when doxycycline is 

added, the rtTA in Rosa26 locus binds to TRE promoter then drives the expression of 

DML-EGFP. The PGK promoter with start codon ATG is then able to drive 

expression of Δneo gene resulting in G418 resistance. The Cre transgene with two 

loxM sites is then excised at this point (Figure 6.1 B). We also established control 

cell lines with inducible EGFP by electroporation of p2lox-EGFP. With this strategy, 

we established two types of cell lines: iDML-EGFP (41 clones obtained) and iEGFP 
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(57 clones obtained). 

 

6.4.1.2 Validation of iDML and iEGFP ES clones by western blots and flow 

cytometry. 

To determine whether DML-EGFP could be expressed from the TRE promoter upon 

addition of doxycycline (Dox), two chosen iDML ES clones: iDML.1 and iDML.2 

(named as A2 and A10 in the original work) were treated with 5μg/ml Doxycycline 

for 48 hours in the presence of LIF. Cos7 cells were transfected with 

pEGFP-DML-N3 or pCAG-EGFP plasmid as positive controls. Two control ES cell 

lines iEGFP.1 and iEGFP.2 (named as C8 and H8 in the original work) as well as 

A2lox.cre parental cell line were also treated with Dox as controls. Western blot 

showed that upon addition of Dox, iDML.1 and iDML.2 expressed the 38 kD 

DML-EGFP and the iEGFP.1 and iEGFP.2 cell lines expressed the 30kD EGFP. No 

expression was detected in A2lox.cre parental cell line. STAT3 (79kD) was used as 

the endogenous control (Figure 6.2A). Because EGFP was used as a tag in the 

system, it was also possible to monitor the expression of DML-EGFP or EGFP by 

flow cytometry. iDML clones and iEGFP clones was treated with 5μg/ml Dox for 48 

hours in the presence of LIF. It was shown that EGFP in all the four chosen clones 

could be detected. The induction efficiency was around 90% (iDML.1 92.8%; 

iDML.2 90%; iEGFP.1 88.6%; iEGFP.2 85.8%) (Figure 6.2 B). This result suggested 

that iDML and iEGFP could respond to Dox and express DML-EGFP or EGFP as 

detected by both western blot and flow cytometry at the protein level. 

 

6.4.1.3 Optimization of dose of Doxycycline to induce DML-EGFP expression 

To optimize the dose of doxcycyline to induce DML-EGFP expression, we used 

western blotting and flow cytometry to monitor EGFP expression upon addition of 

dox at different doses using the iDML.1 ES clone. ES cells were treated with dox and 

analysed by western blotting using an anti- EGFP antibody. There was no detectable 

expression of DML-EGFP in the absence of doxycycline. By adding doxycycline at 

concentration ranging from 0.5μg/ml to 14μg/ml for 48 hours, expression of 

DMl-EGFP was detected. The induction efficiency of doxycycline was comparable 
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from 0.5μg/ml to 8μg/ml. Concentration of 14μg/ml had a lower level of induction. 

An EGFP band at 30kd was detected in the blot indicating possible degradation 

(Figure 6.3 A). Flow cytometry was also applied to measure induction of 

DML-EGFP in differentiating cells. ES cells were differentiated into day4 

suspension EBs then disaggregated into single cells then cultured on gelatin with 

addition of dox. No DML-EGFP was detected in the absence of Dox. Induction 

efficiency was comparable among 1μg/ml to 5μg/ml. 0.5μg/ml had a slightly lower 

level of induction efficiency (Figure 6.3 B). Thus, a dose of 1μg/ml was applied to 

induce DML-EGFP in iDML.1 ES clone both in stem cells and in differentiating 

cells  

6.4.1.4 Karyotyping of iDML and iEGFP ES clones 

It is widely acknowledged that karyotypes of ES cells could become abnormal after 

long term of culture with a trisomy of chromosomes being the most commonly 

observed aberration (Liu et al., 1997); (Rebuzzini et al., 2008). Therefore, we carried 

out karyotyping assay to determine whether the chosen clones contained a normal 

chromosome numbers by counting DAPI stained chromosome spreading on slides. 

Clones with more than 80 % of randomly picked up cells containing 39-40 

chromosomes were defined as normal karyotyping. E14 IV ES cells, a widely used 

ES cell line in our lab with a more stable normal karyotype compared to other ES 

cell lines were checked here as the positive control. It was found that A2lox.cre 

parental ES cell line and the four chosen inducible ES cell lines possessed the 

acceptable percentage of cells with correct chromosome number (Table 6.1). 

Interestingly, iEGFP.2 contained higher percentage of cells with 39 or less 

chromosomes than other clones. This was not conclusive because it could be caused 

by bad spreading or overlapping of chromosomes in the preparation for this ES cell 

line. Thus it is necessary to repeat or apply more sensitive strategies to confirm this. 

 

6.4.1.5 Self-renewal ability of iDML and iEGFP clones 

To measure whether the four chosen ES clones could function as ES cells with 

self-renewal ability in the presence of LIF and differentiation ability in the absence 

of LIF, we carried out clonal density, self-renewal assays of A2lox.cre parental ES 
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cell line, two iDML and two iEGFP ES clones. Briefly, 500 ES cells were plated in 

two gelatinized wells in 6 well plates in the presence of LIF. The following day cells 

were washed with PBS twice then cultured in ES medium with or without LIF 

separately for another 6 days. Then cells were fixed and stained for alkaline 

phosphatase, which was expressed by undifferentiated ES cells. Stem cell colonies 

with a tight round morphology and pink undifferentiated ES cells, mixed colonies 

with a pink centre and white edges and differentiated colonies consisting of only 

white differentiated cells were identified by microscopy and scored. In the presence 

of LIF, the majority of cells formed stem cell colonies or mixed colonies. Rare 

differentiated colonies were observed (Figure 6.4 A). In the absence of LIF the 

majority of the cells formed mixed colonies and differentiated colonies (Figure 6.4 

B). This result suggested that the parental ES cell line, iDML ES cell lines and 

iEGFP ES cell lines could undergo self-renew in the presence of LIF and 

differentiate upon withdrawal of LIF under these conditions. 
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Figure 6.1 Construction of Doxycycline inducible DNMAML1 ES cell lines 
(iDML). 
(A) The positive p2lox.DNMAML-EGFP was confirmed with one ECORI digestion 
site. (B) The incoming plasmid p2lox shown above is inserted with 
DNMAML-EGFP fragment for further integration into A2lox.cre ES cell line. In 
A2lox.cre ES cell line Cre is flanked by heterologous loxP/loxM sites at downstream 
of a TRE promoter and followed with Δneo for selection in HPRT locus. The 
heterologous loxP/loxM sites on the incoming plasmid are in the opposite orientation 
compared to targeting cassette in HPRT locus, in which case the Cre recombinanse 
induced by addition of Dox 24 hours earlier could catalyze the integration of the 
DNMAML-EGFP under TRE promoter and PGK promoter to enable Δneo 
expression for further selection. In correct recombinated ES cell line, addition of Dox 
could enable rtTA to activate TRE promoter and DNMAML-EGFP expression. 
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Figure 6.2 Validation of DML-EGFP and EGFP expression by western blot and 
flow cytometry analysis. 
(A) Expression of DML-EGFP and EGFP were confirmed by western blotting using 
an anti-EGFP antibody. An anti-STAT3 antibody was used as the endogenous loading 
control. Cos7 cells were transfected with pCAG-EGFP or pEGFP-DML-N3 plasmid 
as positive controls. (B) Expression of DML-EGFP or EGFP was confirmed by flow 
cytometric analysis in FL1 channel. Red represented untreated samples. Blue 
represent treated smaple with Doxycycline at 5 μg/ml. 
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Figure 6.3 Optimization of dose of doxycycline used to induce DML-EGFP 
expression in iDML.1 ES clone with western blot and flow cytomteric analysis. 
(A) Dose optimization was determined by western blot against EGFP antibody. 
β-tublin was used as the endogenous control. Cos7 cells were transfected with 
pEGFP-DML-N3 plasmid as the positive control. Doxycycline was added at the 
concentration ranging from 0.5 to 14 μg/ml. (B) Optimization of doxycycline dose 
were carried out in cells from day4 suspension EBs to day6 using iDML.1 ES clone. 
Doxycycline was added at the concentration ranging from 0.5 to 5 μg/ml. EGFP was 
detected by flow cytometric analysis in FL1 channel. Red represented untreated 
samples. Blue represent treated smaple with Doxycycline. 
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Table 6.1 Karyotype of iDML and iEGFP ES clones. 
All the clones were in the acceptable range of chromosome numbers (39-40). 
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Figure 6.4: Self-renewal ability of parental ES cell line, iDML and iEGFP ES 
clones. 
Numbers of stem colony, mix colony and differentiated colony were scored and 
shown in the presence (A) or absence (B) of LIF. Data represents 4 repeats from 2 
independent experiments. Error bars represent SEM. 
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6.4.2 Validation of inhibition activity of DML-EGFP on Notch activity 

6.4.2.1 DML-EGFP could inhibit exogenous Notch activity 

To determine whether DML-EGFP expressed by iDML ES cell lines could inhibit 

Notch activity efficiently, we used the luciferase assay with 12xRBP-Jκ binding site 

luciferase reporter to measure Notch transcriptional activity upon expression of 

DML-EGFP. A2lox.cre parental ES cell line and two clones each of iDML and 

iEGFP were tested. Briefly, 1x105 ES cells were plated into 24 well plates with or 

without addition of Dox in the absence of LIF. The next day the pCAG-NotchIC 

plasmid was transfected into all the ESCs to activate a high level of Notch activity 

then the RBP-Jκ luciferase reporter plasmid was co-transfected with the endogenous 

control renilla. As the positive control, pEGFP-DML-N3 plasmid was co-transfected 

with RBP-Jκ luciferase reporter and renilla without Dox addition (Figure 6.5 A). 

After 48 to 72 hours, cells were lysed and tested in the Dual-Luciferase® Reporter 

Assay System. The positive control, pEGFP-DML-N3 could inhibit Notch activity 

almost at 100% in all ES cell lines. Upon adding Dox, Notch activity in the two 

iDML ES clones were inhibited to approximately 50% while no effects were 

observed in the iEGFP ES clones or A2lox.cre parental ES cell line (Figure 6.5 B). 

According to these data, we concluded that DML-EGFP expressed by the iDML ES 

clones was able to inhibit exogenous NotchIC expression. 

 

6.4.2.2 Effects of DML-EGFP on endogenous Notch activity 

As described above, DML-EGFP is able to inhibit exogenous Notch activity 

conferred by NotchIC overexpression, which suggests that the DML-EGFP is 

functional. To address whether DML-EGFP could inhibit endogenous Notch activity 

during ES differentiation, we carried out quantitative RT-PCR to measure 

downstream gene expression of Notch signaling, including Hey1, Hes5 and Gata2. 

Differentiations were carried out in both EB system and Flk1+ system on gelatin 

control. 

 

a) DML-EGFP inhibited endogenous Notch activity in day6 EBs 

Briefly, day1 EBs generated from A2lox.cre, iDML.1, iDML.2, iEGFP.1 and 
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iEGFP.2 ES cells were co-cultured on gelatin to day6. Doxycycline was added at 

5μg/ml from day4 to day6. At day6, cells were harvested for quantitative RT-PCR at 

Hey1, Hes1 and Gata2. It was observed that addition of dox could inhibit Hey1 

expression significantly on iDML.1 and iDML.2 ES cell line while no statistical 

difference were observed in parental ES cell line or iEGFP ES clone (Figure 6.6 A, 

**p<0.01, *p<0.05). Thus, this result indicated that DMl-EGFP induced by dox 

could efficiently inhibit Notch activity. Hes1 was also inhibited in iDML.1 and 

iDML.2 as well at 60% and 20% respectively, while Gata2 was not affected (Figure 

6.6 B, C). This result was only done once so is not conclusive but it might indicate 

that Gata2 is not active or not regulated by Notch signaling in this EB differentiation 

system. iDML.1 ES clone seemed to have a better potential to inhibit Notch activity 

according to the inhibition percentage of Hey1 and Hes1, and so this cell line was 

used for further experiments. 

 

b) DML-EGFP did not affect endogenous Notch activity in Flk1+ derived cells 

at day6 

To investigate how Notch affected haematopoetic differentiation of Flk1+ cells, we 

further determined whether Notch activity in Flk1+ derived cells could be abrogated 

by DML-EGFP. Thus, Flk1+ cells were isolated from day4 suspension EBs generated 

from iDML.1 and iEGFP.1 ES cell line then cultured on gelatin to day6. We noticed 

that compared to day4 Flk1+ cells, Notch activity decreased significantly at day6 in 

both iDML.1 and iEGFP.1 ES clones, which indicated that Notch activity in day6 

Flk1+ derived cells possessed lower Notch activity (Figure 6.7 A, **p<0.01). Based 

on this, Dox was added at 1μg/ml from day4 to day6 then cells were analysed at day6 

with quantitative RT-PCR at Hey1 expression. GSI were added as the positive 

control with DMSO as the diluent control. Compared to DMSO diluent control, GSI 

inhibited Hey1 expression significantly (**p<0.01). Statistically, no difference of 

Hey1 expression was observed between minus Dox and plus Dox in either iDML.1 

or iEGFP.1 ES cell line (Figure 6.7 B). In light of the Figure 6.6 A, no effect of Hey1 

expression could be explained by the possibility that Notch activity in the Flk1+ 

derived cells was not active enough to respond to DML-EGFP, or the expression 

level of DML-EGFP was not powerful enough to affect Notch activity in this system. 
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However, it will be necessary to screen more downstream genes to confirm this point. 

In addition, this test was carried out on Flk1+ cells cultured on gelatin. To better 

understand effect of DML-EGFP on haematopoiesis in AM supporting 

microenvironment, FACSorting and qRT-PCR at downstream genes will be applied 

to purified Flk1+ derived cells cultured on AM stromal cells in the future. 
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Figure 6.5 Inhibition of exogenous Notch activity by DML induced by addition of 
Dox. 
(A) Scheme of transfection: pCAG-NotchIC was transfected to induce exogenous 
Notch activity with luciferase reporter and endogenous control. –Dox, +Dox and 
co-transfection of pEGFP-DML-N3 groups were labeled with different colors; (B) 
Transcriptional activity was calculated as the ratio of luciferase to renilla readout. 
Then transcriptional activity of +Dox (Red column) or pEGFP-DML (Blue column) 
were calculated as fold change to –Dox (Black column), which was assigned as “1”. 
Data represented 3 independent experiments for A2lox.cre, iDML1 and iEGFP2 
clones; 1 experiment for iDML2 and iEGFP1 ES clones. Error bars represents SEM. 
P value was calculated by Mann-Whitney test (*p<0.05). 
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Figure 6.6 Inhibition of endogenous Notch activity by DML upon addition of 
Dox. 
(A) Induction of DML by dox inhibited Hey1 expression significantly in day6 EBs 
on gelatin formed by iDML.1 and iDML.2 while no effects observed in EBs formed 
by either parental cells or iEGFP ES clones; (B) DML inhibited Hes1 expression in 
iDML.1 and iDML.2 ES clone at 60% and 20% respectively; (C) Gata2 was not 
affected by DML. Data represented 1 or 2 independent experiments. Error bars 
represents SEM from readouts of 6 PCR amplification wells. P value was calculated 
by Mann-Whitney test. (**p<0.01, *<0.05). 
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Figure 6.7 Effects of DML on Notch endogenous activity in Flk1+ derived cells 
cultured on gelatin. 
(A) According to Hey1, Notch activity decreased significantly at day6 compared to 
day4 in Flk1+ derived cells in both iDML.1 and iEGFP.1 ES clones; (B) GSI could 
inhibit Hey1 expression in Flk1+ derived cells at day6. No significant difference was 
observed when iDML or iEGFP alone was induced by Dox. Experiments represented 
2 independent experiments. Error bars represented SEM from readouts of 6 PCR 
amplification wells. P value was calculated by Mann-Whitney test. (**p<0.01). 
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6.4.3 iDML and iEGFP ES cells could respond to AM stromal cell lines in 

EB/AM and Flk1+/AM co-culture system 

As described above, iDML and iEGFP ES clones were able to express DML or EGFP 

upon induction of dox. These ES cell lines could self-renew and differentiate under 

proper circumstances. Furthermore, DML could functionally inhibit Notch activity. 

To investigate effects of DML in ES-derived haematopoiesis, we first tested whether 

these ES cell lines could respond to the stimulation of AM stromal cell lines as well. 

Day1 EBs generated from iDML.1 and iEGFP.1 ES cells were co-cultured on gelatin 

control or irradiated AM stromal cells. After another 5 days of co-culture, cells were 

harvested and then seeded into methylcellulose assay to measure production of HPCs. 

It was found that AM stromal cells could enhance haematopoietic differentiation of 

iDML.1 by 3.5 fold compared to gelatin control (*p<0.05). Although not statistically 

significant, an increase in the number of HPCs after AM co-culture was observed 

twice using iEGFP.1 ES cell line by 2.8 fold on average. This result suggested that 

both iDML.1 and iEGFP.1 could respond to AM in EB/AM co-culture system 

(Figure 6.8 A). 

 

To determine whether Flk1+ cells derived from iDML.1 and iEGFP.1 ES cells could 

respond to AM stromal cells, Flk1+ were purified from day4 suspension EBs then 

co-cultured on irradiated AM stromal cells or gelatin control. At day6, cells were 

harvested and seeded into methylcellulose assay to measure haematopoietic activity. 

In this preliminary experiment, it was found that AM stromal cells could enhance 

haematopoietic activity of Flk1+ cells derived from both iDML.1 and iEGFP.1 ES 

cell lines by 6.8 fold and 3.1 fold respectively (Figure 6.8 B). Flk1- fraction was 

co-cultured on AM stromal cells and few HPCs were formed in methylcellulose 

assay (Data not shown). This result indicated that Flk1+ population from both ES cell 

lines could respond to AM stromal cells in the Flk1+/AM co-culture system. 

According to this, we suggested that iDML.1 and iEGFP.1 ES cell lines could be 

applied in further experiments to investigate the effects of DML on the 

haematopioetic differentiation of Flk1+ cells in the microenvironment provided by 

AM stromal cells.  
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Figure 6.8 AM stromal cell line could enhance haematopoietic differentiation of 
iDML.1 and iEGFP.1 ES cells in EB/AM and Flk1+/AM co-culture systems. 
(A) In EB/AM co-culture system, AM stromal cells enhanced haematopoietic 
differentiation of iDML.1 by 3.5 folds and iEGFP.1 by 2.8 fold; (B) In Flk1+/AM 
co-culture system, AM stromal cells enhanced haematopoietic differentiation of 
iDML.1 by 6.8 folds and iEGFP.1 by 3.1 fold. Data represented 1 to 3 independent 
experiments. Error bars represented SEM. P values were calculated by 
Mann-Whitney test (*p<0.05). 
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6.4.4 Effect of DML-EGFP on haematopoietic differentiation of Flk1+ cells in 

Flk1+/AM co-culture system 

To analyze how DML-EGFP affected haematopoiesis in the microenvironment 

provided by AM stromal cells, we added Dox into Flk1+/AM co-culture to induce 

DML-EGFP expression using iDML.1 ES cell line. EGFP was also induced in 

iEGFP.1 ES cell line as the control. Methylcellulose assay was applied to measure 

haematopoietic activity. It was found that there was no effect in total number of 

colonies upon treatment of doxycycline in either iDML.1 ES cell line or iEGFP.1 

control ES cell line (Figure 6.9 A). This result implies that expression of DML-EGFP 

does not affect haematopoietic progenitor formation from Flk1+ cells in the 

Flk1+/AM co-culture system. 

 

To better confirm this, flow cytometric analysis was applied to screen co-expression 

of CD41 and cKit. Correlating to the colony forming assay result, addition of Dox 

did not affect the frequency of CD41+cKit+ haematopoietic progenitor in this 

preliminary experiment (Figure 6.9 B). Thus, this experiment indicated that 

DML-EGFP does not affect the haematopoietic differentiation from haemangioblast 

like cells Flk1+ in the AM supporting microenvironment. However repeats are 

necessary to confirm this. In light of the data represented in Figure 6.7, it could be 

explained that the Notch activity in Flk1+derived haematopoiesis in Flk1+/AM 

co-culture was at a basal level, which could not be affected by DML-EGFP. 

Nevertheless, to draw this conclusion, it is required to measure the Notch activity of 

Flk1+ derived cells at day6 in AM co-culture and compared to day4. In addition, 

including GSI as the control will be necessary. 
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Figure 6.9 DML-EGFP did not affect Flk1+ derived haematopoiesis in Flk1+/AM 
co-culture system. 
(A) Haematopoietic colony formation abilities of cells derived from Flk1+ cells by 
both iDML.1 and iEGFP.1 ES clones were not affected by addition of Dox in 
Methylcellulose assay; (B) Frequency of CD41+cKit+ haematopoietic progenitors by 
iDML.1 and iEGFP.1 ES clones were not affected by addition of Dox. Data 
represented 1 independent experiment. Error bars represented SEM of readouts from 
two plating dishes. 
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6.5 Conclusion 

 
 Doxycycline inducible DML-EGFP ES cell lines with normal karyotypes and 

self-renewal ability were established. 

 

 iDML and iEGFP ES clones were able to respond to AM stromal cells in both 

EB/AM and Flk1+/AM co-culture system showing increased haematopoietic 

differentiation. 

 

 DML-EGFP expressed by iDML ES cell clone could inhibit exogenous Notch 

transcriptional activity induced by NotchIC and endogenous Hey1 and Hes1 

RNA level in EBs. 

 
 Notch activity decreased during differentiation from day 4 Flk1+ cells; Notch 

activity in Flk1+ derived cells at day6 could not be further inhibited by 

DML-EGFP. 

 

 In one preliminary experiment, expression of DML-EGFP did not affect Flk1+ 

derived haematopoiesis in Flk1+/AM co-culture system indicating a basal level 

of Notch activity in Flk1+ derived cells. 
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6.6 Discussion 

6.6.1 Inhibition effect of dominant negative MAML1 (DML) 

We noticed that the inhibition efficiency on RBP-Jκ transcription activity by 

DML-EGFP upon dox addition was relatively low compared to co-transfection of 

pEGFP-DML-N3 plasmid, which was near 100% (Figure 6.5). Expression level of 

DML could also be critical to knock down Notch activity to a certain level. 

Furthermore, although GSI could inhibit endogenous Hey1 expression in Flk1+ 

derived cells, DML-EGFP did not inhibit Hey1 significantly (Figure 6.7). Thus, we 

suggest that the effect of dominant negative MAML1 on Notch signaling 

transduction was more moderate compared to GSI or Notch activity dependent. Here 

we discuss the potential factors which could affect the inhibition effect of 

DML-EGFP on Notch activity. 

 

Human dominant negative MAML in murine system 

The Mastermind gene was first identified in Drosophila as a neurogenic gene 

(Smoller et al., 1999). The family of human mastermind-like genes (MAML) was 

identified later in 2000 revealing a biological function of MAML genes in Notch 

signaling pathway (Wu et al., 2000; Wu et al., 2002). Based on this, Weng and his 

colleagues found a truncated form of human MAML1 called dominant negative 

MAML1 which could abolish Notch signaling and suppress the growth of pre-T 

acute lymphoblastic leukemia cells, (Weng et al., 2003). This was the source of the 

DML-EGFP that was used in this project and so in fact we used the human 

DNMAML1 homologue in our murine ES cell system.  

 

In 2004, Wu and colleagues cloned the murine mastermind-like 1 (MAML1) gene 

which shared 85% of amino acid sequence identity to human MAML1. The mouse 

MAML1 contained the basic domain at the N terminus which was similar to human 

MAML1 for interaction with Notch intracellular domain and two acidic domains 

with transcriptional activities. They also confirmed the interaction between MAML1 

and Notch receptor 1-4 and found MAML1 could function as the transcription 

co-activator in Notch signaling pathway by activating Hes1 promoter in human U20S 
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cells exposed to NIH3T3 overexpressing Jagged2 (Wu and Griffin, 2004). Thus, in 

mouse development, murine MAML1 was also a critical transcriptional co-activator 

for Notch signaling pathway. Although human MAML1 was applied here in murine 

system, it has been demonstrated by several groups that dominant negative human 

MAML1 could efficiently abrogate Notch activity in the murine system including 

T-lymphoblastic cell line BW5147, T-ALL cell line, megakaryocyte development in 

vivo, bone marrow derived LSK exposed to Delta-like 1 and lymphoid differentiation. 

We are the first group however to apply that human DNMAML1 in a murine ES 

system. 

 

Compensation by murine MAML2 and MAML3 

So far, the MAML family was found to consist of 3 members including MAML1, 

MAML2 and MAML3 in both human and murine system. These three human 

MAML genes are highly homologous to their murine homologies with sequence 

identity ranging from 85 to 90%. For human homologies, human MAML1, MAML2 

and MAML3 shared conserved protein sequence at basic domain to bind NotchIC 

(Wu and Griffin, 2004). Although most studies have focused on MAML1, it has been 

shown that both MAML2 could also interact with Notch receptor 1-4 while MAML3 

function more efficiently with Notch4. MAML1 and MAML2 could both function as 

co-activators of Notch signaling while MAML3 has weaker transcription activation 

capacity in Notch signaling pathway. Similarly in murine work, it is found that 

murine MAML1, MAML2, and MAML3 were involved in the Notch signaling 

(Oyama et al., 2011; Sasaki et al., 2011; Wu and Griffin, 2004). Thus, although only 

human dominant negative MAML1 was applied here, it should be able to interfere 

the interaction of murine MAML2 and MAML3 with Notch receptors. Nevertheless, 

in addition to the basic region at N-terminus of MAML to bind Notch receptor, the 

function of rest regions of murine MAML2 and MAML3 has not been well clarified. 

It would be possible that they have other potential abilities to affect Notch activation 

which would compensate the effect of human DNMAML1. To better understand 

how human DNMAML1 affects Notch signaling in this murine system, it will be 

necessary to check expression of mouse MAML1, MAMl2, and MAML3 expression 

during differentiation. 
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Induction expression level and efficiency by addition of doxycycline 

The inhibitory effect of DNMAML1 was found to correlate to the expression level 

(Weng et al., 2003). Under regulation of TRE promoter, the expression level of 

DML-EGFP was also dependent on the dose of Dox. Here it was determined that 

1μg/ml of Dox was enough to induce best DML-EGFP expression. Higher dose of 

Dox was not recommended because other groups have claimed the toxicity of high 

dose of Dox (Das et al., 2010). Of note, by comparing Figure 6.2 and Figure 6.3, the 

induced proportion of DML-EGFP decreased during differentiation according to 

flow cytometric analysis. It could be explained that ROSA26 locus or HPRT locus is 

silenced during differentiation. This situation needed to be verified for further 

experiments. 

 

6.6.2 Threshold of Notch activity to respond to DNMAML1  

We noticed that Notch activity decreased significantly during differentiation of Flk1+ 

cells from day4 to day6 (Figure 6.9A). Hey1 expression was not affected by addition 

of dox while it was significantly inhibited by GSI. When strong Notch activity was 

induced by pCAG-NotchIC, DML-EGFP could inhibit transcription activity 

efficiently. Similarly, when DML-EGFP was induced in EBs, Hey1 could also be 

inhibited. As introduced previously in chapter3, Hey1 expression was quite 

consistent during EB differentiation from day3 to day6 on gelatin, which was 

different from the decrease in Flk1+ derived cells. Thus we suggest that the level of 

Notch activity is a pivotal factor in determining whether DNMAML1 could abrogate 

Notch activity or not. GSI was more efficient compared to DNMAML1 which could 

even knock down already low levels Notch signaling. This is not surprising because 

it has also been demonstrated in several studies using this dominant negative strategy. 

Maillard and his colleagues reported that Notch signaling was dispensable for 

maintenance of the adult haematopoietic stem cells. They found that bone marrow 

derived LSK progenitors were exposed to a lower intensity of Notch signaling 

compared to progenitors according to receptors and downstream gene expression, in 

which case induction of DNMAML1 did not change the expression of Hes1, Dtx1 or 

Runx1. However after exposure to the exogenous Delta-like 1 by OP9-DL1 stromal 

cells, Hes1 and Dtx1 expression were induced and could be inhibited by DNMAML1 
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(Maillard et al., 2008). Similarly, it was also claimed that DNMAML1 could 

abrogate megakaryocyte development. In this study, megakaryocyte-erythroid 

progenitors possessed higher Notch activity compared to granulocyte-macrophage 

progenitors or earlier common progenitors (Mercher et al., 2008). Therefore, we 

suggested that to inhibit Notch activity DNMAML1 requires a higher signal level of 

Notch, which could explain why inhibition was observed in luciferase assay and EBs 

but not in Flk1+ derived cells in our study. Nevertheless, except for Hey1, more 

downstream genes of Notch signaling still need to be screened to measure effect of 

DNMAML1. 

 

6.6.3 Advantages and disadvantages of this dox dependent DML-EGFP inducible 

ES cell line 

Specificity of DNMAML1 on Notch activity 

So far, multiple strategies have been developed to knock down or knock out Notch 

signaling pathway. At first, strategies to abrogate Notch signaling were non-specific 

enough or could be compensated by redundant effects by other Notch components, 

including ADAM inhibitors, γ-secretase inhibitors (GSI), and deficiency of receptors 

or ligands (Duncan et al., 2005; Mancini et al., 2005; Radtke et al., 1999). Hence, 

specific modulation of Notch signaling became critical in recent studies. For 

examples, introducing dominant-negative form of RBP-Jκ, inactivation of RBP-Jκ 

gene, overexpression of Numb or Deltex1 have been applied to block Notch (Cheng 

et al., 2008; Duncan et al., 2005; Han et al., 2002; Maillard et al., 2004; Tanigaki et 

al., 2002). Here, the system we set up could also inhibit Notch more specifically 

compared to the inhibitors or inactivation of receptors or ligands.  

 

Although this system was more specific to modulate Notch signaling compared to 

previous studies, the possibility that DNMAML1 might interfere with other 

Notch-independent pathways cannot be ruled out. As Numb was involved in Wnt 

signaling pathway, Deltex1 was involved in BMP pathways, MAML1 was reported 

to interact with MEF2C, p53, β-catenin and Mesp2 (Donner et al., 2007; Firestein 

and Hahn, 2009; Sasaki et al., 2011; Shen et al., 2006). This was not surprising 

because MAML1 contains conserved domains that bind ankyrin repeats and other 
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co-activators, which coupled with the tissue-specific transcription factors and 

downstream genes to make it possible for Notch signaling pathway to regulate 

diverse processes of development. 

 

Context-dependent 

The efficiency and context to function also needs to be borne in mind. As it was 

found that overexpression of Deltex1 to antagonize Notch signaling were discovered 

in the T-cell differentiation, DNMAML1 also had limitations. Data represented here 

showed that DNMAML1 could only function when exposed to strong Notch 

signaling, in which case, utilization of this strategy is context dependent. In spite of 

this, this doxycycline-inducible ES cell line could provide a powerful platform for 

molecular investigation of Notch signaling pathway in many fields during 

development. It will be interesting to add Notch ligands like Jagged1 into the 

FLk1+/AM co-culture system and measure whether DML-EGFP could inhibit 

downstream genes efficiently. 

 

Spatio-temporal possibility 

This doxycycline inducible system has advantages over constitutive or inducible 

systems like Cre, ER (estrogen receptor) system, which makes it possible to answer 

the question in more defined spatio-temporal window. In the future, we still need to 

further confirm the reversible ability of these ES cell lines and optimize the time 

length of doxycycline pulse.  
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Chapter 7: Summary and Perspectives 
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7.1 Summary 

As described in the introduction, regulation of Notch signaling in primitive and 

definitive haematopoiesis is likely to be different dependent on their origins of yolk 

sac and intra-embryonic P-Sp/AGM region. The ES cell in vitro system has been 

widely considered to represent haematopoiesis of the yolk sac. To better understand 

how Notch regulated the AGM-derived haematopoiesis and overcome the difficulties 

of in vivo studies such as the effects of Notch in other tissues during development or 

early embryonic lethality, we established this co-culture system of AGM-derived 

stromal cells with ES cells. Intrigued by previously studies of co-culture system of 

EBs on AGM-derived stromal cell lines and the GSI experiment revealing the 

involvement of Notch signaling pathway, we further developed a Flk1+/AM 

co-culture system to investigate the role of Notch signaling in Flk1+ derived 

haematopoiesis in the AM14.1C4 microenvironment. 

 

In EB/stroma co-culture system, we noted that there was no direct correlation 

between the levels of Notch ligand expression in the different stromal cell lines and 

their induction ability, or correlation between Notch activity in EBs with their 

haematopoietic activity. Thus, Notch signaling pathway in EBs was required in the 

enhancing co-culture to enhance haematopoiesis, but not further increased compared 

to the non-enhancing ones. Of note, Runx1 was reduced upon GSI addition from 

day4 to day6 in EBs. This confirmed Runx1 could be a downstream target gene of 

Notch signaling and Notch signaling regulated definitive haematopoiesis via Runx1 

from day4 to day6, which was post mesoderm formation. In addition, the 

haematopoietic enhancing stromal cell line AM14.1C4 had a higher level of Notch 

activity suggesting the inherent Notch activity in stromal cells could be the key 

regulator to determine the microenvironment for enhancing haematopoiesis in EBs in 

co-culture. 

 

As noted, the complexity of the EB/stroma co-culture system makes it difficult to 

analyze the underlying molecular mechanism. AM co-culture did not affect 

commitment to Flk1+ from day1 EBs in EB/AM system. Thus, Flk1+ cells were 

co-cultured directly onto stromal cells and AM14 displayed a moderate enhancing 



203 
 

effect on haematopoiesis. AM stromal cells could promote formation and expansion 

of CD41+cKit+ (day6) and CD45+ expansion (day9) derived from Flk1+ cells. In this 

Flk1+/AM co-culture system, reduction of CD41+cKit+ haematopoietic progenitors 

by activating NotchIC in Flk1+ cells indicated an inhibitory effect of ectopic NotchIC 

on haematopoiesis, which contradicted to the EB/AM co-culture system that Notch 

signaling pathway was required for the haematopoietic enhancing activity of AM 

stroma. This inhibitory effect was further confirmed by colony assay and revealed 

inhibition of MYELOID PROGENITOR formation from Flk1+ cells. Ectopic 

NotchIC also inhibited erythroid differentiation from Flk1+ cells, but at a more 

terminal stage. Finally, doxycycline inducible DML-EGFP ES cell lines were 

established and able to respond to AM stromal cells in both EB/AM and Flk1+/AM 

co-culture system showing increased haematopoietic differentiation. DML-EGFP 

expressed by iDML ES cell clone could inhibit exogenous Notch transcriptional 

activity and endogenous Hey1 and Hes1 RNA level in EBs. However Notch activity 

in Flk1+ cells could not be further inhibited by DML-EGFP, which could be 

accounted for the low Notch activity in Flk1+ derived cells. 

 

7.2 Discussion and Perspectives 

By pooling together data from this project, we considered several interesting points 

which are worthy of further investigation. 

 

7.2.1 Application of NIC-C5 and iDML-EGFP ES cell line in alternative 

haematopoietic differentiation systems. 

As referred, several systems have been developed for ES-derived haematopoietic 

differentiation in vitro in which the molecular networks are system-dependent. These 

systems also vary in inducing/enhancing efficiency, type and function of HPCs and 

HSCs for example, repopulating capacity. In this project, 4-OHT inducible NIC-C5 

and doxycycline inducible iDML-EGFP ES cell lines were applied to 

spatiotemporally induce or knock-down Notch activity in Flk1+ derived 

haematopoiesis in AM supporting microenvironment, which possibly provided an 

enhancing/supporting signals in AGM region in vivo. Of note, it is worthwhile to 
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apply these two inducible ES cell lines in other published systems to characterize 

involvements of Notch signaling pathway.  

 

It is easier to start with a simple and routine differentiation system using suspension 

EBs without addition of stromal cells or cytokines. In addition to produce three 

germlayer like cells, suspension EB differentiation system in vitro was widely 

applied in haematopoietic differentiation and suggested to differentiate in parallel to 

yolk sac derived haematopoiesis in vivo, in which mesoderm, haemangioblast, 

primitive/definitive HPCs and haematopoietic cells are formed but not repopulating 

HSCs. By forming suspension EBs using these two ES cell lines to induce ectopic 

NotchIC or DNMAML temporally, it will be interesting to measure how Notch 

signaling pathway affect mesoderm formation, primitive and definitive 

haematopoietic differentiation. Furthermore, because suspension EBs were widely 

applied amoung different groups thus this will lead us to compare our inducible ES 

cell lines to published tools established to modulate Notch activity in suspension 

EBs. 

 

7.2.2 Investigation of haematopoietic enhancing effects of AM14 stromal cells on 

Flk1+ cells at cellular level 

Interestingly, AM14.1C4 (AM14) stromal cells did not affect Flk1+ formation in the 

EB/AM co-culture system which indicated a potential to enhance haematopoietic 

differentiation from Flk1+ cells. It will be necessary to monitor the cell types formed 

in AM14 co-culture between Flk1+ and HPCs and compared to gelatin control and 

other stromal cells. This will lead us to understand the differentiation roadmap from 

Flk1+ to HPCs and HSCs in the AGM microenvironment. 

 

7.2.3 Niche requirements for haematopoiesis and role of Notch signaling is niche 

dependent 

In the EB/AM co-culture system, Runx1 was down regulated when GSI was applied 

to inhibit Notch signaling, which indicated Notch could regulate definitive 

haematopoiesis in AM14 microenvironment. However, in the Flk1+/AM co-culture 
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system, Gata2 and Runx1 were not up regulated by ectopic NotchIC expression. This 

contradicts the studies of Robert-Moreno (AGM haematopoiesis and 32D cell line) 

and Burns (zebrafish model) claiming the close association of Notch signaling 

pathway with Gata2 and Runx1 which also focused on the haematopoiesis in AGM 

region. Here we consider another possibility that the way Notch regulated the 

definitive haematopoiesis is niche-dependent.  

 

For example, AM14, the stromal cell line derived from dorsal aorta and surrounding 

mesenchymal area of AGM region at E11, was reported to be vascular smooth 

muscle cell-like and thus derived from mesenchymal cells (Charbord et al., 2002). 

The surrounding mesenchyme area has been suggested to be a potential niche for the 

further differentiation of the haemangioblast to pre-HSCs, haemogenic endothelium 

formation or pre-HSCs maturation. Although AM14 was applied in both co-culture 

systems, the AM14 stromal cells function as the inducing factor (Gordon-Keylock et 

al., 2011) in EB/AM co-culture while for Flk1+/AM co-culture, AM14 stroma 

function more like a supporting factor according to preliminary apoptosis assay. Thus, 

other niche-like cells could be required for mimicking the in vivo definitive 

haematopoiesis. 

 

It was noted that paraxial mesoderm could function as the supporting/inducing 

microenvironment for haematopoiesis via HoxB4 overexpression (Jackson et al., 

2012). In our system, Delta-like3 and HoxB4 were increased at certain time points in 

EB/AM co-culture compared to gelatin suggesting an involvement of paraxial 

mesoderm in regulation of haematopoiesis. In addition, according to in vivo data or 

ES model, VEGF secreted by endoderm was reported to be critical for further 

endothelial and haematopoietic differentiation of Flk1+ cells P-Sp/AGM (reviewed 

by (Cumano and Godin, 2007)). Although VEGF expression has not been validated 

in AM14 stromal cells, we assumed that the endoderm-like cells in EBs could be a 

potential source for VEGF secretion. Thus, endoderm should be involved in 

regulating the microenvironment for AGM-derived haematopoiesis.  

 

Therefore, Flk1+/AM co-culture was designed to ask how Notch regulated Flk1+ 
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derived haematopoiesis in a specific way avoiding the effect of Notch in 

non-haematopoietic cells. However to better define the role of Notch signaling in 

AGM-derived haematopoiesis in vitro, a chimeric cell mixing experiment to 

construct the intact microenvironment will be necessary to and reflect the in vivo 

situation. This experiment would involve generating EBs with 7a-GFP ES cell line 

which expressed GFP constitutively and R26-NIC-C5 ES cell lines. The Flk1- 

(non-hameatopoietic) fraction from 7a-GFP day 4 EBs and the Flk1+ fraction from 

R26-NIC-C5 day 4EBs would then be mixed and co-cultured on AM14 together so 

that Flk1- by 7a-GFP ES cells and AM14 stromal could construct the niche for the 

Flk1+ fraction derived from the R26-NIC-C5 ES cell line. 4-OHT would then be 

added and further characterization of effect of ectopic NotchIC in haematopoiesis of 

R26-NIC-C5 ES cell line would be carried out using CFUs, %CD41+cKit+ as well as 

Gata2 and Runx1 expression and compared to untreated samples, or just compared 

the hCD2- and hCD2+ population (Appendix Figure S7.1 A). 

 

In addition, Notch signaling in the microenvironment could be critical to determine 

its effect on haematopoiesis. For example, Notch activity in AM14 stroma could be 

involved in the haematopoietic regulation as revealed by GSI experiment in EB/AM 

co-culture (Gordon-Keylock et al., 2011). Thus, another two experiments could be 

applied to modify Notch signaling in the microenvironment. One would be to 

down-regulate by introducing pCAG-DNMAML or up-regulate by introducing 

pCAG-NotchIC into the AM14 stromal cells then co-culture carried out with EBs or 

Flk1+ cells. The other is to do the mix co-culture by mixing Flk1+ fraction from 

7a-GFP cells with Flk1- fraction from R26-NIC-C5 ES cells to investigate effect on 

Flk1+ derived haematopoietic by activating Notch signaling in Flk1- 

microenvironment (Appendix Figure S7.1 B).  

 

To conclude, by setting up this in vitro co-culture system of AM14 with mixtures of 

different ES-derived population, it will be more flexible to introduce Notch signaling 

modification and ask specific questions. 
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7.2.4 Measurement of effect of ectopic Notch in haematopoiesis in specifically 

defined population 

It was well acknowledged that different cell types emerged in ES cell differentiation. 

Even though cell sorting for particular population like Flk1+ was widely applied to 

investigate underlying molecular mechanism in this specific population, the timing 

and mix population issue that cells derived from Flk1+ could not be at the identical 

stage or direction during differentiation increased the complexity of system. Plus, 

gene expression could be present in different population with different function. Thus, 

it will be worthwhile to compare haematopoietic related genes like SCL, Gata2, and 

Runx1 in sorted hCD2+ and hCD2- population from a better defined cellular 

population such as the haemogenic endothelium.  

 

Furthermore, single cell PCR strategy will be another option to monitor the effect of 

NotchIC on single cell decision in haematopoietic differentiation. Based on the 

purified population (ie haemogenic endothelium) during differentiation, PCR screen 

of related genes on single cells derived from the purified population will be more 

informative and accurate, though technically more difficult and higher throughput 

screening required. 

 

7.2.5 Dissect differentiation process and determine the population first affected 

by ectopic NotchIC 

As it was suggested in chapter5, inhibition of several genes related to haematopoiesis 

including Gata1, PU.1, SCL/Lmo2 and hemoglobin, but n Gata2 or Runx1 was not 

inhibited upon ectopic Notch activation. This data suggested a possibility that 

inhibition of ectopic NotchIC took place at haematopoietic lineage determination 

stage. However SCL/Lmo2 could also regulate the haemogenic endothelium 

formation from haemangioblast. Thus, it is necessary to trace back and determine 

whether an earlier stage is inhibited before the HPCs formation. For example, 

Tie2highcKit+CD41- or Flk1+ VE-Cadherin+ population will be first checked to see 

whether haemogenic endothelium from Flk1+ is abrogated. In addition to identify the 

population which could be affected by ectopic NotchIC, it is critical to understand 
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the underlying mechanism. Thus, assays for apoptotic, proliferate and survival ability 

will be further checked on the affected population or its precursors. 

 

7.2.6 Interaction of Notch signaling with other haematopoietic regulators 

HoxB4 is a transcription factor, which has been found in CD34+ haematopoietic 

precursors derived from human bone marrow (Sauvageau et al., 1994). In addition, it 

was reported that HoxB4 could enhanced ES-derived haematopoiesis in a non-cell 

autonomous way in EB differentiation system (Jackson et al., 2012). Published data 

has revealed the regulation of Notch signaling by HoxB4 in microarray data 

(Schiedlmeier et al., 2007). Thus it will be worthwhile to investigate the interaction 

of Notch signaling and HoxB4 in ES-derived haematopoiesis. We have established a 

ES cell lines in which HoxB4-ERT2 was introduced to iDML-EGFP ES cell line 

with a random integration under pCAG promoter. This ES cell line will provide a 

platform to further understanding whether Notch signaling is involved in the 

regulation by HoxB4 in haematopoiesis. 

 

7.2.7 In vivo study 

In this project, R26-NIC-C5 ES cell line to induce moderate Notch and iDML-EGFP 

ES cell line to inhibit Notch specifically were applied to investigate effects of Notch 

signaling in HPCs formation from Flk1+ population or EBs in microenvironment 

supported by AM14. However, the most direct strategy to understand role of Notch 

signaling in AGM region will be in vivo models. Thus, it will be useful to establish 

mice models using these two ES cell lines, respectively. HPCs and HSCs production 

could be measured in these two models with or without treatment of 4-OHT and 

doxycycline. 
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Figure S1.1 Stromal cell lines were derived from AGM sub-regions in 
mid-gestational (E10/E11) mouse embryos. 
Dosrasal Aorta and surrounding mesenchyme (AM), Urogenital Ridge (UGR/UG). 
Pictures provied by Gordon-Keylock. 
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Figure S4.1 Expression pattern of genes related to paraxial mesoderm in EBs 
co-cultured on gelatin and AM stromal cell lines. 
One day hanging drop EBs were co-cultured to day6 and sorted from AM stroma or 
gelatin by FACS and qRT-PCR carried out for Delta-like3 (A), HoxB4 (B) 
expression kinetics. One day EBs were used as calibrator (value assigned as 1); 18s 
was used as the endogenous control; Dela-like3 in EBs co-cultured on AM stromal 
cells was expressed significantly higher than gelatin at day5. AM14 stromal cells 
enhanced HoxB4 expression significantly compared to gelatin at day5 and 6. Data 
represent 3 independent experiments. Error bars represented SEM. P-values were 
calculated with Mann-Whitney test (*p<0.05). 
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Figure S4.2 Comparison of haematopoietic enhancing efficiency of EB/AM and 
Flk1+/AM co-culture system. 
Enhancement fold was calculated as CFU formed in AM co-culture normalized to 
CFU formed in gelatin control. For E14IV ES cells, effeiciency of EB/AM and 
Flk1+/AM co-culture systems were comparable. For C5 ES cells, AM could enhance 
EBs haematopoiesis significantly higher than Flk1+. Error bars represented SEM. 
P-values were calculated with Mann-Whitney test (*p<0.05). 
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Figure S4.3 Co-culture with stromal cells promote proliferation/survival ability 
of Flk1+ cells. 
Flk1+ cells differentiated from E14IV or NIC-C5 ES cell lines wre co-cultured on 
gelatin control or AM14.1C4, UG26.1B6 and OP9 stromal cells to day 6. Cells were 
then harvested and analyzed in apoptosis assay using flow cytometry. Figure 
presented the frequency of cells proceeding apoptosis. In this preliminary experiment, 
co-culture of Flk1+ cells on stromal cells could promote cell proliferation/survival 
ability via reducing apoptotic cells (AnnexinV+DAPI-) compared to gelatin control. 
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Figure S5.1 Longer treatment of 4-OHT into methylcellulose further inhibited 
formation of erythroid colonies from Flk1+ cells. 
Addition of 4-OHT into both co-culture to day 6 AND methylcellulose assay could 
further inhibit number of erythroid colonies compared to the one only added in 
co-culture. No difference was observed in E14IV. Data represent 2 independent 
experiments. 
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Figure S5.2 Addition of 4-OHT inhibited number of erythroid colonies in both 
hCD2- and hCD2+ fraction indicating a toxic issue. 
hCD2- and hCD2+ fraction from co-culture with addition of 4-OHT were separated 
by FACS sorting and plated into methylcellulose assay with addition of 4-OHT. 
hCD2+ fraction, which should not further be affected by ectopic NotchIC, displayed 
an inhibition on erythoid colonies indicated a toxic issue. No difference was 
observed in E14IV control. Data represent 2 independent experiments. 
  



236 
 

 

 

 

 

 

 

 
 
 
 

 
 

Figure S5.3 Activation of ectopic NotchICl slightly increased apoptosis of Flk1+ 
derived cells. 
Flk1+ cells were purified and co-cultured on AM14.1C4 to day6 with or without 
addition of 4-OHT. Flow cytometry was carried out at day6 and day9 to measure 
apoptotic percentage. E14IV was applied as the control. Data represent one 
experiment. 
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Figure S7.1 Scheme of a chimeric cell mixing experiment to construct the intact 
microenvironment for Notch signaling analysis. 
(A) Flk1+ fraction by NIC-C5 were mixed with Flk1- fraction by 7a-GFP and 
co-cultured on AM14 stromal cells with addition of 4-OHT. At day6 or later hCD2- 
and hCD2+ were separated and haematopoietic activity or other lineages assessed in 
CFUs, qPCR and flow cytometry analysis. (B) Flk1+ fraction by 7a-GFP were mixed 
with Flk1- fraction by NIC-C5 and co-cultured on AM14 stromal cells with or 
without addition of 4-OHT. At day6 or later 7a-GFP ES-derived cells were separated 
and haematopoietic activity or other lineages assessed in CFUs, qPCR and flow 
cytometry analysis.
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 Usage Construction Resource 

p2lox.EGFP Introducing EGFP into HPRT locus in 
A2lox.cre cell line 

 Iacovino et al., 2011a 

p2lox.DML-EGFP Introducing DML-EGFP into HPRT 
locus  

DML-EGFP was digested from pEGFP-DML-N3 plasmid 
using BglII (blunted) and NotI to XhoI (blunted) /NotI site in 
p2lox.EGFP 

 

pEGFP-DML-N3 Cloning DML-EGFP into p2lox 
backbone 

 Weng et al., 2003 
Maillard et al., 2004 

pCAG -NotchIC Overexpressing NotchIC in A2lox.cre, 
A2lox.DML EGFP and A2lox.EGFP 
cell line for luciferase assay 

 Lowell et al.,2006 

pCAG –Jagged1 Overexpressing Jagged1 in Cos7 cells 
as positive control 

 Lowell et al.,2006 

Renilla Internal control of Notch activity 
luciferase assay 

 Lab stock 

pGL3 Negative control of Notch activity 
luciferase assay 

 Lab stock 

 

Table 2.1 Information of plasmids applied in this project.
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Gene Forward Primer Probe Reverse Primer 

Dll3 GCCTGATGGCCTCGTACGT TTTCAATGACGAGGGAGAAGGT TGCCCTTCCGCGATG 

Flk-1 CAAAAACCAATATGCCCTGATTG GCTGACACGTTGGCAGCTT GACCAGCGTACTTACAGTTTT 

Tbx6 TGTTAAGCTCACCAACAGCACACT AGGCTGGTACTTGTGCATCGA CCCCCATGGCCACC 

β-major GACAAGCTGCATGTGGATCCT GGTGGTGGCCCACAATCA AGAACTTCAGGCTCCTGG 

β-H1 GAGAAGGCAGCTATCACAAGCA ATCAGGAGCCTTCCCAGAGTT CTGGGATAAAGTGGACTTG 

Hprt GCTCGAGATGTCATGAAGGAGA AAAGAACTTATAGCCCCCCTTGA CCATCACATTGTGGCCCTCTGTGTG 

Hoxb4 CCTGGATGCGCAAAGTTCA GTCAGGTAGCGATTGTAGTGAAACTC CCAGCAGGTCCTGGAG 

Hey1 GCAGGAGGGAAAGGTTATTTTGA CGAAACCCCAAACTCCGATAG CGCCCTGGCTATGG 

Hes5 TGCTCAGTCCCAAGGAGAAAA CGGTCCCGACGCATCTT ACTGCGGAAGCCGGT 

Notch1 TGCATGGATGTCAATGTTCGA ACTGCAGGAGGCAATCATGAG ACCAGATGGCTTCACAC 

Gata2 CCCAAGCGGAGGCTGTCT CTGCCAGAAGAGCGG TCGTCTGACAATTTGCACAACA 

Runx1 GATTCAACGACCTCAGGTTTGTC TAGAGGCAAGAGCTTCA TTGTAAAGACGGTGATGGTCAGA 

Gata1 TTTCTCCCTCCTCTTAGAGCCA  ATCTTTAAGGGTGCAGGGCA 

SCL CTTTGCAGCTTCACTGGGATAA  TACGGACCCAATGGACTTCC 

Lmo2 CGGATCCGTGCCTATGAGA  AGGCGGCGCATTTGAA 
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Table 2.2 List for primers and probes for quantitative RT-PCR in this project. 
Self-design Tapman Primer efficiencies were calculated using the slope of the standard curve generated from qPCR of serial template 
cDNA dilutions and calculated at primer efficiency calculator at http://www.finnzymes.com/java_applets/qpcr_efficiency.html. Sybergreen 
primier were adapted from published paper. Further validation is recommended.

Wnt5a CGAAGCAAACCAGCTCACCACATAGA  CAGAAGGCTACCAAGCCCATGAA 

Jag1 CATCGTACTGCCTTTCAGTTTCG AGGCCTCCACCAGCAAAGT CTGGCCGAGGTCC 

Sox17 AGCTCCAGAAACTGCAGACCAGAA  TCCATGAGGTGACATGCTGAGGTT 

VE- 
Cadherin 

TGGACAGACTGCAGTGGAGAGA CCTTCGTGGAGGAGCTGATC CCTTCTGCTCACGGAC 

PU.1 ATGGAAGGGTTTTCCCTCACCGCC  GTCCACGCTCTGCAGCTCTGTGAA 

Brachyury ABI gene expression assay  Mm00436877_m1 

18s ABI gene expression assay Hs99999901_s1 

Hes1 ABI gene expression assay 
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ES cell lines Origin Usage Reference 

R25-NIC-B5 ES cells 
R25-NIC -C5 ES cells 

Lowell’s lab Tamoxifen inducible ectopic NotchIC Lowell et al., 2006 

A2lox.CRE ES cells Kyba’s lab Parental cell line for construction of doxycycline inducible 
cell line (constructed based on A17 ES cell line) 

Iacovino et al., 2011a 

iDML.1 (A2) 
iDML.2 (A10) 
iEGFP.1 (C8) 
iEGFP.2 (H8) 

Developed in the lab based on 
A2lox.CRE 

Doxycycline inducible overexpression of DNMAML-GFP 
or GFP 

 

7a-GFP ES cells laboratory stocks ES cell line constitutively expresses eGFP Gilchrist et al., 2003 

E14 IV ES cells laboratory stocks Wild-type ES cell line  
 
Table 2.3 ES cell lines applied in this project. 
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Stromal cell 

line 

Derived tissue Embryonic 

day 

Transgenic 

Embryo 

AM20.1A4 Aorta-mesenchyme of AGM E10 tsA58 

AM20.1B4 Aorta-mesenchyme of AGM E10 tsA58 

AM14.1C4 Aorta-mesenchyme of AGM E11 BL1b 

UG26.1B6 Urogenital ridges of AGM E11 tsA58 

UG26.2D3 Urogenital ridges of AGM E11 tsA58 

EL08.1D2 Foetal liver E11 BL1b 

 
Table 2.4 Embryonic haematopoietic niche derived stromal cell lines applied in 
this project. 
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