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Abstract 

 

This thesis aims to improve the current understanding of the processes which control 

the flow variability of Greenland Ice Sheet (GrIS) outlet glaciers. The most recent 

Intergovernmental Governmental Panel on Climate Change (IPCC) report (Meehl et 

al., 2007) identifies that a critical limitation to forecasts of sea-level rise are 

uncertainties in modelling the ice dynamics of the GrIS. Using Synthetic Aperture 

Radar (SAR) feature tracking, seasonal velocities of land- and marine- terminating 

glaciers in a region in the northeast of Greenland are measured. Records of air 

temperature in conjunction with seasonal observations of supraglacial lake 

development, sea ice conditions and ice front positions, derived from SAR imagery, 

are used to investigate the controls on the observed variations in ice velocity. A clear 

link between ice velocities and glacier hydrology is found. These findings are 

consistent with observations from other glaciers in Greenland and are suggestive of a 

universal hydrological forcing of ice velocity for the whole of the GrIS ablation 

zone.   

 

Lake drainage events have been identified as a key factor in linking atmospheric 

changes, glacier hydrology and ice velocities in Greenland. For modelling purposes, 

a means of parameterising the distribution and evolution of supraglacial lakes is 

therefore needed. Assuming that water will pond in surface depressions, this thesis 

assesses the ability of using Digital Elevation Models (DEMs) for this purpose. High 

resolution DEMs are created using Interferometric SAR (InSAR) for two, separate 

regions of the GrIS. The positions and areal extent of surface depressions are 

compared with those of lakes observed in optical satellite imagery. The level of 

correspondence between the two datasets is found to be poor as a result of the 

resolution of the DEMs and the physical differences between surface depressions and 

lakes (e.g. lakes may not fill the capacity of the depression). An alternative method 

for parameterising the seasonal distribution of supra-glacial lakes, by extrapolating 

trends observed in current lake distributions, is investigated. The locations and 

evolution of lakes in the west of Greenland during the summer of 2003 are mapped 

using 47 Moderate Resolution Imaging Spectroradiometer (MODIS) images. Clear 



 2 

trends are identified in the distributions of lakes with elevation and are linked to the 

seasonal melt-cycle and to changes in ice thickness and its influence on surface 

depressions, tensile stresses and hydrofracturing. It may be possible to extrapolate 

these trends to other regions and higher elevations on the ice sheet, thereby enabling 

the distribution of lakes to be parameterised in ice sheet models. The findings of this 

thesis help to contribute to the understanding of the interaction between climate and 

ice dynamics in the context of the GrIS. 
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Chapter 1: Introduction 

 

 

1.1 Aim 

 

This thesis aims to provide an improved understanding and parameterisation of 

processes linking climate change to the dynamics and mass loss of the Greenland Ice 

Sheet (GrIS). This is achieved using a range of remotely sensed images and 

techniques, including optical and Synthetic Aperture Radar (SAR) data and 

Interferometric SAR (InSAR) and SAR feature tracking methods. This chapter 

outlines the broad motivation for this research and the structure of this thesis. 

1.2 Motivation 

 

Sea level rise poses a major threat to life and livelihoods in coastal regions across the 

globe (Parry et al., 2007). Between 1961 and 2003 global sea level rose at an average 

rate of between 1.3 and 2.3 mm per year (Meehl et al., 2007) (Figure 1.1). Forecasts 

suggest that sea level will continue to rise over the coming centuries and millennia 

(Meehl et al., 2007). The most up to date projections predict an overall increase in 

sea level of 32 ± 5 cm by 2050 (Rignot et al., 2011).  
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Figure 1.1: Global mean sea level (deviation from the 1980-1999 mean) in the past and projected 

for the future. Before 1870 global measurements of sea level are not available and the grey 

shading represents the uncertainty in the estimated long-term rate of sea-level change. From 

1870, the red line shows a reconstruction of global mean sea level from tide gauges and the 

green line, from satellite altimetry. The 21
st
 century Intergovernmental Panel on Climate 

Change (IPCC) projections for sea level rise are in blue and represent a range of model 

projections. (Taken from Meehl et al., 2007). 

 

Changes in sea level are mostly related to climate change and occur due to changes 

in the volume of water in the oceans (eustatic sea level changes) and vertical land 

movements (isostatic sea level changes). Eustatic sea level changes occur as a result 

of thermal expansion of the oceans and the exchange of water between oceans and 

other reservoirs (e.g. glaciers, ice caps and ice sheets). Isostatic sea level changes 

result from, for example, glacial isostatic adjustments and sedimentation. In the latter 

part of the 20
th

 century, the largest contributions to sea level rise were from thermal 

expansion of the oceans and melting of small glaciers and ice caps (Meehl et al., 

2007). However, forecasts suggest that over the next few decades sea level rise will 

be dominated by the contributions from the Greenland and Antarctic ice sheets 

(Rignot et al., 2011).  
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Figure 1.2: The GrIS today (left) and during marine isotope stage (MIS) 5e, the last interglacial, 

(right) from the ice sheet modelling study of Otto-Bliesner et al., (2006). 

 

The GrIS has the potential to raise sea level by 7 m if it disappears entirely (Bamber 

et al., 2001a).  Records and modelling of past interglacials suggest that mass losses 

from the GrIS may have made substantial contributions to sea level rise. For 

example, during the last interglacial (the Eemian, ~130 ka), when global sea levels 

were 4-6 m higher than at present (Overpeck et al., 2006), losses from the GrIS (e.g. 

Otto-Bliesner et al., 2006) (Figure 1.2) may have contributed up to 5.5 m to sea level 

rise (e.g. Letreguilly et al., 1991; Ritz et al., 1997; Cuffey and Marshall, 2000). In 

the future, model predictions indicate that forecasted warming will lead to shrinking 

of the ice sheet (e.g. Huybrechts  and de Wolde, 1999; Gregory et al.,  2004; Alley et 

al., 2005a) (Figure 1.3) and the most extreme scenarios have suggested that the ice 

sheet may disappear in as little as 1000 years (e.g. Greve et al., 2000; Gregory et al., 

2004).  
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Figure 1.3: The modelled future evolution of the GrIS based on a range of IPCC warming 

scenarios forced by different atmospheric carbon dioxide concentrations (Church et al., 2001). 

Taken from Alley et al., 2005a. 

 

At present, observations show that the GrIS is losing mass (e.g. Krabill et al., 2000, 

2004; Luthcke et al., 2006; Rignot and Kanagaratnam, 2006; Thomas et al., 2006; 

Rignot et al., 2008; Wouters et al., 2008; Velicogna, 2009; Slobbe et al., 2009; 

Zwally et al., 2011) (Figure 1.4) at a rate which has increased over the past decades 

(e.g. Thomas et al., 2008; Zwally et al., 2011) (Figure 1.4). The ice sheet is losing 
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mass primarily as a result of increasing rates of surface melting and ice discharge to 

the oceans. The increase in the rate of mass loss due to surface melting is the direct 

result of an increase in surface temperatures (e.g. Hall et al., 2008; Box et al., 2009). 

Increasing rates of ice discharge have resulted from increased outlet glacier flow 

rates (e.g. Rignot and Kanagaratnam, 2006; Rignot et al., 2008; van den Broeke et 

al., 2009). However, the causes of the increased outlet glacier flow rates are not fully 

understood.  

 

Figure 1.4: Estimates of the rate of GrIS mass change based on European Remote Sensing 

(ERS) satellite radar altimeter data (black), airborne laser altimeter surveys (green), 

airborne/satellite laser altimeter surveys (purple), massbudget calculations (red) and temporal 

changes in gravity (blue). Rectangles depict the time periods of observations (horizontal) and 

the upper and lower estimates of mass balance (vertical). Sources (corresponding to numbers on 

rectangles): 1 and 2: Krabill et al., (2000, 2004); 3: Thomas et al., (2006); 4:  Zwally et al., 

(2005); 5–7: Rignot and Kanagaratnam (2006); 8 and 9: Velicogna and Wahr (2005, 2006); 10: 

Ramillien et al., (2006); 11: Chen et al., (2006); 12: Luthke et al., (2006). (Taken from Thomas et 

al., 2008) 

 

 

For society to be able to most effectively mitigate for the potential impacts of sea-

level rise, accurate predictions of the rate at which it may occur must be made. The 

accuracy of these predictions is controlled by the reliability of the models we use to 

make the forecasts, which in turn is a product of our knowledge of the physical 
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systems they aim to represent. The most recent Intergovernmental Panel on Climate 

Change (IPCC) report from 2007 (Lemke et al., 2007) identified that a key limitation 

to forecasts of sea level rise stems from a high level of uncertainty in the predictions 

of future mass losses from the GrIS. This is the result of the uncertainties in the links 

between climate and the mechanisms controlling ice flow rates and therefore ice 

discharge and mass loss. It is critical for the accuracy of forecasts of ice sheet mass 

loss and sea level rise, that we are able to improve our understanding of these links. 

Therefore this has become a key focus of glaciologists and this thesis. 

 

1.3 Thesis Structure 

 

The following chapter will outline the recent dynamic changes in Greenland and 

their causes, providing a background for this thesis and justification for the key 

objectives set out therein. Chapter 3 provides a review of the methods used to 

achieve these objectives. Chapters 4, 5, and 6 present the methods, results and 

discussion of this thesis in the format of papers prepared for submission to scientific 

journals. The final chapter, Chapter 7, provides a synthesis of the findings of this 

thesis, placing our results into a wider context, discussing any limitations and 

outlining the potential for future research. 
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Chapter 2: Greenland Ice Sheet flow dynamics 

 

2.1 Introduction 

 

The motion of ice under the force of gravity is a basic characteristic of all glaciers 

and ice sheets. The degree of movement of glaciers is a balance between driving 

stresses (i.e. gravity, ice thickness and surface slope), resisting frictional forces at the 

lateral margins and the bed, and the longitudinal stress gradient (van der Veen, 

1999). There are three principal mechanisms by which glacier flow occurs; these are 

internal deformation, deformation of the glacier bed and basal sliding (Paterson, 

1994).  

Internal deformation results from movement within or between individual ice 

crystals and brittle failure of the ice. In regions where the ice sheet is frozen to its 

bed (e.g. in the interior), ice sheet flow will be dominated by internal deformation. 

Ice velocities resulting from internal deformation are controlled by ice temperature, 

particles in the ice, ice thickness and surface slope which are relatively slow to 

change, therefore changes in ice velocities resulting from changes in internal 

deformation occur slowly. Deformation of subglacial till is thought to occur when the 

critical shear stress of the sediment is exceeded and this is dependent on the shear 

strength (or material composition) of the till, saturation and the pressure exerted by 

the overlying ice (Paterson, 1994). Due to the difficulties in monitoring the bed of an 

ice sheet, little is known about bed deformation. Basal sliding of the glacier at the 

ice-bed interface responds to changes in subglacial effective pressures (Paterson, 

1994), often as a result of changing water pressure, and is also sensitive to changes in 

the longitudinal stress gradient (e.g. from glacier calving or buttressing). Changes in 

both the basal sliding and subglacial till deformation rates can occur rapidly.   

Until recently changes in the dynamics of ice sheets were considered to occur over 

millennial timescales (Houghton et al., 2001). However, observations over the course 
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of the past decade have revealed major changes in the flow of outlet glaciers that 

occur over timescales of hours to years (e.g. Rignot and Kanagaratnam, 2006; Howat 

et al., 2007; Das et al., 2008; Joughin et al., 2008a,b; Shepherd et al., 2009). In 

Greenland, Rignot and Kanagaratnam (2006) showed that, due to a widespread 

acceleration of glaciers, the rate of ice discharge tripled between 1996 and 2005 and 

several authors have reported a rapid switching between accelerating and 

decelerating flow at a number of marine-terminating glaciers in the southeast and 

west of the ice sheet (e.g. Luckman et al., 2006; Rignot and Kanagaratnam, 2006; 

Howat et al., 2007; Howat et al., 2008). Initially it was not known what was driving 

these changes and whether they represented short term changes or were part of long 

term ice sheet instability. Although considerable progress has been made in 

understanding the forces and mechanisms controlling these changes, our knowledge 

remains incomplete. The following sections will outline the current state of our 

knowledge. 

Some evidence exists for GrIS sliding variability resulting from glacier surging (e.g. 

Weidick, 1988; Jiskoot et al., 2003) and geothermal heat fluxes (e.g. Fahnestock et 

al., 2001), however, the widespread and synchronous nature of the recent dynamic 

changes are suggestive of regional climatic forcing (Luckman et al., 2006; Howat et 

al., 2008). Climate forcing has been linked to GrIS dynamic changes in two ways: 1) 

through ice-ocean interactions in ocean-terminating outlet glaciers (e.g. Holland et 

al., 2008; Sole et al., 2008; Howat et al., 2008) and 2) with increased surface 

meltwater supply to the bed of inland ice (e.g. Zwally et al., 2002; Parizek and Alley, 

2004; van de Wal et al., 2008; Shepherd et al., 2009).  

2.2 Dynamic changes at marine margins due to ice-ocean interactions 

 

Recent studies show that the most substantial velocity changes and thinning due to 

increased ice velocities, have occurred at the marine-terminating margins (e.g. 

Abdalati et al., 2001; Krabill et al.,  2004;  Sole et al., 2008; Thomas et al.,2009; 

Pritchard et al., 2009;  Joughin et al., 2010a). The contrast between the magnitude of 

dynamic changes seen at marine- and land-terminating outlet glaciers suggests that 

either the forcing mechanisms driving the recent velocity variations are specific to 
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marine-terminating margins and/or that marine based glaciers are more sensitive to 

perturbations to the ice sheet. It has been suggested that tidewater glaciers may be 

responding to changes in the ocean and/or the atmosphere.  

The stability of tidewater glaciers is very sensitive to changes at their fronts (Meier 

and Post, 1987; Pfeffer, 2007). A tidewater glacier in a stable state (i.e. neither 

advancing nor retreating) is grounded at its terminus; perturbations of conditions at 

the terminus which lead to flotation will cause the glacier to become unstable, 

accelerate and undergo rapid retreat (Meier and Post, 1987; Pfeffer, 2007). 

Observations have shown that that the retreats and accelerations of many of the 

tidewater glaciers in Greenland began with changes to the front of the glaciers 

(Howat et al., 2007, 2008; Joughin et al., 2004, 2008b; Thomas, 2004; Sole et al., 

2008), a finding confirmed by the recent modelling experiments of Nick et al., 

(2009). There are a number of suggestions as to what could have forced these 

changes which include reductions in sea ice (Amundson et al., 2010), increased 

undercutting at calving fronts (Motyka et al., 2003; Nick et al., 2009) and increased 

basal melting and thinning of floating ice tongues (Holland et al., 2008) due to 

warming ocean temperatures, and higher rates of calving caused by the increases in 

surface meltwater resulting from atmospheric warming (Motyka et al., 2003; Benn et 

al., 2007).  

2.2.1 Ocean induced acceleration of marine- terminating glaciers 

 

Oceanographic data suggests that the recent perturbations at Greenland tidewater 

glacier termini may be linked to an increase in ocean temperatures. Records show 

that ocean temperatures on the continental shelf to the Southeast and West of 

Greenland have been warming since the mid 1990’s (Figure 2.1) (Holland et al., 

2008; Hanna et al., 2009; Murray et al., 2011). This warming in ocean temperatures 

occurred as a switch in the phase of the North Atlantic Oscillation (NAO) in 

1995/1996 weakened the subpolar gyre allowing the warm, subpolar Irminger 

Current to spread westward under the cold polar waters and onto the Greenland 

continental shelf (Holland et al.,2008). Holland et al., (2008) report a rise in the 

temperature of bottom waters (150-600 m depth including warm Irminger waters and 
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overlying mixed waters) over much of the West Greenland continental shelf from 

1.7˚C in 1995 to 3.3˚C from 1998 and thereafter (Figure 2.1). For this rise in ocean 

temperatures to have had a direct impact on marine-terminating glaciers, the warm 

waters must have been able to be transmitted into the fjords and to the ice fronts. On 

the continental shelf, the warm Irminger waters are found at depths of between 400-

600 m and are separated from the overlying cold polar waters (50-100 m depth) by a 

layer of mixed water (Hanna et al., 2009) (Figure 2.2). Most of the fjords in 

Greenland contain sills at depths ranging from nearly 0 m to over 500 m (Hanna et 

al., 2009); therefore, with the exception of the shallowest fjords, the warm mixed 

waters are able to penetrate into the fjords. These warm waters are drawn into the 

fjords and then transported to the glacier front by circulation in the fjord. The 

circulation may be driven by a combination of outflow of large inputs of glacier 

meltwater at the head of the fjord and balanced by a saltier inflow at depth 

(Ribergaard, 2007; Straneo et al., 2011), and by pressure gradients between the fjord 

and the shelf as a result of alongshore winds (see Straneo et al., 2010).  
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Figure 2.1: Subsurface ocean temperatures over the west Greenland continental shelf from 

1991-2006. A sudden increase in subsurface water temperatures occurred in 1997, when warm 

waters flooded into Disko Bay and the Jakobshavn fjord. Taken from Holland et al., (2008). 
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Figure 2.2: Circulation in a West Greenland fjord. Taken from Hanna et al., (2010). 

 

The precise mechanism by which the increased ocean temperatures may have 

affected thinning, retreat and acceleration of the glacier termini is still unproven, 

however, a number of theories exist. Rignot et al., (2010) calculated the melt rates of 

four grounded tidewater glaciers in three different fjord systems in central West 

Greenland using oceanographic data, bathymetry and modelled convective flow at 

the ice fronts. They found rates of submarine melting at the calving front ranging 

from 0.7 ± 0.2 to 3.9 ± 0.8 m d
-1

, which are two orders of magnitude larger than 

surface melt rates and comparable to ice loss from iceberg discharge. They postulate 

that these melt rates could lead to destabilisation of the ice front in two ways; firstly, 

by melting at the calving front of grounded ice directly, submarine melting will lead 

to grounding line retreat, or secondly, by increased calving as the warm waters 

undercut the submerged ice face, promoting calving below the water surface and 

causing ice front retreat. Holland et al., (2008) examined the impact of submarine 

melting on Jakobshavn Isbrae, which was until the early 2000’s buttressed by a 

permanent floating ice tongue.  They suggest that the floating ice tongue 

disintegrated as a result of rapid submarine melt-induced thinning. The initial 

thinning of the tongue would have decreased its buttressing effect and in turn, 

reduced the backpressure on the upstream ice, increasing rates of longitudinal 
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stretching and velocity. The complete breakup of the tongue would have caused an 

immediate increase in longitudinal stretching and therefore velocity.  

Warmer ocean temperatures also cause a decrease in sea ice. Calving rates, and 

therefore glacier flow rates, of floating tidewater glaciers have been linked with 

seasonal and interannual fluctuations in concentrations of sea ice (e.g. Higgins, 1991; 

Sohn et al., 1998; Reeh et al., 2001; Copland et al., 2007; Joughin et al., 2008a; 

Amundson et al., 2010; Howat et al., 2010). The seasonal advance and retreat of 

glacier calving fronts on the west coast have been correlated with growth and decay 

of sea ice in proglacial fjords (Sohn et al., 1998; Joughin et al., 2008a; Amundson et 

al., 2010; Howat et al., 2010) and multi-year retreats and flow accelerations at some 

tidewater glacier have been attributed to a lack of spring readvance and expanded 

calving seasons due to a decline in winter sea ice concentrations (Joughin et al., 

2008a) and early melange clearing (Howat et al., 2010). Amundson et al., (2010) 

propose that sea ice acts to bind the mélange of icebergs together which is then 

strong enough to inhibit calving and enables the terminus to advance. This then 

reduces the longitudinal strain rates at the grounding line, resulting in ice thickening 

and increased effective pressure which causes a decrease in the velocity of the ice. 

Therefore a decrease in sea ice concentrations would remove this buttressing effect 

and allow the glacier to accelerate.  Although a correlation between sea-ice break-up 

and increased calving rates and ice velocity has been observed at a number of 

glaciers in Greenland (Higgins, 1991; Reeh et al., 2001; Joughin et al., 2008a; Howat 

et al., 2010), at present data does not exist that can prove the causal relationship 

proposed by Amundson et al., (2010). Therefore the possibility remains that sea ice 

and glacier calving fronts and speeds are responding independently to some other 

factor, for example ocean circulation and/or subglacial drainage.  

2.2.2 Atmosphere induced acceleration of marine-terminating glaciers 

 

It has been suggested that a frontal perturbation to Greenland’s tidewater glaciers 

may have originated from an increase in air temperatures. Since the mid 1990’s there 

has been an accelerating trend of rising air temperatures in Greenland (e.g. Hanna et 

al.,2005; Chylek et al.,2006; Box et al., 2006). This has led to increases in surface 
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ablation (e.g. Hanna et al., 2008; van den Broeke et al., 2009), melt area extent (e.g. 

Steffen et al., 2004; Fettweis et al., 2007; Tedesco, 2007) and runoff rates (Ettema et 

al., 2009). Higher rates of surface ablation have led to ice sheet thinning (Sole et al., 

2008; Thomas et al., 2009). This may have led marine-terminating glaciers to 

approach flotation and a state of instability which was followed by increased 

velocities and frontal retreat (Sohn et al., 1998). It has also been proposed that 

increased surface melting may also increase calving rates through an increase in 

hydrofracturing of water-filled crevasses (section 2.3.1) near the ice front (Sohn et 

al., 1998; Benn et al., 2007). Furthermore, it has been proposed that because 

increased temperatures and surface melt rates would raise the flow of subglacial 

water entering a fjord, this would strengthen the circulation of water within the fjord 

(Figure 2.2) and thereby enhance oceanic melt rates of the glacier face, causing 

increased calving and frontal retreat (Rignot et al., 2010). However, in studying the 

glacier accelerations of the south-eastern region of the GrIS in the 2000’s, Murray et 

al., (2011) discount the idea that glacial accelerations were forced by increased air 

temperatures and surface runoff as they find no correlation between air temperatures 

and glacier dynamic changes. Further investigations are needed to improve our 

understanding of the link between atmospheric forcing and marine-terminating 

glacier flow rates. 

2.2.3 Deceleration and stabilisation of marine- terminating glaciers 

 

It is important to stress that a key characteristic of dynamic tidewater behaviour is 

that it is often cyclical. Following a period of retreat and acceleration tidewater 

glaciers will often stabilise and decelerate (Meier and Post, 1987). Classically this 

has been proposed to occur when a glacier retreats to a pinning point where resistive 

stresses exceed driving stresses (i.e. at a submerged topographic high or a 

constriction in the fjord – Meier and Post, 1987). Such behaviour was observed at 

Helheim and Kangerdlugssuaq glaciers in the southeast of Greenland, as after initial 

accelerations of 100% and 40% respectively between 2003 and 2005 they both 

decelerated in the summer of 2006 (Howat et al., 2007). It has been suggested that 

this occurred as the front of the glaciers regrounded on bathymetric highs (Howat et 

al., 2007; Joughin et al., 2008b). Because such pinning points are external to the ice 
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sheet and therefore vary from glacier to glacier the degree of retreat and timing of 

restabilisation may be expected to vary between glaciers. However, Howat et al., 

(2008) and Murray et al., (2011) generated velocity datasets of many of the tidewater 

terminating glaciers in the southeast of Greenland, including Helheim and 

Kangerdlugssuaq glaciers for much of the 2000’s. They found near synchronous 

speed-up and slow downs at most of the glaciers. Murray et al., (2011) propose that 

the synchronous nature of this stabilisation rules out any local controls i.e. 

regrounding and instead suggest that the speed up and slow down occurred in 

response to warming and cooling ocean temperatures respectively. Furthermore, a 

study by Nick et al., (2010) which models marine-terminating glacier retreat based 

on the penetration of surface and basal crevasses suggests that tidewater glacier 

retreat may achieve stability on reverse slopes. Restabilisation is a very important 

characteristic of marine-terminating glaciers as it affects long-term ice velocities and 

therefore rates of discharge and mass loss. Hence it is important to understand and 

parameterise the processes which govern it in future ice sheet models.  

 

2.3 Surface meltwater forcing of inland ice dynamic changes 

 

Ice velocities of inland ice in Greenland have been observed to exhibit variability at 

daily (e.g. Das et al., 2008; Shepherd et al., 2009; Bartholomew et al., 2010), 

seasonal (e.g. Joughin et al., 2008c; Bartholomew et al., 2010) and interannual 

timescales (e.g. Zwally et al., 2002; van de Wal et al., 2008; Sundal et al., 2011) in 

response to the delivery of surface meltwater to the bed of the ice. Similar daily and 

seasonal velocity variations have also been observed at tidewater glaciers and are 

linked to the input of surface runoff to the bed (Howat et al., 2010; Stearns et al., 

2010). However, the overall percentage increase in seasonal velocities (away from 

the calving front) is much lower (10-15%) than at slower land- terminating glaciers 

and inland ice (Joughin et al., 2008c) and contributes only a small amount to the 

overall annual discharge from the ice sheet. Nonetheless this mechanism is 

significant in terms of mass loss at land-terminating margins. This is because ice 

motion controls the transport of mass from high elevations to low elevations where 
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surface melt rates are higher. Therefore an increase in ice velocities at land-

terminating margins due to increased surface melting would effect a positive 

feedback mechanism as the ice sheet would thin and further increase melt rates 

(Parizek and Alley, 2004).  

 

2.3.1 Daily to seasonal velocity variations of inland and land-terminating ice 

 

There have been a number of studies which identify velocity variations at daily to 

seasonal timescales on the GrIS and which have been linked to surface meltwater 

inputs. Diurnal velocity measurements were acquired by Shepherd et al., (2009) 

using 3 GPS (Global Positioning System) sensors situated between 37 and 72 km 

inland of the western ice margin, where the ice is between 890 and 1120 m thick. 

Measurements were taken over a 5 day period in late summer 2007. They recorded 

an average daily speed up of 55% over the three sites which occurred roughly 2 

hours after the daily peak in melt. Short term velocity increases have also been 

associated with the drainage of supraglacial lakes (see below). Das et al., (2008) 

recorded a substantial surface displacement (<0.8 m in a few hours) which coincided 

with the rapid (~1.4 hours) drainage of a 0.044 ± 0.01 km
3
 lake through ice 980 m 

thick at the western margin in the summer of 2006.  Over a seasonal timescale, ice is 

observed to flow faster during the summer than the winter. Over the land-terminating 

margins and the inland ice, seasonal summer speed ups of up 125% have been 

recorded (e.g. Zwally et al., 2002; van Joughin et al., 2008c; Bartholomew et al., 

2010; Palmer et al., 2011; Sundal et al., 2011).  The seasonal acceleration of the ice 

has been correlated with the onset of surface melting (e.g. Van de Wal et al., 2008; 

Bartholomew et al., 2010). Van de Wal et al., (2008) report that velocity increases 

occurred less than a week after the onset of melt in a region of the ice sheet where 

the ice thickness exceeds 1000m. However, following the initial speed up of the ice, 

velocity and surface ablation are found to decorrelate throughout the melt season and 

late summer velocities have been found to be lower than winter velocities (e.g. 

Zwally et al., 2002; Bartholomew et al., 2010).  
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The observations outlined above and the widely reported coincidence of velocity 

increases with vertical surface uplift (e.g. Zwally et al., 2002; Das et al., 2008; 

Shepherd et al., 2009; Bartholomew et al.,  2010) are consistent with observations at 

Alpine and small Arctic glaciers where velocity variability has been found to result 

from changes in basal water pressures and sliding in response to meltwater inputs 

and the seasonal reconfiguration of the subglacial drainage system (e.g. Iken et al., 

1983; Iken and Bindschadler, 1986; Mair et al., 2001, 2002; Bingham et al., 2003, 

2005). At the end of spring and beginning of summer, as the surface of the glacier 

begins to melt, water is routed through the ice to the bed via moulins and crevasses. 

Upon reaching the glacier bed the water is fed into a hydraulically inefficient, 

distributed drainage system which is composed of water films, cavities downstream 

of bedrock obstacles, canals and flow through sediment (Sharp, 2005). Water travels 

slowly in such systems resulting in high subglacial water pressure. Increasing 

volumes of water input leads to water pressures capable of ‘hydraulically jacking’ 

the ice from the glacier bed (Iken and Bindschadler, 1986) which causes decreased 

levels of friction and increased ice velocities. As the transient snow line retreats up-

glacier throughout the melt season, the production of surface melt water grows. This 

leads to an increase in the flux of water to the bed, resulting in rising water pressures, 

which forces the development of a hydraulically efficient, channelized system (Mair 

et al., 2001). The water pressure in channelized drainage systems is low and 

therefore ice velocities decrease (Fountain and Walder, 1998). Late summer velocity 

increases are observed in lower portions of glaciers in response to high magnitude 

melt water inputs (i.e. following supraglacial lake drainage or large rain events) (e.g. 

Iken and Bindschadler, 1986; Bingham et al., 2005) which overcome the capacity of 

the channelised system and forces water into the peripheral distributed system, where 

subglacial water pressure becomes high and sliding velocities increase 

(Bartholomaus et al., 2008). At the end of summer when the energy available for 

surface melting decreases, water input to the bed declines, channels are no longer 

filled by water and so they begin to close by ice creep (Cutler, 1998). Initially water 

pressure falls but the drainage system then contracts to the point that water pressure 

begins to rise again (Hubbard and Nienow, 1997) and a distributed drainage system 

dominates.  
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The mechanism outlined above has been used to explain daily and seasonal velocity 

variability of inland ice and outlet glaciers in Greenland (e.g. Zwally et al., 2002; van 

de Wal et al., 2008; Bartholomew et al., 2010; Howat et al., 2010; Sundal et al.,  

2011). However, it must be noted that at present such an explanation remains 

theoretical, as due to the inaccessibility of the subglacial environment, no direct 

measurements of the subglacial drainage system of the GrIS has been made. This is a 

key limitation to ice sheet model parameterisation, although projects which intend to 

measure the subglacial environment in Greenland are underway (e.g. the ‘Cryo-egg’ 

project at the University of Bristol, see 

http://seis.bris.ac.uk/~ggbsrl/Cryoegg/home.html for further information). 

Unlike at small Alpine and Arctic glaciers, away from the margin of the GrIS surface 

crevasses and moulins are unable to penetrate to the bed under extensional stress 

alone due to the compressive effect of ice overburden pressure at depth. However, 

theoretical and observational studies from the western margin of the ice sheet suggest 

that a hydrofracturing mechanism provides a pathway for surface water to reach the 

bed of the ice (Van der Veen, 2007; Das et al., 2008). The theory of hydrofracturing 

suggests that if the volume of water within a crevasse exerts enough pressure to 

overcome the ice overburden pressure along with tensile stresses a crevasse may 

propagate through over 1km of cold ice (e.g. Weertman, 1978; van der Veen, 1998a, 

b; Alley et al., 2005b). Alley et al., (2005b) propose that supraglacial lakes are 

significant for hydrofracturing as they warm ice, supply water and increase the 

pressure driving water flow and ice cracking. Das et al., (2008) observed a lake 

drainage event on the western margin of the GrIS and found that the volume of water 

collecting in supraglacial lakes is sufficient to exert enough extra pressure on a 

fracture to overcome the ice overburden pressure of 980 m thick ice and allow ice 

fracturing and lake drainage. They also found that a continued supply of melt water 

from surface streams allowed some fractures to remain open and form discrete 

moulins which remained open until the end of the melt season (Das et al., 2008). 

Using ice-penetrating radar surveys covering an area of the GrIS near Jakobshavn 

Isbrae, Catania, et al., (2008) mapped the locations of englacial pathways. They 

found only a moderate correlation between lake locations and moulins suggesting 

that many lakes may drain overland and that moulins form in the absence of lakes. 

http://seis.bris.ac.uk/~ggbsrl/Cryoegg/home.html
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They found a strong correlation between moulin locations and regions of longitudinal 

extension, which suggests that surface crevassing may exert a primary control on 

moulin locations in the ablation zone. They also found that in ice thicker than 800 m 

the locations of lakes and moulins are more closely tied and therefore propose that in 

thicker ice lakes may be required for moulins to form.    

During the summer supraglacial lakes (Figure 2.3) are observed to form across the 

whole of the GrIS below the limit of melting (e.g. Echelmeyer et al., 1991; Luthje et 

al., 2006; Box and Ski, 2007; McMillan et al., 2007; Sneed and Hamilton, 2007; 

Sundal et al., 2009). It has been found that lakes form in the same locations each year 

(e.g. Echelmeyer et al., 1991; Luthje et al., 2006; Sundal et al., 2009) and this is 

because the surface depressions in which lakes develop are surface expressions of 

subglacial topography (Echelmeyer et al., 1991). Using a range of remote sensing 

and field based techniques the area and depth of lakes have been measured by a 

number of authors in the west of Greenland and it has been found that lake areas 

range from a few 10’s of metres to 10 km
2 

and depths between <1 and 20 m (e.g. 

Echelmeyer et al., 1991; Box and Ski, 2007; Georgiou et al., 2009). The distribution 

of lakes has been observed to evolve seasonally (e.g. Box and Ski, 2007; McMillan 

et al., 2007; Sneed and Hamilton, 2007; Sundal et al., 2009). Throughout the melt 

season, lakes begin to develop further inland and at higher elevations, tracking the 

expansion of the region of surface melting (e.g. Box and Ski, 2007; McMillan et al., 

2007; Sundal et al., 2009). As previously mentioned, lakes can episodically drain 

rapidly. McMillan et al., (2007) show that lake drainage events occur on a wide scale 

in the west of Greenland. By mapping seasonal development they showed that lakes 

covered a total area of 75 ± 5 km
2 

in early July 2001 but lost 36 ± 3.5 km
2 

throughout 

the following 25 days. By comparing the extents of lakes on different years, Sundal 

et al., (2009) found that lake area extents could be up to 50% lower in years with low 

runoff compared to a high runoff year and that this was the result of lakes forming at 

higher elevations. It has therefore been suggested that, as climate warms, lakes will 

form higher on the ice sheet surface. Furthermore, Luthje et al., (2006) postulate that 

lakes forming at higher elevations will be larger in size due to more shallow slopes 

favouring larger surface depressions. Therefore, melt-water inputs to the bed 

resulting from supraglacial lake drainage may increase in the future and the 
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associated increase in ice velocities has the potential to increase mass loss. The 

potential for this remains to be investigated.  

 

Figure 2.3: Supraglacial lakes on the surface of the Greenland Ice Sheet (Photo by Sarah Das of 

WHOI). 

 

2.3.2 Interannual velocity variations of inland and land-terminating ice 

 

Several studies have investigated the longer-term (interannual) relationship between 

ice velocities and surface melt rates, the findings of which have been equivocal. 

Zwally et al., (2002), looked at the relationship between ice velocities and surface 

melting using in situ GPS measurements from 1996 to 1999 and contemporaneous 

passive microwave data of melt extent and positive degree day (PDD) calculations at 

a location 35 km from the margin near the equilibrium line altitude (ELA) where the 

ice thickness is 1220 m. They discovered that there is a significant positive 

correlation between interannual surface melt volumes and glacier velocities. From 

this they suggest that with atmospheric warming and increasing amounts of surface 

melting, GrIS outlet glaciers and ice discharge would accelerate. Parizek and Alley 

(2004) conducted a modelling experiment linking surface melting with a sliding law 
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based on the finding of Zwally et al., (2002) in order to investigate its effect on ice 

sheet mass loss under different warming scenarios. They propose a positive feedback 

mechanism of ice loss. Increased sliding from enhanced surface melt leads to a 

reduction in the overall thickness of the ice sheet and therefore a greater penetration 

of melting inland as temperatures are warmer at lower elevation. They conclude that 

volume reductions from increased sliding will be substantial, ranging between 2.6-

9.9% by 3000 AD under different CO2 scenarios.  

Price et al., (2008) refute the findings of Zwally et al., (2002) and suggest that 

seasonal velocity variations observed by Zwally et al., (2002) near the ELA can be 

explained by longitudinal coupling with perturbations in ice flow towards the margin 

and that these conditions are normal and therefore may have limited impact on the 

ice sheet in a warming climate. Similar occurrences have been observed at Alpine 

glaciers where small velocity differences in the upper accumulation zone where there 

is no melt water input from the ice surface, is the result of longitudinal coupling with 

velocity changes downstream (Mair et al., 2002; Bingham et al., 2003). However, 

the findings of Shepherd et al., (2009) and Bartholomew et al., (2010) oppose the 

suggestion of Price et al., (2008) suggesting that longitudinal coupling only occurs 

locally on the GrIS (<10km -Bartholomew et al., 2010).  

Furthermore, in opposition to the suggestion of Zwally et al., (2002) that ice 

velocities will increase with increasing temperatures, van de Wal et al., (2008) report 

that there is no correlation, and Sundal et al., (2011) report that there is a negative 

correlation between years of increased surface melting and mean summer velocity. 

Both suggest that this occurs as the subglacial drainage system adapts to changes in 

meltwater inputs. Van de Wal et al., (2008) suggest that long term changes in ice 

velocity are responding to changes in ice thickness and surface slope. However, 

Sundal et al., (2011) report that although the maximum annual recorded velocities 

correlate with surface melt rates interannually, the duration of rapid velocities is 

three times shorter in warmer summers than colder ones. They suggest that in years 

of high seasonal melt the subglacial hydraulic system adjusts rapidly so that the 

average seasonal velocity of the glacier is no higher than a lower melt year. 
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Consequently, both propose that the long-term impact of a warming climate on melt 

induced velocity variations will not lead to increased flow rates.  

A recent modelling study by Schoof (2010) suggests that it is the variability in 

meltwater input as opposed to the total water volume which may drive ice sheet 

acceleration. He suggests that an increased rate of steady water supply has a limited 

potential to increase seasonal velocities because the seasonal evolution of the 

subglacial drainage system enables greater volumes of water to be accommodated 

and this suppresses water pressures and acceleration. Conversely, if water is released 

in brief pulses to the bed as a result of, for example a rainfall or lake drainage event, 

the capacity of the channelised system will be exceeded and water will be pushed 

into surrounding distributed systems, thus causing pressure and basal sliding 

increases. Therefore, it is important that models are able to capture the variability of 

meltwater inputs to the subglacial system.  

2.4 Summary 

 

Glacier discharge is an important component of GrIS mass loss. Recent observations 

have revealed rapid and substantial variability in discharge rates as a result of large 

changes in the flow dynamics of a number of outlet glaciers of the GrIS. These 

dynamic changes have been linked to climate forcing in 2 key ways; firstly, through 

ice-ocean interactions at the ice sheets marine margins and secondly through the 

transfer of surface meltwater to the glacier bed.  

It has been identified that the majority of the major dynamic changes occurring 

recently have been almost exclusively at marine-terminating glaciers. Accelerated 

velocities have been linked to perturbations at the front of tidewater glaciers and 

have been connected to both changes in ocean and atmospheric temperatures. 

Increases in ocean temperatures have been recorded off the coast and in the fjords of 

East and West Greenland during the late 1990’s and 2000’s. It is suggested that these 

temperature increases may have increased basal melting and therefore calving at 

glacier termini, and decreased the sea ice concentrations abutting glaciers and 

reducing its buttressing effects on ice flow. Frontal perturbations may also have 
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resulted from increased atmospheric temperatures and surface melting. It is proposed 

that this may have increased calving rates due to increased hydrofracturing in 

crevasses near the termini and also due to increased freshwater input to the head of 

fjords may have strengthened circulation in the fjords, bringing more warm water to 

the ice fronts. A number of glaciers which were observed to accelerate in the mid- 

2000’s were also found to restabilise a few years later in a synchronous manner 

which may be indicative of a climate forcing. It is apparent that the behaviour of 

tidewater glaciers is highly complex due to the interplay of a large number of 

potential forcing mechanisms and boundary conditions. Due to our limited 

understanding of the mechanisms controlling tidewater glacier behaviour it remains 

unclear whether the recently observed dynamic changes to tidewater glaciers are 

short-term or part of a longer trend. Further observations and longer term trends are 

required in order to further our understanding. 

The transfer of surface meltwater to the bed of the ice sheet has been identified as a 

key control for short-term changes in ice velocities at land-terminating outlet glaciers 

and the inland ice of the ice sheet. Clear daily and seasonal patterns in ice velocities 

have been identified on the ice sheet and are linked to changes in basal water 

pressures and basal sliding governed by surface meltwater inputs and variability of 

the configuration of the subglacial drainage system in time and space. The drainage 

of supraglacial lakes has been identified as an important factor in transferring water 

to the bed of the ice sheet, especially higher on the ice sheet where the ice is thicker 

(>800 m). Studies have revealed their formation and drainage is widespread 

throughout the summer months and that in warmer years lakes form higher on the ice 

sheet. Thus it has been suggested that in future, warmer climates, lakes will form at 

higher and higher elevations and their drainage may lead to an increase in ice 

velocities. The observed interannual response of ice velocities to differences in rates 

of surface melting are less clear, as studies have suggested that increased surface 

melting has led to both increased and decreased summer surface velocities. This 

interannual response does however, appear to be regulated by the subglacial drainage 

system although at present no direct observations exist. 
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Although the recent major dynamic changes to the GrIS appear to have been 

governed by factors perturbing the front of tidewater glacier, the relative importance 

of this variability in comparison to that of surface melt induced dynamic changes and 

mass loss from surface ablation, will decrease in the future if the ice sheet continues 

to retreat. This is because much of the GrIS rests on bedrock topography that is 

above sea-level (Bamber et al., 2001b) and so continued retreat will result in an ice 

sheet predominantly grounded above sea-level and therefore insensitive to oceanic 

forcings. The transition from ocean- to land based-margins will thereby render the 

component of mass loss from ice discharge to the oceans irrelevant and mass loss 

from surface ablation more prevalent. Surface velocities will be governed by surface 

melt induced basal sliding and although no longer important in terms of discharge, 

the ice dynamics of Greenland’s glaciers will be important as a means of transporting 

mass to lower elevations where temperatures are warmer and ablation greater 

(Parizek and Alley, 2004). Therefore to forecast the response of the ice sheet to 

climate changes and the potential contribution to sea level changes over the coming 

centuries to millennia we must be able to model dynamic losses from tidewater 

glaciers in the short-term, predict the nature and timing of the transition of the ocean 

margins to land-based margins and forecast the influence of rising temperatures on 

surface melt induced basal sliding on ice sheet velocities and surface ablation rates. 

2.5 Thesis objectives 

 

This chapter has identified many gaps in the current state of understanding of the 

present and future dynamics of the GrIS; to address all of these gaps is beyond the 

scope of one PhD. The key objectives of this thesis are as follows: 

1. To establish the different factors forcing seasonal velocity variations at land 

and marine-terminating glaciers in the northeast of Greenland.  

2. To investigate the distribution and factors controlling supraglacial lake 

formation and drainage, and to explore methods for predicting the spread and 

behaviour of lakes in a warming climate. Specifically the objectives are: 
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i) To assess the ability of using a high resolution Digital Elevation 

Model (DEM) to identify and therefore predict the location of 

supraglacial lakes in the northeast of Greenland. 

ii)  To investigate current spatial and temporal trends in the formation 

and drainage of lakes in the west of Greenland to predict the future 

potential for lake drainage events at elevations beyond which they 

currently form. 
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Chapter 3: Review of methods 

 

To fulfil the objectives outlined in Chapter 2, this thesis utilises remotely sensed data 

for retrieving ice velocities, building ice surface DEMs and mapping supraglacial 

lakes. This chapter provides both a review and an assessment of effectiveness of the 

methods previously applied in glaciology to acquire these datasets. More specific 

details of the methods applied within this thesis are found in Chapters 4, 5 and 6. 

 

3.1 Ice velocity retrieval methods 

 

In situ measurements of glacier motion began over 200 years ago with observations 

of terminus positions and the gradual deformation of a straight line of painted rocks 

placed on the ice surface (e.g. Forbes, 1859; Meier, 1960). Developments in such 

early practices have led to current methods of field-based ice velocity measurements 

where GPS point surveys are capable of delivering very precise results (mm scale 

accuracy) with  repeat measurements every few seconds (e.g. van de Wal et al., 

2008; Shepherd et al., 2009). However, in situ methods are both spatially and 

temporally constrained: they are labour intensive, time consuming and, because 

many glaciated areas are often inherently inaccessible, they can be physically 

unattainable. Such restrictions to velocity monitoring can nevertheless be overcome 

through the use of remote sensing data. Following the initial outlay of producing and 

launching a sensor, data can be acquired regularly and over vast areas at relatively 

little cost, thus making remote sensing an ideal medium for studying ice velocity 

changes over large ice masses such as the GrIS. Several methods of deriving ice 

velocities have been developed using remote sensing imagery, including 

interferometry and offset tracking with optical and SAR data. These techniques will 

now be discussed in more detail.  
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3.1.1 Interferometric SAR (InSAR)  

 

InSAR combines two complex SAR images of the same region acquired from 

positions separate in both space and time. Differencing the phase signal allows the 

difference in the range from each antenna to a point on the ground to be inferred 

(Figure 3.1). The signal acquired contains components of topography and of surface 

displacement. Therefore, to acquire surface velocity estimates, the signal due to 

topography must be removed (Figure 3.2). This can be achieved either by subtracting 

a simulated topographic phase signal from an external DEM (e.g. Mohr et al., 1998; 

Alsdorf and Smith, 1999) or through the differential use of two interferograms (e.g. 

Kwok and Fahnestock, 1996). A more detailed description of InSAR is given in 

Section 3.2.3.  

The first application of interferometry in glaciology was that of Goldstein et al., 

(1993) who investigated the ice flow velocity and grounding line position of the 

Rutford Ice Stream, West Antarctica. Since then, InSAR has become an invaluable 

tool for glaciologists, providing a means of measuring surface displacements at 

centimetre scale accuracy over vast regions. In Greenland, InSAR has provided many 

key glaciological insights including mapping of ice velocity fields (e.g. Rignot et al., 

1995; Joughin et al., 1999; Fahnestock et al., 2001), velocity variability (e.g. Joughin 

et al., 1996a; Mohr et al., 1998; Joughin et al., 2004; Rignot and Kanagaratnam, 

2006; Palmer et al., 2011), mass balance (e.g. Rignot et al., 1996; Joughin et al., 

1997; Rignot et al., 2001) and grounding line positions (e.g. Rignot, 1996; Rignot et 

al., 1997).  
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Figure 3.1: Schematic showing phase shift between backscattered signals received at 2 locations 

caused by the radar path difference. Taken from Massom and Lubin (2006). 

 

Surface features are not required in order to derive velocity measurements from 

InSAR enabling the measurement of surface displacements in the featureless 

interiors of the ice sheets (e.g. Goldstein et al., 1993). However, in order to derive 

usable phase information in an interferogram, the phase signal in the two SAR 

images must remain sufficiently correlated (coherent). Coherence may be lost as a 

result of surface change, due, for example, to snowfall or melting, or rotation or 

displacement due to flow. Both factors, and therefore loss of coherence 

(decorrelation), increase with time between image acquisitions. As a result, InSAR 

has only successfully been applied in Greenland using images separated by 3 days or 

less. Most SAR missions have a repeat period of greater than 24 days which is a 

major limitation of the application of InSAR to glaciology. The only data found to be 

suitable for glaciological applications of interferometry in Greenland was acquired 

between 1995 and 1997 when the ERS-1 and ERS-2 satellites were flown on the 

tandem (1-day separation) and ice (3-day separation) missions. Furthermore, the use 

of this data for time series analysis of velocity changes (seasonally and annually) is 

limited, as the one- or three-day averaged ice velocity measurements are separated by 

the 35 day repeat period of the satellite. At present there are no plans for any future 
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missions which will provide data suitable for ice applications of InSAR. InSAR is 

also subject to a number of further limitations that restrict it’s applicability in 

glaciology, these include insensitivity to displacement in the azimuth direction and 

problems in converting the relative phase measurements to absolute height or 

displacement estimates. A more comprehensive review of InSAR errors is provided 

by Massonnet and Feigl (1998) and Massom and Lubin (2006).  
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Figure 3.2: Two temporally separate SAR images of the same scene are differenced to produce 

an interferogram. Using differential InSAR the signals of phase due to motion and to 

topography can be isolated to produce individual interferograms. (Images courtesy of Professor 

Andrew Shepherd) 

SAR Image 1 SAR Image 2 

Interferogram 

Topographic Phase Motion Phase 
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3.1.2 Feature tracking with optical images 

 

Calculations of ice motion using feature tracking are derived by mapping the 

displacement of features, such as moraines and crevasses, on the glacier surface 

between 2 images which are separated by a known amount of time (Figure 3.3). 

Early applications of feature tracking determined ice motion by co-registering image 

pairs using common fixed points such as mountain peaks and tracking persistent 

features using manual picking (Lucchitta and Ferguson, 1986). However, this 

technique could not be applied to the ice sheet interior where features suitable for 

manual co-registration are not available. Development of an automated cross-

correlation algorithm by Bindschadler and Scambos (1991) which identifies surface 

displacements by matching image brightness values, led to an improvement in the 

accuracy (± 2.3 m/yr compared to ± 20 m/yr) and breadth of applicability of the 

feature tracking technique. The area over which velocity measurements were derived 

was expanded as the algorithm allowed diffuse or subtle features, such as broad 

dunes and crevasse scars, to be tracked successfully.    
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Figure 3.3: DISP images from June 23
rd

 and September 24
th

 1966, showing two features on the 

surface of Kangerdlugssuaq Glacier, East Greenland used in feature tracking. Taken from 

Csatho et al., (1999). 

 

This technique has been applied to acquire the ice velocities of a number of outlet 

glaciers in Greenland, using a range of image types (e.g. Carbonell and Bauer, 1968; 

Dwyer, 1995; Csatho et al., 2002;  Joughin et al., 2004; Stearns et al., 2005; Howat 

et al., 2007). The use of declassified intelligence satellite photographs has allowed 

ice velocity estimates to be made dating back to the 1960’s (e.g. Csatho et al., 1999). 

However, ice velocity measurements from visible imagery are ultimately restricted 

by the constraints of the sensors. The archive of suitable visible images is limited by 

cloud conditions and the availability of visible light (i.e. estimates can’t be acquired 
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throughout the winter in the Arctic and Antarctic). These problems can be overcome 

with SAR images as the wavelengths employed are able to penetrate cloud cover 

and, because they emit their own energy source, they are able to image in the 

darkness of the polar winter (Lillesand and Keifer, 1999).   

 

3.1.3 Offset tracking with SAR images 

 

Offset tracking using SAR imagery can be achieved using both the coherent and 

incoherent attributes of the SAR image signal (Strozzi et al., 2002). Coherent offset 

tracking tracks surface displacements by taking a series of small data patches 

throughout the SAR images, forming small interferograms with changing image 

offsets and estimating the image coherence of these interferograms (e.g. Derauw, 

1999; Pattyn and Derauw, 2002). The surface displacement estimate is taken as the 

offset with the maximum interferometric coherence subject to surpassing a minimum 

threshold of coherence so as to ensure reliable matches (e.g. Derauw, 1999; Pattyn 

and Derauw, 2002). The author is not aware of any current applications of this 

method in Greenland although this technique has been applied in Antarctica (Figure 

3.4) (e.g. Derauw, 1999; Pattyn and Derauw, 2002; Young and Hyland, 2002) and 

Svalbard (Strozzi et al., 2002). Aside from its use to provide surface displacement 

measurements for velocity field estimates (Young and Hyland, 2002), coherence 

tracking has been used in tandem with InSAR to improve local registration and 

therefore interferogram coherence by forming a ‘tracked interferogram’ (Derauw, 

1999), to provide estimates of surface displacements in the azimuth direction (Strozzi 

et al.,2002) and to provide absolute velocity measurements for linking image areas 

that are separated by incoherence (Derauw, 1999; Derauw et al., 2002). A key 

advantage of this technique is that, unlike interferometry, it produces displacement 

estimates in range and azimuth. However, the technique relies upon coherence 

between images and is therefore subject to similar limitations with image 

decorrelation as InSAR. Furthermore, the resolution of this technique is substantially 

lower than that generated by InSAR (Pattyn and Derauw (2002) obtain a resolution 

of approximately 25 m on the Shirase Glacier in Antarctica).  
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Figure 3.4: ERS-1 scene (left) and surface displacements measured with coherence tracking 

(right) of the Shirase Glacier, Antarctica. Taken from Derauw (1999). 

   

Intensity tracking is similar to optical image feature tracking although it tracks the 

speckle pattern in the images as well as the displacement of surface features (e.g. 

Lucchitta et al., 1995; Rosanova et al., 1998; Rabus and Lang, 2003; Luckman et al., 

2003; Luckman and Murray, 2003; Luckman et al., 2006; Luckman et al., 2007).  

Again, the main disadvantage of this method with respect to InSAR is that it 

produces velocity measurements at a much lower resolution (between 100m and 2 

km according to Pritchard et al., 2005). However, it is a more robust method of 

mapping surface displacement than coherence tracking and InSAR, as tracking of 

surface features are not subject to the same problems of image decorrelation. 

Consequently, this method can be applied to images with larger acquisition intervals 

(e.g. up to several years in the Himalayas as recorded by Luckman et al. 2007) and 

35 days in Greenland (e.g. Luckman et al., 2003; Pritchard et al., 2005) and can 

therefore be applied to a greater portion of the SAR image archive. By comparison to 

feature tracking, intensity tracking has the potential to provide a greater spatial 
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coverage as the displacement of speckle may be tracked into the featureless ice sheet 

interior as long as some coherence between the images is maintained (Joughin et al., 

2010b).  SAR intensity tracking has been extensively applied in Greenland to acquire 

seasonal and multi-annual ice velocity measurements at glacier to ice sheet scales 

using ERS-1 and -2, Radarsat and Envisat images (e.g. Joughin et al., 2004, 2008c, 

2010a; Luckman and Murray; 2005; Howat et al., 2005, 2007, 2008; Rignot and 

Kanagaratnam, 2006; Sundal et al., 2011) with accuracies of ~ ± 20 m/yr (Pritchard 

et al., 2005). Due to the capability of SAR to image through the polar night and 

cloud cover, and the greater data availability and robustness of SAR intensity 

tracking over InSAR, SAR intensity tracking is used to derive the velocity data set in 

Chapter 4.  

 

3.2 Digital elevation models 

 

To map ice surface depressions in Chapters 5 and 6, surface elevation measurements 

used to generate continuous high resolution surface models of regions several 

thousands of km
2
, were required. Furthermore, in Chapter 6, high resolution surface 

topography profiles, covering distances of hundreds of kilometres, were needed to 

map the distribution of ice surface depressions. A range of ground, airborne and 

spaceborne methods are available for mapping surface topography. 

 

3.2.1 Ground based DEM acquisition  

 

Ground based methods, including terrestrial laser scanning, triangulation, optical 

levelling and terrestrial photogrammetry (Figure 3.5), are capable of producing 

surface topography measurements at resolutions of a few centimetres to millimetres 

(e.g. Eiken et al., 1997; Koning and Smith, 1999; Paar et al., 2001; Kääb and Weber, 

2004; Pitkänen and Kajutti, 2004). These methods are commonly used for precise 

measurements of surface topography over small regions (e.g. Eiken et al., 1997; 
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Koning and Smith, 1999; Paar et al., 2001; Kääb and Weber, 2004; Pitkänen and 

Kajutti, 2004). Therefore, ice surface topography measurements from terrestrial 

methods are impractical at the scale required for this work.  

 

Figure 3.5: DEM of Engabreen, Norway, built using digital photogrammetry from terrestrial 

photography taken with a digital camera.  The point density of the DEM is ~20 cm. Taken from 

Pitkänen and Kajutti, (2004). 

 

3.2.2 Airborne DEM acquisition  

 

Airborne methods for acquiring surface elevation data of ice sheets include 

photogrammetry, InSAR and laser altimetry. Photogrammetry can be used to derive 

surface topography through triangulation between corresponding points in two 

overlapping images (taken in different places) and the imaging cameras (for further 

details see Kääb, 2005). One advantage of photogrammetry is that it can be used on 

image archives, which can date back to as early as the 1930s, in order to acquire 

retrospective surface height measurements (Barrand et al., 2009). In some cases, 

height measurements with vertical accuracies of up to a few metres can be achieved 

(Kääb, 2005). However, the application and accuracy of photogrammetry is often 

limited by insufficient or poor quality ground-control points (Barrand et al., 2009) 

that are needed to relate the images to a ground coordinate system (see Kääb, 2005). 

Furthermore, photogrammetry is severely limited over snow covered areas by the 

lack of features that are identifiable in both images.  



Chapter 3: Review of methods 

 
 

39 

Height measurements from airborne InSAR are derived using similar principals to 

satellite InSAR, which is dealt with in Section 3.2.3 (for further details see Kääb, 

2005). Airborne InSAR DEMs have resolutions of metres or less and their vertical 

accuracy is on the order of tens of centimetres to metres (e.g. Madson et al., 1995; 

Hoffman et al., 1999; Wimmer et al., 2000). However, few airborne SAR campaigns 

focusing on ice and snow have been flown to date (e.g. Vachon et al., 1999; 

Bindschadler et al., 1999; Stebler et al., 2004).  

Laser altimetry is a ranging technique which uses Light Detection And Ranging 

(LiDAR). Surface heights are measured by estimating the distance between the 

sensor and the terrain surface. This is done by measuring the travel time of a laser 

pulse which is sent from an aircraft sensor (of known height and coordinates), 

reflected at the surface and received again at the aircraft sensor: 

                                                  v

H
Tt

2


                                                                (3.1)
 

Where Tt is the travel time of the pulse, H is the range between the sensor and the 

surface and v is the travel speed of the pulse (Rees, 2001).  

In Greenland, extensive laser altimetry surveys have been flown by NASA using the 

Airborne Topographic Mapper (ATM) -1 and -2 systems (Figure 3.6) (e.g. Krabill et 

al., 1995, 2000; Abdalati et al., 2002; Thomas et al., 2008, 2009). The ATM systems 

combine high pulse rate laser ranging (up to 5000 Hz) with conical scanning 

capability (Krabill et al., 1995). The scanning capability of the sensor has the 

advantage of providing a swath of measurements which helps to deliver the principal 

aim of the mission: to measure ice sheet surface elevation change. The swath width 

of the scanner is nominally 140 to 250 m and, depending on the aircraft altitude 

(400-800 m) and the mirror angle, the laser spot has a diameter of the order of 1 m 

and spots are separated on the ground by approximately 4–7 m (Abdalati et al., 

2002). The precision of surface elevation measurements made with the ATM systems 

have been derived to a root mean square error (RMSE) of better than 10 cm (Krabill 

et al., 1995). Along with high precision surface elevation estimates, one of the key 

advantages of using airborne laser surveys for ice surface topography measurements 
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is that observations can be made in rough and sloping regions of the ice sheet, for 

example, along outlet glaciers. In such regions, the accuracy of satellite radar 

altimeters is severely degraded (Section 3.2.3). A limitation of ATM measurements, 

seen in Figure 3.6, is that there are large gaps in the spatial sampling of the data. 

However, due to the high vertical- and along-track precision, data from the NASA 

ATM is used, in Chapter 6, to map the inland extent of surface depressions along a 

profile in the Kangerlussuaq region of West Greenland. .   
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Figure 3.6: NASA ATM flight lines in Greenland from 1993-2010. The different colours 

represent different years. The data is displayed using Google Earth and downloaded from the 

NASA ATM trajectory maps website (http://atm.wff.nasa.gov/page/102e5c.html). 

 

3.2.3 Spaceborne DEM acquisition  

 

A key advantage of satellite derived elevation measurements over ground-based and 

airborne derived measurements is that they can be collected repeatedly over large 

areas (i.e. at the scale of ice sheets) relatively easily. The following techniques have 
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been used to measure surface elevation from space: satellite stereo imagery, radar 

and laser altimetry, and InSAR.  

Satellite stereo imagery works on similar principles as ground-based and airborne 

photogrammetry (Sections 3.2.1 and 3.2.3). Satellite stereo images may be obtained 

from repeat imaging of the terrain from different viewing angles at different times, 

i.e. on different satellite tracks (cross-track stereo), or at the same time, i.e. during 

the same satellite pass of sensors with nadir-, forward- and or aft- looking 

capabilities (along-track stereo). Cross-track stereo imagery has been conducted 

using, in particular, multi-temporal SPOT (Systeme probatoire pour l’observation de 

la terre) 1-4 data (e.g. Al-Rousan and Petrie, 1998; Toutin and Cheng, 2002). SPOT 

images have ground resolutions of between 10 and 20 m and the DEMs produced by 

these images have reported accuracies of between 5 and 20 m RMSE depending on 

the base-to-height ratio (Welch, 1990; Al-Rousan and Petrie, 1998). However, cross-

track stereo image coverage is limited by surface changes (e.g. snowfall or 

snowmelt) between image acquisition dates, thereby reducing image correlation. This 

problem may be partially overcome with along-track stereo images. Such images 

have been provided by the SPOT-5, JERS-1 (Japanese Earth Resources Satellite-1) 

OPS (optical sensor) and the ASTER (Advanced Spaceborne Thermal Emission and 

Reflection) sensor onboard the NASA Terra satellite (Toutin and Cheng, 2002). In 

particular, ASTER, with nadir- and aft-looking arrays and ~15m ground resolution, 

has been used to generate DEMs of glaciated regions (e.g. Kääb et al., 2002; Stearns 

and Hamilton, 2007).  However, as for photogrammetry, on snow surfaces optical 

satellite stereo imagery suffers from the same lack of identifiable features and is also 

prone to sensor saturation. Kääb et al., (2002) compared the accuracy of DEMs 

created using ASTER stereo imagery and aerial photogrammetry and found that the 

vertical accuracy of the ASTER DEM was low (~ ± 60 m RMS and a maximum of 

500 m) in complex high mountain topography (although higher (~ ± 15 m RMS) in 

smoother terrain). The low accuracy of the DEMs in mountainous regions and 

restrictions of using optical images (i.e. ASTER and SPOT) in cloudy conditions, 

limits the utility of this technique in glaciated regions.  
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Satellite radar and laser altimetry applies similar principles to that of airborne 

altimetry, as outlined in Section 3.2.2.  Surface heights are measured by taking the 

altitude of the satellite orbit and subtracting the range between the satellite and the 

reflecting surface, as recorded by the radar or laser pulse. Satellite radar altimetry, 

using the Seasat, Geosat, ERS-1 and -2, and Envisat RA-2 instruments, has enabled 

the construction of kilometre scale resolution DEMs (e.g. Bamber et al., 2001a) and 

the mapping of ice sheet surface elevation changes (e.g. Zwally et al., 1989; 

Wingham, 1995; Davis et al., 1998; 2000;  Johannessen et al., 2005). However, the 

resolution of satellite radar altimeter measurements is relatively low. ERS-1 and 

Envisat make observations every 330 m in the along-track direction and the diameter 

of the radar footprint ranges from 1.2 to 16 km in diameter (depending on surface 

roughness and slope). The separation between satellite tracks varies depending on the 

satellite orbital characteristics and latitude; for example, the across track sampling of 

ERS is ~15 km at 70˚ (Massom and Lubin, 2006). The vertical accuracy of radar 

altimeters can be on the order of centimetres (e.g. Brenner et al., 2007). However, 

the accuracy and precision of the elevation estimates degrades over regions of higher 

and more variable terrain, rough surfaces and steep or abrupt slopes. This is due to 

the large footprint of the radar and because the measurement is the range to the 

closest point within the footprint, the location of which, within the footprint, is not 

known (Massom and Lubin, 2006; Brenner et al., 2007). For ERS and Envisat, 

accurate elevation measurements on slopes with gradients exceeding 0.5º become 

difficult (Massom and Lubin, 2006). On slopes exceeding 1˚, van de Wal and 

Ekholm (1996) estimated vertical accuracies of satellite radar altimeter 

measurements of 75-100 m. This technique can not, therefore, be applied in the steep 

coastal areas of Greenland; in fact, it has been estimated that ~23% of the surface of 

the Greenland Ice Sheet exceeds 1˚ (Phalippou and Wingham, 1999). Additional 

error is introduced into elevation measurements of satellite radar altimeters through 

surface penetration of the radar pulse and ionospheric path delays (for further detail 

see Massom and Lubin, 2006; Brenner et al., 2007). 

The first spaceborne, earth-observing laser altimeter - the Geoscience Laser 

Altimeter System (GLAS) onboard NASA’s ICESat (Ice, Cloud and land Elevation 

Satellite) - was launched in January 2003. The ICESat laser has a surface footprint of 
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70 m and an along-track measurement spacing of ~172 m; both substantially smaller 

than those achieved with radar altimeters. This has led to lower slope induced errors. 

In low slope areas, ICESat GLAS elevation measurements have a vertical accuracy 

of ~30 cm and, on slopes of 1-2˚, they have an accuracy of ~80 cm (Massom and 

Lubin, 2006). Thomas et al., (2004) identified that the main sources of error in 

ICESat elevation measurements are due to forward scattering in thin clouds and 

errors in the knowledge of laser pointing which have been caused by technical 

difficulties with the instruments. The major disadvantages of ICESat laser altimetry 

are its inability to penetrate significant cloud cover (Massom and Lubin, 2006) and 

the across track spacing (~54 km at a latitude of 50˚) which results in sizeable gaps 

in data coverage. Nevertheless, ICESat data has produced some valuable results in 

glaciology. These include the production of a 500 m resolution DEM of Antarctica 

(Di Marzio et al., 2007a) and a 1 km resolution DEM of Greenland (Di Marzio et al., 

2007b), the measurements of ice sheet surface elevation change (e.g. Pritchard et al., 

2009) and by providing valuable control points for constraining and validating other 

DEMs (e.g. Baek et al., 2005; Atwood et al., 2007; Yamanokuchi et al., 2007). In 

Chapters 5 and 6, ICESat GLAS data is used to constrain InSAR DEMs in the 

northeast and west of Greenland.  

InSAR has been used to derive high resolution and precise ice surface topography 

measurements (e.g. Kwok and Fahnestock, 1996 and Joughin et al., 1996b). As 

stated, in Section 3.1.1, InSAR combines two complex SAR images of the same 

region. The complex SAR image contains both the phase and amplitude of the 

returned pulse (Mather, 2004). The amplitude of the signal is a measure of the 

reflectivity of the surface which varies with terrain (Massonnet and Feigl, 1998). The 

phase signal is recorded as a shift between 0 π and 2 π radians of the electromagnetic 

wave transmitted by the radar relative to a reference wave (Figure 3.7). The phase 

signal is directly related to the range from the sensor to the surface, although because 

it is wrapped between 0 and 2π, it appears random from pixel-to-pixel, hence little 

meaning can be derived from the phase record of an independent image. However, 

when the phase signals of two images of the same scene are sufficiently coherent, 

their phase can be differenced. In such instances, differencing of the phase images 

derives phase signals which, over an image, or interferogram, are meaningful 
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because they result from differences in range from the satellite to the surface between 

the two image acquisitions.  

 

Figure 3.7: The microwave radiation of a SAR can be described by its wavelength, phase and 

amplitude. The amplitude of the SAR signal corresponds to the image brightness. The phase 

describes the shift of a wave relative to another, in degrees or radians between 0 and 360˚ or 2π 

respectively.  The phase is directly related to the distance range between the sensor and the 

surface.  Taken from Massom and Lubin (2006). 

 

The phase signal of an interferogram contains components of topography and surface 

displacement. This can be expressed very simply in the equation (3.2); 

              φ unwrap = φ topography + φ displacement                                                     (3.2)  

where φ is phase. Joughin et al., (1998) provide expressions for the φ topography and φ 

displacement components of this equation in terms of sensor wavelength and the 

geometry of the interferometric SAR (Figure 3.8). They state that the phase due to 

topography can be solved for using the equation (3.3); 

    φ topography  ≈ –2k (Bn sin θd  + Bp cos θd  – B
2
/2r0)                         (3.3) 

where 2k is related to the sensor wavelength, r0 is the distance between the 1
st
 sensor 

and the ground focus, θ is an angle relating to the look angle of the sensor and 
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alignment of the two sensors, and Bn, Bp and B are related to the spatial separation of 

the imaging sensors (the baseline). Expression (3.3) demonstrates how the phase 

signal due to topography is dependant upon the baseline length: if the baseline terms 

were to be substituted with 0 (i.e. theoretically there is no spatial separation of the 

sensors) the phase due to topography would also be 0. The optimum baseline length 

for deriving DEMs is between 150 and 300 m; if the baseline length becomes too 

long (>450 m) phase coherence is lost (Ferretti et al., 2007). 

 

Figure 3.8: InSAR geometry. Taken from Joughin et al., (1996b). 

 

The expression for phase due to displacement is given by Joughin et al., (1998) as; 

                      φ displacement = 2kδT (vx sin ψ – vz cos ψ)                                      (3.4) 

where vx and vz are velocity measurements, ψ is the local incidence angle and δT is 

the temporal separation of the images. This equation (3.4) demonstrates the 

dependence of φ displacement on δT: if the images used to derive an interferogram were 

acquired at the same time (i.e. δT =0) there would be no phase signal due to 

displacement. Equations 3.3 and 3.4 also show the independence of φ topography and φ 

displacement from temporal and spatial separation respectively. 
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As topography is dependent upon baseline length and independent of the temporal 

separation between images, it is most effectively derived using ‘single-pass 

interferometry’. Single pass interferometry is achieved using images derived from 

two antennas carried on a single platform and separated by a precisely known 

distance (Rosen et al., 2000). The platform’s two antennas receive the phase signal at 

the same time, and thus in single pass interferometry there is no displacement 

component in the phase signal (see equation 3.4).  However, limited data exists for 

single-pass interferometry and so repeat-pass interferometry, which utilises images 

taken from the same flight path but on successive orbits, is often used (Massom and 

Lubin, 2006). Repeat-pass interferometry rarely achieves repetition of an exact path 

(Rosen et al., 2000) and so the resultant images are separated both spatially and 

temporally. Consequently, the phase signal has both topographic and displacement 

components. Therefore, in order to derive data for topography of a given scene using 

repeat pass interferometry, the two phase signals must be separated. This is achieved 

by using ‘differential interferometric SAR’ (DInSAR) (Kwok and Fahnestock, 1996). 

Differential interferometry requires two interferograms derived from three or four 

images of a given area, or one interferogram and an external DEM (digital elevation 

model). If a difference in the temporal baseline of the two interferograms exists, the 

phase signals are scaled in order to account for this. In doing so, the assumption of 

constant motion is made, meaning that the phase due to motion is equal in both 

interferograms (Kwok and Fahnestock, 1996). Therefore, by subtracting one 

interferogram from the other, the phase due to topography can be obtained (see 

Figure 3.2).  

For a DEM to be produced from a topography only interferogram, a number of 

further processing steps are required; these include flattening, filtering, phase 

unwrapping, refinement of the baseline and the calculation of topographic heights. 

The phase signal of a topography only interferogram contains an almost linear phase 

signal across the image. This is due to the curvature of the Earth’s surface and is 

removed by ‘flattening’ the interferogram. Next, the component of the phase signal 

due to noise can be reduced by applying a filter. Doing so reduces the complexity of 

phase unwrapping (see below) and provides more robust results. However, it can 
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lead to a loss of fringes (see below) which causes error in phase unwrapping 

(Wëgmuller et al., 2002).  

As mentioned previously, the phase of the SAR signal is recorded between 0 and 2π 

radians. Therefore, the topography only interferogram contains phase information in 

fringes, or cycles, of modulo 2π, i.e. if the phase variation exceeds 2π it wraps round 

again to 0. The fringes in the topography only interferogram can be likened to 

contour lines, as a phase shift of 2π represents a fixed height difference. This is 

termed the altitude of ambiguity (ha) and is inversely proportional to the 

perpendicular baseline (Bn): 

                                               
n

a
B

R
h

2

sin
                                                            (3.5) 

where λ is the radar wavelength, R is the range of the SAR to the surface and θ is the 

satellite look angle. Therefore, the greater the baseline (to a point, as stated above), 

the greater the sensitivity and accuracy of the altitude measurement.  

To recover the absolute phase differences and the actual elevation at each point, the 

integer number of phase cycles must be added to each other. This is known as phase 

unwrapping. Phase unwrapping is based on the assumption that the surface is smooth 

and that there should be an absence of jumps in the unwrapped phase. More 

precisely, neighbouring phase values are assumed to be within 1π radian of one 

another (hence why larger baselines and smaller altitudes of ambiguity produce more 

accurate results). Although this assumption is often valid, phase unwrapping must 

account for phase discontinuities which occur due to phase noise and undersampling 

(in particular in steep terrain such as at ice sheet margins) (see Massom and Lubin 

(2006) for further detail). If not accounted for, such inconsistencies will propagate 

error through scenes when unwrapping. A number of phase unwrapping methods 

aimed at reducing these errors have been developed (including the branch-cut region 

growing algorithm introduced by Goldstein et al., (1988) and the minimum cost flow 

networks algorithm developed by Costantini (1998)). The quality of phase 

unwrapping also relies heavily on the quality of the interferogram and of the human 

interaction (Massom and Lubin, 2006).   
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The unwrapped interferogram now contains relative heights in phase radians which 

must be converted to absolute heights. This requires precision estimates of the 

satellite orbit positions and the interferometric baselines. Although initial estimates 

are obtained from the satellite orbits, they are not accurate enough to convert 

interferometric phase to elevation. Instead, this is achieved by fitting topographic 

phase to a series of Ground Control Points (GCPs) height measurements using a least 

squares solution. GCPs should be spread across the image and there should be at 

least four; however, a greater number will reduce the error in the baseline estimate 

(Zebker et al., 1994). GCPs from external DEMs, in situ GPS and altimetry can be 

used (Massom and Lubin, 2006). Phase measurements are then converted to heights 

by, again, linking GCP height measurements to topographic phase. Finally, the DEM 

can be converted from SAR image geometry into orthorectified coordinates.  

Uncertainty in an InSAR DEM is related to the baseline length and error, image 

coherence, failure of/maintaining the constant velocity assumption, accuracy and 

number of the GCPs, penetration of the radar signal below the surface, ionospheric 

signal disturbance, and unwrapping errors (see Massom and Lubin, 2006, and Zebker 

et al., 1994, for more in depth discussions of uncertainty of InSAR DEMs). These 

sources of error will, in some cases, (e.g. low image coherence) lead to a loss of 

precision in the DEM (i.e. uncertainty in the pixel-to-pixel heights), while others 

(e.g. baseline errors, changes in velocity and unwrapping errors) will degrade the 

absolute accuracy of the heights (i.e. will introduce height offsets or ramps).  

To give examples, the magnitudes of inaccuracy and imprecision introduced by the 

various error sources to an InSAR DEM may be quantified as follows. An 

interferogram made from a pair of images with a baseline of 100 m will, according to 

equation 3.5, have an altitude of ambiguity of 93 m (i.e. one phase cycle represents 

93 m of height change). If the average coherence of the image is 0.95, the phase 

noise will limit the detection of phase differences to ~5º (from Zebker et al., 1994), 

which in this scenario represents a vertical precision of 1.3 m. A failure of the 

constant velocity assumption (i.e. a change in velocity) of 5 m/yr would introduce an 

apparent topographic signal of 17.5 m. Penetration depths of up to 35 m have been 

computed for C-Band radar in Greenland (Hoen and Zebker, 2000).        
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Joughin et al., (1996b) used InSAR to derive surface topography measurements of an 

area of the West Greenland Ice Sheet. They were able to produce maps of continuous 

topography with 80 m horizontal resolution, which is substantially higher than DEMs 

derived with techniques such as radar altimetry (c.f. ~500 m- Wingham, 1995) 

(Figure 3.9). The vertical precision achievable with InSAR DEMs has ranged 

between 2 m and 20 m (e.g. Joughin et al., 1996b; Forsberg et al., 2000; Rignot et 

al., 2001; Atwood et al,. 2007) and depends on the topography, baseline, coherence 

and GCPs. The high resolution and precision of topography measurements using 

InSAR, achieved continuously and over large regions, provide the DEMs required to 

fulfil the objectives of Chapters 5 and 6 of this thesis. 

 

Figure 3.9: Shaded surface elevation model of an area of the West GrIS. The strip with greater 

detail was derived from InSAR and the smoother surface data was derived from radar 

altimetry. Taken from Joughin et al., (1996b). 

 

3.3 Supraglacial lake analysis 

 

In Chapters 5 and 6, the distribution of supraglacial lakes is mapped in regions 

covering thousands of square kilometres.  Supraglacial lakes have previously been 

monitored using a combination of in-situ and remote sensing data. In-situ 

measurements have provided detailed data on lake dimensions and drainage events 
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from individual lakes (e.g. Boon and Sharp, 2003; Box and Ski, 2007; Das et al., 

2008). For example, using in-situ measurements from pressure transducers, GPS, 

seismometers and sonar surveys, in combination with remote sensing images, Das et 

al., (2008) were able to record the volume and rate of water released during a lake 

drainage event and provide important insights into the ice dynamic response. 

However, due to the intensive nature of in-situ studies, such measurements have been 

limited to a small number of lakes.  

During the melt season, thousands of lakes cover vast areas of the GrIS (Figure 

3.11). In order to monitor lakes at this scale, remote sensing data has been employed 

(e.g. Box and Ski, 2007, McMillan et al., 2007; Sundal et al., 2009). A range of 

remote sensing image types have been used to map lake areas (e.g. McMillan et al., 

2007; Sundal et al., 2009), depths and therefore volumes (e.g. Box and Ski, 2007; 

Sneed and Hamilton, 2007, Georgoiu et al., 2009), over areas of tens of thousands of 

km
2 

(e.g. Box and Ski, 20007; McMillan et al., 2007; Sundal et al., 2009) and on 

intra- and interannual timescales (e.g. Box and Ski, 2007; Sundal et al., 2009).    

To address objectives 2 and 3 in Chapters 5 and 6, lake area data from a large 

number of lakes in the northeast and west of the GrIS was required. Remote sensing 

methods were therefore employed. The remainder of this section will focus on, and 

discuss, the remote sensing data and methods that have previously been used to 

measure supraglacial lake areas.   

 

3.3.1 Data 

 

A range of image types have been used to measure the areas of supraglacial lakes, 

including data from the Marine Observation Satellite –1 (MOS-1; Echelmeyer et al., 

1991), Advanced Spaceborne Thermal Emission and Reflectance Radiometer 

(ASTER; McMillan et al., 2007; Sneed and Hamilton, 2007; Georgiou et al., 2009; 

Sundal et al., 2009), Landsat program (Luthje et al., 2006; McMillan et al., 2007) 

and Moderate Resolution Imaging Spectroradiometer (MODIS; Box and Ski, 2007; 
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Sundal et al., 2009). The attributes of the different image types present different 

advantages for analysing supraglacial lakes.  

The relatively high resolution of ASTER and Landsat images (15 m and 30 m 

respectively) in comparison to MODIS images (250 m) makes them advantageous 

for gaining more precise measurements of lake dimensions (Figure 3.10). The 

uncertainties associated with lake area measurements from ASTER and Landsat 

images are between 4% and 8% (McMillan et al., 2007; Sundal et al., 2009; 

Johansson et al. 2010) and are caused by the loss of precision at lake margins due to 

the pixel size. Consequently, the error associated with large, round lakes is 

proportionally less than for small lakes with tortuous perimeters (McMillan et al., 

2007). Sundal et al., (2009) quantified the level of uncertainty in lake area 

measurements from MODIS images by comparing the areas of lakes identified in 

both the MODIS and ASTER images acquired on the same day. They found that the 

lake area estimate from the MODIS image exceeded that from the ASTER image by 

1.6%.  

 

Figure 3.10: A lake identified in a 15 m resolution Landsat image (left) and the same lake 

identified in a 250 m resolution MODIS image (middle). The right hand image is zoomed into 

the lake in the white box in the left hand image and shows the difference between the lake area 

classified in the Landsat image (red) and the MODIS image (blue). Taken from Johansson et al., 

(2010). 

 

To capture the temporal dynamics of the rapid developments of supraglacial lakes 

(e.g. Box and Ski 2007; McMillan et al., 2007), high temporal resolution sampling is 

required. The repeat period of ASTER and Landsat images is 4-16 days, whereas the 

repeat period of MODIS images is just 1 day, making MODIS images preferable for 

monitoring temporal changes in supraglacial lakes. However, because the MODIS 

satellite is an optical imaging sensor, it is unable to derive surface measurements 
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when there is cloud cover. In Greenland, there is frequent cloud cover 

(Hatzianastassiou et al., 2001) and so the achievable temporal resolution of surface 

images with MODIS is lower than 1 day. Johansson et al., (2010) showed that, when 

available, SAR data from Radarsat, Envisat and ERS can be used to compliment 

optical images and improve the temporal coverage of lakes from optical images. 

However, the repeat period of these sensors is 24, 35 and 35 days respectively, and 

so the availability of these images is limited to a few days a month.   

 

3.3.2  Classification of lake areas 

 

The areas of lakes have been mapped using both manual digitisation (McMillan et 

al., 2007; Johansson et al., 2010) and automated classifications (Box and Ski, 2007; 

Sundal et al., 2009). Lakes can be readily identified in optical imagery (Figure 3.11) 

because water lowers the reflectance of the surface making lakes appear as dark, 

rounded shapes. The difference in reflectance values between lakes and the ice/snow 

surface also provides the basis for automated image classification. Box and Ski 

(2007) classified lakes in 170 MODIS images from the western margin of the GrIS 

using thresholds of reflectance values. The thresholds were determined 

experimentally from the satellite data and by using in-situ data of 2 lakes in the study 

region. They found that in band 1 (red wavelengths) there is good contrast in the 

reflectance values of lakes and snow. However, over bare ice with large amounts of 

impurities there is an overlap in the reflectance values with those of lake areas. In 

addition to using band 1, pixel values derived from a ratio of band 1 to band 3 (blue 

wavelengths) was used. The ratio clearly distinguished between lakes and ice 

surfaces as it was less sensitive to changes in ice colour. Lakes were therefore 

classified using a combination of thresholds of the reflectance values from band 1 

and from the ratio of band 3/band 1 (Box and Ski, 2007). Using the same band 1 and 

3/1 ratio combination, Sundal et al., (2009) presented an alternative classification 

system which used a fuzzy logic membership function, enabling pixels to be assigned 

according to the degree of membership to a given class rather than a crisp threshold 

value.    
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Figure 3.11: A MODIS image from West Greenland showing supraglacial lakes. 

 

There are relative advantages and disadvantages of mapping lakes manually and 

automatically. The main advantage of automated classification of lake areas is the 

provision of an efficient means of mapping lakes over large areas and long time 

periods. However, automated classification is subject to a number of limitations. As a 

result of the resolution of the images used in classification, a proportion of small 

lakes are often not identified. Using high resolution ASTER and Landsat images, 

only lakes larger than 0.01 km
2
 may be confidently classified (McMillan et al., 

2007). The percentage of lakes this excludes has been calculated to be between 1 and 

5% (McMillan et al. 2007; Johansson et al., 2010). In lower resolution MODIS 

imagery, only lakes larger than ~0.1 km
2
 are identified (Figure 3.12 - Sundal et al., 

2009). Using an ASTER image from the west of Greenland, Sundal et al., (2009) 
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estimated the total area of lakes smaller than 0.1 km
2
. They found that these lakes 

accounted for ~12% of the total area of lakes in an image acquired late in the melt 

season (August). At the beginning of the melt season, when lakes are developing and 

their sizes are relatively small, this percentage would be higher (Sundal et al., 2009; 

Johansson et al., 2010).  

 

Figure 3.12: The influence of lake size on lake identification.  The image on the left is 15 m 

resolution ASTER and the image on the right is 250 m resolution MODIS. The circled lakes are 

less than 0.1 km
2
 and not classified (red) in the MODIS image.  Taken from Sundal (2008). 

 

Lake ice forms on the surface of supraglacial lakes in Greenland (Figure 3.13) and 

since the reflectance values of lake ice are the same as the surrounding ice, these 

pixels are misclassified. Sundal et al., (2008) estimated that, on average, ~12% of the 

total lake area at the peak of the melt season is ice covered. This percentage will be 

greater early in the melt season and again towards the end, when lake surfaces begin 

to refreeze (Figure 3.13).  
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Figure 3.13: Landsat 7 scene from late summer (23/08/2000) from West Greenland. Arrows 

indicate some of the locations where the surfaces of supraglacial lakes have started to refreeze. 

Taken from Luthje et al., (2006). 

 

Manual digitisation has been shown to overcome the limitations of classification 

associated with lake ice and small lakes (e.g. Sundal et al., 2008; Johansson et al., 

2010). However, the process is time consuming when dealing with large datasets and 

subject to some uncertainty related to user subjectivity. Studies on manual 

digitisation have shown differences between interpreters of ±2.5 pixels from the 

mean for distinct boundaries and ±3 pixels for diffuse boundaries (Sannel et al., 

2010).  

In order to achieve objective 2 (an assessment of using high resolution DEMs to map 

potential supra-glacial lake locations) reported in Chapters 5 and 6, automated 

classification of lakes in both high spatial resolution Landsat images and high 

temporal resolution MODIS images enabled supraglacial lake area coverage to be 

mapped over thousands of square kilometres in the northeast and west of Greenland. 

In addition, to achieve objective 3 in Chapter 6, manual classification of lakes in 

MODIS images enabled the timing of lake formation and drainage to be accurately 

identified.   
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3.4 Summary 

 

This chapter has reviewed the current methods in glaciology for acquiring 

measurements of ice velocity, ice surface elevation and supraglacial lake extent. Due 

to the inaccessibility of the regions studied in this thesis, and the large spatial scales 

over which measurements are required, remote sensing techniques are employed as 

follows: 

 SAR intensity tracking is used in Chapter 4 to derive seasonal velocity 

measurements of glaciers in the northeast of Greenland. SAR sensors are 

able to image through cloud cover and throughout the polar night, and 

intensity tracking is relatively robust to surface changes, and therefore has 

the potential to provide continuous, year-round records of velocity.     

 InSAR is used to derive ice surface elevation measurements for mapping ice 

surface depressions, in Chapters 5 and 6, as it is capable of generating 

continuous, high resolution ice surface DEMs. The DEMs are constrained 

using ICESat GLAS data due to the high precision and accuracy of the 

elevation measurements, and the good spatial coverage of data points. 

Surface elevation measurements from ATM flight lines in the west of 

Greenland, where available, are also used in Chapter 6 to map the altitudinal 

extent of ice surface depressions; again, this data is used due to its high 

precision and accuracy. 

 Landsat and MODIS data are used to map the area of supraglacial lakes in 

the northeast and west of Greenland in Chapters 5 and 6, respectively. The 

relatively high spatial resolution of Landsat images provide accurate 

classifications of lake areas in a given image, whereas the high temporal 

resolution of the MODIS images provide more accurate estimates of 

evolving lake area over the course of a melt season. A combination of 

automated and manual classification techniques is employed. Automated 

classification is used to map lake areas over large regions for ease of 

computation while manual classification of the lakes is used to enable 
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precise estimates of the timing of both lake formation and lake drainage 

events of a smaller sample.  
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Chapter 4: Seasonal flow variability of outlet glaciers in 

Northeast Greenland  

 

 

This chapter describes seasonal velocity measurements of land- and marine-

terminating outlet glaciers in the Northeast of Greenland acquired using SAR 

intensity tracking. This chapter has been prepared for submission to the Journal of 

Glaciology: 

 

Briggs, K., Shepherd, A. and Nienow, P. (in prep.) Seasonal flow variability of outlet 

glaciers in the Northeast of Greenland. Journal of Glaciology 

 

The majority of the work for this chapter was carried out by myself. A Shepherd and 

P Nienow developed the original ideas for this chapter and provided comments on 

the manuscript.  

 

The chapter ends with a section on limitations of the work presented herein (section 

4.7) and additional information relevant to this chapter is included in an appendix 

(section 4.8). 
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4.1  Abstract 

 

We have determined seasonal velocity measurements at one land- and two marine- 

terminating glaciers of adjacent positions in a region of the Northeast of Greenland 

for which little glaciological knowledge exists. Flow rates were determined using 

Synthetic Aperture Radar (SAR) intensity tracking of 18 ERS-1 and -2 images 

acquired between March 1995 and March 1996. We calculated along glacier profiles 

of average winter and summer flow rates for the Wordie (land), Waltershausen 

(marine) and Adolf Hoel (marine) Gletschers respectively. We identify seasonal 

velocity trends at all three glaciers. Early summer accelerations of 26%, 34% and 

16% were recorded at Wordie, Waltershausen and Adolf Hoel Gletschers 

respectively, and these were followed by decelerations which occurred during the 

melt season. Accelerating flow began with the onset of surface melting and peak 

velocities, followed by progressive deceleration, which coincided with the drainage 

of supraglacial lakes at all three glaciers. We suggest that this indicates a 

hydrological control on basal sliding rates similar to that observed in other regions of 

the Greenland Ice Sheet and Arctic and Alpine areas. Large interannual variability in 

winter flow rates at Adolf Hoel Gletscher was observed, which exemplifies the 

complexity of tidewater glacier behaviour. It serves to highlight the limits to our 

current understanding of the mechanisms that control tidewater glacier dynamics on 

a seasonal and interannual basis and furthermore, it demonstrates that longer-term 

records of velocity are essential to isolate seasonal and secular trends in flow.   

 

4.2 Introduction  

 

The Greenland Ice Sheet is losing mass (e.g. Krabill et al., 2000; Luthcke et al., 

2006; Rignot and Kanagaratnam, 2006; Rignot et al., 2008; Zwally et al., 2011). 

Mass loss is occurring by two principal mechanisms, ice discharge into the oceans 

and surface melting; the rate at which mass loss is occurring via these mechanisms, is 

linked to ice flow rates (e.g. Parizek and Alley, 2004; Rignot and Kanagaratnam, 

2006; van den Broeke et al., 2009). Measurements of Greenland ice flow rates have 
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shown that they vary on hourly to seasonal and interannual timescales and that they 

respond rapidly to climate forcing (e.g. Rignot and Kanagaratnam, 2006; Joughin et 

al., 2008b; Rignot et al., 2008; Shepherd et al., 2009). This is significant for 

predictions of the future mass balance of the Greenland ice sheet as models do not 

currently account for the processes linking climate to ice velocity (Meehl et al., 

2007).   

 

Climate has been found to regulate Greenland ice velocities in two ways: through 

surface meltwater supply to the glacier bed (e.g. Das et al., 2008; Joughin et al., 

2008c; van de Val et al., 2008; Shepherd et al., 2009; Bartholomew et al., 2010) and 

through ice-ocean interactions at the ice sheet’s marine margins (e.g. Holland et al., 

2008; Rignot et al., 2010; Nick et al., 2010). Fluctuations in Greenland ice sheet flow 

have been linked to the drainage of surface lakes (e.g. Joughin et al., 1996a; Das et 

al., 2008) and changes in surface melting (e.g. Zwally et al., 2002; van de Wal et al.,  

2008; Shepherd et al., 2009). The influx of surface meltwater to the bed of a glacier 

acts to increase surface velocity by increasing water pressures in the basal drainage 

system (e.g. Iken et al., 1983; Iken and Bindschadler, 1986) which causes 

‘cavitation’ or ‘hydraulic jacking’ (Iken, 1981) and, in turn, enhances basal sliding; a 

mechanism well recognised at Alpine and polythermal Arctic glaciers (e.g. Iken et 

al., 1983; Iken and Bindschadler, 1986; Bingham et al., 2003). However, theoretical 

and field based studies suggest that on seasonal timescales, continued input of 

meltwater to the bed forces the drainage system to evolve to a more efficient state 

which lowers basal water pressures and causes ice flow deceleration (e.g. Kamb, 

1987; Hock and Hooke, 1993; Fountain and Walder, 1998; Nienow et al., 1998; Mair 

et al., 2002). Over interannual timescales the response of ice velocities to variable 

amounts of surface melting remains uncertain (e.g. Zwally et al., 2002; van de Wal et 

al., 2008; Schoof, 2010, Sundal et al., 2011) due to our limited understanding of this 

process.   

 

The dynamics of marine-terminating glaciers have been found to be sensitive to 

changes at their termini (e.g. Vieli et al., 2001; Holland et al., 2008; Nick et al., 

2009; Murray et al., 2010; Straneo et al., 2010). Changing ice velocities as a result of 
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ice-ocean interaction have been subject to focussed study in recent years as 

observations have revealed that almost all of the dynamic thinning of the ice sheet is 

currently occurring at marine-terminating glaciers and with high-levels of interannual 

variability (Sole et al., 2008; Pritchard et al., 2009). Glacier accelerations of marine-

terminating glaciers in Greenland have been linked to a number of possible causes 

including warming ocean temperatures (e.g. Holland et al., 2008; Straneo et al., 

2010), decreased sea ice concentrations (e.g. Joughin et al., 2008a; Amundson et al., 

2010) and increasing surface temperatures (e.g. Sohn et al., 1998; Rignot et al., 

2010) which, in turn, cause ice thinning, increased calving rates, ice front retreat and 

reduced backstress at the glacier terminus all resulting in higher rates of basal 

sliding. Furthermore, understanding the climate response signal of tidewater glaciers 

is complicated by characteristic cycles of advance and retreat which are regulated by 

factors external to the climate system, such as subglacial topography (Meier and 

Post, 1987). 

 

On seasonal timescales two key forcing mechanisms have been identified in driving 

velocities of tidewater glaciers; 1) those in multi-year retreat are observed to undergo 

summer velocity increases which correlate with the retreat of the terminus in 

summer, persists beyond the end of the melt season, and is thought to be driven by 

changes in backstress exerted by a floating ice tongue (e.g. Joughin et al., 2008a; 

Howat et al., 2010).  2) Seasonal velocity variations at glaciers with stable front 

positions have been observed to respond to hydrological forcings similar to those 

observed at land-terminating glaciers (e.g. Meier and Post, 1987; Meier et al., 1994; 

Vieli et al., 2004; Howat et al., 2010; Anderson et al., 2010). Investigations into 

seasonal velocity variations at tidewater glaciers in Greenland are, to date, limited, 

and more widespread research is required to broaden our understanding of the 

dynamic responses of the ice sheet to climate perturbations. 

 

Here we examine seasonal variations in the flow of marine- and land-terminating 

glaciers of the Greenland ice sheet. The glaciers we investigate are of neighbouring 

positions, allowing for an assessment of seasonal velocity patterns between the 

glaciers that is independent of differences in climatic conditions. Our study region is 
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located in the Northeast of Greenland (Figure 4.1), an area for which seasonal 

velocity measurements have not previously been reported. It is the aim of this 

investigation to assess the influence of glacier terminus conditions and associated 

forcing mechanisms on the seasonal velocity behaviour of Northeast Greenland 

outlet glaciers. Our investigation focuses on 3 glaciers, the land-terminating Wordie 

Gletscher and the marine-terminating Waltershausen and Adolf Hoel Gletschers 

(Figure 4.1). We generate velocity measurements during the course of a year using 

the technique of Synthetic Aperture Radar (SAR) intensity tracking (e.g. Luchitta et 

al., 1995; Strozzi et al., 2002; Luckman, et al., 2003), and we compare our findings 

to aspects of the glaciers' geometry, to air temperatures, to the evolution of 

supraglacial lakes, and to conditions in the fjords into which they terminate.  

 

 
Figure 4.1: Location of the study region in the Northeast of Greenland. The Wordie (Wo), 

Waltershausen (Wa), and Adolf Hoel (AH) Gletschers are labelled on a map of ice sheet speed 

determined using a mosaic of 4 35-day SAR image pairs. The location of the Daneborg 

Meteorological Station is also shown.  
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4.3 Data and methods 

 

We employed SAR intensity tracking (e.g. Luchitta et al., 1995; Strozzi et al., 2002; 

Luckman, et al., 2003) to obtain velocity estimates during the period March 1995 to 

March 1996. From a dataset of 18 ERS-1 and -2 SAR images we formed thirteen 35-

day image pairs and one 140-day pair. The data are not uniformly distributed across 

the whole year as images for the period from 18/09/1995 until 23/11/1995 were not 

available.  

 

Intensity tracking provides estimates of average ice velocity over the time period 

between which the pair of SAR images are acquired by tracking the displacement of 

surface features and/or image speckle from the first to the second image (Strozzi et 

al., 2002). The broad processing steps involved in intensity tracking include the 

initial processing of the raw SAR images to a single-look complex (SLC) image, the 

calculation of global image offsets that result from differences in the orbital 

configuration of the satellite, the calculation of local image offsets caused by surface 

displacement, and finally, the filtering of potentially erroneous offset estimates.  

 

Processing the raw data to SLC involved accounting for missing lines, concatenating 

the consecutive frames, improvement of the orbital state vectors, deriving the range 

and azimuth spectrums, azimuth auto-focusing, range and azimuth compression  

radiometric calibration and multi-looking (Wegmüller et al., 1998). Bilinear global 

offset polynomials were then calculated for SLC pairs by first manually estimating 

initial constant offsets in range and azimuth and then using these estimates to guide 

more precise estimates calculated using a patch intensity cross correlation 

(Bindschadler and Scambos, 1991). To acquire the best number of matches and 

achieve a strong cross correlation, we adjusted the search window size for each 

application. We found window sizes of either 64 x 256 (~1km
2
) or 128 x 512 (2km

2
) 

in the azimuth and range directions, respectively, resulted in the strongest 

correlations. The confidence level associated with each offset estimate was assessed 
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with a signal to noise ratio (SNR). The SNR estimates were then used to reject low 

confidence estimates and thereby limit errors in the global offset polynomial. A SNR 

threshold of 7 was set, below which offset estimates were rejected. When estimating 

the global offset, it is important to preferentially track fixed (e.g. rock) points and not 

include offsets from moving ice surfaces. This was achieved by rejecting offset 

measurements that were more than 3 standard deviations from the global fit. 

Producing the final polynomial was an iterative process; the intensity cross 

correlation procedure and polynomial fit calculations were run iteratively until the 

accuracy of the registration offset estimation no longer improved.    

 

The local offset (surface displacement) was calculated using an intensity cross-

correlation algorithm (Bindschadler and Scambos, 1991). The magnitude of the 

offset was calculated by identifying the correlation peak of a sample window from 

the first image moved relative to a larger sample region of a second image at 

specified intervals. After testing a range of different search window sizes (8 to 192 

and 32 to 768 pixels in range and azimuth, respectively) we selected a size of 64 x 

256 pixels as this afforded the best combination of areal coverage, high SNR, and 

resolution of ice velocity signals. Local offsets were estimated at intervals of 12 and 

48 range and azimuth pixels, respectively, and, prior to their calculation, we applied 

an image oversampling factor of 2 as this has been found to increase the accuracy of 

displacement estimates (Werner et al., 2005). Finally, movement of the surface was 

calculated as the displacement between the two images at the correlation peak minus 

the global offset.  

 

We filtered our intensity tracking results for erroneous estimates using a method 

adapted from that of Luckman et al., (2003). This involved applying a SNR threshold 

of 4 to local offset estimates, rejecting values which exceed 4 times the average of a 

9 x 9 pixel neighbourhood, and removing areas with an image pair coherence of less 

than 0.6.  

 

The errors associated with our displacement measurements were estimated by 

calculating the mean difference from 0 of local offsets using samples of up to 500 
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points taken from static regions (i.e. bedrock) (e.g. Pritchard et al., 2005; de Lange et 

al., 2007; Luckman et al., 2007). Systematic errors occur in offsets estimates in the 

range direction as a result of changes in the extent of relief distortion with distance 

form the sensor (Pritchard and Vaughan, 2007). In mountainous regions this causes 

inaccuracy in the global offset estimation which then causes inaccuracy in the local 

offset estimations. For image pairs where the error estimates were initially large (the 

three image pairs in period 3 - Figure 4.3), we removed this systematic error and 

improved the accuracy of the local offsets by measuring the mean local offsets in 

range and azimuth on flat static areas (i.e. rock) near the detailed study areas shown 

in Figure 4.2.  The mean offset in range was then removed from the range component 

of the local offsets before calculating the displacement vector. Systematic errors of 

up to 39 m/yr in range were removed.  

 

In order to compare our velocity estimates to external forcing factors, we assembled 

datasets of air temperature, supraglacial lake evolution, ice front conditions, and ice 

surface geometry. Maximum air temperature data collected at the Daneborg 

meteorological station (No. 043300; 74º 18’ N 20º 13’ W) (Figure 4.1) between 

01/01/1995 and 31/03/1996 were used to quantify positive degree days to establish 

when surface melting occurred. The seasonal evolution of supraglacial lakes and the 

calving front positions of Waltershausen and Adolf Hoel Gletschers (Figure 4.4) 

were recorded using the same SAR amplitude imagery which we used to estimate ice 

velocities (section 4.8). The ice surface topography of the three glaciers was derived 

from an InSAR DEM of ~30 m horizontal resolution created by the authors for 

another study (Chapter 4). 

 

4.4  Results  

 

4.4.1  Along glacier velocity profiles 

 

Average winter and summer velocities at transects along centre flow lines of the 

Wordie, Waltershausen and Adolf Hoel Gletschers are shown in Figure 4.2. Due to 

the limited spatial distribution of summer velocity estimates which we were able to 
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acquire along the transects relative to the winter (Figure 4.2), we are unable to 

provide reliable estimates of annual average velocities for the glaciers. However, we 

were able to assess differences in the average wintertime flow rates of the 3 glaciers; 

the mean along-transect velocities of the Wordie, Waltershausen and Adolf Hoel 

Gletschers were 140 ± 42 myr
-1

, 171 ± 42  myr
-1 

and 248 ± 42  myr
-1

, respectively. 

Where summertime velocity measurements were available, it is found that, in 

general, they exceed average wintertime velocities. On average, summertime 

velocities were 16%, 2% and 63% greater, and the maximum increases were 27%, 

36% and 146% at the Wordie, Waltershausen and Adolf Hoel Gletschers 

respectively.  Although limited data coverage prevents an assessment of spatial 

variations in seasonal velocity differences at the Wordie and Waltershausen 

Gletschers, at Adolf Hoel Gletscher we observe a general increase in summertime 

velocity towards the terminus (Figure 4.2c) which occurs at an average rate of 11.3% 

m
-1

.  

 

We examined the along-transect winter velocity profiles of Wordie, Waltershausen 

and Adolf Hoel Gletschers to investigate the extent to which changes in flow are 

correlated with fluctuations in ice surface topography and glacier width. At Wordie 

and Waltershausen Gletschers we observe no distinct trends in velocity with distance 

from the terminus over the respective 30 and 60 km sections surveyed. However, we 

do observe local increases in velocity that are coincident with narrowing of the flow 

band width and increases in surface slope (Figure 4.2). For example, at 12 km along 

Waltershausen Gletscher (Figure 4.2b), wintertime velocities are 55% greater than 

the along-transect average at a location where the flow unit is less than half the 

average width. Similarly, at 3 km along Wordie Gletscher (Figure 4.2a), wintertime 

velocities are 56% greater than the along-transect average at a location where the 

surface gradient (~86 m km
-1

) is five times greater than glacier average. At Adolf 

Hoel Gletscher there are two regions of markedly different flow; the section above 

16 km exhibits low surface slopes, spreads into the tributary of Waltershausen 

Gletscher (Figure 4.2c), and flows slowly (63 ± 42 m yr
-1

 during winter), whereas the 

section below 16 km which follows a sharp drop in elevation and is confined within a 

narrow valley flows at a much faster speed (261 ± 42  m yr
-1

 winter average).  
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Figure 4.2: Velocity and geometry of the Wordie, Waltershausen, and Adolf Hoel glaciers 

between 1995 and 1996.  A, B and C show the velocity distributions (left) and the along glacier 

profiles (right) from the termini (green dotted lines) of Wordie, Waltershausen and Adolf Hoel 

Gletschers, respectively. The profiles include average summer (May, June and July) and winter 

(December, January, February and March) along glacier velocities (red and blue lines 

respectively), surface topography (black dashed line) and relative changes in glacier width (grey 

boxes). The velocity profiles have been smoothed using a moving average filter over subsets of 2 

points to reduce variance introduced from inconsistent coverage between image pairs at 

corresponding positions along the transect. The black boxes in the left hand images delineate the 

portion of the transects (red dotted lines) over which the velocity time series in Figure 4.3 were 

taken. 

 

4.4.2  Time series observations 

 

The temporal evolution of ice velocity at locations along the Wordie, Waltershausen, 

and Adolf Hoel Gletschers (Figure 4.2) where data are consistently available is 

shown in Figure 4.3. These data reveal seasonal patterns in flow at all 3 glaciers and, 

based on the broad patterns of change, we divide the time-series into 3 discrete 

periods. Periods 1 and 2 are identified as the times during which the glaciers are 
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accelerating and decelerating, respectively. Due to the relatively coarse temporal 

resolution and sampling of the velocity data, we are unable to identify the precise 

limits of these periods from the data themselves. Instead, we estimate the 

approximate timing of the transition between accelerating and decelerating flow by 

fitting a quadratic polynomial through the velocity data; the period of transition is 

defined by the switch from positive to negative slope gradients. Period 3 includes 

data from the winter of 1995/1996 when, on average, flow velocities are relatively 

low; it is separated from periods 1 and 2 by a gap in data coverage. There are large 

uncertainties associated with the velocity estimates during period 3 (related to 

inaccuracy in the global offset estimates, possibly arising from surface changes, e.g. 

snowfall events), and so we additionally compute the average flow speed of each 

glacier across this time interval. Descriptive statistics for each period are given in 

Table 4.1. 
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Figure 4.3: Time series of velocity at the Wordie (a), Waltershausen (b), and Adolf Hoel (c) 

Gletschers determined at the locations shown in Figure 4.2. Blue points show velocity 

measurements with horizontal bars representing the period across which they are calculated 

and vertical bars showing the estimated error. Averages of velocities during the winter of 

1995/1996 are shown in red. Pink shaded areas represent the days where air temperatures 

exceeded 0ºC at Daneborg meteorological station; blue shaded areas indicate the approximate 

timing of the first lake drainage events on each glacier. The three periods of velocity described 

in the text are delimited with black horizontal arrows.  
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Table 4.1: Minimum (Vmin), maximum (Vmax) and mean (Vmean) velocities (m yr
-1

) of the 3 

periods shown in Figure 4.3 for the portions of Wordie, Waltershausen and Adolf Hoel 

Gletschers used in Figure 4.3. 

 
Period 1 Period 2 Period 3 

Glacier Vmin Vmax Vmean Vmin Vmax Vmean Vmin Vmax Vmean 

Wordie 196±28 258±31 228±26 206±13 248±10 230±13 173±31 219±19 195±28 

Waltershausen 227±28 312±27 264±24 234±13 303±13 269±13 215±18 270±28 245±20 

Adolf Hoel 398±28 471±13 445±22 202±13 344±15 273±14 165±19 289±10 241±18 

 

During period 1 (approximately days 82 to 160, spring) velocities increase at all 

three glaciers; we calculate average velocity increases from the beginning of the 

period to peak velocities, of 26%, 34% and 16% at Wordie, Waltershausen and Adolf 

Hoel Gletschers respectively. According to the temperature data, peak velocities 

occurred early in the melt season (within 2-3 weeks of the onset of positive 

temperatures). We find no evidence of lake drainage events prior to the period of 

peak velocities; the first observed lake drainage events occurred between days 168 

and 171 at Wordie Gletscher and between days 171 and 187 at Waltershausen and 

Adolf Hoel Gletschers (see Figure 4.7 in section 4.8). Lake drainage therefore began 

towards the end of period 1 when velocities were peaking. Sea ice began to clear at 

the terminus of Waltershausen Gletscher towards the end of period 1 (between days 

171 and 187) (see section 4.8). At Adolf Hoel Gletscher, clearing of sea ice and 

trapped icebergs (between days 117 and 171) occurs during period 1. We also 

observed retreat of the ice front of Adolf Hoel Gletscher during period 1, beginning 

between days 135 and 170 (Figure 4.4) at a rate of 2.1 md
-1

. In contrast, the terminus 

position of Waltershausen Gletscher did not exhibit substantial change.  

 

During period 2 (approximately days 160 to 242, early summer) ice speeds 

progressively decrease at all three glaciers. At both Wordie and Waltershausen 

Gletschers, velocities slowed to values close to those at the beginning of period 1 by 

the end of the period 2 (between days 206 to 242). At Adolf Hoel Gletscher, the 

magnitude of deceleration far exceeded the acceleration observed in period 1. The 

final velocity estimate during period 2 (days 206-242) was half that of the slowest 
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velocity estimate from period 1; this explains the large differences in winter and 

summer velocities seen in Figure 4.2. Note that, due to a gap in the availability of 

SAR data immediately following this period, we are unable to assess to what extent 

the entire deceleration in flow is captured in our dataset. Throughout period 2, air 

temperatures remain positive and lakes on the surfaces of all three glaciers continue 

to drain. In addition, the fjords in front of Adolf Hoel and Waltershausen Gletscher 

clear of sea ice and the terminus of Adolf Hoel Gletscher retreats to a position 

several hundred metres behind average (Figure 4.4).  

 

During period 3 (days 327 to 433, winter) ice speeds exhibit high variability and high 

measurement uncertainty; both of these aspects of the data limit our ability to analyse 

trends in flow during this interval. On average, the Wordie Gletscher velocity during 

period 3 (206 ± 44 m yr
-1

) is close (within 5%) to that recorded at the beginning of 

period 1 and the end of period 2. At Waltershausen, the average velocity during 

period 3 (255 ± 44 m yr
-1

) is ~10% greater than at the beginning of period 1 and the 

end of period 2. At Adolf Hoel Gletscher, the average velocity during period 3 is 

comparable to the velocity measurements from the end of period 2 but 42% lower 

than that estimated at the beginning of period 1. During period 3, air temperatures 

were negative and supraglacial lakes appeared to be frozen. In addition, the 

proglacial fjords of Adolf Hoel and Waltershausen Gletschers were completely 

covered in sea ice, and the terminus of Adolf Hoel Gletscher advanced at an average 

rate of 0.4 md
-1

. 
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Figure 4.4: Time series of the mean difference in terminus positions of Adolf Hoel Gletscher 

relative to the average position. The blue points are the mean relative position measurements; 

vertical bars represent the standard deviation of position differences along the length of the 

terminus; the dashed black line is the moving average of these points.  

 

 

4.5  Discussion  

 

4.5.1  Spatial flow patterns 

 

The differences in winter average velocities between the glaciers can be explained by 

differences in basal sliding rates as a result of differences in effective pressure at the 

glacier bed (Paterson, 1994). According to Budd et al. (1979), the effective pressure 

( effP ) at the bed of a glacier can be defined as: 

 
wieff ppP   (4.1) 

 

where ip  and wp are the ice overburden and water pressures, respectively. In the 

case of tidewater glaciers, the pressures can be written in terms of the densities of ice 

( i ) and sea water ( w ), gravity ( g ), the thickness of ice (h), the depth of the 

glacier bed below sea level (
w

h ), and the additional hydraulic head above sea level 

( p ): 
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 ghp ii   

pghp www    
(4.2) 

so that 

  pghghP wwieff    (4.3) 

 

The subglacial effective pressure at the bed of a glacier will decrease if h decreases 

and/or, hw and Δp increases, resulting in increased sliding velocities. The relatively 

fast flow observed at Adolf Hoel Gletscher can therefore be explained by its 

configuration as a marine-terminating glacier (i.e.  hw decreases Peff) and the slower 

flow recorded at Waltershausen Gletscher may be explained by a number of factors, 

including it having a relatively shallow bed geometry which leads to lower values of 

hw and/or it being a relatively large, thick glacier (i.e. with higher values of h). 

Although the higher flow rates of Adolf Hoel Gletscher could be explained by 

episodic surge-type behaviour typical of tidewater glaciers (Meier and Post, 1987), 

we discount this possibility for two reasons; first, the position of the ice front 

returned to the same position in March 1996 as it was at in March 1995 and, second, 

comparable speeds have been recorded in subsequent years (~450 m/yr in 2000/2001 

and ~350 m/yr in 2005/2006, Joughin et al., 2010a).  

 

The along flow changes in velocity observed at Adolf Hoel Gletscher may also be 

explained by fluctuations in effective pressure (Equation 4.3). The abrupt drop in 

glacier surface elevation at ~16 km along glacier may, for example, reflect a drop in 

the elevation of the glacier bed below sea-level that would lower the effective 

pressure and lead to increased rates of sliding. Bed topography data, which are 

currently unavailable for this glacier, are required to confirm this hypothesis. Local 

velocity increases at Waltershausen and Wordie Gletschers that are linked to 

increases in their surface slopes and narrowing of their flow widths may be explained 

by local variations in stress regimes. Increased ice surface slopes result in higher 

driving stresses and flow band narrowing causes transverse compression which is 

compensated for by longitudinal extension (Paterson, 1994). 
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4.5.2  Seasonal flow patterns 

 

The seasonal evolution of velocities recorded at all three glaciers is similar to that 

observed at other land- and marine-terminating glaciers in Greenland and other 

Arctic and Alpine regions where it has been linked to a hydrological forcing 

mechanism (e.g. Iken and Bindschadler, 1986; Mair et al., 2002; Zwally et al., 2002; 

Bingham et al., 2004; Howat et al., 2010).  The summertime speedup of the glaciers 

in our study, which are correlated with the onset of positive surface temperatures and 

surface melting, suggests that surface meltwater may be routed to these glacier beds 

too, raising subglacial water pressure and increasing basal sliding. Peak velocities, 

and the subsequent slowdown in flow, occur part-way through the melting season, 

and coincide with the first supraglacial lake drainage events. It is possible that water 

released during lake drainage events may have triggered a switch in the efficiency of 

subglacial water drainage (Schoof, 2010) which is understood to lead to reduced 

rates of ice sliding and flow. 

 

We consider the possible influence of frontal forcing on early summer acceleration at 

marine-terminating Waltershausen and Adolf Hoel Gletschers. We report some 

correlation between the timing of early summer accelerations and sea ice clearing at 

both glaciers and ice front retreat at Adolf Hoel Gletscher. It has previously been 

proposed that seasonal acceleration may occur at tidewater glaciers due to changes in 

backstresses exerted on the front of the glacier (e.g. Joughin et al., 2008a; Howat et 

al., 2010). However, such a mechanism has only been linked to seasonal velocity 

fluctuations at marine-terminating glaciers which are undergoing multi-year retreat 

(e.g. Joughin et al., 2008a; Howat et al., 2010). Furthermore, the seasonal velocity 

patterns of such glaciers have been found to correlate with the changing position of 

the calving front (i.e. the frontal retreat persists throughout the melt season and so 

too do the acceleration velocities) (e.g. Joughin et al., 2008a; Howat et al., 2010). At 

Waltershausen and Adolf Hoel Gletschers we have found the positions of the fronts 

to be stable on an interannual basis, and where we observe a seasonal fluctuation in 

the position of the front of Adolf Hoel Gletscher, we find that the retreat does not 

correlate with increasing ice flow throughout the whole season (i.e. ice velocity 
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decelerates in the summer whilst the front continues to retreat). This suggests that the 

impacts of frontal forcing on seasonal variations in the flow of Waltershausen and 

Adolf Hoel Gletschers may be small in comparison to the impact of changes in their 

inland hydrology. Instead of forcing velocity changes at these glaciers, the 

correlation in timing between the break-up of sea ice and ice front retreat with 

accelerated flow, may indicate that they are responding to the same forcing or, in the 

case of ice front retreat, it is occurring as a consequence of increased ice velocity.  

 

Consideration of the influence of the force balance on ice flow at the 3 glaciers is 

also suggestive of a lack of influence on seasonal flow variability from longitudinal 

stress changes and therefore lends support to the implied importance of seasonal 

meltwater forcing on seasonal flow variability. At Wordie Gletscher, the ~50 ma
-1

 

summer speed up observed at 550 m elevation (Figure 4.2a) occurs over a presumed 

ice fall where the influence of lower glacier longitudinal stresses will be negligible. 

At Waltershausen Gletscher a ~50 ma
-1

 summer speed up at 300 m elevation (Figure 

4.2b) occurs where the ice passes through a constriction and lateral drag is likely to 

dominate flow conditions over longitudinal stresses. Furthermore at Waltershausen 

Gletscher, the absence of seasonal flow variability near the front of the glacier may 

be explained by the directing of flow into the valley side which results in a greater 

importance of lateral drag than basal drag on the glacier flow and a limited impact of 

seasonal variability in basal lubrication on flow. At Adolf Hoel Gletscher, 

summertime speed ups are observed at up to at least 900m elevation and 12 km 

upglacier of the calving front and the lower glacier is steeply sloping (~4º) elevation 

(Figure 4.2c). Thus local basal drag is likely to dominate resistance to flow with little 

sensitivity to longitudinal stress from the front.       

 

We compare the magnitude of seasonal variations in ice flow observed in our study 

to those observed at other land- and marine-terminating glaciers. The magnitude of 

accelerations calculated at Wordie and Waltershausen Gletschers (26 and 34% 

respectively) are low, although comparable, to average summer speed ups recorded 

at land-terminating glaciers in the west of Greenland which typically lie between 50 

and 125% (Joughin et al., 2008c; Bartholomew et al.,2010; Sundal et al., 2011).  
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Palmer et al., (2011) observe large spatial variations in the magnitude of summer 

speed ups for a region in the West of Greenland with values ranging between 0 and 

360%; thus the relatively low values observed at Wordie and Waltershausen may be 

attributable to the limited spatial extent over which we were able to obtain velocity 

measurements. The magnitude of summertime speedup at Adolf Hoel Gletscher 

(16%) is comparable to findings at other marine-terminating glaciers (i.e. <50% - 

Vieli et al., 2004; Joughin et al., 2008c; Howat et al., 2010). Furthermore, the lower 

magnitude of summer speed up on Adolf Hoel Gletscher relative to Wordie 

Gletscher is consistent with observations elsewhere in Greenland that report greater 

proportional summer speed ups at land- than marine-terminating margins (Joughin et 

al., 2008c). Joughin et al., (2008c) suggest that there may be a number of reasons for 

this, including differences in bed smoothness, basal shear heating and lateral or basal 

drag between land- and marine-terminating outlets. 

 

Of further interest is the large deceleration (57%) observed at Adolf Hoel Gletscher 

during period 2 (summer) relative to the magnitude of acceleration observed during 

period 1 (spring) at the start of the melt season, and the large difference in winter 

velocities recorded between the two years of our survey (Figure 4.3). Although such 

changes could be attributed to interannual variations in the degree of surface melting, 

just 1 positive degree day (PDD) of melting was recorded during the first 

measurement period, and so the early speedup in March 1995 is unlikely to be 

associated with this effect. There is also no evidence of fluctuations in the extent of 

sea ice or the position of the glacier front during either period 1 or 2, and we have 

already discounted the possibility of surging (section 4.5.1). We do notice, however, 

that the magnitude of seasonal flow variability increases towards the glacier terminus 

(Figure 4.2) and that these increases are dominated by differences between period 2 

and 3 (no trend is identified when looking at differences between March and summer 

1995 velocities). This may suggest a frontal forcing mechanism. Given the 

interannual stability observed in the terminus position, a possible alternative cause 

may be differences in the volume/thickness of sea ice (not detectable in the SAR 

images) and therefore the degree of back stress acting on the terminus (e.g. Sohn et 

al., 1998; Amundson et al., 2010). Further data is required to validate this statement.  
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4.6  Conclusions 

  

We have quantified seasonal flow variations at three glaciers situated in a region of 

Northeast Greenland which has received little previous glaciological investigation.  

The glaciers have a mixture of terminus conditions; one (Wordie Gletscher) is land-

terminating, and two (Waltershausen and Adolf Hoel Gletschers) are marine- 

terminating. According to our velocity data, there is little evidence to suggest that 

marine conditions exert a strong influence on Waltershausen Gletscher. We identify 

evolution of seasonal ice flow similar to that observed in other regions of the GrIS 

(e.g. Zwally et al., 2002; van de Wal et al., 2008; Bartholomew et al., 2010; Howat 

et al., 2010; Sundal et al., 2011) and Arctic and Alpine regions (e.g. Iken and 

Bindschadler, 1986; Mair et al., 2002; Bingham et al., 2003). Much of the seasonal 

evolution of flow at both the land- and marine-terminating glaciers appears to be 

correlated with seasonal changes in surface hydrology. In contrast to the sensitive 

relationship between acceleration and frontal retreat or ice melange conditions of 

rapidly retreating tidewater glaciers elsewhere, fluctuations in terminus conditions 

appear to have little impact on flow variability. We also observe a large unexplained 

difference in winter velocities recorded on different years (by almost a factor of 2) at 

Adolf Hoel Gletscher which could be driven by winter sea ice conditions.   

 

Our findings indicate that the surface melt driven processes which have been inferred 

to govern seasonal flow variations at land- and stable marine-terminating glaciers in 

the west and southeast of Greenland (e.g. Zwally et al., 2002; Shepherd et al., 2009; 

Bartholomew et al., 2010; Howat et al., 2010; Anderson et al., 2010) and other 

glaciated areas may also be inferred in the northeast of Greenland. However, we see 

that flow is modulated by local factors that affect the force balance, such as the role 

of lateral drag and perhaps resistance from winter sea ice. Furthermore, our findings 

highlight the complexity of ice flow at marine-terminating glaciers. The interannual 

and inter-glacier variability in flow that exists emphasises the need for multi-annual 

observations of glacier flow and surface melt at fine spatial and temporal resolutions, 

and ice dynamical models that account for the temporal variability in meltwater 

supply to the glacier bed. 
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4.7    Limitations 

 

The results presented in this chapter were subject to the following limitations: 

 A limited spatial coverage of the SAR intensity tracking velocity estimates. 

In particular the coverage of velocity estimates during the summer on 

Waltershausen and Wordie Gletschers was restricted (Figure 4.5). This may 

have occurred as a result of excessive surface changes (e.g. surface melting) 

between image acquisitions which meant the features on the surface could no 

longer be matched reliably. The limited summer coverage prevented the 

estimation of average annual velocities at the glaciers (a common velocity 

statistic which would have allowed comparison to other Greenland outlet 

glaciers) and an investigation of spatial and temporal differences of along 

transect seasonal flow variability (cf. Sundal et al., 2011).  

 

Figure 4.5: SAR intensity tracking results from the Zakenberg region of the northeast 

Greenland Ice Sheet from a) January 1996 and b) June 1995. The regions in grey represent 

areas where velocity estimates were not obtained; note the difference in coverage of velocity 

results on the outlet glaciers between a) and b). 
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 The low temporal resolution of SAR intensity tracking velocity estimates. 

The velocity estimates which were derived were averaged over 35 days (i.e. 

the repeat pass time of the ERS satellites). The loss of detail in the timing of 

velocity changes limits confidence in the links that can be made between the 

velocity records and the potential forcing mechanisms as in inferred from 

other data such as air temperatures and supraglacial lake drainage (c.f. 

Bartholomew et al., 2010). 

 The lack of available ERS- 1 and -2 data for September, October and 

November 1995 meant that velocity estimates for these months could not be 

calculated. This prevented us from gaining a full annual dataset of velocities 

for these glaciers. 

 The method used to estimate the errors of the intensity tracking results relied 

on the assumption that the errors associated with velocity estimates over land 

surfaces would be the same as ice. The errors associated with intensity 

tracking velocity estimates have been found to be strongly correlated with 

errors in the global offset estimation (Figure 4.5 & de Lange et al., 2007) 

which is constant over ice and land surfaces. Furthermore, Pritchard et al., 

(2005) compared velocity estimates from intensity tracking and InSAR over 

slow flowing ice and derived an error estimate of the intensity tracking 

results similar to that calculated by measuring velocity on static regions, 

suggesting that this is a suitable method for calculating error. Nonetheless it 

is recognised that there may be some differences in the errors of velocity 

measurements derived on ice in comparison to those on land due to 

differences in the nature of the features being tracked.  
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Figure 4.6: Regression of the error estimates associated with local offset and global offset 

estimations in range (red) and azimuth (blue) of pairs used in intensity tracking velocity 

estimates. 

  

 Since no other velocity data exists for these glaciers at this time it is not 

possible to provide any validation of our velocity measurements.  

 The meteorological station at Daneborg, where the temperature data was 

recorded, is situated by a fjord 75 km from the ice sheet margin and up to 

200 km from the glaciers measured in this work. It is clear that there may be 

significant differences in meteorological conditions between these locations 

due to regional differences in weather patterns and lapse rates which exist 

between the coast and the ice sheet (e.g. Holzapfel et al., 1939; Cappelen et 

al., 2001). Furthermore, surface temperature lapse rates will apply on the ice 

sheet surface relating to both distance inland and elevation (e.g. Steffen and 

Box, 2001; Hanna et al.,  2005) which will affect the timing of the seasonal 

onset of positive temperatures and surface melting.  

 

 

 



Chapter 4: Seasonal flow variations 

 82 

4.8 Appendix  

 

This appendix contains additional data referred to in this chapter and in support of 

the results presented therein. 

 Supra-glacial lake evolution 

 

We observe seasonal evolution of the supra-glacial lakes on Wordie, Waltershausen 

and Adolf Hoel Gletschers in the SAR MLI amplitude images (Figure 4.7). We find 

that water was present in small supra-glacial lakes (< 1 km
2
)  at altitudes up to 1000 

m asl at Waltershausen Gletscher by day 152 and by day 168 small lakes (<1 km
2
) 

were visible at low elevations (<600 m a.s.l.) on Wordie Gletscher. On day 171 the 

low elevation lakes at Wordie Gletscher had drained and lakes at higher elevations 

on all 3 glaciers had begun to fill (Figure 4.7). By day 187, several substantial lakes 

(1-2 km
2
) on Waltershausen Gletscher and at the top of Adolf Hoel Gletscher had 

drained. By day 206, a large proportion of the lakes on the ice surface of all three 

glaciers had drained. 

 

 

Figure 4.7: SAR MLI amplitude images depicting the seasonal evolution of supra-glacial lakes 

(black circles) on the surface of Waltershausen Gletscher, Wordie and Adolf Hoel. 
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 Proglacial sea ice conditions.  

 

The break-up of the sea ice mélange in front of Adolf Hoel Gletscher is shown in 

Figure 4.8. The image from day 117 and the preceding images show that the extent 

and position of visible icebergs are consistent. The image from day 171 shows that 

the extent of the mélange is far greater and the position of the visible icebergs is 

changed indicating a break-up of the mélange. However, due to unfavourable 

contrast of this region in the MLI images between days 117 and 171, (Figure 4.8) we 

are unable to determine with greater accuracy the timing of the break-up. MLI 

imagery of the terminus of Waltershausen Gletscher shows that, unlike Adolf Hoel 

Gletscher, an ice mélange is absent from the terminus in winter and that open water 

develops between days 171 and 187. 

 

 

 

Figure 4.8: SAR MLI amplitude images of the front of Adolf Hoel Gletscher showing the break 

up of the sea ice mélange.  
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Chapter 5: Coincidence of supraglacial lakes and 

topographic depressions in Northeast Greenland 

 

 

In the previous chapter (and in the work of several other authors e.g. Zwally et al., 

2002; Das et al., 2008; Bartholomew et al., 2010), the seasonal filling and draining 

of supraglacial lakes is identified as an important factor in the seasonal regulation of 

glacier ice flow. For this reason, one of the key conclusions of Chapter 4 was that the 

temporal variability of meltwater supply to the glacier bed must be able to be 

included in ice sheet models. Doing so relies on accurate parameterisation of 

supraglacial lakes. This chapter describes an assessment of using a high resolution 

InSAR DEM to identify the locations of supraglacial lakes for the same region of the 

northeast GrIS as in Chapter 4. This chapter is in preparation for submission to 

Remote Sensing of the Environment: 

 

Briggs, K., Shepherd, A. and Nienow, P. (in prep.). Coincidence of supraglacial lakes 

and topographic depressions in Northeast Greenland. Ready for Submission to 

Remote Sensing of Environment 

 

The majority of the work for this chapter was carried out by myself. A Shepherd and 

P Nienow developed the original ideas for this chapter and provided comments on 

the manuscript. E Rinne extracted and helped with processing of the ICESat data.  

 

Limitations of the work presented in Chapter 5 are discussed in Section 5.7 and 

additional information for this chapter is included in Section 5.8. 
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5.1  Abstract 

 

Supraglacial lakes, which form annually on the surface of the GrIS, are identified as 

a factor in the interaction between ice sheets and climate (e.g. Joughin et al., 1996a; 

Boon and Sharp, 2003), and their drainage has been linked to fluctuations in glacier 

discharge (Das et al., 2008). Here we investigate the extent to which the locations 

and area of supraglacial lakes may be identified using digital elevation models 

(DEMs) of the ice sheet surface. We generate a 150 m ground-resolution DEM of a 

10,500 km
2
 coastal region of the northeast GrIS using differential interferometric 

synthetic aperture radar (InSAR) observations. We identify the number, location and 

area of topographic depressions (sinks) in this DEM, and draw comparisons with the 

distribution of supraglacial lakes we observe in 30 m ground-resolution Landsat 

imagery. The agreement between sinks and lakes is improved by limiting the 

maximum altitudinal extent of the comparison and the minimum size of features 

included in the analysis. In this dataset we identify 428 individual sinks and 199 

lakes that are greater than 0.0125 km
2
 and which cover total areas of 81.4 km

2 
and 

29.7 km
2
 respectively. We find that 13% of the total area of sinks coincide with 

lakes, and that 36% of the total area of lakes coincide with sinks, showing that the 

DEM identifies lake locations more reliably than it is able to predict them. We 

interpret the differences in the distribution of sinks and lakes to reflect both 

limitations in the spatial and temporal sampling of the satellite data used in the 

analysis, and the physical differences between lakes and sinks. We conclude that, in 

Northeast Greenland, the accuracy of using sinks as a proxy for lake location and 

area is generally poor. 
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5.2 Introduction 

 

At the Western margin of the Greenland Ice Sheet, rapid drainage events of 

supraglacial lakes are coincident with accelerations in glacier flow (Das et al., 2008). 

These lakes form in depressions on the ice sheet surface and fill during the melt 

season (Sundal et al., 2009). It is thought that when lakes reach a certain depth, the 

pressure exerted by the water on the ice below is capable of fracturing the ice 

(hydrofracture) (van der Veen, 1998) and, if there is a sufficient volume of water 

available, the fracture can propagate to the ice sheet base (Das et al., 2008). The 

coincidence of lake drainage events with increases in ice motion is indicative of the 

transit of water to the ice sheet base, where it can enhance basal sliding – a process 

that could lead to ice flow acceleration and increased ice discharge (e.g. Zwally et 

al., 2002; Alley et al., 2005b; Das et al., 2008; Bartholomew et al., 2010). At present 

it is estimated that the contribution to annual ice sheet mass loss due to seasonal 

fluctuations in ice flow is small (Joughin et al., 2008c). However, it is possible that 

expected increases in surface temperatures in Greenland over the coming century 

(Meehl et al., 2007) may lead to an expansion of the area of seasonal surface melting 

and lake formation, and so the impacts of lake drainage events on long-term trends in 

ice sheet flow may increase. 

 

Lake locations, surface areas, volumes and seasonal evolution have been observed in 

optical imagery (e.g. Box and Ski, 2007; McMillan et al., 2007; Sneed and Hamilton, 

2007; Georgiou et al., 2009; Sundal et al., 2009). Here we assess an alternative 

method to obtain lake locations and areas through the analysis of a digital elevation 

model (DEM) of the ice sheet surface. Because water flowing on the ice sheet 

surface will pond in topographic depressions, DEMs may provide a means of 

predicting the locations of lakes. Furthermore, this method may provide a means of 

identifying sites at which lakes may form at higher (colder) elevations in the future 

which is valuable for modelling forecasted warmer ice sheet scenarios. Luthje et al., 

(2006) modelled the seasonal evolution of lakes in a 400 km
2
 region at the western 

margin of the ice sheet using a DEM. Lake sites were predicted using a drainage 

model and local estimates of ablation. The positions of the modelled lakes compared 



Chapter 5: Lakes and topographic depressions 

 87 

favourably with those observed in optical imagery although the area covered by 

model lakes was 3 to 4 times larger than that of the observed lakes. In this study, we 

investigate the use of DEMs to identify and predict locations of supraglacial lakes in 

the northeast of the GrIS and, we assess the utility of DEMs to predict where lakes 

may form in future. We generate a new, high resolution InSAR DEM and use it to 

identify topographic depressions (water sinks) where lakes could form on the ice 

surface. We use optical images to map the supraglacial lakes in the same region. We 

then compare the coincidence of the sinks identified in the DEM to the lakes 

identified in the optical imagery. Finally, we use our data to consider the potential 

reasons for the observed similarities and differences in the locations of lakes and 

sinks.  
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Figure 5.1: Study area in Northeast Greenland. Greyscale images of two Landsat ETM+ scenes 

of the region are overlain by the SAR data from which a DEM is formed (green box).  The red 

box highlights the Landsat scene used. The area of overlap was used in the analysis. Location of 

the ICESat GLAS track data used to constrain the precision baseline of the InSAR DEM and to 

assess the accuracy of the InSAR DEM are shown with blue and pink dots respectively.   

 

5.3 Methods  

 

5.3.1 InSAR DEM 

 

We used European Remote Sensing (ERS) satellite SAR data to form an InSAR 

DEM, and ICESat (Ice, Cloud and land Elevation Satellite) GLAS (Geoscience Laser 

Altimeter System) elevation data to constrain the interferometric baseline. Two 

descending pass ERS-1 and ERS-2 SAR tandem phase image pairs from the winter 
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of 1995 (Table 5.1) were used to generate a DEM. The images span 3 consecutive 

frames (Figure 5.1) and cover an approximate ice sheet area of 10,500 km
2
 centred at 

74˚N 24˚W in the northeast of Greenland (Figure 5.1).  The perpendicular baselines 

of the image pairs were 149.7 m and -67.7 m. We used SAR image pairs acquired 

during the winter to minimise errors in the DEM due to changes in flow rates 

between image pairs (see below) and to maximise the possibility of surveying the 

elevation of lake beds (in the summer, the microwaves, which are not able to 

penetrate the liquid water, are reflected from the surface of the water-filled lakes). 

 
Table 5.1: ERS-1/-2 descending pass data used in this study. 

 

Track Orbit (ERS-

1/-2) 

Frames Acquisition 

dates 

Perpendicular 

Baseline 

253 22786/3113 2061, 2079, 

2097 

23/24 Nov 

1995 

149.7 m 

23287/3614 28/29 Dec 

1995 

-67.7 m 

 

 

A random subset of the available ICESat GLAS track data was used to constrain and 

validate the InSAR DEM. The ICESat mission provides surface elevation data from 

65 m diameter ground-footprints every 172 m along the satellite ground track with 

high vertical precision (~2.1 cm) (Shuman et al., 2006) and the absolute accuracy of 

the measurements in Greenland are estimated to fall in the range of 16-20 cm for 

surfaces with slopes of 0.6˚ increasing to 50 cm for surfaces with slopes of 1.15˚ 

(Brenner et al., 2007).  In this study we used ICESat GLAS product number GLA-06 

from release 28 (Zwally et al., 2003) and we applied corrections for the geoid and to 

compensate for saturated signal returns. The ICESat data were acquired in 2003, 

2006 and 2007. 

 

We formed the InSAR DEM using differential interferometry (e.g. Zebker and 

Goldstein, 1986; Kwok and Fahnestock, 1996; Joughin et al., 1996b; Wegmuller et 

al., 1998). Forming the DEM involved processing the raw SAR data to single-look 

complex (SLC) images, co-registering the SAR image pairs, generation of 

interferograms, co-registration of interferograms, generation of differential 

interferograms, filtering to reduce phase-noise, phase unwrapping, baseline 
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refinement, and calculation of topographic heights from the differential 

interferometric phase. Processing the raw data to SLC involved accounting for 

missing lines, concatenating the consecutive frames, improvement of the orbital state 

vectors, deriving the range and azimuth spectrums, azimuth auto-focusing, range and 

azimuth compression, radiometric calibration and multi-looking. The image pairs 

were co-registered to sub-pixel accuracy using a cross-correlation optimization of the 

SLC detected images. Single-difference interferograms were computed with multi-

look factors in range and azimuth of 2 and 10 respectively, resulting in approximate 

ground-range and azimuth resolutions of 40 m. Co-registration of the two repeat-pass 

interferograms was performed to sub-pixel accuracy and, assuming a constant rate of 

ice flow during the period of the SAR data, the interferograms were differenced to 

cancel the phase signal due to motion (Kwok and Fahnestock, 1996). The 

perpendicular baseline of the resulting differential interferogram was 231 m, and 

provides sensitivity to topography that is well suited to generating a DEM (Massom 

and Lubin, 2006). We accounted for the Earth’s curvature in the interferogram and 

applied an adaptive filter based on the local fringe pattern (Goldstein and Werner, 

1998) with an exponent for non-linear filtering of 0.5. 

 

The topographic phase signal was unwrapped using a branch-cut region growing 

algorithm (Goldstein et al., 1988; Rosen et al., 1994) and with the manual 

identification of correlation thresholds of coherence, inspection for unwrapping 

errors, drawing and deletion of branches and construction of bridges, so as to limit 

the propagation of errors. We tested a range of correlation thresholds (0.1 to 0.9) to 

establish the best cutoff to employ when masking areas of low-coherence in 

unwrapping. The unwrapped topographic phase was then compared to 500-1000 

ICESat GLAS elevation measurements (depending on the size of the area masked 

due to low-coherence) distributed across the region of the SAR data to ensure that 

phase unwrapping errors did not occur. Branches were manually drawn to prevent 

the phase unwrapping algorithm entering regions of steeply sloping terrain and 3 

branches were deleted to enable unwrapping of 3 glaciers. We also introduced 

bridges to connect a number of isolated regions, between which the coherence of the 

phase signal was low. The accuracies of the bridges and branch deletions were tested 
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by comparing the degree of fit between the unwrapped phase and ICESat GLAS 

heights before and after they were implemented; if the fit
 
was significantly degraded 

or outliers were introduced, the deletion/bridge was rejected.   

 

ICESat data were used to refine the interferometric baseline as baseline estimates 

from orbital data alone are not sufficiently accurate for DEM generation (Zebker et 

al., 1994). The refined baseline estimate was obtained using a least-squares fit to 

1017 ICESat GLAS points (converted to SAR coordinates) that were distributed over 

the whole of the unwrapped region of ice (Figure 5.1).  The unwrapped phase was 

converted to meters above sea level (a.s.l.) elevation measurements using this refined 

baseline estimate and the ICESat GLAS points. The DEM was then smoothed using 

a boxcar average filter with 3x3 smoothing windows in order to reduce high 

frequency SAR signal noise in the DEM (Joughin et al., 1995). We projected the 

DEM using the UTM coordinate system and a 50 m posting.  

 

We assessed the accuracy of the InSAR DEM using a further 1035 ICESat GLAS 

points that were independent of those used to refine the interferometric baselines 

(Figure 5.1). A linear regression of the InSAR DEM and ICESat heights reveals 

strong agreement, with an average root mean square (RMS) elevation difference of 

7.9 m. The difference between ICESat and InSAR elevation measurements is 

attributed to a combination of surface elevation changes in the period between SAR 

and ICESat data acquisition, differences in laser and radar surface penetration depths 

and independent errors associated with the InSAR and ICESat data.  

 

The vertical precision of the DEM was estimated statistically based on image 

coherence values and the altitude of ambiguity, and through a comparison with 

ICESat data. Statistically, the vertical precision of the DEM is estimated to be 

approximately 0.6 m based on the altitude of ambiguity (43 m) and the high 

interferogram coherence (mean image coherence of 0.95). A comparison of 160 

ICESat and InSAR DEM elevation estimates taken along a 172 km long ICESat 

track, reveals that the precision of the InSAR DEM (taken as the standard deviation 

of the residuals) over length scales applicable to sink identification (~5km) is 2.6 m. 
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5.3.2  Sinks in the InSAR DEM 

 

We used the InSAR DEM to identify the presence of topographic depressions (sinks) 

based on the assumption that water will pond and fill hollows on the ice sheet surface 

(Figure 5.2 d and e). We used the hydro-toolset in ArcMAP to identify regions where 

water would pond on the ice sheet surface under this assumption. Sink areas for the 

water were defined by identifying either pixels that were lower than all of the 

surrounding pixels or groups of pixels which all slope inwards to each other. All 

sinks were then ‘filled’ to the minimum point at which they would start to drain over 

the ice surface and this provided a map of the maximum supraglacial lake extent 

predicted by the DEM in the region.  

 

 

5.3.3 Supraglacial lakes in optical imagery 

 

To generate a map of the spatial distribution and area coverage of lakes in the region 

we used 30 m ground-resolution Landsat images provided by the USGS. Four 

Landsat scenes were processed; two Landsat7 ETM+ scenes from 28/06/2000 and 

04/07/2002 and two Landsat5 TM scenes from 07/07/2006 and 08/08/2006. These 

images were selected as they contained low levels (<2%) of cloud cover and because 

the images were acquired at different stages of the annual melt season (and thus of 

lake evolution (Sundal et al., 2009)). Although these images do not coincide with the 

dates of the DEM, this is not a problem as sinks are persistent features through time 

(e.g. Echelmeyer et al., 1991). 

 

The Landsat images were enhanced and classified in order to identify supraglacial 

lakes (Figure 5.2b). Each image was enhanced using a principal components (PC) 

analysis of data acquired in spectral bands 1, 2, 3, 4, 5 and 7 (band 6 and the 

panchromatic band were excluded due to differences in resolution- see Lillesand and 

Kiefer, 1999). The first 3 PC bands contained 99.8% of the image variability from 

the 6 spectral bands input and were used in the image classification. A mask of the 

ice area to be analysed was formed to exclude the surrounding land and all water 
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features extraneous to the ice.  The images were classified using the supervised, 

maximum likelihood technique (Richards, 1999). The training areas used in the 

classification were user defined and subjected to a separability analysis (Richards, 

1999) prior to classification to ensure that the spectral signatures of the classes do not 

overlap.  In the absence of ground-based observations for testing the classification, 

we took independent, user-defined training classes of each surface type from the 

Landsat images and constructed confusion matrices (Jensen, 1986) with the classified 

images, which allowed us to assess the accuracy of the classifications. The water 

classes were extracted from each scene and combined to create a map of lake 

locations.  

 

5.3.4 Sink and lake area comparisons  

 

To compare the spatial distributions of the sinks and lakes identified in the above 

steps (Figure 5.2c) we first manually co-registered the Landsat images to the InSAR 

DEM using prominent rock outcrop features and isolated the regions covered by both 

the Landsat images and InSAR DEM (this covers a region of ice 5000 km
2
). As a 

further refinement, we restricted the comparison to locations below an upper 

altitudinal limit on the basis that the area of the ice sheet surface where lakes form 

extends only to the limit of summer melting (Sundal et al, 2009). We approximate 

this altitude to be the lower limit of the dry snow zone at the end of the melt season, 

which we calculate to be at approximately 1500 m a.s.l. in this region using the 

Landsat image acquired on 08/08/2006. We also excluded the large number of lakes 

and sinks smaller than 0.0125 km
2
, as their locations are sensitive to mis-

registrations between the lake and sink datasets, differences in Landsat and DEM 

resolutions and temporal changes in the ice surface between the Landsat and SAR 

image acquisitions. To assess the effect of DEM resolution on the degree of 

agreement between modelled sinks and observed lakes, we applied a boxcar average 

filter to the original DEM with smoothing windows of 5x5, 9x9 and 19x19 to 

generate 3 InSAR DEMs with ground-resolutions of 250, 450 and 950 m, 

respectively. 
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Figure 5.2: A) Shaded relief image of the InSAR DEM, showing sinks in green and the location 

on Waltershausen Gletscher (black box) of examples of surface lakes observed in Landsat 

images (b), the coincidence of observed lakes (blue) with surface depressions identified in the 

DEM (c) and the identification (d) and cross sections (e) of sinks in the DEM.  

 

 

5.4 Results 

 

Our study provides detailed information about the area and distribution of sinks and 

lakes within the survey region.  Using the DEM, we identified 428 individual sinks 

with a combined area of 81.4 km
2
, equivalent to 1.7% of the reduced study area. The 

largest sink in the DEM occupies an area of 6.9 km
2
, and the average area of sinks 

we identified was 0.19 km
2. 

On closer inspection, it is evident that the overall size 

distribution of sinks is negatively skewed, with 85% of the total number of sinks 

being less than 0.25 km
2 

in size. We found no significant correlation between either 

sink frequency or fractional area and elevation (R
2
 of 0.01 and 0.02 respectively). 

However, the average area of individual sinks does increase with elevation up to an 
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altitude of 750-1000 m a.s.l., at which point the average area of sinks is twice as 

large as those found between 0-250 m a.s.l. and 1250-1500 m a.s.l. (Figure 5.3).  

 

Using the Landsat images, we identified 199 lakes with a total area of 29.7 km
2
; this 

is 0.6% of the area included in the study. The largest lake identified has an area of 

2.2 km
2
, the average size of lakes was 0.15 km

2
. In common with sinks, the 

distribution of lake sizes is negatively skewed, with 88% of all lakes being less than 

0.25 km
2 

in size. We were able to identify trends in the number density, average size 

and fractional area of lakes within the study area (Figure 5.3). The average area of 

lakes generally increased with elevation (R
2
 = 0.88), peaking at 0.2 km

2 
between 

1250-1500 m a.s.l.; this area is an order of magnitude greater than that of lakes 

between 0-250 m (0.01 km
2
). The density of lakes (per 100 km

2
) and the fractional 

area of lakes display similar correlations with elevation, increasing to peaks of 13 (R
2
 

= 0.79) and 2.1% (R
2 = 

0.72), respectively at an altitude of 1000-1250 m a.s.l., and 

decreasing thereafter.  

 

Comparing the sink and lake datasets as a whole, we found that sinks cover a 64% 

larger area than lakes, there were over twice as many individual sinks than lakes, that 

the individual sinks are, on average, 20% larger than the lakes, and that both datasets 

have size distributions that are skewed towards smaller sizes. A comparison of sinks 

and lakes in relation to the elevation bands studied shows that the greatest difference 

between the average area of sinks and lakes occurs at elevations below 1000 m a.s.l., 

and that between 1250 and 1500 m a.s.l. the average area of lakes was 0.05 km
2
 (~20 

%) greater than that of sinks. We find there are greater numbers of sinks per 100 km
2 

than lakes at all altitudes except between 750 and 1250 m a.s.l., when the number of 

sinks and lakes per 100 km
2 

are approximately equal. The fractional area covered by 

sinks is larger than that covered by lakes at all elevations. Finally, there are no 

apparent similarities between altitudinal trends of sinks and lakes (Figure 5.3). 

 

We examined the numbers, sizes, and distributions of the locations where sinks and 

lakes overlap. In total, we identified 96 locations of coincidence covering an area of 

10.6 km
2
. The area where lakes and sinks are coincident represents 13.0 % of the 
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total sink area and 35.6% of the lake area. Figure 5.3 illustrates the extent to which 

sinks and lakes coincide according to their elevation. Below 250 m a.s.l. there are no 

areas where sinks and lakes are both identified. Above 250 m a.s.l. the percentage of 

sink area overlapped by lakes increases sharply with altitude (R
2
 = 0.85) to a peak of 

30.7% between 1000 and 1250 m a.s.l. and thereafter decreases. Above 250 m a.s.l. 

there is no clear trend between the percentage of the lake area where sinks are found 

and elevation (R
2
 = 0.12); the highest percentage is found between 250 and 500 m 

(49.1%) and the lowest between 500 and 750 m (28.9%). At elevations above 1500 

m a.s.l., where lakes do not currently exist, we find that sinks have a higher density 

(75 per 100 km
2
), a smaller average size (0.05 km

2
) and occupy a smaller fractional 

area (0.3%). 

 

 

Figure 5.3: Altitudinal trends in topographic sinks (black) and supraglacial lakes (white) A) 

numbers, B) average size and C) percentage area coverage with altitude above sea level. D) 

shows the relationships of the percentage of total area of sinks where lakes are found (black) 

and the percentage of the total area of lakes where sinks are found (white) with altitude above 

sea level. 

 

 

We assess some of the error introduced into our analysis by inaccuracy in the 

classification of lakes in optical imagery and the loss of precision in sink 

identification due to DEM resolution. An accuracy assessment of the classification of 

lakes in Landsat imagery provided an estimate that up to 6% of the area identified as 
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lake in any image belongs to an alternative class; this may account for up to 9% of 

the area of lakes identified which do not coincide with sinks. We tested the impact of 

DEM resolution on the agreement between sinks and lakes in the raw data. Reducing 

the resolution of the InSAR DEM from 150 m to 950 m leads to a decrease in both 

the total area and the number of sinks by 71.8 % and 98.5 %, respectively (Figure 

5.44). At the same time, the average size of sinks increased from 0.02 km
2
 to 0.36 

km
2
.  The decrease in DEM resolution from 150 m to 950 m also leads to a 53 % 

decrease in the lake area where sinks overlap, and a 67% increase in the sink area 

where lakes overlap (Figure 5.4).  By extrapolating trends between DEM resolution 

and the percentage coincidences of sinks and lakes we suggest that a horizontal 

resolution of 150m of the DEM may account for a 3% loss in accuracy of lake 

identification and a 5% gain in accuracy of the percentage of sinks where lakes are 

also found.  

 

 

 

Figure 5.4: Testing the effect of different DEM resolutions on identification and prediction of 

lake areas. Trend-lines are fitted through both datasets. 
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5.5  Discussion 

 

Our results give some indication of the processes which govern the formation and 

distribution of sinks and lakes on the ice surface in northeast Greenland. That there is 

some agreement between the modelled sinks and observed lakes identified in data 

acquired 4-11 years apart, suggests that the positions of lakes in this region are 

persistent. This is in line with observations from the western margin of the GrIS 

(Echelmeyer et al., 1991; Luthje et al., 2006) and indicates that the positions of the 

lakes are linked to undulations in the subglacial topography (Echelmeyer et al., 1991; 

Gudmundsson, 2003). The weak correlation between sink and lake characteristics 

with altitude however, suggests that, although surface depressions exert a first order 

control on the position of lakes, the characteristics of sinks have less influence on the 

size, quantity, and distribution of lakes on a regional scale. The correlation we find 

between lake characteristics and elevation does, however, provide further insight as 

to which other factors may control their distribution. Taking elevation as a proxy for 

surface temperature, ice thickness and surface crevassing, factors which may be 

controlling the distribution of lakes include the amount and routing of meltwater 

(Echelmeyer et al., 1991; Luthje et al., 2006) and the ease of hydrofracturing (e.g. 

Das et al., 2008; van der Veen, 1998).  

 

Some of the differences observed between lakes and sinks may also be due to 

limitations of our data and analysis. The temporal resolution of the optical imagery 

used to identify lakes influences the accuracy of estimates of lake areas, numbers and 

distributions. The observed rapid seasonal evolution of lakes in other regions of the 

ice sheet (e.g. McMillan et al., 2007; Das et al., 2008; Sundal et al., 2009) suggests 

that the temporal resolution of the optical images may be insufficient to capture the 

maximum number and area of lakes within the region. Furthermore, the possibility 

that the observed relationship between ice surface elevation and lake characteristics 

may reflect incomplete coverage of the entire span of the melt season in the optical 

image acquisitions, cannot be discounted. Because surface depressions are required 
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for lake formation, the surface area of lakes not coincident with sinks must result 

from misclassifications of lakes in the optical data (e.g. where lake surfaces are 

frozen) and the inability to detect small and shallow sinks in the DEM, not physical 

differences between sinks and lakes We estimate that lake misclassifications and the 

inability to detect small sinks introduce a 12% uncertainty to the percentage area of 

lakes coincident with sinks and, therefore the inability to detect shallow sinks may 

have a significant impact. Although our DEM is capable of detecting depressions 

deeper than ~4m, Sneed and Hamilton (2007) report that up to 91% of the total 

volume of ponded meltwater in the northwest of Greenland is between 20 cm and 1.5 

m deep.  

 

We find that, overall, the efficacy of using sinks as a proxy for the location and 

surface area of supraglacial lakes in the northeast of Greenland is poor due to the 

physical differences between sinks and lakes and to limitations of the available data. 

In comparison to an analysis of lakes at the western margin of the Greenland ice 

sheet (Luthje et al., 2006), we find a similar ratio of the size of sinks to lakes (3-4 

and 3 times greater respectively), However, unlike Luthje et al., (2006), who find 

that the locations of sinks and lakes compare ‘favourably’, we find that fewer than 

half of lake locations are identified in the DEM and less than a quarter of sinks 

identified in the DEM coincide with lakes. It is possible that this may be associated 

with glaciological differences in the study regions. For example, the bedrock and ice 

surface slopes are gradual at the Western margin, whereas in Northeast Greenland 

they are steep and rapidly changing (Bamber et al., 2003). Such differences affect 

both uncertainties associated with DEM resolution, and the physical differences 

between lakes and sinks because the drainage systems and stress regimes of ice in the 

Northeast are more varied. 

 

Further application of this method to predict, for example, the location of lakes in a 

warming climate, relies not only on the skill with which we can identify lakes 

currently forming on the ice sheet surface, but also on the ability to identify sinks 

above the transient snow line (TSL) where lakes do not currently form. Although our 

results from above the TSL (Appendix- section 5.8) show that sinks are clearly 
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identified, there are substantially more sinks in this region exhibiting smaller average 

area and percentage area coverage than at lower altitudes. Visual inspection reveals 

that, although there are some large sinks in this region that appear similar to those at 

lower elevations, the general distribution of sinks above 1500 m a.s.l. appears 

‘speckled’. We interpret the difference in the distribution of sinks above 1500 m a.s.l. 

(compared to those below 1500 m a.s.l.) as being a result of noise in the radar signal 

used to create the DEM. A potential source of such noise is variations in the degree 

of volume scattering within the firn, such as those associated with the presence of ice 

lenses forming at variable depths within the snowpack (e.g. Bindschadler and 

Vornberger, 1992; Rignot, 1995). In consequence, care should be exercised when 

interpreting the locations of sinks identified above the TSL.   

 

5.6 Conclusions 

 

We have assessed the accuracy of using sinks identified in a DEM to predict the area 

and location of lakes on the surface of the northeast region of the GrIS through 

comparison with a dataset of observed lakes. Our data show that the area of sinks is 

greater than that of lakes, and that applying this methodology would, for example, 

result in a 64 % overestimate of lake area in this region. We also found that the 

ability of the methodology to identify the locations of lakes is poor; only 36% of the 

surface area of lakes was identified. The disagreement arises from a combination of 

physical differences between sinks and lakes on the ice sheet surface and limitations 

in both the optical image analysis and the resolution of the DEM. Our analysis of 

sinks above the TSL revealed that the accuracy of predicting future lake locations is 

further limited by noise in the DEM, potentially resulting from volume scattering of 

the radar signal in the snow pack.      

 

The limited accuracy with which lake locations can be predicted using sink locations 

in northeast Greenland suggests that this method may not be appropriate for models 

aiming to predict the future impact of supraglacial lake drainage on the ice sheet. 

However, the results of our study do suggest that there is potential for using sinks to 

predict and identify lake locations. Refinement of the methodology developed here 
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could reduce the impact of several of the sources of uncertainty we have identified. 

We also recognise that this region of the NE GrIS exhibits a more complex 

glaciology in comparison to large proportions of the GrIS margin due to 

mountainous subglacial topography, and that this is likely to exacerbate errors 

associated with our intercomparison of sinks and lake locations. A comparison to 

similar work in the west of Greenland (Luthje et al., 2006), for example, suggests 

that the methodology may be more effective in regions of less complex glaciology.   

 

5.7 Limitations 

 

The results presented on the comparison between sinks and lakes in this chapter were 

subject to the following limitations: 

 

 A key limitation of the comparison conducted between sinks and lakes is that 

the vertical and horizontal accuracy of the DEM used, although relatively 

high by comparison to other DEMs (see Chapter 3), was not sufficient to 

resolve some of the sinks where lakes were observed to form. Furthermore, 

noise due to volume scattering at high elevations would prevent an accurate 

prediction of potential lake locations.  

 In this chapter, the temporal resolution of the optical imagery used in lake 

identification, relative to the time taken for lakes to form and drain on the 

surface of the ice sheet, may have led to an underestimation of the coverage 

of lakes, thereby introducing inaccuracy into the comparison.  However, 

although this is a limitation to the analysis in this chapter, the results 

presented in Chapter 6, using higher temporal resolution imagery, suggest 

that this is not the principal source of inaccuracy when comparing the 

distribution of lakes and sinks. 

 Perhaps one of the largest limitations of the results presented is that the 

physical differences between lakes and sinks (i.e. that lakes do not necessarily 

fill a sink) are not accounted for. This will be discussed further in Section 

7.4.2. 
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5.8     Appendix  

 

This appendix contains an additional figure that is referred to in this chapter and in 

support of the results presented therein. 

 

Sinks above the Transient Snow Line 

 

 
Figure 5.5: Sinks identified in the InSAR DEM of northeast Greenland.  Sinks identified above 

the transient snow line (1500 m a.s.l.) are shown in red and those identified below are shown in 

blue. The sinks above the transient snow line appear noisy. 

 



Chapter 6: Supraglacial lakes investigation 

 103 

 

Chapter 6: Investigating and predicting supraglacial lake 

drainage on the Greenland Ice Sheet 

 

In light of the findings reported in Chapter 5, i.e. that there is a poor correspondence 

between lakes and sinks in the northeast region of the ice sheet, we test our 

suggestions that this poor match is the result of complex topography in the region 

and the low temporal resolution of Landsat data. We achieve this by applying the 

same methodology of identifying sinks to the western, Russell glacier region of the 

ice sheet (Figure 6.1), where the ice sheet topography and glaciology is, by 

comparison with the northeast, less complex (i.e. it is less constrained by bedrock 

topography) and by using daily resolution MODIS imagery to identify lake extents 

on the ice surface.  

 

We built a high resolution DEM using the data and InSAR methods outlined in 

Chapter 4/5. Through comparison of 2114 ICEBridge and InSAR DEM data points 

(see section 6.3.4)  we estimated the precision of the DEM, over length scales 

applicable to mapping sinks (i.e. ~5km) to be 5.8m We identified sinks (topographic 

depressions) in the DEM using the method described in Chapter 5.  We use a dataset 

of the maximum lake extents in the area compiled from 64 MODIS images from 4 

summers (of 2003, 2005, 2006 and 2007) which were classified by A Sundal for 

Sundal et al., (2009) using methods outlined within.  

 

A total of 870 sinks were identified in the DEM which cover a total area of 656 km
2
, 

or 7 % of total ice surface area included in our study. 560 lakes were identified which 

cover a total area of 438 km
2
 or 4.8% of the area of study. We find a total area where 

both lakes and sinks are found of 8.2 km
2
. This equates to 1% of the area of sinks 

which coincides with areas where lakes are identified and 47% of the area where 

lakes are identified which coincides with areas where sinks are found. In terms of the 

coincidence of individual lakes and sinks, we find that of the 870 sinks identified, 
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342 (39%) have a lake in them in the MODIS data and of the 560 lakes identified, 

323 (58%) form in sinks found in the DEM.    

 

Although the area of lakes overlapped by sinks is an improvement on that reported 

for our similar study in the northeast region (Chapter 5) (probably due to differences 

in the nature of glaciology of the 2 regions and the improved temporal resolution of 

the optical imagery used to identify lake extents), the area of sinks overlapped by 

lakes is much lower. The accuracy of coincidence between sinks and lakes areas 

remains insufficient to be used as a tool for identifying or predicting lakes locations 

now, and in the future. We suggest that the remaining inaccuracy of this method may 

be attributed to the physical differences governing the formation of lakes and sinks, 

and the limits of the DEM for accurately identifying sinks (see Chapter 5). The 

accuracy of this method for identifying and predicting lake locations may be 

improved by modelling the hydrological processes which govern the size of a given 

lake on the ice surface (e.g. surface water routing and lake drainage through 

hydrofracturing) and by using a DEM with higher accuracy and precision than 

generated here (e.g. LiDAR); although at present, to the best of our knowledge, such 

a DEM does not exist for this region. Consequently, the next chapter focuses on the 

application and assessment of an alternative methodology for predicting the future 

coverage of lakes on the surface of the GrIS.  

 

The remainder of this chapter describes the results of a survey of lake formation and 

drainage in the west of Greenland using MODIS images and discusses the trends 

observed and the potential for future lake drainage in a warming climate. This 

chapter has been prepared for submission to the Journal of Geophysical Research, 

Earth Surface: 

 

Briggs, K., Nienow, P., Shepherd, A., Naylor, M., Sundal, A., Palmer, S., 

Bartholomew, I. and Cowton, T. (in prep.) Investigating and predicting supraglacial 

lake drainage on the Greenland Ice Sheet. Journal of Geophysical Research, Earth 

Surface. 
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The majority of the work for this chapter was carried out by myself. A Shepherd and 

P Nienow developed the original ideas for this chapter and provided comments on 

the manuscript. M Naylor conducted the nearest neighbour cluster analysis. A Sundal 

and T Cowton processed the MODIS images. I Bartholomew provided the 

meteorological data from the AWS on Leverett Glacier. A Sole extracted and helped 

process the IceBridge data. E Rinne extracted and helped with processing of the 

ICESat data.  

 

The limitations of this work are discussed in section 6.7. 

 

6.1 Abstract 

 

We have used 47 MODIS images to map the formation and drainage of supraglacial 

lakes during the summer of 2003 over a 9100 km
2
 region at the western margin of 

the Greenland Ice Sheet (GrIS). We identify 312 lakes with a total area of 227 km
2
 

that form up to an elevation of 1618 metres above sea level (m a.s.l.). Towards high 

elevations, we observe a decrease in the total area coverage of lakes (from 3.4 % at 

1100-1250 m a.s.l. to 1.6 % at >1550 m a.s.l.) due to a decrease in the density of 

lakes (from 4.7 per 100 km
2
 at 1100-1250 m a.s.l. to 1.2 per100 km

2
 at >1550 m 

a.s.l.) and despite of an increase in the average area of individual lakes (from 0.5 km
2 

at 1100-1250 m a.s.l. to 1.2 km
2
 at >1550 m a.s.l.). Clear trends are observed to exist 

between lake elevation and the Julian days and the cumulative positive temperatures 

required for lakes to form and drain. This suggests that it may be possible to predict 

the timing of lake formation and drainage by elevation which has significant 

implications for model parameterisation. In this sector of the GrIS, 81% of the 

supraglacial lakes undergo rapid drainage, and the proportion of lakes which do not 

drain increases with elevation from 0% below 950 m a.s.l. to 89% at altitudes above 

1550 m a.s.l.. We argue that the observed decrease in lake coverage and drainage 

rates with elevation stems from increases in ice thickness, which controls 

hydrofracturing and surface relief. The clear trends identified in the distribution and 

drainage of lakes suggests these trends may be extrapolated to higher elevations and 

other regions, thereby providing a means of parameterising lakes in ice sheet models.  
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We also report the simultaneous draining of clusters of lakes; using a nearest 

neighbour analysis we show that 37% of lakes that drain do so on the same day as 

others less than 5 km away. Finally, using IceBridge Airborne Topographic Mapper 

(ATM) data we show the presence of ice surface depressions at altitudes up to 2600 

m a.s.l. indicating that lakes have the potential to form well into the ice sheet interior 

in the event of increasing melt area extents to these regions in a warmer climate. 

However, in light of our findings of decreasing lake coverage and drainage with 

elevation, we suggest that the ice sheet conditions may not be favourable for lake 

drainage at these elevations.   

 

6.2 Introduction 

 

The Greenland Ice Sheet (GrIS) is losing mass from its margins through a 

combination of increased surface melting (Hanna et al., 2005) and ice discharge 

(Rignot and Kanagaratnam, 2006) in response to climate warming. The accuracy of 

model predictions of future mass losses from the GrIS rests on our level of 

understanding of these responses. However, whilst the processes linking climate to 

surface melting are well understood, our knowledge of the interplay between climate 

and ice discharge is limited.  

 

Observations have shown that ice discharge rates fluctuate in response to changes in 

outlet glacier velocity which are associated with changing ocean conditions (e.g. 

Holland et al., 2008; Straneo et al., 2010) and surface meltwater inputs to the ice-bed 

interface (e.g. Zwally et al., 2002; Joughin et al., 2008c; van de Wal et al., 2008; 

Bartholomew et al., 2010; Sundal et al., 2011). Several studies have suggested that 

the rapid delivery of surface meltwater to the ice bed leads to increased subglacial 

water pressures which causes enhanced basal sliding and increased ice velocity (e.g. 

Zwally et al., 2002; Das et al., 2008; Shepherd et al., 2009). However, over seasonal 

and interannual timescales the link between melt rates and ice velocities is unclear, 

with conflicting findings suggesting that increased surface ablation rates may lead to 

either increases (Zwally et al., 2002) or decreases (Van de Wal et al., 2008; Sundal et 

al., 2011) in the overall seasonal surface displacement. This may be explained by 
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differences in the variability of surface meltwater inputs and the evolution of the 

subglacial drainage system.  

 

Model experiments by Schoof (2010) suggest that an increased rate of steady water 

supply has a limited potential to increase seasonal velocities because the seasonal 

evolution of the subglacial drainage system enables greater volumes of water to be 

accommodated and this suppresses water pressures and acceleration. Conversely, 

larger annual surface displacements occur if water enters the subglacial drainage 

system in pulses (i.e. strong diurnal melt cycles and rainfall and lake drainage events) 

over timescales shorter than that required for drainage system evolution (Schoof, 

2010). Therefore, to predict the response of ice velocities to surface warming it is 

important that we are able to parameterise the variability of surface meltwater 

delivery, and therefore lake drainage events, in ice sheet models.  

 

During the summer, supraglacial lakes are observed to form and drain in the ablation 

area of the GrIS (e.g. Echelmeyer et al., 1991; Luthje et al., 2006; Box and Ski, 

2007; McMillan et al., 2007; Sneed and Hamilton, 2007; Sundal et al., 2009). Lakes 

develop as surface meltwater ponds in topographic depressions. They form in the 

same locations year on year implying that the depressions in which they form are 

surface expressions of subglacial topography (Echelmeyer et al., 1991). Throughout 

the melt season, lakes begin to develop further inland and at higher elevations, 

tracking the expansion of the region of surface melting (e.g. Box and Ski, 2007; 

McMillan et al., 2007; Sundal et al., 2009). In a number of instances, lakes have 

been observed to drain through crevasses at their bases over the course of just a few 

hours (Box and Ski, 2007; Das et al., 2008). Lake drainage is thought to occur when 

the depth and volume of water is great enough to exert sufficient pressure to 

overcome the stresses keeping a given crevasse closed (e.g. Weertman et al., 1973; 

Boon and Sharp, 2003; Alley et al., 2005b; van der Veen, 2007; Das et al., 2008). 

These drainage events have been linked to local in increases velocity (e.g. Joughin, 

1996a; Das et al., 2008) which is suggestive of water reaching the bed of the ice 

sheet, raising subglacial water pressures, and causing hydraulic jacking and enhanced 

basal sliding.  
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Sundal et al., (2009) compared lake coverage between warm and cool summers and 

found that in warmer years lakes form at higher elevations than in cooler years. This 

prompted the suggestion that in future, warmer climates, lakes may form at 

elevations beyond their current extent, with the implication that meltwater may be 

delivered to a larger area of the ice sheet bed and this may impact on ice discharge 

rates. However, to date there has been no assessment of the elevation to which lakes 

have the potential to form, the potential extent of their coverage and their potential 

for draining. Here, we use a combination of optical satellite imagery, and 

meteorological and topographical data to investigate current trends in lake formation 

and drainage. The aims of doing so include: identifying the controls on lake 

formation and drainage events, assessing the potential for extrapolating any observed 

trends in lake formation and drainage to other regions and higher elevations of the 

GrIS for model parameterisations of lake distributions, and assessing the likelihood 

of lakes forming and draining at elevations beyond their current limits in warmer 

climates. 

  

 

Figure 6.1 : MODIS image (11/07/2003) showing the study region in the southwest of Greenland. 

The red box delineates the region over which the lake survey was conducted. The green and 

yellow stars are the locations of the Kangerlussauq and Leverett meteorological and automatic 

weather stations (AWS) respectively. The black dashed lines are the IceBridge flight lines.  

 

6.3 Methods 

 

The study area is situated in the southwest of Greenland and extends from 66º72 to 

67º72 N and between 47º51 and 50º35 W (Figure 6.1).  We examine supraglacial 
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lakes over a 9100 km
2 

region of ice, reaching up to an elevation of 1700 m a.s.l., 

which includes the Russell and Isunguata Sermia glaciers. Surface slopes are 

examined up to an elevation of 2600 m a.s.l..  

 

6.3.1  MODIS image processing  

 

We use cloud-free MODIS images acquired during the summer of 2003 to 

investigate the lakes which form and drain on the ice surface. The one-day repeat 

pass time of MODIS imagery is ideal for studying lake drainage events which are 

observed to occur in less than a day (Box and Ski, 2007; Das et al., 2008). We chose 

to use data from 2003 as this was a year with a high number of cloud free images; in 

total we analysed 47 images acquired between 19/05/2003 (Julian Day (JD) 139) and 

12/09/2003 (JD 255). 

 

Data was downloaded from the Level 1 and Atmosphere Archive and Distribution 

System (LAADS) (http://ladsweb.nascom.nasa.gov/data/search.html). We used 

bands in the visible spectrum, band 1 (red), band 3 (blue) and band 4 (green), which 

have respective horizontal resolutions of 250 m, 500 m and 500 m. Image pre-

processing was conducted according to the method outlined by Gumley et al., (2007) 

and included atmospheric correction, resolution sharpening of bands 3 and 4 to 250 

m and image geolocation. Initial lake identification was achieved using a fuzzy logic 

classification based on band 1 and the ratio between band 3 and band 1; band 4 was 

used for visual analysis (for further details see Sundal et al., 2009). Sundal et al., 

(2009) estimate the accuracy of lake classification in the same region by comparing 

lakes classified in a MODIS image with those classified in a higher resolution (15 m) 

ASTER image acquired on the same day. The total area of lakes identified in the 

MODIS images exceeded those identified in the ASTER images by 1.6% and a root 

mean square deviation (RMSD) of 0.22 km
2
 was derived. Furthermore, due to the 

coarse resolution of MODIS images, lakes with an area smaller than approximately 

0.1 km
2
 are not included in the study. The comparison of ASTER and MODIS 

images (Sundal et al., 2009) revealed that this accounted for about 12% of the lakes 

in the ASTER image. The images used in this comparison were acquired in late 

http://ladsweb.nascom.nasa.gov/data/search.html
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summer (01/08/2001), when the percentage of small lakes is likely to be higher 

earlier in the melt season when lakes are developing (Sundal et al., 2009). This 

inability to identify small lakes introduces inaccuracy when identifying the timing of 

lake formation. Furthermore, the classification does not distinguish between frozen 

lakes and glacier ice. For these reasons we visually inspected the images to precisely 

identify the day on which lakes first appeared and drained. 

 

6.3.2 DEM generation 

 

To examine the relationship between lake characteristics and elevation we formed a 

DEM of the region using InSAR (e.g. Zebker and Goldstein, 1986; Kwok and 

Fahnestock, 1996; Joughin et al., 1996b; Wegmuller et al., 1998) and European 

Remote Sensing (ERS) satellite SAR data. We use two descending pass ERS-1 and 

ERS-2 tandem phase image pairs from the 20
th

 and 21
st
 October 1995 and the 2

nd
 and 

3
rd

 February 1996 with a combined perpendicular baseline of -115 m. We use ICESat  

GLAS elevation data (Zwally et al., 2003) to refine the interferometric baseline and 

to assess the DEM accuracy. We refined the interferometric baseline using 1689 

points of know elevation from descending ICESat tracks, and this resulted in a DEM 

with a root mean square (RMS) altitude error of 19.6m. We regressed a further 1358 

points of know elevation from ascending ICESat tracks with the elevations derived 

from the DEM and this yielded an excellent agreement (R
2
 = 0.9942). 

 

6.3.3 Temperature data 

 

We estimated daily surface temperatures across the region in 2003 using air 

temperature data acquired at Kangerlussuaq airport and atmospheric lapse rates 

calculated from air temperature data from Kangerlussuaq airport and 7 automatic 

weather stations (AWS) situated on Leverett glacier in 2009 (Figure 6.1) . We 

calculate lapse rates by taking the average difference in temperatures between the 7 

stations between May and August of 2009. We tested the accuracy of the lapse rates 

by comparing predicted temperatures against measured temperatures acquired in 

2009 and 2010. The average R
2 

values from all 7 AWS positions are 0.95 for 2009 
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and 0.54 for 2010, and the respective average residual error estimates are ± 0.8˚C and 

± 1.6˚C.  

 

6.3.4 Slope profiles 

 

To examine the distribution of surface depressions (possible future lake locations) on 

the ice sheet beyond the limit of current surface melting (and the InSAR DEM), we 

identify reverse slopes in profiles generated from the IceBridge (ATM) (Krabill, 

2009). The data was downloaded from the IceBridge ATM L2 Icessn Elevation, 

Slope and Roughness, National Snow and Ice Data Center (NSIDC) website 

(http://nsidc.org/data/ilatm2.html). We used data points acquired from 3 flight lines 

recorded in May 2010 (Figure 6.1). The estimated accuracy of the ATM topography 

measurements is 10 -20 cm (http://atm.wff.nasa.gov/).  

 

6.4  Results 

 

We identify the formation of 312 lakes with a total surface area of 227 km
2
 during 

the summer of 2003. This equates to 2.5% of the survey area, with an average 

density of 3.1 lakes per 100 km
2
. The average area of individual lakes was 0.7 ± 0.8 

km
2 

(one standard deviation) and the largest lake identified was 5.1 km
2
.  Our study 

region extends up to an elevation of 1700 m a.s.l. and the maximum altitudinal limit 

for lakes forming during the melt season of 2003 in this area extends to 1618 m a.s.l..  

 

We investigated variations in the altitudinal distribution of lakes in the region using 

six discrete elevation bands; 650-800 m a.s.l., 800-950 m a.s.l., 950-1100 m a.s.l., 

1100-1250 m a.s.l., 1250-1400 m a.s.l., 1400-1550 m a.s.l. and above 1550 m a.s.l.. 

We find clear trends in the coverage, number and size of lakes with elevation (Figure 

6.2). At low elevations (650-800 m a.s.l.), the total fractional coverage of lakes is 

low (0.6 %) and the population is comprised of a relatively low density (2.0 per 100 

km
2
) of small lakes (0.19 km

2
). However, the coarse resolution of MODIS images 

means that some percentage of small lakes (0.1 km
2
) will not have been detected, and 

given the tendency towards smaller lakes at lower elevations, the fractional coverage 

http://nsidc.org/data/ilatm2.html
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and density of lakes at low elevations is likely to be greater than we estimate here.  

The largest fractional coverage of lakes (3.4 %) occurs at mid elevations (1100-1250 

m a.s.l.) where there is a high density (4.7 per 100 km
2
) of medium-sized lakes (0.5 

km
2
), and towards high elevations (above1550 m a.s.l.) the fractional coverage 

decreases (1.6%) and the population is comprised of a low density (1.2 per 100 km
2
) 

of large lakes (1.2 km
2
).  

 

Figure 6.2: A) Fractional coverage of lake area, B) lake density, C) box plots showing the 

median and inter-quartile ranges (IQR) of lake sizes (the whiskers represent data that are 
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within 1.5 IQR of the lower and upper quartiles and red crosses mark the outliers) by elevation 

and D) the percentage of lakes forming on the surface which do (grey) and do not drain (i.e. 

refreeze at the end of the melt season) (red).  

 

We investigated the relationship between elevation and both the timing of lake 

initiation and the positive degree days (PDD) (defined as the sum of the mean daily 

temperatures, t, for all days when t > 0˚C) prior to lake initiation (Figure 6.3a & b). 

We find that lakes form progressively later in each elevation band (Figure 6.3a). At 

the lowest elevations (650-800 m a.s.l.) lakes form on average on day 150 ± 2, 

whereas at elevations greater than 1550 m lakes form on average over a month later, 

on day 185 ± 7. By examining the PDDs prior to lake formation we are able to 

account for the time lag of lake formation with altitude. The degree of correlation 

between the lapse-rate corrected PDDs prior to lake initiation and elevation is not as 

strong (R
2 

= 0.6) as that between elevation and the timing of lake initiation (R
2 

=0.9) 

(Figure 6.3b), although we find that more PDDs are required before lakes begin to 

form at higher elevations (38.0 ± 7.9 ˚C above1550 m a.s.l.) than at low elevations 

(27.6 ± 10.6˚C between 650 and 800 m a.s.l.).  

 

We investigated lake drainage events relative to elevation and lake sizes, examining 

the percentage of lakes which drain to those which do not, the timing of lake 

drainage events and the PDD temperatures before lakes drain. Within our study 

region 252 (81%) lakes drained suddenly (within consecutive images- i.e. 1- 5 days - 

Figure 6.3) during the melt season. The lakes which don’t drain freeze at the end of 

the melt season. We find that the proportion of lakes which do not drain increases 

with elevation (Figure 6.2). Between 650 and 950 m a.s.l. all of the lakes we 

observed to form also drained, however of the lakes which formed above 1550 m 

a.s.l., 89% did not drain and these froze over at the end of the melt season. We 

examined the relationship between the size of lakes which drained and the size of 

lakes which did not for elevations over 950 m a.s.l. and find that within this sample 

the lakes which drained are smaller than those which did not (0.8 ± 0.8 km
2
 and 1.0 ± 

1.1 km
2
 respectively) although the difference is not significant at p = 0.05.  

 

Of the lakes which did drain, we find that the average day of draining increased with 

elevation from day 157 ± 5 at elevations between 650 and 800 m a.s.l. to day 194 ± 



Chapter 6: Supraglacial lakes investigation 

 114 

10 at elevations between 1400 and 1550 m a.s.l. (Figure 6.3c  & d). However, only a 

weak positive trend exists between elevation and the average period over which lakes 

are present on the ice surface (i.e. the date of draining minus the date of formation) 

as there is no significant difference (at p = 0.05) between the residence times of lakes 

sited between 800 and 1400 m a.s.l. The average time over which lakes are present 

on the ice surface is 14.8 ± 10.0 days, with residence times ranging from 1 to 61 days 

before draining. At low elevations (650 to 800 m a.s.l.) the residence time of lakes (7 

± 6 days) is, on average, 12 days less than that of lakes sited between 1400 and 1550 

m a.s.l. (19 ± 10 days). 

 

There are distinct elevation related trends in both the PDDs prior to draining and 

PDDs while lakes are present on the ice surface (i.e. cumulative PDD temperature at 

draining minus the cumulative PDD temperature to onset) (Figure 6.3e & f). The 

PDD temperatures prior to drainage are smallest (62.1 ± 23.7 ˚C total before draining 

and 34.5 ± 27.3˚C whilst present) at low elevations (650-800 m), largest between 

800-950 m (96.9 ± 42.6 ˚C total before draining and 69.0 ± 42.9˚C whilst present) 

and then decrease steadily thereafter to a minimum at1400 -1550 m a.s.l. (53.5 ± 13.0 

˚C total before draining and 20.3 ± 12.1˚C whilst present).  
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Figure 6.3: Average days (a, c & e) and PDD temperatures (b, d & f) prior to lake filling (a&b), 

prior to lake drainage (d & c) and between lake formation and drainage (e &f) by elevation 

band. Vertical error bars represent one standard deviation from the mean. Graphs c, d, e and f 

do not include data from elevations above 1550 m a.s.l. as only one lake drained at this altitude. 

Black horizontal bars in a and c show the time gaps between MODIS images.  

 

The MODIS images suggest that neighbouring lakes often drain simultaneously in 

clusters. We quantitatively demonstrate this clustering effect in lake drainage events 

using a nearest neighbour analysis (Getis and Boots, 1978) of lakes draining on the 

same day (Figure 6.4a & b). To provide an assessment of the significance of our 
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results, we employ bootstrapping (Wu, 1986) to randomly reassign the recorded day 

of draining to the recorded lake locations, creating 50 new samples of the original 

data. We then conduct nearest neighbour analyses on the bootstrapped data and 

calculate the mean and standard deviation of the number of lakes draining on the 

same day as another. When comparing this to our original nearest neighbour 

analysis, we interpret that a clustering effect is occurring if the number of lakes that 

drain in conjunction with their k-nearest neighbour (k=1 being the closest neighbour, 

k= 2 the second and so on) exceeds one standard deviation from the mean of the 

bootstrapped dataset.  

 

The results of our cluster analysis shown in Figure 6.4a & b can be partitioned into 

three groups. The first group of ‘local’ lakes contains lakes which drain on the same 

day as their first 3 nearest neighbours, and is characterised by a substantial peak in 

the number of lakes draining on the same day. A second group of ‘regional’ lakes 

contains lakes which drain on the same day as their 4
th

 to ~25
th

 nearest neighbours 

and also fall beyond 1 standard deviation from the mean of the number of lakes 

draining on the same day as their k nearest neighbour in the random bootstrapped 

distribution. A third group of ‘distal’ lakes, contains lakes which drain on the same 

day as lakes sited farther than their 25
th

 nearest neighbour number and fall less than 1 

standard deviation from the bootstrapped sample mean.  

 

‘Local’ lake drainage events occurred within an average distance of approximately 5 

km. In total 94 or 37% of lakes drained with at least one of its first 3 nearest 

neighbours or they drained with a lake which had it as one of the other lakes’ 3 

nearest neighbours. ‘Regional’ lake drainage events occurred over an average 

distance of ~15 km. We explored the spatial structure of this intermediate group by 

re-assigning the position of lakes in latitude (north to south) and longitude (east to 

west), maintaining the same drainage days and then repeating the nearest neighbour 

analysis (Figure 6.4c & d). The strength of clustering within this intermediate group 

is destroyed by reassigning lake positions with longitude but not with latitude; 

compare the green lines in Figure 6.4c & d. This suggests that the moderate- 

clustering is related to some effect relevant in an east-west direction only (i.e. the 
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progression of lake formation and draining with elevation throughout the melt 

season- see Figure 6.3a & c and Sundal et al., (2009)). In the group of distal lakes, 

where the number of lakes draining on the same day as their 25
th

 or greater nearest 

neighbour does not exceed one standard deviation from the mean of the bootstrapped 

data, any clustering of lake drainage events can be attributed to chance.   

 

  

 

Figure 6.4: Number of lakes that drain with their kth nearest neighbour as a function of a) k 

and b) mean distance to kth nearest neighbour and as a function of k when shuffled c EW and 

d) NS. The solid red line represents the sample mean and the red dotted line the standard 

deviation of the bootstrapped data. The green line in c and d is the moving average (averaged 

over 50 samples) of the data.  

 

 

We applied a similar nearest neighbour analysis to lakes draining one day apart 

(Figure 6.5a) in order to investigate the timescale over which clustered lake drainage 

events may occur. We observed no significant peak in the number of lakes draining 
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within one day of any of the nearest neighbours (Figure 6.5a) and so we conclude 

that clustered lake drainage events do not span consecutive days. We also considered 

the effect of elevation on clustering (i.e. the first 3 nearest neighbours of a lake) 

(Figure 6.5b). A higher proportion of lakes drain in clusters at low elevations (700-

800 m a.s.l.) and high elevations (1400-1500 m a.s.l.) as compared to those at mid 

elevations (>60% at high and low elevations relative to 20% at mid elevations). 

 

Figure 6.5: A) Number of lakes which drain one day apart from their kth nearest neighbour as a 

function of k. The solid red line represents the sample mean and the red dotted line the standard 

deviation of the bootstrapped data. B) The proportion of lakes which drain in clusters by 

elevation.  

  

We explored the potential for lakes to form at elevations beyond which they form 

today in the event of a warmer climate by investigating the presence of surface 

depressions in IceBridge flight lines extending up to 2600 m a.s.l.. In this data we 

identify any surface depressions by mapping the occurrence of slope reversals along 

the flight lines. We then analysed the frequencies of reverse slopes with elevation 

(Figure 6.6a). We find reverse slopes occurring to the highest elevations recorded in 

the flight lines indicating the potential for lakes to form up to at least this elevation if 

the regional climate were to warm sufficiently for melting and runoff to occur in this 

area. We find no clear trend in the frequency of reverse slopes with elevation (Figure 

6.6a), although it appears from the profile (Figure 6.6b) that as elevation increases 

reverse slopes occur at greater intervals and in larger groups indicating that as 
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elevation increases the number of surface depressions decreases but their sizes 

increase.  

 

Figure 6.6: A) Frequency distribution of reverse slopes identified in 3 IceBridge ATM lines 

(locations shown in Figure 6.1). B) Slope profile of one IceBridge ATM line with distance from 

the margin; the vertical grey lines represent the location of reverse slopes and the red box is the 

area over which we conduct the current lake analysis and shown in more detail in C.  
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We investigate the future altitudinal extent of lake formation and drainage using the 

IPCC forecast of 2ºC warming in Greenland by 2050 (Meehl et al., 2007) as a 

reference.   We apply +2ºC to all the data points in our temperature data for 2003 and 

extrapolate these temperatures to higher elevations by taking an average of the lapse 

rates calculated over 1000 m (this gives -0.39ºC/100m, which is comparable to the 

lapse rates calculated in this region by Steffen and Box (2001)).  We find cumulative 

PDD temperatures comparable to those found at ~1550 m (approximately the limit 

for lake formation and drainage in 2003) up to 2100 m. Because 2003 was a 

particularly warm year (the warmest year on record in Greenland between the late 

1950’s and 2006 (Hanna et al., 2008)), this limit may not be representative of an 

average limit in 2050.     

 

6.5 Discussion 

 

6.5.1 Distribution of lakes 

 

The fractional coverage of lakes that form on the surface of the GrIS is a function of 

their density and size. We identify clear trends in each of these parameters with 

elevation, and we suggest that these trends are related to changes in the ice sheet 

thickness through the influence it has on surface topography and the propensity of 

hydrofracturing. Supraglacial lakes have been found to form in depressions that, 

because they have fixed positions in time, are thought to be the surface expressions 

of subglacial topography (Echelmeyer et al., 1991). Increasing ice thickness 

suppresses the expression of subglacial features (Kamb and Echelmeyer, 1986) and 

so, assuming regular variations in the subglacial topography, this will lead to a 

decrease in the number of surface depressions. This provides an explanation for the 

observed decrease in the density of lakes with increasing ice sheet elevations. We 

recognise, however, that the subglacial relief does vary over the ice sheet bed 

(Bamber et al., 2001b) and that this too will introduce some spatial variability into 

the density of surface depressions seen on the ice sheet surface. Furthermore, at low 

elevations, where the ice is thinner, the observed low density of lakes does not fit 
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with the above explanation. Instead this may be due to the greater presence of 

smaller lakes at low elevations which are not detected in the MODIS imagery. In 

addition, the presence of permanent moulins (e.g. Echelmeyer et al., 1991), which 

are able to form as a consequence of thinner ice and higher tensile stresses at low 

elevations, may also lead to fewer areas where water is able to pond.  

 

The high proportion of lakes on the ice sheet surface that drain (89%) suggests the 

maximum size that lakes reach may be governed by factors which control their 

drainage. It has been proposed that lakes drain rapidly through their beds by 

fracturing of water filled crevasses (e.g. Boon and Sharp, 2003; Das et al., 2008). 

The theory of fracture mechanics suggests that the depth to which a water-filled 

crevasse may propagate is dependent on the balance between the ice overburden 

pressure, the far-field tensile stresses and the fluid pressure of water within the crack; 

if there is a sufficient volume of water in a crack it may propagate to the bed of the 

ice sheet (e.g. Weertman, 1973; van der Veen, 1998, 2007; Alley et al., 2005b). 

Since ice overburden pressure increases, and tensile stresses decrease with increasing 

ice thickness (Kamb and Echelmeyer, 1986), the volume of water required for 

fracture propagation and lake drainage to occur will increase with increasing ice 

thickness. Assuming that the surface area of a lake is proportional to its volume (e.g. 

Amador, 2009), this may explain why larger lakes form at higher elevations.  

 

6.5.2 Lake drainage 

 

The increasing proportion of lakes that do not drain with increasing elevation also 

may be explained by the impact of ice thickness on the propensity of 

hydrofracturing.  We find no significant difference in the size of lakes which do or 

do not drain at any elevation. This suggests that the decrease in proportion of lakes 

which drain with altitude is not governed by limited water supply; although we do 

recognise that the altitudinal extent of lake formation is limited by availability of 

surface runoff. This trend may alternatively result from decreased crevassing at 

higher elevations which stems from reduced tensile stresses. This suggestion is 

supported by the findings of Catania et al., (2008) who, using ice-penetrating radar 
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surveys to identify the locations of possible moulins, find that the number of 

potential moulins (or fractures) reduces towards the ELA and suggest that this is due 

to decreased tensile stresses and crevasses as ice thickness increases and the 

influence of bed topography is reduced. It is also interesting to note that, although the 

lakes which do not drain are present on the ice sheet for a substantially longer 

amount of time than those that do drain and although it may be expected that they 

become substantially larger, they do not. This may be due to partial drainage through 

overland channels.  

 

A substantial proportion (37%) of lakes drain together in clusters. This leads us to 

believe that the drainage of one lake may trigger the drainage of other lakes nearby 

and this may due to the effect of melt-induced acceleration of ice flow (e.g. Zwally et 

al., 2002; Das et al., 2008). Increased flow would lead to an increase in local tensile 

stresses and thereby increase the likelihood of hydrofracture beneath other nearby 

lakes containing sufficient volumes of water. The clustering of lake drainage events 

occurs over length scales of up to 5km, which is comparable to the scale (<10 km) 

over which longitudinal coupling of velocity changes have been found to occur in 

this sector of the GrIS (Bartholomew et al., 2010). It is found that higher proportions 

of lakes drain in clusters at high (1400-1500 m a.s.l.) and low (700-800 m a.s.l.) 

elevations than at mid elevations.  This may be because at low elevations more lakes 

are close to the threshold for draining at any one time (due to higher tensile stresses 

and thinner ice), whereas, at high elevations the lake drainage induced speed up may, 

in many cases, be required to generate stress conditions to enable hydrofracturing 

(i.e. increased tensile stresses). 

 

6.5.3 Timing of lake drainage events relative to PDD temperatures 

 

The timing/ cumulative PDD temperatures (a proxy for melt) before lake drainage is 

a function of the timing/ cumulative PDD temperatures at the initiation of lakes, plus 

the days/ PDD temperatures which occur whilst the lake is present on the ice sheet 

surface. Our observations show that lakes drain later at higher elevations, in keeping 

with the findings of Sundal et al., (2009) and this is due to the combined effect of a 
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later day of formation and a longer duration on the ice sheet surface. Lakes form later 

at higher elevations as their formation tracks the delayed onset of positive 

temperatures (and therefore melting) to higher ice sheet elevations. A possible 

explanation for the shorter lake residence times at lower elevations is that the lakes 

are typically smaller at the time of drainage and so less melting is required for 

hydrofracturing and lake drainage; this assertion is supported by our finding that 

relatively little cumulative melting occurs during this period at low elevations 

(Figure 6.3f). This explanation does not, however, account for the longer residence 

times of lakes at higher elevations, despite their typically larger lake sizes (Figure 

6.2c). We observe a decrease in the PDD temperatures during the residence times of 

lakes as compared to lakes at lower elevations elevations. We suggest instead that 

lakes at higher elevations have longer residence times due to a decrease in melt 

intensity with increasing elevation which results from increased surface albedo due 

to an increase in snow cover (e.g. Lang and Braun, 1990; Hock, 2003). 

 

The trends in PDD temperatures with elevation prior to drainage suggests that lake 

drainage is more sensitive to the PDD temperatures occurring whilst lakes are 

present on the ice surface rather than those prior to their formation (Figure 6.3b, d & 

f). As previously mentioned, despite an increase in lake sizes and a probable decrease 

in surface melt intensity with increasing elevation, the PDD temperature whilst lakes 

are present on the ice sheet surface decreases with elevation. This can be explained 

by the general increase in the size of surface hydrological catchment with elevation 

and distance from the ice margin (Thomsen et al., 1988, 1989) which enables larger 

volumes of water to be delivered to each lake for a given quantity of surface melting.  

 

6.5.4 Projecting lake formation and drainage to higher elevations 

 

Our results show that surface depressions are present on the ice sheet surface at 

elevations up to 2600 m a.s.l. (close to the ice divide), which demonstrates that there 

is a potential for lakes to develop much further inland than they do at present if the 

area of the ice sheet exposed to seasonal surface melt were to increase (e.g. in a 

warmer climate). A simple analysis suggests that a 2º C rise in atmospheric 
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temperature relative to 2003 levels results in melting sufficient for lake formation up 

to approximately 2100 m, almost 500 m higher than in 2003.  However, in light of 

our other finding which suggests that the frequency of lake drainage tends to 

decrease with increasing elevation we suggest that the density, fractional coverage 

and potential for drainage of lakes at 2100 m a.s.l. could be small. This in turn 

suggests that the potential impact of more widespread lake drainage events on rates 

of ice flow may also be small. Further years of data and from other regions of the ice 

sheet are required in order to validate our findings and claims.  

 

6.6 Conclusions 

 

MODIS images from the summer of 2003 have been used to map spatial and 

temporal trends in the distribution of lakes in the Russell Glacier region, at the west 

margin of the GrIS. The observations show clear trends in the coverage, density and 

numbers of lakes with elevation. It was found that lakes increase in coverage, density 

and size up to mid-elevations (~1100 m a.s.l.), after which, the coverage and density 

of lakes decreases, and the average size of lakes continues to increase with elevation 

up to ~1600 m a.s.l. (the limit of lake formation in 2003). Clear trends are observed 

to exist between lake elevation and the Julian days and the cumulative positive 

temperatures required for lakes to form and drain. This suggests that it may be 

possible to predict the timing of lake formation and drainage by elevation which has 

significant implications for model parameterisation. It was also found that the 

proportion of lakes which drain decreases from 100% below 950 m a.s.l. to 11% in 

lakes observed above 1550 m a.s.l.. It is proposed that the trends in the distribution 

and drainage of lakes with elevation are predominantly the result of changes in ice 

thickness and horizontal strain rates because of the effect that these have on subduing 

ice surface topography, tensile stresses and therefore hydrofracturing.  

 

The drainage of lakes in clusters was investigated. It was found that 37% of 

supraglacial lakes which drained, drained on the same day as lakes less then 5 km 

away. One possible explanation for why clustering of lake drainage events may 

occur, is that increased ice velocity following one lake drainage event (Das et al., 
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2008) will increase local tensile stresses and therefore reduce the threshold volume 

of water required for hydrofracturing to below the volumes stored in local lakes, 

allowing them to drain also.  

 

The clear trends found to exist in the distribution and drainage of lakes with altitude 

in the western, Russell glacier region of the GrIS, may be able to be extrapolated to 

other regions and higher elevations of the GrIS and thereby provide a means of 

parameterising supraglacial lake area, density, coverage and drainage in ice sheet 

models. Using ATM surface profile data from the region we identify surface 

depressions, and therefore the potential for supraglacial lake development, up to 

2600 m. However, our observations of the current distribution of lake formation and 

drainage with elevation suggest that the ice sheet conditions at high elevations may 

be less favourable to large areal coverage and drainage of lakes. If this is the case, 

the potential volume of water which may reach the bed at such altitudes will be small 

and this may limit any melt induced ice acceleration at these altitudes in future.   

 

6.7 Limitations  

 

The results presented in this chapter were subject to the following limitations: 

 Due to the low resolution of the MODIS images (250 m) used to identify the 

locations and areas of lakes, any small lakes (approximately <0.1 km
2
) 

present on the ice could not be identified automatically (Sundal et al., 2009). 

By manually identifying the times of lake formation and drainage some of the 

inaccuracy this may introduce was overcome. There remains however, a limit 

to the size of lakes which can be identified and this will introduce error into 

the timing of lake formation and also the mis-identification of many small 

lakes.  

 Because MODIS is an optical imaging sensor, surface conditions are not 

imaged when there is cloud cover. This led to gaps in the coverage of lake 

evolution of up to a week (Figure 6.3a & c). This introduces some uncertainty 

into the timing of lake formation and drainage. However, the gaps in the data 
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are, on the whole, evenly spread throughout the period of analysis (Figure 

6.3a & c) and so will not be a major source of bias in our data.   

 Since only one year of data within a single survey area was presented, the 

findings remain to be validated.  
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Chapter 7: Synthesis and conclusions 

7.1 Introduction 

 

This thesis has investigated seasonal flow variability at marine- and land-terminating 

glaciers and the physical processes which govern them, in particular the formation 

and drainage of supraglacial lakes. An incomplete understanding of the physical 

processes that control ice dynamics has been identified as a major uncertainty in 

current predictions of the response of the GrIS to climate change (Lemke et al., 

2007). In order to improve our understanding of these uncertainties, this thesis has 

the following objectives: 

1.     To determine the seasonal velocities of land- and marine-terminating 

glaciers in the northeast of Greenland using SAR intensity tracking, and to 

infer the mechanisms controlling their seasonal flow patterns by 

comparing ice motion with air temperature, supraglacial lake evolution, 

sea-ice conditions and fluctuations in positions of the ice front (Chapter 4). 

2.      To investigate the distribution and factors controlling supraglacial lake 

formation and drainage, and to explore methods for predicting the spread 

and behaviour of lakes in a warming climate. Specifically the objectives 

are: 

i) To assess the ability of using a high resolution Digital Elevation 

Model (DEM) to identify and therefore predict the location of 

supraglacial lakes in the northeast of Greenland. 

ii)  To investigate current spatial and temporal trends in the formation 

and drainage of lakes in the west of Greenland to predict the future 

potential for lake drainage events at elevations beyond which they 

currently form. 
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This chapter will present a summary and synthesis (Section 7.2) of the principal 

conclusions derived from this thesis in relation to the objectives outlined in Chapter 3 

and above. Section 7.3 places the conclusions into a wider context and Section 7.4 

explores the potential for future research to extend the work presented in this thesis. 

7.2 Summary of the principal conclusions 

7.2.1 Seasonal velocity variability in the northeast of Greenland 

 

Knowledge of the links between GrIS ice dynamics and oceanic and atmospheric 

forcing is incomplete; this is a major limitation of ice sheet dynamic models and 

forecasts of future ice sheet changes (Meehl et al., 2007). While some areas in 

Greenland have been the focus of numerous recent studies (in particular the southeast 

and west coasts) much less is known about the north east of the ice sheet. The aim of 

Chapter 4 was to investigate the influence of glacier terminus conditions, and the 

associated forcing mechanisms, on seasonal ice velocities at land- and marine-

terminating glaciers in the northeast of Greenland. The first seasonal dataset of ice 

velocity for the northeast Zackenberg region of the GrIS is presented. The data set 

contains velocity estimates for three glaciers, two of which are marine-terminating 

and one land-terminating. The velocity data was derived from ERS SAR intensity 

tracking using 18 images acquired between March 1995 and March 1996. Average 

wintertime velocities of 140±42 myr
-1

 were calculated at land-terminating Wordie 

Gletscher, and 171±42 myr
-1

 and 248±42 myr
-1 

at marine-terminating Waltershausen 

and Adolf Hoel Gletschers respectively. Spatial trends in the flow of these glaciers 

were examined and it was found that Adolf Hoel Gletscher has flow patterns in line 

with those expected of a marine-terminating glacier and that Wordie and 

Waltershausen have flow patterns characteristic of land-terminating glaciers. It can 

be concluded, that although Waltershausen Gletscher terminates in a marine fjord, its 

subglacial conditions appear largely unaffected by the ocean suggesting that is 

grounded mostly above sea level.   

Seasonal trends in velocity were identified at all three glaciers. Early summer 

accelerations of 26%, 34% and 16% were observed at Wordie, Waltershausen and 
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Adolf Hoel Gletschers respectively, which were followed by decelerating flow rates 

throughout the remainder of the melt season. Using temperature data from a nearby 

meteorological station and information on the seasonal development of supraglacial 

lakes, sea ice conditions and ice front positions derived from the SAR imagery, the 

potential ice velocity forcing mechanisms were investigated. It was found that ice 

acceleration coincides with the onset of positive temperatures, and that the peak 

velocities and onset of the subsequent deceleration, coincides with a period of lake 

drainage at all three glaciers. At some marine-terminating glaciers, seasonal flow 

variability has been linked to forcing at their termini (e.g Howat et al., 2010). At 

Adolf Hoel Gletscher, the sea ice in the proglacial fjord was observed to clear and 

the ice front retreat, during the period of acceleration. However, the terminus 

position appears stable on an interannual basis and the glacier decelerated during the 

summer whilst continuing to retreat. Both of these findings are inconsistent with 

other studies where seasonal flow rates of marine-terminating glaciers are forced 

from their fronts. It is therefore suggested that all three glaciers appear to respond 

dynamically to the transfer of surface meltwaters to the bed of the ice sheet, which 

causes acceleration early in the summer due to increased basal water pressures, 

followed by deceleration as the subglacial drainage system evolves into a more 

hydraulically efficient state. These findings are consistent with observation from 

other land- and ‘stable’ marine-terminating glaciers in Greenland (e.g. Zwally et al., 

2002; van de Wal et al., 2008 Bartholomew et al., 2010; Howat et al., 2010; 

Anderson et al., 2010).   

7.2.2 Comparison of sink and lake locations in the northeast of Greenland 

 

Past research suggests that supraglacial lake drainage provides a means for water to 

reach the bed of the ice sheet and therefore influence the ice dynamics of the GrIS 

(e.g. Zwally et al., 2002; Alley et al., 2005b; Das et al., 2008; Howat et al., 2010; 

Chapter 4). In a warmer climate, it has been postulated that lakes will form higher on 

the ice sheet surface (Sundal et al., 2009), potentially increasing the influence of 

supraglacial lake drainage on ice sheet velocities. It is therefore important that future 

distributions of lakes can be predicted. This forms the principal aim of Chapter 5, 
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which is to assess the potential for using high resolution DEMs to map the locations 

and areal extent of supraglacial lakes. 

InSAR techniques were used to build a high resolution DEM of the Zackenberg 

region in the northeast of Greenland. To create the DEM, two descending pass ERS-

1 and -2 tandem phase image pairs from the winter of 1995 were used. ICESat GLAS 

data was used to constrain the DEM. Using this DEM, the areas where lakes may be 

expected to form were mapped by identifying surface topographic depressions. A 

comparison was made of the locations and areas of the mapped sinks with lakes 

identified in four Landsat images acquired between 2000 and 2006. The region 

covered by the study has a total area of ~5000 km
2
 and extends up to 1500 m a.s.l. 

(the approximate limit of summer melting). Within this region, 428 depressions or 

sinks were identified in the DEM. The sinks cover an area of 81.4 km
2
 and this 

represents 1.7% of the total ice area included in the analysis. From the optical 

images, 199 lakes were identified. The lakes cover an area of 29.7 km
2
 and this 

represents 0.6% of the total ice area included in the analysis.  

A comparison of the coincidence of locations and areas of lakes and sinks shows that 

there are 96 locations where both lakes and sinks overlap; this covers a total area of 

10.6 km
2

,
 
comprising 13% of the total area of sinks and 35.6% of the total area of 

lakes. This results demonstrate that using sinks to predict the coverage of lakes 

would lead to a large over-prediction of lake area and also that a large number of 

lakes would not be identified. Therefore the application of this method to predict lake 

locations in this part of the GrIS would lead to large inaccuracies. These differences 

can be attributed to the factors that control the distribution and sizes of lakes (i.e. ice 

thickness, surface crevassing and surface meltwater availability), and limitations in 

the quality of the optical data and DEM used to identify the lakes and sinks in this 

region with complex ice topography. An assessment is provided as to the uncertainty 

associated with identifying sinks above the current limit of lake formation (~1500 m 

a.s.l.). At these elevations there appears to be a large amount of noise in the DEM, 

probably caused by volume scattering of the radar signal in this region. It is 

concluded that the accuracy of using sinks to predict lake locations in this region 

may be even worse than below 1500 m a.s.l. 
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7.2.3 Spatial and temporal trends in lake formation and drainage in the west of 

Greenland 

 

Chapter 6 begins by repeating a similar analysis to that in Chapter 5, instead for the 

western margin of the GrIS where the ice surface topography is more subdued, and 

also, using higher temporal resolution images to identify lakes across the whole of 

the melt season. Doing so tests the hypotheses set out in the previous chapter, that 

some of the inaccuracy in lake predictions using sinks stemmed from the limited 

temporal coverage of images used for identifying lakes and the complex ice surface 

topography in the northeast region. An InSAR DEM of the region was created, from 

which sinks were identified. 64 MODIS images from four summers were used to 

identify lake coverage (Sundal et al., 2009). Sinks were found to cover 7% of the 

total ice surface area included in the analysis, while lakes cover 4.8%. Only 1% of 

the area covered by sinks coincides with observed lakes and 47% of the area covered 

by lakes overlaps with sinks. Although the area of lakes overlapped by sinks is 

slightly higher than in the northeast, the area of sinks overlapped by lakes is much 

lower and both remain too inaccurate for the purpose of predicting future lake 

locations in the absence of substantial methodological or data improvements. In the 

absence of a procedure for predicting the actual locations and areas of lakes on the 

ice sheet surface with DEMs, an alternative methodology is investigated for 

parameterising the distribution of supraglacial lakes by extrapolating the trends 

observed in current lake distributions.  

Chapter 6 examines observed spatial and temporal trends in the formation and 

drainage of lakes in the western, Russell Glacier region of the GrIS. The aim of this 

work was to identify the key factors controlling the distribution and drainage of 

lakes, and assess the potential for future lake development and drainage, at elevations 

higher than they form at present. In a 9100 km
2
 region of the ice sheet margin which 

extends up to 1700 m a.s.l, 47 MODIS images from the summer of 2003 were used 

to examine trends in lake formation and drainage with respect to elevation, day and 

air temperature (as PDD). 312 lakes were identified which cover a total area of 227 

km
2
 and equate to 2.5% areal coverage of the region. Above 950 m a.s.l., the 
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percentage area coverage of lakes decreases (1.6% >1550 m a.s.l.) as a result of a 

decrease in the density of lakes, although the average area of individual lakes 

increases. The proportion of lakes which drain decreases from 100% below 950 m 

a.s.l. to 11% above 1550 m a.s.l.. It is proposed that these trends are the result of 

increasing ice thickness because of the effect that this has on subduing the influence 

of subglacial topography on ice surface topography (i.e. surface depressions), and 

tensile stresses and therefore lowering the likelihood of hydrofracturing.  

The simultaneous draining of clusters of lakes is reported and this effect is quantified 

using a nearest neighbour analysis. 37% of lakes were found to drain on the same 

day as lakes less than 5 km away. No clustering effect was found with lakes draining 

on consecutive days suggesting that this effect is rapid and short-lived. One possible 

explanation for why clusters of lake drainage events occur is that increased ice flow 

velocities, resulting from the drainage of the first lake, increase the ice tensile 

stresses locally, thereby reducing the threshold volume of water required for 

hydrofracturing beneath nearby lakes.  It is found that higher proportions of lakes 

drain in clusters at high (1400-1500 m a.s.l.) and low (700-800 m a.s.l.) elevations 

than at mid elevations.  This may be because at low elevations, more lakes are close 

to the threshold for drainage at any one time (due to higher tensile stresses and 

thinner ice) and at high elevations, the lake drainage induced speed up is, in many 

cases, required to generate the conditions necessary to enable hydrofracturing (i.e. 

increased tensile stresses).  

Finally, IceBridge ATM data shows that ice surface depressions exist over 300 km 

into the ice sheet interior. This indicates that lakes have the potential to form up to at 

least 2600 m a.s.l. in this region (close to the ice divide) in the event of increased 

surface temperatures. However, the previous findings of this chapter, suggest that the 

lake coverage and occurrence of drainage decrease with elevation. As a result, the 

potential volume of water supplied to the ice bed through this mechanism will likely 

also decrease. 
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7.2.4 Synthesis 

 

In summary, the clear link between seasonal ice velocities and glacier hydrology 

reported here from northeast Greenland (Chapter 4) is similar to findings at other 

land- and marine- terminating glaciers in Greenland (e.g. Zwally  et al., 2002; van de 

Wal et al., 2008 Bartholomew et al., 2010; Howat et al., 2010; Anderson et al., 2010; 

Sundal et al., 2011). Supraglacial lake drainage events have been found to be 

important in Greenland as they enable surface meltwater to reach the bed through 

thick ice (Das et al., 2008); in Chapter 4 the timing of lake drainage events are found 

to be correlated with peak velocities and the subsequent onset of ice deceleration, 

suggesting their significance for ice sheet hydrology and flow rates in this section of 

the GrIS. It has previously been found that in warmer years more lakes form at 

higher altitudes on the ice sheet surface (Sundal et al., 2009). This has led to the 

suggestion that in warmer climates lakes will form higher on the ice sheet surface 

(Sundal et al., 2009). This will likely cause ice at higher elevations to undergo 

seasonal speedups (Bartholomew et al., in press), thus increasing the transfer of mass 

from high to low elevations and increasing the rates of mass loss (Alley et al., 

2005b).  

Given the potential importance of lake development and drainage, the aim of Chapter 

5 was to develop a methodology for predicting future supraglacial lake locations 

using a DEM to map the locations of surface depressions where water will pond to 

form lakes. A large number of surface depressions were mapped. However, a 

comparison with the locations and areas of lakes currently forming on the ice sheet 

using optical images shows that there is poor agreement between the locations and 

areas of lakes and sinks in both the northeast and west of Greenland. This is due to 

limitations in the DEM which prevents depressions from being accurately identified, 

and the physical differences which exist between lakes and sinks, for example, lakes 

may drain before they reach the full capacity of the sink. An alternative method for 

parameterising supraglacial lake distributions and drainage in ice sheet models may 

be found from extrapolating current trends in the temporal and spatial extent of 

supraglacial lake evolution. In Chapter 6, patterns of lake formation and drainage are 
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examined with respect to time and elevation in the west of Greenland using satellite 

derived optical imagery (MODIS). Statistically significant trends are observed in the 

fractional area coverage of lakes, their density and size with elevation, suggesting 

that it may be possible to extrapolate these trends to other regions and higher 

elevations (i.e. for warmer climate scenarios). Above 950 m a.s.l., it is found that 

lake coverage and drainage decreases with increasing elevation and therefore ice 

thicknesses. This suggests that although the temperature and surface conditions may 

exist for lake formation to occur well into the interior of the ice sheet in future, the 

ice sheet conditions at these elevations may not be favourable for lake drainage. This 

would result in an altitudinal limit, above which, lake drainage can no longer occur. 

This would prevent surface melt water reaching the bed at high elevations and 

thereby limit the inland extent of hydrologically induced ice speed-ups.  

7.3 Wider implications 

 

The conclusions of this thesis, highlighted in the previous section, have a number of 

implications for the future of the GrIS, its potential effect on sea level change and 

our ability to model accurately the future evolution of the ice sheet.  

7.3.1 Seasonal velocity variability 

 

Ice sheet velocity is critical in terms of mass loss from the GrIS as it governs rates of 

ice discharge from marine-terminating glaciers (e.g. Rignot and Kanagaratnam, 

2006; Rignot et al., 2008; van den Broeke et al., 2009) and the transfer of mass from 

high to low elevations (e.g. Parizek and Alley, 2004). Observations have shown that 

rapid and large fluctuations occur in ice flow rates of the Greenland outlet glaciers 

(e.g. Joughin et al., 2004; Luckman et al., 2006; Rignot and Kanagaratnam, 2006; 

Howat et al., 2007; 2008). At present these observations cannot be fully explained 

and this has led to large uncertainties in models predicting mass losses from the 

Greenland Ice Sheet (Meehl et al.., 2007). 

Fluctuations in GrIS velocities have been linked to changes in ocean (e.g. Holland et 

al., 2008; Howat et al., 2008; Nick et al., 2009; Amundson et al., 2010) and 
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atmospheric conditions (e.g. Zwally et al., 2002; van de Wal et al., 2008; Shepherd 

et al., 2009; Bartholomew et al., 2010; Howat et al., 2010; Sundal et al., 2011).  Ice 

flow rates at land- and ‘stable’ marine-terminating margins (i.e. with ice fronts that 

are neither advancing or retreating on yearly timescales) have been found to respond 

seasonally to changes in air temperatures and the consequent surface melt rates in 

Greenland (e.g. Zwally et al., 2002; Bartholomew et al., 2010; Howat et al., 2010; 

Anderson et al., 2010). It has been inferred that water is transferred from the ice 

surface to the bed where it enhances basal sliding (e.g. Zwally et al., 2002; Das et al., 

2008) and that this effect is regulated on a seasonal basis by the evolution of the 

subglacial drainage system from an inefficient to an efficient state (e.g. van de Wal et 

al., 2008; Bartholomew et al., 2010). To date, all of the research into this hydrology- 

dynamics forcing mechanism in Greenland has focussed on the western and south-

eastern margins of the ice sheet (Figure 7.1). The results presented in Chapter 4 

imply that similar processes also operate at the northeastern margin of the ice sheet.  
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Figure 7.1: The positions of studies looking at seasonal velocity variations in Greenland.  

Previous studies by van de Wal et al., (2008), Shepherd et al., (2009), Bartholomew et al., (2010) 

Sundal et al., (2011) (red dot), Zwally et al., (2002) (blue dot), Howat et al., (2010) (light blue 

dot), Andersen  et al., (2010) (green dot) and Joughin et al., (2008c) (grey dotted box). The region 

covered by the research presented in Chapter 4 is shown by the yellow star.  

 

These findings extend, spatially, our knowledge of the processes controlling flow 

dynamics across the Greenland Ice Sheet and provide further support for earlier 

findings of seasonal links between ice dynamics and surface melting in Greenland, 

especially at marine-terminating margins where few studies of such nature have been 

conducted (Anderson et al., 2010). Together, these and previous findings suggest 

these processes are likely to be occurring universally around the ice sheet margin 

where surface meltwater is generated. Given that observations have shown that 

surface melting occurs around the whole periphery of the ice sheet in summer (e.g. 

Fettweis et al., 2007-Figure 7.2) it can be assumed that summer speed-ups are 
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occurring in these regions also. Observations have also shown that the region of 

summer melting has increased in past decades (e.g. Fettweis et al., 2007-Figure 7.2) 

and forecasts suggest that it will continue to increase in future (Meehl et al., 2007). 

Therefore, in future, more of the ice sheet margin would be expected to experience 

melt induced seasonal accelerations. In some areas, where runoff is below a 

threshold described by Schoof (2010) this will increase the overall annual flow 

velocities and the transfer of mass to low elevations, which in turn will increase rates 

of surface ablation and ultimately rates of mass loss. However, in areas where runoff 

is above this threshold, more runoff is expected to cause a deceleration of ice flow.  

Therefore, understanding these complex interactions between surface melting and ice 

velocities for the whole of the ice sheet, where melting occurs, is critical for ice sheet 

modelling and thus forecasts of ice sheet mass balance; the findings in Chapter 4 will 

facilitate this.  
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Figure 7.2: A map representing the years in which melt is recorded in a region of the GrIS for 

the first time. Taken from Fettweis et al., (2007). 

 

7.3.2 Complex tidewater glacier behaviour 

 

Observations have revealed that the most dramatic dynamic changes and mass losses 

from the GrIS are occurring at the marine-terminating outlet glaciers (e.g. Abdalati et 

al., 2001; Krabill et al., 2004; Sole et al., 2008; Thomas et al., 2009; Pritchard et al., 

2009). However, the dynamics of marine-terminating glaciers are highly complex 

(e.g. Meier and Post, 1987; Howat et al., 2008; 2010). This is because there are so 

many factors which can influence their flow dynamics, including: meltwater inputs, 

ocean temperatures, calving, sea ice concentrations and thickness, ice thickness, 

subglacial topography and basin geometry, and all these factors vary for each 
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individual glacier. Although significant steps have been taken to understand the 

forcing mechanisms of tidewater glacier dynamics in Greenland (e.g. Holland et 

al.,2008; Straneo  et al., 2010; Murray et al., 2011), their complexity ensures the 

processes and behaviour are hard to constrain.  

In Chapter 4, a large interannual difference in winter velocities at an apparently 

stable marine- terminating glacier in the northeast of Greenland are reported. These 

differences remain unexplained and they serve to highlight another facet of the 

complexity of tidewater glaciers that, as of yet, is not understood. The limit to our 

understanding of the dynamics of these glaciers ultimately restricts our ability to 

represent them comprehensively or accurately in numerical models. Indeed, given 

the complexity of the behaviour of each individual tidewater glacier, an attempt to 

comprehensively model the dynamics of the marine-terminating margin of the GrIS 

may be out of reach. Instead, a means of characterising certain behaviour and 

simplifying these systems may be the most appropriate method for representing them 

in ice sheet models.  

7.3.3 Predicting the future formation and drainage of lakes 

 

The drainage of supraglacial lakes establishes pathways for water to go from the 

surface to the bed of the ice where the ice is thick, and overburden pressures large 

(e.g. Alley et al., 2005b; Das et al., 2008). This is important as it affects ice 

velocities and mass loss. It has been observed that in warm summers lakes form at 

higher elevations than in cooler summers (Sundal et al., 2009). As a consequence it 

has been suggested that in the future, as climate warms (Lemke et al., 2007), lakes 

will form at higher altitudes than at present and so the area with connections between 

the surface and bed may increase (Sundal et al., 2009). This could potentially 

increase the rate of ice flow (Das et al., 2008) and mass loss. Therefore, it is 

important that we are able to predict lakes which may form and drain at altitudes 

beyond which they form today.  

Although the results presented in Chapter 5 and the beginning of Chapter 6 suggest 

that this is not currently possible using DEMs, the results presented in Chapter 6 
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suggest that a prediction of lake formation and drainage at high elevations may be 

made by extrapolating observed trends in seasonal lake evolution on the ice sheet 

surface. This work therefore provides a potential methodology for parameterising the 

distribution and drainage of lakes on the ice sheet surface in models.  

The work in Chapter 6 is of further significance as it implies that lakes forming at 

higher ice sheet elevations, in warmer climates, only have a small chance of draining. 

This suggests that the transmission of surface meltwater to the bed of the ice, and 

therefore melt induced acceleration, may not occur at high elevations in a warmer 

climate. Therefore, a limit to the inland extent of melt induced acceleration may 

exist. This is significant for forecasting the effects of warming climates and 

increasing melt area extents on ice velocities as it indicates that the impact of 

increased surface melting on ice velocities may be spatially restricted. However, 

conversely, the effect of longitudinal coupling of elevated ice velocities (Price et al., 

2008) resulting from lake drainage events at lower elevations, may be expected to 

induce speed-ups at higher elevations with consequences for tensile stresses i.e. more 

melt could result in a dynamic response which primes the ice at higher elevations to 

experience hydrofracture due to increased tensile stresses. 

Model and observational studies suggest that once a subglacial drainage system is 

channelised, ice velocities respond more to short-term spikes in water supply to the 

bed of the ice, than to changes in mean water flow (Schoof, 2010; Bartholomew et 

al., in press.). This is because subglacial conduits take several days to enlarge to 

accommodate meltwater inputs (Schoof, 2010). Therefore, if the volume of water 

conveyed to the drainage system in a sudden event exceeds its capacity for efficient 

water evacuation, subglacial water pressure, and therefore basal sliding, will increase 

(Schoof, 2010). Such sudden events include rainfall and lake drainage events.  

Chapter 6 reports that a substantial proportion of draining lakes, drain in clusters 

over the course of one day (37%). A cluster of lakes draining will lead to a 

considerably larger volume of water being input into the subglacial system than from 

just one lake draining. It is likely therefore, that the perturbation to the subglacial 

drainage system, basal water pressures, basal sliding and ice velocities will also be 

larger. Furthermore, the net effect on tensile stresses and hydrofracturing up-glacier 
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(i.e. at higher elevations) of a cluster of lakes draining, as a result of longitudinal 

coupling (Price et al., 2008), will also be larger than if just one lake drained. 

Therefore, the drainage of lakes in clusters is potentially important for enabling lake 

drainage events at high altitudes where few lakes currently drain; this may already be 

the case, as demonstrated by the large proportion of lakes at high elevations which 

drain in clusters. Consequently, this clustering effect should be included in ice sheet 

models of flow dynamics.  

7.4 Further work 

 

This thesis has investigated and improved our understanding of the complex 

processes which control flow variability of the Greenland Ice Sheet. Nevertheless, it 

is clear that many questions remain and, in relation to the topics addressed in this 

thesis, there is ample scope for important future work as discussed below. 

7.4.1 Future work on velocity variability at the northeast margin of the GrIS 

 

The results presented in Chapter 4 suggest that there is a link between the hydrology 

and seasonal velocity variations of land- and stable marine- terminating glaciers in 

the northeast of Greenland. However, the confidence in this suggestion is limited in 

part by the temporal resolution of the velocity data. Further work, including a field 

campaign to collect high temporal resolution, ground-based GPS measurements on 

the glaciers, along with in-situ temperature and surface melt data, would enable 

testing of the findings (c.f. Bartholomew et al., 2010). This would also allow more 

consistent velocity estimates to be collected which was not possible in this study due 

to limitations in the spatial coverage of intensity tracking velocity estimates (Figure 

4.2) and the lack of available data during the late summer and autumn. Such data 

would still only allow for a more confident theoretical interpretation of the link 

between surface hydrology and basal sliding. Forthcoming projects, such as the 

‘Cryo-egg’ project of the University of Bristol 

(http://sies.bris.ac.uk/~ggbsrl/Cryoegg/home.html), which intend to directly measure 

the basal environment in Greenland, may provide evidence for the basal hydrological 
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processes occurring which are currently only inferred. Such ‘ground-based’ studies 

are expensive however, and would be difficult in such a remote region, thus limiting 

their spatial coverage.    

The work presented in Chapter 4 could also be extended by broadening the period of 

study to other years and other glaciers in the region. Doing so would provide a means 

of investigating interannual differences in seasonal flow variability (similar studies in 

Greenland are currently restricted to the western margin (Zwally et al., 2002; van de 

Wal et al., 2008; Sundal et al., 2011) and would provide some context and validation 

for the findings. In deriving such a dataset of velocity estimates, data from a number 

of sensors (e.g. Envisat, RADARSAT, Landsat, ASTER) employing a combination 

of InSAR, optical feature tracking and SAR offset tracking techniques could be used, 

so as to maximise the number and coverage of velocity estimates.  

The limitations in this study resulting from the shortcomings of the meteorological 

data employed could potentially be overcome by using melt data from coupled 

climate and surface energy balance models (e.g. Hanna et al., 2005). These models 

may provide a more accurate representation of the onset of melting, which although 

not a big problem in the current study due to the low temporal resolution of velocity 

estimates, would be beneficial in a study with more regular velocity estimates. 

Furthermore, such data would be valuable for investigating spatial patterns in the link 

between surface hydrology and glacier velocity and also interannual variability.  

An investigation into the subglacial topography of marine-terminating Waltershausen 

and Adolf Hoel Gletschers would improve any explanation of their flow behaviour as 

it would provide an indication of to what extent subglacial effective pressures are 

affected by the depth of the bed below sea level. Such data may be acquired using 

airborne ground penetrating radar (GPR) surveys (e.g. Gogineni et al., 2001). Such 

survey data would be invaluable for all marine-terminating glaciers in Greenland, not 

only for purposes of explaining flow behaviour, but also because it would enable 

more accurate estimates and model parameterisation of the transition of marine 

margins to land margins in time (something which is significant for the dynamic 

behaviour of the ice sheet). The ongoing work of IceBridge hopes to provide this 

data in the larger tidewater glaciers across the ice sheet (e.g. Sonntag, 2011). 
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7.4.2 Future work on the use of DEMs to map and predict supraglacial lake 

coverage 

 

The findings presented in Chapters 5 and 6 report a poor correspondence between the 

locations of observed lakes and predicted sinks. It may, however, be possible to 

develop a methodology that would allow DEMs to be used in a predictive capacity 

for identifying present and future lake locations. This may be achieved by, first of all, 

accounting for the physical differences between sinks and lakes and also by using a 

higher resolution DEM. It has been identified that differences between sinks and 

lakes occur due to differences in the routing and supply of surface meltwater to a 

sink, the presence of deeply incised subaerial streams that drain lakes and 

hydrofracturing of ice in the lake bed (Chapter 5). These differences may be 

accounted for by  modelling the depth of water in lakes at which hydrofracturing will 

occur (e.g. Krawczynski et al., 2009) and by modelling the surface hydrological 

network using a high resolution DEM combined with modelled surface melt rates to 

examine the delivery of water to and from lakes (e.g. Palmer et al., 2011).  

Given the level of inaccuracy in detecting sink basins (Chapter 5), the resolution of 

the InSAR DEM used in this study would not be sufficient to fully capture the 

surface hydrological network and model accurately the routing of surface runoff. In 

order to capture this and the small/shallow lakes not detected in the InSAR DEM, a 

higher resolution DEM must be employed. One possibility would be to use airborne 

laser altimetry with sufficiently close flightline spacing to be able generate a 

continuous DEM. As airborne laser altimetry has the potential to create DEMs with 

horizontal resolutions of a few metres and vertical accuracies of less than 10 cm 

(Knoll and Kerschner, 2009) it would provide very precise mapping of potential lake 

sites. However, due to the intensive nature of acquiring such a DEM, the potential to 

produce a map of sinks on an ice sheet-wide scale would be unfeasible.    
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7.4.3 Future work on understanding and predicting supraglacial lake drainage 

events  

 

Because the trends observed in lake distribution and drainage reported in Chapter 6 

are based on only one year of data from one section of the ice sheet margin, they lack 

validation. In order to strengthen the outcomes, the analysis conducted in Chapter 6 

could be repeated in other areas and in other years in order to validate the observed 

trends. Repeating the analysis over several years of data would allow for a 

comparison of patterns in lake drainage events in relatively warm and cool years 

which may provide an indication as to what causes some lakes to drain and not 

others. For example, if a selection of lakes does not drain in both cool and warm 

years alike, this may suggest that the reason for this is not driven by the availability 

of melt but instead by some structural control of the ice (i.e. its thickness or local 

tensile stress regime and hence a lack of fractures). By repeating the analysis in 

several other regions of the ice sheet, it could be determined if the drainage 

behaviour observed in the Russell region was similar in other regions and whether 

the patterns observed could be reliably extrapolated across the ice sheet.  

To further the understanding of the controls on lake drainage events it would be 

valuable to investigate the relationship between the volume of water in lakes at the 

point of draining and the surface stress gradients, and in turn, the relationship of this 

to ice thickness and elevation. In Chapter 6 the potential importance of this in 

controlling lake drainage is implied, although the data to develop the argument 

further is lacking. To do so would require analysis of individual lake characteristics 

and drainage events. For example, lake volume and depths have previously been 

derived by measuring the depletion of surface reflectance with increased depth in 

multispectral image signals (e.g. Box and Ski, 2007; Sneed and Hamilton, 2007; 

Georgiou et al., 2009). Stress gradients may be calculated from surface velocity 

maps (e.g. Fastook et al., 1995; Bindschadler et al., 1996) and ice thickness data, as 

mentioned previously, from GPR (e.g. Gogineni et al., 2001). GPR data has 

previously been used by Catania et al., (2008) to identify the presence of potential 

moulins in relation to lakes, suggesting that the number of moulins decreases towards 

the interior of the ice sheet.  
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7.5 Concluding remarks 

 

This thesis has investigated key processes which affect the interaction between the 

climate and ice dynamics of the GrIS and are therefore a key control on the ice 

sheet’s current and future mass balance. It has helped to clarify the processes 

governing seasonal flow velocities at land- and marine-terminating margins and adds 

to other suggestions that surface melt-driven velocity variations are likely 

widespread and perhaps universal across the ablation zone of the GrIS. It has also 

generated further evidence of the complexity of the processes that control the motion 

of marine-terminating glaciers thatas yetr cannot be predicted with confidence. 

Finally, this thesis has demonstrated that parameterising supraglacial lake 

distribution and evolution using DEMs may not be feasible from current datasets, but 

significant insights are possible by extrapolation of statistical trends in their current 

distribution and behaviour.  

A critical failing in the current ability to forecast sea level rise, stems from 

inaccuracies in the modelling of ice dynamics at the ice sheet scale as a result of the 

failure of current models to incorporate the necessary processes (Meehl et al., 2007). 

The findings of this thesis provide new observations which can be utilised to improve 

the accuracy of sea-level rise projections produced by the next generation of ice sheet 

models.   
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