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Chapter 1

Introduction

1.1 Overview

The factors limiting the performance of computer software periodically undergo
sudden shifts, resulting from technological progress, and these shifts can have
profound implications for the design of high performance codes. At the present
time, the speed with which hardware can execute a single stream of instructions
has reached a plateau. It is now the number of instruction streams that may be
executed concurrently which underpins estimates of compute power, and with
this change, a critical limitation on the performance of software has come to be
the degree to which it can be parallelised.

The research in this thesis is concerned with the means by which codes for
linear programming may be adapted to this new hardware. For the most part,
it is codes implementing the simplex method which will be discussed, though
these have typically lower performance for single solves than those implementing
interior point methods. However, the ability of the simplex method to rapidly
re-solve a problem makes it at present indispensable as a subroutine for mixed
integer programming.

The long history of the simplex method as a practical technique, with ap-
plications in many industries and government, has led to such codes reaching
a great level of sophistication. It would be unexpected in a research project
such as this one to match the performance of top commercial codes with many
years of development behind them. The simplex codes described in this thesis
are, however, able to solve real problems of small to moderate size, rather than
being confined to random or otherwise artificially generated instances.

The remainder of this thesis is structured as follows. The rest of this chapter
gives a brief overview of the essential elements of modern parallel hardware and
of the linear programming problem. Both the simplex method and interior point
methods are discussed, along with some of the key algorithmic enhancements
required for such systems to solve real-world problems. Some background on
the parallelisation of both types of code is given.

The next chapter describes two standard simplex codes designed to exploit
the current generation of hardware. i6 is a parallel standard simplex solver
capable of being applied to a range of real problems, and showing exceptional
performance for dense, square programs. i8 is also a parallel, standard simplex
solver, but now implemented for graphics processing units (GPUs).

1
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Figure 1.1: A schematic of a typical commodity workstation (c. 2012). Note
that the memory controllers (MC) are integrated into the CPUs, but are shown
separately here for clarity.

i7 is the major focus of this thesis, and is covered in the next chapter. It
is a parallel, revised simplex solver for primal block-angular problems, which
can automatically convert many general programs to this form. Such problems
have a particular structure to their basis matrices, and it is this observation
which is used to enable parallelism, rather than a more common column- or
cut-generation mechanism.

The final chapter describes hmf, which is based on the Hopdm interior point
library [7, 49]. It provides accelerated parallel linear algebra for general prob-
lems, and also routines for quadratic assignment problems which do not require
the constraint matrix to be formed explicitly.

In the appendices, a selection of simplex subsystems are subjected to deeper
analysis. This includes some sections, including an algorithm for dual phase
one, and a primal ratio test, which are believed to be novel.

1.2 Parallel commodity hardware

The principal driver for this work is a change in the characteristics of the com-
puter hardware on which a solver for linear programming will run. Some of those
characteristics are now described, in order to give context to the discussion in
later chapters.

The focus in this thesis is on codes for a single workstation, having a small
number of processor packages, each containing multiple cores. This is a very
common and affordable type of workstation at the present time. Both compute
clusters and distributed networks of machines are intentionally excluded from
consideration by this definition, the former due to their high cost, and the
latter owing to the impossibility of rapid communication between the constituent
parts.



1.2. PARALLEL COMMODITY HARDWARE 3

1.2.1 Main memory

Main memory is the space available on a system for programs and working data.
The installed capacity of main memory has increased much more rapidly than
the size of typical linear programming problems, to the extent that holding
multiple copies of the required working data in memory, arranged in different
ways, is now practicable. Indeed, for all but the largest problems, the memory
available to a solver is essentially infinite. This in turn means that principal
storage is no longer, for linear programming, a key hardware component.

In most current systems, main memory takes the form of random access
memory (RAM), or more particularly SDRAM (synchronous dynamic RAM).
This is installed in modules, vast arrays of transistor-based cells which can hold
charge only for a short time - they “leak”. The temporary nature of DRAM
storage requires that each of its elements be refreshed at regular intervals, but
while this is being carried out, a cell will be unavailable for use.

In order to read from, or write to, a particular memory location, a relatively
complex, multi-stage process must be invoked. Within each module, memory
cells are arranged into rows and columns, and the particular row and column of
interest must be separately selected before a read request can be initiated. Man-
agement of DRAM is now typically overseen by dedicated memory controllers
built into each processor package.∗

Memory is clocked at a relatively low frequency compared to the processors,
which means that memory accesses happen natively at a far lower rate than
processor operations. This affects both memory latency , the fixed cost time to
complete any memory access, and memory bandwidth, the maximum transfer
rate.

SDRAM memory modules allow requests to be pipelined, with the next
request beginning before the previous one has completed. DDR (double data-
rate) memory enables multiple bits to be accessed per memory clock cycle,
and per bus line, by a clever scheme of interleaving, but this in turn creates
a minimum burst of memory which must be read. A dual channel memory
controller will map alternating runs of memory addresses to each of a pair of
modules, allowing memory accesses to be serviced from both simultaneously.

The outcome of these, and other, technologies is that memory accesses near
to one another incur less overhead from addressing, and that sequential access
may benefit from additional burst acceleration. There is little protection at this
level, however, from latency, so that any read direct from main memory can be
expected to be extremely expensive. There is significantly more detail on these
topics in [34].

1.2.2 Cache

Caches are small memories, separate from main memory, which hold code and
data for immediate use. They are usually located physically on the same sili-
con die as the processors, and constructed from static random access memory
(SRAM), which is much faster and more expensive than SDRAM, and has much
higher power consumption.

∗Until recently, the memory controller was part of a separate unit, called the Northbridge,
but this design does not scale up as the number of processors increases.
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The processor caches provide a transparent mirror of main memory, invisible
to the program, such that all memory accesses are serviced from them, and only
when a memory location is not already cached is a request issued to main
memory. Each cache is made up of lines, fixed length blocks of storage that
must be read from or written to RAM at the same time, and each of which
holds the data from a set of contiguous addresses.

The particular addresses a cache line holds will vary during the execution of
a program, so that to perform a memory access, a processor must determine the
relevant line of cache which either holds, or will hold, the requested location.
In a direct-mapped cache, there is only one line which could hold each address,
so that determining whether it is already in cache can be done quickly, but two
parts of memory may end up competing for the same line. In a fully associative
cache, every line may represent any part of memory, but finding the right line
for each operation becomes correspondingly more expensive. Rather than these
extremes, most caches are set associative, where each part of memory may map
to some small number of cache lines (say between 2 and 16, depending on the
particular processor and cache).

Caches are organised in a hierarchy, from L1, with the highest bandwidth,
lowest latency and smallest size, to L3. The hierarchy may be exclusive, so that
an address is stored exactly once in any cache in the hierarchy, or inclusive so
that the content of each cache is replicated at every level below it. An individual
cache may be specialised for instructions or data, or may store both, and it may
be shared amongst all the cores in a package, or between a subset of those cores,
or it may be for the exclusive use of a single core. There are usually two L1
caches per core, one for instructions and one for data, with higher levels of cache
being shared, and storing both instructions and data.

A substantial performance advantage exists for codes which arrange for all
working data to already be in the processors’ caches when it is required, but
this may not always be possible. When it is not, and cache misses are common,
then the serial execution speed will be dominated by the number of memory
accesses, rather than the number of processor operations as has traditionally
been assumed. Note also that when making scattered reads of a few bytes from
many locations, all accesses must still be made in units of a cache line, and the
vast majority of the data returned from main memory will be unused.

1.2.3 Cores

A core can be thought of as reading and executing a stream of instructions
from main memory in the order in which they are stored. Operations within
the core are synchronised by a clock pulse, and by raising the frequency of this
clock, a core can be made to execute instructions more rapidly. However, the
power consumption of a core is an approximately quadratic function of its clock
frequency, with most of this energy being dissipated as heat.

Each instruction will require some number of clock cycles for the core to
complete. Rather than increasing the clock frequency to improve performance,
it is possible to instead reduce the number of instructions which are required, or
to reduce the number of cycles per instruction. In the former case, arithmetic
operations can be vectorized , so that fixed length arrays, or pairs of arrays, are
modified by a single instruction.

Many instructions also involve common steps, so that by separating out the
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Figure 1.2: A simplified schematic of interactions in a typical processor core,
based loosely on the AMD K10 architecture.

functional units involved in each stage, it is possible to perform different parts
of several instructions simultaneously. This optimization, termed pipelining ,
significantly increases the rate at which instructions can be completed, even
though many cycles are still required for each one. The individual stages are
called micro-operations (μops).

In a superscalar core, two or more mutually independent instructions can be
performed at once, as the core contains several units capable of performing each
stage. To optimize the internal scheduling of micro-operations, the instruction
stream can be re-ordered dynamically as it is read to bring more functional units
into use. This is termed out-of-order execution, and is done is such a way as to
be indistinguishable from executing the instructions in the order in which they
were written.

Both pipelining and superscalar design require the instructions which will
be executed next to be known, but this may be impossible due to conditional
logic. The branch prediction unit guesses whether or not a branch will be taken.
When it guesses incorrectly, all work performed on instructions which lie on the
wrong side of the branch must be thrown away, which can be very expensive.
Similarly, to overcome the latency of reads from main memory, a predictive
preloader looks for patterns in the memory accesses a code performs, and loads
the data which will be needed next into cache.

Branch mispredictions in tight loops can be avoided so long as one direction
of branching is much more likely than the other; when the two sides are equally
likely, then poor performance will result. A typical base rule for branch pre-
diction is “forward not taken, backward taken” which can be used to optimize
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code. Also, conditional stores can eliminate branching entirely for simple tests.
To optimize for preloading, data should be accessed sequentially with a fixed
stride.

A load-to-store dependency occurs when one instruction depends on the re-
sult of the previous instruction. In this case, the internal parallelism of the core
will not be invoked, and many of the redundant superscalar units will sit idle.
By spacing such instructions out, for example by performing several calculations
at the same time, such waste can be avoided.

In simultaneous multi-threading (SMT), storage for several sets of registers
and processor states is available for each core, giving multiple logical processors.
Such hardware threads must all compete for the same execution resources and
caches, however, and this can be to the detriment of high performance codes.

Sparse arithmetic, where many elements of each vector are zero, and effi-
ciency requires operating only with the scattered nonzero elements, does not
fit the previously described optimization guidelines. Sparse routines must be
expected to achieve far lower instruction throughput than their dense counter-
parts, even though they remain more efficient than applying dense routines to
mostly zero vectors. More information can be obtained from the optimization
reference manuals provided by processor manufacturers [2, 1].

1.2.4 Packages

Several cores may be placed together upon a single silicon die, forming a proces-
sor package. Such cores are not fully independent, as they contend for the use
of memory controllers and the larger memory caches. In addition, the package
may change the clock frequency of its cores depending upon how many of them
are in use, so that the speed of a core depends on the number of its peers which
are active.

Multiple processor packages may be installed in a single system. Each pack-
age will have its own memory attached, so that main memory is fragmented.
Reading data from another package’s memory may be more expensive for a core
than reading from its own. This difference is called non-uniform memory access
(NUMA).

The computer system as a whole provides the illusion of a single memory
space, but the contents of any location depend not just upon the associated
DRAM, but also upon the caches of all the cores in all of the installed packages.
To write to memory, a core must claim the memory addresses underlying the
cache line of interest, invalidating any copies of those same addresses in all other
cores’ caches. This forms the basis of the MESI∗ cache coherency protocol .

These behaviours have several implications for software design. When work-
ing data is stored in the memory associated with a single package, the bandwidth
to the memory of the other packages is unused, and additional latency is ex-
perienced by their cores. Similarly, writing to adjacent memory locations from
different cores forces rapid changes of ownership of the relevant cache line, called
cache pinging , which degrades performance.

The operating system has ultimate control over the physical location of data
and processes, and this may exert an unfortunate influence on the performance

∗MESI is named for the states each cache line may be in: modified, exclusive, shared or
invalid.
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of a parallel program. In particular, the operating system may favour scheduling
to a single package for power performance, which can in turn lead to all active
cores operating at lower clock frequencies than they might otherwise. In the
presence of SMT, thread pairs may be favoured for scheduling together, even
though these represent just a single set of execution resources.

1.2.5 GPUs

A graphics processing unit (GPU) is a separate device, including its own mem-
ory, which functions as a coprocessor. Its design is intended to permit calcu-
lations to be performed across a two-dimensional grid at high speed. This is
made possible by assuming limited interdependence of the solution processes at
different positions.

A typical device contains a set of streaming multi-processors, each of which
is capable of processing simultaneously, in parallel, every element from a two-
dimensional block of the calculation grid.∗ In turn, each block is subdivided into
warps, and within a warp all computation is vectorized, and so occurs in lock-
step. A single point in the grid is called a thread . If two threads in the same
warp require different instructions to be executed, a warp divergence occurs,
and both sets of instructions are performed, with the results for some threads
being discarded. This is called symmetric multi-threading

Memory reads are also vectorized, which is called memory coalescing , so that
the requests made by the threads in a warp are aggregated into a single block,
and this allows a wider data bus to be used. When the threads in a warp do
not simultaneously access adjacent memory locations, several memory requests
must be issued, and this carries significant performance penalties.

Each streaming multi-processor also sets aside a small amount of local mem-
ory as data cache. This memory is arranged into banks, and each bank can
service only one request at a time. When two threads access the same bank, a
bank conflict occurs, and the accesses must be performed one after another.

Programs for the GPU are written as kernels. These are functions which
execute on every thread in the grid, and where it is possible to communicate
with other threads in the same warp without synchronization, and with other
threads in the same block with synchronization. A kernel may execute on the
threads in two different blocks in any order, so that these threads need not all
be simultaneously active, and this makes synchronization between threads in
different blocks impossible. Complex programs must therefore be broken up
into many kernels, called in a strict sequence, so that each kernel can finish
completely before the next begins.

1.2.6 Test systems

The results provided in this thesis were obtained from two test systems, which
are described here for future reference.

grunty This machine has two quad-core AMD Opteron 2378 processor pack-
ages, each with a clock frequency of 2.4 GHz, and a total of 16 GiB of DDR2

∗The terminology in this section is derived from NVIDIA’s technical documentation. Other
manufacturers may use different terms, but the concepts are much the same.
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667 MHz SDRAM. The Opteron 2378 is based on AMD’s Shanghai core, part
of the K10 architecture, and fabricated at 45nm. It has separate 64 KiB 2-way
set associative L1 caches for instructions and data for each core. Each core also
has its own unified 512 KiB sixteen-way set associative L2 cache. The 6 MiB of
unified L3 cache are shared between all cores in a package. The two packages are
connected by AMD’s HyperTransport (HT). The best supported vectorization
on this platform is Streaming SIMD Extensions 2 (SSE2) and SSE4a.

grunty also has an NVIDIA Tesla C2070 graphics card with 6 GiB of 3 GHz
GDDR5 RAM. The Tesla C2070 is based on NVIDIA’s Fermi architecture. It
contains 14 streaming multiprocessors, each clocked at 1.15 GHz, and is capable
of executing 448 threads simultaneously. This gives the card an overall peak
theoretical performance of 515.2 GFLOPS in double precision.

richtmyer This machine has two octo-core Intel Xeon E5-2670 processor
packages clocked at a nominal 2.6 GHz, and a total of 64 GiB of 1600 MHz
dual-ranked RDIMMs. The Xeon E5-2670 is based on Intel’s Sandy Bridge ar-
chitecture, and is fabricated at 32nm. Each core has separate 32 KiB eight-way
set associative L1 caches for instructions and data, and a 256 KiB eight-way set
associative L2 cache. The 20 MiB of L3 cache is shared amongst all the cores in
a package. The two packages are connected by Intel’s QuickPath Interconnect
(QPI). This platform supports Advanced Vector Extensions (AVX), and con-
tains a turbo-core facility: two cores may run at 3.3 GHz, four at 3.2 GHz, six at
3.1 GHz or eight at 3.0 GHz. Simultaneous multi-threading (Hyperthreading)
is turned off for this machine.

1.3 Linear programming

The constrained mathematical programming problem takes the form

maximise f(x)

subject to gi(x) ≤ 0 i = 1 . . .m1

hj(x) = 0 j = 1 . . .m2

x ∈ X .

(1.1)

Solving general problems of this form is extremely expensive, but as more re-
strictions are placed upon the constituent parts, f , g, h and X , so the efficiency
of the solution techniques available improves.

When there are no equality constraints, the set X is convex, and when the
functions −f and gi are convex and differentiable on X , (1.1) simplifies to the
convex programming problem,

maximise f(x)

subject to gi(x) ≤ 0 i = 1 . . .m.
(1.2)



1.3. LINEAR PROGRAMMING 9

For such problems, the Karush-Kuhn-Tucker (KKT) [81] conditions,

∇f(x) =

m∑
i=1

yi∇gi(x)

gi(x) ≤ 0 i = 1 . . .m

y ≥ 0

yigi(x) = 0, i = 1 . . .m

(1.3)

are necessarily satisfied at any optimal point by some multipliers y, provided
that certain regularity conditions on the problem hold. There are several pos-
sible such regularity conditions, with the most common being (i) linearity of
f and all gi; and (ii) Slater’s condition [108] which requires that there exist a
strictly feasible solution (i.e. x such that all gi(x) < 0).

The linear programming problem is a further specialisation∗ of the convex
programming problem, and is the main focus of this thesis. It may be stated as

maximise c>x

subject to Ax ≤ b
x ≥ 0

x, c ∈ Rn, b ∈ Rm, A ∈ Rm×n.

(1.4)

Note that there are several equivalent formulations of the linear programming
problem, and in any given section the most convenient for the material at hand
will be used.

The KKT conditions are necessarily satisfied at any optimal solution of this
problem, and may be stated in this context as

A>y ≥ c (1.5a)

Ax ≤ b (1.5b)

x, y ≥ 0 (1.5c)

y>(Ax− b) = 0 (1.5d)

x>(A>y − c) = 0. (1.5e)

Although the obvious strategies for solving (1.4) focus on the variables x given
in the problem definition, the inherent symmetry of the KKT system suggests
it is equally possible to solve for y,

minimise b>y

subject to A>y ≥ c
y ≥ 0

y, b ∈ Rm, c ∈ Rn, A ∈ Rm×n.

(1.6)

This is simply the partner problem in y whose KKT conditions are the same as
those for the original problem in x, and is called the dual of that problem.

∗The presence of equality constraints in a linear program is consistent with this definition,
as a linear equality can be written as two linear inequalities of opposite sign, both of which
are convex.
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Consider any y satisfying (1.5a) and (1.5c), and any x satisfying (1.5b) and
(1.5c), then

c>x ≤ y>Ax ≤ b>y, (1.7)

which is termed weak duality , and holds for primal-dual pairs of many problem
classes. If x and y additionally satisfy (1.5d) and (1.5e), then

c>x = y>Ax = y>b, (1.8)

which is termed strong duality : the optimal objective values of (1.4) and (1.6)
are the same. This is one condition of the fundamental strong duality theorem
[44].

1.3.1 The simplex method

Simplex methods are algorithms for solving linear programming problems, al-
though there are simplex-like approaches for more general classes of program
[121, 6, 47]. To simplify the discussion of their basic operation, consider a
problem in simplex normal form,

maximise z

subject to Ax+ s = b

c>x− z = 0

x, s ≥ 0,

(1.9)

where slack variables s and an objective variable z have been added to (1.4) to
create a system of equations with non-negative variables.

Suppose that b ≥ 0, so that (x, s, z) = (0, b, 0) is a feasible solution to (1.9).
If cq > 0, then increasing xq will also increase z: if the equations are still to be
satisfied then xq = θ requires z = θcq, and si = b− θaiq.

There are now two possibilities. If si ≥ 0 for all positive values of θ, then
(1.9) is unbounded , which is to say that no optimal solution exists to the problem
as posed. This can be observed trivially: given any proposed upper bound u
on the objective, a feasible solution with a superior objective is obtained for
θ = (u+ 1)/cq.

Alternatively, there exists some θ′ such that for any θ > θ′, s 6≥ 0, and a
maximum step of θ′ can be made in xq. The previous procedure can now be
repeated, obtaining a sequence of solutions which are monotonically increasing
in the objective variable z, and terminating∗ at some solution (x̄, s̄, z̄), or with
the conclusion that the problem is unbounded.

Proposition 1.3.1. There exist problems such that the solution (x̄, s̄, z̄) can
never be optimal.

Proof. Consider the problem in Figure 1.3,

maximise x1 + x2

subject to 2x1 − 4x2 ≤ 1

−4x1 + 2x2 ≤ 1

x1 + 4x2 ≤ 4

4x1 + x2 ≤ 4,

(1.10)

∗There are finitely many variables, so for this simple algorithm, termination is guaranteed.
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x
1

x
2

(½,⅞)

(⅞,½)

(⅘,⅘)

x1+x2

Figure 1.3: An example linear programming problem in two variables and four
constraints.

which has optimal solution ( 4
5 ,

4
5 ). First increasing x1 gives solutions of ( 1

2 , 0),
( 1
2 ,

7
8 ), while the case for x2 is analogous. Note that if any element of b had

been zero, a situation called degeneracy , then the previously described algorithm
could make no progress toward a solution.

Suppose that after increasing xq, a slack sp is identified which will become
negative for xq > θ′. The goal is to reformulate the problem, so that the form
(1.9) is restored, in which only slacks take nonzero values. Since xq ≥ 0, it
must become the slack for some equation, and as sp = 0, the pth equation is a
candidate. Solving for xq in this equation yields∑

j 6=q

apj
apq

xj +
1

apq
sp + xq =

bp
apq

, (1.11)

and replacing xq throughout the remainder of the equations gives∑
j 6=q

(
aij − aiq

apj
apq

)
xj−

(
aiq

1

apq

)
sp+si =

(
bi − aiq

bp
apq

)
(i 6= p). (1.12)

The z constraint can be treated similarly, yielding∑
j 6=q

(
cj − cq

apj
apq

)
xj −

(
cq

1

apq

)
sp − z =

(
0− cq

bp
apq

)
, (1.13)

at which point the entire problem can be relabelled, by letting x′q be sp and s′p
be xq, and a new problem obtained in the same form as (1.9),

maximise z

subject to A′x′ + s′ = b′

c′
>
x′ + z = b0

x′, s′ ≥ 0,

(1.14)

for which (0, b′, b0) is a feasible solution.
This modified step can now be applied repeatedly, terminating with a solu-

tion (x∗, s∗, z∗) or the conclusion that the problem is unbounded. The algorithm
which results is the simplex method or, more precisely, the primal, column-wise
simplex method.
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Proposition 1.3.2. If a solution (x∗, s∗, z∗) is found, it is an optimal solution
to the problem (1.9).

Proof. By reformulating the problem at each step, the simplex method has
terminated with both a solution value and a problem statement of the form
(1.14). To simplify notation, the primes in the reformulated problem will now
be dropped; note that a solution in the original problem can simply be relabelled
to become a solution in the reformulation, and vice versa.

There are two special properties of this reformulated problem:

i. c ≤ 0: were there any component cq > 0, further iterations would have
occurred.

ii. x∗ = 0: the point (0, b, 0) was assumed to be an initially feasible solution,
and at each iteration the component of x which increased became a slack
in the subsequent iteration.

Consider any feasible point (x, s, z). Now x ≥ x∗ = 0, and c ≤ 0, so

z = c>x+ b0 ≤ c>x∗ + b0 = z∗ (1.15)

and hence z∗ is optimal.

Although Proposition 1.3.2 establishes that a solution returned by the sim-
plex method is optimal, whether the simplex method does indeed terminate
depends largely upon the means by which the variables to increase xq are cho-
sen. Criteria which lead to a method which provably terminates are not used
in practice, because they require too many iterations to converge. See [18] for
more details.

Geometrically, a linear programming problem has a feasible region bounded
by the hyperplanes of the non-negativity constraints on the variables and slacks,
and this means it is a polytope. The initial solution (0, b, 0) is a vertex of this
polytope, as at least n orthogonal hyperplanes intersect here in n dimensions
(one for each variable). Both the simplex method and our original, greedy
algorithm begin by moving along some axis until a constraint would become
violated. This point is another vertex, as once again n linearly independent
hyperplanes intersect in n dimensions.

The weakness of the greedy algorithm was that it could only move along
the axes of the problem as stated. The simplex method, however, rotates the
axes of the current problem so that they are the edges leading away from the
current vertex, and can then follow these edges from vertex to vertex, up to an
optimum. The rotation applied can be derived directly from the set of slacks,
or basis, at a given iteration, which has particular significance in practice.

1.3.2 Simplex developments

The basic operation of the simplex method has now been described. A practical
simplex solver, however, will contain numerous enhancements to improve numer-
ical stability and performance. Some of the most important such modifications
are now described.
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The revised simplex method Take any iteration of the simplex method,
and let B be a square matrix drawn from [AI ], consisting of those columns
which multiply the variables currently labelled as slacks in the reformulated
system. This problem can now be written

B−1Ax+B−1Is = B−1b, (1.16)

where the existence of an inverse follows from the operation of the simplex
method. At each iteration, only the costs c in the updated problem are needed
to select a variable to increase, and only the right-hand side b and column aq of
the current problem are needed to select a slack to relabel. Maintaining all of
the mn coefficients in the formulation can thus be avoided if B−1 is maintained
instead, and the resulting method is termed the revised simplex method [32], in
contrast to the previously described standard simplex method .

General form Models are usually constructed in a more compact form than
simplex normal form, for example

maximise c>x

subject to L ≤ Ax ≤ U
` ≤ x ≤ u
x, c ∈ Rn, A ∈ Rm×n,

`, u ∈ Rn, L, U ∈ Rm.

(1.17)

where R def
= R ∪ {−∞,∞}.

Rather than transforming such problems to simplex normal form, which
requires additional variables and constraints, the more general form can be
used directly in the simplex solver.

Feasibility The point (0, b, 0) was previously assumed to be a feasible solution
to the initial linear program, but there are valid programs with b 6≥ 0. Such prob-
lems can be treated by introducing new variables which satisfy the constraints,
and whose activity is penalised by some large factor M . For sufficiently high
penalties, this new program has the same solution set as the old if that program
is feasible. In practice, solvers introduce such variables only implicitly, and M
is treated symbolically rather than being assigned some particular value [91].
See Appendix A for more details.

Pricing The means by which the variable to increase xq is selected at each
iteration plays a major rôle in determining the number of simplex iterations
required to solve a problem. An obvious strategy is to find the variable with
the most attractive cost, but the iterations required to solve a problem can be
reduced if cq is scaled according to the steepness of the edge which it prices. This
is called normalised pricing , and numerous methods for obtaining estimates of
steepness exist, either from exact edge norms [48, 41], or an approximation to
them [63, 28, 113, 41, 56] (see Appendix C for comparisons). To reduce instead
the cost of each iteration, partial pricing may be employed, in which costs are
available for only a subset of the columns at a given time. How to select an
attractive subset of columns over which to optimize has been extensively studied
(see e.g. [92] for a review).
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Ratio test The ability to find a reformulation in which only slacks take
nonzero values is dependent upon finding some sp which becomes zero, and
can thus be labelled a variable. This process is called the ratio test , and a nu-
merically resilient version is based on the thick pencil approach [63], in which it
is assumed to be acceptable to violate each constraint by some small amount -
the “width” of the pencil mark. This additional freedom can allow a choice of
slack to relabel, which is conventionally made for numerical stability.

At a degenerate vertex, the simplex method may be unable to make any
progress before violating another slack. In the worst case this leads to non-
termination, or cycling , but more typically performance is only degraded. To
reduce these losses, a perturbation may be applied to b to remove the degeneracy
[98, 122], or the feasible region may be continuously expanded to ensure progress
is made [46].

The dual simplex method The simplex method so far described works
directly on the primal problem, and is called the primal simplex method . The
dual simplex method [84] is the same algorithm applied implicitly to the dual
problem, whilst maintaining only the current primal formulation as before. The
dual simplex method begins at a problem with c ≤ 0, and at each iteration
selects a slack to make feasible, terminating with b ≥ 0. There is detailed
discussion of a modern dual simplex implementation in [78].

1.3.3 Parallel simplex

For the standard simplex method, the calculation of the full reformulation of the
problem (called the tableau) at each iteration has been parallelised on several
generations of hardware [127, 36]. Performance is for the most part hardware
limited, as the strictly serial parts consume little time, and near linear speed-up
is possible.

For the revised simplex method, the calculation of πA, used to find reformu-
lated costs, or rows of the tableau, has been parallelised many times [106, 66],
and is hardware limited. Bixby and Martin [17] additionally performed the
update of the reduced costs and the dual ratio test in parallel. If an explicit
dense inverse of B is used, this can be updated with the same properties as the
standard simplex tableau [106, 110].

Parallelising the remainder of an efficient revised simplex code is more diffi-
cult. Two asymmetric, task-parallel schemes were described by Hall and McKin-
non [60, 61] which dedicate different parts of the simplex algorithm to different
workers. Parsmi [60] has six distinct worker rôles and achieved speed-up of
up to 3 on 6 processors. Asynplex [61], with four worker rôles, achieved a
reported speed-up of up to 5 on 13 cores. As this thesis was being written, For-
rest [40] described Aboca, a task-parallel division of the dual simplex method
which uses Cilk [19] to provide self-balancing parallel primitives. The speed-up
achieved reached 1.8 on two cores.

Exploiting problem structure to improve parallelism has been attempted by
several authors. Bodurog̃lu [21] implemented a hybrid parallel standard simplex
for problems with generalised upper bounds. Lubin et al. [86] implemented a
revised method on a distributed memory cluster, making use of a structured
basis for large, dual-angular, stochastic problems, and obtained some speed-ups
of over 100x on 128 cores.
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Structured problems can also be exploited with a decomposition strategy,
so that several serial simplex solves occur in parallel [115, 65]. This has the
disadvantage that the performance of such decomposition schemes is generally
inferior to the revised simplex method in serial, even though their parallel per-
formance is, for the most part, hardware limited [115].

A fuller review of the history of parallel linear programming in the context
of the simplex method can be found in [59].

1.3.4 Interior point methods

Interior point methods are algorithms for solving general convex problems, in-
cluding linear programming problems as a special case [128 translated in 75;70].
The underlying theory for interior point methods is somewhat involved, and
beyond the scope of this thesis. As such, this section contains only a high level
overview of the steps such methods perform. For a fuller description, includ-
ing proofs of convergence and polynomial complexity, the interested reader is
referred to [124, 103].

Consider a problem of the form

minimise c>x

subject to Ax = b

x ≥ 0

x, c ∈ Rn, b ∈ Rm, A ∈ Rm×n,

(1.18)

having dual

maximise b>y

subject to A>y + s = c

s ≥ 0

s, c ∈ Rn, y, b ∈ Rm, A ∈ Rm×n.

(1.19)

Suppose feasible solutions are known for the primal problem, x̄, and the dual
problem, (ȳ, s̄), and that these solutions lie in the interior of the feasible region,
that is to say (x̄, ȳ, s̄) > 0. The original problem may be modified by adding a
barrier term, as in

minimise c>x− µ
n∑
i=1

log xi

subject to Ax = b

x > 0,

(1.20)

and this has dual

maximise b>y + µ

n∑
i=1

log si

subject to A>y + s = c

s > 0.

(1.21)

Although the objective function is no longer linear in the barrier problems, it
is nevertheless convex, and Slater’s condition (the existence of an interior point)



16 CHAPTER 1. INTRODUCTION

is satisfied by assumption. Therefore, at any optimal point the appropriate KKT
conditions,

Ax− b = 0

A>y + s− c = 0

xisi = µ

x, s > 0,

(1.22)

hold by necessity. Note that although the complementarity condition has been
perturbed, the remainder of (1.22) are identical to the KKT conditions for the
original problem.

An optimal solution to the original problem is not necessarily unique, rather
it lies in some linear subspace of dimension r ≥ 0. However, it is a surprising
fact that (1.22) have a unique solution in the positive orthant for any µ > 0.
The curve defined by such solutions is called the central path.

Intuitively, rather than seeking one of the many solutions for which µ = 0,
the central path is pursued as µ→ 0 in the modified problems, in the hope that
this will reveal a solution for µ = 0. Surprisingly, this is a successful strategy,
and (x, y, s) on the central path tend to the analytic centre of the set of optimal
solutions for the original problems as µ tends to zero.

For such methods to be practical, it is necessary to be able to solve for
points on the central path to some degree of approximation. Dropping the
positivity requirements on x and s, and moving µ to the left hand side, this can
be considered to be a problem of the form

F (x, y, s) = 0, (1.23)

so that a search for a solution to the perturbed KKT conditions can be recast
as finding a root of F which is non-negative in x and s.

One general approach to finding the roots of functions is Newton’s method
[100]. To apply it to (1.22), the KKT equations are linearised around the current
estimate at each iteration, and a search direction is found using A 0 0

0 A> In
S 0 X

 ∆x
∆y
∆s

 =

 b−Ax
c−A>y − s
µ−XSe

 , (1.24)

which can be calculated directly by inverting the left hand side. A subsequent
line search is performed to determine the distance of the step to make. It is
surprising that this process will reliably converge to a positive root, given how
few restrictions are placed upon the initial estimate.

1.3.5 Interior point method extensions

As for the simplex method, an interior point solver will contain many enhance-
ments for speed, convergence and stability. This section briefly outlines some of
the most important.

Predictor-corrector Rather than solve accurately for each point on the cen-
tral path, it is sufficient to make an approximation to it, and then update from
the new position. Mehrotra [93] first described the pattern used in many existing
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solvers: the usual update is called the predictor and is taken as a first estimate
of the step to make. A second solve is then performed to calculate the correc-
tor , which balances distance from the central path with immediate progress in
decreasing µ, and also contains second order terms from the predictor.

The normal equations The equations (1.24) are not in practice solved in
this form. The most common reduction is to a symmetric, positive definite form
now called the normal equations [96]

(AXS−1A>)∆y = AXS−1
(
A>y − c+ σµX−1e

)
+Ax− b, (1.25)

where σ is the centering parameter. The normal equations are discussed in
detail in [5].

Cholesky factorisation The most expensive part of an interior point iter-
ation is the factorisation of the normal equations. The standard technique is
to use a Cholesky factorisation of the form AXS−1A> = LL> [14], in which
pivoting for numerical stability is unnecessary. This means that an extensive
symbolic analysis can be performed before the first iteration to identify struc-
ture in the target matrix, as this analysis will remain valid throughout the solve
[67].

Infeasible methods The existence of a strictly interior point has so far been
assumed, but there exist feasible linear programs for which such a point does
not exist. Infeasible interior point methods [79] remove this restriction, and are
thus preferred in practice. Although all iterates generated are strictly infeasible,
they tend as before to an optimal solution.

1.3.6 Parallel interior point methods

Unlike the simplex method, interior point methods have been shown to lend
themselves naturally to parallelisation. Firstly, significant speed-ups have been
reported for parallel interior point solvers for structured problems [88, 26, 35,
54, 107], with speed-ups ranging from 6 times on 18 cores [88], to 22 times
on 24 cores [52]. For unstructured problems, parallelising just the Cholesky
factorisation can give excellent results [16, 71, 8]. Reported speed-ups range as
high as 9 times on 16 cores [8] and 108 times on 256 cores [71].
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Chapter 2

i6 and i8 - Parallel standard simplex

2.1 Introduction

The standard simplex method has been implemented for parallel hardware on
numerous occasions [e.g. 72, 29, 36, 116, 126, 85, 82], with reported speed-up
ranging from 50 times on 64 processors, to 12 times on 16 processors. These
results are a consequence of the update of the tableau consuming the majority
of such a code’s runtime, and that update being embarrassingly parallel - the
calculation of each coefficient can be performed independently.

However, the standard simplex method does not form the basis of com-
petitive solvers for general problems. This may be attributed to three causes.
Firstly, few of the tableau coefficients are required at each iteration, and main-
taining them all is far more expensive than updating a sparse basis factorisation
and calculating only the required elements.

Secondly, the tableau requires a dense memory block of the same dimensions
as the constraint matrix, and for large problems this may be an unacceptably
large amount of storage. In contrast, the sparse revised simplex method has
memory requirements in line with the number of nonzeroes in the constraint
matrix, and this is typically orders of magnitude less.

Thirdly, whilst a new factorisation of the basis matrix can be calculated
efficiently, and at regular intervals, in the revised simplex method, rebuilding
the standard simplex tableau is so expensive as to make it a last resort in any
practical code. This leads to numerical error accumulating during a solve.

However, for dense, near-square, linear programming problems, the standard
simplex method is competitive even in serial. Such problems can arise in practice
as, for example, master programs in decomposition methods [72].

This chapter describes three novel implementations of the standard simplex
method on parallel hardware. They are shown to have a substantial performance
advantage over two commercial solvers on a class of random, dense problems.

2.2 Multi-core standard simplex

i6 and i6b are novel implementations of the standard, primal simplex method
for multi-core machines, which are capable of limited maximum improvement
pricing. i6 is optimized for general problems, which typically have sparse
tableaux, whereas i6b is optimized for the fully dense case.

19
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Figure 2.1: Data layout with four workers in i6 and i6b. Communication is
limited to placing a pivot column into the shared area at each iteration.

2.2.1 Algorithmic elements

Only the reduced tableau, B−1N , is stored, where N is the matrix of the non-
basic columns. Updates are performed uniformly column-wise, by first resetting
the pivot column to the identity, and then applying the same update as for every
other column. This requires that the pivot column be cached before the update
begins.

In i6, the nonzero positions of the pivot column are packed into an indexed
array to reduce the number of memory locations touched, and the update of
any column with a zero in the pivot row is skipped. In i6b, these steps are not
performed, so that a memory copy is sufficient, and vectorization of the update
arithmetic can occur.

Both codes perform phase one and two simultaneously, using steepest-edge
[80], but not composite [90], pricing. During the update, both the most at-
tractive column for improving feasibility (phase one), and the most attractive
column for improving the objective (phase two), are found, but a phase one
candidate is always preferred. The steepest edge weights are updated trivially
by

‖ai + ∆ai‖2 = ‖ai‖2 + 2a>i ∆ai + ‖∆ai‖2. (2.1)

Neither code will rebuild the tableau during a solve. To mitigate against
numerical error, the update is performed without a drop tolerance, so that
perturbed zeroes are not ignored. Also, extended precision is disabled in the
floating point units, which ensures that the result of a calculation does not
depend upon when a value is stored to memory.

The ratio test has two passes, the first being taken to find the largest step
that can be made within slightly expanded bounds, the second to find a nu-
merically stable pivot [63]. An infeasible basic variable may be moved to its far
bound, but this method does not create new infeasibilities.

As discussed in § 1.2, all cores in a package compete for memory bandwidth
and, on the test machines, a single core can consume the entire amount available
for its package. To reduce memory traffic as far as possible, only a single sweep
is required to update the tableau and edge norms, and to find the new incoming
column. This modification is believed to be novel, and means that only the
pivot column is read into memory more than once per iteration.
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Figure 2.2: Task parallelism with four threads in i6 and i6b. Synchronisa-
tion occurs twice per iteration, as the shared area moves from read- to write-
accessible.

2.2.2 Parallelism

As shown in Figure 2.1, the tableau is divided column-wise into stripes for
parallel solution, and each worker is assigned one stripe. The columns making
up a particular stripe are drawn at random from the constraint matrix, which
improves the load balance between workers on subsequent updates.

To avoid cache pinging, and improve data locality, one worker never directly
accesses the data of another, instead an area is set aside for the exchange of
candidates for the next pivot. At every iteration, each worker finds its most
promising incoming variable, performs a ratio test, and then stores the results
into the shared area. Each worker separately maintains its own copy of the
entire primal solution, but need only store reduced costs for its own columns.
This is shown in Figure 2.2.

Synchronising the workers after they have performed a ratio test on their
own candidate column is believed to be a novel approach. Previous column-wise
tableau implementations [e.g. 126] shared candidate columns first, and only then
performed a ratio test. One advantage of this scheme is the ability to perform
limited maximum improvement pricing between the candidates, where the best
improvement in the objective can be selected at no additional cost.

However, using maximum improvement pricing is not the default behaviour
of these codes, as despite its obvious attractions, this pricing scheme does not
appear to be superior to steepest edge normalisation (see Appendix C). Also,
i6 and i6b without this technique are not only deterministic, but also follow
identical paths with any number of threads, which is desirable in practice.
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2.3 Many-core standard simplex

i8 is an implementation of the standard, primal simplex method for GPUs. It is
written for NVIDIA devices, and consists in main part of sixteen CUDA kernels.
This is a complete simplex code, with all subroutines implemented entirely on
the device, which is able to begin its solve from an infeasible point, select pivots
in a numerically stable fashion, and make use of normalised pricing.

Previous implementations of the simplex method for such devices [55, 110,
82, 85, 15] have not been shown to be capable of solving real-world problems,
have not been tested on reproducible problem sets, and have been not been
benchmarked against competitive codes. As such, i8 is believed to be the first
practical simplex code for a GPU.

2.3.1 Algorithmic elements

A critical limit on the performance of GPU codes is the amount of data which
must be transferred between the host and the device [3]. In i8, all of the major
operations of the standard simplex method are performed in kernels, so that
only individual scalars and indices are read from the device at each iteration.
The host coördinates the solve, but is otherwise unused.

The reduced tableau B−1N is stored, and updated, column-wise on the
device, and to reduce the number of kernels which need to be scheduled, the
update is non-uniform, with the pivot column handled specially. The tableau
is treated as entirely dense. Both the pivot column and pivot row are cached
before the update begins, and to remove conditions from the update of a column,
the pivot row is first destroyed and then corrected using the cached copy.

As for the multi-core solvers, pricing uses steepest edge normalisation [80],
but the weights are recalculated directly during each tableau update. This is
a pure phase one code: columns are selected to improve feasibility, until there
are no such columns, and from then on columns are selected to improve the
objective function. The ratio test has two phases [63], but can only step a
variable to its near bound.

2.3.2 Parallelism

The tableau update is performed with one warp (32 threads) per column, with
every 32nd row being assigned to a given thread, ensuring memory access is
coalesced. Steepest edge subnorms are accumulated in shared memory, and
aggregated in parallel with log2(32) = 5 additions. Phase one and two costs are
updated by a second kernel. Explicit synchronisation is unnecessary throughout.

To choose a column on the device, a work array is first filled with the nor-
malised costs of all attractive variables. A kernel reduces this array to its maxi-
mum element in stages, as follows. Each block performs a complete reduction of
a section of the array, using barriers for synchronisation. Repeated calls to the
kernel are used to ensure that all blocks have completed their reduction before
the next stage begins.

To choose a row on the device, six kernels are used. The first tests all rows to
find the maximum step which preserves their feasibility with slightly expanded
bounds, saving this to a work array. The second performs a parallel reduction
to find the minimum such step. The third compares the column’s step within
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its expanded bounds to this minimum. The fourth finds each potential pivot
and writes it to the work array. The fifth performs a parallel reduction to find
the largest pivot. Finally, the sixth evaluates the column bounds, and signals a
bound swap if this is attractive.

The remainder of the sixteen kernels in i8 initialise steepest edge weights,
correct phase one costs for feasibility changes, interchange leaving and entering
variables, and update the primal solution.

2.4 Results

This section first presents results for real-world problems of small size, for which
the standard simplex method is viable, but not generally competitive. This is
to demonstrate that these codes are not limited to artificial instances as many
previous attempts have been. Results are then provided for a class of random,
dense problems for which the standard simplex method is expected to be more
attractive, and show these codes to have a significant performance advantage
over two commercial solvers.

In the following tables, a solution time is given for each code, along with an
accuracy score α, which is calculated as

α =

⌊
− log10

∣∣∣∣z − z∗z∗

∣∣∣∣ ⌋ , (2.2)

where z is the objective the solver obtains, and z∗ is the best known solution.
This is a measure approximately equivalent to the number of accurate significant
figures the solver achieves. The version of cplex used to generate these results
was 12.3. The version of gurobi used was 4.5.1. Note that the results given
below are from a single sweep, and that no problem specific tuning is applied
to any solver.

2.4.1 Standard test problems

The results in this section are for Netlib [99], which is a standard test set for
linear programming. These are no longer considered to be large problems, but
as a collection which have historically caused difficulties for solvers, they are a
meaningful test of a code’s stability and resilience. A few problems are known
to be very hard, for example PILOT, PILOT87 and DFL001.

i6 successfully solves 90% of the Netlib set to α ≥ 5. The failing problems
may be divided into three groups. The problems GROW22, NESM, PEROLD, PILOT.JA,
PILOT4, PILOTNOV and TRUSS are simply solved very inaccurately, which may be
attributed to accumulated numerical error during the solve. The problems QAP12,
and QAP15 cannot be solved within the allowed time of an hour. The remaining
two problems, PILOT and PILOT87, cannot be solved due to numerical failure.
Results for i6b are similar, but MAROS-R7 is additionally solved with low accuracy.

i8 successfully solves 95% of the Netlib set to α ≥ 5. As before, the failing
problems fall into three groups. The problems GROW22 and PILOT87 are solved to
low accuracy. The problem MAROS-R7 is unsolved due to numerical failure. Solves
for the problems QAP12 and QAP15 exceed the maximum allowed time of one hour.
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The commercial, revised simplex codes are significantly superior for these
problems, solving all but a handful of instances in negligible time, and all of the
remainder in fifteen minutes or less.

i6 has an 88% performance advantage in serial over i6b, and a 75% perfor-
mance advantage in parallel. Speed-up for both solvers peaks at 12 on 8 cores
for MAROS, with i6 showing super-linear speed-up for a further 10 problems. This
can be explained by the additional cache which becomes available as more cores
are committed. For the remaining 83 problems whose solve completes, the ge-
ometric mean of the speed-up for i6 is 2.37 on 8 cores. This is consistent with
speed being memory limited: eight cores have approximately double the avail-
able bandwidth of one, as they are distributed across two physical packages,
each with its own dedicated memory.

2.4.2 Dense test problems

The results in this section are for a class of random, dense problems having the
form

minimise c>x

subject to −ne ≤ Ax ≤ ne
x ≥ 0

where aij ∼ U(−1, 1)

c ∼ U(−1, 0)

c ∈ Rn, A ∈ Rn×n.

(2.3)

The instances generated are difficult, in the sense that all tested codes require
a large multiple of n iterations to solve them.

All tested problems can be solved accurately, but results are shown for only
one of the largest instances, as the commercial solvers take significant time to
reach optimality. Results for the dual simplex code of gurobi are also included,
to demonstrate that these problems appear to favour solution by the primal
simplex method.

In serial, the standard simplex codes outperform the revised solvers on every
instance, and this advantage only improves in parallel. For the largest problem,
a 10, 000× 10, 000 dense matrix, the solution time for cplex primal simplex is
approximately 25 days. The fastest revised code tested is the primal simplex
of gurobi, at around 3 days. The fastest standard simplex code, i8, requires
approximately 40 minutes. Even for the multi-core codes, solution time is under
six hours - over ten times faster than the fastest revised solver.

On the smallest problems, speed-up for i6 ranges between 7.6 and 9.0 on 8
cores, dropping to 2.6 on the largest problem. Speed-up for i6b ranges between
9.8 and 12.8 on the smallest problems, dropping to 2.3 on the largest. i6b

also experiences an approximately 8% performance advantage over i6 in serial,
rising to 14% in parallel.
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2.5 Conclusions

There are two limiting factors for multi-core standard simplex. Firstly, the stan-
dard simplex method itself is competitive only for problems which occur rarely
in practice. Secondly, increasing the number of available cores does not neces-
sarily increase the available memory bandwidth, and it is this bandwidth, rather
than processing power, which limits the speed of such a solver. This makes it
unlikely that there can be a standard simplex solver which is competitive for
general problems on current hardware.

The many-core standard simplex implementation delivers surprising perfor-
mance on the dense problem classes investigated. Contrary to previous reports
of the inaccuracy of GPUs for mathematical programming [55], excellent results
have been demonstrated in double precision arithmetic. When evaluating the
performance of this code, however, it is important to note that the device in
question is approximately twice as expensive as the workstation itself. The fac-
tor of ten performance on the largest problems must also be offset against the
difficulty of constructing such a code.
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Chapter 3

i7 - Parallel block-angular revised

simplex

3.1 Overview

The revised simplex method has seldom been implemented in sparse arithmetic
for parallel hardware. This may be attributed both to the scale of the under-
taking, and also to the apparently indivisible and serial nature of the major
subroutines of such a system.

The codes previously reviewed (see § 1.3.3) are predominantly task-parallel
divisions of the algorithm, with each worker given a particular serial subroutine,
or set of subroutines, to perform. Hall and McKinnon [60, 61] were able to iden-
tify as many as six such rôles, with the option to replicate some components for
additional performance, but their approaches relied on deferred communication,
and this caused stale data to be a source of inefficiency.

This chapter describes i7, a new, from scratch, data-parallel implementation
of the revised simplex method, in sparse arithmetic, for commodity, multi-core
hardware. It is based on two observations: firstly, that for problems with block
structure, it is possible to decompose, into independent units, the majority of the
computation involved in solves with the basis factorisation [74, 13]; secondly,
that many real problems either have this form [69], or can be automatically
brought into it using efficient partitioning techniques [38, 9].

i7 is the first known implementation of the revised simplex method which
maintains a compact, structured basis. Previous descriptions of such methods
have either been entirely theoretical [83, 74, 13], confined to the standard sim-
plex method [21], or have employed unstructured updates [86]. As such, this
chapter is believed to contain both the first description of the application of
modern simplex techniques to such a representation, and the first description of
numerical and sparsity considerations in this setting.

This code is competitive in serial with established, non-commercial systems
on some classes of problem, and is capable of reliably solving real-world prob-
lems. The structured form is shown to create only limited overhead, and speed-
up of up to two on two processor packages (eight or sixteen cores) is demon-
strated.

31



32 CHAPTER 3. PARALLEL BLOCK-ANGULAR REVISED SIMPLEX

3.2 Kaul’s method

The linear programming problem solved in practice is

minimise c>x

subject to Ax+ s = 0

` ≤ x ≤ u

−U ≤ s ≤ −L.

(3.1)

Suppose the nonzeroes of the constraint matrix A are laid out as
A0,1 . . . A0,r

A1,1

. . .

Ar,r

 , (3.2)

a form which has been widely studied [9, 13, 26, 25, 31, 38, 74, 107, 115] and is
called primal, or row-linked, block-angular form.

Two of the most expensive parts of an iteration of the revised simplex method
are the solve with basis matrix B, termed Ftran, and the solve with its trans-
pose, Btran. Kaul [74], and independently Bennett [13], observed that for
problems of the form (3.2), these operations may be largely decomposed by
block.

Proposition 3.2.1 (Lasdon [83]). B can always be permuted into the form
B0,0 B0,1 . . . B0,r

B1,1

. . .

Br,r

 , (3.3)

where Bi,i for i > 0 have full row rank. All submatrices Bi,j for i, j > 0 are
drawn from the corresponding [Ai,j I ]. The matrix B0,0 is a selection of columns
from the appropriate identity matrix.

Proof. B is made up of columns from [AI ], and the latter can be trivially
permuted into the form

I0 A0,1 . . . A0,r

I1 A1,1

. . .

Ir Ar,r

 . (3.4)

The matrix B has full row rank by assumption of invertibility, and therefore
all rows of B are linearly independent. Since each matrix Bi,i for i > 0 is simply
a set of rows of B, with only zero elements excluded, their rows are also linearly
independent, and therefore they also have full row rank.

As the blocks on the diagonal have full row rank, each contains a square,
invertible submatrix of full height. Permuting any remaining columns to the
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border, the working form of the structured basis,

B =


S0 S1 . . . Sr C1 . . . Cr

R1 T1
. . .

. . .

Rr Tr

 , (3.5)

is obtained, where S0 is B0,0, Ti are square invertible matrices within Bi,i, R is
the block rectangular remnant, and Si and Ci are matching partitions of B0,i.

3.2.1 Solving with B

Consider the forward solve with the basis matrix Ftran, Bx = b. The matrix
equation in the structured case is[

S C
R T

] [
x1
x2

]
=

[
b1
b2

]
. (3.6)

Using the invertibility of T , the lower part can be solved for x2, giving

x2 = T−1(b2 −Rx1). (3.7)

Substituting into the upper part yields

(S − CT−1R)x1 = b1 − CT−1b2 (3.8)

Proposition 3.2.2 (Schur [104]). The matrix W = (S−CT−1R) is invertible.

Proof. Consider the matrix equation[
S C
R T

] [
S̄ C̄
R̄ T̄

]
=

[
I

I

]
(3.9)

where such S̄, C̄, R̄ and T̄ exist by invertibility of B. This implies

RS̄ + TR̄ = 0 (3.10)

SS̄ + CR̄ = I (3.11)

Solving (3.10) for R̄ using the invertibility of T gives

R̄ = −T−1RS̄. (3.12)

Substituting for R̄ in (3.11) gives

(S − CT−1R)S̄ = WS̄ = I. (3.13)

Thus S̄ is an inverse for W , as required.

Using invertible representations of T and W it is therefore possible to solve
for x in (3.6) by the sequence of operations given in Algorithm 3.2.1.

Now consider the solve with the transpose of the basis matrix Btran,
B>π = p. The matrix equation in the structured case is[

S> R>

C> T>

] [
π1
π2

]
=

[
p1
p2

]
. (3.14)
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Ftran(W,C,R,T,b)

1 Solve Tz = b2 for z
2 Form w = b1 − Cz
3 Solve Wx1 = w for x1
4 Form v = Rx1
5 Solve Ty = v for y
6 Form x2 = z − y
7 Return x

Algorithm 3.2.1: Kaul FTRAN

Btran(W,C,R,T,p)

1 Solve T>y = p2 for y
2 Form w = p1 −R>y
3 Solve W>π1 = w for π1
4 Form t = p2 − C>π1
5 Solve T>π2 = t for π2
6 Return π

Algorithm 3.2.2: Kaul BTRAN

Solving the lower part for π2 gives

π2 = T−>(p2 − C>π1), (3.15)

and now substituting into the upper part yields

(S − CT−1R)>π1 = W>π1 = p1 − (T−1R)>p2, (3.16)

so that invertible representations of T and W may be used to solve (3.14) by
the sequence of operations given in Algorithm 3.2.2.

3.2.2 Factorisation

The conventional revised simplex method relies upon the availability of an in-
vertible representation of the basis matrix B, with an LU factorisation usually
preferred [89, 117, 112]. In contrast, Kaul’s method, as it is described here,
requires only the availability of invertible representations of the matrices Ti,
and of the Schur complement W , but the effect of this change on the numerical
stability and sparsity of the method has not been previously discussed.

Algorithms for LU factorisation are principally distinguished by the pivoting
scheme they employ. Partial pivoting was shown to be numerically stable by
Wilkinson [120], and the column-wise variant requires the largest element in the
left-most column of the active submatrix be taken as the next pivot. As such,
only the rows of the matrix need be re-ordered to match its factors.

When factorising simplex bases, however, performance considerations make
maintaining the sparsity of the factors a major concern. An efficient implemen-
tation will perform an initial triangularisation phase [117], or use Markowitz
pivoting [89, 112] to reduce fill-in, but these methods require the ability to
re-order freely both the rows and columns of the active submatrix.

To see the effect of obtaining only a decomposed basis representation, con-
sider the transposed and permuted matrix

PB>Q =



T>1 C>1
. . .

...
T>r C>r

R>1 S>1
. . .

...
R>r S>r

S>0


. (3.17)
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The LU factors for each T>i form the principal diagonal of the factors for PB>Q,
and the numerical stability of the basis representation as a whole clearly requires
that the Ri be considered whilst factorising Ti. As the rows R>i share a common
structure with the rows T>i , exchanges may be made freely between the two
matrices, which amounts to column exchanges in the original system. Thus
for the left-hand side of PB>Q, column-wise partial pivoting is equivalent to
row-wise partial pivoting in the rectangular systems [TiRi ].

Once the left-hand side of PB>Q has been factorised, the remaining active
submatrix is the transpose of the Schur complement W , but W is factorised
directly in the decomposed representation, and so its transposed factors are
interchangeable with those for the remaining submatrix of PB>Q. Thus the
decomposed factors, when treated appropriately, result from column-wise partial
pivoting on PB>Q, and working with the structured form of the basis does not
have severe numerical consequences.

However, such a factorisation may contain additional nonzeroes. Pivots in
columns on the right-hand side of (3.17) cannot be brought forward during
triangularisation in the decomposed representation, regardless of merit count
or the length of their column, and this can cause additional eliminations to be
required.

3.2.3 Updates

To maximise the available parallelism in solves with the basis matrix, its struc-
ture must be maintained during updates. Consider the replacement of column
p of B with an arbitrary column a of [AI ], giving B̄. When B−1 is applied to
this new matrix, the result is

B−1B̄ =



1 â1
. . .

...
âp
...

. . .

âm 1

 . (3.18)

A structured update for B must restore the basis to the form (3.5), so that
these additional nonzeroes â can be eliminated using only its decomposed rep-
resentation. That the form (3.5) can always be induced was shown in Propo-
sition 3.2.1, however the relationship between the structured forms which are
available on two different iterations is less clear. Previous descriptions of this
process have been based on mechanisms for problems with generalised upper
bounds, have not maintained structure in R, and are numerically unstable
[13, 83, 20].

The cases which occur are most easily distinguished by the location of the
leaving column.

Loss in Ri The simplest case is that in which the leaving column is in block
i of R in the current factorisation, so that Ti remains invertible. If the entering
column is in another block j, Ri shrinks by one column, and Rj grows by one
column. If the entering column is in the linking logicals S0, these grow by one
column and Ri again shrinks by one column. In any case, it is sufficient to note
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the change in the columns of R and S and to update the factorisation of the
Schur complement W .

Loss in S0 The case when the leaving column is in the linking logicals S0 is
similar to the case in which it is in a block of R. If the entering column is in
Rj then Rj grows by one column, and S0 shrinks by one column. It is again
sufficient to note the change in R and S and to update the factorisation of the
Schur complement W .

Loss in Ti When the leaving column is in Ti then maintaining the structure
of the basis matrix is significantly more difficult. Each Ti is a self-contained,
invertible matrix and the tableau column â is calculated with the inverse of
another matrix B, so that even when the entering column is in the same block,
â does not enter Ti directly. In that case, the pivotal column in T is instead
T−1i `, where ` is the lower part of the incoming column, found as a byproduct
of the structured Ftran.

Although the matrix B remains nonsingular throughout the solve, which
ensures âp 6= 0, the only guarantee for Ti is that some collection of the columns
in [TiRi ] always form a nonsingular matrix. As such, it is possible to lose
a column from Ti without gaining a replacement in the same block, and even
when there is an entering column in the same block, it is not always the case
that, for ψ the index of the leaving column in Ti, the element e>ψT

−1
i ` 6= 0.

These considerations mean that a column leaving Ti requires the pivots
e>ψT

−1r to be evaluated for every column r in Ri. When the entering column

is in the same block, e>ψT
−1` must also be considered. Although structurally at

least one of these elements must be nonzero, for numerical stability the column
selected to enter Ti must at least pass some threshold test on its candidate pivot.

In every case, the factorisations of Ti and W are updated. If the entering
and leaving columns are in different blocks, Ri shrinks and Rj grows, and the
change in R and S is noted. If the entering column is not selected to enter Ti,
the basis matrix must also be permuted to bring the required element of Ri into
Ti.

3.3 The block-diagonal, invertible matrix T

The matrix T in (3.5) can be decomposed into a set of submatrices Ti of fixed
dimension, and the independence of these matrices allows operations with T to
be parallelised. For problems in which T comprises most of the basis B, it seems
possible that this parallelism will compensate for the additional complexity and
basis fill incurred by the structured form.

Each matrix Ti behaves very much as a smaller version of B in a typical
implementation of the revised simplex method. It is amenable to all of the
same optimizations, and requires the same operations to be provided. The only
differences are in the factorisation step, which is considered first.

3.3.1 Factorisation

The numerical considerations which affect the factorisation of T were described
in § 3.2.2, where it was noted that stability requires pivots from both Ti and
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Figure 3.1: Triangularisation of the basis; shaded areas are structurally
nonzero.

Ri to be available. However, a practical routine must also seek to promote
sparsity, and the following is believed to be the first description of the special
considerations which apply to T in this context.

Consider factorising an invertible matrix B. For any candidate pivot bij ,
if there are ri nonzeroes in row i and cj nonzeroes in column j of the active
submatrix, then its Markowitz merit score µij [89] is defined as

µij = (ri − 1)(cj − 1). (3.19)

Proposition 3.3.1 (Markowitz [89]). The score µij is an upper bound on the
fill-in created by the choice of bij for the next pivot.

Proof. When bij is selected for pivoting, all other nonzeroes in row i of the
active submatrix must be eliminated by subtracting a multiple of column j at
these positions. This creates a maximum of (ri − 1)(cj − 1) new nonzeroes.

Clearly, for a nonzero which is alone in its column or row, the Markowitz
bound is zero, which makes it sufficient to permute these entries to the diagonal
without performing any eliminations. This process is called triangularisation,
and is an essential part of an efficient routine for the LU factorisation of simplex
bases [87]. The resulting matrix form is shown in Figure 3.3.1 [117], and the
unstructured remainder X, the bump, is usually small.

When triangularisation is applied to a matrix Ti, the effect of pivots on the
other constituent parts of B must also be considered. A column which has a
single entry in the active submatrix of [TiRi ] may have additional, unavailable
entries in Ci or Si. Although disregarding such nonzeroes will not create fill
in the factors of Ti, it will lead to increased fill in W . Row singletons must
similarly be evaluated across the entirety of [TiRi ], not only because of fill in
W , but also because it is unknown which particular columns will comprise Ti.

3.3.2 Updates

The update of the factorisation of each Ti is much the same as the update of the
factorisation of a general basis matrix B. Despite the surrounding complexity,
only two situations can obtain on a given iteration for a given Ti: a column may
be replaced, or the matrix may be unchanged. As such, the techniques available
for updating the factorisation are well known, and are only briefly reviewed
here.

The revised simplex method was originally described with a dense, explicit
inverse [32], but this requires O(m2) operations to update and is frequently full.
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Product form updates [30] can be applied to any representation of an inverse in
O(m) time, but are prone to numerical instability and fill. Most modern codes
update the LU factors directly, in a manner first described by Bartels and Golub
[11, see also 10], and subsequently improved on by Forrest and Tomlin [42] and
later Suhl and Suhl [111]. The performance of such updates is analysed in detail
in Appendix D.

3.3.3 Efficient operations

For a dense right-hand side, the solves Tz = b and T>π = t decompose into
independent operations with each Ti. When the right-hand side is structured,
however, only one Ti operates on nonzeroes, which has particular significance
in practice for Algorithm 3.2.1 (Ftran). This makes it essential to employ
efficient techniques for solves with a sparse right-hand side.

Proposition 3.3.2 (Gilbert and Peierls [45]). Let L be a lower triangular ma-
trix and G = (V,E) be a directed graph, where V = 1 . . . n and

E = { (i, j) s.t. `ji 6= 0 }. (3.20)

Let K be the set of nonzero indices of b, and Z be the set of nonzero indices of
x. Then the set of vertices reachable by a path through G from K contains Z.

Proof. For the first index,

x1 =
b1
`11

(3.21)

which is nonzero iff b1 6= 0, so that either 1 ∈ K and 1 ∈ Z, or 1 /∈ K and 1 /∈ Z.
Clearly the proposition holds for the first index.

Consider any index j such that the proposition holds for all i < j. Now

xj =
bj
`jj
−
∑
i<j

xi
`ji
`jj

, (3.22)

so that, as for the first index, if bj 6= 0 then j ∈ K so the proposition holds.
Suppose bj = 0 and xj 6= 0, then at least one term xi`ji is nonzero, say

xp`jp. By induction, there is a path from K through G to p, and furthermore
`jp 6= 0 so that (p, j) is an edge in G. Combining the path to p through G from
K with the edge (p, j) gives a path from K through G to j.

The graph G is called the elimination graph on L. Notice that in Proposi-
tion 3.3.2, the set of potential nonzeroes reachable from K through G contains
only elements of x which are nonzero when cancellation is excluded. The size
of this set is a bound on the number of nonzeroes in x which is typically very
close to being tight in practice.

The method of Gilbert and Peierls [45] can be used to identify the elemen-
tary matrices which will need to be applied, ahead of performing Ftran with
triangular factors on a sparse right-hand side. By traversing the paths from K,
it generates the nonzero indices of the result vector in topological order , which
ensures that for all indices j reachable through G from an index i, j occurs
subsequently to i.

Such a list of indices can then be translated into a list of matrices in the order
they should be applied. The analysis step creates significant additional overhead
due to the topological search which is performed, but can be abandoned when
too many nonzeroes have been identified in the result.
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3.4 The Schur complement W

The Schur complement W plays an essential rôle in solves with the decomposed
representation of B, but its dependence on both the inverse of T and also the
columns on the left-hand side of (3.5) makes the corrections to its invertible
representation between iterations more complex than those for a traditional
basis matrix. This section describes a product form update, which is believed
to be novel, that enables a factored form to be maintained efficiently.

Throughout this section, it is assumed that an entering column may replace
any column on the left-hand side of (3.5) directly. The block-rectangular struc-
ture of R is maintained separately by a permutation matrix Q, which will be
discussed in a later part.

3.4.1 Updates

Consider an update to B taking the form

B̄ = B + (aq − bp)e>p , (3.23)

where the leaving column bp falls on the right-hand side of B, in C and T . If
the upper and lower parts of the constraint matrix A are denoted by U and L
respectively, matching the division of B into an upper part of C and S and a
lower part of T and R, then this update can also be written as

C̄ = C + (uq − cψ)e>ψ (3.24)

T̄ = T + (`q − tψ)e>ψ , (3.25)

where ψ is the index of the leaving column in C and T .
The matrices S and R are unchanged, so that the updated W is given by

W̄ = S − C̄T̄−1R. (3.26)

The term T̄−1 can be expressed in terms of T−1, using the Sherman-Morrison
formula [105], giving

T̄−1 =
(
T + (`q − tψ) e>ψ

)−1
=

(
I − τ − eψ

e>ψ τ
e>ψ

)
T−1.

(3.27)

where τ = T−1`q is the incoming column in T , as used in the update of T itself.
Substituting into (3.26) now yields

W̄ = S −
(
C + (uq − cψ)e>ψ

)(
I − τ − eψ

e>ψ τ
e>ψ

)
T−1R

= W + w1v
>,

(3.28)

with

w1 = (uq − cψ) + C̄

(
τ − eψ
e>ψ τ

)
(3.29)

v> = e>ψT
−1R. (3.30)
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Suppose now that the the leaving column, say z, falls on the left-hand side
of B, in S and R. The update becomes

S̄ = S + (uq − sζ)e>ζ (3.31)

R̄ = R+ (`q − rζ)e>ζ , (3.32)

where ζ is the index of z in R and S, so that

W̄ = S̄ − CT−1R̄
= W + w2e

>
ζ ,

(3.33)

with
w2 = (uq − sζ)− C

(
τ − T−1rζ

)
. (3.34)

The most complex case is that in which a permutation is required to bring
a column into T from R, in order to maintain the structure of the basis. This
has the form

B̄ = B + (aq − bz)e>z + (bz − bp)e>p , (3.35)

with p on the right-hand side of B and z on the left-hand side, so that

S̄ = S + (uq − sζ)e>ζ (3.36)

C̄ = C + (sζ − cψ)e>ψ (3.37)

R̄ = R+ (`q − rζ)e>ζ (3.38)

T̄ = T + (rζ − tψ)e>ψ . (3.39)

The update for W follows mechanically from

W̄ =
(
S + (uq − sζ)e>ζ

)
−(

C + (sζ − cψ)e>ψ
)(

I −

(
τ − eψ
e>ψ τ

)
e>ψ

)
T−1

(
R+ (`q − rζ)e>ζ

)
= W + w1v

> + (w2 + w3)e>ζ ,

(3.40)

where w2 and v are as before, sζ and rζ are used in place of uq and `q in the
definition of w1, and

w3 = e>ψ
(
τ − T−1rζ

)
w1. (3.41)

Equation (3.40) contains (3.28) and (3.33) as special cases, and will henceforth
be taken as the standard form.

An update is sought for an invertible representation of W , not the matrix
itself. Let ωi = W−1wi then, using the Woodbury formula [123], the updated
W̄−1 can be written

W̄−1 = W−1 −
[
ω1 (ω2 + ω3)

]
·(

I +
[
v eζ

]> [
ω1 (ω2 + ω3)

])−1 [
v eζ

]>
W−1

(3.42)

The embedded 2 × 2 matrix inverse, say K−1, can be found by the standard
formula, giving

K−1 =

[
1 + v>ω1 v>(ω2 + ω3)
e>ζ ω1 1 + e>ζ (ω2 + ω3)

]−1
=

1

λ

[
1 + e>ζ (ω2 + ω3) −v>(ω2 + ω3)

−e>ζ ω1 1 + v>ω1

]
,

(3.43)
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where

λ =
(
1 + e>ζ (ω2 + ω3)

)
(1 + v>ω1)− v>(ω2 + ω3)e>ζ ω1. (3.44)

It follows that there exists a product form update for the inverse of the Schur
complement, of the form

W̄−1 =

(
I − 1

λ
fv> − 1

λ
ge>ζ

)
W−1, (3.45)

where

f = ω1

(
1 + e>ζ (ω2 + ω3)

)
− (ω2 + ω3)e>ζ ω1 (3.46)

g = (ω2 + ω3)(1 + v>ω1)− ω1v
>(ω2 + ω3). (3.47)

Note that the vector ω2 can be written

ω2 = W−1
(

(uq − sζ)− C
(
τ − T−1rζ

) )
= W−1 (uq − Cτ)− eζ ,

(3.48)

and is hence a byproduct of the structured Ftran, in which Wx = (uq − Cτ)
is solved. Similarly, the vector v is available as the active row of T−1R, which
is required for pivoting in the structured form (see § 3.2.3). The vector ω3 is a
multiple of ω1 found from the change in the pivot in row ψ of T . The vector
ω1, however, is not easily available, and requires an additional Ftran with W
to be performed on each iteration in which T changes.

3.4.2 Solves with W

For Ftran,
Wx = b, (3.49)

then if W−1 has a product form representation

W−1 =

k∏
i=1

(
I − 1

λi
fiv
>
i −

1

λi
gie
>
ζi

)
(3.50)

the solve can be performed with each term in order as

x = b− (v>b)

λ
f −

(e>ζ b)

λ
g. (3.51)

For Btran,
W>x = b, (3.52)

the same product form representation is transposed to give

W−> =

1∏
i=k

(
I − 1

λi
vif
>
i −

1

λi
eζig

>
i

)
, (3.53)

and the solve can be performed with each term in reverse order as

x = b− (f>b)

λ
v − (g>b)

λ
eζ . (3.54)
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3.5 The permutation matrix Q

The matrix R in (3.5) is composed of columns of two types, zero columns below
the linking logicals S0, and overflow columns from T which will share the struc-
ture of some Ti. This means that R can be permuted into a block-rectangular
form, although the number of columns in each Ri will vary between basis matri-
ces, and some blocks may be empty. Previous descriptions of Kaul’s algorithm
have not included the steps required to maintain this structure in R, but doing
so provides the computational advantage of localising to well-defined, disjoint
ranges, the values corresponding to variables from the different blocks.

The Schur complement W shares a column ordering with R, and cannot be
permuted directly, owing to the complexity of its factors. Instead, a permuta-
tion matrix Q is added to the representation, so that W = W ′Q. After each
refactorisation, Q = I and W = W ′, but in the column ordering of W ′, an
entering column in S and R takes the place of its corresponding leaving column,
with Q being updated to bring W ′Q back to the same ordering as R. This sec-
tion provides a description of techniques, which could not all be identified in the
literature, for performing efficient solves on sparse vectors with a permutation
matrix Q.

3.5.1 Updates

Permutation matrices can be stored efficiently as vectors of integers

Q = [ q1 . . . qn ] . (3.55)

This representation has two mutually inverse interpretations: as “goes to”,
where in y = Qx, the element yqi = xi, so that qi is the index of the col-
umn containing a nonzero in row i; or as “comes from”, so that yi = xqi , and
qi is the index of the row containing a nonzero in column i.

If Q is pre-multiplied by another permutation matrix, hence permuting the
rows of Q, then in the first form (“goes to”) the indices in the vector represen-
tation of Q can be permuted directly, which is inexpensive. In contrast, in the
second form (“comes from”) a search must be conducted for the row in which
each column has its nonzero. When Q is post-multiplied by another permu-
tation matrix, hence permuting its columns, then the relative costs of the two
forms are reversed.

Columns will be assumed enter or leave a block of R at its right-hand edge,
so that a leaving column will first be flipped to the last position in its block. If
one column leaves Ri and another enters Rj , then there will be a shift in the
blocks between Ri and Rj . If i < j, the columns of Rk, for i < k ≤ j, will shift
left, while if i > j, the columns of Rk, for j < k ≤ i, will shift right, and the
cases involving S0 are obvious extensions. There are thus two types of update
to Q, post-multiplication by a transposition which moves a leaving column to
the right-hand margin of its block, and post-multiplication by a simple, but
potentially very long, cycle which shifts a set of blocks left or right.

If Q is post-multiplied by a permutation, then Q−1 is pre-multiplied by its
inverse. By the previous logic, Q can be maintained efficiently in the second
form, and Q−1 can be maintained efficiently in the first form. Since the two
forms are mutually inverse, there is only one viable permutation matrix which
can be updated in practice.
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Figure 3.2: (a) The permutation [8 6 4 2 12 11 5 3 1 7 9 10] as a pair of cycles.
Black nodes represent the entry points for the algorithms given. (b) The same
permutation, but with an example of truncated pursuit where the dashed nodes
hold zeroes.

3.5.2 Solves with Q

The simplest method of solving with Q is to select elements into a scratch vector,
and then copy the result back over the input. This is inefficient even when the
input vector is dense, as the cost of 2n floating point writes and 2n floating
point reads is independent of the complexity of the permutation.

If the input vector y is sparse, so that a set of nonzero positions Zy is given,
then the solve Q>x = y (Btran) can be done more efficiently as

xqi =

{
yi i ∈ Zy
0 otherwise.

(3.56)

However, the solve Qx = y (Ftran) admits no efficient implementation, as in

xi =

{
yqi qi ∈ Zy
0 otherwise

(3.57)

each index i must be permuted to determine whether the corresponding entry
of y is nonzero.

An alternative is approach cycle pursuit . Recall that every permutation is
expressible as a product of disjoint cycles, where a cycle is an ordered sub-
set of indices through which values are rotated upon each application of the
permutation, shown graphically in Figure 3.2.

By following each cycle in turn, it is possible to permute a vector of any
length using only floating point storage of constant size, though an array of n
booleans is still needed to mark completed elements. Methods avoiding the use
of temporary storage modify the data itself, for example by sign flipping, but
this is impractical for floating point vectors [77].

The identity permutation is an empty product of cycles, and it may be hoped
that the complexity of a permutation as a product of cycles is related to the
true complexity of the permutation itself. The details for the dense case are
given in Algorithm 3.5.1 and Algorithm 3.5.2. The algorithm for Btran is well
known (e.g. [39, 77]). The algorithm for Ftran could not be found in this form
in the literature.

Compared to the copy approach, the number of floating point reads and
writes is now n each, if all scalar variables are assumed to be held in registers,
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Q-Ftran(Q, x,m, b)

1 � Q is the permutation
2 � x is the input
3 � m is the base dimension
4 � b is scratch space
5 b← false
6 for r ∈ 1 . . .m do
7 if br = true then
8 continue
9 endif

10 s← xr
11 c← r
12 n← qc
13 while n 6= r do
14 xc ← xn
15 bn ← true
16 c← n
17 n← qc
18 done
19 xc ← s
20 br ← true
21 done

Algorithm 3.5.1: Dense FTRAN

Q-Btran(Q, x,m, b)

1 � Q is the permutation
2 � x is the input
3 � m is the base dimension
4 � b is scratch space
5 b← false
6 for r ∈ 1 . . .m do
7 if br = true then
8 continue
9 endif

10 s← xr
11 c← r
12 n← qc
13 while n 6= r do
14 swap(xn, s)
15 bc ← true
16 c← n
17 n← qc
18 done
19 xr ← s
20 bc ← true
21 done

Algorithm 3.5.2: Dense BTRAN

and the number of boolean operations is at most 2n reads and n writes. In the
best case, the identity permutation, there are n floating point reads, n boolean
reads, and n boolean writes.

When the input vector is sparse, the cycle pursuit can be truncated to give
a more efficient solve. For this, it is necessary to have available an array of
n integers and floating point storage of constant size. In the case of Algo-
rithm 3.5.4 (Btran), the work done is always O(z) and essentially optimal
because cycle-following can be terminated at the first zero. This is not possible
in Algorithm 3.5.3 (Ftran) because the final position of the first nonzero is
unknown before the cycle is complete. Descriptions of these algorithms could
not be identified in previously published material.

3.6 Structured programs

For its basis matrices to take on the structured form (3.5), a program must itself
be in block-angular form, and the location of those blocks known. If a code
creates a linear programming formulation from a higher-level representation,
then such information is easily available, but even if a constraint matrix is all
that is given, it is still usually possible to identify some structure in a problem.

Multi-commodity flow problems arise when several different quantities tra-
verse a shared network with capacity constraints on its arcs, and their formu-
lations as linear programs are primal block-angular, with one block for each
commodity [25]. The duals of stochastic programming problems [86] constitute
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Q-Ftran(Q, x, z, `,m, h)

1 � Q is the permutation
2 � x is the input
3 � z are the nonzero indices
4 � ` is the number of nonzeroes
5 � m is the base dimension
6 � h is scratch space
7 for i ∈ 1 . . . ` do
8 hzi ← i
9 done

10 for r ∈ 1 . . . ` do
11 if hzr < 0 then
12 continue
13 endif
14 s← xzr
15 c← zr
16 n← qc
17 while n 6= zr do
18 xc ← xn
19 if xc 6= 0 then
20 zhn ← c
21 hc ← −hn
22 endif
23 c← n
24 n← qc
25 done
26 xc ← s
27 zr ← c
28 hc ← −r
29 done

Algorithm 3.5.3: Sparse FTRAN

Q-Btran(Q, x, z, `,m, h)

1 � Q is the permutation
2 � x is the input
3 � z are the nonzero indices
4 � ` is the number of nonzeroes
5 � m is the base dimension
6 � h is scratch space
7 for i ∈ 1 . . . ` do
8 hzi ← i
9 done

10 for r ∈ 1 . . . ` do
11 if hzr < 0 then
12 continue
13 endif
14 s← xzr
15 t← hzr
16 xzr ← 0
17 c← zr
18 n← qc
19 while n 6= zr and s 6= 0 do
20 swap(xn, s)
21 swap(hn, t)
22 if xn 6= 0 then
23 zt ← n
24 hn ← −hn
25 endif
26 c← n
27 n← qc
28 done
29 if s 6= 0 then
30 xzr ← s
31 hzr ← −t
32 zt ← zr
33 endif
34 done

Algorithm 3.5.4: Sparse BTRAN

another standard class of such formulations. More generally, when a modelling
language representation of a problem is available, it may be possible to infer
block structure from the index sets which are used [115].

Several methods of identifying, or imposing, primal block-angular structure
on a bare constraint matrix exist. The bipartite graph partitioning approach
[38] maps each row and column to a vertex, and each nonzero to an edge con-
necting such vertices. When the vertices are split into blocks so as to minimise
the number of cut edges, the result can be used to structure A. Hypergraph
partitioning [9] can be used similarly to bring A into the desired form.
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3.6.1 Multi-commodity flow problems

A multicommodity flow problem consists of a network across which products
of different types must be transported, at given rates, as cheaply as possible.
It can be described in JLF format [69], which provides minor generalisations
of the standard form, as discussed below. Parts of the analysis which follows
are believed to be novel, as no parser capable of automatically inferring the full
problem specification from JLF files is known to have been previously described
or implemented.

In JLF format, flows through the network may be identified by the type
of product they represent, by the node from which the particular products
originated, by the node to which the particular products are bound, or by some
combination of these properties. These specifications may vary in different parts
of the network, so that a flow which was distinguished only by its product type,
in one region, may instead need to be labelled by its ultimate origin upon
entering another.

The connectivity of the network is given only in terms of links, each of which
is the maximum rate at which some flow specified in the previous way may pass
between pairs of nodes, and the cost per unit of such transport. Similarly, this
type of flow specification is used to give the rate of supply and demand at nodes
in the network. Shared capacity constraints are provided by bundles, which may
also be used to provide bounds on the total quantity of a set of products that
can be simultaneously transported across a group of arcs.

A distinguishable type of flow in this representation is called a commod-
ity , and is a triple formed from an origin, destination and product type. The
constraints for the linear programming formulation of a JLF instance contain
a network incidence matrix for each commodity, forming a block-angular part,
and linking rows for the shared capacity specifications. A parser for JLF can
thus be used in turn to generate naturally primal block-angular problems for
solution.

This format was intended to accommodate several disparate input formats
used by existing multi-commodity solvers, by providing a superset of their al-
lowed representations. Each solver could assume that its particular dialect of
JLF had been used for any input it received, and any tool working with gen-
eral JLF files could be told their orientation (see [69] for more details). The
standard dialects of JLF formulate commodities as origins, destinations, origin-
destination pairs, or products. The implementation of a parser for arbitrary
files in JLF format is thus non-trivial.

The JLF specification mandates that a link is repeated to produce an arc
for every distinguishable commodity to which it might apply, and as each such
arc may have its own capacity constraint, the interpretation of the problem
is fundamentally altered by the number of identifiable commodities. It is also
possible for JLF files to specify that a particular number of products exist,
independent of any other considerations. This necessitates an analysis step,
and finding the fewest number of identifiable commodities leads to definitions
consistent with the standard JLF dialects.

Significant complexity arises in a general parser because of the power of
the JLF representation. It is possible, for example, to frame problems with
both multi-layer, and mixed-mode commodities, so that the standard dialects
incorporate only a small fraction of the allowable input.
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3.6.2 Bipartite graph partitioning

Consider the undirected graph G = (V,E) derived from a matrix A ∈ Rm×n by

V = { (i, r) | i ∈ [ 1 . . .m ] } ∪ { (i, c) | i ∈ [ 1 . . . n ] }
E =

{
{ (i, r), (y, c) } | aij 6= 0

} (3.58)

where r and c are tokens to distinguish vertices originating from rows of the
constraint matrix and vertices originating from its columns.

Suppose that the vertices of G are divided into r disjoint sets. An edge is
said to be cut by this partition if its endpoints fall into different sets.

Proposition 3.6.1 (Ferris and Horn [38]). If no edges in E are cut by a par-
tition P of G, then A can be permuted into block-diagonal form.

Proof. Consider an off-diagonal nonzero aij , represented by the edge {(i, r), (j, c)}.
If (i, r) and (j, c) belong to different sets in the partition, then this edge is cut,
contradicting our assumption. Thus for every nonzero, the vertices for its row
and column belong to the same set. If the matrix is permuted to bring together
rows and columns with vertices in the same set of the partition, and these sets
occur in the same order top-to-bottom for the rows as they do left-to-right for
the columns, then the matrix is block-diagonal, as required.

Suppose that all cut edges are incident on vertices in the first set, say with
index zero, of the partition. If the permutation of Proposition 3.6.1 is applied
to bring rows and columns in the same set together, then the structure that
results is called arrowhead form, and the first set is called the border .

The method of Ferris and Horn [38] begins by partitioning the bipartite graph
of (3.58) into some pre-selected number of sets, say 1 . . . r, with an initially
empty border. A greedy heuristic is then applied which repeatedly moves to
the border the vertex upon which the most cut edges are incident. An edge is
not considered cut if it is already incident on some vertex in the border. This
continues until there are no more such edges.

If the set of column vertices in the border is empty, the previously described
permutation will bring the matrix into primal block-angular form. If not, the
matrix is expanded by dividing each column whose vertex is in the border, and
creating a new row to link the two parts. For example, to transform the matrix

a1,3x3 + a>1,1x1 = b1

a2,3x3 + a>2,2x2 = b2
(3.59)

into primal block-angular form

x3 − x4 = 0

a1,3x3 + a1,1x1 = b1

a2,4x4 + a2,2x2 = b2

(3.60)

a new variable x4 and a new constraint can be introduced.
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3.6.3 Hypergraph partitioning

The nonzeroes of a matrix A ∈ Rm×n have a natural representation as a hyper-
graph H = (V,E) over its columns, where

V = [ 1 . . . n ]

E =
{
{ j | aij 6= 0 }

∣∣ i ∈ [ 1 . . .m ]
}
.

(3.61)

For example the matrix

A =


a11 a12 a13 a16

a22 a26
a31 a33 a34
a41 a44

a52 a55 a56

 , (3.62)

in which the omitted entries are zero, can be represented by the hypergraph
shown in Figure 3.3(a).

When H is partitioned, the result is to place its vertices in disjoint sets, and
hence to assign each column to a particular block. A hyperedge is said to be cut
by a partition if it is incident on vertices from more than one set, meaning that
its row has nonzeroes in more than one block, and partitioning can be carried
out to minimise cut weight.

If all hyperedges cut by a partition are removed from consideration, then
the remaining rows by definition have nonzeroes in columns from a single block.
Aykanat et al. [9] assign uncut hyperedges to the same sets as the vertices they
are incident upon, and hence their corresponding rows to the same block as the
columns in which they have nonzeroes. Cut hyperedges, representing rows which
have nonzeroes linking two blocks, are ignored, and the corresponding row is
moved to the border. When columns and rows in the same block are permuted
together, as for Proposition 3.6.1, the resulting form is primal block-angular.
Figure 3.3(b) shows the effect on the example matrix of this procedure.
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Figure 3.3: (a) A hypergraph derived from the nonzero pattern of a matrix.
(b) The partitioned graph can be used to impose structure on the matrix.
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3.7 Parallel revised simplex

i7 is an implementation of the primal, column-wise, revised simplex method in
sparse arithmetic, making use of Kaul’s method to provide parallel operations
with the factorisation of the basis matrix. It is written for multi-core machines,
and uses Posix thread primitives.

3.7.1 Algorithmic elements

A bound-breaking phase I ratio test Following [91], during row selection
in phase I new infeasibilities may be introduced, provided that the sum of in-
feasibilities is decreased. This measure generally improves both the time taken
to find a feasible point and the numerical stability of the solver.

A two pass phase II ratio test Following [63], two passes are taken in
the ratio test, with the feasible region slightly expanded during the first. The
maximum step in this enlarged region is computed, and used as a limit for the
row selected in the subsequent pass.

Approximate steepest edge pricing Following [113], each column’s norm
is initially taken as the number of nonzero entries it contains in the constraint
matrix. Subsequent updates simply ignore the expensive inner product upon
which a true steepest edge calculation depends, on the grounds that for sparse
vectors, it may be expected to be near zero.

Wolfe’s ad-hoc method for anti-cycling Following [122], when a stall is
detected, an explicit, symbolic perturbation is applied to all of the degenerate
positions. This is a method of guaranteed correctness, which cannot cycle, in
contrast to the more popular Expand method [46] which is faster.

Elimination form inverses with product form updates Following [89],
the invertible representations of T and W are created initially by LU factorisa-
tion. After each iteration, standard rank 1 product form updates are applied
to the representations of T−1i , and rank 2 product form updates are applied to
the representation of W−1.

Fast symbolic invert Following [117], all identity columns in the basis are
ignored, then row and column singletons are extracted by a fast triangularisation
process. The remainder is initially sorted either row-wise or column-wise by
Markowitz merit count, then left-looking partial pivoting in the chosen direction
is applied. For difficult matrices, a switch is made to dense, right-looking, full
pivoting for the final pivots.

Sparse algebra in which non-zeroes are tracked This is a well known
technique, e.g. [125], in which sparse vectors are stored full length, but a sep-
arate list of non-zeroes is maintained. As problems become less dense, the
importance of knowing the non-zeroes increases: for example 1% density or
lower is not uncommon for the working vectors encountered when solving some
problems.
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Hyper-sparse Ftran by graph traversal Following [45], the etas in the
LU factors which must be applied to a sparse right-hand side are pre-calculated,
when appropriate, by a depth first search. This is a significant saving in many
cases, as the vast majority of the eta matrices are both from the inverse and
also unnecessary to apply.

Sparse column selection Following [62], a list of attractive incoming columns
is maintained, so that unattractive positions need not be traversed during col-
umn selection.

Sparse tableau row generation Following [62], the constraint matrix is
maintained row-wise, permuted into the form [N B ]. When the nonzeroes in
the result of Btran, π, are tracked, the number of floating point operations
needed to find the pivotal row is essentially optimal.

Btran by Ftran on the transpose Following [62], the transpose of the LU
factors of the basis matrix is found, and Ftran with the transposed factors is
preferred to Btran on the originals. Etas cannot be skipped in Btran, so that
performing it as Ftran instead is dramatically more efficient for many prob-
lems. For update etas, Btran is still performed, but these are comparatively
few in number.

Iterative refinement This is a well-known technique whereby the residuals
after a solve with Ftran or Btran are calculated, and repeat solves are made
with them to improve the accuracy of the resulting vector. This can be used to
eliminate suspected perturbed zeroes, and also to improve the accuracy of any
solution the code returns.

Structurisation by hypergraph partitioning Following [9], unstructured
problems may be converted, after they are read, into primal block angular form,
using PaToH [27] for hypergraph partitioning. This method is a substantial
improvement upon the bipartite graph partitioning approach [38], which is also
available, and makes use of Metis [73].

Maintenance of R̂i To reduce the number of solves with T , R̂i = T−1i Ri are
maintained as thin, sparse tableaux.

A note on the product form

i7 relies on the elimination form of the inverse with product form updates
[89, 30] for its matrices Ti which is an obsolete technique. Alternatives based
on updating the LU factors directly [11, 42, 102, 111] are well known, and were
implemented separately as part of i5 (see Appendix D). The decision to use
the product form can only be attributed to ignorance: performance studies
of simplex technologies are seldom published, and it was believed that a fully
optimized solver based on this update could be competitive for general problems.
As the results will make clear, this is unlikely to be the case.
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3.7.2 Parallel techniques

Task farm job management This is a standard paradigm for the construc-
tion of parallel programs. Parallel infrastructure is isolated in the code by
making all parallelised tasks schedule jobs to a queue. This allows a wide range
of routines to be accommodated without excessive code complexity.

Fork-join parallelism Sections of code are either parallel, so that all threads
execute symmetrically on chunks of a task, or serial, with work performed by a
single thread. Each parallel region begins and ends with a full synchronisation
barrier, so that parallel sections do not overlap.

Lock-free datastructures Where contention between different workers for
data is unavoidable, for example the job queue, lock-free structures are used
where possible. These rely on processor-level atomic instructions, and impose
negligible overheads.

Spin-locks When lock-free structures cannot easily be used, spin locks are
preferred to mutexes. Here, a worker which wishes to obtain a lock monitors
a memory location in a tight loop (“spins”). Their principle advantage is that
the thread need not enter kernel space, especially when access is expected to be
granted after a short delay.

Spin-barriers Barrier synchronisations occur after each parallel section, and
there are several per iteration, so that the interval between them is very short. A
typical Posix barrier generates a thread yield, which can lead to poor scheduling
decisions on the part of the operating system. To improve parallel performance,
a global sense-reversing barrier [94] was implemented in assembly language.

Deterministic parallelism Given the same options, the solve for a given
problem will retrace an identical path every time it is run. Additionally, this
path is constant across different numbers of workers, provided the number and
location of the blocks identified in the constraint matrix remains constant.

Segmented indexed vectors Sparse vectors are divided into segments, with
separate lists of nonzeroes in each segment, so that workers can perform sparse
operations without contending to modify the set of nonzero positions.

Superblocking To prevent excessive scheduling overhead on solves with many
blocks and few workers, many small blocks can be grouped together into a
superblock which is scheduled as a single unit.

3.7.3 Parallel elements

The following routines in i7 have one or more parallel parts:

Ftran Ftran on input vectors matching the block structure performs the
multiplications with R̂ in parallel. For unstructured vectors, the solves with T
are also done in parallel.
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Btran Btran on input vectors matching the block structure performs the
solves with T> in parallel. For unstructured vectors, the multiplications with
R̂ are also parallelised.

Invert The factorisation of each T is performed in parallel, as is the compu-
tation of each R̂ tableau. The Schur complement W is regenerated in stripes in
parallel, then aggregated and factorised in serial.

Tableau row generation The calculation of the pivot row is performed in
parallel.

Column selection The traversal to find the most attractive entering column
during full pricing is done in parallel, as is the update of the column norms. In
list pricing, the update to the stored columns is performed in parallel.

Pivot selection The accumulation of breakpoints in phase one is performed
in parallel, as is the scan for the minimal element in the phase two ratio test.
In Wolfe’s method, the virtual perturbations are applied, removed and updated
in parallel.

Shift The update of the primal values is performed in parallel.

3.8 Results

This section presents performance analyses for i7 on a small selection of real-
world problems. Results for a number of other test sets can be found in Ap-
pendix E, which includes data for multi-commodity flow problems, as well as for
the Netlib set, the latter being a demonstration of the code’s numerical stability.

3.8.1 Baseline performance

Any results on the parallelisation of the simplex method can be of only limited
interest when the serial performance of the same code is hopelessly uncompet-
itive. The most obvious approaches to accelerating the non-trivial parts of the
simplex method involve the parallelisation of inefficiencies which ought instead
to be removed from a practical code.

Problem i7 glpk clp Xpress

Name Rows Columns Time (s) Time (s) Time (s) Time (s)
dano3mip lp 3202 13873 116.53 10.8 14.01 11.12
gen4 1537 4297 159.59 50.4 44.12 37.17
lp22 2958 13434 742.89 54.0 32.58 26.82
pds-40 66844 212859 283.09 2073.3 161.41 191.77
rlfprim 58866 8052 79.54 8.9 4.77 2.28
stormG2-27 14441 34114 2.38 17.1 4.28 0.88
stormG2-125 66185 157496 55.80 490.8 121.42 18.76
nug08 912 1632 5.86 0.8 0.74 1.66
nsct2 23003 14981 3.61 9.2 1.75 3.62
sgpf5y6 246077 308634 287.51 1820.6 82.32 8.08
world 35510 32734 612.92 387.3 178.11 370.69
dcp1 4950 3007 1.14 1.61 1.18
Larger test problem results on richtmyer from § E.3. Continued on the next page.
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Problem i7 glpk clp Xpress

Name Rows Columns Time (s) Time (s) Time (s) Time (s)
dcp2 32388 21087 81.35 70.03 57.02
deteq8 20678 56227 16.68 34.4 9.27 0.96
deteq27 68672 186928 174.58 397.5 100.04 6.46

Geometric mean 51.06 64.33 19.07 9.67
Larger test problem results on richtmyer from § E.3.

i7 shows good overall performance on STORMG2-125 and DCP1, but relatively
poor performance for a number of other instances. Overall, it is faster on this
set than glpk, which also fails to solve two instances, but slower than clp, the
leading open-source code, and also slower than Xpress, a leading commercial
code. The disparity is not so great as to make any comparisons meaningless
however.

Problem i7 glpk clp Xpress

Name Rows Columns Iter/sec Iter/sec Iter/sec Iter/sec
dano3mip lp 3202 13873 555.86 1293.70 1120.68 4921.49
gen4 1537 4297 79.86 183.71 288.45 137.94
lp22 2958 13434 132.71 751.56 782.76 1362.10
pds-40 66844 212859 608.11 208.77 877.49 4124.96
rlfprim 58866 8052 124.06 600.45 1508.59 4668.20
stormG2-27 14441 34114 8096.86 1371.35 4656.47 26581.35
stormG2-125 66185 157496 1626.96 282.33 911.38 6340.46
nug08 912 1632 1220.50 4186.25 3871.97 3865.02
nsct2 23003 14981 4721.64 1351.30 7034.82 4906.07
sgpf5y6 246077 308634 861.74 129.33 3164.50 30289.69
world 35510 32734 204.79 389.57 572.08 721.88
dcp1 4950 3007 5025.37 7470.00 3026.05 6256.83
dcp2 32388 21087 676.66 1152.12 547.95 1425.80
deteq8 20678 56227 2521.07 936.83 3499.35 35074.33
deteq27 68672 186928 840.28 279.52 1145.87 17667.21

Geometric mean 810.63 707.48 1506.25 4527.23
Larger test problem results on richtmyer from § E.3.

A comparison of iteration rates is difficult to make reasonably. To some
extent, the iteration rate of a primal simplex code is a design decision, where
more or fewer iterations can be traded off against faster cycles. The effect of
the sparsity of the basis factorization, and of the particular path the solver
follows, can also be pronounced. The strategy implemented in i7 is a different
compromise from those in the other solvers, as there is no partial pricing, only
a fast, weak normalised pricing that is constantly applied. This is reflected to
some extent in the iteration rates, though many other factors are involved.

3.8.2 Structurisation

This test set contains general, real-world problems which are not marked pre-
viously with their structure. If it were to prove very expensive to obtain this
structure, then the method itself might be of little interest, at least when applied
automatically to general problems.

Problem 2 blocks 4 blocks 8 blocks 16 blocks
Name Rows Columns Time (s) Time (s) Time (s) Time (s)
dano3mip lp 3202 13873 0.12 0.13 0.14 0.16
gen4 1537 4297 0.06 0.07 0.08 0.09
Larger test problem results on richtmyer from § E.3. Continued on the next page.
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Problem 2 blocks 4 blocks 8 blocks 16 blocks
Name Rows Columns Time (s) Time (s) Time (s) Time (s)
lp22 2958 13434 0.05 0.06 0.09 0.10
pds-40 66844 212859 0.43 0.62 0.79 0.94
rlfprim 58866 8052 0.18 0.23 0.29 0.34
stormG2-27 14441 34114 0.06 0.08 0.11 0.14
stormG2-125 66185 157496 0.27 0.37 0.49 0.61
nug08 912 1632 0.01 0.01 0.01 0.01
nsct2 23003 14981 0.55 0.74 0.92 0.98
sgpf5y6 246077 308634 0.77 1.03 1.37 1.65
world 35510 32734 0.14 0.19 0.23 0.28
dcp1 4950 3007 0.03 0.04 0.05 0.06
dcp2 32388 21087 0.16 0.26 0.34 0.41
deteq8 20678 56227 0.09 0.13 0.17 0.21
deteq27 68672 186928 0.29 0.41 0.54 0.66

Geometric mean 0.12 0.17 0.21 0.25
Larger test problem results on richtmyer from § E.3.

As can be seen, the cost of obtaining a given structure for these problems
using the method of Aykanat et al. [9] is relatively minor, amounting to only a
small fraction of the time required to solve the problem.

Problem
2 blocks 4 blocks 8 blocks 16 blocks
Linking Linking Linking Linking

Name Rows Columns rows (%) rows (%) rows (%) rows (%)
dano3mip lp 3202 13873 1277 (40) 1471 (46) 1611 (50) 1764 (55)
gen4 1537 4297 1019 (66) 1038 (68) 1409 (92) 1442 (94)
lp22 2958 13434 683 (23) 697 (24) 714 (24) 838 (28)
pds-40 66844 212859 1516 (2) 4312 (6) 5232 (8) 6223 (9)
rlfprim 58866 8052 3386 (6) 6322 (11) 11163 (19) 14382 (24)
stormG2-27 14441 34114 293 (2) 684 (5) 1013 (7) 1313 (9)
stormG2-125 66185 157496 1341 (2) 2909 (4) 4346 (7) 5613 (8)
nug08 912 1632 470 (52) 595 (65) 629 (69) 658 (72)
nsct2 23003 14981 1786 (8) 2193 (10) 3421 (15) 3802 (17)
sgpf5y6 246077 308634 675 (0) 890 (0) 2902 (1) 3650 (1)
world 35510 32734 265 (1) 545 (2) 991 (3) 2106 (6)
dcp1 4950 3007 39 (1) 39 (1) 79 (2) 120 (2)
dcp2 32388 21087 43 (0) 68 (0) 233 (1) 295 (1)
deteq8 20678 56227 327 (2) 535 (3) 686 (3) 1417 (7)
deteq27 68672 186928 965 (1) 1591 (2) 2030 (3) 2373 (3)

Geometric mean 3% 5% 8% 10%
Larger test problem results on richtmyer from § E.3.

The quality of the obtained structure varies considerably on this set. The
problems for which the structure is of the highest quality, STORMG2-125 and DCP2,
are known to be naturally primal block angular, although the code is not aware
of this fact. DANO3MIP and GEN4 are examples of a problem in which structure
cannot be easily found, and indeed the requested number of blocks cannot always
be found in either.

3.8.3 Structured performance

Having established that the serial code is sufficiently developed to sustain an
analysis of parallel performance, the next question should be to what degree
inefficiencies inherent in operating with the structured basis matrix can be ex-
pected to limit practical performance. The following comparisons are of serial
performance.
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Problem 2 blocks 4 blocks 8 blocks 16 blocks
Name Rows Columns Time cost Time cost Time cost Time cost
dano3mip lp 3202 13873 1.65 1.46 1.22 1.24
gen4 1537 4297 0.69 0.44 0.65 0.66
lp22 2958 13434 0.46 0.71 0.36 1.63
pds-40 66844 212859 2.00 3.21 2.23 1.52
rlfprim 58866 8052 0.17 0.16 0.28 0.24
stormG2-27 14441 34114 1.57 1.55 1.50 1.57
stormG2-125 66185 157496 1.63 1.74 1.43 1.30
nug08 912 1632 0.89 0.74 0.89 1.05
nsct2 23003 14981 2.47 1.87 2.41 2.31
sgpf5y6 246077 308634 0.49 0.42 0.75 0.61
world 35510 32734 0.91 0.75 0.53 0.58
dcp1 4950 3007 0.95 0.87 0.67 0.80
dcp2 32388 21087 1.84 1.10 0.81 0.71
deteq8 20678 56227 1.29 1.19 1.15 1.19
deteq27 68672 186928 1.27 1.03 0.85 0.76

Geometric mean 1.02 0.93 0.89 0.95
Larger test problem results on richtmyer from § E.3.

The time cost of the structured form is the ratio of the run-time of the
structured code to the unstructured code, in serial. Thus, in fact, the structured
form is on average more efficient than the unstructured form for i7 on this test
set. These gross statistics hide considerable variability however. Particularly
notable is the high cost of the structured form on PDS-40, despite the good quality
of the structured form found, and the very low cost of GEN4 despite the extremely
poor structured form found.

Problem 2 blocks 4 blocks 8 blocks 16 blocks
Name Rows Columns Rate cost Rate cost Rate cost Rate cost
dano3mip lp 3202 13873 1.78 1.48 1.35 1.25
gen4 1537 4297 0.29 0.47 0.72 0.78
lp22 2958 13434 0.37 0.34 0.23 0.29
pds-40 66844 212859 1.73 2.97 1.84 1.34
rlfprim 58866 8052 0.23 0.23 0.33 0.33
stormG2-27 14441 34114 1.50 1.56 1.50 1.52
stormG2-125 66185 157496 1.64 1.73 1.46 1.34
nug08 912 1632 0.73 0.80 0.81 0.86
nsct2 23003 14981 2.48 1.82 2.30 2.17
sgpf5y6 246077 308634 0.49 0.42 0.74 0.61
world 35510 32734 0.92 0.63 0.51 0.52
dcp1 4950 3007 1.02 0.90 0.72 0.82
dcp2 32388 21087 1.90 1.12 0.82 0.72
deteq8 20678 56227 1.32 1.20 1.12 1.18
deteq27 68672 186928 1.32 1.06 0.87 0.80

Geometric mean 0.96 0.90 0.87 0.85
Larger test problem results on richtmyer from § E.3.

The rate cost of the structured form is the ratio of the iteration rate of the
unstructured form to the structured form. Once again, the structured form is
on average more efficient, and by approximately the same amount. This would
be expected since there are no inherent alterations to the pricing or pivoting
rules when switching between structured and unstructured systems.
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3.8.4 Parallel performance

It is apparent that the performance of i7 when operating with the structured
form is not substantially different on this test set from its performance when
using the unstructured form. The factors which will limit parallel performance
are therefore three-fold: the overhead of contention for resources; the proportion
of the code which is in fact executed in parallel (Amdahl’s law); and finally the
quality of the load-balancing between the processors.

Problem
2 block, 4 block, 8 block, 16 block,
2 core 4 core 8 core 16 core

Name Rows Columns speedup speedup speedup speedup
dano3mip lp 3202 13873 0.96 0.99 1.01 1.02
gen4 1537 4297 1.10 1.11 1.00 1.00
lp22 2958 13434 1.08 1.05 1.20 1.10
pds-40 66844 212859 1.18 1.84 2.06 1.76
rlfprim 58866 8052 1.05 0.88 1.23 1.18
stormG2-27 14441 34114 0.93 1.20 1.19 1.06
stormG2-125 66185 157496 1.05 1.35 1.53 1.69
nug08 912 1632 0.95 0.98 0.93 0.94
nsct2 23003 14981 1.24 1.12 1.29 1.20
sgpf5y6 246077 308634 1.05 1.23 1.80 1.80
world 35510 32734 1.29 1.58 1.51 1.45
dcp1 4950 3007 0.99 1.07 1.01 0.94
dcp2 32388 21087 1.55 1.79 1.69 1.55
deteq8 20678 56227 0.99 1.15 1.22 1.12
deteq27 68672 186928 1.10 1.33 1.52 1.64

Geometric mean 1.09 1.22 1.31 1.26
Larger test problem results on richtmyer from § E.3.

The speed-up given here is over the structured code running in serial on the
same number of blocks. As previously noted, the structured form is on average
more efficient than the unstructured, which makes these numbers a conservative
(but entirely more meaningful) estimate of speed-up. Speed-up is bounded at a
very low multiple for any number of cores, and indeed above 8 cores, performance
begins to degrade. To what extent this effect is driven by thermal effects in the
processor packages as opposed to load balancing and contention is unclear.

Problem
2 block, 4 block, 8 block, 16 block,
2 core 4 core 8 core 16 core

Name Rows Columns Peak Peak Peak Peak
dano3mip lp 3202 13873 0.94 0.94 0.92 1.04
gen4 1537 4297 1.33 1.45 1.13 1.03
lp22 2958 13434 1.10 1.03 1.21 1.33
pds-40 66844 212859 1.23 2.09 2.74 2.22
rlfprim 58866 8052 1.14 0.72 2.09 1.95
stormG2-27 14441 34114 0.93 1.29 1.18 1.07
stormG2-125 66185 157496 1.05 1.64 1.96 2.23
nug08 912 1632 0.82 0.80 0.76 0.56
nsct2 23003 14981 1.25 1.28 1.99 1.38
sgpf5y6 246077 308634 1.05 1.26 2.11 2.04
world 35510 32734 1.35 1.72 1.87 2.03
dcp1 4950 3007 0.98 1.04 0.91 0.77
dcp2 32388 21087 1.61 1.86 2.03 1.88
deteq8 20678 56227 1.04 1.20 1.61 1.23
deteq27 68672 186928 1.16 1.65 2.22 2.11

Geometric mean 1.12 1.28 1.54 1.41
Larger test problem results on richtmyer from § E.3.
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The peak speed-up given here is the amount that the actually parallel part
of the computations was accelerated by. This is calculated by measuring the
serial parts of the solve time on a parallel run, and deducting that amount also
from the serial solve, giving an approximate peak speed-up measurement. Once
again, speed-up is bounded at a low level, mostly below 2×, although there are
exceptions which near 3.0×. Thus, even the code which is parallelised does not
speed-up by much more than twice, with any number of cores.

Problem
16 block, 16 block, 16 block, 16 block,

2 core 4 core 8 core 16 core
Name Rows Columns speedup speedup speedup speedup
dano3mip lp 3202 13873 0.94 0.98 0.97 1.02
gen4 1537 4297 1.00 1.00 1.01 1.00
lp22 2958 13434 0.97 1.08 1.10 1.10
pds-40 66844 212859 1.20 1.55 1.77 1.76
rlfprim 58866 8052 1.04 1.14 1.17 1.18
stormG2-27 14441 34114 0.93 1.00 1.16 1.06
stormG2-125 66185 157496 1.16 1.46 1.59 1.69
nug08 912 1632 0.87 0.93 0.95 0.94
nsct2 23003 14981 1.06 1.21 1.41 1.20
sgpf5y6 246077 308634 1.27 1.53 1.75 1.80
world 35510 32734 1.08 1.31 1.41 1.45
dcp1 4950 3007 0.76 0.88 0.90 0.94
dcp2 32388 21087 0.99 1.32 1.56 1.55
deteq8 20678 56227 0.95 1.14 1.20 1.12
deteq27 68672 186928 1.11 1.40 1.59 1.64

Geometric mean 1.02 1.17 1.27 1.26
Larger test problem results on richtmyer from § E.3.

The final comparison is between different numbers of threads on the same
block structure, chosen here to be 16 for generality. If load balancing were to
be responsible for the failure of the parallel code to accelerate, then we might
expect different behaviour with more blocks than threads. However, this does
not occur, as can be seen, and the speed-up numbers are almost unchanged from
the block per core results given earlier.

3.9 Conclusions

Kaul’s method can be implemented in a practical code, and can solve real prob-
lems with no less accuracy than is entailed by the use of a traditional simplex
basis. This chapter has presented a working proof of this fact; indeed i7 may
be the first ever working implementation of this method.

However, parallel implementations of the simplex method are memory bound
on multi-core hardware, which was a conclusion of Chapter 2 and is also a con-
clusion of this one. With two processor packages, speed-up of around two is
possible when applying increasing numbers of workers to a structured represen-
tation, but the additional overhead of this representation decreases the practical
speed-up achieved considerably. Only for a handful of problems does this ap-
proach appear worthwhile, and the extent of path effects on these cases cannot
be certainly quantified.

Against these marginal gains in performance must be weighed the substan-
tial effort and complexity involved in creating a simplex solver of this type.
Parallelism creates numerous problems of reproducibility and portability, and
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the structured form requires extensive code to support it, over and above that
required for a revised simplex solver. Should commodity hardware evolve to the
point at which the memory bandwidth exists to subserve parallel computation
in sparse arithmetic, this method may become attractive. When the speed-up
is strictly bounded at a small fraction of the cores involved, however, it would
be difficult to justify the implementation effort.



Chapter 4

hmf - Parallel matrix-free interior

point

4.1 Introduction

Parallel implementations of interior point methods for linear programming have
been reported by several authors [e.g. 16, 71, 8], and have been shown to be both
efficient and also capable of excellent speed-up. At the heart of such a code is a
factorisation step, which is repeated at each iteration, and for which advanced,
parallel techniques are available [67]. This makes a significant contribution to
the overall speed-up achieved by such solvers.

In a matrix-free interior point solver [51], direct factorisation is replaced by
the use of iterative methods, and although such approaches are experimental at
this time, they offer the prospect of solving efficiently some classes of problem
which are presently extremely difficult. A significant part of the run-time of
such a code is spent in performing sparse matrix-vector products, and it may
be hoped that a parallel implementation of these routines will provide useful
speed-up for the entire solver.

This chapter describes hmf, an application of the matrix-free Hopdm in-
terior point library [7, 49], which can exploit both multi-core and many-core
hardware. For two difficult problem classes, hmf is shown to produce results
with exceptional speed, although the accuracy of the solutions obtained is low.
A novel approach for performing sparse matrix-vector products on a GPU is also
described, and is shown to improve the performance of multiplications with the
constraint matrix for these problems. This work previously appeared in [109].

4.2 Matrix-free interior point methods

The major parts of interior point methods were covered briefly in § 1.3.4, where
the necessity of calculating a search direction (∆x,∆y,∆s) at each iteration
was described. This direction is found by solution of the system A 0 0

0 A> In
S 0 X

 ∆x
∆y
∆s

 =

 b−Ax
c−A>y − s
µe−XSe

 , (4.1)

in which the terms X and S on the right-hand side vary between iterations.

59
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This form is usually reduced to the normal equations [5], given by

AΘA>∆y = g, (4.2)

in which Θ = XS−1 is a diagonal matrix,

g = AΘA>y −AΘ
(
c− µX−1e

)
+Ax− b, (4.3)

and (∆x,∆s) follow by substitution. These have the advantage of requiring only
the factorisation of a symmetric, positive definite matrix G = AΘA>. When
this is treated by Cholesky decomposition [14], giving G = LDL>, the sparsity
pattern of G and L remains constant between iterations, and this enables much
of the analysis required for an efficient factorisation to be re-used.

There exist sparse problems, however, for which the factor L is near full,
making it very expensive to compute or store. To avoid forming L, matrix-free
methods solve the normal equations iteratively, for example by using conjugate
gradients [64]. This will typically require many multiplications withG but, when
A is sparse, may still be comparatively attractive. The following discussion is
based on [51], which goes into much more detail.

The rate of convergence of conjugate gradients depends upon the ratio of
the largest to the smallest eigenvalue in the target matrix. In the case of the
normal equations, note that Θ is a diagonal matrix whose elements are the ratios
xi/si, one or other of which must tend to zero at the optimum. Intuitively,
the eigenvalues of G will be dispersed by Θ as the solve progresses, and when
conjugate gradients are applied to it directly, convergence will suffer.

This tendency can be counteracted by regularising the original problems.
A quadratic term, derived from the distance between the current solution and
fixed reference points x̄ and ȳ, is added to the objective, giving the problems

minimise c>x+ r(p)

subject to Ax = b

x ≥ 0

where r
(p)
i =

pi
2

(xi − x̄i)2,

(4.4)

maximise b>y + r(d)

subject to A>y + s = c

s ≥ 0

where r
(d)
i =

di
2

(yi − ȳi)2.

(4.5)

The rôle of p and d becomes immediately clear in the normal equations for the
corresponding barrier problems,(

A
(
Θ−1 + P

)−1
A> +D

)
∆y = g, (4.6)

in which P provides an upper bound on the magnitude of the largest eigenvalue,
and D a lower bound upon the magnitude of the smallest.

Convergence can be further improved by the use of a preconditioner. Con-
sider performing a Cholesky factorisation of G, then at an intermediate point,
this calculation can be written

G =

[
Lu
L` I

] [
Vu

G′

] [
L>u L>`

I

]
, (4.7)

where Vu is diagonal, and G′ is the active submatrix. This suggests a precondi-
tioner Ψ, requiring only the the diagonal VG′ of G′, of the form

Ψ =

[
Lu
L` I

] [
Vu

VG′

] [
L>u L>`

I

]
. (4.8)
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4.3 Sparse matrix-vector products

A matrix-free interior point solver devotes much of its run-time to the mul-
tiplication of vectors by the constraint matrix A, and to operations with the
previously described preconditioner Ψ. Only the former will be considered in
this work, which is to say that strategies will be described for multiplying a
dense vector by a sparse matrix A or its transpose, and also for calculating
the compound product AΘA>x. For many-core hardware, such techniques are
in their infancy, and several of the methods detailed in § 4.3.2 could not be
uncovered in earlier literature.

4.3.1 On multi-core hardware

Whilst performing sparse arithmetic, a processor accesses memory at locations
determined by the pattern of nonzeroes in the working vector and matrix, and
these patterns are not easily predicted. Moreover, in the calculation of sparse
matrix-vector products, there is little opportunity for data re-use, as the matrix
is read only once, and for this read to be efficient, scattered accesses must be
made to the working vector.

Current generation hardware attempts to compensate for the high latency
and low bandwidth of main memory, but the previous considerations make the
methods employed largely ineffective for this workflow. It must be expected,
therefore, that the rate at which such computations can be completed is bounded
by the performance of the memory subsystem, and that optimizations to reduce
instruction overhead and improve throughput will have limited effect. For vec-
torization in particular, nonzeroes must be gathered into adjacent locations, and
this may lead to a net degradation in performance.

Reducing memory traffic provides more substantial gains. Vuduc et al. [119]
describe the following trick, whereby for A held column-wise in

y = AΘA>x, (4.9)

all operations can be completed with a particular column ai before the next
column is read, using

y = AΘA>x =
∑
i

θi(a
>
i x)ai. (4.10)

Columns sufficiently small enough to be contained in cache will now be read
from memory only once.

Despite this technique, and despite the fact that all of the target operations
are embarrassingly parallel, or nearly so, limited speed-up can be expected due
to memory contention. This was also seen for tableau updates in Chapter 2.

4.3.2 On many-core hardware

A GPU also achieves its peak performance for dense arithmetic, and the reduc-
tion in the sparse case is even more pronounced, as such devices support only
certain patterns of memory accesses efficiently (see § 1.2.5). This makes the
choice of matrix representation a critical factor in determining the speed of ker-
nels for sparse matrix-vector multiplications on this platform, and the optimal
such selection is problem dependent [12].
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A non-exhaustive list of representations for sparse matrices on such devices is
now provided. The TELL representation, and the dense-hybrid representations,
were previously described by the author in [109], but are not otherwise known
to have been published.

Compressed sparse row (CSR) [12] The rows of a matrix are stored end-
to-end in two memory blocks, one containing nonzero matrix entries, and the
other containing the column indices of those entries. This requires O(z) memory
locations, for z the number of nonzeroes in the matrix. Coalesced access to this
data can be ensured by applying an entire warp of threads (32) to each row.

ELLPACK (ELL) [12, 118] The rows of a matrix are stored as two lists
of vectors, one list containing matrix entries, and the other containing column
indices [57]. Each vector has one entry per row, so that elements from different
rows are interleaved in memory, making all accesses coalesced at one thread per
row. Entries for a particular row occur with a fixed stride, and all rows are
padded to the same length, which requires O(`m) memory locations, where ` is
the length of the longest row and m is the number of rows.

Coördinate (COO) [12] There are three memory blocks, one for row indices,
one for column indices, and one for matrix entries, requiring O(z) storage. Coa-
lesced access is possible, but effective routines making use of this representation
are complex, and have low performance for many matrices.

ELLPACK-COO hybrid format (HYB) [12] The bulk of the matrix is
stored in ELL format, with nonzeroes from long rows placed into a COO section.
This yields a format which is practical for general matrices.

ELLPACK-R [118] This is the ELL representation with the addition of a
list of row lengths, which allows operations with zero padding to be avoided.
Zero padding must, however, still be stored.

Transposed ELL (TELL) The ELL format may be transposed yielding a
CSR-like representation with fixed-length rows and controlled alignment. As
for CSR, coalesced access can be ensured with one warp per row or, on newer
devices, one half-warp per row.

Dense-hybrid ELL and TELL (DHELL and DHTELL) These formats
store a portion of the rows of the matrix as dense, say those with fewer than
25% of entries at zero, and the remainder of the matrix as either ELL or TELL
respectively. They are appropriate for matrices with a small, dense section
whose other rows are of a similar length.

Different numbers of threads may be applied to the operations with each
row of these representations, as identified by Bell and Garland [12] for CSR,
and Vázquez et al. [118] for ELL-R. Coalesced access can be maintained for
between 1 and 16 threads with ELL, and for between 32 and 512 threads with
TELL and CSR. On newer hardware, these rise to between 1 and 32 threads for
ELL, and to between 16 and 512 threads for TELL.
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4.4 Implicit constraints

When direct factorisation of G in the normal equations is no longer performed,
the amount of data which must be processed explicitly at each iteration is
significantly reduced. Further gains result from the observation that access to
the constraint matrix occurs only in the context of a small number of well-
defined operations, and that these operations could be as easily provided by
black box functions, which is to say an oracle, as by näıve calculation with A.
This section describes the creation of such an oracle for the linear relaxations of
quadratic assignment problems. A previous description of the use of an oracle
for a matrix-free interior point solver could not be identified in the literature.

Quadratic assignment problems arise, for example, when a set of facilities
must be placed so as to minimise the cost of transportation between them. The
task in general is to find a minimising permutation ϕ in

minimise

n∑
i=1

n∑
j=1

fij dϕ(i)ϕ(j) +
∑
i

biϕ(i), (4.11)

representing, for example, a set of n facilities, with flows fij between them,
which must be placed on a set of n points, separated by distances dij , with
fixed cost bij to place facility i at point j. Such problems can be difficult, and
a number of standard instances are unsolved at this time [101].

The Adams-Johnson linearisation [4, 23] is an equivalent formulation without
quadratic terms. Its closed form is

minimise

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

cijkl yijkl

subject to

n∑
i=1

yijkl = xkl ∀j, k, l ∈ N,
n∑
j=1

yijkl = xkl ∀i, k, l ∈ N,

n∑
i=1

xij = 1 ∀j ∈ N,
n∑
j=1

xij = 1 ∀i ∈ N,

yijkl = yklij ∀i, j, k, l ∈ N, yijkl ≥ 0 ∀i, j, k, l ∈ N,
where xij ∈ B, yijkl ∈ R.

(4.12)
Here B = { 0, 1 }, and when the requirement for integrality is relaxed, the re-
sult is a continuous program, suitable for treatment by interior point methods,
which can be used to bound the optimal objective. Reductions in this form for
symmetric problems are possible, but the size of the relaxation grows in any case
as O(n4) in the original parameter n, so that by n = 80, the constraint matrix
for even a symmetric problem is already of dimension 1, 011, 360× 19, 977, 600.

The constraint matrix of the relaxation (4.12) is fixed for all quadratic assign-
ment problems of equal size, with only the objective varying between instances,
and furthermore all coefficients in this matrix are unitary. When a closed form
generator for rows and columns of such a matrix is known, it may be specialised
in a straightforward manner to perform matrix-vector multiplication during its
traversal, rather than writing out coefficients, and this provides the core of an
oracle for matrix-free interior point methods on such problems.
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4.5 Parallel matrix-free interior point

hmf is based on the matrix-free version of the Hopdm library for solution of
linear programs by interior point methods [7, 49]. It consists of a front-end code,
capable of reading both linear programs and quadratic assignment programs,
and back-end routines to perform sparse matrix-vector multiplication with the
constraint matrices of these problems.

The back-end is organised into modules, each of which provides routines to
perform the sparse matrix-vector products y = Ax (fsax), x = A>y (fsaty)
and x = AΘA>y (fsaat). In addition to an optimized serial module, there
is a parallel multi-core implementation using Posix thread primitives, and a
GPU module for NVIDIA devices. A further, serial, module can function as an
oracle for quadratic assignment programs in this setting, by providing both the
previous operations and also, from AΘA>, particular columns (sclaat), the
diagonal (sdgaat), and density estimates (mfcaat).

The GPU module provides access to several CUDA kernels for operating on
the CSR, DHELL and DHTELL representations, each of which applies different
numbers of threads to calculations with rows of the constraint matrix. The
matrix and its transpose are stored separately using a given representation, and
AΘA> is calculated näıvely by the application of three kernels, the middle of
which performs a trivial multiplication with Θ.

The oracle implementation is specialised for symmetric quadratic assignment
problems, and stores just the n× n matrices of the original problem definition.
Only the routine mfcaat generates any part of the constraint matrix explicitly,
and this is called only once, during the creation of the preconditioner, to identify
sparse columns to bring into the partial Cholesky factorisation. All other op-
erations are implemented implicitly, by specialising a linear program generator
for such problems so that it transforms an input vector using the components
of the matrix it would have generated. The linear program generator from
which this is derived represents a complete rewrite of the newlp program [68] to
enable generation of individual rows and columns in memory and on demand.
Only constant-sized working space is required above that used for the vectors
involved.

4.6 Results

This section first presents results showing the performance of GPU kernels for
sparse matrix-vector multiplication, operating on the specialised representations
described in § 4.3.2, and making use of varying numbers of threads per row.
These are followed by results for hmf on a test-set of quadratic assignment
problems, for which both measures of accuracy and time to solution are given.
The final part of this section describes the performance of hmf on non-classicality
threshold subproblems for multiqubit states [58], which are another set of linear
programming formulations difficult to solve by traditional means.

All results for hmf were obtained on the machine grunty, described in § 1.2.6.
A standard benchmark of numerical stability is not provided, as hmf is depen-
dent on problem specific tuning, and not capable of the solution of general
problems. The ongoing problem of accuracy in this framework will be discussed
alongside the relevant results.
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4.6.1 Sparse matrix-vector kernels

As shown by Bell and Garland [12], the performance of kernels for sparse matrix-
vector multiplication depends in large part upon the characteristics of the ma-
trices to which they are applied. Table 4.1 shows the test instances used in this
section, which are the constraint matrices of problems investigated in subse-
quent parts. The first four instances are from the quantum theory subproblems,
provided by Gruca et al. [58], and are both large and relatively dense, being no-
table for containing a single completely dense row and column. The remaining
instances are from the linearisations of quadratic assignment problems, and are
considerably larger, but also more sparse.

Matrix Rows Columns Nonzeroes
16kx16k0 16,385 16,385 2,129,920
64kx64k0 65,537 65,537 16,908,288
96x128-0 98,305 131,073 50,561,024
256x256-0 262,145 262,145 134,742,016
esc16a 7,712 29,056 123,392
esc32a 63,552 493,056 2,033,664
esc64a 516,224 8,132,608 33,038,366
tai80a 1,011,360 19,977,600 80,908,800

Table 4.1: Dimensions of test matrices.

The kernels for the CSR representation using 1 or 32 threads per row were
described previously by Bell and Garland [12], and the tested implementations
are largely equivalent. The remaining kernels vary in their novelty. Results for
CSR with this range of threads per row could not be found in the literature.
Although Vázquez et al. [118] described kernels for the ELL-R representation
with 1 and 8 threads per row, results using the dense-hybrid representation,
or with more than 8 threads per row, have not been discovered in previous
work. The TELL representation is believed novel, and hence no kernels using
its dense-hybrid representation are known to have been previously analysed.

The results give the time required to perform a single multiplication of ran-
dom dense vector with a sparse matrix, averaged over five attempts. For each
problem, the fastest average time is marked. Overall, the fastest kernel is that
which applies one half-warp, or 16 threads, to each row of DHTELL representa-
tions of these matrices. The performance of CSR with one thread per row, which
is the only kernel having uncoalesced memory reads, illustrates the importance
of ensuring proper access patterns on this platform.

4.6.2 Quadratic assignment problems

In this section, the performance of general purpose, accelerated linear algebra
for matrix-free interior point methods is evaluated on quadratic assignment
problems. The performance of an oracle for the constraint matrices of such
problems is also demonstrated. The instances used for testing in this section
are all symmetric, and drawn from a standard test-set [101]. The first family of
problems, ESC16A and its larger relatives, originate from minimising the amount
of additional hardware required to make sequential circuits self-testable [37],
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and have known optima. The remainder, TAI10A and its relatives, constitute a
family of uniformly generated problems first proposed by Taillard [114], and the
selected instances TAI40A, TAI50A, TAI60A and TAI80A are unsolved as of April 2012.

The first result table presents the time to solution for each linear relaxation
using each of hmf’s four linear algebra modules, serial code, parallel multi-core,
GPU and an oracle (implicit A). Eight threads are used for the multi-core
routines, and the GPU kernel is half-warp DHTELL, the strongest of those
reviewed in the previous section. The average speed-up per invocation on 8
cores is 1.96, whilst the oracle for A is only 0.53 times as fast as the standard
serial version by the same measure. These results bear little relation, however, to
the times required for solution, which show no clear pattern. The GPU module
is unable to solve the largest of these instances, and performance is relatively
poor, with invocations only 1.22 times faster on average than the serial CPU
case.

The speed of solution is exceptional for all problems and modules. Gondzio
[50] reported simplex solution times of 22 hours for a dimension 20 quadratic
assignment problem, with a dimension 30 instance unsolved after 28 days. Simi-
larly, although an interior point method completed the dimension 20 problem in
less than half an hour, there was insufficient memory available to even attempt
to solve the dimension 30 instance.

The second table shows the accuracy of the solutions returned, in terms of the
maximal primal and dual infeasibilities reported at termination. As can be seen,
this method is unable to find a solution to any problem that is primal feasible to
within reasonable tolerances, and the particular choice of linear algebra module
appears to play little to no part in this difficulty. More importantly, for the
unsolved instances, the solutions returned are dual infeasible, and so cannot be
used to bound the optimal objective.

4.6.3 Quantum theory subproblems

The problems in this section derive from the study of non-classicality thresholds
for multiqubit states [58]. They are subproblems whose solutions drive a higher-
level search for optimality, and this has not been run to termination on larger
problem sizes owing to the difficulty of the generated linear instances.

Results are given for all of the subproblem instances to which access was
available. There is no oracle for these problems, so only the general purpose
linear algebra modules can be evaluated. Once again, the speed of termination
in all cases is exceptional. Gondzio [50, see also 53] reported solution time of
over 110 hours for the instance 64KX64K0 using the simplex method, and there
was not enough memory available to attempt solution using an interior point
method. In contrast, the longest time recorded here is around an hour.

However, as for the quadratic assignment programs, hmf is unable to locate
primal feasible solutions to any of these problems, and in some cases the result is
so inaccurate as to be meaningless (e.g. 16KX16K3). When time per invocation of
the linear algebra operations is considered, the average speed-up is 3.37 on eight
cores, and the GPU is 8.61 times faster than the serial kernels. Despite this,
the tables show that these modules have very little effect on the time required
for solution overall, and the solution process itself appears chaotic.
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4.7 Conclusions

The code in hmf itself consists primarily of accelerated linear algebra routines,
and that acceleration can be considered partially successful, in that novel tech-
niques were developed for the performance of sparse matrix-vector products
on GPUs, and significant gains were realised for the quantum theory subprob-
lems. This chapter has also demonstrated the viability of using an oracle in a
matrix-free interior point method.

However, although hmf terminates extremely rapidly on the tested problem
classes, when compared with other techniques, the results in this chapter show
that accelerated linear algebra provides little further benefit in speed, and that
the solutions found in any case are usually of no value. An entire year was
available for tuning, during which several researchers worked on improving the
accuracy of the results returned by hmf, but these efforts were ultimately un-
successful. It remains unclear whether it is possible to solve any non-trivial
problem to working accuracy with this code.
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Chapter 5

Conclusions

This thesis describes three distinct approaches to parallel linear programming,
the parallel standard simplex method (i6 and i8), the parallel revised, block-
angular simplex method (i7), and a parallel matrix-free interior point method
(hmf). The same conclusion results from considering any of these codes: that
available memory bandwidth bounds speed-up at a low multiple of the number of
threads used. Given that parallelism has costs in code complexity and overhead,
the introduction of significant parallel elements into linear programming solvers
of these types appears unattractive at present.

This thesis nevertheless contains some contributions believed to be novel.
Without exception, the following statements should be considered qualified to
indicate the possibility of pre-existing material of which the author is unaware.

In Chapter 2, a novel update for a parallel standard simplex solver was de-
scribed, which enables limited maximum improvement pricing. This might be
generalised to other forms of pricing which are typically considered impractical.
A strategy for minimising the memory traffic during the operation of such a
solver was also presented. The GPU code in this chapter is the first to demon-
strate the ability to solve real, numerically difficult problems.

In Chapter 3, new techniques for working with permutation matrices, for
updating a Schur complement, and for maintaining a structured basis, were
described. The practicality of Kaul’s method was demonstrated, with new ob-
servations on its sparsity and numerical performance, and results were provided
from the first known implementation showing that it is capable of reliably solv-
ing real problems. This work also contains the first description of a means to
parse standard multi-commodity flow problem files without recourse to addi-
tional information.

In Chapter 4, a new representation for sparse matrices, transposed ELL-
PACK, and improved kernels for sparse matrix-vector multiplication with the
constraint matrices of two problem classes were described. This work also
demonstrated the use of an oracle for a constraint matrix in a matrix-free inte-
rior point method.

In the appendices, a new practical dual phase one method was described
which simplifies recovery from infeasibility. A preliminary description of a
bound-flipping ratio test for the primal simplex method was provided, including
considerations of post-solve. The appendices also include computational studies
of basis updates and pricing which are more comprehensive in their range than
those which have been previously published.
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Appendices

75





Introduction

These appendices bring together work not directly related to parallelism in
linear programming, which nevertheless may be of some wider interest. First,
an approach to combined phase one and two in the dual simplex method is
described which could not be found in the literature. Its principal attraction is
the comparative ease with which a recurrence of infeasibility may be dealt.

Next, a method for making use of shadow bounds in the primal simplex
method is described, which again could not be found in the literature. By
treating these bounds directly, significant additional presolve reductions can be
enabled, whilst the inclusion of bound-flipping in the primal simplex method
may be hoped to improve its performance.

The following appendix is a study of the behaviour of pricing, in particular
composite and normalised pricing, in both the primal and dual simplex methods.
A direct comparison of performance, in terms of iteration counts, for the range
of methods implemented could not be found in the literature.

The final appendix is a computational study of the performance of various
tableau and basis representations, in terms of fill and accuracy. Although the
implementations compared are näıve, it may be hoped that the relative strengths
of the methods remain similar, even when more advanced strategies are applied
in their implementation. A study with the same scope could not be found in
previously published material.
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Appendix A

Obtaining a feasible vertex

A feasible point from which to begin the simplex method may be difficult to
obtain for many valid programs. The standard approach in the primal simplex
method is to solve a relaxation whose optima coincide with those of the original
problem. In the dual simplex method, a number of techniques have been ad-
vanced. This section describes a restriction (tightening) of the problem which
shares at least one optimal point with the original.

The approaches discussed are phase one and two methods, which retain a
constant formulation of a problem throughout the solve. The alternatives are
pure phase one methods, in which a solution to a feasible, reduced problem,
called the phase one problem, is used as a starting point for solves of the orig-
inal problem. One advantage of simultaneous methods is that in the event of
numerical difficulties, recovery from a loss of feasibility is routine.

The reformulations which underpin these methods are described in subse-
quent sections. The primal case is well known, and is given first. The precise
form of the dual case subsequently described is believed to be novel. Both cases
make use of a notional quantity M , which in some systems has been given a
particular numerical value. A more stable approach is to treat M symbolically,
so that an expression involving M is considered in terms of its behaviour as
M →∞.

A.1 The primal big-M method

Consider a linear program of the form

minimise c>x

subject to Ax ≥ b
x ≥ 0, b > 0,

(A.1)

for which a feasible point is unknown. However, the relaxed problem, formed
by introducing artificial variables α,

minimise c>x+Me>α

subject to Ax+ α ≥ b
x, α ≥ 0, b > 0,

(A.2)
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has a feasible point x = 0, α = b. The term Me>α added to the objective pe-
nalises the failure to satisfy the constraints in the original variables. Intuitively,
for M sufficiently large, the simplex method will itself attain both feasibility
and optimality in (A.1) merely by seeking optimality in (A.2).

Clearly (A.1) is infeasible precisely when (A.2) has no solutions with α = 0,
as the former is obtained by substituting α = 0 into the latter.

Proposition A.1.1. For M of sufficient size, (A.1) unbounded implies (A.2)
is unbounded.

Proof. Suppose (A.1) has a feasible solution x∗ and an unbounded ray r∗, so
that x∗ + γr∗ are feasible for all γ ≥ 0, and c>r∗ < 0. Then (x∗, 0) and (r∗, 0)
are a solution and unbounded ray respectively for (A.2).

Suppose that (A.2) is unbounded, with solution (x∗, α∗) and unbounded ray
(r∗, ρ∗), with c>r∗ + Me>ρ∗ < 0 by assumption. Now ρ∗ ≥ 0, which implies
c>r∗ < 0, and feasibility of the unbounded ray depends on

Ax∗ + γAr∗ + α∗ + γρ∗ ≥ b, (A.3)

for all γ ≥ 0, so that if Ar∗ ≥ 0 then (r∗, 0) is also an unbounded ray for (A.2).
Otherwise, ρ∗ ≥ −Ar∗ implies ρ∗ > 0 and so for

M ≥ − c
>r∗

e>ρ∗
(A.4)

this ray is no longer an improving direction. If there exists M∗ such that for
M ≥ M∗ all rays of (A.2) have ρ = 0, then by setting M = M∗, a feasible
point from (A.1) can be combined with any ray from (A.2) to give a proof of
unboundedness for the original problem.

However, no such M∗ necessarily exists. Consider the counterexample

minimise −x1
subject to −x1 + x2 ≥ 1

x1, x2 ≥ 0,

(A.5)

with the relaxed formulation

minimise −x1 +Mα1

subject to −x1 + x2 + α1 ≥ 1

x1, x2, α1 ≥ 0.

(A.6)

A feasible solution to the relaxed problem is (0, 1, 0), and ∀γ

(0, 1, 0) + γ(1, 1− ε, ε) (A.7)

is also feasible for all 0 ≤ ε ≤ 1, and in particular for 0 < ε < 1/M we have

(−1, 0,M)>(1, 1− ε, ε) = −1 +Mε < −1 +
M

M
= 0 (A.8)

so that for any M there exists an unbounded ray for this problem which is
nonzero in the artificial variables.
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Note also that the unboundedness of (A.2) does not imply the feasibility of
(A.1). Consider the trivial counterexample

minimise − x2
subject to − x1 ≥ 1

x1, x2 ≥ 0,

(A.9)

with the relaxed formulation

minimise − x2 +Mα1

subject to − x1 + α1 ≥ 1

x1, x2, α1 ≥ 0.

(A.10)

A solution and unbounded ray for this problem are (0, 0, 1) and (0, 1, 0) respec-
tively, but the original problem is infeasible.

The difficulty in interpreting unboundedness of (A.2), as highlighted in the
preceding discussion, can be overcome in practice by careful selection of incom-
ing columns, for example to reduce ‖α‖.

Proposition A.1.2. If (A.1) is feasible, then the sets of optimal solutions of
(A.1) and (A.2) are isomorphic for M of sufficient size.

Proof. The feasible region for (A.1) is contained within that for (A.2), so that
if z is the optimal objective for (A.1) and z∗ is the optimal objective for (A.2),
we must have z∗ ≤ z. By assumption, (A.1) has a solution, providing an upper
bound z∗∗ on its maximal optimal objective.

Suppose (x∗, α∗) is an optimal solution to (A.2) with α∗ > 0, then asM →∞
so z∗ →∞, which contradicts the bound z∗∗ previously derived. Hence, for M
sufficiently large, α∗ = 0.

For any optimal solution x to (A.1), the point (x, 0) is feasible for (A.2).
There can be no point (x∗, 0) with superior objective, as x∗ would then be a
point with superior objective in (A.1), contradicting optimality of x. Thus (x, 0)
is optimal for (A.2).

An identical argument holds for optimal solutions (x∗, 0) of (A.2), and there
is a trivial mapping between optimal solutions of (A.1) and (A.2) which is
injective and surjective, hence an isomorphism.

In practice, a working problem for the primal simplex method is most readily
of the form

minimise c>x+McI(x, `, u)>x+McI(s,−U,−L)>s

subject to Ax+ s = 0

x, s free

(A.11)

where cI is a piecewise linear function, defined component by component as

{
cI(x, `, u)

}
i

=

 −1 xi < `i
1 xi > ui
0 otherwise

(A.12)

The artificials α are implicit in this formulation, being assumed to come into
existence to retain feasibility whenever a variable moves outside its bounds. The
coefficients (c, cI) in the objective function are stored separately. Pricing with
both c and cI simultaneously is discussed in Appendix C.2.
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A.2 The dual big-M method

Consider the problem

minimise c>x

subject to Ax ≥ b
x ≥ 0, c < 0,

(A.13)

for which a dual feasible point is not known. A restriction, formed by introducing
upper bounds M on all variables x, can be written in normal form as

minimise − c>β +Mc>e

subject to −Aβ ≥ b−AMe

−β ≥ −Me

β ≥ 0, c < 0.

(A.14)

where β = Me − x is a variable substitution moving x to these new bounds.
The point β = 0 is a dual feasible solution for (A.14).

Observe, trivially, that (A.14) can never be unbounded for any finite M , as
the greatest feasible value any variable can take is at most M .

Proposition A.2.1. For M of sufficient size,

i. (A.13) is infeasible if and only if (A.14) infeasible.

ii. (A.13) is unbounded if and only if (A.14) has no optimal solution with
β > 0.

Proof. The feasible region of (A.13) contains that of (A.14), so that infeasibility
of (A.13) trivially implies infeasibility of (A.14).

Suppose (A.13) is feasible, having the valid solution x. Let µ = ‖x‖∞ be
the largest component of x, and set M > µ. Now β = Me− x satisfies

β = Me− x > µe− x ≥ 0

−β = x−Me ≥ −Me

−Aβ = Ax−AMe ≥ b−AMe

(A.15)

so that β is a feasible solution for (A.14).
Suppose now that (A.13) is unbounded, having solution x∗ and unbounded

ray r∗, so that x∗ + γr∗ is feasible for all γ ≥ 0 and c>r∗ < 0. Observe r∗ ≥ 0
necessarily or the positivity constraints on x would prevent it from being an
unbounded ray. For any solution β > 0 to (A.14),

− c>β = −c>(Me− x) > c>x+ c>γr∗ − c>Me = −c>(β − γr∗) (A.16)

where (β− γr∗) is feasible for (A.14) when γ ≤ min |βi/r∗i |. Hence there can be
no optimal solution to (A.14) with β > 0.

Conversely, suppose (A.13) is feasible and bounded, with optimal solution
x∗ and objective z∗. Note that as the feasible region of (A.14) is contained in
that of (A.13), z∗ is a lower bound on the objective which can be obtained in
(A.14).
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Let µ = ‖x‖∞ and set M > µ. Then β∗ = Me− x∗ is a feasible solution to
(A.14) with objective z∗, and hence optimal. Now

β∗ = Me− x∗ > µe− x∗ ≥ 0 (A.17)

so that β∗ > 0 as required.

Proposition A.2.2. Every optimal solution to (A.13) has a corresponding op-
timal solution in (A.14) for some value of M .

Proof. Given an optimal solution x∗ to (A.13), let µ = ‖x‖∞ and set M > µ.
The solution β∗ = M − x∗ is feasible, as shown in Proposition A.2.1, and has
the same objective as x∗, hence is optimal for the restricted problem.

To see that ‖x‖∞ is bounded for all optimal solutions, note that x ≥ 0 and
c < 0 so that

µ = ‖x‖∞ ⇒ ∃i : c>x ≤ ciµ (A.18)

and optimality of x implies boundedness of the right-hand side.

A working problem using this approach is most readily of the form

minimise c>(x+MxI)

subject to A(x+MxI) + (s+MsI) = 0

` ≤ x ≤ u,
`I ≤ xI ≤ uI ,

−U ≤ s ≤ −L,
−UI ≤ sI ≤ −LI .

(A.19)

Let B be the set of basic variables and N the set of nonbasics, then `I and uI
are derived from ` and u by

`I i =

 0 `i > −∞
−1 i ∈ N , `i = −∞
−∞ otherwise,

uI i =

 0 ui < ∞
1 i ∈ N , ui = ∞
∞ otherwise,

(A.20)

and the definitions of LI and UI are analogous.
The bounds on the basic variables in (A.20) follow immediately from con-

sidering M to be allowed to take an arbitrarily large value. Clearly, any finite
bound will be exceeded by MsI for sufficiently large M , so that the bound of 0
is forced.

In (A.14), an upper bound M was introduced on dual infeasible, nonbasic
variables, which were then moved to it. It is this same bound which is rep-
resented in (A.20) by uI = 1 for the phase one values xI of the nonbasics.
A variable will only move to this bound when it would otherwise have been
dual infeasible, and this can be performed in identical fashion to the standard
bound-flipping correction after the dual long-step ratio test.

Whenever a variable’s cost ceases to be attractive, xI may be set to zero, flip-
ping the variable back to its finite bound. This value correction is the equivalent
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of the cost correction which occurs in primal phase one when a basic variable
which is not pivotal changes feasibility.

Note that in (A.19) primal infeasibility has a phase one and a phase two
component, calculated as

infeasI(x) =

 xI − `I xI < `I
xI − uI xI > uI
0 otherwise,

(A.21)

infeasII(x) =

 x − ` xI < `I ∨ (xI = 0 ∧ x < `)
x − u xI > uI ∨ (xI = 0 ∧ x > u)
0 otherwise.

(A.22)

These are trivially derived by noting that x and xI are two parts of the same
term, and hence must step to the same bound.



Appendix B

Bound flipping in the primal

In the bound-flipping ratio test for the dual simplex method [76, 43], longer steps
may be performed at each iteration by observing the piecewise linear nature of
the dual objective function. This in turn comes about because of the presence of
boxed variables, having two finite bounds, in a practical problem formulation.

This section outlines the analogous procedure in the primal simplex method.
Given the availability of dual bounds, corresponding primal bounds may be
relaxed to enable longer steps to be taken. In the final part, some simple and
well-known presolve operations which provide dual bounds are described, along
with the means to postsolve a problem which has been treated by them. This
is not a complete treatment of the subject matter, but rather an outline of the
essential ideas behind it.

B.1 Shadow bounds

Suppose we are given the fully boxed primal problem

minimise c>x

subject to Ax ≥ L

−Ax ≥ −U
x ≥ `

−x ≥ −u,

(B.1)

which can be brought into normal form by the substitution x̄ = x− `, giving

minimise c>x̄+ c>`

subject to Ax̄ ≥ L−A`
−Ax̄ ≥ −U +A`

−x̄ ≥ −(u− `)
x̄ ≥ 0.

(B.2)

The dual of this problem is

maximise (L−A`)>y1 + (A`− U)>y2 + (`− u)>y3 + c>`

subject to A>y1 −A>y2 − y3 ≤ c
y1, y2, y3 ≥ 0.

(B.3)
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Let us suppose that a full set of shadow bounds, λ, Λ, ω and Ω, are available,
where the reduced costs d in the primal have been bounded between Λ and Ω,
and the row duals π have been bounded between λ and ω. These can be added
to the dual problem, giving

maximise L>y1 − U>y2 −A`>(y1 − y2) + (`− u)>y3 + c>`

subject to A>(y1 − y2)− y3 ≤ c

−A>(y1 − y2) + y3 ≤ −Λ

(y1 − y2) ≤ ω

−(y1 − y2) ≤ −λ
y3 ≤ Ω

y1, y2, y3 ≥ 0.

(B.4)

As a result, the primal problem becomes

minimise c>x1 − Λ>x2 + ω>x3 − λ>x4 + Ωx5 + c>`

subject to A(x1 − x2) + (x3 − x4) ≥ L−A`
−A(x1 − x2)− (x3 − x4) ≥ −U +A`

−(x1 − x2) + x5 ≥ −(u− `)
x1, x2, x3, x4, x5 ≥ 0,

(B.5)

which resolves to

minimise
∑
i

f(xi) +
∑
i

g(e>i Ax)

where f(xi) =

 ci`i + Λi(xi − `i) xi < `i
cixi `i ≤ xi ≤ ui
ciui + Ωi(xi − ui) xi > ui

g(si) =

 −ωi(si − Li) si < Li
0 Li ≤ si ≤ Ui
−λi(si − Ui) si > Ui.

(B.6)

Note that when solving with the simplex method, constraints naturally take
the form Ax+s = 0 if both x and s have general bounds. In this case, s = −Ax,
−U ≤ s ≤ −L, and the functions g and f are the same for both slacks and
variables, i.e.

g′(si) =

 λi (si − (−Ui)) si < −Ui
0 −Ui ≤ si ≤ −Li
ωi (si − (−Li)) si > −Li.

(B.7)
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B.2 A simplex-like method with penalties

A solver based on the primal simplex method can be written for problems of
the form (B.6). The initial problem statement is taken to be

minimise z =

n∑
i=1

f(xi) +

m∑
i=1

f(si)

subject to s = −Ax

where f(x) =

 ci`i + λi(xi − `i) xi < `i
cixi `i ≤ xi ≤ ui
ciui + ωi(xi − ui) xi > ui

(B.8)

and c is the original objective function, extended with zeroes to s. Here, ` and
u are the appropriate primal bounds for each variable, and λ and ω are the
appropriate shadow bounds.

It is easiest to consider each variable xi to have two costs, an up cost γ+ and
a down cost γ−, which change depending on the value of the variable. These
can be defined as

γ+i =

 λi xi < `i
ci `i ≤ xi < ui
ωi xi ≥ ui

γ−i =

 λi xi ≤ `i
ci `i < xi ≤ ui
ωi xi > ui

(B.9)

and give rise to corresponding up and down reduced costs δ+ and δ−

δ+i = γ+i −
(∑
j∈Pi

γ−j âji

)
−
( ∑
j∈Mi

γ+j âji

)

δ−i = γ+i −
(∑
j∈Pi

γ+j âji

)
−
( ∑
j∈Mi

γ−j âji

) (B.10)

where âij is an element of the current tableau and

Pi = { j | âji > 0 }, Mi = { j | âji < 0 } (B.11)

so that it is necessary to know the sign of the entries in the tableau corresponding
to any basic variable at a bound in order to calculate an accurate reduced cost for
a given column. An approximation assumes basic variables are not at bounds.

Although there are no longer any binding constraints on individual variables,
the reduced cost is a convex, piecewise linear function of a variable’s value. The
ratio test, as for the bound-breaking phase one ratio test, performs a line search
on this function.

Note that the reduced costs δ+i and δ−i , considered as functions of xi, change
at a fixed set of points B for a given basis, given by

B =

{
xi +

xj − `j
âji

∣∣∣∣ j ∈ Pi ∪Mi

}
∪
{
xi +

xj − uj
âji

∣∣∣∣ j ∈ Pi ∪Mi

}
∪ {`i, ui} .

(B.12)
Thus when performing the ratio test on an incoming column, it is sufficient to
find the breakpoint which makes the reduced cost zero. This breakpoint defines
the leaving variable, unless it is from the incoming column, in which case a
primal bound-flip occurs and there is no leaving variable.
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B.3 Presolve

Brearley et al. [22] describe reductions of linear programs which may be applied
before the simplex method is used, and include several techniques which might
be performed were it possible to incorporate shadow bounds into the resulting
problem formulation. The simplest such reduction is the removal of a singleton
column

minimise · · ·+ cjxj + . . .

subject to · · ·+ aijxj + · · · ≥ bi,
(B.13)

where xj ≥ 0 has a coefficient aij > 0 in a single constraint. In the dual
problem, we have aijyi ≤ cj so that a simple upper bound can be inferred for
the row dual. Now for the slack in this row, si ≤ −bi can be replaced by an
upper penalty ωi = cj/aij . If, after solution of the problem, si > −bi, we can
set xj = (bi + si)/aij , restoring feasibility, otherwise xj = 0 is consistent. This
leaves the objective unchanged.

Suppose we infer a shadow bound Λj on a primal variable xj using its con-
straint in the dual problem ∑

i

ajiyi ≤ cj (B.14)

for which we have determined, using singleton columns, that all terms ajiyi are
bounded below. As a result, the primal lower bound, say 0, on xj can be relaxed
and replaced with penalties.

At the optimal solution, suppose xj < 0. The penalty incurred by this
violation is x>j Λj . Each constraint i with aij 6= 0 contained at least one singleton
column pi, by assumption, which provided the dual bound used. If aij < 0 then
an upper bound on yi was used, so that there is a penalty column with aipi > 0.
Equivalently, aij > 0 implies the existence of aipi < 0. Now if all of the xpi are
increased by xjaij/aipi the change in the objective is∑

i

aijxj
aipi

cpi =
∑
i

xjaij
cpi
aipi

= x>j Λj (B.15)

and setting xj = 0 leaves the activity of all constraints the same. Thus we
have constructed a feasible solution to the original problem having the same
objective.
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Simplex pricing

The number of iterations required for the primal simplex method to solve a
problem depends, to a great extent, upon the scheme used to select incoming
variables. The dual simplex method is similarly dependent upon the scheme
used to select leaving variables. This component of a solver is called its pricing .

A wide range of techniques exist which can contribute to pricing, and a
practical scheme may bring together a number of them. This section presents
results taken from i4, a standard simplex solver for which several pricing mod-
ules have been implemented. Comparisons are made of the effect of schemes
for normalised pricing, and for composite pricing, on the number of iterations
required to find an optimal solution.

C.1 Normalised pricing

The columns of the simplex tableau are vectors describing edges of the simplex
polytope incident at the current vertex. Each nonbasic variable increases along
one such edge, and its reduced cost gives the distance moved in the direction of
the objective function per unit increase of the variable, which is motion along
that edge.

The usual calculations in the simplex method do not lead to normalised edge
vectors, so that movement along one edge may be much more rapid than move-
ment along another. If the lengths of the edge vectors are known, normalised
reduced costs can instead be calculated which represent the change in the objec-
tive for unit steps, and this in turn allows the steepest descent directions, those
most closely aligned with the objective, to be selected. Techniques based on
this approach are called normalised pricing , and may substantially reduce the
number of iterations required for a solution, at the cost of making each iteration
more expensive.

Steepest edge [48, 41]. In primal steepest edge pricing, the exact norms of
the tableau columns are available at each iteration. In the standard simplex
method, this is easily achieved. In the revised method, the weights must be
updated between iterations, as the tableau is not cheaply available. Let A be
the constraint matrix, and Â the tableau. If xq replaces xp in the basis, then
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the updated weights γ̄ can be calculated from the existing weights γ by

γ̄p =
1 + ‖âq‖
â2pq

(C.1a)

γ̄i = γi − 2

(
âpi
âpq

)
a>i {B−>âq}+

(
âpi
âpq

)2

‖âq‖, i 6= p. (C.1b)

The term B−>âq can be found by one additional Btran per iteration, and the
remainder of the update is similar to calculating the pivotal row.

Dual steepest edge pricing has several variants. For a standard simplex
solver, it can be implemented as the transpose of the primal case. For a revised
solver, exact norms of the rows of the basis inverse are usually maintained
instead, and this requires only an additional Ftran [41, 78].

Projected steepest edge [41, 56]. Suppose the space F is fixed to be the
presently nonbasic variables, so that edge lengths in F are distances moved in
terms of just those variables. Clearly all columns begin with a length of one, but
as variables enter the basis the lengths of the columns will become the subnorms
in the indices from the reference set F. The update is much as for steepest edge,
and is usually given as

γ̄p =
δp + ‖âq‖F

â2pq
(C.2a)

γ̄i = γi − 2

(
âpi
âpq

)
a>i
{
B−>âq

}
F

+

(
âpi
âpq

)2

‖âq‖F, i 6= p, (C.2b)

where δi is one if i ∈ F and zero otherwise. Note that for exact subnorms in
(C.2b), the components in F should be taken to be only those present both
before and after the update, and an additional term of

∆ = δp(1− δq)â2pi − δq(1− δp)â2qi (C.3)

is required to correct for any change in the components in the framework.

Devex pricing [63, 56] Devex pricing is an approximate form of projected
steepest edge pricing. By dropping the inner terms in (C.2b), the need to
perform an additional Btran and row calculation in the primal, or Ftran in
the dual, is removed. The rapid accumulation of error which results can be
managed by resetting the framework F regularly, thus returning all edge norms
to 1. The update formula used is conventionally

γ̄p = max (1, ‖âq‖f ) (C.4a)

γ̄i = max
(
γi,
∣∣â2pi/â2pq∣∣∥∥ âq‖f ). (C.4b)

Approximate steepest edge [113]. ASE is an extremely coarse approxima-
tion in which the norms are taken initially to be a count of nonzeroes per column,
so that more sparse columns will be favoured. The update is a continuation of
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the simplifications in Devex.

γ̄p =
γq
â2pq

(C.5a)

γ̄i = max
(
γi, â

2
pi + 1

)
− 2â2pi +

γqâpi
â2pq

(C.5b)

C.2 Composite pricing

When both phase one and two prices are available for variables, there are essen-
tially two approaches. Either the phase two prices can be ignored whilst phase
one prices are available, or the two sets of prices can be combined throughout,
for example giving primal reduced costs of d = dI + µdII . The hope is that
by taking account of the true objective, the first feasible point attained by the
method will be closer to optimality.

Variable mu In this simple scheme, µ begins at some fixed value (say 1
8 ) and

is reduced by one half whenever the problem appears to be optimal. The value
of µ can never increase.

SOI-blended mu Here, µ again begins at some fixed value (say 1
32 ), and a

blended progress measure α, calculated by

α0 = 1, αi =
1

2
(αi−1 + ∆zI) (C.6)

where ∆zI is the change in the phase one objective for a given iteration, is used
to control its influence. Whenever α < ρzI , for some constant say ρ = 10−3,
then µ is decreased by half. Once again, µ can never increase.

Adacomp [90, 91, 92] An attempt is made to dynamically balance the pri-
orities of the phase one and two objectives, based on the proportion ρ of phase
one improving rows or columns which are also phase two improving. When ρ is
small, say ρ < 1

3 , so that few phase one attractive columns are also phase two
attractive, µ is reduced. Conversely, when ρ is large, say ρ > 2

3 , so that most
phase one attractive columns are phase two attractive, µ is increased.

Simplified Adacomp [92] In this scheme, µ is chosen to enforce a fixed ratio
ψ between the phase one and two objectives. The factor µ is now calculated
directly at each iteration as

µ =
zI
ψzII

(C.7)
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C.3 Results

This section presents results for i4 on the Netlib set [99], showing the effect
of normalised and composite pricing on overall iteration count. As i4 is a
standard simplex code, solution times are not compared, and only a partial
view of the effect of the various pricing schemes can be offered. Note that for
these results, i4 rebuilt its tableau every 200 iterations to minimise the effect of
any inaccuracies which might be introduced by the standard simplex method.
The dual simplex implementation of i4 makes use of a stabilised bound-flipping
ratio test with randomisation, and also the phase one method of Appendix A.
A limit of 50,000 iterations was imposed, and not all solves could be completed,
with numerical difficulties being another source of termination.

Results are presented as performance profiles [33]. Here, the x-axis repre-
sents the multiplier (equivalently, divisor, when minimums are sought) which
separates a code’s result from the best result of any code, and the y-axis rep-
resents the fraction of problems for which this code’s result was within this
multiple. Intercepts at the left-hand edge of such a profile are thus the propor-
tion of problems for which a code had the best result of any code.

The results in Figure C.1(a) show a clear advantage for steepest edge pricing,
even over maximum improvement pricing. This has significance in that the
former is often presented intuitively as an approximation to the latter. Although
projected steepest edge normalisation has the same cost per iteration as the
exact version, it trails some distance behind it in practice. Approximate steepest
edge (ASE) normalisation is by far the poorest of the pricing schemes by this
measure, but has very low costs per iteration, and the effect of this is not
captured here.

Figure C.1(b) shows the effect of normalised pricing for the dual simplex
method. In this case, projected steepest edge pricing is much closer to the
exact case, but note that now, following [41], the cost per iteration of PSE
is much higher in the revised simplex method, as the projected steepest edge
framework spans the entire tableau, but exact steepest edge norms correspond
to rows of the basis inverse and require only an Ftran to update. ASE was
included for completeness, as no such normalised update was described in [113],
with the tested version being the obvious extension of the primal case.

Composite pricing, as presented in Figure C.2, does not appear to be ad-
vantageous on this test set. For both simplex methods, the best performance
is obtained without any consideration of the true objective during phase one.
The scheme which is closest to being effective is SOI-blended mu for the primal
simplex, which is the variant used by i7, but this in practice maintains µ at or
near zero for the majority of problems.
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Figure C.1: Performance profiles for normalised pricing on the Netlib set.
(a) Primal simplex. (b) Dual simplex.
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Figure C.2: Performance profiles for composite pricing on the Netlib set.
(a) Primal simplex. (b) Dual simplex.



Appendix D

The simplex tableau

The simplex method proceeds from iteration to iteration by reformulating the
problem statement so that, in the absence of degeneracy, changes to the vari-
ables currently at their bounds, the nonbasic variables, can be evaluated in
terms of changes to the variables currently within their bounds, the basic vari-
ables. In order for the simplex method to be performed, the coefficients of the
reformulated constraints, the tableau, must be available.

Reformulation can be accomplished in one step by multiplying the original
constraints A with the inverse of B, the matrix formed from the columns in A
of the presently basic variables. In the revised simplex method , this procedure is
used to generate parts of the tableau as they are needed, and the representation
of the inverse matrix has a significant effect on the speed of such a solver.

This section presents results from i5, a combined standard and revised sim-
plex solver for which a number of basis updates are available. Comparisons
are made between the resulting representations in terms of their accuracy and
sparsity.

D.1 The revised simplex method

Consider the problem
minimise [ c 0 ]>x

subject to [A I ]x = b

x ≥ 0.

(D.1)

At each iteration, the variables x are partitioned into a basic set B and a nonbasic
set N , with the columns AB forming a square, invertible matrix B. Clearly, if
B−1 is available for a given vertex, it can be used to solve the constraints for
the basic variables xB, and the solutions substituted into the objective function,
giving the complete vertex reformulation

minimise c>BB
−1b+ (cN − c>BB−1AN )xN

subject to B−1ANxN + xB = B−1b

x ≥ 0.

(D.2)

The simplex method requires only the reformulated objective, right-hand side,
and incoming column, and having the inverse of B is sufficient to calculate these
quantities [32].
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D.2 Basis representations

Numerous techniques exist for the representation of B−1 in the revised simplex
method. This section considers a subset of them.

Dense inverse [32] An explicit inverse for B can be calculated directly at
each iteration, but this would be very expensive. When reformulation using
B−1 is applied to (D.1) an alternate view of the constraints in the resulting
problem is [

(B−1A) B−1
]
x = b (D.3)

so that the inverse B−1 is available as the part of the standard simplex tableau
corresponding to the original slack variables. An explicit inverse G = B−1 can
thus be updated as a restriction of the tableau update to the slack columns. If
the incoming variable is xq which will be pivotal in row p, we have

g′ij =

{ gij
gpq i = p

gij −
giqgpj
gpq otherwise.

(D.4)

The update is O(m2) operations per iteration, but multiplications must still be
performed with B−1 to obtain the required parts of the tableau.

Elimination form inverse with product form updates [89, 30] Suppose
we have an inverse of B, and we wish instead to have an inverse of B′ differing
in one column. Let B′ = B + (aq − bp)e>p then clearly

B−1B′ = B−1
(
B + (aq − bp)e>p

)
= I +

(
B−1aq − ep

)
e>p (D.5)

which differs in one column from the identity, and has the inverse

η = I − 1

e>p B
−1aq

(
B−1aq − ep

)
e>p . (D.6)

An inverse for B′ is thus simply B−1η. If this is used for the initial factorisation
as well, it is called a product form inverse [30].

When rebuilding the inverse of B from scratch, techniques using LU factori-
sation are called elimination form inverses [89]. The observation here is that
LU factors can be used to derive a sequence of product form updates which
first make B upper triangular, and then reduce the upper triangular B to the
identity. There are hence 2m elementary matrices, one per column of L and U ,
but they are typically more sparse than the full product form factors.

The Bartels-Golub update [10, 11] Consider the effect of a factorisation
B = LU on the updated basis B′. The product L−1B′ has the form

L−1B′ =



u11 . . . u′1p . . . u1m
. . .

...
...

u′pp . . . upm
...

. . .
...

u′mp umm

 . (D.7)
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To restore the triangularity of L−1B′ the elements of u′ below the diagonal,
the spike, must be eliminated. To prevent the entire square submatrix below
u′pp from changing, a symmetric permutation of B is first performed to move
column p to the right-hand side, and row p to the bottom, which produces a
row spike u∗

L−1PB′Q =



u11 . . . u1p . . . u1m
. . .

...
...

upp . . . upm
. . .

...
u∗mp . . . u∗mm

 . (D.8)

The observation of Bartels and Golub [11] is that each nonzero in the row
spike may be eliminated in one of two ways. If ujj ≥ u∗mj then we can subtract
row j from row m to remove this nonzero, which alters the spike only in positions
to the right of j, thus preserving any existing eliminations to the left. If ujj <
u∗mj then the two rows can be exchanged before the elimination is performed, so
row p of U becomes the row spike. This is, in effect, a limited partial pivoting
procedure, which generates elimination matrices in-between the original factors
of L and U , and may cause fill in U .

The Forrest-Tomlin update [41] If partial pivoting is not performed in
the LU update, then a single elimination matrix is added at each iteration to
remove the row spike, and no fill occurs in U . This simplifies the update and
may reduce the number of nonzeroes in the invertible representation.

The Reid update [102] If it is possible to reorder the columns of U , then
symbolic pivoting can be performed prior to the Bartels-Golub update to reduce
the resulting fill-in. The entering column may now be introduced at any position,
and placing its last nonzero on the diagonal is attractive to reduce the length
of any row spike. This gives a product L−1B′ of the form

L−1B =

 U11 G12 G13

G22 G23

U33

 (D.9)

where G22 is the square “bump” which breaks triangularity.
Reid [102] resolves the bump in four steps. First, all column singletons

are permuted to the top left corner, and absorbed into U11. Second, all row
singletons are permuted to the bottom right corner, and absorbed into U33.
Third, column singletons are once again permuted to the top left corner. At
this point, the bump has been removed entirely if such was possible. The fourth
step is simply the application of Bartels-Golub to whatever bump remains.

The Suhl-Suhl update [111] If the columns of U are permuted to place the
last spike nonzero on the diagonal, then there is still a reduction in the lengths of
the row spikes, even without the other parts of Reid’s method. If both symbolic
and partial pivoting is ignored, then the resulting method is comparable to the
Forrest-Tomlin update, with shorter spikes traded off against fill in U .
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D.3 Results

This section presents results from i5 on two problem sets, Netlib [99], and
square, sparse, randomly generated problems. All revised updates ran for a fixed
interval of 500 iterations between inverts, to give time for numerical error and fill
to accumulate in a controlled way. A time-out of one hour was applied to each
run, and not all problems were solved, with numerical difficulty being another
source of non-completion. Nevertheless, this study provides an indication of the
probable relative performance of the tested representations on these problems.

Results are again presented as performance profiles [33] (see Appendix C),
this time for both basis sparsity and basis accuracy. The former is calculated
as the total number of nonzeroes in the active representation, and the latter as
the maximal deviation from the identity that occurred at any iteration in the
product B−>B>, formed by Btran where appropriate. Numbers for accuracy
are transformed as log10(x), so that a multiple of two represents accuracy within
a factor of 100 of the leading code.

There are 98 Netlib problems, drawn from a variety of applications, and
though some are numerically challenging, few are notable for their sparsity, at
least when compared to other sets of real problems. The results in Figure D.1
show that, on this set, a Reid inverse is by far the most sparse, and both a dense
inverse and product form inverse appear uncompetitive in terms of nonzeroes.
Forrest-Tomlin and Suhl-Suhl updates have the lowest accuracy, whereas the
Reid update again has the highest.

There were 60 random problems, 30 of dimension 1000 × 1000 and 30 of
dimension 3000x3000, which were further divided into 1%, 5% and 10% dense
instances. The performance profiles for these problems, shown in Figure D.2,
bear little resemblance to those for real problems, which highlights the ongoing
problem of academic codes being tested only on such formulations [15, 110, 55].
Here, all revised updates experience severe fill very early, and a dense inverse
appears to be much more competitive. Accuracy is high throughout, despite
the aggressive nature of the test.
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Figure D.1: Performance profiles for the problems of the Netlib set.
(a) Basis sparsity. (b) Log basis Btran accuracy.
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Figure D.2: Performance profiles for randomly generated, sparse problems.
(a) Basis sparsity. (b) Log basis Btran accuracy.



Appendix E

i7 - Extended results

This appendix presents results for i7 on a standard test set for numerical stabil-
ity, on multi-commodity flow problems, and on a selection of more challenging
performance benchmarks [24, 95]. In the results which follow, the score α is once
again a measure of accuracy (see § 2.4), calculated from the result z provided
by i7 as

α =

⌊
− log10

∣∣∣∣z − z∗z∗

∣∣∣∣ ⌋ , (E.1)

for z∗ the true optimal objective. The score σ is found as

σ =

⌊
100× ts

tp

⌋
(E.2)

where tp is the time for a parallel solve, and ts the corresponding serial time.
Note that where σ is given, it is calculated between runs with identical numbers
of blocks, but only the time for the parallel run is given. It is not a comparison
between two numbers in the same table.

i7 is run with its default options, which include scaling and, where appro-
priate, Aykanat structurisation using hypergraph partitioning. In the following
tables, a heading “i7 (n)” means i7 run with n blocks, or if the number of
blocks is given then n superblocks, and n workers. The version of FICO Xpress
Optimizer is 7.3.1. On grunty, the version of clp is 1.06.00 and glpk is 4.29.
On richtmyer, the version of clp is 1.12.0 and the version of glpk is 4.43. For
all solvers, presolve and crash are disabled, as creating competitive versions for
i7 was beyond the scope of this work.

E.1 Standard test problems

The Netlib set [99] is a standard collection of problems for linear programming
codes, and provides a useful test of numerical stability and resilience. The
following results are important to demonstrate the effectiveness of the previously
described techniques in a practical revised simplex solver.

i7 successfully solved 98% of the Netlib set to α ≥ 5, with the optimization
of the remaining two problems, QAP12 and QAP15, being incomplete after the
maximum allowed time of 30 minutes. glpk is also unable to solve QAP15 within
this time. For those runs which were completed, the time needed for i7 to solve

101
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each problem is broadly comparable with that taken by the other solvers. That
i7 is the only code making use of a product form update, and that this is more
prone to fill than other basis updates (see Appendix D), may go some way to
explaining the difficulties encountered for the QAP instances, which are known
to be linear relaxations of quadratic assignment problems (see § 4.4).

When both the solution times and the achieved α scores are considered to-
gether, these results demonstrate that the decomposed basis representation in
i7, when compared to i7’s own traditional factored inverse, does not lead to
reduced accuracy. If there were significant compromises in numerical stabil-
ity entailed by the structured form, some performance degradation or loss of
significant figures in the solution would be expected.

The like-for-like speed-up on this set, that is the increase in performance from
applying more workers to the same structured form, peaks at 1.45 on sixteen
cores for STOCFOR3, which is a speed-up of 3.07 times over the unstructured solve.
The mean like-for-like speed-up is just 0.48 on sixteen cores, however, and just
0.41 times over the unstructured case. These losses can be attributed to the
small size of the problems in the Netlib set.

E.2 Multicommodity flow problems

The problems in this section are taken from a repository of multi-commodity
flow problems in JLF format [97]. In the following tables, results for the two
smallest instances in this set, CHEN0 and PSP1, have been removed to save space.
The remaining problems are of, at most, moderate size, with the largest con-
straint matrix being of dimension 97, 753× 259, 670, for ALK.TWO, and the largest
number of blocks being 194, for JL209.

i7 follows the same solution path for any number of workers if the block-
angular formulation is constant, and as the natural blocks in these problems
are available, only the time taken for different numbers of workers to complete
each solve is given. The other optimizers are provided with linear programming
formulations identical to those used by i7. Note that i7 and the tool graph
from [97] produce formulations leading to different optimal objective values for
four of these problems, JL023, JL147, ALK.HALF and ALK.TWO. The first two result
from a rounding error in graph, but the cause of the discrepancies for the ALK
problems is unknown.

These instances are numerically easy, and the majority are very small. Peak
speed-up is achieved for ALK.TWO at 1.23 on two cores, 1.74 on eight cores and
1.75 on sixteen cores, despite this problem having a non-trivial linking part of
4,212 rows. The mean speed-up, however, is just 0.62 on two cores, 0.61 on
eight cores, and 0.52 on sixteen cores.

E.3 Larger test problems

The problems in this section are derived from three sources. Firstly, the Ken-
nington set [24] are a collection of larger instances in the Netlib repository
originating from a study of military airlift applications. They are notable for
their sparsity, and may be considered numerically easy. Four of the instances
tested, DCP1, DCP2, DETEQ8 and DETEQ27, are not widely available, and provide some
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estimate of the performance of i7 relative to the others on problems for which
those solvers cannot have been tuned. The remaining instances are drawn from
a public benchmark set [95], and were selected to be solvable by i7 in under 30
minutes.

i7 is broadly competitive with the non-commercial solvers clp and glpk

on this set. Like-for-like speed-up on richtmyer peaks at 1.93 for KEN-18 with
sixteen cores, and 2.06 for PDS-40 with eight cores, which represent speed-ups of
3.97 and 0.92 respectively over the unstructured case. Mean like-for-like speed-
up is 1.04 on sixteen cores, and 1.09 on eight cores, with mean speed-up over the
unstructured case of 1.23 and 1.28 respectively. On grunty, like-for-like speed-
up peaks at 2.11 for both PDS-40 and KEN-18, and these represent a speed-up of
1.13 and 3.08 respectively over the unstructured cases. Mean like-for-like speed
up is 1.24 on eight cores, and 1.39 over the unstructured case.

The problems in this test set are substantially larger and more difficult than
those discussed previously. The structured form in fact appears more efficient
than i7’s traditional basis representation for these instances, though the possi-
bility that this is due to chance, with solves in the different conditions following
different paths, cannot be excluded. Speed-up is poor for many problems, but
this can be attributed to the difficulty of finding an efficient block-angular form,
there being no particular reason for these general instances why such a form
should exist. For example, CRE-D is one problem showing a a slow-down on six-
teen cores, but the best block-angular form found has 4,043 linking rows, when
the entire problem has just 8,949 rows, and many of the blocks in the resulting
formulation are trivial. The overhead of parallelism for such problems appears
to be significant.
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[9] Aykanat, C., Pinar, A., and Çatalyürek, Ümit. V. (2004). Permuting sparse
rectangular matrices into block-diagonal form. SIAM Journal on Scientific
Computing, 25:1860–1879.

[10] Bartels, R. H. (1971). A stabilization of the simplex method. Numerische
Mathematik, 16:414–434.

[11] Bartels, R. H. and Golub, G. H. (1969). The simplex method linear pro-
gramming using LU decomposition. Communications of the ACM, 12:266–
268.

[12] Bell, N. and Garland, M. (2008). Efficient sparse matrix-vector multiplica-
tion on CUDA. Technical Report NVR-2008-004, NVIDIA Corporation.

[13] Bennett, J. M. (1966). An approach to some structured linear programming
problems. Operations Research, 14:636–645.

111



112 BIBLIOGRAPHY
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[21] Bodurog̃lu, Í.. Ílkay. (1997b). Scalable massively parallel simplex algo-
rithms for block-structured LP problems. Unpublished report.

[22] Brearley, A. L., Mitra, G., and Williams, H. P. (1975). Analysis of math-
ematical programming problems prior to applying the simplex algorithm.
Mathematical Programming, 8:54–83.
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