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Abstract 

 

 Inactivation of p53 by mutation occurs in half of human tumours. The 

majority of these mutations affect the DNA-binding core domain and hence impair 

DNA binding and hinder transcription of p53 target genes. A wealth of data indicates 

that even cancers carrying wild type p53 protein, evolve mechanisms to render the 

p53 pathway inactive. Thus, inactivation of the p53 response, either by mutation or 

the alternative mechanisms, allows unpurturbed tumour growth. Recent work 

identified Anterior Gradient-2 (AGR2) as a protein overexpressed in wild type p53 

expressing tumours and it was subsequently shown that AGR2 inhibits p53 pathway. 

In this study I confirmed that AGR2 protein inhibits p53 and AGR2 depletion 

potentiates p53-dependent DNA damage response. As there were no physiological 

signals known that regulate the AGR2-p53 axis, here I set out to identify pathways 

that activate or inhibit AGR2. I found that transforming growth factor (TGF-

triggers AGR2 protein reduction and this is concomitant with the stabilisation and 

increased activity of p53 protein. TGF- halts AGR2 transcription in a SMAD4-

dependent manner and triggers AGR2 protein degradation involving an ATM kinase. 

I found that SMAD nuclear interacting protein (SNIP1) mediated the ATM-

dependent AGR2 degradation. Interestingly, SNIP1 overexpression by itself 

promoted AGR2 protein degradation. I found that AGR2 protein degradation was 

proteasome independent and involed autophagy-lysosomal degradation pathway. As 

the mechanism of p53 inhibition by AGR2 is not known, I reasoned that identifying 

interactors of AGR2 may potentially further our understanding of the mechanism 

accounting for AGR2-mediated p53 inhibtion. I isolated the ATP binding protein 

Reptin in the yeast two-hybrid system and subsequently validated it as an AGR2 

binding partner. Mutations of the two ATP binding motifs in Reptin resulted in 

altered oligomerization and thermostability of Reptin and affected the AGR2-Reptin 

complex stability. I also identified the Reptin docking site and it was mapped to a 

divergent octapeptide loop. I found that AGR2-Reptin complex co-

immunoprecipitated with the p53 protein. Subsequently, I showed that Reptin protein 

can influence p53 activity, and depending on local concentration, either inhibit the 



 xx

transcription of p53-genes or chaperone its DNA binding activity. Interestingly, I 

found that Reptin formed a stable complex, independent of AGR2, with p53 R175H, 

p53 F270A, p53 S269D and p53 S269A, which has implication for the Reptin 

function in cancers bearing mutant form of p53 protein. 
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CHAPTER 1: INTRODUCTION 

1.1 Cancer and therapy 

1.1.1 Cancer 

 

 The initiation and the maintenance of cancer requires both aberrant gene 

regulation and acquired epigenetic abnormalities [1]. The genetic alterations involve 

mutations in pro-oncogenes and tumour suppressors and chromosomal deviations. 

Mutations that produce oncogenes hold the respective gene products active under the 

circumstances in which pro-oncogenes are not. In contrast, tumour suppressor genes 

undergo changes that render them inactive or reduce their activity [2-5]. However, 

tumourigenesis is also driven by epigenetic changes. These are changes in genes 

expression that are not accompanied by alterations in primary DNA sequence [6, 7]. 

Epigenetic alterations involve abnormal DNA methylation [7-9] and histone 

modifications [10, 11] and provide additional mechanisms that addict cells to certain 

pathways and promote selection for genetic changes in these pathways [12].   

1.1.2 Hallmarks of cancer 

 
 The hallmarks of cancer, first defined in 2000 by Hanahan and Weinberg [4] 

and subsequently expanded along with research advances, provided a major 

foundation for understanding of the complexity of this neoplastic disease          

(Figure 1.1). These traits that enable malignant growth include: (1) ability to 

chronically proliferate, (2) evasion of programs that limit cell growth and (3) induce 

cell death, (4) unrestricted replicative potential, (5) capability to switch on 

angiogenesis and (6) activate invasion and metastasis. The newest, and at the same 

time oldest hallmark, as first suggested by Warburg in 1953, is (7) reprogramming 

energy metabolism [13] and (8) circumventing the immune system.  
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Figure 1.1 Illustration of the major hallmark capabilities of cancer. The hallmark capabilities of 
cancer include (A) sustaining proliferative signalling enabled by (a) autocrine and paracrine 
proliferative stimulation with growth factors (GF), (b) independent of GFs activation of GF signalling 
pathways, (c) activated GF receptors or (d) disruptions of negative feedback-loops; (B) evading 
negative growth regulators enabled by (a) GOF or LOF defect in tumour suppressors, (b) evasion 
from “contact inhibition” or (c) perturbed TGF--signalling; (C) resisting apoptosis enabled by (a) 
loss of p53, (b) increased expression of antiapoptotic proteins (Bcl-2, Bcl-xl) and prosurvival factors 
(Igf1/2), (c) decreased expression of proapoptotic factors (Bax, Bim, Puma) or (d) perturbed 
autophagy pathway; (D) acquiring replicative immortality enabled by (a) telomere maintenance; (E) 
activating angiogenesis enabled by (a) upregulation of angiogenesis inducers, such as vascular 
endothelial growth factor A (VEGF-A) and fibroblast growth factor (FGF) or (b) pericyte coverage; 
(F) capability for invasion and metastasis enabled by (a) epithelial to mesenchymal transition (EMT) 
orchestrated by Snail, Slug, Twist, Zeb ½, or (b) stromal cells; (G) reprogramming metabolism 
enabled by (a) upregulation of glucose transporter proteins (e.g. GLUT1) or (b) upregulation of 
enzymes of glycolytic pathway; (H) evading the immune system enabled by (a) mechanisms to avoid 
detection by the cells of immune system or (b) limiting the extent of immunological death (reviewed 
in [13]) 
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1.1.3 Cancer therapy 

 

 The emergence of hallmarks of cancer and the mechanisms that govern each 

of them has been accompanied by the development of target-specific therapies.         

In addition, as the understanding of the genetics and biochemistry of human cancer 

progresses, so do the ideas and approaches towards effective cancer therapy. One of 

the most exploited strategies towards developing an effective drug has been to target 

a very specific factor or signalling pathway in the cancer cell that discriminates it 

from the normal counterpart.  

1.1.3.1 Targeting “oncogenic addiction” 

 A great focus of drug discovery programmes has been put on targeting 

kinases, as inappropriate regulation of kinase function has emerged as one of the 

main mechanisms used by tumour cells to circumvent physiological programs that 

prevent excessive growth and survival [14]. Indeed, a significant proportion of 

tumours bear mutations in protein kinases [15]. Mutated kinases acquire 

transforming capacity and become indispensable for tumour cells survival due to the 

phenomenon reffered to as “oncogene addiction” [16]. Examples of such mutated 

kinases include Phosphatidylinositol 3-kinase subunit p110 alpha (PI3KCA) [17, 18], 

Abl [19], epidermal growth factor receptor (EGFR) [20], c-Kit [21] and B-RAF [22].  

Most kinase inhibitors exploit the conserved ATP binding site with the conserved 

activation loop, and were developed to either mimic ATP in the ATP binding pocket 

or to form a covalent bond with the ATP binding site that can block subsequent ATP 

binding. In addition, the compounds that modulate kinase activity and bind outside 

the ATP binding pocket have been developed and the mechanism of their function 

involves allosteric modulation [14]. At the present, efforts to pharmacologically 

suppress mutationally activated kinases have been relatively successful. Drugs such 

as imatinib (Gleevec), gefitinib (Iressa) and trastuzumab (Herceptin), targeting  

BCR-Abl, EGFR and Her2 kinases, respectively, have been developed [23-25]. 

Unfortunately, for a number of drugs, acquired resistance has been reported, through 

mechanisms involving additional mutations of the targets [26] or upregulating of 

alternative pathways [27]. 
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1.1.3.2 Targeting the metabolome 

 Tumour cells rewire metabolic pathways in order to survive and thus, these 

may be good targets for development of cancer therapeutics [28]. The specific 

alterations in the tumour include increased glucose uptake and elevated rate of 

glycolysis [29]. One of the therapeutic strategies that have been exploited so far was 

to target upstream modulators of metabolic signalling. For example PI3K-AKT 

pathway that regulates mammalian target of rapamycin (mTOR) is misregulated in 

sporadic and hereditary cancers [30]. Essentially, mTOR regulates ribosomal 

biogenesis and protein synthesis and regulates cellular response to stress conditions 

such as nutrient deprivation [31]. Inhibition of mTOR by temsirolimus and 

everolimus has proven relatively successful in renal cell carcinoma treatment        

[32, 33]. Substantial inhibition of tumour expansion has been noted using inhibtors 

of glucose transport [34] and direct inhibitors of hexokinase, the enzyme that 

controls the first step of glycolysis and is upregulated by HIF and Myc, are currently 

in the clinical trials [35, 36]. 

1.1.3.3 Emerging strategy: targeting protein-protein interactions (PPIs) 

 The most innovative ideas in the field of cancer drug discovery involve 

strategies to disrupt protein-protein interactions. These concepts are founded by the 

realization that the changes in the cell signalling are enabled by the dynamism of 

protein-protein interaction networks. Protein networks encompass all of the cellular 

proteins with their respective binding partners, and include hub proteins, that interact 

with hundreds of proteins and are at the centre of cellular signalling. These networks 

may be significantly altered in cancer cells. For example a mutant variant of a hub 

protein is likely to rewire the wild type protein’s PPI landscape and this could 

contribute to its cancer-promoting activity. In addition the genes responsible and 

associated with the tumour development, the “disease genes”, are often encoding hub 

proteins [37]. Therefore, efforts to modulate protein-protein interactions may have an 

enormous therapeutic potential. For example the p53 tumour suppressor protein is 

commonly mutated in human cancer [38] and the wild type p53 protein is involved in 

over 300 protein-protein interactions [39] making it one of the major hubs in the cell. 
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Apart from exploiting classic strategies to switch on p53 pathway and to reactivate 

mutant p53 protein that led to discovery of mutant p53 refolding PRIMA-1 [40], the 

p53 field realizes now that understanding and learning how to drug the interactome 

of mutant p53 may prove to be a more effective strategy (discussed in 1.2.2.2).  

 Molecular chaperones are proteins that assist the folding and unfolding or 

the assembly and disassembly of other proteins [41]. They are at the central position 

in protein-protein interaction systems, form dynamic, temporary interactions and 

enable network rearrangements, for example, in response to stress. Cancer cells are 

frequently exposed to proteotoxic stress that is manifested by the presence of 

unfolded or misfolded proteins, and as a result they become dependent on the 

chaperone pathways that promote protein folding and are overactivated in several 

cancers. Heat shock protein (Hsp) Hsp90 is a major hub activated in cancer [42] and 

it relies on its ATPase activity for chaperoning its client proteins. Accordingly, the 

inhibitors of Hsp90, namely geldanamycin and its derivative                       

17-allylamino-17-demethoxygeldanamycin (17-AAG), target the ATP binding 

pocket and have been shown to efficiently inhibit tumour cell growth [43-45].  
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1.2 Interactomic nodes in homeostasis and cancer 

 

 Protein networks have to be perfectly balanced to maintain homeostasis. 

Conversely if a protein or pathway are lost or gained, this can result in disease.        

The hierarchical character of the interactome, involving hubs and their interacting 

proteins, has its implications in the pathogenesis of disease. This means that in 

general networks are quite resistant to the loss of a random part of the network 

however the perturbance or removal of hubs has usually detrimental consequences 

[46, 47]. Indeed, the aberrant expression or mutations of hub proteins such as p53, 

Mouse double minute 2 (MDM2) or p300 commonly leads to human cancers         

[48-51]. 

1.2.1 p53  

1.2.1.1 p53 function 

 

I p53 in tumour suppression 

 

 Evolution has equipped mammalian cells with a variety of tumour 

suppressive mechanisms that are imperative to prevent rising of the autonomously 

dividing cells. There are two general mechanisms that enable the cell to constrain 

tumourigenesis, namely apoptosis and senescence, which are promptly initiated 

should cell division become abnormal. p53 tumour suppressor protein has emerged 

in the last few decades as a master inhibitor of tumour development. Indeed, over 

half of human cancers bear mutations in the p53 encoding gene and germline 

inheritance of mutant p53 allele is an underlying cause of Li-Fraumeni syndrome 

[52]. Apoptosis is one of the key programmes initiated by p53 to eliminate neoplastic 

cells. Transgenic mice harboring a p53 mutation, which disrupts p53 ability to 

initiate cell cycle arrest, but not apoptosis, did not develop spontaneous tumours [53]. 

In principle activation of both intrinsic and extrinsic cell death programmes by p53 

involves transcriptional activation of expression of pro-apoptotic members of Bcl2 

family, such as p53-upregulated modulator of apoptosis (PUMA) [54], NOXA [55], 
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BID [56] and BAX [57], as well as other components of the apoptotic pathway, 

including elements of death-receptor pathways and components of the apoptotic 

effector machinery [58-63] (Figure 1.2 A). p53 can, however, control apoptosis in a 

transcription independent manner [58] (Figure 1.2 I). Importantly, p53 can prevent 

tumour progression in the absence of apoptosis. This observation was made in a 

study of PUMA knockout mice. Interestingly, despite showing that PUMA is an 

essential mediator of the p53-mediated apoptotic response [64], the PUMA knockout 

mouse strain did not show an increased rate of cancer incidence [65], hinting that 

p53’s antitumour functions involve other mechanisms than just cell death response. 

Indeed, another tumour suppressor function of p53 is linked to its ability to 

temporarily or irreversibly forestall aberrant cell proliferation and growth. Reversible 

cell cycle arrest is achieved by inducing genes such as the cyclin-dependent kinase 

(CDK) inhibitor p21, 14-3-3 sigma and GADD45 [66] (Figure 1.2 B). If the transient 

cell cycle block is insufficient, for example following p53 activation in response to 

telomere attrition or oncogene activation [67-69], the senescence pathway coupled to 

the induction of p21 [70] and plasminogen activator inhibitor 1 (PAI-1) [71] is 

triggered (Figure 1.2 C). 

In addition to transcriptional regulation of genes encoding aforementioned proteins, 

p53 can regulate and modulate cell fate by controlling expression of micro RNAs 

(miRNAs), non-coding RNA molecules that by binding to specific mRNA inhibit 

protein translation and often enhance degradation of the respective protein. For 

example p53 targets promoters of miR-34a, miR-34b and miR-34c, miR-192,       

miR-215 and miRNAs are thought to be key effectors of p53 functions, such as 

apoptosis, cell cycle progression, senescence, DNA repair or regulation of 

angiogenesis and hence contribute to tumour suppressive activities of p53 [72-78]. 

Interestingly, some of the p53-responsive miRNA targets, such as cell fate regulators 

CDK4, cyclin E2, p21 and the antiapoptotic factor Bcl-2 as well as proto-oncogene 

mesenchymal-epithelial transition factor (MET), are also transcriptionally regulated 

by p53, exemplifying the intricacy of p53 fine-tuned signalling.  
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II Expanding on p53 tumour suppressive activities 

 

 As mentioned earlier anomalous energy metabolism is one of the hallmarks 

of cancer (Warburg effect). Tumour cells gain the ability to metabolise glucose under 

both normoxia and hypoxia and thus can produce macromolecules that fuel their 

growth despite adverse microenvironmental conditions [79]. These signals that 

favour a metabolic switch in cancer cells can also elicit a p53 response. Under 

normal conditions, p53 ensures the appropriate rate of glycolysis and regulates 

reactive oxygen species (ROS) formation (Figure 1.2 G). For example p53 poses an 

intricate response to ROS and induces either antioxidant genes, such as glutathione 

peroxidase 1 (GPX1), mitochondrial superoxide dismutase 2 (SOD2), aldehyde 

dehydrogenase 4 family member A1 (ALDH4A1) and sestrin 1 and sestrin 2 

(SESN1 and SESN2), under conditions of physiological oxidative stress; or 

proapoptotic genes, including PUMA, Bax and Pig3, when the levels of ROS are 

abnormally high [80, 81]. Intriguingly, p53 curbs the Warburg Effect and impinges 

on glycolysis by inhibiting glucose uptake [82], inducing genes that suppress 

glycolysis [54] and enhancing mitochondrial respiration [83]. In addition, p53 can be 

activated by nutrient deprivation or other metabolic stress through activation of 

AMP-activated protein kinase (AMPK) and inhibition of p53 degradation promoting 

Akt kinase [84]. Activated p53 induces AMPK, TSC2, IGFBP3, PTEN, Sestrin1/2 

and REDD1 that in turn inhibit mTOR protein [85-87]. mTOR protein senses 

glucose, amino acids, ATP/AMP and growth factors levels and is a major modulator 

of protein translation [87]. mTOR has also been implicated in the negative regulation 

of autophagy, a process promoting cell survival under stress conditions and 

contributing to genome stability. Accordingly, p53 protein promotes autophagy by 

negative regulation of mTOR, but also through transactivation of lysosomal proteins 

including damage-regulated autophagy modulator (DRAM), thus contributing to 

increased genome stability [88] (Figure 1.2 H and J). However, inhibition of p53 

pathway can also induce autophagy [89]. This indicates that any aberrant signals, 

leading to either activation or inhibition of p53, may promote autophagy. To take this 

further, tumour cells containing wild type p53 may take advantage of this originally 
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tumour suppressive pathway, and use it as a prosurvival mechanism under the stress 

conditions posed by tumour microenvironment. 

 

III p53 in development 

 

 In terms of evolution p53’s tumour suppressive activity is not an early 

adaptation. The p53 gene family emerged in lower organisms which do not require 

the tumour suppressive signalling, as this is imperative only for specialised tissues 

homeostasis [90, 91]. In fact, p53 protein evolved to respond to stresses and to 

monitor normal development [92] . Several studies have shown p53 function in 

embryonic development. For example, it has been demonstrated using chicken and 

mouse models that both p53 mRNA and protein levels are differentially regulated 

during embryogenesis. Firstly, p53 mRNA appears to be present in most tissues, later 

however its expression becomes restricted to distinct tissues and its levels are almost 

negligible in terminally differentiated tissues. Interestingly, only the nervous system 

appears to exhibit high p53 activity even in late stages of embryogenesis or in 

newborn mice [93] [94-97].  

The importance of the gradual loss of p53 during development has been shown in 

studies using Mdm2 and Mdm4 knockouts. These animals exhibit lethality during 

early embryogenesis. This is due to abnormally high levels of p53 and increased p53-

dependent apoptosis and cell cycle arrest, instead of essential at this stage of 

development rapid cell divisions. Accordingly, Mdm2 and Mdm4 knockout mice 

which were p53-deficient were viable [98-100]. 

Further evidence of p53 developmental role came from the studies of the p53 

knockdown mice. In addition to the predisposition to cancer development at early 

age [101], p53 null mice display high frequency of developmental abnormalities. For 

example, females of some backgrounds exhibit neural tube-closure defects called 

exencephaly [102, 103] and both females and males display lower fertility [104-106]. 

Moreover, other abnormalities occur at a higher incidence in p53 null mice, such as 

polydactily of the hind limbs or defects in upper incisor tooth formation [102]. 

The relatively moderate effect of p53 absence in mouse embryogenesis may be due 

to the fact, that p63 or p73, which are also expressed at early developmental stages in 
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mouse, can provide compensatory mechanism for the p53 loss. Indeed, p53 loss has 

more severe defects in animals, which do not express p63 or p73 during 

embryogenesis [107]. In the Xenopus leavis p53 engages the SMAD pathway in 

central embryonic germ layer specification [108] and its loss hinders mesoderm 

differentiation and consequently leads to severe developmental abnormalities [109]. 

Similarly to frog, studies in zebrafish have further confirmed p53 role in the early 

developmental stages [110, 111] and the p53 expression is also essential for 

salamander’s limb regeneration [112].  

In addition to clear role of p53 in embryonic development, it also participates in 

differentiation programs. For instance p53 has a critical role in neural differentiation. 

Apoptosis of the cells of the nervous system constitute the major mechanism for 

normal neural development [113]. Studies on neuronal precursors derived from p53 

knockout mice revealed the importance of p53 antiproliferative signalling in neurons 

[114]. Furthermore, p53 has been implicated in osteogenic differentiation and bone 

formation and has either an inhibitory or activating role in osteogenic differentitation 

depending on the context [115-117]. Additionally, p53 protein has been reported to 

be upregulated during myogenic differentiation [118] and together with other 

members of the p53 family activate the pRb protein, which is essential for permanent 

cell cycle inhibition and induction of muscle-specific genes [119]. Another study 

demonstrated p53’s function in the B-cell differentiation [120], differentiation of 

granulocytic or monocytic lineage [121] and its activation during megakaryocytic 

differentiation [122, 123]. Consistent with its role in differentiation and development, 

p53 has a function in keeping stem cell renewal in check [124, 125]. Furthermore by 

suppressing Nanog, p53 induces differentiation of mouse embryonic stem cells [126] 

and reducing p53 expression in human stem cells diminishes spontaneous apoptosis 

and differentiation [127]. Importantly, the excessive self-renewal of tissue stem cells 

has been linked to tumourigenesis as some cancers arise from tissue stem cells or 

from cells that re-differentiated into cells with stem cell properties [128]. Indeed, 

deletion of the p53 gene in mice has been shown to give a proliferative advantage to 

stem cells and these formed hyperplastic regions in the subventricular zone of brain 

[129]. Finally, the osteoblasts-restricted loss of p53 led to excessive proliferation of 

these cells and mice developed osteosarcomas [130]. 
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IV p53 as a hub protein 

 

 The p53 protein has been shown to interconnect several signalling pathways 

and act as hub protein. This can explain p53’s ability to regulate such an intricate set 

of diverse aspects of life. The current list of p53 binding partners exceeds three 

hundreds [39] and could be grouped into p53 activators, p53 inhibitors and effectors 

of p53 function.  
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Figure 1.2 Overview of p53 functions.  (A-I) Nuclear functions of p53. In response to different 
oncogenic signals, depending on the extent of damage, p53 activates genes involved in (A) apoptosis 
or (C) senescence or genes involved in (B) cell cycle arrest and (D) DNA repair. (G) p53 is also 
involved in preventing “Warburg effect” by regulating metabolism; it suppresses metastasis, by 
inhibiting (E) angiogenesis and (F) migration, and (H) activates autophagy. (I-J) Cytoplasmic 
functions of p53. In addition to activating/ repressing transcription of its target genes by nuclear p53, 
cytoplasmic p53 also regulates cell death and growth by regulating (I) apoptosis and (J) autophagy. 
The structure of p53 oligomer bound to a DNA is shown (pdb code:3q05 [131]) 
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1.2.1.2 p53 and disorder 

Several reports have shown that cellular hubs are enriched in intrinsically 

disordered proteins [132]. Natively unstructured proteins are characterized by low 

globularity, extended conformation and little secondary structure [133]. Disorder 

equips the protein with conformational plasticity that is required for adopting 

different structures depending on the cellular context. A disordered region can form 

flexible linkers between globular domains conferring their unrestricted movement 

[134] [135]. An unstructured region can itself provide a binding site. The hundreds of 

p53 interactions have been mapped in detail to the different regions of p53 protein, 

namely N-terminal domain, Proline rich domain, DNA binding domain, 

tetramerization domain and C-terminal negative regulatory domain [136, 137] 

(Figure 1.4 A). Interestingly, p53 protein has been found to be rich in intrinsically 

disordered regions (Figure 1.3 A). For example, structural studies of N-terminal 

portion of p53 revealed an absence of well defined secondary and tertiary structure 

and a high flexibility of the main chain [138-140]. This is consistent with the N-

terminal sequence of p53 that is rich in acidic residues and has few hydrophobic 

amino acids, determinants typical for highly unstructured regions [133, 141]. The 

induction of secondary structures upon ligand binding is often observed for unfolded 

proteins. Specifically, peptide motifs can undergo the process of disorder to order 

transition upon protein binding [133, 141-144]. Indeed, a short segment of conserved 

hydrophobic residues in the transactivation domain of p53 becomes helical upon 

binding to MDM2 [145-147], Mdm4 [148], p300 [149], replication protein A [150] 

or yeast TFIIH [151] (Figure 1.5 A).  
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Figure 1.3 Predicted disordered regions in p53 protein.  (A) Disordered regions in p53 protein as 
predicted using. p53 protein contains regions of disorder in N- and C-terminal portion of its sequence. 
Disorder provides p53 protein with great binding promiscuity, hence it has an enormous interactome.  
(B) A pie chart representing a percentage of p53’s PPIs involving its disordered regions.  
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Further, the C-terminal regulatory domain is also unstructured [138] and undergoes 

folding transition as a consequence of binding to its vast range of binding partners 

(Figure 1.5 C). Interestingly, multiple secondary structures can be adopted depending 

on the ligand, which further emphasises the binding promiscuity and adaptability of 

p53 protein. Overall, it has been estimated that disordered regions of p53 confer 

approximately 70 % of p53 known interactions [152] (Figure 1.3 B). Interestingly, 

the DNA-binding domain of p53 binds to several proteins as well. The core domain 

is apparently folded, however significant differences in its structure have been 

observed depending on the bound partner [152]. This indicates that this domain is 

only transiently folded or in equilibrium between different conformations that allows 

it multiple specificities. Indeed, the core domain is relatively unstable at room 

temperature, and a peptide motif that precedes it can bind to and stabilise it [153]. 

 

1.2.1.3 p53: modules, linear motifs and multiple docking sites 

a. Modules 

Albeit structurally mostly disordered, functionally p53 can be divided into 

distinct domains (Figure 1.4 A). Briefly, the N-terminal domain, encompassing two 

transactivation domains, is involved in the interactions with the components of 

transcriptional machinery, such as p300 [154, 155], and forms a docking site for 

MDM2 [156]. In addition N-terminal domain is subjected to multiple post 

translational modifications (PTMs), mainly stress-induced phosphorylations that 

finely modulate p53 activity. The central (core) domain controls sequence-specific 

DNA binding and harbours most of the p53 inactivating mutations found in human 

cancers [157, 158]. It comprises four conserved regions, namely Box II, III, IV, V. 

Box V domain (270- 286) [159] is a multiprotein docking site and forms interactions 

with MDM2 [160] as well as with Chk1, Chk2 and DAPK-1 calcium kinase 

superfamily members [161]. Further, Box V functions as a primary ubiquitination 

signal for MDM2 [161, 162] and Box V unfolding in mutant p53 protein results in its 

hyperubiquitination [163]. Recent study has shown that Ser269 in this region can be 

targeted by phosphorylation and this inactivates p53 [164]. Box V is deleted in one 
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of the p53 isoforms, namely deltap53, that has been shown to transactivate only 

certain p53-dependent genes [165]. As such, by controlling modification of the p53 

protein, allosteric regulation of p53 tetramer and its transcriptional activity, Box V 

provides multiple mechanisms to determine the p53 response upon stress. The DNA-

binding domain is followed by the tetramerization domain (320-356) that allows 

formation of the transcriptionally active p53 tetramer [166-168]. The p53 tetramer is 

a dimer of dimers [167, 169]. Two monomers associate via their antiparallel -sheets 

and helices into dimers. The dimers assemble via a hydrophobic core into a four-

helix bundle arranged orthogonally into tetramers [170, 171]. The residues critical 

for the formation and stabilization of tetramer within the hydrophobic core are: F328, 

L330, I332, R337, F338, M340, F341, L344 and L348 [172-176]. In addition the 

tetramerization domain is involved in protein-protein interactions, either directly by 

forming a docking site, or indirectly in the instances when interactions are regulated 

by p53 oligomeric status. For example, tetramerization domain forms direct 

interaction with proteins including the casein kinase 2 [177], the Ca2+-dependent 

protein kinase C [178, 179], the adenovirus E4orf6 protein [179], S100A4 and 

S100B [180], CUL7 [181], Pirh2 [182]. Lastly, the C-terminus encompasses a 

negative regulatory module that maintains p53 protein in a latent state for specific 

DNA binding. The six lysine residues present in this module (370, 372, 373, 381, 

382, 386) can undergo various posttranslational modifications, including acetylation, 

methylation, ubiquitination, sumoylation and neddylation. Additionally, Serine and 

Threonine residues within this region can be subjected to phosphorylation. Both 

phosphorylation and acetylation stimulate core domain mediated DNA binding [183-

185]. The C-terminal region of p53 forms a docking site for a variety of proteins, 

including S100B [186, 187], Sir2 [187],  CDK2/ Cyclin A [188, 189] and CREB 

binding protein (CBP) [189].   
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Figure 1.4 p53 protein. (A) Schematic of p53 domain organisation. Transactivation domain (TAD), 
Proline-rich domain (PRD), DNA binding domain, Tetramerization domain (TET) and C-terminal 
domain (CTD) and conserved box regions are highlighted. Regions of disorder are depicted using 
“random hatching” symbol. (B) Sequence of human p53. 
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b. Linear motifs 

 

The ability of the disordered region to bind such a diversity of proteins is 

conferred by short linear motifs that can adapt themselves to fit their binding partners 

(discussed in Chapter 4). As mentioned above, the same peptide motif from the         

C-terminal regulatory domain of p53 binds to different classes of proteins. A peptide 

region from this domain assumes a helical conformation upon S100B binding [186],  

a -sheet in complex with Sir2 [187], an acetylated form of this peptide forms a         

-turn-like structure in complex with the bromodomain of CBP [189], whereas lack 

of regular secondary structure is observed upon CDK2 binding [188] (Figure 1.5 C).     

It appears that the diversity of the assumed structures stems from the ability to “read” 

the same amino acids sequence differentially by the distinct interactors [152]. Further 

the PGGS motif in this domain binds to the deubiquitinase HAUSP/USP7 [190].  

Similarly, the N-terminal domain of p53 is flexible and contains multiple 

docking sites. The Box I motif from the intrincically unstructured N-terminal region 

of p53 forms a high affinity binding site for the N-terminal hydrophobic pocket of 

MDM2 [191] and p300 [192]. Three amino acids in the transactivation domain of 

p53 (F19, W23, L26) are major contributors to the MDM2/4-p53 binding energy 

[145, 193-195] (Figure 1.5 A). Further, in addition to MDM2 interaction with its 

primary binding motif in the N-terminal domain of p53, MDM2 acidic domain 

binding to the second linear motif, namely Box V, in the conformationally flexible 

core domain in p53, within the S9-S10 loop/S10 β-sheet, is critical for p53 

ubiquitination [160] (Figure 1.5 B). Interestingly, this region is highly flexible and 

forms a docking site for the protein kinases that phosphorylate p53 in its N-terminal 

domain [161, 196].  
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Figure 1.5 Linear motifs in p53 and disorder. (A) Box I region assumes helical conformation upond 
binding to MDM2 (PDB: 1ycq), Mdm4 (PDB: 3dac), p300 (PDB: 2k8f). (B) Box V sequence.           
(C) Schematic representing combinatorial diversity of the peptide motif in C-terminal region of p53. 
Peptide motifs adopt different conformations in complexes with S100b (PDB:1dt7), Sir2 (PDB:1ma3), 
CBP (PDB: 1jsp), CDK2 (PDB:1h26).  
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1.2.1.4 The p53 interactome: interactions with other cellular hubs 

a. MDM2 

The ring domain E3 ubiquitin ligase MDM2 (mouse double minute-2) has 

been the most studied p53-binding partner and rightly so as both these proteins 

appeared and evolved together [90]. Due to its ancient origins, the p53-MDM2 axis 

has had significant time to develop many layers of control, and it incorporates 

processes such as transcription, mRNA translation and protein degradation. The 

supremacy of MDM2 amongst other p53 binding partners is emphasised by the 

observation that the early lethality in mice with E3-ligase dead MDM2 can be 

rescued by knocking out the p53 gene [197]. Similarly to p53, MDM2 binds 

hundreds of proteins, and a significant subset of its binding partners overlaps with 

those of p53 protein (Figure 1.6 A). MDM2 is a multidomain protein, including the 

N-terminal hydrophobic pocket [145], the central acidic domain [198] and the          

C-terminal RING domain [199] (Figure 1.6 B). In addition, the presence of a flexible 

and unstructured pseudo-substrate motif in the N-terminus has been recently 

described, and named the lid, as it constantly moves around, being either over or 

outside the pocket [200]. MDM2 is best known for its role in the negative regulation 

of p53. MDM2 ubiquitinates p53 and targets it for proteasomal degradation [201-

203]. This MDM2-mediated ubiquitination of p53 has been described by a dual-site 

mechanism [162]. Firstly, the Box I transactivation domain of p53 binds to the 

allosteric N-terminal hydrophobic pocket of MDM2, and the substrate binding results 

in conformational changes that stabilise the interaction of a flexible motif in the Box 

V domain of p53. In addition, for the initial binding of  Box I to N-terminus of 

MDM2 to occur, the pseudo-substrate motif needs to dissociate from the 

hydrophobic groove and this is induced by lid phosphorylation [200] (Figure 1.6 C). 

Furthermore, MDM2 hinders p53 transcritional activity both directly by (1) binding 

p53’s transactivating domain and (2) sterically occluding p53 association with 

transcription factors, through binding to interfaces overlapping with their binding 

interfaces [191, 204, 205]; and (3) indirectly, by sequestering p53 out of nucleus 

[206]. As MDM2’s transcription is activated by p53 [207], these two proteins are 

engaged in the p53 autoregulatory feedback loop [204]. Interestingly, MDM2 can 
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positively regulate p53 activity and stability via interaction with p53 mRNA that 

stimulates p53 synthesis and blocks MDM2-dependent p53 ubiquitination [208].  

In addition to MDM2, p53 binds to the closely related MDM4, which does not 

possess E3 ligase activity [209]. Similarly to MDM2, MDM4 binds to transactivation 

domain of p53 and blocks the recruitment of transcriptional machinery, resulting in 

the inhibition of p53-mediated transcription. In addition to MDM2, other E3 ligases 

bind to p53 and regulate its degradation and cytoplasmic localization. RING domain 

containing E3-ligases, such as Constitutively Photomorphogenic 1 (COP1),            

p53-Induced protein with a RING-H2 domain  (Pirh2), Carboxy terminus of   

Hsp70p-Interacting Protein (CHIP), Caspase 8/10-Associated RING Proteins 1      

and 2 (CARP1, CARP2), TRIM24 or Synoviolin or the HECT domain containing 

ARF-Binding Protein 1 (ARF-BP1), and Ubiquitin-conjugating enzyme 13 (UBC13) 

can catalyze p53 polyubiquitination and target it for degradation [210-215].  
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Figure 1.6 MDM2 and p53 interaction. (A) The interactomes of p53 and MDM2. Shared and    non-
overlapping interactions are highlighted (p53 binding partners and listed in the appendix). (B) 
Schematic of domain structure of MDM2, NTD-N-terminal domain, AD-Acidic domain, RD-Ring 
domain. (C) Dual site mechanism, BI- Box I, BV- Box V, Hydrophobic pocket: green, Acidic 
domain: red, Ring domain: greys, Lid-dashed and solid line.  
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b. p300 

 

 Similar to p53, the transcriptional coactivator p300 is a prime example of the 

disordered hub protein and it has approximately 400 interacting partners [192]. It is 

predicted that approximately half of this protein consists of intrinsically unstructured 

regions [216] and that these are connected by folded domains of p300. p300 

possesses histone acetyltransferase activity and this confers its role in relaxing 

compact chromatin structure [192]. It also acetylates targets other than DNA, 

however, and indeed, it was found that p300 mediates acetylation of the C-terminal 

region of p53 [217]. The p300-binding region of p53 overlaps with residues that are 

involved in the tight biding to MDM2 [154, 218, 219]. p53 binds to several different 

p300 peptide-binding minidomains, including C/H1, C/H3, IBiD, IHD, SPC-1,   

SPC-2, KIX, and Bromodomain [220, 221]. p300 or its homolog, CREB-binding 

protein (CBP), binding to p53 stimulates its activity [154, 219, 222-224] catalyzing 

acetylation of the C-terminal lysines as well as K164 [225]. p53 acetylation is critical 

for the efficient recruitment of transcription-associated factors (TAFs) and 

subsequent activation of p53-responsive genes [137]. As MDM2 and p300 compete 

for the same binding site, p300 binding may inhibit MDM2-mediated ubiquitination 

of p53, whereas MDM2 binding prevents assembly of transcription complexes on the 

p53 protein. The choice of the binding partner depends on the posttranslational 

modifications of p53 (discussed in 1.2.1.6). Interestingly, in addition to preventing 

p53 binding to p300, MDM2 can also employ other mechanisms to decrease p53 

acetylations. For example it recruits histone deacetylase 1 (HDAC1) complex or 

degreades another p53 acetyltransferase PCAF [226].  

 

1.2.1.5 The p53 interactome: interactions with scaffolding proteins and 

chromatin modulating proteins 

 

 A number of co-factors regulate p53 association with acetyltransferases. For 

example, junction-mediating and regulatory protein (JMY) can bind to p53-p300 

complex [227, 228]. Following DNA damage, JMY and another cofactor STRAP 
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accumulate in the nucleus, in which they associate with p300/CBP-p53 and promote 

p53-dependent transcription and apoptosis [227, 228]. Additionally, protein arginine 

methylatransferase (PRMT5) can be recruited by STRAP to the JMY-STRAP-p300-

p53 complex, and subsequent arginine methylation of p53 stimulates transactivation 

of the p21 promoter which switches the p53 response from apoptosis to cell-cycle 

arrest [229]. In addition to p300 and CBP other factors are implicated in the 

activation of p53-dependent transcription. For example, other acetyltransferases are 

recruited by and acetylatate p53, including Tip60, hMof or PCAF [230-232].  

 

1.2.1.6 The p53 interactome: PTMs modulate specificity of disordered region 

and the resulting PPI landscape 

 

 p53 protein is targeted by multiple post-translational modifications         

(Figure 1.7) and interestingly these sites are primarily located in the unstructured 

regions of this protein [152]. This provides additional mechanism for the fine 

adaptation of the p53 interactome to the cellular conditions and is characteristic for 

other intrinsically disordered hub proteins [233]. The linear motifs that are targeted 

for covalent modification can anchor the enzyme and allosterically activate it.         

Post-translational modifications regulate the specificity and the interactome of p53 

protein.  Firstly, several phosphorylation events at the N-terminal domain of p53 

activate p53 and substantially rearrange its interactome. These phosphorylations 

involve PPIs with several kinases such as Mutated in Ataxia-Telangiectasia (ATM), 

A-T and Rad3-related (ATR), the checkpoint kinases 1 and 2 (Chk1 and Chk2), Jun 

JNK (NH2-terminal kinase), p38 and others. For example, ATM kinase catalyses p53 

phosphorylation on multiple sites, the most common being S15, S20 and S33      

[234-237], calcium-calmodulin family members Chk1 and Chk2 kinases 

phosphorylate T18 and S20 [238, 239]. CBP/p300 and MDM2 compete for the 

binding site and the modification sites on p53. Interestingly, S15 phosphorylation 

increases p53 binding to CBP [240], phosporylation at S20 and T18 stabilises p53 

interaction with p300 [155, 241] and T18 phosphorylation decreases binding to 

MDM2 [241-244]. The sequence of the p300-p53 complex formation following 
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posttranslational modifications is well established. The binding of CHK2 and CHK1 

to p53 stimulates p53 phosphorylation at T18 and S20 [245]. The phosphorylation of 

these residues stabilises p300 binding to the LXXLL motif in the N-terminal domain 

of p53 [241], and is followed by p300 anchoring to the phospho-LXXLL and PXXP 

motifs in the transactivation domain of p53 [155]. These phosphorylation and 

docking events lead to sequence-specific DNA binding by p53 that enforces 

structural changes in the p53 tetramers followed by PXXP-dependent acetylation of 

p53. The latter modification stabilises the p300-p53-DNA complex and this fact 

further reinforces the importance of PTMs in regulating PPIs [155]. Importantly, 

these events are essential for p53 stabilisation upon stress.  

Interestingly, stress induced phosphorylation of the proline rich domain of p53, by 

kinases including Jun, p38, HIPK2 on S33, S46, T81 or S315 [246-248], induces 

binding of Pin1 [249, 250]. Pin1 catalyzes phosphorylation-dependent prolyl 

isomerisation [251]. Pin-1-mediated rearrangements at T81-P82 result in Chk2 

binding and phosphorylation of S20 on p53 and consequently dissociation of MDM2 

[250, 252] and p300 recruitment [241], whereas recognition of S46 leads to iASPP 

dissociation [253]. Further Pin1 favours p53 binding to chromatin and this promotes 

p300 binding to p53 and the subsequent acetylation [253]. By stimulating acetylation 

and iASPP dissociation, Pin1 leads to activation of p53 apoptotic function.  

Another example of PTM being involved in the complex formation includes Lysine 

residues in the C-terminal domain of p53. Three sites, K370, K382 and K372 are 

methylated by Smyd2, Set8 and Set9, respectively [254-256]. Interestingly, 

demethylation of p53 by p53-interacting histone lysine-specific demethylase 1 

(LSD1) [257] at K370 and K382 enhances the avidity of p53BP1 to p53 and enables 

recruitment of p53 to sites of DNA damage [258, 259]. Further tuning of this 

interaction was proposed to be achieved by acetylation of K381 and phosphorylation 

of S371 in CTD domain [258]. In addition p300 and MDM2 compete for the same 

binding site and phosphorylation of T18 in TAD region favours p300 over MDM2 

binding [218, 241]. 
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Figure 1.7 Posttranslational modifications on p53. P-phosphorylation, M-methylation,                  
A-Acetylation, Ub-ubiquitination, N-neddylation. 
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1.2.1.7 The p53 interactome: chaperones 

Molecular chaperones are proteins that assist the folding and unfolding or the 

assembly and disassembly of other proteins [41]. Heat-shock protein family 

members, Hsp70 and Hsp90 proteins, are the most studied molecular chaperones that 

in association with their cellular cofactors form the so called “cell chaperone 

network” [260]. Interestingly, recombinant wild type p53 protein was shown to 

interact with Hsp90 and Hsp70-Hsp40 chaperone systems [261]. For example, p53 

has been reported to interact with molecular chaperone Hsp90 and this interaction 

maintained the folded state of p53 [262]. Subsequently, Hsp90 was found to be 

essential in vivo for wild type p53 binding to the target DNA sequence at 

physiological temperatures [263] and its overexpression stabilised p53 protein [264, 

265] and stimulated the p21 expression [264]. Further Hsp70-40 chaperones were 

found to cooperate with Hsp90 to fold p53 under heat-shock conditions or after its 

prolonged incubation at 37ºC [263]. This latter observation supports the idea that the 

“structure” of non-native p53 may encompass different kinds of unfolded or 

misfolded species [266] that could be regulated by distinct types of chaperones. 

Interestingly, the process of Hsp90-mediated chaperoning of p53 requires the 

presence of ATP, which enables dissociation of partially unfolded p53 from Hsp90 

and further folding to the active conformation [264]. Further, CHIP E3 ligase binds 

intrinsically disordered N-terminal domain of p53 and can restore DNA binding 

activity of heat-denatured p53 [267]. In addition MDM2 can chaperone p53 and 

could substitute for Hsp90 in stimulating p53 binding to its target DNA sequence 

[268]. 

 

1.2.2 Mutant p53 protein- hub 

 

 The absence of functional p53, either by silencing or mutating p53 gene, is 

the most common aberration in human cancers [52]. The main activity of p53, 

mediated by the core domain of this protein, is linked to its sequence specific DNA 

binding and regulation of transcription of several hundreds genes. Each residue in the 
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DNA-binding coding region was found to be mutated in human tumours. 

Additionally hot spot mutations that account for over 25 % of all the mutations found 

in human tumours are located in the core domain [269]. Various p53 mutations exert 

different effects on the structural properties of the resulting protein, an idea that was 

explored relatively early in the history of p53 biochemistry with the use of p53 

monoclonal antibodies, namely PAb1620 and PAb240 that could discriminate folded 

and unfolded states of p53, respectively [270]. Consequently, the mutations in the 

p53 cancer mutants can be broadly divided in two distinct classes [136]. DNA-

contact mutations, such as R273H or R248W, result in a mutant p53 protein that has 

reduced capability to bind DNA. Consequently, this mutant protein is essentially 

unable to regulate transcription of its target genes, which hampers its paradigmatic 

tumour suppressive activity [271]. As the DNA-binding domain of p53 is quite labile 

already in the wild type protein, some mutations in this region, so called structural 

mutations, such as V143A or R249S, can further reduce its thermodynamic stability 

and produce substantial conformational change or highly destabilised protein [136].   

 

1.2.2.1 Prooncogenic functions of mutant p53 and mutant p53 interactome 

 

 p53 protein regulates expression of hundreds of genes and this function is 

commonly lost or altered by mutant p53 in human tumours. Classically, mutant p53 

protein is regarded as a protein that cannot bind the p53 target promoters which in 

turn reduces expression of these genes [66, 272, 273]. However, p53 can in fact 

repress a subset of genes, and loss of wild type p53-dependent suppression of these 

targets leads to their increased expression. For example, p53 represses expression of 

the growth- and survival-promoting factor CD44 [274] (Figure 1.8). CD44 functions 

as a receptor for the extracellular matrix, regulates growth factor binding to their 

receptors and activates various pathways, such as RhoA GTPase pathway. In 

addition, CD44 is involved in stem cell renewal [275]. All these actions account for 

the oncogenic properties of CD44 [276] and emphasise the importance of loss of 

p53-mediated repression of this gene in tumours.   
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Figure 1.8 Example of the loss of function of p53.   
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The loss of DNA binding ability and consequently loss of tumour suppressive 

activity by mutant proteins is just a simplified view of the effect of the emergence of 

mutant p53 protein in the cell. The significant stabilisation of mutant p53 protein in 

cancer cells (discussed in 1.2.2.1 V) indicates that there are pro-oncogenic 

advantages of expressing mutant p53 protein. Indeed, in addition to dominant 

negative effect of p53 mutations, mutant p53 can acquire new, oncogenic activities. 

This concept of mutant p53 protein exerting gain-of-function properties is further 

supported by the observation made in transgenic models of mutant and knock-out 

p53, that mutant p53 expressing cells but not cells with the genetic loss of p53 have 

increased metastatic properties [277]. 

The loss-of-function to gain-of-function phenomena can be partially linked to two 

classes of mutations, as the structural outcome of mutations has been shown to 

correlate with the aggressiveness of cancer. The structural mutants are associated 

with more severe phenotypes and DNA-contact mutants are less aggressive in 

transformation assays [278]. However, the determinants that drive gain-of-function 

properties of mutant p53 protein are more complicated and cannot be always 

explained by this simple classification. For example, the R273H form of p53, 

traditionally perceived as a DNA contact mutant protein, exhibits conformational 

changes in some assays. Accordingly, in a study looking at the regulation of 

expression of Ras dependent inflammatory chemokines, cytokines, interleukins and 

extracellular matrix proteins, collectively named ‘Cancer-related Gene Signature’ 

(CGS) by mutant p53 [279, 280], conformational mutants had a similar to p53-null 

cells effect on Ras activity, suggesting loss of function, whereas DNA contact 

mutants further induced Ras activity, by GOF mechanism [281, 282].  

The notion that the mutant protein has lost the ability to bind to the wild type p53 

consensus site, raises the question of how this protein can “gain its functions” or 

otherwise actively stimulate transcription. The most obvious possibility is that it is 

through binding to a distinct set of proteins. Indeed, given the disorder and 

promiscuity of p53 protein and its large interactome, mutant variants of p53 are 

likely to rewire the wild type p53 landscape and as they gain and loose functions they 

can gain and loose their binding partners. Paradoxically, despite good comprehension 

of wild type p53 interactome, and the fact that mutant p53 has been studied for 
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longer than wild type protein, mutant p53 interactome is far from being fully 

understood. This can be partially explained by the fact that there is not a single 

mutant p53 protein, but a collection of distinct types of proteins that are likely to 

have a very specific set of interacting partners exists.  

The changes in signalling in cells expressing mutant p53 can be explained in part by 

the protein interactions of mutant p53 and are discussed below and in Figure 1.9.  

 

I Mutant p53 PPIs: NF-Y, HDAC1, p300 

 

 The mutant p53 interactions with the heterotrimeric transcription factor      

NF-Y, histone deacetylase and p300 are an interesting example of how mutant p53 

can rewire the wild type p53 PPI landscape [283]. Similarly to the wild type protein, 

mutant p53 can bind to NF-Y on the promoters of NF-Y-regulated genes [283]. 

Following DNA damage however, instead of recruiting histone deacetylases 

(HDACs) and dissociating from histone acetyltransferases (HATs), as the wild type 

p53 does [284], mutant p53 protein does the opposite. Consequently, rather than 

repressing cell cycle control genes such as cyclin A, cyclin B2, cdk1, and cdc25C, 

mutant p53 transactivates them, which results in abnormal cell cycle regulation. 

Further, in unstressed cells, wild type p53 recruits p300 and activates the expression 

of NF-Y dependent genes, and mutant p53 represses them in a HDAC-1 dependent 

mechanism.  

 

II Mutant p53 PPIs: p63 and p73  

 

 Interestingly some of the mutant p53 functions arise from its interactions with 

the p53 gene family members, namely p63 and p73. All three proteins are 

structurally related in terms of having three highly conserved domains: N-terminal 

transactivation domain, DNA-binding domain and oligomerization domain [285]. 

Further, full length p63 and p73 can activate transcription of some of the p53 

responsive genes and consequently activate cell cycle arrest or apoptosis [286-290]. 

Interestingly, the oligomerization domains of p63 and p73 can form heterotetramers, 

however neither of them can hetero-oligomerize with the wild type p53 [291]. 
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Despite this, a substantial number of mutant p53 proteins, including conformation 

and contact mutants, have acquired the ability to form a direct interaction with either 

p63 or p73 [292-298]. Interestingly, both mutant p53-p63 and mutant p53-p73 

complexes are not mediated through tetramerization domain but via their respective 

DNA-binding domains [292, 293, 296]. An explanation as to why these interactions 

become possible in the mutant p53 background could be that it is due the structural 

changes that core domain undergoes upon mutation. Indeed, the PAb240 reactive 

mutant p53 proteins or PAb240 reactive purified wild type protein associate with 

either p63 or p73 [296]. Similarly, structural p53 mutants that associated with hsp70 

were also found in complex with p73 [296, 299]. However, it was found that 

truncated versions of wild type p53 protein expressed in insect cells or some p53 

contact mutants that do not show significant conformation changes retained ability to 

bind to p63/p73 [296] and it is possible that these variants of the protein can exhibit 

some structural changes that, given the promiscuity of p53 domains in respects to 

their PPIs, may be sufficient to form or expose a binding motif for these proteins. 

Importantly, the complex formation interferes with the p63/p73 capability to bind to 

their target promoters [292-294]. This leads to inactivation of transcriptional activity 

of p63 and p73 and their growth suppressive and apoptotic functions, thus conferring 

abnormal cell proliferation [292-294, 296-298]. There are a number of physiological 

consequences of this newly acquired PPI. Firstly, a correlation was found between 

human cell lines resistance to doxorubicin, taxol, cisplatin, etoposide and ability of 

mutant p53 to bind p73 [295, 298]. To take this further a study of murine equivalents 

of human p53 R175H and R273H mutants showed that these mice had a greater 

metastasis propensity compare to p53 knockout mice. Interestingly, these mutant 

proteins interacted with both p63 and p73 in cells derived from these mice and 

silencing either p63 or p73 stimulated the phenotype of p53-null cells, supporting the 

hypothesis that increased metastasis in mice bearing mutant p53 may be through 

inhibition of p63 and/or p73 [300, 301].  

A recent study demonstrated the role of p63 in promoting metastasis in mutant p53 

background [302]. p63 regulates expression of genes whose products are involved in 

executing adhesion programme, including laminin-binding integrins (α3β1, α6β1,  

α6β4) and integrin subunits (α5, β1) that bind to fibronectin in the extracellular 
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matrix [303]. Interestingly, Muller et al. demonstrated that enhanced integrin and 

EGFR recycling from endosomes to the cell membrane, correlating with the 

increased phosphorylation of Akt, could account for the ability of the mutant p53 to 

promote metastasis [302] (Figure 1.9 D). Further, in an intestinal tumour model 

driven by the loss of the wild type adenomatous polyposis coli (Apc) gene, 

expression of mutant p53 increases invasiveness by 75 % [272]. In this report, the 

effects of various p53 mutants on cell migration were monitored in response to 

treatment with epidermal growth factor (EGF). The invasive phenotype of mutant 

p53-expressing cells was found to be conferred by inhibition of p63 by mutant p53 

protein, as overexpression of transactivation domain of p63 was sufficient to inhibit 

migration and invasion of the mutant p53 cells, whereas depletion of p63 in p53 null 

cells enhanced cell invasivness. It is worth stressing that in this system, p63 acted as 

tumour suppressor as it negatively regulated migration and invasion. In this study, 

mutant p53 could drive invasion in a TGF-β-independent manner, however a 

different study found that TGF- signalling, in fact, co-operated with mutant p53 to 

promote metastasis [276].  

 

III Mutant p53 PPIs: SMADs, p63 

 

 As discussed in chapter 3, TGF-β signalling cascade has both tumour 

suppressive and oncogenic properties depending on the cellular context [304]. Wild 

type p53 protein cross-talk to this pathway is well established and it has been 

recently shown that wild type p53 can confer TGF- tumour suppressive activity, by 

its interaction with SMADs that leads to induction of p21 and growth suppression 

[305]. Interestingly, mutant p53 can also engage into interaction with SMAD protein 

and as a complex sequester p63 (Figure 1.9 E). This ternary complex disables p53 

from binding to the promoters of its transcriptional targets. The co-operation of TGF-

 signal and mutant p53 results in aberrant gene expression, for example in 

downregulation of Sharp-1 or Cyclin G2, and drives invasion and metastasis [306]. 

Interestingly, in another report it was found that mutant p53 attenuated TGF- 

signalling pathway and suppressed expression of a range of TGF--dependent genes, 

including MMP2, MMP9, and TGFRII, contributing to the suppression of         
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TGF--stimulated migration [307] (Figure 1.9 F). These apparently inconsistent 

findings are in line with the broad spectrum of mutations that p53 can acquire as well 

as with the importance of the cellular context in dissecting the pro-metastatic 

potential of mutant p53. In addition mutant p53’s ability to either induce [302] or 

suppress [307] motility was observed in response to different stimuli and indeed 

different signalling pathways are likely to have a major implication for the PPIs of 

mutant p53.   

 

IV Mutant p53 PPIs: ASPP2 and Bcl-Xl 

 

 The wide spectrum of possible consequences of p53 mutation is exemplified 

by the different effects distinct mutations have on the mutant p53’s PPIs. For 

example, given that each residue in the core domain of p53 has been found to be 

mutated, it is not surprising that the heterogeneity in respects to mutant protein’s 

structure, and consequently its PPI and function, is observed [308]. For instance,   

Bcl-Xl and p53BP2/ASPP2 bind to the DNA-binding domain of wild type p53, 

through different, albeit overlapping residues [309, 310]. The core domain of wild 

type p53 interacts with the C-terminal domain portion of ASPP2 (p53-binding 

protein 2-53BP2), and this is associated with the apoptotic function of p53, but not 

with the cell cycle arrest, as genes such as BAX and PIG3, but not p21 are 

transactivated (reviewed in [311], [309, 312]). Interestingly, DNA contact mutants, 

such as R273H, retain the 53BP2 binding ability, but have no transactivation activity. 

Other mutants, such as R175H, lose both DNA binding and ASPP2 binding ability. 

Interestingly, two p53 mutants R181E or G245S can no longer bind to 53BP2, 

however they retain their DNA-binding activity [313-315]. Wild type p53 interaction 

with Bcl-Xl promotes apoptosis in a transcription-independent way. Interestingly, 

some mutant p53 protein can no longer bind to Bcl-Xl and this prevents cytochrome 

c realease. This is an interesting example of how mutation in tumours is selected to 

concomitantly perturb the transcriptional and PPI-dependent p53-activated apoptosis 

[310]. In addition, these data suggest that different cancers present specific ways of 

disrupting p53-proapoptotic pathway, and these may have further implications in 

comprehensive approaches to targeting cancer with different mutant p53 signatures. 
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Figure 1.9 Mutant p53 interactome. (A) The schematic of the growing interactome of mutant 
p53. The mutant p53 protein binding partners include p63 and p73, SMAD2, E2F1 [316], PML [317], 
Mre11 [318, 319], Pin1, ASPP2, NFY, molecular chaperones and others. (B-F) Gain of function 
properties of mutant p53 through its PPIs. (C) Both mutant and wild type p53 protein [320] can form 
the interaction with the transcription factor E2F1. Mutant p53 protein binds to E2F1 and is recruited to 
the ID4 promoter. The production of ID4 leads to the expression of pro-angiogenic genes. The 
significance of interactions (D-F) is discussed in the main text.  
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V Mutant p53 PPIs: the proteasome/chaperone system 

 

 Mutant p53 protein accumulates in the nucleus of cancer cells [299, 321]. 

Several possibilities to explain the stabilization of p53 protein in tumours have been 

proposed. For example, it has been suggested that the lack of induction of MDM2 by 

mutant variants of p53 accounted for its accumulation. Alternative hypotheses 

included decreased sensitivity of conformationally changed mutant proteins to 

degradation, increased stability of mutant p53 mRNA or increased mutant p53 

mRNA translation. However, the intricacy and complexity to the underlying 

mechanism was increased by the observation that in transgenic mice tumour cells 

express mutant p53 at much higher levels than normal cells [301, 322]. In fact, 

mutant p53 protein was extremely unstable in normal cells [301]. Indeed, the second 

binding site for MDM2 on p53, located in the core domain, is exposed in the mutant 

protein [323] and is hypersensitive to ubiquitination in vitro [160, 163], yet, the 

human mutant p53 protein is stabilised in vivo [324, 325]. The first interacting 

partners of p53 identified were members of the heat shock protein chaperone 

network, including Hsp70 and 90, and this binding events regulated the stability of 

p53 [326, 327]. Mutant p53 does not fold properly and forms complex with Hsp70 

that targets it for CHIP-mediated degradation [328]. On the other hand, Hsp90 

protects mutant p53 from MDM2-dependent ubiquitiniation and degradation [329-

331]. Hsp90 mediates folding of p53 and can form a stable complex with the 

unfolded mutant proteins [328] and tumour cells are “addicted” to the activated heat 

shock system and require it for their survival [332]. Further it was hypothesised that 

Hsp90-mutant p53 interaction engages MDM2 and/or CHIP and “traps” them in an 

inactive state [332]. Therefore, the interaction of the proteins of 

proteasome/chaperone system with mutant p53 may differentially affect the balance 

between the degradation and stabilisation of p53 protein and shift it towards 

increased stability in cancer cells. The implication for these observations is that the 

different amounts of mutant p53 between cancer and normal cells are a direct 

reflection of the differences of chaperone/proteasome complexes between these cells.  
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1.2.2.2 p53- PPIs and drug discovery 

 The obvious implication of the pro-oncogenic function of mutant p53 protein 

is that targeting the mutant p53 protein pathway should give significant therapeutic 

benefits. The key approaches to develop therapeutics that target mutant p53 include: 

re-establishing wild type functions in mutant p53 protein, inducing degradation or 

inhibiting synthesis of mutant p53 and finally interfering with the oncogenic 

component of the mutant p53 PPI landscape. The latter strategy could be the most 

effective, as the complexity of protein PPI’s has a major contribution to                    

the gain-of-function properties of mutant p53 protein.  

 Targeting the p53-MDM2 interaction has been the most exploited approach 

to reactivate wild type p53. Nutlins were the first identified small molecules that 

could displace p53 from MDM2 [333, 334] and were subsequently shown to inhibit 

tumour growth [335, 336]. Further, a small molecule screen for the compounds that 

could reactivate wild type p53 activity led to identification of RITA (reactivation of 

p53 and induction of tumour cell apoptosis; 2,5-bis (5-hydroxymethyl-2-thienyl) 

furan, NSC-652287) [337-339]. The originally proposed mechanism for RITA-

mediated p53 activation, was that it disrupts MDM2-p53 complex [339]. However, it 

was earlier found that RITA induces DNA damage [337, 338], hence a more 

complex mechanism may lead to the observed cellular outcome. Recently, it was 

found that RITA activates ATM/ATR DNA damage response pathway, and 

subsequently Chk1 kinase, the latter being dependent on the presence of p53. 

Moreover, RITA could prolong S phase and induce DNA damage only in p53 

expressing cells [340]. Lastly, RITA could downregulate two p53 regulators, MDM2 

and WIP1, potentiating p53-mediated cell death [341]. Importantly, since currently 

the mechanisms that switch MDM2 from being a p53 inhibitor to it being a 

stimulator are not fully understood, small molecules that bind MDM2 may actually 

induce metastasis, for example by interfering with MDM2 mediated degradation of 

Slug [342]. Furthermore, given that the substrate binding by the hydrophobic pocket 

can in fact enhance MDM2 mediated ubiquitination [162, 200], drugging this 

interface may not give the desired effect of the inhibition of p53 ubiquitination. The 

allosteric effect of MDM2-p53 interaction is not exclusive to the hydrophobic 

pocket. In fact all of the domains are involved in the dynamic allosteric interactions. 
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For example the RING domain regulates the conversion of the acidic domain 

between open and closed conformations [343]. As the phospho-mimetic MDM2 lid 

can stabilize interaction of the acid domain with the ubiquitination signal in p53, this 

second PPI interface may be a better target for developing small molecules that 

inhibit MDM2 ubiquitination of p53. In addition, MDM2 has a dual role in inhibiting 

p53, as it not only targets it for degradation, but also suppresses p53-mediated 

transactivation of its target genes. Therefore drug leads that are effective at inhibiting 

E3 ligase activity of MDM2 are likely to be different to these that release p53 from 

MDM2-mediated suppression of p53 transcription.  

Targeting mutant p53 protein by small molecules is a great challenge. The diversity 

of mutations in combination with the cell type and microenvironment pose a 

requirement for different strategies. Indeed, the understanding of the selective 

pressures that drive the choice of the type of mutation that dominates in the given 

cancer tissue, may be essential for developing effective therapeutics. The data 

regarding the PPIs of mutant p53 have provided a number of potential drug targets. 

For example targeting factors that prevent degradation of mutant p53 protein could 

show therapeutic benefits. Indeed, in some tumour cells inhibition of HSP90 with 

geldanamycin or its derivatives induced chaperone-mediated degradation of mutant 

p53 [328]. Further, targeting the complex of mutant p53 with SMADs and p63 could 

be a potential option for inhibiting metastasis. Specifically, molecules disrupting 

mutant p53 and p63 complex could be effective.  

An interesting strategy involves inhibitors of RAS-CK1 signalling, which is required 

for the stabilisation of mutant p53-SMAD2 complex, and these are currently 

undergoing clinical trials. However, for the successful mutant p53 drug development, 

the growing size of its PPIs network has to coincide with the understanding of the 

functions of a specific PPI or subset of PPIs. In addition, developing inhibitors of 

specific mutant p53 PPI has to coincide with designing assays that would enable the 

understanding as to how the function of the particular PPI is affected. An example of 

such an approach, has led to the identification of RETRA [344]. As p53 mutant 

proteins can form a complex with p63 and p73 and block their transcriptional activity 

[296], it was hypothesised that identifying small molecules that could stimulate p73 

in the mutant p53 background, could provide a very specific drug that could strictly 
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suppresses cancer in the mutant p53-expressing cells [344]. A transcriptional reporter 

assay was established to screen for molecules that could reactivate the tumour 

suppressor pathway in mutant p53-bearing cells. The p53-responsive promoter was 

used in these cells in a high-throughput screening of a chemical library and several 

compounds that could transactivate the promoter were identified. Interestingly, 

RETRA compound was not active in the wild type p53-expressing cells or p53-null 

cells. When this compound was further tested, it was found that p73 had a significant 

contribution into the observed actions of RETRA, as p73 depletion led to decreased 

activity of the drug. Subsequently it was found that RETRA inhibited p53/p73 

interaction, and release of p73 from suppressing mutant p53 resulted in the induction 

of p53/p73-regulated genes [344].  

The allostery model of protein control describes how ligand binding by an unstable 

protein can stablise it and/or shift it to the active coformation. Wild type and even 

more so mutant p53 protein are unstructured and unstable. Therefore, reactivation of 

mutant p53 through small molecules appears to be an interesting therapeutic strategy. 

Recent advances and contributions from different fields led to identification of 

molecules that can interact with mutant p53 and shift equilibrium from the unfolded 

to folded conformation. For instance PRIMA-1 and its analogue APR-246 that can 

form stabilising covalent modification in the core domain of mutant p53 protein were 

identified [40, 345, 346]. These modifications restore DNA binding activity and 

trigger p53-dependent apoptosis. Interestingly, PRIMA-1 could also activate mutant 

p63 and p73 proteins [347]. This raises the question of the mechanism of PRIMA-1 

mediated activation of p53 family members. For example, PRIMA-1 has been 

recently shown to enhance cell death in cell expressing truncated mutant p53, and 

raises the possibility of a more complicated than initially assumed mode of action 

[348]. In fact, PRIMA-1 may modulate many proteins in the cell and act as a 

pharmacological chaperone, an antioxidant, a concept supported by recent 

observation by Grinter and colleagues, that in addition to p53, PRIMA-1 can inhibit 

oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway 

[349]. Converesly, another OSC inhibitor, namely Ro 48-8071, decreased the 

viability of mutant p53 expressing cells.  
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Another approach is to use in silico modelling to identify molecules that will bind to 

cavities or grooves that form in the core domain of the mutant p53 protein. For 

example p53 Y220C is an example of such a mutant protein, where the Tyrosine to 

Cysteine substitution forms a cavity away from the functional surfaces of the p53 

protein, but do not grossly affect the overall structure [278]. An in silico algorithm 

led to identification of the molecule PhiKan059 that could bind and stabilise p53 

Y220C protein [350, 351]. The power of in silico modelling in efforts to isolate lead 

molecules that could stabilise active conformation, or shift equilibrium towards more 

stable conformation has been reinforced in a recent study aimed at identifying 

ligands that can allow recovery of mutant p53 proteins that have lost the ability to 

form the active tetramer [352].  

 

1.2.3 Chaperone-like hub- Reptin 

 

 Reptin, also called Ruvbl2 and Tip48, and Pontin, also called Ruvbl1 or 

Tip49 are two highly conserved members of ATPases associated with various 

cellular activities (the AAA+) family of proteins. AAA+ proteins perform a myriad 

of functions, such as protein folding and degradation, aggregate disassembly, 

maintenance of organelle function, transcription, replication, recombination and 

cellular transport and are hence commonly referred to as a novel class of chaperones. 

Similar to other members of AAA+ family, these proteins contain highly conserved 

Walker A and B motifs, responsible for ATP binding and hydrolysis and are believed 

to form hexameric structures (discussed in detail in Chapter 5).  

Reptin and Pontin are part of different protein and nucleoprotein complexes and are 

implicated in processes such as chromatin transcription regulation, DNA damage 

response, and ribonucleoprotein complex biogenesis. Below the functions and PPIs 

of Reptin protein are briefly discussed.  
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1.2.3.1 Reptin’s PPIs and chromatin chaperoning  

 Given the compact structure of chromatin, its remodelling is critical for gene 

transcription in the cell. In principle, remodelling is facilitated by ATP-dependent 

chromatin remodelling through mobilizing nucleosomes and a set of enzymes that 

can covalently modify histones and allow access to underlying DNA [353, 354]. 

Interestingly, one of the most studied functions of Reptin involves its chromatin 

remodelling activity. This activity is essential for transcription and essentially 

involves energy dependent processes that facilitate access to DNA. Reptin is an 

integral subunit of yeast INO80 and SWR-C chromatin remodelling complexes as 

well as human INO80, SWR-C like SRCAP and the transformation/transcription 

domain-associated protein (TRRAP)-Tip60 histone acetyltransferase (HAT) 

complex. 

 

I INO80 

 

 INO80 has a broad spectrum of functions ranging from regulation of 

transcription, chromatin remodelling to DNA repair and DNA replication [355]. 

Reptin was found to form a transient interaction with the components of the yeast 

INO80 complex and be critical for the chromatin remodelling activity of this 

assembly [356, 357]. Mechanistically, Reptin seems to be involved in the assembly 

of the INO80 complex. Indeed, Reptin appears to nucleate recruitment of actin-like 

Arp5p, one of the critical subunits of the INO80 complex. In addition Ino80 and 

Reptin regulate expression of a similar set of genes. Similarly, Reptin is incorporated 

in the human INO80 complex, however its role in this assembly has not been 

established yet [358].  

 

II SWR1/SRCAP 

 

 SWR1 complex is involved in histone H2B-H2AZ substitution onto 

chromatin [359].  Both yeast SWR1 and mammalian SWR1 homolog- SRCAP 

engage Reptin protein, however it is unclear whether Reptin regulates assembly, 

ATPase activity of the complex or nucleosomal exchange. 
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III TIP60  

 

 Human TIP60 complex and its catalytic subunit Tip60 have a range of 

activities, including a well established role in transcription through binding and 

acetylation of various substrates such as histones [360], the Androgen Receptor (AR) 

[361] or p53 [230, 231]. The TIP60-p53 interaction has been shown to be critically 

important for cell cycle arrest and apoptosis programmes of p53. Interestingly, E2F 

can bind Tip60 at E2F target promoters, which triggers recruitment of other subunits 

of TIP60 complex including Reptin [362]. In addition, Myc-Maz complex interacts 

with Tip60 and recruits Reptin to Myc-dependent promoters, which results in the 

formation of a gene activating complex [363]. Surprisingly, despite the clear role of 

TIP60-Reptin in Myc transcription activation, Reptin was found to associate with a 

Myc-Miz1 repressor complexes, which leads to suppression of p21 and consequently 

to cell proliferation [364]. The mechanism of Reptin function in this complex has not 

been identified yet, but it is possible that Reptin acts here as an assembly factor, as it 

was found for the TIP60 or INO80 complexes. This hypothesis could be extended to 

other Reptin-containing repressor complexes, such as Polycomb, β-catenin, and 

nuclear factor (NF)-κB [365-367].  

 

IV Transcription factors 

 

 The presence of Reptin in transcription activating or repressing complexes 

was found to be mediated through its direct interaction with transcription factors, 

such as TBP [368, 369], Myc [370], E2F1 [362], ATF2 [371] or                     

transcription-associated protein β-catenin [365, 367]. Reptin also binds to the 

promoters of the genes targeted by these transcription factors [362, 363, 367] and, as 

it was mentioned above, these events often involve TIP60 complex. These 

interactions confer Reptin’s role in transcription and could set a starting point for the 

discussion on the roles of Reptin overexpression in the pathogenesis of disease. For 

example Reptin potentiates c-Myc mediated repression of p21 gene, hence impedes 

cell cycle arrest. Further, Reptin represses -catenin-dependent reporters. This may 

indirectly point to Reptin playing a role in cellular transformation, as deregulation of 
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β-catenin signalling, due to an activating mutation of β-catenin or its interacting 

partners, was observed in several cancers [372-374]. Furthermore, together with the 

co-repressor TLE1 and histone deacetylases HDAC1 and HDAC2, Reptin was found 

to localize to the promoters of two β-catenin targets hesx1 and pit1. As these proteins 

are implicated in cell fate decisions, Reptin-mediated repression of the expression of 

these genes has a role in maintaining cell pluripotency [375]. Similarly, co-operation 

of Reptin and histone deacetylaes in gene repression was observed for the nuclear 

factor B (NF-B) driven expression of KAI1 [367]. Apparently, the formation of 

this PPI is dependent on the relative ratios of repressors to activators that can be 

differentially recruited to the KAI promoter. In non-metastatic cells, Tip60 

coactivator is expressed at high levels. It recruits Pontin to the promoter region of 

KAI1, mediates acetylation of histones and subsequently induces KAI1 expression. 

In metastatic cells, the levels of nuclear -catenin increase. Consequently,                

-catenin-Reptin complex is preferentially recruited to KAI1 promoter and becasue 

Reptin is associated with histone deacetylase HDAC1, this leads to KAI1 

suppression. Interestingly, Reptin-HDAC1 interaction is stimulated by             

SUMO-specific E2-conjugating enzyme (Ubc9), which catalyses sumoylation of 

Reptin. Contrary to that, Reptin interaction with HDAC1 is inhibited by the     

SUMO-processing enzymes SENP1 and SUSP1. Interestingly, levels of Ubc9 and 

sumoylated Reptin are increased in metastatic cells [376]. This is an interesting 

example of how PPIs can be modulated by post translational modification of the 

interacting protein and by the cellular context. As KAI1 increases cell adhesion and 

thereby inhibits metastasis, the implication for Reptin-mediated repression of this 

protein is that it may be involved in cellular transformation. Another                 

Reptin-interacting protein that modulates Reptin-mediated repression is the Histidine 

triad nucleotide-binding protein 1 (Hint1) [377]. Interestingly, Hint1 disrupts 

formation of Reptin-Pontin complex, and can possibly disrupt Reptin’s 

hexamerization. Hint1 is recruited with Reptin to β-catenin and enhances Reptin-

mediated suppression of -catenin. Collectively, it appears that Reptin in 

combination with β-catenin, recruits histone deacetylases to different promoters and 

converts the chromatin to a repressive state. Interestingly, Reptin binds two 
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endosomal proteins APPL1 and APPL2 and this interaction is likely to reduce 

Reptin-HDAC1 complex and relieve Reptin mediated repression of -catenin [378].  

 

V DNA repair 

 

 The important physiological function of Reptin in the chromatin remodelling 

complexes is linked to the DNA damage response. The DNA damage response 

checkpoints involve three members of the phosphatidylinositol 3-kinase-related 

protein kinase (PIKK) family: ATM, ATR, and DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs) and clamp loader/polymerase clamp (RFC/PCNA)-

related Rad17-RFC/9-1-1 complex [379]. Upon DNA damage ATM kinase 

autophosphorylates at Ser1981. This converts an inactive dimer into an active 

monomer that can bind to chromatin and phosphorylate its substrates [380]. 

Activated ATM phosphorylates histones to “mark” damaged sites and this triggers 

recruitment of amplifying or repairing proteins, like MDC1, MRN complex, 53BP1, 

and BRCA1 [379]. In addition, chromatin remodelling machines also have to be 

recruited to facilitate opening and repairing of the altered chromatin structure. 

Interestingly, the Reptin-containing chromatin remodelling complexes such as 

TIP60, yeast Ino80 and Swr1 as well as human INO80-YY1 complex are also 

recruited to DNA damage sites [381-384]. The loss of the functional yeast Ino80 and 

yeast Swr1 complexes as well as human YY1, Ino80 and Reptin results in 

hypersensitivity to DNA-damaging agents [356, 382, 384]. Tip60 is critical for ATM 

acetylation and this modification precedes ATM activation [385, 386]. Additionally, 

functional human TIP60 complex is required for the recruitment of Rad51, a protein 

catalysing homologous recombination in the repair of DNA, to the sites of DNA 

damage [387]. Furthermore, TIP60 is involved in histone H4 acetylation, which is 

important for the subsequent dephopshorylation of histone H2AX [388]. 

Interestingly, Reptin depletion leads to an increased amount of the phospho H2AX 

foci [389]. Collectively, given that Reptin is incorporated in these complexes and is 

believed to be essential for their assembly, these findings suggest that Reptin may be 

involved in DNA repair pathway due to the requirement for chromatin remodelling at 

the DNA damage sites. Intriguingly, Reptin interacts directly with the members of 
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PIKK family and its silencing resulted in attenuation of PIKK signalling following 

DNA damage [390]. 

1.2.3.2 Reptin’s PPIs- chaperoning Ribonucleoproteins (RNPs) assembly  

 snoRNPs are RNA processing enzymes and were found to modify small 

nuclear RNA (snRNA), ribosomal RNA (rRNA), and tRNAs [391]. Reptin protein 

was found to associate with small nucleolar RNPs (snoRNPs) in different species 

[392-395] and be involved in their biogenesis and assembly in the process involving 

a chaperone multicomplex of Tah1 (Rpap3), Pih1 (Nop17), Pontin and Hsp90 [396]. 

 In addition to snoRNP, Reptin is involved in the assembly of the telomerase 

complex [397]. Telomerase complex consists of the telomerase reverse transcriptase 

(TERT), telomerase RNA component (TERC) and the TERC-binding protein 

dyskerin [398]. Reptin together with Pontin interact with dyskerin and this is 

important for the assembly and stability of the TERC RNP. Moreover, both these 

proteins interact with TERT. Interestingly this PPI is regulated by the cell cycle and 

is increased in the S phase. The TERT-Reptin-Pontin complex displays reduced 

telomerase activity, and precedes formation of the active telomerase complex which 

coincides with Reptin/Ponitn dissociation [397]. In addition, the transiency of this 

interaction is consistent with the chaperoning activity of these proteins.  

1.2.3.3 Reptin’s PPIs- chaperoning mitosis 

 Reptin, together with Pontin associate with tubulin and localize to the mitotic 

spindles, spindle poles, midzone during telophase and to the midbody during 

cytokinesis [399, 400]. Interestingly, deletion of Pontin in cultured cells or in 

Xenopus extracts unveiled it role in organising and microtubule assembly, however 

Reptin appeared to potentiate Pontin’s effect  [401]. 
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1.2.4 AGR2- a protein with an undefined interactome 

 

 AGR2 protein belongs to the family of the Anterior Gradient proteins 

comprising several proteins, including the founder member XAG-2. XAG-2 was 

ascribed a developmental role, and together with organiser-secreted factors, such as 

noggin, chordin, follistatin and cerberus, is incorporated in the pathway involved in 

ectodermal patterning in Xenopus embryos [402-406]. As XAG-2 transcription is 

activated by organizer-secreted factors, it converges with the BMP-4 antagonising 

pathway.  

Following discovery of the frog’s gene, the human homologoue, namely AGR2, 

known also in literature as AG2, GOB4, HAG-2, PDIA17, was identified in estrogen 

receptor (ER)-positive breast cancer cell lines [407]. Interestingly, as much as nine 

alternative transcripts of AGR2 gene were described and six of them give rise to 

proteins of 119 to 188 amino acids [408].  

Generally, AGR2 is highly expressed in mucus-secreting cells and endocrine organs, 

such as lung, stomach, colon, prostate and small intestine, and to a lesser extent in 

pituitary gland, salivary gland, mammary gland, bladder, appendix, ovary, uterus, 

pancreas, kidney, testis and thyroid gland [407, 409, 410]. AGR2 is expressed in 

several cell types in small intestine crypts, including mature goblet, Paneth and 

enteroendocrine cells, as well as Musashi-1 (MSI1)-positive intestinal stem/early 

progenitor cells and proliferating secretory progenitors [411]. Its presence in the 

mucus-secreting organs appears to be evolutionarily conserved as XAG-2 expressing 

cement gland also secrets mucus. At present, the function of AGR2 in mammalian 

systems is not fully understood, mainly because there are no well-validated binding 

partners known for this protein. Below the known or predicted functions of AGR2 

protein are briefly discussed. 

 

1.2.4.1 AGR2- a molecular chaperone? 

 

 In addition to being a part of the AG family, human AGR2 is incorporated in 

the family of chaperone-like proteins, namely protein disulfide isomerase (PDI) 
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superfamily [412]. PDI and PDI-related proteins are microenvironmentally regulated 

proteins that can catalyse the formation, reduction or isomerization of disulphide 

bonds in their client proteins. These enzymatic reactions facilitate protein maturation 

into bioactive conformation in the endoplasmic reticulum (ER) [413]. These proteins 

contain the thioredoxin motif (CXXC or CXXS) [414-417]. In addition to the active 

motifs, most members of the PDI family contain H/KDEL ER retention signal. 

Interestingly, AGR2 possess both of the key determinant attributes of the PDIs 

family. Firstly, AGR2 possesses the CXXS motif instead of CXXC, which is present 

in other members of this family, such as TRX1, TRX2 or ERP18. CXXS exibits 

lower activity in terms of disulfide bond reorganization, however, it is believed that it 

may participate in the isomerization of already existing disulfide bridges and have 

alternative functions in the ER [418, 419]. AGR2 also has a C-terminal putative ER 

retrival sequence that can localise AGR2 to ER [420]. The putative role of the 

thioredoxin fold in the PDIs family is to form disulfide bonds with the substrate and 

facilitate their maturation and folding. If PDI substrates are not isomerised, the 

misfolded proteins may accumulate in the ER which could instigate ER stress and 

subsequently cell cycle arrest and apoptosis. As AGR2 embeddes itself in the PDIs 

family, it is possible that it is also involved in chaperoning ER proteins. Indeed, 

AGR2 was recently shown to form mixed disulfides with intestinal Mucin 2 (MUC2) 

and this reaction was essential for the correct pairing of cystine residues in the 

processing of this cysteine-rich glycoprotein [421]. AGR2 knock-out mice failed to 

produce mucus, had no morphologically normal goblet cells and were susceptible to 

experimentally induced colitis [421]. In addition, another study [422] found that even 

in the absence of damaging agents, loss of AGR2 resulted in the severe 

inflammation, abnormal expansion and localisation of Paneth cells. This was 

associated with the increased expression of WNT signalling feedback inhibitor, 

namely Sox9. Interestingly, AGR2 knock-down has affected two types of cells that 

are a major part of secretory pathway in the intestine, namely (1) goblet cells, which 

produce the major components of the mucus barrier and (2) the Paneth cells that 

produce a range of antimicrobial molecules. These cells exert high levels of baseline 

protein biosynthesis under normal conditions. However, environmental and 

inflammatory triggers further increase synthesis and secretion by these cells and 



 48

these inputs may disturb ER homeostasis and result in the increased ER stress, that 

subsequently leads to inflammation, caused by inappropriate folding. As in Zao et al. 

study, AGR2 knock-down elevated ER stress, we could speculate that AGR2 is 

indeed important for appropriate protein folding, at least for certain secreted proteins.  

 

1.2.4.2 The AGR2 interactome 

 

 Early studies on AGR2 protein suggested its interaction with prometastatic 

factors C4.4A and alpha-dystroglycan (DAG-1). However, to date none of these 

interactions have been properly validated [423]. Interestingly, a peptide aptamer 

screen found AGR2 binding peptide PTTIYY, that can specifically interact with 

AGR2 in vitro and change its subcellular localisation as well as reactivate p53 in vivo 

[424, 425]. This finding could serve as a starting point to search for the cellular 

proteins that have this consensus motif (S/T)xIhh (where x is any amino acid and h is 

an amino acid with a hydrophobic side chain) and validate them as AGR2 binding 

partners [424].  

 

1.2.4.3 AGR2 role in cancer and cancer related pathways 

 

 AGR2 protein is overexpressed in a wide range of cancers, including breast 

[409, 426-428], prostate [410, 429], fibrolamellar [430], pancreatic [410, 431, 432], 

colon [433], ovarian [434] cancer. AGR2 has also been proposed as a useful 

metastasis marker in breast, prostate and colorectal cancer [407, 423, 427, 435], and 

it is associated with poor survival of prostate and breast cancer patients                

[426, 429, 436]. AGR2 overexpression in cancer cells has several implications for 

the biology of the resulting tissue. 
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I AGR2 as a p53 inhibitor  

 

 AGR2 was found to attenuate p53 activity by suppressing p53-dependent 

response to DNA damage [437]. In detail, AGR2 was shown to decrease                

p53-dependent transcription to a similar extent as MDM2 did, and the                

AGR2-mediated inhibition of p53 was augmented by DNA damage. Interestingly, 

AGR2 ability to suppress p53 transcription was concomitant with a decrease in p53 

phosphorylation at both Ser15 and Ser392 [437] and the nuclear exclusion of p53 

protein [420]. Further, AGR2 depletion using siRNA promoted translocation of a 

fraction of cytoplasmic p53 to the nucleus and membrane/organelles. However, these 

studies were performed in a lung cancer cell line that normally does not express 

neither p53 nor AGR2 and as such, cell systems expressing endogenous proteins 

have to be studied to definitely assess AGR2 function in the p53 pathway. A recent 

study found that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a toxin and human 

carcinogen  [438] that attenuates the p53 response to DNA-damaging agents [439, 

440], induces AGR2, further implicating AGR2 role in p53 inhibition [441]. 

  

II AGR2 in metastatis and transformation 

 

 Several studies in cell lines indicated that AGR2 may play a role in tumour 

growth, cell migration and metastasis. For example, transfection of AGR2 into a 

benign rodent mammary cell line promoted metastatic phenotype and it was 

suggested to be due to enhanced adhesive properties of AGR2-positive cells [427]. A 

subsequent study found that AGR2 knock-down in a non-small lung carcinoma cell 

line and in pancreatic cancer cells compromised anchorage independent growth in 

vitro and the growth of xenograft tumours in vivo [411, 442]. In addition           

AGR2-overexpressing stable human ovarian cancer cells up-regulated the expression 

of genes involved in cell proliferation, invasion, and angiogenesis and down-

regulated expression of the negative regulators of these processes [434]. Moreover, 

AGR2 was found to act as a prosurvival factor as stable overexpression of AGR2 in 

H1299 cells enhanced colony formation [437]. Recently AGR2 protein was shown to 

be differentially expressed in metastatic gastric cancer cells, compared to a          
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non-metastatic counterpart [443], which further reinforces AGR2 role in metastasis. 

Finally, in stress conditions that resemble the tumour microenvironment, such as 

serum depletion, hypoxia, AGR2 was upregulated together with other prosurvival, 

angiogenic, and proinvasive genes, indicating that AGR2 may act as a prosurvival 

factor in these tumour growth-stimulating pathophysiological stress conditions [444].  

 

III AGR2 in development 

 

 The functions of AGR2 protein in normal tissues are poorly understood. As 

mentioned before, the founder member of the Anterior Gradient protein, XAG-2 has 

been described as a critical factor in embryonic development and its expression was 

found to be confined to anterior regions that will differentiate into cement gland 

[402]. Furthermore, similarly to the organiser-secreted factors, such as noggin, 

chordin, follistatin and cerberus, XAG-2 has the capacity to activate ectodermal 

patterning in Xenopus embryos [402-406]. In fact, XAG-2 transcription is activated 

by organizer-secreted factors, and as such may act as a mediator of anterior/posterior 

axis specification downstream of the inhibitors of BMP-4 pathway present in axial 

mesoderm [402]. In addition, a model for XAG-2-dependent formation of cement 

gland has been put forth. It infers that a combination of both stimulatory and 

inhibitory signals restricts XAG-2 protein to the cement gland anlage [445] and once 

its expression is established at the extreme anterior of the embryo, secreted XAG-2 

triggers the cement gland formation [402].  

 In addition, developmental role of Anterior Gradient protein was observed for 

newt anterior gradient (nAG) protein, which was found to be involved in newt limb 

regeneration [446]. nAG was detected in Schwann cells of the distal nerve sheath and 

later, at the early bud stage, it was expressed in gland cells of the wound epidermis 

and functioned as a growth factor. Furthermore, expression of nAG in denervated 

tissue that had lost the ability to regenerate could rescue it and support a regeneration 

of distal structures [446].  

 Studies using normal mice, germline and inducible AGR2 knockout mice as 

well as AGR2 knockdown in cell culture have helped to shed the light on the 

functions of AGR2 in normal tissue. Interestingly, AGR2 has been found to be 
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expressed in distinct cell types of the small intestine. The lining epithelium of the 

small intestine forms crypts with nutrient absorbing enterocytes being the major cell 

population within this organ. Other three major intestinal cells are goblet cells, 

Paneth cells and enteroendocrine cells, and all of these three cell types have a 

secretory function [447]. Interestingly, AGR2 is strongly expressed in differentiated 

goblet, Paneth and enteroendocrine cells, as well as in intestinal stem cells and 

progenitor cells [411]. Two recent studies using AGR2 knockout mice as well as cell 

culture where AGR2 was depleted using AGR2-specific siRNA, have shown that 

AGR2 has a role in maintaining intestinal homeostasis, in particular homeostasis of 

goblet and Paneth cells [421, 422]. Loss of AGR2 abolishes goblet cells ability to 

produce intestinal mucus [421] and changes goblet cells morphology [421, 422]. In 

addition, one study of AGR2 knockout mice revealed additional abnormalities in the 

small intestine such as drastic changes in intestinal Paneth cells as well as severe 

intestinal inflammation [422]. Specifically, AGR2 loss results in the abnormal 

localization of Paneth cells, as well as their expansion along the entire small 

intestine. This is followed by severe inflammation, which is consistent with Paneth 

cells role in the inflammatory response. Moreover, AGR2 loss causes disruption of 

enterocyte homeostasis, with decrease in proliferation, increase in apoptosis and 

blunting of villi [422]. Interestingly, it was found that the expression of Sox9, a 

feedback inhibitor of WNT signalling, is increased in the intestine of AGR2 

knockout mice. The components of the WNT pathway, such as Frizzled 5, EphB3 

and Apc, determine proper cell location along the crypt-villus axis [448-450]. The 

observation that loss of AGR2 causes mislocalization of Paneth cells and 

upregulation of Sox9, may indicate the cooperation of AGR2 and WNT pathway, at 

least in specifying appropriate architecture of the small intestine.  

Furthermore, AGR2 loss elevates ER stress, in some of the intestine cell types, and it 

provides with the first evidence for AGR2 function in ER dependent protein folding. 

Interestingly, AGR2 knockout phenotype resembles human Crohn's disease and this 

is consistent with the finding that the AGR2 genetic variants that decreased AGR2 

mRNA expression are associated with increased risk of both Crohn's disease and 

ulcerative colitis [451].  
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Interestingly, besides its clear involvement in maintaining small intestine 

homeostasis, AGR2 is involved in the regulation of maturation program of the 

intestine epithelial cells as they migrate along the crypt-villus axis, with AGR2 being 

a specific marker of the differentiated cells population [452].  

In addition to intestinal expression of AGR2, recent studies have identified AGR2 in 

the fetal liver and its expression pattern is conserved in adult liver [430], with AGR2 

being present in the tall columnar but not in cuboidal cells of the intrahepatic, hilar 

and extrahepatic biliary tree [453]. Interestingly, the differentiation program of the 

biliary epithelial cells lining bile ducts involves acquiring columnar and mucus-

secretory phenotype [453]. These observations led to hypotheses that AGR2 could 

have a function in the differentiation of the biliary tree cells. Given that AGR2 has 

been shown to have a role in ER stress regulation in goblet cells and the secretion of 

mucin 2 and ascribed a chaperone role, it is possible that liver-expressed AGR2 

supports secretory functions of mucin-producing differentiated cells, which could 

subsequently regulate organ physiology. 

It is interesting that both p53 and AGR2 have a function in normal tissue 

development, affect differentiation programmes and are involved in limb 

regeneration. This indicates that despite its clear p53-inhibitory role in cancer cells, 

AGR2 and p53 could in fact cooperate in vivo.  
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Figure 1.10 Schematic representation of the factors that regulate AGR2 and AGR2 functions.   
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1.3 Objectives 
 

 The p53 tumour suppressor protein has emerged in last decades as a key 

inhibitor of tumour development. Indeed over half of human cancers bear mutations 

in the p53 encoding gene. Interestingly, some tumours retain the wild type p53 gene, 

and these cancers develop other mechanisms to inhibit the tumour suppressive 

signalling by p53. Recently, AGR2 protein was identified as a p53 protein inhibitor, 

however, the molecular mechanism underlying this function is not known. The aim 

of this project was to identify physiological signals that regulate AGR2-p53 pathway. 

Finding such extracellular inputs, in particular tumour suppressor signals that 

antagonize the pro-oncogenic function of AGR2 can provide model systems to study 

AGR2 regulation and facilitate development of drugs aiming at reactivating wild 

type p53 in cancers. In addition, to further our understanding of the AGR2 functions, 

we focused on identifying novel AGR2 binding partners. We characterised the new 

interaction between AGR2 and Reptin protein and investigate the role of this 

interaction with respect to the p53 pathway.   
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CHAPTER 2: MATERIALS AND METHODS 
 

2.1 Reagents, chemicals and plasmids  

 

Chemical and reagents were purchased from Sigma, unless otherwise 

indicated. The human HA-tagged Reptin was a gift from Argyro Fourtouna;          

HA-tagged Reptin K456R and myc-tagged Pontin were a kind gift from Dr Marta 

Miaczynska; the mature wild type AGR2-pDEST 3.2 was from Dr Euan Murray; p53 

S269D and p53 S269A were from Dr Jenny Fraser, HA-tagged SNIP1 was from      

Dr Neil Perkins. Phospho-specific antibodies to SNIP1 were developed by Moravian 

Biotechnology. 

 

2.2 Equipment  

 

A Fluroskan (Ascent FL) and Victor 3 (Perkin Elmer) were used to read      

96-well plates. RNA and DNA concentrations were measured using a NanoDrop® 

spectrophotometer. X-ray irradiation treatment was performed using Faxitron® 

cabinet X-ray system, 43855D (Faxitron X-ray Corporation). SDS-PAGE was 

carried out using Biorad Protean II mini-gel system. Radioactivity-containing gels 

and plates were visualised with the use of Phosphoimager. X-ray films were 

developed using a Konica Medical Film Processor (Model SRX-101A). Sorvall RC-

5C plus and Eppendorf 5415R were used for all centrifugations. PCR was performed 

using DNA Engine Dyad peltier thermal cycler (Bio Rad) and Real Time PCR using 

MJ Reseach PTC-200 peltier thermal cycler (Bio Rad). 
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2.3 Microbiological techniques  

 

2.3.1 Growing bacterial cultures 

 

 Bacterial cultures were grown in Luria-Bertani (LB) media, at 37ºC, with 

shaking at 220 rpm, and in the presence of a selective antibiotic when required, at the 

following final concentrations: 100 g/ml ampicilin, 50 g/ml kanamycin and        

30 g/ml chloramphenicol. Cultures were inoculated from a single colony or from 

glycerol stocks, and grown in the sterile flasks with a capacity of at least four times 

the culture volume, to allow appropriate aeration.  

 

LB media 

1 % (w/v) bacto-tryptone,  

0.5 % (w/v) bacto-yeast extract,  

1 % (w/v) NaCl,  

Dissolve in distilled water and autoclave at 121°C for 20 minutes. 

 

LB agar plates were prepared using LB media containing 1.5 % (w/v) bacto-agar. LB 

agar was first melted by heating in the microwave oven and then cooled to about 

45°C. Subsequently the appropriate antibiotic was added and LB agar was poured 

into 90 mm petri dishes (Sterilin), and allowed to cool. The culture plates were stored 

at 4C for no longer than one month and were warmed to 37C for 1 hour prior to 

use. 

 

2.3.2 Glycerol stocks 

 

Glycerol stocks were prepared to allow the long term storage of bacteria.    

800 l of an overnight bacterial culture was mixed with 200 l of 80 % sterile 

glycerol in a cryotube (Nunc), snap frozen in liquid nitrogen and stored at -80°C. 
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2.3.3 Preparation of competent cells 

 

Bacterial cells were inoculated into 5 ml of LB and incubated overnight at 

37oC with shaking at 220 rpm. The overnight culture was diluted 1:200 in 100 ml LB 

and incubated at 37oC until the O.D600nm reached 0.6. Following centrifugation        

(20 minutes, at 4oC, 4000 rcf), cell pellets were resuspended in 15 ml of ice cold 

buffer 1 and incubated on ice for 1 hour. Cells were then centrifuged as above; the 

pellet was resuspended in 4 ml of ice cold buffer 2 and incubated on ice for              

15 minutes. Subsequently, the cells were aliquotted (100 μl) into pre-chilled sterile 

microcentrifuge tubes, snap frozen in liquid nitrogen and stored at -80oC.  

 

Buffer 1 

100 mM RbCl 

79 mM MnCl2  

30 mM CH3COOK pH 7.5 

13.5 mM CaCl2 

15 % (v/v) Glycerol 

Adjust to pH 5.8 and filter sterilise. 

 

Buffer 2 

10 mM MOPS pH 6.8 

10 mM RbCl 

13.5 mM CaCl2 

15 % (v/v) Glycerol 

Adjust to pH 6.8 and filter sterilise. 

 

2.3.4 Transformation of bacterial cells 

 

100 ng of plasmid DNA was added to 50 l of freshly thawed competent cells 

and incubated on ice for 30 minutes. Next, cells were heat shocked at 42ºC for             

1 minute, and placed in ice to cool. Subsequently, 500 l of LB broth was added and 
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the mixture was incubated at 37ºC, for 60 minutes, with shaking. 100 l was then 

plated onto LB-agar plate containing the appropriate antibiotic and incubated 

overnight at 37ºC. 

 

2.4 Molecular Biology Techniques 

 

2.4.1 Amplification, purification and quantification of plasmid 

DNA 

 

 A single bacterial colony was picked from a LB-agar plate and inoculated 

into 5 ml of LB broth containing a selective antibiotic when required, and grown for 

several hours, at 37ºC, with shaking at 220 rpm. Following incubation, the starter 

culture was diluted into 500 ml of LB broth containing selective antibiotic (if 

required) and grown overnight, at 37ºC, with shaking at 220 rpm. The next day, 

bacterial culture was centrifuged at 4ºC, for 10 minutes, with shaking at 6000 rcf and 

plasmid DNA extracted using plasmid DNA Maxi kit (Qiagen) according to 

manufacturer’s instructions. If lower yield of plasmid DNA was required, plasmid 

DNA was purified directly from the starter culture using plasmid DNA Mini kit 

(Qiagen). Plasmid DNA was eluted in nuclease-free water and stored at -20ºC. The 

concentration of obtained DNA was measured using a NanoDrop ND-1000.  

 

2.4.2 Agarose gel electrophoresis of DNA 

 

Agarose gel electrophoresis was used to separate and analyse DNA. Agarose 

gels were prepared by adding electrophoresis-grade agarose (Invitrogen) to 1x TAE 

buffer to a final concentration of 1 % and melted by heating in a microwave oven. 

The agarose was then cooled to about 60ºC and ethidium bromide was added to a 

final concentration of 0.5 μg/ml. The solution was then poured into a casting tank 

and allowed to set at the room temperature. The gel was then submerged in 1x TAE 

buffer. DNA samples were mixed with the 6x DNA loading buffer at a 5 to 1 ratio of 
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DNA to loading buffer. Upon loading DNA samples, the agarose gel was run for 

approximately 60 minutes at 100 V. Subsequently, the bands were visualised under 

UV transilluminator using Syngene (Genesnap). 

 

1x TAE buffer 

40 mM Tris 

1 mM EDTA 

Adjust pH to 8.0  

 

6x DNA loading buffer  

0.25 % bromophenol blue 

0.25 % xylene cyanol FF 

15 % Ficoll 

 

2.4.3 DNA sequencing 

 

DNA sequencing was carried out using the Big Dye Terminator V3.1 Cycle 

Sequencing Kit (Applied Biosystems). In details, a sequencing reaction was 

performed as follows: 

 

PCR 

2 L of 5X Sequencing Buffer Big Dye Terminator V1.1, V3.1  

1 L of Big Dye Terminator V3.1 Cycle Sequencing Kit  

300 ng of DNA template  

1 l of sequencing primer (10 M)  

Adjust to a final volume of 10 µl with Nuclease-free water  
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 Thermal cycling conditions were: 

1. 96ºC for 1 minute 

2. 96ºC for 10 seconds 

3. 50ºC for 5 seconds 

4. 60ºC for 4 minutes 

5. Repeat steps 4-6 for 25 cycles 

6. Hold at 4ºC  

 

Ethanol/EDTA precipitation 

Following PCR, 2.5 L of 125 mM EDTA and 30 L of 100 % ethanol were added 

to the sequencing reaction. The mix was vortexed and incubated for 15 minutes at 

room temperature. Samples were then centrifuged for 20 minutes at maximum speed 

and the supernatant was removed. The samples were briefly spun again to remove 

any residual ethanol. The DNA pellet was then washed with 70 % ethanol and 

centrifuged for 5 minutes, at 4ºC, at maximum speed. The supernatant was removed, 

samples briefly spun again and all remaining ethanol discarded. Finally, the pellet 

was air dried in a fume hood and the sequences were analyzed by Geneservice DNA 

Sequencing Service at Cambridge. 

 

2.4.4 Cloning 

 

2.4.4.1 Gateway cloning 

In order to clone the sequence of interest using the Gateway system 

(Invitrogen) manufacturer’s protocol was followed. Firstly, insert flanked by attB 

recombination sites was generated (refer to section I). This was followed by 

generation of an entry clone in BP reaction (refer to section II) and finally destination 

clone was created in LR reaction (described in III). 

 

 

 

 



 61

I Producing attB-PCR products 

 

Primer design 

To generate PCR products suitable for Gateway’s BP reaction, primers were 

designed such that they incorporated attB recombination sites into PCR product (see 

below) and contained 18-25 bases corresponding to the N-terminal and C-terminal 

portion of the protein to be cloned. Specifically, the primers were designed to allow 

expression of Reptin protein with N-terminal fusion GST tag. In addition a 

Prescission cleavage site was incorporated in the forward primer to allow removal of 

the GST tag, when required.  

 

Primers’ sequences were as follows: 

 

Forward primer (5’-3’):   

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCCTGGAAGTTCTGTTCCAG

GGGCCCATGGCAACCGTTACAGCCACAACC 

Reverse primer (5’-3’):   

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAGGAGGTGTCCATGGTCT

CG  

Red = polyG required for recombination of attB;  

Green = attB (1 or 2) site;  

Purple = nucleotide insert to maintain correct reading frame;  

Pink = protease cleavage site;  

Black = gene sequence 

 

PCR 

HA-tagged Reptin plasmid DNA was used as a template DNA. The PCR reaction 

was set up as follows: 

 
12.5 μl 2X Pfu Master Mix (Vhbio) 

2.5 μl Band Doctor (supplied with Pfu Master Mix)  

50 ng Template DNA  

1.3 μl Forward Primer (10 μM stock)  
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1.3 μl Reverse Primer (10 μM stock)  

Nuclease-free water to 25 μl  

 

Thermal cycling conditions were:  

1. 95°C for 2 minutes  

2. 95°C for 30 seconds  

3. 58°C for 1 minute  

4. 72°C for 2 minutes   

5. Repeat steps 2-4 for 30 cycles  

6. 72°C for 5 minutes  

7. Hold at 4°C  

 

Following PCR, the amplified DNA was cleaned using the Qiagen PCR Clean-up 

Kit, and eluted into 30 μl of nuclease-free water. 5 μl of the purifed PCR product was 

loaded onto a 1 % agarose gel to confirm success of amplification. 

 

II Creating an entry clone  

 

To generate an entry clone a BP reaction was performed using attB-flanked PCR 

product and attP-containing donor (pDONR-221).  

 

The reaction was set up as follows: 

150 ng PCR product  

150 ng pDONR-221  

2 μl BP clonase mix  

Adjust to 10 μl with TE Buffer (pH 8)  

 

Reaction was incubated at 25°C, overnight. The following day, 1 μl of Proteinase K 

solution (Invitrogen) was added and incubated at 37°C for 10 minutes. Subsequently, 

5 μl of the BP recombination reaction was transformed into DH5 and plated out 

onto LB-agar plates containing kanamycin. Next, a single colony was picked from 
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the plate, 5ml cultures grown, which was followed by plasmid DNA extraction using 

plasmid DNA Mini kit (Qiagen).  

 

III Creating an expression clone  

 

To obtain an expression clone a LR reaction was performed between an entry clone 

and a destination vector of choice (pDEST 15). The reaction was set up as follows: 

150 ng entry clone  

150 ng pDEST15  

2 μl LR clonase mix  

Adjust with TE Buffer (pH 8) to 10 μl  

 

Reaction was incubated at 25°C, overnight. The following day, 1 μl of Proteinase K 

solution (Invitrogen) was added and incubated at 37°C for 10 minutes. Subsequently, 

5 μl of the LR recombination reaction was transformed into DH5 and plated out 

onto LB-agar plates containing ampicilin. Next, a single colony was picked from the 

plate, 5ml cultures grown, which was followed by plasmid DNA extraction using 

plasmid DNA Mini kit (Qiagen). Insertion of the desired sequence in frame and 

absence of any mutations were verified by sequencing. 

 

2.4.4.2 Conventional cloning using restriction enzymes 

In order to clone the sequence of interest into the required vector, the desired 

sequence was first amplified by PCR using primers flanked by appropriate restriction 

sites (refer to section I). This was followed by restriction enzyme digestion of both 

insert and vector (described in II) and subsequent ligation of double-digested vector 

and insert (described in III). 
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I PCR amplification 

 

Primer design 

Primers were designed such that they contained 18- 25 bases corresponding to the   

N-terminal and C-terminal portion of the sequence to be cloned and the appropriate 

restriction sites chosen according to the Multiple Cloning Site (MCS) of the vector to 

be inserted in. A number of nucleotide bases were incorporated adjacent to restriction 

sites to ensure efficient annealing of the primers. Additional bases were inserted 

when necessary to ensure that the sequence of interest was in frame relative to 

downstream sequences. Lastly, sequences of primers were modified to obtain an 

acceptable GC content (40-60 %) and melting temperature (60-80º C). A list of 

primers used is given in Table 2.1 and a list of the recognition sequences of the 

restriction enzymes (RE) used is given in Table 2.2. 

 

Vector Target  Primer sequence (5’- 3’) 

pGL3-basic 

(Promega) 

AGR2 promoter 

(-1584 to +96) 

GGGGTACCCCTAATACATATGACTGTG

TCCTTATAA 

pGL3-basic 

(Promega) 

AGR2 promoter 

(-1584 to +96) 

TTACCCCGGGGTTAGAA 

ACTGAGGCTCTGCTGA 

 
Table 2.1 Primers used for AGR2 promoter cloning. Green is a restriction enzyme recognition 
sequence, Red is a linker sequence. 
 

 

Restriction enzyme Recognition sequence (5’-3’) 

KpnI GGTACC 

XmaI CCCGGG 

 
Table 2.2 Recognition sequences of the restriction enzymes used in this study 
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PCR 

Genomic DNA obtained from MCF7 cells was used as a template DNA. The PCR 

reaction was set up as follows: 

 
12.5 μl 2X Pfu Master Mix  

2.5 μl Band Doctor (supplied with Pfu Master Mix)  

50 ng Template DNA  

1.25 μl Forward Primer (10 μM stock)  

1.25 μl Reverse Primer (10 μM stock)  

Adjust to 25 μl with nuclease-free water  

 

Thermal cycling conditions were:  

1. 95°C for 2 minutes  

2. 95°C for 20 seconds  

3. 58°C for 40 seconds  

4. 72°C for 2-5 minutes (1 minute/ 2 kb)  

5. Repeat steps 2-4 for 25-35 cycles  

6. 72°C for 5 min  

7. Hold at 4°C  

 

Following PCR the amplified DNA was cleaned up using the Qiagen PCR Clean-up 

Kit, and eluted in 30 μl of nuclease-free water. 5 μl of the purifed PCR product was 

loaded on a 1% agarose gel to verify the appropriate quantity and quality of the PCR 

product. 

 

II Restriction digest 

 

Restriction digests for the vector and insert were performed using restriction 

enzymes and buffers (as required) supplied by New England Biolabs. Double digest 

reactions were set up as described below 
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Double digestion of vector  

1 g of DNA 

5 l NEB Buffer 

5 l BSA (if required) 

1 unit RE 1 

1 unit RE 2 

Adjust to 50 l with nuclease-free water 

 

Double digestion of insert 

30 l of PCR product 

5 l NEB Buffer 

5 l BSA (if required) 

1 unit RE 1 

1 unit RE 2 

Adjust to 50 l with nuclease-free water 

 

In addition single digest reactions were set up to ensure that each of the enzymes was 

active under the conditions of reaction used. The digests were incubated for 2 hours 

at 37ºC in a water bath. Following the incubation, the entire reaction volume was 

loaded onto a 1% agarose gel. The bands were visualised under the UV lamp and the 

single bands corresponding to double-digested insert and double-digested vector 

were excised and purified using gel extraction kit (Qiagen) according to 

manufacturer’s protocol. DNA was eluted in nuclease-free water and quantified 

using NanoDrop-2000. 

 

III Ligation 

 

Ligation reactions of double-digested insert and vector DNA were carried out using 

T4 Ligase (Promega) following the manufacturer’s guidelines. 100 ng of           

double-digested vector was used and the amount of insert to be added was estimated 

using the formula below: 
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((ng vector) x (kb size of insert) / (kb size of vector) x molar ratio (insert/vector) =  

ng insert 

In most experiments 1:1 molar ratio of insert to vector was used.  

 

The reaction was set up as follows: 

1 l of T4 buffer 

X ng insert 

100 ng of vector 

1 l of T4 ligase 

Adjust to 10 l with nuclease-free water 

 

As a control, double-digested vector without an insert was used to check for             

re-ligation. The mixtures were incubated overnight at 4ºC. The entire reaction 

volume was then transformed into DH5 cells and plated out onto LB-agar plates 

containing an appropriate selective antibiotic. Next, 3 single colonies were picked 

from the plates, 5 ml cultures grown, which was followed by plasmid DNA 

extraction using plasmid DNA Mini kit (Qiagen). Insertion of the desired sequence in 

frame and absence of any mutations was verified by sequencing.  

 

2.4.4.3 Site-directed mutagenesis 

In order to create a specific mutation in the sequence of interest the desired 

sequence was first amplified by PCR using primers such that they contain the desired 

base/bases change (Table 2.3).  

 

 

Mutation Primer sequence (5’-3’) 

AGR2 

F104A 

Forward: TGGCAGAGCAGGCTGTCCTCCTC               

Reverse: GAGGAGGACAGCCTGCTCTGCCA 

AGR2 

Y111A 

Forward: CCTCAATCTGGTTGCTGAAACAACTGAC 

Reverse: GTCAGTTGTTTCAGCAACCAGATTGAGG 
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Reptin 

K83A 

Forward: AGCACGGGGGCGACGGCCATCG              

Reverse: CGATGGCCGTCGCCCCCGTGC 

Reptin 

D299N 

Forward: GAGTGCTGTTCATCAACGAGGTCCACATGC  

Reverse: GCATGTGGACCTCGTTGATGAACAGCACTC 

SNIP1 

T169A 

Forward: GACGGGATCGAGACGCTCAGAACCTGCAG          

Reverse: CTGCAGGTTCTGAGCGTCTCGATCCCGTC  

SNIP1 

T169D 

Forward: GACGGGATCGAGACGATCAGAACCTGCAG 

Reverse: CTGCAGGTTCTGATCGTCTCGATCCCGTC 

SNIP1 

S202A 

Forward: 

TTGGTGGTGGCGGCAGTGAGGCTCAGGAGTTGG  

Reverse:CCAACTCCTGAGCCTCACTGCCGCCACCACCAA 

SNIP1 

S202D 

Forward: GTGGCGGCAGTGAGGATCAGGAGTTGGTTC  

Reverse: GAACCAACTCCTGATCCTCACTGCCGCCAC  

P53 I332V Forward: ACCCTTCAGGTCCGTGGGC                         

Reverse: GCCCACGGACCTGAAGGGT 

P53 R333A Forward: CTTCAGATCGCTGGGCGTGAGC                     

Reverse: GCTCACGCCCAGCGATCTGAAG 

P53 R335A 

 

Forward: AGATCCGTGGGGCTGAGCGCTTCG              

Reverse: CGAAGCGCTCAGCCCCACGGATCT 

P53 R337A 

 

Forward: GCGTGAGGCCTTCGAGATGTTCC                   

Reverse: GGAACATCTCGAAGGCCTCACGC 

P53 F338A Forward: GCGTGAGCGCGCCGAGATGTTCC              

Reverse: GGAACATCTCGGCGCGCTCACGC 

P53 E339A 

 

Forward: AGCGCTTCGCGATGTTCCGAGAGC           

Reverse: GCTCTCGGAACATCGCGAAGCGCT 

 
Table 2. 3 Site-directed mutagenesis primers. Red are mutated nucleotides.  
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The PCR reaction was assembled as follows:  

12.5 μl 2x Pfu Master Mix 

2.5 μl of 5x Band Doctor (supplied with Pfu Master Mix) 

50 ng template DNA  

1.25 μl forward primer (10 µM) 

1.25 μl reverse primer (10 µM) 

Adjust to 25 l with nuclease-free water 

 

Thermal cycling conditions were: 

1. 95°C for 1 minute  

2. 95°C for 50 seconds  

3. 55°C for 90 seconds  

4. 68°C for 10 minutes  

5. Repeat steps 2-4 for 19 cycles  

6. 68°C for 14 minutes  

7. Hold at 4°C  

 

Following PCR, 1 μl of DpnI restriction enzyme (5 U/µL, Invitrogen) was added to 

PCR product and incubated for 2 hours, at 37ºC in water bath. DpnI was heat 

inactived by incubation for 10 minutes at 65ºC. 2 μl of the DpnI treated product was 

then transformed into DH5 cells and plated out onto LB-agar plates containing an 

appropriate selective antibiotic. Next, 3 single colonies were picked from the        

LB-agar plates, 5 ml cultures grown, followed by plasmid DNA extraction using 

plasmid DNA Mini kit (Qiagen). Presence of required mutations was verified by 

sequencing.  
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2.5 Biochemical Techniques 

 

2.5.1 Separation of protein by SDS-PAGE 

 

SDS-polyacrylamide gels were prepared according to the formula below as 

described by Laemmli [235] using the Mini-Protean kit (Bio-Rad). First, the 

separating gel was cast and overlaid with water to ensure an even surface of the gel. 

Following the polymerisation of the separating gel, water was removed and the 

stacking gel was poured and the 15-well comb added. Prior to loading the combs 

were removed and the wells rinsed with the Running buffer. Samples were mixed 

with 2x or 4x sample buffer to obtain the final concentration of sample buffer of 1x. 

Sample were then heated for 5 minutes at 95ºC and loaded onto the gel. In addition, 

the pre-stained protein standards (Fermentas) were loaded as size markers. Proteins 

were separated by electrophoresis at 150 V in 1X running buffer, until the 

Bromophenol Blue dye reached the bottom of the gel. 

 

 Separating gel 10% Separating gel 12% Stacking gel 

Reagent Final concentration 

30% acrylamide 

mix 

10% 12% 5% 

1.5 M Tris  

(pH 8.8) 

0.39 M 0.39 M NA 

1 M Tris  

(pH 6.8) 

NA NA 0.13 M 

10% (w/v) SDS 0.1% 0.1% 0.1% 

10% (w/v) APS 0.1% 0.1% 0.1% 

TEMED (v/v) 0.04% 0.04% 0.1% 

Water As required 
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1x Running buffer 

192 mM Glycine 

25 mM Tris 

0.1% (w/v) SDS 

 

Sample Buffer 4x 

4% (w/v) SDS                                                          

200 mM Tris-HCl pH.6.8                                              

20% Glycerol    

10 mM EDTA pH 8.0                                                        

Bromophenol blue       

 

Sample Buffer 2x 

5 % (w/v) SDS                                                          

125 mM Tris-HCl pH.6.8                                              

25 % Glycerol    

Bromophenol blue       

2.5.2 Coomassie staining  

 

Following SDS-PAGE, proteins were visualised by Coomassie blue staining. 

This was achieved by 30 minutes incubation of the gel with the Coomassie stain. Gel 

was destained by overnight incubation with Destain solution, followed by wash step 

in water. Finally, gel was dried onto a chromatography paper using a heated vacuum 

gel dryer (Gel Master Model 1426, Welch Rietschle Thomas). 

 

Coomassie stain 

5 % Coomassie blue R-450 (Sigma)  

50 % (v/v) methanol 

10 % (v/v) acetic acid 
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Destain 

7.5 % (v/v) Methanol 

10 % (v/v) Acetic acid 

 

2.5.3 Western blotting 

 

Following separation by SDS-PAGE, proteins were transferred onto 0.2 m 

Hybond-C nitrocellulose membranes (GE Healthcare) in transfer buffer with an ice 

pack at 130 V for 60 minutes. The membranes were then ink stained to confirm even 

protein transfer and loading. Subsequently, non-specific binding sites were blocked 

using 5 % milk-PBST [5 % (w/v) dried skimmed milk (Marvel) in PBST] for 1 hour 

at room temperature with gentle agitation. Membranes were then incubated with the 

appropriate primary antibodies solution in 5 % milk-PBST overnight at 4ºC or for        

1 hour at room temperature. After three washes using PBST, membranes were 

incubated with horse radish peroxidase (HRP) conjugated secondary antibodies 

(Dako) for 1 hour at room temperature. Following another set of washes, a bound 

antibody signal was detected using enhanced chemiluminescence (ECL) reagent. In 

brief, membranes were treated with the 1:1 mixture of ECL solution I and ECL 

solution II for 1 minute, exposed to X-ray film and then developed using a Konica 

Medical Film Processor (Model SRX-101A). All the antibodies that were used are 

listed in  

Table 2.4 

1x Transfer buffer  

0.192 M glycine 

25 mM Tris  

20 % (v/v) methanol 

 

ECL solution I 

100 mM Tris (pH 8.5)  
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2.5 mM Luminol  

0.4 mM p-Coumaric acid 

ECL solution II 

100 mM Tris (pH 8.5)  

0.02 % (v/v) H2O2 

 

Target kDa Clonality Supplier Dilution

AGR2(K47) 19 Rabbit polyclonal Moravian Biotechnology 1:2000 

AGR2 19 Mouse monoclonal Novagen 1:1000 

-actin 42 Mouse monoclonal Sigma 1:5000 

GST 35 Mouse monoclonal Sigma 1:2000 

HA 1 Mouse monoclonal Sigma 1:1000 

His 1 Mouse monoclonal Novagen 1:1000 

Myc 1.2 Rabbit polyclonal Sigma 1:1000 

p21 21 Mouse monoclonal Oncogene 1:500 

p53 (DO1) 53 Mouse monoclonal Moravian Biotechnology 1:5000 

p53 (CM1) 53 Rabbit polyclonal Moravian Biotechnology 1:1000 

Reptin  51 Rabbit polyclonal Abcam 1:1000 

 
Table 2.4 Primary Antibodies 
 

2.6 Cell culture 

 

2.6.1 Cell lines and media 

All cell lines were incubated at 37ºC and 5 % CO2 in a humidified incubator 

(Hera). Media (Gibco) were supplemented with 10 % (v/v) FBS and 1 % (v/v) 

penicillin/ streptomycin (Invitrogen). Table 2.5 lists the cell lines used in this study, 

their source, culture media and AGR2 status.  
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Cell 

line 

Source Medium AGR2 status 

A549 Human carcinomic alveolar basal 

epithelial cells 

DMEM Positive 

H1299 Human non-small cell lung carcinoma 

cells 

RPMI Negative 

MCF7 Human breast adenocarcinoma cells DMEM Positive  

 
Table 2.5 Cell lines and culture media, Dulbecco’s modified eagle’s medium (DMEM) and Roswell 
Park Memorial Institute (RPMI) 
 

2.6.2 Subculturing of cells 

 

Cells were maintained in sterile 10 cm diameter culture dishes and cultured to 

100 % confluence. When cells were confluent, culture medium was removed and cell 

monolayer washed in 10 ml of sterile PBS. Subsequently, 2 ml of Trypsin-EDTA 

was added and the cells were incubated at 37oC until they became rounded and 

started to detach from the plastic surface of the plate. Next, 8 ml of fresh medium 

was added and the suspension of the cells was collected into a 15 ml falcon tube. 

After appropriate dilution, cells were seeded into new cell culture plates, as required.   

 

2.6.3 Freezing and recovery of cells 

 

When cells were 80-100 % confluent, culture medium was removed and cell 

were trypsinised as described in 2.6.2. Once cells were detached, fresh medium was 

added and cells were transferred to a 15 ml falcon tube. Cells were then centrifuged 

at    200 rcf for 5 minutes, supernatant removed and the cells pellet resuspended in    

5 ml of freezing media. Cells were then aliquoted into cryotubes (Nunc) and stored in 

NalgeneTM Cryo 1ºC freezing container at -80oC overnight before permanent storage 

in liquid nitrogen.  
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In order to thaw and recover the cells from liquid nitrogen, a cryovial containing 

cells was rapidly thawed at 37ºC in a water bath. Subsequently, the cells were 

transferred to a 10 cm diameter culture dish containing 10 ml of fresh medium. The 

next day, the medium was changed and the cells were allowed to grow until they 

reached confluence. 

 

2.6.4 Transient transfection of DNA  

 

For transfection of DNA cell were cultured to 70-90 % confluence. The 

transfections were carried out using Attractene (Qiagen). The amounts of DNA 

transfected were normalised using appropriate empty vector DNA. In detail, for each 

well in a 6-well transfection, the appropriate quantity of DNA (as indicated in the 

figure legend) and attractene (3 times the amount of DNA [g]) was added to 100 µl 

of serum-free and antibiotic free medium and incubated at room temperature for        

10 minutes. In the meantime 2000 l of fresh medium was added to each well. 

Following incubation, 100 l of transfection reaction was added to the cells and the 

cells were incubated for 24 hours or 48 hours and then harvested or treated as 

indicated in figure legends.   

 

2.6.5 Transient transfection of siRNA 

 

I Transient transfection of siRNA (Dharmacon) 

 

For transfection of siRNA cells were seeded into 6-well plates and cultured to 

30-50 % confluence. AGR2 siRNA, p53 siRNA, ATM siRNA or negative control 

siRNA were used at the final concentration of 50 nM. In detail, for each well 5 µl of 

a 20 µM stock of appropriate siRNA was diluted into 195 µl of serum free and 

antibiotic free medium and 4 µl of DharmaFECT reagent was diluted into 196 µl of 

serum free and antibiotic free medium. Following 5 minutes incubation at room 

temperature, the diluted siRNA and DharmaFECT were mixed and incubated for 20 
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minutes at room temperature. In the meantime, 1600 µl of the fresh medium was 

added to each well. Following incubation, 400 l of transfection reaction was added 

to the cells and the cells were incubated for 24 hours or 48 hours and then harvested 

or treated as indicated in figure legends.  

 

II Transient trasfection of siRNA (Qiagen) 

 

For transfection of siRNA cells were seeded into 6-well plates and cultured to 

30-50 % confluence. SMAD2 siRNA, SMAD3 siRNA, SMAD4 siRNA, SMAD7 

siRNA, SNIP1 siRNA, ATG5 siRNA, ATG10 siRNA, ATG12 siRNA or negative 

control siRNA were used at the final concentration of 5 nM. In detail, for each well 

1.15 µl of a 10 µM stock of appropriate siRNA and 12 µl of HiPerFect reagent were 

diluted into 100 µl of serum free and antibiotic free medium, mixed gently, and 

incubated for 10 minutes at room temperature. In the meantime, 2000 µl of fresh 

medium was added to each well. Following incubation, 100 l of transfection 

reaction was added to the cells and the cells were incubated for 24 hours or 48 hours 

and then harvested or treated as indicated in figure legends.  

 

2.6.6 Cell irradiation 

 

Cells were irradiated in culture medium using a Faxitron cabinet X-ray system, 

43855D (Faxitron X-ray Corporation), at a central dose rate of 2 Gy/min. 

 

2.6.7 Drug treatment 

 

For the experiments described in Results, cells were treated with drugs or 

chemicals prior to harvesting and lysis. Following drugs were used (Table 2.6) 
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Drug From Concentration Time  

Chloroquine Sigma 100 M 15-36h 

Cycloheximide Supelco 30 g/ml 20’-4h 

DNA-PKi Merck 10 M 24-48h 

E64D Sigma 10 g/ml 24-48h 

KU-55933 Merck 10M 24-48h 

MAPKi Merck 1 M 24-48h 

3-methyladenine Sigma 10M 15-36h 

MG132 Calbiochem 10 M 4-6h 

Monensin Sigma 10 M 24-48h 

Pepstatin Sigma 10 g/ml 24-48h 

TGF- R&D Biosystems 1-2.5 ng/ml 1-48h 

 
Table 2. 6 Drugs and details of treatment 
 
 

2.6.8 Harvesting cells 

 

Cells were placed on ice and the cell culture medium was discarded. The cell 

monolayer was then washed with ice-cold PBS (2ml for a 6-well plate and 10 ml for 

a 10 cm dish), following this cells were scraped into ice-cold PBS (0.5 ml for a         

6-well plate and 1 ml for a 10cm dish) using a cell scraper, transferred to microfuge 

tube and centrifuged for 5 minutes at 5000 rpm, at 4C. The supernatant was 

discarded, and the cell pellets snap frozen and stored at -80C. In some cases (as 

indicated below), cells were scraped directly into lysis buffer.  
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2.6.9 Cell lysis 

 

Approximately two volumes (with respect to the size of the cell pellet) of 

fresh UREA lysis buffer (unless indicated otherwise) was added to partially thawed 

cell pellet and pipetted up and down 6-10 times. Samples were incubated for 30 

minutes on ice and then centrifuged for 12 minutes, at 4C, at maximal speed. The 

supernatant was transferred to a fresh tube and protein concentration assessed in a 

Bradford assay.  

 

UREA lysis buffer 

6.24 M Urea     

0.1 M DTT     

0.05 % Triton X-100    

25 mM NaCl     

20 mM HEPES-KOH, pH 7.6   

1 tablet of protease inhibitor coctail (Roche)   

 

2.7 Protein expression and purification from E.coli 

 

2.7.1 Protein expression from E.coli 

 

Wild type or mutant AGR2 or Reptin protein expression vectors were 

transformed into BL21-AI cells. A single colony was then picked from the LB-agar 

plate, inoculated into 50 ml LB containing the appropriate antibiotic, and incubated 

overnight, at 37ºC, with shaking at 220 rpm. The starter culture was added to 1000 

ml of LB containing the appropriate antibiotic, and incubated at 37ºC, with shaking 

at 220 rpm until the OD600nm reached 0.6. The protein expression was then induced 

with 0.2 % of arabinose. Following 3 hours incubation, at room temperature, with 

shaking at 220 rpm, cells were centrifuged for 15 minutes, at 4ºC, at 6000 rcf, and 

the resulting pellets were snap frozen and stored at -80ºC. 
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2.7.2 Purification of His-tagged AGR2 

 

The cell pellet was resuspended in 10 ml of the lysis buffer and incubated on 

ice for 30 minutes. Cells were then sonicated 3 times for 15 seconds, at amplitude 7.5 

microns with 10 seconds incubations on ice between each burst. Next, the lysate was 

centrifuged for 15 minutes, at 4ºC, at maximum speed and the supernatant was 

transferred to 1ml of Ni2+-NTA agarose beads (Qiagen)  (washed with 5 ml of    

Wash buffer I) and incubated for 1 hour, at 4ºC, on a rotary shaker. The mixture was 

then transferred to the disposable column and allowed to flow through by gravity. 

Next, column was washed twice with Wash buffer I and three times with Wash 

buffer II. Following washes, 7 ml of the Elution buffer was added and 500 ml 

fractions were collected and stored at -80ºC. 

 

Lysis buffer/ Wash buffer I 

20 mM Tris.HCl pH 8.0 

150 mM NaCl 

10 mM MgCl2 

0.05 % Tween 20 

10 % glycerol (optional if not freezing) 

20 mM imidazole pH 8.0 

 

Wash buffer II 

Lysis buffer 

40 mM imidazole 

Elution buffer 

Lysis buffer 

150 mM imidazole  
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2.7.3 Purification of GST-tagged Reptin 

 

The cell pellet was resuspended in 10 ml of the lysis buffer and incubated on 

ice for 30 minutes. Cells were then sonicated 3 times for 15 seconds, at amplitude of 

7.5 microns with 10 seconds incubations on ice between each burst. Next, the lysate 

was centrifuged for 15 minutes, 4ºC, at maximum speed and the supernatant was 

transferred to the tube containing 500 l of glutathione-sepharose 4B beads 

(Amersham GE) (washed 4 times in PBS), and incubated for 1.5 hours at 4°C on a 

rotating table. Next, the beads were washed twice in 5 ml of High Salt Wash buffer 

and twice in 5 ml of the Low Salt Wash buffer. Next, 5 ml of Elution buffer was 

added to the beads and incubated for 30 minutes, at 4°C, on the rotating table. Eluted 

protein was collected and stored at -80°C.  

 

Lysis buffer 

10 % Sucrose    

50 mM Tris pH 8.0   

0.4 M NaCl    

0.5 mg/ml Lysosyme      

0.5 % Triton X- 100   

1 mM DTT      

1 mM benzamidine    

1 x PI tablet 

 

High salt Wash buffer         

20 mM Hepes pH 7.5      

1 M NaCl       

1 mM DTT       

1 mM benzamidine      

 

Low salt Wash Buffer 

20 mM Hepes pH 7.5      

0.05 M NaCl       
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1 mM DTT       

1 mM benzamidine 

 

Elution buffer     

100 mM Tris (pH 8)  

120 mM NaCl  

40 mM reduced glutathione 

 

2.7.4 Removal of GST tag using Prescission Protease 

 

For the removal of GST tag, following the Low salt wash, beads were washed 

with the Prescission buffer and resuspended in 1 ml of Prescission buffer. Next, 30 l 

of Prescission protease (GE Healthcare) was added to the beads and incubated for  

1.5 hours, at 4ºC, on a rotating table. The mix was then centrifuged for 2 minutes, at 

4ºC, at 2000 rpm and the supernatant containing cleaved protein was transferred to a 

fresh tube and stored at -80ºC. 

 

Precission buffer   

50 mM Tris HcL (pH 8)   

1 mM EDTA    

120 mM NaCl    

1 mM DTT     
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2.8 Assays 

 

2.8.1 In vivo peptide binding assay.  

 

H1299 cells were grown in 10 cm dishes as required and then lysed in 400 l 

of the 0.1 % Triton Lysis buffer (as described in 2.6.9). Next, 40 g/ml avidin was 

added to the lysates, and the mixture was incubated for 30 minutes on ice. After 

centrifuging the samples (5 minutes, 4ºC, at maximum speed), the pellet was 

discarded and the lysates were pre-cleared using 100 l of streptavidin Agarose 

beads (Millipore or Sigma) (prewashed 3 times in Wash Buffer) for 1 hour, at 4ºC, 

on a rotating table. Subsequently, beads were centrifuged, the lysate was collected, 

and the protein concentration was measured using Bradford reagent. In the 

meantime, 0.4 l of the appropriate peptide (Mimotopes) was added to 20 l of 

Streptavidin-Agarose beads (Sigma) (prewashed 3 times in Wash Buffer) in 200 l 

of Buffer W, incubated for 1 hour, at room temperature, on a rotator. Next, the beads 

were washed three times with 300 l of Buffer W. Subsequently, the lysate 

containing 200 g of total protein was added to the peptides coupled to beads and 

incubated for 1 hour at room temperature on a rotating table. This was followed by   

1 wash with buffer W, 4 washes with PBS+0.2 % Triton, and again 1 wash with 

buffer W. The bound fraction was eluted of the beads with 40 l of 4x Sample buffer 

by boiling 3 times for 5 minutes, at 95ºC. Finally, the beads were centrifuged, and 

the supernatant collected.  

 
0.1 % Triton Lysis Buffer  

50 mM HEPES  

0.1 mM EDTA  

150 mM NaCl  

10 mM NaF 

2 mM DTT  

0.1 % Tritonx100  

1 tablet of protease inhibitor coctail    
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Buffer W 

100 mM Tris pH8  

150 mM NaCl 

1 mM EDTA 

 

2.8.2 In vitro peptide binding assay 

 

Streptavidin (1 g per well in 50 l of PBS) was coated onto a 96-well 

microtitre plate overnight at 37ºC. The following day wells were washed 4 times 

with 200l of PBS containing 0.1 % (v/v) Tween-20 (PBS-T). Next, 0.5g of 

biotinylated peptide per well in 50l of water was added and incubated for 1 hour at 

room temperature with shaking. Following 6 washes with 200 l of PBS-T, the non- 

reactive sites were blocked with 200l of 3 % BSA in PBS-T for 1 hour at room 

temperature with shaking. Subsequently, the protein of interest (as indicated in figure 

legends) was added in 50l of 3 % BSA in PBS-T and incubated for 1 hour at room 

temperature with shaking.  Next, the wells were washed 6 times as above and 1 in 

1000 dilution of the appropriate primary antibody in 50l of 3 % BSA-PBS-T was 

added and incubated for 1 hour at room temperature with gentle agitation. The wells 

were again washed 6 times as above and then incubated with HRP-conjugated 

secondary antibody (1 in 1000 dilution in 50 l of 3 % BSA-PBS-T) and incubated 

for 1 hour at room temperature with shaking. After the final set of 6 washes, ECL 

was added and the extent of binding was measured using a luminometer (Fluoroskan 

Ascent FL equipment, Labsystems).  

 

2.8.3 ELISA 

 

A 96-well microtitre plate was coated with 100 ng of the protein (as described 

in figure legend) in 50 l of 0.1 M NaHCO3 buffer (pH 8.6) at 4°C overnight. The 

following day wells were washed 6 times in 200 l of PBS-T and non-reactive sites 

were blocked using 200 l of 3 % BSA in PBS-T for 1 hour at room temperature 
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with gentle agitation. Next, a titration of the protein (in 50 l per well) in                   

3 % BSA-PBS-T was added and incubated for 1 hour at room temperature with 

shaking. After 6 washes, an appropriate primary antibody was added (1 in 1000 

dilution in 50 l of 3 % BSA in PBS-T) and incubated for 1 hour at room 

temperature with gentle agitation. This was followed by another round of 6 washes 

and then 1 in 1000 dilution of HRP-conjugated secondary antibody was added, and 

incubated for 1 hour at room temperature with shaking. After the final round of         

6 washes, ECL was added and the extent of binding was measured using a 

luminometer (Fluoroskan Ascent FL equipment, Labsystems).   

 

2.8.4 ATPase assay 

 

The reactions were set up in a total volume of 20 μl of buffer T. Reactions 

were initiated by adding 20 pmol of the wild type or mutant Reptin protein. In 

addition, double- or single-stranded DNA was added and the mixtures were 

incubated for various times at different temperatures as indicated in figure legends. 

Aliquots     (1 μl) of the reaction mix were spotted onto polyethyleneimine-cellulose 

TLC plates, which were allowed to dry for 5 minutes. TLC plates were developed in 

1 M formic acid and 0.5 M LiCl. Plates were then dried and exposed to 

Phosphoimager screen overnight. The following day plates were visualised and the 

amount of the released phosphate quantified with the use of Phosphoimager.  

 

Buffer T 

20 mM Tris-HCl, pH 7.5 

70 mM KCl 

1 mM MgCl2 

1.5 mM dithiothreitol 

0.1 mM ATP (Merck) 

0.96 μCi of [γ-32P] ATP (Perkin Elmer) 
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2.8.5 ATP filter binding assay 

 

Reptin was incubated with 0.57 μCi [-35S] ATP (Perkin Elmer) for               

15 minutes at 4°C in 20 μl of ATP binding assay buffer, in the presence or absence 

of ATP, as indicated in the figure legends. Samples were passed through 

nitrocellulose membranes (Millipore HA, 0.45 μm) and washed 4 times with 400 l 

of ice-cold ATP binding assay buffer. The radioactivity remaining on the filter was 

monitored with a liquid scintillation counter. 

 

ATP binding assay buffer 

20 mM Tris-HCl pH 7.5 

1 mM MgCl2 

70 mM KCl 

 

2.8.6 ATP binding by ELISA 

 
Streptavidin (1 g per well in 50 l of PBS) was coated onto a 96-well 

microtitre plate overnight at 37ºC. The following day wells were washed 4 times 

with 200l of PBS containing 0.1 % (v/v) Tween-20 (PBS-T). Next, 1.5 mM        

N6-(6-Amino) hexyl-adenosine-5’-triphosphate-Biotin, 8-[(6-Amino)hexyl]-amino-

adenosine-5’-triphosphate-Biotin, 2’/3’-O-(2-Aminoethyl-carbamoyl)-adenosine-5’-

triphosphate-Biotin, γ-[6-Aminohexyl]-adenosine-5’-triphosphate-Biotin (Jena 

Bioscience); Biotin-11-adenosine-5’-triphosphate (Perkin Elmer),                       

Biotin-17-adenosine-5’-triphosphate (Enzo) (called N6-, 8-, EDA, -, 11-, 17-ATP 

thereafter) in 50l of water were added and incubated for 1 hour at room 

temperature with shaking. Following 6 washes with 200 l of PBS-T, the non-

reactive sites were blocked with 200l of 3 % BSA in PBS-T for 1 hour at room 

temperature with shaking. Subsequently, Reptin preincubated or not with ATP or 

ADP (as indicated in figure legends) was added in 50l of 3 % BSA in PBS-T and 

incubated for 1 hour at room temperature with shaking.  Next, the wells were washed 

6 times as above and 1 in 1000 dilution of the appropriate primary antibody in 50l 
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of 3 % BSA-PBS-T was added and incubated for 1 hour at room temperature with 

gentle agitation. The wells were again washed 6 times as above and then incubated 

with HRP-conjugated secondary antibody (1 in 1000 dilution in 50 l of                    

3 % BSA-PBS-T) and incubated for 1 hour at room temperature with shaking. After 

the final set of 6 washes, ECL was added and the extent of binding was measured 

using a luminometer (Fluoroskan Ascent FL equipment, Labsystems).  

 

2.8.7 Crosslinking of the protein using glutaraldehyde 

 

Recombinant wild type or mutant reptin protein (1 μg), with or without 1 mM 

ATP, were mixed with serial two fold dilutions of glutaraldehyde (from 0.2 to 0 % in 

PBS), in a total volume of 20 μl and incubated for 1 hour at room temperature. 

Reaction was stopped by addition of 10 μl of 1 M Tris pH 8.0. Next, sample buffer 

was added, the samples were boiled and run on a Tris- Glycine precast gels 

(Invitrogen).  

 

2.8.8 Thermal denaturation assay 

 

The extent of protein unfolding was measured using fluorescent SYPRO 

Orange dye (Invitrogen). The purified wild type or mutant Reptin protein was diluted 

to 5 M final concentration in buffer containing 50 mM Tris HcL (pH 8), 1 mM 

EDTA, 120 mM NaCl, 1 mM DTT and aliquoted into a 96-well PCR plate. Next, 

SYPRO Orange dye (5000x stock) was diluted to 50 x and added to the samples. The 

plate was then sealed with optical-quality sealing film (Bio-Rad). The samples were  

heated from 20°C to 90°C at 1°C increments with a 30-seconds incubation at each 

increment and the rate of protein unfolding was measured using an iCycler iQ     

Real-Time PCR system (Bio-Rad). Fluorescence intensity was measured using 

excitation/emission wavelengths of 485 nm/575 nm in relative fluorscent units 

(RFU) and thermal denaturation graphs were plotted as a function of the gradient of 

protein unfolding against the temperature gradient [d(RFU)/dT]. 
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2.8.9 Dynamic light scattering (DLS) 

 

Prior to size analysis Reptin protein was passed through a 0.22 µM filter 

(Ultrafree-MC, Millipore, UK) centrifuged at 4oC, at 12000 rcf.  Analysis was 

carried out on 50 µM Reptin in 50 mM Tris HCl (pH 8), 1 mM EDTA, 120 mM 

NaCl, 1 mM DTT at 10oC with  Zetasizer APS (Malvern instruments, UK) equipped 

with a 50 mW laser light source of wavelength 830 nm. Scattering data was collected 

at a scattering angle of 90oC for 10 seconds, repeated at least twelve times and 

averaged. The experiments were repeated in triplicate. Autocorrelation data was fit to 

a model of a multiple exponential form suitable for polydisperse solutions, using the 

protein specific software supplied with the instrument. This generated a distribution 

of particles by size. DLS is very sensitive to aggregation as scattering is a function of 

Rh to the sixth power. In addition, to monitor temperature induced unfolding of the 

protein, the temperature of the sample cell was increased from 4oC to 90oC at 2oC 

intervals. A rapid increase of scattering intensity is indicative of protein unfolding 

and subsequently aggregation to form much larger particles. Unfolding was also 

monitored by a single exponential or cummulants fit of the scattering data to give the 

Z-average (ISO13321). The Z-average is global descriptor of the particles in solution 

weighted by scattering intensity. It represents a hypothetical sphere that has the same 

scattering function as the distribution of particles in solution.  

 

2.8.10 Immunoprecipitation (IP) 

 

H1299 cells, A549 cells or MCF7 cells were transfected with AGR2, wild 

type or mutant Reptin, wild type or mutant p53 protein, as indicated in figure legend. 

The following day cells were scraped into 500 l of one of the IP lysis buffers (1-6) 

as indicated in the figure legend and in the text. The lysates were pre-cleared by 

incubation with 100 l Sepharose CL 4B (Sigma-Aldrich; washed 4 times in PBS) 

for 40 minutes, at 4°C with rotation. Pre-cleared lysate was collected and 

concentration of total protein quantified by Bradford method. Subsequently, 1 μg of 

appropriate primary antibody was incubated with 600 μg of total protein in the      
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pre-cleared lysate, in a final volume of 200 μl for 2 hours at 4°C with gentle rotation. 

Next, 15 μl of protein protein G-SepharoseTM 4 FastFlow (GE Healthcare; washed    

4 times in PBS) was added to the above samples and incubated for 1 hour at 4°C 

with gentle rotation. Supernatant (flow-through) was collected, to establish amount 

of the unbound protein, and the beads were washed four times with 500 μl of IP 

buffer. Samples were then eluted by adding 50 μl of 4x SDS sample buffer 

containing 0.2 M dithiothreitol and incubating at 95°C for 5 min. The eluate was then 

collected and analyzed by Western blotting. 

 

IP buffer 1 

0.15 M NaCl, 

0.5 % Tween- 20 

50 mM HEPES pH 7.6 

 

IP buffer 2 

0.15 M NaCl 

1 % Triton X-100  

50 mM Hepes pH 7.6 

 

IP buffer 3 

0.15 M NaCl 

1 % NP40 

50 mM Hepes pH 7.6 

 

IP buffer 4 

0.3 M NaCl 

0.5 % Tween-20 

50 mM Hepes pH 7.6 

 

IP buffer 5 

0.3 M NaCl 

1 % Triton X- 100 
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50 mM Hepes pH 7.6 

 

IP buffer 6 

0.4 M KCl 

25 mM Tris pH 7.2 

1 % NP-40 

1mM DTT 

1× protease inhibitor mixture 

 

2.8.11 In vivo ubiquitination assay 

 

H1299 cells were seeded onto a 6-well plate following which they were 

transfected with His-tagged Ubiquitin, SUMO-1, NEDD-1, Reptin, p53, AGR2 as 

indicated in the figure legend. The next day, cells were treated with MG132 for          

4 hours. Cells were then harvested into 1 ml of ice cold PBS, and the cells 

suspension was divided into 2 aliquots: 200 μl aliquot for direct lysis and 800 μl for 

analysis by His-pull down. Both aliquots were centrifuged at 4ºC, for 5 minutes at 

2500 rcf. The supernatant was discarded and the cell pellets snap-frozen or lysed. 

The pellet from 800 μl aliquot was lysed in 1 ml ice cold lysis buffer by pippeting up 

and down and passing it through a needle and syringe 10-15 times. Subsequently, the 

lysate was transferred to a 15 ml falcon tube containing a further 4 ml lysis buffer. 

Next, 75 μl Ni2+-NTA agarose beads (Qiagen) was added to the lysate and incubated 

on a rotating table, at 4oC for 4 hours or overnight. Following incubation, the beads 

were collected by centrifugation at 4ºC, for 5 min, at 500 rcf. The beads were then 

resuspended in 750 μl of buffer A, transferred to microfuge tube and incubated on a 

rotating table, at room temperature, for 15 minutes. Similarly, the beads were washed 

in buffers B-E.  Following the final wash, 75 μl of elution buffer was added to the 

beads, and incubated on a rotating table, at room temperature for 30 minutes. The 

beads were collected by centrifugation at 4oC, for 5 minutes, at 500 rcf. The eluate 

was then transferred to a fresh tube and mixed with an equal volume of 2x sample 

buffer. The samples were boiled at 95oC, for 5 minutes and 50 μl of each sample was 
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loaded onto a 4-12 % NuPAGE gel (Invitrogen) and run at 200 V for 60 minutes in 

1x MOPS buffer (Invitrogen). The resolved proteins were transferred to 

nitrocellulose and the extent of ubiquitination, sumoylation or neddylation was 

monitored by immunoblotting using anti-p53 or anti-Reptin antibodies. 

The pellet from 200 μl aliquot was lysed in 10 l of 1 % NP-40 Lysis buffer. 

The lysate was mixed with an equal volume of 2x sample buffer. The samples were 

boiled at 95oC, for 5 minutes and 5 μl of each sample was loaded onto a 10 %     

SDS-polacrylamide gel and run at 150 V for 60 minutes in 1x running buffer. The 

resolved proteins were transferred to nitrocellulose and the extent of ubiquitination, 

sumoylation or neddylation was monitored by immunoblotting using anti-p53 or 

anti- Reptin antibodies. 

 

Lysis buffer 

Buffer A + 5 mM Imidazole 

 

Buffer A     

6 M Guanidinium-HCl    

95 mM Na2HPO4   

5.3 mM NaH2PO4     

10 mM Tris-HCl, pH 8.0 

0.01 M β-mercaptoethanol  

Adjust to pH 8.0 

 

Buffer B 

8 M Urea     

95 mM Na2HPO4   

5.3 mM NaH2PO4     

10 mM Tris-HCl, pH 8.0  

0.01 M β-mercaptoethanol  

Adjust to pH 8.0  
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Buffer C 

8 M Urea     

22.5 mM Na2HPO4   

77.5 mM NaH2PO4     

10 mM Tris-HCl, pH 6.3  

0.01 M β-mercaptoethanol  

Adjust to pH 6.3 and make up to 200 ml with water. 
 

Buffer D  

Buffer C + 0.2 % Triton X-100 

 

Buffer E 

Buffer C + 0.1 % Triton X-100 

 

Elution buffer 

0.2 M Imidazole  

5 % SDS  

150 mM Tris-HCl (pH 6.8)  

10 % glycerol  

0.72 M β-mercaptoethanol 

 

NP-40 Lysis buffer 

25 mM HEPES (pH 7.5)  

1 % (v/v) NP40  

150 mM KCl  

50 mM NaF  

5 mM DTT  

1X protease inhibitor mix 
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2.8.12 Dual Luciferase reporter assay 

 

H1299 cells were seeded onto 24-well plates and transfected with           

pCMV-Renilla luc (30 ng per well) together with 70 ng of either p21-Firefly luc or 

MDM2-Firefly luc and with wild type p53, a titration of wild type Reptin, wild type 

AGR2 protein, wild type MDM2 (see figure legend). Alternatively, A549 cells were 

seeded onto 24-well plates and transfected with pCMV-Renilla luc (125 ng per well) 

together with a titration of AGR2 promoter-Firefly luc and treated with the titration 

of TGF-(see figure legend). Twenty four hours post transfection and treatment 

luciferase assays were performed using the Dual Luciferase Reporter Assay System 

(Promega) according to the technical manual with some modifications. In brief, the 

cells were washed once in 0.5 ml of ice-cold PBS and lysed in 100 l of 1 x Passive 

Lysis Buffer (supplied in the kit) for 10 minutes, at room temperature with shaking. 

Afterwards, the cell lysate was mixed by pipetting and transferred to microfuge 

tubes. Next, 5 l of the lysate was aliquoted onto a 96-well microtitre plate and then 

20 l of luciferase assay reagent was added (LAR; supplied in the kit). Firefly 

luciferase luminescense was then measured using a Fluroskan Ascent F1 

luminometer (Labsystems). Subsequently, 20 μl of Stop and Glo reagent (supplied in 

the kit) was added to each well and the Renilla luciferase signal was measured. 

Signals were normalised using the internal control (renilla luciferase signal) and 

expressed as a ratio of firefly:renilla luciferase. Results are represented as mean of at 

least two independent experiments ± SD. 

 

2.8.13 Electrophoretic mobility shift assay (EMSA) 

 
DNA binding activity of p53 under different condition was measured by 

EMSA. First, specific complementary oligonucleotides containing p53 consensus site 

from the p21 promoter were labelled using -32P ATP.  

 

In order to do this, following reaction was assembled: 

2.5l of p21 Forward Primer (stock: 1 mg/ml) 
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2.5l of p21 Reverse Primer (stock: 1 mg/ml) 

1 l of T4 DNA kinase buffer 

0.4 l of T4 DNA kinase 

4 l of 10 mCi/ml -32P ATP 

 

p21 Forward Primer:  

TGCCAGAGCTCAACATGTTGGGACATGTTCCTGATGGCCA 

p21 Reverse Primer:  

TGGCCATCAGGAACATGTCCCAACATGTTGAGCTCTGGCA 

 

The mixture was then incubated for 2 hours at 37ºC, following which 15.5 l of TE 

buffer and 4.5 l of 1 M KCl was added. After 2 minutes incubation at 95ºC, the 

mixture was allowed to slowly cool down and then purified by centrifugation 

through 1.5 ml micro-Biospin 30 column into an eppendorf tube.  

Next, 5 % native polyacrylamide gel mixture was prepared according to the formula 

below: 

 

 Separating gel 5 %

Reagent Final concentration 

30 % acrylamide mix 5 % 

5x TBE 1x 

10 % (w/v) APS 0.1 % 

10 % (v/v) Triton- X100 0.1 % 

Water: 44.2 ml 

Volume for one gel: 70 ml 

 

TEMED (3 %) was added to 2 ml of the gel mix and poured immediately into bottom 

of the gel to form a plug. TEMED (0.1 %) was then added to the rest of the mixture 

and casted and the 25-well comb added. Before loading the samples, the gels were 

pre-run at 35 mA, for 30 minutes, at 4 ºC. 
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The reaction was prepared as follow: 

2 l of 6x reaction buffer 

p53 (from Sf9 cells) 

Reptin (as indicated in the figure legend) 

ATP or ADP (as indicated in the figure legend) 

Adjust to 12 l with water 

 

6x reaction buffer 

120 mM HEPES pH 7.5 

300 mM KCl 

30 % Glycerol 

2.4 mM DTT 

0.6 mg/ml BSA 

3 % TritonX-100 

 

The mixture was then incubated for 30 minutes at 20-37ºC (as indicated in the figure 

legend) and 0.2 l of ten-fold dilution of the p53-specific probe was added. 

Following 30 minutes incubation on ice, 2.5 l of DNA loading dye was added and 

the samples were loaded onto a gel and run at 35 mA for 150 minutes at 4 ºC. 

Subsequently, the gel was dried in a vacuum gel dryer and exposed to 

Phosphoimager screen overnight. The following day the plate was visualised and the 

amount of the free probe and DNA-bound p53 quantified with the use of 

Phosphoimager.  

 

2.8.14 RNA extraction and RT PCR 

 

Cell were seeded in the 6-well plate and treated as indicated in the figure 

legend. After treatment cell were harvested as usual and RNA was isolated using the 

RNeasy Mini kit (Qiagen), according to the manufacturer's instruction. RNA was 

then used to synthesize cDNA using the Omniscript RT kit (Qiagen) as described 

below.  
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2.8.14.1 Reverse transcription 

RNA (0.5 µg) was diluted in 7 µl of water and heated at 65ºC for 5 minutes. 

RNA was cooled on ice and mixed with 13 µl of RT Master Mix.  

 

RT Master Mix 

2 μl of 10X RT Buffer  

2 μl of 5 mM dNTP  

0.2 μl 0.5 mg/ml oligo dT primer  

0.2 μl 40 U/μl RNase inhibitor  

2 μl 100 mM DTT  

1 μl Omniscript RT  

5.6 μl Nuclease-free water  

The mixture was incubated for 1 hour at 37ºC and subsequently used for PCR with 

the appropriate gene-specific primers.   

 

2.8.14.2 PCR 

 

PCR was performed using cDNA template obtained as described in 2.8.13.1. 

In detail, PCR reactions were assembled as follows: 

 

5 μl 2X PCR (Taq) Master Mix  

1 μl cDNA template  

0.7 μl Forward primer (10 μM)  

0.7 μl Reverse primer (10 μM)  

Nuclease-free water 2.6 μl  

 

Thermal cycling conditions were:  

1. 94°C for 15 minutes  

2. 94°C for 30 seconds  

3. 55°C for 30 seconds  
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4. 72°C for 30 seconds  

5. Repeat steps 2-4 for 25 cycles  

6. 72°C for 10 min  

7. Hold at 4°C forever 

 

Primer sequences are listed in Table 2.7 

 

Target Primer sequence (5’-3’) Size of the 

product 

AGR2 Forward GCTCCTTGTGGCCCTCTCCTACAC 

Reverse  

ATCCTGGGGACATACTGGCCATCAG 

354 bp 

GAPDH Forward GTCAGTGGTGGACCTGACCT 

Reverse ACCTGGTGCTCAGTGTAGCC 

123 bp 

 
Table 2.7 RT-PCR primers 
 

Following PCR, 6x DNA loading buffer was added to each reaction and the entire 

volume was loaded and resolved on 1.5 % agarose gel in 1x Tris borate-EDTA 

buffer. The bands were visualized under a UV transilluminator, photographed in a gel 

1000 ultraviolet documentation system (BioRad). 
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CHAPTER 3: ATM and TGF- pathway converge to 

activate p53 signalling pathway. 

 

3.1 Introduction 

 

3.1.1 Cancer models 

 

Classically, the development of tumour can be explained as a process 

involving mutations that either activate growth-promoting genes or inactivate 

proteins that inhibit growth or induce cell death [2-5]. The most commonly used 

clinical models that have been put forth to elucidate the genetics of oncogenesis at 

different stages of disease progression are sporadic colorectal cancer [454] and 

esophageal adencoarcinoma cancer [455]. For example, in colorectal cancerogenesis 

a sequence of genetic alterations starts with an inactivating mutation of 

FAP/APC gene in hyperproliferative epithelium, which is followed by genomic DNA 

hypomethylation and an activating mutation of the K-RAS oncogene in adenoma and 

in the expanding tumour. In metastasizing tumours a number of additional genetic 

changes occur, including mutations in p53 tumour suppressor encoding locus [454, 

456, 457]. Similarly to colorectal cancer, esophageal adenocarcinoma cancer also 

proceeds through a stepwise acquisition of genetic alterations, including mutation of 

the p53 gene [458], p16 promoter methylation and p15 deletion [459], or EGFR 

amplification and overexpression [460]. Subsequently, these lead to 

histopathological changes of epithelium, from premalignant stage of metaplasia and 

dysplasia (collectively termed Barrett’s esophagus or Barrett’s epithelium) to 

carcinoma in situ and finally invasive carcinoma [460].  
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3.1.2 p53 pathway alterations in cancer 

 
In normal tissue p53 controls a broad range of cellular processes and 

maintains tissue integrity (as discussed in 1.2.1.1). It is kept under tight control and 

once activated it induces either cell cycle arrest or programmed cell death, depending 

on the cell type and cellular environment. Loss of p53 function contributes to genetic 

instability, perturbed growth arresting pathway and results in the survival of cells 

with an increased tumourogenic capacity [458]. In different cancers distinct changes 

are observed with respect to p53 pathway. For instance, p53 mutations are found in 

both colorectal and eoseophegal cancer, however the loss of p53 function is observed 

relatively late or quite early in the disease progression, respectively. In addition,      

the nucleotide substitutions that occur in the p53 sequence can be cancer specific 

[458]. On the other hand, not all human cancers have p53 gene mutations and in such 

instances mutations in the activators of p53 or overexpression of p53 inhibitory 

proteins can account for attenuation of the p53 response. The most common 

examples of such mechanism include inactivation of p53 kinases Chk2 or ATM 

[461] or overexpression of E3 ligases that promote p53 degradation, such as MDM2, 

PirH2, COP-1, and CHIP [39]. Further, cancer is a tissue-specific disease and as such 

it is not surprising that tissue-specific p53-inhibitory pathways have been identified. 

For instance, in the search for the mechanisms that can drive survival of Barrett’s 

epithelium cells containing the wild type p53 protein, stress responsive SEP70, 

SEP53 and glutamine-glutamyl transferase were identified [462, 463]. Additionally, 

the presence of the oncogenic signals that could inhibit wild type p53 pathway in 

Barrett’s have been suggested, and indeed, AGR2 protein was found to be 

overproduced in this tissue and was shown to inhibit DNA damage-induced 

activation of p53 pathway [437]. Additionally, AGR2 has been found to be 

overexpressed in other cancers, such as breast [407], pancreatic [431, 432], prostate 

[410] cancers. Its role in carcinogenesis has been further reinforced by demonstrating 

that its overexpression enhances rate of adhesion, results in greater propensity to 

form metastases [427, 442] and supports anchorage-independent growth [411].  

Given that Barett’s epithelium cells are constantly exposed to different stress stimuli 

and AGR2 protein is elevated in this tissue, it is plausible that AGR2 could be 
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responsive to a variety of pathophysiological stress within the tumour 

microenvironment and serve as a survival factor. Indeed, AGR2 expression could be 

induced by hypoxia or serum depletion conditions often observed in cancer tissue 

[444]. However, it is currently unclear what the pathways that control AGR2-p53 

axis are. Interestingly and similarly to AGR2, Transforming Growth Factor-   

(TGF-) has been shown to impact the adhesion processes and was also found to 

cooperate with p53. Based on this data, I formulated a working hypothesis that the 

TGF- may act as an extracellular signal that regulates the AGR2-p53 pathway. 

 

3.1.3 TGF- 

 

TGF-β is the prototypical member of a larger superfamily of more than         

30 cytokines which includes TGF-βs, activins, bone morphogenetic proteins (BMPs), 

and growth and differentiation factors (GDFs) [464]. In mammals TGF- exists in 

three variants: TGF-β1, TGF-β2, and TGF-β3 and the formation of bioactive 

molecule requires homo- or hetero-dimerization. In order to propagate the signal to 

the nucleus, TGF- binds to dimeric complex of type I and type II receptors 

(TGFRI and II respectively). Upon ligand binding, TGFRII recruits and 

phosphorylates TGFRI [465, 466]. Subsequently, TGFRI propagates signalling 

inside the cell by recruitment and phosphorylation of SMAD2 and SMAD3. The 

activated SMAD proteins can then heteromerize with the common mediator of this 

pathway, SMAD4, and subsequently translocate to the nucleus [465, 467-469]. 

SMAD proteins can bind to DNA with low affinity and in order to achieve high 

affinity and selectivity, association with other DNA-binding factors is required [470]. 

A variety of transcription factor families have been shown to cooperate with   

SMAD-DNA complexes, including the forkhead, homeobox, zinc-finger, bHLH, 

ETS and AP1 families [471, 472]. In addition to transcription factors, SMADs 

cooperate with several coactivators and corepressors, which fine tune the magnitude 

of the TGF- response. For instance, they recruit activators like p300/CBP, MSG1 or 

SKIP [473-479] or corepressors such as: c-Ski, SnoN or SNIP1 [480-483]. 

Depending on the combination of SMAD2/3-SMAD4 and transcription factor, 
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different set of genes are activated or repressed (reviewed in [484]). SMADs are 

central players in most TGF- triggered cellular events and are involved in so called 

canonical pathway of TGF- signal transduction. However, an alternative SMAD-

independent mechanism of TGF- signaling exists and it incorporates Mitogen-

activated protein kinases (MAPKs) pathway. For instance the TRAF6–TAK1–

p38/JNK pathway [485, 486] or the Erk-MAP kinase signalling [487] can be 

activated downstream of TGF-β receptors. 

TGF- plays a regulatory role in processes such as cellular proliferation, 

differentiation, survival, adhesion and maintenance of the cellular microenvironment 

[488]. In normal tissue, TGF- enforces homeostasis and exerts tumour suppressive 

effects. However, cancer cells evade the tumour suppressive effects of TGF- and 

adapt the TGF- pathway to their advantage, and use it as a pro-invasive and          

pro-metastatic factor [464]. Interestingly, the convergence of the p53 and TGF- 

pathway has been recently unveiled. p53 protein has been shown to associate directly 

with SMAD2 and SMAD3, act as a cofactor in a promoter-specific manner in 

Xenopus embryos and by this regulate TGF--dependent expression of 

mesendodermal genes [109, 489]. This is mediated by phosphorylation of p53 at Ser 

6 and Ser 9 by the Ras/ CK1 signalling pathway, which facilitates p53 binding to 

SMAD2 and SMAD3 [305]. Similarly, p53, SMAD2 and SMAD4, SnoN, mSin3A 

protein were found to form a repressive complex at the alphafetoprotein (AFP) 

promoter and silence its expression [490, 491]. Further, TGF- induces p21, 

plasminogen inhibitor activator (PAI-1) and metalloproteinase 2 (MMP2) and 

expression of p53 is required for this effect [109, 489].  

Given the extensive links between the p53 and TGF-signalling pathways, and the 

role of AGR2 in regulating cell migration, we reasoned that TGF-signalling might 

affect AGR2 protein pathway responses. In this chapter we establish the link between 

TGF- and AGR2-p53 axis, we report on TGF--mediated downregulation of AGR2 

protein and demonstrate evidence for ATM dependent lysosomal degradation of 

AGR2.   
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3.2 Results 

 

3.2.1 Exploring physiological signals regulating AGR2- p53 axis.  

 

Previous reports on the ability of AGR2 to suppress the p53 pathway were 

based on studies performed in H1299 lung tumour cells that do not contain 

endogenous AGR2 or p53. Therefore, we sought to define the physiological signals 

that regulate the AGR2-p53 axis in the cells expressing both proteins endogenously. 

A549 are the lung tumour cells that, contrary to H1299 cells, contain   a wild-type 

p53 pathway. In addition, these cells have a well-characterised response to genotoxic 

and non-genotoxic stress, that leads to p53 induction as defined by its increased 

phosphorylation and acetylation [492]. A549 cells have been reported to undergo 

epithelial to mesenchymal transition upon TGF- treatment. Intriguingly, the search 

for the physiological inputs that activate p53 identified TGF- and since then there 

have been a number of reports showing the p53-TGF- interplay [109, 305, 489]. In 

addition, A549 cells also express AGR2 protein. Interestingly, its expression appears 

not to be estrogen driven, as it is in other cell models, since serum withdrawal leads 

to increase, rather than decreased levels of AGR2 protein (Figure 3.1). Similarly, 

AGR2 mRNA was found to be increased in response to depletion of serum in another 

cell line [444]. 

In order to evaluate how diverse signalling pathways control AGR2-dependent 

inhibition of p53 activity, we set out to look at DNA damage response or TGF- 

pathway in A549 cells in more detail. In order to confirm that applying genotoxic 

stress or TGF- treatment results in p53 activation in A549 cells, A549 cells were 

treated with either X-rays or TGF-. As expected, ionizing radiation triggered p53 

protein stabilisation in the absence or presence of TGF-Figure 3.2 B,               

lanes 2 and 4. However, there was relatively little increase in the p53-inducible p21 

protein, except under combined treatment of cells with both radiation and           

TGF-Figure 3.2C, lanes 1-3 vs. 4. As A549 cells contain high levels of AGR2 

(Figure 3.2A, lane 1), we were interested to test whether AGR2 depletion would 

increase p53 steady-state levels or stimulate its transcriptional activity, as measured 
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by evaluating p21 protein levels. To this end A549 cells were treated with AGR2 

siRNA. AGR2 knock-down resulted in an increase in the levels of p53 protein in 

untreated and treated cells which indicates the AGR2 indeed negatively regulates p53 

protein (Figure 3.2B, lanes 5-8). Additionally, AGR2 depletion potentiated p21 

induction upon treatment, relative to that observed for cells treated with scrambled 

siRNA (Figure 3.2C, lanes 5-8 vs. 1-4). This latter data is consistent with previous 

observation, that AGR2- dependent inhibition and nuclear exclusion of p53 are more 

pronounced in DNA damaged cells [420, 437]. Moreover, since using the cells 

expressing endogenous AGR2 and p53 we were able to replicate observations made 

previously in cells with ectopically expressed AGR2 and p53, we can conclude that 

p53 inhibitory function of AGR2 is physiologically relevant. 
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Figure 3.1 Serum withdrawal induces AGR2 protein. A549 cells were grown in DMEM + 10 % 
FBS or in serum free medium for the times as indicated. The cells were then lysed and the steady-state 
levels of (A) AGR2 (19kDa) and (B) -Actin were measured by immunoblotting using AGR2 specific 
monoclonal antibodies against respective proteins.  
 

 

 

 
 
Figure 3.2 AGR2 depletion using siRNA induces p53/p21 pathway in X-ray-irradiated or      
TGF--treated cells.  A549 were transfected with 50 nM AGR2 siRNA or with control siRNA and 
48 hours post transfection were treated for 30 minutes with 2.5 ng/ml TGF- or carrier prior to 
irradiation with 5 Gy. After 2 hours the cells were lysed and the steady-state levels of (A) AGR2, (B) 
p53, (C) p21, (D) -Actin proteins were measured by immunoblotting and quantified with ImageJ. 
The fold change in p53 and p21 protein levels was established and normalized against -Actin.  
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In order to examine p53 activation in response to TGF- treatment or 

radiation, we performed a more refined time course and monitored correlation 

between AGR2, p53 and p21 protein levels. First, A549 cells were treated with the 

increasing amounts of TGF- for 24 to 72 hours in the presence or absence of serum. 

TGF- increased p53 protein levels, with the maximal induction at 48 hours time 

point (Figure 3.3 D). Surprisingly, TGF- treatment resulted in attenuation of AGR2 

protein levels and by 48 hours or 72 hours we observed a complete suppression of 

AGR2 protein (Figure 3.3 A-C, lanes 2-3 vs. 5-6). Interestingly, serum withdrawal 

appeared to rescue TGF- dependent decrease in AGR2 protein, at least at 24 hours 

time point (Figure 3.3 A, lane 1 and 4 vs. 2-3 and 5-6). This is in agreement with the 

earlier observed stabilisation of AGR2 protein in serum free medium (Figure 3.1). To 

further investigate the TGF--dependent reduction in AGR2 protein, cells were 

treated with a titration of the cytokine for 1 hour to 24 hours. At times from 1 hour to 

12 hours there was no noticeable change in AGR2 protein levels. However, we 

observed a dose dependent decrease in AGR2 levels, starting between 12 hours to 18 

hours post- treatment (Figure 3.3 E). Accordingly, the increase in p21 levels occurred         

(Figure 3.3 G). In addition, a dose-dependent correlation was observed between the 

AGR2 levels and the changes in the p53/p21 pathway. Specifically, we found that the 

initial suppression of AGR2 at about 12 hours to 18 hours post treatment coincided 

with an increase in p21 levels. These data are consistent with the experiment 

described above, wherein depletion of AGR2 using siRNA resulted in more 

pronounced TGF- induced increase in p21 protein levels (Figure 3.2).  
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Figure 3.3 TGF- triggers AGR2 protein reduction. (A-D) Time course of TGF- suppression of 
AGR2 protein. A549 cells were grown for (A) 24 hours (B and D) 48 hours, or (C) 72 hours without 
the addition of cytokine (lane 1) or with the addition of the indicated levels of TGF-. The cells were 
lysed and the steady-state levels of (A-C) AGR2 and, (D) p53 were measured by immunoblotting 
using specific antibodies against indicated proteins. The red arrow marks the migration of full-length 
p53 and the black arrow marks the migration of the alternative translation initiation gene product 
named p47.  (E-I) TGF- downregulates AGR2 protein in a time- and dose-dependent manner. A549 
cells were stimulated with different concentrations of TGF- for the periods as indicated from 2 hours 
to 24 hours. The cells were lysed and the steady-state levels of (E) AGR2, (F) p53, (G) p21, (H)         
-Actin proteins were measured by immunoblotting using specific antibodies against respective 
proteins and quantified usinig Image J. (I) Summary of the change in the levels of AGR2 at selected 
time points. 
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As we observed a direct correlation between AGR2 and p21 protein levels, we next 

determined whether the apparent p21 induction was indeed p53 dependent. To this 

effect p53 protein was depleted using siRNA and the cells were treated with TGF-. 

p53 knock-down prevented the induction of p21 protein (Figure 3.4 C-D, lanes 1-3 

vs. 4-6), which was consistent with previous reports showing that p53 is required for 

TGF--dependent elevation of p21 [109]. In addition, we were keen to establish if 

p53 pathway was required for TGF- mediated suppression of AGR2. To this effect, 

AGR2 protein levels were measured in the same set of samples. We found that 

AGR2 could be attenuated to the same extent in the presence or in the absence of p53 

protein (Figure 3.4 G-H, lanes 2-3 vs. 5-6), indicating that TGF-mediated 

suppression of AGR2 is in fact p53-independent.  

 



 109

 

 

Figure 3.4 TGF-induction of p21 is p53-dependent, but TGF- suppression of AGR2 is not. 
A549 cells were transfected with 50 nM p53 siRNA or control siRNA and 48 hours post transfections 
the cells were treated with different concentrations of TGF- for the times as indicated. Cells were 
then lysed and the steady-state levels of (A) p53, (B) p21, (C)-Actin, (D) AGR2 proteins were 
measured by immunoblotting using specific antibodies against respective proteins.  
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3.2.2 Mechanism of TGF--mediated suppression of AGR2 

 

In order to determine whether TGF--mediated depletion of AGR2 is due to 

its increased degradation, we evaluated a time course of AGR2 protein reduction in 

the presence and absence of MG132, a proteasome inhibitor. As before, AGR2 

reduction was found to occur 12 hour to 15 hours after treatment (Figure 3.5 A, lane 

1 vs. 2-3). The addition of MG132 did not prevent TGF--induced suppression of 

AGR2 protein, suggesting a proteasome independent mechanism of AGR2 protein 

loss (Figure 3.5 A, lanes 2-3 vs. 5-6, E). As a control, p53 and p21 protein levels 

were monitored upon MG132 treatment. As expected, basal levels of both proteins 

increased under these conditions (Figure 3.5 B-C, E). This result indicated that TGF-

 mediated loss of AGR2 protein is proteasome independent.   



 111

 



 112

 
 
Figure 3.5 AGR2 downregulation in response to TGF- is proteasome-independent.  A549 cells 
were treated with or without TGF- for the times as indicated. Cells were then incubated with the 
proteasomal inhibitor 10 M MG132 or DMSO as indicated and subsequently lysed and the steady-
state levels of (A) AGR2, (B) p53, (C) p21, (D) -Actin proteins were measured by immunoblotting. 
(E). Quantitation of the changes in AGR2 and p21 protein levels is plotted as a function of time after 
TGF- treatment. 
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As such, we next examined whether transcription, protein synthesis or 

posttranslational events could explain AGR2 protein depletion by TGF-. To this 

effect, mRNA was isolated at different time points from TGF--treated and untreated 

cells; and the amount of AGR2 mRNA was quantified using RT-PCR. Interestingly, 

the complete loss of AGR2 mRNA was observed at the 36 hours time point, which 

correlated with the full suppression of AGR2 protein and the maximal activation of 

the p53 pathway (Figure 3.6 A, lane 1 vs. 2-3). As AGR2 mRNA can be induced by 

withdrawal of serum [444] and as we also observed increased levels of AGR2 protein 

in cells cultured in serum free media (Figure 3.1), we examined TGF- inhibition of 

AGR2 expression in serum-starved cells. Surprisingly, we observed a similar 

suppression after TGF- treatment (Figure 3.6 A, lanes 2-3 vs. 5-6). These results 

indicate that AGR2 protein is negatively regulated at the level of gene expression by 

TGF-. However, loss of AGR2 mRNA could also be a result of mRNA degradation. 

To rule out this possibility, we sought to establish whether TGF- reduces AGR2 

promoter activity. Specifically, a gene reporter assay was performed using the 

minimal AGR2 promoter (-1584- +96) fused to firefly luciferase (Figure 3.6 B). 

When A549 cells were transfected with the pGL3-basic-AGR2 reporter or pGL3-luc 

plasmid control, it was found that the basal reporter activity could be suppressed by 

the treatment of cells with TGF- (Figure 3.6 C). Additionally, when A549 were 

cells transiently transfected with the pGL3-basic-AGR2 reporter or pGL3-luc 

plasmid control and treated with increasing amounts of the TGF-, a dose-dependent 

decrease in the basal activity of the reporter was observed (Figure 3.6 D). Together, 

these results suggest that AGR2 promoter activity can be suppressed by the TGF- 

signalling pathway. 
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Figure 3.6 TGF- represses the AGR2 promoter activity. (A) Effects of TGF- on AGR2 mRNA 
levels. A549 cells were treated with or without TGF- (2.5 ng/ml) for 36 hours followed by 
determination of AGR2 mRNA levels by RT-PCR using AGR2 specific primers. (B) Summary of 
AGR2 promoter construct cloned for examining TGF- responses.  A DNA construct containing 
AGR2 gene sequence, -1584 to +94, was cloned upstream of the firefly luciferase gene. (C and D) 
Effects of TGF- on AGR2-luc promoter activity. (C) A549 cells were co-transfected with 140 ng 
of pGL3 basic-AGR2 and 150 ng of a separate construct that contained the promoter driving 
transcription from a Renilla luciferase gene. The cells were subsequently treated with 2.5 ng/ml of 



 115

TGF-, and the activity of the AGR2 promoter was determined by luciferase assay. As a control, 
promoter activity of a Renilla promoter construct was also measured. Results are plotted as the 
normalized firefly luciferase activity over the value of Renilla luciferase and represent the mean of 
three independent experiments. The graph represents mean ± S.D. from three independent 
experiments. (D) A549 cells were co-transfected with 140 ng of pGL3 basic-AGR2 and 150 ng of a 
separate construct that contained the promoter driving transcription from a Renilla luciferase gene. 
The cells were subsequently treated with increasing amounts of TGF-, and the activity of the AGR2 
promoter was determined by luciferase assay. As a control, promoter activity of a Renilla promoter 
construct was also measured. Results are plotted as the normalized firefly luciferase activity over the 
value of Renilla luciferase. 
 



 116

Next, we were interested to determine which components of the TGF- signalling 

pathway are involved in the apparent loss of AGR2 protein. TGF- pathway has 

been extensively characterised and it is know that it propagates the signal through 

binding to the dimeric complex of TGFRI and TGFRII. The activated receptor 

recruits and phosphorylates SMAD2 and SMAD3. Subsequently, SMAD2/3 proteins 

heteromerize with SMAD4 and translocate as a complex to the nucleus               

[465, 467-469]. In the nucleus this complex is further built up by binding to           

co-repressors or co-activators,  to form transcription complexes that regulate 

expression of a wide variety of target genes [484]. We decided to evaluate whether 

the canonical pathway could account for the observe suppression of AGR2 protein. 

As such, A549 cells were treated with siRNA to SMAD2, SMAD3, SMAD4, and 

SMAD7 and treated with TGF-or left untreated. Depletion of none of the SMAD 

proteins led to changes in the p53 protein levels in TGF--untreated cells         

(Figure 3.7 B, lanes 1-5). Interestingly, it was found that cells treated with siRNA to 

SMAD4 and SMAD7 had reduced levels of AGR2 protein in the absence of TGF- 

(Figure 3.7 A, lanes 4-5 vs. 1-3). Further, upon addition of TGF- AGR2 

suppression was observed, as expected, however, the treatment of cells with siRNA 

to SMAD4 had the most striking influence on attenuating AGR2 protein suppression 

(Figure 3.7 A, lane 6 vs. 9, Figure 3.7 D, lane 1 vs. 3). As a control, the efficiency of 

siRNA-mediated depletion of SMAD4 protein was evaluated and indeed it was 

selectively depleted in cells transfected with SMAD4 but not SMAD2, SMAD3 or 

SMAD7 (Figure 3.7 E).  Steady-state levels of p53 protein were also examined upon 

addition of TGF-. It was found that TGF--mediated induction of p53 was 

independent of SMAD4 (Figure 3.7 B). In fact, it appeared that p53 protein levels 

were increased in cells treated with siRNA to SMAD4 compare to control or cells 

treated with siRNA to other SMAD proteins (Figure 3.7 B, lane 9 vs. 6-8 and 10). 

This data indicate a dominant role of SMAD4 in TGF--mediated suppression of 

AGR2.  
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Figure 3.7 Reduction of SMAD4 using siRNA prevents AGR2 downregulation in TGF--treated 
cells.  (A-B) A549 were transfected with 5 nM SMAD2 (S2), SMAD3 (S3), SMAD4 (S4), SMAD7 
(S7) siRNA or with control siRNA and 48 hours post transfection cells were treated with 2.5 ng/ml 
TGF- or carrier. After 48 hours, the cells were harvested and (A) AGR2, (B) p53 protein levels were 
examined by immunoblotting using specific monoclonal antibodies. (C) Cell lysates were 
immunoblotted using anti--Actin antibody as a loading control. (D-F) A549 were transfected with 5 
nM S2, S3, S4, S7 siRNA or with control siRNA and 48 hours post transfection cells were treated 
with 2.5 ng/ml TGF- or carrier, and harvested at different time points. (D) AGR2, (E) SMAD4 
protein levels were examined by immunoblotting using specific monoclonal antibodies. (F) Cell 
lysates were immunoblotted using anti--Actin antibody as a loading control. (G) Schematic of    
TGF--mediated activation of p53 pathway through SMAD4-dependent inhibtion of AGR2 protein. 
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3.2.3 AGR2 protein degradation in response to TGF- treatment.  

 

The data above demonstrated that TGF- canonical signalling pathway 

accounts, at least in part, for the observed loss of AGR2 protein upon TGF- 

treatment. However, we were also interested to find the mechanism of AGR2 protein 

degradation, under the conditions when its gene expression was repressed. As 

mentioned above, this appeared to be independent of the proteasome, as addition of 

MG132 did not prevent degradation of AGR2 protein in cells treated with TGF- 

(Figure 3.5 A). To further elaborate on the possibility that TGF- could also 

downregulate AGR2 levels in post-transcriptional manner, we performed a half-life 

analysis. Specifically, A549 cells were treated with cycloheximide for various times 

in the presence and in the absence of TGF-. It was found that AGR2 protein was a 

long-lived protein, as the addition of cycloheximide did not decrease its levels in the 

absence of TGF- (Figure 3.8 A, lane 1 vs. 4). Additionally, de novo protein 

synthesis is not required for TGF- signalling, as the AGR2 protein suppression 

occurred regardless of the presence of cycloheximide (Figure 3.8 A, lane 2-3           

vs. 5-6). Interestingly, 2 hours post cycloheximide treatment; TGF--induced 

reduction of AGR2 protein was enhanced (Figure 3.8 A, lane 2-3 vs. 5-6). The 

increase in the turnover of AGR2 indicates that there must be a mechanism of 

degradation that could explain the loss of AGR2 protein.  
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Figure 3.8 TGF- does not require de novo protein synthesis to downregulate AGR2 protein. 
A549 cells were stimulated with different concentrations of TGF- for 24 hours and then treated with 
30 g/ml cycloheximide (CHX) or water for the time indicated. (A) AGR2, (B) p53, (C) p21 protein 
and (D) -actin levels were examined by immunoblotting using specific monoclonal antibodies.   
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In order to help us to define the degradation pathway for AGR2 protein upon TGF- 

treatment, we decided to screen a range of protein kinase inhibitors. In detail, ATM 

kinase inhibitor KU55933, DNA-PK inhibitor NU7441 and MAPK inhibitor UO126 

were used. Interestingly, inhibition of ATM kinase and to a lesser extent of DNA-PK 

kinase, but not MAPK kinase led to stabilization of AGR2 protein (Figure 3.9 A,  

lane 5 vs. 6-7). These data suggested that ATM kinase activity could be involved in 

the TGF--dependent degradation of AGR2. To rule out the possibility that the 

inhibition of ATM kinase was linked to AGR2 gene expression, AGR2 mRNA levels 

were measured in cells treated with TGF-in the presence or absence of KU55933. 

It was found, that AGR2 mRNA levels remained low in TGF- treated cells that 

were preincubated with ATM kinase inhibitor (Figure 3.9 E, lane 3 vs. 4). We 

concluded that ATM kinase pathway accounts for the degradation of AGR2 protein 

upon TGF- treatment. In addition, ATM kinase seems not to be involved in 

SMAD4-dependent inhibition of AGR2 gene transcription. 

 



 121

 
Figure 3.9 ATM-dependent TGF--triggered AGR2 degradation. A549 cells were pre-treated for 
30 minutes with either: 10 µM ATM kinase inhibitor (KU55933), 1 µM DNA-PK kinase inhibitor 
(NU-7441), 10 µM MAPK kinase inhibitor UO126 or DMSO and then stimulated with 2.5 ng/ml of 
TGF- for 24 hours. (A) AGR2, (B) p53, (C) p21, (D) -actin protein levels were examined by 
immunoblotting using specific antibodies. (E and F) ATM is not involved in TGF--dependent 
AGR2 gene suppression.  A549 cells were treated for 30 minutes with either 10 µM ATM kinase 
inhibitor (KU55933) or DMSO and then stimulated with or without TGF- (2.5 ng/ml) for 36 hours 
followed by determination of (E) AGR2 mRNA and (F) GAPDH levels by RT-PCR using gene 
specific primers.  
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3.2.4 SNIP1 protein induces AGR2 protein degradation 

 

In the light of the finding that AGR2 protein degradation is regulated by 

ATM kinase pathway, we were eager to investigate this mechanism in more detail. 

This appeared to be a daunting task, as a recent mass spectrometry screen identified 

about 900 targets of ATM and ATR kinases [493]. The functional importance of 

most of these phosphorylation events is not yet understood, and just a fraction of 

these had a well characterised role in assembly of protein complexes that are 

implicated in DNA damage response. Interestingly, when we analysed this catalogue 

of ATM/ATR substrates in detail, we found a few proteins that were linked to the 

TGF- pathway. Therefore, we decided to look into these genes, reasoning that one 

of them could be an ATM target mediating degradation of AGR2 protein in response 

to TGF-. The substrates found were IRS1, IRS2 and SNIP1 (Figure 3.10 A). In 

order to establish whether any of these genes was implicated in TGF--mediated 

degradation of AGR2, first A549 cells were transfected with siRNA to IRS1, IRS2 

and SNIP1 and SMADs and treated with TGF-, and the levels of AGR2 protein 

were monitored. Interestingly, only depletion of SNIP1 could increase AGR2 levels, 

indicating that this protein may be a downstream of ATM effector of AGR2 

degradation (Figure 3.10B). In order to  further characterise this ATM substrate, 

determine whether it is indeed involved in the regulation of AGR2 protein and 

confirm that these sites could be phoshorylated in vivo, we generated phospho-

specific antibodies to the sites in SNIP1 that were found to be regulated by ATM, 

T169 and S202. Specifically, phospho-specific antibodies were generated to the 

peptides DRD[phospho]T169QNL and GSE[phospho]S202QEL using the protocol 

described before [494]. Indeed, we were able to confirm that at least one of the sites, 

T169, was targeted for phosphorylation in vivo (Figure 3.10 C and D). In addition, 

this modification was ATM-dependent, as cells treated with ATM inhibitor in the 

presence or absence of TGF- had reduced levels of phospho-SNIP1 (Figure 3.10 C 

and D, lane 1 vs. 2 and 3 vs. 4). It is worth stressing, that we observed basal SNIP1 

phosphorylation in untreated cells and this was not increased by TGF- stimulation 

(Figure 3.10 C and D, lane 1). This indicates that ATM pathway for SNIP1 
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phosphorylation is DNA damage-independent and is presumably constitutively on to 

maintain steady-state levels of AGR2 protein.  
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Figure 3.10 SNIP1 is phosphoryalted at Thr169 by ATM kinase in vivo. (A) The peptide sequence 
surrounding the previously identified ATM/R phosphorylation site in the SMAD interacting protein 
SNIP1. (B) A549 were transfected with 5 nM SMAD2 (S2), SMAD3 (S3), SMAD4 (S4), SMAD7 
(S7), SNIP1 (S1) siRNA or with control siRNA and 48 hours post transfection cells were treated with 
2.5 ng/ml TGF-. After 48 hours, the cells were harvested and AGR2 protein levels were examined by 
immunoblotting using specific monoclonal antibodies. (C-F) A549 cells were pre-treated for 30 
minutes with 10 μM KU55933 (ATMi) or DMSO and with or without 2.5 ng/ml of TGF- prior to 
irradiation with 5Gy. After 24 hours the cells were lysed and the steady-state levels of (C and D) 
SNIP1 phospho-T169 protein levels were examined using phospho-specific antibodies generated to 
the peptide DRD[phospho]T169QNL. (E and F) -actin protein levels were examined by 
immunoblotting using specific antibodies. 
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Next, we were interested to see if the transfection of SNIP1 was alone sufficient to 

stimulate the otherwise TGF--dependent AGR2 degradation and if yes, whether or 

not this was an ATM-dependent process. To this effect, increasing amounts of        

HA-tagged SNIP1 DNA were transfected into A549 cells. Interestingly, SNIP1 

protein overexpression (Figure 3.11 A) resulted in a dose-dependent decrease in 

AGR2 steady-state levels (Figure 3.11 B). The decrease in AGR2 protein coincided 

with the stimulation of p53 and p21 protein levels (Figure 3.11 C and D). The 

activation of p53 pathway is also consistent with another report showing that SNIP1 

can act as the activator of p53 protein [495]. In order to establish if SNIP1-triggered 

degradation of AGR2 protein was indeed dependent on ATM kinase we 

overproduced SNIP1 protein in cells pre-treated with ATM kinase inhibitor      

(Figure 3.11 F). We no longer observed AGR2 protein reduction upon inhibition of 

ATM kinase, revealing that ATM-dependence to SNIP1-induced degradation of 

AGR2 protein (Figure 3.11 G). Having shown the role of ATM-SNIP1 pathway in 

AGR2 protein reduction, we wanted to evaluate the effects of mutation of T169 on 

AGR2 steady-state levels. To this effect, SNIP1 T169D and T169A mutants were 

created, with the former acting as a phosphomimetic, and the latter representing the 

unphosphorylated form of SNIP1. In addition, SNIP1 S202D and T202A mutants 

were also generated, because despite the fact that we failed to produce            

phospho-specific antibodies against this site, we could not rule out the possibility that 

modification of these residues was involved in ATM-dependent regulation of AGR2. 

It was found that SNIP1 T169D retained the ability to promote AGR2 protein 

degradation. Surprisingly, SNIP1 T169A not only could not induce loss of AGR2 

protein, but acted as a dominant negative protein by increasing steady-state levels of 

AGR2 (Figure 3.11 I). The basal levels of SNIP1 T169D and T169A were compared, 

to establish whether differential expression could account for the apparent difference 

in the activities of these mutants. Despite the fact that the basal levels of SNIP1 

T169D were lower than these of SNIP1 T169A, only the former could efficiently 

induce reduction of AGR2 protein (Figure 3.11 J). Surprisingly, SNIP1 S202D 

caused increase in levels of AGR2 protein compare to SNIP1 S202A, indicating that 

phosphorylation of this site may actually be involved in the positive regulation of 

AGR2 protein (Figure 3.11 I). Collectively, these results show that the 
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overexpression of SNIP1 alone and SNIP1 T169D can reconstitute the ATM and 

TGF- induced degradation of AGR2 protein in A549 cells.  
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Figure 3.11 Effects of SNIP1 transfection on AGR2 protein levels. (A-H) SNIP1 gene 
transfection de-stabilizes AGR2 protein in an ATM-dependent manner. A549 cells were 
transfected with increasing amount of wild type HA-tagged SNIP1 expression plasmid in (A-E) the 
absence of 10 μM KU55933 (ATMi) (F-H) or in the presence of the 10 μM ATMi. After 24 hours, the 
cells were harvested and (A and F) HA-tagged SNIP1, (B and G) AGR2, (C) p53, (D) p21 and (E 
and H) GAPDH protein levels were examined by immunoblotting using specific antibodies. (I and J) 
Mutation of ATM phospho sites in SNIP1 protein affect AGR2 protein levels. A549 cells were 
transfected with increasing amount of phospho-mimetic mutants HA-tagged SNIP1-T169D or       
HA-tagged SNIP1-S202D, or unphosphorylated counterparts (HA-tagged SNIP1-T169A or           
HA-tagged SNIP1-S202A). After 24 hours, the cells were harvested and (I) AGR2 and (J) HA-tagged 
SNIP1 protein levels were examined by immunoblotting using specific antibodies.  
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3.2.5 AGR2 protein is degraded via lysosomal pathway. 

 

Despite the fact that TGF--induced loss of AGR2 protein is proteasome- 

independent, we reasoned that there has to be some other mechanism that could 

provide the efficient removal of this protein. As the cellular pathways for protein 

degradation involve not only the ubiquitin-linked proteasomal degradation, but also 

autophagic-lysozomal pathway (reviewed in [496-498]), we set out to determine 

whether the latter played a role in TGF- induced degradation of AGR2 protein. To 

this effect, we evaluated a time course of AGR2 protein reduction in the presence or 

absence of chloroquine or the autophagy inhibitor 3-methyladenine (3-MA), upon 

TGF- treatment. There was no significant difference in the AGR2 protein levels 

between drug-treated and untreated cells at the time points between 1 hour to          

18 hours (data not shown). Interestingly, incubation of cells with chloroquine for      

24 hours to 36 hours prevented degradation of AGR2 protein in the cells treated with 

TGF-, whereas only minimal protection was observed in the cells treated with        

3-MA (Figure 3.12 A). In addition, chloroquine treatment resulted in the stabilisation 

of p53 protein, which was in agreement with previous reports (Figure 3.12 B).         

A chloroquine-dependent increase in AGR2 protein levels indicated that AGR2 is 

degraded via lysosomal pathway. To further examine the lysosomal pathway of 

AGR2 protein degradation more specific inhibitors of lysosomal functions were 

used. Specifically, cells were treated with general lysozomal hydrolase inhibitors, 

including pepstatin A and E64D, and Na+/H+ ionophore monensin A, which 

increases lysosomal pH preventing activation of the lysosomal enzymes. As a 

control, cells were also treated with the ATM inhibitor or chloroquine. However, 

only chloroquine and ATM inhibitor, but not pepstatin A, E64D or monensin A 

increased AGR2 protein in the cells treated with TGF-Figure 3.12 E. 

Interestingly, the basal levels of AGR2 protein increased upon treatment with 

pepstatin A and E64D, indicating that in unstressed cells the slow turn-over of AGR2 

protein is provided via the lysosomal degradation pathway (Figure 3.12 D).  
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Figure 3.12 AGR2 protein is degraded via lysosomal pathway. (A-C) A549 were treated with the 
lysozomal inhibitor chloroquine (Chl) or the autophagy inhibitor 3-methyladenine (3-MA) or DMSO 
control (D) in (lanes 2, 4 and 6) the presence or (lanes 1, 3 and 5) absence of 1 ng/ml of TGF-. After 
36 hours cells were harvested and (A) AGR2, (B) p53 and (C) -actin protein levels were examined 
by immunoblotting using specific antibodies. (D-G) A549 were treated with the lysozomal inhibitors 
Chloroquine (Chl), Pepstatin D and E64D (EP), Monensin A (M) or the ATMi, or DMSO control (D) 
in (E and G) the presence or (D and F) absence of 1 ng/ml of TGF-. After 36 hours cells were 
harvested and (D and E) AGR2 and (F and G) p53 protein levels were examined by immunoblotting 
using specific antibodies. (H-M) A549 cells were transfected with increasing amount of wild type    
HA-tagged SNIP1 and treated without (H, J, L) or with 100 μM chloroquine (I, K, M). After 36 
hours cells were harvested and (H and I) AGR2 and (J and K) HA-tagged SNIP1, and (L and M)    
-actin protein levels were examined by immunoblotting using specific antibodies. The data are 
representative of three independent experiments and changes in the levels of AGR2 as a ratio of 
protein/-actin were quantified using Image J software. 
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As the overexpression of SNIP1 alone could reconstitute the ATM and    

TGF- induced degradation of AGR2 protein in A549 cells, we were interested to 

see whether this was due to enhanced AGR2 lysosomal degradation. Hence, cells 

were transfected with increasing amounts of SNIP1 and treated with or without 

chloroquine. As it was seen before, SNIP1 overexpression resulted in depletion of 

AGR2 protein (Figure 3.12 H). Interestingly, chloroquine treatment could prevent 

AGR2 degradation (Figure 3.12 I) and this was not through decreased levels of 

SNIP1 protein (Figure 3.12 J and K). This data indicates that indeed SNIP1 protein 

triggers the lysosomal degradation pathway for AGR2.  

Subsequently, we sought to determine whether AGR2 protein localised to lysosomes 

upon TGF- treatment. To this end, we analysed AGR2 cellular distribution using 

AGR2-specific antibody in cells treated with or without TGF-. We found that 

AGR2 protein localised mainly to ER-compartment and to nucleus, and the 

decreased levels of AGR2 protein were observed upon addition of TGF-. 

Chloroquine treatment intensified staining for AGR2 protein, confirming that this 

drug interfered with the loss of AGR2 protein. In addition, AGR2 localised to 

punctuate foci that were adjacent to vesicles positive for LAMP-1, a known marker 

for lysosomes and late endosomes (Figure 3.13 A).  

Furthermore, autophagy-related genes (ATG) proteins have been shown to be 

involved in the formation of the autophagosome- compartment that delivers a cargo 

to the lysosome. As such we decided to investigate whether or not depletion of 

ATG5, ATG10 or ATG12 using specific siRNA could prevent AGR2 degradation. 

Indeed, increased levels of AGR2 protein were observed when ATG specific siRNAs 

were used. Furthermore, the stabilisation of AGR2 protein was observed in both 

TGF- treated and un-treated cells, which indicates that basal AGR2 turnover occurs 

in these cells (Figure 3.13 B). 
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Figure 3.13 (A) A549 were treated with 2.5 ng/ml TGF- and 24 hours later stained with AGR2 
polyclonal Antibody (Green) and LAMP-1 specific antibody (Red) (Data courtesy of Dr Nicky 
MacLaine) (B) A549 were transfected with 5 nM ATG5 (A5), ATG10 (A10), ATG12 (A12), SNIP1 
(S1) and ATM (At) siRNA or with control siRNA (c) and 48 hours post transfection cells were treated 
with 2.5 ng/ml TGF- or carrier. After 48 hours, the cells were harvested and AGR2 levels were 
examined by immunoblotting using specific monoclonal antibodies. (C) Model of TGF- suppression 
of AGR2 protein. Data in this study highlight two distinct pathways that play a role in the AGR2 
suppression by TGF-. First, TGF--mediated suppression of AGR2 protein occurs by suppression of 
AGR2 gene expression leading to AGR2 protein depletion which is SMAD4-dependent and p53-
independent. Second, TGF- triggers a ATM/SNIP1-dependent AGR2 protein lysosomal degradation.   
 
 
 
 
 



 132

3.3 Discussion 

 

The p53 protein is a transcription factor that has a well established role in 

tumour suppression [499]. In cells containing functional p53, it is activated in 

response to a variety of stresses including DNA damage [500-502], hypoxia [503], 

inappropriate cell proliferation, telomere erosion [504], type-I interferons [505], viral 

infection [505, 506], metabolic stress [507, 508] and others. Once activated, p53 

readily modulates the expression of number of target genes, whose products regulate 

diverse processes such as cell cycle arrest, senescence, apoptosis and others [509]. 

Thus, p53 activation contributes to tumour suppression, whereas attenuation of its 

activity favours selection of cell variants with increased tumourogenic potential. 

Accordingly, large proportion of human cancers bears mutations in the p53 gene. 

Common p53 mutations give rise to proteins that are inactive as transcription factors 

for genes that normally are induced by wild type p53 to maintain homeostasis. In 

addition, variants of mutant p53 can emerge that possess new activities, so called 

gain-of-function properties that can further contribute to tumourigenesis. 

Nevertheless, there are a number of wild type p53 protein carrying tumours, which 

developed indirect mechanisms to disrupt p53 pathway, mainly by promoting p53 

protein degradation, blocking p53-activating kinases or triggering enzymes that 

block p53-dependent transcription. In these tumours, strategies to reactivate wild 

type p53 may have therapeutic benefits. For example, it was shown that disruption of          

p53-MDM2 complex using small molecules could restore p53 functions and induce 

apoptosis [335]. Discovering and characterising novel inhibitors of p53 in the wild 

type p53 context may increase chances of finding compounds with significant 

antitumour effects [510]. For example, recently performed proteomic screen revealed 

a novel p53-inhibitory pathway involving AGR2 protein [437]. However, the 

signalling inputs that coordinate AGR2- p53 pathway have not been studied yet and 

in this study we sought to establish the effects of different physiological factors on 

AGR2 and p53 protein.  

In search for regulators of AGR2, we found that TGF- acted as a potent 

inhibitor of AGR2. We showed that TGF- signalling suppressed AGR2 
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transcription in SMAD4-dependent manner and triggered protein degradation by 

engaging ATM- SNIP1 autophagic-lysosomal degradation pathway.  

This and other studies reported that AGR2 protein could inhibit p53 pathway. Firstly, 

it was observed that ectopically expressed AGR2 could inhibit DNA damage- 

triggered activation of p53 [437]. Additionally, AGR2 overexpression resulted in the 

increased shuffling of p53 protein out of the nucleus after UV irradiation [420] and 

targeting AGR2 protein with AGR2-specifc aptamer [424] could further stimulate it 

[425]. In keeping with p53-inhibitory role of AGR2 protein, we observed that AGR2 

depletion using siRNA enhanced the stimulatory effect of TGF- or radiation 

treatment on p53 (Figure 3.2). Moreover, TGF--dependent loss of AGR2 protein 

resulted in the stabilization of p53 protein and its target gene p21. As AGR2 

depletion potentiated p53 response to irradiation and/or TGF- and given that AGR2 

appears to inhibit p53 to a greater extent in DNA damaged cells, we could speculate 

that AGR2-positive, wild type p53-containing tumours could be resistant to 

otherwise effective p53-activating DNA damaging agents.  

The loss of AGR2 protein in response to TGF- highlights the tumour suppressive 

function of this cytokine. Here, we found that transcriptional inhibition is likely to be 

mediated by SMAD pathway, as SMAD4 depletion prevented TGF--mediated 

downregulation of AGR2 (Figure 3.7). SMAD proteins have been shown to interact 

with a range of repressors; however these interactions are not usually implicated in 

the active repression of TGF- genes, but are thought to repress SMAD-mediated 

transactivation [511]. Further, there is relatively little known about the mechanisms 

of TGF--SMAD-dependent gene repression. For instance, there is some evidence 

for the association of histone deacetylases with SMADs [512, 513]. Unfortunately, at 

the moment we do not know what factors, other than SMAD4, are involved in AGR2 

gene suppression. Additional studies, for example using HDAC inhibitors as well as 

chromatin immunoprecipitation (CHIP) on AGR2 promoter will be required to 

define factors that are involved in TGF--mediated inhibition of AGR2 transcription.  

AGR2 protein was shown to be induced by estrogens and its promoter 

contains four putative estrogen responsive elements [407, 514]. Unexpectedly, we 

observed higher levels of AGR2 protein in A549 lung cancer cells upon serum 

starvation (Figure 3.1). These data indicated that AGR2 expression can be provided 
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by a hormone-independent pathway. In other cell lines, for example the MCF7 breast 

cancer cell line, AGR2 expression is dependent upon estrogen [436]. These data 

clearly highlight distinct pro-oncogenic signalling pathways that regulate AGR2 

production. The question that arises is whether TGF- could integrate into both 

estrogen-dependent and estrogen-independent AGR2-regulatory pathways. 

Interestingly, links between TGF- and ER signalling have been observed before. 

Specifically, these studies shown that SMAD4 was implicated in TGF--mediated 

transrepression of ER activity [515, 516], SMAD3 acted as its coactivator [517], 

whereas SMAD4/3 complex had an inhibitory effect [515]. This implies that TGF- 

can potentially regulate AGR2 expression in other cell systems. Further, as TGF- 

has been shown to regulate ER activity in either a positive or negative manner, it is 

plausible that TGF- could switch from a repressor to an activator of AGR2 protein 

depending on the cellular context. Interestingly, SMAD4 mutations are observed at 

high frequency in human tumours [518-520]. Particularly, mutations of it were 

observed in breast carcinoma [521, 522] and it was found that SMAD4 protein was 

reduced in Barrett’s [523]. It is likely that deficiency of functional SMAD4 could 

explain high levels of AGR2 protein in these tissues. Surprisingly, in this study 

SMAD4 depletion downregulated AGR2 in the absence of TGF- signal. One 

possible explanation is that SMAD4 may recruit different kind of cofactors, histone 

acetylases or histone deacetylases, depending on the TGF- signalling status. Indeed, 

SMAD4 was shown to activate expression of c-myc oncogene in the absence of    

TGF- signalling, whereas it cooperated with Smad3 to reduce expression of c-myc 

in response to TGF- [524].  

The physiological outcome of TGF- mediated suppression of AGR2 is, as yet, 

unknown. TGF- signalling plays a pivotal role in the control of tumour initiation, 

progression and metastasis, cell growth and proliferation, apoptosis, differentiation 

and migration; as well as in a broad range of both cancer cell-cancer cell and host- 

tumour interactions. Another layer of complexity comes from the fact that TGF- has 

a biphasic role in cancer progression, with tumour suppressive effects in early stages 

and oncogenic outcomes in later phases of cancerogenesis [525]. In some studies it 

was found that the Barrett’s-derived esophageal adenocarcinoma cells exhibit 
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reduced responsiveness to TGF- and downregulation and alterations in 

SMAD4 protein could potentially account for the loss of antiproliferative response to 

TGF- in this tissue [523]. However, it remains unclear whether or not AGR2 

overexpression in Barrett’s is indeed due to decreased responsiveness to TGF-. In 

fact some studies reported on the overexpression rather than downregulation of TGF-

 signalling in this tissue [527]. Given that TGF- can exert both tumour-suppressive 

and tumour-promoting activities, we can hypothesise that in TGF--responsive        

AGR2-overexpressing Barrett’s, TGF- acts as an autocrine activator of oncogenic 

pathways that maintain high levels of AGR2. Future research of the Barrett’s model 

might explore the relationship between AGR2 and TGF-pathways in more detail. 

Further, the TGF--AGR2 pathway should be studied in relation to the p53 status in 

oesophageal disease. However one would expect the physiological outcomes of   

TGF--SMAD pathway to be tissue and disease-specific.  

One well established outcome of TGF- signalling is epithelial to mesenchymal 

transition (EMT) (reviewed in [528]). EMT process leads to major changes in 

cellular phenotype. Specifically, during EMT cells acquire mesenchymal 

morphology, lose cell-cell junction proteins and can migrate and invade through 

extracellular matrix (ECM) [529]. EMT has a critical role in the embryonic 

development and in response to tissue injury; however, the significance of EMT in 

cancer progression and fibrosis has also been highlighted. As epithelial cancer cells 

undergo EMT, they become more invasive and begin dissemination from the primary 

location to distant organ sites. One of the main hallmarks of epithelial to 

mesenchymal transition is loss of E-cadherin [530]. Considering that TGF- 

treatment was shown to downregulate E-cadherin and induce EMT in A549 cells 

[531], it would be interesting to evaluate whether AGR2 loss is accompanied by 

EMT-associated changes. If TGF- indeed triggers EMT, it would be the first 

evidence that AGR2 repression is required or correlates with EMT. At first, this may 

appear contradictory to the previously found role of AGR2 in metastasis [427]. 

However, the new concepts on cancer progression have been recently emerging that 

could explain AGR2 disappearance during EMT. Apparently, EMT is critical only in 

the initial phases of cancer when ability of individual cells to migrate is essential 

[532]. However, having reached their destination, migratory cells have to be able to 
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proliferate and form epithelial growths in these distal loci. It has been proposed that 

this process requires re-differentiation, namely mesenchymal to epithelial transition 

(MET) [528, 533] and was supported by observations that many metastatic 

carcinomas follow this route [534, 535]. In keeping with this, re-expression of         

E-cadherin was observed in some prostate cancer metastases to the liver [535]. 

Similarly, considering that AGR2 is regarded as a growth-promoting factor and as it 

stimulates attachment, it is plausible that its repression by TGF- could be relieved 

once distant sites are populated.  

In search of the mechanism that could account for the loss of AGR2 protein upon 

TGF- treatment, we found that its turnover was regulated by lysosomal pathway, as 

we were able to prevent TGF- mediated degradation using chloroquine. Further, the 

general lysosomal hydrolase inhibitors, namely Pepstatin A and E64D increased 

basal levels of AGR2 protein. Interestingly, TGF- induced lysosomal degradation is 

not restricted to AGR2 protein as it was also reported for E-cadherin [536]. Janda 

and colleagues showed that TGF-/MAPK pathway could induce E-cadherin 

localization to LAMP-1 positive structures, a marker for lysosomes. When we 

investigated AGR2 localization upon TGF- treatment, we found that AGR2 protein 

colocalized to endoplasmic reticulum punctuate foci adjacent to lysosomal vesicles. 

AGR2-containting foci did not appear to overlap with LAMP-1 foci, however, 

localization “next to” lysosomes suggests that AGR2 is indeed degraded in these 

vesicles or in the compartments in close association with lysosomes. Similar 

localization was observed for cIAP1-TRAF2 complex [537] and was regarded as 

evidence for lysosomal degradation. Furthermore, a subunit of the T-cell antigen 

receptor that is targeted by this pathway could be localised to foci near lysosomal 

compartments [538]. The lysosomal degradation of intracellular proteins is often 

linked to macroautophagy (autophagy), a process that involves ATG proteins-

dependent formation of autophagosomes. These vesicles deliver cargo to be degraded 

to lysosomes. The autophagic pathway is thought to play a pivotal role in the 

degradation of long-lived proteins as well as organelles [539]. A recent study has 

also highlighted that TGF- can induce autophagy in cancer cell lines mainly due to 

the increased expression of some ATG proteins [540, 541]. Although 3-MA can 

inhibit autophagy [542], in our current study this inhibitor was not able to suppress 
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AGR2 protein degradation after TGF- treatment to the same extent as chloroquine 

did (Figure 3.12). However, as depletion of the components of autophagic pathway, 

namely ATG5, ATG10 and ATG12 could induce levels of AGR2 protein, it is likely 

that lysosomal degradation of AGR2 in A549 cells follows the ATG5/7/DAPK 

autophagic pathway activation. Alternatively, as AGR2 resides in endoplasmic 

reticulum and it has an N-terminal leader sequence it is also possible that TGF- 

induces AGR2 secretion. Further studies, including establishing the levels of AGR2 

in the media from TGF- treated cells, will be required to determine whether or not 

AGR2 is indeed secreted. 

As mentioned, loss of E-cadherin has been associated with development of 

epithelial-derived tumour types [543] and with epithelial to mesenchymal transition 

in mammalian cell systems [530]. Interestingly a distinct set of enzymes is activated 

downstream of TGF- and accounts for the degradation of E-cadherin and AGR2 

proteins. Specifically, Rab 5/7 GTPases are involved in degradation of E-cadherin, 

whereas ATM kinase triggers degradation of AGR2, as defined by using KU55933 

or ATM depletion by ATM specific siRNA. The activation of a variety of kinases by 

TGF- signalling is not surprising since besides the canonical SMAD pathway,    

TGF- has been shown to propagate signalling and converge with other pathways. 

For example, MAPKs [544], including ERKs, p38 and JNKs; NF-kB, 

Phosphoinositide 3 (PI3)-kinase and AKT kinase pathways can contribute to         

TGF-response [305, 545]. TGF- induces activation of Ras, RhoB and RhoA, 

TAK1 and protein phosphatase 2A, which generally results in the activation of the 

MAPK pathway and the suppression of S6 kinase [546]. In addition, ATM activation 

in response to genotoxic stress has been shown to be perturbed by loss of TGF- 

signalling as it decreased ATM’s autophosphorylation and compromised 

phosphorylation of p53 [547]. Our results reveal that ATM kinase is indeed activated 

upon TGF- treatment and enhances p53 activation by switching on lysosomal 

degradation of AGR2 protein. The ATM kinase has been implicated in the 

autophagic pathway before. The most recent study showed that ATM kinase 

inhibitor, combined with DNA-damaging agent treatment, diminished autophagy 

[548]. The opposite was observed, however, when ATM was depleted using ATM 

specific siRNA [548]. In another study it was found that ATM represses the kinase 
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mTOR in the mTOR complex 1 (mTORC1) and induces autophagy in response to 

reactive oxygen species. Furthermore ATM knockout prevented the induction of 

autophagy in response to this stress [549].  

It is somewhat contradtictory that chloroquine treatment results in increase in both 

AGR2 and p53 levels. p53 induction upon chloroquine treatment has been seen 

before and was reported to be ATM-dependent [380, 550]. One study has shown that 

chloroquine activates ATM and p53-dependent pathways in Myc-dependent B-cell 

models and impairs Myc-induced lymphogenesis in a transgenic mouse model of 

human Burkitt lymphoma [551-553]. We observed that chloroquine could inhibit the 

ability of SNIP1 to stimulate AGR2 protein degradation which indicates that this 

drug can act downstream of ATM function.  

We found that ATM targets SNIP1 protein and SNIP1 overexpression could trigger 

ATM-dependent degradation of AGR2 protein in the absence of TGF- signal. As 

SNIP1 T169D overexpression by itself could recapitulate the effects of TGF-, we 

concluded that this protein mediates TGF- induced lysosomal degradation of 

AGR2. SNIP1 is a 396 amino acid protein and was isolated in search for SMAD-

binding partners. It contains a nuclear localisation sequence (NLS), coiled coil motif 

and a forkhead-associated (FHA) domain [480]. It was originally termed a 

transcriptional suppressor of TGF- signalling and was shown to interact with 

SMAD4 protein and compete with SMAD4 for p300/CBP binding [480]. Later, 

SNIP1-inhibitory activity was confirmed for NF-κB-dependent transcription, also 

through a mechanism involving competition with RelA/p65 subunit for binding to 

CBP/p300 [554]. In this study we showed that SNIP1 downregulates AGR2 protein 

and it is dependent upon ATM kinase activity, because the addition of the specific 

chemical inhibitor of ATM, could rescue AGR2 protein levels in SNIP1-transfected 

cells. SNIP1 phosphorylation is not a new concept, and was previously suggested by 

Roche and colleagues [495]. It was speculated that the combination of SNIP1's 

modification and its cellular context could determine the nature of SNIP1 mediated 

response. Later, the presence of two different ATM phosphorylation sites was 

revealed by a proteomic screen [493]. Here, we established that SNIP1 

phosphorylation of T169 is ATM-dependent and could account for AGR2 

degradation. Interestingly, SNIP1 S202D actually increased levels of AGR2, 



 139

suggesting that SNIP1 could have multiple effects on AGR2 pathway. The signalling 

events that determine which sites on SNIP1 are phosphorylated are currently unclear 

and are likely to be intricately modulated by different cellular and extracellular 

signals. Accordingly, we observed some discrepancies in the effects of wild type 

SNIP1 overexpression on AGR2 protein levels and only “fixing” the phosphorylation 

status of SNIP1, by site directed mutagenesis, resulted in a reproducible outcome 

with respect to AGR2 protein levels. As SNIP1-mediated repression relies on 

competition for binding to p300/CBP, it is plausible that the phospho status of SNIP1 

determines its affinity for CBP/p300. Indeed, a role for post-translational 

modifications of SNIP1 was suggested as the cellular environment seemed to affect 

SNIP1-p300 complex formation and it appeared to readily form in NMuMg cells, but 

not in U-2 OS cells [555]. 

Interestingly, patterns of expression of SNIP1 during embryogenesis are highly 

regulated [480, 554] and its levels significantly increase as the cells differentiate. 

Interestingly, we observed that culturing A549 cells results in the decrease and 

subsequent loss of AGR2 protein. Further, TGF- mediated AGR2 loss is potentially 

associated with EMT differentiation pathway. The inverse correlation between 

AGR2 and SNIP1 proteins levels further supports the model of SNIP1 dependent 

regulation of AGR2. It would be interesting to establish the levels of SNIP1 protein, 

particularly phospho status of SNIP1, in differentiating A549 cells. Xenopus XAG-2, 

a homologue of human AGR2 protein, is required to determine an anterior fate, 

[402]. Interestingly, injection of SNIP1 protein was found to result in truncation of 

anterior structures [554] and it could be due to decrease in XAG-2 levels, if the role 

of SNIP1 in AGR2 downregulation is conserved across species. Additionally,   

XAG-2 is expressed only in the extreme anterior of dorsal ectoderm and SNIP1 may 

function as a regulatory element that restricts XAG-2 expression to this region. 

Further studies are required however to establish, whether the SNIP1 function in 

Xenopus embryos indeed involved XAG-2 protein.    

It is worth noting, that similarly to AGR2, SNIP1 expression has been linked to 

positive regulation of cell proliferation and cell cycle, via induction of genes such as 

Cyclin D1 or c-Jun, or binding to and activating c-Myc [555-557]. This is not 

necessarily contradictory data. For example, it is likely, that SNIP1 effects as well as 
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AGR2 activity are regulated during the cell cycle. Interestingly, this was observed 

for SNIP1 and another oncogenic protein Skp2 with regards to c-Myc expression and 

was explained by differential expression of these proteins during cell cycle [556].  

In addition, discrepancies between experiments may be partially explained by the 

fact that our model is based on transfections into an asynchronous cell population.  

As SNIP1 is proving to be a multifunctional protein, a number of transcription- 

independent functions of SNIP1 proteins have also been described. For example, 

SNIP1 regulates ATR checkpoint kinase function and mediates induction of p53 

activity following UV treatment [495]. This is in keeping with our data showing that 

SNIP1 overexpression leads to increase in p53 and p21 levels. However, at present, it 

is unknown whether transcription-dependent or transcription-independent, or both 

functions of SNIP1 account for the AGR2 downregulation by this protein. We 

believe that one possible way of answering this question can be by studying mutant 

SNIP1 protein, where its NLS domain is disrupted. As expected, the NLS mutation 

resulted in an increased cytoplasmic localisation of SNIP1, but there was no 

consistent effect of perturbed nuclear localisation of SNIP1 on AGR2 protein level 

(data not shown). It is possible that post-translational modifications of SNIP1, such 

as phosphorylation could still occur in this mutant. Presumably combination of 

different mutations that affect both phosphorylation and localisation of SNIP1 will 

have to be performed to gain a deeper understanding of this pathway.  

In summary, in this chapter we evaluated effects of serum and growth factor on 

regulation of AGR2 protein in cancer cells with a wild type p53 pathway. We found 

that TGF- signalling suppresses AGR2 gene transcription in a SMAD4-dependent 

manner and triggers AGR2’s autophagic/lysosomal degradation that involves ATM- 

SNIP1-dependent pathway. Thus, we identified tumour suppressive signals that 

antagonize the pro-oncogenic function of AGR2 and stimulate p53 activity. This 

knowledge could potentially be used to identify novel ways of reactivating wild type 

p53 pathway in cancer cells. 
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CHAPTER 4: A divergent substrate-binding loop 

within the pro-oncogenic protein Anterior Gradient-2 

forms a docking site for Reptin. 

 

4.1 Introduction 

4.1.1 Protein- protein networks 

 

The human and other organisms’ genome sequence projects have provided     

an immense amount of information that predicts the existence of tens of thousands of 

gene products. For example, the human proteome itself is believed to consist of over 

25000 unique proteins in their unique functional states, with different                  

post-tranlational modifications, etc. [558]. Despite the vast amount of data, the 

current understanding of the human organism is somewhat limited and the functions 

of thousands of the human proteins are simply not known. The key to acquiring a 

comprehensive picture of the functions of any given protein is building the protein’s 

interaction systems- the logic of that being that most proteins are incorporated into 

complexes of other proteins to perform their specific function. Therefore, if the 

function of the complex or of any of the interacting partner within the complex is 

known, the function of the studied protein can be predicted [559, 560]. Apart from 

understanding the function of the signalling protein, the potential application of 

characterising the system within which it operates, is that it might enable 

understanding of developmental and disease processes. Additionally it may help to 

design novel drugs that would target a specific protein interaction and therefore a 

specific function, rather than entire spectrum of functions [561].   

Currently, there are two main technical approaches used for identifying novel 

binding partners. They are the yeast two-hybrid system and co-immunoprecipitation 

combined with mass spectrometry (MS), which enable the identification of potential 

binary or complex interactions, respectively. In the yeast two hybrid screen the DNA 

binding domain of the transcription factor (bacterial lexA or yeast Gal4) is fused to 
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protein A (the bait) and the activation domain is fused to protein B (the prey) [562]. 

When bait and prey are co-expressed in the nucleus, protein A and protein B 

interaction reconstitutes the transcription factor, which can then activate a reporter 

gene. The two hybrid assay has been successively applied to map protein-protein 

interactions in a number of model organisms. For example, the first comprehensive 

two-hybrid studies in Saccharomyces cerevisiae revealed about 1000 interactions 

involving 1004 proteins [563]. Interestingly, the study that followed, detected four 

times more interactions [564], but the overlap between the two analyses was rather 

small. Subsequently, large-scale two-hybrid-based protein interaction studies were 

performed for Helicobacter pylori, Escherichia coli, hepatitis C, vaccinia virus and 

Caenorhabditis elegans [565] as well as for the Drosophila melanogaster [566]. In 

addition, this system was used to study human protein interactions, to describe 

proteome-wide interaction networks [567] as well as to characterise individual 

protein’s interactomes. For example, ERK1 and ERK2 were shown to bind to DAPK 

DD, and this finding helped to unravel the proapoptotic function of the latter [568].  

A technique complementary to yeast-two hybrid screens that is used to identify 

interactions among several proteins involves immunoprecipitation of the protein of 

interest followed by identification of other proteins that were “pulled down” with it 

by mass spectrometry. The advantage of this approach over yeast two-hybrid assay is 

that it identifies the complexes that form in the cellular context. However, the 

purification method can be a limitation and lead to either loss of an interaction or to 

false positives.   

 

4.1.2 Short linear motifs 

 

Traditionally, the behaviour of native protein was described by the protein’s 

ordered structure that, in turn, would determine its ability to interact with its binding 

partners. Indeed, many proteins are modular and form domains, which are folded into 

distinct structures and can perform their function in isolation [569]. Accordingly, 

numerous protein-protein interactions were shown to be mediated through       

domain-domain interaction. Recently the field of systems biology has started to 

acknowledge that several functional proteins contain large disordered segments and 



 143

that protein-protein interactions can often be mediated by these unstructured 

stretches, namely short linear motifs (SLiMs). The first example of such functional 

short motif was the KDEL sequence, that targeted the protein to ER retention 

detective 2 (ERD2), a receptor, which is required for retention of luminal ER 

proteins [570]. Linear motifs are usually 3 to 10 amino acids in length with usually 

only 2 or 3 residues being crucial for their function [571]. In contrast to domains, 

these sequences are usually not evolutionarily conserved. Quite the contrary, the 

single mutation in the polypeptide’s sequence may be sufficient to either create a 

functional motif from the inert peptide or cause an inactivation of the existing motif. 

The complexes that are mediated by these motifs are usually transient and their 

binding affinities are much lower that those of domains. For example, the affinity of 

the Cyclin-binding motif and 14-3-3 binding motif have been measured as 0.19 µM 

and 0.15 µM, respectively [572, 573]. This type of interaction is ideal for cellular 

signalling or response to stimulus, in which dynamics and flexibility are essential. 

The interactions mediated by short linear motifs can be studied using libraries of 

peptides. These have been successfully used to discover novel complexes between 

DAPK and MAP1B and DAPK and TSC2 [574, 575].   

 

4.1.3 AGR2 network 

 

Despite numerous reports describing AGR2’s role in various biological 

pathways, its involvement in cancer progression and drug resistance and inhibition of 

p53 tumour suppressor activity; its function and regulation are poorly characterised. 

The ambiguity of the mechanism of function of AGR2 is in part due to the fact that 

there are surprisingly few interactions validated for this protein.  

Different approaches have been taken to try to dissect the interactome of AGR2. For 

example, combinatorial phage-peptide library was used to search for a high-affinity 

peptide ligand for AGR2 [424]. Interestingly, AGR2 protein was shown to have a 

peptide binding activity for two peptide aptamers identified, that could bind AGR2 in 

Western blot or ELISA format. Specifically, AGR2 could bind to the following 

peptide motif: (S/T)xIhh (where x indicates any amino acid and h is an amino acid 

with a hydrophobic side chain). This data indicates that AGR2 could potentially 
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interact with the proteins containing these motifs in an in vivo context. Supporting 

this is the fact that it was found that this motif could modulate AGR2 activity in 

cells. When the (S/T)xIhh peptide was tagged to penetratin or fused to GFP, it 

increased AGR2 protein levels and induced p53 activity [420, 425].  

Indeed, several proteins bearing the consensus sequence were retrieved using Prosite 

and a group of them have already been tested for the direct binding in an ELISA  

(Table 4.1)  

 

Protein Motif’s sequence Role 

HERC2 LTTEFG E3 ligase 

SMG-7  

 

LPTLIYY 

TIYY 

Nonsense-mediated mRNA decay factor 

 

TMEM67 

/Meckelin 

PTPIFY Transmembrane protein : Involved in cilia 

formation 

TMEM63B PTIVYY Transmembrane protein 

HECTD1  STIFY E3 ligase 

 
Table 4.1 Summary of AGR2 potential interactors 
 

Another method that has been used to identify AGR2 binding partners was pulling 

out AGR2 from the cells that had been treated with a crosslinking agent and then 

identifying proteins present in the AGR2 complex by mass spectrometry. Despite the 

fact that AGR2 appeared to form high-molecular weight complexes, only AGR2 was 

identified in this experiment and it was later confirmed that indeed it can form homo-

dimers both in vivo and in vitro [576].  

Lastly, yeast two-hybrid screens identified proteins such as C4.4 and DYS1, but none 

of these interactions have been validated in vivo as yet. Therefore, the current 

challenges with respect to AGR2 protein is to (1) develop new techniques to study its 

interactome or (2) try to validate existing list of potential binding proteins and (3) 

establish the pathways this protein is embedded in.  
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4.2 Results 

4.2.1 Performing a Yeast Two-Hybrid Assay in order to identify 

novel AGR2 binding partners. 

 

As it was mentioned above several methods have been employed to identify 

AGR2 interacting proteins, however most of these interactions are poorly 

characterised or have not been validated as yet. In our search for the interactome of 

the AGR2 protein, a yeast two-hybrid was carried out (Hybrygenics, France). AGR2 

protein was fused with LexA and used as bait against a cDNA library derived from 

breast cancer cells. Upon sequencing analysis a number of potential novel AGR2 

binding proteins were identified. Table 4.2 lists names and the accession numbers of 

the most significant hits as well as their functions. 

 

Name Accession 

number 

Function 

C4.4A          AF082889     

 

Metastasis linked activity, previously published, 

unvalidated AGR2-Y2H interactor 

CKAP2        AAH10901   Regulates cyclin- kinase functions 

DAG1        L19711         Metastasis linked activity, previously published, 

unvalidated AGR2-Y2H interactor 

HECTD1     AAW65983  HECT-homology domain containing Ubiquitin 

ligase superfamily 

LGN AAN01266 Modulation of G protein activation 

Reptin CAG38538 Interacts with Tip60 and Myc transcription factors, 

contains intrinsic ATPase and helicase functions 

Rip140 NP_003480   Nuclear de-acetylase that interacts with hormone 

receptor activation domains 

TMEM123  

 

AL050161    Cell-membrane mediated cell death 

 
Table 4.2 Summary of AGR2 yeast two-hybrid Interactors 
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For example DAG1 and C4.4A were found. Both of these proteins have been 

previously shown to bind to AGR2 in the yeast two hybrid system using placenta- 

derived prey library and a library derived from a pool of four breast cancer cell lines 

[423]. The consistency of the yeast two-hybrid data regarding these two proteins is 

encouraging; however, these interactions have not been validated as yet. Another 

protein that was identified in the screen was HECTD1, which contains an aptamer 

ligand sequence with homology to PTTIYY that has been demonstrated to bind to 

AGR2 with high affinity [424]. However, AGR2 interaction with HECTD1 has not 

been fully investigated yet. When the identified proteins were grouped by their 

localisation, a number of potential binding proteins were found to be localised to 

nucleus. Previously, it was shown that a mature isoform of AGR2 is present in the 

nucleus [420]. Moreover, the AGR2 binding aptamer, when added to the cells, shifts 

AGR2 from the nucleus to cytoplasm [420, 425]. These data suggest that the nuclear 

pool of AGR2 protein may have a distinct role in cellular pathways from functions of 

the cytoplasmic pool of AGR2. Therefore, we decided to validate interactions 

between AGR2 and the nuclear proteins found in the yeast two hybrid system, that 

could potentially help us to better understand the function of the nuclear AGR2. One 

of the nuclear proteins that was identified as a potential binding partner was a 

member of AAA+ superfamily named Reptin. Similarly to AGR2, Reptin protein 

was shown to mediate oncogenic signalling mainly by its interactions with proteins 

such as Myc or Tip60. In addition, it was shown to be overexpressed in some 

cancers, such as gastrointestinal cancer or hepatocellular carcinoma (see references 

in 1.2.3 and 5.1). In order to validate AGR2 and Reptin interaction we first decided 

to compare AGR2 and Reptin protein levels in samples from breast cancer biopsies 

and adjacent normal tissue derived from the same cancer patients. We found that 

AGR2 protein was elevated in the majority of the analysed tumour tissues, relative to 

their matched normal samples (Figure 4.1 A). Interestingly, Reptin was 

overexpressed in all of the analysed cancer specimens (Figure 4.1 B). Therefore, we 

reasoned that the combined overexpression of both AGR2 and Reptin in the primary 

cancers, made interaction between these two proteins plausible enough to warrant 

further investigation.    
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Figure 4.1 AGR2 and Reptin are overexpressed in breast cancer tissue compared to normal 
adjacent tissue. Sample biopsies from tumour (T) and normal (N) tissue from the same patient were 
lysed as described in [436]. Proteins were loaded onto 12 % SDS-PAGE gel and (A) AGR2, (B) 
Reptin, (C) -actin were examined by immunoblotting using specific monoclonal antibodies. 
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4.2.2 Validation of Reptin binding to AGR2 

 

In order to validate the direct binding of a Reptin protein to AGR2, we sought 

to develop an optimised protocol for capturing endogenously and exogenously 

expressed AGR2 protein from mammalian cell lysate. To this end, we wanted to 

establish the best lysis buffer that could be used to study the AGR2 interactome. 

Ideally, the lysis buffer would enable the release of sufficient amounts of proteins, 

maintain the complexes between the proteins of interest and give the lowest 

background. Therefore, six different lysis buffers were utilised, with variables such 

as salt concentration (that ranged from 150 mM to 400 mM) or type of the detergent 

(NP-40, Triton X-100, Tween-20). Interestingly, HA-tagged Reptin was present in 

anti-AGR2 immunoprecipitates from lysates of MCF7 cells regardless of the buffer 

used (Figure 4.2 A). However, only buffer 1 and buffer 6 (see 2.8.10) produced low 

to no background binding to the “beads” and “beads+lysate” controls when 

compared to the IP lane. For this reason, we decided to use lysis buffer 6 for the 

subsequent analysis of the AGR2-Reptin complex.                                                    

To further confirm the association between Reptin and AGR2 and to show it 

could occur in other cell types, we performed co-immunoprecipitation experiments 

using lysates of H1299 cells transiently expressing HA-tagged Reptin and AGR2 and 

of A549 transfected with HA-tagged Reptin only. We were able to detect both 

transfected and endogenous Reptin in the anti-AGR2 immunoprecipitate (Figure 4.2 

B and C). Furthermore, endogenous Reptin was also present in anti-AGR2 

immunoprecipitates from lysates of untransfected A549 cells, proving AGR2-Reptin 

interaction to be physiologically relevant (Figure 4.2 D).  
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Figure 4.2 Human Reptin and AGR2 co-immunoprecipitate in human cancer cells. (A) MCF7 
cells transfected with vector control (lanes 1, 3, 4, 8) or with HA-tagged Reptin (2, 5, 6, 9) were 
subjected to lysis in buffers 1-6 as described in 2.8.10. Lysates were incubated with anti-AGR2 
polyclonal antibody and protein G beads. Beads alone, beads without antibody with the lysate or 
beads with the antibody without the lysate were used as a control. The load (lysate, lanes 1 and 2), the 
AGR2 immune precipitate (lanes 3, and 5), the unbound fraction (lanes 4 and 6) and the controls 
(lanes 7-10) were loaded onto a 12 % SDS-PAGE gel and analysed by immunoblotting using 
antibodies to HA-tag. Reptin and Ubiquitinated Reptin are highlighted. (B) Cell lysates from H1299 
cells transfected with vector control (lanes 1 and 2) or with AGR2 (lanes 3 and 4) or with both AGR2 
and HA- tagged Reptin (lanes 5 and 6) were incubated with anti- AGR2 polyclonal antibody and 
protein G beads. The AGR2 immune precipitate (IP; lanes  1, 3 and 5) and the unbound fraction (FT, 
lanes 2, 4 and 6) were loaded onto a 12 % SDS-PAGE gel and analysed by immunoblotting using 
antibodies to HA-tag and AGR2. Protein G beads, Reptin, Ubiquitinated Reptin and AGR2 are 
highlighted. (C and D) Cell lysates from (C) untransfected H1299 cells or (D) A549 cells transfected 
with vector control (lane 1) or with HA-tagged Reptin (lane 2) were incubated with anti- AGR2 
monoclonal antibody and protein G beads. The AGR2 immune precipitate was loaded onto a 12 % 
SDS-PAGE gel and analysed by immunoblotting using antibodies to Reptin and AGR2. Reptin, beads 
and AGR2 are highlighted.   
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Interestingly, combination of high salt concentration (400 mM) and NP-40 in the 

lysis buffer 6 resulted in a pool of Reptin protein, in the unbound fraction, that was 

composed of the Ubiquitin-like ladder (Figure 4.2 A). In order to ascertain whether 

the high molecular mass adducts were indeed composed of either Ubiquitin or 

Ubiquitin-like proteins, the His-tagged versions of Ubiquitin, NEDD-8 and SUMO-1 

were cotransfected into H1299 cells together with HA-tagged Reptin. Following 

purification of the in vivo His-tagged proteins, we could show that ubiquitination,    

but not neddylation or sumoylation was the prevailing modification of Reptin   

(Figure 4.3 A). As an additional control, we could detect basal ubiquitination and 

sumoylation of p53, whereas MDM2 enhanced ubiquitination or neddylation of p53 

(Figure 4.3 C and D). These latter data indicate that the low level of neddylation or 

sumoylation of Reptin is not due to inadequate integrity of the His-tagged NEDD8 

and SUMO-1 genes and highlights the specificity of ubiquitination of Reptin in this 

cell line. 
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Figure 4.3 Reptin is ubiquitinated in cells. (A and B) H1299 cells were transfected with the HA-
tagged Reptin and with either His-Ubiquitin (lane 2) or His-NEDD8 (lane 3) or His-SUMO-1 (lane 4). 
Post transfection cells were treated with 10 mM MG132 for 4 hours, (A) His-conjugates were isolated 
and the expressed Reptin was examined for changes in the amount of post translational modification 
by immunoblotting with an anti-HA-tag antibody. (B) The total amount of Reptin. (C and D) 
Evaluation of p53 UBL modification in cells. A vector expressing wild type p53 was co-transfeted 
with vectors expressing His-Ubiquitin, His-NEDD8, and His-SUMO-1 without (lanes 1-4) or with the 
co-transfection of MDM2 (lanes 5-8). (C) The expressed p53 was examined for changes in the amount 
of post-translational modification by immunoblotting with an anti-p53 antibody after the nickel 
affinity chromatography stage. (D) The total amount of p53. 
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Reptin has been previously shown to assemble with Pontin into high molecular 

complexes that have a role in chromatin remodelling, transcription, telomerase 

function (see 1.2.3). Therefore, we sought to test whether Pontin could also associate 

with AGR2. Interestingly, we could not detect Pontin in anti-AGR2 

immunoprecipates from MCF7 lysates ectopically expressing myc-tagged Pontin 

(Figure 4.4 A), suggesting that the function of AGR2 and Reptin complex may be 

independent of Pontin.  

To establish if Reptin could bind directly to AGR2, we set out to purify both Reptin 

and AGR2 from E.coli. To this end, the Reptin sequence was cloned into a GST-

tagged expression plasmid. A prescission cleavage site was incorporated, in order to 

enable the removal of GST tag when necessary. We purified sufficient amounts of 

GST-tagged Reptin as detected by Coomassie staining (Figure 4.5 A) and Western 

Blotting (Figure 4.5 B). Interestingly, two bands of similar size were consistently 

detected, which may reflect some modification of Reptin protein. In addition AGR2 

protein was purified using His-tagged expression plasmid as is evident from 

Coomassie blue stained gel and immunoblot (Figure 4.5 C and D).
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Figure 4.4 Human Pontin does not bind to AGR2 in human cancer cells. MCF7 cells transfected 
with vector control (lanes 1, 3, 4, 8) or with myc-tagged Ponin (2, 5, 6, 9) were subjected to lysis in 
buffers 6 as described in Materials and Methods. Lysates were incubated with anti-AGR2 polyclonal 
antibody and protein G beads. Beads alone, beads without antibody with the lysate or beads with the 
antbody without the lysate were used as a control. The load (lysate, lanes 1 and 2), the AGR2 immune 
precipitate (lanes 3, and 5), the unbound fraction (lanes 4 and 6) and the controls (lanes 7-10) were 
loaded onto a 12 % SDS-PAGE gel and analysed by immunoblotting using antibodies to (A) myc-tag 
and to (B) AGR2 protien. 
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Figure 4.5 Purification of Reptin and AGR2 proteins. (A and B) Purification of recombinant 
Reptin. Reptin was cloned into a vector producing protein fused to GST. In addition a precision 
protease cleavage site was incorporated. GST-Reptin was captured onto the glutathione beads and 
either GST-Reptin was eluted off the beads with the use of reduced gluthatione or Reptin was cleaved 
off the beads through incubation with the prescission enzyme. (A) Coomassie stained gel: Lane 1: 
markers; Lane 2, full-length untagged Reptin; Lane 3, GST-tagged Reptin. (B) Immunoblot of 
purified untagged Reptin. (C and D) Purification of recombinant AGR2. AGR2 protein was 
purified with the use of the nickel affinity chromatography (C) Coomassie stained gel: Lane 1: 
markers; Lane 2: His-tagged AGR2 (D) Immunoblot of purified His-tagged AGR2.  
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Following successful purification, we performed an ELISA assay to establish 

whether Reptin could bind directly to AGR2. AGR2 protein was first immobilised 

onto a microtitre plate and incubated with a titration of GST-tagged Reptin protein or 

GST only. GST-tagged Reptin bound specifically to His-tagged AGR2 protein 

(Figure 4.6 A). Similarly, when GST-tagged Reptin was immobilised onto a 

microtitre plate and incubated with His-AGR2 in mobile phase, it was found that 

His-AGR2 could bind to GST-Reptin protein (Figure 4.6 B).  
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Figure 4.6 AGR2 binds directly to Reptin. Either AGR2 (A) or Reptin (B) was immobilized on the 
solid phase and a titration of either Reptin (A) or AGR2 (B) was added in the mobile phase. The 
amount of Reptin or AGR2 bound was quantified with antibodies specific for either protein using 
chemiluminescence.  The data are plotted as the extent of protein-protein complex formation (in RLU) 
as a function of the amount of protein in the mobile phase [M]. 
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4.2.3 Reptin binds specifically to the short linear motif in AGR2 

protein.  

 
Having proved that Reptin and AGR2 interact in vivo and in vitro we sought 

to determine Reptin and AGR2 binding interface. There is an increasing number of 

studies showing that the native state of a protein is not necessarily a highly rigid 

globular structure. Many proteins contain disordered regions that in fact allow 

respective proteins to interact with specific binding partners. Therefore, we were 

interested to find out whether the AGR2 and Reptin interaction could be mediated by 

such an amino-acid stretch on the AGR2 protein. For this purpose a series of 16 

AGR2 peptides (Figure 4.7 A) composed of 15 amino acids with 5 amino acids 

overlaps and N-terminal biotin tag was used in the peptide pull down assay 

developed in the lab (see 2.8.1 and [577]). In detail, streptavidin agarose beads were 

coated with AGR2 peptides and incubated with cell lysate. We found that one 

peptide, namely peptide 10 (AEQFVLLNLVYETTD), was able to specifically pull 

down ectopically expressed Reptin protein from H1299 cells lysate (data not shown) 

as well as endogenous protein (Figure 4.7 B). Similarly, endogenous Reptin from 

MCF-7 cells was pulled down with the same peptide (data not shown). To further 

dissect AGR2-Reptin binding interface we created a peptide library that contained 

deletion variants of peptide 10 and derivatives of peptide 10 in which each amino 

acid was consecutively replaced with Alanine (Figure 4.7 C). Subsequently, we used 

the library in to find the peptides that had a reduced or enhanced binding to cellular 

Reptin. We found that mutating amino acids 104-111 to Alanine could reduce 

peptide 10-Reptin binding. Mutation of F104 and Y111 entirely abolished the 

interaction (Figure 4.7 D, lanes 4-7 and 9-11). Interestingly, when Asparagine 108 

was changed into Alanine the binding was in fact enhanced (Figure 4.7 D, lane 8). In 

addition deletion of residues A101 to Q103 or E112 to D115 did not affect peptide 

10-Reptin binding (Figure 4.7 D, lanes 1-3 and 12-15). However, the truncation of 

F104 or Y111 abolished Reptin binding (Figure 4.7 D, lanes 26-39 and 20-22). This 

data led us to identify a distinct linear motif in the loop region of AGR2 that is 

required for the interaction with Reptin protein. This minimal region sequence is 8 

amino acids long and its sequence is as follows: 104-FVLLNLVY-111. AGR2 
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belongs to AGR2 gene family that is composed of Erp18 and AGR2 paralog AGR3. 

Since these three proteins have high sequence similarities, we could model the AGR2 

sequence into the crystal structure of Erp18 [578] (Figure 4.7 E). Interestingly, we 

found that peptide 10 maps to the previously discovered loop insertion present in the 

AGR2 gene family and proposed to be important for substrate interactions          

[578, 579]. Therefore, it was plausible, that this 8 amino acids stretch from AGR2 

may define specificity in AGR2 interactions with its potential binding partners. 

Hence, we sought to determine if the AGR3 peptide that locates to this loop insertion 

could bind to Reptin. Interestingly, it appeared that peptide 10-Reptin interaction was 

very specific for AGR2, since the corresponding peptide from AGR3 did not bind to 

Reptin (Figure 4.7 D, lane 37).  We then compared sequence of the AGR3 loop 

peptide (QNKFIMLNLMHETTD) to that of AGR2 (AEQFVLLNLVYETTD) 

(Figure 4.7 E, ii) and mutated amino acids outside and in the minimal region 

sequence of the AGR3 peptide to investigate if any of the introduced changes could 

restore AGR3 peptide binding to Reptin. When Lysine residue (outside 8 amino-acid 

motif) in AGR3 peptide was mutated to the corresponding AGR2 Glutamate residue, 

it still could not bind to Reptin (Figure 4.7 D, lane 38). However, introducing the 

Histidine to Tyrosine mutation (inside 8 amino acids motif) in AGR3 peptide 

restored its binding to Reptin (Figure 4.7 D, lane 39). 



 160

 
 



 161

 



 162

Figure 4.7 Reptin protein binds specifically to a short linear motif within AGR2 protein 
sequence. (A) A list of AGR2 overlapping peptides, (B) Biotinylated peptides (as in A) were coupled 
to streptavidin beads and incubated with human cell lysate expressing Reptin. The amount of Reptin 
bound was evaluated by immunoblotting using Reptin-specific antibody; [IN] is an input fraction and 
the numbers 1-16 represent the peptides sequences in part A. (C and D) Identification of key 
residues that stabilize the AGR2 peptide-Reptin complex. (C) Peptides 1-36 represent 
modifications in “peptide 10”, peptides 37-40 represent the divergent loop in the AGR2 orthologue 
AGR3 (peptide 37 is the AGR3 sequence and 38-40 mutations in this sequence), (D) Biotinylated 
peptides (as in C) were coupled to streptavidin beads and incubated with human cell lysate expressing 
Reptin. The amount of Reptin bound was evaluated by immunoblotting using Reptin-specific 
antibody; [IN] is an input fraction and the numbers 1-40 represent the peptides sequences in part C. 
The amount of Reptin bound was evaluated by immunoblotting using Reptin-specific antibody; the 
bound fractions (lanes 1-41), [IN] input fraction (lane 42); (E) [i] Homology model of the position of 
the divergent peptide loop from AGR2 that has the Reptin binding site based on the structure of the 
AGR2 orthologue Erp18; PDB code: 2K8V. [ii] Sequences in the divergent loop between AGR2, 
AGR3, and ERP18 proteins highlighted in red. 
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Subsequently, we wanted to establish the ability of purified GST-tagged Reptin to 

bind to AGR2 peptides in an ELISA. Unfortunately, we observed a relatively high 

background values in the ELISA. In addition, peptide 10 binding to Reptin was 

almost negligible (Figure 4.8 A). Surprisingly, we found that Reptin bound to peptide 

4 the strongest in this set up (Figure 4.8 A). Recently, there has been a report 

showing that yeast Rvb1/Rvb2 purified proteins that contain a Histidine tag, can 

form different structures compare to untagged constructs [580]. Therefore, we 

decided to compare GST-Reptin and AGR2 peptides binding to this of untagged 

protein expressed in E.coli or Sf9 insect cells. Interestingly we found that only 

eukaryotically expressed protein could specifically bind to peptide 10 as well as 

peptide 11, the latter shares part of the sequence with peptide 10 (Figure 4.8 B). This 

shows, that Reptin protein has a dynamic nature, and different pools of Reptin, for 

example with respect to their oligomeric stage, or post translational modifications, 

show different binding affinity to AGR2 peptide. 

Next, we set out to investigate if any of the AGR2 peptides that bind to 

Reptin could disrupt the AGR2-Reptin complex. To this end His-tagged AGR2 was 

immobilised on the plate and a fixed amount of GST-tagged Reptin protein 

preincubated with a titration of AGR2 peptides was added. Intriguingly, peptide 10 

diminished formation of the AGR2-Reptin complex, with the Kd of about 60 M, 

despite the fact that GST-Reptin could not bind to this peptide in an ELISA format. 

Surprisingly, peptide 4 induced AGR2-Reptin binding, indicating that this region on 

AGR2 may allosterically modulate Reptin protein. None of the other peptides or 

DMSO caused any significant changes in the AGR2-Reptin binding (Figure 4.8 C). 

Therefore, we concluded that Reptin specifically binds to peptide 10 and peptide 4.  
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Figure 4.8 Differential binding of recombinant Reptin protein to AGR2 overlapping peptides. 
(A and B) A fixed amount of the indicated biotinylated peptides (as in 4.7 A) was added to a 
microtitre plate coated with streptavidin and incubated with recombinant (A) GST-tagged Reptin, (B) 
untagged Reptin expressed in either prokaryptic or eukaryotic cells. The amount of Reptin bound was 
quantified with antibodies specific for Reptin using chemiluminescence. The data are plotted as the 
extent of protein-peptide complex formation [RLU] (C) Reptin protein was preincubated with a 
titration of peptide 4 and peptide 10, and added to immobilised AGR2 protein. The amount of Reptin 
bound to the full length AGR2 was quantified with antibodies specific for Reptin using 
chemiluminescence. The data are plotted as the extent of protein-protein complex formation [RLU]. 
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Having defined the critical residues for the AGR2-Reptin interaction, namely F104 

and Y111, we generated mutant proteins where respective residues were replaced by 

Alanine. Subsequently, we performed an ELISA assay to establish how replacing 

these two residues would affect full length protein binding. Initially, we wanted to 

establish whether the wild type and mutant AGR2 protein were recognised by the 

AGR2-specific antibody to the same extent. Specifically, it was important to rule out 

the possibility that the apparent differences in the affinity of wild type and mutant 

AGR2 protein to Reptin were caused by alterations in epitopes recognised by 

antibodies used in this assay. To this end, anti-His or anti-AGR2 monoclonal 

antibodies, or anti-AGR2 polyclonal antibodies were immobilised on the plate and 

incubated with the titration of either wild type His-tagged AGR2 or His-tagged 

AGR2 F104A, or His-tagged AGR2 Y111A proteins. This was followed by the 

incubation with the anti-AGR2 polyclonal antibody or anti-His monoclonal antibody. 

Interestingly, only when the AGR2 proteins were bound to monoclonal antibodies on 

the plate, we observed the comparable signal to noise ratio for the corresponding 

amounts of the His- tagged AGR2 proteins used (Figure 4.9 A and C). Therefore, we 

decided to use monoclonal antibodies for the subsequent experiments.  
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Figure 4.9 Quantification of AGR2 loop mutant proteins and wild type AGR2 protein.  
Monoclonal antibodies against (A) His tag, (C) AGR2 or (B) polyclonal antibody against AGR2 were 
coated onto a microtitre plate and incubated with a titration of wild type AGR2, AGR2 Y111A and 
AGR2 F104A mutant proteins. The amount of AGR2 protein captured was quantified with polyclonal 
(A and C) antibody against AGR2 or (B) monoclonal antibody against His tag. The data are plotted as 
the amount of AGR2 protein detected with the respective antibodies [RLU] as a function of the 
amount of the protein in the mobile phase [M]. 
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Firstly, sandwich ELISA was performed, wherein anti-Reptin antibody was 

immobilised on the plate and then incubated with the Reptin protein, followed by the 

incubation with wild type or mutant His-tagged AGR2 proteins (Figure 4.10 A). 

Both mutations affected the extent of binding to Reptin protein. Specifically, 

mutation in Y111A residue caused reduced binding to Reptin, whereas F104A 

mutation completely abolished AGR2-Reptin interaction. Surprisingly, when we 

performed an ELISA, wherein Reptin protein was immobilised directly onto a 

microtitre well, we found that the AGR2 F104A showed only slightly reduced 

binding, whereas Reptin Y111A showed almost complete loss of binding to Reptin 

protein (Figure 4.10 B). It may be that depending on the approach used to immobilise 

Reptin protein onto the plate, its conformation changes and this has an impact on its 

tolerance towards changes in the loop region of AGR2 protein. This hypothesis was 

further supported by the observation made, when wild type or mutant His-tagged 

AGR2 proteins were immobilised on the plate and Reptin titrated in the mobile phase 

(Figure 4.10 C). Specifically, Reptin could not bind to His-tagged AGR2 F104A, 

however when variants of AGR2 proteins were captured by the monoclonal 

antibody, both AGR2 F104A and AGR2 Y111A could bind to Reptin protein with to 

a similar extent as the wild type AGR2 (Figure 4.10 D). 
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Figure 4.10 Mutations in the AGR2 loop destabilise the Reptin-AGR2 complex. (A and D) 
Polyclonal antibodies against (A) Reptin protein or monoclonal antibodies (D) against AGR2 protein 
were coated onto a microtitre plate and incubated with a titration of wild type AGR2, AGR2 Y111A, 
AGR2 F104A mutant proteins or Reptin protein, respectively. The amount of (A) wild type or mutant 
AGR2 or (D) Reptin bound was quantified with antibodies specific for either protein using 
chemiluminescence. The data are plotted as the extent of protein-protein complex formation [RLU] as 
a function of the amount of the protein in the mobile phase [M]. (B and C) (B) Reptin protein or (C) 
wild type or mutant AGR2 protein were immobilised onto a microtitre plate and incubated with a 
titration of wild type AGR2, AGR2 Y111A, AGR2 F104A mutant proteins or Reptin protein, 
respectively. The amount of (B) wild type or mutant AGR2 or (C) Reptin bound was quantified with 
antibodies specific for either protein using chemiluminescence. The data are plotted as the extent of 
protein-protein complex formation [RLU] as a function of the amount of the protein in the mobile 
phase [M]. 
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4.2.4 Mutations in ATP binding motifs of Reptin alters its AGR2- 

binding activity. 

 

Having shown a direct binding between AGR2 and Reptin proteins, we 

attempted to establish whether or not the presence of ATP has any effect on this 

interaction. We did this, because Reptin is a member of AAA+ proteins superfamily 

and has two conserved regions, namely Walker A and B, involved in ATP binding 

and hydrolysis. To test the effect of ATP addition on AGR2-Reptin complex 

formation, AGR2 was first captured onto a microtitre well and the titration of      

GST-Reptin protein that had been pre-incubated with ATP and MgCl2 was added. 

Interestingly, inclusion of ATP could increase the stability of AGR2-Reptin complex 

by up to threefold (Figure 4.11 A). Next, we immobilised Reptin protein and added 

increasing amount of AGR2 protein in the presence or absence of ATP. Again, we 

observed an increase in the extent of AGR2-Reptin complex formation in the 

presence of ATP (Figure 4.11 B). However, the change was less pronounced. This 

indicates that in the presence of the ligand, Reptin undergoes some conformational 

changes that can be either compromised or are not possible when it is adsorbed onto 

the polystyrene plate. In addition, conformation of both AGR2 and Reptin proteins 

may be affected by adsorption onto the solid phase.  

As mentioned before, the characteristics of AGR2-Reptin and AGR2 peptides-Reptin 

interaction can alter depending on the presence of tag or source of the protein. 

Therefore, we decided to determine whether or not these variables could also affect 

the impact the presence of ATP exerts on AGR2-Reptin complex. Surprisingly, when 

AGR2 was captured onto a microtitre well and the titration of untagged prokaryotic 

Reptin protein or eukaryotic Reptin protein that had been pre-incubated with ATP 

and MgCl2 was added, we could observe a decrease rather than the increase in the 

stability of AGR2-Reptin complex (Figure 4.11 C and D). In addition, we 

immobilised AGR2 peptides and monitored Reptin’s binding in the presence or 

absence of ATP. As before, in the absence of nucleotide, prokaryotically expressed 

Reptin showed unspecific peptide binding activity in an ELISA assay (Figure 4.11 

E). However, addition of ATP could decrease the extent of the interaction, as it did in 

case of full length proteins binding. Contrary to that, we observed increased binding 
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of eukaryotic Reptin to AGR2 peptides upon inclusion of ATP. Importantly, Reptin 

(1) can hydrolyse ATP to ADP (chapter 5), (2) binds ADP (chapter 5) and (3) the 

crystal structures of Pontin and Reptin complex were solved in the presence of ADP 

[581]. As such, we monitored Reptin’s binding to AGR2 peptides in the presence of 

ADP. Interestingly, increased binding of eukaryotically expressed Reptin to AGR2 

peptides was observed in the presence of ADP compare to the presence of ATP 

(Figure 4.11 F). 
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Figure 4.11 ATP modulates AGR2-Reptin complex formation.  Either (A and C) AGR2 or (B) 
bacterially expressed GST-Reptin or (D) untagged bacterially expressed Reptin were immobilized on 
the solid phase and a titration of either (A) bacterially expressed GST-Reptin or (C) untagged 
bacterially expressed Reptin or (B and D) AGR2 pre-incubated with or without ATP and MgCl2 was 
added in the mobile phase. The amount of Reptin or AGR2 bound was quantified with antibodies 
specific for either protein using chemiluminescence.  The data are plotted as the extent of protein-
protein complex formation [RLU] as a function of the amount of protein in the mobile phase [M]. (E 
and F) A fixed amount of the indicated biotinylated peptides (as in 4.7 A) was added to a microtitre 
plate coated with streptavidin and incubated with recombinant untagged Reptin expressed in (E) 
E.coli or (F) insect cells. The amount of Reptin bound was quantified with antibodies specific for 
Reptin using chemiluminescence. The data are plotted as the extent of protein-peptide complex 
formation [RLU].  
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The apparent significance of ATP in the stability of AGR2-Reptin binding led us to 

investigate the importance of Reptin’s nucleotide binding sites in the formation of 

AGR2-Reptin complex. Therefore, we focused on characterising its two highly 

conserved AAA domains, namely Walker A and Walker B (Figure 4.12 A). Walker 

A, also known as the P-loop NTP-binding motif and Walker B (the DEAD motif) are 

important for nucleotide binding and hydrolysis, respectively. Firstly, we introduced 

single point mutation in the Walker A and B motifs of Reptin, K83A and D299N. 

Subsequently, we compared the stability of the complex formation between AGR2 

protein and wild type Reptin or Reptin ATP binding site mutants. When AGR2 

protein was captured onto the microtitre plate and incubated with the titration of wild 

type Reptin or Reptin K83A mutant, in the presence or absence of ATP, the latter 

showed greatly reduced binding to AGR2 (Figure 4.12 B). Interestingly, Walker B 

mutant had similar to wild type Reptin (possibly enhanced) activity with respect to 

the AGR2 binding (Figure 4.12 C). We further examined the importance of Walker 

A and B sites by generating a double mutant, Reptin K83A D299N. Surprisingly, the 

double mutant showed significant decrease in the ability to bind to AGR2 when 

compared to the Walker B only mutant activity (Figure 4.12 C). This indicates that 

the K83A mutation is dominant over the D299N mutation, with respect to AGR2 

binding.   
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Figure 4.12 Mutations in ATP-binding site in Reptin affect AGR2-Reptin complex formation 
(A) (i) The key functional domains of Reptin and its orthologue Pontin are shown including the 
Walker A and Walker B ATP-binding motifs and the “Sensor” motifs. (ii) Diagram of the structure of 
human Pontin with the Walker A and B ATP-binding sites highlighted in blue and red; PDB code: 
Pontin: 2C9O. (B) The effects of the Walker A site mutation on the formation of Reptin-AGR2 
protein complex. AGR2 protein was immobilised onto the microtitre plate and a titration of either 
wild type or Reptin K83A proteins pre-incubated with or without ATP and MgCl2 were added. The 
amount of AGR2 bound was quantified with antibodies specific for either protein using 
chemiluminescence.  The data are plotted as the extent of protein-protein complex formation [RLU] as 
a function of the amount of protein in the mobile phase [M]. (C) The effects of the Walker B site 
mutation and WalkerA/B double mutation on the formation of Reptin-AGR2 protein complex. 
AGR2 protein was immobilised onto the microtitre plate and a titration of either Reptin D299N or 
Reptin K83A D299N proteins pre-incubated with or without ATP and MgCl2 was added. The amount 
of AGR2 bound was quantified with antibodies specific for either protein using chemiluminescence.  
The data are plotted as the extent of protein-protein complex formation [RLU] as a function of the 
amount of protein in the mobile phase [M]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 178

4.3 Discussion 

 

Despite the growing amount of data regarding AGR2, we are currently not 

able to embed it in any particular pathway. Moreover, the mechanism of regulation 

of this protein is vaguely understood. We reasoned that, expanding on the AGR2 

interactome and placing “AGR2 node” in the intricate network of cellular 

interactions could help to unravel its functions in normal and tumour tissues. There 

are several experimental approaches to identify novel interacting partners. One of the 

conventional methods used to identify binary interactions is yeast two-hybrid system. 

It is worth noting, that there are many limitations of this system that result in a 

number of existing interactions not being detected. For example, proteins of the 

secretory compartments or integral membrane proteins often do not interact in the 

environment of the yeast nucleus. In addition, detecting the binding events that are 

dependent on post-translational modifications not available in yeast may not be 

possible [582]. However, the two-hybrid system enables identification of weak or 

transient protein-protein interactions and since the assay is performed in vivo, it is 

more likely to reveal genuine interactions. As such, we decided to employ this 

method to investigate the interactome of AGR2. Interestingly, we found that some of 

the identified proteins have been previously detected in other screens, which had 

aimed to find AGR2 binding partners. For example, C4.4A and DAG1 were 

previously identified as potential binding partners for both AGR2 and AGR3 [423]. 

However, these interactions have not been validated and would require an 

extracellular localization of AGR2, the latter being controversial, since we could not 

detect a secreted or transmembrane form of AGR2. In addition E3 ubiquitin- protein 

ligase HECTD1 was identified in the screen, but we have not investigated this 

interaction yet neither in human cell systems nor in vitro. We decided to examine the 

interaction between AGR2 and Reptin in more detail for a number of reasons. Firstly, 

similar to AGR2, Reptin is overexpressed in various cancers. For example, it was 

shown to be overproduced in hepatocellular carcinoma [583-587]. Moreover data 

mining using Oncomine, a cancer microarray database, revealed an increased 

expression of Reptin in gastric [588], bladder [589, 590] and other somatic cancers as 

well as in Burkitt lymphoma [591]. Secondly, we were encouraged to validate Reptin 
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and AGR2 interaction, as both these proteins can localise to the nucleus. Specifically, 

Reptin has a number of nuclear functions, such as DNA repair, replication or 

transcriptional regulation and we have published the results showing that AGR2 can 

also localize to nucleus [420]. It is worth noting, that localization of both proteins 

can be shifted to different compartments of the cell. For example, an aptamer that 

can interact with AGR2 with high affinity can cause AGR2 to re-localise from the 

nucleus to the cytoplasmic fraction. Xie et al. showed that Reptin shifted from the 

nucleus to cytoplasm during the differentiation of 3T3-L1 cells to adipocytes [592]. 

Therefore, we decided to investigate the AGR2 and Reptin interaction in more detail 

and indeed using a combination of an in vitro experiments and cell-based assays, we 

were able to validate Reptin as an AGR2 protein binding partner (Figure 4.2, Figure 

4.4, Figure 4.6, Figure 4.7). Interestingly, despite the fact that Reptin and Pontin are 

often found together in large molecular complexes, involved in chromatin 

remodelling and transcription, and form mixed oligomers, we did not detect Pontin in 

AGR2 immune complex under the conditions used in this study (Figure 4.4). One of 

the more recent realizations in the field of protein science is that only a fraction of 

the protein sequence information is associated with a globular conformation. The 

remaining parts of the protein sequence remain functional despite being completely 

disordered or containing long unstructured segments [141]. Often these non-globular 

regions contain short peptide sequences, namely short linear motifs that are involved 

in mediating protein-protein interactions, cell compartmentalization or post-

translational modifications. As mentioned above, these sites are short, generally up to 

10 residues in length and this allows a great evolutionary plasticity [571]. One of the 

key differences between linear motifs and globular domains is the binding affinity. 

Contrary to domains, which tend to form high affinity interactions, mini-motifs bind 

with much lower affinities [593]. Such a property is ideal for signalling networks and 

other transient interactions. For example linear motifs play an important role in hub 

proteins, where transiency and flexibility are essential. The p53 protein provides a 

good example of the hub protein that contains numerous short linear motifs that 

interact with different proteins. For example only three amino acids of p53 sequence, 

F19, W23, L26 are essential for the p53-MDM2 interaction and are inserted into a 

hydrophobic pocket of MDM2 [145]. Short linear motifs are difficult to identify just 
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by applying the sequence comparison procedures that have been successfully used in 

the past to discover domains [571]. However, there are resources available that can 

predict presence of a known motif in a protein of interest. For example, one of the 

expanding bioinformatic resources for finding peptide motifs is ELM [594]. When 

used for predicting presence of short linear motifs in AGR2, ELM retrieved several 

motifs, such as ER retention signal peptide: KTEL. Interestingly, when we used a 

library of AGR2 overlapping peptides to test whether there are any linear segments 

that can mediate AGR2-Reptin interaction, we found that peptide 10 could 

specifically bind to Reptin protein (Figure 4.7). A linear domain was localised by 

mutagenesis to residues 104-111 of AGR2.  Surprisingly, ANCHOR, a server that 

combines prediction of disorder and binding regions [595], predicted that residues 

within this region could form protein binding sites. Interestingly, the solution of the 

structure of ERp18, a member of the ERp18/AGR2/AGR3 family of proteins, 

revealed a loop insertion, that is only present in ERp18, AGR2 and AGR3 and makes 

these proteins quite unique amongst other members of the thioredoxin fold proteins 

[578]. Notably, amino acids 104-111 are present in this divergent loop. The fact that 

the insert loop is unique for the ERp18/AGR2/AGR3 family led to speculations that 

this motif could be involved in direct interaction with substrates and mediating 

substrate specificity [579]. Indeed, insert loop from AGR3 could not bind to Reptin, 

but following H111 to Y111 mutation, this peptide acquired Reptin binding potential.  

In addition peptide 4 from the AGR2 sequence was found to bind to Reptin protein 

and it could stimulate interaction between the full length proteins (Figure 4.8). It is 

worth noting, that contrary to the insert loop region; this region is identical in both 

AGR2 and AGR3. It appears that this region alone is sufficient for AGR2 and Reptin 

binding at least in an in vitro experiment. However, if this is true, it would be 

interesting to investigate whether or not AGR3 can bind to Reptin in vivo. It is 

possible that even if peptide 4 region is sufficient for binding, the AGR3 cellular 

localization may eliminate a possibility of the interaction with Reptin. Indeed, we 

observed differences in subcellular localization of AGR2 and AGR3, the latter being 

more mitochondrial and in the plasma membrane [420].  

Interestingly, the aforementioned ELM search for the presence of the known motifs 

in the AGR2 sequence revealed that residues 98-112 contain a Leucine-rich nuclear 
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export signal (NES) binding to Karyopherin receptor 1 (CRM1)/exportin protein. As 

the name indicates, this motif regulates export of the protein out of the nucleus via 

nuclear pores [596-598]. The coexistence of overlapping linear motifs within the 

same region is not unusual. For example the C-terminal portion of p53 is predicted to 

contain multiple minimotifs that can be specifically bound by different proteins (see 

1.2.1.3). As these motifs overlap, the interactions they mediate are exclusive, which 

allows p53 to switch its interactome depending on the cellular context. We could 

speculate that when Reptin binds to this region on AGR2 it prevents its interaction 

with CRM1 and subsequently its nuclear export. Additionally, we have previously 

reported that AGR2 can inhibit p53 transcriptional activity [437] and possibly via 

interaction with Reptin, AGR2 escapes cellular nucleus to cytoplasm shuttle system 

and therefore is able to modulate p53 activity in the nucleus.  

Another important implication for the AGR2 and Reptin interaction comes from a 

study performed by us, in which an aptamer sequence specifically binding to AGR2 

was described. The search for the proteins that contain this motif and could 

potentially interact with AGR2 revealed SMG-7 protein and the interaction was 

validated in vitro (unpublished data). SMG proteins function in the nonsense-

mediated mRNA decay (NMD) pathway. NMD pathway recognises and ensures 

degradation of mRNA that contains premature translation-termination codons and 

evolved to ensure that only error-free mRNAs are translated [599]. This mechanism 

involves formation of the multi protein surveillance complex composed of the up-

frameshift (UPF) 1-3 proteins and NMD effectors, namely SMG1, SMG5-7. In this 

complex, SMG1 phosphorylates UPF1, which leads to recruitment of SMG5-7 and 

results in the decay of bound mRNA. In addition, SMG5-7 mediate 

dephosphorylation of UPF1, which facilitates recycling of NMD effectors. 

Interestingly, recently Reptin and Pontin protein were found to associate with SMG1 

protein and NMD transacting factors, and siRNA-mediated knock-down of these 

proteins impaired UPF1 phoshporylation and NMD [390]. The AGR2-SMG7 

function in NMD has not been studied yet. We could speculate that AGR2 and 

Reptin complex have a role in the NMD pathway. As SMG1-mediated 

phosphorylation precedes SMG-7 binding to the surveillance complex, it is possible 

that Reptin protein bound to SMG-1 brings AGR2 to the complex. The presence of 
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AGR2 in this complex may poison Reptin in an inactive conformation or 

alternatively AGR2 may be required for the Reptin/Pontin mediated formation of the 

NMD assembly.   

In this report we also found, that AGR2 binding to Reptin is modulated by 

ATP and mutations in ATP binding motifs of Reptin affected the interaction between 

these proteins. Interestingly, there are other examples of ATP binding proteins with 

interactome changes as a result of alterations in their functional motifs. For example, 

substitutions of crucial amino acids in the Walker B motif of Rad51, impairs the 

formation of Rad51D-XRCC2 and Rad51D-Rad51C complexes [600]. Contrary to 

AGR2-Reptin complex, Rad51D protein complexes do not require an intact Walker 

A motif. The crystal structure of Reptin protein has not been solved yet and there is 

no information about conformational dynamics and structure-function properties of 

Reptin. As such, it is difficult to establish whether the loss of binding observed as a 

consequence of Walker A mutation is caused by the mutation-induced changes in 

conformation, oligomerization or peptide 10/4-binding pocket of Reptin.  

Interestingly, Reptin protein is required in the human TIP60 complex. TIP60 has a 

well-described role in transcription through acetylation of histones, but also other 

proteins such as the androgen receptor or p53 [230, 231, 360, 361]. Acetylation of 

K120 of p53 directs it to the promoters of proapoptotic target genes [230, 231]. In 

addition TIP60 binds to methylated p53 and this is required for subsequent 

acetylation of p53 and p53-induced cell cycle arrest in response to DNA damage 

[601]. Given AGR2 inhibitory role in p53-dependent response to DNA damage, it 

would be interesting to investigate whether AGR2-p53 and TIP60 pathways 

converge by the Reptin-AGR2 interaction. Intriguingly, TIP60 was found in complex 

with Pontin and induced expression of anti-metastatic KAI-1 [602]. In this context 

Reptin antagonised TIP60 function and together with -catenin acted as a repressor 

of KAI-1 [367]. It would be interesting to explore whether prometastatic AGR2 uses 

its substrate-binding loop to differentially chaperone, or inhibit, Reptin 

transcriptional activity depending on the cellular context of the interaction. 

Interestingly, there are examples of Reptin interacting proteins that were found to 

modulate its activity. Tumour suppressor Hint1 was reported to enhance Reptin-

induced repression [377]. Contrary to that, endosomal proteins APPL1 and APPL2 
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could reduce the association between Reptin and HDACs and between Reptin and            

-catenin, and thus relieve Reptin-mediated repression [378]. Reptin protein was 

found to be sumoylated on lysine 456 and sumoylation was found to precede its 

transport to nucleus and be essential for KAI1 repression. Interestingly, SUMO-

modified Reptin appeared not to interact with AGR2 protein. Additionally, 

two SUMO-processing enzymes: SUMO-sentrin-specific protease 1 (SENP1) and 

SUMO1-specific proteases 1 (SUSP1) were found to interact with Reptin [376]. 

Interestingly, we found that Reptin protein was predominantly ubiquitinated rather 

than sumoylated. It might reflect a cell-specific difference in the type of ubiquitin-

like modification that is catalyzed on Reptin.  

We have yet to unravel whether AGR2 protein has a role in Reptin-mediated 

transcriptional events and whether, for instance, it switches Reptin into inactive or 

activated transcriptional states. Further, we would like to explore whether the 

allosteric ATP binding motifs of Reptin regulate AGR2 function as a prometastatic 

factor in cancer. The sets of AGR2 and Reptin mutants that were generated will be 

useful for such cellular/in vivo assays. In addition, as both Reptin and AGR2 can be 

thought of as potential anticancer drug targets due to their prometastatic functions, 

biochemical screening assays that utilize the substrate-binding loop of AGR2 or ATP 

binding motifs of Reptin might be useful in the development of small molecules that 

regulate this protein-protein complex in vivo. 

In summary, we report on the first well-validated protein–protein interaction 

for the pro-oncogenic protein AGR2. Reptin was identified as an AGR2 binding 

protein in a yeast two-hybrid screen and validated as an AGR2 binding protein 

in human cells. In the next chapter, detailed biochemical characterization of Reptin is 

described. We report on Reptin’s ATP binding acitivity, ATPase activity and its 

oligomerization. We compare the wild type Reptin and Walker A and Walker B 

mutant Reptin proteins and speculate on the role of the Reptin’s functional motifs in 

AGR2-Reptin protein complex formation as well as in modulating other              

Reptin- related processes. 
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CHAPTER 5 Biochemical characterisation of Reptin 

protein 

 

5.1 Introduction 

 

5.1.1 The AAA+ superfamily 

 

A wide diversity of cellular events depends on the presence of complex 

assemblies of various proteins. Activity of these so called molecular machines 

depends on the coordinated work of the single components that enables their efficient 

assembly as well as the enzymatic and modulatory functions. A broad range of these 

supramolecular complexes comprises proteins belonging to the family of ATPases 

associated with various cellular activities (the AAA+ family). As the name indicates, 

this family of proteins performs a myriad of functions and is often referred to as a 

novel class of chaperones, as it assists in processes such as protein folding and 

degradation, aggregate disassembly, maintenance of organelle function, transcription, 

replication, recombination and cellular transport.  

The AAA+ superfamily belongs to a large family of P-loop-type nucleoside 

triphosphate (NTP)-binding proteins [603]. Members of this family bind nucleoside 

triphosphates, catalyse hydrolysis of the - phosphate bond and use the energy of 

this reaction to drive different cellular processes. Phylogentic analyses of P-loop 

NTPases revealed presence of two conserved sequence motifs, commonly called 

Walker A and B motifs, which bind phosphate moieties of the NTP and a Mg+2 

cation [603-605]. One of the divisions of the P-loop NTPases, additional strand 

conserved E family (ASCE), is characterised by an additional -strand in the core 

sheet and located between Walker A and Walker B motifs; and the presence of 

additional conserved catalytic Glutamate in the Walker B motif [606]. The AAA+ 

superfamily is confined to ASCE division, and in addition to the common sequence 

and structural arrangements of the ASCE group, it contains a number of unique 

characteristics [607, 608]. 
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5.1.2 Structural elements of the AAA+ family 

 

All the members of AAA+ superfamily are characterised by the presence of 

single or multiple regions of 200-250 amino acids, named “AAA+ module”. On the 

basis of the available crystal structures, the module is believed to be made up of two 

domains: N-terminal  Rossman fold and nucleotide binding pocket and a             

C-terminal -helical domain [609]. The N-terminal fold consists of the 5-1-5-3-2 

sheet flanked on one side by two and on the other side by 3 helices.  

The Walker A motif forms a highly conserved loop (the P-loop) between strand 1 

and helix 2 and typically assumes the following sequence: GX2GXGK[S/T] (where 

X is any amino acid). Typically the first two Glycines of the Walker A motif are 

preceded by a Proline residue [603]. The conserved Lysine forms ionic interaction 

with the  and  phosphate oxygens of ATP, whereas the conserved Threonine 

provides a metal ligand. The Lysine residue within the motif’s sequence is crucial as 

its mutation usually abolishes nucleotide binding [610, 611].  

The Walker B motif localises to strand 3 and typically assumes the form hhhhDE 

(where h represents a hydrophobic amino acid) with the acidic residues being 

important for ATP hydrolysis and metal coordination [605, 612]. Specifically, the 

carboxylate side chains of Aspartate and Glutamate project into the active site and 

are involved in the magnesium coordination sphere and form the catalytic base, 

respectively [609]. Mutation of the conserved glutamate blocks ATP hydrolysis and 

traps the substrate in the protein [610, 613].  In addition to Walker A and Walker B 

motifs, AAA+ superfamily contains additional insertions which are significant for 

their function. There is also the second region of homology (SRH) comprising 

Sensor 1/motif C and Arginine fingers in the C-terminal position of where Walker B 

motif is [607]. Sensor-1 is contained within strand 5 and is characterised by the 

presence of a conserved polar residue, Asparagine, Serine, Threonine or Histidine. 

Spatially, it is located between the Walker A and Walker B motifs, and forms polar 

contacts with the -phosphate of bound ATP and elements of the Walker B motif.        

It is proposed to have a role in ATP hydrolysis via either sensing the bound 

nucleotide or helping to orientate a water molecule for a nucleophilic attack of the 

bound nucleotide [614, 615]. The Arginine fingers are located at the loop between 
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5 and 5. Typically members of AAA+ family form hexameric rings. This unique 

arrangement positions Arginine fingers close to the nucleotide bound to the 

neighbouring protomer and, together with other structural components discussed 

above, constitute an essential part of the ATP binding pocket. The Arginine fingers 

are proposed to translate an ATP hydrolysis event into the conformation changes in 

the adjacent subunit of the oligomer [615]. A conserved Arginine lying in the third 

helix of the C domain is referred to as a Sensor-2 and is likely to mediate the 

movement of the C-domain relative to N-domain during nucleotide hydrolysis      

[608, 609, 616]. Lastly AAA+ superfamily members have Box motifs, such as Box 

II, which is believed to have role in adenine recognition or Box VII that is involved 

in nucleotide interaction and intersubunit communication.  

 

5.1.3 ATP hydrolysis 

 

AAA+ proteins use the energy released by ATP hydrolysis to perform their 

diverse functions. There are two possible mechanisms of ATP hydrolysis. 

Classically, an associative mechanism is assumed and it requires elements of the 

ATP-binding pocket discussed above. It is believed to involve the nucleophilic attack 

of an activated water molecule at the γ-phosphorus of the ATP. This leads to the 

formation of a negatively charged transition-state, which is stabilised by the 

magnesium ion and by neighbouring positively charged groups, and hydrogen bond 

donors. However, the alternative mechanism, namely dissociative mechanism, is 

possible [617]. In this case, the catalytic base does not activate an attacking water 

molecule; however the presence of a Glutamate residue in the Walker B motif is 

required to orientate this water molecule into the appropriate position.  

A number of models exist for the nucleotide binding and ATP hydrolysis by 

hexameric AAA+ ATPases are referred to as concerted or synchronised, and 

nonconcerted, the latter comprising rotational model and its derivative, sequential 

model [609]. In the concerted model, all subunits can bind and hydrolyze ATP and 

release the product simultaneously, and hence the symmetry is preserved. In the 

nonconcerted model not all the subunits are active; at least not all at the same time. 

The rotational model proposes that only three subunits are active and are always at 
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some stage of the reaction cycle. The sequential model predicts the all the subunits 

are active, but bind and hydrolyze ATP at different times [609]. 

The evolutionary classification of AAA+ ATPases by Iyer et al. led to formal 

definition of 26 AAA+ proteins families, amongst them TIP49 family [607]. The 

unique structural features of this family are the presence of a small N-terminal 

module and a new domain insertion, which separates Walker A and B motifs by 

about 170 amino acids [618]. This family comprises Reptin and Pontin in Eukaryotes 

and has the Archeal representative, namely RuvB, which is involved in branch 

migration in Holiday junctions [619-621].   

 

5.1.4 Reptin and Pontin- ATP binding and ATPase activity 

 

Despite the fact that for the several members of the AAA+ family the nature 

of ATP binding, as well as the mechanism of the ATP hydrolysis, are well described, 

the data available on the enzymatic activity of Reptin and Pontin are somewhat 

vague and often contradictory.  

Some studies were not able to detect an intrinsic ATPase activity for these proteins. 

For example, Pontin expressed in baculovirus system by Qiu et al. did not catalyze 

ATP hydrolysis even in the presence of the DNA substrate [622]. Similarly,            

His-tagged Pontin purified using bacterial expression system had a very low ATPase 

activity that was not stimulated by addition of nucleic acids [623]. On the other hand, 

ATP hydrolysis by zebrafish Flag-tagged Reptin produced in insect Sf9 cells 

depended entirely on the presence of double stranded DNA [624]. Furthermore, rat 

His-tagged Pontin expressed in E.coli had a weak ATPase activity that could be 

strongly stimulated in the presence of single stranded DNA [625]. In addition, the 

same group described human Reptin protein as a single stranded DNA-stimulated 

ATPase [368]. Both reports ruled out stimulation by double stranded DNA. In 

another study both human and yeast Reptin were found to have an intrinsic ATPase 

activity [626]. The enzymatic activity was stimulated by single stranded DNA, and it 

was dependent on the length of the DNA. Interestingly, in this study hexameric 

fraction of Reptin appeared to be inactive for ATP hydrolysis. Another study of yeast 

Reptin and Pontin, established that whether alone or in complex, both proteins were 
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enzymatically active, with the complex displaying the highest activity [627]. 

Additionally, some reports suggested an absolute requirement for the formation of       

a stoichiometric complex of Reptin and Pontin to allow efficient ATP hydrolysis. For 

example, it was found that human TIP60 complex possesses ATPase activity derived 

from the presence of both Pontin and Reptin, but recombinant Pontin and Reptin on 

their own had no or very weak ATPase activity, respectively [360]. Similar has been 

noted for the human small and big H2A.Z-interacting complexes, the former 

possessing most components of the SRCAP chromatin remodelling and TIP60 HAT 

complexes, and the latter containing only a subset of SRCAP and TIP60 subunits. 

Interestingly, contrary to Reptin and Pontin that showed no detectable ATPase 

activity, small H2A.Z-interacting complex, with Reptin and Pontin being the only 

ATPases present, had a strong enzymatic activity [628]. Another study showed that 

the intact functional domains, namely Walker motifs, of both human Reptin and 

human Pontin are required for the ATPase activity of their dodecameric complex and 

that the individual proteins do not or weakly hydrolyze ATP [629].  

In addition, AAA+ domain mutants were used to manipulate activity of Reptin and 

Pontin in order to further understand their ATPase activity-related functions. For 

instance, Walker A and/or Walker B in yeast Reptin and Pontin were individually 

indispensable for yeast growth and viability [357, 392, 630]. Furthermore, Walker A 

mutation was found to cause defect in snoRNA acculumulation in yeast [392]. 

Walker B motif mutations in Drosophila homologs of Reptin and Pontin led to loss 

in maintenance of Hox gene expression [366]. Similarly, human Reptin and Pontin 

proteins bearing mutations in Walker B could no longer regulate the abundance of 

PIKKs [390]. Finally, Walker B mutation in Pontin abolished its ability to maintain 

wild type levels of TERC [397] and inhibited transformation by Myc [370]. At the 

same time, many functions of both Reptin and Pontin with these mutations are 

retained. Overexpression of both wild type and mutant Reptin or Pontin in Xenopus 

laevis embryo led to increased cell division and bent phenotype [364]. Furthermore, 

intact Walker B in human Reptin was not required for its interference with the 

influenza virus polymerase activity and virus growth [631] or for the inhibition of 

basal and inducible transcriptional activities of ATF2 [371]. 
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Members of AAA+ family usually self assemble into oligomers, 

predominantly hexamers, and this appears to be required for the biological activity 

[632]. Similarly to other members of AAA+ family, the oligomerization of Reptin 

and Pontin was observed. Several observations supporting oligomeric, mostly 

hexameric or dodecameric, nature of both Reptin and Pontin came from 

sedimentation equilibrium analysis of purified proteins. For instance, the wild type 

zebrafish Reptin was found to exist as a homotypic hexamer (310 kDa) or dimer  

(105 kDa) [624]. Pontin co-sedimented with TBP in fractions corresponding to 

molecular weight of 800 kDa [633] and similar was later observed by Kikuchi et al. 

and Gohshi et al. [634, 635]. Similarly, human Reptin and Pontin were present in 

complexes of 800-600kDa [368, 636] or even larger, >2000–500-kDa fractions 

[368]. In line with these findings, both Reptin and Pontin show 6:1 stoichiometry in 

comparison to other components of the chromatin remodelling complex INO80.  

The low resolution structures of the human or yeast Reptin and Pontin assembly, 

solved by transmission electron microscopy, concluded the oligomeric nature of 

these proteins [627, 629, 637]. Specifically, the equimolar mixture of human or yeast 

Reptin and Pontin proteins, expressed in bacteria or in insect cells, respectively, 

formed a structure composed of two stacked hexameric rings. Because of the clear 

asymmetry of this assembly, it was suggested that either each ring is formed 

exclusively by one of the proteins or that each ring has identical composition but 

assumed different conformation [629, 637]. Contrary to that, yeast proteins expressed 

in bacteria were found to form a single hexameric ring [627]. Furthermore, 

individual proteins existed as monomers at 5 M, and hexamerized at higher 

concentration (50 M) [627]. Moreover, it was found that upon addition of 

nucleotide and metal cofactor Reptin eluted in a peak corresponding to a molecular 

mass of about 400 kDa, however Pontin was always monomeric regardless of the 

conditions used [629]. Opposite to this a recent study found that even in the absence 

of cofactor fraction of both Reptin and Pontin could form dimers, trimers and 

hexamers [638]. Discrepancies in these observations arise from the fact, that they are 

based on the limited resolution of electron microscopy. The differentiation of Reptin 

and Pontin in their assemblies requires solving the crystal structure of this complex. 

At this time, only the crystallopgraphic structure of Pontin is available [623]. The X-
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ray analysis revelaled that Pontin forms a hexamer, complexed with ADP and each 

monomer folds into three distinct domains: DI, II and III, where DI and DIII form a 

typical AAA+ module. 

 

5.2 Results 

 
As mentioned above, there have been many conflicting reports about the 

properties of Reptin protein with regard to its ATPase activity, ATP binding potential 

and oligomeric state. In addition mutation in the Walker A and B in Reptin’s 

sequence affected AGR2-Reptin complex formation (as described in chapter 4). To 

further understand function of Reptin protein, we decided to investigate the 

biochemical characteristics of Reptin protein in more detail. We reasoned that this 

knowledge could potentially help us: (1) identifying the roles of Walker A and 

Walker B with regard to ATP cycle and oligomerization (2) defining factors that may 

regulate the Reptin and AGR2 complex formation, and (3) subsequently, with the use 

of cellular systems, understand the physiological role of Reptin on its own or when 

complexed with AGR2. 

 

5.2.1 ATPase activity of Reptin protein 

 

Previous reports regarding human Reptin protein questioned its intrinsic 

ATPase activity and implied that only a complex of both Reptin and Pontin was able 

to hydrolyze ATP efficiently. However, Reptin protein is often found to function 

independent of Pontin in vivo and in these instances it should retain its catalytic 

activity. We hypothesised that the negligible hydrolytic activity of Reptin reported 

by different studies could be caused by the inactivation of protein during its 

preparation and we were interested to see whether or not our method of purification 

of Reptin protein retained its activity. Accordingly, we sought out to determine the 

ATPase activity of Reptin protein. To this end, we set up an assay that utilises 

radioactively labelled ATP and measures the amount of free phosphate released upon 

incubation of the protein with the nucleotide. A previous report showed that bacterial 
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RuvB has a high affinity for double stranded DNA. Moreover, some groups 

suggested that human Reptin could be stimulated by addition of single stranded DNA 

(see 5.1). Therefore, we also set out to investigate whether or not single stranded 

DNA modulated ATPase activity of Reptin. To this end, prokaryotically expressed 

Reptin protein was incubated with -32PATP and with or without single stranded 

short DNA fragment or single stranded, circular DNA from M13 phage. 

Interestingly, Reptin had a relatively low intrinsic ATPase activity (Figure 5.1 B and 

D and lane 1 in A and C). However, its activity increased in the presence of single 

stranded DNA, both linear (Figure 5.1 A and B) and circular (Figure 5.1 C and D). 

This is in agreement with the original study of Reptin protein that indicated that it 

has a DNA-stimulated ATPase activity. In the current study, as little as 0.5 pmol of 

short oligonucleotide sequence or 4 fmol of M13 DNA induced ATPase activity of 

Reptin by eight-fold (Figure 5.1). 
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Figure 5.1 ATPase activity of Reptin is stimulated by DNA. ATPase activity was carried out in the 
buffer containing 0.15 M γ32P-ATP and 0.1mM non-radioactive ATP. Reptin protein was added in 
the presence or absence of the titration of DNA substrates: (A and B) single-stranded oligonucleotide 
or (C and D) single stranded DNA from M13 phage and incubated for 90 minutes at 37ºC. Reaction 
products were separated by TLC, exposed to phosphoimager screen and quantified using 
Phospoimager. (B and D) The data are plotted as fmol of ATP hydrolysed per 1 minute by 1 pmol of 
Reptin protein. 
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Next, we examined the effects that changes in the temperature exert on ATP 

hydrolysis by Reptin protein. To this end, Reptin protein was incubated with             

-32PATP and with or without single stranded or double stranded DNA, at 

temperatures ranging from 0ºC to 42ºC (Figure 5.2 A and B). The ATPase activity of 

Reptin protein at 0ºC and 20ºC was not detectable. We found that the maximal 

enzymatic activity of Reptin protein could be reached at the physiological 

temperature (37ºC) and increasing the temperature further to 42ºC did not enhance it. 

Interestingly, at 30ºC double stranded DNA caused a more pronounced stimulation 

of ATP hydrolysis by Reptin protein compare to that induced by single stranded 

DNA. However, at higher temperatures, there was no significant difference between 

single and double stranded DNA-mediated increase in Reptin’s ATPase activity.  

Next, we determined the time course of ATP hydrolysis. Again, Reptin protein was 

incubated with 32P-ATP and with or without single stranded DNA and the amount 

of hydrolyzed ATP was measured at the different time points, ranging from 10 to 90 

minutes (Figure 5.2 C and D). We found that incubation for up to 20 minutes resulted 

in a very low amount of the free phosphate released and it could not be stimulated by 

the addition of single stranded DNA. However, increasing time of incubation further 

to 45 or 90 minutes resulted in reaching a steady-state rate of Reptin’s ATPase 

activity.   
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Figure 5.2 Time-dependence and temperature-dependence of ATPase hydrolysis by Reptin. 
ATPase activity was carried out in the buffer containing 0.15 M γ32P-ATP and 0.1 mM                
non-radioactive ATP. Reptin protein was added in the presence or absence of the DNA substrates and 
either (A and B) incubated for 90 minutes at 0ºC to 52ºC or (C and D) incubated at 37ºC for 10 to 90 
minutes. Reaction products were separated by TLC, exposed to phosphoimager screen and quantified 
using Phospoimager. The data are plotted as (B) fmol of ATP hydrolysed per 1 minute by 1 pmol of 
Reptin protein or (D) fmol of ATP hydrolysed per 1 minute by 1 pmol of Reptin protein. 
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As mentioned before, Walker A and Walker B motifs play an important role with 

regard to AGR2 binding. Previous reports on the members of AAA+ ATPases 

indicated that the hydrolysis of the nucleotide required the intact Walker A and B 

motifs. Therefore, we were interested to determine whether single point mutation in 

the Walker A and B motifs of Reptin, affected its enzymatic activity. To this effect, 

we incubated wild type or mutant Reptin proteins in the presence of radioactive ATP 

and with or without single stranded DNA and monitored the amount of hydrolyzed 

ATP (Figure 5.3). Surprisingly, both Reptin K83A and Reptin D299N mutants were 

active in this assay. In fact, they appeared to have enhanced enzymatic activity 

compare to wild type protein. Interestingly, it was not further stimulated by the 

incubation with either linear (Figure 5.3) or circular single stranded DNA (data not 

shown). In fact, the addition of DNA seemed to decrease the amount of hydrolyzed 

ATP.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 197

 
 
Figure 5.3 Reptin protein retains ATPase activity despite the presence of single point mutations 
in its functional motifs. (A) ATPase activity was carried out in the buffer containing 0.15 M       
γ32P-ATP and 0.1 mM non-radioactive ATP. Wild type Reptin, Reptin K83A or Reptin D299N 
proteins were added in the presence or absence of the DNA substrates and incubated for 90 minutes at 
37ºC. Reaction products were separated by TLC, exposed to phosphoimager screen and quantified 
using Phospoimager. (B) The data are plotted as fmol of ATP hydrolysed per 1 minute by 1 pmol of 
Reptin protein.  
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5.2.2 ATP binding activity of Reptin 

 

Having established that ATP regulates AGR2 and Reptin interaction and that 

Reptin’s functional domains could regulate AGR2-Reptin binding, we sought out to 

study Reptin’s ATP binding activity in more detail. In addition, we reasoned that 

characterisation and quantification of Reptin-nucleotide interaction could be crucial 

for understanding ligand-induced conformational and/or functional changes in Reptin 

protein. Moreover, if AGR2-Reptin complex has an oncogenic function that is 

modulated in the presence of nucleotide, understanding the kinetics of the ligand 

binding could be essential for any subsequent drug discovery attempts.  

 

5.2.2.1 ATP binding by thermal shift assay.  

Firstly, we analyzed Reptin’s ATP binding potential using thermal shift 

assay. This method allows the evaluation of protein-ligand interactions, by 

monitoring changes in the melting temperature of the respective protein in the 

presence or absence of a ligand. Specifically, SYPRO Orange can be used, that 

fluoresces upon binding to the exposed hydrophobic regions or unfolded regions of 

proteins. For example, ligand binding can change the stability of a target protein, 

which would be reflected as a change in the rate of unfolding as a function of 

increasing temperature. Interestingly, we detected a high basal fluorescence of 

Reptin at room temperature, in the absence of ATP, which gradually reduced as the 

temperature increased (Figure 5.4 A). In fact, under ligand-free conditions, Reptin 

did not undergo a classic unfolding transition. This result indicates that the ATP 

binding regions on Reptin protein are hydrophobic and are exposed or not occupied 

in the absence of ATP. SYPRO Orange can therefore bind and this results in high 

fluorescence readings. When the temperatures increases, in the absence of ATP, 

hydrophobic regions of Reptin become concealed and a gradual drop in fluorescence 

is observed. In support of this hypothesis, we observed that when ATP was added to 

Reptin protein and ATP binding pockets were occupied, the fluorescence at the room 

temperature was greatly reduced compare to that observed in the absence of ATP. 

Upon increasing temperature in the presence of ATP, the increase in SYPRO Orange 
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was observed (Figure 5.4 A). When the negative first derivatives of the fluorescence 

intensity versus temperature were plotted, the minimum of the resulting curve 

corresponded to the melting temperature of 51ºC (Figure 5.4 B). It is worth stressing, 

that the apparent changes in the melting profile of Reptin protein in the presence 

versus absence of the ligand clearly indicate that the recombinant Reptin protein can 

indeed interact with ATP. 
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Figure 5.4 Reptin undergoes classic ligand-induced unfolding transition. Reptin protein (5 M) 
was heated from 20°C to 90°C, in the absence or presence of ATP and Sypro Orange fluorescence 
was measured. Experiments were carried out in triplicate. (A) The raw data and (B) the gradient of 
protein unfolding was plotted against the temperature gradient to obtain the mid point temperature of 
transition (Tm) in the absence and presence of ATP.  
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5.2.2.2 ATP binding activity by nitrocellulose filter binding assay 

Having established that Reptin protein was enzymatically active and melted 

upon addition of ATP, we sought to further characterise its ATP binding activity. To 

this end we used previously described nitrocellulose filter-based ATP binding assay 

[639]. In this method, the protein is incubated with radioactively labelled ATP and 

then the entire reaction volume is transferred to nitrocellulose filter. Next, the 

unbound ATP is washed away and liquid scintillator used to measure the amount of 

radioactivity retained on the filter. The latter reflects the amount of ATP bound to the 

protein of interest. The assay can be used to establish the stoichiometry of a protein-

ligand complex.  The specificity of the protein-ligand binding can be monitored by 

the addition of unlabelled ligand, which should compete with the radiolabelled 

molecule for the binding to the respective protein. 

To determine ATP binding potential of Reptin protein, first increasing amounts of 

Reptin protein were incubated with α32P-labeled ATP. It was found that Reptin 

protein could indeed bind ATP and this was proportional to the amount of protein 

(Figure 5.5 A). We established that approximately 0.5 mol of ATP can be bound per 

1 mol of Reptin.  Interestingly, when we used the nonhydrolyzable ATP analogue, 

namely γ-S-labelled ATP, only 0.18 mol of ATP could bind per 1 mole of Reptin 

protein. The decreased affinity for nonhydrolyzable analogue of ATP suggests that        

a hydrolysis process is required for efficient ligand binding. It is also possible that 

this analogue does not functionally mimic ATP. Other nonhydrolyzable analogues of 

ATP, such as PNP-AMP, could be used to test these hypotheses.  

Next, Reptin protein was incubated with a constant amount of α32P-ATP in the 

presence of increasing amounts of nonradioactive ATP ranging from 10 M to 1 mM 

(Figure 5.5 B). The amount of unlabelled ATP added appeared to reach saturating 

levels, since we observed that almost all the radioactively-labelled ATP was found in 

the unbound fraction. Therefore, we were interested to see how the addition of lower 

amounts of unlabelled ATP would affect Reptin’s ATP binding. Interestingly, the 

inclusion of unlabelled ATP in concentrations ranging from 1 M to 1 mM revealed 

biphasic concentration dependence (Figure 5.5 C). Specifically, the binding of 

labelled ATP decreased gradually upon addition of 1 to 5 M or 20 to 1000 M ATP 
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but increased at 10 to 20M. This indicates that Reptin possesses at least two ATP 

binding sites, one with high and the other with relatively low ATP binding activity. It 

is worth stressing, that if Reptin protein does have two binding pockets for ATP, the 

measured stoichiometry should be 2 moles of ATP per 1 mole of Reptin. As the 

measured stoichiometry was just 0.5 moles per 1 mole of Reptin, we could speculate 

on a negative cooperativity between the two ATP binding pockets on the protein. 

Alternatively, the method used to assess ATP binding somewhat understates Reptin’s 

ATP binding potential. In addition, although we consistently observed these two 

phases; the range of concentrations of the cold ATP where these occurred varied 

between experiments. This could be due to the fact that different preparations of the 

Reptin protein were used. 
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Figure 5.5 ATP binding activity of Reptin protein. (A) A titration of Reptin protein was incubated 
in the presence of 1 M ATP and either radioactive α32P-ATP or 35S-ATP. The amount of radioactive 
ATP bound to a nitrocellulose filter was measured with the use of scintillation counter. The data are 
plotted as pmol of ATP bound as a function of Reptin protein levels (pmol). (B and C) Reptin protein 
was incubated in the presence of α32P-ATP and the titration of unlabelled ATP. The amount of 
radioactive ATP bound to a nitrocellulose filter was measured with the use of scintillation counter. 
The data are plotted as pmol of ATP bound as a function of the concentration of nonradioactive ATP 
added (M). 
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Having established the stoichiometry of ATP binding to wild type Reptin protein, we 

were interested to characterise the ATP binding activity of the Walker A and     

Walker B mutants. This was especially intriguing, considering that we found that 

both mutants could effectively hydrolyze ATP. Firstly, wild type or mutant Reptin 

proteins were incubated with a constant amount of 35S-labeled ATP in the presence 

of a titration of hydrolysable ATP ranging from 10 M to 1 mM and the amount of 

bound radiolabeled ATP was measured as described above. As expected, the wild 

type Reptin protein could bind to ATP and this was inhibited by the addition of an 

excess of unlabelled ATP (Figure 5.6 A). Interestingly, we found that mutating the 

conserved Lysine 83 residue to Alanine within the Walker A motif completely 

abolished ATP binding. Surprisingly, replacement of the Glutamate 299 residue 

within the Walker B motif not only retained ATP binding activity, but it increased it 

compare to that of wild type Reptin. In order to further analyse the effects of 

mutation on the ATP binding a titration of these proteins was incubated with 

nonhydrolyzable ATP analogue γ35S-ATP in the presence of 1 M of                   

non-radioactive ATP (Figure 5.6 B). Again, the Walker A mutant exhibited a 

reduced binding affinity, whereas the Walker B mutant had greatly enhanced affinity 

for ATP compare to the wild type Reptin. The similar was observed when the 

proteins were incubated with radioactive γS-ATP in the presence of nonradioactive 

nonhydrolyzable ATP (Figure 5.6 C). The data obtained for the Walker A mutant, 

indicates that this mutation attenuates ATP binding by the remaining Walker B site. 

On the other hand the increased binding affinity observed for the Walker B mutant, 

suggests that this motif may exert inhibitory effect on Reptin’s ATP binding 

potential. As Walker B mutant exhibited increased nucleotide binding, we wanted to 

evaluate whether introducing this mutation had changed thermostability of this 

protein. To this effect, the thermal shift assay was performed. Surprisingly, contrary 

to the wild type protein, Reptin D299N could undergo unfolding transition in the 

absence of the ligand. Addition of ATP resulted in stabilisation of the mutant protein, 

as indicated by 15ºC increase in the melting temperature (Figure 5.6 D). 
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Figure 5.6 The effects of Reptin Walker A and B motifs mutation on ATP binding activity. (A) 
Wild type Reptin, Reptin K83A or Reptin D299N proteins were incubated in the presence of         
35S-ATP and the titration of unlabelled ATP. The amount of radioactive ATP bound to a 
nitrocellulose filter was measured with the use of scintillation counter. The data are plotted as pmol of 
ATP bound as a function of the concentration of nonradioactive ATP added (M). (B and C) A 
titration of wild type Reptin, Reptin K83A or Reptin D299N proteins was incubated with 35S-ATP in 
the presence of either 1 M (B) ATP or (C) ATP-S. The amount of radioactive ATP bound to a 
nitrocellulose filter was measured with the use of scintillation counter. The data are plotted as pmol of 
ATP bound as a function of Reptin protein levels (pmol) (D) Reptin D299N protein (5 M) was 
heated from 20°C to 90°C, in the absence or presence of ATP. Sypro-orange fluorescence was 
measured. Experiments were carried out in triplicate. The gradient of protein unfolding was plotted 
against the temperature gradient to obtain the mid point temperature of transition (Tm) in the absence 
and presence of ATP. 
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5.2.2.3 ATP binding activity by ELISA  

At the moment the function of Reptin-AGR2 assembly is not known, 

however, both proteins can individually, or as a complex, be thought of as potential 

anticancer drug targets. In the previous chapter we thoroughly validated Reptin as 

AGR2 binding partner and showed the importance of ATP interacting sites in Reptin 

for complex formation. In addition, we reported that addition of nucleotide 

modulated stability of the complex, albeit the effect altered depending on the method 

of purification of Reptin protein. We hypothesised that these differences may 

represent the actual plasticity of the Reptin protein. As such, it would be valuable to 

develop small molecules that could specifically target ATP binding pockets. These 

compounds could serve as a useful tool to study biochemistry of Reptin protein as 

well as to modulate AGR2-Reptin complex, and subsequently establish the function 

of this complex in vivo. Therefore, we decided to develop a high throughput 

screening method that would allow an efficient testing of a large number of 

molecules in the future. As we were particularly interested in creating molecules that 

would target the ATP binding pockets in Reptin, an ELISA method was developed 

which will allow monitoring of the effect a drug X has on Reptin-ATP interaction. In 

addition this was another assay that could confirm Reptin’s ATP binding ability. To 

this effect, a range of biotinylated ATPs were used, that differed in the way that 

biotin side groups were attached. Namely, N6-(6-Amino)hexyl-adenosine-5’-

triphosphate-Biotin, 8-[(6-Amino)hexyl]-amino-adenosine-5’-triphosphate-Biotin, 

2’/3’-O-(2-Aminoethyl-carbamoyl)-adenosine-5’-triphosphate-Biotin, γ-[6-

Aminohexyl]-adenosine-5’-triphosphate-Biotin, Biotin-11-adenosine-5’-

triphosphate, Biotin-17-adenosine-5’-triphosphate (called N6-, 8-, EDA, -, 11-, 17-

ATP thereafter) were utilised (Figure 5.7 A). Firstly, we wanted to establish wheter 

Reptin could bind any of the six biotinylated ATPs. To this effect, a range of 

biotinylated ATPs was immobilized onto a 96-well plate and incubated with the 

Reptin protein. We found that Reptin protein could bind all the ATPs, albeit to a 

different extent depending on the type of biotinylated ATP used (Figure 5.7 B). Next, 

the specificity of the Reptin-biotin ATP binding was confirmed in a competition 

assay. To this effect a titration of Reptin protein was preincubated with a titration of 
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the ATP and then added to biotinylated N6-ATP immobilised on the ELISA plate. 

We found that the incubation with ATP could decrease Reptin’s binding to 

biotinylated ATP (Figure 5.7 C) and confirmed the specifity of Reptin-ATP binding 

in this assay. 

Having confirmed that Reptin protein can bind ATP, we went on characterising the 

oligomerization status of Reptin protein in the presence and absence of the 

nucleotide ligand. 
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Figure 5.7 Developping non-radioactive ATP binding assay. (A) Schematic of biotinylated ATPs. 
(B and C) Reptin protein interacts with biotinylated ATP. A fixed amount of the indicated 
biotinylated ATPs (as in 4.7 A) was added to a microtitre plate coated with streptavidin and incubated 
with (B) a titration of Reptin protein or (C) a titration of Reptin protein preincubated with a titration 
of ATP. The amount of Reptin bound was quantified with antibodies specific for Reptin using 
chemiluminescence. The data are plotted as the extent of protein-ATP complex formation [RLU] 
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5.2.2.4 Oligomerization of wild type and mutant Reptin 

To assess Reptin oligomerization, we first used Dynamic Light Scattering 

(DLS) method. This technique determines the hydrodynamic size of the molecule of 

interest in solution and is routinely applied as a quick way to assess whether the 

buffer conditions used render the protein monodisperse, non-aggregated; or to 

determine its oligomeric state. Firstly, measurement of the hydrodynamic diameter of 

untagged Reptin protein with the use of DLS revealed that our preparation of Reptin 

did not form aggregates. In addition it had a relatively homogenous nature and 

consisted of a mixture of monomers, dimers, trimers and hexamers (Figure 5.8 A). 

Interestingly, upon addition of ATP, the apparent mass was shifted towards the 

higher values. This indicated that ligand binding results in changes in 

oligomerization of Reptin protein (Figure 5.8 B).  
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Figure 5.8 Oligomeric state of Reptin protein as defined by DLS. Reptin protein (50 M) was 
subjected to analysis by light scattering in (A) the absence and (B) presence of ligand ATP, as 
indicated in the Methods.   
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Next, we sought to set up an assay that could complement the DLS method and allow 

us to easily determine the oligomeric state of Reptin protein under different 

conditions. We decided to try chemical cross-linking, as we reasoned that this 

method could be especially useful given that it enables one to observe both stable 

and transient events. Glutaraldehyde, homobifunctional amine cross-linker was used 

as a cross-linking chemical. Firstly, a titration of the cross-linker was incubated with 

wild type Reptin in the presence or absence of ATP, and compared to non-cross-

linked protein (Figure 5.9 A, lanes 1-5 vs. 6). Interestingly, increasing addition of the 

cross-linker yielded an oligomeric ladder (Figure 5.9 A, lanes 1-5).  A pool of Reptin 

protein showed to be resistant to cross-linking even at the highest concentration, 

which was reflected by the presence of the band corresponding to the monomeric 

protein. The inclusion of ATP did not result in a significant change in the 

oligomerization of Reptin (Figure 5.9 A, lanes 7-11). This was not surprising, since 

when using DLS we did not observe separate peaks that would indicate exclusive 

oligomeric states, but only a shift in the mass. We then went onto characterising 

Reptin Walker A and B mutants in the cross-linking assay. Interestingly, the 

respective mutant proteins exhibited striking and opposing behaviour to each other 

and to wild type Reptin (Figure 5.9 D and E). Specifically, in the absence of ATP, 

Walker B mutant protein was very sensitive to loss of monomeric subunit as a 

function of increasing concentration of cross-linker (Figure 5.9 C, lanes 1-5), but was 

resistant to cross-linking in the presence of the ligand (Figure 5.9 C, lanes 7-11). 

Contrary to Reptin D299N, Reptin K83A demonstrated similar to the wild type 

protein behaviour in the absence of ATP (Figure 5.9 B, lanes 1-5) but exhibited a 

very efficient loss of the monomeric state in the presence of ATP (Figure 5.9 B, lanes 

7-11). These latter data was unexpected, since in the nitrocellulose filter ATP 

binding assay, Walker A mutant appeared not to bind ATP. The differential response 

to the cross-linker in the presence versus absence of the ligand indicates that this 

protein can in fact bind ATP. These results suggest that the mutation in either of the 

ATP motifs leads to conformationally different proteins, in respects to both 

oligomerization and ATP binding. Interestingly, in the case of wild type Reptin 

protein, where two motifs are intact, the contribution from both of them results in the 

oscillating response to the ligand.  
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Figure 5.9 The effects of Reptin Walker A and B motifs mutation on their ATP-dependent 
oligomerization as defined using a cross-linking assay. (A) Wild type (B) Reptin K83A or (C) 
Reptin D299N proteins were incubated in PBS containing a titration of glutaraldehyde (from 0.012 % 
to 0.2 %) in the absence or presence of ATP. The extent of changes in oligomerization of Reptin from 
the monomeric state (arrow) was assessed by immunoblotting and (D and E) quantitated using 
ImageJ.  
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The apparent dynamic equilibrium between monomeric and oligomeric states was 

observed at room temperature. As the ATPase activity is induced upon increasing 

temperature, we were keen to see whether or not the oligomeric nature of Reptin can 

also be influenced by changes in temperature. To this end, we monitored the 

oligomerization of Reptin at 4°C and 37°C and compared it to this at room 

temperature. We found that changes in temperature did not result in a significant 

change in the oligomerization of wild type Reptin (data not shown), however, major 

differences between Walker A and Walker B mutants were observed. Firstly, we 

observed existence of different oligomeric ladders at 4°C for Walker A and B 

mutants. Essentially, Walker A mutant formed three distinct species of oligomers 

(Figure 5.10 A), whereas Walker B existed as a mixture of at least six different states 

(Figure 5.10 B). Strikingly, at physiological temperature (37°C) Walker B mutant 

was sensitive to loss of monomeric and lower order oligomeric forms and formed 

only high molecular weight oligomers, corresponding to the size of a hexamer 

(Figure 5.10 D). On the other hand, the oligomeric ladder obtained for Walker A 

mutant did not differ much from the one found at 4°C, however, it appeared that this 

protein was less stable under these conditions, as a lower amount of the protein was 

detected, compare to that at the lower temperatures (Figure 5.10 C). It is also 

possible, that under these conditions the antibody’s epitope was masked in this 

mutant protein.   
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Figure 5.10 The effects of low and physiological temperature on Walker A and B mutant 
proteins oligomerization as defined using a cross-linking assay. (A and C) Reptin K83A or (B and 
D) Reptin D299N proteins were incubated in PBS containing a titration of glutaraldehyde (A and B) 
at 4°C or (C and D) at 37°C. The extent of changes in oligomerization of Reptin from the monomeric 
state (arrow) was assessed by immunoblotting using anti-Reptin polyclonal antibody. 
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5.3 Discussion 

 
AAA+ ATPases couple ATP binding and energy released upon ATP 

hydrolysis to a diverse cellular activities including protein folding and unfolding 

events, DNA replication, organelle biogenesis and complex formation [640, 641]. 

Several types of models have been proposed to account for nucleotide binding and 

exchange for the different members of AAA+ family of ATPases. In a concerted 

model of action, all the subunits bind, hydrolyse and release the nucleotides 

simultaneously, whereas in a nonconcerted model, different subunits perform their 

function at distinct times [609]. These mechanisms require an allostery-based 

communication, which enables different subunits to regulate other subunits in the 

oligomer. In addition, a nonpatterned model has been proposed, whereby ATP is 

bound and hydrolysed in a noncyclical manner [642].  The nature of ATP binding 

and the mechanism of the ATP hydrolysis are well described for several members of 

the AAA+ family; however, the data available regarding the enzymatic activity of 

Reptin and Pontin are somewhat vague and often contradictory. In chapter 4 it was 

found that inclusion of nucleotide and mutations in ATP binding motifs of Reptin 

protein could affect AGR2-Reptin complex formation. Therefore, we were keen to 

explore a structure-function of Reptin protein in more detail. To this end, we were 

interested to test the ATP binding as well as ATPase activity of Reptin protein and 

identify the roles of Walker A and B sites. In addition, we wanted to characterize 

Reptin’s structural integrity by oligomerization and unfolding studies.  

Firstly, using a combination of radioactive and non-radioactive assays we 

established the stoichiometry of ATP binding and ATPase activity of Reptin. 

Initially, by performing heat denaturation of Reptin in the presence and absence of 

the nucleotide we confirmed that Reptin protein indeed binds ATP (Figure 5.4). 

Interestingly, the classic unfolding transition was observed upon addition of 

nucleotide. This is in keeping with the model of stabilisation of protein upon ligand 

binding. For example, in the absence of nucleotide the melting curve of Hsp90 

consists of two transitions and addition of ATP-Mg increases the denaturation 

temperature by 2.6°C [643]. Surprisingly, Reptin alone does not undergo melting 

transition upon increasing temperature. The absence of a classic transition in the case 
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of Reptin could imply that it is unfolded in the absence of ligand. However, as a high 

flourescence was observed at room temperature it is possible that the ATP binding 

pockets of Reptin are hydrophobic and exposed in the absence of ATP. Accordingly, 

it is likely that the hydrophobic nucleotide binding sites become concealed rather 

than exposed upon heating. This would explain binding of Sypro-Orange and the 

high fluorescence readings at room temperature and the low fluorescence at higher 

temperatures.   

In the current report we established the stoichiometry of Reptin-ATP 

interaction using hydrolysable as well as non-hydrolysable analogues of ATP. 

Previous report suggested that Reptin contains at least one putative ATP-binding site, 

namely the Walker A motif. If it was functional, we could expect a molar ratio of at 

least 1 to 1 ATP bound per Reptin monomer. However, we found that the 

stoichiometry of ATP binding to Reptin protein using a hydrolysable form of ATP 

was approximately 0.5-0.6 moles of nucleotide per 1 mole of protein (Figure 5.5 A). 

Considering the ring-like hexameric structure of Reptin’s homolog Pontin and other 

AAA+ family members, we could assume a hexameric structure for Reptin protein as 

well. This would indicate that according to this data only three to four of the six 

subunits in the homo-hexameric complex are occupied. In other words, only 3 to 4 

sites are capable of ATP binding at any given time. If this model is true and not all 

subunits of Reptin hexamer are occupied, the allosteric mechanism of nucleotide 

binding can be assumed, where ATP occupancy of one site, depends on the 

nucleotide state of the neighbouring subunits. Alternatively, it is theoretically 

possible that different populations of Reptin hexamers are present, comprised 

entirely of wholly nucleotide occupied or unoccupied monomers. The last model 

could be that at any give time, a mixture of different oligomers and monomers exists, 

and is able to bind to ATP. Indeed, dynamic light scatterring data revealed the 

presence of population of different oligomers and addition of ATP increased fraction 

of high molecular complexes. The substoichiometric binding of ATP is not unusual 

and was reported for others members of AAA+ family. For example, it was found 

that only four nucleotide molecules bound per PAN hexamer at saturating conditions        

[644, 645]. Further, ClpX was shown to bind 3 to 4 molecules of ATP per hexamer 

[646]. It was previously suggested for other helicases or translocases that 
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substoichiometric ligand binding by nucleotide-binding proteins may be important 

for their function [647, 648]. In addition, it has been shown for several AAA+ 

hexameric enzymes that only some subunits have a catalytic role [649, 650]. For 

example, the amount of subunits in the ATP-bound state may affect functions such as 

binding of other ligands. For instance, in ClpX hexamer three or more ATP-bound 

subunits must cooperate to allow tight ssrA peptide binding [646]. Therefore, it is 

possible that the subunits of Reptin that do not bind ATP have a regulatory or 

structural role.   

Interestingly, the competition assay (using the titration of unlabeled nucleotide in the 

presence of radioactive ATP) revealed that the ATP binding curve was biphasic 

(Figure 5.5 B and C). This data implied that Reptin exhibits different classes of 

nucleotide-binding sites, one type with high and one with low affinity. If Reptin 

protein indeed hexamerises under these conditions, we could speculate that ATP 

binding to a high affinity site in some subunits alters the conformation of other 

subunits and creates subunits with low affinity. In addition, as the substoichiometric 

binding was detected, we could speculate, that in the Reptin hexamer there are at 

least three different conformations that the individual subunits can assume, one that 

binds ATP with high affinity, one that binds ATP with low affinity, and a nucleotide-

free conformation. The existence of distinct classes of sites in the multisubunit 

enzymes that hydrolyze ATP appears to be a general feature of these assemblies. 

Various hexameric helicases have been shown to possess high and low affinity ATP 

binding sites [651-653], and there are often three rather than two high-affinity sites. 

Interestingly, bacterial ancestor of Reptin, namely RuvB hexamer, has been shown to 

possess non-equivalent active sites, which are ATP-bound, ADP-bound or nucleotide 

free [648, 654-656]. Similarly, subunits of PAN hexamer were reported to assume 

three different types of conformation. In addition, in PAN hexamer, although the 

binding curves for ATP showed typical saturation kinetics, binding to 

nonhydrolyzable analogue of ATP was multiphasic [645]. Hersh et al. showed that 

ClpX has different classes of ATP binding sites [646]. Interestingly, they used a 

different approach to us to establish equivalency of nucleotide binding sites. Instead 

of titrating competitor- unlabelled nucleotide in a filter binding assay, an excess of 

the nucleotide was added, and the dissociation kinetics were measured. As such, 
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ClpX nucleotide binding sites were described as “fast” and “slow” sites, depending 

on the time scale of nucleotide dissociation. It would be interesting to see whether or 

not we could observe the same differences in the release time in the case of Reptin.  

Interestingly, addition of non-hydrolysable analogue of ATP reduces the 

stoichiometry to 0.18 moles of nucleotide per 1 mole of Reptin protein. Using 

nonhydrolyzable analogues of ATP should, in theory, freeze the protein of interest in 

the active, ATP-bound state. As we observed reduced stoichiometry using non-

hydrolysable ATP--S, we can conclude that the nucleotide exchange is essential for 

effective nucleotide binding by Reptin and the ATP hydrolytic cycle does not inhibit 

nucleotide binding. Additionally, as the curve of binding is not linear, as it is in the 

case of ATP, we could speculate that only low affinity sites/slow sites are active in 

these hexamers. This result also indicates that concerted or stochastic models for 

nucleotide binding and exchange can not be applied to Reptin, as this would require 

all the subunits to bind, hydrolyse and release the nucleotides simultaneously. 

However, here only some of the six subunits in Reptin hexamer could bind ATP--S. 

Surprisingly, we found that the Walker B mutant displayed increased stoichiometry 

of ATP--S binding compare to the wild type protein. This indicates that intact 

Walker B site negatively regulates ATP binding.  

Interestingly, when the ATP binding was monitored by examining the effect of the 

concentration of the protein on nucleotide binding, the binding of nucleotides to wild 

type or Walker B mutant protein could be described by different curves. This is 

interesting as it may indirectly indicate whether stability of the hexamer is retained as 

the amount of protein changes and whether the concentration of protein required to 

adopt “nucleotide-binding permissive” conformation differs between wild type and 

mutant proteins. Here, as the linear increase in binding to ATP was observed with 

increasing concentration of wild type Reptin, one could speculate that the oligomeric 

status of wild type protein or the quality of ATP binding sites do not change in this 

range of concentrations. On the other hand, Reptin Walker B mutant protein binds 

ATP with high affinity at low concentrations of protein and it does not bind more at 

higher concentrations, indicating that at low concentration this mutant is already able 

to bind ATP with its full capacity. Interestingly, the shape of the curve of D299N 

Reptin binding to ATP suggests that the cooperative manner of ATP binding in case 
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of this mutant, as at the low concentrations of Reptin a non-linear increase in binding 

was observed. However, it is somewhat unclear whether ATP binding to wild type 

Reptin is cooperative. On one hand the presence of low-affinity and high-affinity 

binding sites was revealed. This would imply cooperative coupling and that Reptin 

had a single structural ATP-binding site that can assume two different binding 

affinities. On the other hand, it is possible that Reptin pre-exists in an asymmetrical 

conformation in the six protomers with some having their ATP binding site in a  

high-affinity conformation and the other having it in a low-affinity conformation. 

More kinetic studies, such as establishing velocities of ATP hydrolysis at different 

ATP concentrations could help us determine whether Reptin exhibits a cooperative 

effect in ATP binding and hydrolysis.  

The apparent difference in ATP binding ability between wild type and Walker B 

mutant were further reflected by elevated intrinsic thermostability. Surprisingly, 

Walker B mutant could undergo thermal transition even in the absence of nucleotide. 

This indicates that the ATP binding pockets, which are presumably hydrophobic and 

exposed in wild type Reptin, are concealed in the mutant protein.  

As Aspartate and Glutamate in the Walker B motif were shown to be essential to 

form hydrogen bonds with Walker A motif and with a bound water molecule, and to 

facilitate hydrolysis, the mutation of one of these critical sites should in theory result 

in the protein inactive as an ATPase. If this is true, the increased stoichiometry of 

ATP binding by Reptin D299N compared to wild type protein would suggest that 

ATP hydrolysis inhibits ATP binding in wild type protein. However we found that 

D299N mutation did not inhibit ATPase activity of Reptin. There could be several 

reasons for this. It is possible that D to N mutation was not sufficient to disrupt 

Walker B function in the hydrolytic cycle. For example, some studies described 

conserved Glutamate rather than Asparagine as the catalytic base for ATP hydrolysis 

[657]. In addition, it possible that ATP hydrolysis by Reptin is sensitive to its 

oligomeric status and less to its primary sequence.  

The filter binding assay showed that the Walker A mutant was completely 

defective in ATP binding, which is inconsistent with the fact that this mutant protein 

was responsive to ATP in oligomerization using the chemical cross-linking assay and 

was active in the ATPase assay. However, filter assays have been found to 
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underestimate stoichiometry of binding before. For instance, 1.2 ATPs per ClpX 

hexamer was initially observed by filter binding assay, but isothermal titration 

calorimetry gave 3.4 ATPs bound per hexamer [646]. It was reasoned, that ligand 

dissociates too fast to be captured by this method [646]. It is also possible that the 

conformation of Reptin Walker A mutant protein is “more labile” than the 

conformation of wild type protein and undergoes denaturation when it is adsorbed 

onto the nitrocellulose filter. The ATP filter binding assay involves exploiting the 

difference between the hydrophobic interactions of ATP and target protein with the 

nitrocellulose filter and as such is very sensitive to temperature. Other studies, such 

as the protein binding assays, thermal shifts, and the oligomerization assay, were 

evaluated in solution at room temperature or higher. Thus, the lower temperatures 

required for wash buffer in filter binding assay might alter the affinity of ATP for 

the Walker A mutant protein. Interestingly, temperature was found to affect the 

stoichiometry of the ATP binding for other AAA proteins. For example a decrease in 

ADP binding activity with increasing temperature was observed for SecA [658]. In 

this study the washes were performed at different temperatures, however, we found 

that increasing the temperature greatly increased the background readings.  

Reptin protein structure has not been solved yet, however X-ray structure of Pontin 

was reported [623] and it was found that Pontin oligomerizes as a hexameric ring, 

which is typical for AAA+ proteins [608]. There are various models for the Reptin/ 

Pontin oligomeric state, and different studies have described them as both single and 

double hexamers. In this report, we found that wild type Reptin increases in apparent 

mass in the presence of ATP as defined using light scattering, however, even in the 

absence of nucleotide a mixture of different oligomeric species was observed. 

Similar has been recently shown in another study in which analytical 

ultracentrifugation was used to identify the oligomeric nature of Reptin. It was found 

that Reptin protein was predominantly monomeric in the absence of ATP, however it 

also formed dimers, trimers and hexamers, and the hexamer species became 

predominant upon addition of nucleotide [638]. Importantly, earlier studies used 

tagged Reptin protein to establish oligomerization and the most recent report 

demonstrated that the His-tag induced the formation of double hexameric ring 

Reptin/Pontin complexes, whereas untagged proteins formed a single ring [580]. 
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These changes in the oligomerization status of Reptin upon fusion with the tag, could 

explain the differences we observed with respect to Reptin-AGR2 or Reptin-p53 

binding, when GST-tagged and untagged-Reptin were compared (Chapter 4 and 6).  

We studied oligomerization characteristics of wild type and mutant Reptin proteins 

by glutaraldehyde cross-linking. Given that typically the nucleotide binding sites in 

AAA+ proteins are located at the interfaces between protomers in an oligomeric 

assembly [609], introducing mutations at these interfaces was likely to affect the 

oligomerization process. In this report, cross-linking experiments of wild type and 

mutant proteins resulted in mixtures of monomeric and oligomeric species. 

Interestingly, important differences in the properties of Walker A and B mutants 

were revealed. Surprisingly, Reptin K83A mutant protein was more responsive 

in ATP-mediated oligomerization than wild type Reptin. Contrary to that, Walker B 

mutant Reptin protein was sensitive to loss of monomeric subunit in the absence of 

nucleotide, but was similar to wild type Reptin in the presence of ATP. The 

importance of Walker A and B domains in oligomeriation was reported for other 

members of AAA+ proteins. For example, the mutation of Walker A in ClpB protein 

in the first AAA module abolished hexamer formation, whereas corresponding 

substitution in the second nucleotide binding site had no influence on ClpB 

hexamerization [659].   

It is worth noting that glutaraldehyde cross-links protein by forming covalent bonds 

between lysine residues that are in close proximity to each other. The potential pitfall 

of this method with respect to studying effects of mutations in Walker A 

oligomerization is that in order to obtain this mutant the conserved Lysine was 

replaced. Therefore, it could be interesting to use different cross linking agents, to 

assess how mutations of the conserved residues in Reptin affect its oligomerization. 

On the other hand, as Walker B and wild type Reptin appeared to be less sensitive to 

loss of monomeric subunit in the presence of the nucleotide, it is possible that the 

Lysine 83 involved in the ATP-binding and intact in these proteins is exposed and 

may serve as a cross-link site. 

Moreover, we found that the oligomerization of Reptin was dependent on 

temperature, especially at high temperatures. Interestingly, wild type and Walker A 

mutant form mixtures of oligomers, whereas Walker B mutant existed predominantly 



 224

as a hexamer at physiological temperature. As the ATPase activity of Reptin protein 

appeared to be stimulated at higher temperatures, it appears that this may be linked to 

the oligomerization process. This would be consistent with the observations made for 

other AAA+ proteins, for which hexamerization was shown to be essential for the 

enzymatic activity. However, as Reptin appears to exist as the mixture of different 

oligomers it is plausible that all of them have some physiological activity and it is not 

necessarily restricted to the hexameric-ring structure. 

Further, as the chemical cross-linking can be used as an initial way to determine the 

organization of multisubunit assemblies, it would be interesting to use a more direct 

method of defining the oligomeric state of Reptin. For example, to determine an 

absolute measurement of the molecular weight of Reptin oligomers in solution, 

sedimentation equilibrium method could be applied.  

Currently, there is no consensus as to the roles of ATP binding and hydrolysis 

in the Reptin functions. Gaining insight into Reptin’s ability to self assemble could 

provide the basis for the in vivo studies of the Reptin’s oligomerization and function 

within the cell. Here, we performed a detailed analysis of the effects of nucleotide 

and nucleotide binding sites on Reptin protein. We established that Reptin could bind 

and hydrolyze ATP and form oligomers, and that Walker A and B motifs were 

important for these activities.   
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CHAPTER 6 Regulation of p53 protein by the 

molecular chaperone Reptin 

6.1 Introduction 

 
The p53 tumour suppressor protein, aptly named the “guardian of a genome”, 

has a central role in sensing and responding to a myriad of cellular stresses, including 

DNA damage [660]. Its tumour suppressive role is primarily linked to sequence- 

specific DNA binding and subsequent activation of genes [271, 661] that are 

components of apoptotic and growth arrest pathways [662]. Examples of such gene 

products are the p21WAF1/CIP1 growth inhibitor [66, 661] or proapoptotic Bax 

[663] that are frequently used as the read-out for the p53 transcriptional activation.  

Common genetic alterations in cancer involve inactivation of wild type p53 or p53 

gene mutation [38]. The majority of these changes is found in the DNA binding 

domain of p53 [664] and this is linked to the key function of p53 protein as a 

transcription factor. These mutations fall into two separate classes, namely DNA 

contact and conformation mutations [136]. DNA contact p53 mutants, such as p53 

R248 or R273, bear mutations at the sites that form a direct interaction with DNA. 

Structural p53 mutants, including R175, G245, R249 or R282, are characterised by 

destabilised the local (core) or overall structure [136, 157]. In addition to the core 

domain, some p53 mutations were found in the teramerization domain. Interestingly, 

the frequency of germ line p53 mutations in the oligomerization domain is similar to 

that observed for the core domain [665].   

p53 function is regulated by the network of proteins that ensures that the p53 

pathway is downregulated in unstressed cells but can be rapidly activated upon stress 

stimuli [666]. These proteins control p53 stability, activity and localization. The p53        

turn-over by ubiquitin degradation pathway is primarily mediated by E3 ligase 

MDM2 [201-203]. p53 ubiquitination by MDM2 was described by a dual-site 

mechanism, whereby p53 binds to the N-terminal hydrophobic pocket of MDM2, 

which triggers conformation change that stabilises the interaction between the acidic 

domain of MDM2 and the ubiquitination signal in the core domain of p53 [162]. The 

stress input in the cell results in the suppression of the p53 degradation pathways, 
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activation of collection of p53 modifying enzymes and consequently rapid activation 

of p53 network.  

p53 protein can be considered as a major cellular signalling hub and so far it has 

been shown to bind to over 300 proteins [39]. The complexity of the p53 interactome 

and signalling and its rapid turnover are dependent on the intrinsic plasticity of the 

p53 protein. This is achieved by a combined action of its folded and disordered 

domains and p53’s thermodynamical and kinetical instability [138, 667]. For 

example, p53 core domain has a half life of 9 minutes at 37ºC [668, 669] and it 

unfolds and aggregates at high rate [266, 670]. Further, p53 protein exists in the 

equilibrium between folded and unfolded states. However, the stable conformation is 

essential for the p53’s physiological activity and a number of mechanisms exist that 

stabilises the conformation of wild type p53. p53 protein can be activated for 

sequence-specific DNA binding for example by modification events of its negative 

regulatory domain or by binding of the monoclonal antibody PAb421 which 

preserves a p53 tetramer [184, 671, 672]. Additionally, p53 can associate with 

molecular chaperones, and indeed heat shock proteins have been shown to bind to, 

stabilise and activate both wild type and mutant p53.  

The interactome of p53 protein is growing and currently exceeds 300 

proteins, including proteins involved in its degradation, folding and activation. 

Interestingly, mutant p53 protein can establish complexes with the components of 

wild type p53 network and rewire it to gain oncogenic activity. Understanding the 

interactome of wild type and mutant p53, may help to understand the mechanisms 

behind the increased stability of p53 mutant and effectively facilitate drug discovery. 

 

6.2 Results 

 

6.2.1 AGR2, Reptin and p53 form a trimeric complex. 

 

As mentioned in the Introduction, AGR2 protein was identified in a 

proteomic screen aimed at identifying proteins that are overexpressed in Barrett’s 

epithelium and can function to perturb the p53 pathway [437]. Subsequently, it was 
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demonstrated that cells overexpressing AGR2 decrease DNA-damage induced p53 

phosphorylation at both Ser15 and Ser392. However, no evidence was found that 

AGR2 binds to p53 protein. In Chapter 4 we explored the AGR2 interactome and 

validated Reptin as AGR2 protein binding partner. We also speculated on the 

possible functions of this complex. One hypothesis was that it could be implicated in 

AGR2 mediated inhibition of the p53 pathway. Interestingly, other reports have 

already showed some link between p53 and Reptin proteins. For example, Reptin 

participates in p400 complex that regulates senescence and knocking down Reptin or 

Pontin, or p400 leads to p53-dependent replicative senescence [673]. In addition 

Reptin protein is implicated in regulation of transcription and chromatin remodelling 

and could have a function in p53-mediated transcriptional events. Therefore we 

decided to investigate whether or not AGR2 and Reptin interaction provide a 

signalling mechanism for the p53-specific AGR2-dependent oncogenic pathway. 

First, we decided to establish whether p53 protein is present in the AGR2-Reptin 

complex. To this end, we performed co-immunoprecipitation experiments using 

lysates of H1299 cells transiently expressing AGR2 only and/or HA-tagged Reptin 

and/or p53 as indicated in the figure legends. To our surprise, we were able to detect 

p53 protein in the anti-AGR2 immunoprecipitate from the cells transfected with p53 

protein, but not in the p53-negative cells (Figure 6.1 A, lanes 3 and 5 vs. 7). As in the 

cellular context additional factors may be required for the complex formation, we set 

out to investigate, whether p53 indeed binds to either AGR2 or Reptin protein in 

vitro. To this effect, p53 protein was immobilised onto a microtitre plate and 

incubated with a titration of His-tagged AGR2 protein, GST-tagged Reptin protein or 

GST only. It was found, that GST-tagged Reptin but not His-tagged AGR2 or GST 

only bound specifically to p53 protein (Figure 6.1 B). Similarly, when GST-tagged 

Reptin was immobilised onto a microtitre plate and incubated with p53 protein in 

mobile phase, it was found that p53 could bind to GST-Reptin protein (Figure 6.1 C). 

Therefore, we concluded that AGR2, Reptin and p53 form a trimeric complex in 

cells and Reptin can directly associate with p53 in vitro.  

As mentioned above, AGR2 protein was shown to prevent activation of p53 

pathway in response to DNA damage. Since we found that p53 and AGR2 had a 

common interaction protein, namely Reptin, we were keen to determine if AGR2-
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Reptin and Reptin-p53 pathways communicate with each other. In detail, we were 

interested to (1) confirm AGR2-mediated suppression of p53, (2) establish Reptin’s 

function with respect to p53 activity. We reasoned that there are three possible 

functions for AGR2-Reptin complex in regulation of the p53 pathway. Firstly, AGR2 

and Reptin may cooperate to inhibit p53 (Figure 6.1 D, i), secondly Reptin may act 

as an activator of p53 and AGR2 may interfere with this function of Reptin (Figure 

6.1 D, ii), and lastly, Reptin may exert inhibitory effect on AGR2 protein and thus 

activate p53 (Figure 6.1 D, iii).  
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Figure 6.1 Human Reptin and AGR2 form a trimeric complex with p53 protein. (A) Cell lysates 
from H1299 cells transfected AGR2 (lanes 1 and 2) or with AGR2 and p53 (lanes 3 and 4) or with 
AGR2, p53 and HA-tagged Reptin (lanes 5 and 6) or with AGR2 and HA-tagged Reptin (lanes 7 and 
8) were incubated with anti-AGR2 polyclonal antibody and protein G beads. The AGR2 immune 
precipitate (IP; lanes  1, 3, 5 and 7) and the unbound fraction (FT, lanes 2, 4, 6 and 8) were loaded 
onto a 12 % SDS-PAGE gel and analysed by immunoblotting using antibodies to p53 and AGR2. p53 
and AGR2 are highlighted. (B and C) Either p53 (B) or Reptin, GST-tagged Reptin, GST, AGR2 (C) 
was immobilized on the solid phase and a titration of either (B) GST-tagged Reptin, GST, AGR2 or 
(C) p53 was added in the mobile phase. The amount of the proteins bound was quantified with 
antibodies specific for either protein using chemiluminescence.  The data are plotted as the extent of 
protein-protein complex formation (in RLU) as a function of the amount of protein in the mobile 
phase [M]. (D) Model of the possible roles of the AGR2 and Reptin complex on the p53 pathway. 
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6.2.2 Reptin and AGR2 exert opposite effects on p53 protein 

levels and its transcriptional activity 

 

Having proposed the three hypotheses regarding the effect that the        

AGR2-Reptin complex could exert on the p53 pathway, we first decided to assess the 

p53 transcriptional activity, upon AGR2 or Reptin overexpression. To this end we 

used reporter constructs in which the promoters of p53 target genes, namely p21, 

MDM2 were fused to Firefly luciferase gene. This enabled us to assess p53 

transcriptional activity by Dual Luciferase reporter assay.  

Firstly, a p53 gene was titrated to determine the amount of DNA required to obtain 

the maximal activity of p53. To this end, H1299 cell were co-transfected with fixed 

amounts of p21 reporter plasmid, a renilla luciferase plasmid, as a control for 

transfection efficiency, and a titration of p53 gene. As little as 5 ng of the p53 gene 

was sufficient to induce expression of p21-firefly luciferase (Figure 6.2 A). Next, to 

confirm AGR2-dependent inhibition of p53 transcriptional activity, H1299 cell were 

co-transfected with fixed amounts of p21 reporter plasmids, a renilla luciferase 

plasmid and AGR2 protein. As an additional control, MDM2 was transfected, as 

MDM2 was previously shown to be able to transrepress p53 protein. Both MDM2 

and AGR2 attenuated transcription of the p21 reporter gene (Figure 6.2 B). In 

addition, the effect of AGR2 on MDM2 reporter expression was measured, and a 

decrease in expression of this promoter was observed, albeit to a lesser extent than in 

the case of the p21 promoter (Figure 6.2 C). In addition, the effect of AGR2 protein 

on p53 protein levels was assessed. It was found that overexpression of AGR2 in 

H1299 AGR2-negative cells resulted in decreased levels or increased ubiquitination 

of exogenously expressed p53 (Figure 6.2 D). Therefore, we concluded that AGR2 

can indeed function as an inhibitor of p53 protein.  
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Figure 6.2 Anterior gradient-2 antagonizes p53-dependent transcription. (A) H1299 cells were 
transfected with increasing amount of the p53 gene (2.5-25 ng), the p21 reporter plasmid and a renilla 
luciferase plasmid. (B and C) H1299 cells were transfected with a fixed amount of the p53 gene, the 
(B) p21 reporter plasmid or (C) MDM2 reporter plasmid, a renilla luciferase plasmid and increasing 
amounts of either MDM2 or AGR2 as indicated in the figure. Twenty four hours post-transfection 
cells were lysed, dual luciferase reporter assay performed and the readings normalised against Renilla 
luciferase activity. The results are expressed as the ratio of p21 or MDM2 reporter activity to Renilla 
reporter activity in [RLU]. Results are representative of at least two independent experiments; error 
bars represent standard error of replicates. (D) H1299 cells were transfected with p53 and without or 
with the increasing amount of AGR2 for 24 hours. The cells were lysed in the dual luciferase assay 
lysis buffer and the steady-state levels of p53 measured by immunoblotting using anti-p53 monoclonal 
antibody (DO-1).   
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Next, to examine the effect of Reptin on p53 transcriptional activity, H1299 cell were 

co-transfected with fixed amounts of p21 reporter plasmids, a renilla luciferase 

plasmid and a titration of Reptin. It was found that Reptin protein could increase 

expression of p21 gene in a dose-dependent manner, however, only at higher 

concentrations of the transfected plasmid (Figure 6.3 A). In addition, when the 

steady-state levels of p53 and p21 were assessed in this experiment, it was found that 

transfection of the increasing levels of Reptin protein resulted in the stabilisation of 

p53 protein (Figure 6.3 B). Surprisingly, the effect of Reptin on p21 protein 

depended on the amount of the transfected Reptin, and at high levels, the amount of 

p21 protein was not further increased. This contrasted with the results of the 

luciferase assay, wherein a steady increase in the activity of the p21 reporter was 

observed with increased levels of Reptin (Figure 6.3 A). However it is worth noting 

that despite numerous advantages of the luciferase assay, such as high sensitivity and 

relatively easy methodology, that allows testing multiple conditions in one 

experiment, there are several drawbacks of this method that could potentially lead to 

artefacts. The main disadvantage is due to the fact that the transcription of the 

reporter gene rather than of the endogenous gene is monitored; the former lacks 

chromatin structure and distal elements in the promoter. As such assessing the 

steady-state levels of p53 and p21 may be a more reliable method to measure p53 

activity. As Reptin overexpression resulted in increased activity of p53, we 

concluded that either (1) AGR2 could exploit Reptin to inhibit p53 in cells      

(Figure 6.3 i), or (2) Reptin acts as a shield to neutralize AGR2 inhibtory effect on 

the p53 pathway (Figure 6.3 ii). 
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Figure 6.3 Reptin stabilises and activates p53. (A and B) H1299 cells were transfected with a p21 
reporter plasmid and a renilla luciferase plasmid, the p53 gene and without or with increasing amount 
of Reptin. Twenty four hours post- transfection cell were lysed. (A) Then dual luciferase reporter 
assay performed and the readings normalised against Renilla luciferase activity. The results are 
expressed as the ratio of p21 or MDM2 reporter activity to Renilla reporter activity in [RLU]. Results 
are representative of at least two independent experiments. (B) The steady-state levels of p53 and p21 
measured by immunoblotting using specific monoclonal antibodies. (C) Model of the possible roles of 
the AGR2 and Reptin complex on the p53 pathway. 
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6.2.3 Reptin specifically binds to Box V and Tetramerization 

domain peptide sequence from p53 protein. 

 

In order to better understand the function of the Reptin-p53 interaction we 

sought to determine Reptin and p53 binding interface in detail. For this purpose a 

series of p53 overlapping peptides composed of 15 amino acids and N-terminal 

biotin tag was used in a peptide pull down assay developed in the lab [577]. In detail, 

streptavidin agarose beads were coated with p53 peptides (Figure 6.4 A) and 

incubated with the cell lysates. We found that four peptides were able to specifically 

pull down ectopically expressed Reptin protein (Figure 6.4 B). Specifically, peptide 

26 and 28 that localise to Box V domain of p53, as well as peptide 38 and 39, which 

reside in tetramerization domain were found (Figure 6.4 B and C).  
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Figure 6.4 Reptin protein binds specifically to Box V and tetramerization domain of p53 protein 
in vivo. (A) A list of p53 overlapping peptides, (B) Biotinylated peptides (as in A) were coupled to 
streptavidin beads and incubated with human cell lysate expressing Reptin. The amount of Reptin 
bound was evaluated by immunoblotting using Reptin- specific antibody; [IN] is an input fraction. (C) 
Schematic representation of the functional domains of p53. Box V (peptides 28-32) and 
tetramerization domain (peptides 38-42) are highlighted.  
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Subsequently, we set out to determine whether or not purified Reptin could bind to 

p53 peptides in an ELISA. Interestingly, we found that Reptin protein expressed in 

bacteria interacted with two peptides, 31 and 38 (Figure 6.5 A). Peptide 31 did not 

pull down Reptin in the in vivo peptide pull down, however as it is within the same 

part of the p53 protein as peptides 26 and 28, namely Box V domain, this suggests 

that this is indeed a valid binding interface. To further test this, we set out to examine 

if any of the p53 peptides that were shown to bind to Reptin, could disrupt the p53-

Reptin complex. To this end p53 was immobilised on the plate and a fixed amount of 

GST-tagged Reptin protein, pre-incubated with a titration of selected p53 peptides, 

was added. Interestingly, only peptide 31 was able to efficiently diminish formation 

of the p53-Reptin complex (Figure 6.5 C). Surprisingly, peptide 38 induced binding 

of the two proteins, indicating an allosteric mechanism of the regulation of Reptin-

p53 protein complex formation (Figure 6.5 B). None of the control peptides, namely 

peptides 30, 32 or 33 or DMSO caused any significant changes in the stability of 

p53-Reptin complex (Figure 6.5 B and C).  Therefore, we concluded that Reptin 

specifically binds to two sites on p53, namely the tetramerization domain and Box V 

domain.   
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Figure 6.5 Reptin protein binds specifically to box V and tetramerization domain of p53 protein 
in vivo. (A) A fixed amount of the indicated biotinylated peptides (as in 5.3 A) was added to a 
microtitre plate coated with streptavidin and incubated with recombinant Reptin. The amount of 
Reptin bound was quantified with antibodies specific for Reptin using chemiluminescence. The data 
are plotted as the extent of protein-peptide complex formation [RLU]. (B and C) Reptin protein was 
preincubated with (B) a titration of peptides 30 and 38 or (C) a titration of peptides 30-33, and added 
to immobilised p53 protein. The amount of Reptin bound to the full length p53 was quantified with 
antibodies specific for Reptin using chemiluminescence. The data are plotted as the extent of protein-
protein complex formation [RLU]. 
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Having found that Reptin protein binds to Box V site in p53, we were 

interested to determine whether or not Reptin could also interact with mutant variants 

of p53 protein, that bear mutations in this domain or in the DNA-binding domain that 

encompasses the Box V motif. Specifically, we sought to determine if p53 proteins 

with mutations that result in the unfolded conformation of p53 retained the ability to 

bind to Reptin protein. Firstly, we decided to establish whether Reptin could form a 

complex with the well characterised p53 mutants: p53 F270A and p53 R175H. To 

this effect, we performed co-immunoprecipitation experiments using lysates of 

H1299 cells transiently expressing AGR2 and HA-tagged Reptin and wild type or 

mutant variants of p53 protein as indicated in the figure. We found that both wild 

type and mutant p53 proteins were present in Reptin and AGR2 immunoprecipitates 

(Figure 6.6 A and B). Interestingly, more p53 proteins was detected in the 

immunoprecipitates from cell lysates obtained from cells transfected with mutant 

proteins (Figure 6.6 A and B, lanes 1 vs. 3 and 5). 

We explored further Reptin’s ability to interact with mutant p53 protein, by assessing 

whether it could form a complex with p53 S269D or p53 S269A. S269D mutation in 

p53 has been recently shown to result in an inactive, unfolded form of p53 [164, 

674]. Again, it was found that both wild type and mutant p53 were present in the 

AGR2 immunoprecipitates (Figure 6.6 C). As an additional control, we were 

interested to see, whether or not Reptin could form a complex with wild type or 

mutant p53 protein in the absence of AGR2. We confirmed that Reptin protein could 

bind both wild type and mutant p53 protein independently of AGR2, albeit AGR2 

co-transfection increased amount of p53 bound to Reptin (Figure 6.6 E, lanes 1-3   

vs. 4-6). In addition, it was found that mutant p53 protein, especially p53 S269D, 

could bind to Reptin more efficiently than its wild type counterpart                  

(Figure 6.6 C and E). We concluded that Reptin could form a complex with the p53 

protein bearing a mutation in the DNA-binding domain. In fact, as mutant p53-

Reptin complexes were more abundant than wild type p53-Reptin complex, we could 

hypothesise that mutant- unfolded conformation of p53, exposes Reptin binding 

motifs in p53 protein. Alternatively, as mutant p53 proteins are stabilised in the 

cancer cell lines, it is possible, that the higher amount of p53-Reptin complexes 
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detected from the cells transiently expressing mutant p53 is a result of the higher 

total levels of these proteins compared to wild type p53.  
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Figure 6.6 Mutant p53 protein forms stable complexes with Reptin in human cell lines. (A and 
B) Cell lysates from H1299 cells transfected with AGR2 and HA-tagged Reptin, and with either wild 
type p53 or p53 F270A or p53 R175H were incubated with (A) anti-AGR2 polyclonal antibody or (B) 
anti-Reptin polyclonal antibody and protein G beads. The immuneprecipitates were loaded onto a 12 
% SDS-PAGE gel and analysed by immunoblotting using antibodies to p53 (DO1). (C and D) Cell 
lysates from H1299 cells transfected with AGR2 and HA-tagged Reptin, and with either wild type p53 
or p53 S269D or p53 S269A mutant proteins were incubated with anti-AGR2 polyclonal antibody and 
protein G beads. The immuno precipitates were loaded onto a 12 % SDS-PAGE gel and analysed by 
immunoblotting using antibodies to (C) p53 (DO1) and (D) AGR2. (E) Cell lysates from H1299 cells 
transfected with HA-tagged Reptin, and with either wild type p53 or p53 S269D or p53 S269A mutant 
proteins and with (lanes 4-6) or without AGR2 (lanes 1-3) were incubated with anti-p53 monoclonal 
antibody and protein G beads. The immune precipitates were loaded onto a 12 % SDS-PAGE gel and 
analysed by immunoblotting using antibodies to Reptin. 
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As Reptin protein was found to bind to peptide 38 from the tetramerization domain 

in p53, we next decided to investigate this binding interface in more detail. Thus, we 

created a peptide library that contained deletion variants of peptide 38 and 

derivatives of peptide 38 in which each amino acid was consecutively replaced with 

Alanine (Figure 6.7 A). Subsequently to identify peptides that had a reduced or 

enhanced binding to Reptin, the wild type peptide 38 and variants of peptide 38 were 

coated onto the microtitre plate and incubated with the respective protein. We found 

that mutating amino acids 328-331 and 340 to Alanine decreased peptide 38-Reptin 

binding. Mutation in residues Isoleucine 332, Arginine 333, 335 and 337, 

Phenylalanine 338 and 341 entirely abolished the interaction. Interestingly, when 

Glycine 334 and Asparagine 336 were changed into Alanine the binding was in fact 

enhanced. In addition, deletion of only Tyrosine 327 as well as 1-4 consecutive 

residues completely prevented the interaction. Interestingly, deletion of only 

Phenylalanine 341 abolished the interaction, whereas removal of Phenylalanine 341 

and adjacent Methionine greatly induced the binding (Figure 6.7 B). 
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Figure 6.7 Identification of key residues in peptide 38 that stabilize the p53 peptide-Reptin 
complex. (A) Peptides 2-24 represent modifications in “peptide 38”. (B) A fixed amount of the 
indicated biotinylated peptides (as in A) was added to a microtitre plate coated with streptavidin and 
incubated with recombinant Reptin. The amount of Reptin bound was quantified with antibodies 
specific for Reptin using chemiluminescence. The data are plotted as the extent of protein-peptide 
complex formation [RLU]. 
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Having defined the residues in peptide 38 that were important for the interaction with 

Reptin, we set out to generate p53 proteins with mutations of the respective residues. 

As such following mutant p53 proteins were created: I332V, R333A, R335A, 

R337A, F338A, E339A.  

Firstly we were interested to determine the effect of Reptin overexpression on the 

wild type and tetramerization domain mutant p53 levels. To this effect H1299 cells 

were transfected with Reptin and wild type or mutant p53 and the levels of both p53 

and p21 proteins were measured. It was found that Reptin stabilised both wild type 

and mutant p53 proteins. In addition, the levels of p21 increased upon Reptin 

overexpression (Figure 6.8 A). Interestingly, only p53 R337A displayed a very low 

activity and it could be only partially rescued upon Reptin overexpression. 

Subsequently, in order to further investigate Reptin’s effect on wild type and mutant 

p53 steady-state levels and activity, H1299 cells were co-transfected with a titration 

of Reptin and a fixed amount of wild type or p53 I332V, p53 R337A or p53 F338A. 

We observed a stimulation of p21 protein with increasing amounts of transfected 

Reptin in cells transiently expressing wild type p53 protein (Figure 6.8 B). In 

addition, Reptin overexpression induced p53 F338A in a dose-dependent manner 

(Figure 6.8 E). Again, it was found that p53 R337A was relatively inactive and 

Reptin’s overexpression could not rescue its activity (Figure 6.8 D). Lastly, p53 

I332V protein was active even in the absence of Reptin, and only mild induction of 

p21 was observed irrespective of the levels of Reptin protein (Figure 6.8 C).  

Lastly the effects of AGR2 on Reptin stimulatory role were evaluated. Specifically, 

H1299 cells were transfected with wild type or p53 I332V, p53 R337A, p53 F338A, 

p53 R335A, p53 E339A mutant genes and a fixed amount of Reptin and with or 

without AGR2 gene and the expression levels of both p53 and p21 were determined. 

We found that co-expressing AGR2 together with Reptin decreased steady-state 

levels of p53 and p21 proteins compare to cells expressing Reptin only            

(Figure 6.8 F, lanes 7-12 vs. 1-6).  

In addition, in these experiments it was found that Reptin overexpression resulted in 

the presence of an additional p53 band that is possibly a cleaved product of p53.  

Previously Mateo and colleagues performed site directed mutagenesis studies on 

p53’s tetramerization domain and provided insights into which residues and what 
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mutations affect the stability, folding and oligomerization of p53 protein [174]. 

Specifically, they reported on two types of mutations including (1) mutations that 

were affecting dimer/tetramer interface and hence prevented dimer/tetramer 

formation or (2) mutations of amino acids that were solvent exposed and did not 

affect p53 oligomerization. These tetramer-disruptive and non-disruptive mutations 

were I332V, R337A, F338A and R333A, R335A, E336A, E339A, respectively. The 

mutations made in this study were in the sites found by Mateo to be crucial for the 

tetramer formation. Therefore, the observed effects of Reptin protein on these mutant 

proteins can be due to either folding of mutant p53 protein or mutant p53 protein 

tetramer formation. However in the present study, we could not conclude which 

mechanism could explain Reptin-dependent stimulation of the activity of p53 protein 

bearing mutation in tetramerization domain.   
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Figure 6.8 Reptin stabilises both wild type and mutant p53 protein. (A) H1299 cells were 
transfected with the wild type or p53 I332V, p53 R335A p53 R337A, p53 F338A, p53 E339A 
expression plasmids and with or without HA-tagged Reptin protein expression plasmid. After 24 
hours, the cells were harvested and p53 and p21 levels were examined by immunoblotting using 
specific antibodies. (B-E) H1299 cells were transfected with the wild type or p53 I332V, p53 R337A, 
p53 F338A, expression plasmids and without or with a titration of HA-tagged Reptin. After 24 hours, 
the cells were harvested and p53 and p21 levels were examined by immunoblotting using specific 
antibodies. (F) H1299 cell were transfected with the wild type or p53 I332V, p53 R335A, p53 R337A, 
p53 F338A, p53 E339A expression plasmids, with HA-tagged Reptin and without or with AGR2 
expression plasmid. After 24 hours, the cells were harvested and p53 and p21 levels were examined 
by immunoblotting using specific antibodies. -Actin levels were monitored as a loading control. 
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As we observed that dose of Reptin gene could change the activity and stability of 

wild type and mutant p53, we decided to explore further the importance of the Reptin 

to p53 ratio in regard to the effect Reptin exerts on the p53 pathway. To this effect, 

H1299 cells were transfected with a titration of p53 protein expression plasmid and a 

titration of Reptin protein expression plasmid, and the levels of p53 and p21 were 

examined. We found that Reptin could induce rather than destabilise p53 protein 

(Figure 6.9 A). Importantly, as the amount of p53 expressed from the same amount 

of the transfected gene varied between experiments, this also affected the extent of 

Reptin’s mediated stabilisation of p53 protein. In addition, it was found that p21 

protein was also induced in response to Reptin overexpression, however, to a 

different extent depending on the ration of Reptin protein expression plasmid to p53 

protein expression plasmid. Furthermore, at the highest levels of both p53 and 

Reptin, Reptin in fact decreased the levels of p21 protein (Figure 6.9 B).  

 

We concluded that Reptin protein has a dual effect on the p53 protein stability and 

activity, and that this is dependent upon the ratios of these proteins. At the higher 

ratios of Reptin to p53 it appears to chaperone p53, as reflected by the increased 

levels of p53 and p21. However, in cells that already have high levels of active p53, 

Reptin can in fact inhibit p53 protein. Importantly, the presence of other modulators 

of p53 protein in H1299 cells, such as MDM2, is likely to add to the complexity of 

this system and to affect the effect Reptin exerts on the p53 pathway.  
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Figure 6.9 Effects of Reptin transfection on p53/p21 protein levels are dependent on the ratio of 
p53 to Reptin. H1299 cells were transfected with increasing amount of wild type Reptin expression 
plasmid and a titration of p53 expression plasmid. After 24 hours, the cells were harvested and (A) 
p53 and (B) p21 protein levels were examined by immunoblotting using specific antibodies. 
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While mapping AGR2-Reptin binding interface, it was found that distinctive pools of 

Reptin protein of different properties existed, depending on whether the protein was 

purified from E.coli or insect Sf9 cells, and whether it was or was not fused to a tag. 

Therefore, we decided to compare the binding of tagged bacterially expressed Reptin 

and untagged protein expressed in eukaryotic cells to p53 peptides. It was found that 

none of the peptides, except for extremely low binding to peptides 17, 18 and peptide 

42 from the C-terminal domain, could be bound by Reptin (Figure 6.10 A). This was 

surprising, as we expected the eukaryotically expressed protein to have similar 

properties to the protein from human cell lysate. Therefore, we hypothesised that the 

presence of nucleotide cofactor could mimic the cellular environment better. To test 

this idea, eukaryotic Reptin was incubated with the p53 peptides in the presence or 

absence of ADP. Interestingly, we observed that inclusion of nucleotide could greatly 

increase Reptin’s binding to peptide 42 (Figure 6.10 A). Additionally, it revealed 

additional binding sites for Reptin, such as peptide 41 and 43 that share part of the 

sequence with peptide 42 (Figure 6.10 A). Further, under these conditions 

eukaryotically expressed Reptin bound to peptide 38 from the tetramerization 

domain and to peptide 27 from the Box V domain, which is consistent with the 

results obtained with bacterially expressed Reptin. This shows that bacterial Reptin, 

in some respects resembles the nucleotide-bound pool of Reptin. On the other hand if 

this was true, binding of prokaryotic Reptin to peptides from the C-terminal domain 

should also have been observed. In fact, we found that upon addition of ATP, 

bacterially expressed Reptin displayed reduced binding to peptides 26, 31 or 38 

(Figure 6.10 B). However surprisingly, Reptin protein expressed in E.coli could only 

bind to peptides 41-43 in the presence of ATP.  

As Reptin could differentially bind to the p53 peptides depending on the 

presence or absence of ATP, we wanted to determine the effect of Walker A or 

Walker B mutations in Reptin protein on Reptin’s ability to stimulate p53 and p21. In 

addition it has been recently reported for other ATP-binding proteins, such as Hsp90, 

that ATP binding was important for their p53 modulating activity [264]. Therefore, 

H1299 cells were transfected with increasing amounts of wild type Reptin or Walker 

A and Walker B mutant Reptin expression plasmids(Walker A and Walker B mutant 

Reptin were discussed in Chapter 4 and 5). We did not observe any differences 
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between wild type and Reptin D299N with respect to p53 stabilisation, as both 

proteins increased steady-state levels of wild type p53 protein in a dose-dependent 

manner (Figure 6.10 A). Specifically, it was found that Reptin stabilised p53 protein 

at ratios of p53 gene to Reptin gene ranging from 1:5 to 1:10 (Figure 6.10 C, lanes 1-

3 vs. 4-5). Interestingly, Reptin K83A mutant was not as effective as wild type and 

Reptin D299N at stabilising p53 under these conditions (Figure 6.10 C). Moreover, 

although Reptin K83A increased p53 levels to a small extent at the lowest ratio, there 

was no further stimulation of p53 with increasing amounts of Reptin K83A gene 

being transfected (Figure 6.10 C). In addition, p21 levels were examined and it was 

found that wild type Reptin protein overexpression led to the induction of p21 

proteins, albeit at a low Reptin to p53 ratio (Figure 6.10 D). Surprisingly, despite the 

fact that Reptin D299N induced p53 protein levels, decrease rather than an increase 

in p21 levels was noted. These data again reflects the complexity and many layers of 

the regulation of p53 protein by Reptin. 
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Figure 6.10 Differential binding of recombinant Reptin protein to p53 overlapping peptides. (A 
and B) A fixed amount of the indicated biotinylated peptides (as in 6.4 A) was added to a microtitre 
plate coated with streptavidin and incubated with recombinant (A) bacterially expressed Reptin with 
or without ATP or (B) Reptin expressed in insect cells with or without ADP. The amount of Reptin 
bound was quantified with antibodies specific for Reptin using chemiluminescence. The data are 
plotted as the extent of protein-peptide complex formation [RLU]. (C and D) H1299 cells were 
transfected with  increasing amounts of wild type Reptin or Reptin K83A, or Reptin D299N 
expression plasmids and with constant amount of p53 (50 ng). After 24 hours, the cells were harvested 
and (C) p53 and (D) p21 levels were examined by immunoblotting using specific antibodies.  
 



 253

6.2.4 Reptin modulates p53 DNA binding activity 

 

To further dissect Reptin’s effect on wild type p53 activity, we set up a direct 

p53 DNA binding assay. Specifically, an EMSA was performed using a radiolabelled 

p21 promoter fragments that are known to be recognized by p53 protein. Firstly, the 

probe was incubated with or without the p53 protein purified from insect cells, to 

establish whether p53 forms an active, DNA-binding tetramer. Indeed, we observed   

a shift in the probe incubated with p53 protein and a decrease in the amount of the 

free probe. Further the titration of p53 protein was performed and a dose dependent 

increase in the shifted bound probe was observed, indicating p53-specific binding 

(Figure 6.11 A). As such we examined the effect of Reptin addition on the p53-DNA 

binding. To this effect, a titration of p53 protein was pre-incubated with a titration of 

bacterially expressed Reptin and the ability of Reptin protein to activate p53 binding 

to p53-specific probe was monitored by EMSA. Upon incubation of 0.1 l or 0.25 l 

of purified p53 with the probe we could not detect p53 bound to the probe (Figure 

6.11 B, lanes 1 and 2). Interestingly, following pre-incubation of 0.1 l or 0.25 l of 

purified p53 with the increasing amount of Reptin protein, it was found that Reptin 

could stimulate p53- DNA binding, (Figure 6.11 B, lane 1 vs. 5-8 and lane 2 vs. 9-

12). Incubation of 0.25 l or 0.75 l of purified p53 with the probe revealed 

relatively high amount of p53 bound to the probe (Figure 6.11 B, lanes 3 and 4) and 

this could not be further stimulated with Reptin (Figure 6.11 B, lanes 3 vs. 13-16 and 

lane 4 vs. 17-20).  Further, as we found that prokaryotically and eukaryotically 

expressed Reptin differed in their p53 binding ability, we tested whether Reptin 

purified from Sf9 cells could also chaperone p53 for DNA binding. Again, Reptin 

protein could induce p53’s DNA binding (Figure 6.11 C). Given that in Chapter 5 it 

was found that Reptin protein can shift into different oligomeric species depending 

on the temperature, we decided to determine how changes in temperature affect its 

chaperoning activity. To this effect p53 and Reptin were incubated at temperatures 

ranging from 4ºC to 30ºC and then probe was added. It was found that regardless of 

the temperature Reptin stimulated p53-DNA binding, but the extent of stimulation at 

different concentrations of Reptin differed depending on the temperature (Figure 
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6.11 D). This data indicated that oligomerization of Reptin may have a role in the 

chaperoning of p53.  

Given that ATP and/or ADP affected Reptin-p53 complex formation, we 

were interested to determine the effect of addition of the nucleotide on Reptin’s 

chaperoning activity. To this effect Reptin was pre-incubated with a titration of either 

ATP or ADP and the amount of p53 bound to its target DNA was examined. As 

expected, given that Reptin has two different classes of ATP binding sites, different 

effects of the addition of nucleotide were observed depending on the concentration of 

the nucleotide and the type of nucleotide as well as on the amount of Reptin protein. 

Firstly, when p53 was incubated with a constant amount of Reptin, the addition of 

increasing amount of ADP enhanced Reptin dependent stimulation of p53-DNA 

binding (Figure 6.12 A). Contrary to this, ATP inhibited Reptin’s effect on p53 

binding to its target sequence. Interestingly, when a broader range of concentrations 

of ADP was incubated with different amounts of Reptin, it was found that the effect 

of this nucleotide on Reptin’s chaperoning activity was largely dependent on the 

concentration of Reptin and ADP. This is in keeping with chapter 5’s results, since it 

was found that two distinct ATP-binding sites exist in Reptin and in addition Reptin 

exists as a mixture of different oligomeric species that are likely to have different 

activities. 
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Figure 6.11 Reptin auguments p53-DNA binding function. The DNA binding function of p53 was 
measured using a radiolabeled p21 DNA sequence and native gel electrophoresis. (A) A titration of 
p53 was incubated with the p21 promoter sequence and the binding activity of p53 was determined 
(B) A titration of p53 protein was incubated without or with a titration of prokaryotically expressed 
Reptin. (C) The p53 protein was incubated without or with eukaryotically expressed Reptin titration. 
(D) The p53 protein was incubated without or with eukaryotically expressed Reptin titration at 4ºC to 
30ºC. DNA-p53 complexes were resolved using a native polyacrylamide gel, dried, and detected by 
storage phosphor screen. Bound and free probe are highlighted. The images of the respective whole 
gels are in supp figure 6.11. 
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Figure 6.12 Nucleotide effects on Reptin-dependent increase in p53-DNA binding function. The 
DNA binding function of p53 was measured using a radiolabeled p21 DNA sequence and native gel 
electrophoresis. p53 was incubated with (A) a titration of Reptin pre-incubated without or with ATP 
or ADP, (B and C) a titration of Reptin pre-incubated without or with a titration of ADP, and the 
binding activity of p53 was determined. The images of the respective whole gels are in supp figure 
6.12. 
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It is worth noting, that we did not observe a supershift of p53 upon addition of 

Reptin. This implies that despite the direct interaction between Reptin and p53, and 

the stimulatory effect of the former on the DNA binding activity of the latter, Reptin 

is not a part of the activated complex. Alternatively, Reptin may be a part of the 

DNA-p53 complex, but it dissociates from it during electrophoresis. Another 

possibility is that it could be that Reptin forms a transient ternary assembly that 

disassembles after p53 is recruited to its putative site. This would be consistent with 

the chaperoning function of this complex. However to resolve this issue, it could be 

tested whether or not antibodies specific to Reptin could shift the complex. 

Interestingly, we found that Reptin could bind to p53 that was bound to its specific 

sequence. However on the other hand, pre-incubating p53 with increasing amounts of 

p53-specific sequence, decreased p53 binding to Reptin, when compared to p53 

incubated with a non-specific DNA. 
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6.3 Discussion 

 
The known interactome of wild type p53 protein comprises over 300 proteins 

however, for many of these interactions the functions of these complexes are not 

completely understood. The hundreds of proteins that p53 binds to are involved in its 

folding, degradation, regulating transcription, and other p53-related processes. The 

mutant p53 interactome is less well-defined than the wild type p53 interactome. 

Interestingly, a number of studies has recently emerged proving that mutant p53 

proteins can bind to some of the components of wild type p53 network and rewire it 

to gain oncogenic activity.  

The p53 protein contains distinct modules that are important for DNA binding, 

transcription regulation, MDM2 or p300 binding, protein kinase binding, and homo-

tetramerization. The great protein binding potential of p53 stems from the fact that it 

contains disordered regions in its N-terminus and C-terminus and in addition the core 

domain of p53 is thermodynamically unstable, which adds to the protein’s flexibility. 

These unstructured or labile regions comprise short motifs that allow the binding 

promiscuity of the protein and therefore allow numerous protein-protein interactions. 

The multi-binding docking sites in p53 allow fine regulation of this protein, dynamic 

changes in the interactome at any give time, and consequently affect the cellular 

outcome of p53 activation.  

In this study, we found yet another p53-binding protein, namely Reptin and 

we showed that Reptin could form a complex with both wild type and mutant p53. 

Interestingly, three peptide motifs were involved in the interaction with the wild type 

p53 protein, namely Box V peptide, Arginine-rich region in tetramerization domain 

and short sequence from the C-terminal regulatory domain. Moreover, differential 

effect of Reptin protein on the p53 activity was observed, making it a novel protein 

amongst proteins such as CHIP and MDM2 that depending on as yet not fully 

understood cellular conditions either downregulate or chaperone p53 protein. 

Box V motif is a highly conserved region in the thermodynamically unstable 

DNA core domain of p53. This region is remarkable for its conformational flexibility 

[323]. Moreover, this motif has been shown to provide MDM2 ubiquitination signal 

and form a docking site for multiple protein kinases [160-162, 196]. Interestingly, 
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mutations in p53 at this interface, or in the core domain of p53, such as R175H or 

F270A, predispose p53 to MDM2-mediated ubiquitination [160] and it was shown to 

be due to the increased binding of MDM2 to this mutant protein. Interestingly, we 

found that Reptin-p53 R175H and Reptin-p53 F270A complexes were more 

abundant than Reptin-wild type p53 complex, probably due to the higher levels of 

the mutant protein present in the cell. Indeed, the p53 mutant proteins appear to be 

inherently stable in cancer cells and were found to be stabilized in some cancers in 

mice, however not in normal tissues [300, 301, 308]. In addition, Reptin protein 

formed a stable complex with p53 protein bearing S269D mutation. Ser269 

phosphorylation has been recently shown to play a role in inactivating p53 protein 

following DNA damage. Specifically a model was proposed whereby two distinct 

pools of wild type p53 could form in response to DNA damage: transcriptionally 

active one and inactive phospho-Ser269 p53 [164, 674] that could function 

independently of the classic p53-dependent transcription programme. Indeed, p53 

S269D displayed enhanced ubiquitination in vivo, was inactive for DNA binding in 

vitro and inactive in respect to p21 and MDM2 induction in vivo, however it is 

stabilised in cells [164, 674]. As Reptin formed a more stable complex with p53 

S269D than with the wild type p53 protein, it would be interesting to determine, 

whether this interaction is involved in the stabilisation of this inactive (at wild type 

functions) protein, for example by preventing its ubiquitination or degradation. It has 

not been established yet whether, similar to other mutant proteins, the phospho-

mimetic form of p53 protein has independent functions to the wild type protein. 

However, since Reptin overexpression led to stabilisation of other mutant p53 

proteins, we could hypothesise that this is yet another example of mutant p53 protein 

being able to rewire the wild type p53 protein interacting landscape. Further, these 

findings could form the basis for developing tools/drugs that disrupt mutant p53 

protein-Reptin interactions and lead to degradation of mutant protein in cancer cells. 

Some of the mutations that were investigated in this study are know to result 

in an unfolded or structurally distorted p53 protein. These proteins are commonly 

found in complexes with molecular chaperones, such as Hsc70 and Hsp90 [164, 308, 

674]. In addition, molecular chaperones were found to interact with wild type p53 

and assist in its assembly and proper folding [675] and stimulate p53 DNA binding 
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activity [264]. Similarly to these proteins, Reptin formed a stable complex with the 

unfolded p53 mutant proteins. In addition, Reptin increased transcriptional activity of 

wild type and mutant p53 and stabilised wild type p53-DNA binding in EMSA. 

Based on Reptin’s activating role in p53-DNA binding and its increased interaction 

with unfolded and stabilised mutant p53 protein, we can propose that Reptin is yet 

another molecular chaperone for p53 protein. As Reptin increased p53 activity even 

at physiological temperature, it seems that p53-DNA interaction is highly influenced 

by chaperones even under normal conditions. Indeed, Walerych and colleagues 

found that Hsp70 and Hsp90 were required for the folding of the wild type p53 

protein [263]. In addition, these data also show that a fraction of the p53 is 

unfolded/misfolded or monomeric and unable to bind DNA in vitro. Moreover, the 

same observation has been made in vivo [266]. Although wild type p53 forms a 

direct interaction with Reptin protein, we could not test whether or not Reptin forms 

a physical contact with the mutant p53 proteins. In fact, it is possible that the 

interactions that Reptin forms with mutant p53 proteins are indirect. For example, it 

was found that Hsp90, another chaperone protein, formed a complex with some p53 

structural mutants, such as p53 R175H, however these interaction were not direct and 

required other chaperone proteins [261].  

We found that Reptin-dependent induction of p53 DNA binding was modulated by 

ATP and ADP. Addition of the nucleotides either stimulated or decreased DNA 

binding, depending on the concentration and type of the nucleotide. This is in 

agreement with the findings that Reptin has two distinct ATP binding sites which 

presumably display diverse affinities to different nucleotides. The presence of ATP 

or ADP can affect Reptin itself in different ways, depending on various conditions, 

such as temperature. Moreover, the concentration of the available nucleotide affects 

the rate of hydrolysis, the occupancy of the ATP binding sites, the conformation and 

oligomerization. These effects on biochemical properties of Reptin are likely to alter 

its chaperoning ability and other activities. Reptin, similarly to Hsp90, likely 

undergoes multiple transient interactions which depending on the presence of 

nucleotide or co-chaperones can be tuned to performed different tasks. Hence, 

differences in both in vitro and in vivo response will be observed, as this is intrinsic 

and required for the chaperones’ activity [332, 588]. 
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In addition, we found that Reptin K83A was less active than wild type Reptin or 

Reptin D299N at stabilising wild type p53 protein. In silico screens, aiming at 

targeting Reptin ATP-binding pocket could result in the identification of lead 

molecules that could be used as tools to unravel the mechanism of Reptin-dependent 

stabilisation and folding of wild type and mutant p53 in cancer cells. Such ideas have 

already been exploited for another molecular chaperone, namely Hsp90. Natural 

product geldanamycin and its analogues were found to inhibit Hsp90 and favoured 

mutant p53 association with the Hsp70-CHIP ubiquitination-degradation proteins 

[262, 675].  

In this study it was found that Reptin stimulated transcription of the p53 

target gene p21 in vivo. The transcriptional activities of p53 as well as its turnover 

are tightly regulated by post-translational modifications and PPIs [666]. For example 

acetylation of p53 is essential for recruitment of transcriptional cofactors whereas 

phosphorylation alters p53’s PPI and consequently modulates p53’s activity as a 

transcription factor. p53 is also targeted for degradation by ubiquitination. 

Interestingly, Reptin is embedded in the TIP60 complex [360] that has been found 

previously to participate in p53-acetylation. Specifically, TIP60 acetylates Lys120 in 

response to DNA damage and this leads to transactivation of apoptotic genes 

including PUMA [230, 231, 676]. In addition, Tip60 was found to be essential for 

p21 expression following DNA damage [676, 677]. Moroever, it was found that 

Tip60 could inhibit MDM2-induced degradation of p53 [676]. As Reptin associates 

with this acetyltransferase and was found to be critical for the appropriate assembly 

of Tip60 complex, it is likely that Reptin may modulate p53 activity by affecting p53 

or histone acetylation.  

In addition, Reptin is also involved in a complex with other p53 modifying enzymes 

namely SMG-1 and ATM. SMG-1 and ATM kinases control p53 phosphorylation. It 

appears that SMG-1-dependent phosphorylation initiates p53 phosphorylaiton in 

response to hypoxia and ATM maintains the phosphorylation of p53 over time [678, 

679]. This results in p53-dependent activation of p21 expression. In addition ATM 

and SMG-1 control p21 stability. Currently, we do not know whether Reptin’s 

regulation of p53 activity involves any of its PPIs and/or p53 PTMs. We did not 
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observe differences in the phosphorylation or acetylation of common residues in p53 

in this study (data not shown).   

In addition Reptin overexpression resulted in the stabilisation of p21 protein in cells 

transiently expressing different types of mutant p53 proteins. p21 was the first 

discovered cdk inhibitor that, through negative regulation of cell proliferation, is 

thought to prevent tumourigenesis [680]. Indeed, p21-null mice succumb to cancer 

development and mice bearing mutant p53, that can activate p21, display later onset 

of spontaneous tumours [681]. Since Reptin increased p21 expression it could 

indicate that it acts as tumour suppressor. However, in some cells p21 expression has 

been associated with pro-survival signals. For example, cells that have lost p21 are 

more sensitive to anticancer drugs [682]. In addition, p21 was found to be 

overexpressed in some human cancers [683]. Interestingly, Hsp90 stabilises p21, as 

Reptin does, and it is thought that it may act as the oncogenic signal in some cancers 

that depend on p21 for their survival. In this study, Reptin’s effect on wild type and 

mutant p53 activity was only monitored by assessing p53 and p21 levels. However, 

mutant p53 may exert gain of function on a subset of genes distinct from wild type 

p53 target genes and their products may promote tumourogenic growth [684, 685]. 

Therefore it would be interesting to investigate whether Reptin protein, by stabilising 

mutant p53 protein, increases expression of such genes.  

In addition to the core domain, Reptin bound to C-terminal peptide of p53, 

however, only in the presence of nucleotide. As was already described in chapter 5, 

the presence of nucleotide affects reptin thermostability and changes its 

oligomerizations status. This implies that the ATP binding-triggered change in 

Reptin conformation/oligomerization forms a distinct pool of Reptin that could 

potentially differentially regulate p53. Interestingly, similar observation of ligand-

dependent specificity for target protein was made for MDM2 protein. It was found 

that MDM2 interaction with RNA caused conformational change that reduced its 

affinity for its primary binding site in the N-terminus of p53 and switched the 

specifity for the Box V motif of p53 [160]. This data further underscores the 

conformational dynamism of Reptin. It is difficult to assess how ATP binding by 

Reptin regulates the C-terminus of p53-Reptin interaction in cells, as it is hard to 

establish the amount of Reptin bound to ATP or to ADP or Reptin- nucleotide free 
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complexes in vivo. Determining Reptin’s structure and understanding better its 

oligomerization can give us further insight into p53-Reptin interaction.  

The p53 C-terminal regulatory domain contains sites of methylation, acetylation, 

phosphorylation, ubiquitination, sumoylation, and neddylation that regulate p53 

function and protein levels (reviewed in [660, 686]). Reptin interaction with the      

C-terminal negative regulatory domain could affect the range of modifications that 

p53 undergoes. For example by binding to this C-terminal domain Reptin may 

sterically block post-translational modifications. Interestingly, C-terminal domain 

forms a docking site for a variety of proteins, including proteins acting as 

transcription cofactors [189, 219, 687], proteins that sequester or inhibit p53 activity 

by directly binding to the C-terminus [180, 688] and proteins that modify this site 

[219, 256, 689, 690]. As already mentioned, the large regions of disorder are a key 

feature of the p53 protein that allows it to have such an extensive interactome [138]. 

Two implications of this are that this domain can bind various partners, however the 

mode of binding is different. For example, this domain folds into a helix upon S100B 

binding [186], it forms -strand following Sir2 binding [187], -turn when bound to 

cAMP response element-binding (CREB) binding protein (CBP) [189] and lastly it 

lacks any ordered secondary structure in the complex with the cyclin A/cyclin-

dependent protein kinase 2 complex [188]. In addition to this, the C-regulatory 

domain binds DNA non-specifically through the low affinity interactions of several 

lysine residues and this inhibits binding of a specific DNA sequence by the core 

domain [691, 692]. This inhibition can be relieved upon C-terminus-specific 

antibody binding, PTMs, or its deletion [691]. It would be interesting to know 

whether Reptin’s interaction with the C-terminal peptide relieves p53 from the 

inhibitory effect of binding of this domain to the core domain. At present the 

structure that CTD adopts upon binding to Reptin is not known. Interestingly, it was 

found that many of the p53 CTD binding site partners use the hydrophobic binding 

pocket for the interaction with this motif [693]. As Reptin binds to C-terminal 

domain only in the presence of ATP (at least in the peptide binding assay), we could 

speculate that ATP addition generates conformational change that results in the 

formation, or opening, of the hydrophobic pocket in Reptin. In addition, as the dual 

effect of Reptin overexpression on p53 stability was observed, it is possible that 
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depending on whether C-terminus is engaged or not in the p53-Reptin interaction, 

different responses can be observed. 

Interestingly, differential binding to the C-terminus has been shown for the S100 

protein family members [180, 694-696]. The S100 protein family comprises over    

20 EF-hand calcium-binding proteins with several functions and tissue distributions 

[697]. S100A4 expression has been associated with metastasis [698, 699]. 

Interestingly, all of the p53-binding S100 proteins, including S100B and S100A4, 

S100A1, S100A2, S100A6, and S100A11 bind preferentially to the tetramerization 

domain [180, 688]. S100 proteins could mostly bind to the p53 monomer, however a 

subset of S100 proteins could also interact with tetrameric p53 [700]. We do not 

know at present which oligomerizaiton state of p53 is preferentially bound by Reptin. 

It is also unclear whether Reptin is directly involved in the regulation of p53’s 

oligomerization state. Interestingly, we found in the peptide binding assay, that 

Reptin bound with the highest affinity to peptide 38, from the tetramerization 

domain. In fact, peptide 38 appeared to stabilise Reptin-p53 interaction, indicating 

that it may be the primary binding site that allosterically modulates Reptin and 

stimulates binding to other sites on p53.  

We found that depending on the p53 to Reptin ratio different effects on p53 

activity were observed. In the in vitro assays, very high concentration of p53 bound 

efficiently to DNA without Reptin, and Reptin did not affect it further, or could 

inhibit the binding, indicating that p53 could form an active tetramer at this 

concentration. However, at very low levels, p53 was inactive, and only upon 

incubation with Reptin, p53 binding to its target sequence was observed, suggesting 

that Reptin could help in folding and assembling of the active p53 tetramer. In the   

in vivo experiments, Reptin could also differentially affect p53 depending on the 

concentrations of p53. At very low levels of p53 (possibly levels resembling non-

stressed situation, when p53 is not active), Reptin activated p53 transcription. 

However, at the higher levels (reflecting p53 levels in the stressed condition), Reptin 

could actually downregulate p53 activity. We can hypothesise that under normal 

conditions p53 is at low levels and remains inactive, and probably a fraction of it 

exists as a monomer/inactive tetramers. Reptin could bind to monomers and affect 

the oligomerization equilibrium (help to form tetramer) and activate it for DNA 
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binding. Conversely, at the high levels of p53, when tetramer is formed on the 

chromatin, Reptin binds, and may facilitate recruitment of co-factors; for example, 

Tip60 or other chromatin modelling enzymes and activate p53. In addition in stressed 

cells, when the concentration of p53 is very high, and all of p53 is tetrameric and 

active, Reptin could possibly function to dissociate the tetramer or target it for 

inactivation, or to switch off the response. At the same time, high and low levels of 

p53 may lead to different amounts of folded and unfolded p53, and switch on 

different activities of Reptin towards these different pools of p53. Interestingly, 

S100B has a different effect on p53 activity, depending on its levels, with low to 

moderate levels having a co-operative effect in the activation of p53 activity [178, 

701] and high levels preventing p53 oligomerization and consequently inhibiting its 

activity [702]. 

Another relevant observation from the studies on S100 proteins is that despite the 

high sequence similarities between S100 proteins family members, they bound 

differentially to p53. Specifically, S100B and S100A2 bind well to both                   

the C-terminal region and the tetramerization domain [180, 688], whereas S100A4 

interacts strongly only with the oligomerization module. Similarly, ligand binding by 

Reptin may bring about different pools of Reptin that either bind, or not,                 

the C-regulatory domain, and exert different effects on p53 activity.   

Despite the fact that Reptin chaperoned p53 to bind to its target sequence, we 

did not find Reptin in the p53-DNA complex, even though Reptin can bind to p53 

bound to DNA as suggested by preliminary data (data not shown). However, this is 

in agreement with the chaperone function of Reptin. Reptin binding to p53 stabilises 

the latter and induces DNA binding. Once the p53 protein is bound to its target 

sequence DNA, the chaperone function of Reptin is not required anymore and it 

dissociates from the complex. Similarly, the mutant p53 stabilising peptide CDB3, 

which was derived from a p53 binding protein, binds and stabilises p53 DNA-

binding domain, however DNA binding to p53 displaces the peptide. Indeed, we 

found that p21 DNA competed with Reptin for p53 binding in an ELISA and 

similarly it was found that gadd45 DNA dissociated CDB3 from p53 as well [703].  

In this study AGR2 protein decreased wild type p53 protein levels, inhibited 

its transcriptional activity and decreased p21 protein levels. In addition it was found 
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that overexpression of AGR2 could overcome Reptin-mediated stabilisation of wild 

type and mutant p53 indicating that AGR2’s inhibition of p53 may be a dominant 

pathway.  

 

In summary, in this study we found that AGR2-binding protein Reptin interacts with 

the p53 protein both in vitro and in vivo. Depending on the ratios of these proteins, 

Reptin either stabilises p53 protein and increases the transcription of its target gene, 

or inhibits it and attenuates the expression of p21. In addition, we found that Reptin 

interacted with and stabilised mutant p53 protein. Given that cancer cells evolved to 

evade the normal degradation pathways for mutant p53 protein, these findings further 

our understanding of the mechanisms of mutant p53 stabilisation and manipulating 

Reptin-mutant p53 interaction may add to the strategies to develop means to degrade 

mutant p53 protein.  
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Chapter 7: Conclusions, future work and preliminary 

data  

 

p53 is a major hub in the cellular network that functions as a tumour 

suppressor through its role in the regulation of the cell cycle and cell death. The p53 

pathway is commonly misregulated in cancers and efforts to reactivate it or to 

inactivate the oncogenic functions of mutant p53 protein are the main strategies 

pursued by current drug discovery programmes. In the last decade, AGR2 protein has 

been found to be overexpressed in a number of different cancers, its expression could 

predict poor prognosis for ER-positive breast cancer patients and tamoxifen 

response. In addition, AGR2 has been shown to inhibit p53 activity.  

The regulation of AGR2-p53 pathway, as well as the mechanism of AGR2-

mediated inhibition was largely undefined before this study. In this work, we have 

found that TGF- and ATM kinase pathways downregulate AGR2 protein and that 

this leads to the stabilisation and activation of p53, and the p53 target gene p21. We 

have identified novel substrate of ATM kinase, namely SNIP1, and subsequently 

showed that it is involved in the negative regulation of AGR2 protein. In addition, 

data obtained using chemical inhibitors of protein degradation suggested that AGR2 

is degraded via the lysosomal pathway. However, several questions arose during the 

course of this study and have not been fully addressed as yet. Firstly, it is not clear 

what the physiological outcome of TGF--ATM-mediated downregulation of AGR2 

is. It was hypothesised that removal of AGR2 may be required for the initiation of 

EMT. However, future work should be directed at determining whether AGR2 loss 

indeed triggers the EMT and leads to altered migration and invasion. In addition, 

although it was concluded that AGR2 is degraded in lysosomes, AGR2 protein was 

predicted to be a secreted protein, and the current report did not rule out the 

possibility that TGF- or ATM trigger secretion of AGR2. In the future, the levels of 

AGR2 in the medium from cells treated with TGF- will be compared to that of 

untreated cells. Should AGR2 protein be secreted, this protein could turn out to have 

an entirely different function in the process of EMT or migration, and, for example, 

could act as an autocrine pro-migratory factor. Hence, it is crucial to determine 
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whether AGR2 is indeed targeted for degradation or secreted in response to TGF- 

treatment. 

In search for the mechanism of AGR2-mediated regulation of p53 pathway, 

we explored the vaguely understood interactome of AGR2. We found that AGR2 

forms a complex with the multifunctional Reptin protein and this interaction is 

mediated by a short linear motif in the loop sequence of AGR2 protein. In addition, 

Reptin was found in a complex with p53 protein and could increase its steady-state 

levels and induced its transcriptional activity. We proposed a model whereby Reptin 

could chaperone p53 and AGR2 protein could exploit it to inhibit p53, as 

overexpression of AGR2 could prevent Reptin-mediated stabilisation of p53. 

Importantly, the stimulatory effect of Reptin was dependent on the ratio of Reptin to 

p53 protein, and at high p53 to Reptin ratio, Reptin, in fact, downregulated rather 

than stimulated p53 activity. It is still unclear whether AGR2 indeed blocks Reptin-

dependent activation of p53 or whether it is Reptin that actually “shields” p53 from 

AGR2. Data obtained in this study support the first model, however, the second 

hypothesis could also be true. Since AGR2 was found in a trimeric complex with p53 

and Reptin, it would be interesting to investigate whether AGR2 F104A and AGR2 

Y111A (AGR2 loop mutants), that we showed have reduced Reptin binding ability, 

retain their ability to inhibit p53. The initial observation from H1299 cells transiently 

expressing either wild type AGR2 or AGR2 loop mutants is that the latter are in fact 

more potent as inhibitors of p53. These data suggests that AGR2 bound to Reptin 

looses its p53-inhibitory activity and consequently the mutations in AGR2 sequence 

that disrupt its binding with Reptin make it a better inhibitor of p53.  

The oligomerization properties of Reptin add into the complexity of the 

AGR2-p53-Reptin pathway. Currently, we do not know whether or not Reptin can 

interact with either AGR2 or p53 as a hexamer or monomer. Future work could 

determine this and address the question of whether different oligomeric species of 

Reptin exert different effects on p53 activity. In this study, it was found that although 

the Walker A mutant did not affect the levels of p53, it was able to activate p53. On 

the other hand, Walker B mutant stabilised p53 protein, however, it was less active as 

a chaperone of p53 transcriptional activity. These differential effects of mutations 

suggest that indeed depending on the conformation/oligomerization status of Reptin, 
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different outcomes regarding p53 could be expected. In chapter 5 we found that 

Walker A mutations sensitises Reptin to ATP-dependent oligomerization, whereas 

Walker B mutation stabilises the mutant protein in the hexamer form already in the 

absence of ATP, and addition of ATP can actually disrupt the hexamer. These 

findings could form a basis for the hypothesis that different pools of Reptin as well 

as different ratio of Reptin to p53 will result in different cellular responses. Firstly, 

Reptin is likely to interact with p53 protein both as a hexamer and a monomer, and 

this could have different effects on p53, as either hexamer or monomer are likely to 

(1) recruit different co-factors to the complex, (2) have different subcellular 

localisation, (3) have different ATP-binding and ATPase activities. In addition, the 

distinct oligomeric forms of Reptin can also differentially affect AGR2 and AGR2’s 

p53-inhibitory function (Figure 7.1). 
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Figure 7.1 Schematic model of hypotheses on the function of Reptin-AGR2-p53 trimeric 
complex. The nucleotide influences the oligomeric status of Reptin protein. Reptin either as a 
hexamer or as a monomer interacts with and regulates p53 activity. In addition, AGR2 can regulate 
either a hexameric or monomeric Reptin and inhibit its chaperoning activity towards p53. 
Furthermore, Reptin interaction with AGR2, somewhat interferes with the AGR2-mediated inhibition 
of p53 protein. 
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This study revealed that ATP or ADP binding to Reptin can allosterically modulate 

activities of Reptin such as AGR2 binding, p53 peptides binding, and Reptin’s p53 

chaperoning activity. As such we reasoned that it is important to develop tools that 

would enable us to investigate the importance of the ATP binding pocket on Reptin’s 

function, including AGR2 binding and chaperoning activity towards p53. 

Specifically, obtaining small molecules that could target an ATP binding pocket on 

Reptin could be a useful tool to study Reptin’s biochemical properties as well as to 

modulate AGR2-Reptin, Reptin-p53 complexes, and subsequently establish the 

function of these assemblies in vivo. We have used structure based in silico 

modelling to develop novel modulators of Reptin. As there is no crystal structure 

solved for Reptin, the screen was performed based on the Pontin structure. The 

reason for this was that the Reptin and Pontin share high level of homology, 

especially in the conserved Walker A and B motifs that form the ATP-binding 

pockets, and thus any hits obtained in modelling could potentially bind to both 

Reptin and Pontin. In search for Reptin ligands, a database of 5 million compounds 

was used as an input for a screen looking for compounds that would match Reptin’s 

active site. Subsequently the molecules were docked into the structure using both 

Vina and Autodock, and compounds that had highest scores were pursued further 

(unpublished data, Douglas Houston). From the list of thousands of highly scored 

hits we purchased thirty one compounds (Table 7. 1) and tested them in the ELISA 

ATP binding assay developed in this study and described in chapter 5. Three groups 

of compunds were identified: (1) compounds that did not disrupt ATP-Reptin 

interaction, (2) molecules that competed with ATP for binding to Reptin, and lastly 

(3) compounds were found that could in fact increase Reptin-ATP interaction (Figure 

7.2).  
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Table 7. 1 List of lead molecules 
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Figure 7.2 Testing the effect of the componds identified in the screen on Reptin-ATP binding. A 
fixed amount of the indicated biotinylated ATPs (as in 5.7 A) was added to a microtitre plate coated 
with streptavidin and incubated with Reptin protein that had been preincubated with a titration of lead 
molecules (as in Table 7.1) or with a titration of ATP. The amount of Reptin bound was quantified 
with antibodies specific for Reptin using chemiluminescence. The data are plotted as the extent of 
protein-ATP complex formation [RLU]. 
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Given the complexity of Reptin it is not immediately obvious whether molecules that 

can stimulate or inhibit ATP binding can prove more useful. In fact, it appears that 

developing molecules that differentially modulate Reptin’s function is important.  

Further characterisation of these lead molecules with respect to their effect on 

Reptin- p53 interaction or Reptin-mediated stimulation of p53-DNA binding is 

required. Interestingly, the preliminary data suggest, that the binding in the ATP 

pocket does not have the same effect as ATP binding. For example a selection of 

compounds has been tested in the assay measuring Reptin-AGR2 binding. It was 

found that some compounds could enhance whereas others decreased Reptin-AGR2 

interaction (Figure 7.3).  This means that different compounds cause different 

allosteric effects on Reptin protein. This could help us defining how particular 

conformations/oligomerization effects of the given compound affect Reptin function 

both in vitro and in vivo. In addition, the compounds will be tested in cross-linking 

experiments. Identification of molecules that switch equilibrium into a particular 

oligomeric species could help to unravel their functions in processeses such as 

chaperoning p53 activity.  
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Figure 7.3 Molecules that target ATP-binding pocket of Reptin differentially affect AGR2-
Reptin binding. AGR2 was immobilized on the solid phase and Reptin that has been pre-incubated 
with a titration of compunds or ATP or ADP (as indicated in the figure) was added in the mobile 
phase. The amount of Reptin bound was quantified with specific antibodies using chemiluminescence.  
The data are plotted as the extent of protein-protein complex formation (in RLU) as a function of the 
amount of protein in the mobile phase [M]. 
 
 



 277

Reptin operates as a part of a different of multi-protein complexes, and our study 

emphasised that it possesses allosteric sites. Owing to the complexity of this protein, 

it is not surprising that identified compounds will either stimulate or inhibit different 

functions of Reptin. Thus, these drugs may form the toolbox to study Reptin-AGR2 

complex, Reptin-p53 complex, and other Reptin complexes, such as assemblies with 

transcriptional machinery, NMD pathway proteins or telomerase complex. In 

addition they will for a basis to understand Reptin’s biochemical properties such as 

oligomerisation or ATPase activity.   

In summary, this study has further defined the mechanism of regulation of AGR2 

and p53 pathways. The identification of Reptin protein as the novel AGR2 

interacting partner presented in this thesis has formed the basis for unravelling AGR2 

function. In addition, biochemical characterisation of Reptin protein has revealed the 

allosteric properties of this protein. These findings instigated identification of small 

molecules that modify Reptin’s functions and may help to elucidate the mechanism 

of its function in vivo. Finally, this report identified Reptin as a wild type and mutant 

p53 binding and regulatory protein. The identification of this interaction potentially 

offers a novel therapeutic strategy for reactivating wild type p53 pathway in cancer 

cells. 
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Appendix 1 

p53 interactome and bibliography (date of discovery in brackets)   
  
5.8S RNA (1991-1992) [13-14]  
14-3-3 (1998) [74-75] 
Abl1 (2000) [104] 
AIMP2 (2008) [288] 
ANKRD2 (2004) [204] 
ANKRD11 (2008) [295] 
ANXA3 (2005) [224]  
Apak (2009) [314] 
APTX (2004) [203] 
ARA54-associated AR inhibitor (2010) [345] 
ARF (1998) [73] 
ARIH2 (2005) [224]  
ARL3 (2005) [224]  
ASCOM (2009) [310] 
ASSP1 (2001) [139]  
ASSP2 (2001) [139] 
ATF3 (2002) [154] 
ATM (1998) [80]  
AURKA (2002) [167] 
AXIN1 (2004) [213] 
BACH1 (2008) [296] 
BAF53 (2007) [273] 
Bak1 (2004) [202]  
BARD1 (2001) [146] 
BCL-2 (2005) [214] 
BCL-XL (2005) [214] 
BCR (2005) [224]  
BID (2009) [335] 
BLM (2001) [134-135] 
BRCA1 [69-70] 
BRCA2 (1998) [76] 
BRD7 (2010) [346] 
BTBD2 (2005) [224]  
ß-TrCP1 (2009) [305] 
BZLF1 (1994) [31] 
CABIN1 (2009) [328] 
CABLES2 (2003) [197] 
CARM1 (2004) [207] 
CARPs (2007) [254] 
Casein kinase II (1992) [17]  
CCDC106 (2005) [224], [227]  
CCL18 (2005) [224]  
CCNG1 (2003) [178]   
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CCT5 (2005) [224]  
Cdc14 (2000) [103] 
CDC42 (2005) [224]  
CDK5 (2007) [266] 
CDK7 (1998) [77] 
CDK9 (2006) [237] 
CDKN2AIP (2007) [258]  
CDKN2C (2005) [224]  
C/EBPß (2006) [232]  
CEBPZ (2003) [184] 
CHD8 (2008) [298] 
CHEK1 (2002) [158] 
CHIP (2007) [269]  
COP1 (2004) [205] 
COPS5 (2001) [128] 
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Supp Fig. 1 Images of the whole gel as in figure 6.11 
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Supp Fig. 2 Images of the whole gel as in figure 6.12 
 



 346

Appendix 3 

Papers 
 
 



doi:10.1016/j.jmb.2010.09.035 J. Mol. Biol. (2010) 404, 418–438

Contents lists available at www.sciencedirect.com

Journal of Molecular Biology
j ourna l homepage: ht tp : / /ees .e lsev ie r.com. jmb
A Divergent Substrate-Binding Loop within the
Pro-oncogenic Protein Anterior Gradient-2 Forms a
Docking Site for Reptin

Magdalena M. Maslon1, Roman Hrstka2, Borek Vojtesek2

and Ted R. Hupp1⁎
1Cancer Research UK p53 Signal Transduction Laboratories, Cell Signalling Unit,
Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EX4 2XR, Scotland, UK
2Masaryk Memorial Cancer Institute, Brno 656 53, Czech Republic
Received 15 June 2010;
received in revised form
15 September 2010;
accepted 15 September 2010
Available online
1 October 2010

Edited by M. Yaniv

Keywords:
p53;
Reptin;
AGR2;
cancer;
ATP
*Corresponding author. E-mail add
Abbreviations used: AGR2, anter

hemagglutinin; GST, glutathione S-t
reaction; PBS, phosphate-buffered s

0022-2836/$ - see front matter © 2010 E
Anterior gradient-2 (AGR2) functions in a range of biological systems,
including goblet cell formation, limb regeneration, inhibition of p53, and
metastasis. There are no well-validated binding proteins for AGR2 protein
despite the wealth of data implicating an important cellular function in
vertebrates. The yeast two-hybrid system was used to isolate the ATP
binding protein Reptin as an AGR2-interacting protein. AGR2 formed a
stable complex in human cell lysates with Reptin, thus validating Reptin as
an AGR2 binding protein in cells. Reptin was also shown to be
overproduced in a panel of primary breast cancer biopsy specimens,
relative to normal adjacent tissue from the same patient, suggesting a role in
cancer growth in vivo. Mutations were made at the two ATP binding motifs
in Reptin to evaluate the effects of ATP on Reptin–AGR2 complex stability.
Loss-of-ATP binding mutations at the Walker A motif (K83A) or gain-of-
ATP binding mutations at the Walker B motif (D299N) resulted in Reptin
mutants with altered oligomerization, thermostability, and AGR2 binding
properties. These data indicate that the two ATP binding motifs of Reptin
play a role in regulating the stability of the AGR2–Reptin complex. The
minimal region of AGR2 interacting with Reptin was localized using
overlapping peptide libraries derived from the AGR2 protein sequence. The
Reptin docking site was mapped to a divergent octapeptide loop in the
AGR2 superfamily between amino acids 104 and 111. Mutations at codon
Y104 or F111 in full-length AGR2 destabilized the binding of Reptin. These
data highlight the existence of a protein docking motif on AGR2 and an
ATP-regulated peptide-binding activity for Reptin. This knowledge has
implications for isolating other AGR2-interacting proteins, for developing
assays to isolate small molecules that target the Reptin ATP binding
site, and for measuring the effects of the Reptin–AGR2 complex in
cancer cell growth.
© 2010 Elsevier Ltd. All rights reserved.
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Introduction
Anterior gradient-2 (AGR2) is a protein whose
function is proving to play an increasingly critical role
in a diverse range of biological systems, including
vertebrate tissue development, inflammatory tissue
injury responses, and cancer progression. AGR2 was
identified initially as a secretory factor expressed in
the anterior region of the dorsal ectoderm in Xenopus
laevis embryos, where it was postulated to mediate
the specification of dorsoanterior ectodermal fate,
particularly in the formation of the cement gland.1,2
AGR2 was subsequently cloned as a gene whose
expression is inducedby the estrogen receptorα,3 and
subsequent studies in primary breast carcinomas
have also shown significant associations between
AGR2 expression and estrogen receptor-α positivity
or tamoxifen resistance.4,5 Clinical studies have
shown that the AGR2 protein is overexpressed in a
wide range of human cancers, including carcinomas
of the esophagus, pancreas, breast, prostate, and
lung.4,6–9 More biological studies in cell lines have
showna significant role forAGR2 in tumor-associated
pathways, including tumor growth, cellular transfor-
mation, cell migration, limb regeneration, and
metastasis.8,10–12

AGR2 protein was also identified as part of a
clinical proteomics screen aimed at discovering
novel inhibitors of the tumor suppressor p53, and
it was subsequently validated as a potent inhibitor
of p53 activity and of the p53-dependent response to
DNA damage.11 The latter data provide a specific
oncogenic pathway into which AGR2 integrates;
however, the signaling mechanisms that drive
AGR2 to inhibit p53 are not defined. Although
there are no well-validated binding proteins in
human cells that can explain how AGR2 can act as
a pro-oncogenic protein, peptide aptamer screens
have identified a specific peptide-binding activity
for the AGR2 protein for peptides containing an
(S/T)xIΦΦ consensus motif, suggesting that the
AGR2 protein might prove to have a peptide
groove able to interact with cellular proteins
containing such a consensus motif.13 Furthermore,
penetratin peptides linked to this AGR2-binding
(S/T)xIΦΦ motif or EGFP fusions to the (S/T)
xIΦΦ motif can stabilize AGR2 in cells and
stimulate p53 activity, indicating that the AGR2
protein can interact with this peptide consensus
motif in vivo.14 A yeast two-hybrid screen has also
been used to previously identify the prometastatic
proteins C4.4 and DYS1 as interactors of AGR215;
however, there was no biological validation of C4.4
and DYS1 as a bona fide protein–protein interac-
tion in human cells. However, potential extracel-
lular receptor functions for AGR2 in human cells
remain possible, because an interaction between
the newt extracellular receptor PROD1 and newt
AGR2 was identified using a yeast two-hybrid screen
and validated to demonstrate a direct signaling role
for AGR2 in amphibian limb regeneration.10
Although the general biochemical functions of

AGR2 in human cells remain undefined, AGR2 is
part of the protein disulfide isomerase (PDI)
superfamily that contains core thioredoxin folds
(CxxC or CxxS motif), which have the potential to
act as molecular chaperones that regulate protein
folding via regulation of disulfide-bond formation.16

There are five protein members of this family: TRX1
(thought to be predominantly the nuclear thiore-
doxin), TRX2 (thought to be predominantly the
mitochondrial thioredoxin), endoplasmic reticulum
(ER) protein 18 (ERP18; the ancestral protein in the
AGR2/AGR3 group that has potent reducing
potential),17 AGR2, and the AGR2 ortholog AGR3.
AGR2 and AGR3 are confined to vertebrates, and
both have the CxxS core motif instead of the CxxC
motif of TRX1, TRX2, and ERP18.18 The majority of
PDIs/ERPs harbor a typical H/KDEL ER retrieval
signal. A putative ER retention sequence that has
been shown to regulate the intracellular localization
of AGR2 in human cells has been identified at the
C-terminus of AGR2.14 It is therefore possible that
at least one function of the AGR2 is to act as a PDI
and hence as a protein molecular chaperone. A
recent study has confirmed that AGR2 is essential
for the production of the intestinal mucin MUC2, a
cysteine-rich glycoprotein that forms the protective
mucus gel lining the intestine. The cysteine residue
within the AGR2 thioredoxin-like domain was
shown to form a mixed disulfide bond with a
cysteine in the N-terminus or C-terminus of MUC2
as it is being processed.19 However, there are
currently no established biochemical mechanisms
to explain the function or the regulation of AGR2
protein.
In this report, a yeast two-hybrid screen was used

to identify a potentially novel interacting protein for
the AGR2 protein from a human breast cancer
library. A protein named Reptin was identified by
the yeast two-hybrid screen and validated as an
interacting protein of AGR2 in human cells. Reptin
is a highly conserved member of the AAA+ family
that can be found in numerous multiprotein com-
plexes linked to transcription, DNA damage re-
sponse, and nonsense-mediated RNA decay.20–25

This protein is a member of the highly conserved
RuvBl1/2 superfamily containing ATP binding
motifs and DNA binding and helicase functions
and an ability to form biologically relevant protein–
protein interactions with proteins implicated in
cancer, including Myc, Tip60, APPL1, Pontin, and
telomerase holoenzyme complexes.20,23,26–29 The
validation of Reptin as an AGR2 binding protein
gives rise to a potentially novel signaling complex
involved in prometastatic cancer development. Our
mapping of the determinants that mediate a specific
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Reptin–AGR2 protein–protein complex in vitro
provides biochemical insights for understanding
how the Reptin–AGR2 complex can be regulated in
cells. These data also provide ideas for development
of in vitro enzyme assays for the screening of small
molecules that might be used to disrupt the AGR2–
Reptin complex in cancer cells as potential thera-
peutic leads.

Results

Reptin is overexpressed in primary human
cancers and forms a stable protein–protein
complex with AGR2 protein in cancer cells

In our search for proteins interacting with human
AGR2protein,weused a yeast two-hybrid assaywith
LexA fused to AGR2 as bait screened against a cDNA
library derived from breast cancer cells (Fig. 1a).
These hits appear relatively specific for the AGR2 bait
because a parallel yeast two-hybrid screen performed
on the AGR2 ortholog AGR3 (sharing approximately
75% homology) yielded a completely distinct set of
interacting proteins (data not shown).
Two extracellular prometastatic receptors identi-

fied (Fig. 1a; C4.4A and DAG1) were previously
published to be AGR2-interacting proteins based on
a yeast two-hybrid screen,15 but these interactors
were not validated as AGR2 binding proteins. Yeast
two-hybrid approaches for identifying interacting
proteins can be prone to the generation of false-
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CKAP2 Regulates cyclin- kinase functions      

TMEM123 Cell-membrane mediated cell death

C4.4A         Metastasis linked activity, previously publishe

DAG1        Metastasis linked activity, previously publishe

NP_003480   

AAN01266   

AAH10901   

AL050161     

AF082889     

L19711          

CAG38538    

AAW65983   

Fig. 1. Reptin and AGR2 are both overproduced in primary
interactors. Yeast two-hybrid analysis was performed byHybri
LexA C-terminal fusion to human AGR2 (21–175) and screen
highly significant overlapping hits are depicted including nam
lysates derived from breast cancers and normal adjacent tissue
(tumor) and N (normal)] were prepared in lysis buffer as de
immunoblotted using antibodies to Reptin, AGR2, and actin,
positives30; for example, we have been unable to
validate despite numerous approaches in human
cell systems or in vitro using purified proteins a
direct interaction between the HECTD1 ubiquitin
ligase (Fig. 1a) and AGR2 protein (unpublished
data). Furthermore, as the interactions proposed
between AGR2 and C4.4A or DAG1 based on the
yeast two-hybrid screen require an extracellular
localization of AGR2, we did not further validate
C4.4A and DAG1 as potential interactors of AGR2.
The reason for excluding these potential interactors
is that our laboratory cannot observe AGR2 secreted
and/or localized at the plasma membrane, as has
been suggested by others.15 Rather, we have
published data showing the localization of endog-
enous or red fluorescent protein-tagged AGR2 to the
ER, perinucleus, and nucleus.14 Peptide aptamers
generated to AGR213 also shift AGR2 out of nuclear
fraction into cytosolic compartments.14 As such, we
focused our efforts at validating nuclear proteins
from the yeast two-hybrid screen as potential AGR2
interactors—particularly one protein of specific
relevance within the AAA+++ superfamily named
Reptin.
Reptin can be a nuclear protein involved in range

of functions, including DNA repair, transcription
regulation, and chromatin structural control.24

Similar to AGR2, Reptin is also involved in
prometastatic signaling using cell lines in vitro,
but this involves, in part, interactions of Reptin
with the transcription regulator Myc or Tip60.31

Furthermore, there is some evidence that Reptin is
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human cancers. (a) Summary of AGR2 yeast two-hybrid
genics using the bait vector consisting of pB27 containing a
ed against human breast tumor epithelial cell RP1. Only
e, accession number, and functions. (b) Immunoblotting of
from the same patient. Sample biopsy specimens [from T
scribed previously,5,44 separated by electrophoresis, and
as indicated.



421Regulation of AGR2-Reptin Complex Assembly
overproduced in primary cancers, hepatocellular
carcinoma,32 and gastric cancer.33 However, there
are no data on whether Reptin and AGR2 can be
coexpressed in primary human cancers. If there
were, then this would form an important rationale
for continued evaluation of Reptin–AGR2 interac-
tions. A panel of primary human breast cancers
and normal adjacent tissue from the same patient
were lysed to examine whether Reptin is in fact
overexpressed in primary cancers. These human
Fig. 2. Co-immunoprecipitation of human Reptin and AGR2
form a complex in cells. Cell lysates from H1299 human brea
(lanes 1 and 2), with the AGR2 vector (lanes 3 and 4), or with A
with the anti-AGR2 rabbit polyclonal antibody (K47) and prot
and 5) or the unbound, flow-through fraction [FT] (lanes 2, 4, a
tagged Reptin or (b) AGR2 in each fraction. Reptin, ubiquitinat
Reptin nor Pontin forms a complex with AGR2 in cells. Cel
transfected with (c and d) WT Reptin, (e and f) Myc-tagge
immunoprecipitated with the anti-AGR2 polyclonal antibod
immunoblotted to quantify the extent of Reptin, Pontin, or Re
exposed for the same times, and Reptin, ubiquitinated Reptin
cancers were previously used to demonstrate that
AGR2 overproduction predicts poor prognosis in
tamoxifen-resistant breast cancers.5 The immuno-
blotting of lysates from this panel of breast cancer
biopsy specimens or normal adjacent tissue from
the same patient demonstrated the overproduction
of AGR2 in the cancers in the majority of patients
(Fig. 1b, samples 1, 2, 3, 4, and 7–11), as expected
from previous immunohistochemical evaluations.5

Similarly, Reptin was also overproduced in the
protein in human cancer cells. (a and b) Reptin and AGR2
st cancer cells (no AGR2) transfected with vector control
GR2 and HA-tagged Reptin (lanes 5 and 6) were incubated
ein G beads. The AGR2 immunoprecipitate [IP] (lanes 1, 3,
nd 6) was immunoblotted to quantify the extent of (a) HA-
ed Reptin, and AGR2 are highlighted. (c–h) Neither mutant
l lysates from MCF7 cells expressing endogenous AGR2
d Pontin, and (g and h) Myc-tagged ReptinK456R were
y K47. The bound [IP] and unbound [FT] fractions were
ptinK456 proteins bound to AGR2. The immunoblots were
, protein G beads, Pontin, and AGR2 are highlighted.



Fig. 3. Reptin is selectively ubiquitinated in cells. (a)
Evaluation of Reptin ubiquitin-like modification in cells.
The HA-tagged vector expressing Reptin was co-trans-
fected with His-ubiquitin, His-NEDD8, and His-SUMO-1
expression vectors. After the nickel affinity purification
stage, the expressed Reptin was examined for changes in
the amount of posttranslational modification by immuno-
blotting with an anti-HA-tag antibody. (b) Evaluation of
p53 ubiquitin-like modification in cells. A vector expres-
sing WT p53 was co-transfected with vectors expressing
His-ubiquitin, His-NEDD8, and His-SUMO-1 without
(lanes 1–4) or with (lanes 5–8) the co-transfection of
MDM2. The expressed p53 was examined for changes in
the amount of posttranslational modification by immuno-
blotting with an anti-p53 antibody (DO-1) after the nickel
affinity chromatography stage.
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majority of these cancer biopsy specimens (Fig. 1b,
samples 1–11). Thus, the combined overexpression
of AGR2 and Reptin in primary human breast
cancer makes Reptin a more compelling and
physiologically relevant AGR2-interacting protein.
To evaluate whether the association between

Reptin and AGR2 is physiological in human cells,
we performed co-immunoprecipitation experiments
using lysates of H1299 lung carcinoma cells tran-
siently expressing hemagglutinin (HA)-tagged Rep-
tin and AGR2. The transfection of AGR2 alone into
cells demonstrated that the transfected AGR2
protein could be immunoprecipitated with a poly-
clonal antibody (K47) specific for AGR2 (Fig. 2b,
lane 3), with a small proportion in the unbound,
flow-through fraction (Fig. 2b, lane 4). As a control,
AGR2 is not detectable in cells that were not
transfected with AGR2 (Fig. 2b, lanes 1 and 2). The
transfection of HA-tagged Reptin into cells resulted
in the immunoprecipitation of the Reptin protein
with AGR2 (Fig. 2a, lane 5).
A pool of Reptin protein in the unbound fraction

was composed of high-molecular-mass adducts
(Fig. 2a, lane 6), presumably due to ubiquitin-like
modification. A control was performed to deter-
mine whether the high-molecular-mass ladder of
ubiquitin-like adducts was ubiquitin, NEDD8, or
SUMO-1. His-tagged versions of the latter ubiquitin/
ubiquitin-like genes were co-transfected into cells
with HA-tagged Reptin, and following purification
of the in vivoHis-tagged proteins on a nickel affinity
column, the pellets were analyzed by immunoblot-
ting for Reptin. The data demonstrate that the
dominant adduct on Reptin is ubiquitin, not
NEDD8 or SUMO-1 (Fig. 3b, lane 2). This is distinct
from a prior report that suggested a dominant
modification on Reptin is SUMO-1.21 This might
reflect a cell-specific difference in the type of
ubiquitin-like modification that is catalyzed on
Reptin. As an additional control, basal p53 modifi-
cation by ubiquitin and SUMO-1 could be detected
(Fig. 3b, lanes 2 and 4), whereas MDM2 could drive
enhanced ubiquitination or NEDDylation of p53
(Fig. 3b, lanes 6 and 7). These latter data indicate that
integrity of the His-tagged NEDD8 and SUMO-1
genes is adequate and that the low amount of
NEDDylation or SUMOylation of Reptin presum-
ably highlights the specificity of ubiquitination on
Reptin.
In order to define determinants that mediate the

specificity of the co-immunoprecipitation of Reptin
with AGR2, we also evaluated the ability of the
Reptin ortholog and partner protein Pontin/RuvBl1
to interact with endogenous AGR2 in MCF7 cells.
Pontin is thought to form a hetero-oligomer with
Reptin,34 although it has also been published that
Reptin has biochemical functions that are Pontin
independent.21 Although transfected Reptin was
able to form an immune complex with endogenous
AGR2 (Fig. 2c and d, lane 1), Pontin did not form
any detectable complex with Reptin (Fig. 2e and f,
lane 1 versus lane 2). Furthermore, the Reptin mutant
K456R, which cannot form ubiquitin-like adducts,21

was not able to form a stable complex with AGR2
(Fig. 2g and h, lane 1 versus lane 2). Together, these
results confirm that the yeast two-hybrid system
did in fact reveal a specific protein–protein
interaction between AGR2 and Reptin that can be
detected in human cell lines. As such, we devel-
oped biochemical approaches in order to validate
the determinants that define the specific binding
between Reptin and AGR2.

ATP regulates the stability of the Reptin–AGR2
protein complex

In order to determine whether Reptin binding to
AGR2 is direct and not due to a bridging factor
in vivo (in the yeast or human cell systems), we

image of Fig. 3


Fig. 4. Purification and ATP binding properties of untagged human Reptin protein. (a) Purification of recombinant
Reptin. Reptin was cloned into a vector producing a GST fusion protein containing a PreScission protease cleavage site
after adsorption of GST-Reptin onto the glutathione beads, followed by rigorous washing and elution of Reptin protein in
purified form and then by dialysis into buffer as indicated in Methods. Lane 1, markers; lane 2, full-length untagged
Reptin; lane 3, GST-tagged Reptin. (b and c) Reptin (50 μM) was subjected to analysis by light scattering in the absence
and in the presence of ligand ATP, as indicated in Materials and Methods. (d) Reptin unfolding as a function of
temperature change in the absence and in the presence of ligand. SYPRO Orange fluorescence was used to measure the
thermal unfolding events between 20 °C and 89 °C, and experiments were done in triplicate in the absence or presence of
ATP. (e) Phase transitions in the Reptin thermal melt profile. The gradient of protein unfolding was plotted against the
temperature gradient to obtain the midpoint temperature of transition (Tm) in the absence and in the presence of ATP.
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first purified and characterized Reptin protein
biochemically to ensure that the integrity of the
protein was adequate for biochemical analyses.
Recombinant human Reptin protein was over-
produced as a recombinant glutathione S-transferase
(GST)-tagged fusion protein expressed in Escherichia
coli and purified after protease cleavage from the
GST tag (Fig. 4a, lane 3 versus lane 2). The use of
dynamic light scattering (DLS) to characterize the
oligomeric state of highly purified Reptin revealed
a protein fraction with a relatively homogenous
nature (Fig. 4b) that was shifted in apparent mass
as defined by changes in DLS after the inclusion of
ATP (Fig. 4c). The latter data are consistent with
previous reports that Reptin can bind ATP,
although one previous report indicated that His-
tagged Reptin does not increase its oligomeric
nature in the presence of ATP.34

image of Fig. 4


Fig. 5. The effects of ATP on the stability of the Reptin–
AGR2 protein complex. (a) ATP binding activity of
Reptin. ATP binding was measured by quantifying the
amount of radioactive ATP bound to a nitrocellulose filter
as a function of increasing Reptin protein levels. The
black line represents binding to ATP, and the light line
represents binding to nonhydrolyzable ATP. The data are
plotted as picomoles of ATP bound as a function of
increasing Reptin protein levels (in picomoles). (b and c)
ATP destabilizes the Reptin–AGR2 protein complex.
Either AGR2 (b) or Reptin (c) was immobilized in the
solid phase, and in the mobile phase either Reptin (b) or
AGR2 (c) was titrated in the absence or presence of ATP.
The amount of Reptin or AGR2 bound was quantified
with antibodies specific for either protein using chemilu-
minescence. The data are plotted as the extent of protein–
protein complex formation (in relative luminescence
units) as a function of increasing protein in the mobile
phase (in micromolar concentrations).
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Lastly, we analyzed the ATP binding potential of
Reptin using thermal-shift assay. Increase in protein
denaturation or unfolding as a function of temper-
ature can be measured by the interaction with
SYPRO Orange, a dye that binds to hydrophobic
regions exposed or unfolded regions of proteins and
results in fluorescence.35 Ligand binding can alter
the thermostability of a target protein and cause a
change in the rate of unfolding as a function of
increasing temperature. In the absence of ligand,
there is a high basal fluorescence of Reptin
(∼6400 RFU) that reduces gradually as a function
of increasing temperature (Fig. 4d). When the data
are plotted as rate of change in fluorescence at each
temperature, Reptin does not undergo a classic
unfolding transition (Fig. 4e). These data suggest
that hydrophobic regions on ATP-free Reptin are
being concealed rather than exposed upon heating.
However, in the presence of ATP, a classic ligand-
dependent thermal unfolding transition was observed
as defined by increases in the rate of SYPRO Orange
dye binding as a function of increasing temperature
(Fig. 4d and e). Also, in the presence of ATP, there is a
reduction in the basal fluorescence at 20 °C
(∼4100 RFU; Fig. 4d). These data suggest that the
higher fluorescence seen at 20 °C in the absence of
ATP is due to the SYPRO Orange dye binding to the
hydrophobic ATP binding motifs and ATP conceals
the pocket from dye binding. Together, these data
suggest that the biochemical integrity of the Reptin
protein we have purified by this method is sufficient
and that the protein is active as an ATP binding
protein. This form of Reptin was used to determine if
it indeed binds directly to AGR2 and if so to define the
determinants in Reptin that drive specific binding to
AGR2 protein.
Nitrocellulose filter-based ATP binding assays

were utilized to define the apparent stoichiometry
of the Reptin–ATP complex. A titration of Reptin
protein (from 0.25–1.0 pmol) using α-32P-labeled
ATP as a ligand revealed that approximately
0.5 pmol of ATP can be bound per picomole of
Reptin (Fig. 5a). With the use of the nonhydrolyz-
able ATP analog γ-S-labeled ATP, up to approxi-
mately 0.18 pmol of ATP binding activity could be
detected per picomole of Reptin (Fig. 5a). Because
Reptin has two ATP binding sites and can become
more oligomeric in the presence of ATP (Fig. 4),
these data suggest that the hydrolysis of ATP might
stimulate or stabilize ATP binding allosterically or
that the nonhydrolyzable ATP analog does not
functionally mimic ATP in these ATP binding
pockets. In addition, as we were unable to detect
2 mol ATP bound per mole of Reptin, these data
suggest a negative cooperativity between the two
ATP binding pockets on the protein (see Discus-
sion). Using this ATP-binding active form of Reptin,
we determined whether Reptin bound to AGR2
protein directly using an ELISA to measure protein–
protein interactions. When AGR2 was adsorbed
onto the solid phase (96-well microtiter plate) and
subjected to a Reptin titration in the mobile phase, a

image of Fig. 5
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stable complex can be detected between the two
proteins (Fig. 5b). This confirms that the immuno-
precipitation and yeast two-hybrid observed
between AGR2 and Reptin in vivo (Fig. 2) can
be due to a direct protein–protein interaction
between the two proteins. A titration of Reptin in
the presence of ATP reveals that ATP can reduce
the stability of the Reptin–AGR2 complex by
approximately threefold (Fig. 5b). Corroborating
this assay, when Reptin is adsorbed to the solid
phase, with AGR2 titrated in the mobile phase, a
stable complex can be detected between AGR2 and
Reptin that is also attenuated by the inclusion of
ATP, but by approximately 20% (Fig. 5c). The
difference in the extent of ATP-dependent reduc-
tions in AGR2 binding to Reptin might be due to
the conformation of the respective protein (AGR2 in
Fig. 6. The effects of Reptin ATP binding site mutations
domains of Reptin and its ortholog Pontin are shown, includin
sensor motifs. (Right panel ii) Diagram of the structure of hu
highlighted in blue and red, respectively; the Protein Data Bank
Reptin ATP site mutants. Radioactive ATP binding was meas
radioactive γ-35S-labeled ATP or (c) γ-S-labeled ATP (sp
nitrocellulose filter as a function of increasing WT and mutant
ATP bound as a function of increasing Reptin protein levels (
Fig. 5b and Reptin in Fig. 5c) when adsorbed to the
solid phase. These data confirm that Reptin and
AGR2 can form a direct complex and that the
conformation of Reptin in its ATP-bound state can
affect the stability of the complex.

Mutation of either of the two ATP binding sites on
Reptin destabilizes the AGR2–Reptin complex

Reptin has a number of conserved sequence
motifs. Notably, it has two motifs critical for
nucleotide binding and hydrolysis, namely the P-
loop NTP binding motif (also known as the Walker
A box) and the DEAD motif (also known as the
Walker B box),31 respectively. In order to further
evaluate the effects of the two ATP binding domains
of Reptin (Fig. 6ai) on the stability of the AGR2–
on binding to ATP. (a) (Left panel i) The key functional
g the Walker A and Walker B ATP binding motifs and the
man Pontin with the Walker A and B ATP binding sites
code for Pontin is 2C9O. (b and c) ATP binding activity of
ured by quantifying the amount of (b) ATP (spiked with
iked with radioactive γ-35S-labeled ATP) bound to a
Reptin protein levels. The data are plotted as picomoles of
in picomoles).
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Reptin complex, we generated the single point
mutants in the ATP binding sites, K83A and
D299N. The Walker A mutation (K to A) is thought
to induce a loss-of-function mutation, whereas the
Walker B mutation (D to N) is thought to reduce
ATP hydrolysis, but it actually increases ATP
binding.36 As expected, ReptinD299N exhibited a
higher affinity for the radioactive nonhydrolyzable
ATP analog γ-35S-labeled ATP (in the presence of
nonradioactive ATP) than the wild-type (WT)
Reptin, whereas the mutant ReptinK83A exhibited a
reduced binding affinity for γ-35S-labeled ATP (Fig.
6b). Similar results were observed using radioactive
γ-S-labeled ATP in the presence of nonradioactive γ-
S-labeled ATP (Fig. 6c). The data also suggest that
mutation of codon 83 Walker A motif attenuates
ATP binding allosterically by the remaining WT
Walker B motif. However, the inactivity of Reptin-
K83A in this assay is complicated by the observation
that this mutant appears to interact with ATP using
three assays (described below). This suggests that
the nitrocellulose binding assay underestimates the
specific activity of ReptinK83A as an ATP binding
protein, possibly due to the remaining WT Walker
B motif.
Chemical cross-linking was performed to deter-

mine if changes in the ATP-dependent oligomeric
structure of Reptin (Fig. 4c) correlate with differ-
ences in the ATP binding functions of the ReptinK83A

and ReptinD299N mutant proteins. Increasing the
concentration of cross-linker into reactions with WT
Reptin yielded an oligomeric ladder (Fig. 7a, lane 6
versus lanes 1–5) that was partially resistant to cross-
linking as defined by the resilience of a pool of
monomeric protein to cross-linking at the highest
concentration of 0.2% (Fig. 7a, lane 1 versus lane 6).
In the presence of ATP, there was a marginal
difference in the oligomerization of Reptin (Fig. 7a,
lanes 7–12), indicating that the cross-linking assay is
not revealing dramatic changes in the conformation
of the WT Reptin. Nevertheless, the ReptinK83A and
ReptinD299N mutant proteins exhibited striking and
opposing behavior in the cross-linking assay to each
other and to WT Reptin. The ReptinK83A mutant
protein was sensitive to loss of monomeric subunit
as a function of increasing concentration of cross-
linker in the presence of ATP (Fig. 7b, lane 12 versus
lanes 7–11), whereas this mutant appeared similar to
WT Reptin in the absence of ATP (Fig. 7b, lanes 1–6,
versus Fig. 7a, lanes 1–6). These data indicate that the
ReptinK83A mutant protein can in fact interact with
ATP in this assay format, contrasting with its
inactivity in the nitrocellulose filter ATP binding
assay. By contrast, ReptinD299N exhibited a loss in
monomeric Reptin as a function of increasing cross-
linking in the absence of ATP (Fig. 7c, lanes 1–6) but
was resistant to cross-linking of its monomer in the
presence of ATP (Fig. 7c, lanes 7–12). These data
indicate that the ReptinK83A and ReptinD299N have
different conformational responses to ATP binding
between each other (summarized in Fig. 7d and e)
and compared with WT Reptin. The oscillating
response of WT Reptin might be due to a dynamic
equilibrium between monomeric and oligomeric
states at the temperature used in these assays
(21 °C), as we have data (unpublished results)
showing that the oligomeric nature of Reptin can be
dramatically influenced by temperatures ranging
from the extreme of 0 °C to 37 °C.
In conclusion, characterization of ReptinK83A and

ReptinD299N ATP binding site mutant proteins
indicated that they both respond differently from
WT Reptin and opposing each other in terms of
ATP-dependent changes in oligomeric cross-linking
and in ATP binding. The proximity of the ATP
binding motifs containing the K83 and D299 codons
based on the homology of Reptin to the structure of
its ortholog Pontin (Fig. 6ai) suggests a potential
allosteric shift of one ATP binding motif might
locally affect the affinity of the other ATP binding
motif for its ligand. The data also suggest that
mutating the individual Walker B ATP binding site
in Reptin creates a gain-of-function activity due to
reduction in ATP hydrolysis and thus increases in
binding affinity for ATP.
Using the WT Reptin and these Reptin ATP

binding site mutants, we evaluated whether the
mutant proteins exhibited differences in stable
binding to AGR2 protein. When AGR2 was incu-
bated in the solid phase with WT Reptin in the
mobile phase, the typical ATP-dependent reduction
in AGR2 binding (as in Fig. 4c) could be observed
(Fig. 8a). With the use of the loss-of-ATP binding
function mutant (Walker A motif, K83A), significant
reduction in AGR2 binding could be observed
(Fig. 8a), highlighting an important role for the
Walker A motif in regulating the AGR2 binding
activity of Reptin.
The gain-of-function mutant in the Walker B motif

(D299N) was analyzed alone and in combination
with the double mutation D299N and K83A to also
evaluate how these mutations affected Reptin
binding to AGR2. As with WT Reptin, we first
evaluated whether the D299N mutant protein had
an altered thermostability using the thermal-shift
assay. Interestingly, ReptinD299N exhibited an intrin-
sically more thermoresistant property as a function
of increasing temperature (Fig. 8b) that was further
stabilized approximately 15 °C by the inclusion of
ATP (Fig. 8b). These data are further consistent with
a gain-of-function conformational effect on the
Reptin structure, with respect to ATP binding.
Although the ReptinD299N mutant protein bound
well to AGR2 (Fig. 8c) and was partially destabilized
from AGR2 binding by ATP (Fig. 8c), the double
Reptin mutant was significantly reduced in AGR2
binding activity in the absence or presence of ATP
(Fig. 8c). These data indicate that the loss-of-ATP



Fig. 7. Reptin mutants display distinct changes in ATP-dependent oligomerization as defined using a cross-linking
assay. (a–c) Oligomerization of Reptin. Reactions were set up using (a) WT Reptin, (b) ReptinK83A, and (c) ReptinD299N

mutant proteins. A titration of glutaraldehyde (from 0.012% to 0.2%) in the absence or presence of ATP was followed by
immunoblotting for changes in the extent of oligomerization of Reptin from the monomeric state (arrow). (d and e)
Quantitation in the changes in the extent of monomeric oligomerization of ReptinK83A and ReptinD299N mutant proteins in
the absence or presence of ATP.
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binding K83A mutation is dominant over the gain-
of-ATP binding D299N mutation, with respect to
AGR2 binding. Together, these data establish that
Reptin can bind directly to AGR2 and that this
interaction is likely to be specific since the ATP
binding domains and in turn the conformation of
Reptin play a role in driving the stability of the
AGR–Reptin complex. Having validated one regu-
latory determinant in Reptin that regulates its stable
binding to AGR2, we next evaluated whether we
could identify determinants in AGR2 that mediate
its stable binding to Reptin.

The divergent substrate-binding loop in the
AGR2 superfamily forms the dominant Reptin
binding interface

A significant proportion of the human proteome is
composed of intrinsically disordered peptides and
linear domains that form docking sites for protein–
protein interactions.37 As such, we used an over-
lapping peptide library derived from the AGR2 open
reading frame to determine whether any linear
domain/peptide docking sites exist for Reptin
within the AGR2 protein sequence. The overlapping
peptide librarywas composed of 15 amino acidswith
10 amino acid overlaps, and each peptide contained
an N-terminal biotin-SGSG spacer (Fig. 9a). The
incubation of the biotinylated peptides derived from
AGR2 with human cell lysates containing endoge-
nous Reptin resulted in the specific binding of Reptin
to one peptide motif, named peptide 10 (Fig. 9b).
Intriguingly, this peptide motif overlaps with the
previously identified unique surface loop in the
AGR2 gene family (Fig. 9cii). This family is com-
posed of the founder gene Erp18 and the AGR2
ortholog AGR3, which have both appeared in the
vertebrate lineage and have not undergone gene
expansion since their appearance in vertebrates.18
The position in the three-dimensional structure of the
divergent loop extension containing the sequence
from AGR2 was modeled into the Erp18 crystal
structure38 (Fig. 9ci, red), and it has been proposed
that this divergent surface loop could form a
substrate docking site for distinct interacting proteins
in this Erp18/AGR2/AGR3 family.39 The sequence
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Fig. 8. The effects of ATP binding site mutations in Reptin on binding to AGR2. (a). The effects of the Walker A site
mutation on the Reptin–AGR2 protein complex. Reactions were set up using (i) WT Reptin or (ii) ReptinK83A in which
AGR2 is in the solid phase and Reptin is in the mobile phase. The amount of Reptin bound was quantified with
antibodies specific for Reptin protein titrated in the mobile phase using chemiluminescence. The data are plotted as the
extent of protein–protein complex formation (in relative luminescence units) as a function of increasing protein in the
mobile phase (in micromolar concentrations). (b). ReptinD299N unfolding as a function of temperature change in the
absence and in the presence of ligand. SYPRO Orange fluorescence was used to measure the thermal unfolding events
between 20 °C and 89 °C, and experiments were done in triplicate in the absence or presence of ATP. The raw data
were plotted as the gradient of protein unfolding was plotted against the temperature gradient to obtain the midpoint
temperature of transition (Tm) in the absence and in the presence of ATP. (c) The effects of the Walker B site mutation
and double ATP site mutations on the Reptin–AGR2 protein complex. Reactions were set up using (i) ReptinD299N or
(ii) ReptinD299N/K83A mutant proteins in which AGR2 is in the solid phase and the amount of Reptin or bound was
quantified with antibodies specific for Reptin titrated in the mobile phase using chemiluminescence. The data are
plotted as the extent of protein–protein complex formation (in relative luminescence units) as a function of increasing
protein in the mobile phase (in micromolar concentrations).
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of amino acids in this divergent loop in the Erp18/
AGR2/AGR3 protein family is shown in Fig. 9cii.
Alanine scan and truncation mutagenesis were

performed on peptides containing the surface loop
(Fig. 10a). The data reveal that most amino acid
residues from 104-FVLLNLVY-111 play a rate-
limiting role in binding to Reptin, as their mutation
to alanine attenuates Reptin binding to AGR2 (Fig.
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Fig. 9. Identification of a specific binding site for Reptin on AGR2. (a) Human cell lysates expressing Reptin were
incubated in a buffer containing the indicated biotinylated peptides (peptides 1–16 of human AGR2) coupled to
streptavidin beads. The amount of Reptin bound was evaluated by immunoblotting the bound fractions as indicated in
panel (b): “in” indicates input fraction, and the numbers 1–16 represent the peptide sequences in part (a). (c) [i] Homology
model of the position of the divergent peptide loop from AGR2 that has the Reptin binding site based on the structure of
the AGR2 ortholog Erp18 (Protein Data Bank code 2K8V). [ii]. Sequences in the divergent loop between AGR2, AGR3, and
ERP18 proteins.
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10b, lanes 4–7 and 9–11); the exceptional amino acid
is N108 (lane 8). Alanine substitution of residues
outwith this region does not attenuate Reptin
binding to the peptides (Fig. 10b, lanes 1–3 and
12–15). Truncation mutagenesis also confirmed that
this loop motif forms the specific interface for
Reptin. C-terminal truncations from E111 to D114
do not reduce Reptin binding (Fig. 10b, lanes 16–19).
However, the removal of Y111 reduces Reptin binding
(Fig. 10b, lanes 20–22). This defines the C-terminal end
of the Reptin binding site on the AGR2 peptide.
Similarly, the N-terminal regions in the loop peptide
were also truncated to define the N-terminal residues
in the peptide that are important for binding to Reptin.
The deletion of A101 to Q103 did not reduce Reptin
binding (Fig. 10b, lanes 23–25). However, deletion of
F104 reduced Reptin binding (Fig. 10b, lanes 26–39),
highlighting the N-terminal residue required for
binding to Reptin. The minimal peptide that exhibited
binding to Reptin was 8 amino acids long (104-
FVLLNLVY-111; Fig. 10b, lane 34), and the peptide
displayed reduced binding to Reptin when the F104A
or Y111A mutation was introduced (Fig. 10b, lanes 35
and 36 versus lane 34).
This divergent loop in AGR2 from 104–111 (Fig.

9c) might mediate specificity in its interactions with
potential partner proteins. We examined this by
evaluating whether the peptide derived from this
loop in AGR3 (Fig. 9cii) bound with higher or lower
affinity to Reptin. The peptide used from AGR3 had
the sequence QNKFIMLNLMHETTD, and it did not
bind Reptin (Fig. 10b, lane 37), compared with the
AGR2 sequence AEQFVLLNLVYETTD, which did
bind Reptin (Fig. 10b, lane 1 or lane 41). Mutating
the KF in AGR3 to the QF present in AGR2 did not
restore AGR3 peptide binding to Reptin (Fig. 10b,
lane 38). However, introducing the H-to-Y mutation
in the C-terminal region of the AGR3 peptide
restored its binding to Reptin (Fig. 10b, lane 39
versus lane 37).
We finally evaluated whether inactivating muta-

tion of full-length AGR2 protein in this divergent
loop (based on the peptide screens in Fig. 10)
reduced the interaction between Reptin and AGR2.
We did not delete this loop as this might make gross
mutations that alter the structure of the AGR2
protein. The peptide mapping data indicated that
mutation of seven of eight residues could attenuate
the binding of Reptin to AGR2 peptides, suggesting
that the entire peptide contains side chains making
important contacts with a potential peptide-binding
groove in Reptin protein. As such, it might not be
possible to make single point mutations on the full-
length AGR2 protein if the structure of the con-
strained loop would require multiple mutations in
the loop to attenuate the stability of the full-length
Reptin–AGR2 protein complex. Nevertheless, we
first focused on making two single point mutations
in residues F104 and Y111, because these two
residues form the N-terminal and C-terminal ends
of the peptide binding between Reptin and the
AGR2 peptide and these are bulky hydrophobic
residues that might contribute significantly to the
stability of the full-length AGR2–Reptin protein
complex.
With the use of ELISA binding assays where

AGR2 is immobilized in the solid phase, mutation of
full-length AGR2 at codon 111 (Y to A) did not
reduce the stability of the Reptin–AGR2 complex
(Fig. 11b) and the AGR2Y111A mutant protein still
retained destabilization in the presence of ATP
similar to WT AGR2 (Fig. 11b). However, the
AGR2F104A mutant protein was substantially desta-
bilized in its binding to Reptin (Fig. 11b), indicating
that the F104 residue forms an important contact
point for Reptin in the context of the full-length
protein complex. When Reptin was first immobi-
lized in the solid phase, the AGR2Y111A mutant
protein was reduced in Reptin binding and the
AGR2F104A mutant protein was substantially desta-
bilized in its binding to Reptin (Fig. 11a).
Discussion

Defining regulatory motifs in Reptin that
regulate binding to AGR2

AGR2 is a prometastatic and p53 inhibitory protein
involved in a range of oncogenic pathways, such as
tamoxifen resistance and cell migration, as well as
additional biological functions in limb regeneration
and inflammatory responses.5,10,12,19 Despite the
wealth of data accumulating on AGR2, there are no
validated interacting proteins for the AGR2 protein in
human cells, with only the newt receptor PROD1
identified as an AGR2-interacting protein in yeast
two-hybrid that functions in newt limb regeneration.10

In this current work, we report on yeast two-hybrid
interactors for AGR2 from a human cDNA library,
one of which (Reptin) was evaluated using biochem-
ical approaches for whether it formed a bona fide
interaction with the AGR2 protein. In order to
validate the interaction between the two proteins,
we set out to determine whether we could identify
limiting determinants in both AGR2 and Reptin
proteins, whose characteristics would allow us to
measure the validity of the potential protein–
protein interaction. In the case of Reptin, we
exploited its major functional motif; its two ATP
binding sites. In the case of AGR2, because there is
no identified ligand binding domain, we exploited
the likelihood that small linear domains/unstruc-
tured motifs might mediate a specific interaction
between AGR2 and Reptin. Our data indeed
demonstrate that the ATP binding motifs of Reptin
and the proposed substrate-binding loop of AGR2



Fig. 10. Identification of key residues that stabilize the AGR2 peptide–Reptin complex. (a) Peptides 1–36 represent
modifications in peptide 10 (Fig. 9), including C-terminal and N-terminal truncations and alanine-substituted mutants.
Peptides 37–40 represent the divergent loop in the AGR2 ortholog AGR3 (peptide 37 is the AGR3 sequence and 38–40
mutations in this sequence). (b) Human cell lysates expressing Reptin were incubated in a buffer containing the indicated
biotinylated peptides [as in panel (a); peptides 1–40 of human AGR2 or AGR3] coupled to streptavidin beads. The amount
of Reptin bound was evaluated by immunoblotting the bound fractions as indicated in lanes 1–40. Lane 41 contains the
positive control peptide 41, and lane 42 is the input lysate [IN].
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are determinants that drive a specific complex
between AGR2 and Reptin proteins.
The biochemical integrity of Reptin was measured

with respect to its ATP binding activity usingWT and
ATP binding site mutants of the protein and included
the following: (i) increases in mass as defined by light
scattering in the presence of ATP; (ii) classic thermal
unfolding transition in the presence of ATP; (iii) ATP
binding activity using nitrocellulose filter binding
assays; (iv) ATP binding quantified as defined by
changes in oligomerization potential using chemical
cross-linkers; and (v) ATP-dependent changes in
binding to AGR2. In these cases, there was only one
experimental discrepancy: the ReptinK83A mutant
protein was completely defective in ATP binding as
defined using the filter binding assay. However, this
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Fig. 11. The effects of AGR2 loop mutations on the stability of the Reptin–AGR2 complex. (a and b) Reactions were set
up using WT AGR2, AGR2Y111A, and theAGR2F104A mutant proteins in which (a) Reptin is in the solid phase or (b) AGR2
is in the solid phase in the absence and in the presence of ATP. The amount of Reptin or AGR2 bound was quantified with
antibodies specific for either protein titrated in the mobile phase using chemiluminescence. The data are plotted as the
extent of protein–protein complex formation (in relative luminescence units) as a function of increasing protein in the
mobile phase (in micromolar concentrations).
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ReptinK83A mutant protein was more responsive in
ATP-mediated oligomerization thanWTReptin using
the chemical cross-linking assay. This discrepancy in
the ATP nitrocellulose filter binding assay might
involve a potential inactivation of ReptinK83A mutant
protein ATP binding activity when it is adsorbed to
the nitrocellulose filter and washed at 0 °C. The
protein binding assays, thermal shifts, and the
oligomerization assay are evaluated in solution at
room temperature or higher. The ATP filter binding
assay is very sensitive to temperature as this assay
involves exploiting the difference between ATP and
target protein in their hydrophobic interactions with
the nitrocellulose filter at low temperatures.40 Thus,
the lower temperatures required for wash buffer in
this assay might alter the affinity of ATP for the
ReptinK83A mutant protein. Indeed, our continuing
characterization indicates that the oligomerization of
WTReptin is dependent on temperature, especially at
very low temperatures, and this might also underes-
timate the ATP binding function of the ReptinK83A

mutant protein.
In contrast to the Walker A K83A mutant that

essentially acts as a loss-of-function mutation with
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respect to ATP binding, the Walker B mutant
ReptinD299N mutant protein was more active than
WT Reptin in ATP binding using the nitrocellulose
filter binding assay, more responsive to ATP in the
oligomerization cross-linking assay, and more
intrinsically thermoresistant in the thermal-shift
assays even without ATP inclusion. Because there
are two ATP binding sites for Reptin, it can be
implied that the ATP binding function for both
ReptinK83A and ReptinD299N mutant proteins could
be regulated through an allosteric effect of one site
on the other remaining active motif. Indeed, with
the use of the double ATP binding site mutant, it
is established that the K83A mutation is dominant
over the D299N mutation with respect to AGR2
binding (Fig. 8c), suggesting that an allosteric
effect between the two sites does exist. Although
there is no high-resolution structure available for
Reptin, a fragment of its ortholog Pontin has been
crystallized41 and is summarized in Fig. 6a. The
ATP binding motifs are proximal, being poised by
two structural lobes, and the proximity of the ATP
binding motifs to each other might alter allosteri-
cally the ATP binding function of Reptin.
Prior to the current work, there have been minimal

studies on potential allostery in the ATP binding
properties of Reptin. One study reported that
mutating the Reptin ATP binding site (D299N) did
not inhibit the ATP binding function of the mixed
Pontin–Reptin oligomer34 and that ATP did not
change the oligomeric state of WT Reptin.34 This are
in contrast with our data showing that theWTReptin
increases in apparent mass defined using light
scattering and that our preparations of ReptinD299N

mutant protein display elevated intrinsic thermosta-
bility, elevated ATP binding, and a different response
to ATP-dependent oligomerization as defined by
cross-linking. Thesemight be due to differences in the
protein concentration or temperatures we have used
in light scattering or cross-linking experiments
compared with the gel-filtration method used in the
prior report. In addition, our purified recombinant
Reptin preparations are untagged, whereas the prior
report utilized His-tagged protein.34 Although a tag
is often thought to be neutral, it can sometimes have
an effect on a protein; indeed, this is specifically the
case for Reptin. When we initially used a GST-tagged
Reptin protein in our biochemical characterizations, it
displayed an activated rather than an attenuated
binding affinity for AGR2 protein in the presence of
ATP (unpublished data). As a result, we only used
untagged recombinant Reptin in this current work.
Together, these data provide a proof of concept that
a protein–protein interaction between Reptin and a
target protein can be modified allosterically by the
ATP binding motifs of the protein. How these affect
other Reptin–protein interactions, including Pontin,
APPL1/2, telomerase, or Tip60, as well as helicase
activities, remains to be determined.
Defining amino acid motifs in AGR2 that form a
docking site for Reptin

Having identified determinants in Reptin that
contribute to its stable binding of AGR2, we next
determined whether determinants in AGR2 that
mediate its binding to Reptin could be identified.
AGR2 is a member of the PDI superfamily that
contains thioredoxin/PDI homology folds (CxxC or
CxxS motif). These proteins can function similar to
molecular chaperones to regulate protein folding via
regulation of disulfide-bond formation.18 Proteins
with a CxxC motif, such as Erp57, have been shown
to have their interactome trapped by using the CxxS
artificial mutant that apparently traps normal in vivo
interactors with the mutant Erp57 protein.39 This
PDI motif within AGR2 is the CxxS motif charac-
teristic of a PDI subclass of molecular chaperones
that use this motif as a redox catalyst able to form a
covalent complex with other target proteins, similar
to how Mucin has been reported to with AGR2.19 In
our evaluations, the AGR2C81A mutant protein is
able to form a Reptin complex and WT AGR2 (data
not shown), indicating that the PDI thioredoxin fold
of AGR2 is not directly involved as a rate-limiting
determinant in binding stably to Reptin. As such, we
set out to evaluate how other determinants in AGR2
protein sequence might be exploited to determine
whether Reptin has a specific docking site on the
protein.
One of the recent paradigm shifts in the field of

protein science is the realization that a large percent-
age of the protein sequence information is not only in
stable globular domains but also in small linear
motifs, linear domains, or intrinsically unstructured
domains that form small docking sites for a protein
with a peptide-binding groove.37 Proteins that have a
large percentage of the protein sequence information
in an unstructured landscape include regulatory
proteins, such as p53, that sit in signaling hubs that
form a scaffold for the formation of large numbers of
diverse, low-affinity, and transient but specific
protein–protein interactions.42 These linear motifs
can also be embedded within structural domains
themselves. In the case of AGR2, we utilized an
overlapping peptide library that represents the
primary linear amino acid sequence information of
the protein with the aim of determining whether or
not there are any linear motifs that can form a stable
complexwith full-length Reptin. Using this approach,
wewere in fact able to detect a linear domain that can
bind stably to Reptin, and this was localized by
mutagenesis with amino acids 104–111 on the AGR2
primary sequence. This region is notable in that it
represents a divergent loop in the Erp18/AGR2/
AGR3 family of proteins that has been proposed to
represent substrate binding sites for the molecular
chaperone function of the protein.39 That amino acids
104–111 from AGR2 form the minimal docking site
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peptide that can bind to Reptin and that the AGR2
mutant protein Y104A completely loses the ability to
bind stably toReptin are consistentwith this substrate
docking model. What this model proposes, however,
is that perhaps AGR2 can bind to Reptin at this loop
and in turn regulate Reptin's many functions by
chaperoning: ATPase activity, ATP binding, helicase
functions, telomerase/Pontin binding, APPL1/2
binding, TIP60 interactions, and other related protein
signaling functions. As we can convert the AGR3
peptide loop to Reptin binding protein by generating
an H111–Y111 conversion (Fig. 10), we are currently
generating anAGR3 proteinwith aWTAGR2 loop to
determine if we can switch AGR3 to a Reptin binding
protein in vitro and in cells. As AGR3 has a distinct
subcellular localization from AGR2 (unpublished
data; with AGR3 being more mitochondrial and of
the plasma membrane), we are also evaluating
whether a change in this loop on AGR3 changes its
intracellular localization.
In summary, we report on the first well-validated

protein–protein interaction for the pro-oncogenic
protein AGR2. Reptin was identified as an AGR2
binding protein in a yeast two-hybrid screen and
validated as an AGR2 binding protein in human
cells. Limiting determinants for both AGR2 and
Reptin were identified using in vitro protein enzy-
mological approaches; AGR2 uses a divergent
peptide substrate-binding loop to bind to Reptin,
and Reptin in turn uses two allosterically interacting
ATP binding motifs to control its binding activity
toward AGR2. Because Reptin can also function as a
prometastatic transcription protein and we show for
the first time that Reptin can be overproduced in
human breast cancers (Fig. 1b), future research in
cell-based studies will inform whether AGR2 uses
its substrate-binding loop to chaperone Reptin into
inactive and activated transcriptional states and/or
whether the allosteric ATP binding motifs of Reptin
regulate AGR2 function as a prometastatic factor in
cancer. The sets of AGR2 and Reptin mutants that
were generated will be useful for such cellular
assays. In addition, as both Reptin and AGR2 can be
thought of as potential anticancer drug targets due
to their prometastatic functions, biochemically
based screening assays that utilize the substrate-
binding loop of AGR2 or ATP binding motifs of
Reptin might form biochemical assays for the
development of small molecules that regulate this
protein–protein complex in vivo.
Materials and Methods

Reagents

Fetal bovine serum was from Autogen Bioclear.
Dulbecco's modified Eagle's medium and RPMI were
provided by Gibco. Trypsin/EDTA solution and penicil-
lin–streptomycin were supplied by Invitrogen. Attractene
was from Qiagen. Hybond-C nylon membrane for
immunoblotting was supplied by Amersham Pharmacia
Biotech. ATP-γS [adenosine 5′-O-(3-thiotriphosphate)]
and ATP (adenosine 5′ thiotriphosphate) were from
Calbiochem. The following antibodies were used: anti-
HA tag monoclonal antibody and anti-Myc tag rabbit
polyclonal antibody (Sigma), anti-His tag monoclonal
antibody (Novagen), anti-AGR2 monoclonal antibody
(Abnova), anti-AGR2 polyclonal antibody (Moravian
Biotechnologies), and anti-Reptin rabbit polyclonal anti-
body (Abnova). Secondary antibodies were from Dako
Cytomation. All peptides were synthesized with a biotin
tag and an SGSG spacer at the N-terminus and were from
Mimotopes.

Plasmids

The human HA-tagged Reptin and AGR2 for mamma-
lian and bacterial expression were cloned into Gateway
Entry clones (Invitrogen) for subsequent use. The human
Reptin sequence for cloning into a new E. coli expression
system was amplified using the following primers:
forward primer
5 ′ - G G G G A C A A G T T T G T A C A A AAAA G -

CAGGCTTCCTGGAAGTTCTGTTCCAGGGGCCC
ATGGCAACCGTTACAGCCACAACC-3′ and reverse
primer
5′-GGGGACCACTTTGTACAAGAAAGCTGGGTC-

CAGGAGGTGTCCATGGTCTCG-3′. The forward primer
had a PreScission protease cleavage site inserted. Follow-
ing amplification, the polymerase chain reaction (PCR)
product was first inserted into pDONR201 and then into
pDEST-15 using Gateway technology (Invitrogen) to
generate GST-tagged Reptin. Myc-tagged Reptin and
Pontin for mammalian expression were a kind gift from
Dr Marta Miaczynska (International Institute of Molecular
and Cell Biology, Warsaw, Poland). Point mutations in the
abovementioned plasmids were introduced using the
following primers: for the Reptin D299N mutant, forward
primer 5′-GAGTGCTGTTCATCAACGAGGTCCA-
CATGC-3′ and reverseprimer 5′-GCATGTGGACCTCGTT-
GATGAACAGCACTC-3′; for the Reptin K83A mutant,
forward primer 5′-GCACGGGGGCGACGGCCATCG-3′
and reverse primer 5′-CGATGGCCGTCGCCCCCGTGC-
3′; for generating the AGR2 F104A mutant, forward primer
5′-TGGCAGAGCAGGCTGTCCTCCTC-3′ and reverse
primer 5′-GAGGAGGACAGCCTGCTCTGCCA-3′; and
for generating the AGR2 Y111A mutant, forward primer
5′-CCTCAATCTGGTTGCTGAAACAACTGAC-3′ and re-
verse primer 5′-GTCAGTTGTTTCAGCAACCAGATT-
GAGG-3′.
Cell culture and transfection

H1299 and MCF7 cell lines were grown in RPMI or
Dulbecco's modified Eagle's medium supplemented with
10% (v/v) fetal bovine serum and 1% (v/v) penicillin–
streptomycin mix. Both cell lines were maintained at 5%
CO2. Cells were seeded 24 h prior to transfection, and
DNA was transfected using Attractene, following stan-
dard protocol. Cells were lysed in immunoprecipitation
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lysis buffer as described below. Clarified cell lysates were
normalized for the protein concentration using the
Bradford method.43
Western blotting

Samples were resolved by SDS-PAGE through 12% (w/
v) Tris-glycine gels. Gels were transferred onto nitrocel-
lulose membranes in transfer buffer [0.192 M glycine,
25 mM Tris, and 20% (v/v) methanol] at 300 mA for
90 min. Following transfer, the membrane was stained
with black Indian ink to confirm even protein transfer and
loading. Membranes were blocked for 1 h in 5% milk-
PBST [5% (w/v) dried skimmed milk and 0.1% (v/v)
Tween 20 in phosphate-buffered saline]. Membranes were
then incubated with primary antibodies overnight, fol-
lowed by secondary antibodies conjugated to horseradish
peroxidase for 1 h. Bound antibody was detected by
enhanced chemiluminescence, and immunoblots were
quantified using ImageJ. When indicated, gels were
stained with Coomassie blue R-450 (Sigma; 5% Coomassie
blue in 40% methanol and 10% acetic acid). Lysates and
preparation from primary breast cancer and normal tissue
samples have been previously described.5,44
Expression and purification of WT and mutant Reptin

GST-Reptin WT and mutants were expressed in BL21-
AI (Invitrogen) and purified from soluble lysates using
glutathione beads (GE Healthcare) according to the
manufacturer's instructions. In detail, cells were lysed
with 10% sucrose, 50 mM Tris, pH 8.0, 400 mMNaCl, 0.5%
Triton X-100, 1 mM DTT, 1 mM benzamidine, 0.5 mg/ml
lysozyme, and protease inhibitors for 30 min on ice and
then sonicated. Lysate was incubated with glutathione
beads for 90 min at 4 °C with rotation, followed by
thorough washes with 20 mM Hepes, pH 7.5, 1 M NaCl,
1 mM DTT, and 1 mM benzamidine; thorough washes
with 20 mM Hepes, pH 7.5, 0.05 mM NaCl, 1 mM DTT,
and 1 mM benzamidine; and a final wash with 50 mM
Tris–HCl, pH 8.0, 1 mM EDTA, 120 mM NaCl, and 1 mM
DTT. The rigorous washes were required to remove
nonspecifically bound proteins. Reptin protein was
cleaved off the column using PreScission protease (GE
Healthcare) into 50 mM Tris–HCl, pH 8.0, 1 mM EDTA,
120 mM NaCl, and 1 mM DTT and stored frozen in liquid
nitrogen at 6–9 mg/ml.
Expression and purification of WT and mutant AGR2

His-tagged AGR2 was expressed in BL21-AI and
purified using Ni2+-nitrilotriacetic acid-agarose (Qiagen)
according to the manufacturer's instructions. In detail,
cells were lysed in a buffer containing 20 mM Tris–HCl,
pH 8.0, 150 mM NaCl, 10 mM MgCl2, 0.05% Tween 20,
10% glycerol, 20 mM imidazole, pH 8.0, and 0.1 mg/ml on
ice for 30 min and then sonicated. Lysate was incubated
with Ni-agarose (on rotary shaker at 4 °C for 1 h) and
washed two times in lysis buffer and three times in lysis
buffer with 40 mM imidazole, and then protein was eluted
with lysis buffer containing 150 mM imidazole.
Thermal protein unfolding assay and light scattering

Thermal shifts

Extent of protein unfolding was measured using
fluorescent SYPRO Orange dye (Invitrogen). Purified
Reptin (5 μM) with or that without ATP was added in
buffer containing 50 mM Tris–HCl, pH 8.0, 1 mM EDTA,
120 mM NaCl, and 1 mM DTT before the addition of
SYPRO Orange. Samples were aliquoted onto a 96-well
PCR plate and sealed with optical-quality sealing film
(Bio-Rad). The rate of protein unfolding was measured
using an iCycler iQ Real-Time PCR system (Bio-Rad) by
heating samples from 20 °C to 90 °C at increments of 1 °C
andwith a 30-s incubation at each increment. Fluorescence
intensity was measured using excitation/emission wave-
lengths of 485 nm/575 nm in relative light units, and
thermal denaturation graphs were plotted as a function of
the gradient of protein unfolding against the temperature
gradient [d(RFU)/dT].
Light scattering

Light scattering was measured in a temperature-
controlled Zetasizer Auto Plate Sampler. Buffer (50 mM
Tris–HCL, pH 8.0, 1 mM EDTA, 120 mMNaCl, and 1 mM
DTT) was filtered using 0.2 μM as a background control.
The mean hydrodynamic radius, Rh, of Reptin was
measured by DLS with a Zetasizer APS (Malvern
Instruments, UK) equipped with a 50-mW laser light
source of wavelength 830 nm. Scattering data were
collected at a scattering angle of 90 ° for 10 s, repeated at
least 12 times, and averaged. The experiments were
repeated in triplicate. Autocorrelation data were fit to a
model of a multiple-exponential form suitable for poly-
disperse solutions using the protein-specific software
supplied with the instrument. This generated a distribu-
tion of particles by size. DLS is very sensitive to
aggregation as scattering is a function of Rh to the sixth
power. Size analysis was carried out on 50 μM Reptin in
50 mM Tris–HCl, pH 8.0, 1 mM EDTA, 120 mMNaCl, and
1 mM DTT at 10 °C. Samples were passed through a 0. 22-
μm filter (Ultrafree-MC, Millipore, UK), centrifuged at
4 °C, 12g, prior to analysis.

Protein–protein interaction assays (ELISA)

Purified recombinant His-AGR2 (100 ng), Reptin
(100 ng), anti-AGR2 monoclonal antibody (100 ng), anti-
His monoclonal antibody (100 ng), and anti-Reptin
antibody (100 ng) were immobilized on a microtiter
plate 0.1 M NaHCO3 buffer, pH 8.6, at 4 °C overnight.
Excess protein was washed away in PBS containing 0.1%
(v/v) Tween 20. Nonreactive sites were blocked using
PBS containing 3% bovine serum albumin. A titration of
the protein of interest (in the solid phase or mobile phase,
as highlighted in each figure) with or that without ATP or
ATP-γ-S as indicated in the legend to the figures was
added in 1× reaction buffer [25 mM Hepes, pH 7.5,
50 mM KCl, 10 mM MgCl2, 5% (v/v) glycerol, 0.1% (v/v)
Tween 20, and 2 mg/ml bovine serum albumin] for 1 h at
room temperature. After washing in PBS containing 0.1%
(v/v) Tween 20, anti-His tag monoclonal, anti-Reptin
polyclonal, and anti-AGR2 polyclonal antibodies were
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added. The unbound primary antibody was washed
away, and then the appropriate secondary antibody was
added. After washing, electrochemical luminescence was
quantified using a luminometer (Fluoroskan Ascent FL,
Labsystems).
ATP filter binding assay

Reptin was incubated with 0.57 μCi γ-35S-labeled ATP at
4 °C for 15 min in 20 μl of ATP binding assay buffer (20 mM
Tris–HCl, pH 7.5, 70 mm KCl, and 1 mM MgCl2). In some
experiments, Reptin was further incubated with DNA
fragments at 30 °C for 5 min in the same buffer. Samples
were passed through nitrocellulose membranes (Millipore
HA, 0.45 μm) at room temperature andwashed rapidly with
20 volumes of ice-cold buffer T using a vacuum suction. The
radioactivity remaining on the filter was monitored with a
liquid scintillation counter (Perkin Elmer).
Peptide binding assays

H1299 cells were lysed in 0.1% Triton X-100 lysis buffer
(50 mM Hepes, 0.1 mM EDTA, 150 mM NaCl, 10 mM
NaF, 2 mM DTT, 0.1% Triton X-100, and 1× protease
inhibitor mixture). Lysates were incubated with 40 μg/ml
avidin for 30 min on ice. Then, lysates were precleared by
incubation with streptavidin-agarose (Sigma) beads for
1 h. In the meantime, 0.4 μl of peptide was incubated
with streptavidin-agarose (Sigma) beads in buffer W
(100 mM Tris, pH 8.0, 150 mM NaCl, and 1 mM EDTA)
for 1 h at room temperature with gentle rotation and then
washed three times with the same buffer. Cleared lysate
(0.2 mg) was then added to the peptide-coated beads in a
final volume of 200 μl and rotated at room temperature.
After 1 h, beads were washed once with buffer W, four
times with PBS+0.2% Triton X-100, and once more with
buffer W. Sample buffer was then added to the beads,
and bound protein was eluted by boiling for 3×5 min and
immunoblotted to quantitate the amount of Reptin
bound.

Immunoprecipitation of protein complexes from cell
lysates

The cells were harvested and lysed in co-immunopre-
cipitation buffer (25 mM Tris, pH 7.2, 0.4 M KCl, 1% NP-
40, and 1× protease inhibitor mixture). The lysates were
precleared by incubation with Sepharose CL 4B (Sigma-
Aldrich) and protein G-Sepharose™ 4 FastFlow (GE
Healthcare) at 4 °C with rotation for 40 min. Subsequently,
1 μg of primary antibody (K47 polyclonal specific for
AGR2) was incubated with 600 μg of protein in the
precleared lysate in a final volume of 200 μl for 2 h at 4 °C
with gentle rotation. A total of 15 μl of protein G-
Sepharose was then added to the abovementioned
samples and incubated for 1 h at 4 °C with gentle rotation.
Supernatant (flow-through) was collected, and the beads
were washed four times with 500 μl of co-immunoprecip-
itation buffer. Samples were eluted by adding 50 μl of 4×
SDS sample buffer containing 0.2 M DTT and incubating
at 95 °C for 5 min. The eluate was then collected and
analyzed by Western blotting.
His-ubiquitin conjugate pull-down assay

Cells co-transfected with HA-tagged Reptin or p53
and/or human MDM2 along with pCMV-His-ubiquitin,
NEDD8, or SUMO plasmids for 24 h were incubated with
10 μM MG132 for 4 h and then harvested and washed in
PBS before the addition of 6 ml of HUBMA (His-ubiquitin
modification buffer A; 6 M guanidinium chloride, 0.1 M
Na2HPO4/NaH2PO4, pH 8.0,10 mMTris–HCl, and 10mM
2-mercaptoethanol) and 5 mM imidazole. The lysate was
homogenized using a 24-G syringe needle before adding
75 μl of Ni2+-nitrilotriacetic acid-agarose beads and
rotating at room temperature (21 °C) for 4 h. The beads
were centrifuged at 2000 g for 5 min, and the supernatant
was discarded before washing sequentially with 750 μl of
HUBMA, HUBMB (8 M urea, 0.1 M Na2HPO4/NaH2PO4,
pH 8.0, 10 mM Tris–HCl, and 10 mM 2-mercaptoethanol),
HUBMC (8 M urea, 0.1 M Na2HPO4/NaH2PO4, pH 6.3,
10 mM Tris–HCl, and 10 mM 2-mercaptoethanol),
HUBMC with 0.2% (v/v) Triton X-100, and finally
HUBMC and 0.1% (v/v) Triton X-100. To the washed
beads, 75 μl of His-ubiquitin elution buffer [0.2 M
imidazole, 5% (w/v) SDS, 0.15 M Tris–HCl, pH 6.7, 10%
(v/v) glycerol, and 0.72 M 2-mercaptoethanol] was added
and incubated for 20 min at room temperature. A total of
75 μl of 2XSDS sample buffer was added to the eluted
ubiquitin conjugates and subjected to Western blot
analysis as indicated in the legend to Fig. 3.

Oligomerization assay using cross-linker

Recombinant WT or mutant Reptin protein (2 μg) with or
without 1mMATPwasmixedwith serial twofold dilutions
of glutaraldehyde, from 0.2% to 0%, in a total volume of
20 μl and incubated for 1 h at room temperature. The
reaction was stopped with 10 μl of 1 M Tris, pH 8.0, sample
buffer was added, and samples were boiled, separated
using 8% SDS-polyacrylamide gel, and immunoblotted to
detect monomeric and oligomeric Reptin.
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Review
Missense mutations in the p53 gene are commonly
selected for in developing human cancer cells. These
diverse mutations in p53 can inactivate its normal
sequence-specific DNA-binding and transactivation
function, but these mutations can also stabilize a mutant
form of p53 with pro-oncogenic potential. Recent multi-
disciplinary advances have demonstrated exciting and
unexpected potential in therapeutically targeting the
mutant p53 pathway, including: the development of
biophysical models to explain how mutations inactivate
p53 and strategies for refolding and reactivation of
mutant p53, the ability of mutant p53 protein to escape
MDM2-mediated degradation in human cancers, and the
growing ‘interactome’ of mutant p53 that begins to
explain how the mutant p53 protein can contribute to
diverse oncogenic and pro-metastatic signaling. Our
rapidly accumulating knowledge on mutant p53-sig-
naling pathways will facilitate drug discovery pro-
grammes in the challenging area of protein–protein
interactions and mutant protein conformational control.

Introduction
Thirty years following the discovery of the oncoprotein
p53 we learn that the p53 gene and its major regulatory
effector MDM2 (transformed mouse 3T3 cell double min-
ute 2), the p53 binding protein homolog, both appeared
surprisingly early in eukaryotic evolution [1]. This strik-
ing discovery has given the p53–MDM2 axis significant
time to evolve and imbed itself as a major signaling hub
involving at present hundreds of dynamic protein–

protein interactions (PPIs) (Figure 1A and Table S1 in
the supplementary material online). p53 protein itself
also binds to a vast number of DNA promoter regions [2].
One implication of this ancient MDM2–p53 PPI network
(i.e. interactome) is that it controls a huge range of
molecular pathways in humans, ranging from autophagy
and DNA damage responses to differentiation, senes-
cence, cell–cell interactions, and apoptosis, as well as
fundamental energy generation pathways including
ATP generation by oxidative phosphorylation. It is per-
haps not surprising, then, that p53 regulates diverse
aspects of animal life including ageing, fitness, virus
infection, reproduction, and cancer.

Silencing the function of wild-type p53 (wt-p53) or
mutation of the gene encoding p53 (TP53) are the most
common genetic alterations in human cancer [3]. Thus, the
second implication of this large p53 interactome is that the
Corresponding author: Hupp, T.R. (ted.hupp@ed.ac.uk)
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‘transcriptionally inactive’ mutant p53 selected for in
human cancers might contribute to carcinogenesis by sig-
nificantly rewiring the normal PPI landscape (Figure 1A).
The magnitude of the PPI landscape of some proteins such
as ataxia telangiectasia mutated (ATM) [4], eukaryotic
translation initiation factor 3 (eIF3) [5], or ephrin receptor
B2 (EPHB2/ERK) [6] is just beginning to be understood.
However, we do not precisely know yet what the mutant
p53 PPI landscape might look like, but it can lead to
disease phenotypes that increase as a function of increas-
ing age, such as cancer and infection. Genetic and bio-
chemical studies have shown that targeting the p53
pathway could offer therapeutic advances in cancer treat-
ment [7]. The characterization of mutant TP53 alleles has
generated key paradigms in the field including (i) unfolded,
mutant p53 protein accumulates in the nucleus of cancer
cells in vivo [8], (ii) mutant p53 acts in a dominant-negative
fashion forming mixed tetramers that unfold the wt-p53
protein [9], (iii) mutations usually attenuate the sequence-
specific DNA-binding function of p53 [10], and (iv) mutant
p53 can induce distinct changes in gene expression by
establishing novel PPIs with transcriptional components.
This can in turn be linked to the oncogenic activity of gain-
of-function p53 mutations [11,12].

The effects of stabilized mutant p53 protein are far-
reaching. These effects include enhanced genome
instability by inactivating the ATM pathway [13] as well
as an altered transcriptome by selected PPIs with
transcription components that can lead to invasion,
stimulation of angiogenesis, drug-resistance, and differ-
entiation blocks. There are many, excellent comprehen-
sive reviews on mutant p53 [14]. This review will discuss
the most recent advances and approaches used to study
the pro-oncogenic functions of mutant p53 in vitro and in
vivo, the regulation of mutant p53 degradation by the
ubiquitin–proteasome system (and the rationale for tar-
geting mutant p53 degradation to attenuate pro-
migratory functions of cancer cells), and the perhaps
more challenging approach of using chemical biology
strategies that aim to refold mutant p53 protein into
the wild-type tumor suppressor conformation. Continued
research in these three areas will probably produce excit-
ing new prospects for manipulating specifically the con-
formation and function of mutant p53. Such research
using mutant p53 as a model also will allow the devel-
opment of more generalized concepts and proof-of-prin-
ciple studies for tackling a very difficult area in the drug
discovery field: manipulating mutant protein confor-
mations and inhibiting PPIs in human disease.
d by Elsevier Ltd. doi:10.1016/j.tcb.2010.06.005 Trends in Cell Biology 20 (2010) 542–555
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Figure 1. (a) The interactomes of p53 and MDM2. Annotation of the hundreds of published binding proteins that have been reported for p53 or MDM2 (using the Human

Genome Navigator, http://www.hugenavigator.net/; and acquired from PubMed, http://www.ncbi.nlm.nih.gov/pubmed) are highlighted with some classes of molecules

sharing interactions with both MDM2 or p53 and others with no direct overlap (Tables S1 and S2 in supplementary material online; updated at www.ecrc.ed.ac.uk/groups/

studys.asp?studyID=4). It is not known yet how many of these p53-interactors are actually specific for mutant or wt-p53; some of these interactors have not been subjected

to rigorous validation using the tools of protein science. (b) A mechanism to explain the interconnectivity of p53. Example of combinatorial diversity driving the interaction

of one small intrinsically disordered p53 peptide motif with three different class of binding proteins. The p53 C-terminal peptide (GQSTSRHKKLMFKTE) (purple) adopting

three different conformations in complex with the peptide binding grooves of (i) S100b, (ii) sirtuin, or (iii) cyclin A2 [protein data bank (PDB) codes 1DT7, 2H2D and 1H26

respectively; http://www.pdb.org]. The implications of these data are that many of the intrinsically disordered peptide motifs of the p53 tetramer could provide docking sites

for a range of PPIs and help to explain in part the vast interactome of p53.

Review Trends in Cell Biology Vol.20 No.9
Why we need to target mutant p53 protein in human
cancer: the pro-oncogenic functions of mutant p53
Transcription functions of mutant p53

Tumor-associated mutations in the TP53 gene cover a
large proportion of the region encoding the p53 DNA-
binding domain [3]. These mutations result in a p53
protein with reduced sequence-specific DNA-binding
activity and thereby produce a ‘transcriptionally inactive’
p53. Common TP53 mutations in human cancers, such as
R175H or R273H, determine a p53 that is essentially
inactive as a sequence-specific DNA-binding protein and
transcription factor for genes that normally are induced by
wt-p53 to maintain tissue integrity. These data have
formed a central p53 paradigm that links tumor suppres-
sion to its activity as a DNA-binding protein and transcrip-
tion factor [15].

Loss-of-function mutations in p53 destabilize thermo-
dynamically the DNA-binding domain [16], thereby not
only reducing the expression of genes that are transacti-
vated by p53 but also derepressing genes that are normally
suppressed by p53 [17]. The most striking derepression
published recently was the enhanced expression of the
CD44 receptor in the absence of functional p53 [18]
(Figure 2A). There can also be a staged evolution to the
mutant TP53 (Trp53 in mouse) gene status of a cancer cell.
First, there can be selection for mutation in p53 that
produces a mutant protein with the ability to oligomerize
with wt-p53, distort the wt-p53 conformation, inhibit its
function, and promote aggressive cancer growth in vivo
[12,19]. An additional event can occur that selects for
deletion of the remaining wt-p53 allele. The selection
pressures that drive the survival of cancer cells that main-
tain both wt-p53 alleles or that select for inactivating or
gain-of-function mutant alleles are not defined. Significant
challenges in future will involve understanding the mech-
anisms that regulate these evolutionary p53 crossroads in
developing cancer cells. A recentmilestone in this area was
the analysis of p53 mutations in microdissected crypts
within oesophageal metaplastic and dysplastic biopsies
[20]. It is striking that distinct and multiple independent
p53 mutant clones are selected for in this tissue type. The
oesophageal cancer progression sequence provides a
unique physiological model for studying the types of p53
mutations that are selected for in vivo. Such selection
pressuresmight relate to the interactions of the developing
cancer cell with normal tissue matrix [21] and to other
genetic changes that take place in these pre-cancerous cells
such as mutation or deletion of the gene encoding p16.

Despite the obvious fact thatmutant p53 proteins can be
inactive as sequence-specific DNA-binding proteins, these
p53mutants are not necessarily wholly ‘inactive’. Selection
pressures in cancer cells drive the stabilization of mutant
p53 protein in the nucleus in vivo leading to a significant
change in the PPI network of the p53 interactome. These
mutant p53 proteins that are inert for DNA binding can
stimulate gene expression through PPIs with transcription
factors rather than through sequence-specific DNA-bind-
ing to wild-type consensus sites. Such p53 mutants can
drive expression of genes involved in repair or anti-apop-
totic pathways such as the molecular chaperone network
and growth-stimulatory genes including cyclins. The
mutant p53 proteins can be considered to have a gain-of-
function because they are not actually functionally inactive
and they do not act like TP53-null alleles [12]. This latter
concept was supported by recent transgenic data showing
that some mutant TP53 alleles can actually support meta-
static cancer development in vivo, unlike the TP53-null
controls [22]. Not all TP53 alleles with mutations within
543
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Figure 2. Signaling pathways mediating the pro-oncogenic functions of mutant p53. (a) Loss of function of p53 derepresses proteins such as the CD44 receptor [18]. (b)

Mutant p53 protein interactions with transcription factors such as NF-Y drive pro-oncogenic changes in the transcriptome [25]. (c) TGF-b and RAS-CK1 signaling drive

mutant p53 interactions with SMAD2 and suppress p63 signaling [30]. (d) Mutant p53 can suppress a range of TGF-b-responsive genes including that encoding TGFBR2,

thereby reducing wound healing and cell migration [32]. (e) Mutant p53 interactions with p63 suppress anti-migration genes and stimulate integrin recycling and cell

migration [33]. (f) Mutant p53 suppression of p73 can be attenuated by molecules such as RETRA that was identified by screening cancer cells containing mutant p53 for

restimulation of p53-family responsive promoters [34].
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the DNA-binding domain have been shown to be pro-
metastatic and there are thought to be degrees of ‘aggres-
siveness’ linked to the potential for the mutant p53 to be in
an unfolded conformation. Some alleles such as R175H are
one of the most pro-oncogenic and unfolded or destabilized
[16]. Other allelic forms such as R273H are not as unfolded,
are not as aggressive in transformation assays, and are
sometimes considered to be only DNA-contact mutants.
However, p53 encoded by the R273H allele also shows
allosteric or conformational defects in some assays
[23,24] thus complicating a full understanding of what
determinants in p53 drive gain-of-function pro-oncogenic
signaling.

Such concepts can be used to develop two distinct thera-
peutic strategies that target mutant p53. First, reactiva-
tion of mutant p53 into a wt-p53 conformation could
544
repress pro-oncogenic signaling proteins such as CD44,
as well as stimulate the normal wt-p53 tumor suppressor
network. Second, direct or indirect inhibition of ‘active’
mutant p53, thereby promoting more aggressive pro-meta-
static cancers in vivo [12,19,22], would obviously form an
attractive drug target. Among the first mechanistic evi-
dence that mutant p53 has a novel biochemical function
was the identification of an interaction between mutant
p53 and NF-Y (Figure 2B) that led to a change in pro-
oncogenic gene expression [25]. Multiple transcription
targets of mutant p53 are now known that are involved
in anti-apoptotic signaling, inflammation, invasion, and
cell growth [14].

These effects of mutant p53 involve, in part, PPIs (as in
Figure 1A) that are likely to identify an ever-growing list
of ‘druggable’ targets in the future. Developing small
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molecules that disrupt PPIs is thought to be very difficult,
but we are now developing diverse rules for how to target
PPIs. An example of ‘drugging’ a p53 PPI was highlighted
by a recent study that identified a small molecule that
blocked SNAIL-mediated degradation of wt-p53 [26]. The
small molecule (GN25) was not toxic to normal cells and
did not affect mutant p53, thus displaying a degree of
specificity. Such concepts are likely to be applicable to
mutant p53 PPIs, with success limited to the diversity of
the chemical library used. Understanding in detail how the
many mutant p53 protein signaling events occur will
facilitate such developments. Understanding how many
distinct types of mutant p53 exist, in terms of the specific
PPIs they embrace, will also be a major aim of p53
research. Below we review a recently defined mutant
p53 PPI that regulates pro-metastatic signaling.

The function and regulation of p53 in pro-metastatic

pathways

The 30th anniversary of the discovery of p53 has led to an
excellent review series explaining the detailed functions of
mutant p53 [27]. Herewe focus on three recentmechanistic
advances regarding the pro-metastatic function of mutant
p53: (i) mutant p53 induces aggressive pro-metastatic
cancers in animals models that are not seen in p53-null
animals [22], (ii) mutant p53 changes the transcriptome of
the cancer cell towards pro-metastatic signaling [18], and
(iii) mutant p53 can promote its gain-of-function effects
through a broad set of PPIs that stimulate diverse pro-
metastatic signaling pathways. Defining the diversity of
the PPIs that are driven by mutant p53 proteins and the
diversity of allele-specificity in themutant p53 interactome
will remain a major challenge. Highlighted below are
studies describing the ability of mutant p53 to stimulate
invasion, migration and colonization of cancer growth in
vivo. This pro-metastatic property of mutant p53 makes a
strong argument for targeting mutant p53 with new thera-
peutic strategies, as described in the next sections (degrad-
ing mutant p53 and switching mutant p53 to the wild-type
conformation).

Mutant p53 cooperates with TGF-b-induced cell

migration

The transforming growth factor beta (TGF-b) pathway is
known to cross-talk with thewt-p53 pathway, adding to the
multiple physiological signaling inputs that can trigger
p53 activation [28]. Understanding fully the cross-talk
between TGF-b and mutant p53 is complicated by the fact
that TGF-b can act both as a tumor suppressor at early
stages in carcinogenesis and as a pro-metastatic signal at
advanced stages [29]. The latter property of TGF-b empha-
sizes the need for a mechanistic understanding of its
interactions with mutant p53. A recent study has shown
that gain-of-function mutant p53 can bind to SMAD2 and
cooperate with TGF-b to suppress p63 growth-suppressor
signal (Figure 2C). This signal attenuates metastasis sup-
pressor gene expression and induces pro-migratory events
in a range of cell lines, xenograft models and skin cancer
models, but also provides a key PPI driving a signal that
could nucleate drug-discovery assays at this hub [30].
Indeed, the signaling events that inhibit p63 function in
turn include a RAS-CK1 cascade that can stabilize the
mutant p53 PPI with SMAD2. However, these data cannot
yet be reconciled due to the fact that transgenic pro-onco-
genic p53s encoded by the mouse equivalent of the R175H
allele do not have developmental defects similar to those
seen in p63-null animals [31]. These data suggest that
mutant p53 inhibition of p63 might be confined to selected
cancer cells and is not necessarily fundamental to mutant
p53 function. Nevertheless, these data elegantly define the
multiple components of one signal transduction pathway
that offers a therapeutic strategy for attenuating themeta-
static functions of the pro-oncogenic class of mutant p53;
for example, at least by inhibiting the upstream signal
induced by CK1e and RAS [30].

Mutant p53 suppresses the TGF-b pathway

Despite the data demonstrating a novel signaling pathway
that induces mutant p53 to cooperate with TGF-b
(Figure 2C), studies demonstrating the opposite have also
been reported – mutant p53 can attenuate TGF-b induced
migration through the suppression of a range of TGF-b-
dependent genes including that encoding the receptor
protein TGFBR2 [32] (Figure 2D). These apparently con-
tradictory data make defining the signaling pathways that
activate mutant p53 relatively difficult and demonstrate
that the pro-invasion potential of mutant p53 is not a
universal property of mutant p53 alleles and depends on
the cell type. Such data also indicate that drug leads which
degrade mutant p53 (as discussed in the second section of
this review) could actually stimulate TGF-b-mediated cell
migration in some cell types. The choice to degrade mutant
p53 or to inhibit mutant p53 will depend on the context of
the specific cancer cell type.

In the latter study showing thatmutant p53 inhibits cell
migration [32], using head and neck cancer models, an
association was indeed found between p53 mutation sta-
tus, expression of NF-kB-related genes, and suppression of
TGFBR2. Depletion of mutant p53 using siRNA resulted in
restoration of TGFBR2 expression, increased expression of
TGF-b-responsive genes, and suppression of proinflamma-
tory NF-kB signaling. Using Tgfbr2 knockout mice, the
authors also demonstrated that abrogation of TGF-b sig-
naling led to sustained induction of the NF-kB pathway.
The fact that these studies [30,32] demonstrated opposing
effects of mutant p53 on TGF-b-dependent signaling and
cell migration might reflect the cell-specific nature of TGF-
b function as both a metastatic promoter and a tumor
suppressor. The development of additional physiologically
relevant models with emphasis on the cancer cell types
used would facilitate prioritizing concepts on the role of
mutant p53 in cell migration.

Mutant p53 promotes integrin recycling

Another recent study demonstrated that specific mutant
p53 alleles can drive cell escape from mutant Ras-induced
senescence in pancreatic adenocarcinoma and promote
metastasis in animal models [22]. A correlation between
p53 accumulation in human pancreatic cancer and the
number of lymph node metastases was also noted [22].
In a complementary study evaluating the effects of mutant
p53 on cell migration it was confirmed that two common
545
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p53 alleles (R175H and R273H) could drive enhanced
random cell motility and loss of polarity in vitro [33].
However, it is difficult to generalize such results because
the same mutant p53 allelic forms were shown to suppress
TGF-b-mediated cell migration in the same cancer cell type
[32]. In addition, because the R273H form is generally
thought to be a DNA-contact mutant, this mutant does
not necessarily have the same pro-migratory gain-of-func-
tion phenotype as the conformational mutant encoded by
the R175H allele. However, whether the R273H form acts
as a DNA-binding contact mutant or not is controversial.
There are data showing that the R273H form can act as a
conformation mutant – it can be activated for DNA binding
and shows allosteric defects in its inactivity as a DNA-
binding protein and transcription factor [23,24]. Thus, the
data showing that R273H can stimulatemigration indicate
that, under these conditions, themutantmight behave as a
conformationalmutant and notmerely as a loss-of-function
DNA-binding mutant.

Supporting the data demonstrating that mutant p53 can
promote cell migration in vitro, an intestinal tumor model
driven from the adenomatous polyposis coli (Apc) gene was
utilized inwhich tumorigenesis canbe initiatedby loss of the
wild-type Apc gene in transgenic mice containing a single
conditional inactivatable (‘floxed’) Apcfl/+ allele [33]. When
these mice were crossed to animals carrying an inducible
knock-out Trp53 (p53) allele or an inducible dominant-
negative Trp53 knock-in allele, both sets developed intes-
tinal tumors with a similar frequency and timeframe, but
the mutant p53 animals had significantly more invasive
tumors containing stabilized mutant p53 protein. The
mutant p53 protein was stabilized in the nucleus of the
cancer cells in these mouse models, a classic signature of
many mutant human p53 proteins in cancers in vivo [8].

In these models, mutant p53 can drive invasion through
silencing of the p63 pathway and recycling of the integrin/
EGFR signaling pathway [33], but this outcomewas TGF-b
independent and AKT-dependent (Figure 2E). In these
studies two distinct signals account for migration
(Figure 2C and E), and we can propose a mechanism to
explain these differences. When TGF-b cooperates with
mutant p53 to drive migration, an intrinsically disordered
motif in the N-terminus of mutant p53 is implicated in
binding to SMAD-2 to form a trimeric complex with p63
[30]. In the other study (in the absence of the TGF-b
signal), the C-terminus of p53 is implicated in attenuating
p63-dependent transcription under conditions where
integrin/EGFR recycling occurs [33]. Thus, the apparent
contradiction that mutant p53 can either suppress or drive
cell invasion and/or aggressive cancer growth in vivomight
be better reconciled if the ‘interactome’ of the mutant p53
proteins (if not the ‘proteome’ of the cancer cell) could be
identified, annotated and distinguished experimentally.

A novel screening approach for ‘inhibiting’ mutant p53
The extensive amount of intrinsic disorder in the human
proteome that drive combinatorial diversity in signal
transduction adds another, but at present obscure, layer
into understanding of PPI network rewiring in diseases
such as cancer. In addition, the unexpectedly large and
growing size of the p53 protein interactome (Figure 1A)
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raises fundamentally new questions normally confined to
the systems biology field. How do we generate experimen-
tal strategies to understand the vast and dynamic PPI
landscape of a normal and diseased cell? How can these
approaches facilitate anti-cancer drug development? One
approach would be to develop systematic cell-based sub-
screens to annotate the mutant p53 interactome into func-
tional subsets. For example, to begin to ‘inhibit’ themutant
p53 interactome in cancer cells, assays need to be gener-
ated that can provide an indirect read-out of the functions
of a relatively specific PPI group.

An elegant and thoughtful study identifying the small
molecule RETRA forms a roadmap for such specific screens
[34]. One of the binding proteins for mutant p53 is the p53-
familymember and transcription factor p73 (Table S1). p73
can transactivate some of the same target genes as wt-p53.
Mutant p53 protein can directly inhibit such functions of
p73 by forming mixed inactivating complexes (Figure 2F).
Assays were therefore established in cells containing
mutant p53 and a p53-/p73-responsive transcriptional
reporter. Small molecule libraries were screened that acti-
vate the p53-/p73-responsive promoter in such cells; mol-
ecules that directly activated wt-p53 were removed in
secondary screens, and leads that specifically allowed
‘stimulation’ of p73 function in the mutant p53 background
were identified. Such leads were shown to function strictly
in cells containing mutant p53 and could function in xeno-
graft systems. This approach goes beyond normal cell-
based screens that measure a biochemical activity because
it takes into account the interactome of mutant p53. A
proof-of-concept for annotating the mutant p53 interac-
tome that is relevant for drug discovery in cancer was
demonstrated by this study, further highlighting the excit-
ing possibility of targeting the mutant p53 pathway as an
anti-cancer strategy.

Mutant p53 protein ubiquitination and degradation
Proteins of the ubiquitin–chaperone system interacting

with mutant p53

The studies summarized in the previous section highlight
recent evidence that mutant p53 can often, but not always,
play a dominant role in cell migration or invasion. There-
fore, in cancers wheremutant p53 does show pro-oncogenic
functions, another therapeutic strategy to inhibit its func-
tion would be to exploit intracellular pathways that can
promote mutant p53 degradation. The synthesis, folding,
and degradation of wt-p53 is a well-documented area that
provides strategic support for this approach [35]. The
numbers of interacting proteins for a ‘hub’ protein such
as wt-p53 or mutant p53 are in the hundreds, and the
mechanistic basis for this extensive interactome involves
the large regions of intrinsically disordered peptide dock-
ing sites that exist within the p53 protein tetramer
(Figure 1B). The p53 interactome (Figure 1A) is not ‘stable’
but is dynamic and changes over time, reflecting the
properties of weak, transient but highly specific peptide–

protein interactions. The wt-p53 interactome is more well-
defined than the mutant p53 interactome. Although the
mutant p53 interactome is just emerging as a distinct
entity, some proteins that regulate or misregulate mutant
p53 protein degradation in cancers are already proving to
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be relevant for strategies that mediate degradation of pro-
oncogenic mutant p53 protein in cancer cells.

Two of the first sets of p53-interacting proteinswere the
heat shock protein (HSP,molecular chaperone) family and
MDM2 [36–38]. Most striking was the stable complex that
formed between what is now known to be mutant p53
protein and the chaperone system in Ha-Ras transformed
cells [39–41]. These molecular chaperone interactions
with mutant p53 are still proving to be fundamental to
cancer and we now know that mutant p53, HSP90 and
various chaperones, along with specific ubiquitin ligases
such as CHIP and MDM2, can even exist in a functional
complex [42–47]. The interactions between p53 and the
molecular chaperones relates to the balance between the
degradation and synthesis of p53.Wt-p53 andmutant p53
protein stability can be regulated in distinct ways.Wt-p53
can be a very short-lived protein under both negative
control [48,49] and positive control [50] by MDM2,
whereas mutant p53 protein can be stable in a range of
cell systems. This forms a central paradigm in our un-
derstanding of p53, and defining how this degradation of
wt-p53 and/or stabilization of mutant p53 takes place is a
fundamental and still unresolved area. A framework now
exists that will allow us to begin to describe the molecular
mechanisms underlying the synthesis of p53 protein,
balanced against the factors that promote the degradation
of p53 protein (Figure 3). In the case of wt-p53 there are
now many E3 ubiquitin ligases that regulate its degra-
dation [51], including the most recently identified RING-
domain-containing protein TRIM24 [52]. SNAIL was also
reported recently to bind to and stimulate the degradation
of wt-p53, and small molecule inhibitors were also ident-
ified that block this pathway and reactivate the wt-p53
response [26].

Progress in understanding how these pathways of syn-
thesis and degradation are linked to mutant p53 protein
has been relatively slow. For example, although MDM2
binding to the p53 mRNA stimulates the synthesis of p53
as a fundamental part of the p53–MDM2 feedback loop
[50], how mutant p53 synthesis is controlled is not fully[(Figure_3)TD$FIG]
Figure 3. Regulating mutant p53 protein levels in cells. Wt-p53 is ubiquitinated and deg

similarly linked to MDM2 function but in more complicated manner. Mutant p53 protein

and chaperonin protein-folding pathway; these assembly pathways can be blocked b

dependent pathway [54]. This offers novel therapeutic opportunities for degrading mut

required for specific assay design. Conversely, although mutant p53 can be degraded in

its intrinsic ubiquitination signal in the DNA-binding domain [67,73], the mutant p53

ubiquitination and degradation system [54,56], presumably through the HSP90 sign

ubiquitination is relatively complex [114]. It has also been established that the HSP90 co

could provide a mechanistic rationale for this effect and provide an opportunity for the
understood (Figure 3). The difficulty is mainly due to the
absence of p53–MDM2 in genetically tractable organisms
such as yeast, flies, or worms that would normally provide
a rapid and elegant approach for discovering the degra-
dation and synthesis pathways of mutant p53 (Figure 3).
The primitive four-celled eukaryote Trichoplax adhaerens,
that contains the ancient p53–MDM2 axis [1], might some-
day provide such a genetic model. In the absence of such
classic genetic screens the cancer cell biology field has
exploited the small molecule natural product geldanamy-
cin (and analogs) that bind to HSP90 to shed light on both
wt-p53 assembly and mutant p53 protein degradation
control [43]. HSP90 is a molecular chaperone that can
generally promote the assembly and folding of native
proteins including wt-p53 [53] whereas geldanamycin inhi-
bits HSP90 resulting in substrate transfer for degradation
by the HSP70–CHIP ubiquitination–degradation system.
In some cancer cell types the inhibition of HSP90with drug
leads such as geldanamycin can destabilize mutant p53
protein and drive p53 association towards a complex con-
taining HSP70 and the ubiquitin ligase CHIP, thereby
promoting mutant p53 degradation [54]. HSP90 inhibition
might therefore form an attractive strategy for degrading
mutant p53 protein. Because the chaperone-linked quality-
control ubiquitin ligase CHIP [55] is also involved in
regulating mutant p53 conformation and ubiquitination
[45,54,56], strategies that target mutant p53 protein
degradation by manipulation of the CHIP–chaperone ubi-
quitination–degradation system will probably provide a
further opportunity to develop new therapeutic approaches
(Figure 3). This will require amuch better characterization
and understanding of the CHIP interactome than we have
at present. Recent research begins to explain how the well-
studied ubiquitin ligase MDM2 functions enzymatically;
this will allow better targeting of MDM2 with drug leads
and the development of improved assays for identifying
and targeting additional E3 ligases and chaperone com-
ponents that might degrade mutant p53. The tools and
approaches developed to study the dynamics of the multi-
protein ubiquitin complex including MDM2 will also
raded by the MDM2 feedback loop (Figure 4 for molecular details). Mutant p53 is

in cancer cells can be stabilized in the nucleus by the HSP90-dependent synthesis

y HSP90 inhibition, leading to mutant p53 degradation through an HSP70–CHIP-

ant p53 by targeting the ‘HSP90-pathway’, although more fundamental details are

normal murine tissues by an MDM2-dependent pathway [77] involving unfolding of

in murine or human cancer tissue in vivo evades the normal CHIP and MDM2

aling pathway and the HAUSP/USP7 signaling pathway whose control of p53

re chaperone complex is ‘rearranged’ in cancer compared to normal cells [113]; this

rapeutic modification of cancer-specific PPIs.
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Figure 4. The dynamic multi-protein MDM2 pre-ubiquitin complex.

Characterization of MDM2-mediated ubiquitination of p53 has demonstrated that

ubiquitination of p53 is driven by allosteric interactions between the hydrophobic

pocket (Hy) in the N-terminus of MDM2, the acidic domain of MDM2 that interacts

with the ubiquitination signal in the DNA-binding domain of p53, and the multi-

functional RING domain (R). (1) RING-domain interactions with the E2-ubiquitin

intermediate, heterodimers with MDMX, and/or RNA interactions have all been

reported to regulate the rates of ubiquitination. Mutations in the RING domain

increase intrinsic tryptophan fluorescence of the acidic domain and also increase

ligand binding to the hydrophobic pocket, further highlighting the central role of

the RING scaffold in regulating MDM2 specific activity. (2) Substrate binding (i.e.

p53) to the hydrophobic pocket results in conformation changes (arrow) that

stabilize the (3) MDM2 acidic-domain interactions with the ubiquitination signal in

the DNA-binding domain of p53. This ubiquitination signal in p53 is at the site of

mutant p53 ‘unfolding’, and such unfolding sensitizes ectopically expressed

mutant p53 to ubiquitination in cell lines and to degradation in normal tissue in

vivo. This model provides a framework for understanding why small molecules

such as Nutlin do not inhibit p53 ubiquitination by MDM2 and highlights other

protein–protein interfaces that might form the basis for assays to evaluate

stimulation or inhibition of the E3 ubiquitin ligase function of MDM2. Additional,

dynamic, transient, but specific PPIs that might form druggable interfaces include

the acidic domain-docking interfaces, RING-E2, the N-terminal MDM2 lid (not

shown), the zinc finger (not shown), and additional MDM2 interaction sites that

regulate the dynamics of ubiquitin transfer, as reported previously [82] and

including the new pyridoacridine alkaloids [115] as well as MDMX-binding ligands

[116] that might disrupt the stability of the MDM2–MDMX heterodimer. Similar

characterization of the mutant p53 E3 ubiquitin ligases such as CHIP would

similarly begin to provide novel assays for small molecule lead discovery aimed at

manipulating the ubiquitination of mutant p53.

Review Trends in Cell Biology Vol.20 No.9
hopefully be transferred to the dissection of other E3
ubiquitin ligases such as CHIP.

How MDM2 operates as an E3 ubiquitin ligase

The interactome of MDM2 protein is growing with an
intriguing set of partner proteins that begin to explain
its diverse functions (Figure 1A and Table S2). MDM2
function as a p53 inhibitor takes place at the level of
transcriptional suppression and ubiquitin-mediated
degradation [37,48,49]. MDM2 can also play a positive
or stimulatory role in wt-p53 pathways including protein
folding/chaperone functions [57], protein translation [35],
and ubiquitination after certain types of irradiation [58]. In
fact, a recent report has shown that wt-p53 induction of
MDM2 can in turn degrade SLUG and attenuate cell
migration [59], providing a situation where MDM2 can
act as a positive mediator of p53-dependent metastasis
suppression. Precisely how these negative and positive
functions of MDM2 are linked to the p53 pathway and/
or are affected by mutant p53 control are so far undefined.

Understanding the mechanisms whereby MDM2 func-
tions as a p53 inhibitor or stimulator will be crucial for
making effective choices onways to regulate the negative or
positive control thatMDM2 exerts overwild-type ormutant
p53. For example, MDM2-binding ligands (such as Nutlin)
might actually stimulate metastasis according to the
MDM2-mediated SLUG degradation model. In addition,
although there is ample evidence that the hydrophobic
pocket of MDM2 can function as a druggable target capable
of inhibiting MDM2 function and activating p53 [60–62],
there was no mechanistic evidence that such drugs would
actually block theubiquitination function ofMDM2. Indeed,
recent work has shown that the hydrophobic pocket acts as
an agonist–acceptor for MDM2-mediated ubiquitination
and its occupation by ligand stimulates MDM2-mediated
ubiquitination of p53 [63,64] (Figure 4). This allosteric
reaction is highlighted further by the conformational inter-
actions revealed biophysically between the RING domain
and the acidic domain [65], as well as theMDM2 lid and the
acidic domain [64,66], both of which driveMDM2 binding to
the ubiquitination signal in the p53 DNA-binding domain.
This ‘ubiquitination signal’ forms the second identified
MDM2 binding site on p53 [63,67,68].

MDM2 not only functions as an E3 ubiquitin ligase but
also as a chromatin-associated factor that suppresses p53
activity in the nucleus [69]. Small molecules that block the
E3 ubiquitin ligase function of MDM2 might be different
from those that release p53 from MDM2 suppression as a
transcription factor. Such drug leads that block E3 ubiqui-
tin ligase function of MDM2 could bind the acidic domain,
the RING domain, the E2–E3 interface, or the MDM2–

MDMX interface (Figure 4). Stimulation of MDM2 E3
ubiquitin ligase function is also possible given that the
MDM2 lid can act in a gain-of-function manner [64] and
that mutations in the RING domain of MDM2 open the
MDM2 N-terminal hydrophobic pocket, thereby stimulat-
ing MDM2 function as a p53 inhibitor [65]. It will be
interesting to see how manipulating these domains of
MDM2 alters mutant p53 ubiquitination, synthesis,
stability, and oncogenic transcription functions. Such fun-
damental knowledge of how MDM2 can function allos-
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terically as a ubiquitin ligase will also help transfer generic
assays that can be used to identify CHIP small molecule
regulators.

Mutant p53 ubiquitination and degradation in cancers

One of the key paradigms in p53 cancer biology is the
accumulation of unfolded mutant p53 in the nucleus of
cancer cells [8,70]. The intriguing feature of the second
MDM2 binding site for MDM2 on p53 [67] is that this forms
the precise conformationally flexible epitope within the
thermodynamically unstable DNA-binding domain that is
exposed onmutant p53 in human cancers [71]. This flexible
site within p53 reflects the now established intrinsic
thermodynamic instability of p53 [72] and in turn builds
on one of the original paradigms in the p53 field – that p53
can exist in either a wild-type or a ‘denatured’ and unfolded
conformation [9,70]. Mutations in p53 at this second inter-
face increase MDM2 interactions and increase p53 ubiqui-
tination [73]. In vitro studies have shown that a trimeric
complex of MDM2–CHIP–HSP90 can unfold p53 [45],
although we still do not know whether in vivo unfolding
of the p53 protein plays a role in its ubiquitination. There is
only a correlation between mutations that unfold p53
protein, such as R175H or F270A, and the sensitization of
thesemutant p53 proteins toMDM2-dependent ubiquitina-
tion [73]. There are other E3 ubiquitin ligases that also play
a role in mutant p53 ubiquitination and degradation in-
cluding CHIP [43,54,56]. Further, the ubiquitin-specific
protease USP7 (HAUSP) was identified originally as a
mutant p53 (R175H)-binding protein [74], but how this
ubiquitin-modifying protein integrates into the wt-p53
and/or mutant p53 MDM2/CHIP/HSP90 degradation con-
trol is largely undefined (Figure 3).

The enhanced sensitivity of mutant p53 protein to
MDM2-mediated ubiquitination and degradation is com-
plex. Despite the fact that ‘unfolding’ mutations in p53
expose the second MDM2 binding site and sensitize
mutant p53 to ubiquitination in cancer cell lines in vitro
[67,73], the human mutant p53 protein is stabilized in the
nucleus of cancer cells in vivo [8,75,76]. A recent transgenic
study has resolved this discrepancy. Mouse transgenes
containing the R175H equivalent murine allele sensitize
the murine mutant p53 protein to enhanced MDM2-de-
pendent degradation in normal tissues in vivo [77], but
cancers derived from such mice show stabilization of the
mutant p53 protein in vivo [77]. These data indicate that,
under normal conditions, the destabilizing mutation can
indeed sensitize mutant p53 to ubiquitination and degra-
dation by MDM2, but cancer cells evade this effect –

resulting in mutant p53 stabilization. Thus, there are a
growing number of biochemical strategies that can be used
to affect mutant p53 levels, and themore we knowmechan-
istically about the factors that regulate mutant p53 ubi-
quitination and degradation, including the ubiquitin
ligases CHIP and MDM2, HSP90, and HAUSP, the better
choice we will have for developing effective drug targets.

Reactivation of mutant p53 Protein
The reactivatable nature of the p53 pathway

Inhibiting mutant p53 by either disrupting its PPIs (first
section; Figures 1A,2) or by targeting the signaling path-
ways through which mutant p53 protein escapes degra-
dation (second section; Figure 3), present very difficult
challenges in the drug discovery field. Reactivatingmutant
p53 protein into the wild-type conformation with small
molecules is evenmore ambitious. The concept that wt-p53
protein is ‘activatable’ using biologics (e.g. monoclonal
antibodies/peptide aptamers) provided unexpected evi-
dence that rational strategies could be developed to stimu-
late p53 function post-translationally [78–80]. The
propensity of wt-p53 to be stimulated by artificial agents
is due to its intrinsic instability at physiological tempera-
tures. The newly established ‘ensemble’ model of allostery
can explain in part how an intrinsically unstable protein
can be stabilized allosterically by specific ‘ligands’ into a
more active conformational landscape [81]. Subsequent
research has led to the realization that the wt-p53 pathway
itself (including upstream effectors or downstream
mediators of p53) is activatable by a range of strategies
including blocking p53-inhibitors such asMDM2 [60,61,82]
or replacement of p53-mediators (e.g. p21-peptide
mimetics) [83–85]. Because approximately half of human
cancers maintain wt-p53 alleles, the hope for novel thera-
peutics that reactivate wt-p53 pathways has led to cell-
based small molecule screens that measure increases in
p53 activity. This approach has identified a range of small
molecules such as RITA, that still lacks a known target
[86], and Tenovins that inhibit deacetylases [87]. These
p53 stimulatory leads have been reviewed previously [7].

In contrast to stimulating wt-p53 function, reactivation
of a mutant and inactive protein as a therapeutic strategy
might appear insurmountable if not naive. However, a
pioneering concept for allosteric protein control – using
hemoglobin as a model for identifying small molecule
modifiers of oxygen binding [88,89] – provided early hope
for rational strategies aimed at manipulating protein con-
formation. Indeed, mutant p53 protein can be stimulated
using biologics such as antibodies and specific peptides
that interact with p53 [23,80,90–92]. The p53 activating
peptide can also stimulate p53 activity in animal models,
providing an important proof-of-concept for the utility of
biologics approaches in regulating PPIs in vivo [80]. Ele-
gant cell-based screens have also identified small mol-
ecules such as PRIMA-1 that can reactivate mutant p53
functions [93].

The thermodynamically unstable and intrinsically

disordered p53 protein

Insights into how mutant p53 protein can be reactivated
stem from two recent advances in the protein science field,
one of which is essentially a paradigm shift. Since the
advent of protein crystallographic approaches a half-cen-
tury ago, a crucial aim of biological research has been to
‘solve protein structure’ in order to explain protein func-
tion. This pioneering discipline in 20th century science – the
structure–function paradigm – has formulated thousands
of structures that reveal the ordered and stable nature of
particular functional domains on proteins. It was quite
surprising to realize at the beginning of the 21st century
that a vast number of proteins are thermodynamically
unstable and/or are composed of a large degree of intrinsic
disorder. The degree of intrinsic disorder in any given
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proteome is linked to increasing complexity of multicellu-
lar life, and the paradigm shift is the realization that more
than half the proteome of higher eukaryotes is ‘disordered’
or ‘unstable’ (termed intrinsically disordered proteins or
intrinsically unfolded proteins; IDP’s or IUP’s) [94].
Because less than 5% of a prokaryotic proteome is thought
to be disordered, whereas 50% of the protein sequence in
humans is estimated to be disordered, it appears that the
evolution of more complex life required this unstable but
dynamic proteome.

This realization has led to the concept of regulatory
proteins with a large degree of intrinsic disorder or thermo-
dynamic instability sitting at ‘hubs’ and signaling through
a large network of weak, transient, but highly specific PPIs
[94]. These proteins, including p53, use such instability to
permit the formation of dynamic, transient, weak, but
specific PPIs with now hundreds of interactors
(Figure 1A). For example, just one disordered 12 amino-
acid motif in the C-terminal tail of p53 can adopt distinct
conformations because it interacts with peptide-binding
grooves of several different proteins (Figure 1B). The
intrinsically unstructured tail of p53 presumably docks
onto a large number of target proteins. These concepts
highlight the combinatorial and functional diversity of the
disordered linear domain.

Other emerging examples of proteins with their
dynamic interactomesmeasured into the hundreds include
ATM [4], eIF3 [5], and ERK [6]. Another recent example of
conformational diversity in a regulatory protein was the
observation that a member of the small HSP family can
exist in hundreds of different stoichiometries with client
proteins, and this explains in part how these chaperones
regulate the assembly of diverse proteins [95]. Such built-
in flexibility and plasticity, intractable to structural
biology, highlights how intrinsic disorder is used by bio-
logical systems to regulate dynamic processes. Of course it
is not known how many of these conformations are func-
tional in vivo, but this insight will help to develop exper-
imental approaches to understanding how proteins such as
p53 can have such an unexpectedly large number of inter-
acting proteins. Such plasticity permits p53 to bind to
hundreds of proteins, and it is not difficult to envisage
how the ‘stabilized’ mutant p53 protein in cancer can
change the proteomic landscape of a cancer cell.

With half the sequence space in the human proteome
disordered, and globular domains sometimes showing
intrinsic thermodynamic instability, new experimental
approaches will be required to understand and define this
protein sequence space. The second advance in the protein
science field highlights the approach of building such space
models – this primarily comes from Alan Fersht’s lab
where the shape and structure of the p53 tetramer were
analyzed using a combination of techniques including
nuclear magnetic resonance (NMR), small angle X-ray
scattering, and imprinting onto this shape the smaller
structural domains that are amenable to crystallization
[96]. The shape of the p53 tetramer and orientation of the
disordered C and N-terminal ‘arms’ generate an intriguing
view of p53 [97]. In the absence of DNA the p53 tetramer is
largely extended with the N- and C-termini ‘open’ for
interactions with a host of proteins [72,96,98], as in the
550
example in Figure 1A,B. The interaction of theN-termini of
p53 with the core DNA-binding domain of p53, recently
identified using fluorescence resonance energy transfer
(FRET) analysis [97], can be explained by the flexibility
of the N-terminus; this could provide a mechanism to
account for intradomain allostery such as the ability of
mutant temperature-sensitive p53 function to be rescued
by deletion of 4 amino acids in the N-terminal domain [99].

Interdomain allostery within p53 is also possible con-
sidering that translation of wt-p53 with mutant p53 can
drive the wild-type polypeptide into the mutant confor-
mation. This alternative translation product of the p53
message, dubbed ‘p47’, can also formhomo-oligomers [100],
suggesting that there are determinants that prevent it
from formingmixed complexes with full-length p53 protein
encoded by the samemRNA. Becausemutations in p53will
affect the dynamic range of these multiple disordered
conformations, including self-oligomerization, mutant
p53 could be considered to spendmore time in an ‘extended’
and ‘inactive’ state than wt-p53 protein. Such a view of p53
also explains how peptides or antibodies that bind to the
protein can ‘activate’ themutant protein [92] because these
effector molecules do not change the conformation of the
mutant protein. These activating molecules shift the
mutant from a dynamic and unstable conformational land-
scape into a more stable landscape suitable for DNA-
binding.

Three new leads for reactivating mutant p53

The enhanced intrinsic thermodynamic or kinetic instabil-
ity of mutant p53 can be exploited to design ligands that
can interact with and stabilize the mutant protein in a
conformation compatible with DNA-binding. However, not
all p53 mutants can have their dynamic equilibrium
shifted to the wt-p53 state. Mutations attenuating DNA
binding of p53 can also reside (i) outside the active site,
resulting in destabilization of the core DNA-binding
domain, (ii) within the active site, and precluding stable
protein-DNA contacts, or (iii) within the oligomerization
domain, resulting in reduced tetramer stability. Recent
advances in protein science, structural biology, chemical
biology, and in silico screening have made it possible to
develop specific molecules that can interact with mutant
p53 and shift the dynamic equilibrium, as demonstrated
using a peptide mimetic [91].

(i) Reactivation of unfolded mutant p53. There are
mutations in p53 (such as R175H) that significantly desta-
bilize its structure. A recent report suggests that covalent
modification of thiols by the small molecule PRIMA-1 is
capable of stabilizingmutant p53 in an active conformation
[101]. PRIMA-1 was originally identified from a functional
cell-based screen for mutant p53 reactivation and forms an
exciting approach to mutant p53 reactivation by covalent
adduct formation. How distinct classes of p53 mutants
respond to PRIMA-1 will also be important to understand
to further define its mechanisms of action. For example,
can tetramerization-domain p53 mutants or DNA-contact
mutants be stimulated by PRIMA-1?

It is surprising that a cell-based screen could identify a
small molecule that covalently binds directly and specifi-
cally to p53 in vivo. Indeed, it is possible that this molecule
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is highly reactive in vivo to many proteins through binding
to thiol groups, and might act in part as an anti-oxidant. It
cannot be ruled out that PRIMA-1 reactivates mutant p53
by altering the protein folding pathways in the cell that
respond to thiol-modifying agents. The incubation of the
PRIMA-1 molecule with cells and examination of the
protein adducts recovered using mass spectrometry would
define its specificity and therefore mode of action.

(ii) Stabilization of mutant p53. Mutations in p53 (such
as Y220C or F270L) do not grossly unfold the mutant p53
and these mutations can create predicted cavities or
grooves on the surface (Figure 5). Using in silicomodeling,
lead molecules have been identified that can stabilize such
mutant p53 conformations in vitro [102,103], providing
another proof-of-concept that the core DNA-binding
domain of mutant p53 can be the target for rational drug
design. This approach might be confined to mutant p53
proteins which present such cavities or grooves exposed to
solvent, but it also is evident that this could require many
distinct types of small molecules that fit into the specific
cavities generated by mutation.

Nevertheless, recent concepts that p53 protein exists in
a dynamic range of conformations – the new allostery [81] –

[(Figure_5)TD$FIG]

Figure 5. Druggable cavities on mutant p53. The crystal structure of p53 allows in s

discovery. The example shown below highlights the F270 position (PDB code 2J1Z) at wh

pocket for the isolation of small molecules that stabilize this class of mutant p53 [103].
are important to consider. The fact that mutations in p53
do not ‘change’ the conformation of p53, but rather shift its
dynamic equilibrium towards different conformational
states, suggests that the concept of stabilizing mutant
p53 protein will probably be successful in some situations.
Further, the fact that PRIMA-1 (above) can reactivate
mutant p53 also indicates that, whether predominantly
direct or indirect, the cell possesses the enzymes capable of
refolding amutant protein. We need to learn how to exploit
this folding machinery for drug discovery purposes.

(iii) Stabilization of mutant p53 tetramers. Mutations
can occur in p53 outwith the coreDNA-binding domain; the
most notable sites are those within the tetramerization
domain that mediates dimer–dimer interactions [104]. A
recent report of small molecules that stabilize the equi-
librium of the mutant tetramerization domain demon-
strates the power of in silico modeling to isolate lead
molecules that regulate the stability of PPIs and polypep-
tide conformational equilibrium [105]. The selection of
small molecules that fit into grooves of allosteric sites on
proteins is reminiscent of prior work on hemoglobin [89]
but exemplifies the growing realization of the dynamic
nature of protein–ligand binding grooves [106].
ilico modeling and molecular dynamics to drive new insights into rational drug

ich mutation to amino acids such as leucine in human cancers provides a potential
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Box 1. Drug discovery and mutant p53

Key areas for understanding how to develop new therapeutics that

target the mutant p53 pathway.

� Degrading mutant p53: defining the molecular mechanisms that

explain how mutant p53 protein evades the mutant-protein

degradation machinery in cancer and developing drug leads that

stimulate mutant p53 protein degradation.

� Activating mutant p53: developing panels of novel small

molecules that stabilize the conformation of specific allelic forms

of mutant p53 protein and defining how many such forms are

likely to respond to this approach.

� Inhibiting mutant p53: exploiting the dynamic depth of the

growing mutant p53 interactome to drive drug development

screens that inhibit mutant p53 PPIs.

� Regulating mutant p53: determining how the distinct classes of

mutant p53 proteins are actually regulated by signaling pathways,

what unique interactomes these mutant p53’s might possess, and

how the tissue microenvironment effects these mutants p53 PPIs.

Review Trends in Cell Biology Vol.20 No.9
In summary, some class of mutant p53 proteins exhibit
a shift in the dynamic range of conformational landscapes
and it is possible to develop ligands that stabilize these
mutants in the wt-p53 or active conformational state.
However, some p53 mutants have a completely destabi-
lized structural landscape that might be more difficult to
target with small molecules. It could be more logical to
inhibit such p53 mutants or stimulate their degradation
(as in the second section), especially considering that they
can promote aggressive cancer growth in vivo.

Perspectives and future directions
Mutant p53 can sometimes function as a dominant-nega-
tive pro-oncogenic protein that promotes aggressive cancer
growth in vivo, and this provides a rationale for developing
novel therapeutic strategies targeting the mutant p53
pathway. The classes of p53mutants are diverse andwould
require distinct strategies for therapeutic targeting. We
would also need to take into account the cell type and
microenvironment of the cancer cell and not just the TP53
allele type. A landmark study reporting that multiple
independent and distinct p53 mutations can be selected
in dysplastic crypts from the same patient [20] – and that in
the cancer tissue itself only one mutant TP53 allele
spreads and dominates – highlights the need to understand
which TP53 allele and which microenvironment contrib-
utes to and/or drives such a selection. Approaches reviewed
here that might target mutant p53 include (i) directly
reactivatingmutant p53 protein, (ii) stimulating the degra-
dation of mutant p53 protein and/or inhibiting mutant p53
protein synthesis, and (iii) disrupting the mutant p53
interactome landscape or inhibiting specific mutant p53
PPIs. Because mutant p53 protein is structurally disor-
dered and its dominant function is mediated by PPIs,
therapeutic strategies will need to be developed that take
such PPIs into account.

Discovering PPIs is one of the central aims of research in
life sciences. Such information not only adds to our funda-
mental knowledge of life processes but also deepens our
understanding of disease mechanisms and provides logical
approaches for developing novel therapeutic leads for reg-
ulating a PPI. We can speculate on key advances in the
near future relating to mutant p53 interaction and regu-
lation that will facilitate drug discovery in the mutant p53
pathway (Box 1). One of the surprising facts that cancer
research has taught us is that a large proportion of the
‘cancer proteome’ is not only driven by classically ‘drug-
gable’ enzymes such as protein kinases and proteases, but
instead involves vast networks of dynamic and weakly
interacting protein–protein networks (Figure 1A). In paral-
lel, a paradigm shift developed in the protein science field
over the past 15 years now recognizes that half the human
proteome is comprised, not only of stable and ordered
globular domains, but of intrinsically disordered regions
that provide relatively weak, transient but highly specific
peptide-signaling scaffolds. Such a view provides new
insight into how drugging oncoprotein complexes works
– for example, through targeting peptide-binding grooves
in proteins such as MDM2, HSP90 [107], CyclinA [108],
BCL6 [109], LMO2 [110], and IAPs [111]. In addition, the
rearrangement of multi-protein–protein complexes can be
552
observed in cancer cells [112,113]. Thus, perturbations in
PPI networks drive the vast cancer landscape and this
provides a rationale for specifically targeting PPIs.

Ultimately, therefore, one key advance in cancer drug
development over the next 30 years will be to learn how to
target PPIs. Learning what to expect and how to accept
unconventional outcomes of drugging PPIs will also be
important. For example, we already have unconventional
outcomes in the p53 field: the relatively low-affinity ‘p53
activating peptide’ [81] can surprisingly work in animal
models to selectively kill cancer cells [80]. The thiol-mod-
ifying drug lead PRIMA-1 that refolds mutant p53 in vivo
[93,101] might also target a large number of proteins, but
its ‘non-specific’ function might not be as important as the
fact that it can actually reactivate mutant p53. At present,
these types of PPI regulators do not easily fit into the
standard view of a high-affinity and highly specific drug
lead for clinical evaluations. Over the coming decades we
will need to understand better how to study and manip-
ulate the ‘disordered’ proteome, such as that ofmutant p53,
and to learn what to accept in a drug lead that targets a
PPI. This is an enormous challenge that we cannot ignore
and that we need to take on if we are to exploit fully our
knowledge of the cancer proteome to develop better classes
of anti-cancer drugs.
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