
Recursive Probabilistic Models: efficient analysis and

implementation

Dominik Wojtczak

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2008

(Graduation date: 2009)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429720766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis examines Recursive Markov Chains (RMCs), their natural extensions and

connection to other models. RMCs can model in a natural way probabilistic proce-

dural programs and other systems that involve recursion and probability. An RMC

is a set of ordinary finite state Markov Chains that are allowed to call each other re-

cursively and it describes a potentially infinite, but countable, state ordinary Markov

Chain. RMCs generalize in a precise sense several well studied probabilistic models

in other domains such as natural language processing (Stochastic Context-Free Gram-

mars), population dynamics (Multi-Type Branching Processes) and in queueing the-

ory (Quasi-Birth-Death processes (QBDs)). In addition, RMCs can be extended to a

controlled version called Recursive Markov Decision Processes (RMDPs) and also a

game version referred to as Recursive (Simple) Stochastic Games (RSSGs). For ana-

lyzing RMCs, RMDPs, RSSGs we devised highly optimized numerical algorithms and

implemented them in a tool called PReMo (Probabilistic Recursive Models analyzer).

PReMo allows computation of the termination probability and expected termination

time of RMCs and QBDs, and a restricted subset of RMDPs and RSSGs. The input

models are described by the user in specifically designed simple input languages. Fur-

thermore, in order to analyze the worst and best expected running time of probabilis-

tic recursive programs we study models of RMDPs and RSSGs with positive rewards

assigned to each of their transitions and provide new complexity upper and lower

bounds of their analysis. We also establish some new connections between our mod-

els and models studied in queueing theory. Specifically, we show that (discrete time)

QBDs can be described as a special subclass of RMCs and Tree-like QBDs, which are a

generalization of QBDs, are equivalent to RMCs in a precise sense. We also prove that

for a given QBD we can compute (in the unit cost RAM model) an approximation of

its termination probabilities within i bits of precision in time polynomial in the size of

the QBD and linear in i. Specifically, we show that we can do this using a decomposed

Newton’s method.

iii

Acknowledgements

First of all I would like to thank my supervisor, Kousha Etessami, for his enthusiasm

and encouragement to work on hard problems, patience in correcting my (silly) gram-

mar errors, tough lessons in polished writing, and simply for being a good friend. He

proved to be an invaluable source of knowledge and I have learned a great deal from

him. This thesis would not be what it is without his careful reading and comments on

how to improve it.

I would like to thank Mihalis Yannakakis for fruitful collaboration, Amit Dubey

and Frank Keller for providing us SCFGs from their NLP work which were later used

as a case study for PReMo, Mary Cryan and my second supervisor Stephen Gilmore

for being members of my progress panels, and finally Richard Mayr and Peter Bro

Miltersen for agreeing to be my examiners. I would also like to thank Stephen and

Michael Ummels for careful reading and commenting on parts of this thesis.

Furthermore, I simply thank all the people that I met in Edinburgh that made these

three years in Edinburgh so enjoyable, especially the ones that I had the pleasure to

share a flat or office with and who later became my good friends. Special thanks to

Christophe, Jorge, Gaya for a constant dose of entertainment and Merilin for her great

sense of humor, helping me to stay in good shape and just being there for me.

Last, but not least, I would like to thank my parents for their constant uncondi-

tional love and support.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Most of the material of this thesis was already published in [WE07], [EWY08i] and

[EWY08q].

(Dominik Wojtczak)

v

Contents

1 Introduction 1

1.1 Outline of the thesis . 4

1.2 Related work . 6

1.2.1 Stochastic games . 6

1.2.2 RMCs and pPDSs . 7

1.2.3 RSSGs . 7

1.2.4 QBDs and TL-QBDs . 7

1.2.5 p1CAs . 8

1.2.6 Non-probabilistic models . 9

1.2.7 Newton’s method and systems of monotone polynomial equations 9

1.2.8 Other . 9

2 Probabilistic infinite state models and equivalences 11

2.1 Preliminaries . 12

2.2 Definitions . 15

2.2.1 Recursive Simple Stochastic Games and related models 16

2.2.2 Stochastic Context-free Grammar games 25

2.2.3 Multi-Type Branching Processes 28

2.2.4 Probabilistic Pushdown Systems 28

2.2.5 Random walks with “Back Buttons” 29

2.2.6 (Probabilistic) 1-Counter Automata 30

2.2.7 Quasi-Birth-Death Processes (QBDs) 31

2.2.8 Tree-Like and Tree-Structured QBDs 32

2.3 Efficient embeddings and equivalences 33

2.3.1 Equivalence of SCFG games and 1-exit RSSGs 36

2.3.2 Equivalence of QBDs and p1CAs 39

2.3.3 Equivalence of TL-QBDs, pPDSs and RMCs 40

vii

2.4 Conclusions . 42

3 Computational complexity of QBDs and their extensions 45

3.1 Introduction . 45

3.2 Lower bounds on decision procedures for QBDs and TL-QBDs 49

3.3 Structural properties of QBDs (p1CAs) . 50

3.4 New upper bounds on Newton’s method for QBDs 61

3.5 Hardness results for QBD Markov Decision Processes 73

3.6 Conclusions . 76

4 Recursive Simple Stochastic Games with Positive Rewards 79

4.1 Introduction . 79

4.2 Determinacy and equation formulation of 1-RSSGs with positive rewards 82

4.3 SM-determinacy and strategy improvement 89

4.4 The complexity of RMDPs and RSSGs with positive rewards 92

4.4.1 Maximizing 1-RMDPs with positive rewards 92

4.4.2 Minimizing 1-RMDPs with positive rewards 94

4.4.3 Complexity of (1-)RSSGs with positive rewards 99

4.5 Conclusions . 103

5 PReMo – Probabilistic Recursive Models analyzer 107

5.1 Introduction . 107

5.2 Tool description . 110

5.2.1 Parsers . 110

5.2.2 Tool interface . 115

5.2.3 Graphical depiction . 116

5.2.4 Optimized solvers for min-max-polynomial equations 116

5.2.5 PReMo’s implementation . 121

5.2.6 Strategy improvement in PReMo 124

5.3 Experimental results . 126

5.3.1 SCFGs generated from the Penn Treebank NLP corpora 126

5.3.2 Randomly generated RMCs and 1-RSSGs 128

5.3.3 Quicksort . 130

5.3.4 Long chains . 132

5.3.5 Simultaneous strategy improvement vs value iteration 132

5.4 Comparison of PReMo with SMCSolver . 134

viii

5.5 Conclusions . 140

Bibliography 145

ix

List of Abbreviations

1-RSSG 1-exit Recursive Simple Stochastic Game, page 19.

1C-MDP One-Counter Markov Decision Process, page 73.

DAG Directed Acyclic Graph, page 13.

ETR Existential Theory of the Reals, page 24.

LFP Least Fixed Point, page 13.

MT-BP Multi-Type Branching Process, page 28.

p1CA probabilistic 1-Counter Automaton, page 30.

PLS Polynomial Local Search, defined in [JPY88].

PPAD “polynomial parity argument in a directed graph”, defined in [Pap94].

pPBA probabilistic Basic Process Algebra, page 29.

pPDS probabilistic Pushdown System, page 28.

QBD Quasi-Birth-Death process, page 31.

QBD-MDP Quasi-Birth-Death Markov Decision Process, page 73.

RMC Recursive Markov Chain, page 18.

RMDP Recursive Markov Decision Process, page 18.

RSSG Recursive Simple Stochastic Game, page 16.

SCC Strongly Connected Component, page 13.

SCFG Stochastic Context-free Grammar, page 26.

SM stackless & memoryless strategy, page 21.

xi

SQRT-SUM square-root sum problem, page 23.

TL-QBD Tree-Like Quasi-Birth-Death process, page 32.

TS-QBD Tree-structured Quasi-Birth-Death process, page 32.

xii

List of Tables

3.1 A summary of the results on performance analysis of the decomposed

Newton’s method for subclasses of monotone systems of polynomial

equations. 48

5.1 The running times of the Gauss-Seidel method, the SOR method with

variousω values, and the Dense Newton’s method on the equation x=

1
2x

2 + 1
2 . 120

5.2 Performance results of various numerical approximation algorithms for

checking consistency of SCFGs derived from Penn Treebank. 127

xiii

List of Figures

2.1 An example (multi-exit) Recursive Simple Stochastic Game. 17

2.2 An example 1-exit Recursive Simple Stochastic Game. 19

2.3 An example reachability 1-RMDP where the maximizer has no optimal

strategy. 22

2.4 An example 1-RMDP with nonnegative rewards where the maximizer

has no ε-optimal strategy. 22

2.5 A translation of an example SCFG with rewards to a 1-RMC with rewards. 38

2.6 Diagram of relative expressive power of the models discussed in this

thesis. 43

3.1 A plot of the counter value at each step of the shortest path starting at

(s,1) and terminating at (s ′,0). 51

3.2 The shortest path starting at (s,1) and terminating at (s ′,0) with the

left-most state with the maximal value of the counter marked. 51

3.3 The shortest path starting at (s,1) and terminating at (s ′,0) with a re-

peating pair of control states marked and a shorter terminating path

drawn below. 52

3.4 An example family of multi-exit RMCs with a very long shortest termi-

nating path and a very low probability of termination at a given exit. . . 55

3.5 An example family of 1-exit RMCs whose decomposition of the corre-

sponding equation system into SCCs have multiple nonlinear SCCs one

after the another. 61

3.6 An example p1CA, along with its corresponding equation system and

the decomposition of that equation system into a DAG of SCCs. 62

3.7 An example 1-Counter Markov Decision Process with a reachability ob-

jective for which the value is equal to 1, but no optimal strategy exists. . 74

xv

4.1 An example probabilistic recursive function with one parameter and

not returning any value. 80

4.2 Standard 1-exit Recursive Markov Chain gadget used in the proof of

Theorem 4.4.12. 99

4.3 A construction of a multi-exit Recursive Markov Decision Process (RMDP)

with positive rewards that is used in the proof of undecidability of qual-

itative decision problems for multi-exit RMDPs. 102

5.1 Source code of an RMC, and its visualization generated by PReMo. . . . 111

5.2 Source code of an example RSSG, and its underlying transition graph. . 113

5.3 Source code of an example SCFG. The only terminal symbol is D and

the nonterminal symbols are A, B and C. 113

5.4 Source code of an example p1CA. 114

5.5 A few screenshots of the PReMo tool running. 115

5.6 A screenshot of the configuration panel of the strategy improvement

algorithm. 125

5.7 Running times of various numerical algorithm for randomly generated

1-exit Recursive Markov Chains. 129

5.8 Running times of various numerical algorithm for randomly generated

1-exit Recursive Simple Stochastic Games. 130

5.9 Running times of various numerical algorithm for randomly generated

Recursive Markov Chains and general monotone polynomial systems. . 131

5.10 Running times of various numerical algorithm for “long chains” exam-

ples. 133

5.11 The comparison of the average running time of the Gauss-Seidel method

and the simultaneous strategy improvement method on randomly gen-

erated max-linear equation systems. 135

5.12 The minimum, maximum, median and average running times of the

Gauss-Seidel method and the simultaneous strategy improvement method

on randomly generated max-linear equation systems. 136

5.13 An example probabilistic 1-Counter Automaton (or equivalently a Quasi-

Birth-Death process). 137

5.14 A slightly modified version of the example of a probabilistic 1-Counter

Automaton presented in Figure 5.13. 138

xvi

Chapter 1

Introduction

The main goal of this thesis is the algorithmic analysis of certain classes of finitely-

presentable infinite-state probabilistic models which combine probabilistic, recursive

and in many cases also controlled/game behavior. We devise algorithms for anal-

ysis problems for several classes of such systems, study their complexity, and we

describe a tool, called PReMo, which provides highly optimized implementations of

analysis algorithms for these models. Such systems can be used as models of discrete-

time stochastic reactive systems that naturally occur in various domains. Models are

useful, since they help us to abstract away from reality and focus on things that re-

ally matter. Designing a model helps us understand the system before we actually

build it, while deriving a model from a real system helps us to understand it. Systems

that exhibit both probabilistic and controlled behavior are common in many domains.

Unreliability is inherent to almost all physical systems, e.g., telecommunication net-

works, distributed systems, railway connections etc. Also, software systems, designed

with robustness and efficiency in mind, often make explicit use of randomness, thus

exhibiting probabilistic behavior. Even if a system or a program behaves determin-

istically, the environment were it operates is in many cases either unknown or very

complex, and the best we can do is to model it either as a probabilistic interaction with

our system (in order to examine the average behavior of our model) or as a malicious

interaction (to examine its worst possible behavior).

It is very common to model purely probabilistic systems as finite-state Markov

Chains or as Markov Decision Processes (MDPs) if the system is both probabilistic and

controlled. However, finite-state probabilistic models differ significantly from infinite-

state ones. (For instance, in finite-state systems no null recurrent states can occur, i.e.,

states that we revisit with probability 1 but the expected time of that happening being

1

2 Chapter 1. Introduction

equal to ∞.) Many (finitely-presentable) infinite-state models have been studied in

various domains of probability theory and computer science. These domains include

population dynamics and nuclear chain reactions (Multi-Type Branching Processes

(MT-BPs)), natural language processing (Stochastic Context-Free Grammars (SCFGs)),

biological sequence analysis (again SCFGs), queueing theory (Quasi-Birth-Death pro-

cesses (QBDs)), modeling web surfing (random walks with “back buttons”) and prob-

abilistic model checking (Recursive Markov Chains (RMCs) and probabilistic Push-

down Systems (pPDSs)).

As an example, let us mention the classic model of QBDs that are widely used

in performance evaluation to reason about efficiency of queueing systems. QBDs can

model a single queue of clients at a server. Such a system can be in one of finitely-many

control states. A client is served at a rate that depends on the current control state of

the system. Similarly, a new client arrives at a rate that depends on the current control

state of the system. During any such event the current control state can change. Al-

though such a model assumes continuous time with exponential distributions on the

time it takes for actions to happen, by just studying the embedded discrete-time QBD

we can deduce many important properties of the original continuous-time model that

do not depend on precise timing information. To reason about such models, we derive

certain quantities or establish some properties that have some practical implications,

e.g., for QBDs that could be whether almost surely the queue becomes empty and

what is the expected maximum length of a queue before that happens. In order to

compute such properties for a QBD one usually computes first its fundamental ma-

trix, the so-called G matrix, consisting of the probabilities of reaching some internal

state with an empty queue when starting at some internal state with a single client in

the queue.

Most of the models studied in this thesis have an analog of theGmatrix that is usu-

ally computed first in order to derive other properties of the system. These analogs

usually correspond to the least fixed point (LFP) of a specific monotone polynomial

equation system if the model is purely probabilistic or a min-max-polynomial equa-

tion system if it is both probabilistic and controlled. In order to find the LFP of such

systems of equations efficiently we can use, e.g., numerical approximation methods

described in [EY05s]. Although some tools are available for analyzing QBDs, no tool

was able to analyze the more general model of RMCs and their controlled/game

extensions: Recursive Markov Decision Processes (RMDPs) and Recursive Simple

Stochastic Games (RSSGs). We filled this gap by developing PReMo, a tool that imple-

3

ments highly optimized versions of these approximation algorithms in Java. PReMo

accepts as an input: RMCs, RSSGs, and probabilistic 1-Counter Automata (p1CAs)

(equivalent of QBDs) specified in simple input languages tailored to each model and

is able to perform all kind of analyses for them: computing the termination prob-

ability, the expected termination time, the standard deviation of that time, and the

steady-state distribution for QBDs. Various other models like pPDSs, MTBPs and TL-

QBDs can be analyzed indirectly since they can be translated by hand to the models

supported by PReMo. PReMo is the first (and still only) software tool that is able to

analyze all these models and its version for the most common operating systems can

be downloaded from: groups.inf.ed.ac.uk/premo. In fact PReMo can also analyze much

more general monotone systems of equations, not just polynomial ones.

In order to enable PReMo to analyze the best/worst expected time of termination

for abstract models of probabilistic procedure programs we study an MDP extension

of RMCs with rewards, Recursive Markov Decision Processes (RMDPs) (and more

generally their game version with two players, Recursive Simple Stochastic Games

(RSSGs)). We can imagine the controller that is trying to minimize the expected termi-

nation time in an RMDP as someone that is trying to fine-tune the program to make

it run as fast as possible. At the same time a controller that is trying to maximize

that time could be a malicious environment in which the program runs and if our

system performs well against such a controller, it will be fine when run in any other

environment. An uncontrolled model of pPDSs with rewards was already studied

in [EKM05]. However, the questions about the general controlled/game model be-

come undecidable and it is necessary to restrict ourselves to a natural 1-exit subclass

of RMDPs (that can be equivalently reformulated as a game version of SCFGs). A

crucial additional requirement is strict positivity of all rewards on all transitions, but

this assumption is very natural for modeling the expected running time of probabilis-

tic procedural programs since each step of a program takes some nonzero amount

of time. We show that the one-player controlled versions (i.e., both minimizing and

maximizing) of such a model can be solved in PTIME using Linear Programming.

Furthermore, we study the performance of a variant of the classical Newton’s

method, called the decomposed Newton’s method, when used to approximate the

G matrix of a given QBD within a given number of bits of precision m (i.e., within

additive error 1/2m). Although many numerical methods were developed and their

performance studied for computing the G matrix of a QBD, their analysis always fol-

lowed the classical “linear/quadratic convergence” criterion of numerical analysis.

http://groups.inf.ed.ac.uk/premo

4 Chapter 1. Introduction

However, that kind of analysis does not shed light on the complexity of computing

the G matrix, in the size of the model, since it studies the number of the iterations

required only as a function of the number of bits of precision m, totally ignoring the

size of the input QBD model. In fact, in practice almost always the desired m is just a

small constant while it is the size of the input QBD that really varies. Furthermore, all

these analyses assumed the input QBD to have several technical assumptions, includ-

ing strong connectivity assumption, in order to make their proof techniques work. We

fill these gaps at least for the decomposed Newton’s method and show a strong poly-

nomial bound on the number of iterations both in the size of the input as well as the

number of bits of precision required to compute the G matrix of a general, possibly

non-strongly connected, QBD.

The relationships between some of these models are already well established, but

some of the connections were unknown until recently. Establishing how their expres-

sive power compares helps those who build models to choose the right balance be-

tween the expressive power of a model and the efficiency of its analysis. In this thesis

we show a new tight correspondence between several models used in probabilistic

model checking and queueing theory. This leads to a number of methods and algo-

rithms developed in queueing theory to be applied to models like pPDSs and RMCs,

and complexity results established for the latter to be applied to the former. We also

establish new results for QBDs that do not follow from any previous work.

The general domain of finitely-presented infinite-state probabilistic models is a

very rich and fascinating field of study that is gaining more and more attention re-

cently. This thesis addresses the computational complexity of some of the important

questions about them as well as their practical aspect by developing a tool that is able

to analyze them efficiently. However, many theoretical questions still remain open

and we point out some of the them in the conclusion section of each chapter.

1.1 Outline of the thesis

The main goal of this thesis is to study the decidability and complexity of proba-

bilistic infinite-state models described by various finitely-presentable specification for-

malisms. We survey some known results about these systems and provide a common

framework of (infinite-state) Simple Stochastic Games as the underlying semantics for

all of them.

In Chapter 2 we describe some preliminaries necessary to understand the rest

1.1. Outline of the thesis 5

of the thesis and define what it means for two finitely-presentable models to be es-

sentially equivalent and prove some equivalences according to that definition. The

first part of that chapter contains the definition of (infinite-state) Simple Stochastic

Games, and formally defines several finitely-presentable formalisms that define sub-

classes of Simple Stochastic Games and surveys some of the results already known

for such subclasses. In the second part, we formally define what it means for two

(finite-presentable) models to be essentially equivalent, and then prove equivalences

between SCFGs games and 1-exit RSSGs (a natural subclass of RSSGs defined in Sec-

tion 2.2.1 in Chapter 2; informally, it is a collection of RSSGs whose each component

has just one exit); p1CAs and QBDs; pPDSs, RMCs, TL-QBDs and TS-QBDs. The sec-

ond part of that chapter is partly based on our paper [EWY08q] and is a joint work

with Kousha Etessami and Mihalis Yannakakis.

In Chapter 3 we examine the computational complexity of the fundamental ques-

tions for QBDs and related models. We start with stating the consequences of the

equivalence between QBDs and p1CAs, and between Tree-structured (Tree-like) QBDs

and pPDSs, and show that the SQRT-SUM problem reduces to a basic quantitative de-

cision question for QBDs. We show important structural properties of p1CAs, and

use them to prove a polynomial bound on the number of iterations of the decom-

posed Newton method needed to approximate the G matrix of a QBD within a given

additive error ε. In the end of that chapter, we define a single controller MDP ver-

sion of QBDs, Quasi-Birth-Death Markov Decision Processes (QBD-MDPs), and show

that even the qualitative decision problems for them are DP-hard (both NP-hard and

coNP-hard). In order to understand that chapter it is necessary to read the definitions

of QBDs and p1CAs (if needed also TL-QBDs, TS-QBDs, and pPDSs), all contained in

Section 2.2 in Chapter 2. Chapter 3 it is based on the extended version of our paper

[EWY08q] and is a joint work with Kousha Etessami and Mihalis Yannakakis.

In Chapter 4 we study 1-exit Recursive Simple Stochastic Games (1-RSSGs) with

positive rewards as a natural model of probabilistic procedural programs. We start

by proving that 1-RSSGs with positive rewards are determined and their value is

the least nonnegative solution of a min-max-linear equation system. Moreover, we

show that both players have always stackless&memoryless optimal strategies which

can be found via a simultaneous strategy improvement algorithm. Furthermore, we

show that 1-RMDPs with positive rewards can be solved in PTIME, from which it eas-

ily follows that quantitative decision problems about 1-RSSGs with positive rewards

are contained in NP∩coNP and finding the optimal strategies is in Polynomial Local

6 Chapter 1. Introduction

Search (PLS; see [JPY88]). Finally, we show that qualitative questions about 1-RSSGs

with positive rewards are as hard as quantitative questions about Condon’s stochastic

games, whilst qualitative questions about RSSGs with positive rewards are undecid-

able. In order to understand that chapter it is necessary to read the definition of RSSGs

which is contained in Section 2.2 in Chapter 2. Chapter 4 is an extended version of our

paper [EWY08i] and is a joint work with Kousha Etessami and Mihalis Yannakakis.

In Chapter 5 we describe our tool PReMo that we developed in Java. We discuss

its internal workings, what kind of numerical algorithms are implemented and how.

We present the experimental performance of PReMo on various case studies, including

grammars derived from the Penn Treebank corpora, and finally we compare PReMo

with SMCSolver, a solver for QBDs. That chapter, apart from reading some of the

formal definitions from Chapter 2 if necessary, is self-contained. PReMo was already

presented in a short tool paper [WE07] and some of the experimental results were

already contained there as well.

1.2 Related work

In this section we point out a selection of the vast literature that is related to the results

in this thesis. Each chapter of this thesis starts with an introduction that summarizes

the tightly related work to the results contained in that chapter. Formal definitions,

notions and results about the models discussed in this thesis are described in Chapter

2 and it might be beneficial to read them first before reading this section.

1.2.1 Stochastic games

(Concurrent discounted) Stochastic Games were studied by Lloyd Shapley in the early

1950s ([Sha53]). (Finite-state turn-based) Simple Stochastic Games (SSGs) were stud-

ied by Anne Condon ([Con92]), and she showed that their quantitative termination

decision problem is in NP ∩ coNP; it is a well-known open problem whether it is in

PTIME. In [CM94] strategy improvement algorithms for SSGs were studied and vari-

ous single-node strategy improvements were shown to require at least an exponential

number of strategy switches in the worst case. Also, based on variants of the classic

Hoffman-Karp algorithm [HK66], a simultaneous strategy improvement was studied

there for SSGs; an analog of our simultaneous strategy improvement for 1-RSSGs with

positive rewards presented in Chapter 4. It remains open whether these simultaneous

strategy improvement algorithms run in PTIME or not. Competitive Markov Decision

1.2. Related work 7

Processes ([FV97]) is yet another name for finite-state (concurrent) stochastic games

used in Operation Research (OR) and economics.

See the introduction to Chapter 2 for more details.

1.2.2 RMCs and pPDSs

The two equivalent purely probabilistic recursive models, Recursive Markov Chains

(RMCs) and probabilistic Pushdown Systems (pPDSs) were introduced independently

in [EY05s] and [EKM04], as a natural abstract model of probabilistic procedural pro-

grams. Since that time, several papers appeared that study not only the complexity

of their fundamental questions (e.g., [EY05s, EY07]), but also model checking (e.g.,

[EKM04, BKS05, EY05t, YE05]), and quantitative properties of their extended version

with rewards on transitions (e.g., [EKM05]). See also Brázdil’s thesis ([Bra07]) for an

overview of most of these results.

1.2.3 RSSGs

RMDPs and RSSGs were studied in [EY05i, EY06s] in a setting without rewards, where

the goal of the players was to maximize/minimize the probability of termination. 1-

RMDPs were also studied in [BBFK06], where the goal of the single player was to

maximize/minimize the probability of reaching a given control state regardless of its

context. As we will see in Chapter 2, all these models can be efficiently embedded in a

nonnegative reward model where the aim of the players is to maximize/minimize the

total reward throughout the game. The RSSGs studied by us in Chapter 4 are reward-

based, but crucially with all rewards being positive. See the “state of the art” part in

Section 2.2.1 in Chapter 2 for detailed related work and known results about all these

models.

1.2.4 QBDs and TL-QBDs

Quasi-Birth-Death Processes (QBDs) and more generally M/G/1-type and G/M/1-

type Markov chains 1, have been studied for decades in queueing theory, performance

evaluation, and related areas, both in discrete and continuous time, and so have nu-

merical solution methods for them (see, e.g., the books [Neu81, Neu89, LR99, BLM05]).

1These chains also have the underlying transition structure of a 1-counter automaton, but one which
can increase, or decrease, respectively, the counter by more than 1 in a single transition. These models
need not in general be finitely-presented, because they do not a priori bound how many transitions (with
distinct counter value changes) can exist from a given state. But of course typical instances are finitely-
presented.

8 Chapter 1. Introduction

Latouche in [Lat94], studied the behavior of Newton’s method on strongly connected

QBDs, and showed (building on [OR70]) that under certain extra assumptions that

method converges monotonically and “quadratically” to the matrix G. Remke et. al.

in [RHC07] have studied numerical algorithms for model checking of continuous-time

QBDs against properties expressed in the Continuous(-time) Stochastic Logic. Several

other models, in particular, (discrete-time) stochastic Petri Nets restricted to markings

where just one place can be unbounded, are already known to be equivalent to QBDs

(see, e.g, [Ost01]).

Tree-Structured QBDs (TS-QBDs) are a generalization of QBDs, first studied in

[YS94, TSY95, YA99]. Tree-Like QBDs (TL-QBDs) are a restriction of TS-QBDs, stud-

ied in, e.g., [LR99, BLM03, VHB06]. It was already observed in [HB03] that TL-QBDs

and TS-QBDs are equivalent, under a tight notion of equivalence that we define in

Section 2.3 in Chapter 2. Bini et. al. [BLM03] studied the performance of several nu-

merical algorithms for TL-QBDs, including Newton’s method. Building on [Lat94],

they showed that under a similar set of assumptions, Newton’s iterations are defined

and converge monotonically and “quadratically” for various quantities such as the

termination probabilities (the analog of the Gmatrix).

See the introduction to Chapter 3 for more details.

1.2.5 p1CAs

Probabilistic 1-Counter Automata have not yet been extensively studied in the litera-

ture on model checking and verification. However in a recent, and as yet unpublished,

work ([BBE+09]) with Brázdil, Brožek, Etessami and Kučera we obtained a PTIME al-

gorithm for deciding whether termination occurs almost surely (with probability 1)

starting from a given control state, and counter value 1, for a probabilistic 1-counter

automaton. This is related to the known conditions for the transience, positive recur-

rence, or null-recurrence of a QBD, under certain assumptions (e.g., irreducibility of

the A matrix). However, there does not appear to be an analogous unconditional re-

sult about termination in the QBD literature. A result in [EY05s] on RMCs implies that

the same problem for TL-QBDs is SQRT-SUM-hard (the definition of the SQRT-SUM

problem can be found in the “state of the art” part of Section 2.2.1 in Chapter 2).

1.2. Related work 9

1.2.6 Non-probabilistic models

Pushdown automata are of course classic models that date back to the origins of au-

tomata theory (see, e.g., [HU79]). They have many applications, e.g., in parsing of

languages. Pushdown systems (the transition graphs of pushdown automata), and

the equivalent model of Recursive State Machines, have been studied extensively in

the past decade for the analysis and model checking of procedural programs (see, e.g.,

[EHRS00, ABE+05]). Boolean Programs ([BR00]) is yet another model to represent

such programs and it has been successfully applied in a tool called SLAM ([BR02]),

which is being used to verify Windows’s device drivers. See the conclusions Section

5.5 to Chapter 5 for more details.

1-Counter Automata, which amount to Pushdown Systems with only one stack

symbol, are a standard automata-theoretic model, and their relationship to other infinite-

state models in automata theory has been well studied (see, e.g., [VP75, KJ02, Kuc03]).

1.2.7 Newton’s method and systems of monotone polynomial equations

In [EY05s], a decomposed Newton’s method was studied for approximation of termi-

nation probabilities, and it was shown that, after decomposition, Newton’s method

converges monotonically, starting from 0, for arbitrary monotone polynomial systems

with nonnegative constants. These results built on the classic text [OR70].

Subsequently, Esparza, Kiefer, and Luttenberger, [KLE07, EKL08] studied in much

greater detail the performance of (decomposed) Newton’s method on such monotone

systems of polynomial equations. Importantly for the results established in Chapter 3,

not only was a worst-case linear convergence established as a function of the desired

error, but in the case of strongly connected system of equations a constructive expo-

nential upper bound was provided on the number of iterations required for Newton’s

method as a function of the encoding size of the polynomial system. No such con-

structive upper bounds is known so far for general (not-strongly connected) equation

systems. It has to be noted that this kind of analysis differs significantly from the

classical convergence rate analysis traditional to numerical analysis.

See the introduction to Chapter 3 for further details.

1.2.8 Other

An independent work by Gawlitza and Seidl [GS07] considers monotone min-max-

linear equations with potentially negative constant terms (with entirely different mo-

10 Chapter 1. Introduction

tivation from abstract interpretation), and studies a different kind of strategy improve-

ment algorithm for computing their least fixed point solution over the full extended re-

als. Their work is related to our work in Chapter 4, but in rather subtle ways. In partic-

ular their notion of Least Fixed Point(LFP) over the extended reals may yield negative

values or even −∞, and they assume that “strategies” (choices for the max and min

operators) are memoryless, rather than proving a (memoryless) determinacy result.

Moreover, their strategy improvement algorithm requires a particular initial strategy

(otherwise it can fail) and thus is not directly formulable as a local search. Unlike our

results, their results apparently do not yield [Gaw08] containment in NP∩coNP, nor

in PLS, for the relevant decision and search problems. Nevertheless, there are connec-

tions between their work and ours. In particular, Gawlitza [Gaw08] informs us that a

modified version of their strategy improvement algorithm can also be used to obtain

our PTIME upper bound for the LFP, over the non-negative extended reals, for the

linear-min and linear-max equations that arise for 1-RMDPs.

Models related to 1-RMDPs have been studied in Operational Research (OR), un-

der the name Branching Markov Decision Chains (a controlled version of multi-type

Branching processes). These are close to the single-player SCFG model, with non-

negative rewards, but simultaneous derivation law. They were studied by Pliska

[Pli76], in a related form by Veinott [Vei69], and extensively by Rothblum and co-

authors (e.g., [RW82]). Besides the restriction to simultaneous derivation, these mod-

els were restricted to the single-player MDP case, and to simplify their analysis they

were typically assumed to be “transient” (i.e., the expected number of visits to a node

was assumed to be finite under all strategies). None of these works yield a PTIME

algorithm, that we present in Section 4.4 in Chapter 4, for computing the optimal ex-

pected rewards for 1-RMDPs with positive rewards. Furthermore, our results apply

more generally to a 2-player setting.

Chapter 2

Probabilistic infinite state models and

equivalences

In this chapter we define several formalisms that allow for specifying probabilistic

countable-state models (with rewards). These models have been studied in many do-

mains of theoretical computer science and mathematics such as population dynam-

ics (Multi-Type Branching Processes [KS47, Har63]), natural language processing and

biological sequence analysis (Stochastic Context-Free Grammars [DEKM99, MS99]),

queueing theory (Quasi-Death-Birth processes [Neu81, Neu89, LR99] and Tree-like

QBDs [LR99, BLM03, VHB06]), modeling web surfing (“random walks with back-

buttons” [FKK+00]) and probabilistic model checking (Recursive Markov Chains [EY05s]

and probabilistic Pushdown Systems [EKM04]). Relationships between some of these

models is already well established (e.g., see [EY05s]). In this chapter we establish some

new connections between models used in queueing theory and models used in prob-

abilistic procedural programs analysis. Although QBDs have been studied since the

1960s, new complexity results for them follow from this tight relationship.

Before we define all mentioned models formally, we first define a very general

probabilistic game model that underlies all of them. Namely, (countable-state) Sim-

ple Stochastic Games (with rewards). (Discounted) Stochastic Games were already

studied by Lloyd Shapley in the early 1950s ([Sha53]). These games are concurrent,

i.e., the two players are simultaneously choosing actions independently of each other

and depending on such a chosen pair of actions the game proceeds to a new state.

However in this thesis, we are studying turn-based games only, i.e., at each step of the

game only one player is choosing an action and he has perfect information about the

whole game structure and what has happened until that moment. Simple Stochastic

11

12 Chapter 2. Probabilistic infinite state models and equivalences

Games were defined by Anne Condon ([Con92]), but they had only a finite number of

states, all probabilities were equal to 1/2 and the objective was (mainly) termination,

i.e., the player receives reward 1 iff the game terminates at (reaches) a given node. As

already noted by Condon, restricting the probabilities just to the 1/2 value does not

change their expressive power since any rational probabilities transitions can be con-

structed from such restricted transitions. On the other hand, allowing games to have

an infinite number of states drastically changes their properties as we will see later.

Competitive Markov Decision Processes ([FV97]) are yet another name for finite-state

stochastic games used in Operation Research (OR) and economics. In order to sim-

plify the notation we do not strictly follow the same formal notation as that used in

prior work.

The rest of this chapter is organized as follows. In Section 2.1 we give a definition

of (countable-state) Simple Stochastic Games and player strategies. In Section 2.2 we

formally define Recursive Simple Stochastic Games (RSSGs), which are finite presen-

tations of (countable-state) Simple Stochastic Games, and define memoryless strate-

gies and memoryless&stackless strategies. After that we survey some of the existing

results for RSSGs. In the same section, we also formally define other controlled and

uncontrolled probabilistic finitely-presentable models: Stochastic Context-Free Gram-

mar (SCFG), Multi-Type Branching Processes (MT-BPs), probabilistic Pushdown Sys-

tems (pPDSs), random walks with “back buttons”, (probabilistic) 1-counter automata,

Quasi-Birth-Death processes (QBDs), Tree-like QBDs and Tree-structured QBDs. In

Section 2.3 we formally define what it means for two (finitely-presentable) models to

be essentially equivalent, and prove such equivalences between 1-RSSGs and SCFG

games; p1CAs and QBDs; pPDSs, RMCs, TL-QBDs and TS-QBDs. We conclude in

Section 2.4 and present how all these models relate to each other in a simple diagram.

2.1 Preliminaries

By R>0 = (0,∞) we denote the positive real numbers, R>0
.
= [0,∞), R .

= [−∞,∞],

R∞>0
.
= (0,∞], and R∞>0

.
= [0,∞]. The extended reals R have the natural total order. We

also assume the following usual arithmetic conventions on the non-negative extended

reals R∞>0: a ·∞ =∞, for any a ∈ R∞>0; 0 ·∞ = 0; a+∞ =∞, for any a ∈ R∞>0. We

can naturally extend these basic arithmetic operations to matrix arithmetic operations

over R∞>0.

We use boldface letters x,y,z, . . . to denote variables that are vectors and we use

2.1. Preliminaries 13

subscript index to refer to the value of a specific entry in such a vector. An index is

either the name of a node, like in xu, or the entry number, like in x1. Two particular

vectors (whose size differs depending on the context) are 111 = (1,1, . . .), a vector of all

ones, and 0 = (0,0, . . .), a vector of all zeroes.

We say that a vector x∗ ∈ (R∞>0)
n is the Least (non-negative) Fixed Point (LFP) of an

equation system x = P(x) if x∗ is a fixed point of that equation system (i.e., x∗ = P(x∗))

and for any other fixed point x ′ we have x ′ > x∗, where > is a partial entry-wise order

on vectors in (R∞>0)
n.

Directed Acyclic Graph (DAG) is a directed graph in which there is no path from

any node to itself. Strongly Connected Component (SCC) of a directed graph is any

(inclusion-wise) maximal subset of nodes such that there is a path between any two

nodes from that subset. It is a well-know fact that any directed graph can be decom-

posed in linear-time into SCCs that then form a DAG. The set of nodes of that DAG is

the set of SCCs and there is an edge from one SCC to another if there exists an edge

from any node in the former to any node in the latter.

In all the probabilistic models we define, we assume for computational purposes

that all probabilities on transitions are rational, and that they are encoded in the stan-

dard way by providing numerator and denominator in binary.

Definition 2.1.1. A (countable-state zero-sum turn-based) Simple Stochastic Game G
(with finite branching and nonnegative rewards) is a pair (S,∆), where S is a countable

set of states partitioned into three disjoint sets S0, S1, and S2, and ∆ is a transition

relation⊆ S×((0,1]∪ {⊥})×S×R>0. Nodes in the set S0 are probabilistic (or controlled

by the so-called “nature” player), while nodes in S1 and S2 belong to Player 1 and

Player 2 respectively. We require the set of transitions (u,puv,v,cuv) ∈ ∆ to be finite

(and allow it to be empty) for any u ∈ S. Moreover, for (u,x,v,c) ∈∆we have x ∈ (0,1]

if u ∈ S0 and x=⊥ if u ∈ S1∪S2. We also require that if u ∈ S0 then puv is a probability

distribution over the possible next states, i.e.,
∑
vpuv = 1.

A Simple Stochastic Game G = (S,∆) induces the following transition system with

rewards. A tuple (u,puv,v,cuv)∈∆, where puv ∈ (0,1], states that from the state u∈ S0

we move to the state v∈ Swith probability puv and such a transition yields reward cuv
to Player 1 (and the same cost to Player 2). On the other hand, a tuple (u,⊥,v,cuv) ∈∆
states that from the state u ∈ S1∪S2, Player 1 or 2 (depending on who is the owner of

u) can choose to move to the state v which gives Player 1 reward cuv (and incurs cost

cuv to Player 2). Notice that, if we fix S1 = S2 = ∅ and forget about the players, we will

get a classical model of (countable-state) Markov Chains with (nonnegative) rewards.

14 Chapter 2. Probabilistic infinite state models and equivalences

A play is a (finite or infinite) path in the transition system of G. It starts at one

of the states and proceeds by taking one of the transitions available from the current

state. A strategy σi for player i, i ∈ {1,2}, is a function σi : S∗Si 7→ S, where, given

the history ws ∈ S∗Si of the play so far, with s ∈ Si (i.e., it is player i’s turn to make

a move), σi(ws) = s ′, where (s,⊥,s ′,c) ∈ ∆ for some c, determines the next move of

player i. (We could also allow randomized strategies, but as we will see, this will

not be necessary for the games we are considering in this thesis.) Let Ψi denote the

set of all strategies for player i. A pair of strategies σ1,σ2, were σi ∈ Ψi, induces in

a straightforward way a Markov chain with rewards Mσ1,σ2 = (S∗,∆ ′), whose set of

states is the set of histories S∗ and the transition relation ∆ ′ is a subset of S∗× (0,1]×
S∗×R>0. Moreover, (ws,p,wst,c) ∈ ∆ ′ (where w ∈ S∗, s,t ∈ S) iff (s,p,t,c) ∈ ∆ and

s ∈ S0 or (s,1,t,c) ∈ ∆ and (σ1∪σ2)(ws) = t.

If we impose that each play of the game G starts from the same initial state u,

then for strategies σ1 and σ2 we obtain a Markov Chain Mu,σ1,σ2 . For Mu,σ1,σ2 we

can define in a straightforward way a random variable Xk,σ1,σ2
u whose value is the

reward at the k-th step (when starting from u; of course if all the paths starting in u

are shorter than k, then its value is 0 by default).1 There are several different ways

to define the outcome of Mu,σ1,σ2 (i.e., the payoff to Player 1), rσ1,σ2
u , based on these

random variables Xk,σ1,σ2 (see [Put94, NS03]):

• total expected reward simply defines

rσ1,σ2
u = E

(∞∑
k=1

Xk,σ1,σ2
u

)

• the discounted total reward with the discount factor λ < 1 sets

rσ1,σ2
u = E

(∞∑
k=1

λk−1Xk,σ1,σ2
u

)

• and finally, the limit-average reward assigns

rσ1,σ2
u = liminf

m→∞ E

(∑m
k=1X

k,σ1,σ2
u

m

)

where EX denotes the expected value of random variable X. Notice that, since the

value of Xk,σ1,σ2
u is always positive, the order in which we sum these random vari-

ables does not matter, and in fact by the linearity of expectations we can just sum the

1We will not define this random variable formally. We could define a probability space with a σ-field
over the subsets of plays, but such a formal treatment will not be necessary for us as these concepts are
not used explicitly anywhere in this thesis. For their formal definition see, e.g., [Bil79].

2.2. Definitions 15

expected values of these variables instead and obtain the same outcome value. Also,

when the objective of the game is total expected reward, the outcome can easily be

equal to∞, while for the other two objectives the outcome can always be bounded by

a function in the size of the input and λ. In this thesis we study only games with the

total expected reward objective, since all the objectives we are going to define later can

easily be encoded with such a criterion.

Recall that Simple Stochastic Games are zero-sum games, i.e., if Player 1 earns x

then Player 2 loses x. Player 1 will be trying to maximize the outcome of the game

while Player 2 will be trying to minimize it in order to minimize his loss. Henceforth,

we will be referring to Player 1 as the maximizer and Player 2 as the minimizer.

We say that the game G that starts in u has a value (or is determined) if the follow-

ing holds: supσ1∈Ψ1
infσ2∈Ψ2 r

σ1,σ2
u = infσ2∈Ψ2 supσ1∈Ψ1

r
σ1,σ2
u , and denote such a value

by r∗u. If a game has a value, then player i’s strategy is said to be optimal if it guarantees

player i the optimal reward r∗u no matter what the other player does. Formally, a strat-

egy σ∗1 is said to be optimal for Player 1 if infσ2∈Ψ2 r
σ∗1 ,σ2
u is equal to r∗u and similarly, a

strategy σ∗2 is said to be optimal for Player 2 if supσ1∈Ψ1
r
σ∗1 ,σ2
u is equal to r∗u. A strategy

is said to be ε-optimal if its value guarantees a reward at most ε away from the opti-

mal value no matter what the other player does, i.e., for the maximizer’s strategy σ∗1 :

infσ2∈Ψ2 r
σ∗1 ,σ2
u > r∗u−ε and for the minimizers’s strategy σ∗2 : supσ1∈Ψ1

r
σ1,σ∗2
u 6 r∗u+ε.

From a well-known result due to Martin ([Mar98]) we know that all Blackwell games

are determined and both players have ε-optimal (randomized) strategies. That class

of games subsumes denumerable stochastic games with bounded Borel payoff func-

tions ([MS98]). We instantly know from this that any Simple Stochastic Game G is

determined when the objective of the game is the discounted total reward or the limit-

average reward criterion, but we cannot apply that result directly to games with total

expected reward criterion unless we somehow show that the payoff is bounded by

some finite value. For this reason, we have to prove the determinacy of the games

studied in Chapter 4 ourselves, since their total reward cannot be bounded by any

finite value.

2.2 Definitions

In this section we define several formalisms that are finitely-presentable and yet are

able to describe subclasses of infinite-state Markov Chains or Simple Stochastic Games.

It order to simplify the definitions, only the first two described models, Recursive Sim-

16 Chapter 2. Probabilistic infinite state models and equivalences

ple Stochastic Games (RSSGs) and Stochastic Context-Free Grammar (SCFG) games,

incorporate controllers and rewards on transitions. The rest of the models are just fi-

nite representations of potentially infinite-state Markov Chains (without rewards) that

can easily be seen as a special case of Simple Stochastic Games. These models could

easily be extended to include rewards and players, but since their controlled versions

will not be studied later in this thesis (apart from the controlled version of p1CAs

without rewards in Chapter 3), we do not define them formally in order to simplify

the definitions.

2.2.1 Recursive Simple Stochastic Games and related models

Let us firstly define Recursive Simple Stochastic Games (RSSGs) informally. A small

example RSSG is depicted in Figure 2.1. Intuitively, an RSSG is a set of components

(namedA and B in our example) consisting of a finite number of entries, exits, internal

nodes and boxes which have their own entries and exits. All these nodes, entries and

exits are connected by transitions. Just like for Simple Stochastic Games, some of these

nodes are controlled by one of two players, while some others are stochastic and all

the transitions out of them are probabilistic. In fact, a component without any box

inside of it is essentially a finite-state Simple Stochastic Game. Each box is mapped to

one of the components so that every time we reach an entry of a box, we jump to the

corresponding entry of the component it is mapped to. When/if we finally reach an

exit node of an component, we jump back to the respective exit of the box that we used

to enter this component. This process models, in an obvious way, function invocation

in probabilistic procedural programs. Every potential function call is represented by a

box. Entry nodes represent parameter values passed to the function, while exit nodes

represent returned values. We can view the players as if one of them is trying to

optimize the program while the other one acts as a malicious environment in which

such a program executes.

Now formally, a Recursive Simple Stochastic Game (RSSG) is a tupleA=(A1, . . . ,Ak),

where each component Ai = (Ni,Bi,Yi,Eni,Exi,pli,δi,ξi) consists of:

• A setNi of nodes, with a distinguished subset Eni of entry nodes and a (disjoint)

subset Exi of exit nodes.

• A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . ,k} that assigns to every box

(the index of) a component. To each box b ∈ Bi, we associate a set of call ports,

Callb = {(b,en) | en ∈ EnY(b)}, and a set of return ports, Retb = {(b,ex) | ex ∈

2.2. Definitions 17

Figure 2.1: An example (multi-exit) Recursive Simple Stochastic Game (RSSG) consisting of

two components, A and B. Red vertices belong to player 1, blue ones to player 2, and white

ones to “nature” (i.e., are random). Each box (labeled, e.g., b1:A) has a name (here b1) and is

mapped to one of the components (here A). Each edge has a label whose first entry represents

the probability of using that edge or is equal to ⊥ if the origin of that edge is a controlled node,

while the second entry represents the reward assigned to that edge.

ExY(b)}. Let Calli = ∪b∈BiCallb, Reti = ∪b∈BiRetb, and let Qi =Ni∪Calli∪Reti

be the set of all nodes, call ports and return ports; we refer to these as the vertices

of component Ai.

• A mapping pli :Qi 7→ {0,1,2} that assigns to every vertex a player (Player 0 rep-

resents “chance” or “nature”). We assume pli(ex) = 0 for all ex ∈ Exi.

• A transition relation δi ⊆ Qi × ((0,1]∪ {⊥})×Qi ×R>0, where for each tuple

(u,x,v,cuv)∈ δi we have: u∈ (Ni\Exi)∪Reti is the source control state, v∈ (Ni\

Eni)∪Calli is the destination control state, x is either (i) the transition probability,

puv ∈ (0,1], if pli(u) = 0, or (ii) x = ⊥ if pli(u) = 1 or 2, and finally cuv ∈ R>0

is the nonnegative reward associated with this transition. We assume there is

at most one transition from u to v in δ for any pair of control states u,v ∈ V .

Also, for computational purposes we assume that the given probabilities puv
and rewards cuv are rational. Probabilities must also satisfy consistency: for

every u ∈ pl−1
i (0),

∑
{v ′|(u,puv ′ ,v ′,cuv ′)∈δi}puv

′ = 1, unless u is a call port or an

exit node, neither of which have outgoing transitions, in which case by default∑
v ′ puv ′ = 0.

• Finally, the mapping ξi : Calli ∪Exi 7→ R>0 maps each call port of a box inside

component Ai and each exit of Ai to a nonnegative rational value.

18 Chapter 2. Probabilistic infinite state models and equivalences

We use the symbols (N,B,Q,δ, etc.) without a subscript, to denote the union over

all components. Thus, e.g., N = ∪ki=1Ni is the set of all nodes of A, δ = ∪ki=1δi the

set of all transitions, etc. An RSSG A defines a global denumerable Simple Stochastic

Game with rewards, GA = (V ,∆) as follows. The global states V are either a special

terminal state z or a pair of the form 〈β,u〉 ⊆ B∗×Q, where β ∈ B∗ is a (possibly

empty) sequence of boxes and u ∈Q is a vertex of A. The states V and transitions ∆

are defined inductively as follows:

1. 〈ε,u〉 ∈ V , for u ∈Q, where ε denotes the empty string.

2. if 〈β,u〉 ∈ V & (u,x,v,c) ∈ δ, then 〈β,v〉 ∈ V and (〈β,u〉,x,〈β,v〉,c) ∈ ∆.

3. if 〈β,(b,en)〉 ∈ V & (b,en) ∈ Callb, then 〈βb,en〉 ∈ V & (〈β,(b,en)〉,1,〈βb,en〉,ξ((b,en))) ∈ ∆.

4. if 〈βb,ex〉 ∈ V & (b,ex) ∈ Retb, then 〈β,(b,ex)〉 ∈ V & (〈βb,ex〉,1,〈β,(b,ex)〉,0) ∈ ∆.

5. (〈ε,ex〉,1,z,ξ(ex)) ∈ ∆, for each ex ∈ Ex.

The partition of V into V0∪V1∪V2 is given as follows: z and nodes of the form 〈β,u〉,
where u ∈ Call∪Ex, belong to the set of probabilistic nodes V0. For all the other nodes

of V we have 〈β,u〉 ∈ Vpl(u). We consider GA with various initial states of the form

〈ε,u〉, denoting it by GuA. The only terminating state of GA, i.e., a state without any

outgoing transitions, is z.2 In GA Player 1 (the maximizer) has a set of strategies Ψ1

and Player 2 (the minimizer) has a set of strategies Ψ2. Conventionally, we will denote

the maximizer’s strategy by σ and the minimizer’s strategy by τ. An RSSG A and two

strategies σ and τ induce a Markov chain with rewardsMσ,τ
A = (V∗,∆ ′).

A maximizing (minimizing) Recursive Markov Decision Process (RMDP) is an

RSSG where V2 = ∅ (V1 = ∅, respectively). Furthermore, a Recursive Markov Chain

(RMC) is an RSSG where both V1 and V2 are empty.3 Notice that, the game GA is

already a Markov Chain ifA is an RMC, since it then contains only probabilistic states.

Several special subclasses of these models were distinguished in [EY05s]. The most

important subclass is the class that restricts each component (and thus also all the

boxes) to have just one exit. Such a subclass of our models will be referred to by adding

prefix ‘1-exit’ (thus 1-exit RMCs/RMDPs/RSSGs or 1-RMCs/1-RMDPs/1-RSSGs for

2In fact in [EY05i, EY06s] where RSSGs were defined for the first time and Chapter 4, all nodes of the
form 〈ε,ex〉 for ex ∈ Ex are terminal. We added an extra state z and a transition from each node 〈ε,ex〉
to z in order to unify the expositions of all the different objectives we are going to consider. As we will
see later, this does not change much for their analysis.

3RMCs were firstly defined in [EY05s]. They did not contain rewards on transitions, but of course
they can easily be described using our richer definition.

2.2. Definitions 19

Figure 2.2: An example 1-exit Recursive Simple Stochastic Game (1-RSSG) consisting of two

components, A and B. Red vertices belong to player 1, blue ones to player 2, and white ones

to “nature” (are random). Each box (labelled, e.g., b1:A) has a name (here b1) and is mapped

to a component (here A). Each edge has a label whose first entry is equal to the probability of

using that edge or is ⊥ if the origin of that edge is a controlled node, while the second entry

represents the reward assigned to that edge.

short). We can see an example 1-RSSG in Figure 2.2 (compare it with Figure 2.1).

Intuitively, the “1-exit” restriction essentially restricts these finite-state subroutines so

they do not return a value, unlike for general RSSGs in which they can return distinct

values. Many problems that are hard or undecidable for the general class of RSSGs

become a lot easier and tractable once the model is restricted to the 1-exit subclass. If

we want to emphasize that we are talking about the general unrestricted model, we

will refer to it as a multi-exit RMC/RMDP/RSSG.

Now we will describe three types of objectives that were studied so far in the work

on RSSGs and phrase them as RSSGs with a total expected reward criterion.

• The termination probability — optimizing the probability of reaching a subset

H of the set of states {〈ε,ex〉|ex ∈ Ex} when starting at a given state 〈ε,u〉 where

u ∈ V . This objective was studied for RMCs without rewards in [EY05s, EKM04]

and for RMDPs/RSSGs without rewards in [EY05i]. For a given RSSGAwithout

rewards, we construct an RSSG A ′ with rewards by simply setting ξ(ex) = 1

for all 〈ε,ex〉 ∈ H and setting all other rewards to zero. The optimal expected

reward in A ′ is equal to the optimal probability of reaching z in A, but that

value is equal to the optimal probability of reaching H since z is reached with

probability 1 from the set of states H.

• The reachability objective — optimizing the probability of reaching a given

20 Chapter 2. Probabilistic infinite state models and equivalences

node u ∈ Q in an RSSG A without rewards or equivalently reaching any of

the states {〈β,u〉|β ∈ B∗} during a play that starts at a given state 〈ε,v〉 (v ∈ V)

of the underlying Simple Stochastic Game GA. This objective was studied in

[BBFK06].4 We can encode it as an RSSG with rewards A ′ by slightly modifying

A and adding rewards to it. We replace all the transitions out of the node uwith

a single self-loop transition that has probability one and reward 0. All the tran-

sitions that lead to u in A are assigned reward 1, and reward 0 is assigned to all

the other transitions. It is easy to see that the optimal total reward in A ′ is equal

to the optimal probability of reaching any of the states {〈β,u〉|β ∈ B∗} in GA ′ .

• The total reward in a positive reward setting — we are optimizing the undis-

counted sum of all the rewards accumulated throughout a play of a given RSSG

with positive rewards. More precisely, all the rewards on transitions (apart from

rewards that are assigned by ξ) are required to be positive (not just nonnega-

tive). Notice that such an optimal value can easily be equal to∞. This model is

studied in Chapter 4 (and in [EWY08i] which is a shorter version of that chapter).

We will be referring to the first class of games as termination RSSGs, the second one

as reachability RSSGs and the last one as RSSGs with positive rewards. The determi-

nacy of the first two classes follows from Martin’s theorem ([Mar98, MS98]), because

the total payoff is always 6 1. The payoffs in RSSGs with positive rewards can be

unbounded and we prove their determinacy in Chapter 4.

Once we know an optimal value of a game exists, several different questions can

be posed about it. The decision problem is the following: Is the value of a given game

4p, where p ∈Q∞>0 and4∈ {=,6,<,>,>}? Furthermore, the decision problem can be

quantitative when we do not impose any restrictions on the value of p or qualitative

when p is the minimal or the maximal value such an objective can achieve, e.g., 0 or 1

for probabilities. On the other hand, the approximation problem asks to compute the

optimal value within a given absolute or relative error ε > 0. Notice that once we solve

the decision problem, we can also approximate the optimal values if they are finite.

We simply perform a binary search in the interval of all possible reward values [0,M]

(e.g., M = 1 for probabilities). If the maximum reward cannot be a priori bounded,

e.g., for RSSGs with positive rewards, we can just start with r = 1 and repeatedly ask

if the value is 6 r and if it is not double the value of r. If the optimal value is finite,

4In fact, slightly more general objectives were studied in [BBFK06], but it is irrelevant to our study.
Also, they were formulated in terms of controlled probabilistic Pushdown Systems (pPDSs) which is an
equivalent model to RSSGs (see Section 2.2.4 for a definition of uncontrolled pPDSs without rewards).

2.2. Definitions 21

this procedure will eventually terminate finding some upper bound on the optimal

value of the game. Once we have the upper boundM, we can proceed further exactly

as before. As we will soon see, these questions have (very) different computational

complexity depending on the class of objectives being considered.

On the other hand, notice that even knowing the exact value of the game, does

not imply that we can compute an optimal strategy that achieves it. Martin’s the-

orem shows the existence of ε-optimal (randomized) strategies in a nonconstructive

way, so optimal strategies may not exist and even if they do, they may not be com-

putable. Indeed, we can see in Figure 2.3 an example reachability 1-RSSG that has no

optimal strategy, only ε-optimal ones. Moreover, in a general setting of RSSGs with

nonnegative rewards, they may not even be an ε-optimal strategy for any ε > 0, even

if the game has a value. We can see such an example in Figure 2.4; the maximizer does

not have an ε-optimal strategy to achieve the value of the game,∞, for any ε > 0. In

conclusion, another important sort of questions is whether in a given class of games

optimal strategies always exist, how fast can they be computed (if at all), and what

kind of strategies suffices to achieve the optimal values. Notice that a strategy is a

function whose domain is the set of all possible histories of a play. Such a set is infi-

nite even if the game has a finite number of states. Thus, we need to find some succinct

finite representation for such strategies. An important class of strategies is the class

of memoryless strategies, strategies that apart from the current state do not depend

on the history of the play. Formally, a strategy σ is memoryless if σ(ws) = σ(s) for

any w ∈ S∗ and s ∈ S (where S is the set of states of the game). This gives a finite

representation for finite state stochastic games since the set of states S is finite and it

suffices to define such a strategy just for each element of S. However, strategies of that

sort do not have a finite representation in general (and may not even be computable)

for the infinite state stochastic games that we mainly consider in this thesis. A more

restricted class of strategies specific to RSSGs is the class of stackless & memoryless

strategies (SM strategy), strategies that not only do not depend on the history of the

play, but also do not depend on the current stack content (hence only on the current

control state). Formally, a strategy σ is SM if it is memoryless and σ(〈β,u〉) = σ(〈ε,u〉)
for any β ∈ B∗ & u ∈Q. Hence, we need to specify such an SM strategy only for each

control state, the set of which is finite.

22 Chapter 2. Probabilistic infinite state models and equivalences

Figure 2.3: An example reachability (maximizing) 1-RMDP where the maximizer has no optimal

strategy. A strategy that picks Left k times and then picks Right reaches node u with probability

(1 − 2−k), but no strategy achieves 1, which is the supremum value of this game. Obviously,

for k = log2
1
ε , the strategy just described is an ε-optimal strategy. Notice that the two SM

strategies are the worst possible, reaching u with probability 0.

Figure 2.4: An example maximizing 1-RMDP with nonnegative rewards where the maximizer

has no ε-optimal strategy. A strategy that picks Left k times and then picks Right grants him a

payoff of k, but no strategy achieves∞, which is the optimal value of this game. Obviously no

strategy can obtain payoff that is ε close to∞ for any finite ε. Notice that the two SM strategies

are the worst possible obtaining the total reward 0.

2.2. Definitions 23

The state of the art

We now present some known upper and lower complexity bounds for answering the

just posed problems for these three classes of games, but first we will define two other

computational problems, which have an intriguing complexity status, and that can be

reduced to some of the questions we will be dealing with.

The square-root sum problem (SQRT-SUM problem) asks, given natural numbers

(d1, . . . ,dn) ∈ Nn and k ∈ N, whether (
∑
i

√
di) 6 k. This problem can be solved in

PSPACE, but it is a major open problem since the 1970s ([GGJ76]) whether it can be

placed in NP or even polynomial time hierarchy. Many problems in computational

geometry are at least as hard as this problem, e.g., the Traveling Salesmen problem in

Euclidian space.

The other problem, which is as hard as SQRT-SUM via a PTIME Turing reduction,

is the Positive Straight-Line-Program problem (PosSLP) studied in [ABKM06]. The

PosSLP problem asks whether a given arithmetic circuit with integer inputs, and gates

{+,∗,−}, outputs a positive number or not. It was shown there that PosSLP is hard

under PTIME Turing reductions for the entire class of decision problems that can be

decided in polynomial time in the discrete Blum-Shub-Smale (BSS) model of compu-

tation over the reals using rational constants ([BCSS98]). The discrete BSS model is ba-

sically equivalent to the unit-cost algebraic RAM model of computation, i.e., all arith-

metic operations are performed in a single time unit no matter how big the operands

are. Intuitively, we are just counting the number of arithmetic operations necessary

to perform the task. (In Chapter 3 we show a PTIME algorithm for approximating

the fundamental G matrix of a given Quasi-Birth-Death process in the unit-cost alge-

braic RAM model of computation.) Notice that the standard Turing machine model

can simulate the unit-cost algebraic RAM model, but with the cost of each operation

being polynomial in the size of the operands. It has to be noted that the size of the

operands can grow exponentially in the number of arithmetic operations performed.

It was shown in [Tiw92] that SQRT-SUM problem can be solved in PTIME in the BSS

model, while we still do not even know how to solve it in NP in the standard Turing

model. Moreover, it was shown in [ABKM06] that PosSLP, and thus also SQRT-SUM,

can be decided in the 4th level of the Counting Hierarchy (an analog of the polynomial

time hierarchy for counting classes like #P (a class defined in [Val79])) which is a slight

improvement over PSPACE.

Termination RSSGs. The decision problem for termination RMCs (computing the

termination probabilities) was shown in [EY05s] to be expressible in Existential The-

24 Chapter 2. Probabilistic infinite state models and equivalences

ory of the Reals (ETR). Deep results in [GV88, Can88, Ren92] shows that ETR can be

decided in PSPACE. As described before, an approximation of the termination proba-

bilities in PSPACE easily follows from the solution to the decision problem. As for the

lower bounds, the decision problem was shown to be as hard as the SQRT-SUM and

PosSLP problems via many-one reductions ([EY05s, EY07]). Furthermore, any non-

trivial approximation, to within ε < 1/2 additive error, of the termination probability

is in fact SQRT-SUM-hard, and so is the problem of checking whether the termination

probability is equal to 1 ([EY05s, EY07]). However, for 1-exit RMCs, checking if the

termination probability is equal to 1 was shown to be solvable in PTIME ([EY05s]).

In the controlled setting, a quantitative decision question about termination multi-

exit RMDPs (and RSSGs) was shown to be undecidable ([EY05i]). However, when

RMDPs are restricted to the 1-exit subclass, their qualitative decision problems can

be solved in PTIME ([EY05i, EY06s]). It follows that the qualitative decision problem

about 1-RSSGs can be solved in NP∩co-NP. Quantitative decision questions about 1-

RMDPs/1-RSSGs can be expressed in ETR, and hence they can be solved in PSPACE.

Furthermore, in termination 1-RSSGs both players have always SM optimal strategies

that can be computed in PSPACE.

Reachability RSSGs. Although this setting looks similar to the previous one (since

we are trying to reach a given set of nodes and it does not matter how the game

proceeds after that) the complexity of computing the values and the kind of strate-

gies needed to achieve them in reachability RMDPs/RSSGs are strikingly different.

Again, the decision problems for multi-exit reachability RMDPs (and RSSGs) are un-

decidable5. As already mentioned before (see Figure 2.3), in reachability maximizing

1-RMDPs there may not exist any optimal strategy, we only know the existence of

ε-optimal strategies. (On the other hand, for reachability minimizing 1-RMDPs an

optimal strategy always exists as a consequence of well-known results for countable-

state MDPs (see, e.g., [Put94])). The quantitative decision questions about the optimal

values (and even their approximation) are wide open as well is checking if the supre-

mum probability over all strategies is equal to 1 or not. On the other hand, it was

shown in [BBFK06], building on [EY06s], that we can decide in PTIME whether there

exists an (optimal) strategy in a maximizing 1-RMDP that reaches the desired con-

trol state with probability 1. Notice that the already mentioned example (Figure 2.3)

shows that such an optimal strategy may not exist even if the optimal value is indeed

5This fact has not been formally stated anywhere, but it trivially follows from the undecidability proof
for multi-exit termination RMDPs; one can just create a new component with a single box, a copy of the
gadget used in [EY05i], and a single internal node reachable only from the n-th exit of that gadget.

2.2. Definitions 25

1. Moreover, even if an optimal strategy exists, there may be no optimal strategy that

is memoryless and stackless ([BBFK06]).

Total reward in a positive reward setting. Although this setting seems to be more

general than the two previous ones, this class of games has a lot nicer properties than

both of them. Again, multi-exit RSSGs with positive rewards are undecidable (Theo-

rem 4.4.13 in Chapter 4). On the other hand, unlike terminating 1-RSSGs and reach-

ability 1-RSSGs, the optimal value of an 1-RSSGs with positive rewards is always a

rational number (or is equal to∞). Moreover, such a value can be computed exactly

for both maximizing and minimizing 1-RMDPs with positive rewards in PTIME. This

means that we can answer their quantitative questions, not just qualitative ones, in

PTIME. Optimal SM strategies always exist for both players in 1-RSSGs with posi-

tive rewards and it easily follows that their optimal value can be computed in NP ∩
coNP. The optimal strategies for both players can be found via a simultaneous strategy

improvement algorithm. A corollary is that computing the game value and optimal

strategies for these games is contained in the class PLS of polynomial local search

problems ([JPY88]). Whether this strategy improvement algorithm runs in the worst-

case in PTIME is open, just like its version for finite-state SSGs. We know that in

1-exit RMDPs with nonnegative rewards, there may not even be ε-optimal strategies

(see Figure 2.4), hence the assumption of all rewards being positive is crucial. This

assumption essentially causes all nonterminating plays to have total reward ∞ and

hence the optimal reward of a game to be∞ if the game does not terminate with prob-

ability 1. Without that assumption a game may have a finite total reward even if it

terminates with probability 0.

2.2.2 Stochastic Context-free Grammar games

We define here a natural probabilistic game model that, as will see later in Section 2.3.1,

has exactly the same expressive power as 1-exit RSSGs. This model is essentially an

extension of the well-known context-free grammars to a probabilistic and controlled

setting. Terminal symbols in our grammars are completely ignored, since the rewards

are associated with grammar rules only. The nonterminals in a Stochastic Context-

Free Grammar (SCFG) game are split into three disjoint sets of nonterminals: random

nonterminals, player-1 nonterminals and player-2 nonterminals, controlled by Player 1

and Player 2, respectively. For each random nonterminal X, we are given a probabil-

ity distribution on the rules (X7→α) where X appears on the left hand side. Starting

from some single nonterminal, a play of the game builds a derivation of the grammar.

26 Chapter 2. Probabilistic infinite state models and equivalences

The derivation proceeds in left-most manner, by choosing a remaining left-most non-

terminal, S, and expanding it. The precise derivation law (left-most, right-most, etc.)

does not effect the game value in the strictly positive reward setting, but as we will

see later it does if we allow 0 rewards. If S belongs to random, it is expanded randomly

by choosing a rule S→ α, according to a given probability distribution over the rules

whose left hand side is S. If S belongs to player-i, then player i chooses which gram-

mar rule to use to expand this S. The play continues, either forever, or until the empty

string is derived. Player 1’s goal is to maximize the total (possibly infinite) expected

reward gained during the entire derivation, while Player 2’s goal is to minimize that

reward.

A Stochastic Context-Free Grammar (SCFG) is an SCFG game with no players,

i.e., all nonterminals are random. Let us now present an example SCFG with rewards

given by the following grammar rules: {X
(1/3,3)7−→ XX ; X

(2/3,2)7−→ ε}. Here X is the only

nonterminal (and there are no terminal symbols). The pair (p,c) of quantities labeling

a rule denotes the probability, p, of that rule firing, and the reward, c, accumulated for

each use of that rule during a derivation. Consider now a random derivation of this

grammar, starting from the nonterminal X. The derivation terminates when it reaches

the empty string ε. What is the expected total reward accumulated during the entire

derivation? It is not hard to see that if we let x denote the total expected reward, then x

must satisfy the following equation: x= (1/3∗(3+(x+x)))+(2/3∗2) = (2/3)x+(7/3).

Therefore, the total expected reward is the unique solution to this equation, namely

x = 7. Note that, in general, such a derivation may not terminate with probability

1, and that the expected reward need not be finite (consider the same grammar with

modified probabilities: {X
(2/3,3)7−→ XX ; X

(1/3,2)7−→ ε}).

Now formally, a Stochastic Context-Free Grammar (SCFG) game (with left-most

derivation), is given by G = (V ,R), where V = V0 ∪V1 ∪V2 is a set of nonterminals,

which is partitioned into three disjoint sets: V0 are the probabilistic nonterminals (con-

trolled by nature); V1 and V2, the nonterminals controlled by Player 1 and Player 2,

respectively. Set R is a set of rules, where each rule r∈ R has the form r= (X,pr,cr,Zr),

where X ∈ V , pr ∈ (0,1] is a (rational) probability if X ∈ V0 and pr = ⊥ otherwise;

cr ∈ Q>0 is a rational reward, and Zr ∈ V∗ is a (possibly empty) string of nontermi-

nals. For each nonterminal, X, let RX ⊆ R denote the set of rules that have X on the

left hand side. For each X ∈ V0 we have
∑
r=(X,pr,cr,Zr)∈RX pr = 1 (i.e., a probability

distribution is assigned to each RX). This game defines a (countable) Simple Stochas-

tic Game G = (S,∆). The set of states of the game S is a subset of V∗, i.e., strings of

2.2. Definitions 27

nonterminals. A game starts in a state consisting of a single terminal X ∈ V . In each

round, if the current state is S = X1 . . .Xk, we proceed by a left-most derivation law

as follows: choose a rule r = (X1,pr,cr,Zr) ∈ RX1 . If X1 ∈ V0 then the rule r is chosen

probabilistically among the rules in RX1 , according to the probabilities pr. If X1 ∈ Vi,
i ∈ {1,2}, then the rule r is chosen by player i. After the choice is made, the play moves

to the new state ZrX2 . . .Xk. The reward gained in that round by Player 1 is cr. The

game continues until (and unless) we reach the empty-string state S = ε.

It is easy to modify this definition in order to define SCFG games with a right-most

derivation law. We could also define SCFG games with a simultaneous derivation law,

i.e., all nonterminals in the current state are expanded by simultaneously applying to

them one of their associated grammar rules. Formally, for each Xi, i = 1, . . . ,k, we

choose a rule r(i) ∈ RXi . For Xi ∈ V0 the rule r(i) is chosen probabilistically, with

probability pr(i) and for Xi ∈ Vi, i ∈ {1,2}, player i chooses the rule r(i). After the

choices have been made, the play moves to new state S ′ = Zr(1)Zr(2) . . .Zr(k). The

reward gained in that round by Player 1 is
∑

(i,j) cr(i,j). These games are related to

Multi-Type Branching Processes (MT-BPs) that are presented in the next section.

To see the difference between left-most, right-most and simultaneous derivation,

let us present some simple examples for which the game value wildly differs (between

0 and ∞) depending on the derivation law used. Indeed, consider the purely deter-

ministic context-free grammar given by the rules: {X
(⊥,0)7→ XY ; X

(⊥,0)7→ ε ; Y
(⊥,7)7→ ε },

where X and Y are nonterminals belonging to the maximizing player, Player 1. Sup-

pose the initial nonterminal is X. If the deterministic game proceeds by left-most

derivation, it is easy to see that there is no optimal strategy for maximizing Player

1’s total payoff. Indeed, there aren’t even any ε-optimal strategies, because the supre-

mum is∞. In fact, if Player 1 uses n times the rule X
(⊥,0)7→ XY to expand the left-most

X in the derivation, next uses X
(⊥,0)7→ ε, and finally uses n times Y

(⊥,7)7→ ε to expand all

n remaining Y nonterminals, the total reward is 7∗n. But no single strategy will gain∞ reward. Note in particular that any “stackless and memoryless” strategy, which

always picks one fixed rule for each nonterminal, regardless of the history of play and

the remaining nonterminals (the “stack” in this context), is the worst strategy possible;

its total reward is 0. By contrast, if we require simultaneous expansion of all remaining

nonterminals in each round, then there is a single “stackless and memoryless” strat-

egy that gains infinite reward, namely: in each round expand every copy of X using

X
(⊥,0)7→ XY, and (simultaneously) expand every copy of Y using its unique rule. Clearly,

after n > 1 rounds we accumulate reward 7 ∗ (n− 1) by doing this. Thus the total re-

28 Chapter 2. Probabilistic infinite state models and equivalences

ward will be∞. Similarly, consider the simple grammar {X
(⊥,0)7→ XY ; Y

(⊥,1)7→ Y }, where,

again, both nonterminals X,Y are controlled by the maximizing player, and X is the

start nonterminal. Under the left-most derivation law, clearly the maximum reward

is 0, whereas under the right-most or simultaneous derivation law, the total reward

is ∞. So, the supremum total (expected) reward is not robust and can wildly differ,

depending on the derivation law. On the other hand, if all the rewards on grammar

rules are positive then it can be shown that the total reward is robust and does not

depend on whether the left-most, right-most or simultaneous derivation law is used.

2.2.3 Multi-Type Branching Processes

Multi-Type Branching Processes (MT-BPs) are an important class of stochastic pro-

cesses, first studied by Kolmogorov and Sevastyanov beginning in the 1940s ([KS47]).

They have many applications, e.g., molecular biology ([KA02]) and nuclear chain re-

actions ([EU48]). Formally, the set of states of an MT-BP G is a subset of Nn, where n

is the number of types in G. The i-th entry of a state vector v represents the number

of entities of type i in the state v. Each type i has an associated set of rules of the form

i
p7−→ v, where v ∈Nn is a vector that a single entity of type i can be replaced with and

p ∈ (0,1] is the probability assigned to such a rule. For each type, the probabilities, p,

on its associated rules constitute a probability distribution. The Markov Chain with

rewards generated by an MT-BP G can be described intuitively as follows: we start

with some given vector v ∈Nn; at each single step we simultaneously apply to each

entity one of the rules, r, associated to its type, with that rule’s probability pr, replac-

ing it with the vector vr (the rhs of the rule r); we then sum all such vectors vr and

obtain the next state vector v; we terminate once we reach v = 0 (the all-zero vector).

For more background on this model see, e.g., [Har63]. Each MT-BP can be formulated

as an SCFG with a simultaneous derivation law. The only difference between these

two models is how the state is represented: as a vector of natural numbers for MT-BPs

or as a string for SCFGs. For detailed discussion about MT-BPs and their relationships

to other models, see [EY05s].

2.2.4 Probabilistic Pushdown Systems

There are a number of equivalent variations on the definition of (probabilistic) Push-

down Systems. We use a standard definition which is convenient for our analy-

sis. A probabilistic Pushdown System (pPDS) P = (QP,Γ ,∆) consists of a set of con-

2.2. Definitions 29

trol states QP, a stack alphabet Γ , and a probabilistic transition relation ∆ ⊆ (QP ×
Γ)× (0,1]×QP × {swap(Γ),swap&push(Γ × Γ),pop}. That is, a transition has the form

((s,γ),p(s,γ),(s ′,C),(s ′,C)), where based on the control state s and the symbol on top of

the stack, γ, with probability p(s,γ),(s ′,C), the transition updates the control state to s ′,

and performs action C on the stack. Specifically, if C = swap(γ ′) then the action swaps

the top-of-stack symbol, γ, with symbol γ ′. If C = swap&push(γ ′,γ ′′), then the action

both swaps γ with γ ′ and then pushes γ ′′ on top of the stack.6 Lastly, if C = pop, then

the action pops the top-stack-symbol γ off the stack. Each such transition has an asso-

ciated probability p(s,γ),(s ′,C), and we assume that for each pair of control state and top

of stack symbol, (s,γ), we have
∑

(s ′,C)p(s,γ),(s ′,C) = 1. We assume there is a special

stack symbol ⊥ ∈ Γ that marks the bottom of the stack. Accordingly, ⊥ is never over-

written with a different stack symbol, nor popped off the stack, and is never pushed

onto the stack or overwrites a different stack symbol. A stack with letter γ at the top

and remaining content ω ∈ Γ∗ will be written as ωγ (note that the leftmost symbol

in ωγ is ⊥). A pPDS P defines a countable-state Markov chain M(P) = (V ′,∆ ′) in

an obvious way. Namely, the states of M(P) are V ′ = {(w,s) | s ∈ QP, w ∈ ⊥Γ∗}, and

the probabilistic transitions of M(P) are ∆ ′ = {((w,s),p,(w ′,s ′)) | ((s,γ),p,(s ′,C)) ∈
∆ & applying action C to w yields w ′}.

A special subclass of pPDSs are probabilistic Basic Process Algebras (pBPAs) which

are the same as SCFGs with left-most derivation (without players and rewards).

2.2.5 Random walks with “Back Buttons”

In [FKK+00] a probabilistic model of web surfing with “Back Button” was studied.

This model extends a finite Markov chain by allowing not only for normal forward

probabilistic transitions, but also for “pressing the back button” with some probability

and returning to the previous state from which the current state was entered. Such a

model in fact can be easily described by restricting pPDSs: only one control state is

allowed, there are pop transitions, but there are no swap transitions and swap&push

transitions cannot change the top stack symbol, i.e., they are push transitions. Such a

model can also easily be described as a subclass of SCFGs and 1-RMCs (see [EY05s]

for details).

6Note that the standard push transition ((s,γ),p(s,γ),(s′,push(γ′)),(s ′,push(γ ′))) can be trivially en-
coded as ((s,γ),p(s,γ),(s′,swap&push(γ,γ′)),(s ′,swap&push(γ,γ ′))).

30 Chapter 2. Probabilistic infinite state models and equivalences

2.2.6 (Probabilistic) 1-Counter Automata

A probabilistic 1-counter automaton (p1CA), A, is just a pPDS with only one stack

symbol γ (other than the special bottom symbol ⊥). In other words, it is a pPDS

with Γ = {⊥,γ}. This is not the usual definition: they are typically defined as having

a finite number of control states and an additional non-negative counter which can

be incremented or decremented during transitions, and such transitions can be en-

abled/disabled depending on whether the counter is equal to 0 or not. However, this

can easily be seen to be equivalent to a pPDS with one stack symbol, γ. The stack acts

precisely as a (unary) counter, and the counter is equal to 0 precisely when the top

stack symbol is ⊥.

Formally, a p1CA is usually defined in the following form, which we will find

convenient. A p1CA, A, is 3-tuple A= (S,δ,δ0) where S is a finite set of control states

and δ ⊆ S×R>0× {−1,0,1}× S and δ0 ⊆ S×R>0× {0,1}× S are transition relations.

The transition relation δ is enabled when the counter is nonzero, and the transition

relation δ0 is enabled when it is zero. We use p(c)
uv to denote the unique probability

such that there is a transition (u,p(c)
uv ,c,v) ∈ δ, and likewise we use q(c)

u,v to denote the

unique probability such that there is a transition (u,q(c)
u,v,c,v) ∈ δ0. If such a transition

exists, it is unique, and thus p(c)
uv > 0 (or q(c)

u,v > 0) is uniquely determined. If such

a transition doesn’t exist, we may sometimes assume for convenience that p(c)
uv = 0

(or q(c)
u,v = 0), even though there are no explicit 0-probability transitions provided in

the input which describes A. The transition probabilities out of each control state u

define a probability distribution, i.e.,
∑1
c=−1

∑
vp

(c)
uv = 1, and

∑1
c=0
∑
vq

(c)
u,v = 1. A

p1CA, A, generates a denumerable-state Markov chainM(A) = (V ′,∆ ′) with state set

V ′ = {(s,d) | s ∈ S, d ∈ N}, and probabilistic transition relation ∆ ′ = {((s,0),p,(s ′, j)) |

(s,p, j,s ′) ∈ δ0}∪ {((s, i),p,(s ′, j)) | i > 0, & (s,p,c,s ′) ∈ δ, & j= i+c}.

A single controller MDP version of p1CAs is defined in Section 3.5 of Chapter 3

where we show that the qualitative decision problem about their termination proba-

bility is DP-hard (both NP-hard and coNP-hard). By contrast, the same question for

1-RMDPs can be solved in PTIME. No algorithm is yet known for answering the deci-

sion and even approximation problems for controlled p1CAs.

Now we define a non-probabilistic non-controlled version of p1CAs, 1-counter

automata (1CAs). They will be useful when reasoning about the structure of the

transition system of p1CAs, while ignoring the exact probability values. Formally,

a 1-counter automaton (1CA) is just a p1CA without probabilities, i.e., the transi-

tion relation is non-deterministic. So, a 1CA A = (S,δ,δ0), has transition relations

2.2. Definitions 31

δ⊆ S×{−1,0,1}×S, and δ0⊆ S×{0,1}×S. To each p1CA,A= (S,δ,δ0), we can associate

an underlying 1CA,A ′ = (S,δ ′,δ ′0), which ignores probabilities of transitions and treats

them non-deterministically. Specifically, a transition (u,c,v) ∈ δ ′ (∈ δ ′0) iff p(c)
uv > 0,

(q(c)
u,v > 0, respectively). For a 1CA, A = (S,δ,δ0), a path starting at state (s1,n1) is a

sequence of states (s1,n1),(s2,n2),,(sr,nr), such that, for all i ∈ {1, . . . ,r− 1}, either

ni > 0 and (si,ni+1 −ni,si+1) ∈ δ or ni = 0 and (si,ni+1 −ni,si+1) ∈ δ0. It is called a

nonzero path if ni > 0 for all i ∈ {1, . . . ,r− 1}. (Note that we allow nr = 0 in nonzero

paths.) Such a (nonzero) path is called a (nonzero) terminating path if nr = 0, and if

so it is said to terminate in state (sr,0). For p1CAs,A, we define paths, nonzero paths,

etc., as simply the paths, nonzero paths, etc., in the underlying 1CA. Note that for

a p1CA the probability that a particular nonzero path (s1,n1),(s2,n2),,(sr,nr) oc-

curs, in a random walk starting at state (s1,n1) of the Markov chainM(A), is precisely

equal to
∏

16i<rp
(ni+1−ni)
sisi+1 .

2.2.7 Quasi-Birth-Death Processes (QBDs)

We consider discrete-time QBDs only. Of course, many analyses for continuous-time

QBDs can be reduced to analyses of their respective embedded discrete-time chains.

A Quasi-Birth-Death process (QBD) is a countable state Markov chain whose tran-

sition matrix has the following block structure:7

B0 B1 0 0 0 . . .

A−1 A0 A1 0 0 . . .

0 A−1 A0 A1 0 . . .

0 0 A−1 A0 A1 . . .

.


where B0,B1,A−1,A0,A1 ∈Rm×m>0 . Thus, the finite input which describes a QBD con-

sists of the five m×m matrices: B0, B1, A−1, A0, and A1. We can represent each state

of a QBD by a pair (i, j), where 16 i6m is the index of the state within its block and

j ∈N is the index of the block. Central to many analyses for QBDs is the computation

of the associatedGmatrix, which we will call the termination probability matrix. This

is am×mmatrix, whose (i, i ′) entryGi,i ′ denotes the probability that, starting in state

(i,1), the Markov chain will eventually visit a state in block 0, and such that the first

7In fact, various slightly different definitions of QBDs are given in the literature, typically differing
slightly on the structure of transition probabilities in the boundary cases, i.e., for the first few blocks.
These differences are immaterial and these variants can be efficiently embedded in the transition struc-
ture described here, as many authors have already observed.

32 Chapter 2. Probabilistic infinite state models and equivalences

such state it visits is (i ′,0). As is well known (e.g., [Neu81]),G is the least non-negative

solution to the matrix equation X=A−1 +A0X+A1X
2, i.e., for any non-negative solu-

tion matrixG ′, we haveG6G ′ (entry-wise inequality). Other key matrices, which are

also central to computations for QBDs, can be derived from the matrix G. Specifically,

the Rmatrix, has Ri,i ′ equal to the expected number of visits to state (i ′,n+1), starting

from state (i,n), before returning to a state in a block 6 n. The matrix U (the “taboo

probability” matrix) has Ui,i ′ equal to the probability that starting from state (i,1) the

chain does not visit a state in block 0 until it eventually revisits a state in block 1, and

it does so in state (i ′,1). The matrices U and R can be obtained from G: U=A0 +A1G,

and R =A−1(I−U)−1. (Of course, an approximate solution of G will introduce errors

in the solutions for U and R.) If the QBD is positive recurrent, these matrices can be

used to compute the steady state probabilities for being in any given state (i, j) (see,

e.g., [LR99]). Specifically, if for n> 0 we let πππn denote them-vector whose i’th entry is

the steady-state probability of being in (i,n), then πππn+1 = πππ1R
n, for n > 1, and πππ0,πππ1

are the unique solution to the following system of equations:

πππ0 = πππ0B0 +πππ1A−1

πππ1 = πππ1B1 +πππ1A0 +πππ1RA−1

with the normalization condition πππ0111 +πππ1(I−R)−1111 = 1 (provided that
∑
i>0R

i con-

verges).

2.2.8 Tree-Like and Tree-Structured QBDs

Tree-Like Quasi-Birth-Death processes (TL-QBDs) and Tree-structured Quasi-Birth-

Death processes (TS-QBDs) are generalizations of QBDs and several slight variants of

their formal defintions have appeared in the literature. We use the most restrictive

definition of TL-QBDs (as in [HB03]), in order to have the strongest results about the

equivalence of all these models. Consider the infinite rooted d-ary tree Td, label ev-

ery edge with a symbol in Γ = {1, . . . ,d}, and label every node with the string w ∈ Γ∗

corresponding to the path from the root; the root is labeled with the empty string ε.

The states of TS-QBDs and TL-QBDs consist of pairs (w, i), where w ∈ Γ∗ is (the label

of) a node of the tree Td and i ∈ {1, . . . ,m} acts as a “control state”. The transitions of a

TS-QBD are as follows. From a state (ε, i), i ∈ {1, . . . ,m}, there is a transition to state:

1. (ε, j) with probability fi,j, where j ∈ {1, . . . ,m}.

2. (s, j) with probability ui,js , where s ∈ Γ , and j ∈ {1, . . . ,m}.

2.3. Efficient embeddings and equivalences 33

From any state (wk, i), where w ∈ Γ∗ and k ∈ Γ , and i ∈ {1, . . . ,m}, there is a transi-

tion to state:

3. (w, j) with probability di,jk .

4. (ws, j), where s ∈ Γ , with probability ai,jk,s.

5. (wks, j), where s ∈ Γ , with probability ui,js .

A TS-QBD can thus be described by a finite collection of m×m matrices (specifically,

d2 +2d+1 such matrices) with rational entries, namely the matricesDk, Ak,s, Us, and

F, where k,s ∈ Γ , and where their (i, j) entry is di,jk , ai,jk,s, u
i,j
s , and fi,j, respectively.

TL-QBDs are defined by restricting TS-QBDs: TL-QBDs are TS-QBDs with the ad-

ditional requirement that if k 6= s, then Ak,s = 0 (i.e., the zero matrix), and secondly

that Ak,k =As,s for all k,s ∈ Γ . Thus, in a TL-QBD, there are no direct transitions from

a state (wk, i) to a state (ws, j), where k 6= s, and if there is a direct transition from

state (wk, i) to state (wk, j), with probability p, then there is a direct transition from

state (ws, i) to (ws, j) with the same probability p. In other words, the probability of

transition from control state i to control state j, while not changing the “stack”, does

not depend on the topmost (rightmost) symbol on the “stack”.

2.3 Efficient embeddings and equivalences

We show that various probabilistic models with total accumulated payoff function are

“essentially equivalent”. To make the notion of “essentially equivalent” precise, we

use the following definitions.8

Definition 2.3.1. For a (countable-state) Simple Stochastic Game G with states t and

t ′, we write t
t,p,c
 t ′ for p ∈ {⊥}∪R>0 and a sequence of states t = t1, . . . ,tk−1 (can be

empty if k = 1), to denote that the following transitions exist in G (denoting t0 = t,

tk = t ′): (t0,p,c0,t1) and (ti,1,ci,ti+1) for 1 6 i < k and furthermore
∑

06i<k ci = c.

(Note that if k= 1, this just says that (t,p,c,t ′) is a transition of G.)

We shall say that one (countable state) Simple Stochastic Game G embeds efficiently

in another Simple Stochastic Game G ′, if there exist two polynomial-time computable

8All the definitions in this section are intended to capture “an equivalence” between probabilistic
controlled/game models with the total undiscounted reward objective. They do not apply to games
where the payoff is computed via a discounted or average reward method and it is nontrivial how one
could extend it to such settings. On the other hand, as we have already shown, we can encode all the
objectives that we discuss in this thesis, e.g., the termination and reachability, and others, just by using
the undiscounted total reward objective.

34 Chapter 2. Probabilistic infinite state models and equivalences

mappings, f,g, where f is a one-to-one mapping from states of G to states of G ′, and g is

a one-to-one mapping that maps a transition (t,p,c,t ′) of G to a sequence, t= t1 . . .tk−1

of states in G ′, such that f(t)
t,p,c
 f(t ′) holds in G ′, and furthermore such that none of

the auxiliary states t1, . . . ,tk−1 are in the range of the mapping f.

Intuitively, this is essentially a monomorphic embedding of one Simple Stochastic

Game inside another, except that a transition (t,p,c,t ′) can be “stretched” into a se-

quence of transitions, using intermediate auxiliary states, and with probability 1 tran-

sitions out of these auxiliary states leading to the target, f(t ′), and the total reward of

such a sequence of transitions being equal to the original reward c. Notice that if G em-

beds efficiently into G ′ (via mappings f and g) and G ′ embeds efficiently into G ′′ (via

mappings f ′ and g ′) then G embeds efficiently into G ′′ (via f ′ ◦ f and slightly modified

f ′ ◦g; see below for the definition of f ′). In other words, this relation is transitive.

Furthermore, notice that we can extend the function f to a monomorphic mapping

of histories of a play (sequences of states) in G to histories of a play (sequences of states)

in G ′. For a history of a playu=u0u1 . . .uk we define f(u) = f(u0)g(u0,u1)f(u1)g(u1,u2) . . .f(uk),

where the value of g(u,v) is the sequence of states the function gmaps the unique tran-

sition from u to v. Notice also that function f−1 is well defined for all non-auxiliary

states in G ′ and can be extended to a function f−1 from histories of a play in G ′ to his-

tories of a play in G. A history u=u0u1 . . .uk would be mapped to a sequence of states

in G derived from concatenating states f−1(ui) one after another for which ui is not

an auxiliary state. It is not hard to see that any strategy σ in Simple Stochastic Game

G has a corresponding strategy for the same player in G ′ defined by σ ′ = f ◦σ ◦ f−1.

Moreover, if the strategy σwas optimal in G then it is also optimal in G ′. It is because,

when starting with any initial history u in (G ′)σ,τ, the total expected reward is the

same as when starting with an initial history f−1(u) in Gσ ′,τ ′ . It follows that if a Sim-

ple Stochastic Game G embeds efficiently into a Simple Stochastic Game G ′, then the

game G that starts at u has a value iff G ′ that starts at f(u) has a value; furthermore,

these values are equal if they exist.

In Section 2.2, we defined various finite descriptions of potentially infinite (but

countable-state) Simple Stochastic Games (or Markov Chains). For a family F of finite

presentations of Simple Stochastic Games, eachA∈F , describes a potentially infinite-

state underlying stochastic game G(A). We now define what it means for different

classes of finitely-presented Simple Stochastic Games to be “essentially equivalent”

(called M-equivalent).

2.3. Efficient embeddings and equivalences 35

Definition 2.3.2. If F and F ′ are two classes of finitely-presented Simple Stochastic

Games, we say that F is efficiently subsumed by F ′ iff: there is a polynomial-time

computable mapping h : F 7→ F ′, which maps a model A ∈ F to a h(A) ∈ F ′, and

such that there exists a pair of functions fA and gA, which can themselves be efficiently

computed (as Turing machines) fromA, and such that fA and gA constitute an efficient

embedding of G(A) into G(h(A)). Finally, we say that two classes F and F ′ of finitely-

presented stochastic games are M-equivalent if both of them are efficiently subsumed

by the other.

It is not hard to see that if one family F of finitely-presented Simple Stochastic

Games is efficiently subsumed by another family F ′, via a mapping h, then a vari-

ety of computational problems for G(A), where A ∈ F , can efficiently be reduced to

basically the same analyses for G(h(A)), where h(A) ∈ F ′. Furthermore, since the re-

lation of being efficiently subsumed is transitive, M-equivalence is also transitive (and

obviously symmetric), hence it is an equivalence relation.

So far we formally defined an equivalence relation between classes of finitely-

presented Simple Stochastic Games, models that are controlled and involve rewards.

However, in Section 2.2 we defined many classes that are purely probabilistic with

no rewards assigned to transitions (e.g., QBDs and p1CAs). The underlying model

of these classes are countable-state Markov Chains as oppose to Simple Stochastic

Games. The definition of being “efficiently embedded” can easily be adopted to such

a setting. The only change needed is a redefinition of the relation t
t,p,c
 t ′. For a

Markov ChainM= (V ,∆) we write t
t,p
 t ′, where t,t ′ ∈V , t= t1, . . . ,tk−1 is a sequence

of states, and p ∈ (0,1], to denote that the following transitions exist inM (denoting

again t0 = t, tk = t ′): (t0,p,t1) ∈ ∆ and (ti,1,ti+1) ∈ ∆ for 1 6 i < k. The definition

of M-equivalence remains the same, but the efficient embedding notion uses the just

defined t
t,p
 t ′ relation. If two probabilistic non-controlled models are M-equivalent

then the computational problems for one of them can efficiently be reduced to the cor-

responding problem for the other model. These include both transient analyses (such

as reachability or hitting probability) as well as limit distributions9.

Obviously, pPDSs with only one stack symbol γ (other than ⊥) and p1CAs are

M-equivalent. (Under the insignificant technical assumption that counter values in

states of a p1CA are encoded in unary as otherwise the mapping f would not be a

9In some cases, an aperiodic irreducible chain may be turn into a periodic one, or vise-versa, by the
embedding (because the embedding can convert a transition into a sequence of two or more transitions),
but this is a minor issue and the original steady-state distribution, if it exists, can be recovered from the
uniquely determined stationary distribution of the embedded chain.

36 Chapter 2. Probabilistic infinite state models and equivalences

polynomial-time computable function.)

Furthermore, it follows from [EY05s] that RMCs are M-equivalent to pPDSs, while

1-RMCs are M-equivalent to SCFGs with left-most derivation, that in turn are the same

as pBPAs (probabilistic Basic Process Algebras). We will now establish some new M-

equivalences.10

2.3.1 Equivalence of SCFG games and 1-exit RSSGs

We prove that SCFG games (with left-most derivation) and 1-RSSGs are M-equivalent.

Furthermore, we show that 1-RSSGs with positive rewards are M-equivalent to SCFG

games (with left-most derivation) with positive rewards, i.e., the rewards assigned to

grammar rules are all strictly positive.

We will do it in several steps by showing M-equivalence between several slight

variations of our models. First, we show that we can safely assume that in our games

ξ(ex) = 0 for any ex ∈ Ex. This will allow us to ignore the state z in the analysis of

RSSGs with positive rewards in Chapter 4 and safely assume that the states (ε,ex) for

ex ∈ Ex are the terminal states instead. Of course 1-RSSGs (with positive rewards)

for which ξ(ex) = 0 for any ex ∈ Ex can be efficiently embedded into 1-RSSGs (with

positive rewards). Conversely, for 1-RSSG (with positive rewards) A with mapping

ξ, for each of its components, X, whose exit, ex, satisfies ξ(ex) > 0, we create a new

component X ′ which is almost the exact copy of X apart from its exit ex becoming

an inner node of X ′ and the new exit of X ′ being denoted by ex ′. The “new” node

ex is probabilistic and has only one transition, with probability 1 and reward ξ(ex),

to the new exit ex ′. A new 1-RSSG (with positive rewards) A ′ is created from A by

keeping all its components, boxes, mapping, rewards, transitions intact, but adding

the new components X ′. The new mapping ξ ′ for A ′ is equal to 0 for all ex ∈ Ex ′ and

for u ∈ Call ′ it is equal to ξ(u). It is quite easy to see that A embeds efficiently into A ′

and for A ′ we have ξ ′(ex) = 0 for all ex ∈ Ex ′.
The next step in the simplification of 1-RSSGs with positive rewards is dropping

the requirement of ξ(u) being positive for all u ∈ Call. Unfortunately in this case we

cannot show full M-equivalence, but a slight relaxation of M-equivalence. For a 1-

RSSG with positive rewards A for which ξ(u) = 0 for some u ∈ Call we create a new

1-RSSG with positive rewards A ′ for which all ξ ′(u) > 0 and such that G(A) “almost

efficiently embeds” into G(A ′). Let cmin be the lowest reward on any transition in A

(of course cmin > 0). The new 1-RSSG A ′ is almost the exact copy of A apart from

10All of them apart from the first one where already presented in [EWY08q].

2.3. Efficient embeddings and equivalences 37

the reward on any transition that leads to u ∈ Call, for which ξ(u) = 0, decreased by

cmin/2 and the new mapping ξ ′ being equal to cmin/2 for all such call ports u. From

the definition of cmin, it follows that all the transitions in A ′ have positive rewards,

even the rewards assigned by ξ ′. The problem of mapping Simple Stochastic Game

G(A) into G(A ′) lays in the states corresponding to the call ports. The total reward

for such nodes is actually cmin/2 higher in G(A ′) than in G(A). However, if we relax

the definition of efficient embedding, allowing the mapping f not to map probabilistic

nodes that have just a single outgoing edge with probability 1 and reward 0, then an

identity function for all other states of G(A) suffices as the mapping function f. It is

not hard to see that a probabilistic state u of G, that has a single probability 1 and

reward 0 transition connecting it to some other state v, can be safely ignored during

the analysis of G, since without any practical change in the behavior of the game G,

any node connected to u can be connected directly to v instead. As we can see, the

analysis of 1-RSSGs with positive rewards where ξ(u) = 0 for some u ∈ Call can be

reduced to the analysis of games with all rewards on call ports being strictly positive

and so in Chapter 4 we can safely assume that ξ(u)> 0 for all u ∈ Call.

Now, we will simplify SCFG games, by showing that they are M-equivalent to

SCFG games with grammar rules restricted to having at most two nonterminals on

their right-hand side. Specifically, only three kinds of rules are allowed in such gram-

mars, either of the form (1) X
(p,c)7−→ ε, or (2) X

(p,c)7−→ Y, or (3) X
(p,c)7−→ YZ. Furthermore,

all rules of the form X
(p,c)7−→ YZ are the unique rules associated with the nonterminal

X, i.e., X is a probabilistic nonterminal, and the unique rule has the form X
(1,c)7−→ YZ for

some reward c. The transformation is really simple and it is related to the fact that

any CFG has an equivalent CFG in Chomsky Normal Form. The only rules that need

to be changed are of the form X
(p,c)7−→ X1X2 . . .Xk for k > 3. Each such rule is replaced

by the following set of rules X
(p,c/k)7−→ Zk ; {Zi

(1,c/k)7→ Zi−1Xi | i = 2, . . . ,k}, where we

define Z1 ≡ X1, and for i ∈ {2, . . . ,k}, Zi-s are new nonterminals added to the grammar.

Notice that if cwas positive then c/k stays positive and so any SCFG game with posi-

tive rewards is translated into a SCFG game with positive rewards and such that each

grammar rule has at most two nonterminals on its right-hand side.

We can finally show an M-equivalence between 1-RSSGs (with positive rewards)

and SCFG games (with positive rewards). Our reduction is a specialized version of

the reduction given in [EY05s] to just one control state models, but at the same time

extended to the “games with rewards” setting. The M-equivalence will be shown for

1-RSSGs with ξ(ex) = 0 for all ex ∈ Ex and SCFG games with grammar rules restricted

38 Chapter 2. Probabilistic infinite state models and equivalences

Figure 2.5: An example translation from an SCFG with rewards to a 1-RMC with rewards. The

three rules on the left are mapped to the transitions on the right in the 1-RMCs with rewards. In

order to map a positive reward transition of an SCFG to a series of positive reward transitions,

only a simple manipulation of this mapping is required.

to up to two nonterminals on the rhs, which both, as we have shown, are M-equivalent

to the original models. A simple example of a translation of an SCFG with rewards to

a 1-RMC with rewards is presented in Figure 2.5.

First we show how to efficiently embed a grammar G= (V = V0∪V1∪V2,R) (with

positive rewards) into a 1-RSSG A (with positive rewards) with ξ(u) > 0 for all u ∈
Call∪Ex. Let cmin be the minimum reward assigned to any grammar rule of G. The

1-RSSG A has a single component named C, with a single exit ex, and multiple en-

tries: enX for each nonterminal X ∈ V . Component C also contains boxes bX for each

nonterminal X ∈ V (which of course are mapped to C). For each grammar rule of type

(1) X
(p,c)7−→ εwe add (enX,p,c−cmin/2,ex) to the transition relation δ ofA, (2) X

(p,c)7−→ Y

we add (enX,p,c,enY), and (3) X
(p,c)7−→ YZ we add (enX,p,c−cmin/2,(bZ,enY)). Fur-

thermore, we add the following transitions to δ: ((bX,ex),1.0,cmin/2,enX) for each

X ∈ V and we set ξ(u) = cmin/2 for all u ∈ Call∪Ex. The mapping pl of vertices of

A is defined as follows: if X ∈ Vi then pl(enX) = i and for all other vertices u of A

we have pl(u) = 0. The mapping f between states of G(G) and G(A) is defined as fol-

lows: f(Xα) = 〈β,enX〉, where α=X1X2 . . .Xk is a sequence of nonterminals and β∈B∗

is equal to bXk . . .bX2bX1 . We are now done since we know that any 1-RSSG A with

2.3. Efficient embeddings and equivalences 39

ξ(u)> 0 for u ∈ Call∪Ex can be efficiently embedded into a 1-RSSG A ′ with ξ ′(u) = 0

for all u ∈ Ex.

The other way around, for a 1-RSSG A = (N,B,Y,En,Ex,pl,δ,ξ) (with positive re-

wards) with the set of vertices Q =N∪Call∪Ret we define the following SCFG game

G= (V ,R) (with positive rewards):

• for each u ∈Q\Exwe add a nonterminal Xu to V

• for a call port u= (b,en) of box b (whose only exit is (b,ex)) we add the follow-

ing rule to R: Xu
p,ξ(u)7−→ XenX(b,ex).

• for all other nodes u and each of their transitions (u,p,c,v) ∈ δ: if v is an exit of

a component we add a rule Xu
p,c7−→ ε and otherwise we add Xu

p,c7−→ Xv

We split nonterminals Xu into sets V0,V1,V2 as follows: Xu ∈ Vpl(u). The mapping f

between states of G(A) and G(G) can be defined as follows: f(〈β,u〉) = Xuα, where

β= b1b2 . . .bk is a sequence of boxes of A and α= X(bk,ex) . . .X(b2,ex)X(b1,ex).

It can easily be seen that SCFG games (with positive rewards) with right-most

derivation are M-equivalent to SCFG games (with positive rewards) with left-most

derivation (just reverse the order of all the sequences of nonterminals) and so they are

also M-equivalent to 1-RSSGs (with positive rewards).

2.3.2 Equivalence of QBDs and p1CAs

Recall that p1CAs can be defined as pPDSs with just one stack symbol.

Proposition 2.3.3. QBDs and p1CAs are M-equivalent. Specifically:

1. For every QBD Q, there is an easily (linear time) computable pPDS P , with only one

stack symbol, such that Q efficiently embeds in M(P). Moreover, |P| = O(|Q|), where

the size of Q is measured in terms of the size of the input matrices Bi,j, i, j ∈ {0,1} and

Ab, b ∈ {−1,0,1}.

2. For every pPDS P with one stack symbol we can compute (in linear time) matrices Bi,j,

i, j∈ {0,1} andAb, b∈ {−1,0,1}, yielding a QBD,Q, such thatM(P) efficiently embeds

in Q. Moreover, |Q| =O(|P|).

Proof.

1. Given a QBD, A, with underlying k×kmatrices B0,B1,A−1,A0,A1, the states of the

corresponding PDS, h(A), shall have the structureP = (QP,Γ ,∆), where Γ = {⊥,γ}, and

40 Chapter 2. Probabilistic infinite state models and equivalences

QP = {1, . . .k}. The transition relation ∆ is defined to contain precisely the following

transitions for 16 i, j6 k:

• ((i,⊥),(B0)i,j,(j,swap(⊥))) ∈ ∆.

• ((i,⊥),(B1)i,j,(j,swap&push(⊥,γ))) ∈ ∆.

• ((i,γ),(A−1)i,j,(j,pop)) ∈ ∆.

• ((i,γ),(A0)i,j,(j,swap(γ))) ∈ ∆.

• ((i,γ),(A1)i,j,(j,swap&push(γ,γ))) ∈ ∆.

Clearly, P defines a pPDS with the property that it has one stack symbol γ other

than ⊥, and the stack is always of the form ⊥γr, for some r > 0. It is not hard to see

that this translation yields an efficient embedding.

2. Any pPDS with only one stack symbol can be viewed as a QBD. Indeed, this is fairly

easy to see. Given such a pPDS, the swap transitions out of pairs of the form (q,⊥),

where, recall, we must swap (q,⊥) with (q ′,⊥) in order to maintain⊥ at the bottom of

the stack, can be viewed as giving the matrix B0, and any swap&push(⊥,γ) transitions

out of (q,⊥) can be viewed as giving the matrix B1. Furthermore, for the transitions

out of pairs of the form (q,γ), we can view the pop, swap(γ) and swap&push(γ,γ) tran-

sitions as giving the matrices A−1, A0, and A1, respectively.

2.3.3 Equivalence of TL-QBDs, pPDSs and RMCs

Obviously TL-QBDs are a special case of TS-QBDs. Furthermore, TS-QBDs are them-

selves a special case of pPDSs (equivalently, RMCs [EY05s]), where transitions are

constrained as follows:

• For every transition of the form ((s,γ),p(s,γ),(s ′,C),(s ′,C))∈∆, where C= swap&push(γ ′,γ ′′),

we must have γ = γ ′. In other words, every “swap and push” operation must

be just a “push” operation.

• Furthermore, for all γ,γ ′ ∈ Γ , we must have:

p(s,γ),(s ′,swap&push(γ,γ ′′)) = p(s,γ ′),(s ′,swap&push(γ ′,γ ′′))

In other words, the probability of the “push” does not depend on the top stack

symbol.

2.3. Efficient embeddings and equivalences 41

It should be clear that pPDSs with the above restriction are isomorphic to TS-QBDs,

under the mapping that maps a state (w, i) of a TS-QBD to the state (⊥w, i) of the

corresponding pPDS. We shall show that all pPDSs can be efficiently embedded in

TL-QBDs, and thus that all three models are M-equivalent.

Theorem 2.3.4. pPDSs, RMCs, TL-QBDs, and TS-QBDs are all M-equivalent. Specifically:

1. Every TL-QBD as well as every TS-QBD, Q, is a (special form of) pPDS.

2. For every pPDSP we can compute (in quadratic time) a TL-QBD (and thus a TS-QBD),

A, such thatM(P) efficiently embeds in A, Moreover, |A| =O(|P |).

Proof. It is easy to see from the definitions that pPDSs are the most general model and

TL-QBDs the least general. To prove all equivalences, we show that the swap&push op-

eration of a pPDS can be encoded using a sequence of 3 transitions of a TL-QBD, using

new auxiliary states. First, notice that the pop operation of a pPDS effectively already

exists in TL-QBDs, and the swap operation of a pPDS can then also be encoded once

we have swap&push: we can simply add a new symbol, ζ, to Γ and instead of having

a transition from state (wγ, i) to state (wγ ′, j) with probability p, we add a transition

that changes state (wγ, i) to (wγ ′ζ, j) with probability p, and another transition that

changes any state (w ′ζ, j) to (w ′, j) with probability 1. Note that the two transitions

together take us from state (wγ, i) to state (wγ ′, j) with probability p. Note that we

do have available, in a TL-QBD, the ability to do a “pop” with probability 1, as in the

second transition described here, which can depend on the top stack symbol, in this

case ζ, and we do not need to change the control state.

Now we describe how to implement swap&push. If the original control states of

the pPDS are {1, . . . ,n}, then the new control states of the TL-QBD will be of the form

{1, . . . ,n}× Γ62× {1,2,3}. The swap operations of the pPDS shall be mimicked by swap

operations (as described above) on control states of the form (q,∅,1). The only place

control states of the form (q,γ,2) and (q,γ,3) shall be used is as follows: a transition of

the form: ((q,γ),p(q,γ),(q ′,C),(q ′,C)) of the pPDS, where C = swap&push(γ ′,γ ′′), shall

be mimicked by using the following three transitions of the TL-QBD:

Starting at state (wγ,(q,∅,1)) of the TL-QBD, there is a transition with probability

p(q,γ),(q ′,C) (= d(q,∅,1),(q ′,γ ′γ ′′,2)
γ) to state (w,(q ′,γ ′γ ′′,2)), followed by a probability 1

(= u(q ′,γ ′γ ′′,2),(q ′,γ ′′,3)
γ ′) transition from state (w,(q ′,γ ′γ ′′,2)) to state (wγ ′,(q ′,γ ′′,3)),

and then finally a probability 1 (= u((q ′,γ ′′,3),(q ′,∅,1)
γ ′′) transition from (wγ ′,(q ′,γ ′′,3))

to (wγ ′γ ′′,(q ′,∅,1)).

42 Chapter 2. Probabilistic infinite state models and equivalences

The given transformation constitutes an efficient embedding of the Markov chain

M(P), for the given pPDS, P , into the Markov chain M(AP) for a corresponding TL-

QBD, AP . In particular, the number of control states of AP is at most 3|QP | · |ΓP |2,

and the size of the stack alphabet for AP is the same as that of P . This mapping thus

defines an efficient embedding, and establishes the equivalence.

2.4 Conclusions

We presented several classes of finitely-presentable infinite state probabilistic models

that are used in probability theory and computer science, and have many applications

beyond that. We defined what it means for two such formalisms to be essentially

equivalent and established some new connections between QBDs and p1CAs; TL-

QBDs, TS-QBDs and pPDSs; 1-RSSGs and SCFG games. These equivalences allows the

results developed for one model to become immediately applicable to the other. This

fact is most evident for QBDs for which many new complexity results are presented in

Section 3.2 of Chapter 3 as a corollary of results developed for RMCs and pPDSs. Fur-

thermore, establishing the relationship between the expressive power of these models

clarifies their landscape and allows us to represented them as a simple diagram in

Figure 2.6. Of course the established equivalences do not mean that we should im-

mediately replace all these model by just one representative of their equivalence class.

Different domains of computer science and probability theory find different models

more natural and easier to apply to the problems specific to such a domain.

2.4. Conclusions 43

RMCs, pPDSs, TL-QBDs, TS-QBDs

Back-button processes

p1CAs, QBDs
1-RMCs, pBPAs,

SCFGs with left-most derivation

finite state Markov Chains

Figure 2.6: Diagram of relative expressive power of all the models discussed in this chapter. The

least expressive model is at the bottom while the most expressive ones are at the top. Notice

that 1-RMCs and QBDs are incomparable. The fact that QBDs do not subsume 1-RMCs follows

from the result in Corollary 3.3.17 and the example in Figure 3.5. On the other hand, the fact

that 1-RMCs do not subsume QBDs follows (indirectly) from Theorem 3.5.1 since the problem

stated there for 1-RMDPs is in PTIME (see [EY06s]). Notice that MT-BPs are not essentially

equivalent to 1-RMCs (since intuitively the transitions are taken in parallel not sequentially), but

many computational problems for them can be reduced to the same problems for 1-RMCs.

Chapter 3

Computational complexity of QBDs

and their extensions

3.1 Introduction

Quasi-Birth-Death Processes (QBDs) have been studied for decades in queueing the-

ory, performance evaluation, and related areas, both in discrete and continuous time.

Tree-Structured QBDs (TS-QBDs) are a generalization of QBDs, and Tree-Like QBDs

(TL-QBDs) are a restriction of TS-QBDs. As it was shown in Chapter 2 there is a close

correspondence between discrete-time QBDs and probabilistic 1-Counter Automata

(p1CAs), and also between TS-QBDs, TL-QBDs, Recursive Markov Chains (RMCs)

and probabilistic Pushdown Systems (pPDSs). In this chapter, we exploit these equiv-

alences to obtain several new algorithmic results about these models. A number of

results follow immediately from these equivalences and existing results about these

various models. (All these models are formally defined in Section 2.2 of Chapter 2.)

The fundamental quantities associated with all such stochastic models are the ter-

mination probabilities, called in the QBD setting “the G matrix” which consists of the

probabilities of reaching one control state from another while for the first time moving

down one level from the original starting level. (This definition will be made formal

later.) It is well known that the Gmatrix of a given QBD is the least nonnegative solu-

tion to the following quadratic matrix equation system: X=A−1 +A0X+A1X
2, where

Ai is the matrix containing the probabilities of transitions of that QBD that modify the

counter by i. Many numerical solution methods were developed for computing the

G matrix (see, e.g., the books [Neu81, Neu89, LR99, BLM05]) and the quantities that

can be derived from it. The analysis of these methods followed the classical numerical

45

46 Chapter 3. Computational complexity of QBDs and their extensions

analysis approach by establishing under what circumstances a given method “con-

verges linearly/quadratically” (for their formal definition see, e.g., [OR70]). In partic-

ular, Latouche in [Lat94], studied the behavior of Newton’s method on strongly con-

nected QBDs, and showed (building on [OR70]) that under certain assumptions that

method converges monotonically and “quadratically” to the G matrix. In [BLM03]

the performance of Newton’s method on strongly connected TL-QBDs was studied

and building on [Lat94] it was shown that under a similar set of assumptions, New-

ton’s method again converges monotonically and “quadratically” to an analog of the

G matrix in the TL-QBD setting. Several other methods were shown to be “quadrati-

cally convergent”, e.g., logarithmic reduction ([LR93]) and cyclic reduction ([BLM05]).

However, it has to be noted that these kinds of analyses do not directly shed light

on the complexity of computing the G matrix as a function of the size of the model.

In order to see this, let us recall the definition of “linear convergence”: A sequence

{cm}m=1,2,... (of numbers, vectors or matrices) is said to converge to c∗ “linearly” if

there exists f,g > 0, such that ∥∥c(f+g·i) −c∗
∥∥6 1/2i

where ‖·‖ is some suitable (absolute value, vector, matrix) norm. In other words after

f initial iterations we gain one bit of precision every g iterations. Notice that this

analysis completely ignores the size of the model, focusing instead on the number of

bits i of precision we would like to achieve. However, it is hard to imagine that in

practice we need more than, e.g., one hundred bits of precision. (Moreover, if we are

using the standard floating point representation of real numbers, the number of bits

we can in general even represent using them is smaller than that.) Hence, a proper

analysis should really focus on the quantity that really varies which is the size of the

model. Let us then denote the size of a model by n, i.e., the number of bits necessary

to encode this model in some efficient representation. Now of course f and g will

depend on n, so in fact they are functions that map the size of the model n to the

maximum value of, respectively, f and g for models of size n. The number of iterations

required to obtain i bits of precisions becomes now an expression of the form: f(n)+

g(n) · i. In order to see what can be misleading in “linear convergence”, suppose that

f(n) and g(n) turns out to be triply-exponential functions in n. Then although the

expression f(n)+g(n) · i is still technically linear in i, for any non-trivial models we

would get a bound that is completely useless from any practical point of view. In fact,

it might be the case that before we reach the point where the convergence becomes

linear, i.e., we get one bit of precision every g(n) iterations, we would need to compute

3.1. Introduction 47

more than enough bits of the actual solution already. Henceforth, we be focusing on

estimating the functions f and g in terms of the size of the model n, and show that f(n)

is polynomial and g(n) = 1 for the sequence of approximation we get when Newton’s

method is applied to the system of equations of an arbitrary QBD (even null-recurrent

one). In fact, we observe using recent results for pPDSs ([KLE07]) that this polynomial

upper bound for QBDs fails badly for TL-QBDs, even though Newton’s method still

“converges linearly” on these examples. This shows a vast difference between our

analysis and the convergence rate analysis traditional to numerical analysis.

We in fact show that a polynomial bound on f(n) holds even for non-strongly

connected QBDs when the decomposed Newton’s method is used. The decomposed

Newton’s method was studied for arbitrary monotone systems of polynomial equa-

tions in [EY05s] and it was shown there to monotonically converge to their least non-

negative solution when starting from initial all-zero values after the equation system

was decomposed into strongly connected components (SCCs). (For details on how the

decomposed Newton’s method works, see Section 3.4). Importantly for our results in

this chapter, in [KLE07, EKL08] the performance of that method was studied in greater

detail and not only a worst-case linear convergence was established, but in the case of

a strongly connected system of equations a constructive upper bound was provided

on the number of iterations required by the Newton’s method as a function of the en-

coding size of the polynomial system. No constructive upper bound is known so far

for general (not-strongly connected) equation systems. More precisely, it was shown

there that for strongly connected monotone polynomial equations the decomposed

Newton’s method needs at most f(n) = O(2n) initial steps after which it obtains one

bit of precision per g(n) = 1 iteration. On the other hand, for arbitrary equation sys-

tems no bound on f(n) is known and the best estimate of g(n) isO(2n). As we can see,

the previous results do not imply any constructive bound at all for non-strongly con-

nected QBDs nor any immediate polynomial bound on f(n) in the strongly connected

QBD setting.

However, just by using the results for the strongly connected case and by studying

the special structure of the equation systems for QBDs once decomposed into SCCs,

we show that polynomially (in the size of the input) many iterations of Newton’s

method suffices in order to converge to within any constant additive factor of the ter-

mination probabilities. More precisely, we show that, given a QBD, its G matrix can

be approximated to within i bits of precision in time polynomial in both the encod-

ing size of the QBD and in i, using polynomially many arithmetic operations. (More

48 Chapter 3. Computational complexity of QBDs and their extensions

formally, in the unit-cost RAM model or discrete Blum-Shub-Smale (BSS) model of

computation.) We summarize all these results in Table 3.1.

model s-c QBDs (p1CAs) general QBDs s-c TL-QBDs (RMCs) general TL-QBDs

lower

bounds
??? ??? ???

f(n) =Ω(2n)

g(n) =Ω(1) [KLE07]

upper

bounds

f(n) =O(nk)

g(n) = 1

([this thesis])

f(n) =O(nk)

g(n) = 1

([this thesis])

f(n) =O(2n)

g(n) = 1

([KLE07, EKL08])

f(n) = ?

g(n) =O(2n)

([KLE07, EKL08])

Table 3.1: A summary of the results on performance analysis of the decomposed Newton’s

method for subclasses of monotone systems of polynomial equations (after all variables with

zero value were removed). The constant k is 6 8 (a very rough estimate) and s-c stands for

“strongly connected”. For all places with ???, a trivial lower bound f(n) = 0,g(n) = 1 holds.

In order to derive this result we establish an upper bound on the length of the

shortest terminating path between two control states in 1-counter automata and the

structure of dependencies among variables in the nonlinear equation for the compu-

tation of the G matrix. The former allows us to derive immediately a polynomial

upper bound on f(n) from the results of [KLE07, EKL08], and the later allows us to

use a classic result on how perturbations in the coefficients of linear equation systems

affect its solution in order to deal with a possibly nested series of linear SCCs “above”

nonlinear ones in the decomposition of the equation system for QBDs into SCCs. See

Figure 3.6 for an example of a QBD, the corresponding polynomial equation system

and its decomposition into SCCs.

A tool called PReMo described in Chapter 5 implements optimized versions of the

decomposed Newton’s method and other methods for the analysis of general min-

max polynomial equation systems occurring for various stochastic models discussed

in this thesis and has been augmented with an input format for QBDs. We have

conducted a comparison of PReMo’s performance on QBDs with an existing tool for

QBDs: SMCSolver [BMSH06]. The result of this comparison can be found in Section

5.4 of Chapter 5.

The rest of this chapter is organized as follows: In Section 3.2 we state the conse-

quences of the equivalence between QBDs and p1CAs, and between Tree-structured

and Tree-like QBDs and pPDSs, and show that the SQRT-SUM problem reduces to the

decision problem for QBDs. In Section 3.3 we prove important structural properties of

p1CAs, and in Section 3.4 we use them to analyze the decomposed Newton method

for QBDs and prove a polynomial bound on the number of iterations necessary to ob-

3.2. Lower bounds on decision procedures for QBDs and TL-QBDs 49

tain an ε-approximation of the G matrix. In Section 3.5 we define a single controller

extension of QBDs, Quasi-Birth-Death Markov Decision Processes (QBD-MDPs), and

show that even the qualitative decision problems for them are DP-hard (both NP-hard

and coNP-hard). We conclude and present some open problems in Section 3.6.

3.2 Lower bounds on decision procedures for QBDs and TL-QBDs

As it was shown in Section 2.3.3 of Chapter 2, TL-QBDs (which are generalization of

QBDs) are equivalent in a formal sense to RMCs and pPDSs, thus all results for pPDSs

and RMCs apply to TL-QBDs, and vice versa. The following corollary highlights a

few results for TL-QBDs (and TS-QBDs) that follow from work on pPDSs and RMCs.

Let us recall the definition of the SQRT-SUM problem, which asks: given natural num-

bers (d1, . . . ,dn) ∈ Nn and k ∈ N, decide whether (
∑
i

√
di) 6 k holds. Whether this

problem can be solved in NP is open since the 1970s (see Section 2.2.1 of Chapter 2 for

more details about the complexity of this problem).

Corollary 3.2.1. 1. ([EY05t, YE05]) The quantitative model checking problem for QBDs

and TL-QBDs, against a linear-time (ω-regular or Linear Time Logic (LTL)) property,

is decidable in PSPACE in the size of the model.1

2. ([EY05s, EY07]) The SQRT-SUM problem is polynomial time reducible to the problem of

approximating the termination probabilities (the analog of the G matrix entries) for TL-

QBDs, even to within any constant additive factor c < 1/2. Furthermore, even deciding

whether a termination probability for a TL-QBD is 1 is SQRT-SUM-hard.

3. ([KLE07]) There are TL-QBDs for which at least exponentially many iterations of the

(decomposed) Newton’s method ([EY05s]), applied to the nonlinear equations for ter-

mination probabilities are needed as a function of the TL-QBD’s encoding size, to even

converge to within just one bit of precision of a termination probability.

The following is not a corollary of earlier results.

Theorem 3.2.2. The SQRT-SUM problem is polynomial time reducible to the following prob-

lem: given a p1CA (QBD) with control states u and v, and given a rational value p decide

whether Gu,v 6 p.

1For background on model checking, ω-regular languages, Linear Time Logic, see, e.g., [Eme90,
Tho97, CGP99].

50 Chapter 3. Computational complexity of QBDs and their extensions

Proof. This proof is very similar to the proof in [EY05s] that 1-exit RMCs are SQRT-

SUM-hard.

Given numbers (d1, . . . ,dn) and k, we will construct a p1CA as follows. The p1CA

has control state u and n other control states, ti, corresponding to the given numbers,

di, i= 1, . . . ,n. It also has one other control state, v. Letm= maxidi. Let ci = (1/2)(1−

(di/m
2)), for i = 1, . . . ,n. The transitions of the p1CA are as follows, for i = 1, . . . ,n:

(u,1/n,0,ti) ∈ δ (ti,1/2,+1,ti) ∈ δ and (ti,ci,−1,ti) ∈ δ and (ti,1/2−ci,0,v) ∈ δ, also

(v,1,−1,v) ∈ δ.
We claim that Gu,v = (1/(nm)) ·

∑n
i=1
√
di, and thus that Gu,v 6 (k/(nm)) if and

only if
∑n
i=1
√
di 6 k. To see the claim, note that for each i, we have Gti,ti is the

least non-negative solution to equation x = (1/2)x2 + ci, and thus that Gti,ti = (1 −√
(1−2ci)) = (1 −

√
di/m). Next note that the probability of terminating (in any

state) starting from each ti is 1, because it satisfies the equation x = (1/2)x2 + (1/2).

Thus, Gti,ti +Gti,v = 1 and therefore Gti,v =
√
di/m. Thus, Gu,v =

∑
i(1/n)

√
di/m=

1/(nm)
∑
i

√
di.

3.3 Structural properties of QBDs (p1CAs)

This section develops crucial structural properties of (probabilistic) 1-Counter Au-

tomata, used in section 3.4 to establish strong results on the performance of (decom-

posed) Newton’s method for QBDs. Let mp(s,s ′) (mpn-z(s,s ′)) denote the length of

the shortest (nonzero, respectively) terminating path starting at state (s,1) and termi-

nating at state (s ′,0). If there is no such (nonzero) terminating path, then by definition

mp(s,s ′) =∞ (mpn-z(s,s ′) =∞, respectively). By convention, a path with a single

state has length 0. The next lemma shows that in 1CAs whenever a terminating path

exists, a “short” (polynomial length) such path also exists.

Lemma 3.3.1. Suppose A = (S,δ,δ0) is a 1CA where |S| = k. For any pair of control states

s,s ′ ∈ S, either mpn-z(s,s
′) =∞ or else mpn-z(s,s

′)6 k3. Likewise, either mp(s,s ′) =∞, or

else mp(s,s ′)6 k4.

Proof. We first prove the k3 upper bound for the length of nonzero terminating paths,

and we then show why a k4 upper bound follows for the length of arbitrary termi-

nating paths. Let (s1,n1),(s2,n2),(s3,n3),,(sr,nr) be the shortest nonzero terminat-

ing path starting from (s,1) and terminating in (s ′,0). (In particular, (s1,n1) = (s,1),

(sr,nr) = (s ′,0).) We can see an example path represented as a simple plot of the value

of the counter along this path in Figure 3.1.

3.3. Structural properties of QBDs (p1CAs) 51

Figure 3.1: A plot of the counter value at each step of the shortest path starting at (s,1) and

terminating at (s ′,0). (The difference in controls states along this path is not represented.)

Let cmax = maxri=1nr be the maximum value of the counter along this path. There

exists some state (sj,cmax) on this path that achieves the highest counter value. (cmax
may occur more than once, but let’s just pick one, say the earliest occurrence, see

Figure 3.2 for an example.)

Figure 3.2: The shortest path starting at (s,1) and terminating at (s ′,0). The left-most state

with the maximal value of the counter is marked. The blue line represents the lowest value of

the counter encountered when coming from the maximal counter state. Below that, the states

that are on the blue line are marked in green and matched into pairs with states with the same

counter value on the opposite side of the maximal counter state.

For every counter value c = 1, . . . ,cmax, we define the pairs (sic ,c) and (si ′c ,c) as

follows: ic is the largest index i6 j in the path such that the i’th state is (si,c), and such

that for all i6 j ′ 6 j, the j ′’th state on the path is (sj ′ ,c ′) where c ′ > c. (In other words,

in the segment from (si,c) to (sj,cmax) the count doesn’t go below c.) Likewise i ′c is

52 Chapter 3. Computational complexity of QBDs and their extensions

the smallest index i > j such that (si,c) is on the path and such that on the subpath

from (sj,cmax) to (si,c) the counter doesn’t go below c. Note that icmax = i ′cmax = j.

We illustrate it in Figure 3.2 on the same example as before. Clearly such pairs of

indices ic and i ′c are uniquely defined for each c = 1, . . . ,cmax, and we have i1 < i2 <

....< icmax = i ′cmax < ...< i ′2 < i
′
1.

Now the key observation: if cmax > k2 then by the pigeon-hole principle there

must exist a pair of control states sa and sb such that for two distinct values 1 6 c ′ <

c ′′6 cmax of the counter, we have sa = sic ′ = sic ′′ and sb = si ′
c ′

= si ′
c ′′

. Therefore, since

we must have ic ′ < ic ′′ 6 i ′c ′′ < i
′
c ′ , we can remove the following two, positive length,

segments from the above shortest path and still get a valid nonzero terminating path

from (s1,1) to (sr,0), which would be a contradiction. Namely, we can remove seg-

ments: (sic ′ ,nic ′) . . .(sic ′′−1,nic ′′−1) and (si ′
c ′′+1,ni ′

c ′′+1) . . .(si ′
c ′

,ni ′
c ′

). In Figure 3.3 we

can see an example of such a cut operation. The resulting path is guaranteed by its

construction to be a shorter nonzero terminating path, starting at (s,1) and terminat-

ing at (s ′,0), contradicting the fact that the original path was the shortest such path.

Therefore, by contradiction, it must be the case that cmax 6 k2.

Figure 3.3: The shortest path starting at (s,1) and terminating at (s ′,0) with a repeating pair of

control states for two different counter values marked. Below a shorter path starting at (s,1) and

terminating in (s ′,0) resulting from a removal of the parts of the path in between the matching

control states on the left and on the right.

Therefore, the path (s1,1)....(sr−1,nr−1) can contain at most k(k2) = k3 distinct

states (not counting repetitions). However, note that in fact no state can repeat along

this shortest nonzero terminating because otherwise it would not be the shortest nonzero

3.3. Structural properties of QBDs (p1CAs) 53

terminating path. Therefore the length of the shortest nonzero terminating path from

(s,1) to (s ′,0) is mpn-z(s,s ′)6 k3.

Next we show why it follows that unless mp(s,s ′) =∞, then mp(s,s ′)6 k4. Con-

sider a shortest terminating path π = (s,1) . . .(s ′,0), which may include intermediate

states with 0 counter values. Note that such a shortest path can only hit the counter

value 0 at most k times, because otherwise a 0-counter state would be repeated, and

this would then not constitute a shortest path. By the established k3 upper bound

on the length of shortest nonzero terminating paths, we know that the subpath be-

tween every pair of 0-counter states in the shortest path π can have at most length k3.

Since there are at most k 0-counter states along the path, the total length of the path is

|π|6 k4.

Let us now show two examples for which such a shortest terminating path be-

tween two control states has length Θ(k2):

Example 3.3.2. Let us consider 1CA A = (S,δ,δ0), where S = {s1,s2, . . . ,s2k}, we have

(s2k,−1,sk+1) ∈ δ, and for i6 k we have (si,1,si+1) ∈ δ, and for k+16 i6 2k−1 we

have (si,0,si+1) ∈ δ. (Transitions in δ0 are irrelevant to our analysis.) The shortest

path from (s1,1) terminating at (sk+1,0) has length k2 +k. The length of this path in

relation to the number of control states k ′ (equal to 2k) is 1
4k
′2 +O(k ′).

Example 3.3.3. Let us consider 1CAA=(S,δ,δ0), where S=
{
s1,s2, . . . ,sk,s ′1,s ′2, . . . ,s ′k+1

}
,

(sk,1,s1) ∈ δ, (sk,0,s ′1) ∈ δ, (s ′k+1,−1,s ′1) ∈ δ, and for i6 k−1 we have (si,1,si+1) ∈ δ,
and for i6 k we have (s ′i,−1,s ′i+1) ∈ δ. In other words:

δ= {(s1,1,s2),(s2,1,s3), . . . ,(sk,1,s1),(sk,0,s ′1),

(s ′1,−1,s ′2),(s
′
2,−1,s ′3), . . . ,(s

′
k+1,−1,s ′1)}

We would like to find the shortest path between (s1,1) and (s ′1,0). Notice that each

such path visits only control states si-s until it reaches for the first time s ′1 from sk and

from that point onwards it visits only control states s ′i-s. For a particular path from

(s1,1) to (s ′1,0), let x denote the number of occurrences of states with control state s1

and by y the number of occurrences of states with s ′1. In order for a path to terminate

at s ′1, we have to have 1+x ·k−1 = y ·(k+1), since otherwise the path would not finish

with a counter value 0. (Moreover, the left hand side of this equation is the value of the

counter where the transition from sk to s ′1 takes place.) Since k and k+1 are relatively

prime for any k> 1, the smallest solution to this equation is x = k+1 and y = k. This

means that the shortest path between (s1,1) and (s ′1,0) has length 2k(k+ 1) which in

terms of the number of states k ′ (equal to 2k+1) is 1
2k
′2 −o(1). Moreover, the highest

54 Chapter 3. Computational complexity of QBDs and their extensions

value of the counter along that path is equal to k(k+1) =Θ(k ′2), which shows that the

analysis in Lemma 3.3.1 of the highest possible value of a counter along any shortest

terminating path is tight (up to a multiplicative constant).

We conjecture that the previous example has the longest shortest terminating path

in relation to the number of control states.

Conjecture 3.3.4. For any p1CA with k control states the length of the shortest termi-

nating path between any two control states is always lower than O(k2).

If this conjecture is correct, the upper bound, that we derive for f(n) for the (de-

composed) Newton’s method for QBDs, would be improved.

For a p1CA, A = (S,δ,δ0), and a pair of states s,s ′ ∈ S, let us by Gs,s ′ denote the

probability that, starting from state (s,1), a random walk on the chain M(A) will tra-

verse a nonzero path that eventually visits and terminates in state (s ′,0). Given the

equivalence of p1CAs and QBDs, the probabilities Gs,s ′ yield precisely the G matrix

associated with the QBD, whose size is |S|× |S|. We now use Lemma 3.3.1 to give a

“polynomial size” lower bound on positive termination probabilities Gs,s ′ , associated

with a p1CA (QBD).

Corollary 3.3.5. Let A= (S,δ,δ0) be a p1CA where |S| = k, and let pmin > 0 be the smallest

positive probability on any transition of A. 2 For any pair of states s,s ′ ∈ S, either Gs,s ′ = 0

or Gs,s ′ > pk
3

min.

Proof. Indeed, Gs,s ′ > 0 iff there is a nonzero terminating path starting at (s,1) and

terminating at (s ′,0). By Lemma 3.3.1, the length of the shortest such path is 6 k3.

Therefore its probability is at least pk
3

min.

Notice that Corollary 3.3.5 and Lemma 3.3.1 do not hold for multi-exit RMCs as it

can be seen from the example in Figure 3.4. The path starting at entry en of component

Ak+1 (k> 0) and terminating at ex1 has to pass through two copies of component Ak,

in each of them terminating at the exit ex1. This means that the length of the shortest

path starting at en in Ak and terminating at ex1 at least doubles if we increment k

by 1. Hence, if we fix some n and form an RMC with components A0, . . . ,An then the

shortest path terminating at ex1 inAn has lengthΘ(2n) while the size of such an RMC

is Θ(n). Furthermore, we terminate at the exit ex1 in A0 with probability 1/2 and the

number of A0 components we have to go through in order to reach the exit ex1 in Ak

2In other words, we have (u,pmin,c,v) ∈ δ for some u,v,c, and pmin > 0, and for any transition
(u ′,p ′,c ′,v ′) ∈ δ, with p ′ > 0, we have pmin 6 p ′.

3.3. Structural properties of QBDs (p1CAs) 55

grows exponentially in k. In fact the probability of termination at ex1 in An is as small

as 1/22n .

Figure 3.4: An example family of multi-exit RMCs (k= 0,1, . . . ,n−1, for some fixed n> 1) with

a very long shortest terminating path at ex1 in An and a very low probability of termination at

ex1. This example is taken from [EY05s].

For a pair of states u,v ∈ S, let xuv be a variable denoting the (unknown) proba-

bility, Gu,v. It is well know (e.g., [Neu81]) that the termination probability matrix G

is the least non-negative solution of the matrix equation X=A−1 +A0X+A1X
2 which

after expansion can be written down as follows:

xuv = p
(−1)
uv +(

∑
w∈S

p
(0)
uwxwv)+

∑
y∈S

p
(1)
uy

∑
z∈S

xyzxzv (3.1)

We can clean up this system of equations by removing the variables xuv for which

Gu,v = 0. This can be done in polynomial-time, even for more general fixed point

equations associated with pPDSs and RMCs (see [EY05s]). (After clean-up, the equa-

tions may no longer have the simple matrix form.) Henceforth, we consider only

cleaned-up equation systems, where only nonzero variables remain.

Based on this equation system we can build a dependency graph,D= (X̃,E), whose

nodes are all nonzero variables X̃ = {xuv : u,v ∈ S and Gu,v 6= 0} and there is an edge

(xuv,xst) ∈ E iff xst occurs on the rhs of the equation xuv = α corresponding to xuv.

We decompose this graph into strongly connected components (SCCs) and sort them

topologically. As a result we obtain a sequence of SCCs X1,X2, . . . ,Xm such that there

can exist a path in graph D from variable x ∈ Xi to variable x ′ ∈ Xj only if i > j. We

will write xst ≡ xuv iff s= u and t = v. We say a variable xuv depends on the value of

a variable xst iff either xst ≡ xuv, or there is a path from xuv to xst in the graphD. Of

56 Chapter 3. Computational complexity of QBDs and their extensions

course this relation is transitive. We say that an equation xuv = α is nonlinear in a set

X ′ of variables if, by removing all variables that are not in X ′ from monomials in α,

we are left with an expression α ′ that is nonlinear. We say that SCC Xi is nonlinear if

the equation xuv = α of some variable xuv ∈ Xi is nonlinear in Xi.

We introduce some additional notation. For a 1CA,A= (S,δ,δ0), we write u +→ v iff

(u,1,v) ∈ δ; we write u→ v iff (u,0,v) ∈ δ, and u −→ v iff (u,−1,v) ∈ δ. We use the same

notation for p1CAs, to denote positive probability transitions, i.e., such transitions

existing in the underlying 1CA. For a (p)1CA, and for k < 0, we write s k−→ t iff there

exists a nonzero terminating path starting at (s, |k|) and terminating at (t,0). For k> 0

we write s k−→ t iff there exists a nonzero path starting at (s,1) and ending at (t,k+1).

Note that all states along this path have counter value> 1. In the special case k= 0 we

have u 0−→ u for all u ∈ S, since we allow paths to have length 0. Also note that s +→ t

implies s 1−→ t, and s→ t implies s 0−→ t and finally s −→ t implies s −1−→ t.

Suppose that for some k, s k−→ t holds, and that (s,n1) . . .(t,nl) is a nonzero path

that witnesses this. Then note that, for any d > 0, (s,n1 + d) . . .(t,nl + d) is also a

nonzero path in the same (p)1CA. We will exploit this fact repeatedly.

Proposition 3.3.6. If u k1−→ v
k2−→ w for some u,v,w ∈ S, and either k1 > 0 or k1,k2 6 0,

then u k1+k2−→ w.

Proof. We join the two paths: from u to v satisfying k1−→ and from v to w satisfying
k2−→. The resulting path will fulfil the k1+k2−→ requirements. For instance if k1 > 0 and

k1 + k2 > 0 then the first part of the joined path from u to v starting at (u,1) will

reach (v,k1 +1) without encountering a 0-counter state, since it fulfils k1−→. The second

part from v to w will have the counter shifted up by k1, thus it starts at (v,k1 +1) and

finishes at (w,k1 +k2 +1), but does not hit counter 0 in between, since it fulfils k2−→.

Example 3.3.7. Note that it might be the case that u k1−→ v
k2−→w, but u k1+k2−→ w does not

hold. This can only happen if k1< 0 and k2> 0. For instance, if δ= {(u,1.0,−1,v), (v,1.0,1,w)},

we have u −1−→ v
1−→w, but not u 0−→w.

Proposition 3.3.8. If u k−→ v for some u,v ∈ S, then:

• if k <−1: u −1−→w
k+1−→ v, for some w ∈ S

• if k > 1: u k−1−→w
1−→ v, for some w ∈ S,

• if k= 1: u 0−→w
+→ z

0−→ v, for some w,z ∈ S,

(in the last case z might be equal to v and u might be equal to w).

3.3. Structural properties of QBDs (p1CAs) 57

Proof. For k 6 −1 pick as w the first control state on the u k−→ v path from (u, |k|) to

(v,0) that has counter value |k|− 1. For k > 1 pick as w the last state on the u k−→ v

path from (u,1) to (v,k+1) that has counter value k. For k= 1, the transition after state

(w,1) has to increase the counter since otherwise it would not be the last state on the

nonzero path with counter value 1. So let the next state be (z,2). From that state the

nonzero path must reach the end state (s,2) without encountering a state with counter

value 1.

Remark 3.3.9. After cleanup, if a variable xst is on the rhs of a clean equation xuv = α,

there are 3 (not mutually exclusive) possibilities for how xst occurs in α:

1. as p(0)
usxst, so u→ s

−1−→ t= v

2. as p(1)
usxstxtv, so u +→ s

−1−→ t
−1−→ v

3. as p(1)
uwxwsxst, so u +→w

−1−→ s
−1−→ t= v

Note that in cases (1.) and (3.) we have u 0−→ s
−1−→ t = v and in case (2.) we have

u
1−→ s

−1−→ t
−1−→ v.

Theorem 3.3.10. If the clean equation xuv = α, for a variable xuv ∈ Xi is nonlinear in the

variables belonging to Xi, and if the clean equation for a variable xst ∈ Xj is nonlinear in the

variables belonging to Xj, and there is a path from xuv to xst in dependency graph D, then

there is a path from xst to xuv in D.

Proof. We will first prove a few lemmas. For control states u,v ∈ S, let δuv denote the

usual Kronecker δ: δuv = 1 if u= v and δuv = 0 if u 6= v.

Lemma 3.3.11. In dependency graph D, if the shortest path from xuv to xst has a length

k <∞ then for some k ′, 1−δvt 6 k ′ 6 k, we have u k ′−→ s
−1−→ t

−k ′−→ v.

Proof. Proof by induction on k. The case k = 1 follows from Remark 3.3.9 and the

fact that if t = v (in other words δvt = 1) then t 0−→ v holds by default. Assume the

statement is true for k and consider some shortest path of length k+ 1 between two

variables xuv and xst. Let us consider the variable that is just before xst on this shortest

path and assume it is xwz for some w,z ∈ S. Obviously the shortest path in D from

xuv to xwz has a length k. We know from the induction assumption that for some

1−δvz6k ′6kwe haveu k ′−→w −1−→ z −k ′−→ v. On the other hand we know that from xwz

we can reach xst in one step, thus from Remark 3.3.9 we get that w 1−→ s
−1−→ t

−1−→ z

or w 0−→ s
−1−→ t = z (both of these form a w −1−→ z path). Considering these two facts

58 Chapter 3. Computational complexity of QBDs and their extensions

together we get that either u k ′−→ w
1−→ s

−1−→ t
−1−→ z

−k ′−→ v or u k ′−→ w
0−→ s

−1−→ t =

z
−k ′−→ v. Now using Proposition 3.3.6 we get that either u k

′+1−→ s
−1−→ t

−(k ′+1)−→ v or

u
k ′−→ s

−1−→ t
−k ′−→ v. Hence the statement for k+1 is true as well.

Lemma 3.3.12. If xwv is a nonzero variable andu 0−→w then xuv is also nonzero and depends

on xwv.

Proof. First of all, notice that if u = w then the statement is trivial. Secondly the

variable xuv is nonzero since a path u 0−→w
−1−→ v forms a u −1−→ v path.

Now if u 6=w then take a path from (u,1) to (w,1) that fulfils u 0−→w. Take all the

states along that path that have the counter equal to 1: (s0,1),(s1,1), . . . ,(sn,1) where

s0 = u and sn = w (we know that n > 1 since u 6= w). Notice that for all i 6 n the

variables xsiv are nonzero because path si
−1−→ v exists (just take a subpath of the u 0−→

w
−1−→ v path). Now consider the state (sn−1,1). From this state the path cannot take

transition reducing the counter to 0 since then the path would finish before reaching

(w,1). If the path takes a transition that leaves the counter unchanged then the next

state on this path has to be (sn,1). It is because (sn,1) was supposed to be the next state

after (sn−1,1) to have the counter equal to 1. This means that on the rhs of the equation

for the variable xsn−1v there is an expression p(0)
sn−1snxsnv and as a result variable xsn−1v

depends on xsnv. Finally, if the path from (sn−1,1) takes a transition sn−1
+→ z then

on the rhs of the equation for the variable xsn−1v there is an expression p(1)
sn−1zxzsnxsnv.

This is because sn is the first state after (z,2) that has the value of the counter equal to 1

and so the path z −1−→ sn exists. Therefore xzsn 6= 0 and similarly xsnv 6= 0 thus after the

cleaning step this expression will remain on the rhs of the equation for xsn−1v. Hence

again xsn−1v depends on xsnv. By an easy induction we can prove that for all 06 i < n

the variable xsiv depends on xsi+1v. Now finally, from the transitivity of this relation

we can deduce that variable xs0v(≡ xuv) depends on xsnv(≡ xwv).

Example 3.3.13. Notice that the assumption about the value of xwv being nonzero is

crucial even if we know that xuv is nonzero. For instance in the following example:

δ = {(u,0.5,0,w), (u,0.5,−1,v), (w,1.0,1,w)} we have that xuv = 0.5 > 0 and u 0−→ w,

but xuv does not depend on xwv since its value is zero.

Lemma 3.3.14. A nonzero variable xuv depends on the value of a nonzero variable xst iff for

some k> 1−δvt we have u k−→ s
−1−→ t

−k−→ v.

Proof. (⇒) Note that if xuv ≡ xst then u= s and v= t, so 1−δvt = 0 and s −1−→ t (since

xst > 0) thus we have u 0−→ u= s
−1−→ t

0−→ t= v.

3.3. Structural properties of QBDs (p1CAs) 59

If xuv 6≡ xst then there is a path in D from xuv to xst and so there is also the

shortest one. Let us denote its length by k ′. From Lemma 3.3.11 for some k, such that

1−δvt 6 k6 k ′, we have u k−→ s
−1−→ t

−k−→ v.

(⇐) Of course xuv and xst are both nonzero since from u
k−→ s −1−→ t −k−→ vwe know

that s −1−→ t and u −1−→ v holds.

If it happens that k = 0 then necessarily v = t. In other words we know that u 0−→
s

−1−→ t= vwhich means that u 0−→ s and xst > 0. Now from Lemma 3.3.12 we get that

xut (≡ xuv) is nonzero and depends on xst.

The rest of the proof is by induction on k. If k= 1 then u 1−→ s −1−→ t −1−→ v. Of course

we instantly have that xuv, xst,xtv are nonzero. From Proposition 3.3.8 we know that

we can decompose the u 1−→ s part into u 0−→ w
+→ z

0−→ s for some w,z ∈ S and the

whole path would look as follows: u 0−→w
+→ z

0−→ s
−1−→ t

−1−→ v. Furthermore, z −1−→ t

and w −1−→ v, so xzt and xwv are nonzero. From this we can deduce that on the rhs

of the equation for xwv we will have an expression p(1)
wzxztxtv. This means that xwv

depends on variable xzt. In addition from the facts u 0−→w, z 0−→ s and Lemma 3.3.12

we get that xuv depends on xwv, and xzt depends on xst. Finally, from the transitivity

of this relation we obtain that xuv depends on xst.

Now assume that the statement is true for some k ′ and let us consider a u k
′+1−→

s
−1−→ t

−(k ′+1)−→ v path. From Proposition 3.3.8 we know that for some w,z ∈ S we can

decompose this path into a u k ′−→w
1−→ s

−1−→ t
−1−→ z

−k ′−→ v path. It follows that w 1−→
s

−1−→ t
−1−→ z and u k ′−→w

−1−→ z
−k ′−→ v. Now from the induction assumption for k = 1

we get that xwz is nonzero and depends on xst and from the induction assumption

for k = k ′ we get that xuv is nonzero and depends on xwz. This means that xuv also

depends on xst.

Example 3.3.15. It might be the case that u 0−→ s
−1−→ t

0−→ v where t 6= v, but xuv does

not depend on xst like in the following example: δ= {(u,1.0,0,s), (s,1.0,−1,t), (t,1.0,0,v)}.

Lemma 3.3.16. If the clean equation for a variable xuv ∈ Xi is nonlinear in the variables

belonging to Xi then for some k0 > 1,k1 > 0 and some w ∈ S we have u k0−→ u
−1−→ v

1−k0−→
w

k1−→ u
−1−→ v

−k1−→ v.

Proof. Since xuv is nonlinear in the variables belonging to Xi then from Remark 3.3.9

we can deduce that for some s,t ∈ S we have xst,xtv ∈ Xi and the clean equation for

xuv has on the rhs an expression p(1)
usxstxtv. It follows that u +→ s

−1−→ t
−1−→ v. Since xst

is in the same SCC as xuv then there has to be a path from xst to xuv in the graph D

and using Lemma 3.3.11 we get that for some k> 1−δvt we have s k−→ u
−1−→ v

−k−→ t.

60 Chapter 3. Computational complexity of QBDs and their extensions

From the same argument we get that for some k ′> 0 we have t k
′
−→u −1−→ v −k ′−→ v. Now

joining these paths together we get u +→ s
k−→ u

−1−→ v
−k−→ t

k ′−→ u
−1−→ v

−k ′−→ v. Finally,

using Proposition 3.3.6 we have u k+1−→ u
−1−→ v

−k−→ t
k ′−→ u

−1−→ v
−k ′−→ v.

We can now finish the proof of Theorem 3.3.10. Using Lemma 3.3.16 we get that for

some k0, l0 > 1, k1, l1 > 0 and w,z ∈ S we have u
k0−→ u

−1−→ v
1−k0−→ w

k1−→ u
−1−→ v

−k1−→ v

and s
l0−→ s

−1−→ t
1−l0−→ z

l1−→ s
−1−→ t

−l1−→ t. We can simplify the later to s
l0−→ s

−1−→ t
−l0−→ t

for some l0 > 1 using Proposition 3.3.6.

Since there is a path from xuv to xst then from Lemma 3.3.11 we have u k−→ s
−1−→

t
−k−→ v for some k > 1 − δvt. Now we will show that s k ′−→ u

−1−→ v
−k ′−→ t holds for

some k ′ > 1 and using Lemma 3.3.14 we will get that the variable xst depends on

the variable xuv. We start the s k ′−→ u
−1−→ v

−k ′−→ t path by iterating the s
l0−→ s path n

times for sufficiently large n obtaining a s
n·l0−→ s path: s

l0−→ s
l0−→ s

l0−→ . . .
l0−→ s︸ ︷︷ ︸

n times

. We

will see how big n should be later. Now from the last swe do: s −1−→ t
−k−→ v

1−k0−→ w
k1−→

u
k0−→ u

−1−→ v
−k1−→ v

−k1−→ v
1−k0−→ w

k1−→ u
k0−→ u

k−→ s
−1−→ t and after that we iterate n

times the t
−l0−→ t path. Along the whole path the value of the counter is changed by:

nl0 − 1 − k+ 1 − k0 + k1 + k0 − 1 − k1 − k1 + 1 − k0 + k1 + k0 + k− 1 −nl0 = −1. Now

if nl0 > k+ k0 + k1 (this can be done since l0 > 1) then using Proposition 3.3.6 we

can rewrite it as s
nl0−k+k1−→ u

−1−→ v
−nl0+k−k1−→ t. Essentially, we make the value of

the counter sufficiently high at the beginning of the path in order to prevent it from

reaching counter 0 before it reaches the final t state (with (w,nl0 −k−k0 −k1) being

the state with the lowest value of the counter before that point). Now finally, since

nl0 −k+k1 > 1 it follows from Lemma 3.3.14 that xst depends on xuv.

Corollary 3.3.17. In the DAG, H, along any directed path Xi1Xi2 . . .Xir of SCCs there is at

most one nonlinear SCC.

Proof. Let Xi and Xj (i < j) be two SCCs on such a path. If inside these two SCCs

there are variables x ∈ Xi and y ∈ Xj whose equations are nonlinear in the variables

belonging to Xi and Xj, respectively, then since there is a path from x to y in D (in

other words x depends on y) we know from Theorem 3.3.10 that there is also a path

from y to x. But that implies x and y are in the same SCC, a contradiction.

In Figure 3.6 we can see the decomposition graph, H, of the underlying equation

system of an example p1CA. Corollary 3.3.17 implies that any path inH has to contain

at most one nonlinear SCC. Notice that this fact does not hold for general RMCs and

even for 1-exit RMCs. For the example RMC depicted in Figure 3.5, if xk denotes the

3.4. New upper bounds on Newton’s method for QBDs 61

probability of termination inAk (k= 0,1, . . . ,n, for some fixed n> 1) then the equation

system can written down (after some simplifications) as xk= 1
2x

2
k+ 1

2x
2
k−1 for 16 k6n

and x0 = 1. None of these variables is equal to 0 and each xk depends only on xk−1

and nonlinearly on itself. Hence, after decomposing this equation system into SCCs

we would get a long chain of n nonlinear SCCs one after the another.

Figure 3.5: An example family of 1-exit RMCs (k = 1, . . . ,n, for some fixed n > 1) whose

decomposition of the corresponding equation system into SCCs have multiple nonlinear SCCs

one after the another.

3.4 New upper bounds on Newton’s method for QBDs

We will now exploit the structural results about p1CAs established in Section 3.3, to

establish strong new upper bounds on the performance of (decomposed) Newton’s

method on QBDs. In our analysis in this section, we assume a unit-cost exact rational

arithmetic RAM model of computation. In other words, individual arithmetic opera-

tions on rationals have unit cost, regardless of the potential blow-ups involved in the

encoding size of rational numbers.

Recall that in (multi-variate) Newton’s method, we are given a suitably differ-

entiable map F : Rn 7→ Rn, and we wish to find a solution to the system of equa-

tions F(x) = 0. Starting at some x0 ∈ Rn, the method works by iterating xk+1 :=

xk−(F ′(xk))−1F(xk), where F ′(c) is the Jacobian matrix of partial derivatives, whose

(i, j) entry is ∂Fi∂xj
evaluated at c.

In the setting of p1CAs, we have a system of n equations in n variables, xi = Pi(x),

which we can denote by x = P(x). Thus, we wish to find a solution to F(x)
.
= P(x)−x =

62 Chapter 3. Computational complexity of QBDs and their extensions

u
+→ v v

−→ v w
+→w a

+→ a b
+→ b c

+→ b d
−→ d

u
+→ u v

−→ u w→ u a
−→ b b

−→ b d→ d

u
−→ u a

−→ c b
+→ d

xvv =
1
2

xdd =
1
2

+
1
2
xdd

xvu =
1
2

xbb =
1
3
x2
bb+

1
3

xuv =
1
3
(x2
vv+xvuxuv)+

1
3
(xuvxvv+xuuxuv) xbd =

1
3
(xbdxdd+xbbxbd)+

1
3
x2
dd

xuu =
1
3
(xvvxvu+xvuxuu)+

1
3
(xuvxvu+x2

uu)+
1
3

xcd = xbdxdd+xbbxbd

xwv =
1
2
(xwvxvv+xwuxuv)+

1
2
xuv xcb = x2

bb

xwu =
1
2
(xwvxvu+xwuxuu)+

1
2
xuu xab =

1
3
(xacxcb+xabxbb)+

1
3

xac =
1
3

xad =
1
3
(xadxdd+xacxcd+xabxbd)

Level 0

Level 1

Level 2

Level 3

xdd xac

xbb

xbd xcb

xcd xab

xad

xvv xvu

xuu
+xuv

xwv
+xwu

Figure 3.6: At the top, a list of transitions of an example p1CA (
+→, −→,→ modify the counter

by +1,−1,0 respectively). At any particular control state all available transitions are taken with

equal probability. Below we can see the cleaned-up equation system (i.e., after all zero-valued

variables were removed) whose LFP would give us all nonzero entries of the G matrix. Finally,

a DAG of SCCs corresponding to that equation system is drawn. Each ellipse represents one

SCC: the equation system for each red SCC is linear, the equation system for each green SCC

is nonlinear and for each blue one is linear, but at least one of its constants depends on the

value of some variable in a green nonlinear SCC. Notice that only two SCCs consist of more

than one node: {xuu,xuv} and {xwv,xwu}. A blue SCC is placed at level k if the longest path

from it to some green SCC has lenght k. In this example the height of the decomposition (the

maximal level of any SCC) is hmax = 3.

3.4. New upper bounds on Newton’s method for QBDs 63

0. Note that these are polynomial functions, and thus certainly differentiable.

We shall solve this system of equations using the decomposed Newton’s method of

[EY05s], which applies more generally not just to systems x = P(x) arising for p1CAs,

but to any monotone system x = P(x) of polynomial equations (i.e., where the coef-

ficients in P(x) are non-negative) which has a non-negative solution. Specifically, for

any such system x = P(x) which has been cleaned up (i.e., variables which are necessar-

ily zero in any least solution have been removed, something which can be done easily

in polynomial time [EY05s]) we form the dependency graph D for the nonzero vari-

ables in the corresponding cleaned system of equations, we decompose D into SCCs,

and form the DAG of SCCs, H. We then “solve” for the values of variables in each

SCC of H, “bottom up” by applying Newton’s method starting at the vector 0 to the

equations for each SCC, beginning with bottom SCCs. Once one SCC is “solved” the

values computed for the variables in that SCC are plugged into equations in higher

SCCs that depend on those values. (See [EY05s] for details.)

Of course, since values may in general be irrational and are only converged to in

the limit, we have to specify more carefully what we mean by “solve” an SCC. This

is where we make crucial use of the special structure of SCCs in the case of p1CAs

and QBDs (see Corollary 3.3.17 and Figure 3.6 for an example). By Corollary 3.3.17,

for any nonlinear SCC, Xi, it must be the case that any other SCC, Xj, for which there

is a path in H from Xi to Xj, is linear, i.e., any variable xuv ∈ Xj has a corresponding

clean equation xuv = α which is linear in the variables of Xj, assuming variables in

even lower SCCs have been assigned fixed values. It was shown in [EY05s] (in the

more general setting of monotone systems arising from RMCs and pPDSs) that for

such linear SCCs, Xj, Newton’s method converges in just one iteration, starting at the

vector 0, to the exact rational least fixed point (LFP) solution we are after (i.e., to the

values Gu,v for these variables in xuv ∈ Xj). Thus, in a bottom up fashion we can

compute the exact solutions Gu,v for those variables xuv which are in linear SCCs

below any nonlinear SCC. After computing these values we plug them into equations

for variables in higher SCCs that depend on them, and we eliminate the linear SCC

which was already solved. We do this until there are no bottom linear SCCs remaining.

We next have to apply Newton’s method to nonlinear SCCs, which can have ir-

rational solutions which are only converged to in the limit. How many iterations are

“enough” to get to within a desired additive error ε > 0 of the nonzero termination

probabilities Gu,v for the variables in a nonlinear SCC? For this, we will use the fol-

lowing recent result by Esparza et. al. (Theorem 3.2 of [EKL08]) on the behavior of

64 Chapter 3. Computational complexity of QBDs and their extensions

Newton’s method on precisely such strongly connected monotone nonlinear systems.

Let P(X) be a cleaned monotone system of polynomials (i.e., P(X) consists of n multi-

variate polynomials, Pi, i= 1, . . . ,n, in the variables X= x1, . . . ,xn), such that X= P(X)

has a non-negative solution, and since it is cleaned, only positive solutions, and there-

fore a least fixed point (LFP) solution, q∗ > 0. A vector q ′ is said to have i valid bits

of q∗ if |q∗j −q ′j|/q
∗
j 6 2−i for every 16 j6 n.

Theorem 3.4.1. ([EKL08]) Let P(X) be a cleaned strongly connected monotone system of

quadratic polynomials (i.e., P(X) consists of n quadratic multi-variate polynomials in n vari-

ables). Let cmin be the smallest nonzero coefficient of any monomial in P(X), and let µmin
and µmax be the minimal and maximal components of the LFP vector q∗ > 0, respectively. Let

kf = n · log(µmax
cmin·µmin·min{µmin,1}). Let xj denote the vector of values obtained after j itera-

tions of Newton’s method on the system F(X) = P(X)−X, starting with the initial all 0 vector,

x0 = 0. Then for every i> 0, x(dkfe+i) has i valid bits of q∗.

For a given p1CA, we hereafter use m to denote the maximum number of bits

required to encode the integer numerators and denominators of transition probabil-

ities of the p1CA. Thus, in particular, the smallest nonzero transition probability is

pmin > 1/2m.

Now, using Theorem 3.4.1, together with the structural properties we have estab-

lished for p1CAs, we prove the following strong bound on the number of iterations of

Newton’s method required to get i valid bits of precision of the termination probabil-

ities Gu,v, for the nonlinear SCCs of the fixed point equations associated with p1CAs:

Theorem 3.4.2. Let P(X) be the cleaned strongly connected monotone system of quadratic

polynomials associated with a nonlinear SCC, Xi, of the decomposed system of equations as-

sociated with a p1CA, and where the exact rational values Gu,v associated with variables xuv
in already solved “lower” linear SCCs have been substituted for xuv on the right hand side of

equations for variables in Xi. Suppose that the p1CA has n control states, and thus |Xi|6 n2,

and let G|Xi denote those entries Gu,v of the matrix G, such that xuv ∈ Xi. Then, starting

with x0 := 0, for every i> 0, the Newton iteration x(4mn5+mn2+i) has i valid bits of G|Xi .

Proof. For the cleaned system X = P(X) associated with a p1CA, A, by Corollary

3.3.5, pn
3

min 6 q
∗ 6 1 (coordinate-wise inequality), where pmin > 0 is the smallest

positive probability on any transition of A. Note, in particular, that µmax 6 1, and

µmin > pn
3

min >
1

2mn3 . Furthermore, note that because the entire system of nonlinear

equations for a p1CA is quadratic, the smallest coefficient cmin of any monomial in

the system X = P(X) for this nonlinear SCC, can only arise as the product of pmin

3.4. New upper bounds on Newton’s method for QBDs 65

times at most 2 previously computed values Gu ′,v ′ and Gu ′′,v ′′ for variables xu ′v ′ and

xu ′′v ′′ which appeared in lower (linear) SCCs. Again, by Corollary 3.3.5, we know that

Gu ′,v ′ ,Gu ′′,v ′′ > pn
3

min, and thus cmin > p2n3+1
min > 1/2m(2n3+1). Thus, noting that the

cleaned system X= P(X) for a p1CA with n control states has at most n2 variables, the

expression for kf in Theorem 3.4.1 can be seen to be kf6n2 ·log(22mn3+m2mn
3
2mn

3
) =

4mn5 +mn2.

Theorem 3.4.2 implies that we can compute i bits of the values Gu,v for variables

xuv in nonlinear SCCs of the system X = P(X) associated with a p1CA (QBD), using

only a number of iterations of Newton’s method which is polynomially bounded in

the size of the p1CA, and linearly bounded in i.

We now have to confront a major difficulty: there may be other, linear, SCCs, Xr,

which are “above” such nonlinear SCCs in H. Specifically, there may be a linear SCC

Xr, from which there is a path in H to a nonlinear SCC, Xi. In order to be able to

(approximately!) compute Gu,v for variables xuv ∈ Xr, we have to first approximately

compute the (possibly irrational) valuesGu ′,v ′ , for xu ′v ′ ∈Xi, and substitute this value

in occurrences of xu ′v ′ in equations for higher linear SCCs. The question arises: how

many bits of precision i, do we need to compute Gu ′,v ′ to in order to compute Gu,v

to within i bits of precision? To answer this, we employ a classic bound, based on

condition numbers, on errors in the solution of a linear systems.

Theorem 3.4.3. (see, e.g., [IK66], Chap 2.1.2, Thm 3.3) Consider a system of linear equations,

Bx= b, where B ∈Rn×n and b ∈Rn. Suppose B is non-singular, and b 6= 0. Let x∗ = B−1b

be the unique solution to this linear system, and suppose x∗ 6= 0. Let ‖·‖ denote any vector

norm and associated matrix norm (when applied to vectors and matrices, respectively). Let

cond(B) = ‖B‖ ·
∥∥B−1

∥∥ denote the condition number of B. Let ε,ε ′ > 0, be values such that

ε ′ < 1, and ε · cond(B) 6 ε ′/4. Let E ∈ Rn×n and ζ ∈ Rn, be such that ‖E‖‖B‖ 6 ε,
‖ζ‖
‖b‖ 6 ε,

and ‖E‖ < 1/
∥∥B−1

∥∥. Then the system of linear equations (B+ E)x = b+ ζ has a unique

solution x∗ε such that:

‖x∗ε−x∗‖
‖x∗‖

6 ε ′

We will apply this theorem using the l∞ vector norm and induced matrix norm

(maximum absolute row sum): ‖x‖∞ = maxi |xi| and ‖A‖∞ = maxi
∑
j

∣∣aij∣∣.
Suppose that the fixed point equation system for a linear SCC of a p1CA, which

lives “above” some nonlinear SCCs in the DAG H, looks like this: x = Ax+ b. We

3Our statement is weaker, but derivable from that theorem.

66 Chapter 3. Computational complexity of QBDs and their extensions

know that A> 0 is an irreducible matrix (precisely because the variables being solved

for are in the same SCC), b> 0, and b 6= 0 since otherwise the unique solution for this

system would be q∗ = 0, and zero variables were already eliminated. We can of course

rewrite this linear equation as (I−A)x = b. It follows from a more general result in

[EY05s] about the decomposed systems of equations arising for RMCs (pPDSs) (specif-

ically, see Lemma 17 and Theorem 14 of [EY05s]), that ρ(A) < 1, where ρ(A) denotes

the spectral radius of A, and that therefore (I−A) is non-singular, and furthermore

(I−A)−1 = (
∑∞
i=0A

i). Thus the LFP of this equation system is q∗ = (I−A)−1b =

(
∑∞
k=0A

k)b. To prove bounds on errors in “higher” linear SCCs, when values in non-

linear SCCs are approximated, we will need the following two lemmas:

Lemma 3.4.4. Let A ∈Rn×n>0 and b ∈Rn>0, such that: (I−A)−1 =
∑∞
k=0A

k, and we have

(
∑∞
k=0A

k)b6 111, and A is an irreducible non-negative matrix whose smallest nonzero entry

is c > 0, and b 6= 0 and p > 0 is the largest entry of b. Then:
∥∥∑∞

k=0A
k
∥∥∞ 6 n

pcn .

Proof. Let adij and a∗ij denote the (i, j) entry of matrix Ad and A∗ =
∑∞
k=0A

k re-

spectively. Since A is irreducible, for every pair of indices i, j, there exists a power

16 d6 n such that adij > 0. First, notice that it has to be c < 1 as otherwise all entries

of (
∑∞
k=0A

k) would diverge to∞. Furthermore, since the smallest nonzero entry of

A is c, we have adij > c
d.

We know that A∗b 6 111. Wlog we can assume that the first entry of b is b1 = p, by

basically permuting rows/columns of A and b. Now the i-th entry of A∗b is (A∗b)i =∑n
j=1a

∗
ijbj 6 1 and thus obviously (A∗b)i > a∗i1b1 = a∗i1p. It follows that a∗i1 6

1
p , for

all i. At the same time, for all d> 0, A∗Ad = (
∑∞
k=0A

k)Ad =
∑∞
k=dA

k 6
∑∞
k=0A

k =

A∗. Thus (A∗Ad)(i,1) =
∑n
j=1a

∗
ija
d
j1 6 a

∗
i1. Let a ′i1 = (

∑n
d=1A

∗Ad)(i,1). Thus, a ′i1 6

na∗i1 6 n/p. On the other hand:

a ′i1 =

n∑
d=1

n∑
j=1

a∗ija
d
j1 =

n∑
j=1

a∗ij

(
n∑
d=1

adj1

)
> cn

n∑
j=1

a∗ij

The last inequality holds because, for every j, for some 16 d6 n we have adj1 > c
d >

cn. Therefore for all iwe have
∑n
j=1a

∗
ij 6

n
pcn and thus ‖A∗‖∞ 6 n

pcn .

Note that computing the probability of reaching a given subset of states in an or-

dinary finite-state Markov Chain can be seen as finding a fixed point solution to a

similar linear equation system x = Ax+b in which matrix A is always stochastic (the

sum of all the entries in each row is 6 1). The following example shows that matrix A

does not have to be stochastic for linear equation systems for p1CAs.

3.4. New upper bounds on Newton’s method for QBDs 67

Example 3.4.5. The sum of one of the rows of matrixA of the following p1CA is greater

than 1: δ =
{

(a,1.0,−1,v), (b,1.0,−1,v), (v,1/2,−1,a), (v,1/2,−1,b), (w,1.0,1,u),

(u,3/4,1,w), (u,1/4,−1,v)
}

. The equation system for this p1CA looks as follows:

xuv =
1
4

+
3
4
(xwaxav+xwbxbv) xav = xbv = 1

xwa = xuvxva xva = xvb =
1
2

xwb = xuvxvb

The matrix A for the linear equation system for SCC
{
xuv,xwa,xwb

}
is equal to

0 3/4 3/4

1/2 0 0

1/2 0 0

 and b= [1/4,0,0]T .

In the case where c is very close to 1 then the following proposition (that will not

be used later on) can provide a better estimate for
∥∥∑∞

k=0A
k
∥∥∞:

Proposition 3.4.6. Let A ∈ Rn×n>0 and b ∈ Rn>0, such that: (I−A)−1 =
∑∞
k=0A

k, and

(
∑∞
k=0A

k)b6 111, andA is an aperiodic irreducible non-negative matrix whose smallest nonzero

entry is c > 0, and b 6= 0 and p > 0 is the largest entry of b. Then:∥∥∥∥∥
∞∑
k=0

Ak

∥∥∥∥∥∞ 6
1

pcn
2−2n+1

Proof. Since A is aperiodic all entries of An
2−2n+1 are positive (see Theorem 4.14

in [BP94]) and similar as before all of these entries have to be larger than cn
2−2n+1.

The rest of the proof is almost identical to the proof of Lemma 3.4.4. Again we have

a∗i1 6
1
p , for all i (where as before adij and a∗ij denote the (i, j) entry of matrix Ad and

A∗ respectively) and A∗An
2−2n+1 6A∗. Thus the (i,1) entry of A∗An

2−2n+1 which is

equal to
∑n
j=1a

∗
ija
n2−2n+1
j1 is smaller or equal to a∗i1. Therefore cn

2−2n+1∑n
j=1a

∗
ij 6∑n

j=1a
∗
ija
n2−2n+1
j1 6 a∗i1 6

1
p for any i and so ‖A∗‖∞ 6 1

pcn
2−2n+1

follows.

Lemma 3.4.7. Let Xr be a linear SCC of the cleaned equation system for a p1CA, whose

corresponding linear equation system is x = Ax+b, after variables xuv in lower SCCs have

been substituted by their exact (possibly irrational) values Gu,v. Let pmin denote the smallest

positive probability on any transition of the p1CA, and let n be its number of control states

(again we use m to denote the maximum number of bits required to represent the numerator

and denominator of rational transition probabilities in the p1CA). Then the following bounds

hold:

68 Chapter 3. Computational complexity of QBDs and their extensions

1. 1
22mn3+m

6 p2n3+1
min 6 ‖(I−A)‖∞ 6 n+1

2.
∥∥(I−A)−1

∥∥∞ 6 n2

p5n5
min

6 n2 ·25mn5

3. cond(I−A)6 2n3

p5n5
min

6 2n3 ·25mn5

4. ‖b‖∞ > p2n3+1
min >

1
22mn3+m

Proof. We first show that ‖A‖∞ 6 n, and therefore ‖I−A‖∞ 6 n+ 1 (because A is

non-negative). To see this, note that because this is a linear SCC, this means that the

equations (3.1) for every variable xuv of a linear SCC, Xr, must take the form: xuv =

buv+(
∑
wp

(0)
uwxwv)+

∑
yp

(1)
uy
∑
zx
′
yzx
′
zv, but such that for each z, either x ′yz has been

assigned a fixed constant (6 1) or x ′zv is a fixed constant (6 1). This is because, one such

variable in each quadratic term must belong to a lower SCC and was thus substituted

by a constant. Thus, summing the coefficients for all variables on the right hand side,

we see that since
∑1
c=−1

∑
wp

(c)
uw 6 1, the full sum

∑
jaij of all entries in row i of

A corresponding to the variable xuv, cannot be more than n, the number of control

states.

Before showing the lower bound on ‖I−A‖∞, next we show the bound ‖b‖∞ >
p2n3+1
min . Observe that since the equation system has been cleaned, the least fixed point

solution for all variables, including in linear SCCs, is nonzero, and therefore there

must exist at least one equation xuv=α in the linear SCC with a non-negative constant

term in α. The only ways such a constant term can arise is as a sum of terms of the

form p, or px ′, or px ′x ′′, where p is a transition probability of the p1CA and x ′ and x ′′

are variables in lower SCCs which have been assigned fixed constants. By Corollary

3.3.5, we have that ‖b‖∞ > p2n3+1
min .

Next, in order to estimate
∥∥(I−A)−1

∥∥∞ note that, using Corollary 3.3.5, all nonzero

entries of A are > pmin · (pmin)n
3
= (pmin)n

3+1. This is because all coefficients are

either equal to some p(c)
uv or to p(c)

uv ·xwz where xwz is a variable from a lower SCC that

has been substituted by a constant. We now use Lemma 3.4.4. Note that the dimen-

sions of our matrix A here can in fact be as large as n2×n2 (because n is the number

of control states, and the dimensions of A are based on the number of variables in the

SCC). We thus get from Lemma 3.4.4, using the bound ‖b‖∞ > p2n3+1
min , and the fact

that all nonzero entries of A are > (pmin)n
3+1, that

∥∥(I−A)−1
∥∥∞ =

∥∥∑∞
k=0A

k
∥∥∞ 6

n2

pn
5+n2+2n3+1
min

6 n2

p5n5
min

. It follows that cond(I−A) = ‖I−A‖∞ ·∥∥(I−A)−1
∥∥∞ 6 2n3

p5n5
min

.

Finally, to see that p2n3+1
min 6 ‖I−A‖∞, we will show that for every variable xuv,

the diagonal entry (I−A)uv,uv > p
2n3+1
min . To see this it suffices to note that in the

3.4. New upper bounds on Newton’s method for QBDs 69

original cleaned equation xuv = α for a variable xuv ∈ Xr, it cannot be the case that

α consists of just one linear term cxuv, because otherwise the LFP of xuv = cxuv is

0, and we have already eliminated 0 variables. Hence, it must be the case that α

contains either another linear term c ′xst or a constant term c ′′, or both. In either case,

if we plug in the actual LFP values for all other variables besides xuv into α, we will

have left an equation of the form xuv = cxuv + c ′, where, by the arguments of the

previous two paragraphs, it must be the case that c ′ > (pmin)2n3+1. Thus, solving for

the (unique) solution for xuv, we have xuv = c ′/(1 − c) 6 1. Therefore, c ′ 6 (1 − c),

and thus (1 − c) > (pmin)2n3+1. But note that (1 − c) is precisely the diagonal entry

(I−A)uv,uv. Therefore p2n3+1
min 6 ‖I−A‖∞.

For a “higher” linear SCC, Xr, i.e., one which can reach some nonlinear SCC in H,

let us define its height, hr <∞, to be the maximum finite distance in H between Xr
and some lower nonlinear SCC that it can reach (again, see Figure 3.6). Let hmax =

maxrhr, where the maximum is taken over all linear SCCs that can reach a nonlinear

SCC. Note that, as a very loose upper bound, certainly hmax 6 n2, where n = |S| is

the number of control states of the p1CA, because there are at most n2 variables in

the entire system. Now consider the decomposed Newton’s method applied to the

fixed point equations for a p1CA, with the following specification for the number of

iterations to be applied to each SCC:

1. Use, one iteration of Newton’s method (starting at vector x0 = 0), or any linear

system solving method, to solve a remaining bottom linear SCC exactly. Remove

the linear SCC, and plug the corresponding values of variables into equations for

higher SCCs. Do this until only nonlinear bottom SCCs remain, or all SCCs are

solved.

2. For each remaining nonlinear SCC, apply Newton’s method (starting with vec-

tor x0 = 0) to the nonlinear equations for these SCCs, using the following number

of iterations:

4mn5 +mn2 +hmax(9mn5 +4)+ i

Afterwards, plug the resulting (approximate) values for variables in each such

nonlinear SCC into the equations for higher (linear) SCCs.

3. For each remaining linear SCC, use one iteration of Newton’s method (or any

other linear system solution method) to solve for the exact (unique) solution of

the corresponding linear system (note that the coefficients of these equations will

have errors because of the approximations below, but we still seek their exact

70 Chapter 3. Computational complexity of QBDs and their extensions

solution), then remove the linear SCC, and plug these values into higher (linear)

SCCs that remain, until no SCCs remain.

Theorem 3.4.8. Given a p1CA (or, equivalently, a QBD), the above algorithm, based on (a

decomposed) Newton’s method, approximates every entry of the matrix G of termination prob-

abilities for the p1CA (QBD) to within i bits of precision (i.e., to within additive error 1/2i). In

the unit-cost arithmetic RAM model of computation (i.e., rational Blum-Shub-Smale model),

the algorithm has a running time which is polynomial in both the encoding size of the p1CA

(QBD) and in i.

Proof. First, note that up until the nonlinear SCCs, all values for lower linear SCCs are

computed exactly. Next note that, given the number of iterations of Newton’s method

that are applied in step (2.) of the algorithm for nonlinear SCCs, by Theorem 3.4.2,

the values Gu,v for variables xuv in nonlinear SCCs are computed to within W0 =

hmax(9mn5 +4)+ i valid bits of precision. In other words, for each such xuv, a value

G ′u,v is computed such that |Gu,v−G ′u,v|/Gu,v 6 1
2W0

. Moreover, since 0 < Gu,v 6 1,

we can conclude that |Gu,v−G ′u,v|6
1

2W0
.

Thus, sinceW0 =hmax(9mn5 +4)+i> i, for all nonlinear SCCs and all linear SCCs

which are below them, we certainly do compute G ′u,v which approximates the value

Gu,v for the variables xuv in these SCC, to within at least i bits of precision (i.e., such

that |Gu,v−G ′u,v|6 2i).

The rest of the proof proceeds by induction on the height, h, of a given higher

linear SCC, Xr, above the nonlinear SCCs, to show that for every variable xuv ∈ Xr we

compute Gu,v to withinWh = (hmax−h)(9mn5 +4)+ i bits of precision.

For the base case, h = 0, this follows from the fact that all nonlinear SCCs are

computed to withinW0 = hmax(9mn5 +4)+ i bits of precision, and all “lower” linear

SCCs are computed exactly.

For the inductive case, let Xr be an “upper” linear SCC in H at height h > 0 above

nonlinear SCCs, and and suppose that the values of all SCCs below it have been com-

puted to within at least Wh−1 = (hmax−h+ 1)(9mn5 + 4) + i bits of precision, and

plugged into the equations for Xr. We will show that after the linear system associ-

ated with Xr has been solved exactly, the solution gives, for each xuv ∈ Xr, a value

G ′u,v such that |Gu,v−G ′u,v| 6
1

2Wh
, i.e., such that G ′u,v approximates Gu,v to within i

bits of precision.

To do this, we employ Theorem 3.4.3, which gives us bounds on the errors in solu-

tions of linear systems in terms of condition numbers and other quantities associated

3.4. New upper bounds on Newton’s method for QBDs 71

with the linear system, and Lemma 3.4.7, which gives us bounds on these quantities

for the specific linear systems that arise for one linear SCC of a p1CA.

Suppose that, if the values of lower SCCs had been computed “exactly” (even

though they can be irrational), then the resulting linear system for Xr, which may

have irrational coefficients, would be (I−A)x= b.

Note that if the values of lower SCCs are approximated to within Wh−1 bits of

precision, then the resulting system can be written as ((I−A)+E)x= (b+ζ). We will

now bound the absolute values of entries of E and ζ.

Note that each entry of the matrix A, e.g., coefficient auv,st for some variables xuv
and xst, is equal to the sum of coefficients of linear expressions that contain xst in the

linear equation xuv = α. Now, the question is, how much can auv,st change when the

values of lower SCCs are approximated toWh−1 bits of precision?

First, let us consider the original quadratic equation xuv = α ′ before some of the

variables xs ′t ′ have been substituted by their approximate value. A linear expression

containing xst in α ′ can only result from a monomial term in α of the form pxst or

pxs ′t ′xst. In the first case the coefficient p would contribute its exact value to auv,st,

so it would add zero to the absolute error of auv,st. However, in the second case,

since p 6 1 and the value of xs ′t ′ is an under-approximation of Gs ′,t ′ up to Wh−1

bits of precision, then the coefficient auv,st could be under-approximated by at most

1/2Wh−1 . As we can see, an absolute error of at most 1/2Wh−1 can arise from each such

monomial.

Next, we note that the coefficient auv,st of xst in the equation (3.1) for xuv may

actually arise as a sum of at most n+2 such monomials:

? if t= v (in other words xst ≡ xsv) then we can have one of the form: p(0)
usxsv

? if t= v then there can be nmonomials for each control state w: p(1)
uwxwsxsv

? if t = v and s 6= v then we can have one extra one like this: p(1)
usxsvxvv (if s = v

then this expression is counted already for w= s above)

? if t 6= v then we get at most one monomial from the expression: p(1)
usxstxtv

Notice that the sum of all these coefficients is always smaller than 2 since:

p
(0)
us +p

(1)
usxvv+(

∑
w

p
(1)
uwxws)6 (p

(0)
us +p

(1)
us)+

∑
w

p
(1)
uw 6 1+1

Furthermore, if n = 1 then there can be only one SCC. Hence, in such a case

hmax = 0 and we would be done. As a consequence, from now on, we can safely

72 Chapter 3. Computational complexity of QBDs and their extensions

assume that n > 2 allowing us to make the following estimation: Euv,st 6 2/2Wh−1 6

n/2Wh−1 .

We can ask a similar question about b. Since a constant term may arise because

both variables in a quadratic monomial of α ′ belonged to the lower SCCs, we now

have that the resulting error 1/2Wh−1 could have arisen for both variables that were

fixed in a monomial. It is not hard to see that the resulting error for the entire mono-

mial is at most 2/2Wh−1 , basically because such monomials in α ′ have a coefficient

6 1, and because for values x,x ′ > 0, we have (x− ε)(x ′− ε) > xx ′− 2ε. Thus ζuv 6

2n/2Wh−1 . Since the pairs uv and stwere arbitrary, and E is at most an n2×n2 matrix,

we have ‖E‖∞ 6 n3/2Wh−1 , and ‖ζ‖∞ 6 2n/2Wh−1 .

Therefore, using Lemma 3.4.7, part (1.), we can conclude that ‖E‖∞
‖(I−A)‖∞ 6 n

322mn3+m

2Wh−1
,

and also, using Lemma 3.4.7, part (4.), we can conclude that ‖ζ‖∞‖b‖∞ 6 2n22mn3+m

2Wh−1
. Next,

by Lemma 3.4.7, part (2.), we have 1/
∥∥(I−A)−1

∥∥∞ > 1/(n2 ·25mn5
), and since ‖E‖∞ 6

n3/2Wh−1 , it is easy to check that ‖E‖∞ 6 1/
∥∥(I−A)−1

∥∥∞. Finally, by Lemma 3.4.7,

part (3.), cond(I−A)6 2n3 ·25mn5
.

Now we use these bounds and apply Theorem 3.4.3. Let ε = 2n322mn3+m

2Wh−1
, and let

ε ′ = 8εn3 ·25mn5
= 16n622mn3+m25mn5

2Wh−1
. It can be checked that, by construction, the matrix

equation (I−A)x = b and its approximate version (I−A+ E)x = (b+ ζ), as well as

‖E‖∞, ‖ζ‖∞, ε, and ε ′, all satisfy the conditions of Theorem 3.4.3.

Recall that the unique solution x∗ to the original system is G|Xr : it consists of those

valuesGu,v where xuv ∈Xr. Thus in particular 0< ‖x∗‖∞ 6 1. Thus, by the conclusion

of Theorem 3.4.3, there is a unique solution vector x∗ε to the approximate system, such

that ‖x∗ε−x∗‖∞ 6 ε ′ = 16n622mn3+m25mn5

2Wh−1
.

The proof of the inductive claim will now be completed by simply checking that

16n622mn3+m25mn5
6 22mn3+m+5mn5+n5+4 6 29mn5+4, and thus sinceWh = (hmax−

h)(9mn5 +4)+ i, that ‖x∗ε−x∗‖∞ 6 1
2Wh

.

The fact that the algorithm has polynomial running time in the unit-cost RAM

model follows immediately from the fact that there are only polynomially many it-

erations of Newton’s method, and each iteration essentially involves solving a linear

system (or matrix inversion), which can of course be done with polynomially many

arithmetic operations (e.g., using Gaussian elimination).

We emphasize that these (impractical) upper bounds for the number of iterations

are very coarse, and are only intended to facilitate our proof that polynomially many

iterations of Newton’s method suffice. A more detailed analysis would likely yield

polynomial bounds with much smaller exponents as the required number of itera-

3.5. Hardness results for QBD Markov Decision Processes 73

tions.

3.5 Hardness results for QBD Markov Decision Processes

Quasi-Birth-Death Markov Decision Processes (QBD-MDPs) are QBDs in which the

transition from some of the control states are controlled by a player. Since we showed

in Chapter 2 that QBDs are equivalent to p1CA, instead of QBD-MDPs we will define

here 1-Counter Markov Decision Processes (1C-MDPs) which are a controlled version

of p1CAs. A very simple and similar proof to M-equivalence of QBDs and p1CAs can

show that QBD-MDPs are M-equivalent to 1C-MDPs.

In this section we will show that the qualitative termination problem for maxi-

mizing 1C-MDPs (QBD-MDPs) is DP-hard, and in fact hard for the entire “Boolean

Hierarchy”. DP is the class of languages which can be composed as the intersection

of an NP language and a coNP language. The “Boolean Hierarchy” over NP, denoted

BH, is the class of languages that can be formed as “boolean combinations” of NP lan-

guages, under the boolean algebra operations of sets: {∩,∪,¬}. This work is now part

of [BBE+09].

Formally, an 1C-MDP A is a tuple (S,δ,δ0), where the set of control states S is

partitioned into a set of probabilistic control states S0 and a set of controlled ones

S1. For every s ∈ S1 the transition in δ have the form (s,⊥,c,s ′). In other words, these

transitions are not labeled by probabilities, but are controlled by the player. Otherwise,

a 1C-MDP is just like a p1CA and just like a p1CA has a corresponding countable-

state Markov Chain, a 1C-MDP corresponds to a single player Simple Stochastic Game

defined in an obvious way. We will be focusing here on analyzing the complexity

of qualitative (probability 1) termination question about 1CMDPs. Namely, deciding

whether starting in a given state (s,1) does there exist a strategy for the player such

that, with probability 1, the 1CMDP terminates (i.e., reaches counter 0), in an accepting

control state F⊆ S. Let us notice that this is not the same as asking whether the optimal

termination value is 1 or not, since there may exist a sequence of strategies for which

the probability of termination is arbitrarily close to 1, but no strategy achieves value

1. We can see such an example in Figure 3.7. A strategy of the maximizer that first

increases the counter n times and then moves to state labeled “Lose”, reaches the state

labeled “Win” with probability 1 − 1/2n before reaching the counter value 0, but no

strategy achieves value 1.

74 Chapter 3. Computational complexity of QBDs and their extensions

init Lose Win

⊥,+

⊥,−

1
2 ,−

1
2 ,−

1,−

Figure 3.7: An example 1C-MDP, with the objective of maximizing the termination probability at

the state “Win”, with no optimal strategy, but with optimal (supremum) value 1. A strategy of the

maximizer that first increases the counter n times and then moves to the state labeled “Lose”,

reaches the state labeled “Win” with probability 1 − 1/2n before reaching the counter value 0,

but no strategy achieves value 1.

Theorem 3.5.1. Deciding the existence of an almost sure winning strategy for 1C-MDPs is

DP-hard and even BH-hard, i.e., hard for the entire Boolean Hierarchy over NP.

Proof. Our proof essentially mimics a proof by Serre [Ser06] which shows that the

reachability problem for non-probabilistic 2-player 1-counter games is DP-hard. We

show that similar arguments work more generally to show BH-hardness (and BH-

hardness also applies to the 2-player non-probabilistic games).

First, we will show that the qualitative termination problem for 1C-MDPs is NP-

hard and coNP-hard, and then we will show how to combine these to get BH-hardness.

We start with NP-hardness and reduce from SAT. Suppose we have a 3CNF for-

mula : ψ = C1 ∧ . . . ∧Cm, over variables {x1, . . . ,xr}. We will encode assignments to

the variables of ψ by integers, as follows. Let π1, . . . ,πr denote the first n prime num-

bers. Then an integer n corresponds to an assignment that assigns true to xi if and

only if πi|n. Note that multiple integers map to the same assignment, but that all as-

signments are certainly mapped to by some integer. Moreover, note that by basic facts

from number theory, πr 6 r2, thus any assignment can be obtained with a number no

greater than
∏
iπi 6 r

2r.

The 1C-MDP will have a start state s0, which is controlled by the (maximizing)

player. The game starts in state (s0,1) and the player can choose to increment the

counter and stay in state s0, or to move to state s1. Thus, after it has repeatedly incre-

mented the counter up to a “guessed” number n> 1, the game moves to state (s1,n).

Control state s1 is controlled by random, and it “chooses”, uniformly at random, one

of the clauses Ci, which it claims is not satisfied by the assignment associated with

n, and the game moves to state (s ′i,n). State (s ′i,n) is controlled by the maximizing

player, and he chooses a literal lj, in Ci, and moves to state (s ′i,lj ,n). Suppose lj = xj.

3.5. Hardness results for QBD Markov Decision Processes 75

From this state we deterministically decrement the counter, but keep track, using πj
auxiliary control states (one for each possible remainder of division by πj), whether we

have decremented a number of times which is dividable by πj. Clearly, when we hit

the counter value 0, we are in a state that indicates whether the original counter value

n was ≡ 0(mod πj) or not, i.e., whether the assignment corresponding to n satisfies

clause Ci. We can similarly check, if lj = ¬xj, that the number of times decremented is

6= 0(mod πj). Since random chose all clauses with equal probability, there the player

has a strategy to terminate in such an “accepting” control states with probability 1 iff

there is a satisfying assignment to ψ. It is not hard to see that the size of this 1C-MDP

is polynomial in the size of the formula ψ.

Next, for coNP-hardness, suppose we have a 3CNF formula : ψ = C1 ∧ . . . ∧Cm,

over variables {x1, . . . ,xr}, and we want to check unsatisfiability. We do as before, but

with player roles and accepting control states reversed. Starting in state (s0,1) we let

the probabilistic player with probability 1/2 increment the counter or with probability

1/2 move to control state s1. Thus we reach state (s1,n) for somen> 1 with probability

1 and any counter value n has nonzero probability of occurring. Next the maximizing

player chooses a clause Ci which he thinks cannot be satisfied by the assignment n.

Then the random player “picks” one of the literals uniformly at random. We then

decrement as before, except that now when we terminate we accept precisely when

we would have not accepted before. Specifically, we accept if “assignment” n did

not assign true to literal lj of clause Ci. Since the random player picked one of the

literals uniformly at random, if one of the literals was assigned true with a positive

probability the game would terminate in a rejecting state. Note that the probability of

termination is still 1 (because the probability of incrementing the counter for ever is

0). Thus the maximizer has a strategy such that the probability of termination in an

accepting state is 1 if and only if there is no satisfying assignment to ψ.

Finally, to show BH-hardness, consider any statement which is a ∧-∨ combination

of statements of the form “ψi is satisfiable” and “ψj is not-satisfiable", where ψi’s are

boolean formulas. Deciding whether such statements are true is BH-complete.

In order to mimic this with a 1C-MDP, we do as follows: ∨ is mimicked by the max-

imizer picking one of the disjuncts, ∧ is mimicked by the random player picking one

of the conjuncts uniformly at random. When we hit a statement "ψi is (un)satisfiable",

we play the corresponding game. It is not hard to see that the maximizer has a strategy

to terminate in an accepting state with probability 1 if and only if the entire statement

holds true.

76 Chapter 3. Computational complexity of QBDs and their extensions

3.6 Conclusions

In this chapter we showed some of the results that follow as a consequence of equiv-

alences, established in Chapter 2, between TL-QBDs, TS-QBDs on the one hand and

RMCs, pPDSs on the other. One of them is the fact that there exists a family of non-

strongly connected TL-QBDs which require exponentially many iteration of the de-

composed Newton’s method to obtain even a single bit of precision, although the

classical convergence rate for them is “linear”. A natural question to ask is whether

there exist a family of strongly connected TL-QBDs (or equivalently RMCs or pPDSs)

with the same property.

The main result in this chapter that does not follow from the previous work is

the following: in order to approximate the termination probabilities of a QBD (even a

non-strongly connected and null-recurrent one) to within 1/2i additive error (absolute

error), polynomially many iterations of the decomposed Newton’s method suffices

both in the size of the QBD, and in i, the number of bits of precision required. In

order to derive that bound we established new structural properties of (p)1CAs that

may be used in their analysis in the future. The precise bound on the length of the

shortest terminating path in (p)1CA was left open as Conjecture 3.3.4. Resolving that

conjecture would improve the derived 4mn5 +mn2 +hmax(9mn5 + 4)+ i bound on

the number of iterations needed to converge to within 1/2i absolute error. This bound

could certainly be improved even further by using more precise estimates on some of

the quantities used in our analysis.

Since all the values of the G matrix are less than 1, a stronger result would be

to show that a similar polynomial bound exists on the number of iterations needed

for the same method to approximate the G matrix to within 1/2i multiplicative factor

(relative error, i.e., for all nonzero values in G the ratio between the computed value

and the actual value belongs to the interval (1 − 1/2i,1 + 1/2i)). Unfortunately, the

classical result in Theorem 3.4.3 that estimates the error of the solution of a linear

system of equations with slightly perturbed coefficients is crucial to our analysis and

does not allow us to extend our result in that direction. Using that theorem we can

only bound the relative error of the biggest entry of such a solution, while its smallest

entry can have potentially arbitrarily high relative error. To overcome this problem

we could use a more precise analysis as done in [JE95], that gives an expression that

bounds the maximal relative error of each entry of the solution vector to a slightly

perturbed linear system. However, so far the coefficients involved in that expression

3.6. Conclusions 77

have not been analyzed precisely and their value can have a crucial impact on whether

the resulting bound would be polynomial or not.

On the other hand, a more “practical” remaining open question directly related

our result is the following: can polynomial time upper bounds for approximating

the G matrix for QBDs be established in the standard Turing model of computation,

rather than in the unit-cost rational arithmetic RAM model? It was established in

[EY07], that for RMCs and pPDSs, and thus also for Tree-Like QBDs, any non-trivial

approximation of the actual termination probabilities of a TL-QBD is at least as hard as

the SQRT-SUM problem. Therefore, no such approximation algorithm can be found for

TL-QBDs without a major breakthrough in the complexity of exact numerical analysis.

However, this does not rule out the possibility of finding such an algorithm for QBDs.

In fact, it is entirely plausible that, using the decomposed Newton’s method approach,

but rounding the computed values after each iteration to a given polynomial number

of bits, yields such an approximation algorithm.

All these results lead us to suspect that a similar difference should exist in the

worst-case behavior on QBDs and TL-QBDs for numerical methods other than New-

ton’s methods, such as the Logarithmic or Cyclic Reduction algorithms (see, e.g, [BLM05]).

We have however not analyzed these algorithms. It is well known that Logarithmic

and Cyclic reduction “converge at least linearly” for strongly connected QBDs and

TL-QBDs, but as we have already seen, this does not imply any upper bound on the

total number of iterations needed as a function of the encoding size of the input QBD

and the number of bits of precision required, i. It would be interesting to see whether

these two methods can be combined with a decomposition of the equation system

into SCCs in order to improve their performance on highly decomposable examples.

Such an operation is a major challenge since decomposition of the equation system in

general destroys the matrix form of the equations which these two methods are based

on.

An even more practical open question is the following: It is known that for QBDs

with n control states each iteration of Newton’s method can be carried out directly

(overO(n2) sized matrix equations) with a cost ofO(n3) operations per iteration (bet-

ter than the O(n6) using, e.g., Gaussian elimination), using the fact that the occurring

linear matrix equation at each step of Newton’s method is a generalized Sylvester ma-

trix equation system (see [BLM05] for details). However, while TL-QBDs and RMCs

also have nonlinear equations with O(n2) matrix representations, no such efficient

solution method is known for the more general linear matrix equations that occur at

78 Chapter 3. Computational complexity of QBDs and their extensions

each step of Newton’s method. Finding such a method would make Newton’s method

more practical on large “dense” TL-QBDs, RMCs, and pPDSs. But even with such an

efficient method, it remains a challenge to combine it well with decomposition.

We recently showed in [BBE+09] that the problem of deciding whether there exists

a strategy that terminates with probability 1 at a given control state of a given QBD-

MDP (i.e., 1C-MDP) is in EXPTIME. However, many questions remain open, e.g., the

quantitative version of this problem and even deciding whether the supremum prob-

ability over all strategies is equal to 1.

Chapter 4

Recursive Simple Stochastic Games

with Positive Rewards

4.1 Introduction

In this chapter, motivated by the goal of analyzing the optimal/pessimal expected run-

ning time of probabilistic procedural programs, we study the complexity of reward-

based stochastic games, 1-exit Recursive Simple Stochastic Games (1-RSSGs) with pos-

itive rewards, and their one-player version, 1-exit Recursive Markov Decision Pro-

cesses (1-RMDPs) with positive rewards.1 These form a class of (finitely-presented)

countable-state turn-based zero-sum stochastic games (and MDPs) with strictly pos-

itive rewards, and with an undiscounted expected total reward objective. 1-RSSGs

with positive rewards can be equivalently reformulated as Stochastic Context-Free

Grammars (SCFGs) games. SCFGs games are essentially an extension of well-known

context-free grammars to a probabilistic and controlled setting.2 1-RSSGs can also

be viewed as a 2-player extension of Branching Markov Decision Chains extensively

studied in OR ([Pli76, Vei69, RW82]).

We can see how a probabilistic procedural program can look like on a basic exam-

ple in Figure 4.1. It represents a function f that, depending on the value of the pa-

rameter n, calls itself recursively with a modified parameter value. Some branches in

the program depend on a random choice, and some other are controlled and its is the

external controller who decides how the program proceeds from there. His objective

could be, e.g., minimizing the number of steps the program makes before terminating.
1For their formal definitions and examples, see Section 2.2.1 of Chapter 2.
2Their formal definition was presented in Section 2.2.2 and their equivalence to 1-RSSGs was shown

in Section 2.3.1, both in Chapter 2.

79

80 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

The 1-exit assumption essentially forbids the functions to return multiple values, and

is necessary since we show that even qualitative decision questions about multi-exit

RSSGs are undecidable. On the other hand, the assumption of having strictly posi-

tive rewards on all transitions is very natural for modeling probabilistic procedural

programs since each step of a program takes some nonzero amount of time. Strictly

positive rewards also endow our games with a number of important robustness prop-

erties. In particular, if defined as a SCFG game, their value does not depend on what

derivation law (e.g., left-most or right-most) is imposed. This is not the case if we al-

low 0 rewards on grammar rules. Even in the 1-player setting, with 0 rewards allowed,

the optimal value can be irrational and as it was shown in Section 2.2.2 of Chapter 2,

it can be wildly different (e.g., 0 or ∞) depending on the derivation law. Moreover,

we do not even know whether qualitative questions about 1-RMDPs with 0 rewards

allowed are decidable.

void f(int n) {

while[min] {

:: n > 1 –>

:0.5: f(n−1);

:0.5: n= n/2; f(n);

:: n > 10 –> f(n−9);

:: else –> return;

}

}

Figure 4.1: An example probabilistic recursive function with one parameter and not returning

any value. :: cond –> represents a guarded conditional statement and if there are more than one

branches with their guards satisfied at the same time, depending on to whom the statement is

assigned we wither choose one of them uniformly at random or the controller chooses how the

function proceeds. :prob: [instruction list]; states that a given list of instructions will be executed

with probability prob once the program reaches that probabilistic choice point.

For 1-RMDPs and 1-RSSGs with strictly positive rewards, we show that they al-

ways have a value which is either rational (with polynomial bit complexity) or∞, and

which arises as the least fixed point solution (over the extended reals) of an associated

system of min-max-linear equations. Both players always have stackless and memoryless

(SM) optimal strategies, i.e., deterministic strategies that depend only on the current

4.1. Introduction 81

state of the program (e.g., which instruction is being executed and the current values

of the variables), but not on how the program got to that state nor the stack contents.

Furthermore, we provide PTIME algorithms for computing the exact value for both

the maximizing and minimizing 1-RMDPs with positive rewards. The two cases are

not equivalent and require a separate treatment. In both we make use of the fact

that linear programming (LP) can be solved in PTIME (see, e.g., [Sch86]). We show

that for the 2-player games (1-RSSGs) deciding whether the game has value at least a

given r ∈ Q∪ {∞} is in NP ∩ co-NP. We also describe a practical simultaneous strat-

egy improvement algorithm, analogous to similar algorithms for finite-state stochas-

tic games, and show that it converges to the game value (even if it is ∞) in a finite

number of steps. A corollary is that computing the game value and optimal strate-

gies for these games is contained in the class PLS of polynomial local search problems

([JPY88]). Whether this strategy improvement algorithm runs in the worst-case in

PTIME is open, just like its version for finite-state SSGs.

We observe that these games are essentially “harder” than Condon’s finite-state

SSG games in the following senses. We reduce Condon’s quantitative decision prob-

lem for finite-state SSGs to a special case of 1-RSSG games with strictly positive re-

wards: namely to deciding whether the game value is ∞. By contrast, if finite-state

SSGs are themselves equipped with strictly positive rewards, we can decide in PTIME

whether their value is∞. Moreover, it has recently been shown in [EY07] and [Jub06]

that computing the value of Condon’s SSG games is in the complexity class PPAD (de-

fined in [Pap94]). The same proof, however, does not work for 1-RSSG with positive

rewards, and we do not know whether these games are contained in PPAD. In these

senses, the 1-RSSG reward games studied in this chapter appear to be “harder” than

Condon’s SSGs, and yet as we show their quantitative decision problems remain in

NP ∩ coNP.

Application to the analysis of expected running time of recursive probabilistic pro-

grams in the tool PReMo described in Chapter 5 motivated the work in this chapter.

PReMo implements, among other analyses, the strategy improvement algorithm for

1-RSSGs devised in Section 4.3 of this chapter. See Section 5.2.6 of Chapter 5 for imple-

mentation issues of that algorithm and encouraging experimental results that compare

its performance with some alternative numerical methods.

The rest of this chapter is organized as follows. First, in Section 4.2, we prove

that 1-RSSGs with positive rewards are determined and their value is the Least Fixed

Point (LFP) of a certain min-max-linear equation system. Next, in Section 4.3, we

82 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

prove that both players always have stackless&memoryless optimal strategies and

that we can find them via a simultaneous strategy improvement algorithm. In Sec-

tion 4.4 we show that 1-RMDPs with positive rewards can be solved in PTIME, from

which it easily follows that finding the optimal values and optimal strategies for 1-

RSSGs is in NP∩coNP and in PLS. As for the lower bounds, we show that qualitative

questions about 1-RSSGs with positive rewards are as hard as quantitative questions

about Condon’s stochastic games, while qualitative questions about multi-exit RSSGs

are undecidable. Finally, we conclude in Section 4.5 and present some open problems

for future work.

4.2 Determinacy and equation formulation of 1-RSSGs with posi-

tive rewards

Let us briefly recall the notation used for defining an 1-RSSG in Section 2.2.1 of Chapter

2. An RSSG A consists of the set of nodes N, the set of boxes B, the box-to-component

mapping function Y, the set of component entries En, the set of component exits Ex,

the transition function δ, and the box entry to reward mapping ξ. We define additional

set of nodes, box call ports (b,en) ∈ Call and box exit ports (b,ex) ∈ Ret. As pointed

out in Section 2.3.1, we can safely assume that the mapping ξ is positive for all call

ports, and equal to zero for all component exits and so we can ignore the z state in

our analysis. The set of all nodes is denoted by Q and for each u ∈ Q we let n(u)

denote the neighbors of node u, i.e., n(u) = {v | (u,⊥,v,cuv) ∈ δ} if u is Player 1’s or

Player 2’s node and n(u) = {v | (u,puv,v,cuv) ∈ δ} otherwise. In a (1-)RSSG with pos-

itive rewards the goal of Player 1 (the maximizer) is to maximize the total expected

reward gained during a play of the game, and the goal of Player 2 (the minimizer) is

to minimize this. We commonly denote the strategy of the maximizer as σ and the

minimizer as τ. An RSSG A along with players strategies σ and τ define in a natural

way a Markov Chain with (positive) rewardsMσ,τ
A .

Let rk,σ,τ
u denote the expected reward during the first k steps in Mσ,τ

A , starting

at initial state 〈ε,u〉. Given an initial vertex u, let r∗,σ,τ
u = limk→∞ rk,σ,τ denote the

total expected reward obtained in a run of Mσ,τ
A , starting at initial state 〈ε,u〉. Clearly,

this sum may diverge, thus r∗,σ,τ ∈ [0,∞]. Note that, because of the constraint of all

the rewards being strictly positive, this sum will be finite if and only if the expected

number of steps until a play terminates is finite.

In ([EY05i]) a monotone system of min-max-polynomial equations was defined whose

4.2. Determinacy and equation formulation of 1-RSSGs with positive rewards 83

Least Fixed Point (LFP) solution yields the values of termination 1-RSSGs (games with

termination probability objective). We show here that we can adapt this to obtain anal-

ogous min-max-linear systems in the setting of 1-RSSGs with positive rewards. Fur-

thermore, these systems generalize the linear Bellman’s equations for MDPs [Bel57].

We use a variable xu for each unknown r∗u. Let x be the vector of all xu-s, u ∈Q. The

system has one equation of the form xu = Pu(x) for each vertex u. Suppose that u is

a node inside component Ai whose (unique) exit is ex. There are 5 cases based on the

“Type” of u:

1. Type0: u= ex. In this case: xu = 0.

2. Typerand: pl(u) = 0 & u ∈ (Ni \ {ex})∪Reti: xu =
∑
v∈n(u)puv(xv+ cuv). (If u

has no outgoing transitions, this equation is by definition xu = 0, and similarly

for Typemax and Typemin.)

3. Typecall: u= (b,en) is a call port: x(b,en) = xen+x(b,ex ′)+cu, where ex ′ ∈ExY(b)

is the unique exit of AY(b). 3

4. Typemax: pl(u) = 1 and u ∈ (Ni \ {ex})∪Reti: xu = maxv∈n(u)(xv+cuv)

5. Typemin: pl(u) = 2 and u ∈ (Ni \ {ex})∪Reti: xu = minv∈n(u)(xv+cuv)

We can represent this system of equations in a vector notation as x = P(x). Given

a 1-RSSG, we can easily construct its associated system in linear time. For vectors

x,y ∈Rn, x6 y means xj 6 yj for every j. Let r∗ ∈Rn denote the n-vector of r∗u’s. Let

0 denote an all 0 vector, and define x0 = 0, xk+1 = Pk+1(0) = P(xk), for k> 0.

Theorem 4.2.1.

1. The map P :R
n→Rn is monotone on R∞>0 and 06 xk 6 xk+1 for k> 0.

2. r∗ = P(r∗).

3. For all k> 0, xk 6 r∗.

4. For all r ′ ∈R∞>0, if r ′ = P(r ′), then r∗ 6 r ′.

5. For all vertices u,

r∗u
.
= sup
σ∈Ψ1

inf
τ∈Ψ2

r∗,σ,τ
u = inf

τ∈Ψ2

sup
σ∈Ψ1

r∗,σ,τ
u .

(In other words, these games are determined.)

3Recall that cu = ξ(u) is positive for convenience. As it was shown in Section 2.3.1 of Chapter 2, any
1-RSSG with some cu = 0 has an essentially equivalent 1-RSSG with all cu > 0.

84 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

6. r∗ = limk→∞ xk.

Proof.

1. All equations in the system P(x) are min-max linear with non-negative coeffi-

cients and constants, and hence are monotone.

2. The proof that r∗ = P(r∗) is similar to the one for 1-RSSG termination games from

[EY05i], but it uses in a crucial way the fact that rewards on all transitions are

strictly positive.

(a) For u= ex ∈ Type0, r∗u = 0, so it fulfills the corresponding equation xu = 0.

(b) For u ∈ Typerand, from the definition r∗u = supσ∈Ψ1
infτ∈Ψ2 r

∗,σ,τ
u it follows

that r∗u =
∑
v∈n(u)puv(r

∗
v+ cuv). Note that this holds even when some of

the expected rewards are infinite, because if puv > 0 and the game starting

at v has infinite reward value, then this is also the case starting at u.

(c) For u ∈ Typecall, u= (b,en) is a call port. We claim that

r∗u = r∗en+ r∗(b,ex ′) +cu (4.1)

where ex ′ is the unique exit of Y(b). For this we make crucial use of the

assumption that rewards on all transitions are strictly positive4. Consider

the game starting at u = (b,en), as a combination of two games: the two

players play inside b, starting at en, with Player 1’s goal to maximize the

total (expected) reward. The two players also (in a “separate” game) play

starting at (b,en). The payoff to Player 1 is as follows: If the game inside b

terminates, then the payoff is the total of the payoffs gained in both games,

and if the game inside b does not terminate, then the payoff is just the pay-

off gained inside b.

It should be clear that this “modified” version of the game in fact describes

the same game. In particular, in the original game both players can, upon

first encountering (b,ex ′) (in the empty context) safely ignore the history

and try to maximize/minimize the payoff in the game starting at (b,ex ′),

without changing the reward value.

Fix strategies for both players. What is the expected total reward starting at

u? It is cu plus the expected reward gained inside box b, plus the expected

4We note that this assumption would be unnecessary if we were working with SCFG games with
simultaneous expansion (Sections 2.2.2 and 2.2.3 of Chapter 2). The entire proof would go through for
such games even with 0 rewards on rules.

4.2. Determinacy and equation formulation of 1-RSSGs with positive rewards 85

reward after exiting box b times the probability of exiting box b. The key point

is that, since all transitions have positive reward, the only circumstance un-

der which the expected reward value within box b is finite, i.e., r∗en <∞,

is when for every strategy of the maximizer there is a strategy for the min-

imizer that assures finite expected reward inside b. This also necessarily

assures that box b is exited with probability 1 (because otherwise, since all

transitions have positive reward bounded below by some minimum value

c > 0, infinite expected reward would be gained inside b). Consequently,

equality (4.1) holds when r∗en <∞. But if r∗en =∞, then the equality holds

regardless of the value of r∗(b,ex ′), so it holds in all circumstances.

(d) For u∈ Typemax, we know that r∗u > r∗v+cuv for any v ∈ n(u), for otherwise

the maximizer would be better off taking the transition to node v in the first

step, and thereafter obtaining r∗v+cuv. On the other hand we also have that

r∗u 6 r∗v+cuv for some v ∈ n(u), as otherwise no matter what first transition

the maximizer picks from u, the minimizer has a strategy such that the

maximizer will not be able to obtain expected reward r∗u.

(e) For u ∈ Typemin we know that r∗u 6 r∗v+ cuv for all v ∈ n(u), as otherwise

it would be better for the minimizer to take the transition leading to node

v and giving to the maximizer expected reward r∗v+ cuv that is lower than

r∗u. However, we also have to have that r∗ > r∗v+ cuv for some v ∈ n(u),

because otherwise player the maximizer could always obtain expected re-

ward higher than r∗u no matter what the minimizer does.

3. Note that P is monotonic, and r∗ is a fixed point of P. Since x0 = 06 r∗, it follows

by induction on k that xk 6 r∗, for all k> 0.

4. Consider any fixed point r ′ of the equation system P(x). We will prove that

r∗ 6 r ′. Let us denote by τ∗ a strategy for the minimizer that picks for each

vertex the successor with the minimum value in r ′, i.e., for each state s = 〈β,u〉,
where u is one of the minimizer’s nodes, we choose τ∗(s) = argminv∈n(u) r ′v
(breaking ties lexicographically).

Lemma 4.2.2. For all strategies σ ∈ Ψ1 of Player 1, and for all k> 0, rk,σ,τ∗ 6 r ′.

Proof. Base case r0,σ,τ∗ = 06 r ′ is trivial.

(a) u= ex, then rk,σ,τ∗
u = 0 = r ′u for all k> 0.

86 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

(b) u∈ Typerand is a random node and after we define a strategy σ ′(θ) =σ(〈ε,u〉θ)
we get:

rk+1,σ,τ∗
u =

∑
v∈n(u)

puv(rk,σ ′,τ∗
v +cuv)6

∑
v∈n(u)

puv(r ′v+cuv) = r ′u

by the inductive assumption and the fact that r ′ is a fixed point of P(x).

(c) If u= (b,en) is an entry en of the box b then we claim

rk+1,σ,τ∗
u 6 max

ρ∈Ψ1
rk,ρ,τ∗
en + max

ρ∈Ψ1
rk,ρ,τ∗
(b,ex ′) +cu (4.2)

where (b,ex ′) is the only return port of box b. To see this, note that in any

specific trajectory, the total reward gained in k+1 steps starting at call port

(b,en) is cu plus the remaining reward, which is split into two parts: that

gained in i steps inside box b, and the rest gained in j steps after returning

from box b, and such that i+ j = k. Thus clearly the total expected reward

in k+ 1 steps starting at u is no more than cu plus the expected reward in

k steps starting inside box b (i.e., starting at the entry en of Y(b)) plus the

expected gain in k steps starting at (b,ex ′). We now have

max
ρ∈Ψ1

rk,ρ,τ∗
en + max

ρ∈Ψ1
rk,ρ,τ∗
(b,ex ′) +cu 6 r ′en+ r ′(b,ex ′) +cu = r ′u (4.3)

by the inductive assumption, and by the fact that r ′ is a fixed point of P(x).

So, combining equations (4.2) and (4.3), we have rk+1,σ,τ∗
u 6 r ′u.

(d) For u ∈ Typemax we claim

rk+1,σ,τ∗
u 6 max

v∈n(u)
rk,σ ′,τ∗
v +cuv

because the player has to move to some neighbor v of 〈ε,u〉 in one step, and

thus it cannot gain more that rk,σ ′,τ∗ , where σ ′ is defined from σ in the same

way as for Typerand. Thus

rk+1,σ,τ∗
u 6 max

v∈n(u)
rk,σ ′,τ∗
v +cuv 6 max

v∈n(u)
r ′v+cuv = r ′u

(e) For u ∈ Typemin we know that τ∗(u) = argminv∈n(u)(r ′u+cuv) = v∗, so:

rk+1,σ,τ∗
u = rk,σ ′,τ∗

v∗ +cuv∗ 6 r ′v∗ +cuv∗ = min
v∈n(u)

(r ′v+cuv) = r ′u

Now by the lemma we have r∗,σ,τ∗
u = limk→∞ rk,σ,τ∗

u 6 r ′u for every vertex u and

for any maximizer’s strategy σ, so supσ∈Ψ1
r∗,σ,τ∗
u 6 r ′u. Thus for all vertices u:

r∗u = sup
σ∈Ψ1

inf
τ∈Ψ2

r∗,σ,τ
u 6 inf

τ∈Ψ2

sup
σ∈Ψ1

r∗,σ,τ
u 6 sup

σ∈Ψ1

r∗,σ,τ∗
u 6 r ′u (4.4)

4.2. Determinacy and equation formulation of 1-RSSGs with positive rewards 87

5. In equation (4.4) above, choose r ′ = r∗. Then for all vertices u we have

sup
σ∈Ψ1

inf
τ∈Ψ2

r∗,σ,τ
u = inf

τ∈Ψ2

sup
σ∈Ψ1

r∗,σ,τ
u .

6. We know that z = limk→∞ xk exists in [0,∞], because it is a monotonically non-

decreasing sequence (note some entries may be infinite). In fact we have z =

limk→∞Pk+1(0) = P(limk→∞Pk(0)), and thus z is a fixed point of the equa-

tion P(x) = x. So from (4) we have r∗ 6 limk→∞ xk. Since xk 6 r∗ for all k > 0,

limk→∞ xk 6 r∗ and thus limk→∞ xk = r∗.

The following is a simple corollary of the proof.

Corollary 4.2.3. In 1-RSSG positive reward games, the minimizer has an optimal determin-

istic Stackless and Memoryless (SM) strategy.

Proof. It is enough to consider the strategy τ∗, from Part 4 of Theorem 4.2.1, when we

let r ′= r∗. For then, by equation (1), we have r∗u= supσ∈Ψ1
r∗,σ,τ∗ = infτ∈Ψ2 supσ∈Ψ1

r∗,σ,τ∗ .

Note that for a 1-RMC (i.e., without players) with positive rewards, the vector r∗ of

expected total rewards is the LFP of a system x=Ax+b, for some non-negative matrix

A ∈Rn×n, A> 0, and a positive vector b > 0. The following will be useful later.5

Lemma 4.2.4. For any x ∈ Rn>0, A ∈ (R∞>0)
n×n and b ∈ (R∞>0)

n, if x 6 Ax+b then x 6

(
∑∞
k=0A

k)b. This holds even if for some indices i we have bi = 0, as long as the entries in

any such row i of the matrix A are all zero.

Proof. LetD=
∑∞
k=0A

k and y=Db. We have to prove that x6 y. Some of the entries

of D can be infinite. Let R = {r1,r2, . . . ,rm} be the set of indices of the rows of D that

contain at least one∞ entry. For every r ∈ R, yr =
∑n
i=1Dr,ibi. Since for all i, bi > 0,

and for at least one i entryDr,i is∞, we have yr=∞ and so xr6yr is trivially fulfilled

for every r ∈ R. Now let us construct a new matrix A ′ by zeroing all the entries of the

rows ofA that are in R. Similarly let x ′ be a vector xwith zeroed entries xr where r∈ R.

Let D ′ =
∑∞
k=0 (A ′)k.

5 Note that if we assume both thatA∈ (R>0)
n×n and that (

∑∞
k=0A

k) converges, the lemma is trivial:
we have (I−A)−1 = (

∑∞
k=0A

k), and thus x6Ax+b ⇒ x−Ax6 b ⇒ (I−A)x6 b ⇒ x6 (I−A)−1b.
But we need this lemma even when (

∑∞
k=0A

k) is not convergent.

88 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

We will prove that x ′ 6A ′x ′+b. For entries r ∈ R, it is trivial since (A ′x ′)r+br =

0+br > 0 = x ′r. If r 6∈ R then x ′r = xr and

(A ′x ′)r =

n∑
i=1

A ′r,ix
′
i =

∑
{i|A ′r,i>0}

A ′r,ix
′
i

Proposition 4.2.5. If Ai,j > 0, and for some k we have that Dj,k =∞ then Di,k =∞.

Proof. We have that D = I+AD and so Di,k = δik+
∑n
l=1Ai,lDl,k > Ai,jDj,k =∞.

(where δik is equal to 1 if i= k and 0 otherwise)

Suppose that r 6∈ R. If for some i, x ′i 6= xi, then i ∈ R and we must have Di,j =∞ for

some j. If A ′r,i > 0 then Ar,i = A ′r,i, and by Proposition 4.2.5 we get that Dr,j =∞,

which contradicts the fact that r 6∈ R. Thus for r 6∈ R, and for i such that A ′r,i > 0, we

must have x ′i = xi and A ′r,i = Ar,i. Thus (A ′x ′)r+br = (Ax)r+br > xr = x ′r for all

r 6∈ R. Hence we can conclude that x ′r 6 (A ′x ′)r+br for all r.

We will now prove that limk→∞ (A ′)k = 0. For contradiction, note that if we had

limk→∞((A ′)k)i,j 6= 0 for some i and j, then it must be the case that D ′i,j = ∞ be-

cause ((A ′)k)i,j > 0 for all k, and if there is some ε > 0 such that for infinitely many k,

(A ′)ki,j > ε, thenD ′i,j =∞. SinceA ′ 6A, we get that (A ′)k 6Ak for any k> 0 and thus∑∞
k=0 (A ′)k 6

∑∞
k=0A

k. Thus if D ′i,j =∞ then Di,j =∞. Hence, when obtaining A ′

fromA all the entries in the i-th row were zeroed. However, if the i-th row inA ′ has all

zeroes, then so does the i-th row in (A ′)k for any k. That contradicts the assumption

that limk→∞((A ′)k)i,j 6= 0.

By substituting x ′ byA ′x ′+b in x ′6A ′x ′+b, we get that x ′6A ′x ′+b6A ′(A ′x ′+

b) + b = (A ′)2
x ′ +A ′b+ b 6 (A ′)2

(A ′x ′ + b) +A ′b+ b = (A ′)3
x ′ + ((A ′)2

+A ′ + I)b

and by iterating we see that x ′ 6 (A ′)l+1
x ′+(

∑l
k=0(A

′)k)b for any l > 0. As x ′ is a

vector of finite values and limk→∞ (A ′)k = 0 we have x ′ 6 (
∑∞
k=0(A

′)k)b and so also

x ′ 6 (
∑∞
k=0A

k)b = y. The last fact proves that for r 6∈ R xr = x ′r 6 yr, and we can

finally conclude that x6 y= (
∑∞
k=0A

k)b.

Now we show that we can also handle the case when for some indices i, bi = 0.

We proceed by induction on the number, d, of indices i such that bi = 0 and the i-th

row of A contains only zeroes. For the base case d = 0, the claim was already proved.

For the inductive case, suppose d > 0, and let i be the smallest such index. Since

we assume Ax+ b > x, it must be that xi = 0. Let M ′ denote the matrix obtained

by removing the i-th row and the i-th column in some matrix M. Similarly for a

vector v by v ′ denote the vector vwith removed i-th entry. Since xi = 0,M ′x ′ = (Mx) ′

for any matrix M. Also, since the i-th row of A contains only zeroes we have that

4.3. SM-determinacy and strategy improvement 89

(A ′)k = (Ak) ′ for any k> 0 and we can also conclude that
∑∞
k=0(A

′)k = (
∑∞
k=0A

k) ′.

Now assuming Ax+b> x we can see that (Ax+b) ′ > x ′ and so A ′x ′+b ′ > x ′. But it

is easy to confirm that A ′ and b ′ have the same property as before: if b ′j = 0 then the

j-th row of A ′ contains only zeroes. Moreover, there are now d−1 such indices. Thus,

by inductive hypothesis, x ′ 6 (
∑∞
k=0(A

′)k)b ′ = (
∑∞
k=0A

k) ′b ′ = ((
∑∞
k=0A

k)b) ′, and

since the inequality is trivial for the i-th position of x, we get that x6 (
∑∞
k=0A

k)b.

4.3 SM-determinacy and strategy improvement

We now prove SM-determinacy, and also show that strategy improvement can be used

to compute the values and optimal strategies for 1-RSSG positive reward games. Con-

sider the following (simultaneous) strategy improvement algorithm.

Initialization: Pick some (any) SM strategy, σ, for Player 1 (the maximizer).

Iteration step: First, compute the optimal value, r∗,σu , starting from every vertex, u, in

the resulting minimizing 1-RMDP. (We show in Theorem 4.4.1 that this can be done

in PTIME.) Then, update σ to a new SM strategy, σ ′, as follows. For each vertex

u ∈ Typemax, if σ(u) = v and u has a neighborw 6= v, such that r∗,σw +cuw > r
∗,σ
v +cuv,

let σ ′(u) :=w (e.g., choose aw that maximizes r∗,σw +cuw). Otherwise, let σ ′(u) :=σ(u).

Repeat the iteration step, using the new σ ′ in place of σ, until no further local improve-

ment is possible, i.e., stop when σ ′ = σ.

Theorem 4.3.1 shows that this algorithm always halts, and produces an optimal final

SM strategy for Player 1. (The proof shows it works even if we switch any non-empty

subset of improvable vertices in each iteration.) Combined with Corollary 4.2.3, both

players have optimal SM strategies, i.e., the games are SM-determined.

Theorem 4.3.1. (1) SM-determinacy. In 1-RSSG positive reward games, both players have

optimal SM strategies. (and thus by Corollary 4.2.3 these games are SM determined). (2)

Strategy Improvement. Moreover, we can compute the value and optimal SM strategies

using the above simultaneous strategy improvement algorithm. (3) Computing the value and

optimal strategies in these games is contained in the class PLS.

Proof. Let σ be any SM strategy for Player 1. Consider r∗,σu = infτ∈Ψ2 r∗,σ,τ
u . (Note

that some entries in the vector r∗,σ may be ∞.) First, note that if r∗,σ = P(r∗,σ) then

r∗,σ = r∗. This is because, by Theorem 4.2.1, r∗ 6 r∗,σ, and on the other hand, σ is

just one strategy for Player 1, and for every vertex u, r∗u = supσ ′∈Ψ1
r∗,σ

′
u > r∗,σu . Now

we claim that, for all vertices u such that u 6∈ Typemax, r∗,σu satisfies its equation in

90 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

x = P(x). In other words, r∗,σu = Pu(r∗,σ). To see this, note that for vertices u of Type0,

Typecall and Typerand, no choice of either player is involved and the equation holds

by definition of r∗,σ. (In particular, the expected reward value at a call port u is cu
plus the sum of the expected reward values of the game starting at the entry inside

the box, and the game starting at the return port.) For nodes u ∈ Typemin, we have

the equation xu = minv∈n(u) xv+ cuv. But note that the best the minimizer can do

against strategy σ, starting at 〈ε,u〉, is to move to a neighboring vertex v such that

v= argminv∈n(u)(r
∗,σ
v +cuv). Thus, the only equations that may fail are those for u ∈

Typemax, xu = maxv∈n(u)(xv+ cuv). Suppose σ(u) = v, for some neighbor v. Clearly

then, r∗,σu = r∗,σv +cuv. Thus, r∗,σu 6maxv ′∈n(u)(r
∗,σ
v ′ +cuv ′). Thus equality fails iff there

is another vertex w 6= v, with (u,⊥,w) ∈ δ, such that r∗,σv +cuv < r∗,σw +cuw.

Suppose now that the nodes (u1,u2, . . .um) are all those nodes where the SM strat-

egy σ is not locally optimal, i.e., for i = 1,2, . . . ,m, σ(ui) = vi, and thus r∗,σui = r∗,σvi +

cuivi , but there is somewi such that r∗,σvi +cuivi < r∗,σwi +cuiwi . Let u = (u1,u2, . . . ,um)

and similarly define v and w. Consider now a revised SM strategy σ ′, which is iden-

tical to σ, except that σ ′(ui) =wi for all i. Next, consider a parametrized 1-exit RSSG,

A(t) where t = (t1,t2, . . . ,tm), which is identical to A, except that all edges out of ver-

tices ui are removed, and replaced by a single probability 1 edge labeled by reward

ti, to the exit of the same component node ui is in. Fixing the value of the vector

t ∈ [0,∞]m determines an 1-RSSG, A(t). Note that if we restrict SM strategies σ or σ ′

to vertices other than those in u, then they both define the same SM strategy for the

1-RSSG A(t). Define r∗,σ,τ,t
z to be the expected total reward starting from 〈ε,z〉 in the

Markov chainMz,σ,τ
A(t) . Now, for each vertex z, define the function fz(t) = infτ∈Ψ2 r

∗,σ,τ,t
z .

In other words, fz(t) is the infimum of the expected rewards, over all strategies of

Player 2, starting at 〈ε,z〉 in A(t). This reward is parametrized by t. Now, let tσ be

a vector such that tσui = r∗,σui , and observe that fz(tσ) = r∗,σz for every z. This is so be-

cause any strategy for minimizing the total reward starting from zwould, upon hitting

a state 〈β,ui〉 in some arbitrary context β, be best off minimizing the total expected re-

ward starting from 〈β,u〉 until that context is exited, i.e., until reaching 〈β,ex ′〉 (and

unless the minimizer has a strategy that assures the context is exited with probability

1, the expected reward will be∞).

Note that, by Corollary 4.2.3, in the 1-RSSG reward game on A(t), for any values

in vector t, and any start vertex z, the minimizer has an optimal SM strategy τz,t, such

that τz,t = argminτ∈Ψ2 r
∗,σ,τ,t
z . Let g(z,τ)(t) = r

∗,σ,τ,t
z . Note that fz(t) = minτgz,τ(t),

where the minimum is over SM strategies. Now, note that the function gz,τ(t) is the

4.3. SM-determinacy and strategy improvement 91

expected reward in a positive reward 1-RMC starting from a particular vertex, and it

is given by gz,τ(t) = (limk→∞Rk(0))z for a linear system x = R(x) with non-negative

coefficients in R, where R(x) =Aσ,τx+bσ,τ(t), for some nonnegative matrix Aσ,τ, and

vector bσ,τ(t) which describes the average 1-step rewards from each vertex. All of

these 1-step rewards are positive, except that at positions ui the entry is the variable

ti, i.e., bui(t) = ti. (Note that for all i the ui’th row vector of Aσ,τ is all zero.) Simple

iteration then shows that gz,τ(t) = limk→∞Rk(0)z = ((
∑∞
k=0A

k
σ,τ)b(t))z. (Note that

if limk→∞Akσ,τ = 0, then (
∑∞
k=0A

k
σ,τ) = (I−Aσ,τ)

−1.) Now gz,τ(t) has the following

properties: it is a continuous, nondecreasing, and linear function of t ∈ [0,∞]m, and

for t ∈ [0,∞]m, gz,τ(t) ∈ [0,∞]. Specifically, we can think of it as a function gz,τ(t) =

αααz,τt+βz,τ, where αααz,τ = (αz,τ
1 ,αz,τ

2 , . . . ,αz,τ
m) and αz,τ

i ,βz,τ ∈ [0,∞].

Let gτ(t) = (gw1,τ(t ′),gw2,τ(t ′), . . . ,gwm,τ(t ′)) where cu,w =(cu1w1 ,cu2w2 , . . . ,cumwm)

and t ′= t+cu,w. Note t∈ (−cu1w1 ,∞]×(−cu2w2 ,∞]× . . .×(−cumwm ,∞]. We can repre-

sent gτ(t) asDτt+dτ, whereDτ= [αααw1,τ;αααw2,τ; . . . ;αααwm,τ] and dτj =
∑m
i=0α

wj,τ
i cuwi+

βwj,τ. Note that if dτj = 0 then necessarily αααwj,τ = 0 and βwj,τ = 0.

Consider function f(t) = minτgτ(t). This is well defined, since whatever the values

in t, the minimizer always has, by Corollary 4.2.3, an optimal SM strategy τ∗ in A(t)

such that for any strategy σ of the maximizer, and any strategy τ of the minimizer, and

all z we have r∗,σ,τ∗,t
z 6 r∗,σ,τ,t

z . Note that f(t) = (fw1(t + cu,w),fw2(t + cu,w), . . . ,fwm(t +

cu,w)).

Lemma 4.3.2. If f(t)> t for some finite vector t, then for any fixed point t∗ of f, t6 t∗.

Proof. Suppose that t∗ is some fixed point of f. Since f(t∗) = minτgτ(t∗), for some τ∗

we have gτ
∗
(t∗) = t∗. From the fact that f(t)> t, we get that for all τwe have gτ(t)> t.

In particular we have gτ
∗
(t)> t, which means thatDτ

∗
t+dτ

∗
> t. Now, for all i, either

dτ
∗
i = 0 and the i-th row in Dτ

∗
is all zeroes, or dτ

∗
i > 0, thus by Lemma 4.2.4 we can

conclude that t 6
∑∞
k=0(D

τ∗)kdτ
∗
. However, letting h(t) = gτ

∗
(t) =Dτ

∗
t + dτ

∗
be the

linear operator on [0,∞]m, note that the least fixed point solution (in [0,∞]m) of h(t)

is t0 = limk→∞hk+1(0) = limk→∞Dτ∗hk(0)+ dτ
∗
=
∑∞
k=0(D

τ∗)
kdτ

∗
. Thus, any other

fixed point of h has to be greater than t0 and in particular t∗ > t0 > t.

Now, we know that f(tσ−cu,w)i = fwi(t
σ) = r∗,σwi > r∗,σvi +cuivi −cuiwi = r∗,σui −cuiwi =

(tσ− cu,w)i which proves that f(tσ− cu,w) > tσ− cu,w. Therefore, by Lemma 4.3.2, any

fixed point of f has to be greater or equal to tσ− cu,w. Also, if we switch strategy σ to

σ ′, then tσ
′
− cu,w is a fixed point of f because f(tσ

′
− cu,w)i = fwi(t

σ ′) = r∗,σ
′

wi = r∗,σ
′

ui −

cuiwi = (tσ
′
− cu,w)i. Thus tσ 6 tσ

′
. Since f is non-decreasing, then r∗,σ

′
z = fz(tσ

′
) >

fz(tσ) = r∗,σz for any z, and for u1,u2, . . . ,um the inequality is strict: r∗,σ
′

ui − cuiwi =

92 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

r∗,σ
′

wi > r∗,σwi > r∗,σvi +cuivi −cuiwi = r∗,σui −cuiwi .

Thus, switching to the new SM strategy σ ′, we get r∗,σ
′

which dominates r∗,σ, and

is strictly greater in some coordinates, including all the ui’s. There are finitely many

SM strategies, thus repeating this we eventually reach some SM strategy σ∗ that can’t

be improved. Thus r∗,σ
∗
= P(r∗,σ

∗
), and by our earlier claim r∗,σ

∗
= r∗. Thus, the maxi-

mizer has an optimal SM strategy, arrived at via simultaneous strategy improvement.

The containment in PLS of the problem of finding the optimal strategies of both

players is an immediate consequence of Theorem 4.4.1 which will show that comput-

ing the optimal values of a minimizing 1-RMDP with positive rewards can be done

in PTIME and hence each step of simultaneous strategy improvement (finding the im-

provable nodes for the current maximizer’s strategy) can be performed in PTIME.

4.4 The complexity of RMDPs and RSSGs with positive rewards

Theorem 4.4.1. There is a PTIME algorithm for computing the exact optimal value (including

the possible value ∞) of a 1-RMDP with positive rewards, in both the case where the single

player aims to maximize, or to minimize, the total reward.

We consider maximizing and minimizing 1-RMDPs with positive rewards separately.

4.4.1 Maximizing 1-RMDPs with positive rewards

We are given a maximizing reward 1-RMDP with positive rewards (i.e., no Typemin

nodes in the 1-RSSG with positive rewards). Let us call the following LP “max-LP ”:

Minimize
∑
u∈Qxu

Subject to:

xu = 0 for all u ∈ Type0

xu >
∑
v∈n(u)puv(xv+cuv) for all u ∈ Typerand

xu > xen+x(b,ex ′) +cu for all u= (b,en) ∈ Typecall; ex ′ is the exit of Y(b).

xu > (xv+cuv) for all u ∈ Typemax and all v ∈ n(u)

xu > 0 for all vertices u ∈Q

We show that, when the value vector r∗ is finite, it is precisely the optimal solution

to the above max-LP, and furthermore that we can use this LP to find and eliminate

vertices u for which r∗u =∞. Note that if r∗ is finite then it fulfills all the constraints

of the max-LP, and thus it is a feasible solution. We will show that it also has to be an

optimal feasible solution. We first have to detect vertices u such that r∗u =∞. For the

4.4. The complexity of RMDPs and RSSGs with positive rewards 93

max-linear equation system P, we define the underlying directed dependency graph

G, where the nodes are the set of vertices, Q, and there is an edge in G from u to v

if and only if the variable xv occurs on the right hand side in the equation defining

variable xu in P. We can decompose this graph in linear time into strongly connected

components (SCCs) and get an SCC DAG SCC(G), where the set of nodes are SCCs of

G, and an edge goes from one SCC A to another B, iff there is an edge in G from some

node in A to some node in B. Let us sort topologically the SCCs of G as S1,S2, . . . ,Sl,

where the bottom SCCs are listed first. We will call a subset U ⊆Q of vertices decent

if all vertices reachable in G from the vertices in U are already in U. We also use U

to refer to the corresponding set of variables. Clearly, such a decent set U must be a

union of SCCs, and the equations restricted to variables in U do not use any variables

outside ofU, so they constitute a proper equation system on their own. For any decent

subset U of G, we will denote by max-LP|U a subset of equations of max-LP, restricted

to the constraints corresponding to variables in U and with new objective
∑
u∈Uxu.

Analogously we define P|U, and let x|U be the vector x with entries indexed by any

v 6∈U removed.

Proposition 4.4.2. Let U be any decent subset of vertices. (I) The vector r∗|U is the LFP of

P|U. (II) If r∗u =∞ for some vertex u in an SCC S of G, then r∗v =∞ for all v ∈ S. (III) If r ′

is an optimal bounded solution to max-LP|U, then r ′ is a fixed point of P|U. (IV) If max-LP|U

has a bounded optimal feasible solution r ′, then r ′ = r∗|U.

Proof. Part (I) follows immediately from definitions. Part (II) follows by induc-

tion on the length of the shortest path from any vertex v ∈ S to u. In particular, if

xv = max{xw, . . .}, and r∗w =∞, then r∗v =∞, and likewise for other vertex types. For

part (III), observe that for each vertex u ∈ Typemax, if r ′ is an optimal bounded so-

lution of the max-LP, then at least one of the constraints xu > xv+ cuv holds tightly,

i.e., xu = xv + cuv. For otherwise, we could decrease the value of xu, letting xu =

maxv∈n(u)(xv+cuv), and still satisfy all constraints. (Notice that u 6∈n(u) since other-

wise xu would not be bounded.) Similarly, the inequality for u∈ Typecall holds tightly.

For u ∈ Typerand we can have u ∈ n(u), but then necessarily puu < 1, and if the in-

equality is not tight for xu, it can be assigned a value of (puucuu+
∑
v∈n(u)\{u}puv(xv+

cuv))/(1 − puu) that is smaller and still satisfy all the constraints. For part (IV), if

max-LP|U has a feasible bounded solution, then the optimal (minimum) solution r ′

is bounded. From part (III), we know r ′ is a fixed point of P|U, but then from the

objective function of max-LP|U, we know that r ′ is the LFP of P|U, so we must have

r ′ = r∗|U.

94 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

Theorem 4.4.3. We can compute r∗ for the max-linear equation system P, including the

values that are infinite, in time polynomial in the size of the 1-RMDP with positive rewards.

Proof. Build dependency graph G of P and decompose it into SCC DAG SCC(G).

We will find the LFP solution to P, bottom-up starting at a bottom SCC, S1. We solve

max-LP|S1 using a PTIME LP algorithm. If the LP is feasible then the optimal (mini-

mum) value is bounded, and we plug in the values of the (unique) optimal solution

as constants in all other constraints of max-LP. We know this optimal solution is equal

to r∗|S1 , since S1 is decent. We do the same, in bottom-up order, for remaining SCCs

S2, . . . , Sl. If at any point after adding the new constraints corresponding to the vari-

ables in an SCC Si, the LP is infeasible, we know by Proposition 4.4.2 (IV), that at least

one of the values of r∗|Si is∞. So by Proposition 4.4.2 (II), all are. We can then mark

all variables in Si as ∞, and also mark all variables in the SCCs that can reach Si in

SCC(G) as∞. Also, at each step we add to a set U the SCCs that have finite optimal

values. At the end we have a maximal decent set U, i.e., every variable outside of U

has value∞. We obtain the vector r∗ by assigning variables in U the values obtained

by solving LPs and setting all the rest to ∞. All of this can be done in polynomial

time.

4.4.2 Minimizing 1-RMDPs with positive rewards

Given a minimizing 1-RMDP with positive rewards (i.e., no Typemax nodes) we want

to compute r∗. Call the following LP “min-LP: ”

Maximize
∑
u∈Qxu

Subject to:

xu = 0 for all u ∈ Type0

xu 6
∑
v∈n(u)puv(xv+cuv) for all u ∈ Typerand

xu 6 xen+x(b,ex ′) +cu for all u= (b,en) ∈ Typecall; ex ′ is the exit of Y(b).

xu 6 (xv+cuv) for all u ∈ Typemin and all v ∈ n(u)

xu > 0 for all vertices u ∈Q

Lemma 4.4.4. For any decent set U, if an optimal solution x to min-LP|U is bounded, it is a

fixed point of the min-linear operator P|U. Thus, if min-LP|U has a bounded optimal feasible

solution then r∗|U is bounded (i.e., is a real vector).

The proof is analogous to the max-LP case. Now, from min-LP we can remove vari-

ables xu ∈ Type0, by substituting their occurrences with 0. Assume, for now, that we

4.4. The complexity of RMDPs and RSSGs with positive rewards 95

can also find and remove all variables xu such that r∗u =∞. By removing these 0 and∞ variables from P we obtain a new system P ′, and a new LP, min-LP ′.

Lemma 4.4.5. If∞ and 0 nodes have been removed, i.e., if r∗ ∈ (0,∞)n, then r∗ is the unique

optimal feasible solution of min-LP ′.

Proof. By Corollary 4.2.3, Player 2 has an optimal SM strategy, call it τ, which yields

the finite optimal reward vector r∗. Once strategy τ is fixed, we can define a new

equation system P ′τ(x) =Aτx+bτ, whereAτ is a nonnegative matrix and bτ is a vector

of average rewards per single step from each node, obtained under strategy τ. We then

have r∗ = limk→∞(P ′τ)
k(0), i.e., r∗ is the LFP of x= P ′(x).

Proposition 4.4.6. (I) r∗ = (
∑∞
k=0A

k
τ)bτ. (II) If r∗ is finite, then limk→∞Akτ = 0, and thus

(I−Aτ)
−1 =

∑∞
i=0(Aτ)

i exists (i.e., is a finite real matrix).

Proof. (I): r∗= limk→∞(P ′τ)
k+1(0) = limk→∞Aτ(P ′τ)k(0)+bτ= limk→∞(

∑k
i=0(Aτ)

k)bτ.

(This holds regardless of whether r∗ is finite. We shall use this fact in a subsequent

proof.)

(II): since r∗ = P ′τ(r∗), we have, for any k> 0, r∗ =Akτr∗+(I+Aτ+A2
τ+ . . .+Ak−1

τ)bτ.

The second part of the right hand side, in the limit, is equal to r∗, thusAkτr∗ in the limit

is an all-zero vector. It follows that the limit of Akτ is an all-zero matrix since all the

entries/rewards in r∗ are positive (we have already removed 0 entries).

Now pick an optimal SM strategy τ for Player 2 that yields the finite r∗. We know that

r∗ = (I−Aτ)
−1bτ. Note that r∗ is a feasible solution of the min-LP ′. We show that for

any feasible solution r to min-LP ′, r 6 r∗. From the LP we can see that r 6 Aτr +bτ

(because this is just a subset of the constraints) and in other words (I−Aτ)r6 bτ. We

know that (I−Aτ)
−1 exists and is non-negative (and finite), so multiply both sides

by (I−Aτ)
−1 to get r 6 (I−Aτ)

−1bτ = r∗. Thus r∗ is the optimal feasible solution of

min-LP ′.

For u ∈Q, consider the LP: Maximize xu, subject to: the same constraints as min-

LP, except, again, remove all variables xv ∈ Type0. Call this u-min-LP ′.

Theorem 4.4.7. In a minimizing 1-RMDP with positive rewards, for all vertices u, value

r∗u is finite iff u-min-LP ′ is feasible and bounded. Thus, combined with Lemma 4.4.5, we can

compute the exact value (even if∞) of minimizing 1-RMDPs with positive rewards in PTIME.

Proof. We first need some preliminary claims. Let W be the set of vertices u such that

u-min-LP ′ is bounded and let S be the minimum decent set such that W ⊆ S. From

min-LP remove all the constraints for variables outside of the set S and remove the

variables of Type0 in the same way as before. Call this set of constraints LPS.

96 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

Proposition 4.4.8. For any two vectors x = [x1,x2, . . . ,xn],y = [y1,y2, . . . ,yn] and vector

z = max(x,y) = [max(x1,y1),max(x2,y2), . . . ,max(xn,yn)], and subset A ⊆ {1,2, . . . ,n},

and constants pij > 0,cij > 0 we have that:

1. if vectors x,y fulfil a linear constraint x̃i 6
∑
j∈Apij(x̃j+cij) then so does z

2. if vectors x,y fulfil a constraint x̃i 6minj∈A(x̃j+cij) then so does z

Proof.

1. Function max is monotonic, hence if xi 6 xj and yi 6 yj, then max(xi,yi) 6

max(xj,yj). Thus max(xi,yi)6max
(∑

j∈Apij(xj+cij),
∑
j∈Apij(yj+cij)

)
based

on the fact that they fulfil the underlying constraint. However we know that

for all j we have that xj 6 max(xj,yj) = zj and yj 6 max(xj,yj) = zj, hence∑
j∈Apij(xj+ cij) 6

∑
j∈Apij(zj+ cij) and

∑
j∈Apij(yj+ cij) 6

∑
j∈Apij(zj+

cij), which means that zi = max(xi,yi)6max
(∑

j∈Apij(xj+cij),
∑
j∈Apij(yj+

cij)
)
6
∑
j∈Apij(zj+cij)

2. Again we know that max(xi,yi)6max
(

minj∈A(xj+cij),minj∈A(yj+cij)
)

and

for all j we have xj+ cij 6 zj+ cij and yj+ cij 6 zj+ cij. We also know that

the min function is monotonic, hence minj∈A(xj + cij) 6 minj∈A(zj + cij) >

minj∈A(yj+cij). This means that zi = max(xi,yi) 6 max
(

minj∈A(xj+cij),

minj∈A(yj+cij)
)
6minj∈A(zj+cij).

Corollary 4.4.9. For any two feasible solutions x,y to LPS we have that z = max(x,y) =

[maxi(xi,yi)] (vector with entries being the maximum of the respective entries in x and y) is

a feasible solution to LPS as well.

Now we can proceed to the proof of the theorem.

(⇒) First, let us show that for any u if r∗u is finite, then u-min-LP ′ has to be feasible

and bounded. Feasibility is easy as the all zero vector 0 fulfills all the constraints in

u-min-LP ′.

Now pick the optimal SM strategy τ for the minimizer that yields the optimal

reward vector r∗ and take any feasible vector x. From the u-min-LP ′ we can see that

x6Aτx+bτ (because this is just a subset of the constraints). Since we removed all zero

reward nodes ie. exits of components, all entries of bτ are positive and by Lemma 4.2.4

we have x6 (
∑∞
k=0A

k
τ)bτ. However, by Proposition 4.4.6 (I) (which holds regardless

of whether r∗ is finite) this means that x6 r∗ for any feasible x.

4.4. The complexity of RMDPs and RSSGs with positive rewards 97

For contradiction, assume u-min-LP ′ was feasible but unbounded. Then there

would exist a sequence of feasible vectors x0,x1,x2, . . . such that limk→∞ xku =∞. But

we know that xk 6 r∗ for all k, thus r∗u would have to be infinite, contradicting our

assumption.

(⇐) Now let us show that if u-min-LP ′ is feasible and bounded then r∗u has to be

finite. Consider an LP with LPS constraints and with objective: Maximize
∑
u∈W xu.

Call it W-min-LP and for any optimal solution x∗ denote by x∗ the vector such that

x∗u = x∗u for all u ∈W and x∗u =∞ for all u ∈ S\W. Notice that x∗ is unique, because if

two different optimal vectors x and x ′ differ at a value of some variable xu ∈W, then

max(x,x ′) would be larger than x or x ′, and also a feasible solution by Corollary 4.4.9,

which would contradict the optimality of x or x ′.

Lemma 4.4.10. The vector x∗ is a fixed point of P|S.

Proof. Since for every variable u ∈W, u-min-LP ′ is bounded, and we removed from

u-min-LP ′ only the constraints that these variables do not depend on (even in a tran-

sitive way), the maximum value of xu cannot possibly increase after we remove these

constraints, because that would mean xu could have obtained a higher value in u-

min-LP ′. Hence the LPW-min-LP is feasible and bounded.

Let us take any optimal solution x∗ to W-min-LP. We show now that for x∗ no

constraint with a variable xu ∈W on the left hand side can hold tightly (i.e., with

equality) when there is some variable from S\W on the right hand side. Let S\W =

{v1,v2, . . . ,vn} be the set of unbounded variables, i.e., vi-min-LP is unbounded. We

know that for each of them there is a sequence of feasible solutions xvi111 ,xvi222 ,xvi333 , . . .

to vi-min-LP (the bold subscripts denote the position in this sequence, not the po-

sition inside the vector), such that the value of entry xvi in this sequence of vectors

is nondecreasing and becomes arbitrarily large. If we project this sequence onto the

variables in S then xvi111 |S,xvi222 |S,xvi333 |S, . . . is a sequence of feasible solutions to W-min-

LP, such that vi becomes arbitrarily large. Let us construct a sequence of vectors

x ′iii = max(x∗,xv1
iii |S,xv2

iii |S, . . . ,xvniii |S). By Corollary 4.4.9 we know that all vectors in this

sequence are feasible solutions to W-min-LP. We also know that all of them are op-

timal solutions, because we always take the maximum of their entries, including the

entries in the optimal solution x∗. So we obtain as high a value of objective function∑
u∈W xu as before, and we cannot improve this value as it would contradict the as-

sumption that x∗ was optimal. Now, notice three things:

1. Since every variable xu ∈ W is bounded, at some point in this sequence, we

98 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

will reach a point such that the r.h.s. of any constraint which involves some

variable xu ∈ S\W will be larger than the highest possible value of all variables

in W. This means that at that point there cannot be a constraint that holds with

equality such that xu ∈W is the l.h.s. and where there is a variable from S \W

on the r.h.s.

2. For all k, for every xu ∈W there has to be some constraint with xu on the l.h.s.

such that x ′kkk satisfies this constraint tightly (with equality) because otherwise we

could increase the value of xu without altering the value of any other variables,

to obtain a larger value for the objective, which contradicts the optimality of x ′kkk.

3. All variables xv ∈ S\W become arbitrarily large in this sequence, thus it cannot

be the case that there are only variables from W on the r.h.s. in any constraint

with xv on the l.h.s. (that would force this variable to be bounded).

Using these facts, we can see that for a large enough k, from the vector x ′kkk we can

construct a vector x∗ which is a fixed point of P|S. We do so by setting all variables

in S \W to∞, and leaving the variables in W unchanged from x ′kkk. The claim that x∗

is a fixed point of P|S follows because for every variable xu ∈W of type Typerand or

Typecall, x ′kkk satisfies the correlated constraint with xu on the l.h.s. with equality, and

this can only be the case if the r.h.s. of that constraint contains only variables in W,

and thus x∗ also satisfies this constraint with equality. Likewise, for variables xu in

W of type Typemin, for x ′kkk all constraints such that xu is the l.h.s. and there is at least

one variable from S \W on the r.h.s., must hold with strict inequality. Hence, since

equality must hold in x ′kkk for one of the constraints involving xu on the l.h.s., there

must exist one such constraint such that the r.h.s. only involves variables in W. Thus,

equality also holds for these constraints for x∗ for these variables. Thus x∗ satisfies the

corresponding min equation in P|S. Also, for variables in xv ∈ S\W, all the equations

in P|S will clearly be fulfilled after setting their values to∞, because both sides of the

equations correlated to xv have at least one variable from S\W, and that makes both

sides have value∞.

Now finally we can finish the proof of the theorem using the previous lemma.

Since we know that r∗|S is the LFP of the operator P|S, it has to be the case that r∗|S6 x∗,

which means that for all u ∈W, we have that r∗u|S 6 x∗u = x∗u, which is finite.

4.4. The complexity of RMDPs and RSSGs with positive rewards 99

Figure 4.2: Standard 1-RMC gadget used in the proof of Theorem 4.4.12. If p1 > 1/2 then

we terminate with probability strictly less than 1 (and of course the expected termination time is∞). If p1 < 1/2 then we terminate with probability 1 and the expected time if finite. However, if

p1 = 1/2 then we terminate with probability 1, but the expected time of termination is∞.

4.4.3 Complexity of (1-)RSSGs with positive rewards

Theorem 4.4.11. Deciding whether the value r∗u of a 1-RSSG with positive rewards is > a

for a given a ∈ [0,∞], is in NP ∩ coNP.

This is immediate from PTIME upper bounds for 1-RMDPs, and SM-determinacy:

guess a player’s SM strategy, and compute the value for the remaining 1-RMDP.

Theorem 4.4.12. Condon’s quantitative termination problem for finite SSGs is PTIME many-

one reducible to the problem of deciding whether r∗u =∞.

Proof. Consider the standard 1-RMC from [EY05s], depicted in Figure 4.2. From the

entry, en, this 1-RMC goes with probability p1 to a sequence of two boxes labeled by

the same component and with probability p2 goes to the exit. We assume p1 +p2 =

1. As shown in ([EY05s], Theorem 3), in this 1-RMC the probability of termination

starting at 〈ε,en〉 is equal to 1 if and only if p2 > 1/2.

Now, given a finite SSG, G, and a vertex u of G, do the following: first “clean up”

G by removing all nodes where the minimizer has a strategy to achieve probability 0.

We can do this in polynomial time. (If u is among these nodes, we would already be

done, but assume it is not.) The revised SSG will have two designated terminal nodes,

the old terminal node, labeled "1", and another terminal node labeled "0". From every

node v in the revised SSG which does not carry full probability on its outedges, we

direct all the “residual” probability to “0”, i.e., we add an edge from v to “0” with

probability pv,”0” = 1 −
∑
wpvw, where the sum is over all remaining nodes w in

the SSG. In the resulting finite SSG, we know that if the maximizer plays with an

100 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

optimal memoryless strategy (which he has), and the minimizer plays arbitrarily with

a memoryless strategy, there is no bottom SCC in the resulting finite Markov chain

other than the two designated terminating nodes “0” and “1”. In other words, all

the probability exits the system, as long as the maximizing player plays optimally.

Note also that, importantly, the “expected time” that it takes for the probability to exit

the system when the maximizer plays optimally is finite (because there are no “null

recurrent” nodes in a finite Markov chain).

Another way to put this fact is as follows: consider the resulting SSG to be a finite

reward SSG with reward 1 on each transition, and switch the role of the maximizer

and the minimizer, and now the goal of the maximizer is to maximize the total reward

before termination (at either exit), and that of the minimizer is to minimize it. Translat-

ing the above to this setting, the “cleaned up” SSG has the property that the minimizer

has a memoryless strategy using which, no matter what the maximizer does, the total

reward will be finite: we will terminate, at “0” or at “1”, in finite expected time (be-

cause there are no “null recurrent” nodes in finite Markov chains, and both players

have optimal memoryless strategies).

Now, take the remaining finite SSG, call it G ′. Just put a copy of G ′ at the entry of

the component A1 of the 1-RMC, identifying the entry en with the initial node, u, of

G ′. Take every edge that is directed into the terminal node "1" of G, and instead direct

it to the exit ex of the component A1. Next, take every edge that is directed into the

terminal "0" node and direct it to the first call, (b1,en) of the left box b1. Both boxes

map to the unique component A1. Call this 1-RSSG A.

We now claim that the value q∗u is less or equal to 1/2 in the finite SSG G ′ for

terminating at the terminal “1” iff r∗u is equal to ∞, i.e., the expected reward value

in the resulting 1-RSSG with positive rewards A is ∞ (recall: with the role of the

minimizer and the maximizer reversed, and with all transitions having reward 1).

The reason is as follows: we know that in A the minimizer has at least one SM

strategy that obtains finite reward inside any copy of G ′, and she must play one such

strategy each time she goes through G ′ if she wants to avoid payoff∞.

Now, there are only a finite number of SM strategies for the minimizer inside G ′

which yield a finite expected reward (after an optimal response by the maximizer).

Let D ∈ [0,∞) be the maximum finite expected reward among those SM strategies.

Also, no matter what the two players do, we know the maximizer earns reward at

least 1, each time we go through G ′. So, each time going through G ′ he accumulates a

rewardD ′ ∈ [1,D]. So, from the point of view of trying to make sure the total expected

4.4. The complexity of RMDPs and RSSGs with positive rewards 101

reward is finite, it is really of no relevance what the specific value ofD ′ is when we go

through G ′. Rather, what is important is whether we “visit” a copy of G ′, i.e., a copy

of the entry u, infinitely often.

Now, to make sure that that the expected number of times u is visited is finite,

the minimizer must in fact maximize the probability of terminating at “1”, and thus

minimize the probability of termination at “0”. In addition, the minimizer must also

make sure that the expected reward inside G ′ is finite, but this we know she can do

while maximizing the probability of terminating at “1”. Thus, the total reward r∗u is

equal to∞ precisely when the value of the SSG termination game G ′ is 6 1/2.

By contrast, for finite-state SSGs with strictly positive rewards, we can decide in

PTIME whether the value is∞, because this is the case iff the value of the correspond-

ing termination game is not 1. This is basically because null-recurrence is not possible

in finite state spaces. Deciding whether an SSG termination game has value 1 is in

PTIME (see, e.g., [EY06s]).

Finally, we show undecidability for multi-exit RMDPs and RSSGs.

Theorem 4.4.13. For multi-exit positive RMDPs with positive rewards it is undecidable to

distinguish whether the optimal expected reward for a node is finite or∞.

Proof. We will use in our construction the component named A in the proof of The-

orem 6 in [EY05i] that we can see in Figure 4.3 on the right. This single-entry n-exit

component relates RMDPs with n exits with Probabilistic Finite Automata (PFA) with

n states. More precisely the supremum probability of termination at the n-th exit start-

ing at the entry of A is equal to the supremum probability with which the correlated

PFA accepts some word. It was proved in [BC03] that deciding whether a given PFA

with 46 states accepts any word with probability greater than 1
2 is undecidable. This

means it is undecidable to resolve whether the supremum probability of termination

at the n-th exit (n= 46) in the correlated RMDP A is greater than 1
2 .

To prove that it is also undecidable to resolve whether the reward at a given node

is finite or not, we will combine the RMDP Awith a gadget 1-RMDP C, as can be seen

on the left in Figure 4.3. Let us denote by p the supremum probability of termination

at the n-th exit of the component A that box b0 is mapped to. We will argue that

p > 1/2 iff the infimum total reward for 1-RMDP with positive rewards C is finite.

We will need the following observation about the component A. Namely, for any

strategy that yields probability > 0 of exiting from the n-th exit of component A, it

must be the case that the total probability of exiting from one of the exits of component

102 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

Figure 4.3: A multi-exit RMDP with positive rewards. Deciding if the expected time of termi-

nation at ex when starting in en (both in C) is ∞ is undecidable. The component A (on the

right) with n exits, which was used in the proof of Theorem 6 in [EY05i], is tightly related to

Probabilistic Finite Automata (PFA) with n states. Each letter a,b, . . . of the alphabet of the PFA

has a corresponding box. There is a transition from an exit i of box x to an exit j of A with

probability pij iff there is a transition in that PFA that upon reading x changes the control state

i to j with probability pij. In order to check whether a given word w is accepted with probability

> 1/2, the minimizer enters boxes corresponding to the letters inw in a reverse order and then

picks the start transition. The expected time of termination in C is finite iff there exists a word

w that reaches the n-th exit port of box b0 in C with probability > 1/2. Since establishing

whether the language of a PFA with threshold 1/2 is empty is undecidable ([CL89, BC03]), we

also know that establishing whether the optimal expected reward of an multi-exit RMDP is∞ is

undecidable.

A is 1. It is easy to verify this fact based on the structure of component A given in

[EY05i].

Now, first suppose p > 1/2. It follows from the previously mentioned fact that in

the reward game the minimizer has a strategy with which to exit fromAwith probabil-

ity 1, and simultaneously to exit from the n-th exit with probability > 1/2. Therefore,

note that component C, under an optimal strategy played inside box B, acts like our

favorite gadget in which the probability of exiting directly is p > 1/2. For this gadget,

with p > 1/2 we know that the resulting expected time until termination is finite.

Moreover, the component A has the property that if p > 1/2, then the correspond-

ing PFA accepts a wordwwith probability> 1/2, and we can use wordw as a strategy

σw inA such that starting at the entry ofA, the strategy σw will exitAwith probability

1, exit from the n-the exit with probability p > 1/2, and exit from A in finite expected

4.5. Conclusions 103

time 2|w|. Thus the expected time taken until termination inside A, i.e., inside the box

B is finite, and hence the total expected time until termination starting at the entry of

C is finite.

Next suppose that the infimum total reward is finite, but that p 6 1/2. Then in C

we either stay inside a copy of B(A) with nonzero probability, in which case the total

reward is infinite, or else we exit from the n-th exit with probability p 6 1/2 and we

exit from the other exits with probability > 1/2. It follows easily from the properties

of the gadget in C that the expected termination time is infinite in such a case. Thus

if we can decide whether the optimal reward at the entry of C is finite or not, we can

also decide whether the termination probability at the n-th exit of B is greater than 1
2 ,

which we know is undecidable.

4.5 Conclusions

In this chapter we studied an important class of 1-RSSGs with all rewards on transi-

tions being positive. This assumption is very natural for modeling optimal/pessimal

expected running time in probabilistic procedural programs: each discrete step of the

program is assumed to take some nonzero amount of time. At the same time this as-

sumption is crucial to all our results since even determinacy is unknown for games

that allow some of the rewards to be equal to zero.

We showed that 1-RSSGs with positive rewards always have a value (which is not

immediately obvious since Martin’s theorem ([Mar98, MS98]) can not be applied) that

is either rational with polynomial bit complexity or ∞, and which arises as the least

nonnegative solution over the extended reals of a min-max linear equation system.

Furthermore, both players have optimal stackless and memoryless strategies in such

games.

We provided a PTIME algorithm for computing the exact value of these games in a

one player setting (both maximizing and minimizing 1-RMDPs with positive rewards)

via a Linear Programming formulation. It easily follows that the decision questions

about the two player version can be solved in NP ∩ co-NP.

We also described a practical simultaneous strategy improvement algorithm, anal-

ogous to similar algorithms for finite-state stochastic games, and showed that it con-

verges to the game value (even if it is ∞) in a finite number of steps. It follows that

computing the game value and optimal strategies for these games are contained in the

complexity class PLS ([JPY88]). Whether this strategy improvement algorithm runs in

104 Chapter 4. Recursive Simple Stochastic Games with Positive Rewards

the worst-case in PTIME is open, just like its version for finite-state SSGs.

We observed that quantitative questions about Condon’s finite-state Simple Stochas-

tic Games can be reduced to deciding whether the value of a given 1-RSSG with pos-

itive rewards is∞. By contrast, such a qualitative question for turn-based finite-state

stochastic games with nonnegative rewards can be solved in PTIME. On the other

hand, we showed that the same qualitative question for multi-exit RMDPs with posi-

tive rewards is undecidable.6

One remaining open question is whether computing the value of 1-RSSGs with

positive rewards is contained in PPAD (defined in [Pap94]). It was shown in [EY07]

that finding a fixed point of a min-max-linear system of equations over a compact

convex domain can be done in PPAD. It follows from this that Condon’s games are

in PPAD. Although the equation system for computing the values of a 1-RSSG with

positive rewards is precisely a min-max-linear equation system with nonnegative con-

stants, the solution we are looking for may not be finite. As a result, we cannot estab-

lish its containment in PPAD since the domain is not compact.

A natural extension of the 1-RSSGs with positive rewards is to allow the players to

make concurrent moves, i.e., choose simultaneously and independently at each node

one of the available actions. To each node and each pair of chosen actions, we as-

sign a reward and a probability distribution on the possible target nodes where the

game proceeds in the next step. (Basically, they describe (undiscounted) concurrent

countable-state stochastic games with positive rewards and the total expected reward

objective.) In order to solve such a model, results presented in this chapter would

need to be combined with results in [EY06i]. In fact, most of the work involved is

straight forward, a technical difficulty being that no ε-optimal strategies may exist in

such games.

It would interesting to apply the technique used in the proof of Theorem 4.3.1,

which establishes the simultaneous strategy improvement algorithm for 1-RSSGs with

positive rewards, to the setting of termination 1-RSSGs, their concurrent extension,

and a concurrent extension of 1-RSSGs with positive rewards.

As we can see, the natural assumption of all rewards being positive endows our

model with some crucial properties that allows for an efficient analysis. It would be

interesting to know whether decision questions about the more general model of 1-

RSSGs (with nonnegative rewards) are decidable or not. One basic problem is that in

6We cannot state this fact for multi-exit RSSGs since it is not even clear whether such games are
determined or not.

4.5. Conclusions 105

general we do not even know whether such games are determined or not, since Mar-

tin’s theorem ([Mar98, MS98]) can not be applied to such a setting. Furthermore, as

discussed in Section 2.2.1 of Chapter 2, even qualitative questions about a special class

of these games, namely reachability 1-RSSGs (which are known to be determined), are

not fully answered yet.

Chapter 5

PReMo – Probabilistic Recursive

Models analyzer

5.1 Introduction

In this chapter we describe our tool PReMo (Probabilistic Recursive Models analyzer)

that we implemented in Java and report on some interesting experiments that we con-

ducted with it. The main aim of PReMo (read as primo) is to allow the user to spec-

ify and analyze abstract models of probabilistic procedural programs and other sys-

tems involving recursion and probability. Probability comes either from an explicit

randomization like in the Quicksort algorithm, or by abstracting some aspects of a

program, or by modeling input data to a program. PReMo is capable of analyzing

Recursive Markov Chains (RMCs), Stochastic Context-Free Grammars (SCFGs) and

probabilistic 1-Counter Automata (p1CAs) (equivalent to Quasi-Birth-Death processes

(QBDs)). Various other models like probabilistic Pushdown Systems (pPDSs), Multi-

Type Branching Processes (MT-BPs) and discrete-time Tree-like QBDs can be analyzed

indirectly since they can be translated by hand to the models supported by PReMo.

These models have been well-studied in domains such as model checking, natural

language processing, population dynamics and queueing theory. Also, controlled and

game extensions of these models: Recursive Markov Decision Processes (RMDPs) and

Recursive Simple Stochastic Games (RSSGs) can be analyzed in PReMo. These ex-

tensions allow for modeling of nondeterministic and interactive behavior. PReMo is

the first (and still only) software tool that is capable of analyzing all these models.1

1For formal definitions of all these models see Section 2.2 and for detailed relationships between them
and equivalences see Section 2.3, both part of Chapter 2.

107

108 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

These models can be specified in PReMo in several different input formats, including

a simple imperative-style language for specifying RMCs and RSSGs. Furthermore, for

RMCs and RSSGs, PReMo can generate a graphical depiction of the model, which is

useful for visualizing small models (see an example in Figure 5.1).

In order to describe RMCs, let us discuss an example depicted in Figure 5.1. Infor-

mally, an RMC consists of several component Markov Chains (in Figure 5.1 these are

named A and B) that can call each other recursively. Each component consists of nodes

and boxes with possible probabilistic transitions between them. Each box is mapped

to a specific component so that every time we reach an entry of a box, we jump to

the corresponding entry of the component it is mapped to. When/if we finally reach

an exit node of this component, we jump back to the respective exit of the box that

we have entered this component from. This process models, in an obvious way, func-

tion invocation in a probabilistic procedural program. Every potential function call

is represented by a box. Entry nodes represent possible parameter values passed to

the function, while exit nodes represent returned values. An instruction of a function

paired with one of possible valuations of its variables is represented by an internal

node of a component.

We are interested in the following question about termination of a given RMC:

what is the probability of reaching from a given entry of a component and an empty

stack, a given exit of the same component with an empty stack. Computation of these

probabilities is a key ingredient for model checking and other analyses for RMCs

and pPDSs. This problem was shown to be equivalent to finding the Least Fixed

Point (LFP) of a nonlinear polynomial equation system ([EY05s, EKM04]). For gen-

eral RSSGs this question was shown to be undecidable, but for a restricted class of

1-exit RMDPs and 1-exit RSSGs, this problem was reduced to finding the LFP of a

nonlinear polynomial equation system with min and max operators ([EY05i]). PReMo

implements a number of efficient numerical algorithms for analyzing such systems of

equations. Methods provided include both dense and sparse versions of the decom-

posed Newton’s method developed in [EY05s], as well as versions of value iteration,

optimized using nonlinear generalizations of Gauss-Seidel and SOR techniques. All

of them can be further enhanced by running transparently on top of them a strategy

improvement procedure. In addition to computing termination probabilities, PReMo

can compute the (maximum/minimum/game) expected termination time in 1-RMCs, 1-

RMDPs, 1-RSSGs, and SCFGs. It does so by generating a different monotone system of

linear (min-max) equations, whose LFP is the value of the game where the objectives

5.1. Introduction 109

of the two players are to maximize/minimize the expected termination time (these

expected times can be∞).

We conducted a range of experiments with PReMo in order to compare the per-

formance of all these different numerical procedures. Our experiments indicate very

promising potential for some of them. In particular, our decomposed Sparse New-

ton’s method performed very well on most models we tried, up to quite large sizes.2

Although these numerical methods appear to work well in practice on most instances,

the exact complexity of the underlying computational problems still remains unknown

([EY05s, EY07]). Recently, much progress has been made on analyzing how many

Newton’s method iterations are needed to compute the LFP of monotone min-max

polynomial equation systems within a given relative error ε for certain classes of

such systems ([KLE07, EKL08, EWY08q] and Chapter 3). However, these analyses

apply only to Newton’s method performed with exact arithmetic, while all the com-

putations in PReMo are performed in the IEEE standard double precision floating-

point arithmetic (see Section 5.2.5). Because of this, PReMo returns approximation not

within a given error but rather within an absolute/relative tolerance, which is the ab-

solute/relative difference between two consecutive iteration steps. PReMo could be

implemented with arbitrary precision arithmetic, but it would slow its performance

significantly, since very often the size of the rational values grows exponentially in the

number of, e.g., Newton’s method iterations performed.

The rest of the chapter is organized as follows. In Section 5.2 we discuss the in-

ternal workings and structure of PReMo: parsers and input models supported, GUI,

what kind of numerical algorithms are implemented and their implementation issues.

Later, in Section 5.3 we present the experimental performance of PReMo on various

case studies, including grammars used in Natural Language Processing and a toy

Quicksort model. In Section 5.4 we compare PReMo with SMCSolver, a solver for QBDs

that implements their specific most efficient known methods. We conclude in Section

5.5 and list some possible future extensions to PReMo.

PReMo (version 1.3) is available for download for the main operating systems at:

groups.inf.ed.ac.uk/premo

2M-J. Neiderhof and G. Satta also implemented this method ([NS06]) based on [EY05s] and used it for
stochastic parsing in NLP. However, they did not exploit the sparsity of the transition matrix by using
a sparse linear solver to perform each iteration of Newton’s method. We would like to thank them for
pointing us in the direction of large SCFG libraries used in NLP.

http://groups.inf.ed.ac.uk/premo

110 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

5.2 Tool description

Thanks to the fact that PReMo is implemented entirely in Java, it was easy to adapt

it to run on the three main operating systems: Windows, Linux and MacOS. PReMo is

composed of the following four main components:

1. Parsers of several text input formats that allow for specifying RMCs, RSSGs,

SCFGs and p1CAs. Also, a parser for general monotone systems of nonlinear

equations including, e.g., exponentiation and logarithm operators.

2. A menu-driven GUI, with an advanced syntax-aware text editor. Through the

menu the user has a direct access to many available options of the tool and can

run directly any of the numerical algorithms and adjust its parameters.

3. A graphical depiction generator for RMCs and RSSGs, which produces an out-

put in the dot format. Furthermore, if Graphviz([GN99]) is installed on the user’s

computer, a visualization of an RMC/RSSG in a PS/JPEG/GIF format can be

exported directly from PReMo.

4. Optimized solvers: Several solvers are implemented for computing the smallest

nonnegative solution of a monotone system of equations. Approximate solu-

tions of such equation systems can approximate the termination probabilities,

expected termination times and steady state distributions3 of our models.

We will now briefly describe each of these parts.

5.2.1 Parsers

PReMo supports the following input formats: RMC, RSSG, SCFG, QBD (a.k.a. p1CA),

and an arbitrary equation system input format. Parsers for the first four of them were

generated using the JavaCC tool (javacc.dev.java.net) from description files consisting

of productions in an extended Backus-Naur form. For parsing an arbitrary equation

system we rely on Java Expression Parser (JEP) (www.singularsys.com/jep). We will

now briefly describe each input language and what analyses PReMo supports for the

model corresponding to such a language. A formal grammar of all these input lan-

guages, along with a step by step PReMo usage guide, can be found in PReMo’s man-

ual [Woj06]. Notice that all these input languages have a support for specifying the

3This feature is only available for p1CA/QBD models.

http://javacc.dev.java.net
http://www.singularsys.com/jep

5.2. Tool description 111

B

L4(A)

A

L2(B)

L1(A)

0 0.3
0.3

0.4

0

1
0

1
0.5

0.50

0.51
0.5 0.6

L5

0.4

0
0.5

0.5

1
0.3

0.7

0

1

0

0
1.0

1.0
1

0.5

0.5

L3

0

1
0.2

0.80

1.01

Figure 5.1: Source code of an RMC, and its visualization generated by PReMo.

probabilities as a floating-point number, e.g., 0.3333, as well as a rational number, e.g.,

1/3.

5.2.1.1 RMCs

We can see an example textual description of an RMC along with its graphical depic-

tion generated by PReMo in Figure 5.1. The PReMo syntax for defining RMCs is as fol-

lows: first we declare all components (procedures), using two numbers as parameters

that denote the number of entries and exits (for instance in our example B(1,2); de-

clares “Component B has 1 entry and 2 exits”). Next, we define the components. Each

component definition starts with a declaration of all the boxes contained in that com-

ponent, together with the information concerning which component they are mapped

to (e.g., L2(B); declares a box named L2 that is mapped to component B). Next, for all

entries, internal nodes, and exits of the boxes, we specify a list of transitions available

from that control state. A single transition is a probability value followed by a goto,

call or return instruction. We use the goto instruction when the transition leads to

112 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

an internal node of the same component. A call name_of_the_box(entry_number)

instruction is used when we want to invoke a component that is mapped to a box

labeled name_of_the_box with a parameter entry_number. Finally, we use return i;

when we want to exit the current component and return value i, in other words, reach

the i-th exit node of the current component we are inside of.

PReMo can generate equations for computing the termination probabilities of an

RMC and in the case of 1-exit RMCs, it can also generate equations for computing the

expected total reward (e.g., the expected time of termination).

5.2.1.2 RMDPs and RSSGs

We can see an example source code of an RSSG with its transition graph generated

by PReMo in Figure 5.2. The specification of an RSSG is almost the same as for an

RMC except that any entry, internal node or a box exit can be preceded by a name

of one of the players who owns it, min or max, in square brackets (e.g., [max] L1

{...} declares that the internal node L1 is controlled by the maximizer player). In the

transition graph, nodes controlled by the maximizer are represented by red dots, the

nodes controlled by the minimizer are represented by blue dots and the probabilistic

nodes, just like it was for RMCs, are represented by black dots.

PReMo supports analysis of the optimal termination probability and the expected

time of termination for 1-exit RMDPs and 1-exit RSSGs. Unfortunately, computing

or even approximating the optimal termination probabilities for general multi-exit

RMDPs and multi-exit RSSGs is undecidable ([EY05i]). Also, even deciding if the

optimal reward is∞ or not in multi-exit RMDPs and multi-exit RSSGs with positive

rewards is undecidable (Chapter 4 and [EWY08i]).

5.2.1.3 SCFGs

To specify an SCFG as an input the user writes down a set of productions, one on each

line. Each production specifies first the probability of this production happening, then

which nonterminal this production rewrites followed by -> and the yield of this pro-

duction – a sequence of terminals and nonterminals. The user does not have to specify

which symbols are terminals since any symbol without any associated production is

assumed to be a terminal symbol by default. An example SCFG is shown in Figure

5.3.

PReMo can compute for a given SCFG the probability that it generates a finite word

(in terms of RMCs: the probability of termination) and the expected number of gram-

5.2. Tool description 113A(2,2);B(1,2);A{L1(A);L2(B);[min]entry0:gotoL3;callL2(0);entry1:0.3:callL1(0);0.7:callL1(1);L1{exit0:0.8:gotoL3;0.2:callL2(0);exit1:1.0:return1;}L2{exit0:1.0:gotoL3;[max]exit1:return0;return1;}L3{0.5:return0;0.5:return1;}}B{L1(A);entry0:0.3:callL1(0);0.3:callL1(1);0.4:gotoL2;L1{[min]exit0:return0;return1;exit1:0.5:return0;0.5:gotoL2;}[max]L2{gotoL2;return0;}}

A

L2(B)

L1(A)

B

L1(A)

0

1
0.3

0.7

0

1

0

0 1

1 0.5

0.5
L3

0

1

0.2

0.8
0

1
1

0

0.4

0.3

0.3

0

1

L20

1 0

0.5

0.51

Figure 5.2: Source code of an example RSSG, and its underlying transition graph.0.5A�>BCD0.5A�>AA0.7B�>C0.3B�>A0.4C�>B0.6C�>D
Figure 5.3: Source code of an example SCFG. The only terminal symbol is D and the nonter-

minal symbols are A, B and C.

mar rules applied before termination. Note that the last value is equal to ∞ if the

probability of termination is strictly less than 1, but the opposite does not hold.

5.2.1.4 p1CAs/QBDs

To input a p1CA/QBD the user specifies for each control state all its outgoing transi-

tions. A rate can be assigned to each transition, not just a probability. These rates are

later normalized for each control state to sum up to 1 in order to obtain the embed-

ded discrete-time Markov Chain. Furthermore, each transition specifies whether the

114 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

E��"�
��������F���
�
������!�E���
�
F��"�
��������F���
�
��������F�

Figure 5.4: Source code of an example p1CA.

counter is increased (+), decreased (-) or retained (=) by this transition and the target

control state. Finally, each transition has a reward associated with it (equal to 1 by

default), which can be redefined by specifying its new value in brackets.

PReMo can approximate for a given p1CA/QBD the probability of reaching a given

control state with an empty queue when starting in a given control state with one client

in the queue (the so-called Gmatrix, i.e., the termination probabilities). In order to do

that PReMo first applies and outputs the result of a decision procedure for determining

which of these variables have a nonzero value, i.e., which control states can be reached

with a nonzero probability with the counter value 0, when starting from a given state

with the counter equals to 1. Furthermore, PReMo can compute the expected time of

termination and the second moment of this time. This allows to compute the standard

deviation of this time in a standard way. Moreover, PReMo can compute steady-state

probabilities as described in Section 2.2.7 of Chapter 2.

5.2.1.5 Arbitrary equation systems

Here the user defines a list of equations separated by a new-line character. For each

variable, its equation defines an expression that this variable has to fulfill, e.g., x =

sin(y) + 1/2*x; y = cos(y) defines a fixed point equation system for variables x

and y. Variable x depends both on variables y and x, while y depends only on the

value of itself. We rely on Java Expression Parser (JEP) to parse and interpret each such

equation. For the formal grammar of well-formed expressions see www.singsurf.org/

/djep/html/grammar.html and for the list of supported standard math functions see

www.singsurf.org/djep/html/op_and_func.html. We added to JEP a support for func-

tions max/min with an arbitrary number of arguments, whose value is the maxi-

mum/minimum of its arguments. Obviously any expression that uses such a function

is not differentiable and Newton’s method cannot be applied to it directly. However,

when a suitable strategy improvement algorithm is applied to such an equation sys-

tem, it can remove all min/max operators from the equations and make Newton’s

method be applicable again (for details see Section 5.2.6).

http://www.singsurf.org/djep/html/grammar.html
http://www.singsurf.org/djep/html/grammar.html
http://www.singsurf.org/djep/html/op_and_func.html

5.2. Tool description 115

5.2.2 Tool interface

Figure 5.5: On the left a screenshot of choosing one of the supported models in PReMo, on

the right a generated equation system along with a list of different numerical solvers available in

PReMo for use and at the bottom the text editor that supports syntax highlighting and parsing

errors indication.

PReMo’s GUI was built using SWT (Standard Widget Toolkit) that was created for

the Eclipse IDE as a much more efficient replacement of Java’s standard Swing widget

toolkit and allows to build user interfaces with a native look and feel. We can see few

screenshots of PReMo when run in Windows XP in Figure 5.5. PReMo’s GUI was de-

signed using a free version of WindowBuilder (www.instantiations.com/windowbuilderpro).

The problem with SWT is that the operating system’s specific SWT native library has

to be first preinstalled on the user’s computer in order to run any application that

uses SWT. In order to save the user some trouble and keep PReMo just as a single JAR

(Java ARchive) file we used a trick by Dan Rubel that was used in the SWTLoader

library (www.moioli.net/files/SWTLoader.zip). We basically automatically extract to the

http://www.instantiations.com/windowbuilderpro
http://www.moioli.net/files/SWTLoader.zip

116 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

current directory the native library from inside PReMo’s JAR file and invoke Java Vir-

tual Machine again but this time with the native library loaded. We also use this

opportunity to increase the amount of memory available to PReMo to 256MB since the

default is much too low. Increasing the amount of available RAM improves PReMo’s

performance significantly since otherwise Java’s time-consuming garbage collector is

invoked very often.

Furthermore, PReMo contains a source code editor that supports auto-indentation,

syntax-highlighting, and highlighting the lines that contain parsing errors once they

occur. The available options in the menu allow the user to load and save source code,

generate visual depiction of RMCs and RSSGs, generate their corresponding equation

systems, find their approximate solutions using various numerical algorithms and ad-

just their parameters, and after that obtain their performance data, and export the

results to external files.

5.2.3 Graphical depiction

Dot is a language for defining graphs in the GraphViz tool. This tool performs auto-

placement of node and edges, based on an advanced physical spring model, in or-

der to create a non-cluttered graph and allows to export them in to various graph-

ical formats. In order to generate a dot file from a RMC/RSSG model we used the

Apache Velocity (velocity.apache.org) library which allowed us to easily write a param-

eterized text file template in a programming language tailored to this task. We wrote

two different templates so that the user can choose between two different graphical

layouts. However, Velocity handles very poorly white-characters in the text files and

so in order for the output dot source file to be human-readable, we implemented a

module that automatically indent text output streams. If Graphviz[GN99] is already

installed on the user’s computer, a dot file can be automatically exported from PReMo

in a PS/JPEG/GIF format. Example dot files turned into a PNG graphic can be seen in

Figure 5.1 and 5.2.

5.2.4 Optimized solvers for min-max-polynomial equations

The core numerical computation for all the analyses provided by PReMo involves solv-

ing a monotone system of nonlinear min-max equations. Namely, we have a vector of

variables x = (x1, . . . ,xn), and one equation per variable of the form xi = Pi(x), where

Pi(x) is a monotone polynomial-min-max expression with rational coefficients. In vec-

http://velocity.apache.org

5.2. Tool description 117

tor notation, this system of equations can be denoted by x = P(x). The goal is to find

its Least Fixed Point (LFP) solution, i.e., the least non-negative vector, q∗ ∈Rn>0, such

that q∗ = P(q∗). (In fact such q∗ is equal to limk→∞Pk(0) if all Pi-s are polynomial-

min-max expressions.) Notice that the values we are looking for can be irrational and

even not expressible by radicals, and so instead of computing them exactly we try to

approximate them to within some given error. In brief, the solvers in PReMo work

as follows (see [EY05s] for more background): First, we decompose the equations into

SCCs (Strongly Connected Components) and calculate the solution “bottom-up”, solv-

ing the bottom SCCs first and plugging in the solution as constants into higher SCCs.

To solve each SCC, PReMo provides several methods:

Value iteration – nonlinear Jacobi

Jacobi, or basic iteration, just computes x0 = 0,x1,x2, . . ., where xi = P(xi−1).

Nonlinear Gauss-Seidel method

Gauss-Seidel iteration is a slight optimization of Jacobi iteration: inductively, having

computed xk+1
j for j < i, let xk+1

i := Pi(x
k+1
1 , . . . ,xk+1

i−1 ,xki ,xki+1, . . . ,xkn). In other words,

we use a new value of a variable as soon as it is computed for the current iteration.

The order in which we consider the variables plays an important role; in extreme cases

we observe a ten fold speed-up in the total running time for the same equation system.

We observed that in practice for random equation system instances (see Section 5.3.2)

this simple technique allows us to converge twice as fast as the Jacobi method.

Successive Overrelaxation (SOR)

SOR is an “optimistic” modification of Gauss-Seidel, which isn’t guaranteed to con-

verge in our case. Suppose we are at the k-th step of the iteration with an approximate

solution xk. Let xxxk+1 denote the new assignment to the variables as if one step of the

Gauss-Seidel method was applied to the vector xk. The SOR method with parameter

ω ∈ (0,2) takes as the next approximation a vector equal to ω ·xxxk+(1 −ω) · xk. This

method is widely used for linear equation systems and often significantly increases

the efficiency of finding their solutions. However, in our nonlinear case we did not ob-

serve any significant advantages. A possible explanation of this fact is the following:

if the Gauss-Seidel method converges fast to the solution of a given example then SOR

method, which tries to increase the convergence rate, will “overshoot” and the con-

118 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

secutive approximations will jump between an approximation that is strictly greater

than the actual solution and an approximation that is strictly smaller. Furthermore,

each iteration of SOR costs a little bit more than Gauss-Seidel.

We checked whether the SOR method with different values of the parameter ω ∈
(1,2) (for larger values SOR always diverges) can help to increase the convergence

rate of the termination probability equations for the gadget presented in Figure 4.2,

where p1 = 1
2 . The corresponding equation system is equivalent to a single equation

x= 1
2x

2 + 1
2 . The termination probability for this example is equal to 1, but the expected

number of steps to termination is∞ and the Gauss-Seidel method needs Θ(2i) itera-

tions in order to approximate x to within 2−i additive factor as was shown in [EY05s].

We examined the total running time with different absolute tolerance stoppage crite-

ria of 10−4,10−5, . . . ,10−14. As we can see from Table 5.1, we still need an exponential

number of steps even for ω being as close to 2 as 1.999 and there is just a small dif-

ference between the running times of the Gauss-Seidel method and SOR with such a

parameter. Furthermore, SOR can already be unstable with a small value of ω (see

Table 5.2 in Section 5.3.1). In conclusion, if we need to use a basic iterative solver in

PReMo, Gauss-Seidel is almost always the best choice.

Dense and sparse decomposed Newton’s method

Newton’s method attempts to compute a solution to F(x) = 0. In n-dimensions, it

works by iterating xk+1 := xk−(F ′(xk))−1F(xk) where F ′(x) is the Jacobian matrix of

partial derivatives of F. In our case we apply this method to F(x) = P(x)− x. It was

shown in [EY05s] that if the system is decomposed into SCCs appropriately, conver-

gence to the LFP is guaranteed if we start with x0 = 0. The expensive task at each step

of Newton’s method is the matrix inversion (F ′(xk))−1. Explicit matrix inversion is

too expensive for huge matrices. But this matrix is typically sparse for RMCs, and we

are able to handle much larger matrices if instead of inverting (F ′(xk)), we solve the

following equivalent sparse linear system of equations: (F ′(xk))(xk+1 −xk) = F(xk) to

compute the value of xk+1 − xk, and then add xk to obtain xk+1. Our Dense New-

ton’s method uses LU decomposition to invert (F ′(xk)). The Sparse Newton’s method

uses at each step a sparse linear iterative solver to find the next approximation of

the solution. We used sparse linear equation solvers implemented in the MTJ (Matrix

Toolkit for Java) library (described in Section 5.2.5) that provides us with the following

solvers:

• Biconjugate Gradient

5.2. Tool description 119

• Biconjugate Gradient Stabilized

• Iterative Refinement (preconditioned Richardson method) (see, e.g., [Var62])

• Conjugate Gradients Squared

• Quasi Minimal Residual

The user can choose to use any of these five solvers from the Advanced options menu in

PReMo. According to our performance tests the Iterative Refinement was the fastest

on the examples that we tried. However, if the system of equations is ill-conditioned

at any step of the approximation process then the convergence of this method is either

very slow or it does not converge at all. In such a case the user should choose the

Biconjugate Gradient method that does not have this problem and is just a little bit

slower on the average.

Broyden method

The Broyden method, first described in [Bro65] is a generalization of the secant method

to multiple dimensions. Instead of computing the Jacobian matrix at each step like in

Newton’s method, it approximates the Jacobian matrix based on its previous value. If

Jk denotes the Jacobian matrix at the k-th step of Broyden’s method then we approxi-

mate it by Jk = Jk−1 +
∆Fk−Jk−1∆xk

||∆xk||2
∆xTk and then the method proceeds just like New-

ton’s method: xk+1 = xk− J−1
k F(xk). Broyden also suggested updating the inverse of

the Jacobian directly: J−1
k = J−1

k−1 +
∆xk−J

−1
k−1∆Fk

∆xTkJ
−1
k−1∆Fk

(∆xTkJ
−1
k−1). This method is commonly

referred to as the “good Broyden’s method”. By using a slightly different modification

to Jk−1 we get the so-called “bad Broyden’s method”: J−1
k = J−1

k−1 +
∆xk−J

−1
k−1∆Fk

∆FTk∆Fk
∆FTk .

Notice that the bad Broyden’s method requires less arithmetic operations than the

“good” one but it updates the inverse of the Jacobian in a less precise way. Accord-

ing to our experiments the good and the bad Broyden’s methods are never faster in

practice than the Sparse Newton’s method and sometimes even slower than Gauss-

Seidel. The possible explanation is the fact that most of the savings in using Broyden’s

method comes from not having to recompute the Jacobian matrix over and over again

at each step of the iteration. However, in our case we compute the Jacobian matrix

symbolically just once at the very beginning and computing it on later stages requires

us just to evaluate some polynomial expressions which is very fast to perform.

120 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

tolerance Gauss Seidel SORω= 1.2 SORω= 1.999 Dense Newton

10−4 0.010(136) 0.006(124) 0.000(2) 0.001(13)

10−5 0.022(441) 0.021(402) 0.000(2) 0.001(16)

10−6 0.049(1407) 0.081(1283) 0.000(2) 0.002(19)

10−7 0.092(4463) 0.087(4074) 0.007(1164) 0.002(23)

10−8 0.105(14132) 0.127(12900) 0.035(8002) 0.002(26)

10−9 0.208(44710) 0.183(40814) 0.131(29629) 0.002(27)

10−10 0.731(141409) 0.231(129087) 0.155(98023) 0.001(27)

10−11 0.947(447202) 0.648(408236) 0.492(314303) 0.002(27)

10−12 1.849(1414194) 1.974(1290916) 1.651(998148) 0.001(27)

10−13 5.694(4472044) 6.241(4080682) 4.932(3160483) 0.001(27)

10−14 17.673(14089115) 19.732(12766680) 15.075(9925181) 0.001(27)

Table 5.1: The results of running Gauss-Seidel, the SOR method with different ω values and

the Dense Newton’s method on the equation x= 1
2x

2 + 1
2 . The first column of each row specifies

the target absolute tolerance to be achieved, and then the running time in seconds is given for

each solver including, in parentheses, the number of iterations that solver required. Notice that

SOR always needs less iterations that Gauss-Seidel, but the difference in its running time is

not that significant, since each of its iterations takes longer time than one step of Gauss-Seidel.

This clearly can be observed for tolerance 10−14: SOR with ω = 1.2 runs 2 seconds slower

than Gauss-Seidel although it needs to perform 10% less iterations. As we can see, the SOR

technique does not provide any significant speedup unless the parameter ω is very close to

2, and for small values of this parameter its running time is even greater than Gauss-Seidel’s.

Moreover, even for small values ofω the SOR method can be unstable (see Table 5.2 in Section

5.3.1) and for ω = 2 the SOR method is always unstable. For comparison, in the last column

we can see the running time of the Dense Newton’s method, which is negligible compared to all

the other methods. (In this particular example, Newton’s method after 27 iterations obtains all

the available bits of precision in the double precision arithmetic.)

Dense and sparse linear solver

These solvers are highly optimized solvers that are applicable to linear equations only.

Equations like that can occur, e.g., for 1-exit RMCs with positive rewards. The Sparse

Linear Solver in PReMo can use any of the sparse linear solvers mentioned in Section

5.2.4. Both of these solvers handle SCCs with a single variable in a special way since

such SCCs are trivial to solve in the setting where all expressions are linear. Moreover,

Dense Linear Solver is implemented to be robust. It detects for each SCC whether in

the corresponding equation system xxx=Axxx+b, the matrix I−A is singular or not and if

5.2. Tool description 121

it is then all the variables in such an SCC are set to∞. In the case when the matrix I−A

is invertible, but one of the entries of the vector (I−A)−1b is negative,∞ is assigned

to all the variables as well. In all other cases, (I−A)−1b is the only nonnegative finite

solution of the equation xxx = Axxx+b, and so, also its LFP. This fact is not obvious and

requires a proof which is provided in the appendix of this chapter. Although checking

the nonnegativity of (I−A)−1b is performed when using the Sparse Linear Solver,

checking whether I−A is singular or not is not done. The reason is that iterative

algorithms for sparse matrices are unreliable in detecting nonsingular matrices due

to the approximation errors involved in their computation. Of course it is possible to

check nonsingularity of a matrix via its dense representation, but such a check would

be more costly than computing the approximation itself and the benefit of having

sparse matrix representation would disappear.

5.2.5 PReMo’s implementation

Thanks to the fact that PReMo is implemented in a object oriented way, a big amount

of common code, e.g. initialization and performance analysis, is shared between all

the numerical solvers. Since these solvers can only converge to within some interval

of the actual solution, PReMo provides different mechanisms for the user to choose

when to stop the approximation process: absolute tolerance, relative tolerance, and a

specified number of iterations. The first two are parameterized with a tolerance value

ε:

• absolute tolerance – stop when (
∥∥xk−xk−1

∥∥∞ < ε)
• relative tolerance – stop when (

∥∥xk−xk−1
∥∥∞ /∥∥xk−1

∥∥∞ < ε)
• stop after some constant number of iterations

None of them can actually guarantee how far the returned approximation is away

from the actual solution and this is why we refer to ε as tolerance, not an error. Never-

theless, these stopping criteria are most commonly used in practice and behave well.

Moreover, each solver has a maximum number of iterations it can perform after which

the current approximation method is declared to be not convergent. This number is

different for basic iterative solvers like Gauss-Seidel and for Newton based methods.

For parsing mathematical expressions we used a free version of Java Math Expres-

sion Parser (JEP) library (www.singularsys.com/jep/) and its extension that implements

a symbolic differentiator for a very broad class of mathematical expressions. However,

http://www.singularsys.com/jep/

122 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

this differentiator turned out to be too slow and memory consuming for most of our

purposes and it could not handle long expressions that occurred, e.g., for SCFGs de-

rived from the Penn Treebank corpora (Section 5.3.1). As a result we had to replace it

with our own implementation of a symbolic differentiator that is specifically tailored

to only polynomial expressions that we are mostly dealing with. Our implementation

turned out to be ten times faster than the differentiator in JEP. Nevertheless, the user

can still choose which differentiator he prefers to use. This allows to use Newton’s

method for a more general class of equation systems in the arbitrary equation system

input mode.

Further performance improvements in PReMo can potentially be obtained by im-

plementing our own parser and expression evaluator tailored to only min-max-polynomial

expressions instead of using the JEP library for this purpose. This has not yet been

done in PReMo, but there is a special parser, an evaluator, and a differentiator, for lin-

ear expressions only, implemented in PReMo. This greatly improves the efficiency of

analyzing (best/worst) expected time of termination of 1-exit RSSGs. There are two

special solvers that use them, Dense Linear solver and the Sparse Linear solver, which

are analogs of Dense and the Sparse Newton’s method. These methods converge in

just one step to the actual solution and although they essentially perform just one it-

eration of Dense and the Sparse Newton’s method respectively, they are much more

efficient, because they are tailored to linear equation systems only.

The decomposed Newton’s method relies on the fact that the equation system is

firstly decomposed into SCCs. For the value iteration methods the user can choose

whether to decompose the equation system into SCCs or not, but as it turned out

from our experiments significantly fewer steps overall are often needed in order to

converge for the decomposed system. We found all available Java libraries that can

perform SCC graph decomposition too inefficient and unreliable for the size of half a

million nodes that we considered during our experiments. We thus implemented our

own highly efficient SCC graph decomposer using a recursion-free Depth First Search.

Our implementation takes less than a second for half a million variables. Therefore,

there is essentially no reason for the user to switch the SCC decomposition off.

For handling dense and sparse matrix operations we used the Matrix Toolkits for

Java (MTJ) library (ressim.berlios.de). MTJ implements all standard algebraic oper-

ations for matrices represented in dense and various sparse formats. The library’s

implementation and its API is based on the BLAS interface and Fortran’s numerical

library LAPACK (Linear Algebra PACKage). As an option, MTJ can use machine-

http://ressim.berlios.de

5.2. Tool description 123

optimized BLAS libraries (such as ATLAS) for improved performance when dealing

with dense matrix operations. However, we did not use ATLAS in PReMo, although it

could have improved its performance significantly on the large dense examples that

we describe in Section 5.4. Instead, we used the default Java implementation of BLAS

and LAPACK in MTJ and this allowed for an easy portability of PReMo to many oper-

ating system platforms.

The solvers’ testing module collects extensive information about each run of a

solver and the input data. For each input equation system, it records the number

of SCCs after decomposition and the size of the biggest SCC. Then, for each particular

numerical algorithm, it computes the number of iterations performed in total for all

SCCs, records the size of the SCC that required the largest number of iterations and

their number. Furthermore, it records the time spent by the solver in the computation

phase and the initialization phase, and for methods that involve differentiation also

the time spent computing the Jacobian matrix symbolically. The module can also au-

tomatically generate a LATEX table with all the recorded data about each individual run

and generate data plots for gnuplot (www.gnuplot.info). It also compares the returned

approximations of different solvers to each other in order to verify whether they return

the same solution within a given tolerance.

Java’s garbage collector introduces a bias into our experimental running times. If

it starts in the middle of computation of a numerical method then the computations

are stopped completely for a while and this can alter significantly the performance

of that algorithm. In order to tackle this problem, we performed all our tests with

the maximum possible amount of memory available to PReMo. We also invoke the

garbage collection manually before each solver starts and take an average from multi-

ple tests (more than a hundred if possible). This reduces significantly the influence of

the garbage collector on the solvers’ performance.

Before Newton’s method can be applied to an equation system, we first need to

remove the variables that are equal to 0 in its LFP. However, instead of writing a special

routine for this purpose, we perform for each SCC one iteration of the Gauss-Seidel

method first. If all the variables in an SCC are equal to zero after that step (i.e., there

is no positive constant term in any equation) then we declare all the variables in this

SCC to be equal to zero and proceed to the next SCC.

In the strategy improvement method (see the description in Section 5.2.6) we con-

stantly update the equations associated with some of the variables. As a result, the

Jacobian matrix is constantly changing as well. If we run the Sparse Newton’s method

http://www.gnuplot.info

124 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

at each step of the strategy improvement, it will keep recomputing from scratch the

Jacobian matrix for the modified set of equations. In order to avoid this costly oper-

ation, we implemented a special version of the Sparse Newton’s method that keeps

the Jacobian matrix stored in the memory even after it has finished all the computa-

tions. When using this method, after each step of the strategy improvement, we can

modify any of the equations of the equation system and the Jacobian matrix will be

automatically updated.

5.2.6 Strategy improvement in PReMo

When considering models with players, like 1-RMDPs/1-RSSGs with positive rewards

and terminating 1-RMDPs/1-RSSGs, the underlying system of equations can contain

max and min operators. This makes standard Newton’s method inapplicable since

the equations are not differentiable. However, thanks to the strategy improvement al-

gorithm, even in such cases we can use Newton’s method indirectly. Henceforth, we

will refer to each variable whose associated equation involves a max/min operator as

a maximizer/minimizer (player)’s variable, also referred to as its type. Each max/min

operator has several polynomial expressions as its arguments and by definition its

value is the value of one of these arguments. The maximizer/minimizer chooses for

each maximizer/minimizer’s variable which of its associated polynomial expressions

is going to be the value of its max/min operator and this defines that player’s strategy

for that variable. Notice that, once we fix a strategy for both players, the equation sys-

tem will contain only polynomial expressions and again a standard Newton’s method

can be used to approximate its LFP.

We will call a maximizer’s/minimizer’s variable improvable if its current value is

lower/higher than the current value of one of its other associated expressions. It was

shown that, in the case of termination 1-exit RSSGs and 1-exit RSSGs with positive

rewards, by switching the strategy at the improvable maximizer’s variables to their

associated expression with currently the highest value, we will reach the globally opti-

mal strategy in a finite number of steps. The user can also use a strategy improvement

method for minimizing 1-RMDPs in PReMo, but such a method may not converge to

the correct fixed point.

Furthermore, the user can choose in what way the strategy will be modified at each

step: improve only a single variable for which the difference in its value and the value

of one of its associated expressions is the largest/smallest (depending on the type of

that node), or just pick one of the improvable variables uniformly at random, or maybe

5.2. Tool description 125

a parallel strategy improvement that switches the strategy for all improvable variables

simultaneously at once. Regardless of this, for any single improvable variable, we

always switch its strategy to the expression with currently the highest/lowest value

(again depending on its type). We implemented the strategy improvement in PReMo

in such a way that it is easy to extend it with a new method of picking the variables to

improve at each step.

The strategy improvement can be run transparently on top of any other solver

or even another strategy improvement algorithm. In fact, the strategy improvement

for the maximizer is a separate solver from the strategy improvement for the mini-

mizer. The strategy improvement works by intercepting all expressions with max or

min operators (depending on the type of the strategy improvement) and substituting

each such expression with one of its arguments. Such a simplified equation system is

passed on to the solver that this strategy improvement algorithm runs on top of. The

strategy improvement and its underlying numerical solver can have different stop-

ping criteria. To see all the options available to the user in PReMo, see Figure 5.6.

Figure 5.6: Configuration of the strategy improvement algorithm. The strategy improvements

for maximizer and minimizer can be applied in any order and with their own stopping criteria.

Also, three different methods for strategy updates can be chosen: pick one improvable variable

uniformly at random, pick an improvable variable with the highest/lowest (depending on the type

of this variable) difference between its current value and one of its associated expressions or

switch the strategy in parallel for all improvable variables simultaneously at once.

126 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

We will now describe how the simultaneous strategy improvement for the max-

imizer’s variables works in practice. The initial strategy for each variable belonging

to the maximizer player is chosen uniformly at random4. At each step of the simulta-

neous strategy improvement we first compute the solution with the strategy fixed for

each of the variables. We then switch the strategy for each maximizer’s variable whose

current value can be improved by more than a small threshold (in our implementation

set to 10−10) and we pick as a new strategy one of its associated expressions with cur-

rently the highest reward. We again fix the strategy for all the variables, update the

expressions for the variables whose strategy was just switched, and then compute the

LFP of such an updated system of equation. We repeat this procedure as long as each

step increases the reward of at least one of the variables by more than ε (set to 10−8 by

default). The small threshold, 10−10, as described above, is crucial since otherwise the

errors in the floating-point operations can make the strategy improvement algorithm

believe that it improves the value of a variable at each step although in fact it is alter-

nating between just two possible strategies for that variable and it would continue to

do so forever. For an experimental comparison of a strategy improvement procedure

with an iterative solver, Gauss-Seidel, see Section 5.3.5.

5.3 Experimental results

We ran a wide range of experiments on a Pentium 4 3GHz with 1GB RAM, running

Linux Fedora 5, kernel 2.6.17, using Java 5.0. We shortly report on some of them here.

We used standard floating-point numbers in double precision in all our experiments.

5.3.1 SCFGs generated from the Penn Treebank NLP corpora

We checked the consistency5 of a set of large SCFGs, with 10,000 to 50,000 productions,

used by the Natural Language Processing (NLP) group at University of Edinburgh

and derived by them from the Penn Treebank NLP corpora6.

The results are listed in Table 5.2, size is indicated in # of productions, and max-scc

column provides the size of the largest SCC after the corresponding nonlinear equa-
4Some heuristic could be used here instead, but this would require us to perform some precomputa-

tions on the equation system first.
5An SCFG is called consistent if starting at any nonterminal in the grammar, a random derivation

terminates, and generates a finite string, with probability 1.
6Penn Treebank corpora (www.cis.upenn.edu/∼treebank) is a standard benchmark collection of

grammatically annotated parse trees of sentences in English that appeared in articles published in var-
ious well-known journals, e.g., the Wall Street Journal. These SCFGs were assumed to be consistent by
construction. ([DK06])

http://www.cis.upenn.edu/~treebank

5.3. Experimental results 127

tion system was decomposed into SCCs. Time is measured in seconds and in paren-

theses is the number of iterations needed for the biggest SCCs. The stopping condition

for the iteration was reaching an absolute tolerance of ε = 10−12. There is a X if the

grammar was found to be consistent (to within 10−4 error), and 8 otherwise. Two

out of seven SCFGs turned out to be (very) inconsistent, namely those derived from

the brown and switchboard corpora of Penn Treebank, with termination probabilities as

low as 0.3 for many nonterminals. This inconsistency was a surprise to our NLP col-

leagues, and was subsequently identified by them to be caused by annotation errors

in Penn Treebank itself ([DK06]). Note that both dense and sparse versions of decom-

posed Newton’s method are by far the fastest. Since the largest SCCs have around

1000 vertices, dense Newton also worked on these examples. Most of the execution

time of Newton’s method at first was in fact taken up by computing all the entries of

the Jacobian F ′(x). We thus optimized greatly the computation of the Jacobian by im-

plementing our own symbolic differentiator of polynomial expressions (Section 5.2.5).

name #prod max-scc Jacobi Gauss Seidel SORω=1.05 DNewton SNewton

brown 22866 8 448 312.084(9277) 275.624(7866) diverge 2.106(8) 2.115(9)

lemonde 32885 X 527 234.715(5995) 30.420(767) diverge 1.556(7) 2.037(7)

negra 29297 X 518 16.995(610) 4.724(174) 4.201(152) 1.017(6) 0.499(6)

swbd 47578 8 1123 445.120(4778) 19.321(202) 25.654(270) 6.435(6) 3.978(6)

tiger 52184 X 1173 99.286(1347) 16.073(210) 12.447(166) 5.274(6) 1.871(6)

tuebadz 8932 X 293 6.894(465) 1.925(133) 6.878(461) 0.477(7) 0.341(7)

wsj 31170 X 765 462.378(9787) 68.650(1439) diverge 2.363(7) 3.616(8)

Table 5.2: Performance results for checking consistency of SCFGs derived from Penn Treebank.

The columns from left to right denote the following: the name of the dataset, the number of

grammar rules in the SCFG derived from such a dataset and next to it X if the grammar was

“consistent” and 8 otherwise, the biggest SCC of variables after decomposition of the underlying

equation system, and finally, for each numerical algorithm, the time in seconds it took to compute

the approximation and in parentheses the number of iterations this algorithm performed for the

biggest SCC. The stopping condition was to obtain an absolute tolerance of ε = 10−12. SCFG

was declared “consistent” if all nonterminals had termination probability > (1 − 10−4). The

SCFGs brown and swbd failed consistency by a wide margin having many nonterminals with

termination probability as low as 0.3.

128 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

5.3.2 Randomly generated RMCs and 1-RSSGs

We wanted to compare the performance of all numerical algorithms implemented in

PReMo on “random” instances of RMCs. However, it is hard to randomly generate an

RMC or to define an unbiased distribution on them. Instead, we looked at random

quadratic equation systems since they are simpler to generate.

We tested PReMo on a fairly representative sample of equation systems of different

sizes, ranging from 10,000 to 500,000 variables. Random generation was done in two

ways. We separately generated equation systems that can occur when analyzing 1-

RMCs (equivalently SCFGs) and multi-exit RMCs. The first ones are a lot easier to

generate. The nonlinear equations we generated were of three possible kinds: (1)

xi = xjxk, (2) xi = pxj+(1−p)xk, and (3) xi = p1xj+p2xk+p3, where p1 +p2 +p3 = 1.

Type (1) corresponds to a function call, type (2) to a branch node and type (3) to a

branch node for which one of the branches exits the current function while returning

a value. We chose type (1) with 0.2 probability, type (2) with 0.6 probability (p ∈ (0,1]

was picked uniformly at random), and (3) with 0.2 probability (and p1,p2,p3, were

chosen uniformly in (0,1] and then normalized, dividing by p1 +p2 +p3, so they sum

to 1). These probability values were chosen more or less arbitrarily. We can see the

running times in Figure 5.7. Size was measured in the number of variables, n. The

number of random instances generated for each size n, was (2×106)/n, and running

time was averaged over all instances of size n.

On these random large instances, with very high probability most nodes are in

one huge SCC with small diameter (by the so-called “small world phenomenon”).

Dense Newton’s method did not work at all on these huge SCCs, because inverting

such large matrices is too expensive. On the other hand, we can see that both Gauss-

Seidel and the Sparse Newton’s method did very well. In particular, Sparse Newton

handled instances with 500,000 variables in ∼ 45 seconds. It is worth noting that by

using Gauss-Seidel instead of basic iteration, we speed up by a factor of 2 on average.

Newton’s method does not apply directly to 1-RSSGs, with nonlinear min-max

equations, but Gauss-Seidel does. We applied a similar random generation technique

to generate 1-RSSGs (this time with min and max nodes as well) and obtained the re-

sults in Figure 5.8. See Section 5.3.5 for a comparison of the Gauss-Seidel method and

a method being a combination of the strategy improvement algorithm and a Sparse

Linear solver (i.e., a single step of the Sparse Newton’s method) for 1-RSSGs with re-

wards. (Strategy improvement is described in Section 5.2.6, Sparse Linear solvers in

Section 5.2.4.)

5.3. Experimental results 129

Figure 5.7: Running times of various numerical algorithm for randomly generated 1-RMCs. For

each size n that was tried, (2× 106)/n instances of size n were generated and the running

time was averaged. The termination condition was absolute tolerance ε= 10−12.

Finally, for multi-exit RMCs, we had a difficult time finding a direct random gen-

eration scheme that was simple to define. We instead chose to randomly generate

more general monotone nonlinear polynomial equations, where equations can be of

the form xi = xjxj+xr, in addition to the possible equations we generated for 1-RMCs.

These equation systems could potentially have no finite LFP solution, in which case

the methods diverge to infinity, and create overflow error (or may not be defined, in

the case of Newton’s method, because the Jacobians may not be invertible). But the

equations generated form a superset of the equations for multi-exit RMCs. We gen-

erated these equations and tested to see if the methods do converge. Two generated

instances were discarded because the results diverged to infinity. The results for the

instances that did converge are in Figure 5.9.

To sum up, even though we do not have polynomial time algorithms for calcu-

lating the termination probability of any of the tested models, these basic numerical

130 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

Figure 5.8: Random 1-RSSGs. Average running time for computing termination probability of 2

instances for each size n, n= 50,000∗ i, i= 1, . . . ,7, with absolute tolerance ε= 10−12.

iteration methods work reasonably well for relatively large (albeit random) instances.

5.3.3 Quicksort

For expected termination time analysis, we considered a toy model of randomized

Quicksort, using a simple hierarchical 1-RMC. In our model we have n components,

Qi, i = 1, . . . ,n, corresponding to invocations of Quicksort on arrays of size i. Each

such component takes time i to pick the pivot and split the entries. We modeled this

as “expected” time i, by having a self-loop at the entry node of component i with

probability (1 − 1/i) and transitioning to the “pivot choice” node with probability 1
i .

After this transition is taken, the pivot d is chosen uniformly at random and then we

have to recursively solve two instances of Quicksort, of sizes d and i−d. We modeled

this by random transitions of probability 1/i, for each d ∈ {1, . . . , i−1}, to a sequence of

two boxes labeled by Qd and Qi−d, and then to the terminal exit of the component.

We computed the expected time for termination for these models, to see whether

5.3. Experimental results 131

Figure 5.9: Random RMCs and general monotone polynomial systems. Average running time

for computing termination probability of 3 instances for each size n, n= 50,000∗i, i= 1, . . . ,10,

with absolute tolerance ε= 10−12. Two generated instances that diverged were discarded.

the expected running time of the algorithm matches the known theoretical average-

case analysis of Θ(n logn). We also tried letting the pivot node be controlled by the

minimizer or maximizer, and generated the corresponding linear min-max equations for

expected running time for such 1-RMDPs, in order to consider best-case and worst-

case running times of Quicksort. Our models, as would be expected, matched the

known theoretical analysis of running times for (randomized) Quicksort. Namely, the

expected running time for random pivot choices is cn log2n, the expected running

time best pivot choice is c ′n log2n, and the expected time for the worst pivot choice is

c ′′n2. In our model we found for n= 500: c= 1.85, c ′ = 1.55 and c ′′ = 0.51. This would

suggest that random pivot choice runs 1.19 times slower than the optimal possible

choice of pivots.

132 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

5.3.4 Long chains

It is easy to construct examples of simple, even finite state Markov chains, where the

behavior of Newton’s method can in principle be exponentially better than Gauss-

Seidel iteration. This occurs, for example, when a finite Markov chain consists of a

“long chain” with n nodes v1, . . . ,vn, where vn is the terminal state, and where there

are transitions of the form vi
1/2→ vi+1 and vi

1/2→ v1, for i= 1, . . . ,(n−1). In these exam-

ples, clearly the probability of termination from all nodes vi is 1. Let xji be the value

of basic value iteration (Jacobi) after j iterations, starting at 0, for a variable xi rep-

resenting the probability of termination from vi. It is easy to show that, in order xj1
to be > 1/2, it must be the case that j ∈ 2Ω(n). On the other hand, Newton’s itera-

tion on Markov chains converges in one iteration, because the Jacobian is a constant,

invertible, matrix. We ran Jacobi, Gauss-Seidel, and both Dense and Sparse Newton

iteration on such long chains. Interestingly, although Dense Newton performed as ex-

pected, solving the required single iteration in a very short time (for the sizes where it

could handle the matrix inversion), the Sparse Newton’s iteration encountered numer-

ical problems with all five sparse linear solvers available for use in PReMo. It appears

that the small probabilities that arise in solving this linear system causes problems for

the available sparse linear solvers. The results of the running times for Jacobi, Gauss-

Seidel, and Dense Newton, are in Figure 5.10.

5.3.5 Simultaneous strategy improvement vs value iteration

We tested the performance of the strategy improvement with the Sparse Newton’s

method vs the Gauss-Seidel method on max-linear equation systems with 10000,20000,

. . . ,100000 variables. For each of the sizes, we randomly generated one hundred tests

and ran both algorithms on all of them. About one third of the equations in each

single test had a max operator in it. Such equation systems can arise in the context

of calculating the worst expected running time of a program modeled as a maximiz-

ing 1-RMDP with positive rewards. We created all equation systems in a way that

eliminates the possibility of any of the variables having an infinite value in the Least

Fixed Point (LFP) solution. This was necessary since none of our numerical proce-

dures checks first whether the values to be computed are infinite or not. Such a check

can be performed for linear equation systems but it would be more costly than the

main step, i.e., finding an approximate LFP of such an equation system (see Section

5.2.4). For a max-linear system of equations, a possible solution could use an upper

5.3. Experimental results 133

Figure 5.10: Running times for long chains examples, with target absolute tolerance ε= 10−12.

Note that the dense Newton’s method computes the approximations almost instantly.

bound, which depends on the input, on the biggest finite value that can occur in its

LFP solution. If a variable exceeds such a maximal value during the approximation

process, its value has to be ∞ in the LFP. However, the just mentioned bound is ex-

ponential in the size of the equation system and for the sizes we are considering, this

bound would exceed the biggest value that can be stored in double precision, making

it useless for our purposes. Furthermore, since such a check would be the same for

both tested methods, we had focused instead on examples whose values are all finite.

The Gauss-Seidel method returned the correct LFP solution for every single equa-

tion system examined. On the other hand, the strategy improvement in about 10% of

the cases did not converge. It was due to a failure in convergence of the underlying

sparse linear equation solver – Biconjugate Gradient, and it was despite the fact that

all the matrices encountered during that computations were invertible. The average

running time of the successful runs only for each algorithm is plotted in Figure 5.11.

Notice the big variability of the running times for the Gauss-Seidel method. This is the

134 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

result of random and occasional generation of an instance that is very hard to solve

for a simple iterative algorithm such as Gauss-Seidel. However, even these “hard” in-

stances are not any harder to solve for the strategy improvement algorithm. The same

phenomenon was observed for random 1-RMCs (Section 5.3.2 and [WE07]). Notice

also that the average running time of the strategy improvement algorithm looks as if

it is linear in the size of the equation system.

In order to evaluate both methods more precisely, we plotted in Figure 5.12 the

minimum, maximum and the median running time for the same examples. Also, the

average running time is plotted in the same graph for comparison. Notice that the

Gauss-Seidel method has a huge variability in its running time among different equa-

tions of the same size. For instance, it can solve some examples with 40000 variables

in a time as little as one second and for some others it requires as much as 225 sec-

onds. The most surprising fact is that the median running time for the Gauss-Seidel

method turned out to be much lower than for the strategy improvement. For the ex-

amined sizes (apart from the size 40000) the median is about three times lower than

the median for Newton’s method. On the other hand, stable performance of strategy

improvement is very impressive. Its median running time for any size is very close to

the minimum running time for the same size and the variability in the running time

is really small. That allows us to predict more accurately the time needed to find the

solution for a given instance. We should also remember that the average running time

of strategy improvement is much lower than for the Gauss-Seidel method, hence al-

though Gauss-Seidel’s median running time is lower, it is rather more beneficial to use

a strategy improvement algorithm with a linear sparse solver whenever we can.

5.4 Comparison of PReMo with SMCSolver

We performed a number of experiments to compare the performance of our tool PReMo

with the state of the art tool for QBDs — SMCSolver [BMSH06] (Structured Markov

Chains solver). These two tools in fact are very different. They differ in how the equa-

tion systems are represented, the implementation language and implemented numer-

ical algorithms. PReMo is implemented entirely in Java and each equation system is

written down in an explicit algebraic formula representation (which allows handling

arbitrary monotone systems of nonlinear equations) while SMCSolver makes use of a

concise matrix representation for the entire equation system and is implemented in

Fortran, a programming language this is geared towards numerical computation. The

5.4. Comparison of PReMo with SMCSolver 135

Figure 5.11: The blue line shows the average running time of the successful runs of the simul-

taneous strategy improvement method that uses the Biconjugate gradient solver as its sparse

linear equations solver. The red line is the average running time of the Gauss-Seidel method.

numerical approximation algorithms, apart from the most basic ones, are also differ-

ent. PReMo’s fastest numerical algorithm in practice is a sparse version of Newton’s

method, which is not yet implemented in SMCSolver (not even in an undecomposed

way). Instead, it implements two highly efficient numerical algorithms: Cyclic Reduc-

tion and Logarithmic Reduction, that are designed specifically to solve equation systems

arising in the context of QBDs. These algorithms were further speeded up by us-

ing a shifting technique to achieve “quadratic” convergence even in the case of null

recurrent QBDs ([Guo07]). For details of these algorithms and a shifting technique

see [BMSH06]. Cyclic and Logarithmic Reduction were later modified and applied to

Tree-like QBDs (see, e.g. [BLM05]), which are equivalent to RMCs (see Chapter 2) and

so they could potentially be used in their analysis. However, the benefit of using them

in the context of analyzing probabilistic procedural programs is questionable, since

intuitively most programs have a sparse transition matrix which, as we will see later,

136 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

Figure 5.12: The minimum, maximum, median and average running times of each of the tested

numerical approximation algorithms are plotted. (The magenta lines were slightly shifted to the

left (by 1000), since otherwise the vertical green lines and vertical magenta lines would overlap,

as well as the “horizontal” blue line and the “horizontal” magenta line.) Notice that the scale of

the X-axis is linear, but the scale of the Y-axis (the running time) is logarithmic. The green bars

shows the minimum and maximum running time of the Gauss-Seidel method for each of the

sizes with small squares showing its median, and the red line representing its average running

time. The magenta bars shows the minimum and maximum running time of the simultaneous

strategy improvement that uses the Biconjugate gradient method as its sparse linear equations

solver and, as before, small squares showing its median. The blue line represents its average

running time (only successful runs were taken into account). Notice that the average running

time of Newton’s method combined with a strategy improvement is almost identical to its median

time. However, there is a huge difference between the median and the average running time of

Gauss-Seidel method. Interestingly enough, the median running time of Gauss-Seidel is a few

times lower than the median and average running time of strategy improvement.

5.4. Comparison of PReMo with SMCSolver 137

snstart sn−1 sn−2 . . . s0

1
2 ,+

1
2 ,−

1
2 ,+

1
2 ,−

1
2 ,+

1
2 ,− 1

2 ,−

1
2 ,+

1
2 ,−

Figure 5.13: An example p1CA (equivalently a QBD) with n control states used in our perfor-

mance tests.

is better handled by PReMo’s sparse representation and sparse version of Newton’s

method.

In our case study, we measured the impact of the difference in the implementa-

tion language and the difference in the equation representation on the performance

of PReMo as compared to SMCSolver. Our working example of a p1CA is presented in

Figure 5.13. Since we found that for any positive recurrent QBD/p1CA of a reasonable

size, its analysis takes less than a fraction of a second, our example is a null recurrent

QBD/p1CA. This makes the running times of all the numerical algorithms much

longer, hence allowing us to make a more precise comparison. For the comparison

to be impartial, we do not include in the running time of PReMo the parsing time of

the input equation system. This is because of the fact that when any iterative solution

method in SMCSolver is initiated, the whole equation system is stored already in the

main memory and does not have to be further preprocessed.

Our first experiment was performed on an instance of the p1CA from Figure 5.13

with 10 control states. We compared the execution time of 150 thousands iterations of

the basic Jacobi iterative method with no decomposition into SCCs in PReMo with the

same number of iterations of the natural iteration in SMCSolver. Both of these meth-

ods perform exactly the same standard fixed point computation however they do it

in a different way. Basic Jacobi method does it step by step for each variable while

natural iteration does it for all variables at once via standard matrix operations ap-

plied to the whole matrix of variables. Both methods returned solutions not much

further apart than the standard floating-point error in double precision. As it turned

out, SMCSolver needed only 2.3 seconds to execute that amount of iterations while

PReMo needed over 58 seconds. This means that SMCSolver can execute 25 times faster

thanks to its matrix equation representation resulting in a far lower cost per iteration

and its implementation in a programming language that is geared towards numerical

computations. Next, we checked how decomposition into SCCs can improve PReMo’s

138 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

snstart sn−1 sn−2 . . . s0

1
2 ,+

1
2 ,0

1
2 ,+

1
2 ,0

1
2 ,+

1
2 ,0 1

2 ,0

1
2 ,+

1
2 ,−

Figure 5.14: A slightly modified version of the example p1CA with n control states from Figure

5.13.

performance. We set an absolute error tolerance to 10−10 and ran SMCSolver first. It

obtained 2.22 · 10−10 error after about 95000 steps and took 1.5 second. We then ran

PReMo with the same error bound of 2.22 ·10−10 and it returned a solution within 0.7

seconds. As we can see, decomposition into SCCs increased PReMo’s performance

over 80 times.

Next, we compared the most efficient solvers of SMCSolver and PReMo, Cyclic and

Logarithmic Reduction (with and without the shift acceleration) and the Sparse New-

ton’s method, respectively. The Sparse Newton’s method was set to use the Bicon-

jugate Gradients method to solve a sparse linear system of equations that occurs on

each step of Newton’s method iteration. For the same p1CA with 200 control states

(instead of 10), Cyclic Reduction took 14 seconds to find a solution within 10−8 tol-

erance while Logarithmic Reduction was not able to converge at all. When using the

shift acceleration, the execution times were reduced to 2.5 and 3 seconds, respectively.

On the other hand, our Sparse Newton’s method with decomposition of the equation

system into SCCs took just 0.814 seconds. (Note that, as we already mentioned before,

this value does not include the significant amount of time needed to parse the 30MB

big input equation system.)

The previous examples suggest that the decomposition into SCCs gives a huge

performance boost, so we also tested PReMo’s performance on SMCSolver’s built-in

examples whose transition matrices are dense and all the variables form just one big

SCC. For SMCSolver’s Example 1 with 100 control states, it took for Cyclic and Log-

arithmic Reduction about 0.2 seconds to find a solution and 0.1 second when a shift

technique was applied. On the other hand, Gauss-Seidel in PReMo needed 57 seconds

and the Sparse Newton’s method (using the Biconjugate Gradients method) needed

83 seconds to converge to the same solution with the same tolerance. For SMCSolver’s

Example 3 with 100 control states the running times for SMCSolver were about the

same, 0.2 second, while for Gauss-Seidel in PReMo the running time was about 18 sec-

5.4. Comparison of PReMo with SMCSolver 139

onds and the Sparse Newton’s method did not manage to finish within 3 minutes. To

explain this, it has to be noted that in Example 3 from each control state there is a tran-

sition of all three possible types to any other control state and this results in a huge

equation system. More precisely, if k is the number of control states then the equation

representation in a symbolic form grows like O(k3) compared to O(k2) when repre-

sented in a matrix form. As we can see, the good performance of the Sparse Newton’s

method in the previous example was mainly due to its decomposition into SCCs. No-

tice, however, that the returned G matrix in this example is a dense lower triangular

matrix, so although the transition system is sparse, the returned solution is not.

In order to see how sparsity of the G matrix can further improve PReMo’s perfor-

mance, we changed in our example all the transitions that were decreasing the counter

(apart from the last one at s0) to ones that retain the value of the counter (see Figure

5.14, and compare it with the previous example in Figure 5.13). Any instance of this

example is still null recurrent, but now starting at any control state, the system can

only terminate at control state s0 with full probability 1. Now, we were able to gen-

erate the input equations for much bigger examples, e.g., with five thousands control

states. SMCSolver crashed when run on such a big example and when the number of

control states was reduced to 500, its most efficient method (shifted Cyclic Reduction)

took 41 seconds to find a solution with a 10−8 tolerance. At the same time, PReMo

was able to find the solution in 0.624 second even for an example with five thousand

control states and could easily handle much bigger examples.

In conclusion, we can see that PReMo can be faster than SMCSolver for examples

that are highly decomposable and a lot faster for examples for which a lot of entries

of the Gmatrix are equal to zero. On the other hand, SMCSolver can easily outperform

PReMo on dense examples with a high number of transitions thanks to its concise

non-symbolic matrix representation of the underlying equation system and by using

highly optimized linear matrix algebra packages written for Fortran. This gives rise

to a question whether it is possible to combine algorithms operating on the matrix

formulation of the equation system with decomposition into SCCs. Newton’s method

can also be carried out directly over O(n2) sized matrix equations for QBDs, with low

cost per iteration (O(n3) operations), using known efficient methods for solving the

concise linear matrix equations that arise in each iteration of Newton’s method over

QBDs (certain generalized Sylvester matrix equations, see [BLM05]). However, while

TL-QBDs and RMCs also have nonlinear equations withO(n2) matrix representations,

no such efficient solution method is known for the more general linear matrix equa-

140 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

tions that arise in iterations of Newton’s method on them. Finding such a method

would make Newton’s method more practical on large “dense” TL-QBDs, RMCs, and

pPDSs. But even with such an efficient method, it remains a challenge to combine it

well with decomposition, because in general decomposition destroys the matrix form

of the equations.

5.5 Conclusions

In this chapter, we presented capabilities of the new tool PReMo that can be used

for numerically computing important basic quantities for various classes of (finitely-

presentable) countable-state probabilistic models and their controlled extensions. We

reported on some of the experiments we conducted with PReMo and the performance

of the numerical algorithms implemented. In particular, on random equation sys-

tems, all solvers performed well, despite the fact that the best complexity upper bound

known for the underlying computational problems is PSPACE ([EY05s]). The decom-

posed Sparse Newton’s method did particulary well for all (not only random) poly-

nomial equation systems, up to quite large sizes, and Linear Sparse Solver (a tailored

version of the Sparse Newton’s method to linear systems) paired with the simultane-

ous strategy improvement algorithm performed best on (random) max-linear equa-

tion systems. Surprisingly, the median running time (as opposed to the average time)

of a simple iterative method, Gauss-Seidel, is much lower than any other method for

random max-linear equation systems. Furthermore, PReMo helped to discover some

annotation errors in the Penn Treebank corpora, which is well-known in the NLP com-

munity, while testing PReMo’s performance on a collection of SCFGs derived from it

by our colleagues.

We also compared PReMo to SMCSolver, a tool that is tailored to analyzing QBDs.

According to our study, PReMo is significantly slower for models with a dense tran-

sition system and the main reason being the use of a concise matrix representation

by SMCSolver for the underlying equation system. On the other hand, PReMo outper-

forms SMCSolver on highly decomposable examples, which gives rise to the question

whether it is possible to combine algorithms operating on the matrix formulation of

the equation system with decomposition into SCCs. Unfortunately, in general decom-

position destroys the matrix form of the equation system and it is a major challenge

how to tackle this problem.

PReMo is a valuable tool that already attracted attention of the probabilistic veri-

5.5. Conclusions 141

fication community. However, there is still a lot that can be improved and new fea-

tures that can be added. Of course PReMo could be made faster by reimplementing its

core computational procedures like symbolic expression evaluator or using a machine-

optimized linear algebra library, e.g., ATLAS. A simple extension would be to add to

PReMo a support for even more input models, e.g., pPDSs. However, to make describ-

ing more complex models easier, PReMo could be equipped with a more expressive

“high-level” language that would allow the user to use integer variables and condi-

tional branching, i.e., a probabilistic version of Boolean Programs [BR00]. Boolean

Programs have proved to be highly successful in SLAM ([BR02]), a tool developed by

Microsoft Research for verifying Windows’s device drivers. However, allowing for

integer variables leads to a state explosion problem, since each boolean variable can

in principle double the state space, thus doubling in our case the size of the equation

system. In order to address this issue we could potentially use Multi-Terminal BDDs

([CFM+93]) that were already successfully applied in verification of finite-state proba-

bilistic systems in the tool PRISM ([KNP02]). Another technique to tackle this problem

is Counterexample Guided Abstraction (CEGAR) [CGJ+03], used, e.g., in SLAM. However,

in probabilistic settings it is even hard to define what a counterexample is and how to

represent it. Just recently this topic attracted some attention and results about find-

ing counterexamples in probabilistic finite systems have emerged ([HK07]). Whether

any of these techniques could be applied to our setting of infinite-state probabilistic

systems is not clear yet.

Furthermore, integrating into PReMo a full-fledged linear-time model checker for

RMCs would be very useful for reasoning about such programs. However, this poses a

major challenge because there are very difficult numerical issues that have to be over-

come in order to enable general model checking for multi-exit RMCs. For instance,

to even approximate the probability of visiting a given node infinity often we need to

decide whether we terminate for a given multi-exit RMC with the exact probability 1

or strictly less than 1. The answer to the infinitely-many visits question could be 1 in

the former and 0 in the later. Such properties cannot be checked in PReMo since all the

computations are done with some floating-point error and the only available solution

at the moment is to use (extremely impractical) decision procedures for the existential

theory of the reals. Of course, such a sensitivity may not occur in practice, and PReMo

can always at least provide some lower bounds on the satisfiability probability of a

given Linear Time Logic formula.

On the other hand, there are plenty of quantitative properties that could be com-

142 Chapter 5. PReMo – Probabilistic Recursive Models analyzer

puted using PReMo about a given model in order to help to reason about it. For in-

stance, using the results from [EKM05], PReMo can quite easily be extended to com-

pute the long-time average reward per transition and the expected total reward for

multi-exit RMCs (under the assumption that they terminate) for rewards that depend

not only on the control state and the top stack symbol, but also on the size of the

stack. Furthermore, the probability of the set of runs for which the size of the stack is

bounded can be computed. On the other hand, if for 1-RMDPs we were able to com-

pute the long-time average reward per transition or the variance of the expected total

reward then we could easily answer questions about reachability 1-RMDPs, which are

not known to be decidable.

From the direct connection between RMCs and TL-QBDs, we can take advantage

of new numerical methods for finding the LFP of the underlying set of equations.

The two most efficient, Logarithmic and Cyclic reduction, could be implemented in

PReMo, but in order to do it efficiently we would need to allow the equation systems

to be defined as equations on matrices. Such a representation would also increase

the speed and memory usage of the basic iterative methods (at least for dense equa-

tion systems). Each step of Newton’s method can be represented as a linear matrix

equation system for QBDs, as well as for general RMCs. However, for QBDs we can

find the solution of such an equation system more efficiently than usual (in O(n3)

as opposed to O(n6) where n is the number of control states and n2 is thus the size

of the input transition matrix) by observing that it is a certain generalized Sylvester

matrix equation system ([BLM05]). For RMCs no such efficient solution method is

known. Moreover, none of these methods was so far combined with a decomposi-

tion into SCCs, and it is questionable whether substantial gain would be achieved by

using them in the setting of probabilistic procedural programs, since it is hard to imag-

ine a program whose transition system is dense (i.e., it branches to almost any other

instruction at each step).

Appendix Proof of the theorem mentioned in Section 5.2.4

We would like to prove the following:

Proposition 5.5.1. For an irreducible matrix A > 0 and a vector b > 0 (i.e., b > 0 and b 6=
0), the least nonnegative solution x∗ of an equation system x = Ax+b is finite iff I−A is

nonsingular and (I−A)−1b> 0.

5.5. Conclusions 143

Proof. It can be proved by an easy induction that x∗ > (
∑k
i=0A

i)b for any k > 0. If

(
∑∞
i=0A

i) diverges then, since A is irreducible and b > 0, x∗ cannot be finite and in

fact all its entries are ∞. On the other hand, if it does converge then it can easily be

shown that x∗ = (
∑∞
i=0A

i)b satisfies x=Ax+b. Furthermore, in such a case we have

that in fact
∑∞
i=0A

i is the inverse of I−A. This proves (⇒). The other direction is

trivial since (I−A)−1b, if exists, is a solution of x = Ax+ b and since it is > 0 and

finite, then the least nonnegative solution has to be finite as well. (In fact, (I−A)−1b

is the only solution of x=Ax+b when I−A is nonsingular.)

Bibliography

[ABKM06] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the com-

plexity of numerical analysis. In Proc. of 21st IEEE Computational Complexity Con-

ference, 2006.

[ABE+05] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Anal-

ysis of recursive state machines. ACM Trans. Program. Lang. Syst., 27(4):786–818,

2005.

[BR00] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean pro-

grams. In Proc. of 7th SPIN, 2000.

[BR02] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via

static analysis. In Proc. of 29th POPL, 2002.

[BP94] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.

Classics in Applied Mathematics: SIAM, 1994.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[Bil79] P. Billingsley. Probability and Measure. J. Wiley & Sons, 1979.

[BLM03] D. A. Bini, G. Latouche, and B. Meini. Solving nonlinear matrix equations arising

in tree-like stochastic processes. Linear Algebra Appl., 366:39–64, 2003.

[BLM05] D. Bini, G. Latouche, and B. Meini. Numerical methods for Structured Markov Chains.

Oxford Press, 2005.

[BMSH06] D. Bini, B. Meini, S. Steffe, and B. Van Houdt. Structured Markov chains solver:

algorithms/software tools. In Proc. of 1st SMCTools, 2006.

[BC03] V. Blondel and V. Canterini. Undecidable problems for probabilistic automata of

fixed dimension. Theory of Computing Systems, 36:231–245, 2003.

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.

Springer, 1998.

[Bra07] T. Brázdil. Verification of probabilistic recursive sequential programs. PhD thesis,

Masaryk University, 2007.

145

146 Bibliography

[BBE+09] T. Brázdil, V. Brožek, K. Etessami, A. Kučera, and D. Wojtczak. One-Counter

Markov Decision Processes. submitted for publication, 2009.

[BBFK06] T. Brázdil, V. Brozek, V. Forejt, and A. Kucera. Reachability in recursive Markov

decision processes. In Proc. of 17th CONCUR, 2006.

[BKS05] T. Brázdil, A. Kučera, and O. Stražovský. Decidability of temporal properties of

probabilistic pushdown automata. In Proc. of 22nd STACS, 2005.

[Bro65] C. G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations.

Mathematics of Computation, 19(92):577–593, 1965.

[Can88] J. Canny. Some algebraic and geometric computations in PSPACE. In Proc. of 20th

STOC, 1988.

[CFM+93] E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal binary deci-

sion diagrams: An efficient data structure for matrix representation. In Proc. of 2nd

IWLS, 1993.

[CGJ+03] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-

straction refinement for symbolic model checking. Journal of ACM, 50(5):752–794,

2003.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[Con92] A. Condon. The complexity of stochastic games. Inf. & Comp., 96(2):203–224, 1992.

[CL89] A. Condon and R. J. Lipton. On the complexity of space bounded interactive

proofs. In Proc. of 29th FOCS, 1989.

[CM94] A. Condon and M. Melekopoglou. On the complexity of the policy iteration algo-

rithm for stochastic games. ORSA Journal on Computing, 6(2), 1994.

[DK06] A. Dubey and F. Keller. personal communication, 2006.

[DEKM99] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:

Probabilistic models of Proteins and Nucleic Acids. Cambridge U. Press, 1999.

[Eme90] E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science,

Chapter 16, pages 995–1072, 1990.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for

model checking pushdown systems. In Proc. of 12th CAV, 2000.

[EKL08] J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of Newton’s

method for monotone polynomial equations. In Proc. of 25th STACS, 2008.

[EKM04] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown au-

tomata. In Proc. of 19th LICS, 2004.

Bibliography 147

[EKM05] J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic push-

down automata: expectations and variances. In Proc. of 20th LICS, 2005.

[EWY08i] K. Etessami, D. Wojtczak and M. Yannakakis. Recursive Stochastic Games with

Positive Rewards. In Proc. of 35th ICALP(1), 2008.

[EWY08q] K. Etessami, D. Wojtczak and M. Yannakakis. Quasi-Birth-Death Processes, Tree-

Like QBDs, Probabilistic 1-Counter Automata, and Pushdown Systems. In Proc. of

5th QEST, 2008.

[EY05s] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic gram-

mars, and monotone systems of non-linear equations. In Proc. of 22nd STACS,

2005. Full journal version to appear in Journal of ACM and is available at:

http://homepages.inf.ed.ac.uk/kousha/rmc_j_version_final.pdf.

[EY05t] K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic

state machines. In Proc. of 11th TACAS, 2005.

[EY05i] K. Etessami and M. Yannakakis. Recursive Markov decision processes and recur-

sive stochastic games. In Proc. of 32nd ICALP, 2005.

[EY06s] K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of re-

cursive Markov decision processes and simple stochastic games. In Proc. of 23rd

STACS, 2006.

[EY06i] K. Etessami and M. Yannakakis. Recursive Concurrent Stochastic Games. In Proc.

of 33nd ICALP, 2006. Journal version to appear in Logical Methods in Computer

Science.

[EY07] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other

fixed points. In Proc. of 48th FOCS, 2007.

[EU48] C. Everett and S. Ulam. Multiplicative systems in several variables. Technical

report, Part I (LA-683), Part II (LA-690), Part III (LA-707), Los Alamos Scientific

Laboratory, 1948.

[FKK+00] R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Su-

dan, and A. Tomkins. Random walks with “back buttons” (extended abstract). In

Proc. of 32nd STOC, 2000.

[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.

[GN99] E. Gansner and S. North. An Open Graph Visualization System and Its Applica-

tions. Software - Practice and Experience, 30:1203–1233, 1999.

[GGJ76] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric prob-

lems. In Proc. of 8th STOC, 1976.

[Gaw08] T. Gawlitza. Personal communication. April, 2008.

148 Bibliography

[GS07] T. Gawlitza and H. Seidl. Precise relational invariants through strategy iteration.

In Proc. of 16th CSL, 2007.

[GV88] D. Grigorev and N. Vorobjov. Solving systems of polynomial inequalities in sub-

exponential time. Journal of Symbolic Computation, 5(1-2):37–64, 1988.

[Guo07] C.-H. Guo. Comments on a shifted cyclic reduction algorithm for quasi-birth-

death problems. In SIAM J. Matrix Anal. Appl., 24:1161–1166, 2003.

[HK07] T. Han and J.-P. Katoen. Counterexamples in probabilistic model checking. In

Proc. of 13th TACAS, 2007.

[Har63] T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.

[HK66] A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management

Sci., 12:359–370, 1966.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Formal Languages

and Computation. Addison-Wesley, 1979.

[IK66] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. J. Wiley & Sons, 1966.

[JPY88] D. S. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local search? J.

Comput. Syst. Sci., 37(1):79–100, 1988.

[Jub06] B. Juba. On the hardness of simple stochastic games. Master’s thesis, CMU, 2006.

[JE95] X. Jungong and J. Erxiong. Entrywise relative perturbation theory for nonsingular

M-matrices and applications. BIT Numerical Mathematics, 35:417-427, 1995.

[KLE07] S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s

method for monotone systems of polynomial equations. In Proc. of 39th STOC,

2007.

[KA02] M. Kimmel and D. E. Axelrod. Branching processes in biology. Springer, 2002.

[KS47] A. N. Kolmogorov and B. A. Sevastyanov. The calculation of final probabilities for

branching random processes. Dokaldy, 56:783–786, 1947.

[Kuc03] A. Kucera. The complexity of bisimilarity checking for one-counter processes.

Theoretical Computer Science, 304:157–183, 2003.

[KJ02] A. Kucera and P. Jancar. Equivalence-checking with infinite-state systems: Tech-

niques and results. In Proc. of 29th SOFSEM, 2002.

[KNP02] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic

Model Checker. In Proc. of 12th Computer Performance Evaluations, Modelling Tech-

niques and Tools, 2002.

[Lat94] G. Latouche. Newton’s iteration for non-linear equations in Markov chains. IMA

J. Numer. Anal., 14(4):583–598, 1994.

Bibliography 149

[LR99] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochas-

tic Modeling. ASA-SIAM series on statistics and applied probability, 1999.

[LR93] G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for quasi-

birth-death processes. J. of Applied Prob., 30(3):650–674, 1993.

[MS98] A. Maitra and W. Sudderth. Finitely additive stochastic games with Borel measur-

able payoffs. International J. of Game Theory, 27(2):257–267, 1998.

[MS99] C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.

MIT Press, 1999.

[Mar98] D. A. Martin. Determinacy of Blackwell games. J. Symb. Logic, 63(4):1565–1581,

1998.

[NS06] M. J. Neiderhof and G. Satta. Using Newton’s method to compute the partition

function of a PCFG, 2006. unpublished draft manuscript.

[Neu81] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models:an algorithmic approach.

Dover, 1981.

[Neu89] M. F. Neuts. Stuctured Stochastic Matrices of M/G/1 Type and their applications. Marcel

Dekker, 1989.

[NS03] A. Neyman and S. Sorin, editors. Stochastic Games and Applications. NATO ASI

Series, Kluwer, 2003.

[OR70] J. M. Ortega and W.C. Rheinbolt. Iterative solution of nonlinear equations in several

variables. Academic Press, 1970.

[Ost01] A. Ost. Performance of Communication Systems. A Model-Based Approach with Matrix-

Geometric Methods. PhD thesis, RWTH Aachen, 2001.

[Pap94] C. H. Papadimitriou. On the complexity of the parity argument and other ineffi-

cient proofs of existence. In Journal of Computer and System Sciences, 48(3):498-532,

1994.

[Pli76] S. Pliska. Optimization of multitype branching processes. Management Sci.,

23(2):117–124, 1976/77.

[Put94] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[RHC07] A. Remke, B. R. Haverkort, and L. Cloth. CSL model checking algorithms for

QBDs. Theoretical Computer Science, 382(1):24–41, 2007.

[Ren92] J. Renegar. On the computational complexity and geometry of the first-order the-

ory of the reals, parts I-III. J. Symb. Comp., 13(3):255–352, 1992.

[RW82] U. Rothblum and P. Whittle. Growth optimality for branching Markov decision

chains. Math. Oper. Res., 7(4):582–601, 1982.

150 Bibliography

[Ser06] O. Serre. Parity Games Played on Transition Graphs of One-Counter Processes. In

Proc. of 9th FOSSACS, 2006.

[Sha53] L.S. Shapley. Stochastic games. Nat. Acad. Science, 39:1095–1100, 1953.

[Sch86] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.

[TSY95] T. Takine, B. Sengupta, and R. W. Yeung. A generalization of the matrix M/G/1

paradigm for Markov chains with a tree structure. Comm. Statist. Stochastic Models,

11(3):411–421, 1995.

[Tho97] W. Thomas. Languages, automata, and logic. Handbook of Formal Languages, Vol. 3,

Springer, 1997.

[Tiw92] P. Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM. Journal

of Complexity, 8(4):393–397, 1992.

[HB03] B. van Houdt and C. Blondia. Tree structured QBD Markov chains and tree-like

QBD processes. Stochastic Models, 19(4):467–482, 2003.

[Val79] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8:189–201, 1979.

[VP75] L. G. Valiant and M. Paterson. Deterministic one-counter automata. In Journal of

Computer and System Sciences, 10:340–350, 1975.

[VHB06] J. Van Velthoven, B. Van Houdt, and C. Blondia. Transient analysis of tree-like pro-

cesses and its application to random access systems. In SIGMETRICS/Performance

2006, 2006.

[Var62] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey,

1962.

[Vei69] A. F. Veinott. Discrete dynamic programming with sensitive discount optimality

criteria. Ann. Math. Statist., 40:1635–1660, 1969.

[Woj06] D. Wojtczak. PReMo – User’s Manual. 2006.

http://groups.inf.ed.ac.uk/premo/documentation.pdf

[WE07] D. Wojtczak and K. Etessami. PReMo: an analyzer for probabilistic re-

cursive models. In Proc. of 13th TACAS, 2007. Tool’s web page:

http://groups.inf.ed.ac.uk/premo/.

[YE05] M. Yannakakis and K. Etessami. Checking LTL properties of Recursive Markov

Chains. In Proc. 2nd QEST, 2005.

[YA99] R. W. Yeung and A. Alfa. The quasi-birth-death type Markov chain with a tree

structure. Comm. Statist. Stochastic Models, 15(4):639–659, 1999.

[YS94] R. W. Yeung and B. Sengupta. Matrix product-form solutions for Markov chains

with a tree structure. Adv. in Appl. Probab., 26(4):965–987, 1994.

