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Abstract

This thesis describes the combination of experimental (neutron diffraction) and

computational techniques (molecular dynamics simulations) to investigate membrane

peptide interactions.

The first part deals with a comparison of human and rat form of the amyloid inducing

peptide islet amyloid polypeptide (IAPP). Lamellar neutron diffraction was performed

and a structural comparison on the differing modes of actions of the rat and human

forms of IAPP are reported.

A computational model for a di-oleoyl phosphatidylcholine (DOPC) bilayer was then

constructed. Once this bilayer had been verified with experimental data (namely area per

headgroup, volume per lipid, order parameter of the oleoyl chains and electron density

profile) a mixed bilayer of DOPC and di-oleoyl phopshatidylglycerol (DOPG) was then

constructed. The mixed bilayer was verified in the same manner.

A peptide (adenosine diphosphate ribosylation factor-1 (pARF-1)) was then inserted

into the pre-equilibrated mixed bilayer. The orientation of this peptide with respect to

the membrane was based on previous neutron diffraction studies, carried out by other

group members. Four possible orientations had resulted from analysis of the neutron

data. The four orientations of pARF-1 were then subjected to molecular dynamics

simulations. The time course of these simulations was 4 ns. The simulation's

trajectories were analysed for each of the four models. Particular emphasis was placed

upon the positional changes of the phenylalanine label positions that were derived from



the neutron data. It was concluded that model A was the most likely orientation of

pARF-1 in relation to the bilayer.

Having established the technique, and confirmed that the most likely orientation of the

peptide was what was originally proposed, another peptide, the fusion peptide of simian

immunodeficiency virus (SIV) was placed into a previously equilibrated DOPC bilayer.

In this case, only the proposed orientation of the SIV fusion peptide in relation to the

bilayer was studied utilizing molecular dynamics simulations. The results are

interpreted in relation to the actions of SIV fusion peptide upon the membrane, with

particular emphasis on the disruption of oleoyl chain order parameters and secondary

structure of the membrane bound fusion peptide.
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Abbreviations

A= Angstrom

ARF= adenosine diphosphate ribosylation factor

ARFlp= The N-terminal peptide of adenosine diphosphate ribosylation factor 1.

A|3= Alzheimers beta protein

CD= Circular dichroism

cDNAs= Complementary Deoxy-Ribonucleic acids

CJD= Creutzfeld Jacob disease

CT= Calcitonin

d= The unit cell in a lamellar array ofbilayers

DMPC= di-myristoyl phosphatidylcholine

DOPC= di-oleoyl phosphatidylcholine

DOPE-me= N-methylated di-oleoyl phosphatidylethanolamine

DOPG= di-oleoyl phosphatidylglycerol

DPPC= di-palmitoyl phosphatidylcholine

DPPS= di-palmitoyl phosphatidylserine

e= 2.71828

EDP= Electron density profde

7



EM= Energy minimization

EPC= Egg phosphatidylcholine

FeLV= Feline leukaemia virus

FT= Fourier transform

GAPs= GTPase activating proteins

GDP= Guanine diphosphate

GEF= Guanine exchange factor

gp= glycoprotein

GRO= GROMACS file format (equivalent of PDB)

GROMACS= GROningen MAchine for Chemical Simulations

GTP= Guanine triphosphate

GX= Gravimetric X-ray

GXC= Gravimetric X-ray corrected

hIAPP= Human islet amyloid polypeptide

Hn= Inverted hexagonal phase

HIV= Human Immunodefiecieny virus

IAPP= Islet amyloid polypeptide

IDDM= Insulin dependent diabetes mellitus

IMB= International Molecular Biology

ITP=Include Topology



LD = Langevin Dynamics

La- Lamellar alpha phase in bilayers

Lp= Lamellar crystalline phase in bilayers

MC= Monte Carlo

MD= Molecular dynamics

MDP= Molecular dynamics parameters

MLV=Multi lamellar vesicle

MSD= Mean square displacement

Myr= N-terminal myristoyl chain

NERPRC= New England and California regional primate research centres

NIDDM= Non-insulin dependent diabetes mellitus

nm= Nano metre(s)

NMR= Nuclear magnetic resonance

NOESY= Nuclear Overhauser enhancement spectroscopy

NPAT= System in which there are a constant no. of particles, Pressure, area per

molecule and temperature.

NPT= System in which there are a constant no. of particles, Pressure and

temperature.

ns= Nano seconds
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NVE= System in which there are a constant no. of particles, constant volume &

energy.

NVT= System in which there are a constant no. of particles, constant volume &

temperature.

OPLS= Optimized Intermolecular Potential functions for Liquid hydrocarbons

PC= Phosphatidylcholine

PDB= Protein data bank

PDPC= Palmitoyl-docosahexaenoyl phosphatidylcholine

PE= Phosphatidylethanolamine

PG= Phosphatidylglycerol

POPC= Palmitoyl-oleoyl phosphatidylcholine

POPE= Palmitoyl-oleoyl phosphatidylethanolamine

POPS= Palmitoyl-oleoyl phosphatidylserine

PS= Phosphatidylserine

ps= pico seconds

RD= Rotational diffusion

rIAPP= Rat islet amyloid polypeptide

SAS= Solvent accessible surface

SD= Standard deviation

SIV= Simian immunodeficiency syndrome
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SPC/e= Extended simple point charge

SPC= Simple point charge

STO-3G= Standard orbital three gaussian

TFE= Tri-fluoro ethanol

T[[= Hexagonal phase temperature

TOP= Topology

<E= Phi is the torsion angle between H, N,Ca and N in a polypeptide chain

*F= Psi is the torsion angle between N, Ca,C and H in a polypeptide chain

One and three letter code for amino acids

Amino acid Three letter code One letter code

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gin Q

Glycine Gly G

Histidine His H

Isoleucine lie I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S
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Threonine Thr T

Tryptophan Try W

Tyrosine Tyr Y

Valine Val V
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Introduction
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1.1 Cell membranes and their components

A cell membrane is a semi-permeable barrier that separates the interior of every cell

from its exterior environment. All living cells employ membranes in order to control

their internal environment (e.g. pH, salt concentration) and to facilitate important

biochemical processes (i.e. cellular metabolism). Certain types of substance such as

ions, can passively diffuse (i.e. no energy is expended) through the membrane.

Biomembranes are found both externally and internally in eukaryotic cells. The

external membrane surrounds the whole cell whereas internal membranes envelop

specific functional units (organelles) within the cell. A biological membrane is made

up from three main components, namely lipids, proteins and sugars. These

biomolecules are oriented with respect to each other to form the membrane structure.

The universal membrane structural motif is the lipid bilayer. Associated with the

lipid bilayer are proteins that have a range of specialised functions (e.g. receptors,

molecular carriers and pumps). On the external side of many membranes there are

networks of sugar molecules. They are partly responsible for communication with

nearby cells and signalling molecules.

The first widely accepted model for a lipid bilayer was the Fluid-Mosaic model,

proposed by Singer and Nicholson in the 1970s. Figure 1.1 illustrates this model.

The model originally proposed by Singer and Nicholson (Singer and Nicolson, 1972)

predicted lateral and rotational freedom and random distribution of molecular

components in the membrane. Membranes are now considered to be a "two

dimensional oriented solution of integral proteins in the viscous phospholipids

21



bilayer". Vereb and co-workers (Vereb et al., 2003) have since refined the model of

Singer and Nicholson. They have proposed that the emphasis be shifted from the

fluidity to the mosaicism of the Singer-Nicholson model. Mosaicism can restrict free

diffusion via one of the following methods:

1. Lipid domain structure;

2. Cytoskeletal or other cytosolic interaction;

3. Associations with other integral membrane proteins.

The latest reports describe the membrane as "a heavily compartmentalized, quasi-two

dimensional structure, which is more mosaic-like than fluid" (Vereb et al., 2003).

Within this two-dimensional plane, diffusion, intermolecular force and extra cellular

influences can dynamically generate and destroy supramolecular structures. It has

been proposed that this latest model of the cell membrane be referred to as "the

dynamically structured mosaic model" (Vereb et al., 2003).

lycoprotcin

hosuholipid

iii.n

ncrribrano

Figure 1.1. Graphical representation of a lipid bilayer.
(Source. http://www.emc.maricopa.edu/faculty/farabee/BIOBK/5_11 .jpg)
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The major components within a cell membrane are usually lipids (phospholipids)

followed by proteins and then sugars, respectively. However, the protein component

of the membrane can be greater than the lipid component. Table 1.1 displays the

approximate range of composition (expressed as a percentage).

Component Percentage present (%)

Phospholipids 40-60

Proteins 30-50

Sugars -10

Table 1.1. Typical membrane constituents (Siegel eta!., 1989)

Many proteins present on the surface are receptors that are crucial to the actions of

hormones, growth factors, neurotransmitters and other endogenous mediators. These

receptors tend to be G-protein coupled (e.g. the muscarinic acetyl choline receptors

in the mammalian nervous system), which trigger off intracellular messenger

pathways within the cell. In addition, the cell membrane allows for cell to cell

interaction, such as the recognition ofmacrophages from the immune system.

1.2 Phospholipid structure

Phospholipids are arranged in two "leaflets" within a bilayer in what can be

described as a lamellar arrangement. A typical phospholipid comprises a headgroup

which is hydrophilic, and hydrophobic chains, linked together by a glycerol group

23



(Yeagle, 1993). Figure 1.2 displays a typical phospholipid, as found within

biological membranes.

Figure 1.2. Phospholipid structure. The hydrophilic headgroup typically
comprises two subsections. 1. A polar headgroup (e.g. choline or
ethanolamine). 2. A phosphate moiety. A glycerol moiety links the
headgroup to the hydrophobic chain region. Some bilayers contain
phospholipids with either a single hydrophobic chain (e.g. lyso-
phosphatidylcholine) or two hydrophobic chains (e.g. di-oleoyl
phosphatidylcholine).

The bilayer is a thermodynamically stable, spontaneously arranging biological

structure. The lipids within a bilayer are highly dynamic, and rotate and move in a

three dimensional manner. Figure 1.3 displays a typical bilayer arrangement and

various individual lipid motions that can occur.

Glycerol region

+- Hydrophilic headgroup

*- Hydrophobic chain
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Lateral diffusion

Figure 1.3. Phospholipid motions within the bilayer.

All of the motions seen in Figure 1.3 contribute to the dynamic nature of the bilayer

and allow for flexibility for the bilayer to form around the cell.
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1.3 Phospholipid chemistry (headgroups &

chains)

The four main types of headgroups in biological membranes are as follows (Yeagle,

1993):

• Phosphatidylserine (PS)

• Phosphatidylcholine (PC)

• Phosphatidylethanolamine (PE)

• Phosphatidylglycerol (PG)

The phospholipid chains seen in nature are di-acyl, lyso, saturated (e.g. myristoyl

chains) or un-saturated such as oleoyl chains. There may be one (lyso) or two (di-

acyl) chains per phospholipids.

Figure 1.4a represents the chemical structures of the biologically relevant headgroups

whereas Figure 1.4b represents the chemical structures of the relevant chains,

respectively.
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Figure 1.4a. Chemical representation of the most biologically relevant
phospholipids headgroups.
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Figure 1.4b. Chemical representation of the most biologically relevant
hydrocarbon chains.

Each cell type has a different composition of headgroups and chains. In eukaryotic

organisms there are roughly 8 to 24 carbons in each chain. The chains tend to be in a

liquid crystalline state, which in short implies a melted fluid like state.
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1.4 Composition of phospholipid bilayers

Each biological membrane contains a mixture of phospholipids. An example of a

membrane in which the components have been well quantified is the human

erythrocyte membrane. Table 1.2 displays a distribution of lipids within a healthy

human erythrocyte.

Lipid Percentage present ( % )

Phosphatidylethanolamine 22%

Phosphatidylcholine 25%

Cholesterol 25%

Phosphatidylserine 10%

Sphingomyelin 18%

Table 1.2. Lipid distribution in a typical human erythrocyte (Gennis, 1989).

The choline-containing lipids, phosphatidylcholine and sphingomyelin, are found

predominantly in the outer monolayer of the bilayer. However, the

aminophospholipids, comprising phosphatidylethanolamine and phosphatidylserine,

are primarily located in the cytoplasmic leaflet of the membrane.

The transmembrane distribution of minor membrane lipid components was

determined by reaction with lipid-specific antibodies and lipid hydrolases (Siegel et

al., 1989). These studies showed that about 80% of the phospholipids are localized

in the cytoplasmic leaflet of the membrane.
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1.5 Techniques and parameters used in the

study of the bilayer

The major techniques used to study bilayers are X-ray or neutron diffraction as well

as Nuclear Magnetic Resonance (NMR). Though the latter is utilised to a lesser

extent compared to diffraction techniques.

There are some basic structural parameters that the structural biophysicist strives to

obtain. They are area of lipid, volume of lipid, electron density profde, phosphate to

phosphate distance, J-repeat and order parameters of the carbons located in the

hydrophobic chains. The typical samples for the study of the La phase are multi

lamellar vesicles (MLVs) (Gennis, 1989). MLVs are normally a sample of purified

lipid hydrated in aqueous solution to a pre-determined concentration; they may then

be deposited on a silicon wafer or other surface such as a quartz slide. Experimental

studies of biological membranes focus on the biologically relevant La phase. A

cross-section of a typical lamellar vesicle is shown in Figure 1.5.
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Figure 1.5. Cross-section of a lamellar vesicle. The Figure illustrates a
lamellar stack of lipids within the vesicle. The symbol "d" represents the d-
repeat. The d-repeat is the thickness of a single bilayer with a layer of water
molecules and is the repeating unit of diffraction studies (modified from Nagle
and Tristram-Nagle, 2000).

1.5.1 Area per lipid

The average area per lipid can be obtained by either using the gravimetric method or

the electron density profde (EDP) method. An easier more cost-effective method

would be the use of a Langmuir trough to obtain the area per lipid within a lipid

monolayer.

1.5.1.1 The gravimetric method

The gravimetric method allows for the calculation of area per lipid without obtaining

an EDP. The gravimetric X-ray (GX) method is also known as the Luzzati method

(Luzzati and Spegt, 1967).

The key equation, is as follows

AD = 2(Vl + nwVw) (1.1)
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Where A is the average area per lipid, D is the lamellar repeat, Vl is the average

volume per lipid molecule, «^is the number of water molecules per lipid molecule,

Vw is the volume per water molecule. The major shortcoming of this method is that

the gravimetrically determined value of nw includes water molecules that go into

defect regions between individual MLVs. However, the number required by the

equation should only include the water molecules that are within or between lamellar

arrays of bilayers. As a result this method, which has been used with a variety of

lipids, over estimates the area per lipid. Rand and Parsegian formulated a modified

method (GXC) to allow for a more accurate non EDP method for obtaining the area

per lipid (Rand and Parsegian, 1989). They hypothesized that the defect region could

be forced out by applying 10 atmospheres of osmotic pressure. The area per lipid

obtained was then extrapolated to A0 at full hydration using the following formula:

A =Ao- ADwPosm/KA (1.2)

Whereby ADW is the water volume under osmotic pressure (P„sm) and KA is the area

compressibility. Using this method, the values obtained by various workers were

indeed lower. Table 1.3 illustrates a range of values for area per lipid, obtained via

GX, GXC and EDP methods. Further improvement was made on the GXC method,

whereby a negative correction of -0.4 A2 was applied. The new value takes into

account the relative bilayer fluctuations that are an integral part of a biological

environment.
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Method DPPC (gel) DPPC (La) DMPC DOPC EPC

GX 52.3 71.2 65.2 82.0 75.6

GXC 48.6 68.1 61.7 72.1 69.5

EDP 47.9 62.9 59.7 72.2 69.4

Table 1.3. A comparison of values obtained for area per lipid (A2). Di-
palmitoyl phosphatidylcholine (DPPC), di-myristoyl phosphatidylcholine
(DMPC), di-oleoyl phosphatidylcholine (DOPC) and egg phosphatidylcholine
(EPC) obtained from (Nagle and Tristram-Nagle, 2000).

1.5.1.2 Electron density profile (EDP) method

Mcintosh and Simon first introduced this method as a method for obtaining the area

per lipid (Mcintosh and Simon, 1986). It was at first applied to di-palmitoyl

phosphatidylcholine (DPPC). This method used the gel phase structure. Though this

phase is not biologically relevant, it is very similar in terms of structural parameters

to the biologically relevant La phase. The gel phase structure can be accurately

determined using wide angle chain packing diffraction. The differences in volume

and thickness are used to obtain the area per lipid in the La phase. This method has

been applied to other phospholipids such as di-oleoyl phosphatidylcholine (DOPC)

(Tristram-Nagle et al., 1998), DPPC (Nagle et al., 1996), di-myristoyl

phosphatidylcholine (DMPC) and egg phosphatidylcholine (EPC) (Petrache et al.,

1998). These values are displayed in table 1.3. The values reported which were

obtained by the EDP method were slightly lower than those obtained with the GXC

method.
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1.5.2 Volume of lipid

Measurements of lipid volume have been performed using a variety of techniques.

Neutral flotation can be employed, whereby the density of the aqueous solvent is

varied by mixing H2O with H2O, combined with dilatometry which measures

volume changes as a function of temperature. The density of the lipid is then given

by the density of the aqueous mixture in which the bilayers neither sink nor float.

However, this method is restricted to lipids that have densities which fall between

2H20 and H2O (Nagle and Tristram-Nagle, 2000). Alternative methods for

calculating the volume of lipid are the use of a differential vibrating tube densimeter,

differential weighing or buoyant forces. In contrast to values obtained for the area of

lipid, disagreement between the different methods is about 0.3% (Nagle and

Tristram-Nagle, 2000). Many workers have assumed that the partial specific volume

of the lipid equals that ofwater (i.e. 1 ml = 1 g). This has proved to be a reasonable

approximation when considering the proximity of values obtained. This method is

accurate and reliable for the La phase. However, it has been shown to be less reliable

in the biologically less relevant gel phase. Table 1.4 displays values obtained for

volume per lipid (Vi), from the literature. The volumes of lipid vary when the

temperature of the sample is altered, this is primarily due to the alteration of energy

content, which subsequently affects the packing of lipids within the unit cell.
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Lipid Temperature (°C) yL VL

(ml/g) (A3)

DPPC 20 0.939 1144

0.937 1142

0.940 1145

DPPC 50 1.011 1232

1.009 1230

DMPC 30 0.977 1100

0.978 1101

DOPC 30 0.999 1303

22 0.993 1296

EPC 30 0.988 1261

20 0.981 1252

Table 1.4. Comparison of values obtained for volume per lipid (A3). Di-
palmitoyl phosphatidylcholine (DPPC), di-myristoyl phosphatidylcholine
(DMPC), di-oleoyl phosphatidylcholine (DOPC) and egg phosphatidylcholine
(EPC) obtained from (Nagle and Tristram-Nagle, 2000).
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1.5.3 Order parameters of the hydrocarbon

chains

The use of Nuclear Magnetic Resonance (NMR) can give a detailed picture of the

phospholipid bilayer. In this spectroscopic technique, a target (e.g. bilayer stacks) is

irradiated by electromagnetic radiation and radiation emitted from the target is

detected (Gennis, 1989). The resonance spectrum obtained gives information about

the energy states of the target atomic nucleus. When a magnetic field (B0) is

switched on, the nuclear spin interacts with the magnetic field. This results in the

degenerate energy being split into different lines. The magnitude of the splitting

depends on the type of atom and on the magnitude of the magnetic field. This allows

for the identification of different types of atoms within the target.

There are two splittings that are of particular interest to the NMR spectroscopist.

They are the chemical shift and quadrupole splitting (Gennis, 1989). Chemical shift

is caused by the additional local fields due to the magnetic moments of electron

shells. These local fields are anti parallel to the external field. They are described by

the following equation:

Blocal ~ Bq - Bin(lUCed (1>3)

The magnetic moment of BindUced depends on the characteristic neighbourhood of the

probe nucleus. These characteristics are the bonding state of the electrons and the

electron density. This allows for the identification of functional groups, such as CH2

and CH3 in lipid hydrocarbon chains, which have different BindUCed values.
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Quadrupole splitting is caused by magnetic interactions between the nuclear spin

moments of deuterium atoms and the quadrupole moments of the carbon-deuterium

bonds. This splitting depends upon the orientation 0 of the deuterium bond in their

functional group, relative to the applied field, Bq. The following equation is used to

describe the interaction:

Bquadrupole CC (1-3 COS 6) (1*4)

This relation provides information about segmentational order and orientation of

functional groups in macromolecules. For the measurement of the orientation of a

special CH2 group in a macromolecule, the H atoms are replaced with H atoms,

which possess a nuclear spin moment. Utilising the chemical shift allows for the

identification of the group. Quadrupole splitting provides information on the

orientation. These experiments are routinely performed in order to gain structural

information on the hydrocarbon chains present in the hydrophobic core of

membranes (Gennis, 1989). The values obtained for order parameters are between

-0.5 and 1. A value of -0.5 refers to a bond vector which is completely parallel to the

bilayer plane, a value of 1 refers to a bond vector which is completely perpendicular

to the bilayer plane.

1.5.4 Meaning of structure in fluid bilayers

The projection of a fluid bilayer can be defined as the time-averaged spatial

distributions of the principal structural (quasi-molecular) groups of the lipid

projected onto an axis normal to the bilayer plane (Wiener and White, 1991; Wiener
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and White, 1992a), as shown in Figure 1.6 for the phosphorous atom of a

2
phosphatidylcholine molecule. This procedure would require H labelling.

Time averaged
transbilayer "structure"
of a lipid functional group

^ PO,
« 4

Bilaver Normal (z)

Figure 1.6. Time averaged transbilayer structure of one atom of a lipid (di-
oleoyl phosphatidylcholine) (modified from Wiener and White, 1992a).

1.6 Computer simulations of pure lipids

1.6.1 Overview of the literature

As previously described, biological membranes are enormously complex in terms of

both structure and dynamic properties. In order to understand membrane properties,

model systems which consist of well known membrane phospholipids are studied.

These models tend to utilize either molecular dynamics (MD) or Monte Carlo (MC)

simulations. There have been cases cited within the literature where both MD and

MC simulations have been utilised (Chiu et al., 1999).

probability

The major development in MD simulations over the past two years has been the

increase in time scales of simulations. One of the first long time scale simulations of

phospholipid systems was performed by Lindahl (Lindahl and Edholm, 2000). A
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lipid bilayer system composed of 64 di-palmitoyl phophatidylcholine (DPPC) and 23

water molecules per lipid were simulated over 60 ns. In addition, a large bilayer

composed of 1024 DPPC lipids with the same number of waters per lipid was also

simulated, though for only 10ns. The relatively long time scales enabled the analysis

of dynamical fluctuations, which were previously unexplored. A finite size

scaling analysis of the simulations led the authors to conclude that thickness

fluctuations are primarily responsible for the dependence of the simulation area per

molecule on the size of the simulation box. An excellent example of the use ofMD

simulations in the study of bilayer assembly was the self assembly of a lipid bilayer

from initially random dispersions of 64 lipids in a box with 3000 water molecules

(Marrink et al., 2001). This self assembly occurred in just 25 ns. For larger systems

the self assembly time was slower and in the 256 DPPC system a micelle formed in

addition to a separate bilayer. The relatively rapid time taken for self assembly in the

64 lipid system is probably due to the small system size, which reduces the number

of molecules that need to cooperatively align in order to form a bilayer.

Nevertheless, these simulations provided a unique glimpse of a critical biophysical

process. The observed intermediate assembly states could also be present in larger

scale events, which may include membrane fusion, exocytosis and endocytosis

(Marrink et al., 2001).

Feller and co-workers (Feller et al., 1997a) successfully carried out MD simulations

of the gel phase of DPPC. A major characteristic of this phase is the tight molecular

packing and the parallel tilted hydrocarbon chains, with chain axes extending straight

across both leaflets. These characteristics cause difficulties in simulation setup
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which are not encountered when setting up simulations of other lamellar phases.

Simulations of seven systems were carried out to examine the effect of Ewald

summation as opposed to spherical cut-offs. Ewald summation and cut-offs are

typical algorithms used to treat electrostatic interactions in an MD simulation. They

are described in more detail in section 3.2.4.

These simulations comprehensively demonstrated that all-atom models are necessary

for accurate simulation of the gel phase, as are the use of constant pressure, rather

than a constant volume of the simulation box. Theoretically the use of Ewald

summation is arguably the correct method for treating long-range electrostatic effects

in the simulations of the gel phase. The MD simulation which used the particle mesh

Ewald (PME) algorithm to treat electrostatic interactions, predicted a consistently

lower area per molecule than experiment (by 1-2 A2) whereas simulations which

utilised cut-offs were more accurate (within 0.1-0.2 A2). However, when

experimental d-repeats of lamellar stacks of bilayers are compared, PME yields a far

more realistic value.

Moore and co-workers (Moore et al., 2001) carried out simulations of DPPC and

DMPC bilayers with particular emphasis on the calculation of dynamical properties.

Trajectories for fluid phase DMPC bilayers were analyzed to examine rotational

diffusion (RD) for entire lipid molecules. Their findings revealed that whole chain

rotational diffusion was slower than headgroup rotational diffusion, which in turn

was slower than whole molecule diffusion. These results were significant for their

39



insights into the details of rotational diffusion over the 3ns of simulation time.

Rotational diffusion can be described using three definitions.

1. Rotational diffusion of the P-N vector in the polar headgroup region.

2. Rotational diffusion of vectors from the top carbon to the bottom carbon for

each of the two acyl chains.

3. A vector between the selected atoms on each of the acyl chains in each

molecule.

The values Moore and co-workers calculated ranged from 0.04 rad /ns (for RD of the

th 2
vector between the 8 carbons on the two acyl chains) to 25 rad /ns for RD of the

vectors from the top carbon to the bottom carbon of each of the acyl chains. The

experimental value measured from POPC labelled with a fluorophore was 0.7

rad2/ns. This was smaller than the calculated P-N RD constant, which were 2.2

rad2/ns. The discrepancy may be due to the necessity of going beyond 3ns in the

simulations to fully sample the rotational mechanisms that contribute to diffusion.

Feller and co-workers (Feller et al., 1997b) utilised MD simulation trajectories to

calculate nuclear Overhauser enhancement spectroscopy (NOESY) cross relaxation

rates. The simulated system consisted of 72 POPC molecules, 72 ethanol molecules,

and 720 waters. The simulation predictions were used in the interpretation of

experimental NOESY data. Results revealed that ethanol binds to the bilayer

surface. Hydrogen bonding and hydrophobic interactions stabilized the binding of

ethanol.
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Feller and co-workers (Feller et al., 1997b) then further extended the application of

MD simulations to the study of biological membranes. They used a bilayer of 72

polyunsaturated DPPC lipids and 15.1 waters per lipid. This was the first systematic

combined experiment and simulation study of a lipid system consisting of one

saturated chain and with a sequence of six double bonded carbons, each preceded

and followed by a single bonded carbon. They used a constant pressure ensemble (1

atmosphere). The experiments and simulations revealed the effect of the very high

degree of flexibility of the polyunsaturated chain. The difference in values between

order parameters for this chain was within 5% of each other.

Mashl and colleagues (Mashl et al., 2001) carried out an atomic level simulation of

the effect of hydration on lipid bilayer structure. These studies were carried out

based on experimental studies carried out by Hristova and White (Hristova and

White, 1998). This study utilised five systems of 128 molecules of DOPC with a

ratio of waters per lipid of 5.4:1, 11.4:1, 16:1, 23:1, and 30:1, respectively. This

group demonstrated that DOPC headgroups became more parallel to the membrane

surface with increasing hydration and that the dipole potential reversed direction at

low hydration (particularly at a water per lipid ratio of 5.4:1). These simulations

support the hypothesis that 12 waters per lipid make up the first hydration shell,

consistent with an observed break point in a plot of Bragg spacing versus hydration

level (Hristova and White, 1998).
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Pandit and Berkowitz (Pandit and Berkowitz, 2002) were amongst the first groups

that utilised counter ions in their MD simulations. They created a system using the

anionic lipid DPPS which has a total negative charge of one. Sodium counter ions

were used to counteract this charge. Counter ions are particularly challenging to

utilize in MD simulation due to the fact that are not physically bound to any structure

within the structure, careful energy minimization is necessary for a successful

simulation. Pandit and Berkowitz found that hydrogen bonding between the NH3+

and PO4 groups on neighbouring lipids cause DPPS bilayers to have a smaller area

per molecule than DPPC. The sodium counter ions tend to coordinate with serine

and phosphate oxygens on a single DPPS molecule.

More recently, MD simulations of mixed phospholipids bilayers have appeared in the

literature. Huber and co-workers (Huber et al., 2002) described a simulation of

DPPC and POPC in equimolar ratios in the liquid crystalline state. This group used

combined NMR and MD studies to solve the structure of this bilayer, the constituents

of which are predominantly present in neural tissues. Balali-Mood and co-workers

(Balali-Mood et al., 2003) have reported an MD simulation of a mixed DOPC/

DOPG bilayer, this study is described in detail in chapter three of this thesis.
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1.7 Lipid phases

The ability of a given mixture of lipids to form structurally diverse structures is

called polymorphism or mesomorphism (Gennis, 1989). A well known example of

mesomorphism is displayed by carbon, which can exist in crystallographically

distinct phases of graphite or diamond. Lipids can exist in a number of polymorphs

or phases, different examples of which can be observed when lipids are extracted

from biomembranes. By studying polymorphism in isolated lipids, an understanding

of the forces which are present within biomembranes and effect the organization and

function of proteins and sugars can be gained. However, it should be pointed out

that lipids are predominantly organized as bilayers within the living organism.

Insights into the phase behaviour of lipids can aid biomedical science as a whole. For

example, an understanding of the behaviour of pure lipid vesicles may be important

in developing liposomal drug delivery systems.

A number of non-lamellar phases exist (Gennis, 1989). Figure 1.7 illustrates the

lamellar and non-lamellar phases seen in most biologically relevant phospholipids.

The main non-lamellar phases observed are the hexagonal and cubic phase (not

shown in Figure 1.7).
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Figure 1.7. Lamellar and hexagonal phases observed in lipids, (a) the gel
phase, (b) the biologically relevant La phase, (c) the inverted hexagonal
phase and (d) the non-inverted hexagonal phase (d = cFrepeat) (Modified
from Gennis, 1989).

Membrane bending of bilayers can lead to the formation of non-lamellar structures.

Bending of a monolayer can be characterized by the curvatures of a surface lying

inside to the monolayer close to the interface between the polar heads and the

hydrocarbon chains of the lipids (Figure 1.8A, dashed lines). Membrane bending of

a bilayer can be described by the curvatures of the surface between the monolayers

(Figure 1.8B). Surface bending can be characterized by two principal curvatures

(Figure 1.8C). Flowever, to best describe the bending, their combinations are used.

This combination is referred to as the total curvature (J).

J=C, + C2 (1.5)

44



Where C/ refers to the upper monolayer and C2 refers to the lower monolayer.

Curvature for a monolayer can be explained in a simple and concise manner. If J>0,

then the curvature is positive. In other words positive curvature occurs when the

surface bends towards the polar headgroups. In the case of a bilayer, positive

curvature corresponds to the bending towards the outside medium (figure 1.8B).

Figure 1.8. Membrane bending. A. bending of a monolayer. B. Bending of a
lipid bilayer. C. Curvatures of the surface, which represent the bilayer.

One of the first reports of curvature altering phase transitions and interfacially curved

lipid mesomorphs was by Luzzati and colleagues in 1968 (Luzzati et al., 1968).

However, it was in the 80s and 90s that a quantitative understanding of the

competition of free energies that control curvature altering phase transitions was

developed. This was a direct result of the rapid growth in interest in the implications

of non-lamellar phases, when Cullis and colleagues began using 3IP NMR, as a probe

of phase behaviour in lipids (Cullis and de Kruijff, 1979). Current opinion is that

most biomembranes contain large lipid fractions that in isolation do not form

lamellar bilayers. Nature could well have chosen biomembrane constituents that did

not contain such non-lamellar prone lipids, but still have accounted for all the
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physical properties of lipid bilayers in the La phase, that are believed to be

biologically important. This led to workers questioning why non-lamellar prone

lipids are so prevalent within biomembranes. This resulted in studies on the

properties of lipid mixtures containing non-lamellar prone lipids and advances in the

understanding of the physics of curvature altering phase transitions (Ellens et al.,

1989).

Non-lamellar phases can be broadly divided into two types, (hexagonal and cubic)

(Yeagle, 1993). The lipids are either in an inverted or non-inverted arrangement.

Another way of describing this arrangement is "water in oil" for inverted and "oil in

water" for non-inverted. This terminology refers to the curvature and majority

constituent of oil-water-surfactant micelles. At a high water-oil ratio the non-

inverted formation is found. However, when this ratio decreases such that, the

majority constituent is oil, the system often inverts and results in surfactant coated

water droplets in oil (Yeagle, 1993).

1.8 Membrane active peptides

Membrane proteins account for -25% of all genes and constitute -50% of potential

therapeutic targets. Protein crystallographers have solved thousands of proteins

soluble in solution. However, only a handful of membrane proteins have been solved

(e.g. bacteriorhodopsin and aquaporin). This is primarily due to the fact that

membrane proteins are extremely difficult to crystallize. However, membrane active
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peptides can be studied when membrane bound using diffraction techniques and

NMR. Membrane active peptides can have a random coil structure, a-helical or p-

strand or other secondary structure when membrane bound.

The best studied secondary structure ofmembrane active peptides is an amphipathic

helix. An amphipathic helix may be defined as an a-helix with opposing polar

(hydrophilic) and non-polar (hydrophobic) faces oriented along the long axis of the

helix (Segrest et al., 1974). Amphipathic helices can interact with bilayers in two

orientations. The helix can lie parallel to the bilayer surface and be partially

embedded within the bilayer. Hydrophilic residues remain exposed to the aqueous

medium while the hydrophobic residues are facing the hydrophobic core of the

bilayer. The alternative orientation is when the axis of the helix lies parallel to the

bilayer normal (z). The helix is now membrane spanning (transmembrane). In order

to adopt a transmembrane orientation without exposing the hydrophilic amino acid

residues to the hydrophobic chains of the bilayer, it is necessary that the peptide

aggregates into helical bundles. The resulting structure will be a "tube" with a

hydrophilic core, which could have ion channel properties. Ion channel properties

depend upon the the physical properties and dimensions of the helical bundles. There

are many possibilities, which depend upon the number of monomers within the

bundle and its relative angle of penetration to the bilayer normal. Other factors can

be the presence of the known helix breaker, proline within the sequence. Neutron

diffraction, complemented by the use of deuterium labelling, is a powerful

experimental technique for distinguishing between two possible orientations of

amphipathic helices (Bradshaw et al., 1996).
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Membrane active peptides can induce membrane lysis. Membrane lytic peptides are

small (10-30 amino acid residues long) amphipathic molecules which are normally

found in a a-helical conformation. It is proposed that these peptides act by a general

mechanism which is not completely understood. These peptides can act by either

coating the membrane and disrupting it by acting somewhat like a detergent and

ultimately disintegrating it (the carpet mechanism) (Shai et al., 2002). The

alternative method proposed is the formation of transmembrane pores lined by

peptides, thus starving the target cell of energy and nutrients (barrel-stave

mechanism) (Zasloff, 2002).

The main class of membrane active peptides which this thesis is concerned with are

the viral fusion peptides. Enveloped viruses tend to contain a viral fusion protein in

a polysaccharide viral coat (Colotto et al., 1996). Viral fusion proteins usually

contain a highly conserved N-terminal that has been shown by mutagenesis studies to

be crucial to the process of fusion, between the viral envelope and the membrane of

the host cell. Small peptides (between 10-30 residues long) which are derived from

the N-terminal of the larger viral fusion protein are termed fusion peptides. These

peptides retain some of the membrane fusion activity of the larger viral fusion

protein, albeit with slower rates and lack of a specific binding function. In addition,

they insert into bilayers in an oblique manner. Brasseur and co-workers (Brasseur et

al., 1990) have proposed an elegant model for the action of obliquely inserting

amphipathic helices acting upon bilayers. Brasseur conducted some molecular
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modelling studies and proposed that the angle of insertion of the fusion peptide of

SIV is -57°. Brasseur's model predicted that the fusion peptide will insert into target

membranes at an oblique angle relative to the bilayer normal (Brasseur et al., 1990).

The oblique angle of insertion is based on the quantification of the hydrophobic

moments (Eisenberg, et al., 1982), as well as the peptide being in a a-helical

conformation. The contributed hydrophobic moment of each amino acid was

projected perpendicular to the helical axis. According to the model, hydrophobic

residues have positive values, whereas hydrophilic residues have negative values.

This is an approximation. However, the hypothesis that fusion peptides form helical

structures is not unreasonable as previous studies had demonstrated that fusion

peptides gain helicity when membrane bound (Lear and DeGrado, 1987). Further

evidence was presented that fusion peptides such as the fusion peptide of SIV,

maintain a predominantly a-helical conformation, when membrane bound (Wimley

and White, 1996).

In short, fusion peptides catalyse the merging of viral and endosomal leaflets (White,

1990). The process of fusion involves an orchestrated change in the structure of

both the fusion peptide and in the membrane lipids. This will result in the creation of

a fusion pore which could allow the passage of the viral genome into the target

cytoplasm (Spruce, et al., 1991). The fusion peptide of primary interest to this thesis

is the fusion peptide of the Simian immunodeficiency virus (SIV), which is discussed

in the proceeding section.
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1.8.1 Quantification of secondary structure of a

peptide

In a polypeptide the main chain N-Ca and Ca-C bonds are relatively free to rotate.

These rotations are represented by the torsion angles phi (<X>) and psi (¥),

respectively. Ramachandran (Ramachandran, 1969) used computer models of small

polypeptides to systematically vary <P and W with the objective of finding stable

conformations. For each conformation, the structure was examined for close contacts

between atoms. Atoms were treated as hard spheres with dimensions corresponding

to their van der Waals radii. Therefore, <£> and ¥ angles which cause spheres to

collide correspond to sterically disallowed conformations of the polypeptide

backbone.
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Figure 1. 9. The Ramachandran plot.

(modified from www.crystallography.bbk.ac.uk)
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In the diagram above the white areas correspond to conformations where atoms in

the polypeptide come closer than the sum of their van der Waals radii. These regions

are sterically disallowed for all amino acids except glycine which is unique in that it

lacks a side chain. The red regions correspond to conformations where there are no

steric clashes, ie these are the allowed regions namely the alpha-helical and beta-

sheet conformations. The yellow areas show the allowed regions if slightly shorter

van der Waals radi are used in the calculation, i.e. the atoms are allowed to come a

little (2 A) closer together. This brings out an additional region which corresponds to

the left-handed alpha-helix.

L-amino acids cannot form extended regions of left-handed helix but occasionally

individual residues adopt this conformation. These residues are usually glycine but

can also be asparagine or aspartate where the side chain forms a hydrogen bond with

the main chain and therefore stabilises this otherwise unfavourable conformation.

The 3(10) helix occurs close to the upper right of the alpha-helical region and is on

the edge of allowed region indicating lower stability. Disallowed regions generally

involve steric hindrance between the side chain C-|3 methylene group and main chain

atoms. Glycine has no side chain and therefore can adopt <P and ¥ angles in all four

quadrants of the Ramachandran plot. Hence it frequently occurs in turn regions of

proteins where any other residue would be sterically hindered.
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1.9 Simian immunodeficiency virus (SIV)

1.9.1 The sequence and mode of action of the

fusion peptide of SIV

The primary sequence of the peptide is as follows:

Gly-Val-Phe-Val-Leu-Gly-Phe-Leu-Gly-Phe-Leu-Ala

The fusion peptide region for SIV is the hydrophobic N-terminus of a

transmembrane region of a viral envelope glycoprotein spike. In this case, this is the

N-terminus of gp32, which itself is cleaved from gpl60 (Bosch, et al., 1989). Fusion

assays have shown that the most active version of SIV peptide is only 12 amino acids

long (the aforementioned primary sequence) (Martin, et al., 1991). Recent reports

include an X-ray diffraction study of SIV in multi lamellar vesicles of N-methylated

di-oleoyl phopshatidylethanolamine (DOPE-me) (Harroun et al., 2003). It was

proposed that SIV acts upon the hydrocarbon matrix of the phospholipids (Harroun

et al., 2003).

Experimental studies were in agreement with Brasseur's model, such as a novel

neutron diffraction study by Bradshaw and co-workers (Bradshaw et al., 2000).

These studies confirmed the angle of insertion, proposed by Brasseur (-57°).

Furthermore, the studies gave previously undiscovered structural insights into the

action of the SIV fusion peptide on a DOPC bilayer (Bradshaw et al., 2000).
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Whilst the majority of fusion peptides in the current literature are predominantly a-

helical, there is evidence for viral fusion peptide having a P- structure. Most proteins

that insert into biological membranes as P-structures do so as P-barrels. There is no

"edge" with unfulfilled hydrogen bonding. The possibility of model fusion peptides

aggregating as P-structures on the surface of the membrane can not be discounted. In

the case of the intact fusion protein, it is difficult to see an a priori reason how a

sufficient number of fusion proteins can cluster together such that, their fusion

peptide segments associate and subsequently form a P-barrel. Nevertheless, there is

evidence that the fusion peptide ofHIV can form a P-structure at the amino terminus

(Peisajovich et al., 2000).

The degree of hydrophobicity and distribution of hydrophobic residues along the

helical axis are important for fusion to occur. For example, it has been shown that

changing the hydrophobicity of the fusion peptide via the addition of polar residues

will result in the reduction of fusogenic activity (Bosch et al., 1989). Furthermore,

rearrangement of the primary sequence in order for global hydrophobicity to be

maintained but alter the theoretical tilt reduced the rate of fusion. Point mutations

that were intended to alter the global hydrophobicity and the optimal angle of

insertion did not alter fusogenic activity (Epand et al., 1994). Experiments were

carried out on SIV gpl60 expressed on a virus vector, which clearly demonstrated no

alteration of fusogenic activity when point mutations were introduced (Epand et al.,

1994).
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It has been suggested that the oblique insertion of the peptide will facilitate the

positioning of bulky hydrophobic residues in the hydrocarbon core and smaller

residues at the interface (Epand et al., 1992). This orientation will locally disrupt the

phospholipids in terms of hydrocarbon chain packing but not interfacially. Peptide

precession around its helical axis will lead to bilayer perturbation that in turn causes

the lipids to develop negative curvature strain (Gruner, 1985). This could result in

the lipid molecules forming non-bilayer structures, a pre-requisite for fusion pore

formation.

Promotion of negative curvature by fusion peptides is in accord with the requirement

to increase the negative curvature of the contacting monolayers to form the

hemifusion intermediate (Siegel, 1999). This concept can also be applied to explain

the common finding that fusion peptides insert into a membrane as a tilted helix.

Such an orientation is consistent with the observation that the peptide promotes

negative curvature, as it would be anticipated that such an angle of insertion would

have greater effect in expanding the region in the centre of the bilayer than at the

membrane interface (Peisajovich et al., 2003).

1.10 Overview and aims of the thesis

The primary objective of this thesis was to study the atomic details of SIV fusion

peptide and its actions upon a model membrane, utilising the powerful computational
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technique of MD simulation. Membrane fusion which can be induced by a fusion

peptide (e.g. fusion peptide of SIV or HIV) is a fundamental biological process.

Insights into the molecular mechanisms of fusion can elucidate potential therapeutic

targets. To achieve this objective it was necessary to perform some experimental

(neutron diffraction) and pre-requisite MD simulations.

Neutron diffraction is a structural technique that can provide details on the location

of peptides embedded within synthetic membranes. The starting conditions of the

SIV fusion peptide were derived from neutron diffraction data (Bradshaw et al.,

2000). Therefore it was logical to perform neutron diffraction experiments, to gain

an appreciation of this technique. Chapter two describes a neutron diffraction study

of a membrane active peptide, and comparison of structural location between the

human and rat forms of this peptide.

A pre-requisite of constructing a membrane peptide simulation is the ability to carry

out pure membrane simulations. Chapter three describes the construction and

simulation of pure phospholipids bilayers. A customized forcefield was created and

two types of bilayer were constructed. The first bilayer constructed was a single

entity zwitterionic bilayer (DOPC). The second bilayer was a mixed bilayer of

DOPC and DOPG (7:3 ratio). These bilayers had previously been studied using

neutron diffraction by other members of the Laboratory.
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To test the MD approach against experimental data, four alternative bilayer bound

conformations of parallel oriented peptide were subjected to MD simulation. This

demonstrated the ability of MD simulation to discriminate between unlikely

conformations before moving onto oblique inserting peptides. Chapter four

describes these studies.

Chapter five focuses on a long time-scale MD simulation study of the fusion peptide

of SIV embedded within a pre-equilibrated DOPC bilayer. This chapter aims to

provide novel information on the actions of a fusion peptide upon a bilayer. The

main focus is on the order parameters of the lipid chains and the distribution ofwater

molecules in the system. In addition, the secondary structure of the membrane bound

fusion peptide is probed and discussed.
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CHAPTER 2

Neutron diffraction of pre-fibrillar islet

amyloid polypeptide in phospholipid

bilayers
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2.1 Aims of the chapter

In order to construct an accurate model for MD simulations, it is first necessary to

obtain high-resolution structural data. The structural data which were used to

construct the model of membrane bound SIV fusion peptide were obtained from

neutron diffraction studies (Bradshaw et al., 2000). Therefore, an understanding of

neutron diffraction is a pre-requisite to constructing an accurate model for MD

simulation.

The work described in this chapter aimed to obtain structural information regarding

the location of the human and rat forms of Islet Amyloid Polypeptide (IAPP) in

relation to a mixed equimolar bilayer of palmitoyl-oleyl phosphatidylethanolamine

(POPE) and palmitoyl-oleyl phosphatidylserine (POPS).

The literature suggests that rat IAPP does not insert into cell membranes and forms

amyloid deposits (Jaikaran and Clark, 2001). However, in stark contrast human

IAPP inserts into monolayers, when studied on a Langmuir trough. Previous studies

(Harroun et al., 2001), had shown that human IAPP inserts into monolayers of

equimolar POPE/POPS. However, to date no structural studies of membrane

associated IAPP, have been performed. The studies described here will lead to

information which will give previously undiscovered insights into the location of

each of these peptides in relation to the bilayer as well as the distribution of water

within these systems.
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2.2 Diffraction studies

Our current understanding of the physics of materials is based upon knowledge of the

internal arrangement of atoms or molecules within the structure in question. This

knowledge is largely based upon diffraction and scattering techniques. As atoms are

spaced ~2 A apart, we employ radiation of a similar wavelength. The most widely

used probes are either X-rays or neutrons, with a wavelength of 1-5 A (Warren,

1987). In the subsequent sections, the history and properties of the neutron will be

discussed. In addition, a brief comparison is made between X-rays and neutrons.

The collections and subsequent analysis of data obtained from these studies are

described in the proceeding sections.

2.2.1 Historical background

Neutrons have been known as building blocks in the atomic nucleus for nearly seven

decades (Nobel Prize to Chadwick in 1935 for their discovery). Enrico Fermi

showed in 1942 that neutrons from fission of the uranium nucleus could support a

controlled chain reaction. He had earlier made the important discovery that

moderated or thermal neutrons show a much greater inclination to react than fast

ones do. A Nobel Prize was awarded for this discovery to Fermi among others in

1938 (Bacon, 1975). It is the special properties of slow neutrons that make them

suitable for detecting the positions and movements of atoms. Even before the entry

of nuclear reactors into the research arena, results from using simple neutron sources

had indicated that neutron beams could be used for studying solid bodies and liquids.
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These simple sources were first elucidated by Sir James Chadwick. Chadwick

realised that the Joliot-Curies had produced free neutrons by the interaction of alpha

particles with beryllium nuclei. However, there were many difficulties to be

overcome before these possibilities could be realized (Warren, 1987). The 1994

Nobel Prize in Physics was awarded to Bertram Brockhouse and Clifford Shull for

their pioneering contributions to the development of neutron scattering techniques

for studies of condensed matter: for the development of the neutron diffraction and

neutron spectroscopy techniques. In simple terms, they helped answer the questions

ofwhere atoms "are" and what atoms "do".

2.2.3 What is a neutron?

A neutron is an uncharged subatomic particle with mass 1,839 times that of the

electron. Neutrons are stable when bound in an atomic nucleus, whilst having a

mean lifetime of approximately 1000 seconds as a free particle. The neutron and the

proton form nearly the entire mass of atomic nuclei, so they are both called nucleons

(Bacon, 1975).

Neutrons possess a spin of 1/2. They therefore have a magnetic moment that can

couple directly to spatial and temporal variations of the magnetisation ofmaterials on

an atomic scale. Unlike other forms of radiation, neutrons are ideally suited to the

study of microscopic magnetism, magnetic structures and short wavelength magnetic

fluctuations. The neutron is also a powerful probe for the study of soft matter (e.g.

biological membranes) or condensed matter (e.g. steel). Neutron scattering gives
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detailed information such as the atomic composition of condensed matter, hence

playing a major role in shaping the experimental and theoretical understanding of

materials ranging from magnetism and superconductivity to chemical surfaces and

interfaces (Bacon, 1975).

2.2.4 Comparison of neutrons and X-rays

Neutron diffraction has significant advantages over other forms of radiation in the

study of microscopic structure and dynamics as described below. 1) Neutrons are

scattered from materials by interaction with the nucleus of an atom rather than the

electron cloud as is the case with X-rays. This means that the scattering length

(cross-section) of an atom is not strongly related to its atomic number, unlike X-rays.

There is one major advantage in using neutrons to probe matter: the nuclear

dependence of scattering allows isotopes of the same element to have substantially

different scattering lengths for neutrons. Isotopic substitution can be used to label

different parts of the molecules making up a material. This is commonly done by

biophysicists, whereby selected amino acids in a peptide can be deuterated (i.e.

hydrogens substituted with deuterons). 2) The neutron can probe deeper into a

sample core because it is uncharged (it has an extremely small and unknown dipole

moment). There are effectively no electrostatic forces to overcome. In fact

approximately 98% of the primary beam passes through the sample un-deviated

(Bacon, 1975). This explains the extensive shielding that is required for the beam

stop in neutron diffraction instruments. 3) The radiation does not cause extensive
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ionization of the sample. This is certainly not the case with X-rays, as ionizing

radiation (X-rays) damages the sample within a few hours.

Having looked at the advantages of using neutrons over X-rays to study matter, the

focus now changes to the advantages of X-rays over neutrons from a structural

scientist's point of view. There are main disadvantages with neutron scattering

compared to X-rays:

1. Neutron flux is very low compared to modern x-ray sources. At present

neutron flux is the equivalent to the X-ray flux of the 1950s.

2. Large quantities of sample are required when using neutrons as a probe to

study matter, which could prove to be cost inefficient. This is because of the

low flux associated with neutron sources.

2.3 Background to the theory of diffraction

Max von Laue was the first scientist to discover that X-rays could be diffracted in an

orderly manner from a crystal (Bragg, 1968). At this point, it is worth describing the

phenomena of diffraction. Diffraction is defined as the deviation of a wave from its

natural direction, when it encounters an object or medium with spatially varying

transmittance (Warren, 1987).
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A barrier or an aperture will cause waves to diffract. This occurs maximally when

the wavelength is of a similar size to the aperture. In other words, neutrons are used

to study matter as the inter-atomic spacing of structures (biological or non-

biological) is similar in size to the wavelength (A) of neutron beams. When a number

of regularly spaced apertures are encountered by a wave train this will result in wave

interference. When the waves are "in phase" constructive interference results.

However, when waves are out of phase this gives rise to destructive interference.

Figure 2.1 describes the phenomena of in phase (2.1a) and out of phase waves (2.1b).

y scattered wave 1 constructive interference

3oih of tnese waves are "in phase"

scattered wave 2

Figure 2.1a. Two waves which possess the same wavelength (A) and are "in
phase".

scattered wa.-s 1

3of ft of tnese waves are "out of oftase"

scattered ws-.-b c

Figure 2.1b. Two waves that possess the same wavelength (A) but are "out of
phase".
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2.3.1 The Bragg equation

Monochromatic beams will only diffract at discrete angles, known as the Bragg angle

(equation 2.1) (Bragg, 1968). In order for the Bragg condition (equation 2.1) to be

satisfied, the "waves" of neutrons (or X-rays) must be "in phase".

n.X=2dsind (2.1)

Whereby n is the order of diffraction, X is the wavelength of the neutron beam, 6 is

half the diffraction angle of the Bragg reflection relative to the primary beam and d is

the periodicity of the lattice (also referred to as the <i-repeat, in the case of a lamellar

stack of lipids, the d-repeat is one bilayer together with one layer of water, usually

around ~50 A thick). There is an inverse relationship between angle and the d-

repeat. This implies that large structures diffract closer to the beam stop than smaller

structures. Only at the Bragg angle(s) will the path length of scattered waves equal

an integral of multiples of wavelength. This results in constructive interference.

Figure 2.2 displays a cartoon showing the first order of diffraction in a lipid bilayer.

2.3.2 The unit cell

The constituent atoms of phospholipid bilayers and peptides produce weak

continuous scattering (also referred to as molecular transform), this cannot be

measured experimentally as the signal is too weak. Therefore, the sample contains

many stacks of bilayers separated by water layers, such that diffraction can be

measured experimentally. The lattice (Figure 2.2) leads to amplification of the
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signal. The diffracting substructure of the unit cell leads to the molecular transform.

Multibilayers display a high degree of order, but only in the direction perpendicular

to the bilayer surface (z).

Figure 2.2. A cartoon displaying the internal structure of the unit cell (d). The
first order of diffraction is shown, whereby the scattering centres are a
distance (d) apart from each other.

The resulting intensity of the diffracted wave displayed in Figure 2.2, is directly

related to coherent cross-section of each atom within the unit cell. When the sine of

the Bragg angle is doubled, this results in a path difference of two wavelengths

between the original scattering centres. There is now a new scattering centre exactly

halfway between the original centres. This new scattering centre fulfils the Bragg

condition and is associated with the second order diffracted wave intensity. The

scattering centres are now 1/2d apart. This means that the resolution of the
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experiment is now doubled. Higher orders of diffraction progressively increase the

resolution of a neutron diffraction experiment (Warren, 1987).

2.3.3 Fourier reconstruction

Rays of light can be focused, such as those seen in light microscopy. In neutron

diffraction experiments, this focusing is done by the use of the Fourier analysis

(Warren, 1987).

Component cosinusoids Fourier reconstruction

etc
etc

Figure 2.3. Fourier synthesis. Each of the component sinusoids can be
summed to obtain the original diffracting structure. In this case, a square
wave function represents a real life object of identical dimensions to the
sample. The parameter of each component wave can be measured from the
diffractogram (Modified from Warren, 1987).
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The measured amplitudes contained within the diffractogram are the Fourier

transform (FT) of the convolution of the original sample with the unit cell. The

sample and diffractogram are hereby termed as FT pairs. Furthermore, the unit cell

dimensions can be elucidated from the information provided in the diffractogram.

Fourier's theorem states that: "Any mathematical function can be considered as the

sum of a series of sinusoidal frequency components" (Bracewell, 1989). This is

illustrated by Figure 2.3. Waves can be summed together as they can be described

by first order differential equations (Gough et al., 1996). Hence, a square wave

function can be described only if the high frequencies of components are included in

the summation. Exclusion of these components will result in a under resolved

structure.

The periodicity of the multi-bilayer sample allows for the use of Fourier's theorem in

neutron and X-ray diffraction. The definition of a periodic structure is one that

repeats over an infinite distance (or time). In reality, this is impossible but a

mathematical approximation is made. The sample is a periodic structure of around

50000 unit cells. The diffraction process results in a series of delta functions at each

integral multiple of the fundamental frequency (first order spatial frequency). It

should be noted that each individual unit cell is a non-periodic structure. The unit

cell is also referred to as d or the <i-repeat. The waves that describe the unit cell are
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truncated and their FT gives rise to a continuous band as opposed to discrete line

functions. This is shown in Figure 2.4.

Figure 2.4. The multiplication of the lattice transform with the molecular
transform. A sine function can be utilised to fit the observed points and
create a pseudo continuous transform. As can be seen delta functions should
all be the same length (i.e. 1).

Multiplying the delta function at each spatial frequency with the molecular transform

will give the parameters of the component wave function that will describe the

bilayer profile. However, this applies to centro symmetric systems such as the

bilayer/peptide system described within this chapter. In real space, each order of

diffraction is representative of a cosinusoid term in a Fourier series, which describes

the bilayer profile. A Fourier series is given by equation 2.2.
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hmax

p(x) = po + s F(h)cos(2nxh/ d)
h=1

(2.2)

Whereby p{x) is the mathematical function, which describes the transbilayer profile,

po is the mean value ofp{x), F(h) is the structure factor amplitude of each

diffraction order and d is the d-repeat.

The unit cell is symmetric and the wave functions used in the Fourier synthesis are

cosinusoids. The amplitude of the wave is known as the structure factor amplitude

(Figure 2.4). The amplitude is the square root of the intensity of the diffraction spot,

whereas the frequency of the wave is the spatial frequency of each diffraction spot.

For periodic objects such as multi bilayer stacks of phospholipids, each frequency

component is an integral of the first order frequency.

The scattering centres of the first order of diffraction are a unit cell (d) apart from

each other. The spatial frequency is then \ld. In other words, the wavelength of the

first order cosine is the same as the unit cell (d). The second order of diffraction has

scattering centres at 1/2d apart. It follows that the frequency of the gratings are now

exactly twice as many, the spatial frequency will be 2Id for the second order. Hence,

the wavelength of the second order cosine is M2d and two complete wave cycles are

observed within the unit cell.
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The Fourier series describes the image of the original diffracting structure in terms of

neutron scattering density parallel to the bilayer normal (z). The structure is the

image of the membrane that consists of the average spatial distribution of the

submolecular groups projected onto the line normal to the plane on the membrane

from which the relative intergroup distances can be measured (Wiener and White,

1991). The bilayer is represented by a sum of cosinusoid waves. The peaks and

troughs of the final structure represent the average distribution of the principle

molecular fragments that comprise the lipid bilayer. This is illustrated in Figure 2.5,

for a typical di-oleoyl phosphatidylcholine (DOPC). The neutron scattering lengths

of the molecular constituents are well known therefore a real space model of the

bilayer can be constructed. The bilayer profile of DOPC (66% relative humidity)

has been reduced to a series of Gaussian functions that describe the average spatial

projections of these principal molecular fragments (Wiener and White, 1992).
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Figure 2.5. A typical neutron scattering density profile across a DOPC
bilayer. The water compartments are located on either side the headgroup
regions. A pair of DOPC molecules is shown to aid the interpretation of the
profile. The peaks located at 8 and 42 A respectively, are the phosphate
headgroups. The trough at 25 is representative of the negative scattering of
the terminal methyl groups. (Modified from Darkes and Bradshaw, 2000).

2.3.4 Phasing

The correct addition of cosinusoids is dependent upon knowledge of the phase of the

wave. The phase is the relative horizontal position of each wave in the Fourier

series. However, vital phase information is lost when converting from intensities to

amplitudes. This problem is often referred to as the "phase problem" and applies to

protein crystallography as well as neutron diffraction of stacked phospholipid

bilayers. The structure factors must be accurately determined to enable the

investigator to phase the data correctly.
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It must be noted that the J-repeat of phospholipid multi-bilayers is highly susceptible

to the slightest change in humidity within the sample can. This alteration in humidity

will result in a change of the J-repeat whilst the experiment is underway. For

instance, if the J-repeat stays constant whilst collecting the first two orders but

changes when the third order is collected, then the spatial frequency of the third order

will not be an integral multiple of the fundamental frequency.

Bradshaw and Darkes (Bradshaw and Darkes, 1998) have described a more accurate

method of determining structure factor amplitudes, which will be described in the

methods section of this chapter.

2.4 Background

A number of extra cellular proteins can misfold spontaneously and aggregate to form

P-sheet rich amyloid deposits characteristic of a variety of protein misfolding

diseases, most notably Alzheimer's disease and non-insulin dependent diabetes

mellitus (Bucciantini et al., 2002). The precise molecular basis of amyloidal diseases

is unclear, strong arguments are emerging to implicate organ-specific amyloidogenic

proteins, particularly oligomeric intermediates on the pathway to amyloid fibril

formation, in disease pathogenesis (Walsh et al., 2002).

Human islet amyloid polypeptide (hIAPP), a 37-residue peptide hormone secreted by

pancreatic beta cells, often forms amyloid deposits in patients affected by NIDDM
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(non-insulin dependent or type 2, maturity onset, diabetes mellitus). This chapter

will describe a neutron diffraction study of the pre-fibrillar membrane bound form of

IAPP, comparing the membrane activity of both the human and rat isoforms of this

peptide.

2.4.1 Molecular modelling of hIAPP intermediates

Molecular forms of hIAPP can be modelled in various conformations dependent

upon the number of (3-sheet components present in the native monomer or folding

intermediate. The conformations reported within the literature tend to be

intermediates of hIAPP created during fibrillogenesis. A p-turn has been predicted

at asparagine 31 (Jaikaran and Clark, 2001), which resulted in two adjacent P~

strands, namely residues 24-29 and 32-37, creating an antiparallell p-sheet. The

third P-strand contained in the fragment 8-20 could extend this sheet with a turn in

the region 18-23, computational studies predict this turn to be at serine 20 (Higham

et al., 2000). A computational model which incorporated three strands (8-20, 20-29

and 30-37), with two turns predicted a structure which could form an intermolecular

P -sheet, as can be observed in Figure 2.6.
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Figure 2.6. A computational model of hIAPP. The light yellow colouring
represents (B-strands. The blue colouring represents the turns. Dotted lines
illustrate hydrogen bonds. Hydrophobic residues that are involved in
hydrogen bonding between the backbones of the strands are illustrated by
green stars. Serine 20 (labelled with an asterisk) is substituted with a glycine
in a small subset of type 2 diabetic subjects (modified from Jaikaran and
Clark, 2001).

This group depicted the first turn between amino acids 17 and 19, as a loop rather

than a tight turn (Higham et al., 2000). Previous experimental studies had shown

that residues 22, 24, 26, 27 and 28 are critical for fibril formation (MacArthur et al.,

1999). This proposal was made after extensive proline substitution experiments

(Moriarty and Raleigh, 1999). These residues are located in the second strand region

and are predicted to localize on the outer edge of the P-sheet where they could be

involved in interactions between molecules or protofilaments needed for assembly of

two or more protofilaments into fibrils.

The P-sheet is predicted to be disrupted by proline substitutions (from amino acids

24-27) which results in lack of intra and intermolecular hydrogen bonding (Higham

et al., 2000). Furthermore, residue 28 (serine) is in the second turn of hIAPP. Zanuy

and co-workers (Zanuy etal., 2003) have performed a series ofMD simulations with
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a combination of monomers and dimers. They had used the NFGAIL sequence

(residues 22-27). There was no bilayer present in their studies. However, they had

reported an anti-parallel strand orientation of the simulated sequence. In addition,

they reported that a mutated form of the sequence (NAGAIL), whereby a glycine

residue was replaced with an alanine residue had resulted in disintegration of the

molecule within lOOps of simulation. However, to date no reports of a molecular

dynamics simulation involving membrane bound IAPP have been made.

2.5 Introduction

This chapter is concerned with orientated neutron diffraction from two-dimensional

model membranes, that either contains islet amyloid polypeptide (IAPP) and/or an

inhibitor of (IAPP) action (rifampicin). These types of experiments require the

formation of highly aligned multi-bilayer stacks. A detailed explanation of sample

preparation is given in the materials and methods section of this chapter.

Other members of the research group have demonstrated that an intermediate, pre-

fibrillar, oligomeric form of hIAPP interacts with membranes, whereas fibrillar

hIAPP (like normal, monomeric hIAPP) lacks membrane activity (Harroun et al.,

2001). Interestingly, the membrane activity of hIAPP could be inhibited

independently of its ability to form amyloid (Harroun et al., 2001), providing a

further test of the idea that only the pre-fibrillar, oligomeric form of hIAPP is

membrane-active, and mature fibrils are inactive. Oligomeric intermediates in the

'misfolding' process may form non-specific cation channels (Mirzabekov et al.,
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1996), and cellular Ca2+-overload could account for the toxicity of hIAPP, and

explain why exposed cells die by both apoptosis and necrosis (Jaikaran and Clark,

2001).

Unlike human IAPP, rat IAPP (rIAPP) is membrane inactive (Jaikaran and Clark,

2001). Sequence variations in IAPP are strongly associated with the ability of the

peptide to form amyloid, and susceptibility to NIDDM (Westermark et al., 1990).

Human and cat IAPP contain the internal sequence NFGAIL (Figure 2.7), and both

species can form islet amyloid and develop NIDDM. The rat and mouse genes do

not encode this motif, and these species do not exhibit islet amyloid or NIDDM.

However, mice expressing the hIAPP transgene do develop a NIDDM-like disease

(Soeller etal., 1998).

Human IAPP KCNTATCATQ RLANFLVHSS NNFGAILSST NVGSNTY

Rat IAPP KCNTATCATQ RLANFLVRSS NNLGPVLPPT NVGSNTY
I I

Figure 2.7. Sequence alignment of human IAPP (Swiss-Prot P10997) and rat
IAPP (Swiss-Prot P12969). The peptides have a disulphide-bridged loop at
their N-terminal end, and the NFGAIL motif, present in species susceptible to
islet amyloid and NIDDM is underlined. The three prolines present in rat but
not human IAPP are indicated in bold.

The membrane-active form of hIAPP is not well defined. In the present study, the

membrane-associated form of hIAPP in stacked phospholipid bilayers using neutron

diffraction was identified. The hypothesis that hIAPP oligomers span the bilayer was

directly tested.
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2.6 Materials and methods

2.6.1 Materials

hIAPP and rIAPP were obtained from Bachem (Weil am Rhein, Germany).

Palmitoyl-oleoyl phosphatidylethanolamine (POPE) and palmitoyl-oleoyl

phosphatidylserine (POPS) were purchased from Avanti Polar Lipids (Birmingham,

AL) and rifampicin was from Fluka (Poole, UK). Tri-fluoro ethanol (TFE) and

chloroform were of 99.4% and 99% purity respectively. All materials were used,

without further purification or modification.

2.6.2 Sample preparation and data collection

Multibilayer stacks of phospholipids and peptides were prepared according to an

established method (Darkes and Bradshaw, 2000). This involved weighing out 20

mg of a 50:50 (mol) mixture of POPE and POPS which were co-dissolved with 1%

(mol) peptide in chloroform:tri-fluoro ethanol (7:3 (v/v)) and airbrushed onto a

quartz glass slide to produce highly aligned multibilayers. The slides were placed

under vacuum for 24 hours to remove the solvents. The slides were then mounted in

sealed aluminium sample cans which were connected to computer controlled water

baths and hydrated for 12 hours at 25°C to allow full equilibration and the formation

of IAPP oligomers (Harroun et al., 2001). The sample cans contained saturated

solutions of KC1, K2NO3 or K2SO4 in H2O/H2O mixtures to maintain a relative

humidity of 85%, 92% or 97%, respectively, and the 2H20 concentration was set to

8% (v/v) in the presence of each of the three salts, and also to 20%(v/v) and 50%
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(v/v) in K2NO3 alone. 2H20 at a concentration of 8% (v/v) has a net neutron-

scattering density of zero, hence enabling background subtractions, without

unnecessary mathematical manipulation. Diffraction data were collected for each of

the five conditions, by scanning samples through +2° around the predicted Bragg

angle for each of the first five orders of diffraction in turn.

2.6.3 Instrument setup

All experiments were performed on the VI instrument at the Hahn Meitner Institut,

Berlin. This instrument is a membrane diffractometer, designed for neutron

diffraction studies with stacked bilayers.

VI possesses a vertically focusing graphite monochromator, which results in

adjustable wavelengths between 3 A and 6 A. Sample and detector supports are

movable on aircushions, powered by liquid nitrogen. A representation of the

instrument is shown in Figure 2.8. The wavelength of neutrons used in this study

was 4.1852 A and the detector to sample distance was set to 115 cm.
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Figure 2.8. Cartoon representing the instrument setup at the V1 membrane
diffractometer. The diagram was kindly provided by Dr Thomas HauE.
(Source http://www.hmi.de/bensc/instrumentation/instrumente/v1/v1-pic.html)

2.6.4 Data analysis

Monitor counts were corrected manually. Background subtractions were performed

with the commercial package Peakfit™. Each peak was then fitted with Gaussians

with Peakfit™. Absorption and Lorentz corrections were then applied before the

intensities were square-rooted to provide structure factor amplitudes. Darkes and

Bradshaw had previously demonstrated (Darkes and Bradshaw, 2000) that sets of

structure factors collected at different bilayer spacings (i.e. different humidities) in

8% (v/v) H2O can be fitted to a single continuous transform, since the net neutron

scattering length density of water of this isotopic composition is zero. All observed

points were fitted onto a continuous transform using a least-squares minimization

procedure. Sets of structure factors F(h) each corresponding to a d-repeat ofD, were

fitted against all the observed data points, including the zeroth order [F(0)\.
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The equation below must be satisfied for all observed orders of diffraction.

(nDhld-nH)

This formula was applied to all values obtained in three different relative humidities

of 85%, 92% and 97% respectively. Analytical continuation theory (King and

Worthington, 1971) predicts that all the model structure factors should lie on the

same continuous transform. One of the distinct advantages in using this method is

the potential increase in the accuracy of intensity measurement. Changes in <7-repeat,

which are a result of temperature or humidity fluctuations and in some cases

inadequate equilibration, can result in significant differences in intensity. The

indexing of each structure factor to its own spatial frequency, as opposed to

assuming that they all fit onto the same reciprocal lattice, removes this source of

error. Phasing the structure factors is, therefore, simple and unambiguous, and

accurate sets of structure factors can be determined for subsequent use in difference

subtractions (Darkes and Bradshaw, 2000).

Once the three sets of 8% H20 data had been phased for each sample, the 20% and

50% H20 data were phased to the 8% data by least-squares fitting to straight line

functions, as reviewed by Duff et al., (Duff et al., 1994). An example of these

straight line fits is shown in Figure 2.9.
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Figure 2.9. An example of straight-line fitting. The sample shown is the first
order of sample containing equimolar POPE and POPS with 1% (mol) of
hIAPP.

The data were then placed on a 'relative absolute' scale using the method of Jacobs

and White (Jacobs and White, 1989). The relative absolute scale is based upon the

absolute scattering length density p{z) along the bilayer normal (z).

2 1 N
p{z) = Po +W*WZ F(h)cosd Ktt

2nhz
(2.4)

Whereby F(h) are the measured structure factors in arbitrary units, K is the

instrument constant, d the Bragg spacing, p() the average scattering length density

of the unit cell, and N the highest observed order of diffraction (five for this study).

The relationship between F(0), which is the zeroth order of diffraction and p0 is

relatively straightforward. If p0 is multiplied by d/2 then this will give the value of

the zeroth order F(0). F(0) can be determined by summing the total coherent

scattering length of each atom in the unit cell. It is not possible to obtain F(O)
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experimentally. It is noteworthy that F(0) changes with hydration, hence most

structure factors from stacked bilayer/peptide systems do not fit onto a single

continuous transform. However, an exception can be made with bilayer/peptide

systems hydrated with 8% 2H20. Therefore it is quite feasible to use the value of

F(0) for all other hydrations. The fact that F(0) does not change removes a large

source of potential error when fitting the observed points to a single continuous

transform.

Equation 2.4 assumes that the volume (v) and composition of the unit cell are

known. However, the volume cannot be calculated accurately, therefore the

alternative approach is to use the relative absolute scale of Jacobs and White (Jacobs

and White, 1989). This method describes the scattering density on a per pair of lipid

molecules basis. Both sides of the equation 2.4 are multiplied by S (area per

molecule), this yields the scattering density.

P*{z) = Po (2-5)
a k h=i yd)

Whereby p(z)* =p(z)S, p0 *= p0 S and k=K/S. Bearing in mind these definitions,

the relative absolute structure factors are given by F*(h) = F(h)/k.
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2.7 Results and discussion

The lamellar spacings (d-repeats) of the samples at 92% relative humidity were

determined by optimised least squares fitting to five orders of diffraction. 1% (mol)

hIAPP decreased the lamellar spacing significantly from 62.09 + 0.16 A (mean + SD,

n = 3) to 61.51 + 0.20 A (mean + SD, n = 3, P<0.02 by t-testing), while rIAPP

increased the spacing slightly to 62.72 + 0.57 A (n=3, P>0.05). The measurements

for phospholipids with 1% (mol) rifampicin were 56.96 + 0.43 A (mean + SD, n = 3),

and for phospholipids with 1% (mol) hIAPP and 1% (mol) rifampicin, 58.53 + 0.27

A (mean + SD, n = 3). The difference in d-repeats between bilayers containing

hIAPP and rIAPP (in the absence of rifampicin) was 1.2 A.

The total molecular volume of hIAPP calculated from amino acid volumes in the

1MB Jena Image Library (http://www.imb-jena.de) was 4680 A3. Assuming an

average bilayer surface area of 72 A2 per phospholipid (Tristram-Nagle et al. 1998),

the difference in d-repeats mentioned above equates to a volume increase of 87 A3

per pair of lipids. At 1% (mol), this equates to an extra volume of 47 A3 per lipid, or

94 A3 per pair of lipids. However, the d-repeats of the bilayers with hIAPP show a

reduction in value and not an increase. The question then arises, as to how the

additional volume of the peptide can be accommodated. It could either be by

expansion of the unit cell in the Z direction (e.g. if the long axis of the peptide lies

parallel to the bilayer), or by insertion of hIAPP between the bilayer phospholipids,

or both. The significant decrease in the d-repeat in the presence of hIAPP was

inconsistent with the first possibility. However, expansion of the unit cell in the
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plane of the bilayer, (the second possibility) is invisible to lamellar diffraction

methods, and is not constrained in the 'relative absolute' method used in this study.

Moreover, the idea that the peptide inserted into the bilayer was consistent with the

monolayer expansion seen in previous Langmuir balance measurements using the

same lipids (Harroun et al., 2001). We therefore investigated the possible membrane

insertion of hIAPP in more detail, by examining bilayer scattering profiles. A table

of neutron structure factors, for all samples is displayed in table 2.1. The neutron

scattering length density profile of POPE/POPS bilayers in the absence of peptide

(Figure 2.10a) differs from the "standard" profile of di-oleoyl phosphatidylcholine

(DOPC) seen in Figure 2.5, most noticeably because the dip in scattering length

density seen in the water region of DOPC bilayer profiles is barely visible in the

POPE/POPS profile. This can be explained by the different neutron scattering

lengths of the phospholipid headgroups. The total scattering length of the PC

(C5H13N), PE (C2H7N) and PS (C3H602N) headgroups are -0.60 x 10"13 cm, -0.597 x

10"13 cm, and 1.85 x 10"13 cm, respectively. When two sodium counter ions are

added to the PS headgroup (0.72 x 10"13 cm), the extra density in the mixed lipid

bilayers is readily explained.
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Sample

POPE/POPS

F(0) F(l)

POPE/POPS
+ 1% hIAPP

0% 2h2o

8% 2h20

50% 2h20

0% 2h2o

8% 2h20

POPE/POPS
+ 1% rIAPP

0% 2h2o

8% 2h20

50% 2h20

POPE/POPS
+ 1% rifampicin

8% 2h20

50% 2h20

6.3 (±0.08) 12.8 (±0.05)

9.4 (±0.08) 17.7 (±0.04)

25.7 (±0.08) 43.3 (±0.07)

8.2 (±0.05)

11.5 (±0.01)

8.2 (±0.09)

9.2 (±0.06)

28.6 (±0.02) 14.3 (±0.07)

8.2 (±0.08) 10.2 (±0.01)

11.5 (±0.01) 15.2 (±0.09)

28.4 (±0.03) 41.9 (±0.09)

6.1 (±0.09) 5.7 (±0.05)

9.4 (±0.09) 10.8 (±0.08)

26.7 (±0.08) 37.8 (±0.03)

f(2)

-2.2 (±0.03)

0.2 (±0.08)

13.4 (±0.07)

-3.3 (±0.06)

-1.6 (±0.07)

7.2 (±0.00)

-0.0 (±0.05)

2.1 (±0.02)

13.5 (±0.01)

-3.6 (±0.03)

-0.7 (±0.09)

14.1 (±0.02)

f(3) F(4)

-1.9 (±0.02) -2.6 (±0.07)

-1.4 (±0.07) -2.6 (±0.03)

0.8 (±0.04) -2.4 (±0.04)

-0.4 (±0.06) -2.1 (±0.08)

-0.2 (±0.07) -1.6 (±0.03)

0.6 (±0.09) 1.2 (±0.06)

-1.7 (±0.05) -0.8 (±0.08)

-1.6 (±0.03) -1.8 (±0.01)

-1.0 (±0.01) -6.6 (±0.07)

f(5)

0.3 (±0.02)

0.3 (±0.04)

0.4 (±0.09)

0.4 (±0.08)

0.4 (±0.09)

0.5 (±0.05)

1.4 (±0.06)

1.4 (±0.01)

1.1 (±0.03)

-1.3 (±0.01) -2.0 (±0.03) -1.5 (±0.00)

-1.2 (±0.07) -2.1 (±0.01) -1.1 (±0.04)

-1.0 (±0.08) -2.5 (±0.01) 0.7 (±0.05)

POPE/POPS

+ 1% hIAPP

+ 1% rifampicin

0% 2h2o 8.3 (±0.00) 3.4 (±0.05) -5.1 (±0.07) -2.4 (±0.01) -1.4 (±0.03) 2.0 (±0.06)

8% 2h20 11.5 (±0.01) 8.7 (±0.05) -2.5 (±0.08) -1.8 (±0.05) -1.5 (±0.08) 1.8 (±0.05)

50% h20 28.4 (±0.00) 36.5 (±0.08) 11.0 (±0.02) 1.0 (±0.06) -2.3 (±0.08) 0.7 (±0.05)

Table 2.1 Neutron structure factors (with standard errors). They were used to
calculate the neutron scattering length density profiles shown in Figures 2.10
and 2.11. The data have been scaled using the relative absolute method
(Wiener et a!., 1991).
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Figure 2.10. Neutron scattering length density profiles of phospholipid
bilayers: (a) 50:50 (mol) mixture of POPE and POPS; (b) 50:50 (mol) mixture
of POPE and POPS with 1% (mol) hIAPP; (c) 50:50 (mol) mixture of POPE
and POPS with 1% (mol) rIAPP; (d) 50:50 (mol) mixture of POPE and POPS
with 1% (mol) rifampicin; (e) 50:50 (mol) mixture of POPE and POPS with 1%
(mol) hIAPP and 1% (mol) rifampicin hIAPP. The structure factors for
bilayers hydrated with 8% H20 were used to calculate the profiles, since
water of this isotopic composition has a net neutron scattering length density
of zero. The profiles have been displaced vertically, for clarity.
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The bilayer profile in the presence of hIAPP (Figure 2.10b) was remarkably similar

to that of pure lipid bilayers. The water region was almost indistinguishable from the

pure phospholipid bilayer, and any relatively slight differences were largely confined

to an increase in density in the fatty-acyl region. rIAPP, on the other hand, caused

major changes to the water region (Figure 2.10c). The characteristic minimum at the

edges of the profile were completely absent, suggesting that the additional neutron

scattering length density introduced by the peptide now filled this trough. The

profile shape changes in the fatty acyl-region were consistent with lipid

rearrangements rather than peptide penetration. A peptide orientated parallel to the

bilayer is likely to cause greater fatty-acyl disruption than a transbilayer peptide, for

two reasons: i) the parallel peptide will have contacts with a much larger number of

phospholipids than a transbilayer peptide; and ii) the parallel peptide only occupies

part of the full depth of the bilayer, and will create a potential void that has to be

filled by the fatty-acyl chains of the surrounding lipids (Figure 2.11).

Taken together, these profiles show clear differences in the relationship of the two

peptides with the lipid bilayer. rIAPP appears to reside exclusively in the water layer

between the bilayers, whereas hIAPP is largely excluded from this region. This

conclusion is further supported by the observation (Figure 2.10a and Figure 2.10c)

that the bilayers are thinner in the presence of rIAPP, despite the overall increase in

^-repeat. In profile (a), the two maxima in the neutron scattering length density are

caused by strong neutron scattering by the phosphates and the oxygen rich (and

hydrogen-poor) ester linkages of the phospholipids. Although partially obscured by
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scattering from the peptide, the steep gradients up towards the corresponding region

are closer together in profile (c) compared to (a).

We next examined how the inhibitor rifampicin interacted with phospholipid bilayers

in the absence of peptide. Previous studies of rifampicin partitioning using

derivative spectrophotometry (Rodrigues et al., 2001) and 'H-NMR and fluorescence

energy transfer (Rodrigues et al., 2003) suggested that the compound inserts deeply

into the hydrophobic core of the bilayer, while remaining in contact with the polar

surface. With a pKa of 7.9, rifampicin has partial anionic character at neutral pH, and

this has been correlated with a stronger interaction with zwitterionic lipids such as di-

myristoyl phosphatidylcholine (Kd = 5.09 x 104) compared to anionic lipids such as

di-myristoyl phosphatidylglycerol (IQ = 0.54 x 104) (Rodrigues et al., 2003). While

in broad agreement that rifampicin forms stable bilayers with anionic or zwitterionic

lipids, the neutron data reveals that rifampicin induces marked structural changes in

the membrane (the NMR technique used by Rodrigues (Rodrigues et al., 2003) is

blind to the details of bilayer structure revealed by neutron diffraction).

The bilayer profiles in Figure 2.10a and Figure 2.10d show differences in bilayer

width, as revealed by the distance between the two maxima, and the bilayer thinning

caused by rifampicin is reflected in the reduced (/-repeat of the corresponding

samples. These effects may be explained by "splaying" of the phospholipid

headgroup regions over the top of deeply inserted rifampicin (Figure 2.1 lb).
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Figure 2.11. Cartoon showing possible mechanism of bilayer thinning (arrow)
when (a) a peptide inserts parallel to the bilayer surface or (b) rifampicin
inserts close to the terminal methyl groups. For explanation, see text.

Rodrigues also positions rifampicin close to the terminal methyls of the fatty-acyl

chains (Rodrigues et al., 2003), consistent with the observation that the methyl

trough is broadened, as revealed by the neutron scattering length density at the centre

of the bilayer. Addition of hIAPP to the bilayers in the presence of rifampicin thins

the bilayer even further, yet increases the J-repeat by 1.5 A. Both of these

observations are consistent with location of the peptide to the water/bilayer

interfacial region, strongly implying that rifampicin has prevented transbilayer

insertion of the peptide.

Water distribution profdes were calculated by Fourier transformation of difference

structure factor profiles obtained by least squares fitting to 8%, 20% and 50% 2H20

sample hydrations. The water profile for pure lipid bilayers, shown in Figure 2.12a

89



was entirely consistent with previous neutron studies of phospholipid membranes

(Bradshaw et al., 2000; Davies et al., 1998; Bradshaw et al., 1998). The single peak

(split between the two ends of the profile in the Figure) represents a block of water

confined between adjacent bilayers in the multi-bilayer stack. The corresponding

water distribution profile for bilayers containing 1% (mol) rIAPP (Figure 2.12c) was

similar. Once again, the water was confined to the outer sections of the profile,

representing the inter-bilayer hydration layer. However, in the IAPP profiles (Figure

2.12b); the same amount of water was distributed very differently. Instead of being

confined to the edges, it extended across the entire width of the repeating unit,

including the phospholipid bilayer itself. This observation supports the proposal that

hIAPP, but not rIAPP, inserts in a transbilayer orientation in the phospholipid

bilayers used in this study.
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Z(A)

Figure 2.12. Difference profiles of the neutron scattering length density of
heavy water (2H20) in stacked phospholipid bilayers. (a) 50:50 (mol) mixture
of POPE and POPS; (b) 50:50 (mol) mixture of POPE and POPS with 1%
(mol) hIAPP; (c) 50:50 (mol) mixture of POPE and POPS with 1% (mol)
rIAPP; (d) 50:50 (mol) mixture of POPE and POPS with 1% (mol) rifampicin;
(e) 50:50 (mol) mixture of POPE and POPS with 1% (mol) hIAPP and 1%
(mol) rifampicin hIAPP. Structure factors for bilayers hydrated in 100% H20
were subtracted from corresponding 50% 2H20 structure factors and the
result used to calculate the profiles shown. The profiles have been displaced
vertically, for clarity.

In contrast, in POPE/POPS bilayers with 1% (mol) rifampicin (Figure 2.12d), the

water was largely confined to the interbilayer region, and as previously noted; the
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lipid profile differed in shape (Figure 2.12a). This confirms the suggestion that

rifampicin and phospholipids form stable bilayers, but refutes the claim (Rodrigues

et al., 2003) that the bilayer structure remains unchanged. Of particular interest is

the observation that the addition of rifampicin to bilayers containing hIAPP (Figure

2.12e) constrained the deuterons to the inter-bilayer region, in contrast to

appearances in the absence of rifampicin (Figure 2.12b). However, it is known from

functional studies that rifampicin prevents bilayer insertion of hIAPP, rather than

blocking pre-inserted "channels" (Harroun et al., 2001).

In the absence of high-resolution structural data, Harroun and co-workers have

speculated that membrane-active IAPP is a misfolded, P-sheet-rich, primary

nucleation element on the amyloid pathway that can insert spontaneously into

membranes (Harroun et al., 2001). Membrane-located IAPP may then refold to give

rise to transmembrane a-helices surrounding a central ion channel or pore (Harroun

et al., 2001 and Mirzabekov et al., 1996). In this respect, IAPP may follow the

pattern displayed by calcitonin (CT), an amyloid-forming peptide that has previously

been studied in detail. CT is a 32 amino acid polypeptide hormone that shows

sequence and charge distribution similarities to IAPP and can adopt either a- or p-

structures, depending on its environment. The former is seen in phospholipid

membranes (Bradshaw, 1997), while the latter predominates in aqueous solution

(Gilchrist and Bradshaw, 1993).
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Using methods similar to those in the present study, Bradshaw (Bradshaw, 1997)

showed that salmon CT could insert into phospholipid bilayers containing the anionic

lipid phosphatidylglycerol, leading to speculation that the peptide may have ion

channel properties. This was later confirmed by Stipani and colleagues (Stipani et

al., 2001). Human CT formed channels at the same concentration, but not as easily

as salmon CT, an observation the author attributed to the reduced helical content of

this form of the peptide.

The main differences between the sequences of human and rat IAPP are the

replacement of the alanine at position 25, and the serines at positions 28 and 29, with

proline residues. The first of these replacements disrupts the NFGAIL sequence

linked to the formation of islet amyloid and susceptibility to NIDDM (Westermark et

al., 1990). Proline is a well-established "breaker" of both a-helix and P-sheet

structures in globular proteins, because the closed loop structure of the side chain

prevents the peptide backbone from adopting the ® (phi) and T (psi) angles required

for either of these secondary structures. However, proline frequently occurs in the

transmembrane helices of integral membrane proteins, particularly transport proteins,

despite the fact that a kink is introduced wherever a proline residue interrupts a

helical section.

Li and Derber (Li and Deber, 1994) resolved this apparent contradiction by

postulating different rules governing structure in the hydrophobic environment of

membranes, and showed that the helical propensity of proline was greatly enhanced
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in the membrane-mimetic environments of both lipid micelles and organic solvents.

In studies of temperature-induced conformational transitions of a single-spanning

membrane protein of bacteriophage IKe, in which the proline-containing wild type

protein was compared with a mutant in which proline 30 was replaced by alanine, Li

and Derber (Li and Deber, 1994) showed that proline does not interfere with helix

formation, but does prevent the formation of P-sheet. The intrinsic capacity of

proline to disrupt p-structures has also been demonstrated by showing that prolines

are excluded from transmembrane P-strands in mutagenised OmpA porins that retain

the ability to assemble into a membrane-spanning P-barrel (Koebnik, 1999). Wigley

and co-workers (Wigley et al., 2002) have proposed that the abundance of proline in

transmembrane helices can be entirely explained by the ability of the residue to block

P-structures. The advantage conferred by preventing the formation of a P-sheet

outweighs the entropic disadvantage in helix distortion.

2.8 Conclusion

The work described in this chapter was carried out to gain practical experience of

neutron techniques. However, the results obtained have contributed to our

understanding ofmembrane disruption induced by IAPP.

To conclude, it is instructive to consider the differences in sequence,

amyloidogenicity and membrane-associated neutron scattering profiles of human and

rat IAPP. Following the arguments outlined, it is tempting to suggest that rIAPP is
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non-amyloidogenic because the introduction of a proline into the NFGAIL sequence

prevents the peptide from adopting the P-structure necessary for amyloid fibre

formation. However, this should not significantly interfere with the peptide's ability

to insert into phospholipid membranes, if the membrane-active form is a-helical (like

the model for CT). Previous studies, and our current neutron diffraction data,

indicate that this is not so. Rats are not susceptible to NIDDM, and the neutron data

suggest that rIAPP does not insert into phospholipid membranes.

This could be taken as evidence that the membrane-active form of hIAPP is not a-

helical, until it is remembered that rIAPP possesses not one but three extra prolines.

The disruptive effect of three prolines in close proximity (two of them consecutive

residues) is likely to block the formation of both a- and p-structures by the peptide.

In future work it will clearly be of interest to probe the secondary, tertiary and

quaternary structure of membrane-associated hIAPP in detail. To summarize, the

data obtained represent the first study of membrane-associated IAPP to use

diffraction-based techniques. It has been demonstrated that oligomeric hIAPP

interacts with phospholipid membranes to form transbilayer structures. rIAPP is

excluded from the membrane (as predicted), and the insertion of hIAPP is inhibited

by rifampicin.
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2.9 Suggested future studies

The sequence-specific insertion hypothesis for IAPP proposed was confirmed by this

study. Both rat and human peptides are made up of 37 residues. They differ by only

six amino acids. The six amino acids HFAISS (residues 18, 23, 25, 26, 28 and 29)

of hIAPP are replaced with RLPVPP in rIAAP.

To obtain further information on the location of hIAPP selected residues (e.g. 18, 23,

26 and 29) could be deuterated for future studies. The availability of four labels will

allow the peptide to be orientated unambiguously in relation to the membrane

(Bradshaw et al., 2000). This would lead to novel information, regarding the exact

location of hIAPP in the bilayer. The construction of computational models,

utilizing classical molecular dynamics simulations can then be attempted, using

methods similar to those described in chapters four and five respectively.

The inhibitor rifampicin was utilised in the study, and clearly inhibited the membrane

insertion of hIAPP. However, this inhibitor can insert into bilayers by virtue of its

own physicochemical properties. A number of reports have been made in the

literature stating that the membrane diffusion of rifampicin is affected by the ratio of

zwitterionic to anionic lipid present in the model membrane (Rodrigues et al., 2001;

Rodrigues et al., 2003). Future work could look at the varying ratios of zwitterionic

lipid to anionic lipid and whether this could affect the location of hIAPP with the

bilayers. Other neutron diffraction studies could also utilise another inhibitor, such

as Congo red.
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CHAPTER 3

Molecular dynamics simulations of

phospholipid bilayers

This chapter has been published in part:

Balali-Mood, K., T.A.Harroun and J.P.Bradshaw. 2003 Molecular dynamics

simulation of a mixed DOPC/DOPG bilayer. Eur Phys J E Soft Matter 12 Suppl

1:135-140.
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3.1 Introduction

3.1.1 Aims of the chapter

An important pre-requisite in construction of membrane/peptide MD simulations, is

the ability to construct an accurate model of a bilayer system and subject the model

bilayer system to MD simulation. The work described in this chapter aimed to

construct a novel computational model of a unique biological membrane, using

molecular dynamics simulations. To date, no report of a mixed DOPC/DOPG (7:3

ratio) system has been made. Neutron diffraction studies have previously been

undertaken using this bilayer (Davies et al., 2003).

The construction of a computational model of a mixed DOPC/DOPG membrane will

provide further information of lipid properties and packing within a bilayer. Whilst

the literature contains many reports on zwitterionic bilayers, there is a lack of

knowledge on bilayers which contain a combination of anionic and zwitterionic

lipids. This chapter aims to add to current understanding in this field. The model

will be used to complement structural studies carried out by other members of the

group, allowing both the visualisation of neutron and X-ray diffraction results and

the verification of data produced by these MD simulations. The structural

parameters (volume of lipid, area of lipid, order parameters & electron density map)

generated by the MD simulation were then verified with the parameters obtained

from neutron diffraction, NMR studies & combined x-ray and neutron studies

respectively.
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Construction of a zwitterionic phospholipid bilayer (DOPC) is also described. This

bilayer was used in simulating the fusion peptide of SIV, as described in the

penultimate chapter of the thesis.

3.1.2 Background to the chapter

MD simulation is rapidly becoming a popular tool that complements experimental

techniques in structural biophysics, such as neutron diffraction and NMR. There are

a number of computational models of bilayers available in the literature. These

studies have focused on single species bilayers in particular di-palmitoyl

phosphatidylcholine (DPPC), di-myristoyl phosphatidylcholine (DMPC) and di-

oleoyl phosphatidylcholine (DOPC) (Aman et al., 2003, Berger, et al. 1997, Chiu, et

al. 1999, Feller, et al. 1997). There have been previous reports of a mixed bilayer. A

bilayer of palmitoyl-docosahexaenoyl phosphatidylcholine (PDPC) and palmitoyl-

oleoyl phosphatidylcholine (POPC) was studied in the liquid-crystalline (La) state.

These studies utilised MD simulation and NMR experiments to solve the structure of

the mixed PDPC/POPC bilayers. These phospholipids are found in neural tissues

(Huber et al., 2002). Another report made by Pandit and Berkowitz described the

MD simulation of a mixed DMPC/DMPS bilayer (Pandit and Berkowitz, 2002).

However, this chapter describes the first report of a mixed di-oleoyl phosphatidyl¬

choline (DOPC) and di-oleoyl phosphatidylglycerol (DOPG) bilayer.
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3.1.3 Molecular modelling

Molecular modelling is the study of chemical structures and their molecular function

utilising Information Technology. A model is a simplified way of describing a

complicated system. A major feature of a good model is that it makes systems that

are otherwise difficult to study, easier to analyse using a variety of quantitative

approaches. Molecular modelling tools rely on our ability to extract relevant

parameters from a biological system (be it a single molecule or a collection of

molecules, organised in a symmetrical pattern, such as a lipid bilayer). One can then

describe them in a mathematical manner, and subsequently develop computational

methods that use these parameters to compute the properties of a system or predict its

behaviour (Gibbs and Jambeck, 2001).

Structure analysis can be performed on static structures, or movements and

interactions in the molecules. The movements & interactions can be studied with

molecular simulations. There are four main types of computer simulation used in

molecular modelling (Table 3.1).

Type of Simulation Atoms

Quantum Mechanical Yes

Classical Electromechanical No

Stochastic Yes

Deterministic Yes

Table 3.1. Comparison of computational simulations.
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Monte Carlo simulations are an example of a stochastic simulation. MD simulations

are more involved than Monte Carlo ones and are classified under deterministic

simulations. They use complex algorithms that allow for simulating non-

equilibrated, dynamic systems confined within a simulation box. Molecular

structures are usually represented as a collection of atoms, each of which has a

defined position in three-dimensional space (Cartesian coordinates in x, y & z

format).

A number of molecular dynamics and Monte Carlo simulations have been performed

to replicate and/or complement data obtained from biophysical techniques such as

Nuclear Magnetic Resonance (NMR), X-ray diffraction and neutron diffraction.

These studies have become more popular in the late nineteen nineties coinciding with

the explosion in information technology.

Computer models of biological model membranes can provide insight into molecular

mechanisms of membrane protein function. Computational models of biological

molecules may use Monte Carlo or Molecular Dynamics (MD) methods. A number

ofMD simulations of biological membranes are reported in the literature (Pandit and

Berkowitz, 2002 ; Feller et al., 1997 ; Tieleman et al., 1997 ; Berger et al., 1997).

One noteworthy study combined MD and Monte Carlo simulations (Chiu et al.,

1999).
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3.1.4 Monte Carlo simulations

The algorithms used within this type of simulation are not ideally designed or

selected for a dynamic system. The atoms within the system are moved randomly,

but according to probabilistic rules which lead to the generation of a representative

variety of structures for given thermodynamic properties of a system (e.g.

temperature & volume). This approach has been popular in the study of liquids; it

has also been used in the study of proteins or lipid bilayers. However, it has recently

been superceded by molecular dynamics simulations (Scott, 2002).

3.1.5 Molecular dynamics simulations

MD simulations are more complex than Monte Carlo simulations and can be

classified under deterministic simulations. They use more complex algorithms that

allow for simulating a non-equilibrated or dynamic system. Molecular structures are

usually represented as a collection of atoms, each of which has a defined position in

three dimensional space. Standard molecular simulation approaches model

membranes as a collection of point masses (atoms) connected by bonds. These

parameters are described in a forcefield. The parameters in a force field are

generally equilibrium geometry values (lengths and angles) and force constants that

describe harmonic oscillators (Rapaport, 1995). These parameters are obtained from

analysis of large amounts of experimental data, or from quantum chemistry

calculations on molecular fragments. In an MD simulation, atoms move according to

the forces acting on them. Initially random velocities are assigned to displace the

system from its equilibrium configuration (Rapaport, 1995).
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3.2 Theoretical background to MD simulations

3.2.1 Basic concepts of MD simulations

MD simulations are based on classical mechanics. The simulations solve Newton's

equations of motion for all atoms in a system containing a constant number of atoms.

The fundamental equation of motion is:

d2r.
mi —y- = F, i=l ...N (3.1)' dt1

Where /«,- is the mass of atom number i, rt the position of the atom in question, t the

time, Fi is the total force acting upon atom i, and N (a constant number of atoms).

The atoms are treated as mass points. United atoms can be used, implying that a

group of atoms can be treated as a reduced unit such as a CH2 or CH3 group as

opposed to a real chemical atom. For all MD simulations described within this

thesis, a real (explicit) chemical atom was utilised. The exception is for the oleoyl

chains in which methylene and methyl groups which exist in these hydrocarbon

chains were treated as united atoms. The main reason for treating the

aforementioned groups as united atoms was the fact that the acyl chains do not

hydrogen bond. Furthermore the use of united atoms in the simulations will allow

for economising on computational time.
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The force (F,j is treated conservatively. This can be expressed by the negative

derivative of a potential function V (rj,r2, as shown in equation 3.2.

(3.2)
or

MD solves these equations simultaneously, using small user specified time steps

which are user-defined and can be one to five fs. The solution of these equations

then results in the generation of new positions and velocities for all atoms within the

system. Afterwards, new resulting forces acting upon the atoms are generated, the

equations are then solved and the "loop" restarts. The output of an MD simulation is

a "trajectory". This file contains the coordinates of all atoms of the system and the

force acting upon them. The size of a trajectory is user defined and sampling can

take place as required. The trajectories allow for the calculation of physical

quantities including the area per lipid, volume per lipid and order parameters. It is

with these physical quantities that the link is made between experiment and

simulation. These parameters as well as the electron density plot of DOPC and

DOPG are described in section 3.6 of this chapter.

3.2.2 Potentials and force fields

Having looked at the equations ofmotion (equations 3.1 and 3.2), it is now logical to

define the potentials. In MD simulation there is always a compromise between

accuracy and calculation speed. The specification of potentials is right at the heart of

this compromise. Molecular and atomic physics dictates that all interatomic and

intermolecular interactions must be included, in order to obtain a valid model. These
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interactions must also cover the topology of the molecules within the simulated

system. Therefore, intermolecular and intramolecular forces are distinguished

(Rapaport, 1995). The simplified potential function, is:

V(r) = Vmtm(r) + Vinter(r) (3.3)

3.2.2.1 Intramolecular forces

Molecules are not rigid. They have many degrees of freedom. For instance, the

bonds between neighbouring atoms have a certain average equilibrium distance

derived from experimental chemistry studies. However, the bonds can oscillate

around that equilibrium length. They can be looked upon as spring like. The

potential is therefore approximated as a harmonic oscillator, as shown in equation

3.4.

Whereby rtj =| q-r; |, a spring constant is Ddond that depends upon the type of bond

and the equilibrium length rfj. Bond angles are formed between three atoms (i,j and

k). The angle can also oscillate around an equilibrium value. Equation 3.5 describes

this potential.
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Whereby (dijk) is the bond angle, 0°Jk the equilibrium angle and D""ksle is the spring

constant.

The third type of intramolecular interaction is the interaction between two atoms

which have two atoms between them. These atoms taken collectively are referred to

as dihedrals or torsion angles. As can be seen from Figure 3.1, the two outer atoms

can rotate freely around the middle bond. The interaction is by no means

straightforward hence the potential is approximated as follows:

)=-o?"*1+cos("<* - *» <3-6>

Whereby the dihedral angle is <f), the equilibrium angle is (f>0, the spring constant is

Dykledral and n is the multiplicity that determines the number of minima during a full

rotation. An improved dihedral potential was proposed by Ryckaert and Belleman

(Ryckaert and Belleman, 1978) which is utilised in GROMACS, the MD simulation

package used for performing all the MD simulations described in this thesis. A

graphical illustration is shown in Figure 3.1.
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Figure 3.1. Dihedral angle (left) and plot of a typical Ryckaert Belleman
dihedral potential (modified from Lindahl et ai, 2001).

3.2.2.2 Intermolecular forces

Compared to the bonded interactions described earlier the calculation of non-bonded

interactions, requires greater computational processing power. The main reason for

this is that forces between all atoms have to included and not only the forces between

atoms of the same molecule. Three forces are taken into account as far as MD

simulations are concerned. They are as follows:

1. Attractive van der Waals interactions, caused by induced dipole moments;

2. Repulsive forces on short distances also known as the overlap of wave

functions;

3. Electrostatic interactions between charged atoms.

The first two forces are combined by a Lennard-Jones potential, as can be seen in

equation 3.7.
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The parameters C('2 and C® depend upon the type of atom (i or j). The third force,

described above is dealt with by the Coulomb potential (equation 3.8).

vc(^=j^(3.8)47T£0r&

Whereby q is the atomic point charge of the atom and s0 is the permittivity.

All pair interactions that are negligible (i.e. > 2 nm) are not taken into account

(Lindahl et al., 2001).

3.2.3 Periodic boundary conditions

Finite and infinite systems are very different, and the question of how large a

relatively small system must be to yield results that resemble the behaviour of the

infinite system faithfully lacks a definitive answer. MD simulations take place in a

"box". It is tempting to view the box walls as rigid boundaries against which atoms

collide while trying to escape from the simulation region. However, samples used

for neutron and X-ray diffraction are not confined within a box. Unless the aim of an

MD simulation is the study of the behaviour of atoms near walls, then walls are best

eliminated.
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A system that is bounded but free of physical walls can be constructed by resorting to

PBC, shown schematically in a two-dimensional format in Figure 3.2.

y

/ V, y, V
/« 1!y v., */..

/■/• / /.AY, X

y

♦' |_ ♦' »i

Figure 3.2. Visualization of periodic boundary conditions (PBC) in a two-
dimensional format. Two atoms (/' and j) are shown in the simulation boxes
together with their respective periodic images.

The introduction of periodic boundaries is akin to considering an infinite space¬

filling array of identical copies of the simulation region. There are two consequences

which arise as a result of this periodicity. The first is that an atom leaving the

simulation region re-appears in the opposite face. The second is that atoms lying

within a distance (rc) of a boundary interact with atoms in an adjacent copy of the

system, or equivalently with atoms near the opposite boundary. In other words, a

wraparound effect occurs. An alternative way of looking at periodic boundaries is to

think of mapping regions topologically onto the equivalent of a torus in four

dimensions (a two-dimensional system is mapped onto a torus); then it becomes

apparent that there are no physical boundaries. In this way it is possible to model

systems that are effectively bounded but that are nevertheless spatially homogenous

in so far as boundaries are concerned (Rapaport, 1995).
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From a computational point of view; periodic boundaries are most easily handled

when the dimensions are that of a rectangular prism. However, this is not an

essential requirement and any space filling convex region can be used. GROMACS,

much like other MD simulation software uses boxes which are based on

crystallographic unit cells. In the case of the MD simulations described within this

thesis, only triclinic boxes were used. The rationale for choosing box shapes is to

enlarge the volume to surface ratio, and thus increase the maximum distance between

atoms before periodic ambiguity appears (Rapaport, 1995). PBCs were used in all

simulations decribed within this thesis.

3.2.4 Treatment of electrostatics and long range

interactions

The total electrostatic energy of N particles and the corresponding periodic images

are given by equation 3.9:

f N N q q.
F = (3.9)

2«,; j r^n

Whereby (nx,ny,nz)=n which is the box index vector, the * indicates that terms with

i=j must be omitted when (nx,ny,nz) = (0,0,0). The distance r,y» is the real distance of

the charges and not the minimum image when PBC is utilised.
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Long-range and electrostatic interactions must be treated appropriately if the

simulation is to run smoothly. The two methods of dealing with these interactions

are cut-offs and Ewald summations of which the particle mesh Ewald (PME) is

implemented in the GROMACS package (Lindahl et al., 2001).

3.2.4.1 Cut-offs

Cut-offs are very straightforward, GROMACS simply cuts-off any electrostatic

interactions occurring beyond a spherical radius, which is user defined (usually -1.8

nm). However, cut-off restrictions do apply. For instance, the cut-off radius used to

truncate non-bonded interactions must not exceed half the shortest box vector used

for the grid search. The grid search is one of the software's methods for detecting

long-range interactions, the other being simple search. Grid search breaks the box up

into grids and searches for electrostatic and long-range interactions. Simple search

performs exactly the same function except no grids are involved. If the cut-off radius

used does exceed half of the smallest box vector, then more than one image will be

within the cut-off distance of the force. This will lead to misinterpretation of the

simulation. In short the length of each box vector must exceed the size of

macromolecule in the corresponding direction and two times the cut-off radius.

3.2.4.2 Ewald summation

Ewald summation was first introduced as a method to calculate long-range

interactions of the periodic images in crystals (Darden and Pedersen, 1996). The

rationale is to convert the single slowly converging sum in equation 3.9 into two fast
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converging terms and a constant term. Two summations are made within Ewald

summation. They are the direct space sum and the reciprocal space sum. PME

solves the Poisson equation over all of the simulation (reciprocal and direct) space.

The Poisson equation determines the electric field at each point in space from all the

charges nearby. So, instead of calculating each pair-wise electrostatic interaction

(time consuming), one can quickly (by way of the Fourier transform) obtain the

electric field near each atom (which is the total influence of all the pair-wise

interactions), to get the force due to electrostatics. A short cut-off (~ lnm) is used in

the direct space and reciprocal sum. However, the computational cost of the

reciprocal sum increases as the number of particles in the system increase. It is

therefore not recommended for larger systems of the order of -50000 atoms. It has

been reported that spherical cut-offs can introduce artefacts in solutions with ions but

if the cut-off radius is large enough (>1.8 nm), this method appears to work well for

lipids (Tieleman et al., 1997). Hence, the initial selection of spherical cut-offs as

opposed to PME for the treatment of electrostatic interactions. However, a control

simulation which utilised PME to treat electrostatics was also performed. This

simulation was performed only with the mixed DOPC/DOPG bilayer and not with

the zwitterionic system of the DOPC bilayer. The rationale for selecting PME or cut¬

off is to reproduce an environment as close as possible to a biological setting. Data

comparing the d-repeats of the different systems are presented and discussed in

section 3.6 of this chapter.
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3.2.5 Temperature and pressure coupling

Theoretically the information of the system's initial configuration and the equations

of motion and all further configurations of the simulated system are determined

microscopically. However, macroscopic properties must also be controlled

collectively. These properties must be in agreement with real biological systems or

else the models constructed will be of little or no value. Two macroscopic properties

are of particular interest, they are temperature and pressure. In an MD simulation,

these properties tend to be "coupled" to a bath (Berendsen et al., 1984).

3.2.5.1 Temperature coupling

The simulations described within this thesis utilised the Berendsen method of

temperature coupling. The Berendsen algorithm (Berendsen et al., 1984) mimics

weak coupling with first-order kinetics to an external heat bath with a user defined

temperature To. The effect of this algorithm is that a deviation of the system

temperature from To is slowly corrected according to equation 3.10.

dT_=T^T_ (3.10)
dt z

Equation 3.10 is a mathematical representation of the fact that a temperature

deviation decays exponentially with a time constant of z . This particular method of

temperature coupling has the added advantage that the strength of the coupling can

be controlled by the user. For example, for equilibration purposes the coupling time

can be taken as -0.01 ps, whereas for reliable equilibrium runs a value of -0.5 ps can

be used.
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The heat flow into or out of the system is effected by scaling the velocities of each

particle every step with a time-dependent factor X given by equation 3.11.

1/2

(3.11)

The parameter rT is close to, but not exactly equal to the time constant r of the

temperature coupling (equation 3.10). Equation 3.12 describes the time constant r .

Whereby Cv is the total heat capacity of the system, k is the Boltzmann's constant

and Ndf is the total number of degrees of freedom. The reason r ^ zT is that the

kinetic energy caused by scaling the velocities is partly redistributed between kinetic

and potential energy and therefore the change in temperature is less than the scaling

energy. When the term "temperature coupling time constant" is used it refers to the

parameter zT. This type of temperature coupling has been utilised for various

membrane protein simulations (Sansom et al., 2002; Law et al., 2003; Tieleman et

al„ 1999).

r = 2CvrT /Ndfk (3.12)
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3.2.5.2 Pressure coupling

Just as the system is coupled to a temperature bath, it can also be coupled to a

"pressure bath". The Berendsen algorithm (Berendsen et al., 1984) for pressure

coupling was chosen which scales coordinates and box vectors at each time step with

a matrix p. This results in a first-order kinetic relaxation of the pressure towards a

given reference pressure Po. Equation 3.13 describes this type ofpressure coupling:

dp p - P
— = ^—^~ (3.13)
dt rp

Whereby rp is the pressure coupling time constant and P is the actual pressure of the

system. The scaling matrix is given by equation 3.14.

(3-14)
37P

On this instance /? is isothermal compressibility of the system. In most cases the

scaling matrix will be diagonal with equal elements on the diagonal, the value of

which is generally not known. However, it is sufficient to take a rough estimate

because the value of fi only influences the non-critical time constant of the pressure

relaxation without affecting the average pressure itself.

3.2.6 Integration algorithm

Once GROMACS has calculated the forces, the next step is to update the

configuration of all atomic positions and velocities. This is done by integrating the
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dr.
acceleration —J- shown in equation 3.1. Time in an MD simulation is not

dt2

continuous, hence it follows that a suitable integration algorithm is required. The

integration algorithm utilised in GROMACS is the leap frog algorithm, which is

shown schematically in Figure 3.3. This algorithm is obtained using a second order

approximation of Taylor's expansion.

o i 2 i —

Figure 3.3. The leap-frog integration method. The algorithm is referred to as
leap-frog as rand v are leaping like frogs over each others backs.

rt(t + At)«?;.(/)+ Atvi(t + At/2) (3.15)

v.(t + At / 2)« vt(t - At / 2)+— F, (3.16)
mi

Whereby r, is the position of the atom(s), m, the mass of atom number (/), At is the

difference in time and F, is the force acting on atom i. A timestep of 2 fs is routinely

used in MD simulations. This timestep results in a more accurate simulation when

compared to experimental results (Tieleman et al., 1997)

3.2.7 Energy minimization (EM)
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Energy minimization (EM) is a pre-requisite step before MD simulation. EM is used

in order to decrease the potential energy of a system and nullify any bad contacts in

the starting configuration. It is frequently used by MD simulators and can be sub¬

divided into two categories. They are steepest descent and conjugate gradient.

Steepest descent might not be the most efficient algorithm but it is robust and easy to

implement. Conjugate gradient on the other hand is initially slower than steepest

descent. However, conjugate gradient becomes more efficient nearer the energy

minimum. All EM used prior to the commencement of MD simulations described

within this thesis were of the steepest descent category. The steepest descent can be

mathematically described as follows: A vector (r) is defined as the vector of all 3

atomic coordinates. Initially a maximum displacement (ho) must be given by the

user (e.g. 0.01 nm). First of all the forces (F) and potential energy of the system are

calculated. All new positions are then calculated as described by equation 3.17:

r,„=K+ (3.17)
max (I Fn |)

Whereby hn is the maximum displacement and Fn is the force which is also referred

to as the negative gradient of the potential V. The notation max refers to the largest

absolute values of the force components. The forces and energy are now once again

computed for the new positions such that if (Vn+/ < V„) the new positions are

accepted and hn+i=1.2hn, accordingly if (Vn+j > Vn) then the new positions are

rejected and h„=0.2hn. The algorithm stops when either a user specified number of
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force evaluations have been performed or when the maximum of the absolute values

of the force (gradient) components is smaller than a user specified value s. The user

should bear in mind that force truncations produces some noise in the energy

evaluation, the stopping criterion should not be made too tight to avoid endless

iterations. A reasonable value for/can be estimated from the root mean square force

of a harmonic oscillator (Berendsen et al., 1995). The relationship is expressed in

equation 3.18:

/ = ImyhmkT (3.18)

Whereby v is the oscillator frequency, m the reduced mass, k is the Boltzmann's

constant and T is temperature.

The rationale behind using steepest descent as opposed to conjugate gradient is as

follows: model biological systems are dynamic and regardless of energy

minimization procedures an MD simulation equilibration period of -200 ps are

required for most systems. The purpose of steepest descent was merely to produce a

starting system which was stable enough for the real equilibration to take place. This

equilibration can take the form of an NVT (constant number of particles, constant

volume and constant temperature) MD simulation. Therefore there was no real need

to reach the energy minimum such as could be achieved with conjugate gradient.

This is summarized in Figure 3.4.

118



THE GLOBAL MD ALGORITHM

1. Input initial conditions
Potential interaction (V) as a function of atom positions

Positions (r) of all atoms in the system

Velocities (v) of all atoms in the system

U
Repeat steps 2, 3 and 4

2. Compute forces
The force of on any atom

dr,

is computed by calculating the force between non-bonded atom pairs:

Fi ~ Fj Fy
plus the forces due to bonded interactions (which may depend on 1, 2, 3 or 4 atoms),

plus restraining and/or external forces.
The potential and kinetic energies and the pressure tensor are computed.

T
3. Update configuration

The movement of the atoms is simulated by numerically solving
Newton's equation ofmotion

d2r. F,i i

dt mi

or

drt dvt Ft
dt 1 dt mi

T
4. if required: Output step

write positions, velocities, energies, temperature, pressure, etc.

Figure 3.4. The global MD algorithm utilised within GROMACS (Berendsen
etai, 1995).
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3.2.8 The limitations of MD simulations.

All models have their limitations. To this extent, computational models of a

biological environment are no different. Approximations are made when constructing

a computational model of a biological membrane utilising MD simulations, they are

as follows:

1. MD simulations utilize classical mechanics. However, the space dimensions

and system temperatures used in membrane protein simulations justify this

approximation.

2. Forcefields are conservative and depend purely upon the positions of the

atoms and not on their velocities.

3. Forcefields are pair additive. In other words, only pairwise interactions are

taken into account for the calculation of intermolecular forces.

4. Long-range interactions are either cut-off or are treated using PME. Both

methods are approximations.

5. Periodic boundary conditions are an approximation used primarily to avoid

edge and surface effects. These effects are a direct result of forces and

velocities within the system. In general, the bigger the system the smaller the

error generated. In an experimental situation (e.g. neutron or X-ray

diffraction) bilayers are arranged in a lamellar stack on the z axis. However,

computationally this arrangement is expensive therefore PBC is utilised to

create a virtual lamellar stack. Furthermore, PBC conditions ensure that the

bilayer does not rotate away from the initial configuration.
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3.3 Method

3.3.1 Forcefields

GROMACS software is primarily designed for MD simulation of biologically

active/relevant proteins, although it is commonly used for lipids bilayers as well.

The forcefield used in the MD simulations presented here was a modified explicit

hydrogen forcefield included in GROMACS (ffgmx2_lipid) (Lindahl et al., 2001).

DOPC and DOPG were divided into headgroup and chain regions. The majority of

MD simulations reported in the literature have utilised implicit hydrogens, primarily

to save on computational time. There have been reports of explicit hydrogens in

DMPC and DMPS phospholipid simulations. The main reason why explicit

hydrogens were used in this study was to investigate hydrogen bonding between a

peptide and the bilayers that have been generated by MD simulation. Figures 3.5 and

3.6 display the two dimensional chemical structure of DOPC and DOPG

respectively.
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Figure 3.5. The two dimensional chemical structure of a DOPC molecule with
explicit hydrogens. The headgroup contains explicit hydrogens. The explicit
hydrogens are present primarily for future simulations with peptides that have
been previously studied via neutron diffraction by other group members. The
dashed lines indicate the borders between the headgroup and hydrocarbon
chains. The solid lines divide up the molecule in precisely the same manner
as in the experimental studies of Wiener and white (Wiener & White 1991;
Wiener & White 1992). The headgroup region compromises choline,
phosphate and glyceryl moieties. One group is shared between the glyc
(glycerol) and chain regions (COO); the left-most oxygen atom is part of the
headgroup, while the oxygen and the carbon are part of the chain region. The
other specific groupings in the chain region are CH2, CH3 and C=C
respectively.

Figure 3.6. The two dimensional chemical structure of a DOPG molecule with
explicit hydrogens. The headgroup contains explicit hydrogens. The explicit
hydrogens are present primarily for future simulations with peptides that have
been previously studied via neutron diffraction by other group members. The
solid lines divide up the molecule in a similar manner as in the experimental
studies of Wiener and white (Wiener & White 1991; Wiener & White 1992) for
DOPC. The headgroup region compromises glyceryl and phosphate
moieties. One group is shared between the glyceryl moiety and chain regions
(COO); the left-most oxygen atom is part of the headgroup, while the oxygen
and the carbon are part of the chain region. The other specific groupings in
the chain region are CH2, CH3 and C=C respectively.

62II
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Nineteen unique subgroups were identified in the headgroup and chains respectively

(see Figure 3.7). The locations of these subgroups were as follows: Group one (P04)

is found in all headgroups containing phosphate moieties. Group two (NC4) is found

specifically in the choline moiety of phosphatidylcholine headgroups. Group three

(NCH3) is found in the amide groups of both phosphatidylethanolamine and

phosphatidylcholine headgroups. Group four (OP1) is a single bonded phosphorus

atom bound to an oxygen atom and is found in all headgroups containing phosphate

moieties. Group five (OP2) is a double bonded phosphorus atom bound to an oxygen

atom and is found in all headgroups containing phosphate moieties. Group six

(OCP) is commonly found within the connecting carbon to phosphate region of a

phospholipid headgroup. Group seven (OCH) is found in a phosphatidylglycerol

headgroup. Group eight (OCC) attaches an acyl chain to a backbone glycerol in all

phospholipid headgroups. Group nine (OC1) is found in the terminating region of

the phophatidylserine headgroup. Group ten (OC2) is also found on the terminating

region of a phophatidylserine headgroup. Group eleven (CCCHH) is observed in a

saturated lipid chain such as myristoyl. Group twelve (CCCHN) is found connecting

the second carbon in a phosphatidylserine to its surrounding atoms. Group thirteen

(CCCHO) is seen in a backbone glycerol region as well as in a phosphatidylglycerol

headgroup. Group fourteen (CCOHH) is observed in the glycerol backbone of all

phospholipids. Group fifteen (CCNHH) is the connecting carbon in a CH2 group

which attaches to a nitrogen and carbon atom in a phosphatidylcholine headgroup.

Group sixteen (CNHHH) attaches a carbon (from a methyl group) onto nitrogen in

phosphatidylcholine headgroups. Group seventeen (CCHHH) is a carbon attaching

itself onto a terminal methyl group in any of the selected lipid chains. Group
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eighteen (COOC) is commonly seen in acyl chains as the connecting carbon between

an oxygen atom in the glycerol moiety (single bond) and the second carbon in an

acyl chain. Group nineteen (CCCH) is the double bond seen between carbons nine

and ten in an oleoyl chain. The lipid groupings were then cross-referenced against

the twenty basic amino acids and DNA. Table 3.2 displays the location of the

equivalent middle atom of these lipid groupings in the twenty basic amino acids and

DNA. Forcefields for the bonded intramolecular forces for both DNA and proteins

were present in GROMACS. Having cross referenced the lipid groupings with the

DNA and protein forcefields, a customized forcefield was created manually.

Forcefields for the non-bonded intermolecular forces of phospholipid groupings are

available (Berger et al., 1997) and were therefore utilised in all MD simulations

described within this thesis.
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Figure 3.7. The unique sub structures that are present within the selected
phospholipid headgroups and chains. These groups were then cross-
referenced with the matching unique structure present within the twenty basic
amino acids and DNA such that the bond lengths, energies, bond angles,
forces and torsion angles (dihedrals) can be approximated from the original
GROMACS explicit hydrogen forcefield (ffgmx2).
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Lipid Lipid Peptide/DNA
Number Type Cross reference

1 P04 P -2' deoxy X 5' phosphoric acid
2 NC4 No exact match, used Proline N
3 NCH3 ASP-N52; LYS-N^; GLN-Ne2; ARG-t]2
4 OP1 01 - 2' deoxy X 5' phosphoric acid
5 OP2 02 - 2' deoxy X 5' phosphoric acid
6 OCP 05 - 2' deoxy X 5' phosphoric acid
7 OCH SER-Oy, ASP, GLU, THR-Oy, TYR-Or)
8 OCC 04 - 2' deoxy X 5' phosphoric acid
9 OC1 ASP; GLU
10 OC2 ASN-05; GLN-Os
11 CCCHH CP-Most AA; ILE-Cy1; LYS-Cy,5; GLU-Cy
12 CCCHN Ca, except GLY& PRO
13 CCCHO THR-Cp
14 CCOHH SER-Cp
15 CCNHH LYS-Cs
16 CNHHH No exact match, used CCHHH
17 CCHHH ALA-Cp; VAL-Cy; LEU-C5; ILE-C8; THR-Cy
18 COOC GLU-C8; TYR-Ci;
19 CCCH No exact match, used C5 & s of TRP& PHE

Table 3.2. Cross referencing the location of the selected lipid groupings in the
twenty basic amino acids and DNA.

3.3.2 File formats in GROMACS

In order to run a basic simulation in the GROMACS package, the following input

files are mandatory: A coordinate file (*.pdb or *.gro which is the GROMACS

equivalent of pdb), topology files and a linking path (*.itp & *.top) and a run

parameter file (*.mdp). Figure 3.8 illustrates a typical MD simulation run with

GROMACS.
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INPUT: confout.gro
*.PDB or *.GRO, having

previously generated the bilayer

Use Editconf to

create a user

specified box size

Use Genbox to add

SPC molecules

1

Additional input:

*.TOP , *.ITP , *.MDP

GROMPP: The pre-processing

step, checks for errors in the

inputted files

After the pre-processing step

(GROMPP command).

The MD or EM run command

will execute the simulation.

1
M

Traj.xtc = trajectory file
ener.edr = energy output file

confout.gro .

(structural coordinates)
this can be re run with either

MD or EM

Figure 3.8. Flowchart depicting how a typical simulation runs on GROMACS
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3.3.3 System generation

Method A

A mixed DOPC/DOPG bilayer was constructed with explicit hydrogens in the

phospholipid headgroups (see Figures 3.5 and 3.6). The complete topologies of the

molecules were described in the form of bonds, angles and dihedrals (torsion angles).

Atomic point charges for both PC and PG headgroups were generated by

HyperChem 5.0 (Hypercube Inc., Waterloo, Canada) using the STO-3G set as used

in previous studies ofDMPC and DPPC (Berger et al., 1997; Feller et al., 1997). The

bilayer was constructed by taking a previously customized PDB file of each

molecule and arranging them, using Sybyl 6.7 (Tripos Inc. St Louis MO), in a row of

ten molecules with a ratio of 7 DOPC to 3 DOPG. Seven rows of ten lipid molecules

were generated and the DOPG molecules were arranged in such a way that they were

not in close contact with each other. This arrangement is representative of a

biological environment whereby the zwitterionic PC headgroups will be interspersed

with the anionic PG headgroup. The monolayer of 70 lipid molecules was then

copied and rotated in order to create a bilayer of 140 lipid molecules, comprising 98

DOPC and 42 DOPG molecules. For the construction of the DOPC bilayer a pre-

customized PDB of a DOPC molecule was taken and replicated in a row of eight.

The rows of eight were then replicated eight times, in order to form a monolayer of

64 or 128 lipids. The monolayer was then replicated and rotated such that a bilayer

was produced (128 or 256 lipids).
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Method B

Two monolayers were constructed, one of 70 DOPC molecules and one of 70 DOPG

molecules, by replicating each lipid in an array of ten molecules by seven molecules.

The two monolayers were then superimposed and either the DOPC or the DOPG

molecule at each site was deleted to leave a single molecule in that position. In order

to replicate the conditions of the neutron measurements, a random number generator

was used to select the type of molecule for deletion at each site, to give a final ratio

of 7 DOPC to 3 DOPG molecules. The composite monolayer of 70 lipid molecules

was then duplicated and rotated to form a 140-lipid bilayer (a programme written by

Dr Bradshaw was used to generate the bilayer on this occasion).

3.3.4 Atomic point charges

Atomic point charges are routinely included in all MD simulations. GROMACS has

the capability to generate charges for proteins. However, this facility does not exist

for phospholipids. Therefore this was performed using another software package.

Table 3.3 represents the atomic point charges calculated using HyperChem. The sto-

3G data set was utilised as used in other bilayer MD simulations. To save on

computational time charges were intentionally not calculated for atom number 7-19

and 26-38 for both DOPC and DOPG respectively. This is quite valid and has been

recommended by other workers (Berger et al., 1997; Heller and Schaefer, 1993).
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1 2 3 4 5 6 7 8

Atom no.

Atom
charge Atom no.

Atom

charge Atom no.

Atom
charge Atom no.

Atom
Charge

1 0.27 54 0.017 1 0.269 54 -0.082

2 -0.263 55 0.07 2 -0.236 55 0.062

3 -0.004 56 0.063 3 0.008 56 0.342

4 0.05 57 0.051 4 0.023 57 0.05

5 0.565 58 0.062 5 -0.061 58 0.051

6 -0.0295 59 0.07 6 0.00001 59 0.052

7 till 19 no charge 60 0.053 7 till 19 no charge 60 0.048

20 0.184 61 0.041 20 0.231 61 0.051

21 -0.365 62 0.168 21 -0.188 62 0.101

22 -0.136 63 0.038 22 0.002 63 0.101

23 -0.062 64 0.083 23 0.028 64 0.114

24 -0.032 65 0.175 24 0.038 65 0.138

25 -0.0295 25 0.00001 66 0.104

26 till 38 no charge 26 till 38 no charge 67 0.138

39 -0.269 39 0.025 68 0.104

40 -0.135 40 -0.23 69 0.114

41 0.023 41 0.042 70 0.107

42 -0.106 42 -0.253 71 0.114

43 -0.016 43 -0.035 72 0.114

44 -0.464 44 -0.348

45 1.34 45 0.768

46 -0.741 46 -0.671

47 -0.635 47 -0.501

48 -0.47 48 -0.358

49 -0.021 49 -0.037

50 0.066 50 -0.017

51 -0.318 51 -0.156

52 0.005 52 -0.083

53 -0.298 53 -0.083

Table 3.3. Atomic point charges of DOPC and DOPG. Columns 1-4 of the
table correspond to DOPG (Figure 3.6), columns 5-8 correspond to DOPC
(Figure 3.5). The numbering corresponds to the Figures of both DOPC and
DOPG, respectively.

3.3.5 Method and run parameters for the mixed bilayer

The MD computer package GROMACS (Lindahl, et al. 2001) version 3.1.4 was used

to centre the bilayers in a triclinic box, and a total of 2815 SPC (Simple Point

Charge) (Berendsen et al., 1995) water molecules were added to either side of the
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bilayers. The ratio of water molecules per lipid (20.1:1) was chosen to replicate the

conditions used in neutron diffraction experiments, using the same ratio of

DOPC:DOPG and those quoted in the literature (Tieleman et al., 1997). There is

another type ofwater molecule used in MD simulations of biological systems, which

is derived from the original SPC. Simple Point extended Charge (SPC/e) possesses a

lower free energy (-26.7 kJ.mol"'). SPC was selected, primarily due to the fact the

free energy of SPC (-24.3 kJ.mof1) is closer to the actual experimental value

(Tieleman et al., 1997). The GROMACS programme genion was used to add 42

sodium counter ions to the mixed bilayers. In short, the programme replaces SPC

water molecules with Na+ counter-ions necessary to counter balance the total

negative charge (-1 ve) of the DOPG molecule. The programme replaces an SPC

molecule with Na+, if the SPC molecule is in an electrostatically favourable position

for a counter-ion.

Energy minimization (EM) by the "steepest descent" method was used to remove

bad contacts and reduce the potential energy of the systems. The systems were then

subjected to a 20 ps MD simulation utilising the NVT (constant number of particles,

constant volume and constant temperature) ensemble (18315 atoms/particles, volume

of 800 nm3 & temperature of 300 K). Tieleman and co-workers have proposed

running a hydrated bilayer system with an initial NVT system before proceeding to

another ensemble (Tieleman et al., 1997). The rationale behind such a protocol is to

allow the SPC molecules to equilibrate naturally within the system, without the SPC

molecules being pressurised into the bilayer. The system was then subjected to

another MD simulation using the NPT (18315 atoms/particles, pressure of 1 bar &
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temperature of 300 K) ensemble over a 3500 ps period. Temperature and pressure

(Berendsen et al., 1984) were coupled individually to the three groupings in both

DOPC (DPC=headgroup, OLA.=sn-l chain, OLB=sn-2 chain) and DOPG

(DPG=headgroup, OGC=sn-l chain, OLD=sn-2 chain) molecules and SPC using the

Berendsen algorithm, as implemented in GROMACS. A time constant of 5 ps was

set for each group. For both the NYT and subsequent NPT pressure was set at 1 bar.

The pressure asserted on the box was of an isotropic nature. A time constant for

pressure coupling was also set at 5 ps. In the NPT ensemble the pressure coupling

was isotropic. Coupling groups on an individual basis allows for greater stability

during an MD run.

Order parameters were measured after 3500 ps of an NPT ensemble MD run for both

the DOPC and the mixed DOPC/DOPG bilayer. The time step for all parts of the

MD and EM simulations were 2 fs. This time step was used in a number of previous

bilayer simulations (Berger et al., 1997; Feller et al., 1997a; Heller and Schaefer,

1993; Feller et al., 1997b).

3.3.6 Method and run parameters for the DOPC bilayer

The methods used for the DOPC bilayer were exactly the same as those used for the

mixed bilayer except that the PME algorithm was not use to treat electrostatics

(explained in the proceeding section). The DOPC bilayers were composed of 256

molecules (18432 atoms) and 128 molecules (9216 atoms), repectively. No

counterions were present in either system. The 256 molecules system contained
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5632 SPC molecules (a water per lipid ratio of 22:1), whereas the 128 molecule

system contained 2816 SPC molecules (the same water per lipid ratio of 22:1).

These water per lipid ratios are based on the neutron diffraction studies (Bradshaw et

al., 2000).
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3.4 Verification of method

The simulation was verified by comparing four parameters obtained from the MD

simulation with the experimental values. They were as follows:

3.4.1 Area per lipid molecule

The area occupied by each lipid molecule was obtained by multiplying the X and Y

dimensions of the box and dividing by the number of lipid molecules present in each

leaflet (70 for the mixed bilayer system and 64 and 128 for the DOPC bilayers)

(Feller et al., 1997a). The area per lipid can be measured experimentally by

Langmuir techniques.

Area per lipid = X. Yl70 (3.17)

3.4.2 Volume per lipid molecule

The volume of each lipid molecule within a bilayer system can be determined using

diffraction techniques. It provides another independent parameter by which a

computer simulated structure may be compared to experimental observations. The

method employed for calculating the volume of lipid (Chiu et al., 1999), is given by

the following simple equation:

VL = A.D/2 - (Nw. Vw) (3.18)
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Whereby A = area per lipid, D - height of the simulation box (Z dimension), Nw =

number ofwaters per lipid molecule, Vw = volume per water.

3.4.3 Order parameters

The ordering of hydrocarbon tails has been studied by NMR spectroscopists, who use

the term "order parameter" to describe the average orientation of each section of an

acyl chain. The order parameter is derived from the quadrupole splitting of NMR

spectra and is determined by selective deuteration of successive carbons of the acyl

chains.

The order parameter tensor Sz, which is defined as:

Whereby 9Z is the angle between the z-axis of the simulation box and the molecular

axis under consideration (in this case z, as this is the axis of the bilayer normal). The

molecular axis under considersation is defined as the vector from Cn_i to C„+i, when

C is defined as a specific carbon in the oleoyl chains.

Order parameters are calculated for each atom of the hydrocarbon chain, other than

the terminal methyl group and the first carbon in the chain. These order parameters

can be calculated by GROMACS, using the g order command. However, the

resulting index file must be modified to include 3 consecutive carbon atoms. The

order parameter will then be calculated for the middle carbon. It is necessary to

define the previous carbon atom (i) and the subsequent carbon atom (j) in order for

GROMACS to calculate the order parameter.

(3.19)
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3.4.4 Electron density map

The electron density map of a protein may be obtained by X-ray crystallography. If,

as in the case of bilayers, a crystal structure is not available, other methods may be

used. Weiner and White (Wiener and White, 1991; Wiener and White, 1992a;

Wiener and White, 1992b) have produced a comprehensive electron density map of a

fluid DOPC bilayer by the combined use of X-ray and neutron diffraction. Their

approach divided the DOPC molecule into eight individual groups, the ninth group

being the water layer. Six of these Gaussian distributions are readily comparable to

the MD results obtained. The electron density distributions for these groups were

used as a comparator for the DOPC groups within the MD simulated DOPC/DOPG

bilayer. Since the fatty acid tails of the PG molecules are also oleoyl chains, the

electron density distributions of this part of the bilayer are not expected to differ

significantly from the Weiner and White results. Some neutron diffraction data on

mixed DOPC/DOPG bilayers is available from previous studies (Bradshaw, 1997;

Davies et al., 2003).
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3.5 Results and discussion

3.5.1 Volume, area of lipid and the d-repeat

Values from
DOPC

(4 separate
sets of EM +
MD runs)

Values from
DOPC/DOPG

(One set of EM
± MD runs)

Values from
DOPC MD
simulation

Chiu et al., 1999

Experimental
values

Tristam-Nagle
et at., 1998

(DOPC only)

Area per lipid (A2) 69.9 ± 1.1 73.1 71.0 ± 1 72.2

Vol. per lipid (A3) 1294 ±8.4 1309 1288±10 1303

</-repeat (A) 5.76 ±0.11 5.94 N/A 5.2

d-repeat (A)+ N/A 5.54 N/A 5.2

Table 3.4. Comparison of calculated and experimental values for area and
volume of lipid. The columns contain values obtained from our MD
simulations of DOPC bilayers (1st column); values obtained from our MD
simulations of DOPC/DOPG bilayers, experimental values obtained for
DOPC (Tristram-Nagle et al., 1998) and calculated values for DOPC bilayers
from Chiu et at., 1999. The d-repeats obtained using PME were to treat
electrostatics were in closer agreement with experimental data. ""Denotes
value obtained with the PME algorithm.

Chiu and co-workers (1999) have performed a combined Monte Carlo and MD study

on an explicit 128-molecule DOPC bilayer. Prior to running the mixed

DOPC/DOPG bilayer MD simulation, a 128-molecule DOPC bilayer was

constructed in a similar manner to the mixed bilayer, using cut-offs to treat the

electrostatic interactions. It was then subjected to a combined EM (Steepest Descent

method) and an NPT MD run. The values obtained compare favourably with those

obtained by Chiu et al., Langmuir trough and neutron diffraction techniques were

used to obtain the area and volume of DOPC respectively (Tristram-Nagle et al.,

136



1998). Figure 3.9 shows a snapshot of an equilibrated DOPC bilayer after 3.5ns of

MD simulation.

Figure 3.9. A side on snapshot (Z dimension) of an equilibrated bilayer of
pure DOPC. The water molecules are a red oxygen atom bonded to two
white hydrogens. The orange ball is representative of the phosphate atom in
a PC headgroup.

3.5.2 Order parameters

Figure 3.10 is a plot of the deuterium order parameters obtained for a pure DOPC

bilayer from a 3500ps MD simulation using the NPT ensemble. OLA and OLB

correspond to sn\ and sn2 chains in the DOPC molecule respectively. Figure 3.11 is

a plot of the order parameters obtained for the mixed DOPC/DOPG bilayer after

3500ps ofMD simulation.
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Figure 3.10. A plot of the deuterium order parameters obtained for the oleoyl
chains of DOPC (OLA (a) and OLB (b)), after 3500ps of MD simulation and
comparison with those of Chiu and co-workers ((c) and (d)) (Chiu et ai,
1999).
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Figure 3.11. A plot of the deuterium order parameters for the oleoyl chain
carbons of DOPC and DOPG in a mixed bilayer, obtained from a 3500ps MD
simulation. OLA and OLB ((a) and (b)) correspond to sn 1 and sn2 chains in
the DOPC molecule respectively. OLC and OLD ((c) and (d)) correspond to
sn^ and sn2 chains in the DOPG molecule respectively.
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3.5.3 Electron density map

Figure 3.12 shows the calculated electron density distributions of the structural

groups of DOPC and DOPG in a mixed bilayer. The calculated electron density

profiles compare favourably with the experimental values of Wiener and White

(Wiener & White, 1992), whose structural groupings have been used as a basis for

the ones shown in the Figure. The electron density map was obtained over a 3.5ns

equilibration run.
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Figure 3. 12. Electron density distributions of the structural groups of DOPC
and DOPG in a mixed bilayer. The groupings are based on those of Weiner
and White; the calculated electron densities compare favourably with the
experimental values. For breakdown of the comparison, see Table 3.4.

A snapshot of an equilibrated mixed bilayer of DOPC/DOPG is shown in Figure 3.13

for illustration purposes the water molecules are not in spacefill display mode, unlike

the rest of the Figure. The blue balls are the Na+ counter ions.
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Figure 3.13. Displays a side on snapshot (Z dimension) of an equilibrated
mixed bilayer of DOPC/DOPG after 3.5 ns of simulation. The blue balls
represent the Na+ counter ions. The PC headgroups contain orange spheres
which represent the phosphate atoms. Water molecules are shown at either
side of the bilayer.

CH3 C=C coo Gly po4 Choi

From Wiener and

White, 1992

Position 0.0 nm 0.8 nm 1.6 nm 1.9 nm 2.0 nm 2.2 nm

Half Width 0.3 nm 0.4 nm 0.3 nm 0.2 nm 0.3 nm 0.3 nm

From this study

Position 0.2 nm 0.9 nm 1.8 nm 1.9 nm 2.0 nm 2.2 nm

Half Width 0.4 nm 0.4 nm 0.4 nm 0 .4 nm 0.4 nm 0.5 nm

Table 3.5. A comparison of the electron densities of the molecular
components of DOPC in a mixed DOPC/DOPG bilayer MD simulation with
experimentally determined values for DOPC (Wiener and White, 1992).
Gaussian distributions were fitted to the electron density profiles describing
the distribution of the electrons of the different groups throughout a 3.5 ns
MD simulation. The position (defined as the distance from the centre of the
bilayer) and the half width (defined as half peak width at half-maximum
height) are shown for all molecular groups whose electron distributions
approximate to a Gaussian distribution. The midpoint of the bilayer was
defined by measuring the phosphate to phosphate distance between each
leaflet then dividing by two.
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A number ofMD simulations have been performed on explicit phospholipid bilayers.

These studies have tended to use the NPT protocol, with its constant Number of

particles, Pressure and Temperature. Tieleman and co-workers (Tieleman et al.,

1997) and Lindahl and Edholm (Lindahl and Edholm, 2000) who studied DPPC and

DMPC respectively, had modified their system to include a constant area per

molecule (NPAT). Tieleman (Tieleman et al., 1998) then went on to develop

constant surface tension by using the Berendsen semi-isotropic pressure-coupling

algorithm (Berendsen et al., 1984), in which the surface tension in the x and y

directions are equal. However, there was no need to utilise the NPAT system.

However, the mixed lipid system was initially run for 20 ps as an NVT ensemble.

The system was then run as an NPT ensemble for 3480 ps. The pressure asserted on

the box allowed the box vectors to adjust in all three dimensions, such that the final

area and volume of lipid was effectively constant after 2500 ps. The temperature

used in most lipid simulations is in the range of 300-330 K. The temperature

selected for the simulation was 300 K; this being the temperature in which the

neutron diffraction studies on a mixed DOPC/DOPG bilayer was performed.

The potential energy of the DOPC system (comprising of 128 lipid molecules) were -

8.5 xlO5 ± 2 x 104 kJ.mof1. The method involved the use of EM and MD

simulations, both of which were performed with GROMACS. However, the use of a

stochastic simulation, such as a Monte Carlo simulation may have been more

effective in reducing the potential energy of our mixed bilayer system. Once
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equilibrated, the potential energy of the mixed DOPC/DOPG system was -9.4 xlO6 ±

1.0 x 104 kJ.moP1. The combined equilibration and simulation times for the bilayers

were approximately 3.5 ns for the mixed DOPC/DOPG bilayer and 3.5ns for the pure

DOPC bilayer, which corresponded to 29.5 processor days on a dual Athlon

processor PC. A slightly lower ^-repeat was observed when using the PME

algorithm to treat the electrostatic interactions, in the case of the mixed bilayer. The

d-repeat was closer to the experimental values obtained in experimental studies by

other group members (Davies et al., 2003), when treating electrostatic interactions

with the particle mesh Ewald (PME) algorithm as opposed to spherical cut-offs.

However, this algorithm is not recommended for use on zwitterionic systems such as

DOPC (Scott, 2002). Order parameters obtained for the pure DOPC system were in

excellent agreement with previously reported data. However, it is interesting to note

that the order parameters of the latter carbons were not as close to the values reported

by Chiu and co-workers (Chiu et al., 1999). The differences in methodology could

be attributed to the differences observed.

3.6 Conclusion

To conclude, the simulations were verified by comparing a DOPC simulation with

three experimental parameters and a mixed bilayer of DOPC/DOPG with four

parameters. The results demonstrate that the simulations gave rise to parameters that

are within 5% of experimentally determined values of area & volume of lipid,

respectively (Table 3.4). The electron density map for DOPC demonstrates a

realistic electron distribution throughout the bilayer and closely follows the
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experimental results of Wiener and White (table 3.5). The same approach was then

used to model a mixed bilayer system for which there are no comparable

experimental data. To the best of knowledge, no experimental studies have been

performed to obtain the electron density map of DOPG. However, it is realistic to

compare six of the groupings from the experimental obtained from Wiener and

White's work (table 3.5). The table clearly demonstrates the excellent agreement

between the common groupings between DOPC and DOPG. The construction of the

mixed bilayer represents novel and original work, as this type of bilayer has not been

previously reported in the literature. Furthermore, the proceeding chapter will

discuss computational studies to test the methods of using neutron diffraction data as

a starting point for membrane peptide simulations using the mixed DOPC/DOPG

bilayer.

3.7 Suggested future studies

A widely acclaimed experimental electron density map of DOPC is available

(Wiener and White, 1992b). However, no experimental electron density map is

currently available for di-oleyl phosphatidylglycerol (DOPG). The construction of

an experimental electron density plot of DOPG, utilising a combination ofX-ray and

neutron diffraction would be very useful for future studies. Further computational

investigations could focus on the hydrogen bonding that can occur between the

phospholipids in the bilayer. In addition, the differing levels of hydration can also

be investigated and the effect on the verification parameters could be compared, as
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this has not been attempted in bilayers composed of a mixture of zwitterionic and

anionic phospholipids.

CHAPTER 4

Membrane peptide simulations using

experimentally determined starting conditions
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4.1 General Introduction

4.1.1 Aims of the chapter

The previous chapter described the construction of and validation of bilayer

structures. The models were verified using experimental data, which included

neutron diffraction data. The next step before constructing and simulating a

membrane bound model of the fusion peptide of SIV, was to test the proposed

methodology of using neutron data to construct a starting membrane bound

conformation of a peptide. The most logical method for testing the methodology was

to use a small peptide, which had been studied using neutron diffraction (Davies et

al., 2003).

Four membrane bound conformations of this peptide arose from the analysis of

neutron data (Davies et al., 2003). The main aim of this current study was to see if

molecular modelling techniques could be used to discriminate more rigorously

between the possibilities and unambiguously determine the biologically correct

structure ofARFlp in a biological membrane model.

This chapter will describe an analysis of the four possible membrane bound

conformations of N-terminal peptide of human adenosine diphosphate ribosylation

factor-1 (ARFlp) by molecular dynamics simulations. The aim of these simulations

was to determine which of the four possible structures was the most likely. In

otherwords, membrane bound ARFlp is used as a model system to test the method of
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using neutron data as a starting point for membrane peptide simulations. Confirming

which of the four possible conformations is most likely is of utmost importance,

particularly as the proceeding chapter will focus on MD simulation of the most likely

conformation of the fusion peptide of SIV in a DOPC bilayer. Therefore all

conformations ofARFlp were subjected to MD simulation in a bilayer environment

to either confirm or discount the proposed conformation. In short, this chapter aims

to demonstrate the importance of utilising experimental data in setting up membrane

peptide simulations.

4.1.2 Starting conditions of MD simulations

Molecular dynamics (MD) simulations have been used to provide information about

numerous biological molecules, including phospholipid membranes and membrane

proteins (Berger et al., 1997; Feller et al., 1997a; Mashl et al., 2001; Moore et al.,

2001; Scott 2002 ;Balali-Mood et al., 2003). They have been successfully applied to

investigations of ion channels and membrane-lytic peptides (Sansom et al., 1998;

Tieleman et al., 1998; Tieleman et al., 1999; Randa et al., 2001). The major

difficulty encountered when constructing a membrane and protein system for study

by simulation is in the assembly of the starting structure. The peptide must be placed

accurately within the bilayer/water simulation box before simulations can begin

(Basyn et al., 2003). Since the total system can be very large, simulation times tend

to be relatively short. As a result, there is generally not enough simulation time

available for whole body equilibration and rearrangement of the system so that the

protein finds its appropriate place in the bilayer. There are several possible

147



approaches to overcome this problem. Firstly, some simplifications can be made,

such as mean field approximations of the lipid environment (Basyn et al., 2001), or

solvent (Kessel et al., 2001; Bechor and Ben-Tal, 2001). Alternatively, Monte Carlo

simulations can be used to advance the equilibration of the system more rapidly

(Chiu et al., 1999) although this was in a pure lipid system. In this chapter, the use

of better initial conditions from experimental observations is explored.

For a standard simulation of a single, simple protein in solvent, little more than the

initial secondary structure must be known beforehand. In the course of the

simulation, there may be rapid changes of secondary structure, but the simulation

box is isotropic, and the molecule does not have, nor require, a preferred orientation

in the Cartesian coordinates. For simulations of large proteins with multiple

domains, the proper tertiary structure must also be considered. Such simulations

usually start from the atomic configuration determined by X-ray crystallography

(Ferrand et al., 1993). Once again, the simulation is most likely to be isotropic.

Additional techniques such as NMR or solution scattering can be used to determine

those initial conditions. Currently, determination of the relevant initial conditions for

the placement of the protein relative to a membrane relies mostly on theoretical

considerations (Basyn et al., 2001).

4.1.3 Background to the chapter

Other members of the group have previously reported neutron diffraction

measurements that were carried out in order to elucidate the bilayer location and
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orientation of the membrane bound N-terminal peptide of human adenosine

diphosphate ribosylation factor-1 (ARFlp) in a mixed bilayer containing di-oleoyl

phosphatidylcholine (DOPC) and di-oleoyl phosphatidylglycerol (DOPG) in a 7:3

molar ratio (Davies et al., 2003). This study had used specific deuteration at the

three phenylalanine residues of the peptide. Neutron diffraction combined with the

difference method analysis, enabled the determination of two important parameters

for each label. The first parameter was the depth of each of the three residues in the

bilayer to a resolution of better than 1 A. Secondly, the diffraction data showed the

time-averaged amplitude of the fluctuations of the same residues. Combined with a

model of the secondary structure, there were two mathematically possible

orientations of the peptide with respect to the membrane. Bradshaw and co-workers

(Bradshaw et al., 2000) have proposed that at least four deuterated labels are

normally required in order to orient a peptide unambiguously and result in a single

fitted model, because it is possible to fit any three points to a plane making it

impossible to distinguish between two orientations of the peptide. Two other

possible solutions arose as a result of uncertainty regarding the exact structure of the

peptide, which may be completely a-helical, or partially a-helical, as in the crystal

structure of the intact protein (Amor et al., 1994). Faced with these four

possibilities, thermodynamic arguments were used, such as the location of

hydrophobic and hydrophilic residues, to discriminate between them and propose

what is considered to be the most likely structure.
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4.1.4 ADP-ribosylation factor 1 (ARF1)

The peptide under study was the N-terminal sequence of adenosine diphosphate

ribosylation factor-1 (ARF1), which was placed in a mixed lipid bilayer containing

DOPC and DOPG. ARFs are a family of intracellular G proteins that are activated

by certain cell-signaling cascades (Spang, 2002). Full length ARFs are

approximately 20 kD in size (Amor et al., 1994) and at least six isoforms have been

identified. ARF1 is of particular biomedical interest as structural and biochemical

studies of the GTP binding and hydrolysis cycle have provided clues about the

potential mechanisms of action of intracellular messengers such as

phosphatidylinositol, phosphatidic acid and diacylglycerol (Randazzo et al., 2000).

To accomplish this, they combine the characteristic GDP/GTP switch with a unique

membrane/cytoplasm switch. Membrane binding is also crucial to the normal

biological regulation of ARFs by their guanine exchange factor (GEF) proteins and

GTPase activating proteins (GAPs) (Menetrey et al., 2000).

A number of crystal structures have been published for the soluble, inactive forms of

ARF proteins. However, little is known about the active, membrane bound structures

of ARF, the details of which are crucial to our under-standing of how these proteins

function both as molecular switches and bio-timers in cells. Membrane binding is a

necessary precursor to the large structural reorganizations of the core and switch

regions of ARF1 (Goldberg, 1999). The highly conserved N-terminal domain

primarily controls the membrane binding of ARF1 (Franco et al., 1993), and is

assumed to be an amphipathic helix lying approximately parallel to the membrane
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surface. The helical region seen within the N-terminal domain of ARF1 crystal

structure may elongate upon membrane association (Amor et al., 1994). Changes in

the length of the helix, and thus the connecting flexible linker region, could affect the

molecular reorganization of the core and switch regions of ARJF1. Differences in the

length of the flexible linker regions of ARF1 and ARF6 may contribute to the

differences seen in the switch regions of these two ARF isoforms, which are thought

to play an important physiological role in endocytotic pathways (Menetrey et al.,

2000). To understand this role as a reversible membrane anchor, it would be

necessary to know the precise depth and orientation of the N-terminal peptide

domain within a lipid bilayer. The neutron diffraction studies previously performed

addressed the question of the precise depth of the peptide in a membrane. However,

the literature (Roth, 1999) has pinpointed that ARF1 activation is by the myristoyl

chain attached to the N-terminus of the peptide. To this end, further neutron studies

utilizing a peptide with a myristoyl chain are required for a definitive answer to the

question of the depth the myristoylated peptide within a membrane.

In the previous experimental study carried out by other group members, circular

dichroism (CD) was used to indicate the secondary structure for the models (Davies

et al., 2003). The first model was taken directly from the published crystal structure

of the full ARF1 protein. This model had similar helical content to that measured

with CD. The second model was derived from the first, by adjusting the <£> and W

angles into a fully a-helical conformation. Since, from the neutron data alone, each

of these two models of secondary structure has two alternative orientations relative to

the membrane, four possibilities were left to choose from. Based on a consideration
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of the location of hydrophobic and hydroOlic residues on the peptide it can be argued

that only one of these conformations is likely to be correct.

4.2 Methods

4.2.1 Determination of secondary structure models

The sequence ofARFlp used in the neutron and CD experiments was:

Gly-Asn-Ile-Phe-Ala-Asn-Leu-Phe-Lys-Gly-Leu-Phe-Gly-Lys-Lys

(SWISSPROT #P32889). The N-terminus of the peptide was capped with an acetyl

group, whereas the C-terminus (q = -1) and the three lysine residues (q = +\) were

charged. Full atomic coordinates and simulation topology for the peptide in the same

Cartesian coordinate system as the bilayer were determined from the neutron

diffraction experiments. Atomic point charges for the peptide(s) were automatically

assigned by GROMACS (Lindahl et al., 2001).

The diffraction data yields three Gaussian functions. These Gaussian functions relate

to the deuteration of three different amino acids. They represent the time-averaged

locations of the hydrogens on the three phenylalanine residues (Phe-4, Phe-8 and

Phe-12). Each Gaussian has two important parameters. The first is the centre of the

Gaussian, which is the location of the residue, measured from the centre of the

bilayer. The second is the full width at half maximum height, which is the time-

averaged displacement fluctuation of that residue. The area under each Gaussian

function is simply the scattering length density of the 2H/H substituted label, and can
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be used as a means of scaling the data. Together, these parameters describe the time-

averaged location of the labelled residues. The four structural models that satisfy the

experimental data were as follows:

Model A: The atomic coordinates of model A were taken from the N-terminal

domain of the crystal structure of ARF1 (Amor et al., 1994) and oriented to fit the

data. In this model, the backbone of the peptide lies at an angle of less than 5° to the

bilayer surface. From a thermodynamic standpoint, this model would seem to be

quite feasible because the hydrophobic surface of the peptide is oriented towards the

core of the membrane. A snapshot of model A, after 3.9 ns of MD simulation is

shown in Figure 4.2.

Model B: Although the structure of the peptide is the same as model A, its

orientation with respect to the membrane is effectively inverted, meaning that the

hydrophobic surface of model B faces away from the membrane. This orientation

appears to be less favorable from a thermodynamic point of view. For example, Ile-3

was unexpectedly exposed to the aqueous environment. A snapshot of model B is

shown after 3.9 ns of simulation in Figure 4.3.

Model C: The structure of this peptide was obtained by energy minimization of

model A, while the <P and ¥ angles were constrained into a a-helix. Although the

relative orientation of the hydrophobic and hydrophilic residues appears to be

favorable, this particular orientation lifts leucine residues 7 and 11 out of the bilayer.
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It should be noted that idealised a-helices could not be positioned to fit the neutron

data. A snapshot of model C, after 500 ps of MD simulation is shown in Figure in

4.4.

Model D: The peptide structure is similar to model C, but the orientation of the

peptide has been reversed. Lysines 14 and 15 were pushed further into the bilayer

than would be deemed physically or chemically realistic. A snapshot of model D

after 500 ps ofMD simulation is shown in Figure 4.5.

4.2.2 Construction of the bilayer

The pre-requisite for peptide-membrane simulations is a fully equilibrated bilayer.

An equilibrated mixed DOPC/DOPG bilayer has been built and successfully

simulated (Balali-Mood et al., 2003), as was described in the previous chapter.

4.2.3 Placement of the peptide in the bilayer

Each peptide model was superimposed on the equilibrated membrane, centered in x

and y in the simulation box. The location and angle of the peptide in the z direction

was set using the Phe positions as determined from the neutron data. Bad contacts

between atoms were detected, and all molecules (SPC, DOPC & DOPG) identified

as significantly overlapping the peptide co-ordinates were removed manually.

Finally, the molecules and atoms were renumbered. To balance the system charge, a

CT ion was placed near each of the three lysine residues of the peptide, and a Na+ ion

154



was placed near the negatively charged C-terminus of ARF, using the genion

programmein GROMACS. Table 4.1 summarizes the molecular content of the four

models. The entire system was then subjected to EM (steepest descent method) prior

to an NVT (constant volume of 275000 A3, constant temperature of 300 K) ensemble

simulation for 20 ps. The NVT simulation was performed in order for the water

molecules in the system to become re equilibrated after the disruption to the system.

Table 4.1 also shows the number of molecules in each system simulated. The

numbers of water molecules (SPC) per lipid and the PC:PG ratio was only slightly

altered from the original plain bilayer.

Configuration No. of DOPC

lipids
No. of DOPG

lipids
No. of SPC

molecules

No. ofNa+

counter ions

model (A) 95 (46) 41 (20) 2745 41

model (B) 92 (43) 40(19) 2650 40

model (C) 93 (44) 40(19) 2681 40

model (D) 91 (42) 39(18) 2598 39

Table 4.1. The number of lipids and SPC solvent molecules in each model.
The molecules deleted were in direct atomic conflict with ARF1p. The original
mixed bilayer contained 98 DOPC molecules, 42 DOPG molecules, 42 Na+
counterions and 2815 SPC molecules, respectively. As can be observed, the
ratios of DOPC:DOPG were not significantly altered; the original ratio of
waters (SPC) per lipid molecule (20.1:1) was altered by <1%. The Figures in
parentheses relate to the total number of lipids in the top monolayer where
the peptide was placed.

Each of the four systems was then run with an NPT ensemble using PME to treat

electrostatic and long-range interactions. All NPT simulations were run at 300 K and

isotropic 1 bar pressure, with coupling constants of 5 and 1 ps, for pressure and

155



temperature, respectively. All simulations were for 4000 ps each, at the rate of about

80 ps per processor-day.

4.3 Results and discussion

4.3.1 Label positions and width

A useful criterion in assessing the validity of each of the simulated models is how

closely the positions of the three phenylalanine labels agree with the experimentally

determined values calculated from the neutron data. Table 4.2 illustrates the

positions of each of the labelled residues in all four models, during the last ns of the

simulation, and compares it with the values obtained from the neutron data. The

position of each label is shown in Figure 4.1. As in neutron data, the locations are

expressed as the distance from the centre of the bilayer. It has previously been

proposed that model A was most likely to be the biologically correct conformation

(Davies et al., 2003). This proposal is supported by the label positions in model A,

which have remained within 1% of the positions calculated from the neutron data,

throughout the 4 ns of the simulation. Model C showed values which were close to

experimental values, although not as close as those observed in model A. However,

models B and D had values that have deviated from the initial positions and are

clearly no longer in agreement with experimental data.
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Phe4 Phe8 Phel2

Position Width Position Width Position Width

Model A 18.0 4.0 17.0 4.4 21.9 5

Model B 13.0 3.8 11.8 4.0 9.0 4.2

Model C 19.8 3.2 18.0 3.4 24.0 3.5

Model D 7.8 3.0 10.0 3.6 12.0 2.8

Experiment 17.99(2) 5.83(3) 16.68(4) 6.64(4) 22.06(6) 5.88(8)

Table 4.2. The position and width of the three phenylalanine residues of
ARF1p, deuterium labelled in the neutron study (Davies et al., 2003). The
table provides a comparison between experimental data previously published
and two of the simulated models. Both of these models were in the correct

hydrophobic/hydrophilic orientation. The position of each label site is
expressed as the distance from the centre of the bilayer. The width of each
label site is calculated at 1/e of the full height of the gaussian in both
experimental and simulation studies.

Table 4.2 also displays the peak widths obtained from the four simulated models.

The width of the labelled residues was previously calculated from the neutron data.

The width of the label position was narrower in all four of the simulated

configurations than the neutron experiments. However, this is to be expected, since

the neutron data represent the average of 4.9 x 1019 molecules of ARFlp embedded

in a lamellar stack of bilayers, as opposed to the simulation systems whereby only

one peptide was present. Nevertheless, we can see that, model A displays values

closest to experimental values.
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Phe4 Phe8 Phe12

Distance from center of bilayer (A)

Figure 4.1. A schematic representation of the label positions at the end of the
MD simulations. Comparison is shown between each of the four simulated
model, as well as experimental data (Davies et al., 2003). (This Figure was
kindly produced by Dr Thad Harroun).

The amplitude of the fast fluctuation motion of the phenylalanine residues is

indicated in the widths of the peaks in table 4.2. For model A, the simulation

matches the neutron data well, while for models C, B and D, there were greater

deviations from the starting positions. This suggests that the simulations reproduced

the local environment of those residues of model A accurately. Conformation A had

a mean square displacement (MSD) of 0.40 nm conformation C (Figure 4.4) a MSD

of 0.50 nm2, conformation B a MSD of 0.64 nm2 and conformation D a MSD of 0.78

nm . Perhaps not surprisingly models B (Figure 4.3) and D (Figure 4.5) had higher

average MSD values; this was primarily due to the fact that both models were not

placed in the correct hydrophobic orientation, resulting in less stable structures when

compared to models A and C. In addition, the label positions deviated from

experimental values (in both models B and D) within the 20 ps NVT simulation of
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the peptide, as well as the first 50 ps of the 4000 ps NPT run. Figure 4.2 shows a

snapshot of model A after 3 .9 ns of simulation time (NPT ensemble).

Figure 4.2. A snapshot of AFR1p in a mixed DOPC/DOPG bilayer (model A)
after 3.9 ns of MD simulation with an NPT ensemble.

Figure 4.3. A snapshot of AFR1p in a mixed DOPC/DOPG bilayer (model B)
after 3.9 ns of MD simulation with an NPT ensemble.
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The ARFlp peptide models did not shift significantly during the simulations in

model A. Table 4.2 illustrates the time-averaged position of the hydrogens of the

three phenylalanine residues, both from simulation and from the neutron data. The

whole body displacement of the peptide in the z direction was negligible for model

A, as the position of each phenylalanine remained close to its experimentally

measured position during the simulation. However, the peptides in models C, B and

D did "ride" down from their initial conditions. Furthermore, the peptide axes did

not tilt more than 1° from its initial angle in model A. However, models B, C and D

reduced their tilt by 4°, 5° and 8°, respectively.

Figure 4.4. A snapshot of AFR1p in a mixed DOPC/DOPG bilayer (model C)
after 500 ps of MD simulation with an NPT ensemble.
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Figure 4.5. A snapshot of AFR1p in a mixed DOPC/DOPG bilayer (model D)
after 500 ps of MD simulation with an NPT ensemble.

4.3.2 System energy

Figure 4.6 (upper panel) displays the total energies (the sum of kinetic and potential

energies of the system) of the four systems. Each of the models reached a near

equilibrium energy after only 10 ps of an NVT simulation. Furthermore, the energy

fluctuations were never larger than 2000 kJ/mol. The total energy of the mixed

bilayer before the insertion of ARF is shown in Figure 4.6 for comparison. All the

kinetic energies of the four models were within 1% of each other, reflecting the fact

that they all contained a similar number of atoms.
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Figure 4.6. (upper panel) Total energies of the simulated systems: (a) model
A, which as can be observed had the lowest total system energy; (b) model
C; (c) model B; (d) model D. For the purpose of comparison (e) represents
the system energy of a mixed bilayer without ARF. (lower panel) Total
energies of ARF1p in SPC: (a) the total energy of the crystal structure of ARF
as utilised in models A and B; (b) the total energy of the fully helical structure
utilised in models C and D.

Model A is the most energetically favorable conformation. The mean total energy of

model A was -9.87 x 105 kJ/mol. Conformations C, B and D had mean total energies

of-9.58 x 105, -9.21 x 105 and -9.16 x 105 kJ/mol, respectively. The differences in
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energy are almost certainly due to the energetically unfavorable conditions in which

the peptide was placed in models B, C, and D. In an earlier paper (Davies et al.,

2003), it was reported that the hydrophobic moment of models B and D was

unfavorably oriented, with the hydrophobic face of the peptide upward, towards the

water. These models are expected, therefore, to have a higher potential energy than

A and C (hydrophobic face down). Conformation D has such a large tilt (20°), that it

is expected to cause the most disruption to the system, as the C-terminus has inserted

into the hydrophobic oleoyl chains of the bilayer. Thus it was not surprising to find

it had the largest total energy. The order in which we find the system energies,

clearly demonstrate the effect of hydrophobicity on the binding of the peptide to the

membrane.

For comparison, the peptides were placed in a water solvent box and were subjected

to MD simulation. The a-helical structure of ARF (models C and D) in water

possessed a slightly higher total energy than the crystal structure (models A and B).

Figure 4.6 (lower panel) shows the total energies of the two different ARF structures.

Importantly, the energy of the combined system for models A and C were less than

the combined energy of the separate simulations.
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4.3.3 Hydrogen bonding

The hydrogen bonding between the peptide and the bilayer was monitored during the

course of all four simulations. GROMACS was used to calculate the maximum

number of possible hydrogen bonds and identified 30 donors and 38 acceptors within

the peptide. The internal hydrogen bonds within models A (crystal structure) and C

(initial a-helix) were monitored throughout the 4000 ps of simulation time and are

shown in Figure 4.7.

Model A had the highest intermolecular hydrogen bonding, with an average of 34

bonds, throughout the course of the simulation. This Figure comprises 21 peptide-

SPC and 13 peptide-phospholipid bonds, 9 of which were with the PC headgroups.

All amino acid residues apart from the first residues glycine (Gly-1) and asparagine

(Asn-2) were involved in hydrogen bonding with PC headgroups. Four amino acids

hydrogen bonded with PG headgroups: Asn-2 and all three lysine residues.
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Figure 4.7. Total internal hydrogen bonding within ARF1p: (a) the stable
hydrogen bonding pattern of the crystal structure of model A. There are no
major fluctuations observed within this model, (b) The initial a-helical
structure of model C. The initial hydrogen bonding pattern within this model
was typical of a a-helix. Flowever, as the simulation progresses, the number
of hydrogen bonds were reduced to values closely associated with model A.

The next highest number of hydrogen bonds was found in model C, with an average

of 29, which breaks down as 24 peptide-SPC and 7 peptide-phospholipid bonds.

Much of the difference between these two models is accounted for by the fact that

the C-terminal lysines did not form hydrogen bonds in model C. This conformation

of the peptide produced a slightly higher number of hydrogen bonds with the solvent

in comparison to model A. This was due to the higher solvent accessible surface

(SAS) of model C. A comparison of SAS, between models A and C, is shown in

Figure 4.8.
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Figure 4.8. Solvent Accessible Surface (SAS) of models A and C. (a) model
A which, due to a partially helical structure, had a lower SAS than model C.
However, as can be seen the fluctuations of SAS were lowest in model A.
(b) The SAS of model C. Initially the SAS of model C was higher, primarily
due to the peptide's helical conformation. As the simulation progressed, the
SAS of model C was reduced, due to a decrease in helical content.

As expected, models B and D both of which have the amphipathic peptide inverted,

have far fewer hydrogen bonds, 18 for model B and 15 for model D. Model B

contained only 4 hydrogen bonds between the peptide and lipids. These hydrogen

bonds were formed between PC headgroups and asparagines (Asn-2), lysine (Lys-9)

and phenylalanine (Phe-12), respectively. In addition Lys-9, which formed a

hydrogen bond with the PC headgroup, also formed a hydrogen bond with a PG

headgroup. This conformation of the peptide only formed 14 stable hydrogen bonds

with the solvent (SPC) present in the system.
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At this point, it was appropriate to discard models B and D as the data presented so

far has clearly demonstrated that neither conformation is in the biologically correct

orientation. Taking into consideration the changes in label positions of the

phenylalanine residues, the higher values observed in average MSD, total energy of

the respective systems, as well as a significantly lower number of hydrogen bonds

seen in these two models, no further analysis of these simulated systems can be

justified. The common feature in these models was the incorrect hydrophobic

orientation. Therefore the remainder of this chapter will only focus on models A and

C.
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4.3.4 Structural changes
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Figure 4.9. Ramachandran plot of selected amino acid residues in models A
and C. (a) The penultimate lysine residue in model C, between 0 and 1 ns of
simulation. This residue was initially helical (arrow), but rapidly developed a
non-helical conformation. (b) The same residue between 3-4 ns of
simulation. There is no indication of helicity within this time frame, (c) The
penultimate residue (Lys-13) in model A between 0 and 1 ns. As can be
observed no helicity is present in the starting structure, (d) The same
residue between 3 and 4 ns of simulation. The conformation is still

predominantly non helical, although there are minor fluctuations in 0/0 these
are still outside the a-helical region of the Ramachandran plot, (d) A
complete 0-4 ns Ramachandran plot of a residue from the a-helical region of
the peptide (lle-3) in model C. The conformation remains predominantly
helical throughout the 4 ns simulation period, (e) The corresponding
isoleucine residue in model A, which also maintains its predominantly helical
conformation throughout the 4 ns of simulation.
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4.3.5 Helical content

<2> and ¥ angles of selected residues were analysed, as illustrated in the

Ramachandran plot in Figure 4.9. The main difference between models A and C was

the extent of the helical region. In model A, the helix terminates before the last 3

residues. Ramachandran plots for individual residues of models A and C (examples

shown in Figure 4.9) demonstrate that these three residues retain a predominantly

non-helical structure in model A throughout the simulation. In contrast, however, the

corresponding residues in model C unwind during the simulation to a non-helical

conformation, despite having a helical structure to start with. An example amino

acid residue taken from the helical region of the peptide (Ile-3) demonstrates that the

helical conformation of this section of the peptide is maintained through the four

nanoseconds of MD simulation. In other words, model C rapidly reverted to a

structure closely approximating that of model A, in the last 3.5 ns of the simulation.

4.3.6 Effects on the bilayer

The bilayer was not significantly altered by the presence of the peptide. The area per

lipid and volume per lipid (determined from the undisturbed monolayer opposite the

peptide) were 74 A2 and 1312 A3 respectively. These values compare favorably with

previously reported values, as shown in the previous chapter (3.7.3). The values

were within 1% of the previously published values for a plain mixed bilayer. Figure

4.10 shows that the lipid order parameter did not change significantly between the

plain bilayer and the peptide/bilayer system. These results show that the cavity
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introduced by the deletion of lipids in close contact with the peptide did not disrupt

the overall integrity of the bilayer structure.

sn1 chain (DOPC)
sn2 chain (DOPC)
sn1 chain (DOPG)
sn2 chain (DOPG)

Figure 4.10. Order parameters of oleoyl chains in model A. (a) The
deuterium order parameters calculated for the top leaflet of the membrane,
which contained ARF. (b) The lower leaflet, which was unperturbed from the
pre-equilibrated bilayer. As can be seen, no significant changes in order
parameters occurred as a result of peptide insertion.
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4.4 Conclusion

Although tremendous advances have been made in molecular dynamics simulations

of proteins and lipid bilayers, typically such simulations are qualified by

uncertainties in the initial conditions. Reaching both energetic and structural

equilibrium in such large systems poses a difficult computational problem. Without

data to support the choice of initial conditions, only a small number of possible initial

states can be reasonably tested. The need for combining experimental techniques,

which provide data on the Angstrom length or picosecond time scales, with MD

simulations is clear (Kamath and Wong, 2002). The neutron diffraction data (Davies

et al., 2003) provided directly verifiable length scale data, not previously used in

such simulations.

The difficulty is compounded when one considers that for the enormous variety of

bilayer simulations with different sizes, ensembles and force fields, nearly all

simulations of pure bilayers yield reasonable results (Scott, 2002). This is most

likely due to the fact that all force fields contain atomic interaction parameters that

mimic the hydrophobic effect quite well. When combined with the confinement of

the simulation box it is perhaps not surprising that the structural integrity of the

bilayer is maintained, at least over short simulation times.

We can see a related problem in the simulations of models B and D; although

obviously incorrect in comparison to models A and C, they reached an equilibrium
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state very quickly and showed no signs of further change in 4 ns of simulation time.

Had we not known at the beginning that A and C were, mutually exclusive choices

based on the data, (B and D were mathematically optional orientations), there was no

a priori reason to reject the simulations of B and D. This is directly relevant to

simulations that study proteins at membrane interfaces. Such simulations may not

yield clues as to whether there are better orientations of the protein within the

membrane. One can argue that transmembrane helices or ion channels studied using

MD might not fall into this category as the protein in question spans the membrane,

hence the depth of the protein in relation to the membrane is no longer an issue.

In this chapter, it has been demonstrated that the information gained from structural

experiments can be used to generate starting structures for explicit atomic level

studies with molecular dynamics simulations. To conclude, this chapter has shown

that MD simulation is a powerful tool for exploring neutron diffraction data to

atomic resolution. However, the starting position of a peptide in relation to a

membrane is crucial to the interpretation of the data. The analysis and comparison of

the four models lead to the confirmation of the originally proposed choice of model

A, as the correct conformation of ARFlp in relation to the bilayer. This

confirmation then allows for the MD simulation of the most likely conformation of

the SIV fusion peptide in a DOPC bilayer, which is described in the proceeding

chapter.
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4.5 Suggested future work

The results from this chapter have clearly demonstrated that the originally proposed

model (A) was the most likely conformation. This finding will allow for a long time

scale simulation of the fusion peptide of SIV in a pre-equilibrated DOPC bilayer,

without the necessity of testing all four conformations which arose as a result of the

neutron studies. However, further experimental work could investigate the effect of

myristoylation on membrane activity. Furthermore, the protonation states of the

labelled residues can be calculated, although this will require extensive

computational work.
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CHAPTER 5

Molecular dynamics simulations of the

fusion peptide of SIV in a DOPC bilayer
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5.1 General Introduction

5.1.1 Aims of chapter five

The chapter aims to present a detailed MD study of a peptide in a pre-equilibrated

bilayer of DOPC, the initial conditions of which were derived from previously

reported neutron diffraction studies (Bradshaw et al., 2000). In contrast to the

preceding chapter only the most likely conformation, as predicted by neutron

diffraction, was studied. The preceding chapter showed that labels will move within

1-2 ns, if the starting conditions are wrong. In this study the labels do not move,

even after 100 ns of simulation.

No previous MD simulations of the fusion peptide of SIV embedded in a DOPC

bilayer have been undertaken. The simulations provide explicit atomic detail of the

structure and dynamics of the peptide and the lipid hydrocarbon chains. Hydrogen

bonding in the system was analysed and interpreted accordingly. Particular emphasis

is placed upon the modification of oleoyl chain order parameters and the secondary

structure of the membrane bound peptide. This information contributes knowledge

to current understanding of the action of fusion peptides on lipid bilayers.
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5.1.2 Curvature modulation induced by fusion

peptides

Fusion peptides were described in the introduction section of this thesis (1.9.1). A

common property of a number of fusion peptides is that they lower the hexagonal

phase temperature (TH) of phosphatidylethanolamine. This indicated that the peptide

induced negative curvature (Epand et al., 1998). This property is well correlated

with conditions which lead to biomembrane fusion. For instance, there is a direct

correlation between the fusion activity of SIV mutants and the ability of its fusion

peptides to lower Th (Colotto et al., 1996; Epand et al., 1994).

5.2 MD simulations of fusion peptides

A number of MD simulations have been performed on fusion peptides embedded

within pre-equilibrated bilayers. Vaccaro and co-workers (Vaccaro et al., 2004)

performed MD simulations of the 20 amino acid residue fusion peptide of the

influenza haemagglutin (strain X34) in a POPC bilayer. They compared mutants and

evaluated their fusogenic activity. They reported reduced order parameters of the

palmitoyl and oleoyl lipid chains. The most significant reduction in order parameter

was observed in the oleoyl chains, with the original fusion peptide sequence and to a

lesser extent with the mutant sequences.

Huang and co-workers (Huang et al., 2004) were another group to report such a

study. They had used a DMPC bilayer and placed a 20 amino acid fusion peptide of
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influenza haemagglutin (strain X31) within the bilayer. Their simulations revealed

that the peptide adopted a kinked conformation. The findings were in agreement

with the NMR structures of a closely related peptide in detergent micelles (strain

X33). The peptide was located at the amphipathic interface between the headgroups

and hydrocarbon chains of the phospholipids. In addition, they reported that the

average hydrophobic thickness of the lipid phase close to the N-terminus is reduced

in comparison with the average hydrophobic thickness of a pure DMPC bilayer.

Aliste and co-workers (Aliste et al., 2003) have reported simulations of two

pentapeptides, ACE-WLXLL (with X=Arg or LYS and ACE= capped N-terminus).

Embedded within a DOPC bilayer, a salt bridge had formed within the peptide and

had penetrated the bilayer. It has been speculated that this sequence is important in

the fusion mechanism (Aliste et al., 2003). Kamath and Wong (Kamath and Wong,

2002) performed extensive MD simulations of the gp41 fusion domain ofHIV. They

reported a reduction in area and volume per lipid induced by the peptide and two

mutant forms in a POPE bilayer. Furthermore, their simulations showed that the

peptide remains a predominantly helical conformation when membrane bound

(Kamath and Wong, 2002).

To date, no MD simulations have been performed which report on the fusion peptide

of SIV. Furthermore, no MD simulation reported within the literature has utilised

experimentally determined starting conditions. In the previous chapter, it was shown

that experimentally determined starting conditions play a key role in the final

outcome of a simulation. This chapter describes an atomic level investigation into

the actions of a fusion peptide upon a pre-equilibrated bilayer of DOPC. The fusion
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peptide was not capped at either the N or C terminus. The rationale for not capping

the peptide was simply to adhere to experimental conditions whereby the peptide was

not capped in the neutron diffraction study (Bradshaw et al., 2000).

5.3 Placement of the peptide in the bilayer

The peptide was superimposed on the equilibrated membrane, centered in x and y in

the simulation box. The location of the peptide in the z direction was determined

from the neutron data, as previously discussed. Bad contacts between atoms were

detected, and all molecules (SPC and DOPC) identified as significantly overlapping

the peptide co-ordinates were removed manually. Finally, the molecules and atoms

were renumbered. The entire system was then subjected to EM (steepest descent

method) prior to an NVT (32001 atoms, 480000 A3, constant temperature of 300 K)

ensemble simulation for 20ps. The NVT simulation was performed in order for the

water molecules in the system to become re equilibrated after the disruption to the

system. The system disruption was not significant as only eight lipids were deleted

(8x72=576 atoms). In addition only fifty water molecules were removed (50x3=150

atoms). The NPT simulation ran for lOOOOOps.
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5.4 Method and simulation parameters

The DOPC bilayer was constructed by taking a previously customized PDB file of a

DOPC molecule and replicating it to form a monolayer of 128 lipids, using Sybyl 6.7.

The monolayer was then rotated to form a bilayer of 256 lipids. For a full

description of construction and equilibration, please see chapter 3 (section 3.3.3).

The complete topologies of the molecules were described in the form of bonds,

angles and dihedrals (torsion angles). Atomic point charges for DOPC molecules

were generated by HyperChem 5.0 (Hypercube Inc., Waterloo, Canada) using the

STO-3G set as used in previous studies of DMPC and DPPC (Berger et al., 1997;

Feller et al., 1997a). A complete set of these charges can be seen in chapter 3 (table

3.3).

The use of Ewald summations in zwitterionic systems (i.e. a DOPC bilayer) can

potentially induce unwanted periodicities, leading to errors no less significant than

those which result when the interaction is simply 'switched off for interatomic

distances beyond some spherical cut-off. For smaller simulation boxes, the effect

will be more severe (Scott, 2002). The electrostatic interactions within the spherical

cut-off were summed directly and the remaining part of the system was treated using

an analytical solution of Poisson's equation implemented by GROMACS.
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It has been reported that spherical cut-offs can introduce artefacts in solutions with

ions but if the cut-off radius is large enough (> 1.8 nm), this method appears to work

well for zwitterionic lipids (Tieleman et al., 1997). Hence, the selection of spherical

cut-offs as opposed to PME for the treatment of electrostatic interactions.

GROMACS allows for temperature and pressure coupling using the Berendsen

temperature and pressure coupling algorithm. In the case of temperature coupling, all

molecules (DOPC, SIV and SPC) were coupled individually to a bath with a

temperature of 300 K. A time constant of 5 ps was set for each group. This time

constant was used for both the NVT (32001 atoms, 480000 A3 and 300 K) and

subsequent NPT (32001 atoms, 300 K and pressure of 1 bar). The pressure asserted

on the box was of an isotropic nature. A time constant for pressure coupling was

also set at 5 ps. In the NPT ensemble the pressure coupling was isotropic. Coupling

groups on an individual basis allows for greater stability during an MD run.

Furthermore, PBC was utilised in all directions as in previously reported MD

simulations. The NVT simulation lasted for only 20 ps and was intended as a further

equilibration measure after EM.

The time steps of the MD and EM simulations was 2 fs. This time step was used in a

number of previous bilayer simulations (Berger et al., 1997; Feller et al., 1997).
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5.5 Results and discussion

5.5.1 Deuterated labels and average mean square

displacement of the peptide

This simulation, as those described in the previous chapter, was based upon

experimental conditions. The location of deuterated labels and their deviation after

the 100 ns simulation are presented in table 5.1. The positions of the labels are

relative to the bilayer normal (z) and are in excellent agreement with the

experimental deuterated labels obtained from neutron diffraction studies (Bradshaw

et al., 2000).

Data type Parameter Valine 2 Leucine 8 Leucine 11

Experimental Position 19.9 ± 1.2 A 18.6 ±0.5 A 16.5 ±0.2 A

(neutron diffraction) Width 7.14 ±2.6 A 4.6 ±0.5 A 8.9 ±0.6 A

Simulation (0-10 ns) Position 20.0 A 18.5 A 16.6 A

(molecular dynamics) Width 6.3 A 4.4 A 6.4 A

Simulation (90-100 ns) Position 20.2 A 18.7 A 16.8 A

(molecular dynamics) Width 6.1 A 4.2 A 6.2 A

Table 5.1. Label positions from experimental data (neutron diffraction) and
simulation. As can be seen, there was only minor fluctuations observed in
the label positions, when comparing the first 10ns to the final 10 ns of
simulation. The position of each label is expressed as the distance from the
centre of the bilayer. The width is the full width at 1/e height.
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The deviations seen in the width (table 5.1) can be readily explained by the fact that

in neutron diffraction samples a lamellar stack of DOPC bilayers (-50000) with

peptide embedded in each bilayer. However, only one peptide is studied in the MD

simulation, hence the width obtained in the simulation will be of reduced value when

compared to the neutron diffraction data.

An important consideration in bilayer/peptide MD simulations is the deviation of a

peptide from its starting position, to this end the average mean square displacement

(MSD) of the peptide was obtained throughout the 100 ns of NPT simulation. The

average MSD of the peptide was comparatively low (Figure 5.1).

0.14

CD 0.00
>

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4

Simulation time (ps)

1.0e+5 1.2e+5

Figure 5.1. The average mean square displacement of the fusion peptide of
SIV embedded within a DOPC bilayer (from the starting position).
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As can be observed from Figure 5.1, the average MSD of the peptide increases at 20

ns. However, the average MSD then re stabilises over the next 40 ns of simulation.

The average MSD of the peptide is particularly stable throughout the final 20ns of

simulation.

5.5.2 Hydrogen bonding

One of the many features of MD simulation analysis is the ability to extract

information concerning hydrogen bonding. The focus in this section is the hydrogen

bonding which occurs between the peptide and other components of the system. The

hydrogen bonding in this study can be broken down into the hydrogen bonding

between the peptide and the phospholipid headgroups (Figure 5.2), the peptide and

the solvent SPC (Figure 5.3) and the peptide and the oleoyl chains (Figure 5.4).
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0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5

Time (ps)

Figure 5.2. Number of hydrogen bonds formed between the
phosphatidylcholine headgroups and the fusion peptide of SIV in the
simulated system.

Hydrogen bonding between the peptide and phosphatidylcholine headgroups was

minimal compared to those ofARFlp and the mixed bilayer. This can be explained

readily as ARFlp lies perpendicular to the bilayer normal (z). However, the fusion

peptide of SIV inserts obliquely at an angle of 55° relative to the bilayer normal,

resulting in lower hydrogen bonding when compared to that reported in the previous

chapter. The hydrogen bonding occurred between the residues eight, ten and eleven

of the peptide. These residues were leucine, phenylalanine and the penultimate

leucine residue, respectively.
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Due to the oblique insertion of the peptide, hydrogen bonding was detected between

the peptide and the oleoyl chains (Figure 5.3). Phenylalanine (residue three) was the

amino acid which was involved on this instance.

0.0 2.0e+4 4.0e+4 6.0e+4

Time (ps)

8.0e+4 1.0e+5 1.2e+5

Figure 5.3. Total number of hydrogen bonds formed between SIV and the
oxygens of the oleoyl chains in a DOPC bilayer.
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Time (ps)

Figure 5.4. Number of hydrogen bonds formed between SIV and solvent
water (SPC) molecules over 100ns of MD simulation, in the simulated
system.

Figure 5.4 shows a plot of hydrogen bonds formed between the peptide and the water

molecules (SPC). The lower number of hydrogen bonds when compared to ARFlp

is mainly due to the lower number of polar residues present in the SIV fusion

peptide. Furthermore, the oblique angle of insertion of the peptide into the

hydrophobic core of the bilayer, results in less solvent peptide hydrogen bonding.

All amino acid residues, with the exception of the first two residues (glycine and

valine) were involved in hydrogen bonding between the solvent molecules and

peptide.
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5.5.3 Angle of Insertion

Brasseur and co-workers (Brasseur et al., 1990) had previously proposed an angle of

insertion of 57° for the fusion peptide of SIV, which they had assumed to be a-

helical. Bradshaw and co-workers confirmed the findings of Brasseur et al., by a

novel neutron diffraction study to be 55° for the fusion peptide of SIV relative to the

bilayer normal (z). Some fluctuation is observed as would be expected of a small

peptide embedded in a DOPC bilayer and subjected to MD simulation. The

fluctuations were in line with previously reported angles of insertion (Kamath and

Wong, 2002).

62 -r

60 -

50 i i i i i i

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5

Time (ps)

Figure 5.5. Angle of insertion of the fusion peptide of SIV relative to the
bilayer normal (z) in a DOPC bilayer, over 100ns of simulation.
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The fluctuations observed in the angle of insertion decrease towards the second half

of the simulation. The decrease is probably due to the fact that the system is

energetically more stable in the latter halfof the simulation.

5.5.4 Order parameters

Order parameters of the oleoyl chains have been discussed in chapter 1 (1.5.3). In

addition, order parameters of the oleoyl chains of an intact DOPC bilayer were

presented in chapter three (3.6.3). The fusion peptide of SIV has been proposed to

act via disruption to the hydrocarbon core of the membrane (Harroun et al., 2003).

Therefore it was logical to obtain order parameters from both the peptide containing

leaflet and the non peptide containing leaflet. In previous chapters, the order

parameters have been expressed collectively, as the average mean for the whole

leaflet. To attain a deeper understanding of the effect of fusion peptide action upon

the hydrocarbon core of the bilayer (i.e. the lipid chains), individual order parameters

are presented in this chapter. Using a programme written by Dr Bradshaw, the

nearest lipid to the peptide was identified in the upper leaflet. In addition, the

corresponding (mirror image) lipid molecule was then identified in the lower leaflet.

Using this program, a lipid was identified that was next to the initially selected

DOPC molecule. In other words, a radius of 8.5 A was selected (as the average area

per lipid in the DOPC bilayer was 72.2 A2), between each lipid. A left handed

direction (in the x axis) was selected for both the upper and lower leaflets when

choosing all lipids. Once the lipids were selected, the GROMACS analysis
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programme g order was used to calculate the individual order parameters. The data

were then divided into order parameters of the lower and upper leaflets and sn-1 /sn-

2 chains. The data is presented in Figures 5.6-5.9.

52 Angstroms from SIV
43.5 Angstroms from SIV
35 Angstroms from SIV
26.5 Angstroms from SIV
18 Angstroms from SIV
9 5 Angstroms from SIV
1 Angstroms from SIV

Figure 5.6. Order parameters of selected individual sn-1 chains of the lipids
in the upper leaflet, (see text for explanation).

A reduction in order parameters was observed in the leaflet containing the fusion

peptide. The pattern observed was as follows:
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When the peptide was within 1 A of the oleoyl chains, the most dramatic decrease in

order parameters was observed. In addition, a more significant reduction is seen in

the carbons 10-17 (i.e. carbons nearer the centre of the bilayer), when compared with

carbons 1-10. This is probably due to the fact that the peptide penetrates deep into

the hydrophobic core of the bilayer, thereby having the greatest effect on the order

parameters of carbons nearer the hydrophobic core.

52 Angstroms from SIV
43.5 Angstroms from SIV
35 Angstroms from SIV
26.5 Angstroms from SIV
18 Angstroms from SIV
9 5 Angstroms from SIV
1 Angstroms from SIV

Figure 5.7. Order parameters of selected individual sn-2 chains of the lipids
in the upper leaflet (see text for explanation).
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The sn-2 chains also displayed a reduction in the order parameters, confirming the

hypothesis proposed by Harroun and co-workers (Harroun et al., 2003) that SIV

fusion peptide acts by disrupting the hydrophobic core of the membrane. Once

again, order parameters are reduced when compared to values of an unperturbed

DOPC bilayer (section 3.7.3). The reduction in order parameter observed in the sn-2

chains follows a similar pattern to that of the sn-1 chains. However, the reduction in

order parameter is not as significant in the latter carbons (10-17) as that observed

with the sn-1 chain.

52 Angstroms from SIV
43.5 Angstroms from SIV
35 Angstroms from SIV
26.5 Angstroms from SIV
18 Angstroms from SIV
9.5 Angstroms from SIV
1 Angstroms from SIV

Figure 5.8. Order parameters of selected sn-1 chains of the lipids in the lower
leaflet (see text for explanation).
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A reduction of order parameter is observed in the opposing leaflet as well.

Interestingly, a greater reduction in order parameters is observed in the leaflet

opposite to where the peptide was placed. The literature cites experimental NMR

studies (Koenig et al., 1999) whereby a reduction in order parameter has been

reported in Stearoyl-oleoyl phosphatidylserine bilayers which contained the gp41

domain of HIV. In addition, an MD simulation study (Vaccaro et al., 2004), has

reported a reduction in order parameter in DMPC bilayers which contained the

influenza haemagglutinin fusion peptide. However, this group had reported a slightly

higher decrease in order parameter in the peptide containing leaflet. The observation

that a greater reduction in order parameters occurs in the non peptide containing

leaflet has not been reported before for any other fusion peptide. From an intuitive

point of view, one would expect the leaflet containing the peptide to be most

disrupted. However, the data presented here clearly demonstrates that the most

significant reduction in the order parameters is in the non peptide containing leaflet.
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52 Angstroms from SIV
43.5 Angstroms from SIV
35 Angstroms from SIV
26.5 Angstroms from SIV
18 Angstroms from SIV
9 5 Angstroms from SIV
1 Angstroms from SIV

Figure 5.9. Order parameters of selected sn-2 chains of the lipids in the lower
leaflet (see text for explanation).

The selected sn-2 chains of the lower leaflet show a dramatic decrease in order

parameter. The pattern closely follows that of the sn-1 chain. There is no directly

proportional relationship between order parameter and close proximity to the peptide.

If the oleoyl chains are within 10 A of the peptide, a dramatic reduction in order

parameter is observed (particularly carbons 10-17). As stated in section 1.5.3, a

value of -0.5 refers to a bond vector which is completely parallel to the bilayer plane



(z). On the other hand a value of 1 refers to a bond vector which is completely

perpendicular to the bilayer plane (z). Therefore, from the results obtained it can be

deduced that the fusion peptide of SIV causes the oleoyl chains of the DOPC

molecule to become more parallel to the bilayer plane particularly those in the non

peptide containing leaflet and the latter carbons (10-17) of the oleoyl chain.

5.5.5 Secondary structure of the fusion peptide

of SIV

A previous computational (MD simulation) study (Kamath and Wong, 2002) had

demonstrated that the membrane bound secondary structure of the gp41 fusion

peptide ofHIV was a-helical. Experimental studies using Fourier transform infra red

(Martin et al., 1991) had shown that the fusion peptide of SIV was a-helical when

associated with DOPC. However, Ramachandran analysis of the following residues

of the peptide have revealed otherwise. A full Ramachandran plot of the full peptide

is presented in Figure 5.10. The initial starting membrane bound conformation of the

peptide was a right handed a-helix. However, the Ramachandran plot of the peptide

clearly shows random coil and P-strand structures present in the peptide. Throughout

the 100ns simulation the peptide is a right handed a-helical conformation for only

40% of simulation time. The \(/ and ® angles of residues 2-11 of this twelve residue

peptide were then plotted on an individual basis and are shown in Figures 5.11-5.20.
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Figure 5.10. Full Ramachandran plot of the whole fusion peptide of SIV (over
100 ns of MD simulation), when inserting obliquely at angle of 55° ± 4.5°
(from the bilayer normal) into a DOPC bilayer.

The Ramachandran plot above presents clear evidence that the fusion peptide of SIV

is not in a fully helical conformation when membrane bound to a DOPC bilayer. The

peptide remains in a pre-dominantly helical conformation in the first 10 ns of

simulation. Therefore it was decided that the and ¥ angles of the final 90 ns of

residues 2-11 of the 12 residue fusion peptide will be plotted in the form of

Ramachandran plots.
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Figure 5.11 Ramachandran plot of the second residue of the SIV fusion
peptide over the final 90ns of simulation.

The second residue of the peptide (Val) was in a primarily (3-strand conformation

(Figure 5.11).
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Figure 5.12 Ramachandran plot of the third residue of the SIV fusion peptide
over the final 90ns of simulation.

The third residue of the peptide (Phe) is in a pre-dominantly right handed a-helical

helical conformation.
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Figure 5.13 Ramachandran plot of the fourth residue of the SIV fusion
peptide over the final 90ns of simulation.

The fourth residue of the peptide (Val) is in a pre-dominantly right handed a-helical

conformation.

198



150 -

-100 -

-150 -

-150 -100 -50 0 50 100 150

<K°)

Figure 5.14 Ramachandran plot of the fifth residue of the SIV fusion peptide
over the final 90ns of simulation.

The fifth residue of this peptide (Leu) is switching conformation from a right handed

a-helical conformation to a P-strand conformation.
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Figure 5.15 Ramachandran plot of the sixth residue of the SIV fusion peptide
over the final 90ns of simulation.

The sixth residue of the peptide (Gly) is in a pre-dominantly P-strand conformation.
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Figure 5.16 Ramachandran plot of the seventh residue of the SIV fusion
peptide over the final 90ns of simulation.

The seventh residue of the peptide (Phe) is in a pre-dominantly right handed a-

helical conformation for virtually all of the final 90ns ofMD simulation.
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Figure 5.17 Ramachandran plot of the eighth residue of the SIV fusion
peptide over the final 90ns of simulation.

The eighth residue (Leu) of the membrane bound peptide was in a random coil and a

p-strand conformation. A very small amount of helical conformation was observed

at any point in the final 90 ns with this particular residue.
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Figure 5.18 Ramachandran plot of the ninth residue of the SIV fusion peptide
over the final 90ns of simulation.

The ninth residue (Gly) of the peptide was in a pre-dominantly a-helical

conformation. However, as can be observed from the Ramachandran plot, evidence

of random coil is also observed.
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Figure 5.19 Ramachandran plot of the tenth residue of the SIV fusion peptide
over the final 90ns of simulation

The tenth residue (Phe) of the peptide is switching between a random coil and a a-

helical conformation. The membrane bound structure of the fusion peptide of SIV,

was initially proposed to be fully a-helical by Fourier transform infra red (Martin et

al., 1991). Brasseur (Brasseur et al., 1990) was amongst the first group ofworkers to

propose that fusion peptides are a-helical and insert obliquely into the bilayer plane.

The second proposal was confirmed by both the experimental study conducted by

Bradshaw and colleagues (Bradshaw et al., 2000) and the MD simulation study,

described in this chapter. However, the first proposal has been shown to be

inaccurate and has not stood the test of time. The data presented here, clearly show

that only -50% of the peptide is in a a-helical conformation when membrane bound
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to a DOPC bilayer. It should be noted that it would not have been possible to probe

the secondary membrane bound structure of this fusion peptide without the

availability of the neutron diffraction data (Bradshaw et al., 2000).

-100 -
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-150 -100 -50 0 50 100 150
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Figure 5.20 Ramachandran plot of the eleventh residue of the SIV fusion
peptide over the final 90ns of simulation

The eleventh residue (Leu) which was subjected to the Ramachandran plot was the

eleventh residue of the peptide. This leucine residue exhibited no significant a-

helical content in the latter parts of the simulation and was in a partial random coil

and partial |3-strand conformation.
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Epand (Epand, 2003) had discussed fusion peptides that were not in a a-helical

conformation when membrane bound. However, the fusion peptide of SIV

(sequence GVFVLGFLGFLA), much like the gp41 fusion peptide (sequence

AVGIGALFLGFLGAAG), was thought to be a-helical when membrane bound.

Furthermore, FTIR experiments showed that the fusion peptide of SIV is pre¬

dominantly a-helical when associated with DOPC (Martin et al., 1990). Bradshaw

and co-workers (Bradshaw et al., 2000) have suggested that this may not be the case,

as their neutron data would be more easily fitted to a random secondary structure and

not a pre-dominantly a-helical structure. The simulations clearly demonstrate that no

more than 40% of the peptide remained alpha helical throughout the simulation.

These findings further enhance the theory (Epand, 2003) that fusion peptides are not

necessarily in a a-helical conformation when membrane bound. Furthermore, fusion

peptides do not necessarily require a a-helical conformation to exert their actions

upon the membrane.
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5.5.6 Area and volume of lipid

Area of Lipid (A2) Volume of Lipid (A3) d-repeat (A)

Pure

DOPC

70 ± 1.1 1294 ±8.4 5.9

Lower

Leaflet

68 1284 5.6

Upper
Leaflet

65 1281 5.6

Table 5.2. Comparison of area and volume of lipid and the d-repeat between
a pure DOPC bilayer and a DOPC bilayer containing fusion peptide

There was no significant change in area or volume of lipid. This is hardly un¬

expected as the peptide is relatively small and despite the angle of insertion is

unlikely to cause huge disruption to the system by way of changing the area and or

volume of lipid. The d-repeat was reduced compared to that of a pure DOPC bilayer.

This could be an indication of membrane thinning, which will be discussed in the

next section.
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5.5.7 Area and Water distribution

Figure 5.21 distribution of water. The penetration of water molecules into the
hydrophobic core is of particular interest, as it could be taken as an indication
of membrane thinning.

The process of fusion may involve membrane thinning. One indication of membrane

thinning is the penetration of water into the hydrophobic core of the membrane.

Figure 5.21 displays a snapshot of the system (bilayer deleted for clarity) with the

water molecules penetrating the hydrophobic core. Figure 5.22 displays a snapshot

of the peptide embedded in the DOPC bilayer. Waters are removed for clarity.
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Figure 5.22. A snapshot of the SIV fusion peptide embedded within the
DOPC bilayer. The peptide is shown in red. The green colouring represents
the leucines 8 and 11. The blue colouring represents valine 2. These
residues were deuterated in the neutron diffraction study. The snapshot was
taken after 99 ns of MD simulation.

Synthetic viral fusion peptides utilised in experimental studies are less effective in

accelerating membrane fusion compared with the intact fusion protein. It is not

surprising that small peptide (<25 residues) can not reproduce all of the functions of

an intact protein. There are two main factors that are likely to contribute to greater

activity of the intact protein. Firstly, the viral fusion protein forms stable multimers

which tend to self-associate in membranes to form higher order complexes

(Markovic et al., 2001; Hernandez et a/., 1996). Hence, the fusion peptide segment
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does not function as an isolated unit, but is rather assembled into an organized

complex in which several fusion peptide segments can act in a coordinated fashion.

Secondly, some regions outside the fusion peptide may also participate in

accelerating the fusion process (Peisajovich et al., 2003). Evidence has been

presented for a role of the transmembrane segment and the cytoplasmic tail of the

fusion protein of a number of fusion proteins (Epand et al., 1998).

Isolated fusion peptides promote contents leakage of vesicles (Lear and DeGrado,

1987), but true fusion can be measured accurately using lipid mixing. In order for

the mixing of aqueous contents to be measured, the rate of formation of a fusion pore

has to be more rapid than the rate of leakage. However, an agent which can

destabilize membranes will inevitably induce leakage. Many intact viruses induce

haemolysis and it has been reported that influenza virus causes the lysis of liposomes

(Epand, 2003). It is therefore not surprising that a small fragment of the viral fusion

protein, i.e. the fusion peptide, can cause sufficient leakage to prevent measurement

of aqueous content mixing. To summarize, the use of synthetic fusion peptides to

study the membrane fusion process using diffraction techniques is quite valid and

could provide insights into the fusion mechanism.
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5.6 Conclusion

This chapter has shown that the fusion peptide of SIV maintains its starting position

within the bilayer to within 5% over a 100ns MD simulation, emphasizing the

importance of starting conditions which utilise experimental data. Hydrogen

bonding was observed between the peptide, water molecules and both headgroups

and the oxygen atom present in oleoyl chains. The order parameters of the oleoyl

chains were significantly reduced, particularly in the lower leaflet. The reduction of

order parameters was observed in both the upper (peptide containing) and lower

leaflet (no peptide), experimental studies have reported a reduction in order

parameters in previous experimental (Koenig et al., 1999) and computational

(Vaccaro et al., 2004) studies. However, no specification was made regarding the

differences between the upper and the lower leaflet.

Membrane thinning occurred and was demonstrated by the distribution of the water

molecules. The helical content of the peptide was significantly reduced and P-strand

structures were observed. Furthermore, random coil structures were seen in the

individual Ramachandran plots of residues 2-11.

To summarize, this chapter has described a long time scale simulation of a fusion

peptide embedded within a DOPC bilayer. The major findings were the reduction in

order parameters, particularly in the lower leaflet (no peptide). Evidence of

membrane thinning was detected, via the distribution of water. Furthermore, the

peptide was thought to be a-helical when membrane bound (Bradshaw et al., 200).
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However, the simulation and subsequent Ramachandran analysis have clearly

demonstrated decreased helical content.

5.7 Suggested future studies

This chapter focused on a long time scale MD simulation of the fusion peptide of

SIV in a pre-equilibrated bilayer of DOPC. The previous chapter, verified that the

proposed most likely conformation of ARFlp was indeed the correct orientation of

the peptide in relation to the bilayer. Therefore, the simulation undertaken in this

chapter used the most likely conformation. This allowed for the maximum usage of

computational processing power, resulting in a trajectory of 100ns. The simulation

parameters were in excellent agreement with experimental data. Furthermore, the

simulation demonstrated evidence of membrane thinning. To date, membrane

thinning induced by this peptide has not been demonstrated in an MD simulation.

Fusion peptides such as the fusion peptide of SIV are said to act by lowering the

hexagonal phase transition temperature of membranes (Th). A combined

experimental and computational investigation into the effects of the fusion peptide of

SIV in a membrane which is in the inverted hexagonal phase (Hn) will add

knowledge to the field and open up broad possibilities for therapeutic intervention.

A pre-requisite measure would be to obtain neutron diffraction data to construct a

computational model of a phospholipid in an Hn phase. The non-lamellar lipid, N-

methylated di-oleyl phosphatidylethanolamine (DOPE-me) would be a prime

candidate for this sort of investigation. After neutron diffraction studies to determine

the location of the fusion peptide of SIV in the Hn phase, utilising deuterated labels,
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the construction of a computational model of a membrane in the Hn phase can then

be undertaken. The model will provide novel insights into the actions of fusion

peptides. To conclude, other fusion peptides such as the fusion peptide of the feline

leukaemia virus (FeLV) can be embedded within the bilayer, providing experimental

data is available to accommodate a starting conformation.

213



Chapter 6

Conclusions
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6 General conclusions

The most important finding of this thesis is that computational techniques such as

MD simulations can be very effective in investigating peptide membrane

interactions, when the starting conditions of the model(s) are based on experimental

data. MD simulations can give explicit atomic level insights into bilayer peptide

interactions, providing the orientation of the peptide to be embedded in the bilayer

can be adjusted appropriately. In the case of smaller peptides (<40 residues) the

correct orientation is of utmost importance in an MD simulation. However, this is

not as important for larger transmembrane helices.

Neutron diffraction has provided detailed information on bilayer peptide systems. It

can be used to study the membrane activity of two different isoforms of a peptide.

For instance, the comparison of human and rat isoforms of IAPP, as was described in

chapter two. However, neutron diffraction is more routinely used to identify the

location of a peptide, when membrane bound. This is performed by deuterating

specific amino acids in the peptide sequence. Ideally four residues should be

deuterated so the peptide can be orientated unambiguously. This is not always the

case, as previous studies have used only three deuterated labels (Bradshaw et al.,

2000: Davies et al., 2003).

Neutron diffraction studies can give rise to a number of possible conformations. A

preferred conformation can be proposed as a result of uncertainty over the membrane
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bound secondary structure and thermodynamic arguments. However, neutron

diffraction can not give atomic level insights into the intricate details of the peptide

in relation to the bilayer. The powerful computational technique ofMD simulations

was therefore utilised to further explore neutron diffraction data.

Chapter three described the background to MD simulations, as well as construction

and simulation of pure DOPC bilayers and mixed DOPC/DOPG bilayers. This was

an important pre-requisite to performing bilayer peptide simulations. Chapter four

described work which was intended to test the proposed methodology of setting up

bilayer peptide simulations using neutron diffraction data as a starting point. The

neutron data led to four possible conformations of membrane bound ARFlp. These

conformations were placed in the mixed DOPC/DOPG bilayer, which was used in

the experimental measurements and subjected to MD simulation. The hypothesis

proposed was that model A was the most likely conformation. The analysis of the

four systems, lead to the hypothesis being accepted.

Chapter five described a long time-scale MD simulation of the fusion peptide of SIV

in a DOPC bilayer. The pre-requisite steps for this study were performed in the

preceding chapters. This chapter gave novel atomic level insights into the actions of

a fusion peptide upon a bilayer. The experimental data of the neutron measurements

were in excellent agreement with the simulation parameters. The hydrocarbon core

of the bilayer was closely investigated and lipid chain order parameters were found

to be reduced. A significant reduction in order parameter was observed in the non-
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peptide containing (lower) leaflet. Previous experimental (Koenig et al., 1999) and

computational studies (Vaccaro et al., 2004) have reported a reduction of order

parameters in the lipid chains when studying the fusion peptides of HIV (gp42) and

the haemagglutin influenza fusion peptide. However, no reports of fusion peptide

induced order parameter reduction in the non-peptide containing leaflet of a bilayer

have been made.

Understanding the action of fusion peptides can lead to novel targets for therapeutic

intervention for both human (e.g. HIV) and veterinary diseases (e.g. feline

leukaemia). To this extent, this thesis has provided novel atomic level insights into

the action of the SIV fusion peptide upon a bilayer. This was achieved by using a

combined experimental and computational approach. This opens up the possibility

of studying a number of membrane-active peptides in atomic resolution. One

possibility could be studying the actions of SIV upon phospholipids in the Hn phase.

In order to achieve this, neutron measurements must be made on the Hn phase of a

non-lamellar lipid (e.g. DOPE-me). The measurements can then be used to construct

a starting unit cell of the Hn phase. The next step would be to repeat the procedure

but use a fusion peptide, such as the fusion peptides of SIV and FeLV.

To conclude, this thesis has bridged the gap between simulation and experimentation.

A combination of experimental and computational techniques is without doubt a

powerful combination for investigating biophysical phenomena.
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Abstract. We have constructed a mixed dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidyl-
glycerol bilayer (DOPG) bilayer utilizing MD simulations. The aim was to develop an explicit molecular
model of biological membranes as a complementary technique to neutron diffraction studies that are well
established within the group. A monolayer was constructed by taking a previously customised PDB file
of each molecule and arranging them in a seven rows of ten molecules and duplicated and rotated to
form a bilayer. The 140-molecule bilayer contained 98 DOPC molecules and 42 DOPG molecules, in a
7:3 ratio in favour of DOPC. Sodium counter ions were placed near the phosphate moiety of DOPG to
counteract the negative charge of DOPG. This was representative of the lipid ratio in a sample used for
neutron diffraction. The MD package GROMACS was used for confining the bilayer in a triclinic box,
adding Simple Polar Charge water molecules, energy minimization (EM). The bilayer/solvent system was
subjected to EM using the steepest descent method to nullify bad contacts and reduce the potential energy
of the system. Subsequent MD simulation using an initial NVT (constant number of particles, volume and
temperature) for a 20 ps MD run followed by a NPT (constant number of particles, pressure and tem¬
perature) was performed. Structural parameters including volume of lipid, area of lipid, order parameter
of the fatty acyl carbons and electron density profiles generated by the MD simulation were verified with
values obtained from experimental data of DOPC, as there are no comparable experimental data available
for the mixed bilayer.

PACS. 31.15.Qg Molecular dynamics and other numerical methods - 81.16.Fg Supramolecular and
biochemical assembly - 83.85.Hf X-ray and neutron scattering - 87.16.Dg Membranes, bilayers, and vesicles

1 Introduction

Computer models of biological model membranes provide
insight into molecular mechanisms of membrane protein
function. Computational models of biological molecules
may use Monte Carlo or Molecular Dynamics (MD) meth¬
ods. MD simulations are more involved than Monte Carlo
ones and are classified under deterministic simulations.

They use complex algorithms that allow for simulating a
non-equilibrated, dynamic systems confined within a sim¬
ulation box. Molecular structures are usually represented
as a collection of atoms, each of which has a defined po¬
sition in three-dimensional space (Cartesian co-ordinates
in x, y & z format).

The parameters in a force field are generally equilib¬
rium geometry values (lengths and angles) and force con-

a e-mail: Kia.Balali-Mood@ed.ac.uk
b e-mail: thad.harroun@nrc.gc.ca
c e-mail: j.bradshaw@ed.ac.uk

stants that describe harmonic oscillators. These parame¬
ters are obtained from analysis of large amounts of exper¬
imental data, or from quantum chemistry calculations on
molecular fragments. In an MD simulation, atoms move
according to the forces acting on them. Initially random
velocities are assigned to displace the system from its equi¬
librium configuration.

MD simulations are rapidly becoming popular tools
that complement experimental techniques in structural
biophysics, such as neutron diffraction and NMR. There
are a number of computational models of bilayers avail¬
able in the literature. These studies have focused on sin¬

gle species bilayers in particular dipalmitoylphosphatidyl-
choline (DPPC), dimyristoylphosphatidylcholine (DMPC)
and dioleoylphosphatidylcholine (DOPC) [1,2,3,4,5,6].
There have been previous reports of a mixed bilayer.
A bilayer of l-Palmitoyl-2-docosahexaenoyl-sn-glycero-
3-phosphocholine (PDPC) and l-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC), was studied in the
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liquid-crystalline (L(a)) state. These studies utilised MD
simulation and NMR experiments to solve the structure
of the mixed PDPC/POPC bilayers that are present in
neural tissues [7]. However, to the best of our knowl¬
edge this is the first report of a mixed dioleoylphos-
phatidylcholine (DOPC) and dioleoylphosphatidylglycerol
bilayer (DOPG) bilayer. Our aim was to develop an ex¬
plicit atomic level computational model of a biological
membrane utilising Molecular Dynamics Simulations. The
model will be used to complement structural studies car¬
ried out by our group, allowing both the visualisation of
neutron and X-ray diffraction results and the mutual ver¬
ification of data produced by all these techniques. The
structural parameters (volume of lipid, area of lipid, or¬
der parameters and electron density map) generated by
the MD simulation were verified with the parameters ob¬
tained from neutron diffraction, NMR studies & combined
X-ray and neutron studies respectively.

A recurring theme underlying our work on molecular
interactions within biological membranes is confinement.
The peptides that we study partition into the steep hy¬
drophobic gradient at the bilayer surface, confining both
their location and their secondary structure. It is of great
interest to determine how this confinement influences their
dynamics. Secondly, the stacked bilayer samples of the
type used in our neutron and X-ray experiments are
characterised by narrow water layers separating adjacent
bilayers. The consequences of this confinement on the dy¬
namics of the water and its knock-on effects on the phos¬
pholipids has long been a matter for discussion [8]. Part
of the rationale behind replicating our neutron samples
in MD simulations is to investigate this confinement. The
next step in our MD work will be to look at the effects of
the confinement on the peptides introduced into the water
layers of our systems.

2 Method

2.1 System generation

A mixed DOPC/DOPG bilayer was constructed with
explicit hydrogens in the phospholipid headgroups (see
Fig. I). The complete topologies of the molecules were de¬
scribed in the form of bonds, angles and dihedrals (torsion
angles). Atomic point charges for both PC and PG head-
groups were generated by HyperChem 5.0 (Hypercube
Inc., Waterloo, Canada) using the STO-3G set as used in
previous studies of DMPC and DPPC [2,4], The bilayer
was constructed by taking a previously customized PDB
file of each molecule and arranging them, using Sybyl 6.7
(Tripos Inc. St Louis MO), in a row of ten molecules
with a ratio of 7 DOPC to 3 DOPG. Seven rows of ten
lipid molecules were generated and the DOPG molecules
were arranged in such a way that they were not in close
contact with each other. This arrangement is representa¬
tive of a biological environment whereby the zwitterionic
PC headgroups will be interspersed with the anionic PG
headgroup. The monolayer of 70 lipid molecules was then
copied and rotated in order to create a bilayer of 140 lipid
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Fig. 1. Illustrates the two dimensional chemical structure of a
DOPC molecule with explicit hydrogens. The headgroup con¬
tains explicit hydrogens. The explicit hydrogens are present
primarily for future simulations with peptides that have been
previously studied via neutron diffraction by other group mem¬
bers. The dashed lines indicate the borders between the head-

group and hydrocarbon chains. The solid lines divide up the
molecule in precisely the same manner as in the experimen¬
tal studies of Wiener and white [17,18], The headgroup region
compromises choline, phosphate and glycine groups. One group
is shared between the glycine and chain regions (Coo); the left¬
most oxygen atom is part of the headgroup, while the oxygen
and the carbon are part of the chain region. The other specific
groupings in the chain region are ch2, ch3 and c=c respectively.

molecules, comprising 98 DOPC and 42 DOPG molecules,
and 42 sodium counter ions.

The molecular dynamics computer package GRO-
MACS [9] version 3.1.4 was used to centre the bilayer
in a triclinic box, and a total of 2815 SPC (Simple Point
Charge [10]) water molecules were added to either side
of the bilayer. The ratio of water molecules per lipid
(20.1:1) was chosen to replicate the conditions used in
neutron diffraction experiments, using the same ratio of
DOPC:DOPG and those quoted in the literature [11].
There is another type of water molecule used in MD sim¬
ulations of biological systems, which is derived from the
original SPC. Simple Point Charge extended (SPC/e) pos¬
sesses a lower free energy (-26.7 kJ.mol-1). SPC was se¬
lected, primarily due to the fact the free energy of SPC
(—24.3 kJ.mol-1) is closer to the actual experimental
value. Energy minimization (EM) by the "steepest de¬
scent" method was used to remove bad contacts and re¬

duce the potential energy of the system. The system was
then subjected to a 20 ps MD simulation utilising the
NVT (18315 atoms/particles, volume of 800 nm3 & tem¬
perature of 300 I<) ensemble. Tieleman and co-workers
have proposed running a hydrated bilayer system with an
initial NVT system before proceeding to another ensem¬
ble [11]. The rationale behind such a protocol is to al¬
low the SPC molecules to equilibrate naturally within the
system, without the SPC molecules being pressurised into
the bilayer. The system was then subjected to another
MD simulation using the NPT (18315 atoms/particles,
pressure of 1 bar & temperature of 300 K) ensem¬
ble over a 3500 ps period. Temperature and pressure
were coupled individually to the three groupings in both
DOPC (DPC=headgroup, OLA=sn-l chain, OLB=sn-2
chain) and DOPG (DPG=headgroup, OLC=sn-l chain,
OLD=sn-2 chain) molecules and SPC using the Berendsen
algorithm implemented in GROMACS. Order parameters
were measured after 400 ps of an NPT ensemble MD run.
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2.1.1 Forcefield

GROMACS software is primarily designed for MD sim¬
ulation of biologically active/relevant proteins, although
is commonly used for lipids bilayers as well. The force-
field used in the MD simulations presented here was a
modified explicit hydrogen forcefield included in GRO¬
MACS (ffgmx2_lipid) [9]. DOPC and DOPG were divided
into headgroup and chain regions. Nineteen unique sub¬
groups were identified in the headgroup and chains respec¬
tively. These groups were then cross-referenced with the
matching unique structure present within the twenty basic
amino acids so that the bond lengths, energies, bond an¬
gles, forces and torsion angles (dihedrals) can be approx¬
imated from the original GROMACS explicit hydrogen
forcefield (ffgmx2).

The majority of MD simulations reported in the litera¬
ture have utilised implicit hydrogens, primarily to save on
computational time. There have been reports of explicit
hydrogens in DMPC and DMPS phospholipid simulations.
The main reason why we use explicit hydrogens is to in¬
vestigate hydrogen bonding between a peptide and the
bilayers we have generated by MD simulation.

2.2 Run parameters

2.2.1 Periodic boundary conditions

A system that is bounded but free of physical walls can be
constructed by resorting to periodic boundary conditions
(PBC). Introducing PBC is equivalent to considering an
infinite space-filling array of identical arrays of the simu¬
lation region. There are two consequences of this periodic¬
ity. Firstly, an atom leaves the simulation region through
a particular bounding face immediately re-enters the re¬
gion through the opposite face. The second consequence is
that atoms lying within a distance of a boundary interact
with atoms in an adjacent copy of the system. PBC is fre¬
quently used in bilayer MD simulations. PBC has been a
standard run parameter in MD simulations involving bio¬
logical systems and in particular bilayers [1,2]. In addition,
PBC also creates a stack of bilayers in the lamellar phase,
which is representative of the multibilayer stacks used in
neutron and X-ray diffraction measurements.

2.2.2 Cut-off and treatment of electrostatics

Most MD simulations use either simple spherical cut-offs
whereby an electrostatic interaction is cut off beyond the
van der Waals radius (in our case 1.8 nm). The alternative
is to use the Particle Mesh Ewald (PME) algorithm devel¬
oped by Tom Darden [12,13] to improve the performance
of the reciprocal sum. PME solves the Poisson equation
over all of the simulation space. The Poisson equation de¬
termines the electric field at each point in space from all
the charges nearby. So, instead of calculating each pair-
wise electrostatic interaction (time consuming), we can
quickly (by way of the Fourier transform) just figure the

electric field near each atom (which is the total influence
of all the pair-wise interactions), to get the force due to
electrostatics.

For the simulation of fluid phases of phospholipids,
in which molecules are by definition more disordered and
liquid-like than in the gel phase, the situation is less clear.
The use of Ewald summations in zwitterionic systems in
disordered phases can potentially induce unwanted peri¬
odicities, leading to errors no less significant than those
which result when the interaction is simply 'switched off'
for interatomic distances beyond some spherical cutoff.
For smaller simulation boxes such is in the current setup,
the effect will be more severe [15]. The electrostatic inter¬
actions within the spherical cut-off were summed directly
and the remaining part of the system was treated using
an analytical solution of Poisson's equation.

It has been reported that Spherical cutoffs can intro¬
duce artefacts in solutions with ions but if the cutoff radius
is large enough (>1.8 nm), this method appears to work
well for lipids [11]. Hence, the selection of spherical cut¬
offs as opposed to PME for the treatment of electrostatic
interactions.

2.2.3 Temperature & pressure coupling & time step

GROMACS allows for temperature and pressure cou¬

pling using the Berendsen temperature and pressure cou¬
pling algorithm. In the case of temperature coupling, all
molecules (DOPC, DOPG and SPC) were coupled indi¬
vidually to a bath with a temperature of 300 K. A time
constant of 5 ps was set for each group. For both the
NPT and subsequent NPAT Pressure was set at 1 bar.
The pressure asserted on the box was of an isotropic na¬
ture. A time constant for pressure coupling was also set
at 5 ps. In the NPT ensemble the pressure coupling was
isotropic. Coupling groups on an individual basis allows
for greater stability during an MD run.

The time step for all parts of the MD and EM simu¬
lations were 2 fs. This time step was used in a number of
previous bilayer simulations [2,4],

2.3 Verification of method

The simulation was verified by comparing four parame¬
ters obtained from the MD simulation with the experi¬
mental values. They were as follows.

2.3.1 Area per lipid molecule

The area occupied by each lipid molecule was obtained
by multiplying the X and Y dimensions of the box and
dividing by the number of lipid molecules present in each
leaflet (70 in this instance) [4]. The area per lipid can be
measured experimentally by Langmuir techniques

Area per lipid = X.Y/70. (1)
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Deuterium order parameters
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Fig. 2. A plot of the deuterium order parameters for the fatty
acyl carbons of DOPC and DOPG in a mixed bilayer, obtained
from a 400 ps MD simulation. OLA and OLB correspond to snl
and sn2 chains in the DOPC molecule respectively. OLC and
OLD correspond to snl and sn2 chains in the DOPG molecule
respectively.

2.3.2 Volume per lipid molecule

Figure 3

The volume of each lipid molecule within a bilayer system
can be determined using diffraction techniques. It provides
another independent parameter by which a computer sim¬
ulated structure may be compared to experimental obser¬
vations. The method employed for calculating the volume
of lipid [16], is given by the following simple equation:

VL = AD/2-(NwVw) (2)

A = area per lipid, D = height of the simulation box
(Z dimension), Nw = number ofwaters per lipid molecule,
Vw = volume per water.

2.3.3 Order parameters

Z (nm)

Fig. 3. Electron density distributions of the structural groups
of DOPC and DOPG in a mixed bilayer. The groupings are
based on those ofWeiner and White [5]; the calculated electron
densities compare favourably with the experimental values. For
breakdown of the comparison, see Table 2.

It is necessary to define the previous carbon atom (i) and
the subsequent carbon atom (j) in order for GROMACS
to calculate the order parameter.

The ordering of hydrocarbon tails has been studied by
NMR spectroscopists, who use the term "order parame¬
ter" to describe the average orientation of each section of
an acyl chain. The order parameter is derived from the
quadrupole splitting of NMR spectra and is determined
by selective deuteration of successive carbons of the acyl
chains.

The order parameter tensor S, which is defined as:

Sij
(3 cos(#i) cos(9j) — Saij) (3)

i, j = (x, y, z).
Order parameters are calculated for each atom of the

hydrocarbon chain, other than the terminal methyl group
and the first carbon in the chain [17]. These order param¬
eters can be calculated by GROMACS, using the g^order
command. However, the resulting index file must be mod¬
ified to include 3 consecutive carbon atoms. The order
parameter will then be calculated for the middle carbon.

2.3.4 Electron density map

The electron density map of a protein may be ob¬
tained by X-ray crystallography. If a crystal structure is
not available, other methods may be used. Weiner and
White [18,19,20,21,22,23] have produced a comprehensive
electron density map of a DOPC bilayer by the combined
use of X-ray and neutron diffraction. Their approach di¬
vided the DOPC molecule into eight individual groups,
the ninth group being the water layer. Six of these Gaus¬
sian distributions are readily comparable to our MD re¬
sults. We have, therefore, used the electron density distri¬
butions for these groups as a comparator for the DOPC
groups within our MD simulated DOPC/DOPG bilayer.
Since the fatty acid tails of the PG molecules are also
oleoyl chains, the electron density distributions of this part
of the bilayer are not expected to differ greatly from the
Weiner and White results. Some neutron diffraction data
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Table 1. Comparison of calculated and experimental values for area and volume of lipid. The columns contain values obtained
from our MD simulations of DOPC bilayers (1st column), values obtained from our MD simulations of DOPC/DOPG bilayers,
experimental values obtained for DOPC obtained by Nagle and Wiener [26] and calculated values for DOPC bilayers from
Chiu [3].

Values from Values from Values from Experimental
DOPC (4 separate sets DOPC/DOPG (One set of DOPC MD values [25]
of EM + MD runs) EM + MD runs) simulation [3]

Area per lipid (A2) 69.9 ± 1.1 73.1 71.0 ± 1 72.2
Vol. per lipid (A3) 1294 ± 8.4 1309 1288 ± 10 1303

on mixed DOPC/DOPC bilayers is available from previ¬
ous studies [24,25].

3 Results

3.1 Volume/area of lipid

Chiu and co-workers have performed a combined Monte
Carlo and Molecular dynamics study on an explicit 128-
molecule DOPC bilayer. Prior to running the mixed
DOPC/DOPG bilayer MD run, a 128-molecule DOPC bi¬
layer was constructed, in a similar manner to the mixed
bilayer. It was then subjected to a combined EM (Steep¬
est Descent method) and an NPT MD run. The values
obtained compare favourably with those obtained by Chiu
et al. Langmuir trough and Neutron diffraction techniques
were used to obtain the area and volume of DOPC re¬

spectively. These studies were performed by Nagle and
co-workers [26].

3.2 Order parameters

Figure 2 is a plot of the deuterium order parameters ob¬
tained from a 400 ps MD simulation using the NPT en¬
semble. OLA and OLD correspond to snl and sn2 chains
in the DOPC molecule respectively. OLC and OLD cor¬
respond to snl and sn2 chains in the DOPG molecule
respectively.

3.3 Electron density map

Figure 3 shows the calculated electron density distri¬
butions of the structural groups of DOPC and DOPG
in a mixed bilayer. The calculated electron density pro¬
files compare favourably with the experimental values of
Weiner and White [18], whose structural groupings have
been used as a basis for the ones shown in the figure. The
electron density map was obtained over a 3.5 ns equilibra¬
tion run

4 Discussion

A number of MD simulations have been performed on
explicit phospholipid bilayers. These studies have tended

to use the NPT protocol, with its constant Number of
particles, Pressure and Temperature. Tieleman [27] and
Lindahl [9], who studied DPPC and DMPC respectively,
had modified their system to include a constant area per
molecule (NPAT). Tieleman [28] then went on to develop
constant surface tension by using the Berendsen semi-
isotropic pressure-coupling algorithm [29], in which the
surface tension in the x and y directions are equal. Our
system was initially run for 20 ps as an NVT ensem¬
ble. The type of water molecule used was Simple Point
Charge (SPC), for the reasons explained in the methods
section. SPC has been used by a number of previous sim¬
ulations [27,30]. The system was then run as an NPT en¬
semble for 3480 ps. The pressure asserted on the box al¬
lowed the box vectors to adjust in all three dimensions,
such that the final area and volume of lipid was effec¬
tively constant after 2500 ps. The temperature used in
most lipid simulations is in the range of 300-330 Iv. The
temperature selected for the simulation was 300 K, this
being the temperature in which the neutron diffraction
studies on a mixed DOPC/DOPG were performed.

The potential energies of our DOPC system (com¬
prising of 128 lipid molecules) were —8.5 x 105 ± 2.0 x
104 kJmol-1.Our method involved the use of EM and
MD simulations, both of which were performed with GRO-
MACS. However, the use of a stochastic simulation, such
as a Monte Carlo simulation may have been more effective
in reducing the potential energy of our mixed bilayer sys¬
tem. Once equilibrated, the potential energy of our mixed
DOPC/DOPG system was —9.4x 106±1.0x 104 kJ mol-1.
The combined equilibration and simulation times for our
bilayers were approximately 3.5 ns, which corresponded to
29.5 processor days on our dual Athlon processor PC.

To conclude, our approach was verified by comparing
a DOPC simulation with four experimental parameters.
Our results demonstrate that we have obtained parame¬
ters that are within 5% of experimentally determined val¬
ues of area & volume of lipid, respectively (Tab. 1). The
electron density map demonstrates a realistic electron dis¬
tribution throughout the bilayer and closely follows the
experimental results of Wiener and White (Tab. 2). The
same approach was then used to model a mixed bilayer
system for which there are no comparable experimen¬
tal data. To the best of our knowledge, no experimental
studies have been performed to obtain the electron den¬
sity map of DOPG. However, it is realistic to compare
six of the groupings from the experimental obtained from
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Table 2. A comparison of the electron densities of the molecular components of DOPC in a mixed DOPC/DOPG bilayer
MD simulation with experimentally determined values for DOPC [17]. Gaussian distributions were fitted to the electron density
profiles describing the distribution of the electrons of the different groups throughout a 3.5 ns MD simulation. The position
(defined as the distance from the centre of the bilayer) and the half width (defined as half peak width at half maximum height)
are shown for all molecular groups whose electron distributions approximate to a Gaussian distribution.

CH3 C=C COO Gly P04 Choi
From reference [22]

Position 0.0 nm 0.8 nm 1.6 nm 1.9 nm 2.0 nm 2.2 nm

Half Width 0.3 nm 0.4 nm 0.3 nm 0.2 nm 0.3 nm 0.3 nm

From this study
Position 0.2 nm 0.9 nm 1.8 nm 1.9 nm 2.0 nm 2.2 nm

HalfWidth 0.4 nm 0.4 nm 0.4 nm 0.4 nm 0.4 nm 0.5 nm

Wiener and White's work (Tab. 2). Planned future com¬
putational studies will include an explicit MD simulation
of peptide bilayer interactions, complementing previous
neutron and X-ray diffraction studies by other members
of the laboratory.
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Abstract

Temperature-scan X-ray scattering was used to study the effect of the fusion peptide of simian immunodeficiency virus (SIV) on the lipid
polymorphism of /V-methylated dioleoylphosphatidylethanolamine (DOPE-Me), in the presence and absence of one or both of the fusion
inhibitors carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine and l-lauroyl-2-hydroxy-^«-glycero-3-phosphocholine (LPC). Using X-
ray diffraction at stations 2.1 and 8.2 of the Synchrotron Radiation Source at Daresbury Laboratory, UK, the structure of multilamellar
vesicles (MLVs) was probed as the temperature was raised from 20 to 90 °C. The results are compared to those of similar studies, reported
earlier, that used the fusion peptide of feline leukaemia virus (FeLV) which, at 28 amino acid residues in length, is considerably longer than
the SIV peptide (12 amino acid residues). We interpret the results within the framework of current understanding of membrane fusion, and
demonstrate how observed lipid polymorphism might describe the fusion process.
© 2003 Elsevier B.V. All rights reserved.

Keywords: Small angle X-ray diffraction; Biomembrane fusion; Inhibitor; Lamellar phase; Cubic phase; Hexagonal phase

1. Introduction

The fusion of phospholipid bilayers is an integral part of
a number of biological processes, including mitosis, exocy-
tosis, spermatozoid-egg fusion and viral infection [1].

Abbreviations: CBZ-D-FFG, carbobenzoxy-D-phenylalanine-L-phenyl-
alanine-glycine; dH, lattice repeat distance (hexagonal phase phospholipid);
dL, lattice repeat distance (lamellar phase phospholipid); dQ, lattice repeat
distance (cubic phase phospholipid); DOPC, dioleoylphosphatidylcholine;
DOPE, dioleoylphosphatidylethanolamine; DOPE-Me, /V-methylated dio-
leoylphosphatidylethanolamine; EDTA, ethylenediaminetetra-acetic acid;
FeLV, feline leukaemia virus; H, hexagonal phase; L, lamellar phase; LPC,
l-Iauroyl-2-hydroxy-.sn-glycero-3-phosphocholine; MLV, multilamellar
vesicle; p!5EK, fusion peptide from spike protein pl5E of FeLV;
PIPES 1,4-piperazinediethanesulfonic acid; Q, cubic phase; q, 2ttld\ SAXS,
small angle X-ray scattering; SIV, simian immunodeficiency virus; 7"H,
temperature at which hexagonal phase is first observed; Tq, temperature at
which cubic phase is first observed

* Corresponding author. Tel.: +44-131-650-6139; fax: +44-131-650-
6576.

E-mail address: j.bradshaw@ed.ac.uk (J.P. Bradshaw).
1 Current address: National Research Council, Neutron Program for
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However, the molecular rearrangements of the lipids and
the precise kinetic events involved are still uncertain. This is
largely because the fusion event is transient and involves
only local, isolated patches of lipid. It is clear that biomem¬
brane fusion is a protein-regulated event [2,3]. In order to
introduce their infective nuclear material into a host cell,
enveloped virus particles use membrane fusion, catalysed by
specialised, extra-membranous glycoprotein 'spike', of
which the best known is hemagglutinin of the influenza A
virus. Viral fusion proteins usually contain a highly con¬
served N-terminal region that has been shown to be crucial
to the process of fusion between the viral envelope and a
membrane of the host cell during the infection process.
Short peptides (10 to 30 residues long) of corresponding
sequence, termed fusion peptides, retain much of the mem¬
brane fusion activity of the larger protein, albeit with slower
rates and lack of a specific binding function. They have
enabled research on membrane fusion mechanisms to focus
on the fundamental interactions between peptide and phos¬
pholipid, in isolation from membrane proteins, and their
added levels of complexity.

The precise molecular events that occur during peptide-
induced membrane fusion are still unclear. The membrane

0005-2736/$ - see front matter © 2003 Elsevier B.V. All rights reserved,
doi: 10.1016/j.bbamem.2003.09.003
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leaflets, composed of phospholipid molecules, must rear¬
range into highly curved intermediates prior to fusion pore
development [4,5]. These intermediates can also be induced
by fusion peptides. It has been demonstrated that peptides
that lower the bilayer (La)-to-inverted hexagonal (Hn)
phase-transition temperature in model membranes can also
promote membrane fusion through this kind of bilayer
destabilization [6]. It is recognised that a large fraction of
the lipids ofmany biological membranes fonn the Hn phase
when purified and hydrated under physiological conditions
[7], These lipids have been tenned nonbilayer lipids in
contrast to the bilayer lipids that form lamellar structures
under the same conditions. It has been suggested that,
although membranes are bilayers most of the time, the high
concentration of nonbilayer lipids has functional signifi¬
cance in allowing the membranes to form transient non¬

bilayer structures because vital processes, including fusion,
would be topologically impossible with intact bilayers.

A concept that has proved very useful in the attempts to
understand fusion peptide activity has been monolayer
curvature strain. Indeed, it has been proposed that this
property is homeostatically controlled in living biomem-
branes [8]. Current models of fusion peptide function are

usually based upon their effect on the monolayer curvature
strain of the membranes involved in the fusion process. The
peptides are thought to destabilise lamellar bilayers by
increasing the hydrophobic volume of a monolayer, relative
to the volume of the solvated polar groups [9],

Highly curved lipid mesomorphs, similar to those in¬
volved in the fusion process, recently were directly observed
for the first time with diphytanoyl-phosphocholine lipids,
however, under non-physiological, dehydrated conditions
[ 10]. Similar structures are suspected to occur during the L„-
to-Qn (inverted cubic) phase transition and the La-to-Hn
phase transition [11]. The ability of a number of agents to
promote fusion appears to be correlated to their ability to
lower the La-to-Hirtransition temperature (7H) [12-14],
Similarly, some fusion inhibitors raise TH [15]. Although the
Qn and the Hu phases, which are kinetically stable, are
unlikely to exist at the site of a developing fusion pore,

knowledge about the topology of the interface as these
phases begin to fonn has clear implications for our under¬
standing of biological fusion mechanisms.

This paper describes a continuation of the work previ¬
ously reported [16,17] in which we have used temperature-
scan X-ray scattering to study the effect of the fusion
peptide of feline leukaemia virus (FeLV) on the lipid
polymorphism of A-methylated dioleoylphosphatidyletha-
nolamine (DOPE-Me). In the more recent paper, we have
reported how the tri-peptide carbobenzoxy-D-phenylalanine-
L-phenylalanine-glycine (CBZ-D-FFG) and the lipid 1-
Iauroyl-2-hydroxy-si?-glycero-3-phosphocholine (LPC)
modify the phase transition of this lipid. Here we extend
the studies to a different fusion peptide, that from simian
immunodeficiency virus (SIV), and discuss the findings for
this peptide in the context of the model of membrane fusion

presented in the earlier paper [17]. The work also related to
a study of SIV peptide on phospholipid phase transitions by
Colotto et al. [18], who collected X-ray diffraction data at a
range of constant temperatures, ranging from 15 to 80 °C.

2. Materials and methods

2.1. Sample preparation

The fusion peptide from the GP160 protein of SIV
(Macaque isolate, SWISSPROT accession number P05885,
sequence GVFVLGFLGFLA), and the fusion peptide pi 5EK
of FeLV (strain C/Sarma, SWISSPROT accession number
P06752, sequence EPISLTVALMLGGLTVGG1AAGVGT-
GTK), were synthesised and purified by Albachem (Edin¬
burgh, Scotland). CBZ-D-FFG was obtained from Sigma (St.
Louis, MO). LPC and DOPE-Me were purchased from
Avanti Polar Lipids (Alabaster, AL) and used without further
purification.

Multilamellar vesicles (MLVs) were prepared by rehyd-
rating phospholipid films as previously described [16,17].
The buffer used for rehydration was 20 mM PIPES, 1 mM
EDTA, 150 mM sodium chloride and 0.3 mM sodium azide
at pH 7.4. All samples had a low lipid concentration of 100
mM, equivalent to 7.57% (w/v), to ensure an excess water
condition. The lipid dispersions were then subjected to five
freeze-thaw cycles. Repeated freezing and thawing across
the chain-melt temperature ensures that the lipid is fully
hydrated regardless of the thermal history of the lipid.

2.2. Temperature-resolved X-ray diffraction

The X-ray diffraction experiments were performed at
stations 2.1 and 8.2 of the Synchrotron Radiation Source at
Daresbury Laboratory, UK. The experimental set-up at the
two instalments was essentially identical. The X-ray wave¬

length was 0.154 nm. The specimen-to-detector length was

approximately 1.5 m. Each sample was contained in a glass
capillary tube, held in a steel block with electronic (Linkam)
programmable temperature control. A thermocouple fixed to
the sample chamber monitored the temperature continuously
and wrote the temperature into the data files. The temper¬
ature increased in a linear fashion at a rate of 30 K/h, a rate
originally chosen because the metastable cubic phase of
DOPE-Me is not normally observed. Each frame of data
collection lasted for 30 s. The effect of thermal radiation
from X-ray beams of this kind was minimal. Aluminium
foils were added to attenuate the incident beam until no loss
of diffracted intensity was observed throughout the duration
of a complete temperature scan.

2.3. Data analysis

The program XOTOKO [19] was used to correct for
sample thickness and variations in detector response, and to
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subtract the background counts. Detector response was
determined by measuring a fixed source, 59Fe, overnight
both before and after data collection. Calibration of the x-

axis for small angle scattering was achieved by using rat-tail
collagen as a standard [20]. This calibration was repeated
prior to the exposure of each new sample. The location,
width and amplitude of each Bragg peak were determined
by fitting Lorentzian distributions (PeakFit, SPSS Ltd.).

3. Results and discussion

Fig. 1 shows the relationship between lattice basis vector
length and temperature for all observed phases ofDOPE-Me
with respect to temperature. Fig. 2 is a schematic summary
of the phase behaviour of DOPE-Me in the presence of SIV
fusion peptide and/or fusion inhibitors, as a function of
temperature. Relevant data from our earlier papers [16,17]
are reproduced for comparison.

3.1. SIVand FeLV

In earlier papers [16,17], we have discussed the effects of
the fusion peptide from feline leukaemia virus (FeLV); with
the current data, we are now able to compare the two
peptides in terms of their effects upon the phase behaviour
of DOPE-Me. Each of the peptides is thought to be helical
in its active form [21 ] and Brasseur has proposed that both
insert at an oblique angle into phospholipid bilayers. To
date, this has only been determined experimentally for SIV
[22], though a molecular dynamics study of a related fusion
peptide from human immunodeficiency virus also showed
oblique insertion [23]. The most striking difference between
the two peptides used in this study is their length. FeLV
peptide, with 28 amino acids, is considerably longer than
SIV peptide, with only 12. In a-helical conformation, this
corresponds to a length of 42 A for FeLV peptide and 18 A
for SIV. Clearly, FeLV peptide may span an entire bilayer,
even at a tilt, while SIV reaches across just one leaflet. This
may explain why FeLV fusion peptide is always more
potent than SIV, in terms of its effects on the phase
behaviour of DOPE-Me.

3.1.1. Lamellar phase
Both peptides reduce the temperature of breakdown for

the lamellar phase, SIV by 5 °C and FeLV by more than 10
°C. This may be a direct consequence of the peptides'
length. Whereas SIV is easily incorporated in two popula¬
tions in DOPC bilayers [22] and its influence is directed
more towards individual monolayers, the hydrophobic
length of FeLV requires a full bilayer to span, thus its
influence on bilayer breakdown is more direct.

3.1.2. Hexagonal phase
The hexagonal phase is the dominant high-temperature

phase for DOPE-Me both with and without FeLV. The

lamellar to hexagonal transition is narrow, and in pure
DOPE-Me there is a brief coexistence region. SIV, on the
other hand, induces a gap between the phases where no
structure is present. This brief dissolving of the lipids is
perhaps expected, if we consider that SIV acts on individual
leaflets, rather than the entire bilayer, making it easier to
form micellization products. An important difference be¬
tween the actions of the two peptides is that while FeLV
peptide lowers Tu (by 6 °C), the SIV peptide raises Tu (by
10 °C). The hexagonal phase repeating structural motif is
essentially a bilayer. Although FeLV partitions more easily
in such a phase than actual lamellar bilayers, the direct
influence of SIV on monolayers means that it is readily
incorporated into non-bilayer phases, as we shall see. At 2%
SIV, the hexagonal phase is eliminated altogether. However,
since inverse hexagonal phase is not observed in samples
cooled back to 20 °C without a fusion peptide present, it
appears that SIV peptide does indeed stabilise this phase, in
keeping with our previous observation that inverse hexag¬
onal phase is closely related to the fusion process. The
importance of the lamellar to hexagonal pathway in fusion
will be discussed in a later section.

3.1.3. Cubic phase
Both FeLV and SIV have similar effects of lowering 7q,

SIV by 10 °C, and FeLV by as much as 20 °C. With 1%
SIV, the cubic phase comes to dominate the high T regions,
eventually coexisting with a lesser hexagonal phase. The
cubic phase with FeLV and 2% SIV is only transient;
however, the SIV-induced cubic phase is shifted 15 °C to
higher T. In addition, with FeLV the cubic gives way to the
hexagonal phase but with SIV the lipid loses all structure. In
all cases, the cubic phase is metastable; this phase was
observed in samples that had been allowed to cool back to
room temperature. The only means to return the sample to
pure bilayer form is to incubate the sample for at least 1
h well below the main transition of the lipid.

In terms of its effect upon TH and Tq, 2% SIV peptide is
clearly not as potent as 1% SIV. This could be caused by
aggregation of the hydrophobic peptide, as we have previ¬
ously speculated for FeLV peptide [24], or it could be that the
phospholipid monolayer curvature strain becomes "saturat¬
ed" between 1% and 2% SIV peptide. Support for the latter
comes from similar measurements in the presence of fusion
inhibitors, where the 2% peptide produces a lower onset
temperature than 1 % peptide for the Hn phase in the presence
of either LPC or CBZ-D-FFG. In addition, the Qn phase that
eventually forms in the presence of 2% SIV peptide has a
smaller dQ, and therefore a tighter Gaussian curvature, than
that which forms with lower concentrations of the peptide.

3.2. CBZ-D-FFG and LPC

In our previous work on FeLV, the fusion inhibitors had a
clear and pronounced opposite effect to that of the peptide
itself. Both CBZ-D-FFG and LPC reversed the Hn promot-
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Fig. 1. The relationship of the (/-repeat (A) to temperature (°C) for all observed phases of DOPE-Me as determined by temperature-scan X-ray scattering at
stations 2.1 and 8.2 of the Synchrotron Radiation Source at Daresbury Laboratory. (A) Lamellar; (B) inverse hexagonal (Hu); (C) inverse cubic (Qn). For ease
of comparison, the vertical scale is the same for all three panels, though displaced by 120 A in panel C. Only alternate data points are shown, for clarity. The
inset figure in panel B is an enlarged version of the Hn plot.

ing effects of FeLV, and promoted large (/-spacing cubic on non-lamellar phases; however, this time, they allow for
phases, and some lamellar stability instead. With SIV, the the presence of a metastable Hn phase along with the typical
fusion inhibitors once again counteract the peptide's effects cubic phase.
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Fig. 2. Schematic summary of the phase behaviour ofMLVs ofDOPE-Meand DOPE-Me with fusion peptides from SIV and FeLV and/or fusion inhibitors, as a
function of temperature. L, lamellar; H, inverse hexagonal; Q, inverse cubic. Data from samples indicated with an asterisk came from a previous study [17],

3.2.1. Lamellar phase
We have previously reported the micellization of the

lamellar phase with as little as 2% CBZ-D-FFG. With the
similar effect ofSIV on the lamellar phase, it is not surprising
that their combination dramatically increases the breakdown
of that phase. In contrast, the lamellar stabilization properties
of LPC are maintained in the presence of SIV. This disparity
on the effect on lamellar bilayers between CBZ-D-FFG and

LPC is shown dramatically when they are combined. In only
the dilute samples of CBZ-D-FFG and LPC were lamellar
phases identifiable. In al 1 cases of5% CBZ-D-FFG with LPC,
a single diffraction peak at large (/-spacing (70 A) was seen,

precluding the identification of the phase. The addition of
FeLV or SIV restored the lamellar phase.

Considered from another perspective, the mystery phase
seen in the CBZ-D-FFG/LPC combination samples is seen
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with the addition of LPC to otherwise protein-solubilised
lipids. LPC forms type I (headgroup exposed) tightly curved
micelles, thus we might conclude the peptide (S1V and/or
CBZ-D-FFG)-dissolved lipids are type II, where the lipid
acyl-chain that might be exposed to the water is protected by
the peptides. In combination, LPC is structure-stabilizing by
offsetting the preference for SIV and CBZ-D-FFG for the
hydrocarbon core of a curved monolayer. The large d-
spacing of the mystery phase may then be explained as a
swollen lamellar phase, where the peptides have been
sequestered into the centre of the bilayer, increasing its
fluctuations, and in turn its overall (/-spacing.

3.2.2. Hexagonal and cubic phases
Both fusion inhibitors have nearly the same effect on the

formation of the hexagonal and cubic phases in the presence
of SIV. For 1% SIV, 7'n and Tq are slightly raised by the
inhibitor. For 2% SIV the Hn phase is restored, and TH is
slightly lower than in 1% SIV. The Q phase is no longer
transient, and Tq is even slightly higher than in 1% SIV.
When combined, CBZ-D-FFG and LPC drive the lipids to a
Q phase that is highly metastable at elevated temperatures.
This Q phase overcomes any effects of the SIV and FeLV
peptides, although FeLV is clearly more potent as the onset
of the Q phase is delayed by 10 °C. The similarity of effects
on the non-lamellar phases, despite the profound differences
on the lamellar phase, is significant. The stable non-lamellar
phase outwith the normal fusion pathway is a cubic phase
with (/-repeat of 160-220 A. Hexagonal phases, and pre¬

sumably hexagonal and fusion precursors, are eliminated
entirely.

3.3. The Hp phase and fusion pathways

DOPE-Me was chosen for these experiments because of
its ability to monitor the effects of fusion agents on

monolayer curvature strain. Our previous work with FeLV
peptide and fusion inhibitors [17] has told us that there is
some feature of the action of fusion peptides that is revealed
by their ability to induce inverse hexagonal phases, which is
quite separate from their similar ability to induce cubic
phases. The lamellar-hexagonal pathway (in DOPE-Me)
must share common ground with fusion pathway (in other
lipids) and this feature must not be present in all lamellar-
cubic pathways (there are many cubic phases and there
many be many transition pathways). Although membrane
curvature-strain clearly plays an important role in fusion, it
appears that it is not the only factor involved.

A fluid monolayer is able to respond to a non-zero value
of spontaneous curvature by deforming into a curved
surface. In this way, the monolayer can accommodate
substantial discrepancies between the cross-sectional area

per lipid at the headgroup region (Ah) and the corresponding
area of the fatty acyl chains (Ac). However, in a bilayer this
flexibility is frustrated by the opposing tendencies of the
two monolayers, as well as the entropic energy cost ofwater

exposure in the hydrocarbon region. In a planar bilayer, the
area per phospholipid molecule is assumed to be constant at
all depths of the bilayer (Ah=Ac). Increasing temperature
will tend to expand the tail region (Ac) more than the
headgroups (Ah), due to the increased confonnational dis¬
order of the chains, thereby increasing the frustration [25].
This build up of frustration is energetically unfavourable
and eventually the system must reduce it by rearrangement
of the phospholipids into a curved phase, such as the
inverted hexagonal (HM) or inverse cubic (Qn) phases.
One way of understanding the effect of fusion peptides
and inhibitors upon phospholipid phase transitions is to
consider their role in increasing or reducing the frustration
within bilayers, as the temperature is steadily increased.

The monolayer curvature strain hypothesis predicts that
the addition of agents that affect the curvature strain (such as
fusion peptides or inhibitors) should change the Gaussian
curvature, at any given temperature, in those phases where
such a change is possible. Agents that increase Ac relative to
Ah should result in structures with a reduced radius of
curvature, and those that increase Ah relative to Ac should
show an increase in radius of curvature. One of the most

remarkable findings of the present study is how small is the
effect of fusion peptides or fusion inhibitors on the lattice
repeat of the Hjj phase in DOPE-Me. In our measurements,
the change is only just above the level of experimental error.
Colotto et al. [18] have reported that SIV peptide reduces dQ
by a very small amount (<0.25 A); a mutant, non-fuso-
genic, analogue of the peptide had no measurable effect at
all. Fig. 1 shows that, when plotted on the same vertical
scale as the lamellar and cubic data, the repeat distance at
any given temperature and, therefore, the radius of curvature
of the Hm phase remain effectively unchanged, no matter
which agents are present. It is only when the vertical scale is
exaggerated, as in the inset panel, that small differences in
dQ appear, at a level that is close to the limits of experi¬
mental error. The presence or absence of peptides or
inhibitors changes the temperature at which the onset of
Hn phase occurs, but does not change the lattice dimensions.
It could be that these agents only affect small, localised
regions, and their concentration is too low to have a visible
effect on dQ. If this were true, it would be reasonable to
expect to see an increase in the mosaic spread of the Hn
samples, reflected in the width of the diffraction peaks.
However, the FWHM of the first-order Bragg peaks from all
Hu samples (with/without peptide/inhibitors) is 0.03 ± 0.02
A~ 1 (q). The peaks do not get broader with peptide or
inhibitors, implying that these agents do not disrupt the
inverse hexagonal structure, even in localised areas. This
may explain why higher concentrations of peptide seem to
be less effective in promoting Ha phase. It is almost as if the
peptides are most effective when they induce earlier phase
transitions, without modifying the actual structure formed.

In summary, we have reconfirmed our earlier hypothesis
that precursors of membrane fusion are common to the
lamellar to inverted hexagonal phase. The mechanism of
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bilayer destabilization between the fusion peptides SIV and
FeLV differs due to their folded conformational lengths;
SIV acts on leaflets of lipids interacting within the hydro¬
carbon matrix, while FeLV prefers mixing into curved
bilayers (such as the Hn phase). The net destabilization
effect leads to fusion. When CBZ-D-FFG or LPC is added,
they tend to undo curvature-strain effects and promote Q
phases at higher temperatures, bypassing the intermediate
structures that lead to hexagonal formation. These insights
should lead us to refine theories of the mechanism of
membrane fusion, such as tests for whether lipid mixing
between leaflets occurs during the fusion process.
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Abstract Human islet amyloid polypeptide (hIAPP) forms
amyloid deposits in non-insulin-dependent diabetes mellitus
(NIDDM). Pre-fibrillar hIAPP oligomers (in contrast to mono-
meric IAPP or mature fibrils) increase membrane permeability,
suggesting an important role in the disease. In the first structural
study of membrane-associated hIAPP, lamellar neutron diffrac¬
tion shows that oligomeric hIAPP inserts into phospholipid
bilayers, and extends across the membrane. Rifampicin, which
inhibits hIAPP-induced membrane permeabilisation in functional
studies, prevents membrane insertion. In contrast, rat IAPP
(84% identical to hIAPP, but non-amyloidogenic) does not insert
into bilayers. Our findings are consistent with the hypothesis that
membrane-active pre-fibrillar hIAPP oligomers insert into beta
cell membranes in NIDDM.
© 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Alzheimer's disease; Diabetes mellitus; Ion channel;
Non-insulin-dependent diabetes mellitus; Phospholipid bilayer

1. Introduction

A number of extracellular proteins can misfold spontane¬
ously and aggregate to form (3-sheet rich amyloid deposits
characteristic of a variety of "protein misfolding" diseases,
most notably Alzheimer's disease [1,2]. While the precise
molecular basis of such conditions is unclear, strong argu¬
ments are emerging to implicate organ-specific amyloidogenic
proteins, particularly oligomeric intermediates on the pathway
to amyloid fibril formation, in disease pathogenesis (e.g. [3]).
Human islet amyloid polypeptide (hIAPP), a 37-residue pep¬

tide hormone secreted by pancreatic beta cells, often forms
amyloid deposits in patients affected by NIDDM (non-insulin
dependent or type 2, maturity onset, diabetes mellitus). We re¬
cently demonstrated that an intermediate, non-fibrillar, oligo¬
meric form of hIAPP interacts with membranes, whereas
fibrillar hIAPP (like normal, monomeric hIAPP) lacks mem¬
brane activity [4], Interestingly, the membrane activity of
hIAPP could be inhibited independently of its ability to form
amyloid [5], These Langmuir balance measurements provided
a further test of the idea that only the pre-fibrillar, oligomeric

'Corresponding author. Fax: +44 131 650 6139.
E-mail address: j.bradshaw@ed.ac.uk (J.P. Bradshaw).

form of hIAPP is membrane-active, and mature fibrils are in¬
ert. Oligomeric intermediates in the 'misfolding' process may
form non-specific cation channels [6], and cellular Ca2+-over-
load could account for the toxicity of hIAPP [7], and explain
why exposed cells die by both apoptosis and necrosis [4],
Unlike hIAPP, rat IAPP (rIAPP) is inert [4], Sequence vari¬

ations in IAPP are strongly associated with the ability of the
peptide to form amyloid, and susceptibility to NIDDM [8,9].
Human and cat IAPP contain the internal sequence NFGAIL
(Fig. 1), and both species can form islet amyloid and develop
NIDDM. The rat and mouse genes do not encode this motif,
and these species do not exhibit islet amyloid or NIDDM.
However, mice expressing the hIAPP transgene do develop a
NIDDM-like disease [10].
The membrane-active form of hIAPP is currently poorly de¬

fined. In the present study, we identified the membrane-associ¬
ated form of hIAPP in stacked phospholipid bilayers using
neutron diffraction. In order to mimic, as closely as possible,
the experimental conditions of our previous studies [4,5] the
lipid system for this work was a 50:50 mixture of palmitoyl-
oleoyl phosphatidylethanolamine (POPE) and palmitoyl-
oleoyl phosphatidylserine (POPS). We directly tested the
hypothesis that hIAPP oligomers span the bilayer, and our

findings are consistent with the idea that oligomeric hIAPP
is associated with the formation of transmembrane channels.
rIAPP was excluded from the membrane, as predicted, and rif¬
ampicin, an inhibitor of the membrane activity of hIAPP [5],
prevents membrane insertion.

2. Materials and methods

2.1. Materials
hIAPP and rIAPP were obtained from Bachem (Weil am Rhein,

Germany). POPE and POPS were purchased from Avanti Polar Lipids
(Birmingham, AL) and rifampicin was from Fluka (Poole, UK). Other
chemicals were of the highest purity available.

2.2. Sample preparation and data collection
Multibilayer stacks of phospholipids and peptides were prepared as

described previously [11]. Briefly, 20 mg of a 50:50 (mol) mixture of
POPE and POPS were co-dissolved with 1% (mol) peptide in chloro-
form:trifluoroethanol (7:3, v/v) and airbrushed onto a quartz glass
slide to produce highly aligned stacks of some 50 000 or so bilayers.
Where rifampicin was required in a sample, this was added to the lipid
mixture before the peptide. The wafers were placed under vacuum for
24 h to remove the solvents before being mounted in sealed sample
cans and hydrated for 12 h at 25 °C to allow full equilibration and
the formation of IAPP oligomers [4,5]. The sample cans contained

0014-5793/S30.00 © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved,
doi: 10.1016/j.febslet.2004.12.085



1144 K Balali-Mood et al. I FEBS Letters 579 (2005) 1143-1148

hIAPP: KCNTATCATQ RLANFLVHSS NNFGAILSST NVGSNTY
rIAPP: KCNTATCATQ RLANFLVRSS NNLGPVLPPT NVGSNTY

20

Residue Number

Fig. 1. Hydrophobicity plot of hIAPP (Swiss-Prot P10997) and rIAPP
(Swiss-Prot PI2969), using the whole residue hydrophobicity scale of
Wimley and White [25]. The inset shows a sequence alignment of the
two peptides. Each peptide has a disulfide-bridged loop at its N-
terminal end. The NFGAIL motif, present in species susceptible to
islet amyloid and NIDDM, is underlined. The three prolines present in
rat but not hIAPP are indicated in bold.

saturated solutions of KCI, K2NO3 or K2S04 in 2H20/H20 mixtures
to maintain a relative humidity of 85%, 92% or 97%, respectively,
and the 2H20 concentration was set to 8% (v/v) in the presence of each
of the three salts, and also to 20% (v/v) and 50% (v/v) in K2NC>3 alone.
Diffraction data sets, comprising five orders of diffraction, were col¬
lected for each of the five conditions on VI at the Berlin Neutron-Scat¬
tering Center, Hahn-Meitner-Institut, Berlin, Germany, by scanning
samples through ±2° around the predicted Bragg angle for each of
the first five orders of diffraction in turn.

2.3. Data analysis
After background subtraction, peak fitting and absorption and

Lorentz corrections, the intensities were square-rooted to provide
structure factor amplitudes. Phasing the structure factors is a two
stage process. In the first, the three sets of 8% 2H20 structure factors
are fitted to a single continuous transform, thereby fixing their
phases [11]. In the second, the 8% 2H20 phases are used as a basis
for phasing the data collected at 20% and 50% 2H20 by least-
squares fitting to straight line functions, as described previously
[12]. This two-step approach has the added advantage that an accu¬
rate set of 8% 2H20 structure factors can be calculated from first
stage for increased accuracy in the second. The data were then
placed on a 'relative absolute' scale using the method of White
and co-workers [13]. In this approach, the data are placed on an
absolute scale using the known neutron scattering lengths of all com¬
ponent molecules. Flowever, since the x and y dimensions are not
probed by lamellar diffraction methods, these two dimensions are
not specified in the treatment of the data. The structure factor data,
and the profiles calculated from them are, therefore, scaled to repre¬
sent a single pair of lipids plus the appropriate number of water and
peptide molecules. At 1% (mol) peptide, the unit cell in this study
represents two lipid molecules and 0.02 molecules of peptide.

3. Results

3.1. Lamellar d-repeats
The lamellar spacings (//-repeats) of the samples at 92% relative

humidity were determined by optimised least squares fitting to
five orders ofdiffraction. 1% (mol) hIAPP decreased the lamellar
spacing significantly from 62.09 ± 0.16 A (means ± S.D., n = 3)

to 61.51 ± 0.20 A (means + S.D., n- 3, P < 0.02 by /-testing),
while rIAPP increased the spacing slightly to 62.72 ± 0.57 A
(n = 3, P > 0.05). The measurements for phospholipids with 1%
(mol) rifampicin were 56.96 ± 0.43 A (means ± S.D., n = 3),
and for phospholipidswith 1% (mol) hIAPP and 1% (mol) rifam¬
picin, 58.53 ± 0.27 A (means ± S.D., n = 3). The difference in
//-repeats between bilayers containing hIAPP and rIAPP (in the
absence of rifampicin) is 1.2 A. Assuming an average bilayer sur¬
face area of72 A2 per phospholipid [14], this difference equates to
a volume increase of 87 A3 per pair of lipids (the basis of the 'rel¬
ative absolute' scaling method). The total molecular volume of
IAPP calculated from amino acid volumes in the 1MB Jena Image
Library (http://www.imb-jena.de) is 4680 A3. At 1% (mol), this
equates to an extra volume of 47 A3 per lipid, or 94 A3 per pair
of lipids.
The additional volume of the peptide could be accommo¬

dated either by expansion of the unit cell in the Z-direction
(e.g., if the long axis of the peptide lies parallel to the bilayer),
or by insertion of hIAPP between the bilayer phospholipids, or
both. The significant decrease in the //-repeat in the presence of
hIAPP was inconsistent with the first possibility. However,
expansion of the unit cell in the plane of the bilayer, the second
possibility, is invisible to lamellar diffraction methods, and is
not constrained in the 'relative absolute' method used in this

study. Moreover, the idea that the peptide inserted into the bi¬
layer was consistent with the monolayer expansion seen in pre¬
vious Langmuir balance measurements using the same lipids
[5]. We therefore investigated the possible membrane insertion
of hIAPP in more detail, by examining bilayer scattering
profiles.

3.2. Bilayer profiles
The neutron scattering length density profile of POPE/POPS

bilayers in the absence of peptide (Fig. 2(a)) differs from the
"standard" profile of dioleoylphosphatidylcholine (DOPC)
[11], most noticeably because the dip in scattering length density
seen in the water region ofDOPC bilayer profiles is barely visible
in the POPE/POPS profile. This can be explained by the different
neutron scattering lengths of the phospholipid headgroups. The
total scattering length of the PC (C5H13N), PE (C2H7N) and PS
(C3H602N) headgroups are -0.60 x 10"13 cm, —0.597 x 10"13
cm and 1.85 x 10"13 cm, respectively. When two sodium counter
ions are added to the PS headgroup (0.72 x 10"13 cm), the extra '
density in the mixed lipid bilayers is readily explained.
The bilayer profile in the presence of hIAPP (Fig. 2(b)) was

remarkably similar to that of pure lipid bilayers. The total neu¬
tron scattering length per peptide molecule is 98.78 x 10"12 cm
(hIAPP) or 98.51 x 10~I2cm (rIAPP). The water region was
almost indistinguishable from the pure phospholipid bilayer,
and any relatively slight differences were largely confined to
an increase in density in the fatty-acyl region. rIAPP, on the
other hand, caused major changes to the water region (Fig.
2(c)). The characteristic minimum at the edges of the profile
were completely absent, suggesting that the additional neutron
scattering length density introduced by the peptide now filled
this trough. The profile shape changes in the fatty acyl-region
were consistent with lipid rearrangements rather than peptide
penetration. A peptide orientated parallel to the bilayer is
likely to cause greater fatty-acyl disruption than a transbilayer
peptide, for two reasons: (i) the parallel peptide will have con¬
tacts with a much larger number of phospholipids than a trans¬
bilayer peptide and (ii) the parallel peptide only occupies part
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Fig. 2. Neutron scattering length density profiles of phospholipid
bilayers: (a) 50:50 (mol) mixture of POPE and POPS; (b) 50:50 (mol)
mixture of POPE and POPS with 1% (mol) hIAPP; (c) 50:50 (mol)
mixture of POPE and POPS with 1% (mol) rIAPP; (d) 50:50
(mol) mixture of POPE and POPS with 1% (mol) rifampicin; (e)
50:50 (mol) mixture of POPE and POPS with 1% (mol) hIAPP and 1%
(mol) rifampicin hIAPP. The structure factors for bilayers hydrated
with 8% 2H20 were used to calculate the profiles, since water of this
isotopic composition has a net neutron scattering length density of
zero. The profiles have been displaced vertically, for clarity. A pair of
lipid molecules is also shown, for orientation.

of the full depth of the bilayer, and will create a potential void
that has to be filled by the fatty-acyl chains of the surrounding
lipids (Fig. 3(a)). A similar effect has been observed in another
interfacial peptide, the antimicrobial peptide protegrin-1 [15].
An alternative mechanism of bilayer thinning is based on the
observation that an incorporated molecule may alter the ther¬
mal fluctuations which, in turn, can affect the inter-bilayer dis¬
tance [16].
Taken together, these profiles show clear differences in the

relationship of the two peptides with the lipid bilayer. rIAPP
appears to reside exclusively in the water layer between the
bilayers, whereas hIAPP is largely excluded from this region.
This conclusion is further supported by the observation (Figs.
2(a) and (c)) that the bilayers are thinner in the presence of
rIAPP, despite the overall increase in ^-repeat. In profile (a),
the two maxima in the neutron scattering length density are
caused by strong neutron scattering by the phosphates and

Fig. 3. Top: the structure of rifampicin. Bottom: Cartoon showing
possible mechanism of bilayer thinning (arrow) when (a) a peptide
inserts parallel to the bilayer surface or (b) rifampicin inserts close to
the terminal methyl groups. For explanation, see text.

the oxygen rich (and hydrogen-poor) ester linkages of the
phospholipids. Although partially obscured by scattering from
the peptide, the steep gradients up towards the corresponding
region are closer together in profile (c) compared to (a).
We next examined how the inhibitor rifampicin interacted

with phospholipid bilayers in the absence of peptide. The total
neutron scattering length per rifampicin molecule is
18.67 x 10~12 cm. Previous studies of rifampicin partitioning
using derivative spectrophotometry [17] and 'H NMR and
fluorescence energy transfer [18] suggested that the compound
inserts deeply into the hydrophobic core of the bilayer, while
remaining in contact with the polar surface. With a pKd of
7.9, rifampicin has partial anionic character at neutral pH,
and this has been correlated with a stronger interaction with
zwitterionic lipids such as di-myristoyl phosphatidylcholine
(K& = 5.09 x 104) compared to anionic lipids such as di-myri¬
stoyl phosphatidylglycerol (Kd = 0.54 x 104) [18]. While in
broad agreement that rifampicin forms stable bilayers with an¬
ionic or zwitterionic lipids, our neutron data reveal that rifam¬
picin induces marked structural changes in the membrane (the
NMR technique used by Rodrigues [18] is blind to the details
of bilayer structure revealed by neutron diffraction).
In particular, the bilayer profiles in Figs. 2(a) and (d) show

differences in bilayer width, as revealed by the distance be¬
tween the two maxima, and the bilayer thinning caused by rif¬
ampicin is reflected in the reduced rf-repeat of the
corresponding samples. These effects may be explained by
"splaying" of the phospholipid headgroup regions over the
top of deeply inserted rifampicin (Fig. 3(b)). Rodrigues also
positions rifampicin close to the terminal methyls of the
fatty-acyl chains [18], consistent with our observation that
the methyl trough is broadened, as revealed by the neutron
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scattering length density at the centre of the bilayer. Addition
of hIAPP to the bilayers in the presence of rifampicin thins the
bilayer even further, yet increases the (/-repeat by 1.5 A. Both
of these observations are consistent with location of the pep¬
tide to the water/bilayer interfacial region, strongly implying
that rifampicin has prevented transbilayer insertion of the
peptide.

3.3. The distribution of water
Water distribution profiles were calculated by Fourier

transformations of difference structure factor profiles ob¬
tained by least-squares fitting to 8%, 20% and 50% 2H20
sample hydrations. The water profile for pure lipid bilayers,
shown in Fig. 4(a), was entirely consistent with previous neu¬
tron studies of phospholipid membranes. The single peak
(split between the two ends of the profile in the figure) repre¬
sents a block of water confined between adjacent bilayers in

Z (A)

Fig. 4. Difference profiles of the neutron scattering length density of
water (2H20) in stacked phospholipid bilayers: (a) 50:50 (mol) mixture
of POPE and POPS; (b) 50:50 (mol) mixture of POPE and POPS with
1% (mol) hIAPP; (c) 50:50 (mol) mixture of POPE and POPS with 1%
(mol) rIAPP; (d) 50:50 (mol) mixture of POPE and POPS with
1% (mol) rifampicin; (e) 50:50 (mol) mixture of POPE and POPS with
1% (mol) hIAPP and 1% (mol) rifampicin hIAPP. Structure factors for
bilayers hydrated in 100% H20 were subtracted from corresponding
50% 2H20 structure factors and the result used to calculate the profiles
shown. The profiles have been displaced vertically, for clarity.

the multi-bilayer stack. The peak can be fitted (in reciprocal
space) to a single pair of Gaussians, centred at 27.8(6) A
from the middle of the bilayer and 5.8(2) A wide (full width
at lie height).
The corresponding water distribution profile for bilayers

containing 1% (mol) rIAPP (Fig. 4(c)) was similar. Once
again, the water was confined to the outer sections of the
profile, representing the inter-bilayer hydration layer. This
block of neutron scattering length density was fitted (in reci¬
procal space) to a pair of Gaussians, centred 27.1(1) A from
the middle of the bilayer, and 4.2(5) A wide. However, in the
IAPP profiles (Fig. 4(b)), the same amount of water was dis¬
tributed very differently. Instead of being confined to the
edges, it extended across the entire width of the repeating
unit, including the phospholipid bilayer itself. The area under
the central portion of this curve corresponds to around 500
deuterons per peptide, comprising water and exchanged pro¬
tons. This indicates the presence of channel-structures,
though the neutron data do not supply any information on
the number of peptides per channel. This observation sup¬
ports the proposal that hIAPP, but not rIAPP, inserts in a
transbilayer orientation in the phospholipid bilayers used in
this study.
In contrast, in POPC/POPS bilayers with 1% (mol) rifampi¬

cin (Fig. 4(d)), the water was largely confined to the inter-
bilayer region, and as previously noted, the lipid profile differed
in shape (cf. Fig. 4(a)). This confirms the suggestion that rifam¬
picin and phospholipids form stable bilayers, but refutes the
claim [18J that the bilayer structure remains unchanged. Of
particular interest is the observation that the addition of rifam¬
picin to bilayers containing hIAPP (Fig. 4(e)) constrained the
deuterons to the inter-bilayer region, in contrast to appear¬
ances in the absence of rifampicin (Fig. 4(b)). However, it is
known from functional studies that rifampicin prevents bilayer
insertion of hIAPP, rather than blocking pre-inserted "chan¬
nels" [5].

4. Discussion

In the absence of high-resolution structural data, we have
speculated that membrane-active IAPP is a misfolded, (3-
sheet-rich, primary nucleation element on the amyloid path¬
way that can insert spontaneously into membranes [5],
Membrane-located IAPP may then refold to give rise to trans¬
membrane ot-helices surrounding a central ion channel or pore
[5,6]. In this respect, IAPP may follow the pattern displayed by
calcitonin (CT), an amyloid-forming peptide that has previ¬
ously been studied in detail. CT is a 32-amino acid polypeptide
hormone that shows sequence and charge distribution similar¬
ities to IAPP and can adopt either a- or [(-structures, depend¬
ing on its environment. The former is seen in phospholipid
membranes [19], while the latter predominates in aqueous solu¬
tion [20], Using methods similar to those in the present study,
Bradshaw [19] showed that salmon CT could insert into
phospholipid bilayers containing the anionic lipid phosphati-
dylglycerol, leading to speculation that the peptide may have
ion-channel properties. This was later confirmed by Stipani
et al. [21]. Human CT formed channels at the same concentra¬
tion, but not as easily as salmon CT, an observation the
authors attributed to the reduced helical content of this form
of the peptide.
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One possible concern is that, over the several hours of a neu¬
tron experiment, the amyloid-forming proteins may form fi¬
brils. However, the neutron data describe highly ordered
systems, that do not change over the duration of the neutron
measurements. This is consistent with our previous lipid
bilayer work [4] and Langmuir balance work [5] that demon¬
strated that the mature fibril for of IAPP is not membrane-
active. Furthermore, it is simply not known whether fibrils
can form from peptide that has already inserted into a mem¬
brane. The transconformational changes involved in morphing
from a structure optimised for a hydrophobic membrane envi¬
ronment to the cross-[3 amyloid structure could be consider¬
ably greater than those involved in adopting the amyloid
conformation from aqueous solution.
Fig. 1 shows a hydrophobicity plot for the two peptides.

rIAPP is clearly less hydrophobic than hAIPP, a fact which
may contribute to the latter's inability to insert into phospho¬
lipid bilayers. However, peptide insertion into bilayers also
requires the formation of secondary structure and the se¬
quence differences between the two forms of IAPP will have
a significant effect on rIAPP's ability to form this structure.
The main differences between the sequences of hIAPP and
rIAPP are the replacement of the alanine at position 35,
and the serines at positions 38 and 39, with proline residues.
The first of these replacements disrupts the NFGAIL se¬
quence linked to the formation of islet amyloid and suscepti¬
bility to NIDDM [8,9], Proline is a well-established
"breaker" of both a-helix and (3-sheet structures in globular
proteins, because the closed loop structure of the side chain
prevents the peptide backbone from adopting the cp and \|/
angles required for either of these secondary structures. How¬
ever, proline frequently occurs in the transmembrane helices
of integral membrane proteins, particularly transport pro¬
teins, despite the fact that a kink is introduced wherever a

proline residue interrupts a helical section. Li and Derber
[22] resolved this apparent contradiction by postulating differ¬
ent rules governing structure in the hydrophobic environment
of membranes, and showed that the helical propensity of pro¬
line was greatly enhanced in the membrane-mimetic environ¬
ments of both lipid micelles and organic solvents. In studies
of a proline to alanine replacement in a single-spanning mem¬
brane protein of bacteriophage IKe, Li and Derber [22]
showed that proline does not interfere with helix formation,
but does prevent the formation of (3-sheet. The intrinsic
capacity of proline to disrupt [3-structures has also been dem¬
onstrated by showing that prolines are excluded from trans¬
membrane (3-strands in mutagenised OmpA porins that
retain the ability to assemble into a membrane-spanning [3-
barrel [23], Wigley et al. [24] has proposed that the abun¬
dance of proline in transmembrane helices can be entirely
explained by the ability of the residue to block [3-structures.
The advantage conferred by preventing the formation of
a p-sheet outweighs the entropic disadvantage in helix
distortion.
In this context, it is instructive to consider the differences in

sequence, amyloidogenicity and membrane-associated neutron
scattering profiles of hIAPP and rIAPP. Following the argu¬
ments outlined above, it is tempting to suggest that rIAPP is
non-amyloidogenic because the introduction of a proline into
the NFGAIL sequence prevents the peptide from adopting
the P-structure necessary for amyloid fibre formation. How¬
ever, this should not significantly interfere with the peptide's

ability to insert into phospholipid membranes, if the mem¬
brane-active form is a-helical (like the model for CT). Previous
studies, and our current neutron diffraction data, indicate that
this is not so. Rats are not susceptible to "NIDDM", and the
neutron data suggest that rIAPP does not insert into phospho¬
lipid membranes.
This could be taken as evidence that the membrane-active

form of hIAPP is not a-helical, until it is remembered that
rIAPP possesses not one but three extra prolines. The disrup¬
tive effect of three prolines in close proximity (two of them
consecutive residues) is likely to block the formation of both
a- and P-structures by the peptide. In the future work, it will
clearly be of interest to probe the secondary, tertiary and qua¬
ternary structure of membrane-associated hIAPP in detail.
In conclusion, our data represent the first study of mem¬

brane-associated IAPP to use diffraction-based techniques.
We have shown that oligomeric hIAPP interacts with
phospholipid membranes to form transbilayer structures.
rIAPP is excluded from the membrane (as predicted), and
the insertion of hIAPP is inhibited by rifampicin.
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Abstract

The effect ofmyristoylation on the 15-amino-acid peptide from the membrane-binding N-tenninus of ADP ribosylation factor 1 (ARF1)
was studied using neutron diffraction and circular dichroism. A previous study on the non-acylated form indicated that the peptide lies
parallel to the membrane, at a shallow depth and in the vicinity of the phosphorylcholine headgroups. It was suggested that the helix does not
extend past residue 12, an important consequence for the linking region of the ARF1 protein. In this paper, we show that the result of
myristoylation is to increase the helical content reaching the peptide's C-terminus, resulting in the formation of a new hydrophobic face. This
increased helicity may augment the entire protein's membrane-binding affinity, indicating that ARF1 effectively has two interdependent
membrane-binding motifs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Myristoylation is a common post-transcriptional mod¬
ification of proteins that involves the covalent attachment of
a saturated, fourteen-carbon fatty acid to the N-terminal
glycine. Such a modification confers additional membrane-
binding affinity through the lipid anchoring properties of the
myristoyl chain. The utility of myristoylation is as varied as
the functions of the numerous proteins that are modified in
this way [1],

Adenosine diphosphate ribosylation factors (ARF) are
just one type ofmyristoylated proteins. ARFs are a family of
GTP-binding proteins, abundant and ubiquitous in eukary-
otic cells. Their strongest characteristic is their regulatory
behavior on different forms of membrane fusion, including
vesicle formation, secretion, and endocytosis.

ARF1, in particular, is involved in the regulation of
vesicle transport in the Golgi apparatus [2-5] and the

Corresponding author. Tel.:+1 613 584 8811x6237; fax:+1 613 584
4040.

E-mail address: Thad.Harroun@nrc.gc.ca (T.A. Harroun).

activation of phospholipase D (PLD) in the process of
secretion of granules from neutrophil-like cells [6], In the
inactive state, ARF1 is bound to GDP and is found soluble
in the cytosol. ARF1 switches to its active form upon
interaction with any number of guanine exchange factors
(GEFs), with a conserved Sec7 domain [7], ARF1
exchanges its GDP for GTP, the myristoyl chain is
unfurled, and the protein binds to the Golgi membrane
[8], From there, it serves as a necessary cofactor for the
regulation of the proteins involved in the packaging and
coating of coat protein complex I (COPI) vesicles [9]. After
the transport of the vesicle, ARF1 hydrolyses GTP under
the influence of GTPase Activation Protein (GAP) and
releases from the membrane, reverting back to its inactive
state.

The role of the myristoyl chain in this case is not clear.
Data suggests that there are two contributors to ARF 1 's
ability to bind to membranes; the myristoyl chain and the N-
terminus helix. Membrane-binding persists upon the
removal of the acyl chain [10], and secretory function is
restored upon the addition of non-Myr-ARFl to ARF1
depleted cells [11]. However, ARF1 activity is considerably
altered upon the removal of the N-tenninus [12], Mutant

0005-2736/$ - see front matter © 2004 Elsevier B.V. All rights reserved,
doi: 10.1016/j.bbamem.2004.12.003
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ARF1 with 17 residues deleted from the N-terminus no

longer activates PLD and inhibits coat protein recruitment in
competition with the wild type ARF1 [13]. This is despite
the fact that ARF1 can still bind to GTP strongly without its
N-terminus.

There have been crystal structures of the non-myristoy-
lated, inactive form of ARF1 [2] and one structure of the
GTP bound form, with the 17 N-terminus amino acids
deleted [14]. (For a review of ARF crystal structures, see
Ref. [15]). Flowever, not enough is known about the
membrane bound structure [16]. It is thus important to
determine how ARF1 acts to bring together the necessary
proteins in COPI vesicle fonnation.

We have previously determined the location and ori¬
entation of the non-acylated form of the fifteen-amino-acid
peptide from the N-terminus of human ARF1 (ARFlp) [17].
Our conclusions from that study, and subsequent analysis by
molecular dynamics simulations [18,19], were that the
peptide lies parallel to the plane of the membrane, among
the lipid headgroups. At that time, we suggested that the
amount of helix in the peptide did not extend much past
Phel2. The structural characterization in that analysis was
already further than any reported to date, as it was based on
the determination of total secondary structure and the
location in the bilayer of three labeled residues. Two recent
NMR studies have attempted a similar determination of the
myristoylated from of ARFlp N-terminus segment (Myr-
ARFlp) in a lipid environment [20,21], However, the
efficacy of this method is somewhat questionable, because
the structure was based on no more than the orientation of
three individual peptide bonds with respect to the plane of
the membrane. The locations in the membrane of groups or
bonds were not determined, however, the conclusions
regarding peptide orientation and location were similar to
Davies et al. [17].

In this paper, we extend our first experiments, this time
concentrating on the role that myristoylation plays on the
membrane-binding properties of Myr-ARFlp. We find that
the addition of the myristoyl chain increases the helical
content of the peptide, resulting in a new hydrophobic face
for membrane binding. This data may have important
implications for explaining the previous membrane-binding
data.

2. Methods

The technique of neutron lamellar diffraction with
specific deuterium labeling is based on the method of
Weiner and White [22] and extended by Bradshaw et al.
[23]. In summary, the technique involves the one-dimen¬
sional reconstruction of the bilayer profile, normal to the
plane of the membrane, using common methods of
crystallography. For neutron diffraction, this results in a

map of the neutron scattering length of the bilayer cross
section, rather than the electron density measured by X-ray

crystallography. The result is a low-resolution, time- and
sample-averaged profile of the bilayer. One can then utilize
the significant difference between hydrogen and deuterium
in their ability to scatter neutrons, to label specific parts of
the system. The difference between the scattering length
density profiles of the H and D samples yields a higher
resolution, time- and sample-averaged map of the location
of the label.

The techniques employed here do not differ significantly
from the previous experiment with the non-myristoylated
ARFlp. Four versions of the Myr-ARFlp peptide were
synthesised (Dalton Chemical Laboratories, Toronto, Can¬
ada): one in its normal hydrogenated form, and three with
single amino acid labeling. Deuterium labeling involved
replacing the five hydrogen atoms around the phenylalanine
ring with deuterium, each in turn at the Phe4, Phe8, and
Phel2 residue positions. Peptides were incorporated into
bilayers composed of DOPC:DOPG 7:3 at 3 mol% by co-

dissolving in chloroform:triflouroethanol 1:1 and spraying
onto a silicon slide with an artist's airbrush. This results in

multilayer stacks of highly aligned bilayers.
Data were collected on the N5 spectrometer located at

the Chalk River Laboratories, Canada. Typically five orders
of diffraction were collected at hydrations ranging from
84% RH to 97% RH, and D20 concentrations ranging from
8-80%. The samples were kept at a temperature of
30.0±0.5 °C with a circulating water bath. Sample
equilibration was determined after sequential 6-20 scans,
which showed no change in the position of the Bragg
peaks. For better statistics, several data sets were averaged.
Bragg peaks were fitted with Gaussian functions, and the
integrated peak intensity, less the background, was taken as
the measured structure factor. After correcting the data for
sample geometry and absorption, the structure factors for
all three labels were scaled and subtracted simultaneously.
Gaussians were fit, in reciprocal space, to the difference
between the labelled and unlabelled structure factors to

determine the label positions, with a typical chi-squared
value of 0.01.

CD samples were made by dissolving Myr-ARFlp in
either a buffer, pH 7.4, of 10 mM Tris and 0.1 inM EDTA or
a solution of TFE, at concentrations of 2 mg/ml. Data were
taken on a Jasco J600 spectropolarimeter at the NRC's
Institute for Biological Sciences, Canada. Data were

averaged and background corrected. The spectra were fit
with the program CDPro to determine the helical content.

3. Results and discussion

The difference in the structure factors between the
deuterated and hydrogenated samples under the same
conditions can be modeled as a Gaussian shaped peak in
real-space, the parameters of which reveal important
positional information regarding the label [22]. The first
parameter to be determined is the position of the peak,
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which is centered at the time-averaged center-of-mass of the
phenylalanine ring (specifically its hydrogens), as measured
from the center of the bilayer. The second parameter is the
width of the peak, which indicates the time-averaged
fluctuation amplitude of the phenylalanine ring, averaged
over all of the peptides in the sample. Finally, the amplitude
of the peak is simply the scattering length density of 5
deuteriums less that of 5 hydrogens. This last piece of
information is used to properly scale the data.

Fig. 1 shows the positions (dotted line) of the three
different labeled residues. Each label is well described by a
single Gaussian (solid line), and all three labels clearly
occupy only one position, situated about 16 to 18 A from
the bilayer center. The small undulations in the data stem
from small errors in the structure factors and the subsequent
Fourier reconstruction. Such ripples are encountered in all
reconstructions of electron density or neutron scattering
length, but are more pronounced in this case since we only
have a few orders in the Fourier series (Fourier termination
errors) when compared with a typical case in protein
crystallography [24], where the system is overdetermined.
The data was scaled according to the area under the peaks, a
method that is self-consistent by whether or not, in the final
subtraction, the unlabeled structure factor scales to the same

value for each label.
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Fig. 1. The location of the deuterium labeled phenylalanines ofARF1 p and
Myr-ARFlp, determined from neutron diffraction. The abscissa is
measured from the center of the DOPC:DOPG (7:3) bilayer, and the
ordinate is the measured neutron scattering length per unit length of the
label. The solid line is a Gaussian fit to the Myr-ARFlp data, shown as a
dotted line. The dashed line represents the previous non-myristoylated
ARFlp data for comparison [17].

Table 1

The location and standard deviation widths of the deuterium labels,
determined by neutron diffraction

Phe4 Phe8 Phel2

ARFlp Position 17.99±0.02 16.68±0.04 22.06±0.06
S.D. 5.83±0.03 6.64±0.04 5.88+0.08

Myr-ARFlp Position 17.37+0.02 16.07±0.03 17.20+0.04
S.D. 4.32±0.07 5.31 ±0.06 3.6210.03

The location is measured in angstroms from the center of the bilayer. The
data for ARFlp is taken from Davies et al. [17].

Included in Fig. 1, as a dashed line, are the results from
the case of the non-myristoylated peptide. For Phe4 and
Phe8, there is little difference in the location of the labels.
Both residues are clearly in the hydrophobic/hydrophilic
interface region of the lipid headgroups. In the Myr-ARFlp
case, the fluctuation amplitudes are reduced, indicating that
the phenylalanines are in a more constrained configuration
and are undergoing somewhat less motion. The locations
and standard deviation widths of the Myr-ARFlp peaks are
given in Table 1, along with the results from the reference of
Davies et al. The greatest difference between the myrsitoy-
lated and non-acyl peptides is found with Phel2. For
ARFlp, Phel2 stands above the headgroup region and
fluctuates considerably, whereas with Myr-ARFlp, Phel2 is
brought closer into the headgroups and, in comparison, is
more immobile than the other measured residues.

By fitting a secondary structure to the data, we can
elucidate the significance of the Phel2 difference between
the myristoylated and non-acyl peptides. Here, we follow a
similar method to that of Davies et al. and use circular
dichroism and an atomic structure model to determine the

possible modes of peptide interaction with the membrane.
At least four deuterated labels would be required in order to
orient a peptide secondary structural model unambiguously.
One way of approaching this geometrical problem is to
consider that it is possible to fit a plane triangle to any three
points, but that the two opposing sides of the plane can be
interchanged. The result of "flipping" the whole peptide
between the two solutions can be quite dramatic to the
overall orientation of the peptide relative to the membrane;
the two models may be wholly unrelated, despite the fact
that both have the same residues at the same depth in the
bilayer. Although we are left with two mathematical
alternatives, we can usually reject one on energetic and
thermodynamic principles.

Before we can construct our model, we must determine
its overall secondary structure using circular dichroism. Fig.
2 is the CD spectrum of Myr-ARFlp in buffer and TFE. In
both polar and non-polar environments, the peptide adopts a

strongly helical structure. This is in sharp contrast to
ARFlp, which is predominantly a random-coil in buffer,
and only partially self-folds into a helix in TFE or a lipid
environment. The observation of helix promotion by
myristoylation is not unexpected, such an effect has been
reported in a peptide from CAMP-dependent protein kinase,
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Fig. 2. Circular dichroism of Myr-ARFlp in TFE and aqueous buffer.
Under both hydrophilic and hydrophobic environments, the myristoylated
peptide adopts a nearly 100% a-helical structure.

though not to the same extent seen here [5]. The peptide's
helical content was determined by CONT1N analysis and
shows nearly 100% a-helix with little or no random coil in
TFE. In buffer, the peptide is also predominantly helical,
although analysis indicates that of the 80% helical content,
as much as 20% of it is (3-strand. The data indicates that the
peptide possesses nearly complete amount of ordered
secondary structure, much greater than indicated by the
non-myristoylated crystal structure.

We begin with a starting model taken from a segment of
the crystal structure of the full, non-myristoylated ARF1.
This model has much less helical content than the CD data

indicates, but its inclusion is instructive. We are not
concerned with representing the myristoyl chain in the
model, since we assume that it is always inserted in the
same bilayer that the peptide is associated with. Fig. 3 is a

diagram of the peptide, oriented with Phe labels at the
positions shown in Fig. 1. In Fig. 3, only the backbone trace
is shown, and the long axis of the molecule is viewed end-
on. The block slab in the picture is meant to suggest the lipid

bilayer headgroup region, extending between 16 and 20 A
from the center of the bilayer [22]. The water layer is above
the slab and the hydrocarbon matrix below. The model sits
in the headgroup region, with its long axis parallel to
membrane plane. As discussed above, models A and B in
Fig. 3 are mathematically optional orientations. Based on

thermodynamic reasoning, we suggest that model B is
incorrect, since its charged residues such as Lysl4 and
Lysl5 are unexpectedly found buried in the center of the
bilayer.

To confirm that these models have opposite hydrophobic/
hydrophilic orientations, we calculate the hydrophobic
moment of each model. The hydrophobic moment is taken
to be the vector joining the hydrophilic and hydrophobic
barycenters JT, calculated using the following relationship

where H\ is the free energy transfer for each atom between
the water and the hydrocarbon chain environments, and rj is
the atomic coordinate [25], The sum is taken over all
hydrophobic or hydrophilic atoms and has the units ofA. In
Fig. 3, the hydrophobic moment is drawn as a ball-and-
stick, joining the hydrophobic center ofmass (in black) with
the hydrophilic center of mass (in white). Although neither
model has a vertically oriented moment, as one might expect
for a ideal amphipathic helix, we see that in model B, the
hydrophobic center is closer to the water and farther from
the bilayer than the hydrophilic center. Of the two models,
model A is therefore the more correct of the two.

The helical content of models A and B is much less than
indicated by the CD data, so we created a second model by
restricting the angles of the backbone to form a tighter
a-helix. The model was then subjected to 1000 steps of
energy minimization to remove bad steric contacts that
might have been created. Fig. 4 shows this new model in
both possible orientations. From the figure, we can see that

Water

Chain

TXS15

Fig. 3. The orientation ofa model of Myr-ARFlp. The secondary structures of these models are derived from the crystal structure of the full ARF1 protein.
Models A and B are mathematically related (see text for discussion). The slab indicates the lipid headgroup region extending from 16 to 20 A from the bilayer
center. The shading is only meant to suggest a 3D appearance. Figs. 3-5 were made with Molscript [26],
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Fig. 4. The orientation of a more helical model ofMyr-ARFlp. The secondary structures of these models come from increasing the helical content of models A
and B. The shading is only meant to suggest a 3D appearance.

the models are unreasonably tilted out of the plane of the
bilayer. The backbone atoms of models C and D were fit
with a straight line to define the helical axis, which make
38° and 26° angles to the membrane plane, respectively. The
tilt is primarily due to the movement of the Phel2 away
from the opposite side of the molecule from Phe4 and Phe8,
as seen in model A. In this configuration, Phel2 is at its
greatest distance around the molecule from Phe4 and 8,
making it very difficult to place all three residues at the
same depth in the bilayer (ref. Fig. 1). Phel2 should ideally
be on the opposite side to Phe4 and 8, as in model A, or they
should all lie on the same side of the peptide.

Model E, shown in Fig. 5, is an ab initio, ideal a-helix
constructed from the peptide sequence. In this arrangement,
Phel2 is on the same side as Phe4 and Phe8, fonuing a new
face of the molecule that theoretically should be expected to

lie at the hydrophobic/hydrophilic interface. The peptide in
this model again lies parallel to the membrane, although it
"rides" higher in the headgroup region than model A. Since
all three Phes are so close to each other, there is very little
difference between model E and its alternative fit (not
shown), unlike models A and C. The Lysl5 at the C-
terminus pointing toward the acyl chain region is somewhat
misleading, as the full side chain snorkels up to the polar
end of the lipids.

The hydrophobic moments of models C and D are

perpendicular to the helical axis, indicating that the
tightening of the helix is fonuing a new hydrophobic face.
In model E, the hydrophobic moment is nearly vertical and
at its maximum magnitude, as one might expect from an
ideal helix with a periodic hydrophobic sequence. The
difference in structure between models A and E is minor.

Chain

Fig. 5. The orientation of an ab initio model of Myr-ARFlp. In this case, the hydrophobic/hydrophillic centers-of-mass are at their greatest separation and
alignment with the hydrophobic gradient normal to the membrane interface, which is expected from a peptide with a periodic hydrophobic sequence.
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Model E therefore seems to be the best candidate for
membrane associated peptide.

The data presented here show that the effect of
myristoylation on ARF1 peptide is greater than previously
thought. Taking into consideration our previous data, it
seems that the myristoyl chain addition is a requirement for
the membrane-binding domain to achieve its maximum
ideal secondary structure suitable for membrane binding.
The idea that the addition ofmyristic acid to the N-terminus
can have structural effects extending further along the
peptide is not unexpected. The PROSITE (PDOC00008)
definition of amino acid sequence that is a candidate for
modification by myristoyl CoA:protein N-myristoyl trans¬
ferase (NMT) indicates that the motif extends at least 6
residues from the N-tenuinus. However, another analysis of
a larger set of identified myristoylated proteins suggests that
the motif extends as many as 17 amino acids from the N-
terminal glycine [1].

The above support our observations of a greatly
enhanced helix with myristoylation. Model A is a likely
candidate structure for the non-myrisotylated protein;
considerable helix remains, enough to maintain some

membrane-binding affinity as seen in the biochemical
studies. Once myristoylated, the amount of helix increases,
and with it, the membrane-binding affinity and localization
of certain residues at the membrane interface is also
increased. Model E is not simply a better-defined helix
than model A, it is also rotated along the long axis in the
membrane.

ARF1 without its N-terminus can bind GTP but cannot
set in motion the process of vesicle formation in vitro.
Specifically, it no longer activates PLD and interferes with
coatomer fonnation. Although it has been suggested that
vesicle secretion may be linked to PLD-dependent, phos¬
phatide acid production [11], there is indication that the
non-Myr-ARFl competes with Myr-ARF in the process,
inhibiting coat formation regardless of PLD activity [13].

The localization of the protein at the membrane
interface is important, conceivably to gather together the
necessary coat and packaging proteins. Jones et al.
identify the two lysines 14 and 15 as necessary for PLD
activation, and furthermore, substituting the ARF1 N-
terminus on ARF6 greatly enhances overall ARF activity
[13], (Note that residue numbering in our case does not
count the Myr as residue 1.) In that paper, the authors
draw a picture of a plausible structure of membrane-bound
ARF1, in which residues Lysl4 and Lysl5 are part of the
linking domain to the rest of the protein. From inspection,
this model is remarkably similar to the non-myrisoylated
ARFlp model in the location of lysines and phenyl¬
alanines made by us. Here, we are suggesting that because
of myristoylation, those residues are more a part of the
helix, rather than the linking region, and positioned closer
to the membrane headgroups. Thus, the role of Myr may
be to carry out the final positioning for the activation of
the ARF1 protein.

It is hoped that the data presented here will stimulate
molecular dynamics simulation studies of similar mem¬
brane-binding protein domains. However, experimental data
of these systems is required for the proper construction and
analysis of such simulations. In this regard, the neutron
diffraction data in this report is unique. The data of Fig. 1 is
directly comparable to the static and time-averaged structure
of a simulation, on a per-residue or per-atom group basis.
Unlike other techniques, deuterium labeling does not suffer
from the inherent perturbations of large molecular probes
and labels. Furthermore, neutron diffraction is a reasonably
direct structure determination technique and whose data
does not require extensive interpretation, as can be the case
with some spectroscopies. The only ambiguity with the
data, is in determining which best-fit model is more

probable. As we have shown, after vetting the possible
protein structures with known information from other
experiments one can arrive at a solution. Moreover, the
location of the labeled residues, shown in Fig. 1, is accurate
and unambiguous.

In conclusion, we have shown that the location of the
myristoylated N-terminus of ARF1 lies flat within the
headgroup region of the membrane. Using structural data
and modeling, we have argued that the effect of the acyl
chain modification is to increase the amount of helix in the

peptide, resulting in the fonnation of a new hydrophobic
face with increased affinity for the hydrophobic/hydrophilic
interface. This implies that the role of myristoylation is to
provide ARF1 with two interdependent membrane-binding
domains.
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