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Abstract

We propose a novel method for clustering allophones called
Feature-Dependent Allophone Clustering (FD-AC) that deter-
mines feature-dependent HMM topology automatically. Existing
methods for allophone clustering are based on parameter sharing
between the allophone models that resemble each other in be-
haviors of feature vector sequences. However, all the features of
the vector sequences may not necessarily have a common allo-
phone clustering structures. It is considered that the vector se-
quences can be better modeled by allocating the optimal allo-
phone clustering structure to each feature. In this paper, we pro-
pose Feature-Dependent Successive State Splitting (FD-SSS) as
an implementation of FD-AC. In speaker-dependent continuous
phoneme recognition experiments, HMMs created by FD-SSS re-
duced the error rates by about 10% compared with the conven-
tional HMMs that have a common allophone clustering structure
for all the features.

1. INTRODUCTION

In recent speech recognition techniques, hidden Markov models
(HMMs) are one of the most powerful techniques for modeling
the time sequential data. HMM models non-stationary feature
vector sequences by switching the finite number of stationary
vector signal sources. However, being limited amount of train-
ing data available, more than enough number of free parameters
leads to over-fitting or over-learning and resulting in poor gener-
alization. Hence it is essential to devise an efficient representation
scheme of acoustic features with less number of free parameters.
Parameter tying is a typical manner that reduces the excess free
parameters. The parameter tying techniques can be classified gen-
erally into the following four levels.

Level 1: allophone clustering [1, 2]
Level 2: state tying [1, 2, 3]
Level 3: tied mixtures [4]
Level 4: distribution parameter tying [5]

The allophone clustering shares the parameters of the allophone
models that are similar each other in the behaviors of feature vec-
tor sequences. The total number of parameters can be reduced
efficiently with minimum loss of information by the tying tech-
nique. A number of clustering algorithms have been proposed in
this framework. But none has tried to relax the tacit constraint on
acoustic features, i.e., treating the features as a vector. In speech
recognition, feature vector sequences often consist of MFCCs, a
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Figure. 1: Trajectories of 2nd and 8th MFCC of allo-
phones /aka/ and /aki/

power and its time derivatives. Since these individual features
have different behaviors and different features may have different
context dependencies, all the features may not necessarily have
a common allophone clustering structure. It is considered that
the feature vector sequences can be modeled more efficiently by
clustering allophones for each feature separately.

In this paper, we propose Feature-Dependent Allophone Cluster-
ing (FD-AC) that clusters allophones for each feature separately.
In other word, FD-AC determines the tying structure of distri-
bution parameters for each feature separately. In section 2, we
describe a principle of FD-AC and Feature-Dependent Succes-
sive State Splitting as an implementation of FD-AC. In section
3, HMMs with different allophone clustering structures created
by FD-SSS are evaluated in the continuous phoneme recognition
experiment. The last section is a conclusion.

2. FEATURE-DEPENDENT
ALLOPHONE CLUSTERING

In speech recognition, MFCCs and their time-derivatives (delta
MFCCs) are commonly used as acoustic feature vectors. It is
generally considered that the lower-order MFCCs have more sig-
nificant information than the higher-order MFCCs. Therefore, as-
signing more number of HMM states to the lower-order MFCCs
than to the higher-order MFCCs may result in better recogni-
tion performance. Fig. 1 shows an example of feature vector
sequences of a phoneme /aka/ and a phoneme /aki/. Here, /aki/
denotes the phoneme /k/ with the preceding phoneme /a/ and the
following phoneme /i/. We can see that the both phonemes have
similar trajectories for the 8th MFCC, but different for the 2nd
MFCC. In this case, it is better to assign a common HMM state
to the 8th MFCC of those two allophones so that the number of
free HMM parameters is reduced, while, for the 2nd MFCC, they
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Figure. 2: Feature-Dependent Allophone Clustering (FD-
AC) that creates different allophone clustering structures
for individual features

need different HMM states each other. Therefore, allocating the
optimal number of HMM free parameters and determining the ty-
ing structure for each individual feature by means of clustering
will lead to a better modeling that shows higher precisions and
robustness than the existing methods.

Fig. 2 illustrates the idea of Feature-Dependent Allophone Clus-
tering. In this figure, each feature space consists of different num-
ber of clusters: there are six clusters in the 1st feature, five clusters
in the 2nd feature and four clusters in the 8th feature. Allophones
/aka/ and /aki/ share a common state only for the 8th feature.

2.1. Feature-Dependent Successive
State Splitting

In order to obtain the feature-dependent allophone clusters and to
decide the optimal numbers of free HMM parameters, we extend
Successive State Splitting (SSS)[2] that is one of the most popu-
lar algorithms for creating the hidden Markov networks (HMnet).
The SSS algorithm increases the model likelihood successfully
by splitting a state in HMnet that represents a state tying struc-
ture and an allophone clustering structure. We utilize the SSS
algorithm for the proposed feature-dependent allophone cluster-
ing and call the new algorithm as FD-SSS. There are two possible
implementations of FD-SSS as follows.

Synchronous type: Create a HMnet for each feature with the
constraint that the state transition of each feature’s HMnet
takes place synchronously with those of other feature’s HM-
nets (Fig. 3).

Asynchronous type: Create a HMnet for each individual
feature separately, and combine the HMnets into the
Asynchronous-Transition HMMs [6, 7], in which state tran-
sition occurs asynchronously for all the features but the
same efficient decoding algorithm such as one-pass Viterbi
search can be still applied with the conventional HMMs.

In this paper, we discuss only the asynchronous type. The outline
of the FD-SSS algorithm is shown in Fig. 4.

Step 1: Train a single state HMM (HMnet) for each feature with
all the training phone samples, where the output probability
for each feature is modeled by a single Gaussian distribution
with two scalar parameters, i.e., a mean and a variance.
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Figure. 3: FD-SSS (synchronous type) for generating a
FD-HMnet. Each vertical dotted-line indicates the syn-
chronized state-transitions for all the features.

Step 2: Among the states of all the HMnets (i.e., HMnet for
the 1st feature through the HMnet for the �-th feature), find
the one that will earn the largest likelihood gain when being
split into two states. The state splitting gains are examined
both in contextual and temporal domains.

Step 3: Split the state and re-train all the states that are affected
by the split using the corresponding data subsets.

Step 4: Repeat steps 2 and 3 until the number of all states
reaches a preset number.

Step 5: Create AT-HMMs [6, 7] with the allophone clustering
structures of the obtained HMnets by clustering the state
transition timings.

The state splitting gain � in Step 2 can be calculated by the same
equation used in ML-SSS. In case of splitting state � into two
states, �� and ��, the gain is defined by
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where ���� is the variance of state �, 	����� represents the prob-
ability of being in state �� at time �, and 
���

�� ���� denotes the
probability of being in state �� at time � and state ��� at time ��	.

3. EXPERIMENTS

To evaluate the proposed method, the ATR word speech database
of Japanese important 5240 words uttered by 2 male speakers
(MHT, MAU) and 2 female speakers (FMS, FFS) was used. Out
of them, the odd-numbered 2620 words and the phoneme bal-
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Figure. 4: FD-SSS (asynchronous type) for generating a
FD-HMnet with the optimal state tying structure

anced 216 words were used for training the speaker-dependent
HMnet, and half of the even-numbered 1310 words were used for
testing. 12 MFCCs, 12 
MFCCs, log-power and 
log-power
extracted with 5ms frame period and 25ms frame length were
used as an acoustic feature vector. The phoneme categories for
recognition were � �� �� �� �� �� �� �� 	� 
� �� �� 
� �� �� �� �� ��
�� �� �� � �� �� �� �� � ��

3.1. Model Generation using FD-SSS

Fig. 5 and Fig. 6 show the examples of the HMnet topologies for
phoneme /k/ of a male speaker (MHT), where the former (Fig. 5)
was created by ML-SSS, while the latter (Fig. 6) was built by
the proposed FD-SSS algorithm. The upper row in each round
box denotes the left context of the phoneme shown in the mid-
dle row, and the lower row represents the right context. As is
shown in Fig. 6, the HMnets by FD-SSS (FD-HMnet) have dif-
ferent state-tying structures for different features, which supports
our assumption that different features may have different allo-
phone clustering structures.

Fig. 7 shows the number of states that were assigned to each in-
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Figure. 5: Example of the HMnet topologies by ML-SSS
for /k/
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Figure. 6: Examples of the HMnet topologies by FD-SSS
for /k/

dividual feature in the FD-HMnet under the condition that total
number of distribution parameters is fixed to 20000. It can be
seen from the figure that the numbers of assigned states are dif-
ferent among the features, implying that the proposed FD-SSS
successfully allocated the optimal number of free-parameters to
the allophone structure for each individual feature in the sense of
maximum-likelihood estimation.

Fig. 8 illustrates the average variances of the output distributions
of the FD-HMnet in comparison with those of ML-SSS based
HMnet (ML-HMnet). We can see that the FD-HMnet has smaller
variances than the ML-HMnet. It is considered that the FD-
HMnet represents the information of the training data more ef-
ficiently than ML-HMnet.

3.2. Continuous Phoneme Recognition

For the evaluation of FD-HMnet generated by FD-SSS, contin-
uous phoneme recognition experiments were performed in com-
parison with the conventional ML-HMnet created by ML-SSS.
For decoding, the one-pass Viterbi algorithm was used with the
phonotactic constraints in Japanese. The number of states for
phoneme HMM was fixed to 3 or 5, and the SSS algorithm was
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Figure. 7: Numbers of states of FD-HMnet created by FD-
SSS
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Figure. 8: Average variances of models created by ML-
SSS and FD-SSS

Table. 1: Phoneme error rates of models generated by FD-
SSS and ML-SSS

#parameters #states method %error %reduction

ML-SSS 7.8 –3
FD-SSS 6.6 15.410400
ML-SSS 6.4 –5
FD-SSS 5.4 15.6
ML-SSS 6.3 –3
FD-SSS 5.4 14.320800
ML-SSS 5.3 –5
FD-SSS 4.8 9.4

stopped when a number of free parameters reached 10400 or
20800.

Table 1 shows the experimental results where %reduction denotes
the reduction of phoneme error rates defined by

%error of ML-SSS � %error of FD-SSS
%error of ML-SSS

�

We can see that FD-HMnet created by FD-SSS achieved a
phoneme error reduction rate of about 10%. It is considered that

acoustic feature vector sequences are modeled efficiently by FD-
SSS based on FD-AC.

4. CONCLUSION

In this paper, we have proposed a new notion of feature-
dependent allophone clustering (FD-AC) that clusters the allo-
phones for each individual feature separately. As an implemen-
tation of FD-AC, we have developed Feature-Dependent Succes-
sive State Splitting (FD-SSS), in which SSS-like state splitting
occurs separately for each individual feature to create a feature-
dependent hidden Markov network (FD-HMnet).

In the continuous phoneme recognition experiments, the pro-
posed FD-HMnet successfully reduced the error rates by about
10% compared with the conventional HMnet created by ML-SSS.
It is considered that FD-AC is an effective technique for improv-
ing the speech recognition performance of the acoustic models.

Future works will include the evaluation of a speaker-independent
model and the application to continuous speech recognition sys-
tem.
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