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Abstract 

Fibroblast growth factor 2 (FGF-2) is known to be released from cartilage upon injury 

and is able to influence chondrocyte gene expression in vitro. In cartilage, FGF-2 

regulates E11/podoplanin expression in murine joints following surgical 

destabilisation (DMM model of osteoarthritis (OA)), and in cartilage explant injury 

models. In bone, E11 is critical for the early stages of osteocytogenesis and is 

responsible for the acquisition of the osteocyte dendritic phenotype. This dendritic 

phenotype is dysregulated in OA and given the known role of the osteocyte in 

controlling bone remodelling, this may contribute to the subchondral bone thickening 

observed in OA. Hence, the aim of this study was to elucidate the nature of FGF-2-

mediated E11 expression and osteocytogenesis in skeletal health and disease.  

This thesis has shown that FGF-2 dose-dependently increased E11 mRNA expression 

in MC3T3 cells, primary osteoblasts and in primary calvaria organ cultures, which 

was confirmed by E11 protein western blotting data. The FGF-2 induced changes in 

E11 expression were accompanied by significant increases in the mRNA expression 

of the osteocyte markers Phex and Dmp1, and significant decreases in the mRNA 

expression of the osteoblast markers Col1a1, Postn, Bglap and Alpl expression. This 

thus supports the hypothesis that FGF-2 drives osteocytogenesis.  

The acquisition of osteocyte phenotype involves the re-organisation of the 

cytoskeleton, such as F-actin. This step is important for the transition of cuboidal-

shaped osteoblasts to the stellate-shaped osteocyte phenotype. FGF-2 stimulation of 

MC3T3 cells and primary osteoblasts revealed more numerous and longer dendrites, 



as visualised by phalloidin staining for F-actin and indicative of the acquisition of the 

osteocyte phenotype. In contrast, control cells had a typical rounded morphology 

with fewer and shorter dendrites. Furthermore, immunofluorescence labelling for 

E11 in control cells revealed uniform distribution throughout the cytoplasm, 

especially in the perinuclear region. In contrast, FGF-2 treated cells showed a 

modified distribution where E11 was negligible in the cytoplasm, but concentrated in 

the dendrites. The use of siRNA knockdown of E11 achieved a 70% reduction of basal 

E11 mRNA expression. This knockdown also effectively abrogated FGF-2-related 

changes in E11 expression and dendrite formation as disclosed by mRNA and protein 

expression, immunofluorescence and F-actin staining with phalloidin. Despite these 

FGF-2 driven increases in E11 and osteocyte dendrite formation in vitro, 

immunohistochemical labelling revealed no differences in E11 expression in 

subchondral, trabecular and cortical osteocytes from naïve Fgf-2 deficient mice in 

comparison to wild-type mice. Similar results were observed upon sclerostin 

immunolabelling.  

FGF-2 stimulation of MC3T3 cells elicited activation of ERK1/2, Akt and p38 MAPK. 

However, inhibition of the aforementioned pathways failed to reduce FGF-2-

mediated E11 expression and as such, the specific signalling pathway responsible 

remains unclear. Upstream, the expression of Fgfr1 was increased (>10-fold) over 24 

h time point, while a reduction was seen in Fgfr2/3 expression over same time point 

especially in the FGF-2 treated cultures. This suggests that increased E11 expression 

and the acquisition of the osteocyte phenotype may be speculatively though 

upregulation of Fgfr1.   



The expression of E11 and sclerostin in OA pathology in mice, human and dogs were 

investigated. Initially sequence homology using the Clustal Omega alignment 

program showed both proteins to be homologous in the domestic animals under 

study. A comparative study using canine subchondral bone osteocytes revealed 

increased E11 expression in the OA samples relative to the control. This feature may 

be related to newly embedded osteocytes during sclerosis. However, E11 and 

sclerostin were unchanged in both murine (DMM) and human OA subchondral bone 

osteocytes in comparison to controls.  In mice, this may be due to limited OA 

development; whilst in humans the sample size, age, stage of the disease and sourcing 

from same diseased joint may be important in the interpretation of the results. 

The expression of E11 and sclerostin during OA pathology was also investigated in 

Fgf-2 deficient mice in which OA was induced using the DMM model. There was no 

difference in E11 expression between the OA and control (sham-operated) samples, 

suggesting that compensation of E11 expression may be mediated by growth factors 

from the FGF family. Surprisingly, increased E11 expression was observed in the 

control Fgf-2 deficient mice, in comparison to the wild-type control mice. This 

suggests a potential adjustment to loading by the contralateral knee, as this was not 

observed in naïve mice from both groups.  

Together, these data show that FGF-2 promotes the osteocyte phenotype, and that 

this is mediated by increased E11 expression. These results may help explain (1) the 

altered osteocyte phenotype and (2) increased subchondral bone thickening observed 

in OA. This knowledge will be of interest in the search for disease modifying 

therapeutics for skeletal health, including OA and osteoporosis.   



Lay Abstract 

The mammalian skeleton, which supports body weight, aids locomotion and protects 

important organs like the heart and lungs, is a dynamic organ. Inside the skeleton are 

three types of cells that are regularly changing form and function, enabling the 

skeleton to adapt to changes in body weight, recover from fracture, or even help the 

kidney in mineral balance control. One of these cell types are called osteoblasts. 

Osteoblasts have a rounded shape and make new bone. Eventually, the osteoblast 

surrounds itself with new bone and then undergoes a transition into a smaller star-

like cell, called an osteocyte.  

The osteocyte is the most abundant bone cell and makes up about 95% of the total 

number of bone cells. The osteocyte is now regarded as the master regulator cell, 

regulating how bone adapts to changes in shape and size. The formation of the 

osteocyte’s star-like projections, called dendrites is controlled by a molecule called 

E11. E11 helps the osteocyte to communicate with other osteocytes, and other bone 

cell to regulate bone health and diseases. These dendrites are reportedly malformed 

in some bone related diseases like osteoarthritis. However, how E11 helps in the 

transition from osteoblast to osteocyte in healthy bone is largely unknown and 

similarly what factors might increase or reduce E11 expression are also unknown.  

One growth factor that plays an important role in skeletal growth and development 

is called FGF-2. In this thesis, it was shown that FGF-2 is able to increase E11 

expression. Furthermore, FGF-2 was able to promote the formation of osteocyte 



dendrites, though these increases in E11 expression. The findings of this thesis help 

to expand the knowledge surrounding the process of osteocyte formation in healthy 

bone. Importantly, this knowledge will contribute towards our understanding of 

osteoarthritis and other bone diseases with malformed osteocyte dendrites.   
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Preface 

The skeleton has been considered by some to be a dull and lifeles tissue however it is 

actually a dynamic organ constantly adapting to demands placed upon it. The 

skeleton is essential for locomotion and soft tissue protection, and is involved in other 

body homeostasis responses such as the regulation of mineral and energy 

metabolism. It is accepted that the bone is constantly modelling itself in response to 

changes in weight bearing activities during locomotion. The adaptation to loading is 

regulated by osteocyte expressed signals that influence the activities of osteoblasts 

and osteoclasts. Osteocytes are terminally differentiated osteoblasts, formed though 

a process termed osteocytogenesis. This process is under the influence of various late 

osteoblast/osteocyte-expressed molecules such as E11 (podoplanin). E11, is essential 

for osteocyte dendrite formation and its expression is known to be regulated by 

growth factors such as fibroblast growth factor (FGF)-2 in cartilage. Despite this, the 

regulation of E11 expression in bone is completely unknown. This work reported in 

this thesis investigates the role of FGF-2 during osteoblast to osteocyte transition, and 

test the hypothesis that FGF-2 regulates E11 mediated osteocytogenesis. The 

importance of understanding this is highlighted by the central role that dendrites play 

in osteocyte communication in health, and their dysfunction in some skeletal 

disorders like osteoarthritis (OA). Understanding the role of E11 during osteocyte 

formation in subchondral bone (SCB) of healthy and OA joints will contribute 

immensely to the search for therapeutic targets in OA. 
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1.1 Bone structure and function 

The skeleton is a highly complex but organised organ structurally specialised for 

locomotion, protecting critical internal organs, mineral homeostasis and energy 

metabolism regulation (Weiner et al., 1999, Feng, 2009, Oldknow et al., 2015). Bone is 

a composite structure made up of organic and inorganic material and together the 

hydroxyapatite (HA) mineral (stiff and brittle) and the organic collagen (tough and 

soft) provide a structure that is tough, stiff, and resistant to fracture (Staines et al. 

2012). The resident cells that are responsible for maintaining this structure are the 

osteoblasts, osteocytes and osteoclasts. Whilst collagen type 1 is the major organic 

component of the extracellular matrix (ECM), there are  many other osteoblast 

secreted non-collagenous proteins (NCPs) such as glycosaminoglycans, osteopontin, 

and dentine matrix protein 1 (DMP1) (Sommerfeldt and Rubin, 2001).   

The skeleton is comprised of compact or cortical (compact) and trabecular 

(cancellous) bone. The trabecular bone located within the marrow compartment has 

an open lattice network making it light but strong (Fig. 1.1A).  It has a higher bone 

turnover rate than cortical bone and its lamellar organisation does not contain osteons 

(Sommerfeldt and Rubin, 2001). It can adapt to loading in various directions and its 

surrounding marrow is the site for haematopoiesis.  

 The cortical bone, which makes up ~ 80% of the bone mass, is found on the external 

aspect of bone shaft. Cortical bone is relatively hard and dense; but well organised 

into osteon building units of the Harversian system (Sommerfeldt and Rubin, 2001, 

Brandi, 2009). The mineralised osteonal rings have resident osteocytes (encased 
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within a lacuna) which are characterised by dendritic cytoplasmic projections 

radiating from the cell membrane. They run though a canaliculi network, which 

connects neighbouring osteocytes and osteocytes with bone surface osteoblasts and 

osteoclasts.  The central Harversian canal has blood vessels, lymphatics and nerve 

traversing though (Fig. 1.1B). Cortical bone is specialised for weight bearing 

especially along the vertical axis of the body.   

1.2  Bone formation  

Bone development and formation involves two distinct mechanisms - 

intramembranous and endochondral ossification (Shapiro, 2008, Yang, 2009). While 

intramembranous ossification involves the differentiation of mesenchymal cells into 

osteoprogenitor cells on collagen surfaces, endochondral ossification is the 

replacement of hyaline cartilage anlagen by osteoprogenitor cells and bone 

(Henrikson et al., 1997, Percival and Richtsmeier, 2013). The fate of osteoprogenitor 

cells during bone formation is under tight signalling regulation. Upregulation of 

Wingless integration (Wnt)/β-catenin signalling in the region of mesenchymal 

condensations drive osteoblast differentiation, hence intramembranous ossification. 

Conversely, the initial decrease in Wnt/β-catenin signalling in mesenchymal 

condensations promotes the formation of the chondrocyte anlagen for endochondral 

ossification. In advanced stages of endochondral ossification, upregulated Wnt/β-

catenin signalling drives subsequent osteoblast differentiation in the cartilage 
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Figure 1.1 The structure of cancellous and cortical bone 

Low power scanning electron microscopy of normal cancellous bone design (A), 

showing bone trabecular and open lattice shape, which contains bone marrow. Cortical 

bone architecture found in the diaphysis of long bone (B). The centrally located 

Haversian canal provides passage for nerves and blood vessels. Note the concentric 

layers of bone matrix and osteocytes surrounding it. Images sourced from the Bone 

Research Society, by kind permission of (A) Alan Boyde (B) Tim Arnett. 
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periphery (Yang, 2013). The role of transcription factors SRY-box 9 (Sox9) and Runt-

related transcription factor 2 (Runx2), which are master regulators of chondrocyte 

and osteoblast differentiation from mesenchymal cells respectively, have also been 

documented (Ducy et al., 1997, Bi et al., 1999).   Fibroblast growth factor receptor 2c, 

is expressed by early mesenchymal cells where it is activated by FGF-18 during both 

endochondral and intramembranous bone formation (Eswarakumar et al., 2002).   

1.2.1 Intramembranous Ossification 

Intramembranous ossification is responsible for the development and formation of 

flat bones like the maxilla and palate in the skull (Netter, 1987, Mackie et al., 2011, 

Jiang et al., 2014). It also occurs during natural fracture healing of flat bones (Brighton 

and Robert, 1991). Intramembranous ossification involves four distinct but 

continuous stages: (i) formation of ossification centres and differentiation of 

mesenchymal cells into osteoblasts (ii) matrix formation and vascular invasion of the 

bone anlagen (iii) periosteum and trabeculae formation (iv) lamellar bone formation 

around trabeculae (Thompson et al., 1989).  

1.2.2 Endochondral ossification 

Endochondral ossification is responsible for the formation of the long bones of the 

body and in the natural fracture healing process (Brighton and Robert, 1986, Jiang et 

al., 2014). In this process, a hyaline cartilage model is established from mesenchymal 

cell condensation, and later replaced by osteoblasts from the vascular system (Horton, 

1990, Yang, 2009). This process is critically regulated by factors such as growth 

hormone, insulin like growth factor 1, thyroid hormone, bone morphogenic proteins 
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(BMPs), vascular endothelial growth factor, Indian hedgehog, FGFs and Wnts 

(Mackie et al., 2011, Yang et al., 2012). In short, the process involves condensation of 

the mesenchymal cells and their  differentiation to chondrocytes under the influence 

of Sox 5,6 & 9 to form the cartilage anlagen (Bi et al., 1999). This is quickly followed 

by hypertrophy of the chondrocytes and their subsequent vascular invasion and 

matrix mineralisation leading to the establishment of primary centres of ossification. 

The establishment of the secondary ossification centre within the epiphyses results in 

the formation of the epiphyseal growth plates at the proximal and distal ends of the 

newly formed bone (Fig. 1.2) (Kanczler and Oreffo, 2008, Mackie et al., 2011). The 

growth plate regulates the pace on bone growth until it closes in humans at puberty. 

1.2.3 Bone mineralisation 

The hardness of bone can be attributed to the product of HA crystal deposition on 

collagen fibrils.  The mineralisation process which is initiated by the precipitation of 

calcium ions (Ca2+), and inorganic phosphate (Pi),  at discrete sites of the skeleton is 

regulated by several factors which include NCPs, sibling proteins,  nucleotide 

pyrophosphate phosphodiesterase 1, ankylossis protein and phosphatases such as 

PHOSPHO1 and alkaline phosphatase (ALP) (Anderson, 2003, Yadav et al., 2011). 

The mineralisation of the ECM is initiated with membrane limited bound matrix 

vesicles (MV), formed by hypertrophic chondrocytes and osteoblasts. The MV 

provide a protected microenvironment for the concentration of Ca2+  and  Pi 

(Anderson, 2003). On reaching appropriate concentrations within MV, the two 

minerals precipitate HA crystals. These HA crystals increase in size, and perforate the 
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MV membrane when they are subsequently deposited onto the collagen fibrils of the 

ECM. Matrix mineralisation is a key step during osteoblast differentiation into 

osteocyte (Clarke, 2008, Staines et al., 2012, Prideaux et al., 2012).  

1.3 Bone modelling and remodelling 

Bone modelling results in changes to the shape and size of bone due to uncoupled 

bone formation and resorption.  This is required for bone to adapt to changes in the 

mechanical load it senses i.e. the tennis players serving arm.  In contrast, bone 

remodelling involves coupled bone formation, resorption, and no change in bone 

mass i.e. the same amount of bone removed is replaced by new bone (Seeman, 2009). 

Bone turnover is an active remodelling process spanning the entire life of mammals 

where the human adult skeleton is replaced every 10 years (Palumbo et al., 2003). The 

process is precisely regulated by autocrine, paracrine and endocrine factors to 

prevent osteoporosis and osteopetrosis (Manolagas, 2000). While bone formation is 

principally a function of the osteoblast, osteoclasts mediate bone resorption. Bone 

remodelling is also under active regulation by osteocyte synthesised proteins such as 

sclerostin, secreted frizzled-related protein 1 (sFRP1); and the Dickkopf-related 

protein 1 (DKK1) which negatively regulate the differentiation of osteoblasts from 

osteoprogenitor cells (Fig. 1.3).  In contrast, prostaglandin E2 (PGE2), nitric oxide (NO) 

and adenosine triphosphate (ATP) promote osteoblast differentiation (Bakker et al., 

2001, Watanuki et al., 2002, Li et al., 2005a, Wang et al., 2013). Osteocyte derived 

factors also regulate osteoclast formation.  Examples of this are receptor activator of 

nuclear factor kappa-B ligand (RANKL) and macrophage colony stimulating factor 
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(M-CSF) which both activate osteoclast differentiation (Fig. 1.3). Other factors such as 

osteoprotegerin (OPG), a RANKL decoy receptor and NO inhibit osteoclast formation 

(Nakashima et al., 2011a, Xiong et al., 2011, Dallas et al., 2013).  

1.3.1 Osteoclasts 

Osteoclasts are multinucleated cells that poses the capacity for bone resorption 

(Hotokezaka et al., 2002). Bone resorption, as stated earlier, is an integral part of bone 

modelling and remodelling, that is closely regulated to prevent bone disorders like 

periodontal diseases, osteoporosis and osteopetrosis (Hotokezaka et al., 2002). 

Osteoclasts differentiate from the monocyte/macrophage cell lineage within the bone 

marrow under the influence of MCSF and RANKL (Nakagawa et al., 1998, Kong et 

al., 1999). RANKL is expressed mostly by osteocytes and to leser degree by osteoblasts 

(Nakashima et al., 2011b, Xiong et al., 2011). The receptor activator of nuclear factor 

kappa-B (RANK) is expressed on osteoclast precursor cell surfaces and has an 

intracellular domain called tumour necrosis factor (TNF) receptor-associated factor 

(TRAF). RANK, when phosphorylated by the attachment of RANKL, mediates the 

activation of downstream molecules via TRAF to initiate the osteoclast differentiation 

program. This cascade of events involves nuclear factor kappa B (NF-kB), mitogen 

activated protein kinases (MAPKs), and phosphatidylinositol 3-kinase/ protein kinase 

B (PI3K/Akt) (Wong et al., 1998, Lee et al., 2002). These downstream signals are 

involved in activating the expression  of tartrate-resistant acid phosphatase (TRAP) - 

which is a hallmark marker of osteoclast differentiation (Ishida et al., 2009).  
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Figure 1.2.  The process of endochondral ossification.  

(A) Mesenchymal condensation to form the hyaline cartilage model or anlagen (B). 

(C) Chondroprogenitor cells differentiate into chondrocytes that proliferate and 

secret extracellular matrix (ECM). (D) Stage of chondrocyte enlargement, vascular 

invasion, and matrix mineralisation. (E) Primary ossification centre formation. (F) 

Elongation of diaphysis and bone marrow. (G) Establishment of epiphyseal plate 

and, (H) secondary centre of ossification in the epiphysis (Gilbert, 2006).  
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1.3.1 Osteoclasts 

 

 

 

 

 

 

 

 

 

Figure 1.3. Diagrammatic model of osteocyte regulation of bone remodelling. 

Note the central role of signalling molecules expressed by osteocytes to promote or 

inhibit differentiation of osteoblast and osteoclasts from their respective precursor cells 

(Dallas et al., 2013). While PGE2, NO, and ATP activate osteoblast differentiation and 

bone formation, expression of sclerostin, DKK1 and SFRP1 inhibit this process and less 

bone is formed. Osteocyte factors like RANKL, M-CSF activate osteoclast formation, 

subsequently increasing bone resorption. However, OPG and NO antagonise this 

pathway leading to less bone loss. These factors have established the osteocyte as the 

master regulator of bone remodelling.    
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Osteoclasts have a specialised plasma membrane modified to increase its surface area 

to aid the breakdown of both organic and inorganic material.  To do this, its 

membrane assembles into folds and invaginations at the bone interface and this is 

known as the osteoclast-ruffled border. During bone resorption upon activation by 

RANKL, osteoclastic proteolytic enzymes such as TRAP and cathepsin K are released 

at the ruffled border where they degrade collagen and other bone matrix proteins; a 

process that is favoured by an acidic micro resorption environment (de Vernejoul, 

1998). This acidic micro-compartment is made possible by the release of protons by 

carbonic anhydrase-II at the ruffled border (Schlesinger et al., 1997). The large acid 

production by osteoclasts dissolves bone mineral in the Howship lacunae (Vaananen 

et al., 2000). 

1.3.2 Osteoblasts 

Osteoblasts are differentiated from multipotent mesenchymal bone marrow stromal 

cells, which are also the progenitors for chondrocytes and adipocytes (Manolagas, 

2000, Xiao et al., 2010b). Osteoblasts secrete osteoid - the bone matrix - which when 

mineralised offers rigidity and strength to the skeleton. At the cellular level, the 

osteoblast is characterised by well-developed and abundant mitochondria, Golgi 

body, ribosomes and smooth endoplasmic reticulum, reflecting the high need for 

bone matrix synthesis (Dudley and Spiro, 1961). 

Mesenchymal cell differentiation into the osteoblast is a complex process and is 

tightly regulated. Osteoblast differentiation requires the actions of  the transcription 

factors Runx2, Osterix and Twist-1 and -2 and also other growth factors and signalling 
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molecules such as transforming growth factor beta (TGFβ), Sonic hedgehog, Indian 

hedgehog, Bone morphogenic proteins (BMPs) and FGF-2 (Yamaguchi et al., 2000, 

Ducy, 2000, Behr et al., 2010, Marie, 2012). The two major Wnt signalling pathways 

are also recognised to be critical role for osteoblast form and function. The Wnt –β-

catenin pathway also called the canonical Wnt signalling pathway, whilst the non-

canonical pathway involves Wnt–planar cell polarity and the Wnt-calcium pathways 

(MacDonald et al., 2009, Baron and Kneissel, 2013). The canonical Wnt signalling 

pathway is critical for osteoblastogenesis and bone mass; and is regulated by FGF-2 

(Xiao et al., 2009). This pathway is activated by the Wnt ligand binding to the Frizzled 

receptor (Frz), in the presence of a co-receptor; low-density lipoprotein related 

protein (LRP) 5/6 complex. This prevents the axin-complex induced ubiquitination of 

β-catenin and the avoidance of proteasomal degradation (MacDonald et al., 2009). 

The stabilised β-catenin then relocates to the nucleus, and activates T-cell 

factor/lymphoid enhancer factor (TCF/LEF) transcription factor for upregulation of 

Wnt target genes, which drives recruitment of osteoblasts for bone formation 

(MacDonald et al., 2009, Baron and Kneissel, 2013). This canonical Wnt pathway can 

be inhibited by secreted frizzled-related protein 1 (sFRP1); the dickkopf (DKK1) 

proteins; and the master negative regulator of bone formation – sclerostin (Kawano 

and Kypta, 2003, Bodine et al., 2004, Semenov et al., 2005). The marker genes of the 

osteoblast phenotype include the Col1a1, Bglap, Alpl, and Postn (Fakhry et al., 2005).   

After deposition of bone matrix by mature osteoblast and its subsequent 

mineralisation, the  fate of the osteoblast includes cell death (apoptosis), reversion to 



Chapter 1: Introduction 

14 
 

surface lining cells or terminal differentiation into osteocyte by a process known as 

osteocytogenesis (Dallas and Bonewald, 2010).  

1.3.2.1 Alkaline phosphatase  

ALP is the family name for a group of enzymes found in various tissues.  Each have 

different properties and functions and the ALP expressed in bone is also expressed in 

liver and kidney.  Traditionally this ALP isoform was called bone/liver/kidney ALP 

but today it is more commonly referred to as Tissue non-specific ALP (TNAP) and in 

mice is encoded by the Alpl gene.  TNAP is a prominent osteoblast marker that is 

critical for matrix mineralisation as it degrades extracellular inorganic pyrophosphate 

(PPi), an effective inhibitor of mineralisation. TNAP hydrolyses PPi to generate 

optimum Pi/PPi ratio that enhances HA formation (Meyer, 1984, Anderson, 2003). 

The loss of the Alpl gene in experimental KO mice or with humans with 

hypophoshatasia showed decreased ECM mineralisation which was not unexpected 

but surprisingly mineral was still found within the MVs of long bones (Anderson et 

al., 1997, Anderson et al., 2004).  This implied that another phosphatase was present 

to provide Pi for the initiation of mineralisation within the MVs.  One such enzyme is 

PHOSPHO1, a bone specific phosphatase essential for the initiation of matrix 

mineralisation (Houston et al., 2002) The double knockout of both Alpl and Phospho1 

genes led to complete absence of bone mineralisation in embryonic mice  (Houston et 

al., 2002, Yadav et al., 2011).    

 



Chapter 1: Introduction 

15 
 

1.3.2.2 Osteocalcin  

Osteocalcin, encoded by the gene Bglap in mice is an abundant osteoblast protein 

expressed later on in the differentiation process.  It downregulates bone formation, 

and it is now regarded as having an endocrine function where it has been shown to 

regulate energy metabolism (Zanatta et al., 2014). Erroneously thought to be involved 

in bone mineralisation, as osteocalcin null mice phenotype presented increased bone 

mass with adequate mineralisation, and excessive visceral adipose tissue deposition 

(Ducy et al., 1996, Wei and Karsenty, 2015).  

1.3.2.3 Collagen type 1 alpha 1  

Collagen type 1 protein (encoded by Col1a1 in mice), secreted by mature osteoblasts, 

is the principal organic component of the bone ECM (Mizuno et al., 2000, Uchihashi 

et al., 2013, Florencio-Silva et al., 2015). It provides the scaffold for the deposition of 

HA crystals during bone mineralisation and also regulates this process (Nudelman et 

al., 2010). Its sub chains Col1a1 and Col1a2 are expressed in the ratio 2:1. The Col1a1 

mutation phenotype has been extensively studied in the brittle-bone disorder 

osteogenesis impecta (Eimar et al., 2016). This mutation is characterised by reduced 

collagen type 1 synthesis, high bone turnover, increased bone material density, poor 

mineralisation and a high incidence of fractures (Willing et al., 1994, Chen et al., 2014, 

Roschger et al., 2014). 
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1.3.2.4 Periostin  

The Postn gene is expressed in osteoblasts and in foetal periosteum, cardiac valves, 

and periodontal ligament of the mouse.  Its loss of function mutation results in les 

than 20% peri-natal mortality, but in adult life, mice show reduced growth with scant 

trabecular bone and periodontal disorders (Rios et al., 2005).  

1.3.3 Osteocytes 

Osteocytes are long-lived (>25 years) bone cells and constitute about 90-95% of all 

bone cells (Franz-Odendaal et al., 2006). Osteocytes are flat cells with dendritic 

cellular processes located deep in the lacunae/canaliculi of the mineralised bone ECM 

(Holmbeck et al., 2005). These dendrites enable the osteocyte to communicate with 

other osteocytes, osteoblasts, osteoclasts and the vasculature by means of their 

interconnecting dendritic gap junctions of the lacunae/canaliculi system (Fig. 1.4). 

Osteocytes are characterised by a reduction in biosynthesis of osteoblast marker 

proteins such as Col1a1, Alpl, Bglap (Sasano et al., 2000, Knothe Tate et al., 2004); but 

upregulation of osteocyte gene markers such as E11, Dmp1, Phex and Sost (Fig. 1.5). 

Osteocytes are involved in mechano-reception and transduction, calcium 

homeostasis, osteoid development and calcification and bone remodelling regulation 

(Zhang et al., 2011, Dallas et al., 2013). The mechano-reception and transduction role 

of osteocytes is a response to form more bone during skeletal loading (walking, 

running) or stimulate bone loss when the body is immobilized for an extended period 

(Bonewald and Johnson, 2008). This function has been validated by dendrite and gap 

junction hemichannels’ response to fluid flow shear stress loading models using 
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MLO-A4 osteocyte-like cells (Burra et al., 2010). In addition, osteocyte deletion studies 

have  revealed reduced formation of bone, more bone resorption and lack of response 

to loading (Bonewald, 2006, Tatsumi et al., 2007).  While the precise mechanism for 

this function is still largely unknown, some authors believe the dendrites are the 

mechano-sensing structures of the osteocyte (Han et al., 2004, Adachi et al., 2009), 

whereas others propose that both dendrites and the cell body are required (Nicolella 

et al., 2008).  Furthermore, others have contended that the mechano-sensing role is 

the responsibility of the primary cilia (Xiao et al., 2006, Malone et al., 2007).  

Some authors have also concluded that osteocytes should be categorised as endocrine 

cells because of their production of factors such as FGF-23, RANKL, OPG and 

sclerostin into the vascular system (Quarles, 2008, Dallas et al., 2013, Florencio-Silva 

et al., 2015).  

1.3.3.1 Osteocytogenesis 

Osteocytogenesis, once regarded as a passive process of osteoblast differentiation, is 

now believed to be an active, well-regulated mechanism involving both osteoblast 

and osteocytes in its molecular regulation (Dallas et al., 2013).  As the osteoblast lays 

down osteoid, that is subsequently mineralised, it changes shape from cuboidal to the 

characteristic spindle shaped osteocyte with cytoplasmic processes (dendrites) 

containing fewer organelles and increased nucleus-to-cytoplasm ratio (Palumbo, 

1986). Recruitment of  new osteoblasts committed to this pathway has been reported 

to be influenced by osteocyte secreted molecules like PGE2, insulin growth factor 1 

(IGF-1), NO, and sclerostin which antagonises the pathway (Schaffler et al., 2014). 
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Also the products of the osteocyte genes such as Sost, Dmp1, and  Phex  have been 

reported to be actively involved in bone mineralisation (Fig. 1.5), phosphate 

homeostasis and cytoskeletal organisation (Guo et al., 2010, Dallas et al., 2013).  

1.3.3.2 Dentin matrix protein 1 (Dmp1) 

Dmp1 is a member of the small, integrin-binging ligand, N-linked glycoprotein 

(SIBLING), located in bones and dentin regulating matrix mineralisation amongst 

other functions (Staines et al., 2012). Dmp1 is expressed in embryonic chondroblasts 

and osteoblasts but limited in osteocytes during adult life (Toyosawa et al., 2001). It 

regulates phosphate homeostasis and bone mineralisation as disclosed in the study 

of Dmp1-null mice which have low blood phosphate levels and poor mineralisation 

(Feng et al., 2006).  Similarly in humans DMP1 loss of function mutation has been 

diagnosed in hypophosphatemia rickets (Feng et al., 2006). Dmp1 gain of function 

studies in mice have reported conflicting results; some studies have shown the 

absence of any effect on bone whereas others have reported elevated bone mineral 

density. The mechanism of Dmp1 regulation of bone mineralisation and osteocyte 

differentiation is sequel to its action in maintaining body phosphate homeostasis (Lu 

et al., 2011, Zhang et al., 2011, Bhatia et al., 2012).  

1.3.3.3 Phosphate-regulating gene with homologies to endopeptidases on the X 

chomosome (Phex).  

Phex is expressed by maturing osteocytes and is involved in bone matrix phosphate 

and mineralisation regulation in a similar manner to Dmp1 (Liu et al., 2007). Phex loss 

of function is seen in X-linked hypophosphatemic rickets, a disease characterised by 
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poor growth, deficient bone mineralisation, and hypophosphatemia caused by poor 

phosphate retention in the kidneys (Sabbagh et al., 2003). The effects of Phex on 

phosphate regulation is though moderation of FGF-23, another osteocyte signalling 

factor, that acts like an endocrine factor on the kidneys’ sodium/phosphate 

cotransporters that are crucial for renal phosphate uptake (Larsson et al., 2004, 

Gattineni et al., 2009). Hence, in Phex loss of function mutations, FGF-23 levels 

increase by an unclear mechanism leading to hypophosphatemia (Larsson et al., 

2004). 

1.3.3.4 Sclerostin 

The Sost gene that encodes the protein sclerostin was first identified as a mutation 

manifesting in Sclerostosis and Van Buchem diseases in humans, both of which are 

characterised by high bone mass (Bezooijen et al., 2005). The gene is expressed only 

in mature osteocytes (Brunkow et al., 2001, Winkler et al., 2003). Sclerostin is a 

negative regulator of bone formation and acts via the Wnt/β-catenin pathway (Li et 

al., 2005b). Sost loss of function mutations in mice are characterised by increased bone 

mass and strength, while reduced bone mass is seen in Sost gain of function mutations 

(Winkler et al., 2003, Li et al., 2008b). One function ascribed to osteocytes is their 

ability to regulate bone turnover in response to load bearing. This property is, 

mediated in part by sclerostin expression, which is consistent with the observation 

that loading down-regulates sclerostin expression and thereby promoting bone 

formation. Recently anti-sclerostin monoclonal antibodies (Romosozumab (AMG 
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785)) have undergone clinical trials for the management of bone disorders associated 

with low bone mass such as osteoporosis (Ominsky et al., 2011, Padhi et al., 2011).   

1.4 Podoplanin/E11 

The protein podoplanin/E11 is a mucin type transmembrane glycoprotein of about 

38-42 KDa , encoded by the Pdpn gene (Fig. 1.6; written in this thesis as ‘E11’).  The 

name E11 was first used to describe its expression  in rat osteocytes (Wetterwald et 

al., 1996). Moderately conserved homologues exists in other species which include 

humans, mice, rats, dogs and hamsters (Astarita et al., 2012).   It has several regulatory 

functions that include cell development and differentiation, epithelial-mesenchymal 

transition (EMT), oncogenesis and invasiveness (Thiery, 2002, Wicki and Christofori, 

2007, Martín-Villar et al., 2009, Astarita et al., 2012).  

1.4.1 The structure and expression of E11 

The protein E11 has an extracellular domain (EC), transmembrane Section (TM) and 

a cytoplasmic tail (CT) (Fig. 1.6). The CT has the fewest amino acids and is therefore 

short in relation to the other domains/Sections (Martin-Villar et al., 2005, Kaneko et 

al., 2006). While the EC domain is involved in stimulating platelet aggregation 

(Kaneko et al., 2006) the TM domain has been reported to be a key factor in initiating 

EMT (Fernández-Muñoz et al., 2011) whereas the CT is associated with intercellular 

adhesion stability and is a binding site for ezrin, radixin and moesin (ERM) proteins 

(Astarita et al., 2012). 

In platelets and immune cells, a C-type lectin-like receptor CLEC-2 has been 

described for E11 , where it facilitates platelet clumping on oncogenic cells despite the 
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absence of blood clotting factors (Sawa, 2010). This interaction of E11 with CLEC-2 is 

associated with lymphatic vessel integrity and invasive cancer regulation (Kato et al., 

2005, Bertozzi et al., 2010).  Owing to its expression in several body tissues (Fig. 1.7), 

E11 has several names, which include podoplanin in kidney podocytes; T1α in 

alveolar type 1 epithelial cells; and OTS-8 in osteoblasts following phobol ester 

treatment. It is also called PA2.26 in skin keratinocytes, gp38 in lymphoid organs and 

E11 in lymphatic endothelial cells and bone cells (Farr et al., 1992, Wetterwald et al., 

1996, Breiteneder-Geleff et al., 1997, Scholl et al., 1999, Ramirez et al., 2003). It is highly 

expressed by various cell types in many tissues and in bone; it is expressed highly by 

embedding osteocytes but not osteoblasts.  Specifically, it is highly expressed by the 

both the osteocyte body and its dendritic processes which connect neighbouring 

osteocytes but also surface osteoblasts (Fig. 1.6). The essential expression of E11 in 

lung cells and lymphatics results in E11 global KO mice are non-viable immediately 

after birth due to respiratory failure and generalised lymphoedema (Ramirez et al., 

2003, Ekwall et al., 2011).  

 

 

 

 

 

 

 



Chapter 1: Introduction 

22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Graphic representation of an osteocyte embedded in mineralised matrix.  

 

Note the  extending dendrites connected to other osteocytes, osteoblasts and vasculature 

(Dallas et al., 2013). 
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Figure 1.5 Gene markers expressed as osteocytogenesis progresses from 

osteoblast to mature osteocyte.  

 

E11 early osteocyte marker is expressed as dendrites form while sclerostin 

expression indicates attainment of mature osteocyte. Adapted from (Dallas 

and Bonewald, 2010) 

Alp, Col1a1, Bglap 
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1.4.2 The function of E11 in osteocytogenesis  

Plasma membrane shape, stability and re-organisation is the function of the cells 

cytoskeleton. The elements involved in this cytoskeletal/plasma membrane 

interaction include actin and keratin filaments, CD44, ERM proteins, small GTPase 

RhoA, and E11 (Fig. 1.6) (Hirao et al., 1996, Astarita et al., 2012). The ERM family of 

related proteins are associated with having a cross-linker function in their 

relationship with the plasma membrane protein CD44, forming the CD44/ERM 

complex that is enhanced by phosphatidylinositol 4,5-bisphosphate (Hirao et al., 

1996), and RhoA is believed to act as a molecular regulator of this complex (Hirao et 

al., 1996). E11 is a recognised early osteocyte marker associated with the acquisition 

of the dendritic morphology, as enhanced post translational stability of E11 through 

the prevention of its proteosomal degradation extended osteocyte dendrite length 

and promoted osteocytogenesis (Zhang et al., 2006, Gupta et al., 2010, Staines et al., 

2016).  This osteocyte dendritic phenotype which reflects a re-arranged actin 

cytoskeleton, can be linked to the ability of E11 to regulate RhoA as is the case during 

EMT (Sawa, 2010). E11 expression has been reported to be increased by mechanical 

loading and during differentiation and mineralisation of some osteoblast cell lines 

such as 2T3 and OCT1 (Zhang et al., 2006).  
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Figure 1.6 Schematic representation of E11 (PDPN) showing interaction 

with other molecules especially as it regards cytoskeletal reorganisation.  

Note its receptor CLEC-2; relationship with cytoskeletal apparatus 

molecules like CD44, ERM and RhoA (Astarita et al., 2012). 
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Figure 1.7 Immunostaining of E11 in various body tissues 

Immunostaining for E11 in various tissues showed positive staining in 

trabecular bone osteocyte (A), cortical bone osteocytes (B), cortical bone 

osteocyte cell body and dendrites are positive, and not the surface 

osteoblasts (C), podocytes of the kidney glomeruli (D), lung type 1 

alveolar cells (E), and (F) the brain choroid plexus.  Insets show negative 

controls (Zhang et al., 2006). 
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1.5 Fibroblast growth factor (FGF) biology 

The FGF family of signalling molecules interact with receptors, co-receptors and 

mediating molecules to play critical roles in vertebrate growth, development, body 

homeostasis, and disease pathogenesis (Powers et al., 2000, Bottcher and Niehrs, 

2005). Members of the family include the ligands, which are the growth factors 

(FGFs); their transmembrane receptors called fibroblast growth factor receptors 

(FGFRs) that are cell surface receptor tyrosine kinases (RTKs). The FGFs are 

transcribed from 10 genes in zebrafish and 22 genes in mice and humans (Table 1.1) 

(Thisse and Thisse, 2005). FGF1-10, FGF16-18, FGF-20 and FGF-22 are secreted ligands 

with paracrine signalling properties and bind to FGFRs in close association with 

heparan sulphate proteoglycan (HSPG) co-factors. In contrast, FGF19, FGF-21 and 

FGF-23 are endocrine molecules that require Klotho proteins to activate FGFRs (Yang 

et al., 2015, Katoh, 2016, Sarabipour and Hristova, 2016) .   

1.5.1 Fibroblast growth factor receptors (FGFRs) 

Central to the activating property of the FGFs are the single-pas transmembrane 

proteins referred to as the FGFRs (Dailey et al., 2005, Sarabipour and Hristova, 2016). 

In mammals, FGFRs are encoded by four specific genes (Fgfr1-4), with 55-72% amino 

acid homology (Givol and Yayon, 1992, Powers et al., 2000, Bottcher and Niehrs, 

2005). Also documented are the generation though splicing of other isoforms like 

FGFR5/FGFRL1 (Rieckmann et al., 2008).  

The importance of FGFR activation or downregulation is not limited to physiological 

growth and development, FGFR mutations and over-expression have been 
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demonstrated in several developmental and post-natal disorders including Crouzon, 

Apert, and Pfeiffer syndromes (Burke et al., 1998, Sarabipour and Hristova, 2016). 

Also these FGFR have been implicated in cancer aetiology e.g. 1) FGFR4 expression  

is increased in terminal stages of mouse pancreatic β-cells cancer but not in the early 

stages of the disease (Olson et al., 1998), 2) FGFR3 is detected in human multiple 

myeloma (Richelda et al., 1997), 3) FGFR2 has been implicated in T-lymphocyte 

metastasis (Hattori et al., 1992) 4) FGFR1 has been reported in human breast cancer 

(Yoshimura et al., 1998), and 5) some myeloproliferative diseases (Popovici et al., 

1998, Reiter et al., 1998).  

Structural analysis of the FGFRs reveals an extracellular (EC) ligand binding 

immunoglobulin-like domain (IgD), a short transmembrane (TM) connecting 

domain, and two intracellular tyrosine kinase (TK) domains.  The latter contains a 

juxtamembrane domain and a kinase domain containing an ATP-binding site and a 

cytoplasmic tail (CT) (Thisse and Thisse, 2005, Gotink and Verheul, 2010). 

FGFR5/FGFRL1 unlike other FGFRs lacks a TK (Ornitz and Itoh, 2015).  The FGFR 

extracellular domain has several IgDs but IgD1, -2, and -3 have been most widely 

studied. While IgD1 is not associated with any specific function, IgD2 has a heparin 

binding site, and the region between IgD2 and IgD3 is the active FGF binding site 

(Thisse and Thisse, 2005). The IgD3 of FGFR1-3 has two main splice variants IgD3b 

and IgD3c.  

Receptor dimerisation occurs with FGF binding and this initiates the cascade of 

events that accumulates in FGFR phosphorylation at its CT. This activates 
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downstream signalling pathway including MAPKs, PI3K/Akt, protein kinase C 

(PKC) and signal transducer and activator of transcription (STAT) (Turner and Grose, 

2010, Su et al., 2014).  

There is evidence that while the biological effects of FGFs can be dose-dependent, 

they can also be stage-dependent following activation of a specific receptor, even 

though redundancy has been reported amongst the FGFRs in the mature skeleton 

(Jackson et al., 2006, Soltanoff et al., 2009). In cartilage, FGFR1 is mostly upregulated 

by mitogens, whereas FGFR3 is upregulated during differentiation and morphogenic 

response (Weksler et al., 1999, Wang et al., 2001, Li et al., 2008a).  In osteoblasts, FGFR1 

is expressed principally during differentiation whereas FGFR2 expression is 

predominantly observed during osteoblast proliferation. Interestingly FGFR3 

expression is observed in during both differentiation and proliferation (Marie, 2003, 

Fakhry et al., 2005, Jackson et al., 2006, Marie, 2012).  

1.5.2  FGF-2 and its downstream signalling molecules 

FGF-2 initially was characterised as a 15kDa  molecule isolated from bovine pituitary 

and brain, with mitogenic capacity on mouse 3T3 fibroblasts (Armelin, 1973, 

Gospodarowicz et al., 1974). It was then named basic FGF (bFGF) to buttres its high 

isoelectric point (Gospodarowicz, 1975, Gospodarowicz et al., 1978). FGF-2 is 

described as the most studied member of the FGFs family (Mundhenke et al., 2002, 

Behr et al., 2010). This almost ubiquitously expressed FGF-2 (Dailey et al., 2005), has 

three isoforms: one low molecular weight isoform of 18kDa that is cytoplasmic 

located. Its secretion is associated with typical FGF-2 effects on bone formation. The 
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other isoforms are two high molecular weight isoforms of 21 and 22kDa  located in 

the nucleus and mostly related to phosphate homeostasis (Xiao et al., 2010a, Su et al., 

2014).  

Basic fibroblast growth factor or FGF-2 is expressed by osteoblasts and stored in the 

ECM (Hurley et al., 2002, Fei et al., 2011). It is a member of the FGF large family of 

polypeptide growth factors involved in several developmental mechanisms 

including skeletal development in several multicellular organisms (Itoh and Ornitz, 

2004, Thisse and Thisse, 2005).  At optimal expression, it is involved in normal bone 

formation, where as its absence in genetically altered knockout mice is associated 

with poor bone formation and mass (Coffin et al., 1995, Montero et al., 2000). In vitro, 

FGF-2 down regulates osteoblast markers such as collagen type 1 and regulates genes 

controlling mineralisation during osteoblast differentiation (Fang et al., 2001, Kyono 

et al., 2012). FGF-2 is also involved in the regulation of bone matrix protection by 

inducing the expression  of tissue inhibitors of metalloproteinases – TIMPs (Varghese 

et al., 1995). It is involved in the catabolic pathways of the bovine intervertebral disc 

(Li et al., 2008a). While redundancy amongst the FGFs is known, the attachment of 

HSPG to the EC domain of the FGFR confers some specificity to the FGF ligand 

including FGF-2 (Ornitz and Marie, 2002, Mundhenke et al., 2002, Debiais et al., 2004). 

The regulatory effects of FGF-2 ligand after attachment to FGFR1-4 is mediated 

though cell signalling pathways such as MAPKs, PI3K/Akt and phospholipase C 

(PLC) ɣ pathways. The MAPKs family (Fig 1.8) include the extracellular signal-related 

kinases (ERK1/2), stress-activated protein kinase/c-Jun N-terminal kinase 
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(SAPK/JKN) and p38 MAPK pathways (Kim et al., 2003, Jackson et al., 2006, Li et al., 

2008a, Eda et al., 2008, Kyono et al., 2012, Fei and Hurley, 2012). MAPK signalling is 

controlled by three-level kinase cascades consisting of MAPK, MAPK kinase (MEK, 

MKK, and MAPKK), and MAPKK kinase or MEK kinase (MAPKKK or MEKK) 

(English et al., 1999, Chang and Karin, 2001, Chaudhary and Hruska, 2001). 

1.5.2.1 Extracellular signal-related kinases (ERK1/2) 

ERK1/2 has been described as the major pathway mediating FGF effects in skeletal 

cells (Murakami et al., 2004, Matsushita et al., 2009b), especially osteoblast and 

chondroblast differentiation (Matsushita et al., 2009a). Studies using the MEK 

(upstream to ERK1/2 in the Ras-MAPK pathway) inhibitor U0126, revealed the 

downregulation of the skeletal cell mineralisation gene Dmp1, and lack of the 

osteocyte dendritic phenotype in MLO-Y4 cells (Kyono et al., 2012). This report 

supports the increasing data on the central role of ERK1/2 molecules in FGF signalling 

during osteocyte differentiation (Murakami et al., 2004). ERK1/2 activation is 

associated with cell proliferation, differentiation, survival, and protection against 

apoptosis (Allan et al., 2003, Arrington et al., 2012). 
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Species 

Number 

of FGFs 

FGF ligands 

(Subfamilies) Receptor 

Co-

receptor 

Signalling 

property 

Zebrafish 10 

FGF2–4, 6, 8, 10, 17a, 

17b, 18, 24 FGFR HSPG paracrine 

Xenopus  6 FGF2–4, 8–10  FGFR HSPG paracrine 

Chickens  13 

FGF1–4, 8–10, 12, 13, 

16, 18,20 FGFR HSPG paracrine 

    FGF19 FGFR Klotho endocrine 

Mice 22 FGF1–18,20  FGFR HSPG paracrine 

    21, 23  FGFR Klotho endocrine 

Human 22 FGF1–14, 16–18, 20, 22  FGFR HSPG paracrine 

    FGF19, 21, 23 FGFR Klotho endocrine 

 

Table 1.1 Summary of FGFs biology  

Note the ligand number per species, specific co-receptors and the different signalling 

property (Yun et al., 2010).  
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Figure 1.8 Schematic of FGF signalling. 

Binding of the FGF to its receptor (FGFR) activates downstream signalling pathways 

including MAPK-mediated pathways. The inhibitors to these pathways are 

highlighted in green oval shapes (MEK inhibitors, PD98059 and U0126; PI3K 

inhibitor, LY294002; p38 MAPK inhibitor, SB203580; and FGFR1/2/3 inhibitor, 

AZD4547. Adapted from (Jackson et al., 2006).  
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1.5.2.2. Phosphatidylinositol 3 kinase/Akt (PI3K/Akt) 

Protein kinase B (PKB), also known as Akt, in mammals.  It has three isoforms  

expressed by three genes namely: PKBα/Akt1, PKBβ/Akt2, and PKBɣ/Akt3 (Song et al., 

2005). Generally, Akt phosphorylation is involved in the regulation of tissue size, 

metabolite homeostasis like glucose, new blood vessel formation, cell cycle 

progression, apoptosis, and cell survival (Chaudhary and Hruska, 2001, Suhara et al., 

2002).  In osteoblasts, the activation of the PI3K/Akt pathway after FGF-2 stimulation, 

mediates cell survival including protection from apoptosis signalling (Debiais et al., 

2004). This role of phosphorylated Akt in the inhibition of apoptosis signalling 

involves caspase-3 cleavage, activation of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated 

death promoter (Bad) and blocking of mitochondrial cytochrome C release (Suhara et 

al., 2002, Song et al., 2005). During neuronal differentiation of pheochomocytoma cell 

line (PC12) under the stimulation of nerve growth factor (NGF), Akt is involved in  

cytoskeletal re-organisation leading to neurite formation (Jeon et al., 2010).  

1.5.2.3 p38 MAPK 

This p38 MAPK molecule has four isoforms including  p38α, p38β, p38ɣ, and p38δ 

MAPKs, which are all activated by MEK3/6 of the MAPK pathway (Chang and Karin, 

2001). The isoforms p38α and p38β MAPKs are expressed universally in most tissues; 

p38ɣ MAPK has been localised in the muscle; while p38δ MAPK is limited to kidney 

and lungs (Hu et al., 2003, Cuenda and Rousseau, 2007). Even though p38 MAPK is 

associated with apoptosis, there is a growing body of evidence that it has a critical 

role in embryogenesis, as deletion of one of its isoforms p38α, leads to embryonic  
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death due to inadequate synthesis of erythopoietin (Chang and Karin, 2001). 

Functionally in a number of cells including the osteoblast, it regulates cell growth and 

differentiation, stress and inflammatory response that enhances cell survival (Hu et 

al., 2003, Hong et al., 2015). 

1.5.2.4 Stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK)  

JNK consists of 3 isoforms and was originally characterised by its specific capacity to 

phosphorylate the transcription factor c-Jun at its N-terminal transactivation domain 

(Hibi et al., 1993). These isoforms are JNK1, 2 and 3, which are expressed by 

individual genes, have been localised in most body tissues, with the exception of 

JNK3 that is principally isolated to the brain, testis and heart (Kyriakis and Avruch, 

2001). The molecular weight of these isoforms varies, as JNK1 is 46kDa, whereas JNK2 

and JNK3 are predominantly 56kDa (Matsuguchi et al., 2009). Functional and 

structural similarities, as well as specific differences exist amongst these isoforms. 

JNK1 up-regulates c-Jun-dependent fibroblast proliferation (Sabapathy et al., 2004), 

and TNF-α stimulated apoptosis (Liu et al., 2004).  There is a report of JNK signalling 

being involved in apoptosis regulation in vascular smooth muscle cells (Villunger et 

al., 2000). These isoforms are activated by MEK4/7 in the MAPK cascade signalling 

(Chang and Karin, 2001).  

1.5.2.5 Cell signalling and the use of inhibitors 

Signalling pathways are integrated protein to protein interactions mediating cell 

activities and relationships with other cells (Martin, 2003). Even though they are 

complex networks, they are strictly conserved, with some reports of redundancy 

(McCormick, 2000). Various models have been utilised in exploring the nature and 
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mechanism of action of these signalling pathways. These include the use of 

monoclonal antibodies, siRNA gene silencing, dominant negative mutants and 

chemical inhibitors (Alessi et al., 1995, McCormick, 2000, Gotink and Verheul, 2010). 

Chemical inhibitors are small sized hydrophobic molecules with the ability to pas 

though the cell membrane. This property readily distinguishes them from 

monoclonal antibodies (Imai and Takaoka, 2006). Inside the cell, some of these 

hydrophobic molecules quickly associate with cytoplasmic domain of receptors and 

their downstream signalling molecules especially at their Adenosine Tri-Phosphate 

(ATP) binding site. This association is marked by their competition with ATP, 

denying the receptors or downstream molecules the critical ability to be 

phosphorylated (Fig. 1.9).  This prevents the cascade of such signalling pathways 

(Gotink and Verheul, 2010). This mechanism is observed with type I inhibitors such 

as epidermal growth factor receptor (EGFR) inhibitors PD15870 and ZD1839, FGFR 

inhibitors BGJ398 and AZD4547, PI3K/Akt inhibitor LY294002, and p38 MAPK 

inhibitor SB203580 (Rewcastle et al., 1996, Wakeling et al., 1996, McCormick, 2000, 

Tan et al., 2014, Fisk et al., 2014).  

Another mechanism of action of some kinase inhibitors, which are not direct ATP-

competition dependent, involves the binding to the hydrophobic pocket situated 

adjacent to the ATP-binding site (Fig. 1.9). This induces a conformational change in 

the kinase.  This indirectly prevents kinase activity as the allosteric change stops ATP 

binding. Examples of these are type II inhibitors such as MEK inhibitors PD98059 and 



Chapter 1: Introduction 

37 
 

U0126 and the VEGFR inhibitor, sorafenib (Alessi et al., 1995, Favata et al., 1998, Wan 

et al., 2004, Fisk et al., 2014). 

Some kinase inhibitors have been classified into type III inhibitors based on their 

ability to form covalent bonds with cysteines at designated locations of the kinase 

(Gotink and Verheul, 2010). They are thus referred to as covalent inhibitors and most 

of their effects are irreversible like the FGFR inhibitors FIIN-2 and FIIN-3 (Tan et al., 

2014).  

On a general note, the ability of these three classes of kinase inhibitors described 

above to prevent the specific action of any target pathway without hindering the 

activation of other pathways in cells have been exploited in their deployment as 

therapeutic agents in some diseases such as cancer (McCormick, 2000, Gotink and 

Verheul, 2010).  

1.6. Osteoarthritis (OA) 

OA is a painful joint disorder and a major world-wide health concern. It has 

significant implications for health budgets and is associated with the loss of 

productive working hours due to attendant morbidity (Funck-Brentano and Cohen-

Solal, 2011, Bouaziz et al., 2015). OA is characterised by articular cartilage (AC) loss, 

subchondral bone (SCB) sclerosis, joint space narrowing, synovitis, thickened fibrous 

capsule, osteophyte formation, cysts and loss of joint function (Funck-Brentano and 

Cohen-Solal, 2011, Blom et al., 2009, Quasnichka et al., 2006). 
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Figure 1.9 Structure of receptor tyrosine kinase. 

Note the sites of action of its inhibitors (Gotink and Verheul, 2010). 
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While OA can develop in any synovial joint, knee, hip, hands and vertebrae remain 

the most prevalent predilection sites. 

OA affects mostly middle aged and older people with older women affected more 

severely due to reduced oestrogen levels in post-menopausal life (Buckwalter and 

Martin, 2006, Roman-Blas et al., 2009). Oestrogen, as a sex steroid, is generally 

protective to both bone and cartilage via activation of an anti-apoptotic pathways in 

osteocytes and upregulates chondrocyte glycosaminoglycan’s expression (Chen et al., 

2005, Maneix et al., 2008).  Although the fundamental cause(s) of OA are unknown, it 

is recognised to be a multifactorial disorder (Lorenzo et al., 2004, Lajeunesse, 2002, 

Jaiprakash et al., 2012). OA has been broadly divided into primary and secondary 

types based on some predisposing factors such as ageing which is associated with 

primary OA, whereas secondary OA is correlated with sporting injury, joint 

malalignment, hereditary, sedentary life and obesity (Blom et al., 2009).  

The initiation and progression of OA remains an issue of controversy to both 

clinicians and researchers alike (Kawcak et al., 2001). Owing to the observable 

cartilage destruction and loss at late stages of OA, it has traditionally been designated 

an AC disorder (Quasnichka et al., 2006). However, changes in the SCB thickness is 

one of the earliest detectable radiographic signs in OA (Jaiprakash et al., 2012). This 

sclerosis physically negatively impacts on AC during repetitive loading or stress 

leading to AC damage, thereby suggesting that the SCB should be targeted to relieve 

the pathogenesis of OA (Radin and Rose, 1986, McIlwraith et al., 2010). Regardless, it 

is clear that OA is a disorder of the entire joint including the AC, SCB, synovium, 
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capsular tissues, and ligaments (Kannus and Rvinen, 1989, Lajeunesse, 2002, 

Quasnichka et al., 2006, Goldring and Goldring, 2010, Li et al., 2013).  

1.6.1 Normal synovial joint: structure and function 

A joint simply described is where bones meet and articulate. Structurally, it is 

classified based on the binding tissue into fibrous, cartilaginous and synovial joints.  

Functionally, a joint can also be classified based on the type and gradation of 

movement allowable and in this classification we have synarthodial, amphiarthodial 

and diarthodial joints (van Weeren, 2016a). Of these types, the synovial joint is the 

most abundant in the mammalian body allowing the most movement, hence is also 

referred to as a diarthodial joint. 

Structurally, a typical synovial joint consist of a joint capsule which comprises of an 

outer fibrous membrane continuous with the articulating bone periosteum, and an 

inner synovial membrane secreting the synovial fluid (Pacifici et al., 2005). There is a 

smooth slippery articular cartilage of the hyaline type with no perichondrium (Lorenz 

and Richter, 2006). This AC covers the underlying SCB in articulating bones (Decker 

et al., 2014). The AC is separated into a superficial non-calcified cartilage and a deeper 

calcified cartilage (CC) by a non-fixed borderline referred to as tidemark that appears 

basophilic in routine light microscopy (Li et al., 2013). The CC component is in direct 

contact with the SCB at the osteochondral junction. The SCB consist of two anatomical 

components: the subchondral bone plate and the subchondral trabecular bone 

(Goldring and Goldring, 2010). Other synovial joint structures include articular discs 
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or menisci, articular fat pad, tendon, bursa, and accesory ligaments that maybe 

extracapsular-fibular collateral ligament or intracapsular-cruciate ligament (Pacifici 

et al., 2005). 

Functionally, the synovial joint allows movements such as abduction, adduction, 

extension, flexion and rotation. The joint components such as synovial fluid are 

involved in lubrication, shock absorption, nourishment and metabolic waste removal 

(Lorenz and Richter, 2006). The AC is associated with shock absorption and reduction 

in friction during movement (Kawcak et al., 2001) whereas the SCB is the major load 

absorber  across the joint and it maintains the joint space and nourishes the CC by 

diffusion though its vascular network (Milz and Putz, 1994, Li et al., 2013). The bursa 

develops to reduce mechanical friction between structures like bone and ligaments 

whereas the supportive role of ligaments help resist strains during movements 

dangerous to articulation. In general, the joint components are adapted for support, 

aiding ease of body movements in several directions (Kawcak, 2016). 

Deviations from the normal anatomy and physiology of the synovial joints results in 

painful joint disorders like dislocation, gout, arthritis and sprains. Arthritis is a large 

family of illnesses within the joint disorders, including OA, rheumatoid arthritis, 

septic arthritis, and Still's disease (Wright et al., 2014, Bouaziz et al., 2015, van Weeren, 

2016b). It may occur as a distinct condition, or appear secondary to other diseases.  
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1.6.2 Changes in AC in OA 

Articular cartilage homeostasis involves the maintenance of the components of the 

ECM in a dynamic equilibrium in relation to the chondrocytes. The components of 

the inter-territorial matrix of the ECM include a network of collagen fibres and 

proteoglycans where aggrecan predominates. The collagen fibres present are mostly 

type II, type XI and type IX whereas the pericellular matrix is reported to contain 

mostly type VI collagen fibres (Goldring and Goldring, 2010). 

The AC gradually losses colour, form and function during advancing OA. This 

phenotypic change is driven by increased levels of matrix degrading enzymes such 

as matrix metalloproteinases (MMPs), and aggrecanases (Lorenz and Richter, 2006); 

making the AC les viscoelastic, which are features associated with increased 

production of collagen type I and decreased production of type II collagen (Wenz et 

al., 2000, Lorenz and Richter, 2006). As OA progresses, the catabolic actions of these 

degrading enzymes is enhanced by the downregulation of their inhibitors by 

inflammatory cytokines such as Interleukins (IL) IL-1, IL-17, IL-18 and tumour 

necrosis factor alpha (TNF-α) (Martel-Pelletier, 1998). To compound this catabolic 

state, new cartilage ECM is not commensurately synthesised by the chondrocyte 

anabolic activities. The anabolic activities of healthy articular chondrocytes are 

induced by growth factors which include IGF-1, TGF-β, BMP, and FGFs (Fortier et al., 

2011). This somewhat negative balance in cartilage ECM turnover results in the 

clasical feature of cartilage degradation and loss observed in most late OA 

radiographs (Sharma et al., 2013). This cartilage loss makes for the direct contact 

https://en.wikipedia.org/wiki/Metalloproteinase
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between two articulating bones or bones and intact AC aggravating the symptomatic 

excruciating pain associated with late OA.  

There are reports of increased vascularisation of the SCB (Fig. 1.10), which invades 

the CC during OA pathogenesis (Goldring, 2012, Jaiprakash et al., 2012). This vascular 

invasion of CC from SCB causes the establishment of new secondary centres of 

ossification in the CC leading to advancement and duplication of the tidemark 

towards the non-calcified cartilage, hence, thinning and the formation of microcracks 

in the AC and consequent loss due to shear stress (Radin et al., 1995, Goldring, 2012). 

This osteoarthritic CC expresses type X collagen, typical of hypertrophic cartilage in 

secondary centres of ossification providing supportive evidence for the reactivation 

of secondary centres of ossification (Hoyland et al., 1991). At this site of vascular 

invasion and newly established secondary ossification centre, nerve growth factor 

(NGF) and vascular endothelial growth factor (VEGF), are expressed by sensory 

nerve fibres and fibro-vascular tissue respectively (Walsh et al., 2007, Walsh et al., 

2010, Ashraf et al., 2011). 

1.6.3. Changes in the SCB in OA 

The SCB of healthy joints is continuously remodelled which results in changes to its 

shape, architecture, volume, and mechanical properties.  Alterations in  elasticity are 

due to changes in ECM mineralisation (Kawcak et al., 2001). This remodelling is 

suggested to be orchestrated by osteocytes (Section1.3), and it enables the skeleton to 

actively respond to bone injury repair, and adapt to changing mechanical loading in 

the body (Burr, 2004, Martin, 2007, Chan et al., 2011).  
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SCB sclerosis, one of the defining features of OA observed prior to joint space 

narrowing (Jaiprakash et al., 2012), has been described as a product of bone 

remodelling in response to microdamage in the CC and SCB (Sokoloff, 1993, Radin et 

al., 1995).  This sclerosis is characterised at the cellular level by dysregulated 

osteoblasts making more bone as there is a down regulation of sclerostin expression ; 

morphological and phenotypic changes in osteoclasts showing early increased 

resorption rate and later reduction; and decreased osteocyte dendrite number (Fig. 

1.10) (Logar et al., 2007, Sanchez et al., 2008, Jaiprakash et al., 2012). Structurally, it is 

associated with stiffness, poor mineralisation, and poor adaptation to loading (Pool 

and Meagher, 1990). Osteocytes, though their expression  of sclerostin, RANKL and 

OPG, are directly involved in bone remodelling and consequently SCB sclerosis (Li et 

al., 2005b, Nakashima et al., 2011b, Xiong et al., 2011). The down-regulation of 

sclerostin expression in OA may also aid AC degradation, as chondrocyte sclerostin 

expression has been demonstrated to be chondro-protective though its action on 

antagonising the cartilage catabolic protease, aggrecanase - a disintegrin and 

metalloproteinase with thombospondin motifs (ADAMSTS) 4/5  (Chan et al., 2011). 

Also MMP-1, -9, and ADAMTS4/5, which are well known mediators of matrix 

degradation are upregulated in sclerotic SCB (Jaiprakash et al., 2012).  
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Figure 1.10 Architecture of dysregulated subchondral bone during OA. 

Scanning electron microscopy images of osteocytes in OA showing poor osteocyte 

phenotype, vascular invasion, and dysregulated dendrites are suggestive of active 

involvement in OA pathogenesis (Jaiprakash et al., 2012).  
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1.6.4. Osteophyte formation 

The development of osteophytes which cause pain and loss of function has been 

described as one of the hallmarks of OA (van der Kraan and van den Berg, 2007). 

They are mostly seen near joint margins, arising in the periosteal covering at the 

osteochondral junction (Menkes and Lane, 2004). Endogenous growth factors such as 

TGF-β, BMP2, and FGF-2 have been associated with their development and growth 

(Blaney Davidson et al., 2007, Kwan Tat et al., 2010). Also altered biomechanical forces 

on the joint have been implicated as drivers of their formation as osteophytes may 

help in the maintenance of joint stability (Menkes and Lane, 2004, Lorenz and Richter, 

2006). This view is not universally accepted however as others have proposed that 

osteophytes may cause joint malalignment (Felson et al., 2005). 

1.6.5. Other features of the OA joint  

Bone marrow oedema or cyst formation is a frequent feature of the SCB in most OA 

patients. First described by Wilson et al., in 1988, it represents localised areas of bone 

marrow lesions of fat necrosis and fibrosis (Wilson et al., 1988, Taljanovic et al., 2008, 

Leydet-Quilici et al., 2010). Their formation are now considered part of the healing 

process for loading induced micro-fractures in SCB. Local ischaemia during SCB 

remodelling also contributes to cyst development (Bancroft et al., 2004, Carrino et al., 

2006, Findlay, 2007). Histological evidence from studies on the role of synovial 

inflammation in OA pathogenesis is very suggestive that lymphocytic infiltration, 

cellular hyperplasia and changes in mediators of inflammation like ILs and TNFα  are 

very common in OA (Benito et al., 2005, Wenham and Conaghan, 2010, Johnson et al., 
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2016), although they are inconsistent between different studies. In a recent scholarly 

review a strong argument was made for the huge impact of synovitis in driving OA 

pathology such as inducing cartilage damage and early SCB thinning (Hügle and 

Geurts, 2017). However,  some earlier reports have indicated absence of correlation 

between inflammation of the synovium and induced collagen destruction in the dog 

AC (Pelletier et al., 1985).   Nevertheless, synovitis is very common in OA and studies 

exploring therapies targeting its inflammatory molecules during OA 

pathophysiology illustrates the importance of synovial health for proper joint 

function (Wenham and Conaghan, 2010).  

1.7. FGF-2 signalling in OA 

The role of FGFR in OA development is still unfolding. What is known now from 

both ligand and receptor knockout/inhibition studies suggest some species and 

developmental stage variation, and to some degree, ligand specificity (Weng et al., 

2012). In human AC stimulated with FGF-2, the most expressed receptor is FGFR1, 

which has a catabolic effect by upregulating MMP-1 and MMP-13 and down-

regulating aggrecan expression  (Yan et al., 2012).  The catabolic effect of FGFR1 

signalling in human AC after FGF-2 stimulation has been corroborated in adult mice 

showing extensive AC degeneration (Weng et al., 2012). However, contrasting reports 

in murine OA cartilage shows that FGFR2 and 4 are the most commonly expressed 

receptors, in addition to the upregulation of FGFR3 may help explain the reported 

anabolic and chondro-protective effects of FGF-2 in this species (Chia et al., 2009, Li 

et al., 2012). However, while this possible explanation subsists, some researchers 
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insist that the specific roles of FGFR2 and 4 remain largely yet to be deciphered 

(Nummenmaa et al., 2015).    

Nevertheless, some researchers have documented evidence associating FGF-2 with 

chondroprotection and delayed onset of OA in surgically destabilised murine joints 

(Chia et al., 2009, Li et al., 2012, Chong et al., 2013). This species variation maybe 

related to the type of FGFR activated by FGF-2 (Li et al., 2012, Nummenmaa et al., 

2015).  

FGF-2 is known to be released from cartilage upon injury and is able to change 

chondrocyte gene expression in vitro. One gene known to be regulated by FGF-2 is 

E11 and this has been found in murine joints following surgical destabilisation (DMM 

model) and cartilage explant injury models. Specifically, E11 expression was found to 

be FGF-2 dependent following injury to cartilage in vitro and to joint tissues in vivo 

(Chong et al., 2013). The importance of FGF-2 in driving gene (and protein) changes 

in the aetiology of OA is further emphasised by the observations that FGF-2 promotes 

both E11 expression in osteoblasts and the osteocyte phenotype (Gupta et al., 2010). 

It is therefore conceivable that whilst the role of E11 in osteocyte differentiation 

remains unclear in OA aetiology, E11 expression and stability is controlled at various 

junctures and this may be key in terminal osteoblast differentiation and the 

acquisition of the osteocyte phenotype. 
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1.8 Aims and strategy  

Cognizant of FGF-2 stimulation of E11 expression in cartilage explants and osteoblast-

like cells, it is likely that FGF-2 will influence bone remodelling via increased 

osteoblast E11 expression and concomitant osteocyte dendrite formation. This in turn 

would therefore protect against the abnormal osteocyte morphology observed in SCB 

sclerosis in OA. Therefore, the aim of this project was to test the hypothesis that: 

FGF-2 regulates E11 mediated osteocytogenesis and that E11 expression in SCB 

osteocytes protects against OA pathophysiology. 

 

To undertake this investigation, the following aims were undertaken.  

1. Examine the potential regulation of E11 expression and osteocyte formation by      

FGF-2. 

The osteoblast-like cell line (MC3T3), and primary osteoblasts (murine) in Chapter 3 

were studied in culture and the relationship between FGF-2 stimulation and (i) E11 

expression  (gene and protein) (ii) the attainment of the osteocyte morphology and 

(iii) the expression  of osteocyte markers like Sost, Dmp1, and Phex, was examined. 

This aim elucidated that FGF-2 upregulates E11 and other osteocyte marker genes in 

both MC3T3 cells and primary osteoblasts; thus promoting osteocytogensis in these 

cells. 

2.  Investigate the signalling pathways and cytoskeletal changes involved in FGF-2 

regulation of E11 expression and dendrite formation in MC3T3 cells using chemical 
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inhibitors. The molecules under investigation were analysed using western blots, RT-

qPCR and GLISA cytoskeleton assay kit.  

The results of these in Chapter 4 indicated that the promotion of the osteocyte 

phenotype by FGF-2 is possibly via Fgfr1 activation and increased E11 expression. 

The signalling pathway(s) involved however, remains unclear but may involve 

phosphorylation of signalling molecules such as ERK1/2, Akt and p38 MAPK. 

3. Examination of E11 expression during OA pathology in Fgf-2 KO mice and canine 

tissues. 

The relative expression of E11 in AC and SCB in normal and OA tissues was 

specifically examine using immunohistochemistry technique (Chapter 5). In 

addition, sclerostin was also examined.  Optimisation of anti-mouse and anti-

human E11 antibodies using various antigen-demasking agents on the SCB 

samples from the ovine, canine, feline and equine tissues were used for 

comparative studies. The canine OA samples showed significant increase in 

E11 immunolabelled SCB osteocytes when compared with the control 

samples.  The SCB from mice and human OA samples showed no difference 

in osteocyte E11 and sclerostin immunolabeling. 

In conclusion, these studies have established that FGF-2 regulates E11 during 

osteocytogenesis (Fig. 1.11), a mechanism that can help in understanding the biology 

of osteocyte during OA pathology. 
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Fig. 1.11 Schematic of my project hypothesis. 

This thesis will examine the hypothesis that:  FGF-2 drives increased E11 

expression during osteocytogenesis in MC3T3 osteoblast-like cells and primary 

osteoblasts, and this regulation occurs during OA pathophysiology. 
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2.1. Biochemicals and solutions 

Reagents for this work were obtained from Sigma-Aldrich (Dorset, U.K.) and 

cell/organ culture media and additives were sourced from Thermo Fisher Scientific 

(Paisley, U.K.) unless otherwise stated. 

2.2. Cell and organ culture protocols 

2.2.1. Thawing of cell lines 

Murine MC3T3 osteoblast-like cells (clone 14; American Type Culture Collection 

ATCC, USA) were utilised throughout this thesis. Frozen cryovials of cells were 

thawed quickly from -150°C storage by warming in a beaker of 37°C water (Rosser 

and Bonewald, 2012). Cells were slowly pipetted into a universal and 5ml of warm 

(37°C) culture medium (αMEM supplemented with 10% v/v foetal bovine serum 

(FBS), and 0.05 mg/ml gentamycin) was added drop-wise to prevent osmotic shock 

and rupture of the cells. Cells were centrifuged at 9300 g for 5 min (Eppendorf 

Centrifuge 5415R, Eppendorf UK Limited), and the supernatant discarded. Cells were 

resuspended in 2ml of culture medium, and seeded into a T175 flask containing 23 

ml (total volume) of culture medium in a humidified environment maintained at 37oC 

and 5.0% CO2 for approximately 3 days. When the cells were semi-confluent, the 

media was carefully removed from the flask and cells washed in phosphate buffered 

saline (PBS). Subsequently, 0.25% v/v trypsin-EDTA was added to detach the cells 

from the plastic surface. The detached cells were transferred to a universal, and 8ml 

of culture media was used to wash out the remaining cells in the flask and then 

transferred to the universal to deactivate the trypsin. The universal was centrifuged 
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at 1100g for 5 min. The supernatant was disposed of and the pellet dispersed with 

gentle pipetting in 1 ml of culture medium to enable resuspension of the cells. After 

thorough mixing, a haemocytometer was used to count the cells. The cells were 

subsequently plated down in 6-well plates at a seeding density of 1.0 x 104 cells/cm2.   

2.2.2. Calvarial osteoblast isolation 

Under sterile conditions, the calvaria of 3 days old mice (strain C57BL/6) were 

dissected out and osteoblasts were  isolated according to published literature  (Orriss 

et al., 2012). After a brief wash in a universal containing Hank’s balanced salt solution 

(HBS), they were digested with collagenase type II (1mg/ml) for 10 min at 370C in an 

automatic shaker. The supernatant was discarded. The collagenase digestion was 

repeated and the supernatant retained (fraction 1). The remaining calvaria were 

washed with PBS and the PBS was added to fraction 1. The calvaria were further 

incubated with 4 mM ethylenediaminetetraacetic acid (EDTA) for 10 min at 370C in 

an automatic shaker and the supernatant retained (fraction 2). The calvaria were 

washed with HBS and added to fraction 2. Fractions 1 and 2 were combined into one 

universal, centrifuged at 9300 g for 5 min. Subsequently, the cells were re-suspended 

in 3 ml of αMEM containing 10% v/v FBS and 0.05% v/v gentamycin before dividing 

equally into three T75 flasks containing 11 ml of culture media. Meanwhile, the 

calvaria were subjected to another 30 min collagenase digestion and the resultant 

supernatant was retained as fraction 3. Fraction 3 was centrifuged to pellet the cells 

before resuspending in 3 ml  of culture media and dividing equally (1 ml each) into 

each of the three T75 flasks containing combined fractions 1 and 2. After 3 h 
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incubation in a humidified environment (370C and 5.0% CO2), the media was changed 

and the cells were expanded by maintaining them in culture for 3 days. The cells were 

then washed in PBS, trypsinised, pelleted and seeded in three T175 flasks containing 

15 ml growth media and returned to a humidified incubator maintained at 370C and 

5.0% CO2 for approximately 3 days.  The cells were finally plated down in 6-well 

plates at a seeding density of 1.0 x104 cells/cm2. 

2.2.3. Whole calvarial organ culture  

Calvariae were dissected from 3 days old C57BL/6 wild-type (WT) mice under sterile 

conditions according to published literature (Mohammad et al., 2008, Orriss et al., 

2012). Calvaria were transferred to pre-warmed calvaria culture media (α-MEM 

containing 0.2% w/v bovine serum albumin (BSA) and 0.05 mg/ml gentamycin) in a 

12-well plate. Subsequently, the calvariae were cut mid-sagittal and the two hemi-

Sections were cultured in calvaria culture media for 24 hours prior to 

experimentation. Calvaria hemi-Sections were cultured in a humidified incubator 

maintained at 370C and 5.0% CO2 for up to 2 days. 

2.3. FGF-2 treatments 

 When MC3T3 and calvaria primary osteoblasts were 100% confluent (approx. 72 h) 

the culture media was removed from the wells and the cells washed in PBS.  In the 

initial experiments, media containing variable concentrations (0 – 50 ng/ml) of FGF-2 

(PeproTech -USA) in α-MEM supplemented with 1% v/v FBS and 0.05 mg/ml 

gentamycin was added to each well. The vehicle diluent for the FGF-2 (0.1% w/v BSA 

in PBS) was added to 1% v/v FBS containing media and served as the control culture. 
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After 4 and 24 h FGF-2 incubation, the media was removed and the cells washed with 

sterile ice-cold PBS to remove excess media. The cells were scraped and processed for 

RNA extraction and protein assay (see Sections 2.4.1 and 2.5.2, respectively). For all 

further experiments, FGF-2 was used at 10 ng/ml to treat cells over short and long 

time periods (see results for precise details) and 0.1% w/v BSA in 1% v/v FBS media 

served as the negative control. Each experimental condition was completed in 

triplicate.  For calvaria cultures, FGF-2 at 10 ng/ml concentration (0.1% w/v BSA as 

negative control) was added to appropriate wells.  

2.4. RNA methods 

2.4.1 Isolation of RNA from cells 

Cell monolayers were scraped with 1 ml ice-cold PBS, pelleted by centrifugation and 

stored at -800C freezer. The RNA was later extracted with Qiagen RNeasy Mini kit 

(Qiagen, Manchester, UK), following manufacturer’s instructions and as reported 

previously (Genetos et al., 2011). In summary, this involved homogenising the sample 

in lysing and denaturing buffer. Ethanol (70%) was added for the efficient binding of 

RNA precipitates to the silica-gel-based membrane. Contaminants were removed 

with washing buffers and centrifugation, while DNAse treatment was used to digest 

any DNA present. The RNA was subsequently eluted though the membrane with 

RNase free water. The quantity of RNA in ng/ul was measured with a NanoDrop 

spectrophotometer (ThermoScientific, Paisley, U.K.). The level of purity was 

evaluated by determining the ratio of absorbancies at 260/280 nm wavelengths, and 
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values ~2.0 was taken as optimal. The samples were diluted with RNase free water 

and stored at -800C for later analysis. 

 2.4.2 Isolation of RNA from tissues 

RNA was extracted using a RNeasy mini kit, following the manufacturer’s instruction 

(Qiagen) as previously published (Reno et al., 1997) . The bone and calvaria were 

homogenised in 1 ml Qiazol (Qiagen, Germany) for cell lysis, and left at room 

temperature for 5 min to promote disociation of nucleoprotein complexes. 

Chloroform (200 ul) was added and thoroughly mixed to enhance phase separation, 

which was then undertaken by centrifugation at 9300 g for 15 min at 40C. After 

centrifugation, 3 phases were visible: an upper colourless aqueous phase containing 

RNA; white interphase; and lower red phase containing organic matter. The upper 

colourless phase was carefully aspirated to avoid contamination with the other 

phases. Seventy percent ethanol (600 ul), was added for efficient binding of RNA 

precipitates to the silica-gel-based membrane. Contaminants were removed with 

washing buffers and centrifugation, while DNAse treatment was used to digest any 

DNA present. The RNA was assessed for quantity and purity by 

spectrophotmometry as described above (Section 2.4.1). The RNA was stored at -800C.     

2.4.3. Reverse transcription 

DNA polymerase enzyme - reverse transcriptase was used to convert the diluted 

RNA samples to complementary DNA (cDNA). The RNA was diluted to 5 ng/ul with 

nuclease free water (NFW) and the diluted RNA (10 ul) was incubated with 2 ul of 

random primers (0.05 ug/ul) and loaded onto the Dyad PCR Thermal Cycler (MJ 
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Research, Canada) and incubated at 700C for 10 min.  A master mix of 2 ul 10X PCR 

reaction buffer, 2 ul dithiotheitol (DTT) (0.1 M), 1 ul deoxyribonucleotide 

triphosphate (dNTP) mix (10mM) and 1 ul Superscript II RNase H enzyme was 

prepared and added to each sample. The samples were reverse transcribed to cDNA 

using the following thermal profile in the Dyad PCR thermal cycler: 250C for 10 min; 

420C for 50 min; 70°C for 15 min and held at 40C. The cDNA produced was stored at 

-200C. 

2.4.4. Optimisation of qPCR primers 

Primer efficiency was tested with serial dilutions of cDNA (known to express the gene 

of interest) and a standard line drawn. Primers were considered satisfactory if the 

amplification efficiency was within the range of 93-107%, with an R2 value between 

0.98 and 1.00 indicating a perfect linear correlation, and an amplification curve with 

sigmoid curves at regular intervals along the dilution series. Primer specificity was 

demonstrated by the formation of a single peak in the disociation curve. 

2.4.5. Quantitative polymerase chain reaction (qPCR) 

The cDNA samples were all diluted to 5 ng/ul with NFW. A master mix, consisting 

of 10 ul 2xqPCR master mix with SYBR green (PrimerDesign, UK), 1 ul primer mix 

(detailed in Appendix, Table 1), and NFW (4 ul) was made up. Primers were deigned 

to span an intron to avoid amplifying any contaminating genomic DNA. Fifteen 

microlitres of the master mix was added to 5 ul of diluted cDNA, and loaded into the 

MX3000p Stratagene qPCR machine (Agilent technologies, Santa Clara, USA).  

Amplification of the cDNA was as follows: 10 min at 950C, 45 cycles of 15 s at 950C 
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and 1 min at 60°C, and a final cycle of 1 min at 950C, 30 s at 600C, and 15 s at 950C  and 

30 s at 250C to provide dissociation curves. The cycle threshold (Ct) values for the 

samples were normalised to that of Atp5b in MC3T3 cell lines and  mice primary 

osteoblasts, or Gapdh in whole mice calvaria as previously reported (Kyono et al., 

2012, Huesa et al., 2015, Houston et al., 2016) , and the relative expression  of each 

gene was calculated using the 2ΔCt method (Livak and Schmittgen, 2001). NFW 

instead of cDNA was amplified as a negative control.   

2.5. Protein methods 

2.5.1. Protein isolation 

To enable fast efficient lysis of the cell and protein solubilisation, 100 ul  of 

Radioimmunoprecipitation assay (RIPA) buffer (ThermoScientific, UK) solution 

containing protease inhibitor cocktail (Roche, Germany) was added to the cell 

monolayers. The cells were scraped with a sterile filter tip and an additional 100 ul  of 

RIPA buffer was used to wash the well. Samples were vortexed and lysates in a total 

volume of 200 ul were stored at -200C.  

2.5.2. DC protein assay 

The protein concentration of each sample was determined using a detergent 

compatible (DC) protein assay (Bio-Rad, Watford, UK) based on the Lowry assay 

(Lowry et al., 1951). Protein samples were thawed, vortexed and centrifuged at 9300 

g for 5 min and 5 ul of sample was pipetted in duplicate into a 96-well micro titre 

plate alongside standard dilutions of a protein assay standard (lyophilised bovine 

plasma gamma globulin 0 – 2 mg/ml). To all standards and samples, 25 ul  Bio-Rad 
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DC protein assay  Reagent A (Bio-Rad, Hertfordshire, UK) and 200 ul  of Bio-Rad DC 

protein assay Reagent B (Bio-Rad, Hertfordshire, UK), were added and the plates 

were allowed to incubate for 15 min. Absorbance was analysed using a BioTek 

Synergy microplate reader (Winooski, Vermont, USA), at 690 nm. Protein 

concentration in each sample was determined using the standard curve generated 

from the standard dilutions. 

2.5.3 Western blotting 

Protein lysates were denatured in a pre-heated block at 700C for 10 min. An equal 

quantity of the denatured protein (8-12 ug), was loaded into 10% SDS-polyacrylamide 

gel wells (NuPAGE- Life tech. UK), which were subsequently placed in a 

electrophoresis gel tank (Xcell Surelock, Invitrogen, UK) containing MOPS (3-N-

morpholino propanesulfonic acid) and SDS (sodium dodecyl sulfate). The gel tank 

was connected to a Bio-Rad power pack (Pac300; Bio-Rad). Five percent 

MOPS running buffer (Appendix), in water was poured into the tank chamber, while 

antioxidant (NuPAGE, UK) was added to the inner chamber of the gel tank to 

preserve the reduced proteins. Electrophoresis was completed at 200 V for 50 min at 

room temperature (RT). 

Protein was transferred to a nitrocellulosse (NC) membrane (GE Healthcare, 

Buckinghamshire, U.K.). Briefly, the NC membrane was sandwiched between Tris-

buffered saline (1X TBS) soaked filter paper and sponges creating a wet transfer 

within a transfer module (Invitrogen). Transfer was carried out on ice at 30V for 

https://en.wikipedia.org/wiki/Vermont
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90min. The NC membrane was blocked in appropriate buffer dissolved in 

TBS/Tween-20 (TBS/T) and incubated over night at 40C.  

The NC block solution was washed off the membrane in TBS/T (3 x 10 min) and 

incubated for 1 h at RT with the appropriate primary antibody (see Appendix, Table 

2). After further washing in TBS/T (3 x 10 min) at RT, the NC membrane was 

incubated for 1 h at RT with species appropriate peroxidase labelled secondary 

antibody (see Appendix, Table 3), (Dako, Denmark) diluted in 5% w/v Marvel in 

TBS/T buffer. The NC membrane was finally washed with TBS/T (4 x 10 min), before 

bound antibody was detected with enhanced chemiluminescence (ECL) (GE-

Healthcare) according to the manufacturer’s recommendation.  In brief, the ECL 

mixture was pipetted on to the NC membrane, allowed to stand for 1min and placed 

in an X-ray cassette sandwiched between two transparencies. In the dark room, the 

film was placed in the same cassette for 30 s, removed and loaded into the X-

OGRAPH medical film processor (Konica Minolta, SRX-101A, Banbury, UK) and 

allowed to develop in the dark(Mahmood and Yang, 2012). The films were scanned 

and saved and densitometric analysis of protein expression  was performed using 

Image J (https://imagej.nih.gov/ij/) (Baldari et al., 2015). 

2.5.4. Stripping NC membrane for additional western blotting 

The NC membrane was stripped in Restore Plus western blot stripping buffer 

(Thermo- Scientific), for 30 min at RT, and then washed in 1xTBS/T (3x10 min). The 

NC membrane was blocked in 5% w/v Marvel or 5% w/v BSA in TBS/T and incubated 

overnight at 40C.  Subsequently it was washed in 1xTBS/T (3 x 10 min). For the 
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detection of the loading control, NC membrane was treated with the stripping buffer 

(Appendix) to clear all bands which was confirmed with ECL.  The stripped NC 

membrane was incubated for 1 h at RT with an antibody to peroxidase tagged β-actin 

(Appendix, Table 2). Subsequently the NC membrane was washed in 1xTBS/T (3 x 10 

min) and the peroxidase label was detected with ECL as previously described. The 

films were scanned and saved, while densitometric analysis of protein expression was 

performed using Image J as previously described. 

2.6. Immunofluorescence of cultured cells 

Immunofluorescence localisation of target proteins was carried out as published 

(Anastasiadis et al., 2000), on MC3T3 osteoblast-like cells that had been cultured on 

sterilised glas coverslips at a density of 6.3 x 103 cells/cm2. Following treatment with 

FGF-2 (Section 2.3), the cells were fixed with 4% paraformaldehyde (PFA) for 15 min 

and washed 3 times (5 min each) with 1 ml of PBS. A blocking buffer (1X PBS, 5% v/v 

normal serum from an appropriate animal species (donor of secondary antibody) and 

0.3% v/v Triton X-100) was added to each well and incubated at RT for 1 h. After 

removal of the blocking buffer the primary antibody (Appendix, Table 2) diluted in 

antibody dilution buffer (1X PBS, 0.3% v/v Triton X-100 and 1% w/v BSA), was added 

to each well. The negative control consisted of an identical concentration of IgG from 

the same animal species as the primary antibody. The cells were incubated on a 

shaker, overnight at 4°C after which the primary antibody was discarded and the 

monolayers were washed 3 times with PBS, for 5 min each. AlexaFluor-conjugated 

secondary antibodies (Table 3) diluted in antibody dilution buffer, was added to each 



Chapter 2: Materials and methods 

63 
 

well. The cells were incubated for a further 2 h in the dark at RT. The monolayers 

were subsequently rewashed 3 times with PBS after which the cover slips (containing 

the cell monolayers) were carefully turned upside down onto a microscope slide with 

ProLong Gold antifade reagent with DAPI (Life Tech, USA) for nuclei staining. The 

slides were then visualised using a Leica DMRB fluorescence microscope and images 

were taken with a Leica DFC300 digital colour camera (Leica, Milton Keynes, UK).  

2.7. Phalloidin staining of cultured cells 

MC3T3 osteoblast-like cells were stained for filamentous (F)-actin using the 

Phalloidin (Liu et al., 2011). The cells were seeded at 1.0 x104 cells/ cm2 in 6-well plates 

and were maintained in reduced serum medium (Section 2.2.1). Following treatment 

with FGF-2 (Section 2.3), the cells were fixed in 4% PFA for 15 min after which they 

were rinsed 3 X PBS, permeabilised in 0.1% w/v trypsin (Sigma-Aldrich, Poole, UK) 

in PBS for 10 min and then rinsed again with 3 X PBS. The cells were incubated in 

30ul of Alexa Fluor 488-conjugated phalloidin (Life Tech, Oregon, USA) (5 uM in PBS 

with 2% w/v BSA) in the dark at RT for 3 h. They were then rinsed 3 X PBS and imaged 

on a Zeis Axiovert 25s inverted microscope and digital imaging system (Carl Zeis 

Microscopy, LLC, USA). 

2.8. Transfection of MC3T3 cells with E11 siRNA 

E11 small interfering ribonucleic acid (E11 siRNA) and scrambled siRNA stocks were 

obtained from Qiagen, UK, and diluted to 10 nM. MC3T3 osteoblast-like cells were 

expanded, seeded at 8.0 x 103 cells/cm2 in 12 well plates and maintained in reduced 

serum medium (1% v/v FBS). The use of siRNA has been described also in literature 
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to deplete RNA post transcriptionally (Genetos et al., 2011, Garufi et al., 2014). This 

was carried out according to manufacturer’s instruction and involves gentle 

transfection of cells with a mix of 5.4% v/v of 10 nM E11 siRNA or scrambled siRNA 

for study or scrambled groups respectively; 84% v/v of serum free media; and 10.7% 

v/v of HiPerFect transfection agent, which was added drop-wise to the cells as per 

manufacturer’s instructions (Qiagen, UK). Mock cells were transfected gently with a 

mix of 89.3%v/v serum free media and 10.7%v/v HiPerFect transfection reagent. After 

24 h incubation in a 370C/5%CO2 incubator, FGF-2 at 10 ng/ml was added to 

appropriate wells whereas 0.1% w/v BSA served as the negative control. The cells 

were scraped after 24 h of FGF-2 treatment (Section 2.3) for downstream gene and 

protein analysis (Sections 2.4 and 2.5).   

2.9. RhoA activity assay  

MC3T3 cell monolayers were scraped in a G-LISA lysis buffer supplied with the 

GLISA assay kit (Cytoskeleton, Denver, USA), after 4, 6, 24 and 48 h culture with FGF-

2 (Section 2.3). Lysates were immunoblotted for E11 (Section2.5) to ensure FGF-2 

stimulation of E11. Subsequently, using a GLISA assay which precisely identifies 

active GTP-bound RhoA, the quantification of RhoA activation was carried out by 

luminometry and expressed in relative light units (RLU) as per the manufacturer’s 

instructions (Staines et al., 2016).   

2.10 Alamar Blue Cell Viability Assay 

This was carried out according to published literature (White et al., 1996, Nakayama 

et al., 1997). MC3T3 cells were cultured in 6-well plates as described in Section 2.2.1. 
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Cells were treated with FGF-2 (10 ng/ul) and 0.1% w/v BSA as positive control at 

confluency (Section 2.3). After 24 h FGF-2 stimulation, the media was removed and 

700 ul of fresh media added to each well. To each well, 70 ul Alamar Blue reagent was 

added, then the plate was wrapped in aluminium foil to prevent light contact and 

placed in a humidified incubator maintained at 370C and 5.0% CO2 for 3 h. Fresh 

media plus FGF-2 or BSA was used as a negative control. The Alamar blue 

fluorescence were read at 530/25, 590/35 nm on Bioteck plate reader.  

2.11  Lactate Dehydrogenase (LDH) Assay 

MC3T3 cells were cultured in 6-well plates as described in Section 2.2.1. Cells were 

treated with FGF-2 (10 ng/ul) and 0.1% w/v BSA as positive control at confluency 

(Section 2.3). After 24 h FGF-2 stimulation, the media was removed and an LDH assay 

kit used according to the manufacturer’s instructions (Promega, Southampton, UK). 

Briefly, the Assay Buffer was thawed, and 12 ml taken out, wrapped in aluminium 

foil to protect from light and warmed to room temperature. This 12 ml of room 

temperature Assay Buffer was added to a bottle of Substrate Mix to form the 

CytoTox96 Reagent. It was inverted and shaken gently to disolve the substrate. Fifty 

micro litres aliquots from all test and control wells was transferred to a fresh 96-well 

flat clear bottom plate. Fifty microlitres of the CytoTox96 Reagent was added to each 

sample. The plate was covered with foil to protect it from light and incubated for 30 

min at room temperature. Fifty microlitres of Stop Solution was added to each well 

of the 96-well plate. Using Biotek plate reader, absorbance was read at 490 nm within 

1 h after adding the Stop Solution. 
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2.12. Histological Studies 

2.12.1 Paraffin embedded tissue 

The knee joints of Fgf-2 global KO (Zhou et al., 1998) and WT mice (kind gift from 

Prof. Tonia Vincent, The Kennedy Institute of Rheumatology, Oxford University) 

were fixed for 48 h in 10% neutral buffered formalin and preserved subsequently in 

70% ethanol. The joints were decalcified in 10% w/v EDTA at 40C with regular 

changes for approximately 4 weeks. An automated tissue processor (Leica 

microssystems, Wetzlar, Germany) was used to prepare all of the samples. Briefly, 

the samples were passed through an increasing series of ethanol baths until 

dehydrated in 100% ethanol; they were then infiltrated with paraffin wax. The 

samples were then manually placed in paraffin wax blocks. The surface of the paraffin 

wax blocks were cooled with an ice block and 5μm sections were cut using a Leica 

RM 2235 microtome (Leica, Milton Keynes, UK).  The sections were finally mounted 

onto microscope slides coated with poly-l-lysine.  

2.12.2 Immunohistochemistry 

For immunohistochemical analysis of target proteins, the Vectastain ABC kit (Vector 

Laboratories, Peterborough, UK) was used according to the manufacturer’s 

instructions. This was carried out on paraffin embedded Sections (Section 2.12.1). 

Sections were first de-waxed in xylene and rehydrated though a series of graded 

alcohols to distilled H2O. Antigen unmasking was carried out with 0.1% v/v trypsin 

in PBS for 30 min  at 37oC using water bath (Cattoretti et al., 1993). Endogenous 

peroxidase activity was blocked by treatment with 0.03% v/v H2O2 in methanol for 30 
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min at RT.  After 3 x 5 min washes in PBS the sections were blocked in normal 

blocking buffer (1:50 dilution of the appropriate normal serum in PBS) for 20 min at 

RT. The test sections were then incubated in primary antibody (see Appendix 1, Table 

2), while the control sections were incubated in appropriate immunoglobulin G (IgG). 

They were diluted to an appropriate concentration in normal blocking buffer at 40C 

overnight. Unbound primary antibody was removed by 3 x 5 min washes in PBS. The 

sections were subsequently incubated in biotinylated secondary antibody (Appendix, 

Table 3) diluted with normal blocking buffer at RT for 30 min. After 3 x 5 min washes 

in PBS, sections were incubated with Vectastain ABC reagents 2A and 2B (2 drops of 

avidin and 2 drops of biotin complex) in 5ml PBS for 30 minutes at RT. They were 

later washed for 3 x 5 min in PBS. Staining was then developed in diaminobenzidine 

(DAB) solution (0.06% v/v DAB in 0.1% v/v H2O2 in PBS) for about 2 minutes. The 

sections were rinsed in tap water and counterstained with haematoxylin using Leica 

Autostainer XL (Leica, Milton Keynes, UK). Finally, sections were dehydrated though 

graded alcohols, cleared with xylene and mounted in DePeX. Images were captured 

with Nikon Eclipse Ni microscope (Nikon, UK), fitted with Zeis Axiocam 105 colour 

camera (Carl Zeis, UK). 

2.12.3 Frozen tissue  

Tibia from Fgf-2 KO and WT mice were decalcified in 10% w/v EDTA at 40C with 

regular changes for 4 weeks. They were then subjected to increasing concentrations 

of sucrosse from 10% to 30% w/v for cryoprotection and then subsequently coated in 

5% w/v polyvinyl acetate and snap frozen in a cooled hexane bath for 30 s (Bradbeer 



Chapter 2: Materials and methods 

68 
 

et al., 1988, Ruan et al., 2013). The tissue was finally stored at -80oC until use. Frozen 

tissue was embedded in optimal cutting temperature (OCT) embedding medium 

(Brights) and attached to a metal chuck. Following trimming of excess OCT, 10 uM 

sections were cut at -300C using a cryostat (OTF500/HS-001, Brights, Huntingdon, UK) 

with the knife blade angle set to 220. The sections were placed in a slide tray, covered 

in aluminium foil, and stored at -80oC. 

2.12.4 Phalloidin staining for cryosections 

The slides (Section 2.10.3) were removed from -80oC freezer and kept on the bench for 

45 min to bring them to RT before the removal of the tin foil. They were subsequently 

washed twice in PBS before incubation in 0.1% v/v triton X-100 in PBS for 30 min  at 

RT. After extensive washing in PBS the sections were incubated in a solution 

containing 0.05% v/v phalloidin/1% w/v BSA/PBS at RT in the dark for one h. The 

slides were then washed 3 x PBS and finally mounted in Dako fluorescence mounting 

medium (Dako, USA). The slides were stored in the dark at RT and subsequently 

imaged on a Zeis Axiovert 25 Phase/Fluorescent microscope fitted with Zeis Axiocam 

503 high resolution colour camera/Zen software, single eGFP semrock filter block + 

multiple bandpas Semrock DAPI/AF488/TRITC (Carl Zeis, UK). 

2.13. Data analysis 

Data are presented as mean ± S.E.M. for n≥3 observations. Using GraphPad Prism 6 

(GraphPad Software, Inc., USA), differences unless otherwise stated were assessed by 

one or two-way analysis of variance (ANOVA) for which Tukey’s post-tests for 

multiple comparisons were conducted. P<0.05 was considered to be significant. Tests 
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for assumptions of ANOVA done included tests on equality or homogeneity of 

variance such as Brown-Forsythe test.    



Chapter 3: Regulation of E11 expression by FGF-2 

70 
 

 

 

Chapter 3 

Regulation of E11 

expression by FGF-2 
 

 

 

 

 

 

 

 

 



Chapter 3: Regulation of E11 expression by FGF-2 

71 
 

3.1. Introduction 

The protein E11 is a mucin type transmembrane glycoprotein of about 38-42 kDa  with 

several regulatory functions spanning from cell development and differentiation, 

epithelial-mesenchymal transition (EMT), oncogenesis and invasiveness (Thiery, 

2002, Wicki and Christofori, 2007, Martín-Villar et al., 2009, Astarita et al., 2012).  

Fundamental studies by Bonewald and colleagues identified E11, a mucin-type 

transmembrane glycoprotein, as the earliest osteocyte marker protein expressed 

during osteocytogenesis (Zhang et al., 2006). Furthermore, E11 triggers actin 

cytoskeletal dynamics (Staines et al., 2016), which are required for dendrite formation 

and transient E11 knockdown blocks dendrite elongation (Zhang et al., 2006). E11 has 

also been reported to be up-regulated during mechanical loading with associated 

extensions of the osteocyte dendrites in the mineralized matrix, suggesting a possible 

role in aiding biochemical communication amongst osteocytes, and other bone cells 

in their microenvironment (Zhang et al., 2006). Despite this, how E11 expression is 

regulated and the precise mechanisms by which E11 promotes dendrite formation are 

poorly understood. 

Nonetheless, clues from other model systems have indicated that basic fibroblast 

growth factor (bFGF) or FGF-2 is able to change chondrocyte gene expression  in vitro, 

including that of E11 (Chong et al., 2013). Specifically, E11 expression was found to 

be FGF-2 dependent following injury to cartilage in vitro and to joint tissues in vivo 

(Chong et al., 2013).  FGF-2 is a member of the FGF large family of polypeptide growth 

factors involved in several developmental mechanisms, including skeletal 
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development, in several multicellular organisms (Itoh and Ornitz, 2004, Thisse and 

Thisse, 2005).  In addition to chondrocytes, FGF-2 expressed by osteoblasts and stored 

in the extracellular matrix (ECM), where it regulates bone formation via influence on 

progenitor cell lineage commitment and/or osteoblast differentiation (Sabbieti et al., 

1999, Montero et al., 2000, Hurley et al., 2002, Xiao et al., 2010a). FGF-2 is also involved 

in normal bone formation as highlighted by its absence in KO mice being associated 

with poor bone formation and mass (Coffin et al., 1995, Montero et al., 2000). In vitro, 

FGF-2 down regulates osteoblast markers such as collagen type 1 and also regulates 

genes controlling mineralisation during osteoblast differentiation (Fang et al., 2001, 

Kyono et al., 2012). FGF-2 is involved in regulation of bone matrix protection by 

inducing the expression  of tissue inhibitors of metalloproteinases – TIMPs (Varghese 

et al., 1995).   

In view of the published role of FGF-2 in stimulating E11 expression in cartilage 

explants and osteoblast-like cells, it is therefore likely that FGF-2 may have an impact 

on osteoblast expression of E11 and the acquisition of the dendritic osteocyte 

phenotype (Gupta et al., 2010, Chong et al., 2013). Hence, the aim of this Chapter is to 

elucidate the nature of FGF-2 regulation of E11 during osteocytogenesis. 

3.2. Hypothesis 

FGF-2 stimulates the expression of E11 in MC3T3 osteoblast like cell lines and 

primary osteoblasts, promoting the acquisition of the osteocyte phenotype. 
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3.3.  Aims 

I To examine the effect of FGF-2 on E11 expression in MC3T3 osteoblast cell lines and 

primary osteoblasts.  

II To establish the effect of FGF-2 on the attainment of the osteocyte phenotype in 

osteoblast cell lines and primary osteoblasts. 

III  To evaluate the effect of FGF-2 on E11 expression in SCB osteocytes from mice 

deficient in Fgf-2.  

3.4. Materials and methods 

3.4.1 MC3T3 cells 

As outlined in Section 2.2.1, MC3T3 cells were cultured at a density of 6 x 104 cells/cm2 

in a humidified atmosphere (37°C, 5% CO2) for up to 15 days. When confluent, cells 

were initially supplemented with FGF-2 at increasing concentrations from 0 – 50 

ng/ml or 0.1% w/v BSA as negative control. For subsequent experiments, FGF-2 was 

added at 10 ng/ml with 0.1% w/v BSA as negative control. The medium was changed 

every 2-3 days.  

3.4.2 RNA analysis of MC3T3 cells 

RNA was isolated from MC3T3 cells at specific time points using a Qiagen RNeasy 

kit according to the manufacturer’s instructions and cDNA was prepared (Section 

2.4.1). For qPCR analysis, cDNA was used at 5 ng/ul, as detailed in Section 2.4.5. 

Results were normalised to the Atp5b housekeeping gene. Primers used are detailed 

in Appendix I Table 1.  
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3.4.3 Protein extraction from MC3T3 cells and western blotting 

At defined time points, protein was extracted from MC3T3 cells in RIPA buffer as 

detailed in Section 2.5.1. Protein samples were quantified (Section 2.5.1) and 

appropriate quantities were used for western blot analysis (Section 2.5.3). E11 protein 

expression was determined using a goat anti-mouse anti-E11 antibody at a dilution 

of 1:1000 and a HP-labelled rabbit anti-goat secondary antibody (1:3000).  Antibody 

labelling was visualised using the ECL detection kit. Uniform protein loading was 

confirmed by re-probing the membrane with mouse monoclonal HP-labelled anti-β 

actin antibody (1:70000). 

3.4.4. Immunofluorescence 

Immunofluorescence for localisation of E11 after treatment of MC3T3 with FGF-2 at 

10 ng/ml concentration or 0.1% w/v BSA as negative control was as described in 

Section 2.6. E11 protein expression was localised using a goat anti-mouse anti-E11 

antibody at a dilution of 1:900 and a donkey anti-goat AlexaFluor-conjugated 

secondary antibodies HP-labelled rabbit anti-sheep secondary antibody (1:250). The 

slides were subsequently stained with ProLong Gold antifade reagent with DAPI for 

nuclei staining, before imaging with microscope. 

3.4.5 Transfection of MC3T3 cells with E11 siRNA 

Functional studies using E11 siRNA transfection was carried out on MC3T3 cells as 

described in Section 2.8. Two control groups were used, one treated with scrambled 

siRNA while the mock group was treated with only the HiPerFect transfection agent. 

RNA was extracted and reverse transcribed (Sections 2.4.1 and 2.4.3). For qPCR 
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analysis, Section2.4.5. Western blotting on extracted protein was done as described in 

Section 2.5.3. Immunofluorescence for localisation of E11 after transfection was as 

described in Section 2.6. E11 protein expression was localised using a goat anti-mouse 

anti-E11 antibody at a dilution of 1:900 and donkey anti-goat AlexaFluor-conjugated 

secondary antibodies (1:250). 

3.4.6 Primary osteoblasts 

Primary osteoblasts were extracted from the calvaria of 3 days old WT mice as 

detailed in Section 2.2.2. Cells were cultured for 2 days at 37oC in cell culture media 

before treatment with FGF-2 at 10 ng/ml concentration or 0.1% w/v BSA as negative 

control in appropriate wells. RNA was extracted and reverse transcribed (Sections 

2.4.1 and 2.4.3 respectively). For qPCR analysis, cDNA was used at 5 ng/ul, as detailed 

in Section 2.4.5. RT-qPCR results were normalised to the Atp5b housekeeping gene. 

Primers used are detailed in Appendix I, Table 1. Proteins were extracted as described 

(Sections 2.5.1), and western blotting was done as described above in Section 3.4.3 

and β-actin served as loading control. 

3.4.7 Whole calvaria 

Whole calvariae were dissected from 3-day-old C57BL/6 wild-type mice as detailed 

in Section 2.2.3. Cavaria hemiSections were incubated in calvaria culture media for 2 

days after treatment with FGF-2 at 10 ng/ml concentration or 0.1% w/v BSA as 

negative control in appropriate wells. After 6, 24 and 48 h of FGF-2 stimulation, RNA 

was extracted and reverse transcribed as described in Section 2.4.2 and 2.4.3 

respectively). For qPCR analysis, cDNA was used at 5 ng/ul, as detailed in Section 
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2.4.5. Results were normalised to the Gapdh housekeeping gene. Primers used are 

detailed in Appendix I Table 1.  

3.4.8 Immunohistochemical staining of the murine tibias  

Tibias of 10-week old Fgf-2 KO and wild type mice (Section 2.10.1) were 

immunostained for E11 and sclerostin as described in Section 2.10.2. 

Immunohistochemical staining of 5 um-thick tibiae paraffin embedded decalcified 

sections was performed using antibodies for E11 (1:500), and sclerostin (1:500), and 

the Vectastain ABC kit, as outlined in Section 2.10.2 and Appendix 1 Table 1. 

Immunohistochemical labelling was visualised using DAB chromogen. Goat IgG 

concentrations at same concentrations were used instead of the primary antibodies as 

negative controls. The labels on the slides were masked by tape to allow blind 

assessment of the staining. For analysis of the percentage of positively stained E11 or 

sclerostin osteocytes, the Grid/Collection Stitching Plugin within Fiji was use to 

merge the several images of the Section afterwards positive staining and total 

osteocytes were counted (Schindelin et al., 2012). 

3.4.9 Measuring osteocyte cell volume and dendrite parameters in mouse tibiae  

Histological Sections of longitudinally cut mouse tibiae were stained with Phalloidin- 

Fluorescein Isothiocyanate to demonstrate F-actin (Section 2.12.4). 

Sections were imaged on a Zeis LSM 710 Laser Scanning Confocal Microscope with 

488nm laser excitation and detection settings from 493 to 634 nm. Z-stacks were 

produced with optimal Nyquist overlap settings using a 63x/1.4 na oil immersion 

lens. Voxel sizes were 0.1x0.1x1.00 um in x,y,z planes respectively. 
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Images were analysed using Bitplane Imaris software as previously published 

(Staines et al., 2017). This essentially involved importing the image stacks into 

Bitplane Imaris 9.2.0 software. Imaris Filament Tracer was used to create algorithms 

to render and measure canalicular processes; while surface rendering was used for 

osteocyte cell body measurements. Algorithm settings were set constant and applied 

to all images (see Appendix Algorithm 1.). Histological sections were blinded to the 

operator/analyst by masking with tape, later  divided into 2 unknown groups (Group 

1 and Group 2) to allow comparisons in the Imaris Vantage software module. Imaging 

and analysis with the Bitplane Imaris software was done by Mr Robert Fleming. 

Statistics were carried out in Minitab 17 software. 

3.5  Results 

3.5.1. Dose-response of FGF-2 on the expression of E11 gene and protein by 

MC3T3 osteoblast-like cells. 

To ascertain the optimum concentration of FGF-2 for use in future experiments, a 

dose-response study was conducted in MC3T3 osteoblast-like cells. Increasing 

concentrations of FGF-2 (1, 10, 25 and 50 ng/ml) were examined for their effects on 

E11 expression. After 4 h of incubation with 1, 10, 25 and 50 ng/ml of FGF-2, there was 

an upward trend of higher E11 gene expression  when compared to control cultures 

(no FGF-2 supplementation) (Fig. 3.1A).  The differences did not reach significance. 

There was also an upward trend in E11 gene expression with   stimulation by FGF-2 

for 24 h at all concentrations studied (Fig. 3.1B). Similarly, after 24 h, the FGF-2 treated 

cells synthesized more E11 protein and this was particularly notable in the 10, 25, and 

50 ng/ml treated cells. This increase in E11 protein expression was not apparent after 
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4 h of FGF-2 treatment (all concentrations tested) (Fig. 3.1C).  Since FGF-2 at 10 ng/ml 

promoted E11 gene, albeit not significantly, and protein expression, this 

concentration was chosen based on optimal induction and cost effectivenesss for 

subsequent studies. 

3.5.2  Effect of FGF-2 10 ng/ml over a short time-course on E11 expression and 

osteocyte/osteoblast gene markers in MC3T3 osteoblast-like cells.  

Cells were stimulated  with FGF-2 at 10 ng/ml for 4, 6, and 24 h. RT-qPCR showed 

that E11 gene expression  was significantly up-regulated after 4 (P<0.001) and 6h 

(P<0.001) exposure to FGF-2 but there was a lessened response after 24 h (P<0.05) 

when compared with untreated control cells (Fig. 3.2A). This confirms the gene 

expression data shown in Figure 3.1. Although in this experiment, statistical 

significance was reached whereas trends were only previously observed.  Further 

confirmation was observed at the protein level where western blotting showed that 

at 4, 6 and 24 h time points, E11 protein expression was increased in FGF-2 stimulated 

cells when compared to control cells (Fig. 3.2B).  

FGF-2 also induced the up-regulation of osteocyte markers Phex and Dmp1 (P<0.01; 

Fig. 3.2C & D) and down regulation of the osteoblast markers Col1a1, Bglap, Alpl, with 

Postn (P<0.01; Fig. 3.2E - H). The down regulation of Col1a1, Bglap and Alp and 

upregulation of E11, Phex and Dmp1 by FGF-2 after 24 h, strongly suggests that FGF-

2 promotes the differentiation of pre-osteoblast/osteoblast to the osteocyte 

phenotype. Sost Ct values were high with almost flat dissociation curve as MC3T3 

cells are not known to expresss Sost especially in early time points. 
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Figure 3.1 Temporal expression of E11 by MC3T3 cells cultured in increasing 

concentrations of FGF-2.  

The effects of FGF-2 (0 – 50 ng/ml) on E11 gene (A & B), and protein (C) expression 

after 4 and 24 h incubation was assessed  by RT-qPCR and western blotting, 

respectively. Data (A & B) are presented as mean ± S.E.M (n=3).  
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(Previous page)  Figure 3.2 Temporal expression of E11 and osteocyte/osteoblast 

gene markers by MC3T3 cells cultured in FGF-2 10 ng/ml over short time course.  

The effect of FGF-2 on (A) E11 gene and (B), E11 protein expression after 4, 6 and 24 

h stimulation. Note the effect on other osteocyte markers (C) Phex, and (D) Dmp1 gene 

expression; and osteoblast gene markers (E) Col1a1, (F) Bglap (G) Alpl, and (H) Postn 

gene expression after same time points.  Data are presented as mean ± S.E.M (n=3); 

*p<0.05; **p<0.01; ***p<0.001 compared to control cells. 
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3.5.3  Effect of FGF-2 over a long time-course on osteocyte gene markers in 

MC3T3 osteoblast-like cells. 

MC3T3 osteoblast-like cells were stimulated with FGF-2 at 10 ng/ml for 2, 5, 9, 12 and 

15 days to evaluate its long term effects on E11 and osteocyte gene markers. At all-

time points studied, E11 expression was not significantly increased by FGF-2 

stimulation (Fig. 3.3A).  Interestingly, western blotting showed that E11 protein 

synthesised by MC3T3 cells from day 9 onwards, was lower in FGF-2 stimulated cells 

when compared with time-matched controls (Fig. 3.3B). There was however a robust 

up-regulation of two late osteocyte marker genes Phex and Dmp1 (P<0.001) by day 15 

(Fig. 3.3C & D). Sost expression was not significantly altered at any time points 

studied by FGF-2 treatment (Fig. 3.3E).  
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Figure 3.3 Temporal expression of osteocyte gene markers by MC3T3 cells cultured 

in FGF-2 10 ng/ml over long time course.  

The effect of FGF-2 10 ng/ml on (A) E11 gene and (B), E11 protein expression after   2 

– 15 days stimulation. Note the effect on other osteocyte markers (C) Phex, (D) Dmp1, 

and (E) Sost gene expression after same time points. Data are presented as mean ± 

S.E.M (n=3); *p<0.05; **p<0.01; ***p<0.001 compared to control cells.  
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3.5.4  Effect of FGF-2 on the spatial expression of E11 in MC3T3 osteoblast-like 

cells 

The above data has shown that FGF-2 was able to induce E11 expression and other 

markers of the osteocyte phenotype. To extend these data, I investigated the spatial 

expression of E11 in MC3T3 osteoblast-like cells treated with FGF-2 at 10 ng/ml for 6, 

24, 48 and 72 h by phase contrast microscopy and E11 immunostaining. Phase contrast 

microscopy revealed that after 14 days in culture, the control cells were still 

ovoid/cuboidal shape (Fig. 3.4A), while the treated cells had the prominent elongated 

dendrites typical of osteocytes (Fig. 3.4B).  The immunofluorescence microscopy of 

the cells after 6 h FGF-2 treatment showed little alterations to E11 expression  or cell 

morphology (data not shown), whereas FGF-2 treatment for 24 - 72 h  resulted in a 

stark change in cell morphology with the appearance of many dendritic processes 

radiating from the cell membrane when compared to control cells (Figs. 3.4C-H & I-

N). Furthermore, the distribution of intra-cellular E11 expression was also altered by 

FGF-2 treatment. In the control cells, E11 expression  was more generally uniformly 

located within the cytoplasm with a more perinuclear location whereas in the FGF-2 

treated cells E11 was associated with the dendrite projections at the cell membrane 

(Figs. 3.4C-H & I-N). The control, non FGF-2 treated cells also trended towards a 

similar appearance with time in culture, but this accelerated with FGF-2 treatment. 

Together, these data are consistent with altered E11 expression and distribution (in 

response to FGF-2) driving the acquisition of the dendritic phenotype in 

differentiating osteoblasts.  
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Figure 3.4 Spatial expression of E11 in MC3T3 osteoblast-like cells cultured in   

FGF-2 

Phase contrast microscopy showing phenotypic change from cuboidal osteoblast 

shape in control (A); to a dendritic osteocyte phenotype in FGF-2 treated cells (B).  

Immunofluorescence microscopy showing E11 expression and distribution in control 

cells (C-H), and FGF-2 stimulated cells (I-N), for 24, 48 and 72 h time points. Note the 

blue arrows pointing at long dendrites, white arrows point to E11 accumulations at 

sites of dendritic projections. Images are representative of three separate experiments. 

Scale bar, A, B, C-E & I-K (vii-ix) = 200 um; F-H & L-N = 150 um). 
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3.5.5  Effect of 24 h FGF-2 treatment on the spatial distribution of F-actin in 

MC3T3 osteoblast-like cells  

Phalloidin staining was used to observe the phenotypic distribution of the 

microfilament F-actin in FGF-2 treated MC3T3 cells (Wulf et al., 1979). This is 

important, as intra-cellular F-actin organisation is associated with the formation of 

dendrite formation during the acquisition of the osteocyte phenotype. Phalloidin 

staining revealed that the control cells had a typical rounded morphology with fewer 

and shorter dendrites (Fig. 3.5A), while FGF-2 treated MC3T3 cells expressed more 

numerous, and longer dendrites, intertwining with one another (Fig. 3.5B).  

3.5.6. Cell Viability Assay and LDH Assay 

The Alamar Blue Cell Viability assay and the LDH assay were carried out according 

to manufacturer’s instruction (Section2.10). This was conducted to validate the 

biological life of the cells under study and to investigate if the treatments were having 

toxic effects on the cells during the study. The results for cell viability showed no 

differences between FGF-2 treated and control MC3T3 cell cultures (Fig. 3.6A); and 

the blue colour of the Alamar Blue dye were all reduced to red in both control and 

treated cultures, thus confirming the cells were viable. The LDH assay revealed that 

FGF-2 treated MC3T3 cells release les LDH than the control cultures, thereby 

indicating les cell death in these cultures (P<0.05, Fig. 3.6B).    
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Figure 3.5. Spatial distribution of F-actin in MC3T3 osteoblast-like cells cultured 

in FGF-2 

The effect of FGF-2 10 ng/ml  on MC3T3 osteoblast-like cell morphology after 

phalloidin staining for F-actin after 24 h in control (A and B), and treated cells (C and 

D). Note the white arrows pointing at the dendrites F-actin in the treated cells. Images 

are representative of three separate experiments.  Scale bar (A and C) = 200 um; (B 

and D) = 150 um. 
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Figure 3.6. Cell Viability and Lactate Dehydrogenase (LDH) profile of MC3T3 cells 

cultured in FGF-2 10 ng/ml for 24 h. 

(A) Alamar Blue cell viability assay showing no difference between the FGF-2 treated 

and control cultures. (B) LDH release from FGF-2 treated cultures was significantly 

lower than the control cultures. Data are presented as mean ± S.E.M (n=3); *p<0.05; ns 

= not significant.  
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3.5.7 Effect of E11siRNA transfection on FGF-2 stimulation of E11 expression and 

F-actin distribution by MC3T3 cells 

To investigate if the effects of FGF-2 on MC3T3 osteoblast-osteocyte differentiation is 

mediated by E11, the cells were transfected with E11siRNA and incubated for 24 h by 

FGF-2. E11 gene (77% knockdown vs. mock control, 70% knockdown vs. scrambled 

control; P<0.05; Fig. 3.7A) and protein (Fig. 3.7B) expression were silenced 

successfully by E11 siRNA transfection. After 24 h of FGF-2 treatment, FGF-2 

stimulated E11 gene expression in scrambled and mock treated groups but not in the 

E11 siRNA transfected cells (Fig. 3.7A).  Gene expression analysis of the other 

osteocytes makers showed the significant up-regulation of Phex (P<0.01; Fig. 3.7C) 

and Dmp1 (P<0.001; Fig. 3.7D), in the FGF-2 treated cells when compared to the 

control samples of E11siRNA, scrambled and mock groups. Immunofluorescence 

intensity of E11 expression in siRNA treated cells (Fig. 3.8A & B) was less than that 

observed in the scrambled (Fig. 3.8C & D) and mock (Fig. 3.8E & F) treated cells. 

Moreover, whilst FGF-2 promoted dendrite formation in all groups of cells, their 

number appeared les in those pre-treated with E11siRNA (Fig. 3.7A & B) when 

compared to the scrambled (Fig. 3.8 & D) and mock (Fig. 3.8E & F) treated cells. F-

actin distribution after 24 h FGF-2 stimulation showed similar trend with shorter 

dendrites seen in the E11siRNA pre-treated cells with retained osteoblast cuboidal 

shape (Fig. 3.8G & H), when compared to scrambled (Fig.3.8I & J), and mock (Fig.3.8K 

& L) that showed more spindle osteocyte like shape in the FGF-2 stimulated cells. 
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Figure 3.7 Temporal expression of E11, Phex and Dmp1 by FGF-2 stimulated  

MC3T3 cells after E11 siRNA transfection  

The effect of E11siRNA transfection on FGF-2 10 ng/ml  stimulation of (A) E11 gene 

and (B), E11 protein expression  after 24 h stimulation. Note the effect on other 

osteocyte markers (C) Phex, and (D) Dmp1 gene expression after same time point. 

Results are normalised to the Atp5b housekeeping gene. Data are presented as mean 

± S.E.M (n=3); *p<0.05; **p<0.01; ***p<0.001 compared to control cells; #p<0.05 of 

E11siRNA control cells compared of scrambled control cells.  
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Figure 3.8 Spatial expression of E11 and F-actin distribution by MC3T3 cells 

cultured in FGF-2 after E11siRNA transfection  

Immunofluorescence of E11 localisation (A-F) revealed loss of dendrite formation in 

the E11siRNA groups (A & B ) when compared to the scrambled (C & D) and mock 

(E & F). Phalloidin staining for F-actin (G-L) showing similar trend as seen E11siRNA 

groups (G & H), when compared to the scrambled (I & J) and mock (K & L). Note 

longer and prominent dendrites in FGF-2 treated scrambled and mock cultures (white 

arrow), and retained flattened shaped cell (red arrow) in E11siRNA phalloidin 

staining. Scale bar (A-F) = 150 um; (G-L) = 100 um. 
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3.5.8  The effect of FGF-2 on the expression of E11 gene and protein expression 

by primary calvarial osteoblasts 

Primary osteoblasts isolated from the calvaria of 3-day old wild type mice were used. 

An FGF-2 concentration-response experiment was first completed to optimise further 

studies with primary osteoblasts and therefore the temporal analysis of E11 gene 

expression in the presence of a range of FGF-2 concentrations was carried out as 

previously described in MC3T3 osteoblast-like cells (Fig 3.1). After 4 h treatment with 

FGF-2 at 1, 10, 25 and 50 ng/ml, there was a small but consistent trend of higher E11 

gene expression when compared to control cells (Fig. 3.9A). This up regulation of E11 

protein expression was more marked after 24 h FGF-2 treatment (Fig. 3.9B).  Analysis 

of E11 protein expression revealed that E11 expression was higher in control cells (no 

FGF-2 treatment) cultured for 24 h than in cells cultured for 4 h (Fig. 3.9C).  This 

suggests that prolonged culture length induced E11 expression. After 4 h, the FGF-2 

treated cells expressed more E11 protein and this was particularly notable in the 25, 

and 50 ng/ml treated cells (Fig. 3.9C).   

Similarly, after 24 h, the FGF-2 treated cells expressed more E11 protein and this was 

most noticeable in the 10, 25, and 50 ng/ml treated cells (Fig. 3.8C). A 10 ng/ml 

concentration of FGF-2 was chosen for future experiments to reflect optimum 

expression and cost effectiveness. 
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3.5.9 Effect of FGF-2 10 ng/ml over a short time-course on (1) E11 expression and (2) 

osteocyte/osteoblast gene markers in primary osteoblasts 

E11 expression was significantly up-regulated after 6 (P<0.05) and 24 h (P<0.001) 

exposure to FGF-2 when compared with untreated control cells (Fig. 3.10A). Western 

blotting also indicated that FGF-2 induced E11 protein expression and this was 

particularly evident after 24 h FGF-2 exposure (Fig. 3.10B). FGF-2 at 10 ng/ml also 

induced the up-regulation of osteocyte markers Phex (P<0.001, Fig. 3.10C) and Dmp1 

(P<0.01, Fig. 3.10D) whilst down regulating osteoblast markers, Col1a1, Bglap, Alpl, 

Postn (Fig. 3.10E - H). The down regulation of Col1a1, Alp, Postn and Bglap and 

upregulation of E11, Phex and Dmp1 by FGF-2 after 24 h, indicates that FGF-2 is 

inducing differentiation of primary preosteoblast/osteoblasts to the osteocyte 

phenotype.  
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Figure 3.9 Temporal expression of E11 by primary osteoblasts cultured in 

increasing concentrations of FGF-2.  

Temporal gene expression of E11 by primary osteoblasts cultured in increasing 

concentrations of FGF-2. The effects of FGF-2 (0 - 50 ng/ml) on E11 gene expression  

at (A) 4 h and (B) 24 h. (C) E11 protein expression  was also examined after FGF-2 

treatment for 4 and 24 h by western blotting. Data are presented as mean ± S.E.M 

(n=3). 
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(Previous page) Figure 3.10 Temporal expression of E11 and osteocyte/osteoblast 

gene markers by primary osteoblasts cultured in FGF-2 10 ng/ml.  

The effect of FGF-2 10 ng/ml on (A) E11 gene and (B), E11 protein expression after 4, 

6 and 24 h stimulation. Note the effect on other osteocyte markers (C) Phex, and (D) 

Dmp1 gene expression; and osteoblast gene markers (E) Col1a1, (F) Bglap (G) Alpl, and 

(H) Postn gene expression after same time points.  Data are presented as mean ± S.E.M 

(n=3); *p<0.05; **p<0.01; ***p<0.001 compared to control cells. 
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3.5.10  Effect of FGF-2 on the osteocyte phenotypic appearance of primary 

osteoblasts 

The previous data using immunofluorescence microscopy indicated that FGF-2 was 

able to increase E11 expression and promote greater dendritic cytoplasmic projects in 

MC3T3 cells.  In this present study, primary osteoblasts were similarly investigated 

to ases the cellular distribution of E11 during the osteocytogenesis.   The control cells 

showed a similar cuboidal shape at all stages of differentiation with little evidence of 

dendritic formation at the membrane surface (Fig. 3.11A-F).  After treatment with 

FGF-2, there was clear evidence for the formation of dendrites from the primary cells 

at all-time points (Fig. 3.11G-L).  

3.5.11  Effect of FGF-2 10 ng/ml E11 expression and osteocyte/osteoblast gene 

markers in cultured whole calvaria. 

To investigate if FGF-2 drives E11 expression in more physiological condition i.e. 

compared with cultured cells as done previously, an ex-vivo study was completed on 

whole calvaria. This model will replicate possible interactions between the ECM and 

both E11 and FGF-2, which was absent in both the cell line and the primary osteoblast 

models used previously.  Changes in gene expression in this model were limited.  

There was however a small but significant increase in E11 (P<0.05, Fig. 3.12A) and 

Dmp1 (P<0.001, Fig. 3.12B) expression by FGF-2 after at 6h but not at the other time 

points.  No changes in the expression of osteoblast marker genes (Phex (Fig. 3.12C), 

Alp (Fig. 3.12D), Bglap (Fig. 3.12E), and Postn (Fig. 3.12F)) by FGF-2 were noted at any 

of the time points studied.  
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Figure 3.11 Spatial expression of E11 in primary osteoblasts cultured in the 

presence of FGF-2. 

The effect of FGF-2 10 ng/ml on E11 expression and distribution in primary cells 

assessed by immunofluorescence microscopy of control cells (A); and cells treated by 

FGF-2 (B) at 24, 48 and 72 h time points. Note the arrows pointing at the dendrites. 

Images are representative of three separate experiments. Scale bar, A-C & G-I = 200 

um; D-F & J-L = 150 um). 
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Figure 3.12 Temporal expression of E11 and osteocyte/osteoblast gene markers in 

whole calvaria cultured in the presence of FGF-2 10 ng/ml.  

Temporal gene expression of whole calvaria cultured with FGF-2 10 ng/ml 6- 48 h. 

RT-qPCR assessed expression of (A) E11 (B) Dmp1 (C) Phex (D) Alp, (E) Bglap, and (F) 

Postn. Data are presented as mean ± S.E.M for n=3 observations; *p<0.05; ***p<0.001. 
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3.5.12. Investigating if deletion of Fgf-2 in vivo affect E11 and Sclerostin expression 

in osteocytes. 

Having shown the up-regulation of E11 expression  by FGF-2 in MC3T3 osteoblast-

like cell line, primary osteoblasts and whole calvaria, the next study was designed to 

investigate the relationship between FGF-2 and both E11 and sclerostin expression  in 

vivo. Immunohistochemistry was employed to examine whether bones from Fgf-2 KO 

mice exhibited altered E11 and sclerostin expression. Osteocytes of subchondral, 

trabecular and cortical bone from Fgf-2 KO stained positively for E11, and this 

osteocyte staining appeared larger and stronger when compared to the same in 

osteocytes from WT mice (Figs. 3.13, 3.14, and 3.15).  However, the quantification of 

the number of E11 positive cells in all three bone regions was similar in samples from 

both Fgf-2 KO and WT mice (Fig. 3.15E). Sclerostin osteocyte immunostaining was 

similar in cortical, trabecular and subchondral bone of Fgf-2 KO and WT mice as was 

the quantification of the number of sclerostin positive osteocytes in all three  bone 

regions (Figs. 3.16, 3.17, and 3.18). Hypertrophic chondrocytes of the articular 

cartilage stained positive to sclerostin immunostaining (Fig. 3.16A & B). IgG control 

Sections were negative (Fig. 3.19). 

3.5.13. Investigating if deletion of Fgf-2 in vivo affects osteocyte dimension in mice. 

Having observed larger osteocytes in Fgf-2 KO mice relative to those in WT mice 

(Figs. 3.14A & C), osteocyte phalloidin staining was performed in the cortical bone of 

Fgf-2 KO and WT mice (Fig. 3.20A & B) to confirm this. There was a significant 

increase in cell body volume (P<0.05, Fig. 3.20C), but no differences in cell sphericity 
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were observed (Fig. 3.20D). In addition, the total number of dendrites (Fig. 3.20E) and 

dendrite volume (Fig. 3.20F) were unchanged between Fgf-2 KO and WT mice. There 

was, however, a significant decrease in average dendrite volume in Fgf-2 KO mice 

compared with WT mice (P<0.01; Fig. 3.20G). 
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Figure 3.13 E11 immunostaining of tibial subchondral bone osteocytes 

from Fgf-2 KO and WT mice. 
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Sections of subchondral bone osteocytes (black arrow) in both Fgf-2 KO (A 

& C) and WT (B & F) showing E11 localisation to osteocytes and their 

dendritic processes., Quantification of E11 positive osteocytes  was similar 

in both WT and Fgf-2 KO subchondral bone (E). Data are presented as 

mean ± S.E.M for n=3 observations, NS= not statistically significant. Scale 

Bar (A & B) =150 um; (C & D) =100 um   
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Figure 3.14 E11 immunostaining of tibial trabecular bone osteocytes from Fgf-

2 KO and WT mice.  

Section of trabecular bone osteocytes (black arrow) in both Fgf-2 KO (A & C) and 

WT (B & F) showing E11 localisation to osteocytes and their dendritic processes., 

Quantification of E11 positive osteocytes  was similar in both WT and Fgf-2 KO 

trabecular bone (E). Note the larger osteocytes in the Fgf-2 KO (A & C). Data are 

presented as mean ± S.E.M for n=3 observations, NS= not statistically significant. 

Scale Bar (A & B) =150 um; (C & D) =100 um   
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Figure 3.15 E11 immunostaining of tibial cortical bone osteocytes of Fgf-2 KO and WT 

mice  

Section of cortical bone osteocytes (black arrow) in both Fgf-2 KO (A & B) and WT (C & 

D), showing E11 localisation to osteocytes and their dendritic processes., Quantification 

of E11 positive osteocytes  was similar in both WT and Fgf-2 KO cortical bone (E). Note 

the bone marrow, BM. Data are presented as mean ± S.E.M for n=3 observations, NS = 

not statistically significant. Scale bar (A & C) = 300 um; (B & D) =150 um. 
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Figure 3.16 Sclerostin immunostained Fgf-2 KO and WT mice tibial articular 

cartilage and subchondral bone. 

Section of subchondral bone osteocytes (black arrow) in both Fgf-2 KO (A & B) 

and WT (C & D), showing no difference in Sost immunostaining, as was also 

shown from quantification of sclerostin positive osteocytes (E). Note the positive 

staining of hypertrophic chondrocytes of the articular cartilage (red arrow). Data 

are presented as mean ± S.E.M for n=3 observations. NS= not statistically 

significant. Scale bar (A & C) = 300 um; (B & D) =150 um. 
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Figure 3.17 Sclerostin immunostained Fgf-2 KO and WT mice tibial trabecular 

bone osteocytes 

Section of trabecular bone osteocytes (black arrow) in both Fgf-2 KO (A & C) and 

WT (B & F) showing no difference in sclerostin immunostaining, as was also shown 

from quantification of sclerostin positive osteocytes (E). Data are presented as mean 

± S.E.M for n=3 observations, NS = not statistically significant. Scale Bar (A & B) 

=150 um; (C & D) =100 um   
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Figure 3.18 Sclerostin immunostained Fgf-2 KO and WT mice tibial cortical 

bone osteocytes 

Section of cortical bone osteocytes (black arrow) in both Fgf-2 KO (A & C) and WT 

(B & F) showing no difference in sclerostin immunostaining, as was also shown 

from quantification of sclerostin positive osteocytes (E). Note the bone marrow, 

BM. Data are presented as mean ± S.E.M for n=3 observations, NS = not 

statistically significant. Scale Bar (A & B) =150 um; (C & D) =100 um   
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Figure 3.19 IgG control sections of tibial trabecular bone osteocytes of Fgf-2 

KO and WT mice.  

Section of trabecular bone osteocytes (black arrow) in both Fgf-2 KO    (A & B) 

and WT (C & D) showing no positive staining in the absence of the primary 

antibodies.  This confirms the specificity to the sclerostin and E11 antibodies.  

Scale bar=300 um  
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Figure 3.20 Phalloidin stained Fgf-2 KO and WT mice tibial cortical bone 

osteocytes 

Section of cortical bone osteocytes in both Fgf-2 KO (A) with larger cell body 

volume than the WT (B) as was confirmed by quantification (C), but same cell 

spherical shape (D). While the total dendrite number and volume (E & F), were 

same, the average length of the WT was longer than the Fgf-2 KO (G). Note the 

dendrites (pink arrow) emerging from the osteocyte cell body. Data are 

presented as mean ± S.E.M for n=3 observations; *p<0.05, **p<0.01. Scale bar = 7 

um. 
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3.5 Discussion 

The transmembrane glycoprotein E11, has long been recognised to be an early driver 

of the osteoblast to osteocyte transition and the acquisition of the dendritic 

appearance (Zhang et al., 2006, Gupta et al., 2010).  Consistent with this, the data in 

this study, which used a number of osteoblast and organ culture models, showed that 

FGF-2 is able to increase E11 expression and that this is likely to lead to the observed 

increase in osteocyte dendrite formation.   

A previous brief report has shown that FGF-2 treatment of osteoblast-like cells was 

able to induce an increase in E11 expression  and the appearance of the osteocyte 

phenotype (Gupta et al., 2010, Miyagawa et al., 2014),  this present study, has  

confirmed these observations in both MC3T3 and primary osteoblasts. The significant 

up-regulation of E11, Phex and Dmp1 and down-regulation of Col1, Bglap, Alp and 

Postn in the FGF-2 treated cultures suggests that FGF-2 is inducing the differentiation 

of the osteoblast to the osteocyte phenotype. This was demonstrated further by the 

lack of difference in E11 expression after prolonged treatment with FGF-2, suggesting 

that the osteocyte had differentiated beyond this early gene marker threshold. This 

study has also extended these observations to show that E11 is an early osteocyte 

marker, is also regulated by FGF-2 at the protein level, just like the 

osteoblast/osteocyte gene markers (Paic et al., 2009, Gupta et al., 2010, Stern et al., 

2012). The similar stimulatory effect of FGF-2 on E11 expression in both cell types, 

especially the primary osteoblasts, suggests the possibility of a similar effect in vivo, 
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as down-regulation of E11 has been reported in Fgf-2 KO mice in an injured joint 

model study (Chong et al., 2013).  

The whole calvaria study was aimed at providing an ex vivo environment to extend 

the understanding on FGF-2-E11 interactions, having established a positive 

stimulatory effect on E11 expression by FGF-2 in MC3T3 osteoblast like cells and 

primary osteoblasts. This system replicates a near physiological environment, 

maintaining cell plurality and ECM interactions (Mohammad et al., 2008, Kyono et 

al., 2012), hence it is commonly used to investigate the regulatory mechanisms of bone 

formation (Mohammad et al., 2008, Dallas et al., 2013).  FGF-2 up-regulated E11 gene 

expression, as well as known osteocyte marker gene Dmp1, in the early time points. 

This stimulatory effect was abolished in the later time points. This loss in stimulation 

may be due to the differentiated state of the cells after prolonged culture. It is possible 

that following attainment of the osteocyte phenotype, these cells do not respond to 

further FGF-2 stimulation as the requirement for E11 to promote dendrite formation 

is past.  Other explanations may also exist and include the degradation rate of FGF-2 

where it possesses a half-life of 7.6 h in vivo (Beenken and Mohammadi, 2009). It is 

also possible that as FGF-2 saturates the ECM and its pro-differentiating effects were 

diminished as different cell types in the calvaria such as mesenchymal cells and  

fibroblasts responded to it stimulation. Worthy of note is that the concentration of 10 

ng/ml may be too low to maintain physiological adequacy as 1-10 ng/ul has been 

reported to induce bone formation and maturation in mice study (Nakamura et al., 

2005). The up-regulation of early osteocyte genes in the whole calvaria model here 
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corroborates with the data from the cell line and primary osteoblasts, strongly 

supporting a role for FGF-2 in the stimulation of E11 expression in normal 

physiological conditions.     

Fluorescence microscopy also disclosed altered E11 expression and localisation 

within the differentiating osteoblasts.  E11 was found to be concentrated at the base 

of the dendritic spikes of the osteocytes after 24-72 h of FGF-2 treatment and it is likely 

that this redistribution of E11 within the cell is necessary for the transformation of the 

osteoblast from a cuboidal shape to the osteocytic phenotype characterised by a 

stellate-like cell with long dendritic processes (Zhang et al., 2006). The presence of 

more E11 in the cytoplasm than the plasma membrane projections of control cells 

suggests that FGF-2 not only stimulates up-regulation of E11, but also facilitates the 

translocation of the E11 towards the cell membrane. This ability of FGF-2 to alter 

subcellular protein distribution is supported by a previous finding in mesenchymal 

stem cells (MSCs), in relation to the expression  of Twist and Spry4 proteins from peri-

nuclear to nucleus as regards Twist,  but Spry4 was translocated to the cytoplasmic 

surface of the plasma membrane (Lai et al., 2011). While fluorescence microscopy 

revealed increase in length and number of dendrites, this was not readily appreciated 

by phase contrast microscopy, a feature that may be associated with higher cell 

density and low colour resolution. Further evaluation with quantification tools like 

Imaris software should be done to ascertain if this increased dendricity in the FGF-2 

treated cells is of a significant size compared to control cultures.  
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The intracellular signalling mechanisms by which FGF-2 promotes E11 cytoplasmic 

redistribution and dendrite formation is likely to involve interactions with the cell 

cytoskeleton. Cytoskeletal actin reorganisation is associated with aiding cell 

movement and serves as a sensory cell membrane projection (Lamouille et al., 2014). 

The use of phalloidin staining to detect F-actin, confirmed that this microfilament, is 

an abundant member of the osteoblast cytoskeleton and is involved in FGF-2 

mediated cell shape changes.  Further studies are warranted, however to investigate 

if the distribution of other cytoskeletal proteins such as microtubules and 

intermediate filaments are also modified by FGF-2 treatment (Fletcher and Mullins, 

2010). The F-actin filaments concentrated at the dendritic spikes may serve as a 

sensory function. This view is supported by published work where the dendrites 

served as mechanoreceptors in osteocytes during a loading experiment (Zhang et al., 

2006). Some actin-rich cell projections reported include filopodia, lamelliopodia and 

invadopodia (Ridley, 2011, McNiven, 2013).  The observed E11 immunofluorescence 

localisation at osteocyte dendritic spikes has been reported previously in MLO-Y4 

osteocyte-like cells and primary osteocytes isolated from long bones (Stern et al., 

2012).  

Here the utilisation of E11 siRNA to firstly successfully knock down E11 expression 

in MC3T3 cells, and secondly to examine the effects of FGF-2 on osteoblast to 

osteocyte transition in the absence of E11. The resultant data revealed that the E11 

siRNA cells had fewer and shorter dendrites after treatment with FGF-2. These data 

when combined with the immunofluoresence and phalloidin data support the 
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growing model of evidence that E11 is very important in the acquisition of the 

dendritic morphology of osteocytes though actin, thus very suggestive that E11 plays 

a crucial role in the early events of osteocytogenesis (Zhang et al., 2006). A notable 

finding with the E11 siRNA knockdown was the ability of FGF-2 to still upregulate 

Phex and Dmp1 expression. This suggests that the effects of FGF-2 on osteoblasts are 

not all mediated via E11 expression. 

The in vitro studies herein have shown FGF-2 promotes E11 expression in osteoblast 

like-cell line (MC3T3), murine primary osteoblasts and calvaria.  It was therefore quite 

surprising to observe that E11 and sclerostin protein expression by osteocytes was 

similar in Sections of bone (cortical, trabecular and subchondral) from Fgf-2 deficient 

and WT mice. This observation differs from published data that reported the down-

regulation of E11 in these Fgf-2 KO mice chondrocytes as assessed by mRNA 

quantification (Chong et al., 2013). This difference in E11 expression may be due to 

different tissue types or the effect of surgery (DMM) stress in the earlier report while 

the tissue used in this study were from out on naïve mice.  Additionally, the age of 

the mice studied may have had a bearing on the E11 expression data. Young mice ( 6 

weeks-old) were used in this study, whereas a study with adult mice revealed skeletal 

abnormalities in the bone of Fgf-2 deficient mice including abnormal osteoblast 

differentiation and bone volume loss associated with decreased bone formation and 

mineralization (Montero et al., 2000, Fei et al., 2011). This suggests that the loss of 

FGF-2 signalling was not compensated for in older mice by other members of the FGF 

family of polypeptides, as redundancy between them has been previously reported 
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(Kan et al., 1999, Behr et al., 2010). In contrast, another study has shown no obvious 

skeletal developmental abnormality in Fgf-2 KO adult mice, a result attributed to 

effect of redundancy in the FGF family (Ortega et al., 1998, Su et al., 2014).  

The similar E11 and sclerostin protein expression by osteocytes from Fgf-2 deficient 

and WT mice maybe a consequence of the significantly increased cell body volume 

observed in Fgf-2 KO osteocytes as revealed by phalloidin staining. Indeed FGF-2 has 

been reported to decrease chondrocyte hypertrophy in a murine metatarsal organ 

culture model and as such, may play a similar role in the formation of the osteocyte 

(Mancilla et al., 1998). Also the phalloidin staining revealed a significant decrease in 

average dendrite length in Fgf-2 KO mice compared to WT mice; a phenotype that 

has been previously reported in bone specific E11 conditional knockout mice (Staines 

et al., 2017). This therefore suggests that lack of FGF-2 in vivo results in dysregulated 

osteocytogenesis.   

In conclusion, in this Chapter, has shown that FGF-2 promotes E11 expression and 

redistribution within the differentiating osteoblast (Fig. 3.21), but further studies are 

required to show the signalling mechanism underlying this FGF-2 induced increased 

E11 expression.  
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Fig. 3.21 Schematic of Chapter 3 results 

In this chapter, I have revealed that FGF-2 increases E11 expression and this 

influences the F-actin cytoskeleton to promote osteocyte dendrite formation.   
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4.1. Introduction 

In Chapter 3 it was revealed that FGF-2 stimulates E11 mRNA expression in MC3T3 

osteoblast-like cells, primary osteoblasts and whole calvaria. This increased E11 

expression was associated with increased expression of osteocyte marker genes (Phex 

and Dmp1), downregulation of osteoblast marker genes (Col1a1, Bglap and Alpl), 

promotion of E11 protein synthesis and the acquisition of the osteocytic dendritic 

morphology. To better understand the mechanistic role of FGF-2 in mediating 

osteocytogenesis, it is necessary to understand the signalling events that are up- and 

down-stream of raised E11 expression in response to FGF-2. 

The FGF-2 signalling cascade is activated after the ligand FGF-2 binds to the 

appropriate FGF receptor (FGFR), a Receptor Tyrosine Kinase (RTK), for which there 

are four well documented different types (FGFR 1-4). After FGF induced dimerisation 

of the FGFR, upstream molecules such as the adaptor proteins phospholipase C-ɣ 

(PLC-ɣ), and FGF receptor substrate 2 (FRS-2), are phosphorylated (see Fig. 1.7) 

(Turner and Grose, 2010). The PLC-ɣ downstream cascade involves hydrolysis of 

phosphatidylinositol-4,5-diphosphate to inositol-1,4,5-triphophate and 

diacylglycerol; and subsequent activation of protein kinase C (PKC) by 

diacylyglycerol (Bottcher and Niehrs, 2005). FGF-2 activation of PKC is involved in 

the upregulation of N-cadherin expression, differentiation, early apoptosis and 

sodium-dependent phosphate transport in human and murine osteoblasts (Suzuki et 

al., 2000, Debiais et al., 2001, Marie et al., 2002).   
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FRS-2 phosphorylation is central to a series of signalling complexes that involve Shp2, 

Grb2, GAB1, Ras (Jackson et al., 2006), which together promote various downstream 

signalling pathways including mitogen activated protein kinase (MAPK), 

signal transducer and activator of transcription (STAT), phosphatidylinositol 3-

kinase/Protein Kinase B (PI3K/Akt), and canonical WNT (Kevin and Stuart, 1997, Yao 

et al., 2015). The Ras/MAPK is the major signalling pathway activated upon FGFR 

dimerisation (Thisse and Thisse, 2005). There is evidence that while its effects can be 

dose dependent, it can also be stage dependent following activation of a specific 

receptor, even though promiscuity has been reported amongst the FGFRs in the 

mature skeleton (Jackson et al., 2006, Soltanoff et al., 2009). 

During the FGF signalling cascade, MAPK family members phosphorylate nuclear 

transcription factors such as E26 transformation-specific (Ets), activator protein 1 (AP-

1), and Activating transcription factor/cAMP response element-binding proteins for 

appropriate gene regulation (Dailey et al., 2005, Thisse and Thisse, 2005, Marie, 2012). 

The members of the MAPK family include ERK1/2, p38 MAPK and JNK (Matsuguchi 

et al., 2009). There is a fourth member of the family referred to as ERK5 (Chang and 

Karin, 2001).  The activation of this MAPK family of molecules is associated with cell 

proliferation, cell survival and protection from apoptosis, differentiation and cell 

cycle arrest (Kevin and Stuart, 1997, Matsuguchi et al., 2009).  

Whilst the role of these downstream signalling pathways in the proliferation and 

differentiation of some cells have been documented, their role in mediating FGF-2 
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driven osteocytogenesis though increased E11 expression  is largely unknown. 

Similarly, how E11 modifies cytoskeletal re-organisation is not clear. Evidence from 

other cell types suggests that E11 associates with the ezrin, radixin and meosin (ERM) 

family of proteins to induce cytoskeletal re-organisation via activation of the small 

GTPase RhoA (Martín-Villar et al., 2006). However whether FGF-2 mediates this 

process is unclear. Therefore, the aim of this Chapter was to decipher the signalling 

molecules and the nature of their actions associated with FGF-2 mediated 

osteocytogenesis.  

4.2 Hypothesis 

FGF-2 regulates E11 expression principally though MAPKs signalling pathways and 

influences cytoskeletal re-organisation though ERM. 

4.3 Aims 

I Decipher the intracellular signalling molecules activated in MC3T3 osteoblast-

like cells by FGF-2 treatment. 

II Determine the importance of these signalling molecules for the promotion of 

E11 expression after FGF-2 stimulation of MC3T3 

III Examine the role of ERM and the small GTPase RhoA in FGF-2 mediated 

osteocytogenesis. 



Chapter 4: Understanding the signalling mechanisms underpinning FGF-2 

regulation of E11 expression 

121 
 

4.4 Materials and Methods 

4.4.1 MC3T3 osteoblast-like cells 

As outlined in Section 2.2.1, MC3T3 cells were cultured at a density of 6 x 104 cells/cm2 

in a humidified atmosphere (37°C, 5% CO2) for up to 15 days. When confluent, cells 

were supplemented with FGF-2 at a concentration of 10 ng/ml, or 0.1% BSA as 

negative control. The culture medium was changed every 2-3 days.  

4.4.2 Signalling inhibitors 

MC3T3 cells were incubated for with appropriate concentrations (specific details in 

results) of the MEK inhibitors, PD98059 (Millipore, Hertfordshire, UK) and U0126 

(InvivoGen, Toulouse, France); PI3K inhibitor, LY294002 (InvivoGen, Toulouse, 

France); p38 MAPK inhibitor, SB203580 (Cell Guidance System, UK); and FGFR1/2/3 

inhibitor, AZD4547 (Stratech Scientific Ltd, Suffolk, UK). These inhibitors have been 

reported to be selective for these molecules (Hotokezaka et al., 2002, Macrae et al., 

2007, Choi et al., 2008, Shimada et al., 2016). Control cultures were incubated with the 

inhibitor vehicle (0.1% DMSO) only. After a pre-incubation with the inhibitors for 1 h 

except AZD4547 which was 3 h, the cells were subsequently treated with FGF-2 at 10 

ng/ml concentration, or 0.1% BSA. These experiments were carried out in triplicates 

and three independent experiments unless otherwise stated.  
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4.4.3 RNA analysis of MC3T3 cells 

RNA was isolated from MC3T3 cells at specific time points using a Qiagen RNeasy 

kit according to the manufacturer’s instructions and cDNA was prepared (Section 

2.4.1). For qPCR analysis, cDNA was used at 5 ng/ul, as detailed in Section 2.4.5. 

Results were normalised to the Atp5b housekeeping gene and the relative gene 

expression  level was calculated using the ΔΔCt method (Livak and Schmittgen, 

2001). Primers used are detailed in Appendix I, Table 1. The housekeeping gene 

Atp5b was stable  

4.4.4 Protein extraction from MC3T3 cells and western blotting 

At defined time points, protein was extracted from MC3T3 cells in RIPA buffer as 

detailed in Section 2.5.1. Protein samples were quantified (Section 2.5.1) and 

subsequently were used for western blot analysis (Section 2.5.3). Protein expression 

was determined using appropriate primary and HP-linked secondary antibodies 

(Appendix, Tables 2 & 3). Antibody labelling was visualised using ECL detection. 

Equal protein loading was confirmed by probing the membrane with mouse 

monoclonal HP-labelled anti-β actin antibody (1:70000). Densitometry analysis of 

protein was performed using Image J (https://imagej.nih.gov/ij/) (Baldari et al., 2015). 

4.4.5  RhoA activity assay  

MC3T3 cell monolayers were scraped in a G-LISA lysis buffer supplied with the 

GLISA assay kit (Cytoskeleton, Denver, USA), after 4, 6, 24 and 48 h culture with FGF-
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2 (Section 2.3). Lysates were immunoblotted for E11 (Section 2.5) to confirm FGF-2 

stimulation of E11. Subsequently, using a G-LISA assay which precisely identifies 

active GTP-bound RhoA, the quantification of RhoA activation was carried out by 

luminometry and expressed in relative light units (RLU) as per the manufacturer’s 

instructions (Staines et al., 2016).   

4.5. Results 

4.5.1  Evaluation of FGFR expression by MC3T3 cells following FGF-2 

stimulation.  

To undertake receptor profiling in MC3T3 cells following FGF-2 stimulation, mRNA 

from treated and control cultures were analysed by RT-qPCR at 0.25, 4 and 24 h after 

FGF-2 stimulation. The results revealed no significant change in Fgfr1 expression at 

all-time points studied (Fig. 4.1A). However, the expression of Fgfr2 and Fgfr3 were 

both similarly affected by FGF-2 treatment, with a decrease in their expression noted 

after 4 and 24 h stimulation (Fig. 4.1B &C). Fgfr4 was not found to be expressed by 

MC3T3 cells using several primer pairs from the published literature and primer 

banks. The expression  levels of Fgfr1 were however 12-fold higher over a 24 h time 

period, while the expression  levels of Fgfr2 and Fgfr3 presented a significant decrease 

especially in the treated cultures over same time period. Therefore, one can speculate 

on a more prominent involvement of FGFR1 in mediating the FGF-2 mediated 

transition from osteoblast to osteocyte.  
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Figure 4.1 Temporal Fgfr gene expression of MC3T3 cells cultured with FGF-2 for 

15 min, 4 h and 24 h.  

RT-qPCR assessed expression of (A) Fgfr1 (B) Fgfr2 (C) Fgfr3 after FGF-2 stimulation. 

After several attempts with different Fgfr4 primer sequences obtained from primer 

banks and published papers no amplified product was obtained suggesting that 

MC3T3 cells do not express Fgfr4. Data are presented as mean ± S.E.M for n=3 

observations; *p<0.05; **p<0.01. 
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4.5.2.  Identification of the downstream intracellular signalling pathways driving 

FGF-2 stimulation of E11 expression in MC3T3 osteoblast-like cell 

FGF-2 stimulation resulted in increased phosphorylated ERK1/2 (ERK1/2), Akt and 

p38 MAPK when compared to BSA treated control cells (Fig. 4.2A). Densitometry 

quantification revealed a significant increase in phosphorylated ERK1/2 (P<0.001, Fig. 

4.2B); p38 MAPK (P<0.05, Fig. 4.2C); and Akt (P<0.01. Fig 4.2D) in FGF-2 treated 

samples compared to BSA controls. No significant increase in JNK activity was seen 

in samples treated with FGF-2 (Fig. 4.2A & E).  

4.5.3.  Temporal effects of FGF-2 on ERK1/2 activation in MC3T3 cells  

The duration and intensity of ERK1/2 signalling can be used to evaluate if a growth 

factor is driving cellular proliferation or differentiation (Murphy et al., 2003, Chen et 

al., 2005, Pellegrino and Stork, 2006). In this experiment, ERK1/2 signalling was 

examined after treating cells with FGF-2 for 5 min, 15 min, 30 min , 1 h, 4 h, 8h, 24 h, 

and 48 h. Cells treated with 1% BSA for the same duration served as a negative 

control. Western blotting showed clear and sustained activation of phosphorylated 

ERK1/2 in treated cells at all-time points when compared with the control cultures 

(Fig. 4.3). 
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Figure 4.2 Investigating the downstream signalling pathways involved in FGF-2 

stimulation of E11 expression in MC3T3 cells. 

Western blotting analysis of MC3T3 cells for phosphorylated and total ERK1/2, Akt, 

p38 MAPK, and JNK (A). Densitometry analysis of Western blotting revealed 

significant upregulation of (B) activated ERK1/2, (C) Akt, and (D) p38 MAPK in 

MC3T3 cells treated with FGF-2 when compared to control cells. There was no 

significant increase in (E) JNK expression. Samples were normalised to β-actin for 

loading control. Data are presented as mean ± S.E.M for n=3. *p<0.05; **p<0.01; 

***p<0.001. 
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Figure 4.3 ERK1/2 signalling in MC3T3 cells stimulated  with FGF-2 for variable 

amounts of time  

Western blotting analysis of MC3T3 cells for phosphorylated and total ERK1/2, in 

MC3T3 cells treated with FGF-2 when compared to control cells. Note the increase in 

phosphorylated ERK1/2 in the treated cells at all-time points studied. Total ERK1/2 

and β-actin were similar at all-time points and treatments suggesting consistent 

loading of all samples.  
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4.5.4.  Investigating the effect of ERK1/2 inhibition on the promotion of E11 

protein expression by FGF-2 in MC3T3 cells  

From the previous study (Section 4.5.1), ERK1/2 was identified as the signalling 

molecule that was most highly activated by FGF-2 suggesting that its activation may 

be central to FGF-2’s ability to stimulate E11 expression. Therefore, the effect of 

inhibiting ERK1/2 phosphorylation on E11 expression  was carried out using PD98059 

a highly selective inhibitor of MEK, which is an upstream activating kinase of ERK1/2 

(Kevin and Stuart, 1997). Consistent with previous data (Fig 4.2), FGF-2 stimulation 

for 15 min promoted ERK1/2 activation (P<0.001, Fig. 4.4A & B), and subsequently 

increased E11 mRNA/protein expression after both 4 and 24 hours (P<0.001, Fig. 4.4C-

E). However, western blotting also revealed that 1 h pre-incubation with the inhibitor 

PD98059 (10 uM) a concentration chosen from previous studies (Macrae et al., 2007), 

it did not reduce ERK1/2 activation in the presence of FGF-2 and the stimulation of 

E11 mRNA/protein expression  by FGF-2 was not consistently reduced by PD98059 

treatment (Fig. 4.4A-E). This suggests that the effect of the inhibitor may be time 

dependent as the inhibition of E11 mRNA expression seen at 4 h were abolished after 

24 h period. 
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Fig. 4.4. Effect of PD98059 (10 uM) inhibition on ERK1/2 signalling and E11 gene 

expression  on MC3T3 cells stimulated with FGF-2.   

Western blots result for (A), ERK1/2 expression after 15 min of FGF-2 stimulation; and 

(B), densitometry analysis showing the significant upregulation of ERK1/2. RT-qPCR 

analysis of E11 expression from cells stimulated with FGF-2 for (C) 4 h, and (D) 24 h 

in the presence or absence of the inhibitor PD98059. (E), western blots for E11 protein 

expression. Samples were normalised to Atp5b for RT-qPCR. β-actin was used for 

western blotting loading control. Data are represented as mean ± S.E.M for n=3. 

**p<0.01; ***p<0.001; ns = not significant.  
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In light of this result, an increased concentration of PD98059 (25 uM) was tried in an 

attempt to confirm the importance of ERK1/2 activation to mediate FGF-2’s ability to 

enhance E11 expression. However, the incubation for 1 h with PD98059 (25 uM) did 

not reduce FGF-2’s ability to enhance ERK1/2 activation and E11 protein expression                     

(Figs. 4.5A -C).   

4.5.5  Examining the effects of an alternative MEK inhibitor (U0126) on E11 

expression  in MC3T3 cells 

From the previous studies, the MEK inhibitor PD98509 did not significantly reduce 

ERK1/2 phosphorylation and therefore U0126 another commonly used MEK inhibitor 

was used in further studies (Hotokezaka et al., 2002, Macrae et al., 2007). Increasing 

concentrations of U0126 were pre-incubated with MC3T3 cells for 1 h, after which the 

cells were treated with FGF-2 or BSA for 0.25, 4 and 24 h. Consistent with previous 

data (Figs 4.4A & 4.5A), FGF-2 stimulated a significant increase in ERK1/2 

phosphorylation after 15 min (P<0.001, Figs. 4.6A & B), and E11 gene and protein 

expression  after 4 h (P<0.01, Figs. 4.6C & E) and 24 h (P<0.01, Fig. 4.6D & E) treatment. 

U0126 at 10 uM however did not blunt ERK1/2 activation (Figs. 4.6A & B) or alter E11 

expression (Figs 4.6C-E) and therefore further studies using a higher concentration of 

U0126 (25 uM) were warranted.  This was the highest concentration tested as off-

target effects and toxicity have been reported in studies employing higher 

concentrations of U0126 (Dokladda et al., 2005, Wauson et al., 2013). 
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Figure 4.5 Effect of PD98059 (25 uM) on FGF-2 stimulation of ERK1/2 activation and 

E11 gene and protein expression in MC3T3 cells. 

Western blots result for (A), ERK1/2 expression; and (B), densitometry analysis of gel 

showing the stimulation of ERK1/2 phosphorylation in the presence or absence of 

PD98059. (C), Western blot analysis of E11 protein expression. Samples were 

normalised to β-actin in western blots for loading control. Data are represented as 

mean ± S.E.M for n=3. **p<0.01; **p<0.001; ns = not significant.  
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Figure 4.6 Effect of U0126 (10 uM) on FGF-2 stimulation of ERK1/2 phosphorylation 

and E11 gene expression and protein expression in MC3T3 cells. 

Western blots result for (A), ERK1/2 expression ; and (B), densitometry analysis 

showing the significant upregulation of ERK1/2 phosphorylation by FGF-2 in the 

presence or absence of U0126 RT-qPCR and Western analysis of E11 expression  by 

cells stimulated with FGF-2 for (C,E) 4 h, and (D,E) 24 h in the presence or absence of 

the inhibitor. Samples were normalised to Atp5b in RT-qPCR, while in western blots, 

β-actin was used for loading control.   Data are represented as mean ± S.E.M for n=3. 

*p<0.05;**p<0.01; ***p<0.001; ns = not significant.  
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At this higher inhibitor concentration, U0126 did partially blunt FGF-2s ability to 

phosphorylate ERK1/2 (P<0.001) but despite this the resultant ERK1/2 activation 

remained significantly higher than control cells (P<0.001, Figs. 4.7A & B).  The 

stimulation of E11 gene and protein expression by FGF-2 was unaffected by 25 um 

U0126 (Figs 4.7C-E). 

4.5.6  Investigating the effects of U0126 (25 uM) ERK1/2 inhibitor on p38 MAPK 

and Akt signalling 

Due to the sustained promotion of E11 expression even when ERK1/2 

phosphorylation was slightly inhibited (Figs 4.7A & B) by the ERK1/2 inhibitor U0126 

(25 um), it is possible that other compensatory signalling pathways are activated to 

overcome this reduction in ERK1/2 activation.  As reported earlier, FGF-2 also 

promoted p38 MAPK and Akt phosphorylation in MC3T3 cells (Section4.5.2) and 

therefore it was of interest to note if the addition of U0126 could alter FGF-2 effect on 

these signalling molecules. 

 FGF-2 stimulated p38 MAPK phosphorylation which is in agreement with previous 

results (Fig. 4.2D) but this increased phosphorylation was not influenced by the pre-

treatment with U0126 (Figs 4.8A & B).  FGF-2 also increased Akt phosphorylation 

which is in agreement with previous experiments (Fig.4.2C), however unlike p38 

MAPK the addition of U0126 resulted in an increase in Akt activation by FGF-2 (Fig. 

4.8 C & D)  
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Figure 4.7 Effect of U0126 (25 uM) on FGF-2 stimulation of ERK1/2 phosphorylation 

and E11 gene and protein expression  in MC3T3 cells. 

Western blots result for (A), active ERK1/2; and (B), densitometry analysis showing 

the significant upregulation of ERK1/2 phosphorylation by FGF-2 in the presence or 

absence of U0126.   RT-qPCR and Western blot analysis of E11 expression by cells 

stimulated with FGF-2 for 4 h, and 24 h (C - E) in the presence or absence of the 

inhibitor. Samples were normalised to Atp5b in RT-qPCR, while in western blots, β-

actin was used for loading control. Data are represented as mean ± S.E.M for n=3. 

**p<0.01; ***p<0.001; ns = not significant.  
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Figure 4.8 Effect of U0126 (25 uM) on p38 MAPK and Akt phosphorylation after 

FGF-2 stimulation in MC3T3 

Western blot showing p38 MAPK phosphorylation in the presence and absence of 

FGF-2 and U0126 (A), and densitometry analysis showing its significant increase in 

the FGF-2 treated cultures in the presence of inhibitor U0126 (B). Western blot 

showing FGF-2 driven increased P-Akt expression in the presence of the U0126 

inhibitor (C), which was significantly upregulated as assessed by densitometry 

analysis (D). Samples were normalised to β-actin for loading control. Data are 

represented as mean ± S.E.M for n=3. *p<0.05; ***p<0.001; ns = not significant. 
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4.5.7  Investigating the combined effects of U0126 (25 uM) ERK1/2 inhibitor and 

LY294002 Akt inhibitor on E11 expression  

As a result of the above study suggesting a possible Akt signalling compensation 

mechanism following ERK1/2 inhibition the next approach was to pre-treat cells with 

both LY294002 (10 uM) and U0126 (25 uM) to potentially inhibit Akt and ERK1/2 

phosphorylation, respectively.  The effects on ERK1/2 and Akt phosphorylation and 

E11 expression would then be determined.  Prior to this, however, a range of 

LY294002 concentrations at 1 h incubation were tested to determine the optimum 

inhibitor concentration for these proposed experiments. All LY294002 concentrations 

tested (10 - 100 uM) resulted in the complete inhibition of Akt activation (Fig. 4.9). 

From this result, 10 uM was chosen as the optimum concentration, as it was the lowest 

inhibitor concentration to get maximum inhibition of Akt phosphorylation and 

thereby reducing the potential toxic off target effects on the cells. Thereafter the cells 

were subjected to a 1 h pre-incubation with the inhibitors, followed by treatment with 

FGF-2 (or 0.1% BSA for control cultures) for 15 min, 4 and 24 h.  

After 15 min of FGF-2 stimulation, phosphorylated ERK1/2 levels were significantly 

increased from control levels but were not influenced by the presence of both U0126 

and LY294002 (Figs. 4.10A, B). FGF-2 caused a small but non-significant increase in 

Akt phosphorylation and whilst the addition of U0126 and LY294002 caused a 

reduction (non-significant) in basal Akt activation levels, the effect of both inhibitors 

together resulted in increased Akt activation in response to FGF-2 (P<0.001).  This 
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response was also higher than the equivalent Akt activation levels seen with FGF-2 

in the absence of both inhibitors (P<0.05; Figs. 4.10A& C).   E11 expression in response 

to FGF-2 at the gene and protein level was relatively unaffected by the addition of 

both U0126 and LY294002 (Fig. 4.10D-F).  

 

 

 

 

 

 

Figure 4.9 Effect of various concentrations of the inhibitor LY294002 on 

phosphorylated Akt expression.  

Western blotting for p-Akt and total Akt in MC3T3 cells treated with increasing 

concentrations of the Akt inhibitor LY294002 for 15 min. Note that all concentrations 

used were effective in inhibiting Akt activation. Samples were normalised to β-actin 

for loading control.  
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(Previous page) Figure 4.10 Effect of both U0126 and LY294002 on FGF-2 induced 

phosphorylation of ERK1/2, Akt, and E11 gene and protein expression in MC3T3 

cells.  

FGF-2 stimulated both ERK1/2 (A & B) and Akt (A & C) phosphorylation.  ERK1/2 

activation by FGF-2 was not influenced by the presence of both U0126 and LY294002 

(B) whereas Akt activation was increased when both U0126 and LY294002 were 

present (C).  Gene (D & E) and protein (F) expression of E11 was not influenced by 

the presence of both U0126 and LY294002.  Samples were normalised to β-actin for 

loading control. Data are represented as mean ± S.E.M for n=3. *p<0.05; ***p<0.001; ns 

= not significant.  
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4.5.8 Examination of the possible cross-talk between ERK1/2 and Akt activation 

during FGF-2 stimulated E11 expression and MC3T3 differentiation  

As the stimulation of E11 expression by FGF-2 was maintained despite with the 

presence of both U0126 (25 uM) and LY294004 (10 uM) (Figs. 4.10D, E & F); the 

singular effect of LY294002 (10 uM) was investigated for the existence of possible 

cross-talk between phosphorylated ERK1/2 and Akt molecules after FGF-2 

stimulation. This was important as earlier results (see Figs. 4.8C & D) revealed that 

phosphorylated Akt was significantly upregulated in the presence of U0126 (25 uM). 

After a 1 h pre-incubation in LY294002 (10 uM), the cells were stimulated with FGF-2 

for 15 min, 4 and 24 h. After 15 min in the presence of the inhibitor, FGF-2 was not, as 

expected, able to promote the phosphorylation of Akt as observed in the cultures with 

FGF-2 alone (P<0.001; Figs. 4.11A & B). In contrast, LY294002 (10 uM) was unable to 

stop the activation of ERK1/2 by FGF-2 (Figs. 4.11A & C). E11 expression  at the gene 

and protein level were increased by FGF-2 after 4 and 24 h, which was unaffected in 

the presence of LY294002 (Figs. 4.11D-F). 
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(Previous page) Figure 4.11 Examination of the cross-talk between ERK1/2 and 

Akt activation during FGF-2 stimulated E11 expression in MC3T3 cells.  

Western blot result disclosing the effect of the PI3K inhibitor LY294002 (10 uM) on 

FGF-2 stimulation of Akt and ERK1/2 phosphorylation (A). Densitometry showed 

that in the presence of the inhibitor, FGF-2 did not upregulate P-Akt activation (B) 

but there was no effect of the inhibitor on P-ERK1/2 activation by FGF-2 (C). RT-qPCR 

and Western blot analysis of E11 expression from cells stimulated with FGF-2 were 

unaffected by the presence of LY294002 (D-F). Samples were normalised to Atp5b in 

RT-qPCR and β-actin served as a loading control in western blot. Data are represented 

as mean ± S.E.M for n=3. *p<0.5; **p<0.01; ***p<0.001; ns = not significant. 
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4.5.9.  Investigating the effect of p38 MAPK inhibition on E11 protein expression 

in MC3T3 cells  

Having determined that E11 expression was still stimulated by FGF-2 in the presence 

of ERK1/2 and Akt phosphorylation inhibitors (Section 4.5.9), the next study was 

designed to determine whether inhibition of p38 MAPK phosphorylation (one of the 

MAPKs upregulated by FGF-2; Section4.5.2) blunted FGF-2s ability to promote E11 

expression. The compound SB203580 is a known p38 MAPK inhibitor (Jarnicki et al., 

2008, Ferreiro et al., 2010). This inhibitor SB203580 at 10 uM for 1 h pre-incubation 

(Lali et al., 2000), was used to ases the effect of p38 MAPK signalling on E11 

expression  in both treated and control cells. E11 expression at the gene and protein 

level was increased by FGF-2 after 4 and 24 h but expression levels were unaffected 

by the presence of SB203580 (Figs. 4.12A-C). 
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Figure 4.12 Effect of SB203580 (10 uM) on FGF-2 induced E11 expression in MC3T3 

cells 

RT-qPCR and Western blot analysis of E11 expression by MC3T3 cells stimulated 

with FGF-2. Expression was unaffected by the presence of SB203580 at 10 uM (A-C). 

Samples were normalised to Atp5b in RT-qPCR, and β-actin served as a loading 

control in western blot. Data are represented as mean ± S.E.M for n=3. *p<0.5; **p<0.01; 

***p<0.001; ns = not significant. 
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4.5.10.  Effect of FGF receptor inhibition on FGF-2 mediated ERK1/2 activation and 

E11 expression in MC3T3 cells.  

Having previously detailed the expression of Fgfr1/2/3 in MC3T3 cells, the effect of 

inhibiting FGF function on FGF-2’s ability to stimulate ERK1/2 activation and E11 

expression was next studied. AZD4547 (0-1 uM), a recognised FGFR1/2/3 inhibitor 

(Yao et al., 2015, Zhang et al., 2015, Shimada et al., 2016), was incubated with the cells 

for 3 h prior to treatment with FGF-2 for an additional 15 min to determine the desired 

concentration of AZD4547 for further studies. In these pilot experiments, the read-out 

used was ERK1/2 phosphorylation. The result of the ERK1/2 western blots showed a 

dose response relationship with increasing concentrations of AZD4547, inhibiting 

ERK1/2 activation which was completely inhibited at 1 uM (Fig. 4.13A).  Further 

experiments used this concentration of AZD4547 but also a lower concentration (100 

nM) which was also effective in blocking FGF-2 signalling but would potentially have 

less off-target effects on the cells. 

In a subsequent more long-term experiment (15 min – 24 h), both inhibitor 

concentrations blocked ERK1/2 activation but less effect on inhibiting E11 expression 

by FGF-2 (Figs 4.13B & C).  
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Figure 4.13 Effects of the FGFR1/2/3 inhibitor AZD4547 on the ability of FGF-2 to 

promote ERK1/2 activation and E11 expression in MC3T3 cells.  

Note the dose inhibitory response of AZD4547 on ERK1/2 activation after 15 min FGF-

2 treatment (A).  Both 0.1 uM and 1 uM concentrations of AZD4547 were used to block 

FGF-2 signalling and the effects on ERK1/2 activation (B), and E11 expression  (C), 

were examined over an extended period (15 min – 24 h). Samples were normalised to 

β-actin for loading control. 
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4.5.11  Effect of FGF-2 treatment on activation of RhoA in MC3T3 cells 

To investigate further the mechanism by which FGF-2 is able to drive changes 

towards the acquisition of the osteocytic morphology and increased dendrite 

formation via cytoskeletal re-organisation (as seen previously in Figs. 3.4B & D), the 

ability of FGF-2 to activate the small GTPase RhoA was next investigated. After 4, 6, 

24, and 48 h of FGF-2 treatment, the expression  of the E11 protein was, as expected, 

increased in the treated cultures which was most notable at the 24 h time point (Fig. 

4.14A).  This rise in E11 expression by FGF-2 was not however associated with any 

significant difference in RhoA activation at the time points that FGF-2 promoted E11 

expression (Fig. 4.14B).     

4.5.12  Effect of FGF-2 treatment on activation of ERM in MC3T3 cells 

Having observed no significant differences in the activation of RhoA by FGF-2 a 

further study was carried out to ascertain if FGF-2 was able to influence the activation 

of the ERM family of proteins, which in other cell types can alter cytoskeletal re-

organisation via activation of RhoA.  Consistent with the Rho A data the western 

analysis of ERM phosphorylation showed no differences in phosphorylation of ERM 

at all-time points studied (Fig. 4.15). 
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Figure 4.14 Activation of RhoA in FGF-2 treated MC3T3 cultures 

(A) Western blot analysis of E11 expression after treatment of cells with FGF-2 for 4, 

6, 24 and 48 h.  The increase in E11 expression was most obvious after 24 h of FGF-2 

treatment. Samples were normalised to β-actin for loading control. (B), RhoA 

activation levels were similar between the FGF-2 treated and control cultures at all-

time points investigated.  

 

 

 

 

 

 



Chapter 4: Understanding the signalling mechanisms underpinning FGF-2 

regulation of E11 expression 

149 
 

 

 

 

 

 

Figure 4.15 Activation of ERM proteins in FGF-2 treated MC3T3 cultures  

Western blot analysis of ERM phosphorylation by FGF-2 treatment for 4, 6, 24 and    

48 h showing no difference in phosphorylated ERM proteins at all-time points 

studied. Samples were normalised to β-actin as loading control. 
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4.5 Discussion 

The intracellular molecules that mediate FGF-2’s intracellular effects are activated 

upon FGF-2 binding to its RTK receptors - the FGFRs. The downstream signalling 

molecules include ERK1/2, p38 MAPK, Akt and PKC (Turner and Grose, 2010).  In 

this study, activation of the ERK1/2 signalling pathway appeared to be the principal 

pathway activated by FGF-2 in osteoblast-like cells.  This finding of dominant ERK1/2 

signalling is in agreement with an earlier report where FGF-2 was shown to drive the 

upregulation of an osteocyte expression gene Dmp1 in MLO-Y4 osteocyte-like cells 

(Kyono et al., 2012). Phosphorylation of ERK1/2 has also been shown to mediate cell 

proliferation, differentiation, and matrix mineralisation in human osteoblast culture 

(Lai et al., 2001, Marie et al., 2012). These results taken together highlight the 

importance of ERK1/2 signalling in mediating FGF-2s effects in osteoblasts including 

osteocytogenesis.  

ERK1/2 signalling duration and strength are linked to its precise function in 

determining cell fate during growth and development (Murphy et al., 2003, 

Pellegrino and Stork, 2006). Sustained phosphorylated ERK1/2 signalling for 24 h or 

more following treatment with a growth factor is associated with cell differentiation, 

whereas reversal of phosphorylated ERK1/2 to baseline levels after 30 min post-

treatment, which is referred to as transient signalling, is characteristic of a role in 

promoting cell proliferation (Chen et al., 2005, Pellegrino and Stork, 2006). In this 

study, the sustained activation of ERK1/2 by osteoblasts over long time periods (>24 

h) was associated with an up-regulation of osteocyte markers and a down-regulation 
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osteoblast markers, as was shown in Chapter 3, thereby confirming its central role in 

osteoblast terminal differentiation under FGF-2 stimulation. Others have also 

reported the importance of ERK1/2 signalling in osteoblast initiation and commitment 

to the differentiation process (Lai et al., 2001).  

An explanation for the various differentiation and proliferation responses of cells to 

sustained or transient ERK1/2 activation is unclear. However, this may be due to the 

different cell types and growth factors studied, the subcellular localisation of the 

phosphorylated ERK1/2 and the activation of different transcription factors, which 

are reported to serve as duration sensors (Murphy et al., 2002, Murphy et al., 2003, 

Chen et al., 2005, Pellegrino and Stork, 2006). Another explanation may involve the 

induction of various ‘immediate early genes of which E11 will be the prime 

immediate early gene candidate to be induced by FGF-2 for the terminal 

differentiation of osteoblasts to the osteocyte.  

In addition to ERK1/2 activation by FGF-2 in osteoblast-like cells, there was 

significant activation of p38 MAPK and Akt by FGF-2. Activation of p38 MAPK has 

been reported by others to be involved in osteoblast differentiation in an ERK1/2 

independent manner (Hu et al., 2003) whereas Akt activation has been reported to 

stimulate the proliferation of bone marrow derived osteoprogenitor cells, as well as 

osteoblast differentiation in synergy with ERK1/2 pathway (Choi et al., 2008).   

Establishing which specific signalling molecules mediates the increased E11 

expression after FGF-2 stimulation can be achieved by strategies that involve 
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inhibition of the selected signalling pathway. The use of chemical inhibitors in 

pathway elucidation has become popular because  they are commercially available, 

inexpensive,  extensively validated and can be used  in mammalian models  in vivo, 

hence the growing promise of optimising them for therapeutic uses (Alessi et al., 

1995). PD98059 is a known inhibitor of MEK1/2 (Kevin and Stuart, 1997), which is an 

upstream activator to ERK1/2 (Pang et al., 1995). PD98059 treatment of cells to inhibit 

ERK1/2 phosphorylation in this study had little effect on E11 gene or protein 

expression  and this may be due to the inability of PD98059 (at the concentrations 

used in this study) to ablate ERK1/2 activation in the osteoblast-like cells. Indeed, in 

other studies PD98059 has been shown to be ineffective in blocking the activities of 

MEK1/2 which is itself activated by c-Raf (Alessi et al., 1995). Furthermore it has been 

reported in previous studies using NIH3T3 cells that PD98059 only reduced MEK1/2 

activation by 50-80% (Kevin and Stuart, 1997). This disadvantage of using PD98050 

has also been reported with Swiss 3T3 cells, where ERK1/2 was still activated in these 

cells incubated with high concentrations (50 uM) of the inhibitor. Trying higher 

concentration of PD98059 was not considered for this study because apart from 

possible off target effects, it has poor solubility in aqueous media and it may also 

activate c-Raf which lies directly upstream of MEK1/2 (Alessi et al., 1995).  

Due to these disappointing results using PD98059, another MEK1/2 inhibitor, U0126  

(Fukazawa et al., 2002), which has about 100 fold greater affinity for MEK1/2 than 

PD98059, was used to enhance understanding of the role ERK1/2 activation in 

mediating the effects of FGF-2 on E11 expression  (Favata et al., 1998). Similar to the 
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PD98059 experiments, little inhibition of ERK1/2 phosphorylation was observed with 

the concentrations of U0126 used (10 and 25 uM) although at the latter concentration 

the stimulation of ERK1/2 phosphorylation was dampened a little.  This may possibly 

help to explain the lack of effect of U0126 on FGF-2 induced E11 gene and protein 

expression. Despite the significant decrease in ERK1/2 activation by U0126 (25 uM), 

it is likely that the level of activation remained above threshold levels to stimulate 

normal amounts of E11 expression. However, another possibility is that 

compensatory pathways exist to up-regulate E11 expression, since the inhibition of 

ERK1/2, Akt and p38 MAPK had no effect on E11 expression. Cross talk between 

ERK1/2 and other MAPK signalling molecules has been reported e.g. the upregulation 

of p38 MAPK phosphorylation in the presence of U0126 (Hotokezaka et al., 2002). It 

is also possible that the inhibitors used in this study, PD98059 and U0126 may be 

inducing off target effects on cell proliferation and cellular homeostasis (Hotokezaka 

et al., 2002).  Also SB203580 has been shown to induce the upregulation of ERK1/2 at 

high concentrations (Birkenkamp et al., 2000). Therefore, the interpretation of the 

results obtained from the use of these inhibitors should be treated with caution 

(Dokladda et al., 2005, Wauson et al., 2013). In addition, to be noted is the possibility 

of beta actin changing with dendricity during FGF-2 driven osteocytogenesis, but the 

uniform bands of total proteins in these experiments validates the observed changes 

seen after FGF-2 stimulation. 

FGF-2 mediated downstream effects are activated by its attachment to the FGFR 

receptor tyrosine kinase, which in turn induces receptor dimerisation.  In this study, 
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FGF-2 stimulation of E11 expression  by osteoblast-like cells is possibly mediated 

though Fgfr1 because its level of expression  is over ten-fold higher in the 24 h time 

period, while  a significant decrease was seen in the expression  of  Fgfr2/3 in the 

treated cultures. The relative importance of Fgfr1 has been documented to drive 

osteoblast differentiation (Iseki et al., 1999), as a fivefold difference between Fgfr1 

expression  and Fgfr2/3/4 in MC3T3 osteoblast-like cells has been reported (Niger et 

al., 2012). It is of interest to note, however that the expression  levels of Fgfr1 

expression  were not altered in the presence of its ligand whereas prolonged 

incubation with FGF-2 caused a significant decrease in the expression  of Fgfr2/3, a 

feature that is associated with switch from proliferation to differentiation in calvarial 

osteoblasts (Cowan et al., 2003).  The relevance of these observations are unclear for 

FGF-2s ability to stimulate E11 expression , however it has been reported that FGF-2 

treatment of` cells results in an increase in Fgfr1 expression , and down regulation of 

Fgfr2 and Fgfr3 expression  during calvarial suture development, where Fgfr1 

stimulates osteoprogenitor differentiation and suture union, while Fgfr2/3 induces 

proliferation (Teven et al., 2014). Nonetheless, it is important that further 

confirmatory tests like receptor dimerisation activity or cellular localisation of Fgfr1 

be completed to confirm the role of Fgfr1 in this study. 

The importance of the relatively high levels of Fgfr1 expression after 24 h by MC3T3 

osteoblast-like cells, is underscored by published works reporting that FGFR1 

mediates specific stages of osteogenesis and bone mass regulation (Zhang et al., 2014).  

It also induces mature osteoblast to differentiate upon stimulation with FGF-2 a 



Chapter 4: Understanding the signalling mechanisms underpinning FGF-2 

regulation of E11 expression 

155 
 

function that is central to driving increased osteocytogenesis (Jacob et al., 2006).  In 

addition, FGFR1  has been shown to be the most important FGF-1 receptor during 

induction of neurite outgrowth of PC12 cells (Lin et al., 1996), a phenotypic switch 

that is key in the adoption of the osteocyte dendritic phenotype.  

It is interesting to note that Fgfr4 was not found to be expressed in these cells despite 

the use of several primer pairs from primer banks, published literature and 

commercial companies. This is consistent with a previous study in which calvaria 

bone has been reported not to express Fgfr4 (Partanen et al., 1991).  

The use of AZD4547 for the inhibition of FGFR kinase has also been well reported 

(Zhang et al., 2012, Gavine et al., 2012, Xie et al., 2013). Its action attenuates the 

activation effects of FGFR1/2/3 on FRS-2 and subsequent down-regulation of the 

downstream signalling pathways such as the MAPKs and PI3K/Akt (Yao et al., 2015, 

Katoh, 2016). The relative level of phosphorylated ERK1/2 expression was employed 

to measure the degree of FGFR activation by FGF-2 after incubation with AZD4547. 

This approach has also been carried out in previous published studies using non-

small-cell lung cancer cells (Marek et al., 2009).  In this study, AZD4547 decreased the 

expression of ERK1/2 activation in a dose dependent manner. This effect has been 

seen in FGFR-expressing colorectal cancer cells (Yao et al., 2015). In this study, the 

inhibitor AZD4547 blunted FGF-2s ability to stimulate ERK1/2 expression, but had 

little effect on blocking E11 protein expression. It may reflect time dependent ability 

of the inhibitor AZD4547 to effectively prevent receptor dimerisation, hence 
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molecules upstream like ERK1/2 were blunted out but more studies should be done, 

as FGF-2 appears to be having little effect on E11 expression.   

One of the functions of the E11 protein in modulating the early events of 

osteocytogenesis includes the acquisition of the osteocyte (dendritic) morphology. 

This feature was detailed in FGF-2 treated MC3T3 cell lines and primary osteoblasts 

in Chapter 3. A potential mechanism underlying this function of E11 protein in 

modifying cell shape is via the up-regulation of RhoA activation (Staines et al., 2016). 

RhoA is associated with regulating the ERM/CD44 complex, which is important in 

plasma membrane shape modification, cell migration and invasiveness (Hirao et al., 

1996, Scholl et al., 1999, Martín-Villar et al., 2006). In this study, FGF-2 treated cells 

showed no RhoA activation. This may be due to the upregulation of other members 

of the Rho family of small GTPases such as Rac1 or Cdc42, which have been reported 

to also serve as molecular linkers during cytoskeletal protein activation and plasma 

membrane modification into structural extension such as filipodia (Nakamura et al., 

2000, Jeon et al., 2010). The lack of activation of RhoA as seen in this study is 

supported by previous published work where E11 induced filipodia-like processes in 

MCF7 carcinoma cells formed despite inactivation of RhoA (Orriss et al., 2014).  

Nevertheless, this result is at variance with reported up-regulation of RhoA activation 

by E11 in MLO-A5 late osteoblast-like cells and MDCK type-II epithelial cells (Martín-

Villar et al., 2006, Staines et al., 2016). This observed difference in the ability of E11 to 

induce cell morphology changes towards including the adoption of cell membrane 
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extensions or processes with or without activation of RhoA may be due to cell type, 

stage of cellular differentiation or even species variation (Martín-Villar et al., 2006).  

Despite the lack of RhoA activation, the data presented in Chapter 3 supports the 

growing body of evidence that E11 is critical for the acquisition of the dendritic 

morphology characteristic of osteocytes (Zhang et al., 2006).   

In addition to the RhoA data, the amount of phosphorylated ERM proteins were 

unaffected by FGF-2 stimulation, which may suggest the existence of another 

pathway to induce cell shape and dendrite formation that is independent of ERM 

proteins (Nakamura et al., 2000).  

In conclusion, the results of this Chapter has indicated that the promotion of the 

osteocyte phenotype by FGF-2 is possibly via Fgfr1 activation and increased E11 

expression (Fig. 4.16). The signalling pathway(s) involved however, remains unclear 

but may involve phosphorylation of signalling molecules such as ERK1/2, Akt and 

p38 MAPK. With this knowledge, further studies will enable the determination of the 

significance of FGF-2/E11 interactions in subchondral bone thickening in the 

aetiology of osteoarthritis.   
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Fig. 4.16 Schematic of Chapter 4 results 

This chapter has revealed that FGF-2 increases E11 expression possibly through ERK1/2 

activation and compensatory Akt signalling, and this influences the actin cytoskeleton to 

promote osteocyte dendrite formation.   
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5.1. Introduction 

Osteoarthritis (OA) is a degenerative and painful joint disease, and a worldwide 

healthcare burden in animals and man. OA is a disease of the whole joint and, perhaps 

rightly, research has largely sought to target the articular cartilage (AC) as this tissue 

undergoes severe deterioration (Goldring and Goldring, 2010, Sharma et al., 2013, 

Poulet and Staines, 2016). Subchondral bone (SCB) thickening in OA joints –although 

often considered secondary – is however one of the earliest detectable changes which 

many now consider to be a potential trigger for subsequent AC degeneration and OA 

progression (Li et al., 2013). There remains much speculation regarding the 

mechanism underpinning this modified SCB:AC relationship in OA, with cellular 

cross-talk and modified SCB stiffness proposed to exert a vital role (Goldring and 

Goldring, 2010, Sharma et al., 2013). Indeed, reports of altered SCB mineralisation and 

stiffness in OA have led to proposals that joint loading engenders greater AC 

deformation and OA degeneration (Findlay and Atkins, 2014, Im and Kim, 2014). 

Whilst the role of SCB in OA pathogenesis is unclear, it is undeniable that its modified 

remodelling contributes to sclerosis – a further OA defining feature. Despite this, the 

cellular/molecular mechanisms are not fully understood and therefore current clinical 

strategies remain limited.  

Like cortical and trabecular bone, the SCB contains an abundance of osteocytes which 

are essential to its structure and function. In OA, the osteocytes of the SCB have an 

abnormal morphology, with both fewer and disorganised dendritic processes 

(Jaiprakash et al., 2012). In addition, there are many reports of disrupted expression 
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of the mature osteocyte marker sclerostin in OA SCB (Albisetti et al., 2013, Wu et al., 

2016). This therefore suggests that the osteocyte may play a central role in the 

pathogenesis of the SCB in OA. Furthermore, the dendritic morphology of the 

osteocyte may be essential for maintaining healthy SCB. Published data and data 

reported in this thesis has shown that osteocyte dendrite formation is one of the early 

key events of osteocytogenesis and is associated with the expression of the osteocyte 

early marker gene E11 (Zhang et al., 2006). Increased whole joint E11 expression  has 

been reported in OA mice following surgical destabilisation of the medial meniscus 

(DMM), and in an in vitro cartilage injury assay using RT-qPCR (Burleigh et al., 2012, 

Chong et al., 2013). Despite these observations, the biological importance of altered 

E11 expression in OA has not been progressed further but it may be related to its 

known function in osteocyte biology.  

Various animal models have been established to enable temporal studies on the 

pathogenesis of OA in the joint. The availability of these models help overcome the 

constraint of OA diagnosis and study on human patients, which often present at late 

stages of OA when pain and radiographic features become very apparent (Lorenz and 

Richter, 2006). These models have become an integral part of the armoury in the 

evaluation of either disease modifying therapy or studies towards understanding the 

cellular and molecular mechanisms underlying OA pathogenesis (Goldring and 

Goldring, 2010). The animal species reportedly used in OA studies include mice, rat, 

rabbit, guinea pig, goat, sheep, dog, cat and horses (Radin et al., 1995, Burleigh et al., 

2012, Gregory et al., 2012, McCoy, 2015).  
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DMM, an OA instability model, is one of the most commonly used OA models. DMM 

involves transecting the anterior attachment of the medial meniscus to the tibial 

plateau, releasing a small portion of the medial meniscal anterior horn, hence the OA 

is induced by increased loading on the tibia. While the sham operated control mouse 

undergoes similar surgery the meniscus is not cut; the non-operated mouse control 

undergoes no surgery (Inglis et al., 2008, Botter et al., 2009, Malfait et al., 2010).  This 

model of OA has the advantage of the gradual development over a long time, which 

replicates the human condition. Importantly, it allows the study of OA 

pathophysiology from the early to late stages (Inglis et al., 2008, Botter et al., 2009, Li 

et al., 2012). It also simulates human OA as the mouse develops OA features like SCB 

sclerosis after surgery, joint damage and degeneration long before any evidence of 

pain (Kamekura et al., 2005, Inglis et al., 2008, Malfait et al., 2010). However, there is 

discontent on the presence of SCB thickening observed in both the ipsilateral knee 

(ascribed to the OA process), and the control contralateral knee (ascribed to 

overloading with lamenes) (Loeser et al., 2013, Fang and Beier, 2014). In addition, 

DMM is an invasive procedure, which in itself may be associated with additional 

inflammation and cartilage damage (Fang and Beier, 2014, Miller et al., 2015).  

Previously in this thesis, it was shown that FGF-2 upregulates E11 expression and 

increases osteocyte dendrite formation. Hence, extending my study for clinical 

relevance, this Chapter will help to elucidate the nature of E11 expression in SCB 

osteocytes of OA samples using WT and Fgf-2 KO mice after DMM and sham 

surgeries. In addition, expression of E11 in a number of animal species and human 

OA samples will were also completed for comparative studies.  
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5.2. Hypothesis 

E11 protein is differentially expressed in SCB osteocytes in comparative animal and 

human OA samples. The absence of FGF-2 decreases the expression of E11 protein in 

SCB osteocytes of OA samples.  

5.3.  Aims 

I Quantify E11 protein expression in SCB osteocytes of WT mice with DMM 

induced OA.  

II Examine E11 protein expression in SCB osteocytes of Fgf-2 KO mice with 

DMM induced OA samples.  

III  Evaluate E11 protein expression in SCB osteocytes of OA samples from 

human and domestic animals.  

5.4. Materials and methods 

5.4.1 Human and animal samples 

The human SCB samples were obtained from patients undergoing total knee 

replacement of two females and one male aged 63-75 year OA patients. Mr Amish 

Amin (University of Edinburgh) based on clinical and radiographic OA features 

diagnosed OA. Samples are obtained with patient consent and all procedures with 

ethical approval by NHS Lothian in collaboration with Mr. Anish Amin. The 

collection, storage, and subsequent use of human tissues are regulated in Scotland by 

The Human Tissue Act (Scotland) 2006. The study of these tissues was in compliance 

with all necessary UK licenses and ethical approvals.  
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The OA samples from SCB of domestic animals were kindly donated by Dr Dylan 

Clements, while Dr Katherine Staines donated the WT DMM samples. The samples 

were residual tissues collected from pets undergoing surgical for the treatment of 

disease with informed consent (OA samples), or which had died of unrelated disease 

(feline samples, ovine samples and equine samples and healthy canine samples) 

consent for use was obtained from the animal owners, and ethical approval  for their 

collection and use given by the Veterinary Ethical Review Committee of the 

University of Edinburgh (VERC; approval 23/12 (canine), 23/12 (ovine), 7/5/09 (feline). 

The canine and feline samples were from elbow joints, the ovine samples from hip 

joints and the equine samples from the proximal metatarsal joint. In all cases, the 

joints were macroscopically evaluated for signs of disease as OA samples, while the 

healthy joints will be referred to as control in this thesis. The DMM and sham tibias 

of 14 weeks old Fgf-2 KO and WT mice were donated by Prof. Tonia Vincent, were 

sampled 4 weeks post-surgery. 

5.4.2 Toluidine Blue/Fast Green staining of the murine tibias  

Toluidine blue dye is used extensively in cartilage staining as it binds to the 

negatively charged proteoglycans (Appleyard et al., 1999, Schmitz et al., 2010). The    

5 uM thick tibiae paraffin embedded decalcified Sections were first de-waxed in 

xylene and rehydrated though a series of graded alcohols to distilled H2O. They were 

incubated in 0.4% Toluidine Blue dissolved in sodium acetate buffer (see Appendix 

I). After washing in distilled H2O, they were counterstained in 0.02% Fast Green in 

distilled H2O. They were subsequently rinsed in distilled H2O, blot dried and quickly 



Chapter 5: Investigating the expression of E11 in OA pathogenesis 

165 
 

mounted. Images were captured with a Nikon Eclipse Ni microscope (Nikon, UK), 

fitted with Zeis Axiocam 105-colour camera (Carl Zeis, UK). 

5.4.3. E11 and sclerostin protein sequencing alignment  

Species-specific amino acid sequences for E11 and sclerostin were obtained from 

NCBI protein database (https://www.ncbi.nlm.nih.gov/guide/proteins/) while 

Clustal Omega was used to perform alignment and comparison of the species 

sequences under study including mouse, human, sheep, dog, cat, and horse (Sievers 

et al., 2011, McWilliam et al., 2013). The sequences were then uploaded into the online 

Clustal Omega alignment tool hosted on EMBL-EBI website 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) to perform alignment and compute 

sequence similarity/identity between the different species. The level of homology 

between amino acid sequences for two different species was expressed as mean 

percent identity, which was calculated by dividing the degree of identity matching in 

the sequence alignment (pairs of identical letters) by the span of the alignment, where 

gaps are regarded as mismatches (Spalding and Lammers, 2004). 

5.4.4 Immunohistochemical staining of the murine tibias  

Murine tibias of same reference points from DMM and sham groups (Section 2.12.1) 

were immunostained for E11 and sclerostin as described in Section 2.12.2.  

Immunohistochemical staining of 5 um thick tibiae paraffin embedded decalcified 

sections was performed using E11 and sclerostin primary antibodies at (1:500) 

dilution, while secondary antibody was at (1:200) dilution using Vectastain ABC kit 

https://www.ncbi.nlm.nih.gov/guide/proteins/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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as outlined in Section 2.12.2 and Appendix I Table 1. Immunohistochemical labelling 

was visualised using DAB chromogen. For control Sections, goat IgG at the same 

concentrations as primary antibody (1:500) was used instead of the primary 

antibodies. The percentage of positively stained E11 or sclerostin osteocytes was 

calculated (Section 3.4.8). 

5.4.5 Immunohistochemical staining of comparative human and animal studies 

with anti-mouse E11 and sclerostin antibodies.  

Sections of SCB from mouse, human, dog, cat, sheep and horse joints were 

immunostained with anti-mouse E11 and sclerostin antibodies as described in Section 

5.4.1. Quantification was by means of counting sclerostin positively immunostained 

osteocytes across all microscopic fields and expressed as a percentage of the total 

number of osteocytes present.  

5.4.6 Immunohistochemical staining of comparative human and animal studies 

with anti-human E11 antibodies.  

Sections of SCB from mouse, human, dog, cat, sheep and horse joints were first de-

waxed in xylene, and rehydrated though a series of graded alcohols to distilled H2O. 

Antigen unmasking was carried out with 0.1% trypsin in PBS for 30 min  at 37oC using 

a water bath (Cattoretti et al., 1993). Endogenous peroxidase activity was blocked by 

treatment with 0.03% H2O2 in methanol for 30 minutes at RT.  After 3 x 5 min washes 

in PBS the sections were blocked in normal donkey serum buffer (1:5 dilution of the 

appropriate normal serum in PBS) for 20 min at RT. The Sections were then incubated 
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in sheep anti-human E11 primary antibody (1:100 in PBS) at 40C overnight. Sheep IgG 

(1:200 in PBS) was used instead of the primary antibodies as a negative control. 

Unbound primary antibody was removed by 3 x 5 min washes in PBS. The Sections 

were subsequently incubated in donkey anti-sheep secondary antibody (1:200 in PBS) 

at RT for 1 h. They were later washed for 3 x 5 min in PBS. Staining was then 

developed in DAB solution for about 2 minutes. The Sections were rinsed in tap water 

and counterstained with haematoxylin using a Leica Autostainer XL (Leica, Milton 

Keynes, UK). Finally, Sections were dehydrated though graded alcohols, cleared with 

xylene and mounted in DePeX. Images were captured with Nikon Eclipse Ni 

microscope (Nikon, UK), fitted with Zeis Axiocam 105 colour camera (Carl Zeis, UK). 

Quantification triplicates per group was by means of counting E11 positively 

immunostained osteocytes across all microscopic field and expressed as a percentage 

of the total number of osteocytes present as done in Section 3.4.8.  

5.4.7 Immunohistochemical staining of Human OA samples 

Human OA samples were immunostained for E11 protein with anti-human E11 

antibody (Section 5.4.6), and sclerostin protein with anti-mouse sclerostin antibody 

(Section 5.4.4). 

5.4.8. Optimising anti-human E11 antibodies for immunostaining canine SCB 

samples. 

Dog SCB samples were immunostained as described in Section 5.4.4 providing 

encouraging results.  However, for full optimisation a range of antigenic epitope 

retrieval buffers were used. They include EDTA (1 mM at pH of 8.0), Tris/EDTA         
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(10 mM/1m M at pH of 9.0) and citrate buffer (10 mM at pH of 6.0) for 90min at 70oC 

using a water bath. In addition, the concentrations of the primary antibody was 

varied 1:100; 1:50; 1:20; while secondary was varied to include 1:100 and 1:200 

dilutions. 

5.4.9. Measuring SCB thickness in tissue Sections via a histological tool (2D)  

The thickness of the mice SCB was measured using the Fiji program (Schindelin et al., 

2012). Bright field microscopic images of the Sections were sequentially captured with 

a Nikon Eclipse Ni2 microscope (Nikon, UK), fitted with Zeis Axiocam 105 colour 

camera (Carl Zeis, UK), and analysed on Zen Imaging software. Using a Fiji program, 

the images were fused to form a composite picture, while a calibrated rule measured 

SCB length distally from the SCB plate to the dorsal border of the nearest bone 

marrow. This measurement was completed at five points uniformly across the SCB of 

each tissue Section. 
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5.5. Results 

5.5.1 Investigating E11 and sclerostin expression in DMM induced OA samples 

from tibias of WT mice 

The expression of E11 and sclerostin in tibial SCB osteocytes of the DMM and sham 

operated WT mice was assessed by immunostaining. Despite there being an upward 

trend in the percentage of E11 positively stained osteocytes the results revealed the 

absence of a significant difference between sham and DMM groups in both the lateral 

and medial aspects of the tibia, (Figs. 5.1A - F). In addition, the percentage of 

sclerostin positively stained osteocytes were similar in both tibial condyles from the 

two groups (Figs. 5.2A-F).   

5.5.2 Analyses of SCB sclerosis in WT mouse tibias after DMM surgery  

Having observed no differences in the number of E11 and sclerostin positively stained 

osteocytes in the SCB of DMM mouse knee joints, there was a need to investigate the 

development of the SCB sclerotic phenotype to try and explain these unexpected 

results. This becomes imperative as no AC loss was noticed in both sham and DMM 

samples (Fig. 5.3A & B).  2D measurements of SCB thickness in sham and DMM 

samples (Figs. 5.3A & B), showed no overt differences in the thickness of the SCB (Fig. 

5.3C). This lack of SCB sclerosis may therefore explain the unaltered E11 and 

sclerostin expression in this model.  
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Figure 5. 1 E11 immunostained WT DMM and SHAM mice tibial subchondral 

bone osteocytes 

Section of WT subchondral bone osteocytes (black arrow) in both SHAM (A & C) 

and DMM (B & D) no difference in E11 immunostaining in both groups was 

shown from quantification of E11 positive osteocytes in both lateral (E), and 

medial (F) sections of the DMM and SHAM groups. Data are presented as mean 

± S.E.M (n=6); ns = not significant. Scale Bar =300 um.   

F 
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Figure 5. 2 Sclerostin immunostained WT DMM and SHAM mice tibial subchondral bone 

osteocytes 

Section of WT subchondral bone osteocytes (black arrow) in both SHAM (A & C) and DMM (B 

& D) showing no difference in sclerostin immunostaining in both groups, as was shown from 

quantification of sclerostin positive osteocytes in both lateral (E), and medial (F) sections of the 

DMM and SHAM groups. Note the positive staining of hypertrophic chondrocytes of the articular 

cartilage (*). Data are presented as mean ± S.E.M (n=6); ns = not significant. Scale Bar = 300 um.   

E 

* * 

* 

* 

* * 

* 
* 
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Figure 5. 3 Measuring tibial SCB  thickness of WT mice after DMM using 

histological (2D) tool 

Section of WT subchondral bone thickness  (red lines)  measured at 5 points 

distally from the subchondral plate to the dorsal border of the nearest bone 

marrow in both SHAM (A) and DMM (B), showing no difference in between 

them, as was shown from quantification (C). Data are presented as mean ± 

S.E.M (n=3); ns = not significant. Scale Bar = 300 um.   

 Lateral    Lateral 
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5.5.3 E11 and Sclerostin expression in SCB of human tibia OA samples 

The percentage of E11 positive osteocytes in OA and control samples of human tibial 

SCB were quantified. There was no difference in the percentage of E11 positive and 

total osteocytes between the control and OA samples (Figs. 5.4 A –F). Anti-mouse 

sclerostin antibody was used to immunostain human tibial SCB Sections from OA 

and control patients (Figs. 5.5A-D). The percentage sclerostin positive- and total- 

osteocytes showed no difference and were similar in OA and control samples (Figs. 

5.5E & F).  
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Figure 5.4  E11 immunostained OA and control human tibial SCB 

osteocytes 

Section of human tibial SCB osteocytes (black arrow) in both Con (A & C) and OA 

(B & D) samples. Quantification of percentage E11 positive osteocytes and total 

osteocytes indicated no differences between control and OA samples (E & F). Data 

are presented as mean ± S.E.M (n=3). Scale Bar (A & B) =300 um; (C & D) = 150 um. 

F 
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Figure 5.5 Anti-mouse sclerostin immunostained human tibial SCB sections 

from OA and control patients 

Sclerostin localisation to human tibial SCB osteocytes (black arrow) in both Con (A 

& C) and OA (B & D) samples. Quantification of percentage sclerostin positive 

osteocytes and total osteocytes indicated no differences between control and OA 

samples (E & F). Data are presented as mean ± S.E.M (n=3 for OA; n=2 for con). Scale 

Bar (A & B) =300 um; (C & D) = 150 um. 

F 
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5.5.4 E11 and sclerostin comparative protein sequence homology  

As antibodies for dog, cat, horse and sheep E11 and sclerostin are not commercially 

available, E11 and sclerostin protein sequence homology in these species was 

completed using clustal omega programme (Sievers et al., 2011),  as a guide to gauge 

potential cross-reactivity with mouse or human antibody.. The E11 protein of human, 

mouse, dog, horse, sheep and cat showed variable amino (N)-terminal homology, but 

increased homology was found at the carboxyl (C)-terminal (Fig. 5.6). The percent 

identity matrix between all species is shown in Table 5.1. The sclerostin protein of 

human, mouse, dog, horse, sheep and cat showed strongest sequence homology at 

the N terminal (Fig. 5.7). The percent identity matrix between all species is shown in  

(Table 5.2).  
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Figure 5.6 E11 protein sequence homology by Clustal Omega programme  

E11 protein sequence homology of man, domestic and lab animals showed 

poor homology at the N-terminal.  Homology was stronger at conserved C-

terminal.  This is illustrated by the relative number of asterix (*) below each 

sequence alignment.  
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Table 5.1 Percent Identity Matrix (E11) - created by Clustal 2.1  

  

  Mouse   Human    Dog       Cat     Horse     Sheep 

     1: Mouse        100.00    47.53    53.70   48.77    47.22    42.76 

     2: Human         47.53   100.00    64.81  57.76    58.39    53.95 

     3: Dog           53.70   64.81   100.00  67.86   61.49    49.68 

     4: Cat        48.77   57.76   67.86   100.00  55.41    41.03 

     5: Horse       47.22   58.39   61.49  55.41   100.00  45.14 

     6: Sheep      42.76  53.95   49.68   41.03  45.14   100.00 
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Figure 5.7 Sclerostin protein sequence homology by Clustal Omega programme  

Sclerostin protein sequence homology of man, domestic and lab animals showed well 

conserved N-terminal and poor homology in the C-terminal as was expressed in the 

relative number of asterix (*) below each sequence alignment.  
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Table 5.2 Percent Identity Matrix (Sclerostin) - created by Clustal 2.1  

    
    Mouse    Human    Dog      Horse   Sheep     Cat 
     1: Mouse       100.00     88.15         91.00    65.77     60.87      69.57 
     2: Human      88.15      100.00       95.77     74.17     66.35      74.64 
     3: Dog            91.00       95.77        100.00   74.17     66.35      76.08 
     4: Horse        65.77       74.17         74.17    100.00   55.48      68.71 
     5: Sheep        60.87       66.35         66.35     55.48    100.00    58.94 
     6: Cat           69.57       74.64          76.08    68.71     58.94     100.00 
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5.5.5 Optimisation of antibodies for immunohistochemistry (IHC) protocol in 

domestic animals using anti-mouse and anti-human E11 antibodies 

Taking into account the protein sequence homology data (Section 5.5.4), 

immunostaining with anti-mouse E11 antibodies was carried out on select animals 

including dog, cat, sheep, and horse. The results showed positive E11 staining in 

“positive control” mouse samples (Fig. 5.8A), but no cross reactivity in the Sections 

from the various animals tested (Figs. 5.8C, E & Figs. 5.9A, C, E). The results of anti-

human E11 antibodies showed similar positive E11 immunostaining in human SCB 

osteocytes (Fig. 5.10A), and lack of cross reactivity in most of the other animals (Figs. 

5.10C, E & Figs. 5.11C, E). However, in the canine Sections, which showed the highest 

percent identity homology with human (64.81%, Table 5.1), osteocyte cell bodies (but 

not dendrites) were detected although this was accompanied with strong non-specific 

background staining (Fig. 5.11A). These results were promising, hence the need to 

optimise anti-human E11 antibodies for use in further staining of the canine samples.  

Subsequently, different epitope retrieval buffers were trialled with the anti-human 

E11 antibody on canine samples (Section 5.4.6). However, this revealed that the use 

of these new three buffers did not enhance the identification of E11 in canine SCB 

osteocytes (Figs. 5.12A-C). 
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 Fig. 5.8. Immunostaining of mouse, sheep and human SCB osteocytes with anti-

mouse E11 antibodies 

Subchondral bone sections of mouse, sheep and human SCB incubated with anti-

mouse E11 antibodies (test) or appropriate IgG control (con); A -test &  B –control 

of mouse knee joints; C -test & D –control of sheep samples; E -test, and F -control 

of human samples. Note, red arrows indicate positive E11 stained osteocytes in the 

mouse test samples whereas black arrows indicate non-stained osteocytes. Scale bar 

= 150 um. 
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Fig. 5.9. Immunostaining of dog, cat, and horse SCB with anti-mouse E11 antibodies 

Subchondral bone sections of dog, cat and horse reacted with anti-mouse E11 

antibodies; A -test, B -control of dog samples; C -test and D -control of cat samples; E-

test, and F-control of horse samples. Note, black arrows indicate non-stained 

osteocytes. Scale bar =150 um.  
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Fig. 5.10. Immunostaining of human, sheep and mouse SCB with anti-human E11 

antibodies 

Subchondral bone sections of human, sheep and mouse reacted with anti- human 

E11antibodies; A -test & B –control are human samples; C-test & D -control, are 

sheep samples; E -test, and F -control are mouse samples. Note red arrows indicate 

osteocyte positive to anti-human E11 whereas black arrows indicate non-stained 

osteocytes. Scale bar = 150 um. 
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Fig. 5.11. Immunostaining of dog, cat and horse SCB with anti-human E11 

antibody 

 Normal subchondral bone sections of dog, cat and horse reacted with anti-human 

E11 antibodies; A -test, B -control are dog samples; C -test and D -control are cat 

samples; E-test, and F-control are horse samples. Note, dog osteocytes look 

positively stained (red arrows), whereas black arrows indicate non-stained 

osteocytes. Scale bar =150 um.  
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Figure 5.12 Optimisation of anti-human E11 immunostaining of canine SCB 

sections using different antigen retrieval buffers. 

Subchondral bone sections of human (A-C), and canine (D-F) immunostained 

with anti-human E11 antibodies after pre-treatment with antigen retrieval buffers 

including citrate buffer (A & D); EDTA (B & E); and TRIS/EDTA (C & F). Note 

red arrows indicate osteocyte positive cells whereas black arrows indicate non-

stained osteocytes. Scale bar = 150 um. 
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5.5.6 E11 expression in canine OA samples using anti-human E11 antibody 

E11 expression in canine tibial SCB osteocytes from OA, and healthy samples that will 

be referred to as control samples was investigated using a anti-human E11 antibody 

after trypsin antigen retrieval. The percentage of E11 positive osteocytes was 

significantly greater (Fig. 513E; P<0.01) in OA canine samples (Figs. 5.13B & D), in 

comparison to non-OA samples (Figs. 5.13A & C).  It also appeared that the dendrites 

radiating from the stained osteocyte bodies were more obvious in the OA samples. 

5.5.7. Optimisation of anti-mouse sclerostin antibody protocol for IHC staining of 

SCB Sections from domestic animals 

The osteocytes within SCB Sections from sheep, dog, cat and horse were also reacted 

with anti-mouse sclerostin antibody to test for potential cross reactivity. As expected, 

positive sclerostin immunostaining was observed in mouse and human SCB samples 

(Figs. 5.14A & C), but no cross reactivity in the other animals tested (Figs. 5.14E & 

Figs 5.15 A, C, E). It is worthy to note that in the horse, there were some osteocytes 

which labelled positive, but the vast majority were negative (data not shown).  
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Figure 5.13 Control and OA canine tibial SCB osteocytes immunostained 

with anti-human E11 antibodies. 

Section of canine tibial SCB showing E11 expression in osteocytes (black arrow) in both 

Con (A & C) and OA (B & D) samples. Quantification of E11 positive osteocytes 

indicated a significantly greater number in the OA samples compared with control 

samples (E). Data are presented as mean ± S.E.M (n=3); **p<0.01. Scale Bar (A & B) =  

300 um; (C & D) = 150 um. 
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 Fig. 5.14. Immunostaining of mouse, human and sheep SCB with anti-mouse 

sclerostin antibodies 

Subchondral bone sections of mouse and human all stained with anti-mouse 

sclerostin antibodies; A -test & B –control are mouse samples; C -test & D -control 

are human samples; E -test, and F -control are sheep samples. Note red arrows 

indicate positive osteocyte staining in the mouse and human test samples, while 

black points at non-stained osteocytes. Scale bar = 150 um. 
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Fig. 5.15. Immunostaining of dog, cat, and horse SCB with anti-mouse sclerostin 

antibodies 

Subchondral bone sections from dog, cat and horse, all reacted with anti-mouse 

sclerostin antibodies; A -test, B -control are dog samples; C -test and D –control are 

cat samples; E-test, and F-control are horse samples. Note black arrows indicating 

non-stained osteocytes in test and control sections. Scale bar =150 um. 
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5.5.8 E11 and sclerostin expression in OA (DMM induced) and control samples 

from tibias of  Fgf-2 KO and WT mice 

To extend this project to understand the role of FGF-2 in regulating E11 and sclerostin 

expression during OA pathology, DMM and sham (control) mice from Fgf-2 KO and 

WT samples were investigated. The use of toluidine blue staining showed normal AC 

in the control samples (Figs. 5.16A & B), while the DMM samples (Figs. 5.16C & D) 

confirmed focal AC loss and development of OA in both WT and Fgf-2 KO groups as 

previously reported (Chia et al., 2009). 

E11 immnunostaining on the lateral condyle of the tibia (Figs. 5.17A-D), showed an 

increase in the number of E11 positively stained osteocytes in the Fgf-2 KO mice 

compared with their respective controls  (p<0.05; Fig. 5.17E). However, the number 

of E11 positively stained osteocytes was not affected by the presence of DMM induced 

OA (Fig. 5.17E).  In the medial tibia condyle, (Figs. 5.18A-D), a significant increase in 

the number of E11 positively stained osteocytes was noted in the Fgf-2 KO sham joints 

when compared with WT control mice (p<0.01; Fig. 5.18E). However, as noted with 

the lateral condyle, the number of E11 positively stained osteocytes was not affected 

by the presence of DMM induced OA (Fig. 5.18E).  

Sclerostin immunolabelling revealed no difference in the number of sclerostin 

positively stained osteocytes between genotypes and OA induction in either the 

lateral (Figs. 5.19A-E), or medial (Figs. 5.20A-E) aspect of the tibia. 
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Figure 5.16 Histological assessment of DMM induced OA in Fgf-2 KO and WT 

mice tibia using Toluidine blue staining  

Section of tibial SCB showing normal AC (black arrow) in control (non-operated) 

in both WT (A) and Fgf-2 KO (B).  Note OA signs of AC lesion (red arrow) and SCB 

thickening with reduced bone marrow (*) in both WT (C) and Fgf-2 KO (D). Scale 

bar = 600 um.   
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Figure 5.17 E11 immunostained Fgf-2 KO/WT DMM and CON (non-

operated) mice. Lateral tibial subchondral bone osteocytes 

Sections of lateral tibial SCB osteocytes (black arrow) in both WT control and 

DMM (A & C), and Fgf-2 KO control and DMM (B & D). Quantification of E11 

positive osteocyte number showed an increase in E11 positive osteocytes in the 

Fgf-2 KO DMM when compared to WT DMM (E). This increase in the number of 

E11 positive osteocytes was also noted in controls of Fgf-2 KO Con when 

compared to WT Con (E). Data are presented as mean ± S.E.M (n=4); *p<0.05; ns 

= not significant. Scale bar = 150 um.   
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Figure 5.18 E11 immunostained Fgf-2 KO/WT DMM and CON (non-

operated) mice. Medial tibial subchondral bone osteocytes 

Sections of medial tibial SCB osteocytes (black arrow) in both WT control and 

DMM (A & C), and Fgf-2 KO control and DMM (B & D). Note, increase in the 

number of E11 positive osteocytes in Fgf-2 KO controls when compared to WT 

Con samples (E). Data are presented as mean ± S.E.M (n=4); *p<0.05; **p<0.01; ns 

= not significant. Scale bar = 150 um.   
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Figure 5. 19 Sclerostin immunostained Fgf-2 KO/WT DMM and CON 

(non-operated) mice. Lateral tibial SCB osteocytes 

Sections of lateral tibial SCB osteocytes (black arrow) in both WT control and 

DMM (A & C), and Fgf-2 KO control and DMM (B & D). Quantification of the 

number of sclerostin positive osteocytes showed no difference in the DMM 

tibias of both WT and Fgf-2 KO groups (E). Data are presented as mean ± S.E.M 

(n=4); ns = not significant. Scale Bar = 150 um.   
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Figure 5. 20 Sclerostin immunostained Fgf-2 KO/WT DMM and CON (non-

operated) mice. Medial tibial subchondral bone osteocytes 

Sections of medial tibial SCB osteocytes (black arrow) in both WT control and 

DMM (A & C), and Fgf-2 KO control and DMM (B & D). Quantification of the 

number of sclerostin positive osteocytes showed no difference in the DMM tibias 

of both WT and Fgf-2 KO groups (E). Data are presented as mean ± S.E.M (n=4); ns 

= not significant. Scale Bar = 150 um.   
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5.5 Discussion 

Bone remodelling is an integral process to bone health, but is dysregulated during 

OA pathophysiology (Burr and Gallant, 2012, Baker-LePain and Lane, 2012). In OA, 

it varies temporally from early bone resorption, to late stage-associated increased 

bone formation and subsequent sclerosis. Spatially, differences also occur in the 

medial and lateral Sections of the joint (Findlay, 2013). In addition, some osteocyte-

expressed molecules including E11, Phex, Dmp1, and sclerostin that are involved in 

bone remodelling are dysregulated during OA pathology (Appleton et al., 2007, 

Jaiprakash et al., 2012, Chong et al., 2013, Bouaziz et al., 2015). In this Chapter, two 

osteocyte markers, E11 and sclerostin were immunohistochemically localised to SCB 

osteocytes in a number of OA samples. The first investigation compared WT mice 

after sham and DMM surgery and no differences in both E11 and sclerostin 

immunostaining between the DMM and sham control mice was noted. This may be 

due to the absence of obvious OA pathology such as AC loss and absence of SCB 

sclerosis. This was unexpected but there is a need to confirm these data in the 3D 

context by micro computed tomography (micro-CT) analysis as 2D results are highly 

inconsistent mostly due to Sectioning protocols of angle and region (Jia et al., 2017).  

Histological studies of human OA samples are mostly limited to tissues obtained via 

joint replacement therapy and cadaver specimens (Lorenzo et al., 2004, Wallace et al., 

2017). While these sources may present a wide pool of tissues, it has a major limitation 

of representing mostly late stage OA (Lorenzo et al., 2004). In this Chapter, OA 

samples were sourced from patients undergoing total knee replacement, and they 
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showed no obvious differences in osteocyte E11 and sclerostin immunostaining 

compared with control samples. This may reflect that the number of osteocytes 

expressing E11 and sclerostin were not altered during this stage of OA, or that the 

sample size was not big enough to reflect any variation. Another suggestion may be 

the effect of differences in loading on specific sections of the bone. In addition, the 

fact that both samples are from the same disease joint may reflect this similar E11 

expression. Nevertheless, a significant decrease in the number SCB osteocyte 

positively immunolabelled for sclerostin in human OA samples has been reported 

and it was related to the observed sclerosis (Jaiprakash et al., 2012).  

In our domestic animals, the burden of naturally occurring OA is also a major concern 

as documented in sheep, horses, cats and dogs (Clarke et al., 2005, Clements et al., 

2009, Robin et al., 2013, Vandeweerd et al., 2013). Hence, an insight into the molecular 

profile of the SCB during OA pathology of these animals will be very relevant for 

their therapeutic management. This becomes important as there is variation in gene 

expression between human and dogs during OA pathology including the tissue 

inhibitor of matrix metalloproteinase -2 (Kevorkian et al., 2004, Stoker et al., 2006, 

Clements et al., 2009). In this Chapter, the increased number of E11 stained SCB 

osteocytes in the canine OA samples relative to the control samples was a novel result 

and may be attributed to newly formed osteocytes in the sclerotic bone; a cardinal 

feature of OA.  

Protein sequence similarity searching has become an integral aspect of determining 

homologous sequence of new proteins (Pearson, 2013). This process widely employs 
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programs like BLAST, FASTA, PSI-BLAST, HMMER3, SEARCH, CLUSTAL OMEGA 

and PEARSON (Smith and Waterman, 1981, Pearson and Lipman, 1988, Pearson, 

1991, Altschul et al., 1997, Sievers et al., 2011). The resulting information enables 

correlation of structures, function and common ancestry for highly similar sequences. 

Applying the 30% identity rule as the minimum for two sequences to be accepted as 

homologous (Pearson, 2013), the results from E11 sequence alignment analysis 

suggest that the E11 gene from mouse, human, cat, dog, sheep and horse can  be 

described as homologous. This agrees with other authors that have reported the E11 

gene to be highly conserved between species (Astarita et al., 2012).  

Nevertheless, with exception of dog samples, the SCB osteocytes of the species under 

study did not cross-react with anti-mouse or anti-human E11 antibodies. This might 

reflect the specific nature of the E11 epitope that the antibody was raised against 

(Kaneko et al., 2016). It may also reflect low reliability and accuracy of the percent 

identity analysis in sequence homology determination (Pearson, 2013); and the use of 

sequence homology as a tool in predicting antibody cross-reactivity (Sankian et al., 

2005).  

Sclerostin sequence alignment analysis also suggested that the sclerostin gene from 

mouse, human, cat, dog, sheep and horse could be described as homologous 

However, only the SCB osteocytes from human Sections with 88% identity cross-

reacted with anti-mouse sclerostin. This may be due to poor alignment of the 

antigenic epitopes specific to this antibody, as dog sclerostin was >90% identical to 

the mouse sequence and did not cross react. Also some authors have suggested that 
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antibody cross-reactivity potential can be influenced by factors like sequence 

similarity, analogous antigenic determinants, and structural compatibility like 

charges and shape (McClain, 2017). 

Tissue processing activities such as formalin fixation, EDTA decalcification, paraffin 

embedding and even Sectioning has been suggested to deleterious affect the quality 

of immunostaining (Hadjiargyrou et al., 2001). These processes especially formalin 

fixation cause tissue structure modification like protein cross-linking that have the 

tendency to massk antigenic epitopes. In addition to using proteolytic enzymes such 

as trypsin to break formalin induces bonds, several aqueous salts or known protein 

denaturing agents such as Tris-HCl, EDTA-NaOH and citrate buffer can also be used 

at high temperatures (Morgan et al., 1994, Pileri et al., 1997). In this Chapter, trypsin, 

EDTA, Tris EDTA and citrate buffers were used in an attempt to unmassk epitope 

site on canine SCB Sections for optimising anti-human E11 antibodies.  Only trypsin 

treated SCB Sections resulted in osteocytes that were positively immunostained.   

Earlier in this thesis (Chapter 3), FGF-2 showed capacity to regulate E11 in MC3T3 

osteoblast-like cells in vitro, but this correlation was not observed in the in vivo studies 

using Fgf-2 KO mice.  Redundancy amongst other members of the FGF family of 

growth factors was suggested as being responsible for this lack of FGF-2 effect. 

Extending the study further to determine if FGF-2 regulates osteocyte, E11 expression 

during OA was carried out on Fgf-2 KO mice using the DMM model.  Joint instability 

models of OA induction such as DMM has become a widely recognised procedure as 

it produces focal AC lesions, SCB sclerosis, osteophyte formation and pain (Inglis et 
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al., 2008, Little et al., 2009, Zhang et al., 2016).  In this project, the DMM samples from 

Fgf-2 KO and WT mice showed robust AC lesion; while the WT SCB showed sclerosis 

and reduced bone marrow, thus establishing that these samples indeed developed 

OA as has been previously published (Chia et al., 2009). The number of E11 positive 

osteocytes within SCB osteocytes was however not altered after DMM in the Fgf-2 KO 

mice. This result is not consistent with earlier findings of E11 gene down-regulation 

as measured by RT-PCR in the AC of Fgf-2 KO mice after DMM surgery (Chong et 

al., 2013). This may reflect differences method of calculating E11 expression as 

positive cells were counted here while Chong et al measured mRNA.  In addition, the 

differences in tissue types, as studies by Chong et al., involved the AC, rather than 

the SCB. While the possibility of AC contamination with some SCB tissue may be the 

source of E11 in the Chong et al study, as chondrocytes are not show not cytoplasmic 

extension such as dendrites or invadopodia that is a classical function of E11, but 

some authors have also E11 expression in foetal chondrocytes(Smith and Melrose, 

2011). 

It is worthy to note the significant increase in the number of E11 positive osteocytes 

within the SCB of Fgf-2 KO mice compared to the WT mice observed in the control 

joints. In Chapter 3, no differences in the number of E11 positive osteocytes between 

naïve Fgf-2 KO and WT mice was noted. This discrepancy may reflect an adjustment 

to loading on the contralateral knee in the non-operated knee joints. This raises the 

concern on the appropriateness of using the sham surgery or non-operated 

contralateral limb as a control during studies on DMM induced OA models in mice. 
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Specifically, the SCB sclerosis phenotype has been reported in both experimental and 

control limbs in the DMM model (Loeser et al., 2012, Fang and Beier, 2014, Miller et 

al., 2015). 

In this Chapter, whilst WT mice displayed SCB sclerosis after DMM, little sclerosis 

was observed in the Fgf-2 KO mice.  The absence of sclerosis in the Fgf-2 KO is 

consistent with a previous finding of reduced bone formation and fewer trabeculae 

with increased inter-trabeculae space in mice with Fgf-2 loss of function mutation 

(Montero et al., 2000). The authors attributed this structural feature to an imbalance 

in bone resorption than formation. Sclerostin is a well-recognised inhibitor of bone 

formation and acts via of the Wnt canonical pathway.  Sclerostin expression by 

osteocytes is down-regulated during loading which is likely to contribute to the bone 

anabolic response (Robling et al., 2008). During OA pathology, sclerostin expression 

is also down-regulated leading to the clasical SCB sclerosis (Jaiprakash et al., 2012). 

In this present, work the number of sclerostin positive osteocytes in the SCB 

osteocytes of WT and Fgf-2 KO mice after DMM surgery was similar. This lack of 

differential sclerostin expression in the WT mice after DMM on both lateral and 

medial sides has however also been previously noted in a study on SCB osteocyte 

during OA pathology (Jia et al., 2017). In the unoperated group, the lack of any 

difference in the sclerostin positive SCB osteocytes was quite intriguing and further 

studies are required to allow for quantification sclerostin positive SCB osteocytes in 

chronic OA samples. 
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In conclusion, the results of this Chapter have shown that E11 and sclerostin proteins 

from dog, cat, horse, sheep, man and mouse can be considered homologous. E11 

expression was altered during OA.  Specifically, the number of osteocytes expressing 

E11 was increased in the contralateral knee after DMM in Fgf-2 KO mice. This may 

reflect increased loading in the limb due to gait adjustment post-surgery.  In canine 

SCB osteocytes, an increased number of osteocytes positive for E11 suggests a role for 

this bone inhibitory protein in OA disease progression and this aspect is worthy of 

further examination.   
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6.1 General discussion  

The osteocyte is emerging as an important bone cell, with vital roles in regulating 

skeletal function both mechanically and biochemically (Bonewald, 2011, Plotkin and 

Bellido, 2016). Recent evidence has confirmed that bone is an endocrine organ 

regulating phosphate homeostasis (Karsenty and Ferron, 2012, Dallas et al., 2013). 

This emerging function of bone is also attributed to the osteocyte and its lacuna-

canaliculi dendrite network that enables the osteocytes to communicate with itself, 

osteoblasts, osteoclasts and other body organs, though secreted factors such as 

sclerostin, RANKL/OPG and FGF-23 (Bonewald, 2011, Compton and Lee, 2014, Guo 

and Yuan, 2015).  The development of this dendrite network is regulated by E11, an 

early osteocyte marker gene and the focus of this thesis (Zhang et al., 2006, Bonewald, 

2008). 

Whilst the stability of this dendrite linked lacuna-canaliculi network ensures effective 

bone homeostasis; its disruption is associated with adverse effects on bone 

architecture and skeletal health (Dallas et al., 2013, van Dijk et al., 2013, Staines et al., 

2017). High bone material quality has been correlated with dense dendrite networks, 

while the reverse is observed in loose networks (Kerschnitzki et al., 2013). Indeed 

there are a number of disorders associated with disrupted osteocyte dendrites 

including; osteoporosis presenting poorly oriented dendrites towards the vasculature 

with reduced interconnectivity; osteomalacia with an elevated number of dendrites 

that are hyper-connected; and osteoarthritis in which the dendrites are characterised 

by decreased number and morphology (Knothe Tate et al., 2004, Bonewald, 2004, 
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Bonewald, 2008, Jaiprakash et al., 2012). The data gathered in this thesis, will add to 

the body of knowledge in designing therapies related to dysregulated osteocyte 

communication networks in pathology.  

One of the predisposing factors to fracture is reduced bone quality and structural alteration 

(Rachner et al., 2011). Recent studies have revealed the relative importance of dendrites as 

regards to osteocyte viability, as a significant reduction in dendrite number is observed prior 

to decreases in cell density during ageing (Tiede-Lewis et al., 2017).  Moreover, a positive 

correlation has been established between the absence of dendrite development and bone 

fragility (Plotkin and Bellido, 2016). Ageing osteoporotic bones are characterised by reduced 

cortical thickness with enlarged diameter, elevated cortical porosity, and reduced trabecular 

bone volume to total volume (Kerschnitzki et al., 2013, Tiede-Lewis et al., 2017). This poor 

quality bone architecture is related to the reduced osteocyte dendritic network, which would 

reduce the bone’s mechanosensing ability and impair its response to loading (Noble et al., 

2003, Tatsumi et al., 2007, Adachi et al., 2009, Staines et al., 2017). From the work of this thesis, 

it can be speculated that the upregulation of E11 expression may reverse the osteocyte 

dendrite reduction in the ageing population - especially in female osteoporosis patients who 

are more at risk of bone fractures (Seeman, 2013, Black and Rosen, 2016, Tiede-Lewis et al., 

2017). This suggestion builds on the emerging function of osteocyte being the master 

regulator of bone remodelling and imbalances lead to diseases such as osteoporosis 

and OA. 

The osteocyte is able to regulate bone mineral homeostasis though its expression of 

FGF-23, a growth factor that has conferred on bone being ascribed the function as an 

endocrine organ (Teti and Zallone, 2009, Bonewald, 2011, Dallas et al., 2013, Plotkin 
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and Bellido, 2016). FGF-23 regulates phosphate reabsorption in the kidney tubules 

(Razzaque, 2009). Another mechanism central to whole body mineral regulation is 

the phenomenon of perilacunar remodelling, also referred to as osteocytic osteolysis 

(Bélanger et al., 1967, Teti and Zallone, 2009, Dallas et al., 2013). In this process, the 

osteocyte expresses known osteoclast makers like TRAP and cathepsin K, and 

dissolves mineral deposits in its lacuna (Wergedal and Baylink, 1969, Nakano et al., 

2004, Qing et al., 2012). This action releases minerals such as calcium into the 

circulation during lactation that is associated with high calcium demand (Kwiecinski 

et al., 1987, Qing et al., 2012). What is very remarkable about this mechanism is the 

ability of the osteocyte to exploit its huge surface area to have access to a large mineral 

deposit in the bone matrix (Kerschnitzki et al., 2013). Hence, the maintenance of the 

abundant dendrite network is key in the osteocyte regulation of body mineral 

balance; and the results from this thesis suggest that increased E11 expression may 

play a vital role in this.  

FGF-2 is one of the many growth factors described to be important for skeletal health 

where it has mitogenic potential in several types of mesenchymal cells (Rifkin and 

Moscatelli, 1989). In addition, FGF-2 plays a key role in the differentiation of skeletal 

cells such as osteoblasts during growth and development (Kyono et al., 2012). 

Therapeutically, the use of recombinant FGF-2 to manage traumatic bone injuries like 

fractures has provided a glimmer of hope for its use in other skeletal disorders 

(Einhorn and Gerstenfeld, 2015). In this thesis, FGF-2 upregulation of E11 expression 

and osteocytogenesis is suggestive of a possible physiological application for the 
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therapeutic use of FGF-2 in disorders of the osteocyte dendritic network previously 

discussed. This thesis speculatively revealed a strong influence of FGFR1 on FGF-2 

induced osteocytogenesis (Chapter 4), despite the published literature indicating a  

lack of consensus as to which FGFR is the most appropriate receptor to FGF-2 (Yang, 

2013). The implication of this is that it may be difficult to identify an appropriate 

target receptor for therapeutic evaluation in loss or gain of FGFR function with FGF-

2 signalling. It may also portend an advantage for using exogenous FGF-2, as more 

emphasis may be on the downstream signalling pathway to target when evaluating 

outcomes. This suggested emphasis on the downstream molecules may help 

circumvent the cautious opinion of some investigators on the potential difficulties of 

FGF-2 in biological therapeutics due to intricacy in receptor action profiles (Li et al., 

2012).  However, studies in human OA articular chondrocytes have made convincing 

arguments for the use of FGFR1 antagonist in designing OA therapeutic drugs. This 

suggestion was supported by findings that FGFR1 was the most expressed FGFR; and 

was associated with severe catabolic actions in the human OA articular cartilage 

when stimulated by both endogenous and exogenous FGF-2 (Yan et al., 2011, 

Nummenmaa et al., 2015). The discrepancy between my suggestion and the authors’ 

on therapeutic potential for FGFR1 may be related to difference in species, cell types 

and health status of the cells.  

The role of the SCB in the pathophysiology of OA is becoming more widely accepted 

(Kwan Tat et al., 2010). This may be a reflection of better tools for 

investigation/detection such as magnetic resonance imaging, microCT, and more 
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advanced animal models (Kwan Tat et al., 2010, Fang and Beier, 2014). Animal models 

have enabled the simulation of various human OA phenotypes for detailed 

investigation including spontaneously occurring, trauma induced, loading induced, 

and genetic manipulation. In OA pathology, SCB sclerosis is underpinned by 

dysregulated bone remodelling, potentially due to altered osteocytogenesis. In early 

OA, excessive remodelling results in a shift towards more bone resorption, however 

in late OA a switch to increased bone formation is seen, therefore resulting in SCB 

sclerosis (Bettica et al., 2002, Bouaziz et al., 2015).  

Sclerostin, a late osteocyte marker protein and Wnt signalling inhibitor, is down 

regulated during mechanical loading and OA pathophysiology (Poole et al., 2005, 

Bezooijen et al., 2005, Robling et al., 2008, Chan et al., 2011, Albisetti et al., 2013, Wu 

et al., 2016, Zarei et al., 2017). In view of the established role of the Wnt canonical 

pathway in regulating osteoblast differentiation and bone remodelling (Macsai et al., 

2008, Jin et al., 2015), it can be postulated that sclerostin modulation of Wnt signalling 

pathway in early OA may be a good target in reducing the development of sclerosis 

associated with late OA. The need for this approach has also been highlighted by 

other researchers including the possible use of recombinant sclerostin protein (Baker-

LePain and Lane, 2012, Wu et al., 2016). This becomes imperative as encouraging 

results are emerging from the use of sclerostin neutralising antibody in reversing 

bone loss (Eddleston et al., 2009, Li et al., 2009). 

Similarly, this thesis examined the possibility of E11 as a target for the prevention of 

OA pathology. Currently, the expression  of E11 in OA is largely unknown. As a 



Chapter 6: Final discussion 

 

210 
 

reduced number of osteocyte dendrites has been observed, it is plausible that the 

expression of E11 may be decreased (Jaiprakash et al., 2012). This reduction may 

dampen the bone’s response to loading during OA due to the known role of the 

osteocyte in this physiological process (Zhang et al., 2006). One can therefore 

speculate on the use of recombinant FGF-2 to induce increased dendrite number, with 

a possible focal reprogramming to normal osteocytogenesis in early OA. Whilst no 

differences were observed in E11 expression in the mouse and human samples, E11 

was significantly increased in canine OA samples in this thesis (Chapter 5). This 

therefore highlights the need to extend the study to ascertain if species differences or 

sample size (human), or methods of OA induction (mouse), and other variables such 

as stage of disease, inflammatory response, sex, age, and sample anatomic location in 

the joint may all be contributing to these contrasting observations. 

In conclusion, this thesis has identified FGF-2 as a regulator of increased E11 

expression and osteocytogenesis speculatively though FGFR1. While the increased 

expression of E11 upregulated osteocyte dendrite formation was established in this 

thesis and corroborated by previous workers, the data on FGFR1 speculatively 

mediating this expression has added to the ongoing debate on the precise FGF-2 

receptor. Nevertheless, the upregulation of some downstream molecules like ERK1/2, 

Akt and p38 MAPK during this process of osteocytogenesis, confers on FGF-2 the 

ability to play a crucial role in the maintenance of the osteocyte network. However, 

some questions remain largely unanswered including if a specific downstream 

molecule like ERK1/2, Akt and p38 MAPK or combination mediates this effect on 



Chapter 6: Final discussion 

 

211 
 

increased E11 expression  and increased dendrite formation. Also unresolved is the 

actual nature of E11 expression  during OA pathology.  The findings of this thesis 

adds to our body of knowledge on the potential of recombinant FGF-2 as a therapeutic 

agent targeting osteocyte network related bone disorders such as osteoporosis and 

osteoarthritis. 

6.2 Directions for future research  

The results presented in this thesis have identified a role for FGF-2 in regulating 

osteocytogenesis. They have pinpointed this functional role to be mediated though 

the expression of E11. However, further work is necessary to fully elucidate the 

signalling mechanisms underpinning this, and the functional role, which this may 

play in OA. 

Certainly, the investigation of other FGF-2 responsive signalling pathways in 

osteoblasts would be of great benefit in furthering our understanding of FGF-2 

mediated osteocytogenesis. The activation of Runx2 in response to FGF-2 stimulation 

of MC3T3 osteoblast-like cells is associated with upregulation of the gap junction 

protein connexion 43 that activates ERK1/2 and PKC δ pathways. PKC signalling, 

which is also associated with RhoA/ERM, has been seen to regulate cell membrane 

protrusion and eventual cell motility (Revenu et al., 2004). This makes a case for 

further studies investigating PKC δ ability to mediate FGF-2 stimulation of E11 

expression and osteocytogenesis (Lima et al., 2009, Hebert and Stains, 2013, Capulli 

et al., 2014). In this thesis, Fgfr1 had over a 10-fold increase in expression after 
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stimulation with FGF-2 in comparison with other receptors. Therefore, more studies 

using specific Fgfr1 inhibitors will help decipher its relative importance. In addition, 

primary osteoblasts from Fgfr1 loss of function mutation could be stimulated with   

FGF-2 to observe its effect on E11 expression and dendrite formation.  

Previous studies have shown that FGF-2 upregulates Dmp1 though ERK1/2 (Kyono 

et al., 2012). This may help explain the upregulation of Dmp1 by FGF-2 in this thesis 

despite E11 knock down using E11 siRNA (Chapter 3), as the two genes are possibly 

stimulated though the same ERK1/2 pathway (Kyono et al., 2012). In addition, it is 

possible that residual expression  of E11 is enough to drive the up-regulation of other 

osteocyte markers (Staines et al., 2017). To help establish further the role of E11 in 

osteoblast to osteocyte transition in vitro, the use of gene editing tools like Clustered 

Regularly Interspersed Palindromic Repeats (CRISPR)/ CRISPR-associated protein-9 

nuclease (Cas9), generally referred to as CRISPR/Cas9, may be of immense benefit 

(Sander and Joung, 2014). Also, it will important to induce OA in E11 conditional 

knock out (E11 cKO) mice  as the results from our study using the hypomorphic 

conditional deletion of E11 in bone revealed a reduction in osteocyte dendrite volume, 

length, and response to loading (Staines et al., 2017).  

As reported in this thesis, the induction of OA with the use of the DMM model as 

showed no differences in SCB osteocyte immunolabelling of E11 and sclerostin in Fgf-

2 KO and WT mice. However, the results from E11 immunolabelling showed 

contrasting results in the WT mice in Chapters 3 & 5; E11 was increased in the WT 

versus Fgf-2 KO sham mice in the DMM study, while the naïve mice showed no 
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difference. This discrepancy may reflect an adjustment to loading on the contralateral 

knee in the unoperated knee joints. It would therefore be interesting to adopt a 

loading method in the Fgf-2 KO mice to examine the effects of Fgf-2 deletion on the 

bones response to loading, and loading induced OA. This may then also provide key 

insights into the role of E11 in these processes.  



Reference list  

 

214 
 

Reference list 

ADACHI, T., AONUMA, Y., TANAKA, M., HOJO, M., TAKANO-YAMAMOTO, T. & KAMIOKA, H. 
2009. Calcium response in single osteocytes to locally applied mechanical stimulus: 
Differences in cell process and cell body. Journal of Biomechanics, 42, 1989-1995. 

ALBISETTI, W., GIARRATANA, L. S., VIGANÒ, C., CASTIGLIONI, S. & MAIER, J. A. 2013. 
Sclerostin: A Novel Player Regulating Bone Mass in Inflammation? European Journal 
of Inflammation, 11, 345-352. 

ALESSI, D. R., CUENDA, A., COHEN, P., DUDLEY, D. T. & SALTIEL, A. R. 1995. PD 098059 is a 
specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro 
and in vivo. Journal of Biological Chemistry, 270, 27489-27494. 

ALLAN, L. A., MORRICE, N., BRADY, S., MAGEE, G., PATHAK, S. & CLARKE, P. R. 2003. Inhibition 
of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nature Cell Biology, 
5, 647-654. 

ALTSCHUL, S. F., MADDEN, T. L., SCHÄFFER, A. A., ZHANG, J., ZHANG, Z., MILLER, W. & 
LIPMAN, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein 
database search programs. Nucleic Acids Research, 25, 3389-3402. 

ANASTASIADIS, P. Z., MOON, S. Y., THORESON, M. A., MARINER, D. J., CRAWFORD, H. C., 
ZHENG, Y. & REYNOLDS, A. B. 2000. Inhibition of RhoA by p120 catenin. Nature Cell 
Biology, 2, 637-644. 

ANDERSON, H. C. 2003. Matrix vesicles and calcification. Current Rheumatology Reports, 5, 
222-226. 

ANDERSON, H. C., HSU, H. H., MORRIS, D. C., FEDDE, K. N. & WHYTE, M. P. 1997. Matrix 
vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral 
crystals. The American Journal of Pathology, 151, 1555-1561. 

ANDERSON, H. C., SIPE, J. B., HESSLE, L., DHAMYAMRAJU, R., ATTI, E., CAMACHO, N. P. & LUIS 
MILLÁN, J. 2004. Impaired Calcification Around Matrix Vesicles of Growth Plate and 
Bone in Alkaline Phosphatase-Deficient Mice. The American Journal of Pathology, 
164, 841-847. 

APPLETON, C. T. G., PITELKA, V., HENRY, J. & BEIER, F. 2007. Global analyses of gene 
expression in early experimental osteoarthritis. Arthritis & Rheumatism, 56, 1854-
1868. 

APPLEYARD, R. C., GHOSH, P. & SWAIN, M. V. 1999. Biomechanical, histological and 
immunohistological studies of patellar cartilage in an ovine model of osteoarthritis 
induced by lateral meniscectomy. Osteoarthritis and Cartilage, 7, 281-294. 

ARMELIN, H. A. 1973. Pituitary extracts and steroid hormones in the control of 3T3 cell 
growth. Proceedings of the National Academy of Sciences of the United States of 
America, 70, 2702-2706. 

ARRINGTON, A. K., HEINRICH, E. L., LEE, W., DULDULAO, M., PATEL, S., SANCHEZ, J., GARCIA-
AGUILAR, J. & KIM, J. 2012. Prognostic and predictive roles of KRAS mutation in 
colorectal cancer. International Journal of Molecular Sciences, 13, 12153-12168. 

ASHRAF, S., MAPP, P. I. & WALSH, D. A. 2011. Contributions of angiogenesis to inflammation, 
joint damage, and pain in a rat model of osteoarthritis. Arthritis & Rheumatology, 63, 
2700-2710. 

ASTARITA, J. L., ACTON, S. E. & TURLEY, S. J. 2012. Podoplanin: emerging functions in 
development, the immune system, and cancer. Frontiers in Immunology, 3, 283. 

BAKER-LEPAIN, J. C. & LANE, N. E. 2012. Role of Bone Architecture and Anatomy in 
Osteoarthritis. Bone, 51, 197-203. 



Reference list  

 

215 
 

BAKKER, A. D., SOEJIMA, K., KLEIN-NULEND, J. & BURGER, E. H. 2001. The production of nitric 
oxide and prostaglandin E2 by primary bone cells is shear stress dependent. Journal 
of Biomechanics, 34, 671-677. 

BALDARI, S., UBERTINI, V., GARUFI, A., D'ORAZI, G. & BOSSI, G. 2015. Targeting MKK3 as a 
novel anticancer strategy: molecular mechanisms and therapeutical implications. 
Cell Death & Disease, 6, e1621. 

BANCROFT, L. W., PETERSON, J. J. & KRANSDORF, M. 2004. Cysts, geodes, and erosions. 
Radiologic Clinics of North America, 42, 73-87. 

BARON, R. & KNEISSEL, M. 2013. WNT signaling in bone homeostasis and disease: from 
human mutations to treatments. Nature Medicine, 19, 179-192. 

BEENKEN, A. & MOHAMMADI, M. 2009. The FGF family: biology, pathophysiology and 
therapy. Nature Reviews Drug Discovery, 8, 235-253. 

BEHR, B., PANETTA, N. J., LONGAKER, M. T. & QUARTO, N. 2010. Different endogenous 
threshold levels of Fibroblast Growth Factor-ligands determine the healing potential 
of frontal and parietal bones. Bone, 47, 281-294. 

BÉLANGER, L. F., BÉLANGER, C. & SEMBA, T. 1967. Technical approaches leading to the 
concept of osteocytic osteolysis. Clinical Orthopaedics and Related Research, 54, 
187-196. 

BENITO, M., VEALE, D., FITZGERALD, O., VAN DEN BERG, W. B. & BRESNIHAN, B. 2005. 
Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic 
Diseases, 64, 1263-1267. 

BERTOZZI, C. C., SCHMAIER, A. A., MERICKO, P., HESS, P. R., ZOU, Z., CHEN, M., CHEN, C.-Y., 
XU, B., LU, M.-M., ZHOU, D., SEBZDA, E., SANTORE, M. T., MERIANOS, D. J., 
STADTFELD, M., FLAKE, A. W., GRAF, T., SKODA, R., MALTZMAN, J. S., KORETZKY, G. 
A. & KAHN, M. L. 2010. Platelets regulate lymphatic vascular development through 
CLEC-2–SLP-76 signaling. Blood, 116, 661-670. 

BETTICA, P., CLINE, G., HART, D. J., MEYER, J. & SPECTOR, T. D. 2002. Evidence for increased 
bone resorption in patients with progressive knee osteoarthritis: Longitudinal results 
from the Chingford study. Arthritis & Rheumatism, 46, 3178-3184. 

BEZOOIJEN, R. L. V., DIJKE, P. T., PAPAPOULOS, S. E. & G.M. LÖWIK, C. W. 2005. 
SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. 
Cytokine & Growth Factor Reviews, 16, 319-327. 

BHATIA, A., ALBAZZAZ, M., ESPINOZA ORÍAS, A. A., INOUE, N., MILLER, L. M., ACERBO, A., 
GEORGE, A. & SUMNER, D. R. 2012. Overexpression of DMP1 Accelerates 
Mineralization and Alters Cortical Bone Biomechanical Properties in Vivo. Journal of 
the Mechanical Behavior of Biomedical Materials, 5, 1-8. 

BI, W., DENG, J. M., ZHANG, Z., BEHRINGER, R. R. & DE CROMBRUGGHE, B. 1999. Sox9 is 
required for cartilage formation. Nature Genetics, 22, 85-89. 

BIRKENKAMP, K. U., TUYT, L. M. L., LUMMEN, C., WIERENGA, A. T. J., KRUIJER, W. & 
VELLENGA, E. 2000. The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-
kappa B transcriptional activity by a non-specific effect upon the ERK pathway. British 
Journal of Pharmacology, 131, 99-107. 

BLACK, D. M. & ROSEN, C. J. 2016. Postmenopausal Osteoporosis. New England Journal of 
Medicine, 374, 254-262. 

BLANEY DAVIDSON, E. N., VAN DER KRAAN, P. M. & VAN DEN BERG, W. B. 2007. TGF-beta 
and osteoarthritis. Osteoarthritis Cartilage, 15, 597-604. 

BLOM, A. B., BROCKBANK, S. M., VAN LENT, P. L., VAN BEUNINGEN, H. M., GEURTS, J., 
TAKAHASHI, N., VAN DER KRAAN, P. M., VAN DE LOO, F. A., SCHREURS, B. W., 
CLEMENTS, K., NEWHAM, P. & VAN DEN BERG, W. B. 2009. Involvement of the Wnt 



Reference list  

 

216 
 

signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-
induced signaling protein 1. Arthritis & Rheumatism, 60, 501-512. 

BODINE, P. V., ZHAO, W., KHARODE, Y. P., BEX, F. J., LAMBERT, A. J., GOAD, M. B., GAUR, T., 
STEIN, G. S., LIAN, J. B. & KOMM, B. S. 2004. The Wnt antagonist secreted frizzled-
related protein-1 is a negative regulator of trabecular bone formation in adult mice. 
Molecular Endocrinology, 18, 1222-1237. 

BONEWALD, L. 2006. Osteocytes as multifunctional cells. Journal of musculoskeletal & 
neuronal interactions, 6, 331-333. 

BONEWALD, L. F. 2004. Osteocyte biology: its implications for osteoporosis. Journal of 
Musculoskeletal and Neuronal Interactions, 4, 101-104. 

BONEWALD, L. F. 2008. CHAPTER 8 - Osteocytes A2 - MARCUS, ROBERT. In: FELDMAN, D., 
NELSON, D. A. & ROSEN, C. J. (eds.) Osteoporosis (Third Edition). San Diego: Academic 
Press. 

BONEWALD, L. F. 2011. The Amazing Osteocyte. Journal of Bone and Mineral Research, 26, 
229-238. 

BONEWALD, L. F. & JOHNSON, M. L. 2008. Osteocytes, Mechanosensing and Wnt Signaling. 
Bone, 42, 606-615. 

BOTTCHER, R. T. & NIEHRS, C. 2005. Fibroblast growth factor signaling during early vertebrate 
development. Endocrine Reviews, 26, 63-77. 

BOTTER, S. M., GLASSON, S. S., HOPKINS, B., CLOCKAERTS, S., WEINANS, H., VAN LEEUWEN, 
J. P. & VAN OSCH, G. J. 2009. ADAMTS5-/- mice have less subchondral bone changes 
after induction of osteoarthritis through surgical instability: implications for a link 
between cartilage and subchondral bone changes. Osteoarthritis Cartilage, 17, 636-
645. 

BOUAZIZ, W., FUNCK-BRENTANO, T., LIN, H., MARTY, C., EA, H. K., HAY, E. & COHEN-SOLAL, 
M. 2015. Loss of sclerostin promotes osteoarthritis in mice via beta-catenin-
dependent and -independent Wnt pathways. Arthritis Research & Therapy, 17, 24. 

BRADBEER, J. N., DUNHAM, J., FISCHER, J. A., NAGANT DE DEUXCHAISNES, C. & LOVERIDGE, 
N. 1988. The metatarsal cytochemical bioassay of parathyroid hormone: validation, 
specificity, and application to the study of pseudohypoparathyroidism type I. Journal 
of Clinical Endocrinology and Metabolism, 67, 1237-1243. 

BRANDI, M. L. 2009. Microarchitecture, the key to bone quality. Rheumatology, 48, iv3-iv8. 
BREITENEDER-GELEFF, S., MATSUI, K., SOLEIMAN, A., MERANER, P., POCZEWSKI, H., KALT, R., 

SCHAFFNER, G. & KERJASCHKI, D. 1997. Podoplanin, novel 43-kd membrane protein 
of glomerular epithelial cells, is down-regulated in puromycin nephrosis. The 
American Journal of Pathology, 151, 1141-1152. 

BRIGHTON, C. T. & ROBERT, M. H. 1986. Histochemical localization of calcium in the fracture 
callus with potassium pyroantimonate: possible role of chondrocyte mitochondrial 
calcium in callus calcification. The Journal of Bone and Joint Surgery, 68-A, 703-715. 

BRIGHTON, C. T. & ROBERT, M. H. 1991. "Early histological and ultrastructural changes in 
medullary fracture callus",. The Journal of Bone and Joint Surgery, 73-A, 832-847. 

BRUNKOW, M. E., GARDNER, J. C., VAN NESS, J., PAEPER, B. W., KOVACEVICH, B. R., PROLL, 
S., SKONIER, J. E., ZHAO, L., SABO, P. J., FU, Y.-H., ALISCH, R. S., GILLETT, L., COLBERT, 
T., TACCONI, P., GALAS, D., HAMERSMA, H., BEIGHTON, P. & MULLIGAN, J. T. 2001. 
Bone Dysplasia Sclerosteosis Results from Loss of the SOST Gene Product, a Novel 
Cystine Knot–Containing Protein. American Journal of Human Genetics, 68, 577-589. 

BUCKWALTER, J. A. & MARTIN, J. A. 2006. Osteoarthritis. Advanced Drug Delivery Reviews, 
58, 150-167. 



Reference list  

 

217 
 

BURKE, D., WILKES, D., BLUNDELL, T. L. & MALCOLM, S. 1998. Fibroblast growth factor 
receptors: lessons from the genes. Trends in Biochemical Sciences, 23, 59-62. 

BURLEIGH, A., CHANALARIS, A., GARDINER, M. D., DRISCOLL, C., BORUC, O., SAKLATVALA, J. 
& VINCENT, T. L. 2012. Joint immobilization prevents murine osteoarthritis and 
reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis 
& Rheumatism, 64, 2278-2288. 

BURR, D. B. 2004. Anatomy and physiology of the mineralized tissues: Role in the 
pathogenesis of osteoarthrosis. Osteoarthritis and Cartilage, 12, 20-30. 

BURR, D. B. & GALLANT, M. A. 2012. Bone remodelling in osteoarthritis. Nature Reviews 
Rheumatology, 8, 665-673. 

BURRA, S., NICOLELLA, D. P., FRANCIS, W. L., FREITAS, C. J., MUESCHKE, N. J., POOLE, K. & 
JIANG, J. X. 2010. Dendritic processes of osteocytes are mechanotransducers that 
induce the opening of hemichannels. Proceedings of the National Academy of 
Sciences of the United States of America, 107, 13648-13653. 

CAPULLI, M., PAONE, R. & RUCCI, N. 2014. Osteoblast and osteocyte: games without 
frontiers. Archives of Biochemistry and Biophysics, 561, 3-12. 

CARRINO, J. A., BLUM, J., PARELLADA, J. A., SCHWEITZER, M. E. & MORRISON, W. B. 2006. 
MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. 
Osteoarthritis Cartilage, 14, 1081-1085. 

CATTORETTI, G., PILERI, S., PARRAVICINI, C., BECKER, M. H. G., POGGI, S., BIFULCO, C., KEY, 
G., D'AMATO, L., SABATTINI, E., FEUDALE, E., REYNOLDS, F., GERDES, J. & RILKE, F. 
1993. Antigen unmasking on formalin-fixed, paraffin-embedded tissue sections. The 
Journal of Pathology, 171, 83-98. 

CHAN, B. Y., FULLER, E. S., RUSSELL, A. K., SMITH, S. M., SMITH, M. M., JACKSON, M. T., CAKE, 
M. A., READ, R. A., BATEMAN, J. F., SAMBROOK, P. N. & LITTLE, C. B. 2011. Increased 
chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. 
Osteoarthritis Cartilage, 19, 874-885. 

CHANG, L. & KARIN, M. 2001. Mammalian MAP kinase signalling cascades. Nature., 410, 37-
40. 

CHAUDHARY, L. R. & HRUSKA, K. A. 2001. The Cell Survival Signal Akt is Differentially Activated 
by PDGF-BB, EGF, and FGF-2 in Osteoblastic Cells. Journal of Cellular Biochemistry, 
81, 304-311. 

CHEN, F., GUO, R., ITOH, S., MORENO, L., ROSENTHAL, E., ZAPPITELLI, T., ZIRNGIBL, R. A., 
FLENNIKEN, A., COLE, W., GRYNPAS, M., OSBORNE, L. R., VOGEL, W., ADAMSON, L., 
ROSSANT, J. & AUBIN, J. E. 2014. First Mouse Model for Combined Osteogenesis 
Imperfecta and Ehlers-Danlos Syndrome. Journal of Bone and Mineral Research, 29, 
1412-1423. 

CHEN, J. R., PLOTKIN, L. I., AGUIRRE, J. I., HAN, L., JILKA, R. L., KOUSTENI, S., BELLIDO, T. & 
MANOLAGAS, S. C. 2005. Transient versus sustained phosphorylation and nuclear 
accumulation of ERKs underlie anti-versus pro-apoptotic effects of estrogens. Journal 
of Biological Chemistry, 280, 4632-4638. 

CHIA, S. L., SAWAJI, Y., BURLEIGH, A., MCLEAN, C., INGLIS, J., SAKLATVALA, J. & VINCENT, T. 
2009. Fibroblast growth factor 2 is an intrinsic chondroprotective agent that 
suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis. 
Arthritis & Rheumatology, 60, 2019-2027. 

CHOI, S. C., KIM, S. J., CHOI, J. H., PARK, C. Y., SHIM, W. J. & LIM, D. S. 2008. Fibroblast growth 
factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells 
by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells and 
Development, 17, 725-736. 



Reference list  

 

218 
 

CHONG, K. W., CHANALARIS, A., BURLEIGH, A., JIN, H., WATT, F. E., SAKLATVALA, J. & 
VINCENT, T. L. 2013. Fibroblast growth factor 2 drives changes in gene expression 
following injury to murine cartilage in vitro and in vivo. Arthritis and Rheumatism, 65, 
2346-2355. 

CLARKE, B. 2008. Normal Bone Anatomy and Physiology. Clinical Journal of the American 
Society of Nephrology, 3, S131-S139. 

CLARKE, S. P., MELLOR, D., CLEMENTS, D. N., GEMMILL, T., FARRELL, M., CARMICHAEL, S. & 
BENNETT, D. 2005. Prevalence of radiographic signs of degenerative joint disease in 
a hospital population of cats. Veterinary Record, 157, 793-799. 

CLEMENTS, D. N., FITZPATRICK, N., CARTER, S. D. & DAY, P. J. R. 2009. Cartilage gene 
expression correlates with radiographic severity of canine elbow osteoarthritis. The 
Veterinary Journal, 179, 211-218. 

COFFIN, J. D., FLORKIEWICZ, R. Z., NEUMANN, J., MORT-HOPKINS, T., DORN, G. W., 
LIGHTFOOT, P., GERMAN, R., HOWLES, P. N., KIER, A. & O'TOOLE, B. A. 1995. 
Abnormal bone growth and selective translational regulation in basic fibroblast 
growth factor (FGF-2) transgenic mice. Molecular Biology of the Cell, 6, 1861-1873. 

COMPTON, J. T. & LEE, F. Y. 2014. A Review of Osteocyte Function and the Emerging 
Importance of Sclerostin. The Journal of Bone and Joint Surgery. American Volume, 
96, 1659-1668. 

COWAN, C. M., QUARTO, N., WARREN, S. M., SALIM, A. & LONGAKER, M. T. 2003. Age-related 
Changes in the Biomolecular Mechanisms of Clvarial Osteoblast Biology Affect 
Fibroblast Growth Factor-2 Signaling and Osteogenesis. Journal of Biological 
Chemistry, 278, 32005-32013. 

CUENDA, A. & ROUSSEAU, S. 2007. p38 MAP-Kinases pathway regulation, function and role 
in human diseases. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 
1773, 1358-1375. 

DAILEY, L., AMBROSETTI, D., MANSUKHANI, A. & BASILICO, C. 2005. Mechanisms underlying 
differential responses to FGF signaling. Cytokine & Growth Factor Reviews, 16, 233-
247. 

DALLAS, S. L. & BONEWALD, L. F. 2010. Dynamics of the transition from osteoblast to 
osteocyte. Annals of the New York Academy of Sciences, 1192, 437-443. 

DALLAS, S. L., PRIDEAUX, M. & BONEWALD, L. F. 2013. The Osteocyte: An Endocrine Cell … 
and More. Endocrine Reviews, 34, 658-690. 

DE VERNEJOUL, M. C. 1998. Bone Structure and Function. In: Geusens P. (eds) Osteoporosis 
in Clinical Practice. Springer, London, 1-4. 

DEBIAIS, F., LEFEVRE, G., LEMONNIER, J., LE MEE, S., LASMOLES, F., MASCARELLI, F. & MARIE, 
P. J. 2004. Fibroblast growth factor-2 induces osteoblast survival through a 
phosphatidylinositol 3-kinase-dependent, -beta-catenin-independent signaling 
pathway. Experimental Cell Research, 297, 235-246. 

DEBIAIS, F., LEMONNIER, J., HAY, E., DELANNOY, P., CAVERZASIO, J. & MARIE, P. J. 2001. 
Fibroblast growth factor-2 (FGF-2) increases N-cadherin expression through protein 
kinase C and Src-kinase pathways in human calvaria osteoblasts. Journal of Biological 
Chemistry, 81, 68-81. 

DECKER, R. S., KOYAMA, E. & PACIFICI, M. 2014. Genesis and morphogenesis of limb synovial 
joints and articular cartilage. Matrix Biology, 39, 5-10. 

DOKLADDA, K., GREEN, K. A., PAN, D. A. & HARDIE, D. G. 2005. PD98059 and U0126 activate 
AMP-activated protein kinase by increasing the cellular AMP:ATP ratio and not via 
inhibition of the MAP kinase pathway. FEBS Letters, 579, 236-240. 



Reference list  

 

219 
 

DUCY, P. 2000. Cbfa1: a molecular switch in osteoblast biology. Developmental Dynamics, 
219, 461-471. 

DUCY, P., DESBOIS, C., BOYCE, B., PINERO, G., STORY, B., DUNSTAN, C., SMITH, E., BONADIO, 
J., GOLDSTEIN, S., GUNDBERG, C., BRADLEY, A. & KARSENTY, G. 1996. Increased bone 
formation in osteocalcin-deficient mice. Nature, 382, 448-452. 

DUCY, P., ZHANG, R., GEOFFROY, V., RIDALL, A. L. & KARSENTY, G. 1997. Osf2/Cbfa1: A 
Transcriptional Activator of Osteoblast Differentiation. Cell, 89, 747-754. 

DUDLEY, H. R. & SPIRO, D. 1961. The fine structure of bone cells. Journal of Biophysical and 
Biochemical Cytology, 11, 627-649. 

EDA, H., AOKI, K., MARUMO, K., FUJII, K. & OHKAWA, K. 2008. FGF-2 signaling induces 
downregulation of TAZ protein in osteoblastic MC3T3-E1 cells. Biochemical and 
Biophysical Research Communications, 366, 471-475. 

EDDLESTON, A., MARENZANA, M., MOORE, A. R., STEPHENS, P., MUZYLAK, M., MARSHALL, 
D. & ROBINSON, M. K. 2009. A Short Treatment With an Antibody to Sclerostin Can 
Inhibit Bone Loss in an Ongoing Model of Colitis. Journal of Bone and Mineral 
Research, 24, 1662-1671. 

EIMAR, H., TAMIMI, F., RETROUVEY, J. M., RAUCH, F., AUBIN, J. E. & MCKEE, M. D. 2016. 
Craniofacial and Dental Defects in the Col1a1Jrt/+ Mouse Model of Osteogenesis 
Imperfecta. Journal of Dental Research, 95, 761-768. 

EINHORN, T. A. & GERSTENFELD, L. C. 2015. Fracture healing: mechanisms and interventions. 
Nature reviews. Rheumatology, 11, 45-54. 

EKWALL, A. K., EISLER, T., ANDERBERG, C., JIN, C., KARLSSON, N., BRISSLERT, M. & 
BOKAREWA, M. I. 2011. The tumour-associated glycoprotein podoplanin is expressed 
in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid 
arthritis. Arthritis Research & Therapy, 13, R40. 

ENGLISH, J., PEARSON, G., WILSBACHER, J., SWANTEK, J., KARANDIKAR, M., XU, S. & COBB, 
M. H. 1999. New insights into the control of MAP kinase pathways. Experimental Cell 
Research, 253, 255-270. 

ESWARAKUMAR, V. P., MONSONEGO-ORNAN, E., PINES, M., ANTONOPOULOU, I., MORRISS-
KAY, G. M. & LONAI, P. 2002. The IIIc alternative of Fgfr2 is a positive regulator of 
bone formation. Development., 129, 3783-3793. 

FAKHRY, A., RATISOONTORN, C., VEDHACHALAM, C., SALHAB, I., KOYAMA, E., LEBOY, P., 
PACIFICI, M., KIRSCHNER, R. E. & NAH, H. D. 2005. Effects of FGF-2/-9 in calvarial bone 
cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of 
BMP-2 and noggin, and enhancement of osteogenic potential. Bone, 36, 254-266. 

FANG, H. & BEIER, F. 2014. Mouse models of osteoarthritis: modelling risk factors and 
assessing outcomes. Nature Reviews Rheumatology, 10, 413. 

FANG, M. A., GLACKIN, C. A., SADHU, A. & MCDOUGALL, S. 2001. Transcriptional Regulation 
of Alpha 2(I) Collagen Gene Expression by Fibroblast Growth Factor-2 in MC3T3-E1 
Osteoblast-like Cells. The Journal of Cellular Biochemistry, 80, 550-559. 

FARR, A., NELSON, A. & HOSIER, S. 1992. Characterization of an Antigenic Determinant 
Preferentially Expressed by Type I Epithelial Cells in the Murine Thymus. The Journal 
of Histochemistry and Cytochemistry, 40, 651-664. 

FAVATA, M. F., HORIUCHI, K. Y., MANOS, E. J., DAULERIO, A. J., STRADLEY, D. A., FEESER, W. 
S., VAN DYK, D. E., PITTS, W. J., EARL, R. A., HOBBS, F., COPELAND, R. A., MAGOLDA, 
R. L., SCHERLE, P. A. & TRZASKOS, J. M. 1998. Identification of a novel inhibitor of 
mitogen-activated protein kinase kinase. The Journal of Biological Chemistry, 273, 
18623-18632. 



Reference list  

 

220 
 

FEI, Y. & HURLEY, M. M. 2012. Role of fibroblast growth factor 2 and Wnt signaling in anabolic 
effects of parathyroid hormone on bone formation. The Journal of Cellular Physiology 
227, 3539-3545. 

FEI, Y., XIAO, L., DOETSCHMAN, T., COFFIN, D. J. & HURLEY, M. M. 2011. Fibroblast growth 
factor 2 stimulation of osteoblast differentiation and bone formation is mediated by 
modulation of the Wnt signaling pathway. The Journal of Biological Chemistry, 286, 
40575-40583. 

FELSON, D. T., GALE, D. R., ELON GALE, M., NIU, J., HUNTER, D. J., GOGGINS, J. & LAVALLEY, 
M. P. 2005. Osteophytes and progression of knee osteoarthritis. Rheumatology 
(Oxford), 44, 100-104. 

FENG, J. Q., WARD, L. M., LIU, S., LU, Y., XIE, Y., YUAN, B., YU, X., RAUCH, F., DAVIS, S. I., 
ZHANG, S., RIOS, H., DREZNER, M. K., QUARLES, L. D., BONEWALD, L. F. & WHITE, K. 
E. 2006. Loss of DMP1 causes rickets and osteomalacia and identifies a role for 
osteocytes in mineral metabolism. Nature Genetics, 38, 1310-1315. 

FENG, X. 2009. Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and 
Disease. Current Chemical Biology, 3, 189-196. 

FERNÁNDEZ-MUÑOZ, B., YURRITA, M. M., MARTÍN-VILLAR, E., CARRASCO-RAMÍREZ, P., 
MEGÍAS, D., RENART, J. & QUINTANILLA, M. 2011. The transmembrane domain of 
podoplanin is required for its association with lipid rafts and the induction of 
epithelial-mesenchymal transition. The International Journal of Biochemistry & Cell 
Biology, 43, 886-896. 

FERREIRO, I., JOAQUIN, M., ISLAM, A., GOMEZ-LOPEZ, G., BARRAGAN, M., LOMBARDÍA, L., 
DOMÍNGUEZ, O., PISANO, D. G., LOPEZ-BIGAS, N., NEBREDA, A. R. & POSAS, F. 2010. 
Whole genome analysis of p38 SAPK-mediated gene expression upon stress. BMC 
Genomics, 11, 144. 

FINDLAY, D. M. 2007. Vascular pathology and osteoarthritis. Rheumatology (Oxford), 46, 
1763-1768. 

FINDLAY, D. M. 2013. Long overlooked: the role of subchondral bone in osteoarthritis 
pathophysiology and pain. Medicographia, 35, 221-227. 

FINDLAY, D. M. & ATKINS, G. J. 2014. Osteoblast-Chondrocyte Interactions in Osteoarthritis. 
Current Osteoporosis Reports, 12, 127-134. 

FISK, M., GAJENDRAGADKAR, P. R., MÄKI-PETÄJÄ, K. M., WILKINSON, I. B. & CHERIYAN, J. 
2014. Therapeutic Potential of p38 MAP Kinase Inhibition in the Management of 
Cardiovascular Disease. American Journal of Cardiovascular Drugs, 14, 155-165. 

FLETCHER, D. A. & MULLINS, R. D. 2010. Cell mechanics and the cytoskeleton. Nature, 463, 
485-492. 

FLORENCIO-SILVA, R., SASSO, G. R., SASSO-CERRI, E., SIMOES, M. J. & CERRI, P. S. 2015. 
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. 
BioMed Research International, 2015, 421746. 

FORTIER, L. A., BARKER, J. U., STRAUSS, E. J., MCCARREL, T. M. & COLE, B. J. 2011. The Role 
of Growth Factors in Cartilage Repair. Clinical Orthopaedics and Related Research, 
469, 2706-2715. 

FRANZ-ODENDAAL, T. A., HALL, B. K. & WITTEN, P. E. 2006. Buried alive: how osteoblasts 
become osteocytes. Developmental dynamics, 235, 176-190. 

FUKAZAWA, H., NOGUCHI, K., MURAKAMI, Y. & UEHARA, Y. 2002. Mitogen-activated 
protein/extracellular signal-regulated kinase kinase (MEK) inhibitors restore anoikis 
sensitivity in human breast cancer cell lines with a constitutively activated 
extracellular-regulated kinase (ERK) pathway. Molecular Cancer Therapeutics, 1, 303-
309. 



Reference list  

 

221 
 

FUNCK-BRENTANO, T. & COHEN-SOLAL, M. 2011. Crosstalk between cartilage and bone: 
when bone cytokines matter. Cytokine & Growth Factor Reviews 22, 91-97. 

GARUFI, A., PUCCI, D., D'ORAZI, V., CIRONE, M., BOSSI, G., AVANTAGGIATI, M. L. & D'ORAZI, 
G. 2014. Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell 
Death & Disease, 5, e1271. 

GATTINENI, J., BATES, C., TWOMBLEY, K., DWARAKANATH, V., ROBINSON, M. L., GOETZ, R., 
MOHAMMADI, M. & BAUM, M. 2009. FGF23 decreases renal NaPi-2a and NaPi-2c 
expression and induces hypophosphatemia in vivo predominantly via FGF receptor 
1. American Journal of Physiology - Renal Physiology, 297, F282-F291. 

GAVINE, P. R., MOONEY, L., KILGOUR, E., THOMAS, A. P., AL-KADHIMI, K., BECK, S., ROONEY, 
C., COLEMAN, T., BAKER, D., MELLOR, M. J., BROOKS, A. N. & KLINOWSKA, T. 2012. 
AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast 
growth factor receptor tyrosine kinase family. Cancer Research, 72, 2045-2056. 

GENETOS, D. C., YELLOWLEY, C. E. & LOOTS, G. G. 2011. Prostaglandin E2 signals through 
PTGER2 to regulate sclerostin expression. PLoS One, 6, e17772. 

GILBERT, S. F. 2006. Developmental Biology. Sinauer Associates Inc: Massachusetts., 8th 
Edition, in: ISBN 0-87893-87250-X. 

GIVOL, D. & YAYON, A. 1992. Complexity of FGF receptors: genetic basis for structural 
diversity and functional specificity. The FASEB Journal 6, 3362-3369. 

GOLDRING, M. B. 2012. Chondrogenesis, chondrocyte differentiation, and articular cartilage 
metabolism in health and osteoarthritis. Therapeutic Advances in Musculoskeletal 
Disease, 4, 269-285. 

GOLDRING, M. B. & GOLDRING, S. R. 2010. Articular cartilage and subchondral bone in the 
pathogenesis of osteoarthritis. The Annals of the New York Academy of Sciences, 
1192, 230–237. 

GOSPODAROWICZ, D. 1975. Purification of a fibroblast growth factor from bovine pituitary. 
The Journal of Biological Chemistry, 250, 2515-2520. 

GOSPODAROWICZ, D., BIALECKI, H. & GREENBURG, G. 1978. Purification of the fibroblast 
growth factor activity from bovine brain. Journal of Biological Chemistry, 253, 3736-
3743. 

GOSPODAROWICZ, D., JONES, K. L. & SATO, G. 1974. Purification of a growth factor for 
ovarian cells from bovine pituitary glands. Proceedings of the National Academy of 
Sciences of the United States of America, 71, 2295-2299. 

GOTINK, K. J. & VERHEUL, H. M. W. 2010. Anti-angiogenic tyrosine kinase inhibitors: what is 
their mechanism of action? Angiogenesis, 13, 1-14. 

GREGORY, M. H., CAPITO, N., KUROKI, K., STOKER, A. M., COOK, J. L. & SHERMAN, S. L. 2012. 
A review of translational animal models for knee osteoarthritis. Arthritis, 2012, 
764621. 

GUO, D., KEIGHTLEY, A., GUTHRIE, J., VENO, P. A., HARRIS, S. E. & BONEWALD, L. F. 2010. 
Identification of osteocyte-selective proteins. Proteomics, 10, 3688-3698. 

GUO, Y.-C. & YUAN, Q. 2015. Fibroblast growth factor 23 and bone mineralisation. 
International Journal of Oral Science, 7, 8-13. 

GUPTA, R. R., YOO, D. J., HEBERT, C., NIGER, C. & STAINS, J. P. 2010. Induction of an osteocyte-
like phenotype by fibroblast growth factor-2. Biochemical and Biophysical Research 
Communications, 402, 258-264. 

HADJIARGYROU, M., RIGHTMIRE, E. P., ANDO, T. & LOMBARDO, F. T. 2001. The E11 
osteoblastic lineage marker is differentially expressed during fracture healing. Bone, 
29, 149-154. 



Reference list  

 

222 
 

HAN, Y., COWIN, S. C., SCHAFFLER, M. B. & WEINBAUM, S. 2004. Mechanotransduction and 
strain amplification in osteocyte cell processes. Proceedings of the National Academy 
of Sciences of the United States of America, 101, 16689-16694. 

HATTORI, Y., ODAGIRI, H., KATOH, O., SAKAMOTO, H., MORITA, T., SHIMOTOHNO, K., 
TOBINAI, K., SUGIMURA, T. & TERADA, M. 1992. K-sam-related gene, N-sam, encodes 
fibroblast growth factor receptor and is expressed in T-lymphocytic tumors. Cancer 
Research 52, 3367-3371. 

HEBERT, C. & STAINS, J. P. 2013. An Intact Connexin43 is Required to Enhance Signaling and 
Gene Expression in Osteoblast-like Cells. Journal of cellular biochemistry, 114, 2542-
2550. 

HENRIKSON, R. C., KAYE, G. I. & MAZURKIEWICZ, J. E. 1997. OSTEOGENESIS: 
INTRAMEMBRANOUS OSSIFICATION. The National Medical Series for Independent 
study-Histology . Lippincott Williams & Wilkins. London, 518, 132. 

HIBI, M., LIN, A., SMEAL, T., MINDEN, A. & KARIN, M. 1993. Identification of an oncoprotein- 
and UV-responsive protein kinase that binds and potentiates the c-Jun activation 
domain. Genes & Development 7, 2135-2148. 

HIRAO, M., SATO, N., KONDO, T., YONEMURA, S., MONDEN, M., SASAKI, T., TAKAI, Y., 
TSUKITA, S. & TSUKITA, S. 1996. Regulation Mechanism of ERM 
(Ezrin/Radixin/Moesin) Protein/Plasma Membrane Association: Possible 
Involvement of Phosphatidylinositol Turnover and Rho-dependent Signaling 
Pathway. Journal of Cell Biology, 135, 37-51. 

HOLMBECK, K., BIANCO, P., PIDOUX, I., INOUE, R., BILLINGHURST, R. C., WU, W., 
CHRYSOVERGIS, K., YAMADA, S., BIRKEDAL-HANSEN, H. & POOLE, A. R. 2005. The 
metalloproteinase MT1-MMP is required for normal development and maintenance 
of osteocyte processes in bone. Journal of Cell Science, 118, 147-156. 

HONG, B., LI, H., ZHANG, M., XU, J., LU, Y., ZHENG, Y., QIAN, J., CHANG, J. T., YANG, J. & YI, Q. 
2015. p38 MAPK inhibits breast cancer metastasis through regulation of stromal 
expansion. International Journal of Cancer, 136, 34-43. 

HORTON, W. A. 1990. The biology of bone growth. Growth Genetics and Hormones, 6, 1-3. 
HOTOKEZAKA, H., SAKAI, E., KANAOKA, K., SAITO, K., MATSUO, K., KITAURA, H., YOSHIDA, N. 

& NAKAYAMA, K. 2002. U0126 and PD98059, specific inhibitors of MEK, accelerate 
differentiation of RAW264.7 cells into osteoclast-like cells. Journal of Biological 
Chemistry, 277, 47366-47372. 

HOUSTON, B., PATON, I. R., BURT, D. W. & FARQUHARSON, C. 2002. Chromosomal 
localization of the chicken and mammalian orthologues of the orphan phosphatase 
PHOSPHO1 gene. Animal Genetics, 33, 451-454. 

HOUSTON, D. A., MYERS, K., MACRAE, V. E., STAINES, K. A. & FARQUHARSON, C. 2016. The 
Expression of PHOSPHO1, nSMase2 and TNAP is Coordinately Regulated by 
Continuous PTH Exposure in Mineralising Osteoblast Cultures. Calcified Tissue 
International, 99, 510-524. 

HOYLAND, J. A., THOMAS, J. T., DONN, R., MARRIOTT, A., AYAD, S., BOOT-HANDFORD, R. P., 
GRANT, M. E. & FREEMONT, A. J. 1991. Distribution of type X collagen mRNA in 
normal and osteoarthritic human cartilage. Bone and Mineral., 15, 151-164. 

HU, Y., CHAN, E., WANG, S. X. & LI, B. 2003. Activation of p38 mitogen-activated protein 
kinase is required for osteoblast differentiation. Endocrinology, 144, 2068-2074. 

HUESA, C., HOUSTON, D., KIFFER-MOREIRA, T., YADAV, M. M., MILLAN, J. L. & 
FARQUHARSON, C. 2015. The Functional co-operativity of Tissue-Nonspecific 
Alkaline Phosphatase (TNAP) and PHOSPHO1 during initiation of Skeletal 
Mineralization. Biochemistry and Biophysics Reports, 4, 196-201. 



Reference list  

 

223 
 

HÜGLE, T. & GEURTS, J. 2017. What drives osteoarthritis?—synovial versus subchondral bone 
pathology. Rheumatology, 56, 1461-1471. 

HURLEY, M. M., MARIE, P. J. & FLORKIEWICZ, R. Z. 2002. Fibroblast growth factor and 
fibroblast growth factor receptor families. :in Principles of Bone Biology (Bilezikian J. 
P., Raisz L. G., Rodan G. A., eds) Academic Press, Inc., San Diego, CA, 825-851. 

IM, G.-I. & KIM, M.-K. 2014. The relationship between osteoarthritis and osteoporosis. 
Journal of Bone and Mineral Metabolism, 32, 101-109. 

IMAI, K., ; & TAKAOKA, A. 2006. Comparing antibody and small-molecule therapies for cancer. 
Nature Reviews Cancer, 6, 714-724. 

INGLIS, J. J., MCNAMEE, K. E., CHIA, S. L., ESSEX, D., FELDMANN, M., WILLIAMS, R. O., HUNT, 
S. P. & VINCENT, T. 2008. Regulation of pain sensitivity in experimental osteoarthritis 
by the endogenous peripheral opioid system. Arthritis & Rheumatism, 58, 3110-
3119. 

ISEKI, S., WILKIE, A. O. & MORRISS-KAY, G. M. 1999. Fgfr1 and Fgfr2 have distinct 
differentiation- and proliferation-related roles in the developing mouse skull vault. 
Development, 126, 5611. 

ISHIDA, S., YAMANE, S., NAKANO, S., YANAGIMOTO, T., HANAMOTO, Y., MAEDA-TANIMURA, 
M., TOYOSAKI-MAEDA, T., ISHIZAKI, J., MATSUO, Y., FUKUI, N., ITOH, T., OCHI, T. & 
SUZUKI, R. 2009. The interaction of monocytes with rheumatoid synovial cells is a 
key step in LIGHT-mediated inflammatory bone destruction. Immunology, 128, e315-
e324. 

ITOH, N. & ORNITZ, D. M. 2004. Evolution of the Fgf and Fgfr gene families. Trends in Genetics, 
20, 563-569. 

JACKSON, R. A., NURCOMBE, V. & COOL, S. M. 2006. Coordinated fibroblast growth factor 
and heparan sulfate regulation of osteogenesis. Gene, 379, 79-91. 

JACOB, A. L., SMITH, C., PARTANEN, J. & ORNITZ, D. M. 2006. Fibroblast growth factor 
receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps 
of osteoblast maturation. Developmental Biology, 296, 315-328. 

JAIPRAKASH, A., PRASADAM, I., FENG, J. Q., LIU, Y., CRAWFORD, R. & XIAO, Y. 2012. 
Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a 
possible pathological role in subchondral bone sclerosis. International Journal of 
Biological Sciences, 8, 406-417. 

JARNICKI, A. G., CONROY, H., BRERETON, C., DONNELLY, G., TOOMEY, D., WALSH, K., 
SWEENEY, C., LEAVY, O., FLETCHER, J., LAVELLE, E. C., DUNNE, P. & MILLS, K. H. G. 
2008. Attenuating Regulatory T Cell Induction by TLR Agonists through Inhibition of 
p38 MAPK Signaling in Dendritic Cells Enhances Their Efficacy as Vaccine Adjuvants 
and Cancer Immunotherapeutics. The Journal of Immunology, 180, 3797-3806. 

JEON, S., PARK, J.-K., BAE, C.-D. & PARK, J. 2010. NGF-induced moesin phosphorylation is 
mediated by the PI3K, Rac1 and Akt and required for neurite formation in PC12 cells. 
Neurochemistry International, 56, 810-818. 

JIA, H., MA, X., WEI, Y., TONG, W., TOWER, R. J., CHANDRA, A., WANG, L., SUN, Z., YANG, Z., 
BADAR, F., ZHANG, K., TSENG, W. J., KRAMER, I., KNEISSEL, M., XIA, Y., LIU, X. S., 
WANG, J. H., HAN, L., ENOMOTO-IWAMOTO, M. & QIN, L. 2017. Subchondral bone 
plate sclerosis during late osteoarthritis is caused by loading-induced reduction in 
Sclerostin. Arthritis & Rheumatology, doi: 10.1002/art.40351. 

JIANG, Z., VON DEN HOFF, J. W., TORENSMA, R., MENG, L. & BIAN, Z. 2014. Wnt16 is involved 
in intramembranous ossification and suppresses osteoblast differentiation through 
the Wnt/beta-catenin pathway. Journal of Cellular Physiology, 229, 384-392. 



Reference list  

 

224 
 

JIN, H., WANG, B., LI, J., XIE, W., MAO, Q., LI, S., DONG, F., SUN, Y., KE, H. Z., BABIJ, P., TONG, 
P. & CHEN, D. 2015. Anti-DKK1 antibody promotes bone fracture healing through 
activation of beta-catenin signaling. Bone, 71, 63-75. 

JOHNSON, C. I., ARGYLE, D. J. & CLEMENTS, D. N. 2016. In vitro models for the study of 
osteoarthritis. The Veterinary Journal, 209, 40-49. 

KAMEKURA, S., HOSHI, K., SHIMOAKA, T., CHUNG, U., CHIKUDA, H., YAMADA, T., UCHIDA, M., 
OGATA, N., SEICHI, A., NAKAMURA, K. & KAWAGUCHI, H. 2005. Osteoarthritis 
development in novel experimental mouse models induced by knee joint instability. 
Osteoarthritis Cartilage, 13, 632-641. 

KAN, M., WU, X., WANG, F. & MCKEEHAN, W. L. 1999. Specificity for fibroblast growth factors 
determined by heparan sulfate in a binary complex with the receptor kinase. Journal 
of Biological Chemistry, 274, 15947-15952. 

KANCZLER, J. M. & OREFFO, R. O. C. 2008. Osteogenesis and angiogenesis: The potential for 
engineering bone. European Cells and Materials, 15, 100-114. 

KANEKO, M. K., HONMA, R., OGASAWARA, S., FUJII, Y., NAKAMURA, T., SAIDOH, N., TAKAGI, 
M., KAGAWA, Y., KONNAI, S. & KATO, Y. 2016. PMab-38 Recognizes Canine 
Podoplanin of Squamous Cell Carcinomas. Monoclonal Antibodies in 
Immunodiagnosis and Immunotherapy, 35, 263-266. 

KANEKO, M. K., KATO, Y., KITANO, T. & OSAWA, M. 2006. Conservation of a platelet activating 
domain of Aggrus/podoplanin as a platelet aggregation-inducing factor. Gene. , 378, 
52-57. 

KANNUS, P. & RVINEN, M. J. 1989. Posttraumatic anterior cruciate ligament insufficiency as 
a cause of osteoarthritis in a knee joint. Clinical rheumatology, 8, 251-260. 

KARSENTY, G. & FERRON, M. 2012. The contribution of bone to whole-organism physiology. 
Nature, 481, 314-320. 

KATO, Y., KANEKO, M., SATA, M., FUJITA, N., TSURUO, T. & OSAWA, M. 2005. Enhanced 
Expression of Aggrus (T1alpha/Podoplanin), a Platelet-Aggregation-Inducing Factor 
in Lung Squamous Cell Carcinoma. Tumor Biology, 26, 195-200. 

KATOH, M. 2016. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and 
whole-body homeostasis (Review). International Journal of Molecular Medicine, 38, 
3-15. 

KAWANO, Y. & KYPTA, R. 2003. Secreted antagonists of the Wnt signalling pathway. Journal 
of Cell Science, 116, 2672-2634. 

KAWCAK, C. E. 2016. 2 - Biomechanics in Joints. Joint Disease in the Horse (Second Edition). 
Edinburgh: W.B. Saunders. 

KAWCAK, C. E., MCILWRAITH, C. W., NORRDIN, R. W., PARK, R. D. & JAMES, S. P. 2001. The 
role of subchondral bone in joint disease: a review. Equine Veterinary Journal 33, 
120-126. 

KERSCHNITZKI, M., KOLLMANNSBERGER, P., BURGHAMMER, M., DUDA, G. N., WEINKAMER, 
R., WAGERMAIER, W. & FRATZL, P. 2013. Architecture of the osteocyte network 
correlates with bone material quality. Journal of Bone and Mineral Research, 28, 
1837-1845. 

KEVIN, M. P. & STUART, J. D. 1997. Cell cycle arrest mediated by the MEKymitogen-activated 
protein kinase pathway. Proceedings of the National Academy of Sciences of the 
United States of America, 94, 448-452. 

KEVORKIAN, L., YOUNG, D. A., DARRAH, C., DONELL, S. T., SHEPSTONE, L., PORTER, S., 
BROCKBANK, S. M. V., EDWARDS, D. R., PARKER, A. E. & CLARK, I. M. 2004. Expression 
profiling of metalloproteinases and their inhibitors in cartilage. Arthritis & 
Rheumatism, 50, 131-141. 



Reference list  

 

225 
 

KIM, H. J., KIM, J. H., BAE, S. C., CHOI, J. Y. & RYOO, H. M. 2003. The protein kinase C pathway 
plays a central role in the fibroblast growth factor-stimulated expression and 
transactivation activity of Runx2. The Journal of Biological Chemistry, 278, 319-326. 

KNOTHE TATE, M. L., ADAMSON, J. R., TAMI, A. E. & BAUER, T. W. 2004. The osteocyte. The 
International Journal of Biochemistry & Cell Biology, 36, 1-8. 

KONG, Y. Y., YOSHIDA, H., SAROSI, I., TAN, H. L., TIMMS, E., CAPPARELLI, C., MORONY, S., 
OLIVEIRA-DOS-SANTOS, A. J., VAN, G., ITIE, A., KHOO, W., WAKEHAM, A., DUNSTAN, 
C. R., LACEY, D. L., MAK, T. W., BOYLE, W. J. & PENNINGER, J. M. 1999. OPGL is a key 
regulator of osteoclastogenesis, lymphocyte development and lymph-node 
organogenesis. Nature, 397, 315-323. 

KWAN TAT, S., LAJEUNESSE, D., PELLETIER, J.-P. & MARTEL-PELLETIER, J. 2010. Targeting 
subchondral bone for treating osteoarthritis: what is the evidence? Best Practice & 
Research Clinical Rheumatology, 24, 51-70. 

KWIECINSKI, G. G., KROOK, L. & WIMSATT, W. A. 1987. Annual skeletal changes in the little 
brown bat, Myotis lucifugus lucifugus, with particular reference to pregnancy and 
lactation. American Journal of Anatomy, 178, 410-420. 

KYONO, A., AVISHAI, N., OUYANG, Z., LANDRETH, G. E. & MURAKAMI, S. 2012. FGF and ERK 
signaling coordinately regulate mineralization-related genes and play essential roles 
in osteocyte differentiation. Journal of Bone and Mineral Metabolism, 30, 19-30. 

KYRIAKIS, J. M. & AVRUCH, J. 2001. Mammalian Mitogen-Activated Protein Kinase Signal 
Transduction Pathways Activated by Stress and Inflammation. Physiological Reviews, 
81, 807-869. 

LAI, C. F., CHAUDHARY, L., FAUSTO, A., HALSTEAD, L. R., ORY, D. S., AVIOLI, L. V. & CHENG, S. 
L. 2001. Erk is essential for growth, differentiation, integrin expression, and cell 
function in human osteoblastic cells. The Journal of Biological Chemistry, 276, 14443-
14450. 

LAI, W. T., KRISHNAPPA, V. & PHINNEY, D. G. 2011. Fibroblast growth factor 2 (Fgf2) inhibits 
differentiation of mesenchymal stem cells by inducing Twist2 and Spry4, blocking 
extracellular regulated kinase activation, and altering Fgf receptor expression levels. 
Stem Cells, 29, 1102-1111. 

LAJEUNESSE, D. 2002. Altered subchondral osteoblast cellular metabolism in osteoarthritis: 
cytokines, eicosanoids, and growth factors. Journal of musculoskeletal & neuronal 
interactions, 2, 251-260. 

LALI, F. V., HUNT, A. E., TURNER, S. J. & FOXWELL, B. M. J. 2000. The Pyridinyl Imidazole 
Inhibitor SB203580 Blocks Phosphoinositide-dependent Protein Kinase Activity, 
Protein Kinase B Phosphorylation, and Retinoblastoma Hyperphosphorylation in 
Interleukin-2-stimulated T Cells Independently of p38 Mitogen-activated Protein 
Kinase. Journal of Biological Chemistry, 275, 7395-7402. 

LAMOUILLE, S., XU, J. & DERYNCK, R. 2014. Molecular mechanisms of epithelial-mesenchymal 
transition. Nature Reviews Molecular Cell Biology, 15, 178-196. 

LARSSON, T., MARSELL, R., SCHIPANI, E., OHLSSON, C., LJUNGGREN, O., TENENHOUSE, H. S., 
JUPPNER, H. & JONSSON, K. B. 2004. Transgenic mice expressing fibroblast growth 
factor 23 under the control of the alpha1(I) collagen promoter exhibit growth 
retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology, 
145, 3087-3094. 

LEE, S. E., WOO, K. M., KIM, S. Y., KIM, H. M., KWACK, K., LEE, Z. H. & KIM, H. H. 2002. The 
phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase 
pathways are involved in osteoclast differentiation. Bone., 30, 71-77. 



Reference list  

 

226 
 

LEYDET-QUILICI, H., LE CORROLLER, T., BOUVIER, C., GIORGI, R., ARGENSON, J. N., 
CHAMPSAUR, P., PHAM, T., DE PAULA, A. M. & LAFFORGUE, P. 2010. Advanced hip 
osteoarthritis: magnetic resonance imaging aspects and histopathology correlations. 
Osteoarthritis Cartilage, 18, 1429-1435. 

LI, G., YIN J, GAO, J., CHENG, T. S., PAVLOS, N. J., ZHANG, C. & ZHENG, M. H. 2013. Subchondral 
bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis 
Research & Therapy, 15, 223. 

LI, J., LIU, D., KE, H. Z., DUNCAN, R. L. & TURNER, C. H. 2005a. The P2X7 Nucleotide Receptor 
Mediates Skeletal Mechanotransduction. Journal of Biological Chemistry, 280, 
42952-42959. 

LI, X., AN, H. S., ELLMAN, M., PHILLIPS, F., THONAR, E. J., PARK, D. K., UDAYAKUMAR, R. K. & 
IM, H. J. 2008a. Action of fibroblast growth factor-2 on the intervertebral disc. 
Arthritis Research & Therapy, 10, R48. 

LI, X., ELLMAN, M. B., KROIN, J. S., CHEN, D., YAN, D., MIKECZ, K., RANJAN, K. C., XIAO, G., 
STEIN, G. S., KIM, S.-G., COLE, B., VAN WIJNEN, A. J. & IM, H.-J. 2012. Species-Specific 
Biological Effects of FGF-2 in Articular Cartilage: Implication for distinct roles within 
the FGF receptor family. Journal of Cellular Biochemistry, 113, 2532-2542. 

LI, X., OMINSKY, M. S., NIU, Q. T., SUN, N., DAUGHERTY, B., D'AGOSTIN, D., KURAHARA, C., 
GAO, Y., CAO, J., GONG, J., ASUNCION, F., BARRERO, M., WARMINGTON, K., DWYER, 
D., STOLINA, M., MORONY, S., SAROSI, I., KOSTENUIK, P. J., LACEY, D. L., SIMONET, 
W. S., KE, H. Z. & PASZTY, C. 2008b. Targeted Deletion of the Sclerostin Gene in Mice 
Results in Increased Bone Formation and Bone Strength. Journal of Bone and Mineral 
Research, 23, 860-869. 

LI, X., OMINSKY, M. S., WARMINGTON, K. S., MORONY, S., GONG, J., CAO, J., GAO, Y., 
SHALHOUB, V., TIPTON, B., HALDANKAR, R., CHEN, Q., WINTERS, A., BOONE, T., 
GENG, Z., NIU, Q.-T., KE, H. Z., KOSTENUIK, P. J., SIMONET, W. S., LACEY, D. L. & 
PASZTY, C. 2009. Sclerostin Antibody Treatment Increases Bone Formation, Bone 
Mass, and Bone Strength in a Rat Model of Postmenopausal Osteoporosis. Journal of 
Bone and Mineral Research, 24, 578-588. 

LI, X., ZHANG, Y., KANG, H., LIU, W., LIU, P., ZHANG, J., HARRIS, S. E. & WU, D. 2005b. 
Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. Journal of 
Biological Chemistry, 280, 19883-19887. 

LIMA, F., NIGER, C., HEBERT, C. & STAINS, J. P. 2009. Connexin43 potentiates osteoblast 
responsiveness to fibroblast growth factor 2 via a protein kinase C-delta/Runx2-
dependent mechanism. Molecular Biology of the Cell, 20, 2697-2708. 

LIN, H. Y., XU, J., ORNITZ, D., M.;, HALEGOUA, S. & HAYMAN, M. J. 1996. The fibroblast growth 
factor receptor-1 is necessary for the induction of neurite outgrowth in PC12 cells by 
aFGF. Journal of Neuroscience, 16, 4579-4587. 

LITTLE, C. B., BARAI, A., BURKHARDT, D., SMITH, S. M., FOSANG, A. J., WERB, Z., SHAH, M. & 
THOMPSON, E. W. 2009. Matrix metalloproteinase-13 deficient mice are resistant to 
osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte 
development. Arthritis and Rheumatism, 60, 3723-3733. 

LIU, C., MILLER, H., HUI, K. L., GROOMAN, B., BOLLAND, S., UPADHYAYA, A. & SONG, W. 2011. 
A balance of Bruton's tyrosine kinase and SHIP activation regulates B cell receptor 
cluster formation by controlling actin remodeling. Journal of Immunology, 187, 230-
239. 

LIU, J., MINEMOTO, Y. & LIN, A. 2004. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, 
is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and 
apoptosis. Molecular and Cellular Biology, 24, 10844-10856. 



Reference list  

 

227 
 

LIU, S., TANG, W., ZHOU, J., VIERTHALER, L. & QUARLES, L. D. 2007. Distinct roles for intrinsic 
osteocyte abnormalities and systemic factors in regulation of FGF23 and bone 
mineralization in Hyp mice. American Journal of Physiology - Endocrinology And 
Metabolism, 293, E1636-E1644. 

LIVAK, K. J. & SCHMITTGEN, T. D. 2001. Analysis of relative gene expression data using real-
time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408. 

LOESER, R. F., OLEX, A., MCNULTY, M. A., CARLSON, C. S., CALLAHAN, M., FERGUSON, C., 
CHOU, J., LENG, X. & FETROW, J. S. 2012. Microarray Analysis Reveals Age-related 
Differences in Gene Expression During the Development of Osteoarthritis in Mice. 
Arthritis and Rheumatism, 64, 705-717. 

LOESER, R. F., OLEX, A. L., MCNULTY, M. A., CARLSON, C. S., CALLAHAN, M., FERGUSON, C. & 
FETROW, J. S. 2013. Disease Progression and Phasic Changes in Gene Expression in a 
Mouse Model of Osteoarthritis. PLoS ONE, 8, e54633. 

LOGAR, D. B., KOMADINA, R., PREZELJ, J., OSTANEK, B., TROST, Z. & MARC, J. 2007. Expression 
of bone resorption genes in osteoarthritis and in osteoporosis. Journal of Bone and 
Mineral Metabolism, 25, 219-225. 

LORENZ, H. & RICHTER, W. 2006. Osteoarthritis: cellular and molecular changes in 
degenerating cartilage. Progress in Histochemistry and Cytochemistry, 40, 135-163. 

LORENZO, P., BAYLISS, M. T. & HEINEGARD, D. 2004. Altered patterns and synthesis of 
extracellular matrix macromolecules in early osteoarthritis. Matrix Biology, 23, 381-
391. 

LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J. 1951. Protein measurement 
with the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. 

LU, Y., YUAN, B., QIN, C., CAO, Z., XIE, Y., DALLAS, S. L., MCKEE, M. D., DREZNER, M. K., 
BONEWALD, L. F. & FENG, J. Q. 2011. The Biological Function of DMP-1 in Osteocyte 
Maturation Is Mediated by Its 57-kDa C-terminal Fragment. Journal of Bone and 
Mineral Research, 26, 331-340. 

MACDONALD, B. T., TAMAI, K. & HE, X. 2009. Wnt/beta-catenin signaling: components, 
mechanisms, and diseases. Developmental Cell, 17, 9-26. 

MACKIE, E. J., TATARCZUCH, L. & MIRAMS, M. 2011. The skeleton: a multi-functional complex 
organ: the growth plate chondrocyte and endochondral ossification. Journal of 
Endocrinology, 211, 109-121. 

MACRAE, V. E., AHMED, S. F., MUSHTAQ, T. & FARQUHARSON, C. 2007. IGF-I signalling in 
bone growth: inhibitory actions of dexamethasone and IL-1beta. Growth Hormone & 
IGF Research, 17, 435-439. 

MACSAI, C. E., FOSTER, B. K. & XIAN, C. J. 2008. Roles of Wnt signalling in bone growth, 
remodelling, skeletal disorders and fracture repair. Journal of Cellular Physiology, 
215, 578-587. 

MAHMOOD, T. & YANG, P. C. 2012. Western blot: technique, theory, and trouble shooting. 
North American Journal of Medical Sciences, 4, 429-434. 

MALFAIT, A. M., RITCHIE, J., GIL, A. S., AUSTIN, J. S., HARTKE, J., QIN, W., TORTORELLA, M. D. 
& MOGIL, J. S. 2010. ADAMTS-5 deficient mice do not develop mechanical allodynia 
associated with osteoarthritis following medial meniscal destabilization. 
Osteoarthritis Cartilage, 18, 572-580. 

MALONE, A. M. D., ANDERSON, C. T., TUMMALA, P., KWON, R. Y., JOHNSTON, T. R., STEARNS, 
T. & JACOBS, C. R. 2007. Primary cilia mediate mechanosensing in bone cells by a 
calcium-independent mechanism. Proceedings of the National Academy of Sciences 
of the United States of America, 104, 13325-13330. 



Reference list  

 

228 
 

MANCILLA, E. E., DE LUCA, F., UYEDA, J. A., CZERWIEC, F. S. & BARON, J. 1998. Effects of 
Fibroblast Growth Factor-2 on Longitudinal Bone Growth. Endocrinology, 139, 2900-
2904. 

MANEIX, L., BEAUCHEF, G., SERVENT, A., WEGROWSKI, Y., MAQUART, F. X., BOUJRAD, N., 
FLOURIOT, G., PUJOL, J. P., BOUMEDIENE, K., GALERA, P. & MOSLEMI, S. 2008. 
17Beta-oestradiol up-regulates the expression of a functional UDP-glucose 
dehydrogenase in articular chondrocytes: comparison with effects of cytokines and 
growth factors. Rheumatology (Oxford), 47, 281-288. 

MANOLAGAS, S. C. 2000. Birth and death of bone cells: basic regulatory mechanisms and 
implications for the pathogenesis and treatment of osteoporosis. Endocrine Reviews, 
21, 115-137. 

MAREK, L., WARE, K. E., FRITZSCHE, A., HERCULE, P., HELTON, W. R., SMITH, J. E., 
MCDERMOTT, L. A., COLDREN, C. D., NEMENOFF, R. A., MERRICK, D. T., HELFRICH, B. 
A., BUNN, P. A., JR. & HEASLEY, L. E. 2009. Fibroblast growth factor (FGF) and FGF 
receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Molecular 
Pharmacology, 75, 196-207. 

MARIE, P. J. 2003. Fibroblast growth factor signaling controlling osteoblast differentiation. 
Gene, 316, 23-32. 

MARIE, P. J. 2012. Fibroblast growth factor signaling controlling bone formation: an update. 
Gene, 498, 1-4. 

MARIE, P. J., DEBIAIS, F. & HAŸ, E. 2002. Regulation of human cranial osteoblast phenotype 
by FGF-2, FGFR-2 and BMP-2 signaling. Histology and Histopathology 17, 877-885. 

MARIE, P. J., MIRAOUI, H. & SEVERE, N. 2012. FGF/FGFR signaling in bone formation: progress 
and perspectives. Growth Factors, 30, 117-123. 

MARTEL-PELLETIER, J. 1998. Pathophysiology of osteoarthritis. Osteoarthritis Cartilage., 6, 
374-376. 

MARTÍN-VILLAR, E., DIEGO, M., SUSANNA, C., YURRITA, M. M., VILARÓ, S. & QUINTANILLA, 
M. 2006. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-
mesenchymal transition. Journal of Cell Science, 119, 4541-4553. 

MARTIN-VILLAR, E., SCHOLL, F. G., GAMALLO, C., YURRITA, M. M., MUNOZ-GUERRA, M., 
CRUCES, J. & QUINTANILLA, M. 2005. Characterization of human PA2.26 antigen 
(T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell 
carcinomas. The International Journal of Cancer 113, 899-910. 

MARTÍN-VILLAR, E., YURRITA, M. M., FERNÁNDEZ-MUÑOZ, B., QUINTANILLA, M. & RENART, 
J. 2009. Regulation of podoplanin/PA2.26 antigen expression in tumour cells. 
Involvement of calpain-mediated proteolysis. The International Journal of 
Biochemistry & Cell Biology, 41, 1421-1429. 

MARTIN, G. S. 2003. Cell signaling and cancer. Cancer Cell, 4, 167-174. 
MARTIN, R. B. 2007. Targeted bone remodeling involves BMU steering as well as activation. 

Bone, 40, 1574-1580. 
MATSUGUCHI, T., CHIBA, N., BANDOW, K., KAKIMOTO, K., MASUDA, A. & OHNISHI, T. 2009. 

JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. 
Journal of Bone and Mineral Research, 24, 398-410. 

MATSUSHITA, T., CHAN, Y. Y., KAWANAMI, A., BALMES, G., LANDRETH, G. E. & MURAKAMI, 
S. 2009a. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles 
in osteoblast differentiation and in supporting osteoclastogenesis. Molecular and 
Cellular Biology, 29, 5843-5857. 

MATSUSHITA, T., WILCOX, W. R., CHAN, Y. Y., KAWANAMI, A., BUKULMEZ, H., BALMES, G., 
KREJCI, P., MEKIKIAN, P. B., OTANI, K., YAMAURA, I., WARMAN, M. L., GIVOL, D. & 



Reference list  

 

229 
 

MURAKAMI, S. 2009b. FGFR3 promotes synchondrosis closure and fusion of 
ossification centers through the MAPK pathway. Human Molecular Genetics, 18, 227-
240. 

MCCLAIN, S. 2017. Bioinformatic screening and detection of allergen cross-reactive IgE-
binding epitopes. Molecular Nutrition & Food Research, 61, 1600676. 

MCCORMICK, F. 2000. Small-molecule inhibitors of cell signaling. Current Opinion in 
Biotechnology, 11, 593-597. 

MCCOY, A. M. 2015. Animal Models of Osteoarthritis: Comparisons and Key Considerations. 
Veterinary pathology, 52, 803-803. 

MCILWRAITH, C. W., FRISBIE, D. D., KAWCAK, C. E., FULLER, C. J., HURTIG, M. & CRUZ, A. 2010. 
The OARSI histopathology initiative - recommendations for histological assessments 
of osteoarthritis in the horse. Osteoarthritis Cartilage, 18 S93-S105. 

MCNIVEN, M. A. 2013. Breaking away: matrix remodeling from the leading edge. Trends in 
Cell Biology, 23, 16-21. 

MCWILLIAM, H., LI, W., ULUDAG, M., SQUIZZATO, S., PARK, Y. M., BUSO, N., COWLEY, A. P. & 
LOPEZ, R. 2013. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids 
Research, 41, W597-W600. 

MENKES, C. J. & LANE, N. E. 2004. Are osteophytes good or bad? Osteoarthritis Cartilage, 12, 
S53–S54. 

MEYER, J. 1984. Can biological calcification occur in the presence of pyrophosphate? Archives 
of Biochemistry and Biophysics, 231, 1-8. 

MILLER, R. E., TU, Z., TRAN, P. B., QIN, X. C., LUO, J. F., TORTORELLA, M. & MALFAIT, A. M. 
2015. Inflammatory protein profiling in the knee joint after DMM surgery in the 
mouse. Osteoarthritis and Cartilage, 23, A262. 

MILZ, S. & PUTZ, R. 1994. Quantitative morphology of the subchondral plate of the tibial 
plateau. The Journal of Anatomy, 185, 103-110. 

MIYAGAWA, K., YAMAZAKI, M., KAWAI, M., NISHINO, J., KOSHIMIZU, T., OHATA, Y., 
TACHIKAWA, K., MIKUNI-TAKAGAKI, Y., KOGO, M., OZONO, K. & MICHIGAMI, T. 2014. 
Dysregulated gene expression in the primary osteoblasts and osteocytes isolated 
from hypophosphatemic Hyp mice. PLoS One, 9, e93840. 

MIZUNO, M., FUJISAWA, R. & KUBOKI, Y. 2000. Type I collagen-induced osteoblastic 
differentiation of bone-marrow cells mediated by collagen-α2β1 integrin interaction. 
Journal of Cellular Physiology, 184, 207-213. 

MOHAMMAD, K. S., CHIRGWIN, J. M. & GUISE, T. A. 2008. Assessing New Bone Formation in 
Neonatal Calvarial Organ Cultures. In: Westendorf, J.J. (ed.) Osteoporosis: Methods 
and Protocols. Methods in Molecular Biology, © Springer Science+Business Media, 
LLC 2012, 455, 37-50. 

MONTERO, A., OKADA, Y., TOMITA, M., ITO, M., TSURUKAMI, H., NAKAMURA, T., 
DOETSCHMAN, T., COFFIN, J. D. & HURLEY, M. M. 2000. Disruption of the fibroblast 
growth factor-2 gene results in decreased bone mass and bone formation. Journal of 
Clinical Investigation, 105, 1085-1093. 

MORGAN, J. M., NAVABI, H., SCHMID, K. W. & JASANI, B. 1994. Possible role of tissue-bound 
calcium ions in citrate-mediated high-temperature antigen retrieval. The Journal of 
Pathology, 174, 301-307. 

MUNDHENKE, C., MEYER, K., DREW, S. & FRIEDL, A. 2002. Heparan Sulfate Proteoglycans as 
Regulators of Fibroblast Growth Factor-2 Receptor Binding in Breast Carcinomas. 
American Journal of Pathology, 160, 185–194. 

MURAKAMI, S., BALMES, G., MCKINNEY, S., ZHANG, Z., GIVOL, D. & DE CROMBRUGGHE, B. 
2004. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent 



Reference list  

 

230 
 

achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. 
Genes & Development, 18, 290-305. 

MURPHY, L. O., MACKEIGAN, J. P. & BLENIS, J. 2003. A Network of Immediate Early Gene 
Products Propagates Subtle Differences in Mitogen-Activated Protein Kinase Signal 
Amplitude and Duration. Molecular and Cellular Biology, 24, 144-153. 

MURPHY, L. O., SMITH, S., CHEN, R. H., FINGAR, D. C. & BLENIS, J. 2002. Molecular 
interpretation of ERK signal duration by immediate early gene products. Nature Cell 
Biology, 4, 556-564. 

NAKAGAWA, N., KINOSAKI, M., YAMAGUCHI, K., SHIMA, N., YASUDA, H., YANO, K., 
MORINAGA, T. & HIGASHIO, K. 1998. RANK is the essential signaling receptor for 
osteoclast differentiation factor in osteoclastogenesis. Biochemical and Biophysical 
Research Communications, 253, 395-400. 

NAKAMURA, N., OSHIRO, N., FUKATA, Y., AMANO, M., FUKATA, M., KURODA, S., MATSUURA, 
Y., LEUNG, T., LIM, L. & KAIBUCHI, K. 2000. Phosphorylation of ERM proteins at 
filopodia induced by Cdc42. Genes to Cells, 5, 571-581. 

NAKAMURA, Y., TENSHO, K., NAKAYA, H., NAWATA, M., OKABE, T. & WAKITANI, S. 2005. Low 
dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 
(BMP-2)-induced ectopic bone formation in mice. Bone, 36, 399-407. 

NAKANO, Y., TOYOSAWA, S. & TAKANO, Y. 2004. Eccentric Localization of Osteocytes 
Expressing Enzymatic Activities, Protein, and mRNA Signals for Type 5 Tartrate-
resistant Acid Phosphatase (TRAP). Journal of Histochemistry and Cytochemistry, 52, 
1475-1482. 

NAKASHIMA, T., HAYASHI, M., FUKUNAGA, T., KURATA, K., OH-HORA, M., FENG, J. Q., 
BONEWALD, L. F., KODAMA, T., WUTZ, A., WAGNER, E. F., PENNINGER, J. M. & 
TAKAYANAGI, H. 2011a. Evidence for osteocyte regulation of bone homeostasis 
through RANKL expression. Nature Medicine, 17, 1231-1234. 

NAKASHIMA, T., HAYASHI, M., FUKUNAGA, T., KURATA, K., OH-HORA, M., FENG, J. Q., 
BONEWALD, L. F., KODAMA, T., WUTZ, A., WAGNER, E. F., PENNINGER, J. M. & 
TAKAYANAGI, H. 2011b. Evidence for osteocyte regulation of bone homeostasis 
through RANKL expression. Nature Medicine, 17, 1231-1234. 

NAKAYAMA, G. R., CATON, M. C., NOVA, M. P. & PARANDOOSH, Z. 1997. Assessment of the 
Alamar Blue assay for cellular growth and viability in vitro. Journal of Immunological 
Methods, 204, 205-208. 

NETTER, F. H. 1987. Musculoskeletal system: anatomy, physiology, and metabolic disorders. 
Summit, New Jersey: Ciba-Geigy Corporation, 129. 

NICOLELLA, D. P., FENG, J. Q., MORAVITS, D. E., BONIVITCH, A. R., WANG, Y., DUSECICH, V., 
YAO, W., LANE, N. & BONEWALD, L. F. 2008. Effects of nanomechanical bone tissue 
properties on bone tissue strain: Implications for osteocyte mechanotransduction. 
Journal of Musculoskeletal & neuronal Interactions, 8, 330-331. 

NIGER, C., BUO, A. M., HEBERT, C., DUGGAN, B. T., WILLIAMS, M. S. & STAINS, J. P. 2012. ERK 
acts in parallel to PKCdelta to mediate the connexin43-dependent potentiation of 
Runx2 activity by FGF2 in MC3T3 osteoblasts. American Journal of Physiology-Cell 
Physiology, 302, C1035-C1044. 

NOBLE, B. S., PEET, N., STEVENS, H. Y., BRABBS, A., MOSLEY, J. R., REILLY, G. C., REEVE, J., 
SKERRY, T. M. & LANYON, L. E. 2003. Mechanical loading: biphasic osteocyte survival 
and targeting of osteoclasts for bone destruction in rat cortical bone. American 
Journal of Physiology -Cell Physiology, 284, C934-C943. 

NUDELMAN, F., PIETERSE, K., GEORGE, A., BOMANS, P. H. H., FRIEDRICH, H., BRYLKA, L. J., 
HILBERS, P. A. J., DE WITH, G. & SOMMERDIJK, N. A. J. M. 2010. The role of collagen 



Reference list  

 

231 
 

in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. 
Nature Materials, 9, 1004-1009. 

NUMMENMAA, E., HAMALAINEN, M., MOILANEN, T., VUOLTEENAHO, K. & MOILANEN, E. 
2015. Effects of FGF-2 and FGF receptor antagonists on MMP enzymes, aggrecan, 
and type II collagen in primary human OA chondrocytes. Scandinavian Journal of 
Rheumatology, 44, 321-330. 

OLDKNOW, K. J., MACRAE, V. E. & FARQUHARSON, C. 2015. Endocrine role of bone: recent 
and emerging perspectives beyond osteocalcin. Journal of Endocrinology, 225, R1-
R19. 

OLSON, D. C., DENG, C. & HANAHAN, D. 1998. Fibroblast growth factor receptor 4, implicated 
in progression of islet cell carcinogenesis by its expression profile, does not 
contribute functionally. Cell Growth & Differentiation, 9, 557-564. 

OMINSKY, M. S., LI, C., LI, X., TAN, H. L., LEE, E., BARRERO, M., ASUNCION, F. J., DWYER, D., 
HAN, C. Y., VLASSEROS, F., SAMADFAM, R., JOLETTE, J., SMITH, S. Y., STOLINA, M., 
LACEY, D. L., SIMONET, W. S., PASZTY, C., LI, G. & KE, H. Z. 2011. Inhibition of 
sclerostin by monoclonal antibody enhances bone healing and improves bone 
density and strength of nonfractured bones. Journal of Bone and Mineral Research, 
26, 1012-1021. 

ORNITZ, D. M. & ITOH, N. 2015. The Fibroblast Growth Factor signaling pathway. Wiley 
Interdisciplinary Reviews. Developmental Biology, 4, 215-266. 

ORNITZ, D. M. & MARIE, P. J. 2002. FGF signaling pathways in endochondral and 
intramembranous bone development and human genetic disease. Genes & 
Development, 16, 1446-1465. 

ORRISS, I. R., HAJJAWI, M. O., HUESA, C., MACRAE, V. E. & ARNETT, T. R. 2014. Optimisation 
of the differing conditions required for bone formation in vitro by primary 
osteoblasts from mice and rats. International Journal of Molecular Medicine, 34, 
1201-1208. 

ORRISS, I. R., TAYLOR, S. E. B. & ARNETT, T. R. 2012. Rat Osteoblast Cultures. In: Bone 
Research Protocols, Methods in Molecular Biology (Helfrich, M.H and Ralston, S.T., 
eds). Springer Science+Business Media, LLC, London., 816, 31-41. 

ORTEGA, S., ITTMANN, M., TSANG, S. H., EHRLICH, M. & BASILICO, C. 1998. Neuronal defects 
and delayed wound healing in mice lacking fibroblast growth factor 2. Proceedings of 
the National Academy of Sciences of the United States of America, 95, 5672-5677. 

PACIFICI, M., KOYAMA, E. & IWAMOTO, M. 2005. Mechanisms of synovial joint and articular 
cartilage formation: Recent advances, but many lingering mysteries. Birth Defects 
Research Part C: Embryo Today: Reviews, 75, 237-248. 

PADHI, D., JANG, G., STOUCH, B., FANG, L. & POSVAR, E. 2011. Single-dose, placebo-
controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. Journal 
of Bone and Mineral Research, 26, 19-26. 

PAIC, F., IGWE, J. C., NORI, R., KRONENBERG, M. S., FRANCESCHETTI, T., HARRINGTON, P., 
KUO, L., SHIN, D. G., ROWE, D. W., HARRIS, S. E. & KALAJZIC, I. 2009. Identification of 
differentially expressed genes between osteoblasts and osteocytes. Bone, 45, 682-
692. 

PALUMBO, C. 1986. A three-dimensional ultrastructural study of osteoid-osteocytes in the 
tibia of chick embryos. Cell and Tissue Research, 246, 125-131. 

PALUMBO, C., FERRETTI, M. & DE POL, A. 2003. Apoptosis during intramembranous 
ossification. Journal of Anatomy, 203, 589-598. 



Reference list  

 

232 
 

PANG, L., SAWADA, T., DECKER, S. J. & SALTIEL, A. R. 1995. Inhibition of MAP kinase kinase 
blocks the differentiation of PC-12 cells induced by nerve growth factor. The Journal 
of Biological Chemistry, 270, 13585-13588. 

PARTANEN, J., MÄKELÄ, T. P., EEROLA, E., KORHONEN, J., HIRVONEN, H., CLAESSON-WELSH, 
L. & ALITALO, K. 1991. FGFR-4, a novel acidic fibroblast growth factor receptor with 
a distinct expression pattern. The EMBO Journal, 10, 1347-1354. 

PEARSON, W. R. 1991. Searching protein sequence libraries: Comparison of the sensitivity 
and selectivity of the Smith-Waterman and FASTA algorithms. Genomics, 11, 635-
650. 

PEARSON, W. R. 2013. An Introduction to Sequence Similarity (“Homology”) Searching. 
Current protocols in bioinformatics 03, 
10.1002/0471250953.bi0471250301s0471250942. 

PEARSON, W. R. & LIPMAN, D. J. 1988. Improved tools for biological sequence comparison. 
Proceedings of the National Academy of Sciences of the United States of America, 85, 
2444-2448. 

PELLEGRINO, M. J. & STORK, P. J. 2006. Sustained activation of extracellular signal-regulated 
kinase by nerve growth factor regulates c-fos protein stabilization and 
transactivation in PC12 cells. The Journal of Neurochemistry, 99, 1480-1493. 

PELLETIER, J. P., MARTEL-PELLETIER, J., GHANDUR-MNAYMNEH, L., HOWELL, D. S. & 
WOESSNER, J. F. J. 1985. Role of synovial membrane inflammation in cartilage matrix 
breakdown in the Pond-Nuki dog model of osteoarthritis. Arthritis and Rheumatism, 
28, 554-561. 

PERCIVAL, C. J. & RICHTSMEIER, J. T. 2013. Angiogenesis and Intramembranous Osteogenesis. 
Developmental dynamics : an official publication of the American Association of 
Anatomists, 242, 909-922. 

PILERI, S. A., RONCADOR, G., CECCARELLI, C., PICCIOLI, M., BRISKOMATIS, A., SABATTINI, E., 
ASCANI, S., SANTINI, D., PICCALUGA, P. P., LEONE, O., DAMIANI, S., ERCOLESSI, C., 
SANDRI, F., PIERI, F., LEONCINI, L. & FALINI, B. 1997. Antigen retrieval techniques in 
immunohistochemistry: comparison of different methods. The Journal of Pathology, 
183, 116-123. 

PLOTKIN, L. I. & BELLIDO, T. 2016. Osteocytic signalling pathways as therapeutic targets for 
bone fragility. Nature Reviews Endocrinology, 12, 593-605. 

POOL, R. R. & MEAGHER, D. M. 1990. Pathologic findings and pathogenesis of racetrack 
injuries. Veterinary Clinics of North America: Equine Practice 6, 1-30. 

POOLE, K. E., VAN BEZOOIJEN, R. L., LOVERIDGE, N., HAMERSMA, H., PAPAPOULOS, S. E., 
LÖWIK, C. W. & REEVE, J. 2005. Sclerostin is a delayed secreted product of osteocytes 
that inhibits bone formation. The FASEB Journal, 19, 1842-1844. 

POPOVICI, C., ADÉLAÏDE, J., OLLENDORFF, V., CHAFFANET, M., GUASCH, G., JACROT, M., 
LEROUX, D., BIRNBAUM, D. & PÉBUSQUE, M. J. 1998. Fibroblast growth factor 
receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13). 
Proceedings of the National Academy of Sciences of the United States of America, 95, 
5712-5717. 

POULET, B. & STAINES, K. A. 2016. New developments in osteoarthritis and cartilage biology. 
Current Opinion in Pharmacology, 28, 8-13. 

POWERS, C. J., MCLESKEY, S. W. & WELLSTEIN, A. 2000. Fibroblast growth factors, their 
receptors and signaling. Endocrine-Related Cancer, 7, 165-197. 

PRIDEAUX, M., LOVERIDGE, N., PITSILLIDES, A. A. & FARQUHARSON, C. 2012. Extracellular 
Matrix Mineralization Promotes E11/gp38 Glycoprotein Expression and Drives 
Osteocytic Differentiation. PLoS ONE, 7, e36786. 



Reference list  

 

233 
 

QING, H., ARDESHIRPOUR, L., PAJEVIC, P. D., DUSEVICH, V., JÄHN, K., KATO, S., 
WYSOLMERSKI, J. & BONEWALD, L. F. 2012. Demonstration of Osteocytic 
Perilacunar/Canalicular Remodeling in Mice during Lactation. Journal of Bone and 
Mineral Research 27, 1018-1029. 

QUARLES, L. D. 2008. Endocrine functions of bone in mineral metabolism regulation. The 
Journal of Clinical Investigation, 118, 3820-3828. 

QUASNICHKA, H. L., J.M;, A.-M. & BAILEY, A. J. 2006. Subchondral bone and ligament changes 
precede cartilage degradation in guinea pig osteoarthritis. Biorheology, 43, 389–397. 

RACHNER, T. D., KHOSLA, S. & HOFBAUER, L. C. 2011. Osteoporosis: now and the future. The 
Lancet, 377, 1276-1287. 

RADIN, E. L. & ROSE, R. M. 1986. Role of subchondral bone in the initiation and progression 
of cartilage damage. Clinical Orthopaedics and Related Research, 213, 34-40. 

RADIN, E. L., SCHAFFLER, M., GIBSON, G. & TASHMAN, S. 1995. Osteoarthrosis as the result 
of repetitive trauma. In: Kuettner KE, Goldberg VM (eds). Osteoarthritic Disorders. 
Rosemont: American Academy of Orthopaedic Surgeons., II, 197-204. 

RAMIREZ, M. I., MILLIEN, G., HINDS, A., CAO, Y., SELDIN, D. C. & WILLIAMS, M. C. 2003. T1α, 
a lung type I cell differentiation gene, is required for normal lung cell proliferation 
and alveolus formation at birth. Developmental Biology, 256, 62-73. 

RAZZAQUE, M. S. 2009. The FGF23–Klotho axis: endocrine regulation of phosphate 
homeostasis. Nature reviews. Endocrinology, 5, 611-619. 

REITER, A., SOHAL, J., KULKARNI, S., CHASE, A., MACDONALD, D. H., AGUIAR, R. C., 
GONÇALVES, C., HERNANDEZ, J. M., JENNINGS, B. A., GOLDMAN, J. M. & CROSS, N. 
C. 1998. Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the 
t(8;13)(p11;q12) myeloproliferative syndrome. Blood., 92, 1735-1742. 

RENO, C., MARCHUK, L., SCIORE, P., FRANK, C. B. & HART, D. A. 1997. Rapid isolation of total 
RNA from small samples of hypocellular, dense connective tissues. Biotechniques., 
22, 1082-1086. 

REVENU, C., ATHMAN, R., ROBINE, S. & LOUVARD, D. 2004. The co-workers of actin filaments: 
from cell structures to signals. Nature Reviews Molecular Cell Biology, 5, 635-646. 

REWCASTLE, G. W., PALMER, B. D., THOMPSON, A. M., BRIDGES, A. J., CODY, D. R., ZHOU, H., 
FRY, D. W., MCMICHAEL, A. & DENNY, W. A. 1996. Tyrosine Kinase Inhibitors. 10. 
Isomeric 4-[(3-Bromophenyl)amino]pyrido[d]- pyrimidines Are Potent ATP Binding 
Site Inhibitors of the Tyrosine Kinase Function of the Epidermal Growth Factor 
Receptor. Journal of Medicinal Chemistry, 39, 1823-1835. 

RICHELDA, R., RONCHETTI, D., BALDINI, L., CRO, L., VIGGIANO, L., MARZELLA, R., ROCCHI, M., 
OTSUKI, T., LOMBARDI, L., MAIOLO, A. T. & NERI, A. 1997. A novel chromosomal 
translocation t(4; 14)(p16.3; q32) in multiple myeloma involves the fibroblast 
growth-factor receptor 3 gene. Blood, 90, 4062-4070. 

RIDLEY, A. J. 2011. Life at the leading edge. Cell, 145, 1012-1022. 
RIECKMANN, T., KOTEVIC, I. & TRUEB, B. 2008. The cell surface receptor FGFRL1 forms 

constitutive dimers that promote cell adhesion. Experimental Cell Research, 314, 
1071-1081. 

RIFKIN, D. B. & MOSCATELLI, D. 1989. Recent developments in the cell biology of basic 
fibroblast growth factor. The Journal of Cell Biology, 109, 1-6. 

RIOS, H., KOUSHIK, S. V., WANG, H., WANG, J., ZHOU, H.-M., LINDSLEY, A., ROGERS, R., CHEN, 
Z., MAEDA, M., KRUZYNSKA-FREJTAG, A., FENG, J. Q. & CONWAY, S. J. 2005. periostin 
Null Mice Exhibit Dwarfism, Incisor Enamel Defects, and an Early-Onset Periodontal 
Disease-Like Phenotype. Molecular and Cellular Biology, 25, 11131-11144. 



Reference list  

 

234 
 

ROBIN, C. A., IRELAND, J., WYLIE, C. E., COLLINS, S. N., VERHEYEN, K. L. P. & NEWTON, J. R. 
2013. Prevalence and Risk Factors for Owner- Reported Obesity in Horses and Ponies 
in Great Britain. Equine Veterinary Journal, 45, 12-13. 

ROBLING, A. G., NIZIOLEK, P. J., BALDRIDGE, L. A., CONDON, K. W., ALLEN, M. R., ALAM, I., 
MANTILA, S. M., GLUHAK-HEINRICH, J., BELLIDO, T. M., HARRIS, S. E. & TURNER, C. H. 
2008. Mechanical stimulation of bone in vivo reduces osteocyte expression of 
Sost/sclerostin. The Journal of Biological Chemistry, 283, 5866-5875. 

ROMAN-BLAS, J. A., CASTAÑEDA, S., LARGO, R. & HERRERO-BEAUMONT, G. 2009. 
Osteoarthritis associated with estrogen deficiency. Arthritis Research & Therapy, 11, 
241. 

ROSCHGER, A., ROSCHGER, P., KEPLINGTER, P., KLAUSHOFER, K., ABDULLAH, S., KNEISSEL, M. 
& RAUCH, F. 2014. Effect of sclerostin antibody treatment in a mouse model of 
severe osteogenesis imperfecta. Bone, 66, 182-188. 

ROSSER, J. & BONEWALD, L. F. 2012. Studying osteocyte function using the cell lines MLO-Y4 
and MLO-A5. In: Bone Research Protocols, Methods in Molecular Biology (Helfrich, 
M.H and Ralston, S.T., eds). Springer Science+Business Media, LLC, London., 816, 67-
81. 

RUAN, J.-L., TULLOCH, N. L., MUSKHELI, V., GENOVA, E. E., MARINER, P. D., ANSETH, K. S. & 
MURRY, C. E. 2013. An Improved Cryosection Method for Polyethylene Glycol 
Hydrogels Used in Tissue Engineering. Tissue Engineering. Part C, Methods, 19, 794-
801. 

SABAPATHY, K., HOCHEDLINGER, K., NAM, S. Y., BAUER, A., KARIN, M. & WAGNER, E. F. 2004. 
Distinct Roles for JNK1 and JNK2 in Regulating JNK Activity and c-Jun-Dependent Cell 
Proliferation. Molecular Cell, 15, 713-725. 

SABBAGH, Y., BOILEAU, G., CAMPOS, M., CARMONA, A. K. & TENENHOUSE, H. S. 2003. 
Structure and function of disease-causing missense mutations in the PHEX gene. 
Journal of Clinical Endocrinology and Metabolism, 88, 2213-2222. 

SABBIETI, M. G., MARCHETTI, L., ABREU, C., MONTERO, A., HAND, A. R., RAISZ, L. G. & 
HURLEY, M. M. 1999. Prostaglandins regulate the expression of fibroblast growth 
factor-2 in bone. Endocrinology, 140, 434-444. 

SANCHEZ, C., DEBERG, M. A., BELLAHCENE, A., CASTRONOVO, V., MSIKA, P., DELCOUR, J. P., 
CRIELAARD, J. M. & HENROTIN, Y. E. 2008. Phenotypic characterization of osteoblasts 
from the sclerotic zones of osteoarthritic subchondral bone. Arthritis & 
Rheumatology, 58, 442-455. 

SANDER, J. D. & JOUNG, J. K. 2014. CRISPR-Cas systems for editing, regulating and targeting 
genomes. Nature Biotechnology, 32, 347-355. 

SANKIAN, M., VARASTEH, A., PAZOUKI, N. & MAHMOUDI, M. 2005. Sequence homology: A 
poor predictive value for profilins cross-reactivity. Clinical and molecular allergy : 
CMA, 3, 13-13. 

SARABIPOUR, S. & HRISTOVA, K. 2016. Mechanism of FGF receptor dimerization and 
activation. Nature Communications, 7, 10262. 

SASANO, Y., ZHU, J. X., KAMAKURA, S., KUSUNOKI, S., MIZOGUCHI, I. & KAGAYAMA, M. 2000. 
Expression of major bone extracellular matrix proteins during embryonic 
osteogenesis in rat mandibles. Anatomy and Embryology, 202, 31-37. 

SAWA, Y. 2010. New trends in the study of podoplanin as a cell morphological regulator. 
Japanese Dental Science Review, 46, 165-172. 

SCHAFFLER, M. B., CHEUNG, W.-Y., MAJESKA, R. & KENNEDY, O. 2014. Osteocytes: Master 
Orchestrators of Bone. Calcified Tissue International, 94, 5-24. 



Reference list  

 

235 
 

SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR, M., PIETZSCH, T., 
PREIBISCH, S., RUEDEN, C., SAALFELD, S., SCHMID, B., TINEVEZ, J. Y., WHITE, D. J., 
HARTENSTEIN, V., ELICEIRI, K., TOMANCAK, P. & CARDONA, A. 2012. Fiji: an open-
source platform for biological-image analysis. Nature Methods, 9, 676-682. 

SCHLESINGER, P. H., BLAIR, H. C., TEITELBAUM, S. L. & EDWARDS, J. C. 1997. Characterization 
of the Osteoclast Ruffled Border Chloride Channel and Its Role in Bone Resorption. 
Journal of Biological Chemistry, 272, 18636-18643. 

SCHMITZ, N., LAVERTY, S., KRAUS, V. B. & AIGNER, T. 2010. Basic methods in histopathology 
of joint tissues. Osteoarthritis Cartilage, 18, S113-S116. 

SCHOLL, F. G., GAMALLO, C., VILARÓ, S. & QUINTANILLA, M. 1999. Identification of PA2.26 
antigen as a novel cell-surface mucin-type glycoprotein that induces plasma 
membrane extensions and increased motility in keratinocytes. Journal of Cell Science, 
112, 4601-4613. 

SEEMAN, E. 2009. Bone modeling and remodeling. Critical Reviews in Eukaryotic Gene 
Expression, 19, 219-233. 

SEEMAN, E. 2013. Age- and Menopause-Related Bone Loss Compromise Cortical and 
Trabecular Microstructure. The Journals of Gerontology: Series A, 68, 1218-1225. 

SEMENOV, M., TAMAI, K. & HE, X. 2005. SOST is a ligand for LRP5/LRP6 and a Wnt signaling 
inhibitor. Journal of Biological Chemistry, 280, 26770-26775. 

SHAPIRO, F. 2008. Bone development and its relation to fracture repair. The role of 
mesenchymal osteoblasts and surface osteoblasts. European Cells and Materials, 15, 
53-76. 

SHARMA, A. R., JAGGA, S., LEE, S.-S. & NAM, J.-S. 2013. Interplay between Cartilage and 
Subchondral Bone Contributing to Pathogenesis of Osteoarthritis. International 
Journal of Molecular Sciences, 14, 19805-19830. 

SHIMADA, T., YOSHIDA, T. & YAMAGATA, K. 2016. Neuritin Mediates Activity-Dependent 
Axonal Branch Formation in Part via FGF Signaling. The Journal of Neuroscience, 36, 
4534-4548. 

SIEVERS, F., WILM, A., DINEEN, D., GIBSON, T. J., KARPLUS, K., LI, W., LOPEZ, R., MCWILLIAM, 
H., REMMERT, M., SÖDING, J., THOMPSON, J. D. & HIGGINS, D. G. 2011. Fast, scalable 
generation of high-quality protein multiple sequence alignments using Clustal 
Omega. Molecular Systems Biology, 7, 539. 

SMITH, S. M. & MELROSE, J. 2011. Podoplanin is expressed by a sub-population of human 
foetal rib and knee joint rudiment chondrocytes. Tissue and Cell, 43, 39-44. 

SMITH, T. F. & WATERMAN, M. S. 1981. Identification of common molecular subsequences. 
Journal of Molecular Biology, 147, 195-197. 

SOKOLOFF, L. 1993. Microcracks in the calcified layer of articular cartilage. The Archives of 
Pathology & Laboratory Medicine, 117, 191-195. 

SOLTANOFF, C. S., CHEN, W., YANG, S. & LI, Y. 2009. Signaling Networks that Control the 
Lineage Commitment and Differentiation of Bone Cells. Critical Reviews in Eukaryotic 
Gene Expression, 19, 1-46. 

SOMMERFELDT, D. & RUBIN, C. 2001. Biology of bone and how it orchestrates the form and 
function of the skeleton. European Spine Journal, 10, S86-S95. 

SONG, G., OUYANG, G. & BAO, S. 2005. The activation of Akt/PKB signaling pathway and cell 
survival. Journal of Cellular and Molecular Medicine, 9, 59-71. 

SPALDING, J. B. & LAMMERS, P. J. 2004. BLAST Filter and GraphAlign: rule-based formation 
and analysis of sets of related DNA and protein sequences. Nucleic Acids Research, 
32, W26-W32. 



Reference list  

 

236 
 

STAINES, K. A., JAVAHERI, B., HOHENSTEIN, P., FLEMING, R., IKPEGBU, E., UNGER, E., 
HOPKINSON, M., BUTTLE, D. J., PITSILLIDES, A. A. & FARQUHARSON, C. 2017. 
Hypomorphic conditional deletion of E11/Podoplanin reveals a role in osteocyte 
dendrite elongation. Journal of Cellular Physiology, 232, 3006-3019. 

STAINES, K. A., MACRAE, V. E. & FARQUHARSON, C. 2012. The importance of the SIBLING 
family of proteins on skeletal mineralisation and bone remodelling. Journal of 
Endocrinology, 214, 241-255. 

STAINES, K. A., PRIDEAUX, M., ALLEN, S., BUTTLE, D. J., PITSILLIDES, A. A. & FARQUHARSON, 
C. 2016. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome 
Promotes Osteocyte Differentiation in Murine in Vitro Models. Journal of Cellular 
Physiology, 231, 1392-1404. 

STERN, A. R., STERN, M. M., VAN DYKE, M. E., JAHN, K., PRIDEAUX, M. & BONEWALD, L. F. 
2012. Isolation and culture of primary osteocytes from the long bones of skeletally 
mature and aged mice. Biotechniques, 52, 361-373. 

STOKER, A. M., COOK, J. L., KUROKI, K. & FOX, D. B. 2006. Site-specific analysis of gene 
expression in early osteoarthritis using the Pond-Nuki model in dogs. Journal of 
Orthopaedic Surgery and Research, 1, 8-8. 

SU, N., JIN, M. & CHEN, L. 2014. Role of FGF/FGFR signaling in skeletal development and 
homeostasis: learning from mouse models. Bone research, 2, 14003. 

SUHARA, T., KIM, H. S., KIRSHENBAUM, L. A. & WALSH, K. 2002. Suppression of Akt Signaling 
Induces Fas Ligand Expression: Involvement of Caspase and Jun Kinase Activation in 
Akt-Mediated Fas Ligand Regulation. Molecular and Cellular Biology, 22, 680-691. 

SUZUKI, A., PALMER, G., BONJOUR, J. P. & CAVERZASIO, J. 2000. Stimulation of sodium-
dependent phosphate transport and signaling mechanisms induced by basic 
fibroblast growth factor in MC3T3-E1 osteoblast-like cells. Journal of Bone and 
Mineral Research 15, 95-102. 

TALJANOVIC, M. S., GRAHAM, A. R., BENJAMIN, J. B., GMITRO, A. F., KRUPINSKI, E. A., 
SCHWARTZ, S. A., HUNTER, T. B. & RESNICK, D. L. 2008. Bone marrow edema pattern 
in advanced hip osteoarthritis: quantitative assessment with magnetic resonance 
imaging and correlation with clinical examination, radiographic findings, and 
histopathology. Skeletal Radiology 37, 423-431. 

TAN, L., WANG, J., TANIZAKI, J., HUANG, Z., AREF, A. R., RUSAN, M., ZHU, S. J., ZHANG, Y., 
ERCAN, D., LIAO, R. G., CAPELLETTI, M., ZHOU, W., HUR, W., KIM, N., SIM, T., GAUDET, 
S., BARBIE, D. A., YEH, J. R., YUN, C. H., HAMMERMAN, P. S., MOHAMMADI, M., 
JANNE, P. A. & GRAY, N. S. 2014. Development of covalent inhibitors that can 
overcome resistance to first-generation FGFR kinase inhibitors. Proceedings of the 
National Academy of Sciences of the United States of America 111, E4869-E4877. 

TATSUMI, S., ISHII, K., AMIZUKA, N., LI, M., KOBAYASHI, T., KOHNO, K., ITO, M., TAKESHITA, 
S. & IKEDA, K. 2007. Targeted Ablation of Osteocytes Induces Osteoporosis with 
Defective Mechanotransduction. Cell Metabolism, 5, 464-475. 

TETI, A. & ZALLONE, A. 2009. Do osteocytes contribute to bone mineral homeostasis? 
Osteocytic osteolysis revisited. Bone, 44, 11-16. 

TEVEN, C. M., FARINA, E. M., RIVAS, J. & REID, R. R. 2014. Fibroblast growth factor (FGF) 
signaling in development and skeletal diseases. Genes & Diseases, 1, 199-213. 

THIERY, J. P. 2002. Epithelial-mesenchymal transitions in tumour progression. Nature 
Reviews Cancer, 2, 442-454. 

THISSE, B. & THISSE, C. 2005. Functions and regulations of fibroblast growth factor signaling 
during embryonic development. Developmental Biology, 287, 390-402. 



Reference list  

 

237 
 

THOMPSON, T. J., OWENS, P. D. & WILSON, D. J. 1989. Intramembranous osteogenesis and 
angiogenesis in the chick embryo. Journal of Anatomy, 166, 55-65. 

TIEDE-LEWIS, L. M., XIE, Y., HULBERT, M. A., CAMPOS, R., DALLAS, M. R., DUSEVICH, V., 
BONEWALD, L. F. & DALLAS, S. L. 2017. Degeneration of the osteocyte network in the 
C57BL/6 mouse model of aging. Aging, 9, 2190-2208. 

TOYOSAWA, S., SHINTANI, S., FUJIWARA, T., OOSHIMA, T., SATO, A., IJUHIN, N. & KOMORI, 
T. 2001. Dentin Matrix Protein 1 Is Predominantly Expressed in Chicken and Rat 
Osteocytes But Not in Osteoblasts. Journal of Bone and Mineral Research, 16, 2017-
2026. 

TURNER, N. & GROSE, R. 2010. Fibroblast growth factor signalling: from development to 
cancer. Nature Reviews. Cancer, 10, 116-129. 

UCHIHASHI, K., AOKI, S., MATSUNOBU, A. & TODA, S. 2013. Osteoblast migration into type I 
collagen gel and differentiation to osteocyte-like cells within a self-produced 
mineralized matrix: A novel system for analyzing differentiation from osteoblast to 
osteocyte. Bone, 52, 102-110. 

VAANANEN, H. K., ZHAO, H., MULARI, M. & HALLEEN, J. M. 2000. The cell biology of osteoclast 
function. Journal of Cell Science, 113, 377. 

VAN DER KRAAN, P. M. & VAN DEN BERG, W. B. 2007. Osteophytes: relevance and biology. 
Osteoarthritis Cartilage, 15, 237-244. 

VAN DIJK, F. S., ZILLIKENS, M. C., MICHA, D., RIESSLAND, M., MARCELIS, C. L. M., DE DIE-
SMULDERS, C. E., MILBRADT, J., FRANKEN, A. A., HARSEVOORT, A. J., LICHTENBELT, 
K. D., PRUIJS, H. E., RUBIO-GOZALBO, M. E., ZWERTBROEK, R., MOUTAOUAKIL, Y., 
EGTHUIJSEN, J., HAMMERSCHMIDT, M., BIJMAN, R., SEMEINS, C. M., BAKKER, A. D., 
EVERTS, V., KLEIN-NULEND, J., CAMPOS-OBANDO, N., HOFMAN, A., TE MEERMAN, 
G. J., VERKERK, A. J. M. H., UITTERLINDEN, A. G., MAUGERI, A., SISTERMANS, E. A., 
WAISFISZ, Q., MEIJERS-HEIJBOER, H., WIRTH, B., SIMON, M. E. H. & PALS, G. 2013. 
PLS3 Mutations in X-Linked Osteoporosis with Fractures. New England Journal of 
Medicine, 369, 1529-1536. 

VAN WEEREN, P. R. 2016a. 1 - General Anatomy and Physiology of Joints. Joint Disease in the 
Horse (Second Edition). Edinburgh: W.B. Saunders. 

VAN WEEREN, P. R. 2016b. 7 - Septic Arthritis. Joint Disease in the Horse (Second Edition). 
Edinburgh: W.B. Saunders. 

VANDEWEERD, J. M., HONTOIR, F., KIRSCHVINK, N., CLEGG, P., NISOLLE, J. F., ANTOINE, N. & 
GUSTIN, P. 2013. Prevalence of naturally occurring cartilage defects in the ovine 
knee. Osteoarthritis Cartilage, 21, 1125-1131. 

VARGHESE, S., RAMSBY, M. L., JEFFREY, J. J. & CANALIS, E. 1995. Basic fibroblast growth factor 
stimulates expression of interstitial collagenase and inhibitors of metalloproteinases 
in rat bone cells. Endocrinology, 136, 2156-2162. 

VILLUNGER, A., HUANG, D. C. S., HOLLER, N., TSCHOPP, J. & STRASSER, A. 2000. Fas Ligand-
Induced c-Jun Kinase Activation in Lymphoid Cells Requires Extensive Receptor 
Aggregation But Is Independent of DAXX, and Fas-Mediated Cell Death Does Not 
Involve DAXX, RIP, or RAIDD. The Journal of Immunology, 165, 1337-1343. 

WAKELING, A. E., BARKER, A. J., DAVIES, D. H., BROWN, D. S., GREEN, L. R., CARTLIDGE, S. A. 
& WOODBURN, J. R. 1996. Specific inhibition of epidermal growth factor receptor 
tyrosine kinase by 4-anilinoquinazolines. Breast Cancer Research and Treatment, 38, 
67-73. 

WALLACE, I. J., WORTHINGTON, S., FELSON, D. T., JURMAIN, R. D., WREN, K. T., MAIJANEN, 
H., WOODS, R. J. & LIEBERMAN, D. E. 2017. Knee osteoarthritis has doubled in 



Reference list  

 

238 
 

prevalence since the mid-20th century. Proceedings of the National Academy of 
Sciences of the United States of America, 114, 9332-9336. 

WALSH, D. A., BONNET, C. S., TURNER, E. L., WILSON, D., SITU, M. & MCWILLIAMS, D. F. 2007. 
Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. 
Osteoarthritis cartilage, 15, 743-751. 

WALSH, D. A., MCWILLIAMS, D. F., TURLEY, M. J., DIXON, M. R., FRANSES, R. E., MAPP, P. I. & 
WILSON, D. 2010. Angiogenesis and nerve growth factor at the osteochondral 
junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford), 49, 1852-
1861. 

WAN, P. T. C., GARNETT, M. J., ROE, S. M., LEE, S., NICULESCU-DUVAZ, D., GOOD, V. M., 
PROJECT, C. G., JONES, C. M., MARSHALL, C. J., SPRINGER, C. J., BARFORD, D. & 
MARAIS, R. 2004. Mechanism of Activation of the RAF-ERK Signaling Pathway by 
Oncogenic Mutations of B-RAF. Cell, 116, 855-867. 

WANG, N., RUMNEY, R. M. H., YANG, L., ROBAYE, B., BOEYNAEMS, J. M., SKERRY, T. M. & 
GARTLAND, A. 2013. The P2Y13 receptor regulates extracellular ATP metabolism and 
the osteogenic response to mechanical loading. Journal of Bone and Mineral 
Research, 28, 1446-1456. 

WANG, Q., GREEN, R. P., ZHAO, G. & ORNITZ, D. M. 2001. Differential regulation of 
endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine 
kinase domains. Development 128, 3867-3876 (2001), 128, 3867-3876. 

WATANUKI, M., SAKAI, A., SAKATA, T., TSURUKAMI, H., MIWA, M., UCHIDA, Y., WATANABE, 
K., IKEDA, K. & NAKAMURA, T. 2002. Role of Inducible Nitric Oxide Synthase in 
Skeletal Adaptation to Acute Increases in Mechanical Loading. Journal of Bone and 
Mineral Research, 17, 1015-1025. 

WAUSON, E. M., GUERRA, M. L., BARYLKO, B., ALBANESI, J. P. & COBB, M. H. 2013. Off-target 
effects of MEK inhibitors. Biochemistry, 52, 5164-5166. 

WEI, J. & KARSENTY, G. 2015. An overview of the metabolic functions of osteocalcin. Reviews 
in Endocrine & Metabolic Disorders, 16, 93-98. 

WEINER, S., TRAUB, W. & WAGNER, H. D. 1999. Lamellar bone: structure-function relations. 
Journal of Structural Biology, 126, 241-255. 

WEKSLER, N. B., LUNSTRUM, G. P., REID, E. S. & HORTON, W. A. 1999. Differential effects of 
fibroblast growth factor (FGF) 9 and FGF2 on proliferation, differentiation and 
terminal differentiation of chondrocytic cells in vitro. The Biochemical Journal, 342, 
667-682. 

WENG, T., YI, L., HUANG, J., LUO, F., WEN, X., DU, X., CHEN, Q., DENG, C., CHEN, D. & CHEN, 
L. 2012. Genetic inhibition of fibroblast growth factor receptor 1 in knee cartilage 
attenuates the degeneration of articular cartilage in adult mice. Arthritis and 
rheumatism, 64, 3982-3992. 

WENHAM, C. Y. J. & CONAGHAN, P. G. 2010. The Role of Synovitis in Osteoarthritis. 
Therapeutic Advances in Musculoskeletal Disease, 2, 349-359. 

WENZ, W., BREUSCH, S. J., GRAF, J. & STRATMANN, T. U. 2000. Ultrastructural Findings after 
Intraarticular Application of Hyaluronan in a Canine Model of Arthropathy. The 
Journal of Orthopaedic Research, 18, 604-612. 

WERGEDAL, J. E. & BAYLINK, D. J. 1969. DISTRIBUTION OF ACID AND ALKALINE PHOSPHATASE 
ACTIVITY IN UNDEMINERALIZED SECTIONS OF THE RAT TIBIAL DIAPHYSIS. Journal of 
Histochemistry & Cytochemistry, 17, 799-806. 

WETTERWALD, A., HOFFSTETTER, W., CECCHINI, M. G., LANSKE, B., WAGNER, C., FLEISCH, H. 
& ATKINSON, M. 1996. Characterization and cloning of the E11 antigen, a marker 
expressed by rat osteoblasts and osteocytes. Bone., 18, 125-132. 



Reference list  

 

239 
 

WHITE, M. J., DICAPRIO, M. J. & GREENBERG, D. A. 1996. Assessment of neuronal viability 
with Alamar blue in cortical and granule cell cultures. Journal of Neuroscience 
Methods, 70, 195-200. 

WICKI, A. & CHRISTOFORI, C. 2007. The potential role of podoplanin in tumour invasion. The 
British Journal of Cancer, 96, 1-5. 

WILLING, M. C., DESCHENES, S. P., SCOTT, D. A., BYERS, P. H., SLAYTON, R. L., PITTS, S. H., 
ARIKAT, H. & ROBERTS, E. J. 1994. Osteogenesis imperfecta type I: molecular 
heterogeneity for COL1A1 null alleles of type I collagen. American Journal of Human 
Genetics, 55, 638-647. 

WILSON, A. J., MURPHY, W. A., HARDY, D. C. & TOTTY, W. G. 1988. Transient osteoporosis: 
transient bone marrow edema? Radiology, 167, 757-760. 

WINKLER, D. G., SUTHERLAND, M. K., GEOGHEGAN, J. C., YU, C., HAYES, T., SKONIER, J. E., 
SHPEKTOR, D., JONAS, M., KOVACEVICH, B. R., STAEHLING-HAMPTON, K., APPLEBY, 
M., BRUNKOW, M. E. & LATHAM, J. A. 2003. Osteocyte control of bone formation via 
sclerostin, a novel BMP antagonist. The EMBO Journal, 22, 6267-6276. 

WONG, B., JOSIEN, R., LEE, S., VOLOGODSKAIA, M., STEINMAN, R. M. & CHOI, Y. 1998. The 
TRAF Family of Signal Transducers Mediates NF-κB Activation by the TRANCE 
Receptor. The Journal of Biological Chemistry, 273, 28355–28359. 

WRIGHT, H. L., MOOTS, R. J. & EDWARDS, S. W. 2014. The multifactorial role of neutrophils 
in rheumatoid arthritis. Nature Reviews Rheumatology, 10, 593-601. 

WU, L., GUO, H., SUN, K., ZHAO, X., MA, T. & JIN, Q. 2016. Sclerostin expression in the 
subchondral bone of patients with knee osteoarthritis. International Journal of 
Molecular Medicine, 38, 1395-1402. 

WULF, E., DEBOBEN, A., BAUTZ, F. A., FAULSTICH, H. & WIELAND, T. H. 1979. Fluorescent 
phallotoxin, a tool for the visualization of cellular actin. Proceedings of the National 
Academy of Sciences of the United States of America, 76, 4498-4502. 

XIAO, L., LIU, P., LI, X., DOETSCHMAN, T., COFFIN, J. D., DRISSI, H. & HURLEY, M. M. 2009. 
Exported 18-kDa isoform of fibroblast growth factor-2 is a critical determinant of 
bone mass in mice. The Journal of Biological Chemistry, 284, 3170-3182. 

XIAO, L., NAGANAWA, T., LORENZO, J., CARPENTER, T. O., COFFIN, J. D. & HURLEY, M. M. 
2010a. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of 
hypophosphatemia via modulation of FGF23 and KLOTHO. The Journal of Biological 
Chemistry, 285, 2834-2846. 

XIAO, L., SOBUE, T., ESLIGER, A., KRONENBERG, M. S., COFFIN, J. D., DOETSCHMAN, T. & 
HURLEY, M. M. 2010b. Disruption of the Fgf2 gene activates the adipogenic and 
suppresses the osteogenic program in mesenchymal marrow stromal stem cells. 
Bone, 47, 360-370. 

XIAO, Z., ZHANG, S., MAHLIOS, J., ZHOU, G., MAGENHEIMER, B. S., GUO, D., DALLAS, S. L., 
MASER, R., CALVET, J. P., BONEWALD, L. & QUARLES, L. D. 2006. Cilia-like structures 
and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in 
skeletogenesis and runx2 expression. The Journal of Biological Chemistry, 281, 
30884-30895. 

XIE, L., SU, X., ZHANG, L., YIN, X., TANG, L., ZHANG, X., XU, Y., GAO, Z., LIU, K., ZHOU, M., GAO, 
B., SHEN, D., ZHANG, L., JI, J., GAVINE, P. R., ZHANG, J., KILGOUR, E., ZHANG, X. & JI, 
Q. 2013. FGFR2 gene amplification in gastric cancer predicts sensitivity to the 
selective FGFR inhibitor AZD4547. Clinical cancer research, 19, 2572-2583. 

XIONG, J., ONAL, M., JILKA, R. L., WEINSTEIN, R. S., MANOLAGAS, S. C. & O'BRIEN, C. A. 2011. 
Matrix-embedded cells control osteoclast formation. Nature Medicine, 17, 1235-
1241. 



Reference list  

 

240 
 

YADAV, M. C., SIMÃO, A. M. S., NARISAWA, S., HUESA, C., MCKEE, M. D., FARQUHARSON, C. 
& MILLÁN, J. L. 2011. Loss of Skeletal Mineralization by the Simultaneous Ablation of 
PHOSPHO1 and Alkaline Phosphatase Function: A Unified Model of the Mechanisms 
of Initiation of Skeletal Calcification. Journal of Bone and Mineral Research, 26, 286-
297. 

YAMAGUCHI, A., KOMORI, T. & SUDA, T. 2000. Regulation of osteoblast differentiation 
mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocrine 
Reviews, 21, 393-411. 

YAN, D., CHEN, D., COOL, S. M., VAN WIJNEN, A. J., MIKECZ, K., MURPHY, G. & IM, H.-J. 2011. 
Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth 
factor 2-induced catabolic activities in human articular chondrocytes. Arthritis 
Research & Therapy, 13, R130-R130. 

YAN, D., CHEN, D. & IM, H.-J. 2012. Fibroblast Growth Factor–2 Promotes Catabolism Via 
FGFR1–Ras–Raf–MEK1/2–ERK1/2 Axis That Coordinates With the PKCδ Pathway in 
Human Articular Chondrocytes. Journal of cellular biochemistry, 113, 2856-2865. 

YANG, J., ZHANG, D., YU, Y., ZHANG, R. J., HU, X. L., HUANG, H. F. & LU, Y. C. 2015. Binding of 
FGF2 to FGFR2 in an autocrine mode in trophectoderm cells is indispensable for 
mouse blastocyst formation through PKC-p38 pathway. Cell Cycle, 14, 3318-3330. 

YANG, Y. 2009. Skeletal Morphogenesis during Embryonic Development. Critical Reviews in 
Eukaryotic Gene Expression, 19, 197-218. 

YANG, Y. 2013. Skeletal Morphogenesis and Embryonic Development. Primer on the 
Metabolic Bone Diseases and Disorders of Mineral Metabolism. John Wiley & Sons, 
Inc. 

YANG, Y. Q., TAN, Y. Y., WONG, R., WENDEN, A., ZHANG, L. K. & RABIE, A. B. 2012. The role 
of vascular endothelial growth factor in ossification. International journal of oral 
science, 4, 64-68. 

YAO, T. J., ZHU, J. H., PENG, D. F., CUI, Z., ZHANG, C. & LU, P. H. 2015. AZD-4547 exerts potent 
cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-
expressing colorectal cancer cells. Tumour biology, 36, 5641-5648. 

YOSHIMURA, N., SANO, H., HASHIRAMOTO, A., YAMADA, R., NAKAJIMA, H., KONDO, M. & 
OKA, T. 1998. The expression and localization of fibroblast growth factor-1 (FGF-1) 
and FGF receptor-1 (FGFR-1) in human breast cancer. Clinical Immunology and 
Immunopathology, 89, 28-34. 

YUN, Y.-R., WON, J. E., JEON, E., LEE, S., KANG, W., JO, H., JANG, J.-H., SHIN, U. S. & KIM, H.-
W. 2010. Fibroblast Growth Factors: Biology, Function, and Application for Tissue 
Regeneration. Journal of Tissue Engineering, 2010, 218142. 

ZANATTA, L. C. B., BOGUSZEWSKI, C. L., BORBA, V. Z. C. & KULAK, C. A. M. 2014. Osteocalcin, 
energy and glucose metabolism. Arquivos Brasileiros de Endocrinologia & 
Metabologia, 58, 444-451. 

ZAREI, A., HULLEY, P. A., SABOKBAR, A. & JAVAID, M. K. 2017. Co-expression of DKK-1 and 
Sclerostin in Subchondral Bone of the Proximal Femoral Heads from Osteoarthritic 
Hips. Calcified Tissue International, 100, 609-618. 

ZHANG, J., ZHANG, L., SU, X., LI, M., XIE, L., MALCHERS, F., FAN, S., YIN, X., XU, Y., LIU, K., 
DONG, Z., ZHU, G., QIAN, Z., TANG, L., SCHOTTLE, J., ZHAN, P., JI, Q., KILGOUR, E., 
SMITH, P. D., BROOKS, A. N., THOMAS, R. K. & GAVINE, P. R. 2012. Translating the 
therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer 
through the use of patient-derived tumor xenograft models. Clinical Cancer 
Research, 18, 6658-6667. 



Reference list  

 

241 
 

ZHANG, K., BARRAGAN-ADJEMIAN, C., YE, L., KOTHA, S., DALLAS, M., LU, Y., ZHAO, S., HARRIS, 
M., HARRIS, S. E., FENG, J. Q. & BONEWALD, L. F. 2006. E11/gp38 selective expression 
in osteocytes: regulation by mechanical strain and role in dendrite elongation. 
Molecular and Cellular Biology, 26, 4539-4552. 

ZHANG, Q., LIN, S., LIU, Y., YUAN, B., HARRIS, S. E. & FENG, J. Q. 2016. Dmp1 Null Mice 
Develop a Unique Osteoarthritis-like Phenotype. International Journal of Biological 
Sciences, 12, 1203-1212. 

ZHANG, R., LU, Y., YE, L., YUAN, B., YU, S., QIN, C., XIE, Y., GAO, T., DREZNER, M. K., 
BONEWALD, L. F. & FENG, J. Q. 2011. Unique Roles of Phosphorus in Endochondral 
Bone Formation and Osteocyte Maturation. Journal of Bone and Mineral Research, 
26, 1047-1056. 

ZHANG, W., PEI, Y., ZHONG, L., WEN, B., CAO, S. & HAN, J. 2015. Pluripotent and Metabolic 
Features of Two Types of Porcine iPSCs Derived from Defined Mouse and Human ES 
Cell Culture Conditions. PLoS One, 10, e0124562. 

ZHANG, Y., SU, N., LUO, F., WEN, X., TANG, Y., YANG, J., CHEN, S., JIANG, W., DU, X. & CHEN, 
L. 2014. Deletion of Fgfr1 in osteoblasts enhances mobilization of EPCs into 
peripheral blood in a mouse endotoxemia model. International Journal of Biological 
Sciences, 10, 1064-1071. 

ZHOU, M., SUTLIFF, R. L., PAUL, R. J., LORENZ, J. N., HOYING, J. B., HAUDENSCHILD, C. C., YIN, 
M., COFFIN, J. D., KONG, L., KRANIAS, E. G., LUO, W., BOIVIN, G. P., DUFFY, J. J., 
PAWLOWSKI, S. A. & DOETSCHMAN, T. 1998. Fibroblast growth factor 2 control of 
vascular tone. Nature medicine, 4, 201-207. 



Appendix 1  

242 
 

Reagents for this work were obtained from Sigma-Aldrich (Dorset, U.K.) and 

cell/organ culture media and additives were sourced from Thermo Fisher Scientific 

(Paisley, U.K.) unless otherwise stated. 

Cell culture 

Culture media  

(αMEM supplemented with 10% v/ FBS, and 0.05 mg/ml gentamycin)  

Calvariae Culture media  

(αMEM containing 0.2% w/v BSA and 0.05 mg/ml gentamycin) 

Treatment media 

(αMEM supplemented with 1% v/v FBS), and 0.05 mg/ml gentamycin) 

 

Histology  

10 mM Citric acid buffer pH 6.0 

1.92 g citric acid /1000 ml dH2O   

Tris/EDTA (TE) Buffer (pH 9.0)  

10 mM Tris-HCl and 1 mM EDTA in dH2O. 

1 mM EDTA (pH 8.0)  

 

0.292g EDTA /1000 ml dH2O  

Sodium acetate buffer (Store at 4oC) 

Disolve 13.6 g in 1 L dH2O. Stir well 

Titrate solution to pH 4 using glacial acetic acid 

 

Immunofluorescence recipe 

Blocking buffer 

1X PBS / 5% v/v normal serum / 0.3% v/v Triton X-100 

Antibody Dilution Buffer  

1X PBS / 1% w/v BSA / 0.3% v/v Triton X-100 
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Western Blotting  

LDS Sample reducing agent  

40% glycerol, 4% LDS, 4% Ficoll*-400, 0.8 M triethanolamine-Cl pH 7.6, 0.025% 

phenol red, 0.025% coomassie G250, 2 mM EDTA disodium 

10X Transfer buffer 

29.3 mg/ml glycine, 58mg/ml Tris Base (trismethylamine), 18.8ul/ml 20% v/vSDS in 

dH2O  

1X Transfer buffer 

100 ml 10X transfer buffer, 200 ml 98% Ethanol, 700 ml dH2O.  

TBS/T 

Tris-buffered saline/Tween-20 consisting of 50 mM Tris-HCl, 300 mM NaCl, 0.1% 

v/v Tween-20 

1X TBS/T 

100 ml TBS/T, 900 ml water, 1 ml Tween 20 

MOPS running buffer  

50 mM MOPS pH 7.7, 50 mM Tris, 0.1% v/v SDS, 1 mM EDTA  

5% Marvel  

5 g of skimmed milk powder (Oxoid ltd, UK), in 100 ml of 1X TBS/T,  

Stripping buffer 

25 mM glycine, 1% v/v SDS and pH2 

Bio-Rad DC protein assay   Reagent A  

1 ml Bio-Rad DC protein assay   Reagent A (Bio-Rad, Hertfordshire, UK) 

20 uM of Bio-Rad DC protein assay   Reagent S (Bio-Rad, Hertfordshire, UK) 
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Table 1. Primers used for RT-qPCR analysis.  

 

Gene of Interest Source S Sequence (5’-3’) 

E11 Primer 

Design 

F AACAAGTCACCCCAATAGAGATAAT 

R CTAACAAGACGCCAACTATGATTC 

Dmp1 Primer 

Design 

F ATACCACAATACTGAATCTGAAAGC 

R CACTATTTGCCTGTCCCTCTG 

ATP5b 

(Housekeeping)  

Primer 

Design 

F Not disclosed 

R Not disclosed 

Phex Primer 

Design 

F CTAACCACCCACTCCCACTT 

R CCAATAGACTCCAAACCTGAAGA 

Sost Primer 

Design 

F TGAGAACAACCAGACCATGAAC 

R TCAGGAAGCGGGTGTAGTG 

Col1a1 Primer 

Design 

F GCTCCTCTTAGGGGCCACT 

R CCACGTCTCACCATTGGGG 

Postn Primer 

Design 

F TTCCTCTCCTGCCCTTATATGC 

R CCTGATCCCGACCCCTGAT 

Bglap Eurofins 

MWG 

F TGCACGAAAGCAAGATGCTG 

R GGAGCGTCTGAATAGTCGCC 

Alpl   Sigma F GGGACGAATCTCAGGGTACA 

R AGTAACTGGGGTCTCTCTC 

Fgfr1 Qiagen F Not disclosed 

R Not disclosed 

Fgfr2 Sigma F CCTGCGGAGACAGGTAACAG 

R CGCGTTGTTATCCTCACCA 

Fgfr3 Qiagen F Not disclosed 

R Not disclosed 

Gapdh Primer 

Design 

F Not disclosed 

R Not disclosed 
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Appendix Table 2. Primary antibodies 

 

Antibody Species  Source   Use Dilution 

E11 Goat 
R&D 

Systems 

  Western 

Blotting 
1:1000 

Sost Goat 

R&D 

Systems 

 

  
Western 

Blotting 
1:500 

p-ERK1/2 Rabbit 

Cell 

Signalling 

Tech.  

  
Western 

Blotting 
1:1000 

Total 

ERK1/2 
Rabbit 

Cell 

Signalling 

Tech. 

  
Western 

Blotting 
1:1000 

pAKT Rabbit 

Cell 

Signalling 

Tech. 

  
Western 

Blotting 
1:1000 

Total 

AKT 
Rabbit 

Cell 

Signalling 

Tech. 

  
Western 

Blotting 
1:1000 

p-p38 Rabbit 

Cell 

Signalling 

Tech. 

  
Western 

Blotting 
1:1000 

P38 Rabbit 

Cell 

Signalling 

Tech. 

  
Western 

Blotting 
1:1000 

pJNK Rabbit 

Cell 

Signalling 

Tech. 

  
Western 

Blotting 
1:1000 
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Total JNK Rabbit 

Cell 

Signalling 

Tech. 

  
Western 

Blotting 
1:1000 

β-actin 

(HP-

linked) 

Mouse Sigma 

  
Western 

Blotting 
1:70000 

E11 Goat 

R&D 

Systems 

 

  
Immunohistoc

hemistry 
1:500 

Sclerostin Goat 

R&D 

Systems 

 

  
Immunohistoc

hemistry 
1:500 

p-ERK1/2 Rabbit 

Cell 

Signalling 

Tech. 

  
Immunohistoc

hemistry 
1:100 

E11 Goat 

R&D 

Systems 

  

  
Immunofluore

scence 
1:900 

p-ERK1/2 Rabbit 

Cell 

Signalling 

Tech. 

  
Immunofluore

scence 
1:100 
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Table 3. Secondary antibodies  

Antibody Source Use Dilution 

Rabbit anti-goat Dako Western Blotting 1:3000 

Goat anti-rabbit Dako Western Blotting 1:3000 

Donkey anti-goat Abcam Immunofluorescence 1:250 

Donkey anti-rabbit Abcam Immunofluorescence 1:250 

Rabbit anti-goat Vector Lab Immunohistochemistry 1:200 

Goat anti-rabbit Vector Lab Immunohistochemistry 1:200 

 

 

Algorithm 1.  

[IMARIS 8.4 Algorithm] 

Enable Region of Interest = false 

Enable Region Growing = false 

Enable Tracking = false 

[Source Channel] 

Source Channel Index = 1 

Enable Smooth = true 

Surface Grain Size = 0.300 um 

Enable Eliminate Background = false 

Diameter of Largest Sphere = 0.713 um 

[Threshold] 

Enable Automatic Threshold = false 

Manual Threshold Value = 685.082 

Active Threshold = true 

Enable Automatic Threshold B = true 

Manual Threshold Value B = 4073.13 

Active Threshold B = false 

[Classify Surfaces] 

"Number of Voxels" between 5495 and 2.94e5  
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E11/podoplanin is critical in the early stages of osteoblast-to-osteocyte transitions

(osteocytogenesis), however, the upstream events which regulate E11 expression are

unknown. The aim of this study was to examine the effects of FGF-2 on E11-mediated

osteocytogenesis and to reveal the nature of the underlying signaling pathways

regulating this process. Exposure of MC3T3 osteoblast-like cells and murine primary

osteoblasts to FGF-2 (10 ng/ml) increased E11mRNAandprotein expression (p < 0.05)

after 4, 6, and 24 hr. FGF-2 induced changes in E11 expressionwere also accompanied

by significant (p < 0.01) increases inPhex andDmp1 (osteocytemarkers) expression and

decreases in Col1a1, Postn, Bglap, and Alpl (osteoblast markers) expression.

Immunofluorescent microscopy revealed that FGF-2 stimulated E11 expression,

facilitated the translocation of E11 toward the cell membrane, and subsequently

promoted the formation of osteocyte-like dendrites in MC3T3 and primary

osteoblasts. siRNA knock down of E11 expression achieved >70% reduction of basal

E11 mRNA expression (p < 0.05) and effectively abrogated FGF-2-related changes in

E11 expression and dendrite formation. FGF-2 strongly activated the ERK signaling

pathway inosteoblast-like cells but inhibitionof this pathwaydidnot block the ability of

FGF-2 to enhance E11 expression or to promote acquisition of the osteocyte

phenotype. The results of this study highlight a novel mechanism by which FGF-2 can

regulate osteoblast differentiation and osteocyte formation. Specifically, the data

suggests that FGF-2 promotes osteocytogenesis through increased E11 expression

and further studies will identify if this regulatory pathway is essential for bone

development and maintenance in health and disease.
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1 | INTRODUCTION

Osteocytes are derived from osteoblasts and are the most abundant

cells, residing inmineralized bone of the adult skeleton. It has long been

accepted that osteocytes are formed by the passive entrapment of

redundant osteoblasts by osteoid synthesized by their close neighbors

(Palumbo, Ferretti, & Marotti, 2004; Skerry, Bitensky, Chayen, &

Lanyon, 1989). The transition from the cuboidal-like osteoblastic

morphology to a dendritic shape characteristic of an osteocyte is,

however, a more active and tightly regulated process than originally

recognized (for reviews see Dallas & Bonewald, 2010; Franz-

Odendaal, Hall, & Witten, 2006).

The mechanisms which govern this osteoblast to osteocyte

transition (osteocytogenesis) are generally unknown but fundamen-

tal studies by Bonewald and coworkers identified E11/podoplanin, a

mucin-type transmembrane glycoprotein, as the earliest osteocyte

marker protein expressed during osteocytogenesis (Zhang et al.,

2006). Furthermore, E11 triggers actin cytoskeletal dynamics

(Staines et al., 2016), which are required for dendrite formation

and transient E11 knockdown blocks dendrite elongation (Zhang

et al., 2006). E11 glycoprotein is not unique to bone and is

ubiquitously expressed by many tissues in which it has a range of

regulatory functions including cell development, differentiation and

invasiveness, epithelial–mesenchymal transition, and oncogenesis

(Astarita, Acton, & Turley, 2012; Martín-Villar, Yurrita, Fernández-

Muñoz, Quintanilla, & Renart, 2009; Thiery, 2002; Wicki &

Christofori, 2007). Owing to its wide tissue expression, it is now

recognized by several names which include podoplanin in kidney

podocytes, T1α in alveolar type 1 epithelial cells, PA2.26 in skin

keratinocytes, gp38 in lymphoid organs, and E11 in lymphatic

endothelial cells, osteoblasts, and osteocytes (Breiteneder-Geleff

et al., 1997; Farr, Nelson, & Hosier, 1992; Ramirez et al., 2003;

Scholl, Gamallo, Vilaró, & Quintanilla, 1999; Wetterwald et al., 1996).

The intracellular signaling mechanisms by which E11 influences

dendrite formation involve the activation of the small GTPase, RhoA,

and its downstream effector kinase, ROCK (Martín-Villar et al.,

2006). ROCK phosphorylates ezrin/moesin/radixin (ERM) and

influences the actin cytoskeleton and subsequently cell shape

(Martín-Villar et al., 2006, 2014; Sprague, Wetterwald, Heinzman,

& Atkinson, 1996). Much less, however, is known about the

upstream regulatory events, specifically those that influence levels

of E11 expression during osteocytogenesis. Nonetheless, clues from

other model systems have indicated that fibroblast growth factor 2

(FGF-2) is able to change chondrocyte gene expression in vitro,

including that of E11 (Chong et al., 2013). FGF-2, one of the earliest

members identified in the FGF polypeptide family, signals through

FGF receptors that have intrinsic tyrosine kinase activity (Powers,

Mcleskey, & Wellstein, 2000). In addition to chondrocytes, FGF-2 is

expressed by osteoblasts and is stored in the extracellular matrix

where it regulates bone formation via influence on progenitor cell

lineage commitment and/or osteoblast differentiation (Hurley,

Marie, & Florkiewicz, 2002; Montero et al., 2000; Sabbieti et al.,

1999; Xiao et al., 2010). Indeed, mice deficient in Fgf2 have

decreased bone mass and altered trabecular architecture whereas

Fgf2 transgenic mice present with increased bone mineral density

and cortical and trabecular thickness, as well as a variety of skeletal

malformations including shortening and flattening of long bones

(Coffin et al., 1995; Montero et al., 2000; Xiao et al., 2009).

Cognizant of FGF-2 stimulation of E11 expression in cartilage

explants and osteoblast-like cells, we, therefore, hypothesized that

FGF-2 may influence bone remodeling via increased osteoblast E11

expression and concomitant osteocyte dendrite formation (Chong

et al., 2013; Gupta, Yoo, Hebert, Niger, & Stains, 2010). Hence, the

aims of this current studywere to examine the effects of FGF-2 on E11

expression in osteoblasts during osteocytogenesis and to explore

putative signaling pathways controlling this process.

2 | MATERIALS AND METHODS

2.1 | Animals

FGF-2-deficient mice (KO) were originally created by Tom Doetsch-

man and obtained from the Jackson Laboratory, and were backcrossed

onto a C57BL/6J wild-type (WT) background (Chong et al., 2013).

Animal experiments were performed after obtaining ethical and

statutory approval in accordance with local policy. Mice were

maintained in accordance with UK Home Office guidelines for the

care and use of laboratory animals.

2.2 | MC3T3 cell culture

Murine MC3T3-E1 (subclone 14), pre-osteoblast-like cells (American

Type Culture Collection [ATCC], Manassas, VA) were plated at 1 × 104

cells/cm2 in six-well plates and cultured in α-MEM medium

supplemented with 10% (v/v) FBS (Invitrogen, Paisley UK) and

50 µg/ml gentamicin (Invitrogen) at 37°C in a humidified atmosphere

with 5% CO2 and the medium was changed every 2–3 days. Cell

viability was assessed using a commercially available Alamar Blue kit

(Invitrogen) and cell cytotoxicity using an LDH assay according to the

manufacturer's instructions (Promega, Southampton, UK).

2.3 | Primary osteoblast isolation

Primary calvarial osteoblastswere obtained from3-day-oldWTmice by

serial enzyme digestion of dissected calvarial bones according to

published procedure (Orriss, Hajjawi, Huesa, Macrae, & Arnett, 2014;

Staines, Zhu, Farquharson, & Macrae, 2014). In brief, calvaria were

digested in 1mg/ml collagenase type II (Thermo Fisher Scientific,

Loughborough, UK) in Hanks’ balanced salt solution (HBSS) for 10min

and the supernatant discarded; then repeat digestion in 1mg/ml

collagenase type II in HBSS for 30min; 4mM EDTA for 10min and

finally 1mg/ml collagenase type II in HBSS for 30min. After discarding

the first digest, the cells were re-suspended in growth medium

consisting ofα-MEMsupplementedwith 10% (v/v) FBS andgentamycin

at 50 μg/ml. Osteoblasts were seeded at a density of 1 × 104 cells/cm2,

and incubated at 37°C/5%CO2 with media changes every 2–3 days.
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2.4 | FGF-2 treatments

WhenMC3T3 cells and primary osteoblasts were confluent (day 0), the

culture media were replaced with α-MEM supplemented with 1% (v/v)

FBS, 50 µg/ml gentamicin and 0-50 ng/ml FGF-2 (PeproTech, London,

UK) in 0.1% bovine serum albumin (BSA). Each test condition was

completed in triplicate.

2.5 | Signaling inhibitors

MC3T3 cells were incubated with appropriate concentrations (specific

details in results) of the MEK1/2 inhibitor, U0126, the PI3K inhibitor,

LY294002 (InvivoGen, Toulouse, France), and the p38 inhibitor,

SB203580 (Cell Guidance Systems, Cambridge, UK). These inhibitors

have been reported to be selective for thesemolecules (Choi et al., 2008;

Hotokezakaetal., 2002;Macrae,Ahmed,Mushtaq,&Farquharson,2007).

Control cultures contained vehicle (0.1% dimethylsulfoxide, DMSO) only.

2.6 | RNA extraction and quantitative real-time PCR
(RT-qPCR)

Total RNA was extracted from MC3T3 cells and primary osteoblasts

using a Qiagen RNeasyMini kit (Qiagen, Manchester, UK) according to

the manufacturer's recommendations. The RNA samples were

reverse-transcribed into cDNA using Superscript II reverse transcrip-

tase (Invitrogen) according to the manufacturer's instructions.

RT-qPCR was carried out in a Stratagene Mx3000P cycler with each

reaction containing 50 ng template cDNA, 250 nM forward and

reverse primers (Supplementary Table S1), and PrecisionPlus Master-

mix (Primer Design, Chandler's Ford, UK). The cycle threshold (Ct)

values for the samples were normalized to that of Atp5b or Gapdh

(Supplementary Table S1) and the relative expression was calculated

using the 2ΔCt method (Livak & Schmittgen, 2001).

2.7 | Western blotting

Cells were scraped in RIPA lysis buffer containing protease inhibitors

(Roche, Germany), and protein concentrations were determined using

the Bio-RadproteinDCassay (Bio-Rad,HemelHempstead, UK). Protein

(8–15 µg)was separatedusinga10%Bis-Tris gel and then transferred to

a nitrocellulose membrane and probed with appropriate primary

antibody (Supplementary Table S2), and appropriate HRP-linked

secondary antibody (Supplementary Table S3). Immune complexes

were visualized by chemiluminescence using an ECL detection kit and

ECL film (GE Healthcare, Amersham, UK). HRP-conjugated anti β-actin

antibody (1:70,000, Sigma, Dorset UK) was used as a loading control.

Densitometry analysis of protein was performed using Image J (https://

imagej.nih.gov/ij/) (Baldari, Ubertini, Garufi, D'orazi, & Bossi, 2015).

2.8 | E11 immunofluorescence

MC3T3 cells were plated on cover slips at a density of 6.3 × 103 cells/

cm2 and following treatment with FGF-2, were fixed with 4%

paraformaldehyde (PFA) for 15min, washed in PBS and incubated in

blocking buffer (1× PBS, 5% normal donkey serum and 0.3% Triton

X-100) for 1 hr at room temperature (RT). E11 antibody (Supplemen-

tary Table S2) was added to each well (1:900 in 1× PBS, 0.3% Triton

X-100 and 1% BSA) overnight at 4°C. Control cells were incubated

with an equivalent concentration of goat IgG (Supplementary

Figure S1). Wells were subsequently incubated with AlexaFluor-

conjugated donkey anti-goat secondary antibodies (Supplementary

Table S3) in the dark for 2 hr at RT. Glass coverslipswere thenmounted

onto slides using ProLong Gold antifade reagent with DAPI (Thermo

Fisher Scientific) for nuclei staining (Dobie, Macrae, Huesa, Van't Hof,

& Ahmed, 2014). The slides were finally visualized using a Leica DMRB

fluorescence microscope and images were taken with a Leica DFC300

digital color camera (Leica, Milton Keynes, UK).

2.9 | Transfection of MC3T3 cells with E11 siRNA

E11 siRNA and scrambled siRNA stocks (Qiagen) were diluted to

10nM.MC3T3 cells were plated at 8 × 103 cells/cm2 andmaintained in

reduced serum medium. Cells were transfected as per manufacturer's

instructions with complexes of E11siRNA with HiPerFect (Qiagen),

while control cells were transfected with either complexes of

scrambled siRNA, with HiPerFect; or HiPerFect alone. After 24 hr

incubation at 37°C/5%CO2, FGF-2 (10 ng/ml) was added for a further

24 hr to the cells containing the siRNA/HiPerFect complexes or the

HiPerFect alone.

2.10 | Immunohistochemistry

The knee joints of 6-week-old male FGF-2 KO and WT mice (Chong

et al., 2013), were fixed in 4% PFA for 24 hr before decalcification in

10% ethylenediaminetetraacetic acid (EDTA) pH 7.4 for approxi-

mately 3 weeks at 4°C with regular changes. Tissues were

dehydrated and embedded in paraffin wax, using standard proce-

dures, after which they were sectioned at 6 µm. Sections were

dewaxed in xylene, rehydrated, and incubated at 37°C for 30 min in

1mg/ml trypsin for antigen demasking. Endogenous peroxidases

were blocked by treatment with 3% H2O2 in methanol. E11 and

sclerostin antibodies (Supplementary Table S2) were used with

appropriate IgG controls and secondary antibodies (Supplementary

Table S3). The Vectastain ABC universal kit (Vector Laboratories,

Peterborough, UK) was used according to the manufacturer's

instructions. The sections were dehydrated, counterstained with

haematoxylin and mounted in DePeX. Images were captured with

Nikon Eclipse Ni microscope (Nikon, UK), fitted with Zeiss Axiocam

105 color camera (Carl Zeiss). The number of positively stained E11

osteocytes within diaphyseal cortical bone were calculated as a

percentage of total osteocytes present.

2.11 | Phalloidin staining for cell culture

MC3T3 cells were seeded at 1 × 104 cells/cm2 and when sub-

confluent they were treated with 10 ng/ml FGF-2 or 0.1% BSA for
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control cultures. After 24 hr, the cells were fixed in 4% PFA,

rinsed in PBS and permeabilized in 0.1% (w/v) triton X-100 (Sigma)

in PBS for 10 mins, and then rinsed in PBS. The cells were

incubated in 200 μl of Alexa Fluor 488-conjugated phalloidin

(Thermo Fisher Scientific) (5 μM in PBS with 2% BSA) in the dark at

RT for 3 hr. The cells were imaged on a Zeiss Axiovert 25s inverted

microscope and digital imaging system (Carl Zeiss Microscopy, LLC,

Oberkochen, Germany).

2.12 | Phalloidin staining for histological sections

Femurs were decalcified as described above and then cryopro-

tected in 30% sucrose (w/v) at 4°C for 48 hr. The femora were cut

in the mediolateral plane in serial longitudinal 20 μm thick-sections

using a cryostat and thaw-mounted on gelatin-coated slides for

processing. Slides were dried at room temperature for 45 min,

washed in PBS twice for 5 min each, and incubated with 0.1%

Triton-X 100 (Sigma-Aldrich) for 30 min and then rinsed with PBS.

Slides were then incubated with Alexa Fluor 488-conjugated

phalloidin (1:20; Thermo Fisher Scientific) for 1 hr. Bone sections

were washed in PBS and mounted in VectaShield (Vector

Laboratories). Preparations were allowed to dry at room tempera-

ture for 12 hr. Sections were imaged on a Zeiss LSM 710 Laser

Scanning Confocal Microscope with 488 nm laser excitation and

detection settings from 493 to 634 nm. Z-stacks were produced

with optimal Nyquist overlap settings using a 63×/1.4na oil

immersion lens. Voxel sizes were 0.1 × 0.1 × 1.00 μm in x,y,z planes,

respectively. A comparable region of interest was analyzed for

osteocyte parameters in all samples located in the diaphyseal

cortical bone. Image stacks were imported into Bitplane Imaris 8.2.0

software and algorithms were created with Imaris FilamentTracer to

render and measure dendritic processes. Surface rendering was

used for osteocyte cell body measurements.

2.13 | Statistical analysis

Data are expressed as themean ± standard error of themean (S.E.M) of

at least three replicates per experiment. Statistical analysis was

performed by Student's t-test, one-way analysis of variance (ANOVA)

or a suitable non-parametric test. p < 0.05 was considered to be

significant and noted as *p values of <0.01 and <0.001were noted as **

and ***, respectively.

3 | RESULTS

3.1 | FGF-2 promotes osteoblast E11 gene and
protein expression

Treatment of MC3T3 cells with 10 ng/ml FGF-2 for 4, 6, and 24 hr

stimulated E11mRNA expression in comparison to control cultures, at

all time-points examined (p < 0.05, Figure 1a). We observed a

concomitant increase in E11 protein expression in these cells

(Figure 1b). Stimulation of E11 mRNA (p < 0.05, Figure 1c) and E11

protein (Figure 1d) expression by FGF-2 was similarly noted in primary

osteoblast cultures. The levels of FGF-2 induced E11mRNA and

protein were more prominent in the MC3T3 cells at the early time

points (4 and 6 hr), whereas in primary cells these increases peaked at

the later time points (24 hr) (Figure 1).

FIGURE 1 The effect of FGF-2 (10 ng/ml) on (a) E11 mRNA expression and (b) E11 protein expression in MC3T3 cells after 4, 6, and 24 hr
challenge, where (+) is FGF-2 treated cell, and (−) is untreated control. The effect of FGF-2 (10 ng/ml) on (c) E11 mRNA expression and (d)
E11 protein expression in primary osteoblast cells after 4, 6, and 24 hr challenge, where (+) is FGF-2 treated cell, and (−) is untreated control.
Results were normalized to the Atp5b housekeeping gene and β-actin for Western loading control. Data are presented as mean ± S.E.M for
n = 3; *p < 0.05; ***p < 0.001 compared to untreated cells
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3.2 | FGF-2 promotes osteoblast–osteocyte
differentiation

In light of the increased E11 expression by FGF-2, we next examined

the expression of known osteocyte and osteoblast marker genes to

determine whether exposure of osteoblast-like cells to FGF-2

promoted osteocytic differentiation. In MC3T3 cells, FGF-2 increased

the mRNA expression of the osteocyte marker Phex (phosphate

regulating endopeptidase homolog, X-linked) at 4 (p < 0.01), 6 (not

significant), and 24 (p < 0.001) hours (Figure 2a). Similarly, Dmp1

(dentin matrix protein 1) expression was significantly increased at both

6 and 24 hr in MC3T3 cells (p < 0.001; Figure 2b). In primary

osteoblasts, both Phex and Dmp1 mRNA expressions were also

increased by FGF-2 treatment, although the temporal changes were

slightly different to those observed in theMC3T3 cells. Specifically, the

stimulation of Phex expression by FGF-2was greater at late time points

whereas the up-regulation of Dmp1 was noted at earlier time points

when compared with MC3T3 cells (Figures 2c and 2d).

In contrast to the increased expression of osteocyte markers by

FGF-2, there was a consistent downward trend in the mRNA

expression of the osteoblast markers Col1a1 (collagen type 1), Bglap

(osteocalcin), Alpl (tissue non-specific alkaline phosphatase), and

Postn (periostin) in MC3T3 cells treated with exogenous FGF-2

(Figure 3a–d). This down-regulation of osteoblastic marker expression

was most consistently observed 24 hr after exposure to FGF-2,

although Alpl expression was also reduced at 4 (p < 0.001) and 6

(p < 0.01), as well as 24 (p < 0.001) hour time points (Figure 3c). A

similar down-regulation of Col1a1, Bglap, Alpl, and Postn expression

was also observed in FGF-2 treated primary osteoblast cells, whichwas

also most pronounced at longer (24 hr) times following FGF-2

challenge (Figure 3e–h). Together these data indicate that exposure

of MC3T3 as well as primary osteoblasts to exogenous FGF-2

promotes early expression of both E11 and osteocyte markers, with a

diminution in the expression levels of markers of the osteoblast

phenotype following only at later time points.

Assessment of cell viability in the FGF-2 treated MC3T3 cells by

the alamar blue assay revealed that after 24 hr of FGF-2 treatment

there was no significant differences between the control and FGF-2

treated cells (Figure 3i). We also observed a significant reduction in

LDH release in our FGF-2 treated cells (p < 0.05, Figure 3j) suggesting

that there is less cell death. Taken together, these data are consistent

with FGF-2 promoting E11 expression and osteoblast–osteocyte

differentiation in vitro.

3.3 | FGF-2 promotes E11 dependent osteocyte
dendrite formation

The differential regulation of osteoblast and osteocyte marker

genes, including E11, by FGF-2 strongly supports the tenet that

FGF-2 can induce osteocytogenesis. To examine this further, we

next investigated whether FGF-2 promotes the differentiation of

MC3T3 osteoblast-like cells into osteocytes with the adoption of

their characteristic dendritic appearance through alterations to the

intracellular cytoskeleton. We found that Phalloidin stained control

cells displayed a typical rounded morphology with little evidence of

dendrite formation (Figure 4a). In contrast, cells treated with FGF-2

for 24 hr displayed numerous delicate dendrites radiating from

individual cells and intertwining and connecting with dendrites from

neighbouring cells, in a manner characteristic of an osteocyte-like

phenotype (Figure 4b). To clarify E11 involvement in this FGF-2

FIGURE 2 The effect of FGF-2 (10 ng/ml) on the mRNA expression of (a) Phex and (b) Dmp1 in MC3T3 cells after 4, 6, and 24 hr challenge.
The effect of FGF-2 (10 ng/ml) on the mRNA expression of (c) Phex and (d) Dmp1 in primary osteoblast cells after 4, 6, and 24 hr challenge.
Results were normalized to the Atp5b housekeeping gene. Data are presented as mean ± S.E.M for n = 3; **p < 0.01; ***p < 0.001 compared to
untreated cells

IKPEGBU ET AL. | 5



induced change to dendritic phenotype, MC3T3 cells were

challenged with FGF-2 for 24–72 hr and immunostained for E11

(Figure 4c). All FGF-2 treated MC3T3 cells exhibited modified

morphology with numerous E11 positive dendritic processes

radiating from the cell membrane (Figure 4c); these were only

rarely observed in control cells. Furthermore, the distribution of

intra-cellular E11 expression changed with both time in culture and

FGF-2 treatment. In control cells, it was mostly uniformly distributed

within the cytoplasm but after 72 hr in culture, cytoplasmic staining

appeared less strong and the predominant staining was associated

with focal accumulations at the cell membrane (Figure 4c). This

redistribution of E11 to the cell membrane was more obvious and

FIGURE 3 The effect of FGF-2 (10 ng/ml) on the mRNA expression of (a) Col1a1, (b) Bglap, (c) Alpl, and (d) Postn in MC3T3 cells after 4, 6,
and 24 hr challenge. The effect of FGF-2 (10 ng/ml) on the mRNA expression of (e) Col1a1, (f) Bglap, (g) Alpl, and (h) Postn in primary
osteoblast cells after 4, 6, and 24 hr challenge. Results were normalized to the Atp5b housekeeping gene. (i) Alamar blue assay for cell viability
and (j) LDH release assay in FGF-2 treated MC3T3 cells after 24 hr treatment. Data are presented as mean ± S.E.M for n = 3; *p < 0.05;
**p < 0.01; ***p < 0.001 compared to untreated cells
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more rapid in the FGF-2 treated cells, where it was achieved within

only 24 hr of treatment (Figure 4c). Similarly, FGF-2 promoted

dendrite formation and the re-distribution of E11 expression in

primary osteoblast cultures (Figure 4d). To determine if the

promotion of the osteocyte phenotype by FGF-2 was E11 mediated

we studied cells in which MC3T3 cells were transfected with E11

siRNA before being challenged with FGF-2 for 24 hr. E11 gene (77%

vs. mock control, 70% vs. scrambled control; p < 0.05; Figure 5a) and

protein (Figure 5b) expression were silenced successfully by E11

siRNA transfection. Immunofluorescence labeling for E11 and

phalloidin staining indicated that compared with mock or scrambled

control cell cultures, cells treated with FGF-2 developed less

dendrites after silencing of E11 expression (Figures 5c and 5d).

3.4 | FGF-2 cell signaling in MC3T3 cells is mediated
principally by phosphorylated ERK

FGF receptors (Fgfr) 1, 2, and 3, but not Fgfr4, were found to be

expressed by MC3T3 cells (data not shown). FGF-2 treatment had no

effect on Fgfr1 expression at all-time points studied (Figure 6a),

however, it reduced Fgfr2 (p < 0.01; Figure 6b) and Fgfr3 (p < 0.05;

Figure 6c) expression after 4 and 24 hr. Treatment of MC3T3 cells

with FGF-2 for 15 min revealed that of the pathways examined,

there was particularly marked ERK (p44/p42) activation (p < 0.001;

Figures 6d and 6e), while in comparison there was only slight

activation of both Akt (p < 0.01; Figures 6d and 6f) and p38 (p < 0.05;

Figures 6d and 6g), and no effect on JNK phosphorylation (Figures

FIGURE 4 The effect of FGF-2 (10 ng/ml) on MC3T3 osteoblast-like cell morphology. (a) Phalloidin staining for F-actin of control cultures,
and (b) FGF-2 treated cultures. Scale bar A & B = 150 μm). Immunofluorescence microscopy showing E11 expression and distribution in cells
treated with FGF-2 (10 ng/ml) for 24–72 hr in (c) MC3T3, and (d) primary osteoblasts. Note the arrows pointing at the dendrites. Images are
representative of three separate experiments. Scale bar c & d (i–vi) = 200 μm; c & d (vii–xii) = 150 μm)
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6d and 6h). Furthermore, the temporal expression of ERK activation

upon FGF-2 treatment revealed a sustained activation over a 48 hr

period (Figure 6i), which has been shown previously to be associated

with pathways leading to cell differentiation (Pellegrino & Stork,

2006). These data suggest that ERK activation, rather than

phosphorylation of alternative Akt, p38, or JNK mediated signaling

pathways is likely most influential in regulating E11 downstream of

FGF-2.

To further explore the likely role of MEK-ERK signaling in FGF-2

induced differentiation of osteoblast-like cells into osteocytes, we

next treated MC3T3 cells with the ERK inhibitor U0126 (25 μM) in

the presence or absence of FGF-2 (15 min). While ERK activation by

FGF-2 was blunted by U0126 (15 min) treatment (Figure 7a), the

prolonged treatment of cells with U0126 (24 hr) did not affect the

ability of FGF-2 to enhance E11 gene expression (Figures 7b and 7c).

Similarly, treatment of MC3T3 cells with p38 (SB203580) or PI3K

(LY294002) inhibitors did not affect the ability of FGF-2 to enhance

E11 expression (Figure 7d–g). Further investigations indicated that

Akt activation was increased in the presence of MEK inhibition by

U0126 and FGF-2 treatment (Figure 7h) and it is possible that this

FIGURE 5 The effect of E11siRNA transfection on FGF-2 (10 ng/ml) stimulation of E11 (a) mRNA. Results were normalized to the
Atp5b housekeeping gene. Data are presented as mean ± S.E.M for n = 3; *p < 0.05; ***p < 0.001 compared to untreated control cells;
#p < 0.05 refers to significant decrease of E11siRNA control when compared to the controls of scrambled and Mock treated cells (b)
The effect of FGF-2 (10 ng/ml) on E11 protein expression after E11 siRNA transfection, where (+) is FGF-2 treated cells, and (−) is
untreated cells. Results are normalized to β-actin for loading control. (c) Phalloidin staining for F-actin in E11 siRNA, mock and
scrambled cultures. Images are representative of three separate experiments. Scale bar = 100 μm. (d) Immunofluorescence staining for
E11 localization in E11 siRNA, mock and scrambled cultures. Images are representative of three separate experiments. Scale
bar = 150 μm

8 | IKPEGBU ET AL.



increased Akt signaling may be a compensatory change to allow

FGF-2 to promote E11 expression in the absence of full ERK

activation (Figures 7b and 7c). However, the combined inhibition of

MEK and PI3K signaling by the inhibitors U0126 and LY294002,

respectively, did not affect the ability of FGF-2 to enhance E11

protein expression (Figure 7i).

3.5 | Deletion of FGF-2 in vivo results in
dysfunctional osteocytogenesis

Finally, we used immunohistochemistry to examine whether FGF-2

KO mice exhibited altered skeletal E11 expression and distribution.

Unexpectedly, E11 staining in osteocytes situated within trabecular

FIGURE 6 The effect of FGF-2 (10 ng/ml) on the mRNA expression of (a) Fgfr1, (b) Fgfr2, and (c) Fgfr3 in MC3T3 cells after 4, 6, and 24 hr
challenge. Investigating the downstream signaling pathways involved in FGF-2 stimulation of E11 expression. (d) Western blotting analysis of
MC3T3 cells for phosphorylated and total p44/42 (ERK), Akt, p38, and JNK. Densitometry analysis of Western blotting revealed significant
upregulation of activated (e) p44/42, (f) Akt, and (g) p38 in treated MC3T3 cells with FGF-2 when compared to control cells. There was no
significant increase in (h) JNK expression in both cultures. (i) Western blotting analysis of MC3T3 cells for phosphorylated and total p44/42,
in MC3T3 cells treated with FGF-2 when compared to control cells showed an increase in phosphorylated p44/42 in the treated cells at all
time points. Results were normalized to the Atp5b housekeeping gene and β-actin for Western blotting loading control. Data are presented as
mean ± S.E.M for n = 4 and analyzed with student t-test. *p < 0.05; **p < 0.01; ***p < 0.001
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and cortical bone of FGF-2 KO mice appeared stronger than in

osteocytes from WT bones (Figure 8a–d). Quantification of the

number of E11 positive cells was, however, similar to those noted in

bones from WT mice (Figure 8e). No differences in sclerostin

expression or distribution in bones of FGF-2 KO mice in comparison

to those fromWT mice were observed (data not shown). Histological

analysis of osteocyte morphology in FGF-2 KO mice revealed

apparent increases in cell body volume (Figure 8a–d). To confirm and

extend these results, we performed phalloidin staining of osteocytes

in the cortical bone of FGF-2 KO and WT mice (Figures 9a and 9b).

We observed a significant increase in cell body volume (p < 0.05,

Figure 9c) in concordance with our histological observations. Despite

this, no differences in cell sphericity were observed (Figure 9d).

Similarly, the total number of dendrites (Figure 9e) and the dendrite

volume (Figure 9f) were unchanged between FGF-2 KO and WT

mice. We did, however, observe a significant decrease in average

dendrite volume in FGF-2 KO in comparison to WT mice (p < 0.01;

Figure 9g), suggestive of dysfunctional osteocytogenesis in FGF-2

KO mice.

4 | DISCUSSION

The transmembrane glycoprotein E11, has recently been recognized to

be an early driver of the osteoblast to osteocyte transition and the

acquisition of the dendritic phenotype (Gupta et al., 2010; Zhang et al.,

2006). Consistentwith previous data, herewe reveal that FGF-2 is able

to increase E11 expression and promotes osteocyte dendrite

formation, likely independent of intracellular signaling pathways that

may involve concomitant FGF-2 induced ERK activation.

Previous brief reports have shown that FGF-2 treatment of

osteoblast-like cells induces an increase in E11 expression and the

appearance of the osteocyte phenotype (Gupta et al., 2010;Miyagawa

et al., 2014). In this present study, we confirm and extend these

observations in both MC3T3 osteoblast-like cells and primary

osteoblasts. The significant upregulation of E11, Phex, and Dmp1

and down-regulation of Col1a1, Bglap, Alpl, and Postn in the FGF-2

treated cultures suggests that FGF-2 promotes the differentiation of

the osteoblast to the osteocyte stage. Concomitant with this,

fluorescence microscopy of cultured cells also disclosed altered E11

expression and localization within the differentiating osteoblast in

response to FGF-2. The presence of increased E11 in the cytoplasm

and perinuclear area suggests that FGF-2 not only stimulates E11

expression, but also facilitates the translocation of E11 toward the cell

membrane. Indeed, the ability of FGF-2 to alter subcellular protein

distribution is supported by a previous finding on the expression of

Twist and Spry4 proteins inmesenchymal stem cells (Lai, Krishnappa, &

Phinney, 2011). Here we observed E11 localization concentrated at

the base of the dendritic spikes of the osteocytes after 24–72 hr of

FGF-2 treatment. E11 immunofluorescence localization at osteocyte

dendritic projections has been reported inMLO-Y4 osteocyte-like cells

and primary osteocytes isolated from long bones (Stern et al., 2012). It

is, therefore, likely that this redistribution of E11 within the cell is

necessary for the transformation of the osteoblast from a cuboidal

shape to the osteocytic phenotype characterized by stellate-like

morphologywith long dendritic processes (Zhang et al., 2006).We also

reveal that these morphological changes do not occur because of

altered cell proliferation, nor do they precede cell death, therefore,

highlighting the role for FGF-2 in regulating E11 expression and

osteocyte differentiation in vitro.

FIGURE 7 (a) Western blot analysis of ERK signaling in the
presence (+) and absence (−) of U0126 (25 μm) incubation and
subsequent FGF-2 treatment. (b) Western blotting and (c) RT-qPCR
analysis of cells stimulated with FGF-2 for 24 hr, in the presence
or absence of U0126 (ERK inhibition). (d) Western blotting and
(e) RT-qPCR analysis of cells stimulated with FGF-2 for 24 hr, in the
presence or absence of LY294002 (Akt inhibition). (f) Western
blotting and (g) RT-qPCR analysis of cells stimulated with FGF-2 for
24 hr, in the presence or absence of SB203480 (p38 inhibition).
Effect of UO126 (25 μM) on Akt protein expression by (h) Western
blotting. (i) Effect of U0126 (25 μM) and LY294002 (10 μM), P-ERK,
and P-Akt inhibitors, respectively, on E11 protein expression.
Results were normalized to the Atp5b housekeeping gene and
β-actin for Western blotting loading control. Data are represented
as mean ± S.E.M for n = 3. Data are analyzed via one-way ANOVA;
p < 0.05 was considered to be significant. *p < 0.05
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The intracellular effects of FGF-2 are activated via binding to its cell

surface receptors, for example, FGFRs which have intrinsic receptor

tyrosine kinase activity. Signaling pathways downstream of FGF-2-

receptor binding are known to includeERK, p38, Akt, andPKC (Turner&

Grose, 2010). Of those examined in the present study, ERK showed the

most robust activation in response to FGF-2 in MC3T3 osteoblast-like

cells; although p38 and Akt phosphorylation was also significant.

Phosphorylation of ERK has been shown to mediate cell proliferation,

differentiation, andmatrixmineralization inhumanosteoblasts (Lai et al.,

2001; Marie, Miraoui, & Severe, 2012). The sustained activation of the

MEK-ERK pathway and phosphorylation of ERK over long time periods

suggests a central role for FGF-2 stimulation of cell differentiation

(Murphy, Mackeigan, & Blenis, 2003; Pellegrino & Stork, 2006). This is

supported by studies that report the importance of ERK signaling in

osteoblast initiation and commitment to the differentiation process (Lai

et al., 2001), and in osteocyte dendrite formation (Kyono, Avishai,

Ouyang, Landreth, &Murakami, 2012). Indeed, the conditional deletion

of ERK ablates the formation of osteocytes with characteristic dendritic

processes in vivo (Kyono et al., 2012).

Somewhat surprisingly, however, the MEK inhibitor, UO126 was

unable to block FGF-2's ability to promote E11 protein expression

despite a significant reduction in ERK activation. Similar results were

observed upon inhibition of PI3K/Akt and p38 signaling. These

results suggest that alternative pathways may exist by which FGF-2

is able to enhance E11 expression and osteocyte formation. Such

pathways may include the activation of p38 and Akt. Previous

reports have indicated that activation of p38 is involved in

osteoblast differentiation (Hu, Chan, Wang, & Li, 2003) whereas

Akt phosphorylation is associated with cell survival (Debiais et al.,

2004). The down regulation of Akt by FGF-2 has, however, also been

reported in human and mouse cells (Chaudhary & Hruska, 2001). In

our hands, however, the dual inhibition of Akt and ERK activation by

LY294002 and U0126, respectively, did not result in a block in E11

expression by FGF-2 and further work is required to unravel the

signaling pathways that mediate FGF-2 effect on the up-regulation

of E11 expression. The lack of JNK activation by FGF-2 in this study

is consistent with JNK phosphorylation (P-JNK) mediating late

osteoblast maturation (Matsuguchi et al., 2009).

Having shown that FGF-2 promotes E11 expression in MC3T3

osteoblast like-cells and murine primary osteoblasts, it was surprising

to note that E11 protein expression by early osteocytes appeared to be

increased in sections of bone from Fgf-2-deficient mice albeit no

FIGURE 8 Sections of (a and b) trabecular bone and (c and d) cortical bone osteocytes from Fgf-2 KO and WT mice immunostained for
E11. (a and b) Scale bar = 150 μm. (e) The number of E11 stained osteocytes was similar in cortical bone from Fgf-2 KO and WT mice. Images
are representative of three mice

IKPEGBU ET AL. | 11



differences were noted in the number of E11 stained osteocytes. It is

recognized that heparin-like glycosaminoglycans can regulate the

signaling behavior of FGF-2 and, therefore, it is a possibility that in our

cell culture experiments FGF-2 is more available to the cells due to a

less mature extracellular matrix being formed (Padera, Venkataraman,

Berry, Godavarti, & Sasisekharan, 1999). Alternatively, the increased

E11 staining intensity in the osteocytes from Fgf-2-deficient mice is

maybe a compensatory response in an attempt to overcome the deficit

in FGF-2 related promotion of the osteoblast to osteocyte transition,

potentially through the upregulation of other members of the FGF

family. Similarly, it may simply be a consequence of the significantly

increased cell body volume observed in FGF-2 KO osteocytes. Indeed

FGF-2 has been reported to decrease chondrocyte hypertrophy in a

murine metatarsal organ culture model and as such, may play a similar

role in the formation of the osteocyte (Mancilla, De Luca, Uyeda,

Czerwiec, & Baron, 1998). Our phalloidin staining also revealed a

significant decrease in average dendrite length in FGF-2 KO mice

compared to WT mice; a similar phenotype to that observed in our

bone specific E11 conditional knockoutmice (Staines et al., 2017). This,

therefore, suggests that the absence of FGF-2 in vivo results in

dysfunctional osteocytogenesis.

In conclusion, these data taken together show that FGF-2

promotes the osteocyte phenotype and that this is mediated by

increased E11 expression which is redistributed within the differenti-

ating osteoblast. If further studies confirm this regulatory role for

FGF-2 in osteocyte formation, we will be in a better position to

understand the full repertoire of FGF-2 on bone cell function which

may provide insights into the etiology of skeletal disorders such as

osteoporosis and osteoarthritis.
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