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Abstract 

ADAR (Adenosine Deaminases acting on RNA) family proteins are double-strand RNA 

binding proteins that deaminate specific adenosines into inosines. This A-to-I conversion 

is called A-to-I RNA editing and is well conserved in the animal kingdom from 

nematodes to humans.  RNA editing is a pre-splicing event on nascent RNA that may 

affect alternative splicing when the editing occurs in the exon-intron junction or in the 

intron. Also, editing may change biological function of small RNAs by editing the pre-

microRNAs or other noncoding RNAs. Editing also alters protein amino acid sequences 

because inosine in the mRNA base pairs with cytosine and is therefore read as guanosine.  

In mammals, there are three ADAR family proteins, ADAR1, ADAR2, and ADAR3, 

encoded by three different genes. So far, no enzymatic activity of ADAR3 is detected. 

The most frequently edited targets of ADAR1 and ADAR2 are regions covering copies 

of Alu transposable elements in primates. In addition, loss of some specific editing 

events leads to profound phenotypes when the editing does not occur correctly. For 

example, some human neural disorders – such as epilepsy, forebrain ischemia, and 

Amyotrophic Lateral Sclerosis – are known to be associated with abnormally edited ion 

channel transcripts.   

Drosophila has a single ADAR protein (encoded by the Adar gene) that is highly 

conserved with human ADAR2 (encoded by the ADARB1 gene). To date, 972 editing 

sites have been identified in 597 transcripts in Drosophila, and approximately 20% of 

AGO2-associated esiRNAs are edited. Similar to mammals, many ion channel-encoding 

mRNA transcripts undergo ADAR-mediated A-to-I editing in Drosophila. While Adar1 

null mice die at the embryonic stage and Adar2 null mice die shortly after birth due to 

seizures, Adar null flies are morphologically normal and have normal life span under 

ideal conditions. However, Adar null flies exhibit severe neurodegeneration and 

locomotion defects from eclosion, whilst Adar overexpression (OE) is lethal. 
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To better understand the physiological role of RNA editing and ADAR, and to shed light 

on ADAR-related human disease, I used Drosophila Adar mutant flies as a model 

organism to investigate phenotypes, and to find chromosomal deletions and specific 

mutations that rescue the neural-behavioural phenotype of the Adar null mutant flies.   

Using the publicly available chromosomal deletions collectively covering more than 80% 

of the euchromatic genome of Chromsome III, I performed a genetic screen to find 

rescuers of the lethality caused by Adar overexpression. I confirmed that mutation in Rdl 

(Resistant to dieldrin, the gene encoding GABAA receptor main subunit) rescues. This 

rescue was not likely caused by effects on Adar expression level or activity. Driven by 

the hypothesis that the rescue may be due to reduction in GABAergic input to neurons, I 

recorded spontaneous firing activity of Drosophila larval aCC motor neurons using in 

vivo extracellular current recording technique. As expected, the neurons overexpressing 

Adar had much less activities compared with wild type neurons. Also, I found that Adar 

null fly neurons fired much more and showed epilepsy-like increased excitability. 

Although feeding PTX (Picrotoxin), a GABAA receptor antagonist, failed to rescue the 

lethality, reducing the expression of GAD1 to reduce synthesis of GABA was able to 

rescue the ADAR overexpression lethality. These results suggest that ADAR may fine-

tune neuron activity synergistically with the GABAergic inhibitory signal pathway. 

I used MARCM (mosaic analysis using a repressible cell marker) to detect cell-

autonomous phenotypes in Adar null cells in otherwise wild type flies. Although 

neurodegeneration, observed as enlarged vacuoles formation in neurophils, was detected 

both in histological staining and EM images, the Adar null neurons marked with GFP 

from early developmental stages were not lost with age. Nevertheless, swelling in the 

axons or fragmentation of the axon branches of Adar null neurons was sometimes 

observed in the midbrain.  

By comparing the Poly-A RNA sequencing data from Adar null and wild type fly heads, 

we detected significant upregulation of innate immune genes. I confirmed this by qRT 

PCR and found that inactive ADAR reduces the innate immune gene transcript levels 
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almost as much as active ADAR does. Further, using the locomotion assay, I confirmed 

that reintroducing inactive ADAR into Adar null flies can improve the flies’ climbing 

ability.  

Based on the Adar null flies having comparatively low viability, I performed a second 

deficiency screen to find rescuers of Adar null low viability using the same set of 

deficiencies as in the lethality rescue screen described above. I found seven deletions 

removing 1 to 37 genes that significantly increased the relative viability of the Adar null 

flies. However, not all the rescuing deficiencies also improved the Adar null locomotion. 

One rescuing gene, CG11357 was mapped from one of the rescuing deficiencies, and 

some mutant alleles of cry, JIL-1 and Gem3 also showed significant effects on the Adar 

null fly viability. The single gene viability rescuers were also not necessarily locomotion 

or neurodegeneration rescuers. Although the initial aim was to find neural-behavioural 

rescuing genes from the viability screen, the viability rescuers found in the screen are 

more likely to play a role in different aspects of stress response for survival.  
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IL-6 Interleukin-6 
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MAPKKK mitogen activated protein kinase kinase kinase 

MAVS mitochondrial antiviral signaling 

MDA5 melanoma differentiation-associated gene 5 

mef Myocyte enhancer factor 2 
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NAF-1 Nutrient-deprivation autophagy factor-1 

neur neuralised 

NF-κB nuclear factor -κB 
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Pka-C2 cAMP-dependent protein kinase 2 

PKR protein kinase R 

PO phenoloxidase 

PRR pattern-recognition receptors 

PtdIns(3)-P Phosphatidylinositol 3-phosphate  

Rdl resistant to dieldrin 

RIG-I retinoic acid-inducible gene 1 

RLR RIG-I like receptors 

rtp retinophilin 

shab Shaker cognate b 

slimb supernumerary limbs 

slo slowpoke 

SMN survival motor neuron 

SPE Spἅtzle processing enzyme 

syt synaptotagmin 

TAB2 TAK1-binding protein 2 

TAK1 TGF-β-activated kinase 1 

TGF transforming growth factor-β 

TLR Toll like receptors 

TOR Target of rapamycin 

Tot turandot 

TRIF TIR domain-containing adapter influencing IFN-β 

Upd unpaired 

Xbp-1 X box-binding protein 1 
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Amino Acid code Abbreviations 

 
 A Ala Alanine 

R Arg Arginine 

N Asn Asparagine 

D Asp Aspartate 

C Cys Cysteine 

Q Gln Glutamine 

E Glu Glutamate 

G Gly Glycine 

H His Histidine 

I Iso Isoleucine 

L Leu Leucine 

K Lys Lysine 

M Met Methionine 

F Phe Phenylalanine 

P Pro Proline 

S Ser Serine 

T Thr Threonine 

W Trp Tryptophan 

Y Tyr Tryosine 

V Val Valine 
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1 CHAPTER I: Introduction 

 

 

 

 

 

 

From wonder into wonder, existence opens. 

 

― Lao Tzu 
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1.1 ADAR family proteins and A-to-I RNA editing 

Proteins of the ADAR family are enzymes responsible for converting adenosines to 

inosines in double-stranded RNAs (dsRNAs). The ADAR proteins bind to substrates 

that are either long and perfectly paired or short and imperfectly paired dsRNAs (A 

Gallo et al. 2003; Ring et al. 2004), and then convert certain adenosine (A) residues in 

RNA into inosines (I). This reaction involves a water molecule which is added to the 6-

position to form a hydrated intermediate (Polson et al. 1991). The target substrates of 

ADAR include repetitive noncoding RNAs, virus RNAs, mRNAs,  microRNAs, and 

endogenous small interfering RNAs (esiRNA) (Brenda L Bass 1997; A Gallo et al. 2003; 

Ring et al. 2004; Kawamura et al. 2008; Athanasiadis et al. 2004; Taylor et al. 2005; 

Kawahara, Zinshteyn, Sethupathy, et al. 2007). 

                  

Figure 1.1 A-to-I conversion chemical reaction mediated by ADAR. Figure is taken 

from Keegan et al., 2004. 

 

The ADAR proteins are evolutionarily conserved from worms to human beings. They 

have two to three double stranded RNA binding domains and one deaminase domain 

(Figure 1.2 A and B) (Keegan et al. 2001) .  
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Figure 1.2 ADAR phylogeny. (A) Conserved domains and residues of human ADARs 

and Drosophila. ADAR family proteins have two to three dsRBDs (white boxes) and 

one deaminase domain (yellow box). Human ADAR1 p150 also has two Z-DNA 

binding domains (green boxes) and an R-G rich domain. The shorter ADAR1 (ADAR 

p110) protein begins at M296 in the second Zβ Z DNA binding domain. In the second 

dsRBD of ADAR2, there is a proline (P) rich sequence, and ADAR3 has an ssRNA-

binding domain at the N-terminus. Black boxes refer to nulcear localisation sequences 

(NLS). Three chelating residues involved in Zn
2+

 binding in each ADAR deaminase 

domain (marked as five-point stars) and glutamate (E) residues important in the active 

sites (aligned, four-point star) are marked. Numbers indicate total amino acids. Figure 

adapted from Keegan et al., 2004. (B) Alignment of Drosophila ADAR 

(ADAR_DROME), human ADAR2 (RED1_HUMAN), human ADAR3 

(RED2_HUMAN), and human ADAR1 (DSRAD_HUMAN) full amino acid sequences. 

Green highlights DNA binding domain which exists only in ADAR1 but not in other 

ADAR proteins. Yellow highlights protein domains – dsRNA binding domains and 

deaminase domain. Blue highlights metal ion (Zn
2+

) binding site and red highlights 

enzymatically active site. Dark grey aligns conserved sites. The alignment comparison is 

conducted at Uniprot website. http://www.uniprot.org/align/201305065027SU3DYU (C) 

Amino acid conservation guide tree of Drosophila ADAR (ADAR_DROME), human 

ADAR2 (RED1_HUMAN), human ADAR3 (RED2_HUMAN), and human ADAR1 

(DSRAD_HUMAN). The tree is generated at 

http://www.uniprot.org/align/201305065027SU3DYU Uniprot website. (D) Unrooted 

tree view of Drosophila ADAR and its orthologous in different species. Subtrees (leaves) 

that contain sequences with common Blast Name are collapsed. Yellow highlights 

Drosophila ADAR and green line leads to human ADAR2 (Red font) from the 

evolutionarily predicted root ADAR. The tree is generated at NCBI blast webpage, using 

Fast Minimum Evolution Tree Method. Parameters set for the methods are: Max Seq 

difference: 0.85; Distance: Grishin (Protein).   

http://www.ncbi.nlm.nih.gov/blast/treeview/treeView.cgi  

 

Based on the protein domain organization, Drosophila ADAR is most similar to ADAR2 

and then ADAR3 (Figure 1.2 A-C) with two dsRNA binding domain and one deaminase 

domain. ADAR1, with its additional one dsRNA binding domain and DNA-binding 

domains, predicts quite different substrate specificity and physiological functions 

compared with the rest of ADAR proteins. It is shown that main role of ADAR1 is to 

edit long-repeat dsRNA promiscuously, and has important physiological role in 

hematopoietic stem cell differentiation and immune-control (Hartner et al. 2009; 

Laxminarayana et al. 2007; Feng et al. 2009). ADAR2 edits more site-specific sites in 

dsRNA, and its main physiological role is shown in controlling neuron physiology by 

http://www.ncbi.nlm.nih.gov/blast/treeview/treeView.cgi
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guarding ion channel activities (Kittler 2006; Higuchi et al. 2000a; Ohlson et al. 2007) 

Intriguingly, ADAR3 is exclusively expressed in the neural system but the physiological 

role of ADAR3 is unknown (Chen et al. 2000).  Human ADAR2 rescues the Drosophila 

ADAR knockout neural-behavioural phenotypes almost as well as Drosophila ADAR 

does while human ADAR1 does not rescue locomotion defects of the ADAR knockout 

flies. These similarities between domain organizations of different ADAR proteins are 

correlated with physiological functions of the proteins. Drosophila ADAR is the 

evolutionary early ancestor of human ADAR2 (Figure 1.2 D). It is thought that ADAR1 

is lost in the insect while conserved in the mammals (Keegan et al. 2011). However 

unexpectedly, human ADAR1 short isoform p110 could rescue age-dependent 

neurodegeneration of Drosophila (Keegan et al. 2011).  Some other evidence, like 

identification of widely edited esiRNA for instance, also suggests that Drosophila 

ADAR may have some physiological roles of mammalian ADAR1 like a role in 

immunity or development of the animal.   

The specificity and the mechanism of the deamination process hugely depend on the 

structure of ADAR proteins. Although the full-length ADAR protein structure has not 

been solved, the structure of each domain of ADAR is well-studied. 

 

1.1.1 ADAR Substrates 

The ADAR proteins bind to substrates that are either long and perfectly paired or short 

and imperfectly paired dsRNAs (Gallo et al. 2003; Ring et al. 2004).  

Long and perfectly paired dsRNAs in vivo can be formed by the base-pairing of inverted 

Alu elements or LINEs (Long Interspersed Nucleotide Element) in primates, or SINEs 

(small Interspersed Nucleotide Elements) in mouse, or viral RNAs, or in untranslated 

regions (UTR) of mRNAs (Levanon et al. 2004; Athanasiadis et al. 2004; Osenberg et al. 

2010; Zahn et al. 2007). The A-to-I conversion in these substrates is non-specific (Bass 

1997). Non-specific editing has been estimated to occur at approximately 13,000 
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adenosines in about 1,700 human genes in a computational search for editing sites of 

whole human transcriptiome (Levanon et al. 2004). 

In vitro and in vivo studies show that A-to-I editing of the dsRNAs leads to a reduction 

in RNAi efficiency (Yang et al. 2005; Scadden and Smith 2001; Wu et al. 2011). But 

recently, ADAR1 is shown to form duplex with Dicer to increase the efficiency of 

miRNA production(Ota et al. 2013). In addition, emerging evidence shows that dsRBD 

binding activity of ADAR, independent of the editing activity, interferes with miRNA 

processing (Heale, Keegan, McGurk, et al. 2009; Vesely et al. 2012).  

Targeting of ADAR to short and imperfectly paired dsRNAs allows selection of 

adenosines at specific sites (Higuchi et al. 1993). This type of editing occurs mostly in 

exons of pre-mRNA that form imperfect double strands between the regions surrounding 

the editing sites and editing site complementary sequences (ECS) located mostly in 

nearby intronic regions (Figure 1.3) (Higuchi et al. 1993; Reenan 2005). 

When A-to-I editing occurs in the open reading frame (ORF), inosine and base pairs 

with cytosine is read as guanosine (A-to-I-to-G) by the translational machinery. In that 

way, ADAR greatly increases the diversity of the proteins, especially neural proteins, 

and can affect alternative splicing or stability of the target dsRNAs. Also, A-to-I editing 

can interact with the RNAi pathway by targeting the precursors of siRNAs and miRNAs 

(Knight and Bass 2002; Kawahara, Zinshteyn, Chendrimada, et al. 2007).  
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Figure 1.3 Editing of pre-mRNA requires ECS (Editing site complementary 

sequences) and changes base-pairing. (A) dsRNA formed between the edited site and 

downstream intron in the pre-mRNA. ECS base pairs with the sequence surrounding the 

edited A residue. ADAR binds and edits the site. (B) Adenosine base-pairs with Uridine, 

but Inosine base pairs with Cytidine, read as Guanosine. Thus, A-to-I conversion in the 

pre-mRNA changes the genetic information read by the translational machinery.  Both 

(A) and (B) are taken from Keegan et.al, 2004. 

 

 

1.1.2 Mutant phenotypes and human diseases 

ADAR mutants and alterations in editing of many mRNAs and noncoding RNAs are 

associated with some human diseases, including dermatosis, mental diseases, motor 

neuron diseases, cancers and inflammations (Maas et al. 2006; Tariq and Jantsch 2012) . 

Some neurological diseases are associated with abnormal editing levels in the ion 

channel transcripts (Table 1.1) (Niswender et al. 2001). For example, editing levels 

affect pharmacological properties of Kv1.1 channels and 5HT2c receptors (Niswender et 

al. 1999; Berg et al. 2001; Decher et al. 2010; M. Singh et al. 2011). It is also shown that 

expression of unedited GABAA receptor is crucial for synapse formation in the 

A B 
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developing brain, and editing causes a delay in response to GABA (Ben-Ari et al. 2007; 

Rula et al. 2008). 

One of the well-studied diseases related with A-to-I RNA editing alteration is sporadic 

ALS (Amyotrophic Lateral Sclerosis) disease. ALS is one of the most common motor 

neuron diseases, and altered editing of GluR-B Q/R site has been proposed (Kawahara et 

al. 2003). Kawahara et al. observed reduced editing at the GluR-B Q/R site in motor 

neurons of sporadic ALS patients in comparison to 100% editing in controls, indicating 

a crucial role of RNA editing in sporadic ALS (Kawahara et al. 2004). The GluR-B Q/R 

site in the key AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor) subunit is the principal target of ADAR2. In normal motor neurons, the GluR-

B Q/R site is edited with 99.9% efficiency (O’Connell et al. 1997), which prevents high 

influx of Ca
2+

 ions through the AMPA receptors. But the unedited GluR-B permits the 

high influx of Ca
2+

 ions that may cause glutamate-excitotoxic neuron death (Shaw and 

Ince 1997). It is shown that mutating Q into R in the GluR-B Q/R site is sufficient to 

rescue seizures and early death of Adar2 knockout mice (Higuchi et al. 2000). 

ADAR1 mutations have been identified in more than 130 familial cases of 

dyschromatosis symmetrica hereditaria (DSH), an autosomal dominant disorder found 

mainly in China and Japan (Zhang et al. 2004; Liu et al. 2006; Kondo et al. 2008; 

Miyamura et al. 2003), and recently in an immune-mediated neural-developmental 

disorder Aicardi-Goutières syndrome (AGS) (Rice et al. 2012) (Aicardi and Goutières 

1984). So far, most diseases reported to involve ADAR1 mutations show inflammatory 

features and this part will be introduced in Section 1.3 in more details.  
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Table 1.1 Abnormal editing of ion channels and human diseases. 

Edited channels Edited sites Effect of editing Reported or 

predicted human 

diseases 

Glutamate-

gated ion 

channels 

GluR-2, 3,4,5,6; Q/R 

site, R/G site, I/V 

site etc. 

Editing at Q/R sites 

reduces calcium 

permeability. 

ALS, epilepsy 

5HT2C 
Up to five A-to-I 

events 

Fully edited isoforms 

revealed a 40-fold 

decrease in 

serotonergic potency. 

Forebrain ischemia,  

depression and 

suicide, 

Prader-wili 

Syndrome 

GABAA 

receptor 

Channel gating 

region, one I/M site 

in Gabra-3 

EC50 is around 50% 

for the non-edited 

channel. 

Epilepsy and 

neurodegeneration 

(?) 

Kv1.1 
Sixth transmembrane 

domain, I/M site. 

Editing reduces 

inactivation rate, and 

reduces sensitivity to 

highly-unsaturated 

fatty acids. 

Multiple sclerosis, 

epilepsy, and 

autoimmune diseases 

(?) 

The question marks (?) refer to cases where there is no experimental evidence showing 

that editing level changes are involved in the diseases, but there are reports of disease 

mutations in the listed ion channels. 

 

 

Homozygous Adar1 null mice and Adar2 null mice were both generated. Adar1 null 

mice were generated in two different groups almost at the same time and both reported 

embryonic lethality occurring E11.5 and E12.5 (Wang et al. 2004; Hartner et al. 2004). 

Adar1 null embryos show an anemia phenotype and are slightly retarded in growth 
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shortly before E11.5, with much reduced hematopoietic cells in the liver. Adar1 null 

mouse embryos showed wide-spread apoptosis at near E10 which is likely the direct 

cause of the embryonic lethality (Wang et al. 2004; Hartner et al. 2004). Homozygous 

Adar2 null mice die postnatal (P) between P0 and P20 and became progressively 

seizure-prone after P12. Surprisingly, these phenotypes are completely rescued by 

introducing homozygous edited GluR
R
 alleles (Higuchi et al. 2000). This suggests that 

GluR-B is the main target of ADAR2. 

The biological role of ADAR3 is not known. ADAR3 did not edit either endogenous or 

synthetic dsRNA in vitro although it shares 50% protein sequence identity with ADAR2 

(Melcher et al. 1996). Also mysteriously, ADAR3 expression is restricted to brain and 

no phenotypes were found in Adar3 knockout mice (Faul, Higuchi; Seeburg, 

unpublished). 

 

1.1.3 Structure-based studies of ADAR 

1.1.3.1 dsRBDs 

ADAR proteins bind to target transcripts through the dsRBDs (~65 amino acids) with its 

conserved αββα topology that specifically binds to the A-form RNA helix (Masliah et al. 

2012) or the stem-loop structure (Ramos et al. 2000). 

The solution structure of the two ADAR2 dsRBDs bound to the dsRNA substrate of 

GluR-2 R/G edited site (Figure 1.4A) revealed two important aspects of the interaction 

between ADAR2 dsRBDs and the transcript substrate (Stefl et al. 2010). 

Firstly, the contacts the two dsRBDs make with the substrate are different. The first 

dsRBD of ADAR2 contacts the dsRNA apical loop that caps the RNA hairpin, whereas 

the second dsRBD of ADAR2 does not contact the apical loop, but binds dsRNA near 

the edited base (Stefl et al. 2010). The apical loop was shown to be essential for the 

substrate recognition in the case of the Rnt1p dsRBD (Wu et al. 2004). However, it is 
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not clear whether the interaction between Asn 87 and Glu 88 in rat ADAR2 dsRBD1 and 

the apical loop in the GluR-2 R/G site substrate is essential. 

Secondly, ADAR2 dsRBDs recognize the sequence of RNA as well as the shape of the 

RNA (Stefl et al. 2010). Both the ADAR2 dsRBDs recognize the RNA helix via two 

sequence-specific contacts at two consecutive RNA minor grooves. One of the 

sequence-specific contacts is a hydrogen-bond formed between a single G of RNA to the 

amino-groups in the β1-β2 loop of each dsRBD. The other one is a hydrophobic contact 

to the adenine H2 via methinone in α1 helix (Stefl et al. 2010). Stefl and the co-workers 

further demonstrated that the sequence-specific contacts are important for editing (Stefl 

et al. 2006). 

Substrate selectivity of ADARs may depend on the dsRBDs. Mammalian ADAR1 and 

ADAR2 share some substrates but also have specificity. The main structural differences 

between ADAR1 and ADAR2 are numbers of dsRBDs and the spacing between the 

dsRBDs (Stefl et al. 2006; Strehblow et al. 2002). In addtition, ADAR1 dsRBDs have 

longer α1 helices and do not have ADAR2 equivalent of Met 84 and Met 238 (Stefl et al. 

2006). All these may explain the different substrate specificity of ADAR1 and ADAR2 

(Bass 2002; Lehmann and Bass 2000). 

The dsRBDs of ADARs also direct ADARs to compete with DICER for the same RNA 

substrates (Kawahara et al. 2007; Yang et al. 2006). Even inactive ADAR with 

functional dsRBDs can modulate pri-miRNA processing, suggesting an enzymatic 

activity-independent role of ADARs guided by dsRBDs (Heale, Keegan, McGurk, et al. 

2009). 

1.1.3.2 Deaminase domain 

The C-terminus of each ADAR family protein contains the deaminase domain with an 

enzymatic activity to deaminate adenosine residues to inosine. Two parallel α helices 

(α2-α3) of the deaminase domain contain residues that are essential for the deaminating 

activity (Lai et al. 1995). These essential residues in the catalytic hub of the deaminase 
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domain coordinate zinc ion that bind water to form the nucleophil, and a conserved 

glutamate residue accepts a proton from the nucleophilic water (Figure 1.4B). When this 

glutamate residue (E396 in human ADAR2) is mutated to alanine, ADAR proteins lose 

their deaminase activity completely (Lai et al. 1995; Haudenschild et al. 2004). 

The deaminase domain of ADAR2 has been determined by X-ray crystallography in 

2005. The substrate binding surface forms a positive electrostatic field, and Macbeth and 

coworkers argued that this structure likely facilitates binding of dsRNA (Figure 1.4B) 

(Macbeth et al. 2005). A zinc ion buried in the active site is ligated by C451, C516 and 

H394 in the catalytic domain of ADAR2 with the water molecule (Macbeth et al. 2005). 

In the active catalytic hub, T375 and R455 residues are important for the catalytic 

activity of ADAR2 (Macbeth et al. 2005). T375 is suggested to prevent C to U 

deamination and to act as a hydrogen bond donor, and R455 may approach N7 of the 

editable adenosine that assist editing (Goodman et al. 2011). 

The most striking finding was the presence of inositol hexakisphosphate (IP6) in the core 

of the domain (Macbeth et al. 2005) (Figure 1.4B). IP6 is known to be associated with 

surfaces of some proteins to affect interactions with other proteins (Hanakahi and West 

2002; Reineke et al. 2007), but IP6 has never been seen buried within a protein domain 

as in ADAR2. IP6 is very tightly associated with the core of the ADAR2 structure 

(Macbeth et al. 2005). It is predicted that existence of IP6 is crucial for the editing 

activity of ADAR (Macbeth et al. 2005). 
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Figure 1.4 Reconstructed NMR structure of ADAR2 dsRBDs bound to the GluR-2 

R/G substrate and active site of the ADAR2 deaminase domain. (A) dsRBDs of 

ADAR2 bound to the GluR-2 R/G site. Red: dsRBD1, Blue: dsRBD2. The grey helix 

represents GluR-2 RNA and the edited adenosine is in pink. Figure is taken from Stefl et 

al., 2006. (B) The active site of the ADAR2 deaminase domain. Hydrogen bonds (blue 

dotted lines) connect Zn
2+

 to conserved amino acids in the hub of active site. IP6 (yellow 

hexagon) is some distance away from Zn
2+

 (pink ball) in the hub of active site, but may 

communicate with the active site hub through a chain of hydrogen bonds (dash lines). 

The interaction of IP6 with W532 and W687 is mediated by water (aqua sphere). The 

nucleophilic water (aqua sphere) is near Zn
2+

.  Figure is taken from Macbeth et al., 2005. 

 

 

1.1.3.3 Z DNA-binding domains 

ADAR1, but not other ADAR family proteins, has two related Z-DNA binding domains 

in its N terminal, Zα and Zβ. Zβ has no binding capacity for Z-DNA (Herbert et al. 

A 

B 
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1997). Zα is present only in the interferon-inducible cytoplasmic form of ADAR1 

(ADARp150) while Zβ is present in both ADAR1 isoforms (ADAR p150 and ADAR 

p110) (George and Samuel 1999; Schwartz et al. 1999). Zα not only binds Z-DNA, but 

can also binds Z-RNA (Brown et al. 2000). The inclusion of Zα may be related with the 

anti-viral function of ADAR1 by binding to negatively supercoiled viral RNAs (Wittig 

et al. 1991; Placido et al. 2007).  

1.1.3.4 Dimerization is needed for editing 

ADARs have not formed dimmers in any crystals so far, but biochemical data suggests 

that dimerization is needed for the editing activity of ADAR proteins. A study using 

FRET (Fluorescence resonance energy transfer) analysis showed that ADAR1 and 

ADAR2 both make dimers, including heterodimers in vivo, dependent on the dsRBDs 

(Chilibeck et al. 2006). In Drosophila, ADAR, which is highly conserved with ADAR2, 

is shown to dimerize, RNA substrate-dependently (Gallo et al. 2003). However, human 

ADAR2 was found as a monomer, when the analytical gel filtration analysis and 

equilibrium sedimentation were used (Macbeth et al. 2004). There is a hypothesis 

suggested by Poulsen et al. that dimerization of ADAR proteins may depend on the 

amount of RNA substrate present (Poulsen et al. 2006). With excess RNA substrate, 

only one ADAR binds per substrate molecule, instead of forming a dimer, which may 

explain the substrate inhibition phenomenon (Poulsen et al. 2006; Hough and Bass 1994). 

Nevertheless, it is also possible that some unknown factors may determine the 

dimerization of ADAR proteins that are constantly in equilibrium between monomer and 

dimer. 

 

1.1.4 Cellular localization of ADARs 

ADAR1 p150, the interferon-inducible isoform accumulates mostly in the cytoplasm 

(Patterson and Samuel 1995; Poulsen et al. 2001; Desterro et al. 2003) while ADAR1 

p110 and ADAR2 are mostly located in the nucleoli (Sansam et al. 2003; Desterro et al. 
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2003). All these ADAR family proteins shuttle constantly either between nucleolus and 

nucleoplasm or between nucleus and cytoplasm (Desterro et al. 2003). 

ADAR1 has a nuclear localization signal (NLS) sequence in the dsRBD3 (Eckmann et al. 

2001; Strehblow et al. 2002) and a nuclear export signal (NES) sequence in the Zα 

domain (Poulsen et al. 2006). ADAR1 p150, with both NLS and NES, shuttles between 

cytoplasm and nucleus and ADAR1 p110 also shuttles between nucleus and cytoplasm 

though it does not have an NES (Eckmann et al. 2001; Poulsen et al. 2001; Fritz et al. 

2009). ADAR1 shuttling is mediated by dsRBD3 with its interaction with Transportin-1 

and exportin-5 (Fritz et al. 2009). It is not clear how ADAR2 shuttles between the 

nucleolus and nucleoplasm. It is also not clear why the ADAR1 and ADAR2 proteins 

are mostly in the nucleoli instead of in the nucleoplasm where their targets are. They 

relocate to nucleoplasm when extra substrate is produced from transfected plasmids 

(Desterro et al. 2003).  

 

1.1.5 Physiological regulation of ADAR family proteins 

ADAR RNA editing has been studied for more than two decades. Purified ADAR 

proteins can edit their substrates in vitro without any cofactors (O’Connell et al. 1998) 

and it was believed that the ADAR enzymes require no cofactors.However, there are still 

several challenges to fully understand the regulation of RNA editing in vivo. 

In mice, Adar1 expression is found to be controlled by multiple tissue-specific 

promoters, and Adar1 p150 expression is triggered by the interferon-inducible promoter 

during virus infections (George et al. 2005). ADAR2 and its editing activity are shown 

to be metabolically regulated by nutritional status in pancreatic islets beta-cells (George 

and Samuel 1999; Gan et al. 2006). In the high-fat fed insulin-resistant mouse model, 

pancreatic Adar2 expression increased nearly two-fold whereas in the diet restricted 

mice, the expression of Adar2 was repressed (Gan et al. 2006). 
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Recently, the phosphorylation-dependent prolyl-isomerase Pin1 has been shown to 

interact with ADAR2 as a positive regulator required for nuclear localization. The E3 

ubiquitin ligase WWP2 plays a negative role by binding to ADAR2 and catalyzing its 

ubiquitination and subsequent degradation (Marcucci et al. 2011). It is not known which 

phosphatases and kinases are involved or how they regulate ADAR2. 

ModEncode study revealed that Drosophila Adar expression level is affected by some 

chemical treatment including ethanol, caffeine or paraquat (Graveley et al. 2011). 

However, it is not clear how environmental factors regulate Drosophila Adar which is 

highly conserved with ADAR2, and is the only ADAR family protein in Drosophila. 
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1.2 Regulation and the targets of Drosophila ADAR 

 

1.2.1 Drosophila Adar gene and ADAR protein 

Drosophila ADAR has two dsRBDs and one RNA editing domain, sharing high 

structural and functional homology with human ADAR2 (also known as RED1) and 

human ADAR3 (also known as RED2).  

Drosophila melanogaster has a single Adar locus at cytogenic position 2B 6-7, near the 

tip of the X chromosome (Palladino et al. 2000a). Expression of Adar is 

developmentally controlled by two different promoters. The 4A promoter is active at 

early stages, and the stronger 4B promoter is active only after metamorphosis. Adar pre-

mRNAs undergo alternative splicing and self-editing to produce different ADAR protein 

isoforms with different editing activities (Figure 1.5) (Palladino et al. 2000b). 

There are two principal transcripts in the embryo and two further additional transcripts 

in the adult. The two adult-specific transcripts predominate in the adult stage (Palladino 

et al. 2000a). Exclusion of exon 3a, resulting in the 3/4 isoform is adult-specific and is 

predominant after metamorphosis (Palladino et al. 2000a). Inclusion of exon 3a adds 38 

amino acids, increasing the distance between two dsRBDs of ADAR. Minor transcripts 

include an alternative -1 exon in both 3/4 and 3a isoforms that produces proteins with 12 

more amino acids at the N-terminus (Figure 1.5) (Palladino et al. 2000b). 

In addition, exon 7 has an editing site, with editing occuring mainly after metamorphosis 

(Keegan et al. 2005). Exclusion of exon 7 was also observed in embryos (Ma et al. 2002). 

Self-editing of exon 7 is likely a mechanism to fine-tune the editing activity of ADAR, 

since the edited ADAR isoform shows lower editing activity on some well-known edited 

transcripts (Keegan et al. 2005). 

 

 

C 
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Figure 1.5 Gene structure of Drosophila Adar. Two promoter regions are suggested, -

4a and -4b. Alternative splicing points are linked with lines. Exons -3,-2,-1 are 

alternatively included as is the extended exon 3a. Exon 7 is where self-editing occurs. 

DRBM-1 and DRBM-2 refer to the two dsRBD-encoding regions. Figure is taken from 

Palladino et.al, 2000 (b). 

 

 

1.2.2 Drosophila Adar mutant phenotypes 

In 2000, Palladino et al. generated a series of Adar mutations on the X chromosome by 

imprecise excision of a P element and examined their phenotypes. The Adar null and 

hypomorphic flies show strong adult neural-behavioural defects including uncoordinated 

locomotion, temperature sensitive paralysis, seizures, and progressive neural 

degeneration evidenced by vacuole formation in the brain mushroom bodies (MB) 

(Palladino et al. 2000a). The Adar null male flies lost courtship behaviour completely 

(Palladino et al. 2000a). Despite all these defects, the originally characterized Adar
1F4

 

mutant flies are morphologically normal and not short-lived (Palladino et al. 2000a). 

Several phenotypes of the Adar mutant flies might be expected based on the known 

edited target genes, even though loss of RNA editing in channel transcripts may not 

affect function as severely as null mutations in the same channels. For instance, cac 

mutants affecting the voltage-gated calcium channel a1 subunit exhibit temperature 

sensitive convulsions, uncoordination, and defects in male courtship song (Smith, 

Peixoto, Kramer, et al. 1998; Smith et al. 1996; Smith, Peixoto and Hall 1998). para 
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mutants affecting the voltage-gated sodium channel gene also have behavioural 

phenotypes like temperature sensitive-paralysis and cold-sensitive lethality (Loughney et 

al. 1989; Hanrahan et al. 2000). Mutations in the recently identified edited transcripts 

Atp alpha and CG31116 cause neurodegeneration (Ryder et al. 2007). The neural 

behavioural defects of the Adar mutant flies would be expected to derive from 

malfunctioning of many membrane channel proteins and trafficking proteins. A study 

using RNAi to knock down Adar in different cell types showed that reducing Adar 

activity in discrete subsets of neuronal cells cannot phenocopy the pan-neuronal Adar 

knockdown, suggesting that normal locomotion requires pan-neuronal expression of 

Adar (Jepson & R A Reenan 2009). 

 

1.2.3 Drosophila ADAR substrates 

The number of known edited transcripts in Drosophila increased dramatically from 

initial serendipitous identification of a few edited transcripts, to the currently known set 

comprising transcripts 4% of all fly genes discovered in the ModENCODE project. By 

studying the developmental transcriptome using extensive RNA sequencing analyses, 

Graveley et al. identified 972 edited positions within transcripts of 597 genes (Graveley 

et al. 2011). The majority (64.8%) of the edited sites alter amino acids, while 20.7% of 

the edited sites are silent and the remaining 14.5% occur in untranslated regions 

(Graveley et al. 2011). Recently, Rodriguez and colleagues also found there is extensive 

editing in the introns of nascent RNAs by Nascent-seq (Rodriguez et al. 2012). They 

also discovered that the editing occurs mostly (93%) cotranscriptionally (Rodriguez et al. 

2012). However, loss of editing did not affect levels of edited transcripts (Rodriguez et 

al. 2012). 

Several important common features of the edited sites in Drosophila are found, based on 

the observations on the 972 ModENCODE edited sites of Drosophila mRNA. Firstly, 

exons containing editing sites are more highly conserved than unedited exons (Graveley 

et al. 2011; Hoopengardner et al. 2003; Jepson and Reenan 2007). Secondly, the 
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frequency of editing generally increases with development (Graveley et al. 2011). 

Graveley and coworkers found that editing often begins in the late pupal stages and 

many edited events are only observed in the adult stage (Graveley et al. 2011). Thirdly, 

three classes of potential editing-associated sequence motifs, named Motif A, B, and C, 

are predicted by computational analysis (Figure 1.6). Motif C is less abundant than 

Motif A or B, but is most strongly associated with the edited sites. The adenosine 

residue in the 3’end is the edited residue (Graveley et al. 2011). Interestingly, these three 

motifs are mostly 5’ of the edited adenosine residue, whereas the ADAR dsRBDs are 

known to bind mainly 3’ of the edited adenosine residue (Stefl et al. 2010).  

Before the ModENCODE project identified near 600 edited transcripts, 55 edited 

transcripts were found by serendipity and by computational and comparative genomic 

approaches (Hoopengardner et al. 2003; Sixsmith and Reenan 2007). In fact, the edited 

transcripts are expressed in every tissue of Drosophila though the brain still has the most 

abundant edited transcripts. In addition, the functional categories of the edited transcripts 

span a wide range, including transporter activity, enzymatic activity and binding 

activities, based on the classification of molecular functions of encoded proteins 

(AmiGO analyses). 

There are so many edited transcripts in Drosophila and many even have multiple sites in 

one transcript changing the amino acid sequences that it is almost impossible now to 

examine the physiological consequences of the editing at each edited transcript. Still, 

some extensive studies have been carried on to study effects of RNA editing on several 

ion channels including the ligand-gated GABAA receptor subunit Rdl and the voltage-

gated potassium channel Shab. 
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Figure 1.6 Potential common motifs of Drosophila ADAR editing sites. In the left 

box heat map, rows represent edited sites, ordered with ranks of expression levels (green) 

and editing ratios (red) at all developmental stages. Pictogram represents editing motifs 

A, B and C. Figure is taken from Graveley et al., 2011. 

 

 

RDL mediates fast synaptic inhibition through GABAA receptors and shares 30%-38% 

identity with vertebrate GABAA receptors (Hosie et al. 1997). RDL can form functional 

GABAA receptors as a homomer when expressed in Xenopus larvis eggs and also forms 

a heteromer with LCCh3. However, a study of pharmacological agonist and antagonist 

effects suggest that RDL likely forms a heteromer in flies (Lee et al. 2003). However, 

the physiological composition of GABAA receptor is not clear.  

Jones and coworkers performed a detailed study to show that RNA editing, in 

combination with different splice variants, fine-tunes the GABA potency of RDL (Jones 

et al. 2009). Rdl transcripts are processed to produce four splicing isoforms by 
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alternative splicing events involving exon 3 (variants a and b) and exon 6 (variants c and 

d) (Buckingham et al. 2005). In the adult head, the bd variant is 26 times more abundant 

than the ad variant, and more than 300 times more abundant than the least abundant ac 

variant (Jones et al. 2009). Four editing sites in Rdl change amino acid residues; the RG 

site is in the N-terminal extracellular domain where ligand binds, the IV site is in the 

transmembrane domain, and the ND site and MV sites are in the intracellular domain 

(Figure 1.7) (Buckingham et al. 2005). The IV site in transmembrane helix I is 

consistently nearly 100% edited over all developmental stages in all the four different 

splice variants of Rdl (Jones et al. 2009). The editing levels at other sites are much lower, 

and increase generally with development (Jones et al. 2009; Graveley et al. 2011). 

Editing levels at these sites also differ between splice variants, especially in the bd 

variant in the adult where the RG and MV sites where have higher editing levels than in 

other splicing variants (Jones et al. 2009). 

GABA potencies of the splicing isoforms and editing variants were measured using 

voltage-clamp analyses in Xenopus oocytes expressing the different variants (Table 1.2). 

Jones and colleagues examined the GABA EC50 (half maximal effective concentration) 

of different splicing isoforms with only the IV site fully edited and found that the ad 

variant is more sensitive to GABA than the bd variant (Jones et al. 2009). They also 

showed the effects of combinations of editing at different sites and splicing isoforms on 

the GABA EC50. Among 16 different combinations tested, the editing of RG plus IV 

plus ND in the bd background showed the highest EC50 and the editing of IV plus ND in 

the ac background showed the lowest EC50 (Jones et al. 2009). Whereas, the fully edited 

variant had the highest EC50, approximately 7 times higher than the unedited variant in 

the ac background (Table 1.2) (Jones et al. 2009). The fully edited ac variant (the least 

sensitive ac variant) is still more sensitive than the most sensitive bd variant (Jones et al. 

2009). All these observations lead to the conclusion that RNA editing in combination of 

alternative splicing has the potential to profoundly influence GABA-mediated inhibition. 
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Figure 1.7 Schematic structure for RDL in the cell membrane. The alternatively 

spliced exons and four editing sites changing amino acid sequences and their locations 

are marked. Arrows indicate the amino acid changes caused by ADAR A-to-I changes. 

Figure is taken from Jones et al., 2009. 

 

 

Another detailed study was carried out on the SHAB voltage-gated K channel. Five 

highly edited sites in the Shab transcript were first discovered by comparing cDNA with 

genomic DNA sequences (Ryan et al. 2008) and the ModENCODE study later detected 

eight edited sites in Shab including two silent sites. Ryan and coworkers compared the 

electrophysiologies of singly unedited with the fully edited Shab isoforms in Xenopus 

oocytes. They found that the edited channel is less prone to open, thus enhancing the 

excitability of a neuron containing the edited channels (Ryan et al. 2008). However, the 

effects of loss of editing on the kinetics of channel gating seem to predict an opposite 

effect, because loss of editing slows both activation and deactivation of Shab. (Ryan et 

al. 2008). 
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Table 1.2 The GABA EC50 values for edited isoforms in combination with ac and 

bd splice forms of of RDL. 

 

 

 

Overall, it is complicated to fully understand the functional consequence of A-to-I 

editing because the editing event is temporally and spatially regulated and generates 

complex combinations of isoforms (Graveley et al. 2011; Jones et al. 2009). 

Recently, adenosine to guanosine conversions were also found in 18% of AGO-2 

associated 21-mer small RNAs (Kawamura et al. 2008), suggesting that precursors of 
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this subset of endogenous small interfering RNAs (esiRNAs), which are primarily 

derived from transposons, are probably edited by Drosophila ADAR. 
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1.3 ADAR and innate immunity 

 

1.3.1 Human ADAR1 and immune-mediated pathologies.  

Recently, ADAR1 mutations are documented in Aicardi-Goutières syndrome (AGS) 

(Rice et al. 2012). AGS is an immune-mediated neural-developmental disorder (Aicardi 

& Goutières 1984). Ten different missense mutations of ADAR1 were found in ten 

families with AGS, including a Gly1007Arg mutation that showed strong inhibition of 

the editing activity of ADAR1 (Rice et al. 2012). ADAR1 is known to prevent aberrant 

activation of interferon-stimulated genes (ISGs) (Hartner et al. 2009), suggesting that 

ADAR1 mutations may contribute to the AGS disease pathology because the mutations 

are unable to turn off interferon induced immunity.  

There are several hypotheses about how ADAR1 negatively regulate ISGs. One of the 

most compelling hypotheses is that multiple IU pair-dsRNAs derived from non-specific 

editing by ADAR1 inhibit ISG induction (Vitali and Scadden 2010). Solid evidence is 

shown by Vitali and Scadden that IU-dsRNAs specifically bind to MDA5 or RIG-1 and 

inhibit activation of IRF3 (IFN-regulatory factor) which is essential for induction of 

ISGs (Vitali & Scadden 2010). Their experiments were carried out by transfecting Hela 

cells with multiple IU-dsRNAs as well as Poly (I:C) that induces ISGs. MDA5 and RIG-

1 are cytosolic dsRNA sensors for the immune system, which will be discussed in the 

following section 1.3.2. 

However, there are many other possible mechanisms whereby ADAR1 inhibits the ISGs 

as the Vitali and Scadden experiments may not match normal physiology. For instance, 

ADAR1 deficient cells may produce immunoreactive dsRNA, or there are unidentified 

important transcripts in immune-regulation.  

In both the Adar1 knockout mouse cells and the Adar 
5G1

 null fly, our group also 

observed induction of innate immunity, indicating possible links between ADARs and 
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innate immunity. The possible mediator of this crosstalk between ADAR and innate 

immunity is dsRNA which can be a substrate of ADAR as well as a ligand for sensors 

that induce innate immunity. In this section, I will review the sensors for dsRNA in 

mammals, and the innate immunity in Drosophila.   

 

1.3.2  dsRNA recognition by the innate immune system in mammals. 

In mammals, it has been shown that TLR (Toll-like receptors) and RLR (RIG-1-like 

receptors) are the main sensors of the host defense against viral infections by 

recognizing dsRNAs. PKR (Protein kinase R) and the RNAi machinery may also serve 

as sensors for some viral RNA detections.  

1.3.2.1 TLRs  

The first TLR shown to in sensing viral nucleic acid was TLR3 (Alexopoulou et al. 

2001). TLR3 binds dsRNA that is longer than 40 base pairs without a high degree of 

sequence specificity (Botos et al. 2009). The signal through TLR3 is mediated by TRIF 

(TIR domain-containing adapter including IFN-β) and ultimately induces expression of 

ISGs (Häcker et al. 2006; Oganesyan et al. 2006), whereas the other TLR proteins 

including the ssRNA-recognizing TLR7 and ssDNA-recognizing TLR9 signal via 

MyD88 (Kawai et al. 2004). Instead of localizing to the cell surface, TLR family 

proteins localize mostly to the ER (endoplasmic reticulumn) and the ER-resident protein 

Unc93b1 seems to control the exit of TLR from ER and multiple proteases are required 

for activation of TLR  (Leifer et al. 2004; Barbalat et al. 2011).   

1.3.2.2 RLR 

RLR family proteins include RIG-1, MDA5 and LGP2. The full length RIG-1 and 

MDA5 both have CARD domains in their N terminus, a central DEAD box 

helicase/ATPase domain, and a C-terminal regulatory domain whereas LGP2 lacks 

CARD domains necessary for IRF3 activation (Yoneyama et al. 2005). IRF3 is the 
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transcription factor that activates the IFN-β promoter in response to viral dsRNA or Poly 

(I:C) infection (Yoneyama et al. 2004).  

Little is known about how RLRs recognizes dsRNA, but there is evidence showing that 

the C-terminal domain of RIG-I, which is necessary to prevent constitutive activation of 

IRF3, binds to dsRNA (Cui et al. 2008; Takahasi et al. 2008). In recognizing synthetic 

dsRNA, it is shown that MDA5 preferentially recognizes long (>2 kb) Poly (I:C), 

whereas RIG-I recognizes smaller polymers (as short as 70 bp) (Kato et al. 2008). 

Whether LGP2 functions as a positive or negative regulator of the RIG-1/MDA5 

pathway is still not clear with some contradictory experimental evidence. It is not known 

how RLR family proteins distinguish self and non-self RNAs. One hypotheses is that the 

host distinguishes its own dsRNA by Inosine residues introduced by ADAR (Yoneyama 

et al. 2005; Satoh et al. 2010). 

Activation of IRF3 is mediated by MAVS (mitochondrial antiviral signaling, also known 

as CARDIF, IPS-1 or VISA) that is located in the mitochondrial outer membrane and 

this localization is necessary or MAVS to activate IRF3 (Seth et al. 2005). Interestingly, 

MAVS was also found to localize to peroxisomes, inducing anti-viral genes independent 

of type I IFN induction, which occurs more rapidly than the signals through IRF3 (Dixit 

et al. 2010). 

1.3.2.3 PKR 

PKR was shown to respond to multiple cellular stresses including viral infections. PKR 

has a dsRNA binding domain and it has been proposed that PKR binds viral dsRNA and 

activates itself to limit viral replication. Activated PKR phosphorylates the translation 

initiation factor eIF-2 to inhibit translation (Williams 1999). Study by Schulz et al. 

shows that PKR is required for production of type I interferon proteins in response to a 

subset of viral infections independent of its function of phosphorylating eIF-2 (Schulz et 

al. 2010). Therefore PKR is also a dsRNA sensor that activates ISGs but it is not clear 

how this PKR signaling action is activated by viral dsRNAs.           
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1.3.2.4 RNAi 

Small RNAs associated with AGO proteins with viral siRNA features were cloned from 

mammalian cells infected with poliovirus and wNv (Parameswaran et al. 2010). 

Parameswaran et al. also found that the virus-derived small RNAs increased when type 1 

interferon receptors are mutated, indicating possible crosstalk between the viral dsRNA 

induced RNAi and type I INF pathways (Parameswaran et al. 2010). Several mammalian 

viruses are shown to encode proteins with RNAi-suppressor activity, further indicating 

that RNAi may play a role in anti-viral defense in the mammals (Li and Ding 2006). 

However, it is still not clear whether virus derived small RNAs that show siRNA 

features mediate specific silencing of viral RNAs in mammals.  

 

1.3.3 Defense against viruses in Drosophila 

The main innate immunity pathway against virus in Drosophila is RNA interference 

pathway (Wang et al. 2006). The Toll and IMD pathways are also involved although it is 

still not clear whether they play a crucial role in anti-viral immunity (Dostert et al. 2005; 

Zambon et al. 2005). Also, the JAK-STAT signaling pathway is reported to participate 

in antiviral immunity (Dostert et al. 2005).   

Several families of viruses are known to infect Drosophila. The study of viral infections 

started much later and is very limited in Drosophila compared with the identification of 

the systemic innate immune pathways against fungal and bacterial infections. Viruses 

(DCV as an example) have been shown to need clathrin-mediated endocytosis to enter 

the host cells both in vitro and in vivo (Cherry and Perrimon 2004). Mutations in the 

genes encoding components of clathrin-coated vesicles, incluing αAdaptin, awd, chc and 

syt showed either completely or significantly impaired resistance to the viral infections 

(Cherry and Perrimon 2004).   
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1.3.3.1 Two anti-viral activites of Dcr-2: RNAi and viruses sensing. 

Viral dsRNAs trigger immune defenses against viral infections through RNA 

interference. Wang and coworkers demonstated that Dcr-2, Ago-2, and R2D2 are 

essential to silence a dsRNA virus (Wang et al. 2006). Based on the known siRNA 

pathway, it is clear that Dcr-2 cleaves the dsRNA into small interfering RNAs (siRNA) 

(Lee et al. 2004). Then R2D2 bridges the loading of Dcr-2-siRNA complex to RISC 

(RNA-induced silencing complex) by tightly biding to Dcr-2 (Liu et al. 2003). The core 

component of RISC is Ago-2 that is essential to guide siRNA to cleave or repress the 

translation of the target mRNA (Miyoshi et al. 2005). 

Wang and coworkers demonstrated the essential roles of Dcr-2, Ago-2, and R2D2 by 

showing accumulation of the viral RNAs and reduced survival in each of these gene 

mutant flies (Wang et al. 2006). They also detected FHV (Flock house virus) siRNA 

accumulation after FHV injection in adult flies which is not observable when dicer-2 or 

r2d2 are mutated (Wang et al. 2006).  

In the dcr-2 or r2d2 mutants, expression levels of AMP (anti-microbial peptide) genes 

were comparable with wild type flies after viral infections, indicating that induction of 

the Toll and IMD signal pathways are not compromised in the RNAi-deficient flies 

(Wang et al. 2006). Also, no alteration of the JAK/STAT responsive gene vir-1 

expression was detected in the dcr-2 or r2d2 mutants, suggesting that JAK/STAT 

pathway is independent of signaling from Dcr-2 anti-viral response  (Wang et al. 2006).  

A recent study showed that ATP-sensitive potassium channels (KATP) mediate resistance 

to FHV in the heart, in an RNAi-dependent manner (Eleftherianos et al. 2011), 

suggesting that ion channels also play a role in the anti-viral immunity. However, 

Drosophila cells infected persistently with FHV did not show siRNA-directed RNA 

silencing (Flynt et al. 2009). It is shown that most of the viral derived siRNAs did not 

bind to AGO2, which may explain the lack of RNAi in these viral infections and this 

effect may be signaling from Dcr-2 rather than through RNAi.  
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Figure 1.8 Key steps in the RNAi-mediated antiviral immunity by FHV infection in 

Drosophila. Following the entry of FHV virions, the genomic positive-strand (+) RNA 

is translated as well as being used for negative-strand (-) RNA synthesis by viral RNA-

dependent RNA polymerase (RdRP). New (+)RNA is made from the (-)RNA and Dicer 

2 (DCR2) recognizes the dsRNA formed between the 5’ –terminal nascent progeny (+) 

RNA and the (-) RNA and triggers RNAi, guiding specific clearance of viral RNAs. The 

B2 protein, a vrial suppressor of RNAi encoded by FHV, inhibits the RNAi mediated 

antiviral immunity by inhibiting viral siRNA production and by sequestering viral 

siRNAs by binding to siRNAs. Loqs-PD, loquacious-isoform PD. Figure is taken from 

Ding, 2010.  
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1.3.3.2 The Toll pathway is important in immunity against viral infection   

The involvement of the Toll and IMD pathways in virus immunity was found in the 

study of Drosophila X virus (DXV) infection. DXV is a member of the Birnavirus 

family and has an icosahedral nucleocapsid and bisegmented dsRNA genome (Zambon 

et al. 2005). Infection with DXV causes anoxia and eventually leads to death of the host 

(Teninges et al. 1979).   

Infection with DXV induced expression of AMP genes to the similar levels as 

Escherichia coli infection which turns on both the Toll and IMD signalling pathways 

(Details of the pathways are reviewed in Section 1.3.4 ) (Zambon et al. 2005). Tsai et al. 

also detected upregulated expression of the peptidoglycan-recognition protein PGRP-SA 

and AMP genes including Drosomycin-B, Metchnikowin and Defensin in both DXV and 

DCV (Drosophila C virus) infection (Tsai et al. 2008). Sigma virus (SIGMAV), 

however, upregulates expression levels of different PGRP transcripts and AMP 

transcripts, including PGRPSB1, PGRP-SD, Diptericin-A, Attacin-A, Attacin-B, 

Cecropin-A1, and Drosocin (Tsai et al. 2008).   

Intriguingly, ectopic expression of any single AMP genes does not enhance immunity 

against DXV in Toll or IMD deficient flies, suggesting that anti-viral defense occurs 

more at the cellular level than at the humoral (Zambon et al. 2005). Still, the Toll 

pathway deficient flies were much more susceptible to infection with DXV (Zambon et 

al. 2005). Zambon et al. hypothesized that the cellular debris released during apoptosis 

caused by the virus infection may turn on the Toll signal, similarly to cytokines released 

by hemocytes turning on the Toll signal in mammals (Zambon et al. 2005). In turn, the 

Toll signal may induce the proliferation of hemocytes which may attack the cells 

infected by the virus through sensing the aberrant apoptosis (Trudeau et al. 2001; Qiu et 

al. 1998; Basset et al. 2000).        
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1.3.3.3 The JAK/STAT pathway 

Apart from inducing the expression of the Toll and IMD pathway genes, viral infections 

also triggered activation of the JAK/STAT pathway, inducing expression of vir-1 and 

TotM, and CG12780 (Details of the pathway are reviewed in Section 1.3.4) (Dostert et al. 

2005). Genetic data suggest that the Jak kinase Hopscotch is required but not sufficient 

for controlling the viral load in the infected flies (Dostert et al. 2005). The effector of the 

JAK/STAT pathway, Vir-1, is specifically and substantially induced by viral infections, 

but not by fungal or bacterial infections nor by many general environmental stress 

(Dostert et al. 2005). In addition, hop (also known as JAK) mutant flies are more 

sensitive to DCV infection than wild-type flies, indicating that the JAK/STAT pathway 

is required for the anti-viral immunity. 

 

1.3.4 Defense against bacteria and fungi: NF-κB pathway 

1.3.4.1 Recognition of microbial infections 

The main anti-bacterial and fungal defense is through the Toll and the IMD pathways 

that activate NF-κB (nuclear factor -κB) family proteins of Drosophila. The Toll 

signaling pathway activates two different NF-κB family tansactivators: DIF (dorsal-

related immunity factor) and Relish, respectively, that lead to expression of different 

AMPs in the fat body which is equivalent to mammalian liver. In general, Toll receptors 

sense gram positive bacteria and fungi, whereas the IMD pathway is mainly activated by 

gram negative bacteria.   

Recognition of microbial challenges mainly involves peptidoglycan-recognition proteins 

(PGRPs) which are pattern-recognition receptors (PRRs) that form complexes with 

bacterial cell wall components. The PGRP family members share the PGRP domain, and 

evolutionarily related to the bacteriophage type II amidases. Some of the PGRP family 
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proteins (known as recognition PGRPs) lost this catalytic activity and became microbial 

sensors (Kim et al. 2003).   

Recognition sites of PGRPs are buried in the inner layer of the bacterial cell wall which 

is beneath the outer layer of Gram-positive bacteria or LPS (lipopolysaccharides) of 

Gram-negative bacteria (Gobert et al. 2003). This inner layer of bacteria is a layer of 

polymeric glycan chains formed by peptidoglycan (PGN) that is crossed linked by 

peptidic stems (Lugtenberg and Van Alphen 1983; Navarre and Schneewind 1999). 

Most gram-positive bacteria have a lysine residue in the third position of the PGN 

peptidic stem whereas Gram-negative and some Gram-positive bacilli have a 

mesodiaminopimelic acid (DAP) residue in the same position (Lugtenberg and Van 

Alphen 1983; Navarre and Schneewind 1999). Recognition PGRPs distinguish these 

differences and activate either Toll pathway or IMD pathway. PGRP-SA and PGRP-SD 

bind to Lys-type PGN, and activate the Toll pathway, and PGRP-LC and PGRP-LE bind 

to DAP-type PGN and activate the IMD pathway (Figure 1.8) (Royet et al. 2011).   

Another important PRR that detects Gram-positive bacterial and fungal infections are 

Gram-negative binding proteins (GNBP, also known as β-glucan recognition proteins, 

βGRP) (Gobert et al. 2003; Lihui Wang et al. 2006). GNBP1 binds to a restricted range 

of Lys-type PGN, and  cleaves polymeric Lys-type PGN chains in vitro (Wang et al. 

2006). GNBP3 recombinant protein binds to β-(1,3)-glucans in the fungal cell wall, and 

is shown to be required for activation of the Toll pathway by alkali-treated preparations 

of fungal cell wall (Gottar et al. 2006).   

Apart from the structural components of the microorganisms, certain pathogen virulence 

factors such as fungal proteases and some chitinases can also be detected by the 

Drosophila innate immune system. A fungal protease used by Beauveria bassiana to 

digest the host insect cuticle was shown to activate the Toll pathway (Ligoxygakis et al. 

2002).  The fungal protease cleaves the inactive Drosophila haemolymph zymogen 

Persephone at a defined position, into an active serine protease (Ligoxygakis et al. 2002). 
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Then, Persephone triggers the Toll pathway, as will be discussed in the Section on the 

Toll pathway signaling.    

1.3.4.2 The Toll pathway  

Both pathogen structural components recognized as as a non-self and virulence factors 

recognized as a signal of danger trigger the Toll pathway. PGRP-SA, PGRP-SD and 

GNBP1 sensing Lys-type PGN, GNBP3 sensing β-glucans, and CLIP-domain serine 

proteases (Persephone for instance) activated by fungal proteases leads to the activation 

of a cascade of proteases (Gottar et al. 2006). Recently, it has been found that 

Persephone, which was thought to be activated specifically in fungal infections is 

activated by virulence factors of Gram-positive bacteria as well (Chamy et al. 2008). 

Two more CLIP proteases, Grass and spirit, and two regulators Sphinx 1/2 and 

Spheroide, are found to play a role in the sequential activation of the cascade of 

proteases in the Toll pathway through a large-scale RNAi screen (Kambris et al. 2006). 

Grass was first shown to be only activated in Gram-positive bacterial infection when 

knocked down by approximately 60%. However, the study of an imprecise excision of 

Grass gene revealed that Grass is also activated in fungal infection, synergistically with 

Persephone (El Chamy et al. 2008). The cascade of proteases that is involved in the Toll 

pathway is not fully identified and the relationship between the identified proteases and 

the Toll pathway still need to be elucidated. The ultimate protease of the cascade is SPE 

(Spätzle processing enzyme). SPE cleaves the precursor of dimeric Spätzle, a cytokine 

that is structurally related to neurotorphins (Jang et al. 2006). The cleaved C-terminal of 

Spätzle (Spätzle C106) is released to bind to and activate Toll receptor through the 

conformational changes in the receptor (Hu et al. 2004; Weber et al. 2003).   

.   
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Figure 1.9 The Toll signaling pathway. Both virulence factors and cell wall 

components of most Gram-positive bacteria and fungi trigger the Toll signal pathway. 

The signal is transduced by pattern-recogntion proteins, a cascade of proteases, and 

eventually lead to cleavage of Spätzle by SPE, which in turn triggers assembly of TISC 

and releases DIF to translocate to nucleus. DIF turns on expressions of some AMP genes 

such as Drosomycin to kill the invaders. Figure adapted from Ferrandon et al., 2007.  
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Upon activation by Spätzle, the intracytoplasmic part of the Toll receptor (TIR domain) 

is assembled with the Toll-induced signaling complex (TISC) which is composed of the 

cytoplasmic adaptor MyD88 (myeloid differentiation primary-response gene 88), Tube 

and a serine-threonine kinase Pelle (Sun et al. 2004). All these three proteins have a 

death domain (DD) each (Sun et al. 2004).  Tube, with its bivalent DD, mediates the 

assembly of the MyD88-Tube-Pelle complex. Activation of Pelle kinase activity 

following the assembly of the trimeric complex leads to phosphorylation and 

degradation of Cactus, a homologue of the mammalian inhibitor of NF-κB (Belvin et al. 

1995). It is not clear how the signal leads to the phosphorylation of Cactus.  

Removal of Cactus allows Dorsal (in the embryos, for development) or DIF (in the adult, 

for innate immunity) to be translocated to the nucleus and to bind to NF-κB response 

elements (κB-RE). In turn, genes encoding AMPs, such as Drosomycin, will be 

expressed. It is suggested that besides the degradation of Cactus, some post-translational 

modifications are likely needed for full activity of Dorsal or DIF (Ferrandon and Imler 

2007) 

1.3.4.3 The IMD pathway 

To sense infection by Gram-negative bacteria, unexposed PGN of Gram-negative 

bacteria must become accessible to the PGRP. The current leading model for the Gram-

negative bacteria detection has the following several phases. Firstly, short PGN 

fragments, such as TCT, are released during cell-wall remodeling of the Gram-negative 

bacteria when they grow or proliferate. These short PGN fragments are detected by 

PRGP-LCx—PGRP-LCa (Takehana et al. 2004; Kaneko et al. 2006; Mellroth et al. 

2005), and this turns on the IMD pathway. As a consequence, AMPs and hemocytes 

attack the bacteria, leading to the release of large fragments of DAP-type PGN, which 

will be detected by membrane-bound PGRP-LCx receptors (Lim et al. 2006). PGRP-LF, 

which does not have a PGN-docking groove negatively-regulates the IMD signaling 

pathway through competitively binding to PGRP-LCx ectodomain (Basbous et al. 2011).   
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This model hypothesize that the immune system may sense proliferation but not the 

presence of bacteria (Ferrandon and Imler 2007).  

PGRP-LC detects extracellular PGNs and PGRP-LE binds to intracellular PGNs. The N 

terminus of PGRP-LC and PGRP-LE both have motifs resembling the RIP homotypic 

interaction motif (RHIM) required to initiate IMD signaling (Kaneko et al. 2006), but 

PGRP and IMD interact through some unidentified adaptors (Kaneko et al. 2006).  

IMD triggers the phosphorylation and cleavage of the NF-κB-like transcription factor 

Relish (Hedengren et al. 1999; Silverman et al. 2000; Stöven et al. 2000). The N-

terminal DNA-binding REL domain translocates to the nucleus and bind to the 

promoters of Cecropin A1 gene and other AMP genes (Stöven et al. 2000). 

The phosphorylation of Relish initiated by IMD involves activation of the IKK (I-κB 

Kinase) signaling complex by the MAPKKK transforming growth factor-β (TGF-β)-

activated kinase 1 (TAK1) and the TAK1-binding protein 2 (TAB2) (Vidal et al. 2001; 

Neal Silverman et al. 2003). The activation of TAK1 and the IKK complex is also 

suggested to involve K63-linked polyubiquitin conjugation. Genetic data suggest the 

involvement of the E2 ubiquitin enzyme. Bendless, the RING-finger containing protein 

DIAP2 as a potential E3 ligase, and Drosophila homologs of human ubiquitin-

conjugating enzymes Ubc13 and UEV1a (Gesellchen et al. 2005; Kleino et al. 2005; 

Chen 2005; Zhou et al. 2005; Leulier et al. 2006).  

Cleavage of Relish involves IMD to recruit FADD (FAS-associated death domain) and 

which in turn recruits the caspase-8 homologue DREDD (death-related ced-3/Nedd2-

like protein) (Zhou et al. 2005). The cleavage of Relish by DREDD is independent of the 

proteosome (Wang et al. 2005). Although genetically separately regulated downstream 

of IMD activation, it is thought that the phosphorylation tags Relish for cleavage 

(Silverman et al. 2000). In addition, the ubiquitin-proteosome pathway and a Drosophila 

homologue of the FAS-associating factor 1, Caspar, negatively regulate the IMD 

pathway ( Khush et al. 2002; Kim et al. 2006).   
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In addition, the IMD signal pathway activates the JNK (the JUN N-terminal kinase) 

pathway through the TAK1-TAB2 complex (Silverman et al. 2003). The physiological 

role of JNK signaling in the systemic host defense is still not clear.    

 

 

Figure 1.10 The IMD signaling pathway. DAP-type PGN from Gram-negative 

bacteria and some Gram-positive bacteria is recognized and triggers the IMD pathway. 
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Activation of IMD triggers downstream components including ubiquitin enzymes and 

negative regulators such as Caspar and eventually activates REL. REL turns on 

transcription of AMPs like Diptericin. In the process of the IMD signal activation, the 

JNK pathway is also activated. Figure is taken from Ferrandon et al., 2007.  

 

 

1.3.4.4 Production of AMPs 

AMPs play key roles in innate immunity against bacterial or fungal infections in both 

Drosophila and mammals (Zasloff 2002). They have a low molecular weight of below 5 

kDa and a positive net charge at physiological pH, and most of them have conserved 

protein secondary structures (Bulet et al. 1999). 

Activation of the Toll or IMD pathways both lead to expression of AMPs, and the 

expression level of the AMP genes reflect the degree of activation of the Toll or IMD 

pathways (Ferrandon and Imler 2007). Different AMPs have specialized activities 

against different types of microbial infections. For example, Defensin protects flies 

against Gram-positive bacteria but not Gram-negative bacteria or fungi, whereas Attacin 

or Drosomycin protect flies from Gram-negative bacteria or fungi (Lemaitre 1997). The 

Toll and IMD pathway seem to function synergistically as shown from the activation of 

both pathways in experimental challenges with various microbes (Tanji et al. 2007).    

1.3.4.5 JAK/STAT pathway 

During the early stages of the septic injury in mammals, IL-6, one of the cytokines 

released locally that induces systematic changes, activates the JAK/STAT signal 

pathway in the hepatocyte (Fattori et al. 1994; Kopf et al. 1994). This eventually leads to 

translocation of STAT dimers to the nucleus to turn on the transcription of genes that 

encode AMP proteins to attack bacteria (Alonzi et al. 2001; Li 2008).  
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Figure 1.11 The canonical Drosophila JAK/STAT signaling pathway. Unpaired is 

the ligand for Dome, whose activation turns on JAK kinase Hopscotch and further 

activates STAT (STAT92E in Drosophila), and STAT turns on effector genes of 

JAK/STAT pathway.  Figure is taken from Li et al., 2008.  

 

 

Some evidence shows that the JAK/STAT pathway is also activated in septic injury in 

Drosophila. JAK/STAT plays an important role in many aspects of Drosophila 

development and stem cell maintenance (Arbouzova and Zeidler 2006). Upon infection 

by bacteria, expression of Upd3, a hemocyte-specific Upd family cytokine, is induced 

and binds to the Domeless receptor on fat body cells, which in turn activates the kinase 

Hopscotch. Hospscotch then induces the translocation of STAT to the nucleus where it 

turns on the expression of many proteins required for cell-survival. In mammals, the 

JAK/STAT pathway turns on the expression of anti-apoptotic B cell lymphoma -2 (Bcl-

2) family proteins, and in Drosophila, it turns on the expression of Turandot family 

proteins like TotA and TotM (Agaisse et al. 2003; Li 2008). However, the biological role 

of this pathway in the immune response is not clear. Firstly, the gene expression induced 

by the JAK/STAT pathway is not infection-specific but induced by many other stresses. 

In addition, TotA, which is substantially induced, does not prevent the growth of the 
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bacteria (Agaisse et al. 2003).  Secondly, the hop mutants that impairs the JAK/STAT 

pathway do not show any defects in immunity against bacteria (Agaisse et al. 2003).       

1.3.4.6 Cellular immune responses independent of the Toll and IMD pathways.  

GNBP3 was found to be required for survival of Drosophila after C. albicans fungal 

infection, independent of the Toll signal pathway, but by activating phenoloxidase (PO) 

enzymes (Matskevich et al. 2010). PO triggers several proteolytic cascades, one of 

which leads to melanization at the cuticular wound site of Drosophila after septic injury 

(Nappi and Vass 1993). During this catalytic cascade, reactive oxygen species (ROS) are 

produced, which is believed to attack the invaders  (Nappi and Vass 1993). PO is also 

activated by the Toll pathway (Tang n.d.). 

Some extracellular PGRPs also act as scavengers through enzymatic degradation of 

PGN (in the case of PGRP-SB) or as opsonins for phagocytosis (in the case of PGRP-

SC). Also, PGRP-LEfl promotes autophagy to eliminate intracellular bacteria such as 

Listeria monocytogenes  (Yano et al. 2008).  
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1.4 Thesis outline 

There were two initial aims for my thesis project.   

1. Identify genetic modifiers of Drosophila Adar overexpression phenotypes.  

2. Find rescuers of neural-behavioural phenotypes of Adar
5G1

 null flies, using the 

flies as a motor neuron disease model.  

I started with heterozygous genetic deficiency screens to approach these aims. All the 

experimental and data analysis methods and materials are described in Chapter 2.  

Chapter 3 is the work to address the first aim, by conducting a genetic screen to find the 

rescuers of lethality caused by Adar 3/4 S overexpression. Chapter 4 is the study of 

Adar
5G1

 null mutant flies. The main finding of the work described in this chapter is the 

induction of innate immune genes in the Adar
5G1

 flies. Chapter 5 describes the 

experimental approaches to address the second aim and the findings from the 

heterozygous deficiency screen. At last, Chapter 6 summarizes the main findings of the 

thesis work and discusses potential physiological roles newly identified for Drosophila 

ADAR and future directions.    
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2 CHAPTER II: Methods 

 

 

 

 

 

 

Two years’ work wasted, I have been breeding those flies 

for all that time and I've got nothing out of it. 

 

― Thomas Hunt Morgan 
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2.1 Fly methods 

 

2.1.1 Fly maintenance and fly strains 

Fly stocks were maintained at 18°C, on a 12 hour light/dark cycle. All the fly stocks 

were raised on standard corn meal agar media from the fly media kitchen in the Michael 

Swann Building at Kings Buildings, University of Edinburgh. For making general 

crosses, 12 to 16 virgin female flies were collected at 18°C and crossed with 5 to 8 male 

flies. The fly crosses were set up in standard food vials in the 25°C incubator. The parent 

flies were flipped to new food vials every two or three days, and their progeny were 

collected up to 15 days after the crossing date to avoid counting any second generation 

progeny. 

Fly strains obtained from elsewhere or generated in our group prior to this thesis work 

are all listed in this Chapter. Table 2.1 lists the Adar mutant flies, wild type flies and 

different GAL4 driver lines. Descriptions of balancer chromosomes with their markers 

are listed in Table 2.2. 

 

 

Table 2.1 Adar mutants, wild type controls and driver lines. 

Fly 

strain 

symbols 
Descriptions Genotypes References 

Adar 3/4 

dsRBD 
N terminal dsRBD  
1-234 AA.  

y, w
1118

; UAS-3XFlag Adar 3/4 

dsRBD/ TM3 Sb 
unpublished 

Adar 3/4 

EA 
Inactive Adar3/4, E367A. w

1118
; UAS-Flag Adar 3/4 E367A / 

TM3 Sb 
Keegan et al., 

2005.  

Adar 3/4 Unedited wild type Adar 3/4 

isoform.  
w

1118
; UAS-Flag Adar 3/4 / TM3 Sb Keegan et al., 

2005. 
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Adar3/4

S [ts] 
Ineditable Adar with 

temperature-sensitive (ts) 

GAL80.   

w
1118

; L/SM5 CyO; UAS-Adar 3/4S, 

UAS-GAL80 
ts 10

 /TM3 Sb 
Keegan et al., 

2005. 

Adar3/4

S OE[ts] 
Ineditable Adar with Act-

GAL4, and GAL80[ts] 
w

1118
;Actin 5c-GAL4/SM5 CyO; 

UAS-Adar 3/4S, UAS-GAL80
 ts 10

/ 

TM3 Sb 

Keegan et al., 

2005. 

Adar
5G1

/

FM7 
Adar null deletion y,Adar

 5G1
,w

1118
/FM7 B

1
 g

4 
sc 

8
 sn

x2
 

v
Of

 w
a
 y

31d 
Palladino et 

al., 2000b 

Adar
5G1

/

FM7,GF

P 

Adar null with FM7,GFP 

balancer 
y,Adar

 5G1
,w

1118
/FM7c, P{GAL4-

Kr.C}DC1, P{UAS-GFP.S65T}DC5 
/ 

Actin-

5c-

GAL4 

Ubiqutious GAL4 driver P{Act5C-GAL4}25FO1 Bloomington 

4414 

201Y-

GAL4 
Mushroom body gamma  
neuron GAL4 driver 

P{GawB}Tab2[201Y] Bloomington 

4440 

armadill

o-GAL4 
Ubiqutious GAL4 driver,  
in arm+ pattern 

P{GAL4-arm.S}11 Bloomington 

1560 

Cg-

GAL4 
Hemocyte GAL4 driver, 

expression in larval fat body 
w

1118
; P{Cg-GAL4.A}2 Bloomington 

7011 

Cha-

GAL4 
Cholinergic neuron GAL4 

driver 
P{Cha-GAL4.7.4}19B Bloomington 

6793 

Elav-

GAL4 
Pan-neuronal GAL4 driver P{GawB}elav[C155] Bloomington 

5144 

Mef2-

GAL4 
Muscle GAL4 driver P{GAL4-Mef2.R}3 Bloomington 

27390 

OK6-

GAL4 
Motor neuron GAL4 driver P{GawB}OK6 Kuppers-

Munther et 

al., 2004 

RRa-

GAL4 
Larval aCC motor neuron 

GAL4 driver 
P{eve-GAL4.RRa} Baines RA. 

RRa-

GFP 
Larval aCC motor neuron 

GAL4 driver with GFP 

expression 

UAS-mCD8-GFP; RRA-GAL4 Baines RA. 
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w
1118 Wild type w

1118 / 

 

Table 2.2 Chromosomal balancers and markers 

Symbol Linked balancer Phenotype Chromosome 

FM6 In(1)FM6, y[31d] sc[8] dm[1] 

B[1] 
White and Bar eye 

phenotype. 
X 

FM7a In(1)FM7, y[31d] sc[8] w[a] 

v[Of] B[1] 
Apricot and Bar eye 

phenotype. 
X 

CyO  In(2LR)O, Cy[1] dp[lvI] pr[1] 

cn[2] 
Curly wings. 2 

FM7a;CyO FM7a, l(1)TW24[1]/oc[1] 

ptg[3] l(1)TW1[cs]; 

CyO/l(2)DTS91[1] 

Apricot and Bar eye with 

Curly wings. 
X, 2 

TM3,Sb In(3LR)TM3, kni[ri-1] vvl[sep] 

p[p] l(3)89Aa[1] Ubx[bx-34e] 

e[1] 

Short and thick thoracic 

bristles. 
3 

TM6B, Tb In(3LR)TM6B, Antp[Hu] e[1] Small body size with short 

and crowded bristles on the 

shoulder.  

3 

FM7iGFP FM7i,p{ActGFP}JMR3/C(1)DX,

y
1
 f 

1 
Bar eye, and green 

fluorescence in body.  
X 

 

 

2.1.2 Expressing transgenes using the GAL4 driver system 

Before the start of the project, the Adar
5G1 

mutant fly strains were combined with Actin 

5c-GAL4 or Cha-GAL4, each on Chromosome II. Also, our lab had already generated a 

series of Drosophila UAS-Adar and UAS-Rdl transgenic lines prior to the start of the 

project. These transgene constructs, designed by Dr. Liam Keegan, and microinjected 

http://flystocks.bio.indiana.edu/Browse/balancers/balancer-bps.htm#FM7
http://flystocks.bio.indiana.edu/Browse/balancers/balancer-bps.htm#CyO
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into Drosophila embryos are listed in Table 2.1. The scheme for combining Adar
5G1

 

with new drivers, including armadillo-GAL4 and OK6-GAL4 is shown in Figure 2.1.  

          

 

 

Figure 2.1 Scheme for combining Adar
5G1 

with Cha-GAL4 or other drivers on 

Chromosome II. Firstly, male flies with the Cha-GAL4 driver on Chromosome II were 

crossed with virgin female double balancer FM7; L/CyO flies, and male Bar eye flies 

were selected to cross with virgin Adar
5G1

/FM7; Actin-5c-GAL4/CyO flies. Virgin 

Adar
5G1

/FM7; Cha-GAL4/CyO flies were collected based on their eye and wing 

phenotypes and single-crossed to FM7; Cha-GAL4 males to make stocks.  

 

  

2.1.3 Generating flies for MARCM analysis 

Adar
5G1

 was recombined with FRT19A using the y
1
,w

1118
,P{neoFRT}19A strain 

(Bloomington 1709), and the recombinant y
1
,Adar

5G1
,w

1118
,P{neoFRT}19A X 

chromosome was combined with specific GAL4 drivers. In this project, Cha-GAL4, 

201Y-GAL4, G01116-GAL4, and Collagen-GAL4 were used to generate cell clones with 

green fluorescence in cholinergic neurons, mushroom body neurons, projection neurons, 

and fat body cells in the larvae, respectively. Somatic clones were generated in progeny 

of crosses to the MARCM fly strain P{neoFRT}19A, P{tubP-GAL80}LL1, P{hsFLP}1, 
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w[*]; P{UAS-mCD8::GFP.L}LL5 (Bloomington 5134) to mark the Adar
5G1 

null single 

cells with GFP following loss of the GAL80 repressor in specific cell types. The scheme 

is shown in Figure 2.2, using Cha-GAL4 as an example. The crossing scheme for 

combining Adar
5G1

, FRT19A with the GAL4 driver was the same as described in Figure 

2.1.  

The antibiotic G418 used was purchased as powder from Sigma (CAS#: 108321-42-2), 

and made up into a 5mg/ml solution in water. To select neomycin-resistant flies 

(FRT19A flies), 0.2ml of the G418 solution was spread on top of approximately 10ml of 

fly food in each vial. Once the antibiotic was absorbed by the fly food, the parent flies 

were put into the vials to lay eggs for two days and then removed. Eggs laid by parent 

flies that do not have neomycin resistance were used as the negative control, to make 

sure no progeny was born from the neomycine containing vials. The fly lines determined 

to be Adar
5G1

, FRT 19A were crossed with FM7; L/CyO males, and the F1 non-Bar eye 

virgin females with curly wings were crossed with FM7; L/CyO males again to make 

Adar
5G1

,FRT19A/FM7; L/CyO fly line. This line was used to cross with different GAL4 

driver lines of interest on Chromosome II.    

After allowing Adar
5G1

, FRT19A/FM7; Driver-GAL4 females crossed with FRT19A, 

tub-Gal80, hspFlp; UAS-mCD8:GFP to lay eggs for twenty hours in fly food vials. The 

F1 embryos were immediately heat-shocked in a 37°C water bath for one hour. To detect 

neural degeneration and to examine neuron morphology, female round eye, non-curly 

wing adult flies were aged to 5 days, 30 days, or 60 days and their brains were dissected 

to be examined under the confocal microscope. To obtain MARCM clones in the fat 

body, fly eggs collected during six hours of egg-laying were heat-shocked for one hour, 

and female progeny flies with GFP positive cells were dissected at early third instar 

larvae stage.   
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Figure 2.2 MARCM scheme for generating Adar
5G1 

clones. Adar
5G1

/FM6; Actin-5c-

GAL4/CyO virgin females were crossed with FRT19A male flies and the F1 virgin 

progeny that do not have the FM6 balancer but do have the CyO balancer were collected. 

These flies were then crossed with FM7 balancer flies in G418-containing vials. Female 

flies born from the crosses were then crossed with FM7;L/CyO double balancer male 

flies individually. In each cross, after one or two generations, the round eyed male flies 

from each line were examined for their locomotion to determine which line had 

recombinant X chromosomes. Only the fly lines having Adar
5G1

 recombined with 

FRT19A were retained and combined with the desired GAL4 drivers as shown in Figure 

2.1. Virgin female Adar
5G1

, FRT19A flies with GAL4 drivers on Chromosome II were 

crossed with FRT19A MARCM flies. The eggs or larvae from these crosses were heat-

shocked to generate Adar
5G1

 null cell clones expressing membrane GFP within the tissue 

and cell populations determined by the choice of GAL4 drivers.  

 

 

2.1.4 Screening scheme to identify deficiencies increasing Adar
5G1

 viability. 

Viability of Adar
5G1

 relative to sibling FM7 male flies carrying different deficiencies on 

Chr.III was counted by comparing the numbers of Adar5G1;; Df and FM7;; Df flies 

from the same vials (Figure 2.3). Most of the deficiency stocks were ordered from 

Bloomington Drosophila Stock Centre (BDSC) and some DrosDel strains were generous 

gifts from Dr. Guisy Pennetta’s Group in the University of Edinburgh (The deficiency 

stocks used for the screen are listed in the Appendix, Supplementary table1). DrosDel 

collections are the newest deficiency collections, and are generated from an isogenic 

background with clearly defined break points (Ryder et al. 2007). Some Exelixis 

(Artavanis-Tsakonas 2004) and BSC (Bloomington Stock Centre) deficiencies (Cook et 

al. 2012) were also ordered from BDSC to either complete the coverage of particular 

regions or to narrow down locations of causative genes within large rescuing 

deficiencies of interest. In addition, single mutants in some specific genes within several 

rescuing deficiencies were tested for their effects on Adar
5G1

 null flies. Such mutants 

included shRNA stocks from the VDRC stock centre (Dietzl et al. 2007) or loss-of 

function mutants from BDSC. All these fly lines are listed in Table 2.3.  
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As shown in the Figure 2.3, the effect of each deficiency on Adar
5G1

 viability was 

calculated by comparing relative numbers of male flies born from the same crosses. This 

is necessary because many deficiencies affect viability and calculations of rescue effects 

must allow for reduced deletion viabilities.  

 

 

Figure 2.3 Calculating Adar
5G1

 viability in the heterozygous deficiency screen for 

rescue of Adar
5G1 

viability. Adar
5G1

/FM7 virgin females were crossed with the 

deficiency-bearing male flies, and the number of male progeny of each genotype was 

counted for viability calculation. The way of calculation is shown in the box. a,b,c,d in 

the box refer to the four progeny genotypes.  
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The p value for the null hypothesis that the Deficiency has no effect on Adar
5G1

 viability 

was calculated using Fisher’s Exact Test followed by the Benjamini-Hochberg multiple 

testing corrections. In the 2X2 contingency table for the Fisher’s Exact test [p= (a+b)! 

(c+d)! (a+c)! (b+d)! /a! b! c! d! n!], n is the total number of the progeny in each cross 

and the values of a,b,c,d were given to the numbers of Adar
5G1

;;Df/+ (Double mutant 

flies, Adar
5G1

 with heterozygous deficiency), Adar
5G1

;;Balancer (Adar null) , 

FM7;;Df/+ (heterozygous deficiency) , and FM7;; Balancer/+ (wild type) each from the 

same crosses (Figure 2.3).  

 

Table 2.3 Mutants and RNAi lines used in the screen 

Mutants on ChrIII BDSC Number 
 

shRNA targets VDRC number 

akirin[EY08097] 20018 

 

Axin 7748 

Bre1[01640] 10066 

 

Bruno-3 35525 

capa[MB07374] 11565 

 

Capa 41124 

cas[j1C2] 11713 

 

Cas 2928 

CG11357[EY12484] 12070 

 

CG10089 17991 

CG31475[MB03509] 17736 

 

CG12091 13985 

CG5873[c00427] 20838 

 

CG14820 15456 

Cralbp[c05953] 27893 

 

CG32392 34537 

Cry[d10630] 9555 

 

CG7470 38955 

Cry[MB01493] 11541 

 

CG8564 24127 

dikar[KG00884] 26348 

 

Cnc 51271 

E(z)[731] 12116 

 

KO 31266 

Gem3[rL562] 24073 

 

Lqf 35948 

JIL-1[3] 19331 

 

Lsp-1 gamma 50108 

JIL-1[Scim] 26380 

 

mthl-8 4071 

neur[11] 13156 

 

Nwk 21910 

pum[13] 24470 

 

pak3 39843 

pum[Msc] 12079 

 

Rab11 22198 

Rab1[e01287] 14572 

 

Rab26 43730 

Rdl[1] 6374 

 

Rac2 50349 

Rdl[MD-RR] 2747 

 

Rdl 100429 

Rel[E20] 3254 

 

Smid 35965 

Rel[neo36] 2186 

 

Takr99D 1372 

S6k[07084] 17936 

 

Trio 40137 
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scny[02331] 1687 

 

Trp 1365 

sec8[Delta1] 9457 

 

VPS16A 23769 

smid[C161] 10273 

 

VVL 47182 

smid[j6B8] 5692 

 

Adar 7763 

trp[1] 9046 

  
 

trp[9] 631 

  
 

Wrinkled[1] 1675       

 

2.1.5 Determining the lethal stage of Adar 3/4S OE. 

To collect eggs, around 50 young females of Adar 3/4S OE and 30 males were put into 

an egg-laying chamber on a yeasted grape juice plate. After 6 hours, the parent flies 

were flipped out, and the number of embryos was counted. The second instar larvae 

number was counted after another 60 hours, and the number of pupae were counted on 

day 7 after the egg-laying. The number of eclosed adults was counted until day 13.      

 

2.1.6 Determining effects of temperature on Adar 3/4S OE lethality. 

The temperature of raising collected embryos was switched from 25°C to 29°C after day 

1 or day 2 and so on up to day 8 and flies were shift to complete development at 29°C. 

Alternatively, the temperature was switched from 29°C to 25°C at different stages from 

day 1 till day 10.    

 

2.1.7 Open filed locomotion assay 

A 30mm petri dish, divided into nine equal areas with one central circle and 8 equal 

distance radiant lines, was used for the assay. Two-day old individual flies were put in 

the dish and the dish was tapped on the bench to make the fly start walking around. The 

number of lines crossed in a three minute period was recorded.  For each fly line, six to 

ten individual flies were tested and each fly was tested three times in immediate 
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succession. The open field locomotion bar graph was plotted using the average number 

of line-crossings for each fly line.  The assay was carried out at around 10-11 am. 

 

2.1.8 Climbing assay 

A column of 1.5 cm diameter and 20cm height cut from a 25ml plastic pipette was used 

for the assay. The height of the column was divided into 120 equally distanced lines, 

starting with 0 at the bottom. For each test, one 2-day old fly was put into the column. 

The highest line the fly climbed to in one minute was recorded. The scores were given 

from 0 to 120 depending on the highest point the flies reached in one minute and divided 

by 120 to calculate a climbing index for each score. For each genotype, six to ten 

individual flies were tested three times each to acquire an average score. A two-tailed 

Student t-test was carried out to calculate the p value compared with the Adar 
5G1 

null fly 

group. The climbing assay was carried out at room temperature, at around five o’ clock 

in the afternoon. 

 

2.1.9 Fly locomotion monitoring 

The DAM2 Drosophila activity monitor (TriKinetics Inc, MA, US) was used at room 

temperature with a 12hr light/ dark cycle.  With the data collection software set to bin 

collected data in 1 hour intervals, the monitor read how many times each fly broke the 

beam in the middle of the horizontally placed tubes. Four to eight flies for each genotype 

were monitored simultaneously for at least 24 hours. Data were acquired using 

DAMSystem software from the same company.  
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2.2 Molecular methods 

 

2.2.1 Isolation of genomic DNA from Drosophila 

Twenty to thirty anesthetized flies were homogenized in 200µl Solution A (Section 2.5) 

and an additional 200 µl Solution A was added and mixed. After 30 minutes’ incubation 

at 65°C, 800 µl LiCl/KAc solution (Section 2.5) was added and tubes were left on ice for 

at least 10 minutes. The supernatant was then removed and the genomic DNA was 

precipitated using isopropanol followed by a 70% ethanol wash and finally suspended in 

150 µl TE buffer (Section 2.5). 

  

2.2.2 Isolation of RNA from Drosophila 

RNA was extracted using the QIAGEN RNeasy kit based on the manufacturer’s 

instructions. Ten to twenty flies were homogenized in 300µl RLT buffer with 30 µl 

Sigma concentrated stock of 2-Mercaptoethanol added. RNA was eluted in 30 µl of 

RNase free water with 1µl RNase inhibitor (RNasin® Ribonuclease Inhibitor, Promega, 

20-40u/ µl) added and quantified using a Nanodrop. The quality of RNA was examined 

on a 2% agarose gel to check for intact rRNA bands to make sure that the RNA was not 

degraded. The RNA was stored in the -20 °C freezer for up to six months.  

 

2.2.3 cDNA synthesis 

500ng isolated RNA was used as the template to synthesize first strand cDNA in 20 µl 

reactions. Either oligo-dT primers or random primers were used with Superscript II 

Reverse Transcriptase (Promega). Reactions were performed according to the 

manufacturer’s instructions.     
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2.2.4 Polymerase Chain Reaction (PCR) 

2µl cDNA or 2µl plasmid DNA was added as the template to the reaction mixture. Fast 

start Taq polymerase from NEB was used as stated in the manufacturer’s instructions.   

 

2.2.5 Quantitative real-time PCR (qRT PCR) 

cDNA made from 500ng RNA was used for quantification, with minus RT (reaction mix 

with no reverse transcriptase added when making cDNA) negative control and a water-

only negative control. qRT PCR was performed using SYBER GREEN master mix,  

using either a BioRad (C1000
TM

 Thermal Cycler) instrument, or a Light Cycler® 480 

(Roche). Prior to each comparison of gene expression, primers were tested for 

correlation factor and efficiency. All the qRT PCR results were normalized to Gapdh 

level and also to further standards. Error bars were added based on the standard error 

(Standard deviation divided by square roots of the number of repeats), and the p value 

was calculated using the unpaired student t-test. For each comparison, the cDNAs used 

were made at the same time using exactly the same protocol and starting with the same 

amount of RNA. The PCR primers used for Quantitative real-time PCR and for 

sequencing to determine editing levels at specific RNA editing sites are listed in Table 

2.4.  

 

 

Table 2.4 Primers for qRT PCR and for sequencing. 

Gene name Forward primer Reverse primer 

CG32243 GTGGAAACTGTGAGGGAGGA GCCTCAAAATATCCGACGAA 

CG11353 CATGAAACCCATTTGACACG CCCAGCCAGTAGTTTTGACC 

CG33777 ACTTCCTTGGATCCGGAGTT TAATTCTCGACACGGGCTTT 
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CG42540 TGCGTACTCGCACATACGAT CAGTAGCCTGGTCGAATGGT 

mir4940 GCAACTTATCGATCGGGTGG CGTGTCGTTGTATGTAAAATCGG 

cg11357 GATCCCAATCTGATGCTCT CAGTATTCCGGATAGAAACG 

Adar TGGACCTTCAGTGCAATCA CCTCACCGGACTCGATTT 

Def GCTATCGCTTTTGCTCTGCT GGTGTGGTTCCAGTTCCACT 

AttD AGTTTATGGAGCGGTCAACG CGATCGGCTATGACTGTGAA 

IM23 GCACGCAGATTGAGAATGAA TAGGATTGGCCACCGACTAC 

CecC CATCAGTCGCTCAGTTTCCA TTCCCAGTCCTTGAATGGTT 

Drs CTCCGTGAGAACCTTTTCCA ACAGGTCTCGTTGTCCCAGA 

AttC TTGGGTGGATCACTCACATC GCGTATGGGTTTTGGTCAGT 

TotM TTTATTTGAGCTGCCTTATGGT TTTATTGGAATGGGTTGGAAAG 

TotX GCAGACAGGCAACAATTTGA TATACCGGGTTCCGACTCTG 

TotB CACTTGCATTCCATTAAGTCC TTGGAATAGGCCGAGCATAG 

TotC TACTATGCCTTGCCCTGCTC CAGATTCCCTTTCCTCGTCA 

TotA TTCAGCGTTCCAAAAAGTCA CGATACTCTCCCGTTCCTCA 

Gapdh 
ACGAGAGTAAAAGTGAAAAGACAG

C 
TCCGTTAATTCCGATCTTCG 

Primers for site-specific editing              Sequence 

sloND_F  GCGGGCATTATACATCTGCT 

sloND_R  CGAGCAGAAAGAACACGAGA 

sloSG_UTR_F1 
 

GCCAATGTGCCCATGATAAC 

sloSG_UTR_R1 
 

TTGGGATGGACAAAATACACC 

sloSG_R2 
 

ATCAGCGTTAAGGCGTTTTG 

sloUTR_F2 
 

CGTACATTTGAACGATGGAGAA 

cg33205F1 
 

TGACCACTAACGACGCCATA 
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cg33205R1 
 

CGCATCGTTTCCATTTCATT 

cg33205R2 
 

CGCATCGTTTCCATTTCAT 

Rdl561F 
 

TAAACATATCCGCTATTCTCGACTCC 

Rdl960R 
 

GGCGATCCATGGGGAAATATTGTAG 

Rdl961F 
 

AGCTGTGCCACATTGAAATCGAAAGC 

Rdl1680R 
 

TGTGGGCGTGGTGTCCATGCCCGTG 

syt1381F 
 

CGTTGAAGGAGAGGGCGGACAG 

syt1860R 
 

CCTTACTTCATGTTCTTCAGGATCTC 

Ca alpha 1D 
 

CGTTGATGGAGAGGGCGGACAG 

Ca alpha 1D_2R 
 

GCAATGTGAAACAGTGGCACCATGGC 

 

  

2.2.6 Agarose gel electrophoresis 

0.8% - 1% agarose gels were run in in 1× TBE buffer (Section 2.5) at 5v/cm. Ethidium 

Bromide was added to the melted gel (final concentration of 0.5µg/ml). 5× DNA loading 

buffer (QIAGEN) was added to samples. To quantify approximate yields of the samples, 

standards of known concentrations were run on the gel along with the samples and a 

DNA ladder (Invitrogen).  

 

2.2.7 PCR product purification 

When the PCR products were very clean, with a single strong band on each lane of the 

gel after electrophoresis, the remainder of the samples was purified using the QIAGEN 

PCR purification kit. Otherwise, PCR products were purified by the gel extraction 

method. After electrophoresis on the agarose gel, the PCR product bands were cut under 
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the UV light, and extracted from the gel using the QIAGEN gel extraction kit.  All the 

steps followed the manufacturer’s instruction.      

 

2.2.8 pGEM-T
®

 easy cloning 

Purified PCR products were ligated with linearised pGEM-T easy vector following the 

Promega pGEM-T Easy Kit instructions. 5µl of the ligation mixture was transformed 

into competent E.coli (XL1 blue) cells (Chem Agilent Catalog #200249). 

 

2.2.9 Bacterial transformations 

100ng of plasmid or 5µl of the ligation mixture was incubated on ice for 30 minutes with 

50µl XL1 blue cells. Then, the transformation mixture was heat-shocked at 42°C for 45 

seconds, followed by a ten minute incubation on ice. 800 µl SOC medium (Section 2.5) 

was added to the mixture, and left shaking at 37°C for one hour.  The transformed cells 

were plated on LB plates (Section 2.5) with appropriate antibiotics.  The plates were 

then put in a 37°C incubator for 12-16 hours.   

 

2.2.10 Plasmid DNA isolation 

Single positive transformant colonies were picked from LB plates and shaken in 3ml LB 

medium (Section 2.5) for 12-16 hours to harvest enough cells for plasmid DNA isolation. 

The plasmids were extracted using the QIAGEN mini-prep kit following the 

manufacturer’s instruction.  The extracted plasmid DNA was quantified using the 

Nanodrop. 
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2.2.11 Sequencing 

The Big Dye v3.1 (Applied Biosystems) sequencing kit was used following the 

manufacturer’s instructions.  The sequences were read on an AMI PRSM®3100 Genetic 

Analyser, and analysed using DNASTAR -Lasergene SeqMan software.  

 

2.2.12 Editing level examination 

cDNA made from total RNA was amplified using specific primers for the transcript 

regions of interest.  Depending on the quantity and quality, the PCR product was either 

used directly for Sanger sequencing or cloned by ligation into pGEM-T easy vectors and 

transformation into competent cells for mini-preps. Editing levels of ADAR target sties 

were measured by comparing the heights of the Adenosine and Guanosine peaks 

(“Editing percentage”= “the height of Guanosine peak” / (“the height of Guanosine peak” 

+ “the height of Adenosine peak”) at the same position. For each comparison, three 

sequencing reactions were used to estimate an average editing level. In the second 

method of measuring editing level, 60-100 colonies for each genotype were picked from 

plated E.coli containing cloned RT PCR products. Each clone was sequenced 

individually using flanking T7 and SP6 primers and the number of clones containing 

Guanosine at the editing sites was divided by the total number of sequenced PCR clones 

to calculate the edited percentage.     
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2.3 Cell biology 

 

2.3.1 Lysotracker Red staining of acidic lysosomes 

The Lysotracker probe (LysoTracker® Red DND-99, Invitrogen, Cat. L-7528) was used 

to detect acidic organelles (lysosomes) in the cells. Lysotracker probes are widely used 

to assess autophagy in live cells. Drosophila early 3
rd 

instar larval fat bodies and 2-day 

old adult midguts were dissected in cold PBS and then incubated with 100mM 

Lysotracker probe for 2 minutes. After three 2 minute washes with PBS, the tissues were 

fixed in 4% PFA (Section 2.5) for 2 minutes, followed by another three 2 minute washes 

with PBS. Fat body of at least ten early third instar fly larvae or ten adult male fly guts 

for each genotype were used for staining and quantification.  

 

2.3.2 Drosophila adult CNS antibody staining 

The anti-GFP antibody was used to enhance fluorescent signals from expression of GFP-

fused transgene. Nc82 (DSHB, the University of Iowa) antibody was used to visualize 

neutrophil. Adult CNS was dissected in cold PBS and fixed with 4% formaldehyde 

(Section 2.5) at room temperature for 20 minutes. After three 20 minutes washes in 0.5% 

PBT, the tissue was blocked with 10% donkey serum in PBT for 1 hour at room 

temperature, and then incubated with primary antibody overnight at 4°C. GFP was 

detected using 1:250 rabbit anti-GFP (Invitrogen, Cat. A6455) and brain structure was 

detected using 1:40 mouse anti-nc82. The samples were washed with PBT three times 

for 20 minutes each after two quick washes with PBT. Secondary antibodies, Alexa-

coupled donkey anti-mouse IgG and/or Alexa-coupled donkey anti-rabbit IgG, were 

added at 1:2000 dilution, and incubated at room temperature for 2 hours. The specimens 

were mounted in the VECTASHIELD® Mounting Medium with DAPI (Catalog No. H-

1200) after another three 20 minute wash in PBT.      
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2.3.3 Imaging 

The mounted specimens were viewed with a Nikon TiE-C1Si Confocal Microscope. 

NIS- Elements AR 4.0 software was used for acquiring images, which were modified 

using FIJI software.  ×20, ×40, ×63 and ×100 objective lenses were used to take pictures. 
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2.4 Extracellular current recordings of Drosophila third instar 

larvae aCC motor neurons 

 

2.4.1 Sample preparation 

Intact brains from wandering third instar larvae, with imaginal discs and peripheral 

nerves attached were dissected in a Petri dish filled with external saline (Section 2.5). A 

brain was positioned in a drop of external saline on top of the pre-made sylgard 

(SYLGARD
®

 184 Silicone elastomer kit) slip. The specimen CNS was placed with the 

dorsal part facing up, immobilized by gluing the peripheral nerves on the sylgard and 

recorded immediately. 

 

2.4.2 Clearing the neuron surroundings for recording 

An enzyme pipette filled with 1mg/100µl type 41 protease (XIV Bacterial, from 

Streptomyces grisens) diluted in the external saline was used to make a hole on or near 

the midline of the CNS membrane. Then glia cells were removed carefully from one or 

two GFP positive neurons without damaging any synapses or cell bodies of the neurons 

with the enzyme pipette. Once the neurons were free from attached glia, the enzyme 

pipette was removed, and a patch pipette filled with external saline was connected to the 

electrode for current recording.  

 

2.4.3 Recording the firing activity 

The current changes on the membrane of a neuron were recorded for five minutes using 

the patch pipette, in a half sealed state. The current signal was recorded using the 

Integrating Patch Clamp (INTRA CEL. Axopatch 200B.) connected with the Patch 
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Axon Instrument (CV 203BU HEAPSTAGE US. Pat. 5,285, 012). The data were 

collected using Clampex® software.  

 

2.4.4 Data analysis 

Clampfit 9 software was used for the analysis. For each genotype, four or five neuronal 

extracellular current records were used. The analysis used three minute recording shortly 

after the second minute of recording data. In cases of baseline fluctuation, the baseline 

was manually adjusted before the software automatic threshold search. Counting the 

number of peaks as firing events was done automatically. A burst was defined at least 

four events in a row within a delimitation interval of 25ms. P values between different 

groups were calculated using a two- tailed student T-test. The Hazard graph shows the 

probability of having a firing event after the previous events.  Hazard was calculated for 

each recording of a single neuron and the final graph was made using the mean of 

neurons of the same genotypes. The hazard graph was made on Excel using the data that 

have had basic statistics done in the Clampfit system. 5ms bin size was given for each 

recording and the number of the events in each bin was counted as BinCount. HazCount 

is the sum of the previous BinCounts (HazCounti= ∑ BinCount i-1). Hazard= Bincount/ 

(∑ BinCount – HazCount) . Error bar shows standard error.      
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2.5 Materials and preparations 

 

Acidic alcohol Carnoy’s fixative  Eosin 

1% HCl 900µl 100% ethanol Stock:  

70% ethanol 450µl chloroform 5g Eosin 

  150µl acetic acid 100ml H2O 

    Working:  

    20ml eosin stock 

    80ml H2O 

PBT LiCl/KAc  solution Litium carbonate 

1× PBS 1 part 5M KAc 1g Lithium carbonate 

0.5% Triton X100 2.5 parts 6M LiCl 100g Distilled water  

      Luria Broth (LB) LB agar 4%Paraformaldehyde 

(PFA) 

10g NaCl 10g NaCl 1ml 37% Formaldeheyde 

10g Bacto-tryptone 10g Bacto-tryptone 8.25ml ddH2O 

5g Yeast extract 5g Yeast extract 

 Add ddH2O to 1 litre 15g Difco Agar 

   Add ddH2O to 1 litre 

 

PBS 

1× External saline (Bath 

saline) SOC medium 

137mM NaCl 7.9g 135mM NaCl 20g Tryptone 

2.7mM KCl 0.37g 5mM KCl 5g Yeast Extract 

10mM Na2HPO4 0.81g MgCl2.6H2O 2ml 5M NaCl 

2mM KH2PO4 0.29g 2mM CaCl2.2H2O 2.5ml 1M KCl 

  1.15g 5mM TES 10ml 1M MgCl2 

  12.32g 36mM sucrose 10ml 1M MgSO4 

  Add water to 1 litre 20ml 1M glucose 

  Add 5M NaOH to pH=7.15 Add to 1L ddH2O 

Solution A TBE (10X) TE buffer 

100mM Tris-HCl, pH 7.5 108g Tris base 10mM Tris-Cl, pH 7.5 

100mM EDAT 55g Boric acid 1mM EDTA 

100mM NaCl 9.3g EDTA 

 0.5% SDS Add ddH2O to 1 litre 
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3 CHAPTER III: Genetic screen for heterozygous 

deficiencies on Chromosome III that rescue lethality 

associated with Adar3/4S overexpression. 

 

 

 

 

 

 

No amount of experimentation can ever prove me right; 

a single experiment can prove me wrong. 

 

― Albert Einstein 
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3.1 Introduction 

Prior to the commencement of this project, Drosophila transgenic lines that allow 

expression of different Adar cDNA constructs had already been made in our group. 

These cDNA constructs include expressing the naturally occurring ADAR unedited 

transcript that is capable of being edited by ADAR (Adar 3/4), the ADAR edited isoform 

(Adar 3/4 G), Adar that is unable to undergo self-editing (Adar 3/4 S), and inactive 

ADAR (Adar 3/4 EA). No noticeable morphological phenotypes were detected in the 

flies overexpressing the Adar constructs, except that the overexpression of Adar3/4S by 

the ubiquitously expressed Actin 5c-GAL4 driver results in lethality in the adult fly 

(Keegan et al. 2005). 

The ineditable Adar 3/4 S construct has a point mutation in the cDNA so that the self-

editing (S/G) site in Adar exon 7 is mutated to another codon for serine ‘TCT’, that 

cannot be edited (Figure 3.1A). Whereas the wild type cDNA construct produces both 

serine and glycine isoforms, the cDNA construct (Adar 3/4 S) only produces the serine 

isoform. ADAR 3/4S protein has the highest editing efficiency for other transcripts 

(Keegan et al. 2005).   

Adar 3/4 S was combined with Actin 5c-GAL4, and temperature sensitive UAS-GAL80, 

so that the flies express the Adar 3/4 S construct only at high temperature when GAL80 

is inactivated (Figure3.1B). A ‘Protein intron’, known as an intein, was inserted into 

GAL80 to make this temperature-sensitive GAL80. The intein autonomously splices 

itself out post-translationally at the permissive temperature (18°C), leaving the intact 

GAL80 protein. But at the restrictive high temperature, the intein stays in the GAL80 

transcript to make the protein nonfunctional or to promote degradation. At the 

permissive low temperature, GAL80
ts
 inhibits transcription activation by binding to and 

inhibit GAL4, while at a higher temperature (29°C), GAL80
ts
 loses its ability. The 

Adar3/4S OE [ts] is viable at 18°C which is partially permissive, and is lethal at 29°C.  
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Figure 3.1 The ineditable Adar 3/4 S isoform and a diagram of the temperature-

sensitive construct. (A) The arrow indicates the self-editing (S/G) site in the predicted 

A 

B 
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secondary structure of Exon 7 of the Drosophila Adar. Figure adapted from Keegan et 

al., 2005. (B) Temperature-sensitive expression of the Adar 3/4 S isoform and the 

genetic screen utilizing the lethality scheme. 18°C and 29°C were the two extreme 

permissive and restrictive temperatures that were tested. Act 5C-Gal4/Cy; UAS-Adar 

3/4S, UAS-Gal80
ts-10

 is the genotype of Adar3/4S OE [ts]. 25°C and 27°C conditions 

used in our experiments cover the most sensitive part of the range from permissive to 

restrictive temperatures.  

 

 

The lethality caused by Adar 3/4S overexpression is likely due to the hyper-editing 

activity of this Adar isoform, since the flies overexpressing the inactive Adar EA driven 

by the same driver Actin 5c-GAL4 was not lethal. The lethality caused by Adar 3/4 S is 

rescued by Adar RNAi construct. However, many aspects of the lethality caused by 

Adar3/4S OE were not clear, including the cause of the lethality and how the lethality 

occurs. Also not clear was whether there is a crucial developmental stage or tissue in 

which the lethality occurs. Is the lethality due to one or several abnormally edited 

transcripts or to some other unknown stress? This chapter describes experiments 

performed to address these questions, and to investigate the regulation of ADAR and 

RNA editing in Drosophila.    

 

A deficiency genetic screen was designed to identify genes that rescue the lethality 

caused by Adar 3/4S ectopic overexpression. This screen aimed to find genetic modifiers 

that either affect the level or the activity of ADAR 3/4S or that play an important role 

downstream of ADAR protein in the normal physiological functions of the animal. The 

hypothesis is that deleted gene(s) that rescue the lethality will be either positive 

regulators of Adar or genes in a parallel pathway such that reduced copy number can re-

establish homeostasis in the Adar 3/4S overexpressing flies. The less direct effect might 

be similar to the rescue of the Adar
5G1

  null mutant phenotypes by increased autophagy 

(Paro Thesis, University of Edinburgh, 2012).There is also a possibility that reducing 
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dosage of a gene whose transcript is hyper-edited and causing  the lethality , would 

rescue the lethality due to Adar 3/4S overexpression.  
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3.2 Results 

 

3.2.1  Overexpression of Adar3/4S is lethal. 

The Adar3/4S OE [ts] (w / w; Actin 5C-GAL4/Cy; UAS-Adar 3/4S, UAS-Gal80ts/ 

TM3,Sb) flies were maintained at 18°C. To understand when and how they die, embryos 

and larvae at different developmental stages were counted and their percentage viability 

calculated at 25°C and 27°C. At 25°C, the flies were viable while at 27°C or at higher 

temperature, no flies survived to adulthood (Figure 3.2).  w
1118

 wild type flies raised at 

27°C were used as controls and raising the temperature to 27°C had little effect on the 

viability. At 25°C, temperature-sensitive GAL80 is not completely inactivated (Zeidler 

et al. 2004), therefore there is a low over-expression of Adar in the Adar 3/4S OE [ts] 

strain. At 27°C, the Adar OE [ts] flies were not viable, and the loss of viability was 

distributed over all developmental stages with dramatic reduction even in the number of 

hatched first instar larvae from the embryos (not shown).  
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Figure 3.2 Survival of Adar 3/4S OE through developmental stages. Eggs were 

counted at the beginning and thereafter, the number of the live second instar larvae, 

pupae and adults were counted. w
1118

 wild type were flies raised at 27°C (n=400) and 

Adar 3/4S OE[ts] were raised at 25°C (n=200) and at 27°C (n=772).  

 

 

In order to examine whether there is a crucial developmental stage when Adar3/4 S 

overexpression is lethal, the temperature was switched from 25°C to 27°C or from 27°C 

to 25°C  at certain days, as described in Chapter 2. When the eggs/larvae were moved 

from 25°C to 27°C, no flies survived to adulthood regardless of the time of the switch in 

temperature. Intriguingly, the pupae, formed after seven days at 25°C, were still not able 

to develop further once placed at 29°C. This indicates that the expression level of Adar 

is crucial also in the pupal stage. When the eggs/larvae were raised at 27°C first and 

switched to 25°C, all died except when eggs and larvae were moved to 25°C after just 1 

day at 27°C.  This may be due to the fact that Adar 3/4 S  is only approximately 1.5 X 

overexpressed on average at 27°C compared to 25°C during the embryonic stage while it 

is approximately 7 X  overexpressed  during the larval stage (Figure 3.3).  
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Figure 3.3 Relative Adar mRNA levels in Adar 3/4 S OE [ts] whole embryos and 3rd 

instar larvae at 25°C and at 27°C. Three independent replicates were performed for 

qRT PCR. The bar represents the mean value after normalizing to Gapdh. Error bars are 

standard error. Student t-test was used to calculate p value. * p<0.5, ** p<0.05. The 

black bar represents relative mRNA level from flies raised at 25°C and the white bar 

represents relative mRNA level from flies raised at 27°C. RT-PCR primers cover the 

Adar coding region and detect both endogenous Adar transcript and transcript expressed 

from the Adar cDNA construct. 

 

 

Although Adar 3/4 S is overexpressed significantly in L3 larvae, some but not all sites 

that are edited by ADAR have increased editing levels. The Ca alpha 1D transcript 

encoding a well-studied muscle and CNS expressed voltage-gated calcium channel 

subunit did not show any increase in editing (Figure 3.4A). Small increases in the 

editing level are seen at one site out of the ten sites in CG33205 (4.11% to 6.82%, no 

editing was detected in the other 9 sites in the L3 larvae), the S/G site in slo (45% to 

60%), and the R/G site in Rdl (6.5% to 10.5%) (Figure 3.4B-D). The CG33205 transcript 

was selected to investigate the editing levels because this newly identified edited 
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transcript has ten edited sites in a short (200bp) range of the 3’UTR that show a broad 

range of editing levels (Graveley et al. 2011).  In the embryo, even though the Adar 3/4 

S was not so significantly overexpressed, two edited sites in Rdl, the R/G site and the I/V 

site, had almost doubled the level of editing (Figure 3.4E). However, those editing levels 

are still very low. From the data here, it seems that the editing levels at sites in 

transcripts are not greatly increased by the lethal Adar 3/4 S overexpression.   

Overexpressing Adar using the pan-neuronal Elav-GAL4 driver, the muscle Mef-GAL4 

driver, or another weaker universal driver such as arm-GAL4 did not lead to complete 

lethality.   
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Figure 3.4 A comparison of RNA editing levels in transcripts in Adar 3/4S OE and 

wild type flies. Black columns represent the percentage editing at the indicated editing 

sites in the wild type control w
1118 

flies, at 25°C, and white columns represent the 

percentage editing at the Adar 3/4 S overexpressing flies, Adar 3/4 S OE [ts] at 27°C. 

The X axis shows the edited positions. The numbers indicate the amino acid sequence 

numbers, apart from in (B), where 6469 is the last four digits of the genomic DNA 

position in the 3’UTR of the mRNA. The single amino acid code is used to denote codon 

changes introduced by RNA editing events. The Y axis is the percentage RNA editing. 

(A-D) Editing of Ca alpha-1D, CG332005, slo, and Rdl transcripts from 3
rd

 instar larvae 

respectively. (E) Editing in the Rdl transcript in late-stage embryos. 
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3.2.2 Deficiency screen for rescue of lethality in Adar3/4S OE flies 

When the Adar3/4S OE [ts] flies were crossed to flies having deficiencies on 

Chromosome III at 29°C, no progeny overexpressing Adar3/4S were born. When the 

crosses were repeated at 27°C, seven heterozygous deficiencies rescued the lethality 

(Figure 3.5). The seven deficiencies were mapped to small regions (Table 3.1). However, 

as observed in another screen we carried out with deficiencies, there was little 

predictability when overlapping deficiencies were tested (Chapter 5).  
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Figure 3.5 Deficiency screen for rescue of lethality caused by Adar3/4S 

overexpression. (A) Deficiency screen on Chromosome III left arm. (B) Deficiency 

screen on Chromosome III right arm. In both (A) and (B), the last column is the viability 

of Adar3/4S OE, Adar RNAi flies, as a positive control. The second last column on the X 

axis in A shows that no progeny survive from negative control crosses with w
1118 

wild 

type flies. The X axis lists the deficiencies crossed with Adar3/4S OE [ts] and the 

vertical axis shows the viability of Adar3/4S OE, Df flies.  

 

    

Table 3.1 Mapping the genes present in the deficiencies that rescue Adar 3/4 S OE 

[ts] lethality. 

 

Smaller deficiencies present in the rescuing large deficiencies or candidate genes 

affected by the deficiency are listed in the second row of the table. Overlapping or 

smaller deficiencies covered by the rescuing deficiencies, and candidate gene mutants 

were tested for viability rescue. Negative results and positive results are shown in the 

‘Tested’ row. The last row lists candidate genes or smaller regions that may be 

responsible for the rescue.    
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RDL-2 and BSC508 deficiency effects were mapped down to single genes. Rdl 

(Resistant to dieldrin) null allele Rdl
1
 rescued the viability to 34% (n=94) and slimb 

(Supernumerary limbs) hypomorphic allele slmib
00295

 rescued to 9.8% viability (n=82).  

Therefore, these two genes were the two strong candidates from the two deficiencies. In 

the Adar3/4S OE [ts] flies rescued by slimb
00295

 , the expression level of Adar mRNA  

was significantly reduced (Figure 3.6). In contrast, in the heterozygous RDL-2 

deficiency or in the Rdl
1
 null mutant which is a large intergenic inversion covering 

multiple exons in Rdl (Ffrench-Constant et al. 1991), the surviving flies still had 

significantly high expression of Adar transcript (Figure 3.6). Slimb is an F-box/WD40 

repeat protein, mediating proteolysis (J. Jiang and Struhl 1998). The possibility that 

GAL4 is affected by a reduction in slimb expression has not been excluded. Therefore, 

this project focuses on understanding how the RDL-2 deficiency rescues the lethality of 

Adar3/4S overexpression without affecting the expression level of Adar3/4S much.  
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Figure 3.6 Relative Adar mRNA level in Adar 3/4 S OE adult flies rescued by Rdl 

and Slmb mutants. The expression level of Adar was normalized to Gapdh. The bar 

represents the relative expression level of Adar compared to that in wild type w
1118

. 

Error bars are standard errors. Student’s t-test was used to calculate the p value. * p<0.5 

 

 

3.2.3 Rdl (Resistant to Deldrin) deficiency RDL-2 and Rdl mutants rescue the 

lethality caused by Adar 3/4 S overexpression. 

Similarly to what was observed in the Adar3/4S OE larvae,  in the RDL-2 strain that 

rescues the lethality, only a few edited sites had higher editing levels compared with 

wild type adult flies (Figure 3.7). Among the ten edited sites in the 3’UTR of CG33205, 

the last three 3’ sites had significantly increased editing levels compared with Adar3/4S 

OE, Adar IR control at 27°C or the wild type control. However, none of the five specific 

editing sites in Syt1 (Synaptotagmin1) showed significant changes in editing levels 

compared to wild type flies.  
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Figure 3.7 Comparison of site-specific editing in edited transcripts in wild type flies 

and Adar 3/4 S OE flies rescued with AdarIR or RDL-2. (A) Editing levels of the ten 

edited sites in the 3’UTR of CG33200 in adult flies. (B) Editing levels of the four sites 

in the Syt transcript in adult flies. The X axis shows the edited positions in the 

D.melanogaster genome (Apr 2006, Dm3). The numbers are the last four digits of the 

genomic DNA position. w
1118

 is the wild type control, and Adar3/4S OE, Adar IR is the 

rescued control.  
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Since Rdl itself is edited by ADAR, I investigated whether changes in editing 

efficiencies at sites in Rdl contribute to the rescue of lethality by the RDL-2 deficiency. 

Editing efficiencies at Rdl sites in RDL-2/+ flies and Adar3/4S OE, RDL-2/+ flies were 

analysed. RDL-2/+ flies bearing the RDL-2 deficiency in wild type Adar background 

had a significant increase in editing at the 735R/G site. A slight increase was also seen at 

the 728 silent site and the 1449 silent site but there was little change in editing at the 

other sites (Figure 3.8A).  Adar3/4S OE, RDL-2/+ flies showed a similar increase in 

editing at the R/G site as observed in the RDL-2/+ flies, and editing did not change or 

was slightly reduced at the other edited positions. Rdl has four different splicing 

isoforms and from the most abundant to the least abundant are bd, ad, bc and ac. There 

is a choice of ‘a’ or ‘b’ for exon 3, combined with a choice of ‘b’ or ‘d’ for exon 6 

(Jones et al. 2009). Heterozygous RDL-2 deficiency flies and Adar3/4S OE, RDL-2/+ 

flies both have approximately 10% more of the bd isoform than the ad isoform (Figure 

3.8B). No ‘c’ splicing isoform was detected.   
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Figure 3.8 Changes in Rdl mRNA splicing and editing in the RDL-2 deficiency 

rescued flies. (A) Editing levels at sites in the Rdl mRNA in adult flies of different 

rescue genotypes. The horizontal axis shows the edited positions. The editing sites are 

named for the codon numbers and the resulting amino acid changes. The first letter is the 

genome-encoded amino acid and the second letter is the amino acid generated by RNA 

editing. (B) Exon a, exon b splicing isoform choices in the flies (n=60).  

 

 

To confirm that the rescue was due to mutations in Rdl, the Adar 3/4 S OE[ts] flies were 

crossed with three additional different Rdl mutant lines (Rdl
MD-RR

 , Rdl
CB-2

, Rdl
CB-2L

) 

(Figure 3.9)  and two Rdl RNAi lines at 27°C. Adar 3/4 S OE; Rdl
CB-2L

/ + flies were 

viable but none of the other mutant alleles or the RNAi lines of Rdl that were tested 

rescued lethality. All the three Rdl mutant lines carry amino acid replacements that are 

caused by ethyl methanesulfonate (EMS) (Figure 3.9). Both Rdl
MD-RR

 and Rdl
CB-2L

 are 

documented to be dominant for picrotoxin (PTX, GABA antagonist) resistance (Ffrench-

Constant et al. 1991). However, no phenotypes of Rdl
CB-2

 were found.          
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Figure 3.9 Schematic structure of RDL in the cell membrane and positions of 

alternative splicing sites, editing sites and point mutations.Two alternative splicing 

sites are in the extracellular region. Three Rdl mutants with their positions and amino 

acid changes are highlighted with yellow. Four editing sites are R122G, N294D, I283V 

and M360V. Figure adapted from Jones et al.,2009.  

 

 

To test whether the rescue by Rdl mutants was due to a reduction in GABA signalling, I 

tested two different methods of reducing the GABAergic input—by feeding the Adar 3/4 

S OE [ts] flies with GABA antagonist and by reducing synthesis of GABA. Picrotoxin 

(PTX) is a widely used GABAA receptor antagonist reported to effectively inhibit 

GABAA receptors that contain Rdl. Picrotoxin induces seizures in flies (Stilwell et al. 

2006). Feeding different concentrations of PTX to the Adar 3/4 S OE [ts] larvae or to 

their parents did not rescue the lethality caused by Adar3/4S overexpression. However, 

when the Adar 3/4 S OE [ts] flies were crossed with GAD1
L352F

, a strong hypomorphic 

mutant allele of GAD1 (Glutamic acid decarboxylase 1, which encodes the enzyme that 

synthesizes GABA), Adar 3/4 S OE lethality was rescued to the same level as the 
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Adar3/4S OE flies having the Rdl heterozygous deficiency or a mutation in Rdl (Figure 

3.10). The heterozygous GAD1
L325F

 mutant shows approximately 50% reduced GAD1 

activity and is predicted to lead to reduced GABA inhibitory signal (Featherstone 2000).   

 

 

                               

Figure 3.10 Adar 3/4 S OE viability rescue by mutants of GAD1 and Rdl. The X axis 

show the genotypes of the flies crossed with Adar3/4S OE [ts] flies. The Y axis shows 

the viability of the F1 progeny that overexpresses Adar3/4S, compared with the expected 

Mendelian distribution. n is the total number of total progeny.  

 

 

3.2.4 Adar mutant larvae display changes in aCC motor neuron excitability 

The rescue of the Adar 3/4 S OE lethality by Rdl and  GAD1 reduced function mutants 

led to the hypothesis that lethality of Adar3/4S overexpression may be due to highly 

suppressed neuronal excitability that could be rescued by a reduction in the fast 
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inhibitory GABA signal. If the hypothesis is true, the Adar 3/4S OE flies would have 

lower neuronal activity while Adar null flies would have higher neuronal activity.  
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Figure 3.11 In vivo extracellular current recordings on Adar
5G1

 mutant and Adar 

3/4 S OE aCC motor neurons. (A) Examples of single aCC neuron activity recordings 

from flies of three different genotypes, viewed at three different time scales. (B –E) 

Quantification of the firing activities. The bars are the averages of at least four 

recordings of different aCC cells.  Error bars are standard errors. The p Value is 

calculated by Student’s t-test. The black columns indicate the wild type control, and the 

white columns are the mutants. (F) Hazard: Hazard= BinCount(i) /(∑spike - 

∑iBinCount ). The bin size is 2.5 milliseconds. The graph of the first 2772.5ms is 

enlarged in the box. Genotypes are WT: UAS-GFP; RRa- GAL4. RRa>Adar3/4S OE: 

UAS-GFP / +; RRa-GAL4 / UAS-Adar3/4S. Adar[5G1] null: Adar5G1; UAS-GFP / +; 

RRa-GAL4 / +.   

 

 

F 
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To test this hypothesis, I recorded spontaneous neuronal activity using in vivo extra-

cellular current recording on 3
rd

 instar larval aCC motor neurons of Adar mutant flies. 

aCC motor neurons receive GABA input and are reported to have Rdl expression 

(Featherstone 2000). When the Adar3/4S isoform is specifically expressed in the aCC 

motor neurons using the RRa-GAL4 driver, neurons showed significantly reduced firing 

activities. Reciprocally, Adar
5G1

 null larval aCC motor neurons were hyper-active 

(Figure 3.11). The number of bursts (Figure 3.11B), durations of the bursts (Figure 

3.11C), the number of firing events (Figure 5.11D), and the mean intraburst intervals 

(Figure 3.11E) were all decreased in Adar 3/4 S overexpressing aCC motor neurons, but 

increased in Adar
5G1 

null aCC motor neurons. These quantifications showed a trend, 

however not all of these differences were statistically significant. A hazard graph, 

plotting the probability of having a firing event after previous firing events within a 

certain interval of time, showed that in Adar
5G1

 flies, aCC motor neurons have higher 

excitability while Adar 3/4 S overexpressing neurons are much less active compared 

with wild type neurons (Figure 3.11F).  

 

3.2.5 Overexpressing UAS-Rdl constructs in Adar
5G1

 null flies 

Since reduction in Rdl expression rescued the lethality caused by Adar3/4S 

overproduction, I wanted to elucidate whether overexpressing either edited or unedited 

UAS-Rdl constructs could rescue some of the phenotypes of the Adar
5G1

 null flies. Prior 

to the start of the project, fly lines bearing UAS-Rdl cDNA constructs were generated to 

express the fully edited Rdl isoform (Rdl_Ed) and the fully unedited Rdl isoform 

(Rdl_Un) or the Rdl ac isoform that has only the IV site edited (the Rdl ac cDNA was a 

gift from Andrew Jones, Professor David Sattelle Group, University of Oxford). 

Overexpressing any of these three constructs with the Actin 5c-GAL4 driver was lethal, 

but they were partially viable when a weaker armadillo-GAL4 driver was used. 

When Adar 
5G1

 was crossed with each of these three constructs in the absence of a GAL4 

driver, no changes in viability were observed in the progeny, with the exception being 
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the Rdl_Un flies which increased Adar
5G1

 viability slightly. Adar
5G1

; arm-GAL4/ Cy 

flies were crossed with UAS-Rdl_Un homozygous flies at 25°C and 19°C separately to 

see the effects of different overexpression levels of Rdl_Un. The basic GAL4/ UAS 

system is sensitive to temperature as higher temperature leads to higher expression of 

UAS constructs (Fischer et al. 1988). Temperature indeed affected the populations of 

both Adar
5G1 

flies and Rdl_Un OE flies. 

At 25°C, Adar
5G1 

has low viability of approximately 20-50% compared with FM7 

balancer flies in the Adar
5G1

/FM7 stock. Flies overexpressing Rdl constructs under arm-

GAL4 driver narrowly escape from lethality with a viability of only 5-8% compared with 

UAS-Rdl_Un flies without drivers. Among the progeny from crosses of  Adar
5G1

; arm-

GAL4/ Cy flies and UAS-Rdl_Un homozygous flies at 25°C,  arm>Rdl_Un flies showed 

the lowest viability, taking up 7% of the population.  Surprisingly, loss of Adar 

increased the viability of Rdl-Un overexpressing flies by 2.7 folds (Figure 3.12A).  

At 19°C, Rdl_Un OE has higher viability compared with 25°C. Greater viability for 

UAS-Rdl_Un construct is expected because GAL4-driver expression will be much lower 

at low temperature. At 19°C, the Adar
5G1

 viability is almost ten-fold less than at 25°C, 

but moderate overexpression of Rdl-Un increased Adar
5G1

 viability by five fold. In both 

25°C and 19°C, combination of Adar null and Rdl_Un overexpression showed 

significant effects on each other’s viability (p<0.0005 and p<0.005, respectively, by the 

Fisher’s exact test).   

However, neither overexpressing Rdl_Un construct using armadillo-GAL4 driver nor 

OK6 motor neuron driver improved Adar
5G1

climbing performance. (Figure 3.12 B).   
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Figure 3.12 The effect of Rdl_Un overexpression on Adar
5G1 

flies. (A) Population 

distribution shows the listed four genotypes of the F1 generation from the cross Adar
5G1

; 

arm-GAL4 with UAS-Rdl_Un/CyO. Three stacked column bars indicate the distribution 

of F1 flies collected at 25°C (n=179), at 19°C (n=43), and the theoretical Mendelian 

distribution. Yellow dotted lines divide columns into four identical 25% areas. (B) 

Columns show average climbing index of the flies. Error bars are standard error. 

Genotypes are WT: FM7; arm-GAL4/CyO. arm>Rdl_Un: FM7; arm-GAL4/ UAS-

Rdl_Un. Adar[5G1];arm>Rdl_Un: Adar
5G1

; arm-GAL4/ UAS-Rdl_Un. Adar[5G1]: 

Adar
5G1

; arm-GAL4/Cy. 
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3.3 Discussion 

RNA editing mediated by ADAR is an essential biological process that has been 

proposed to diversify the genetic information to meet the physiological needs of the 

organism. Ectopically overexpressing the ineditable Adar 3/4 S isoform of the enzyme 

leads to lethality that occurs during all developmental stages. Lethality occurs 

continuously in embryos, larvae and pupae and lethality occurs if Adar 3/4 S 

overexpression is induced at any stage before the adult stage. The lethality is likely to be 

caused by a widespread physiological malfunction since the down-stream targets of 

ADAR are in every tissue in the fly. The Adar3/4S isoform has been shown to have the 

highest editing activity amongst the different Adar isoforms in in vitro editing assays 

with Adar exon 7 or cac editing site substrates (Keegan et al. 2005). Surprisingly, 

despite Adar 3/4 S transcript expression being increased more than six fold in Adar 3/4 S 

OE lethality-rescued flies, the editing level at sites in target transcripts did not change 

significantly. It suggests that there is some unknown factor(s) limiting the capacity of 

ADAR 3/4 to edit. It needs to be investigated what this limiting factor is. We have not 

totally excluded the possibility that Rdl mutants do affect Adar 3/4 S overexpression 

somewhat.  

The deficiency genetic screen on Chromosome III to identify rescuers of Adar3/4S OE 

lethality was a tight screen that did not give many false positive results. Also, the 

rescuers identified from this screen were all partial rescuers; none completely reversed 

the lethality. Slimb, encoding a ubiquitin ligase, is an interesting candidate that may be a 

positive genetic regulator of ADAR since the heterozygous slimb hypomorphic mutant 

rescues the lethality associated with the Adar3/4S OE. This hypothesis can be tested 

only when the possibility that slimb affects the GAL4, GAL80
ts
- UAS system is ruled 

out. Not included in this thesis is the deficiency screen data for Chromosome II and the 

X chromosome that was performed by two undergraduate students under my supervision. 

No rescuers were found among those chromosome deficiencies. 
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Rescue of the Adar3/4S OE lethality by Rdl deficiency RDL-2, heterozygous Rdl null 

allele Rdl
1
, and by a mutation affecting the enzyme that produces GABA, GAD1 

strongly suggests that the GABA fast inhibitory signalling pathway and Adar mutants 

generate mutually compensating effects on neuronal physiology. The in vivo extra-

cellular current recordings of aCC motor neurons from the Adar mutants support this 

hypothesis. The aCC motor neurons of Adar 
5G1

 null flies show higher neuronal 

excitability while Adar3/4S overexpressing aCC neurons have significantly reduced 

excitability. In the Adar3/4S OE flies, abnormally suppressed neuronal activity is 

probably one of the leading causes of the lethality, which can be corrected by a 

reduction in the fast inhibitory GABA signalling. 

Xenopus oocyte electrophysiology studies on RDL isoforms revealed that editing at the 

edited R/G sites, the I/V and the N/D sites together caused a more than 7 fold increase in 

GABA EC50 compared with the editing of R/G site only, which is the most significant 

difference in EC50 among all the different combinations of edited site that were tested 

(Jones et al. 2009). Also, it was observed that the EC50 of the bd isoform is 

approximately 2.6 times higher than that of the ad isoform (Jones et al. 2009). If the 

mechanism is similar in vivo, then both the adjustments in editing and the particular 

spliced isoform more expressed in the heterozygous RDL-2 deficiency and Adar3/4S OE, 

RDL-2/+, render the GABA receptor less responsive to GABA signals. The reduction in 

Rdl expression also reduces the number of GABA receptors expressed (Hosie et al. 

1997).  In other words, the flies with the RDL-2 heterozygous deficiency have much 

reduced GABAergic inhibition of neuronal excitability compared with wild type flies.  

On the other hand, moderate overproduction of the Rdl_Un construct in the Adar
5G1

 null 

flies may increase the viability of the Adar
5G1

 null flies by enhancing inhibitory signals 

to the hyperexcitable neurons. Besides the fully unedited Rdl_Un constructs, the other 

Rdl constructs tested for the rescue of Adar
5G1

 viability were the fully edited Rdl 

construct and the construct that has only the I/V site edited. It is not ideal that all of these 

three constructs were ac spliced isoforms as that is the least abundant spliced isoform in 

vivo (Jones et al. 2009). Among these three constructs, Rdl_Un has the lowest GABA 



96 

 

EC50 when expressed in Xenopus oocytes (Jones et al. 2009). The fact that Rdl_Un has 

the highest sensitivity to GABA among the three constructs may explain why this 

construct but not the other two increased Adar
5G1

 viability. Hence survival of Adar 

mutant flies seems to be highly related with GABA signalling.    

Some of the negative results obtained appear to weaken the argument that reducing 

GABA inhibitory input rescues the lethality caused by Adar3/4S ectopic overexpression. 

These include the failure to rescue the lethality by PTX feeding, by Rdl RNAi or other 

Rdl mutants or by another large deficiency ED4421 that also deleted the Rdl gene. 

Firstly, the failure of the PTX feeding experiment was not unexpected. As discussed 

previously, overexpressing Adar 3/4 S is lethal at all developmental stages. In the case of 

genetic rescues, modifications commence at the start of the embryogenesis. However, 

PTX can be fed only during the feeding larval stage or to the parents so that the effect of 

PTX may extend to the early embryonic stage. PTX may not be obtained by feeding 

soon enough in first instar larvae or not be present in the wandering larvae or the pupae 

stages when the overproduction of Adar 3/4 S is very high. Secondly, Rdl RNAi may 

lower Rdl too much, which is the likely reason for its inability to rescue. GABA 

inhibitory signalling is crucial for the survival of the animals. Complete knockout of 

either Rdl or GAD1 results in lethality. In the case of introducing RNAi against Rdl in 

the Adar 3/4 S OE[ts] flies, the flies were raised at a restrictive temperature 27°C. 

However, RNAi against Rdl in the wild type background is lethal with the Actin 5c- 

GAL4 driver due to an efficient knockdown of Rdl. Compared with Rdl
1
 that is an 

inversion with the breakpoints inside the gene that disrupts the gene almost entirely, the 

other Rdl mutants Rdl 
MD-RR

, Rdl 
CB2

, and Rdl 
CB-2L

 are mutated at single amino acids 

(Figure 3.10) (Ffrench-Constant et al. 1991). It is not clear yet why Rdl 
CB-2L

 rescues the 

lethality of Adar 3/4 S OE while the other point mutants of Rdl cannot. The ED4421 

deficiency deleted 642.8kb, 89 genes including Rdl, while the RDL-2 deficiency is 

predicted to have deleted approximately 23kb, 6 genes. Such a large deficiency as 

ED4421 is likely to introduce additional stress to the flies. To sum up, when carefully 

scrutinised these negative results do not really weaken the hypothesis.  
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Further investigation is necessary to confirm the hypothesis that altered RNA editing by 

ADAR affects neuron excitability and can be corrected by manipulating GABA signal. 

To elucidate the mechanism whereby ADAR controls neuronal excitability, the 

following experiments should be performed in the future:  

1. Examination of the neuronal activity of the cell-autonomous Adar RNAi 

knockdown, by recording the firing activity of the single neurons that have Adar 

knocked down specifically in the aCC motor neurons (UAS-GFP / +; RRa-GAL4 

/ UAS-Adar IR). This experiment, together with the previous electrophysiological 

results will address the hypothesis that reduced ADAR activity makes neurons 

more excitable cell-autonomously.  

2. Rescue neuronal activity by examining whether introducing Rdl or a GAD1 

mutation can correct the suppression of aCC single neuron activity by Adar3/4S-

overexpression. The opposite experiment can also be performed where the 

activity of Adar-knockdown neurons can be analyzed when overexpressing Rdl.  

3. Investigate the rescue of behaviour of Adar
5G1

 null flies by feeding them GABA 

agonists, such as benzodiazepines.  

It is important in the long term to elucidate the mechanism whereby Adar and RNA 

editing fine-tune neuronal activity. Many aspects of the living organism affect the 

excitability of the neurons. Adar may help control the neuronal activity by fine-tuning 

the properties of many ion channels and other cellular proteins by its editing activity and 

perhaps also by its double-strand RNA binding activity. This regulation by Adar is likely 

to be very complicated. Nevertheless, to unveil the mechanism by studying large Ca
2+

-

dependent Potassium (BK) channels and their control by Adar is a good starting point. 

Firstly, BK channels are the channels that directly control the firing patterns of neurons 

(Burdyga and Wray 2005). And secondly, several BK channels, including slo, and shab 

transcripts are edited in Drosophila (Ryan et al. 2008; Graveley et al. 2011). Therefore, 

studying the contributions of editing in these channels to control neuronal excitability is 

promising as well as experimentally feasible.   
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4 CHAPTER IV: Study of Adar5G1 null mutant phenotypes 

 

 

 

 

 

 

Dare to be honest and fear no labor. 

 

― Robert Burns 
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4.1 Introduction 

Many phenotypes of Adar mutant flies have been described, including 

neurodegeneration and locomotion defects (Palladino et al. 2000a). More detailed 

aspects of Adar
5G1

 null fly phenotypes have been described by previous PhD students in 

our group. McGurk described neurodegeneration in Adar
5G1

 and showed that 

overexpressing the inactive Adar construct Adar 3/4 EA in cholinergic neurons rescues 

the neurodegeneration phenotype of Adar
5G1

 but not the open field locomotion defects 

(McGurk Thesis, University of Edinburgh 2008). EM images showing multi-lamellar 

vacuole structures and standard 2µm autophagic vesicles in the Adar
5G1

 null fly brain 

indicate that the neurodegeneration involves autophagy. Hogg performed a Microarray 

analysis and found that expression of many transcripts was altered in Adar
5G1 

fly heads. 

Adar 3/4 EA expressed in cholinergic neurons of Adar
5G1

 flies corrects some of these 

gene expression changes. More recently, Paro demonstrated that mutating Tor or 

overexpressing autophagy genes in cholinergic neurons were sufficient to prevent 

neurodegeneration and rescue locomotion defects in Adar
5G1

 flies (Paro Thesis, 

University of Edinburgh 2012).      

McGurk showed that Adar
5G1 

null flies develop vacuoles from as early as 25 days, most 

prominently in the mushroom body (MB) calyces and the optic lobes. The abnormal 

membrane structures seen in the EM images included double membrane vesicles 

containing mitochondria which are recognizable as autophagic vesicles (McGurk Thesis, 

University of Edinburgh 2008). Cell death was detected using TUNEL staining in the 

brain fat cells but not in the neurons of the aged Adar
5G1 

flies. In addition, 

overexpression of viral anti-apoptotic protein p35 (Hay et al. 1994; Lannan et al. 2007) 

in the cholinergic neurons did not rescue the neurodegenration (McGurk Thesis, 

University of Edinburgh 2008). The mechanisms of neuronal death in various 

Drosophila neurodegenerative models have been extensively investigated. It seems that 

the neurons do not die by typical apoptosis or necrosis in most fly models and this 

appears to be a feature particular to Drosophila rather than vertebrate 

neurodegenerations (McCall 2010). Recently, Trunova S. et.al found that in the p35 
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mutant Drosophila model of neurodegeneration, the neurons die through necrosis in the 

beginning of the neurodegeneration and later show an autophagic cell death phenotype 

(Trunova and Edward Giniger 2012). Neurodegeneration in Adar
5G1 

may also involve 

autophagy or necrosis. Adar
5G1 

flies provide an excellent model to study adult-onset 

neurodegeneration.  

Expressing Adar 3/4 EA under Cha-GAL4 driver control in the cholinergic neurons of 

Adar
5G1

null flies was sufficient to prevent vacuole formation in the MB calyces of 30 

day old flies (McGurk Thesis, University of Edinburgh 2008). Hogg repeated this result, 

and also found that Adar 3/4 EA corrected the expression levels of many transcripts 

altered in the Adar
5G1

 heads by doing microarray analysis on the heads of Adar
5G1 

null 

flies and two rescue lines, Adar
5G1

; Cha>Adar 3/4 and Adar
5G1

; Cha>Adar 3/4 EA. In 

many cases, the rescue effect on expression of altered genes by cholinergic neuronal 

expression of Adar 3/4 EA was as complete as or more complete than with Adar 3/4. She 

argued that this may be due to the fact that Adar 3/4 EA construct is two to three fold 

more expressed than Adar 3/4 (Hogg Thesis, University of Edinburgh 2010). Rescue of 

the Adar
5G1 

phenotypes by inactive Adar is an interesting result and the mechanism is 

still not clear.  

Continuing with McGurk’s work, Paro found that Tor mutants or Act-GAL4 driven 

overexpression of autophagy genes Atg5 or Atg1 rescue the Adar
5G1

 null fly phenotypes, 

including rescue of low viability, locomotion defects, neurodegeneration and reduced 

longevity (Paro Thesis, University of Edinburgh 2012). Atg5 overexpression showed 

better rescue than Atg1 overexpression in her experiments (Paro Thesis, University of 

Edinburgh 2012). She also observed more LysoTracker Red staining in the fat bodies of 

Adar
5G1

 null fly 3
rd

 instar larvae compared with wild type, suggesting more autophagy in 

the Adar
5G1 

null mutant flies (Paro Thesis, University of Edinburgh 2012). Up-regulating 

autophagy levels is well known to be beneficial in extending life span (Scott et al. 2004). 

Increased autophagy helps host-defence, and reverses neurodegenerative diseases 

presumably due to its role in removing toxic protein aggregates or reactive oxygen 

species (Lipinski et al. 2010; Ravikumar et al. 2004). 
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However, it is not obvious how increasing autophagy rescues the neurodegeneration 

phenotype and locomotion defects in Adar
5G1

 null flies. In regard to the 

neurodegeneration phenotype of Adar
5G1

, no obvious protein aggregates were found that 

may be a leading cause of the neurodegeneration. Intriguingly, overexpressing p35 in 

cholinergic neurons did not rescue the massive vacuole phenotype in Adar
5G1

 MB 

calyces but overexpressing Atg5 in cholinergic neurons did (McGurk Thesis, University 

of Edinburgh 2008 and Paro Thesis, University of Edinburgh 2012). This suggests that 

the vacuoles observed in the HE stained sections of the fly brains were not part of an 

apoptotic cell death process. As supported by the EM images, the enlarged vacuoles may 

be accumulated pathological remnants of aberrant autophagy in the neurons. Increased 

autophagy is likely to be sufficient to turn these structures over at an early stage. The 

locomotion defects of Adar
5G1

 flies may be a combined result of the defects in motor 

neurons, muscles and neuromuscular junctions, but may also reflect a general cellular 

fitness status. It is complicated to dissect the mechanism of the rescue by reducing Tor 

or increasing autophagy, without a clear picture of how the severe locomotion defects 

develop from loss of ADAR protein.       

This chapter is mainly the continuation of work of previous students, attempting to 

address the mechanism of the severe neural-behavioural phenotype of Adar
5G1 

flies and 

to further investigate the rescue of Adar
5G1

 phenotypes by inactive Adar 3/4 EA and by 

Tor mutation. We sent poly-A tailed RNA samples from Adar
5G1

 and w
1118

 wild type fly 

heads for Next Generation sequencing to determine the transcriptome changes caused by 

loss of Adar. Then, I performed qRT PCR to examine if inactive Adar, a Tor mutant, or 

overexpression of Atg5 could rescue the expression changes of transcripts altered in 

Adar
5G1

. In order to understand the cell-autonomous effect of Adar
5G1

, I generated 

Adar
5G1

 null cell clones in heterozygous mosaic flies using the MARCM technique.  
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4.2 Results 

 

4.2.1  Innate immune response genes are up-regulated in poly A+ mRNA from 

Adar
5G1 

null fly heads. 

Heads of 5-day old Adar
5G1 

null and w
1118

 wild type male flies were collected and poly 

A+ mRNA sequencing was carried out. The sequencing was performed in the Wellcome 

Trust Centre, Glasgow University sequencing facility. The sequencing was performed 

using the Ilumina Genome Analyser IIx. Single-end reads of 76bp were aligned and 

mapped to the fly genome by our collaborator Rui Zhang in Jin Billy Li’s group at 

Stanford University (Figure 4.1A, Zhang R.). He further compared the transcriptome 

changes in the Adar
5G1

 and w
1118

 wild type fly heads (Figure 4.1A, Zhang R.).        

Interestingly, Zhang found that the expression changes of edited genes between wild 

type and mutant were smaller than that of the whole transcriptome (Figure 4.1B, Zhang 

R.), indicating that ADAR does not control expression levels of edited transcripts.   
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Figure 4.1 Poly-A+ RNA sequencing analysis of Adar
5G1

 and w
1118 

fly heads (Zhang, 

R.). (A) RNA sequencing analysis pipeline. Raw sequencing data underwent quality 

control by Fastqc, then BWA (Burrows-Wheeler Aligner) mapping (Li and Durbin 2009) 

and then removal of duplicated reads. The differences in gene expression levels were 

calculated by DEGseq (Wang et al. 2010), and the edited transcripts were analyzed by 

doing local realignment, calling site information, and picking up modEncode sites 

(Graveley et al. 2011) of RNA editing step by step after removing the duplicated reads. 

(B) The expression changes of edited genes between wt and mutant were smaller than 

that of the whole transcriptome. The X axis shows log2 expression fold changes (wt vs 

mutant). The Y axis in the upper chart shows the cumulative faction and in the lower 

chart shows the frequency of the reads.   

 

 

Among the 14,624 mapped genes, 356 transcripts were down-regulated by more than 

two fold and 236 transcripts were up-regulated by more than two fold. I uploaded the 

lists of genes that changed more than two fold onto FlyMine (http://www.flymine.org), 

an integrated database for Drosophila and Anopheles genomics (Lyne et al. 2007). In 

terms of the chromosomal location distributions or tissue and developmental expression 
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patterns, there were no enrichments or biases in the expression-changed genes. However, 

there was a clear preference in the functional categories among the genes that were 

changed. The up-regulated genes were not significantly enriched in any pathways, but 

there were two overrepresented gene ontology terms—response to bacterium (p<0.01, 

12 gene matches) and cellular response to heat (p<0.01, 6 gene matches) (Table 4.1). 

Also, there was one overrepresented protein domain; the stress-inducible humoral factor 

Turandot protein domain (p<0.001). These upregulated Turandot genes (five Tot genes 

out of six known Tot genes) are involved in responses to both heat and bacteria, as 

shown in Table 4.1. On the other hand, the down-regulated genes were overrepresented 

in the starch and sucrose metabolism pathway (P value<0.01), and Gene Ontology term 

analysis revealed that the gene classes were mainly involved in catabolism and 

reproduction (Table 4.2).  

 

 

Table 4.1 Statistically significant categories of genes with transcripts increased 

more than two fold in Adar
5G1

 heads. 

Gene name 

WT: 

w
1118

 Adar
5G1

 Fold Change 

Cellular 

response to heat 

Response to 

bacterium 

TotM 29.2232 7742.05 264.9285058 Y Y 

TotC 167.26 20216.2 120.8669072 Y Y 

TotA 904.345 45505.7 50.31886216 Y Y 

TotX 339.423 4459.89 13.13959249 Y Y 

IM23 263.698 2158.11 8.184073422 N Y 

Drs 397.826 2423.87 6.092813732 N Y 
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Diedel 39.2918 178.992 4.555430328 N Y 

CecC 33.9743 89.8019 2.643233557 N Y 

AttC 384.485 651.826 1.695324215 N Y 

Hsp70Aa 186.169 296.359 1.591886833 Y N 

Edin 0 70.2873 10000 N Y 

TotB 0 31.1494 10000 Y Y 

CG6639 0 26.3876 10000 N Y 

 ‘N’ and ‘Y’ mean the gene does not or does belong to the gene ontology category. The 

numbers in the second and third columns are the number of reads in the RNA 

sequencing.  Values for Adar
5G1

 and w
1118 

are read per kilobase per million (RPKM) 

values from head poly A+ RNA sequencing.     

 

Table 4.2 Statistically significant categories of genes down-regulated more than 2 

fold in Adar
5G1 

heads. 

GO Term 
p-Value Matches 

chitin metabolic process  7.32E-06 16 

amino sugar metabolic process  1.12E-05 16 

glucosamine-containing compound metabolic process  1.47E-05 16 

carbohydrate metabolic process  1.86E-05 28 

post-mating behavior  3.89E-05 8 

aminoglycan metabolic process  4.24E-05 16 
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polysaccharide metabolic process  1.26E-04 16 

amine metabolic process  1.26E-04 17 

Proteolysis 7.61E-04 37 

chitin catabolic process 8.07E-04 6 

amino sugar catabolic process  8.07E-04 6 

glucosamine-containing compound catabolic process  8.07E-04 6 

multicellular organismal reproductive behavior  0.001823 11 

sperm competition  0.003887 5 

insemination  0.007622 5 

reproductive behavior  0.008369 11 

aminoglycan catabolic process  0.019393 6 

oviposition  0.020907 5 

polysaccharide catabolic process  0.020948 6 

mating  0.023216 10 

Copulation 0.029314 5 

‘Match’ indicates the number of the down-regulated genes that match the gene ontology 

term. 
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4.2.2  Rescue of innate immune gene expression levels in Adar
5G1 

flies with 

different Adar rescue constructs. 

In mammals, ADAR proteins were reported to be involved in immune responses 

( Samuel 2001; Hartwig et al. 2006; Rice et al. 2012). For example, transcription of the 

ADAR1 long isoform p150 is activated by interferon (George and Samuel 1999a). Also, 

in flies and vertebrates, Adar is reported to edit viral dsRNAs (Doria et al. 2009; 

Carpenter et al. 2009) . We decided to verify the expression changes in the innate 

immune genes from the RNA sequencing data. Could innate immune induction be the 

primary reasons for the pathological status of Adar
5G1 

flies? Do inactive Adar 3/4 EA or 

Tor mutation prevent immune induction and correct some or all of these expression 

changes?  

To answer these questions, as well as to confirm the immune response transcript changes 

detected from RNA sequencing, I performed qRT PCR using cDNA made from total 

RNA of whole flies. TotA, TotC, TotX, and Drs from the up-regulated gene list and the 

two down-regulated immune responsive genes AttD (53 reads in wild type, and 0 read in 

Adar
5G1

 heads) and Def (1023 reads in wild type versus 108.67 reads in Adar
5G1

 heads) 

were selected for their expression profile changes in Adar
5G1 

whole flies, Adar
5G1

; 

Arm>Adar 3/4 flies, Adar
5G1

;Arm>Adar 3/4 EA and wild type flies. In Adar
5G1 

null flies, 

the expression levels of TotA, TotC, TotX and Drs were much higher compared with 

wild type flies, which confirmed the RNA sequencing result (Figure 4.3). Unexpectedly, 

AttD and Def expression levels were also upregulated in Adar
5G1 

whole flies, and 

although upregulation was not as great as for the other four genes, the expression 

differences were still statistically significant (Figure 4.3). This may be due to higher 

expression of these genes in the digestive system than in the head.  

Overexpressing the unedited wild type Adar 3/4 or inactive Adar 3/4 EA in the Adar
5G1

 

null fly background were both sufficient to correct the expression levels of AttD, Def, 

and Drs (Figure 4.3). Although the Adar constructs reduced TotA, TotC, and TotX gene 

expression levels in the Adar
5G1 

background, they did not correct the expression levels of 
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Turandot genes as well as the other three antimicrobial peptide (AMP) genes. It is very 

interesting that inactive Adar 3/4 EA also corrected these expression changes (Figure 

4.3). This indicates that the double-strand RNA binding activity of Adar has an 

important physiological function in Drosophila.  

 

 

 

Figure 4.2 Relative immune transcript mRNA levels in w
1118

 wild type, Adar
5G1

 null 

or rescue flies expressing wild type Adar 3/4 or inactive Adar 3/4 EA isoforms. 

Relative fold changes and p values were calculated compared with the expression level 

in w
1118

 wild type flies for each gene. * P<0.05, ** P<0.005, *** P<0.0005. For each 

gene, the expression level was normalized to the expression level in the wild type w
1118

 

after normalizing to Gapdh. Error bars are standard error. Student t-test was used to 

calculate p value. 

 

 

To examine whether Adar 3/4 EA also rescued the mobility of the Adar
5G1 

flies, I 

performed both open field locomotion assays and climbing assays. In both assays, 

overexpressing wild type Adar 3/4 rescued the locomotion defects observed in Adar
5G1
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flies as expected (Figure 4.4). However, the mobility of flies overexpressing Adar 3/4 

EA or a construct expressing a truncated ADAR consisting only of double-stranded 

RNA binding domains of Adar: Adar 3/4 dsRBD gave different results in the two assays.  

The open field locomotion assay shows the horizontal movement of the flies after being 

tapped to the bottom of a petri dish. No significant rescue of the Adar
5G1

 by inactive 

Adar 3/4 EA or Adar 3/4 dsRBD was detected. This lack of rescue was seen when either 

motor neuron driver OK6-GAL4 or ubiquitous driver armadillo-GAL4 was used (Figure 

4.4A). However, both the mutant constructs showed significant rescue in the climbing 

assay, although not as much as Adar 3/4 (Figure 4.4B). A fly in the narrow column 

climbs up to the top naturally; a response known as negative geotaxis (Gargano and 

Martin 2005).  Most wild type flies climb to the top in 20 seconds after being tapped to 

the bottom of the column but Adar
5G1

 flies climb up to only approximately 20% of the 

height of the column in 1 minute. Interestingly, specifically overexpressing these 

constructs in motor neurons gave better rescue compared with using the armadillo-GAL4 

driver, suggesting that increased expression of Adar in motor neurons improves 

locomotion (Figure 4.4B).   

 

 



111 

 

 

 

Figure 4.3 Locomotion of Adar
5G1

 flies and flies over-expressing catalytically active 

or inactive constructs of Adar. (A) 3 minute- open field locomotion. The Y axis shows 

the number of lines that the flies cross in 3 minutes. Positive controls are Arm>Adar 3/4 

dsRBD and FM7; OK6>Adar 3/4 EA overexpressing Adar constructs in the wild type 
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background. (B) 1 minute climbing. The Y axis shows the climbing index of the flies. 

The positive control is Arm>Adar 3/4 EA expressed in the Adar wild type background. 

*** P<0.0005 **** P<0.00005 The P values are for comparisons with Adar
5G1

 flies. 

Student t-test was used to calculate p value. 

 

 

4.2.3 Heterozygous Tor mutations or Atg5 overexpression rescue locomotion 

defects and gene expression changes in Adar
5G1

 flies. 

Paro found that reduction in Tor expression, or Act-GAL4-driven overexpression of an 

autophagy gene Atg5 rescued reduced viability and open field locomotion defects in 

Adar
5G1

 flies (Paro Thesis. University of Edinburgh 2012). I confirmed the rescue of the 

locomotion defect in Adar
5G1 

by the hypomorphic P element insertion mutant Tor
K17004

 

and by overexpression of Atg5 using the Act-5c-GAL4 driver in the climbing assay 

(Figure 4.5).  
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Figure 4.4 Rescue of Adar
5G1

 climbing defects rescue by Tor
K17004

 mutant and by 

Atg-5 overexpression. Adar [5G1];Act 5c-GAL4 is the negative control, and FM7;CyO 

is the positive control. **** P<0.0001, compared with Adar [5G1];Act 5c-GAL4. 

Student t-test was used to calculate p value. Box plot: Five lines from top to bottom are 

maximum, third quarter, median, first quarter, and minimal climbing indexes, 

respectively.  

 

 

To examine whether upregulation of immune response genes is prevented by the 

Tor
K17004

 mutant or by overexpression of Atg5, I conducted qRT PCR analyses of stress 

and immune gene expression in the Adar
5G1

 flies. Either the Tor
K17004

 mutation or Atg5 

overexpression reduced the expression levels of TotX, TotC, and TotA significantly, but 

surprisingly increased AttD expression level (Figure 4.6). Tor
K17004

 decreased the 

expression levels of Drs and Def while overexpressing Atg5 did not show any effect 

(Figure 4.6). This suggests that the rescue of the Adar
5G1 

null mutant phenotype by up-

regulation of autophagy rescues the types of stress that drive Tot gene induction but the 

effects on immune gene expression are less predictable.  
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Figure 4.5 Relative mRNA levels of selected stress and immune genes in w
1118

 wild 

type, Adar
5G1

 and in flies rescued by either Tor
K17004

 or ubiquitous overexpression of 

Atg5 by Actin 5c-GAL4 driver. Relative fold changes and P values were calculated 

compared with the expression level in w
1118

 wild type flies for each gene. * P<0.05. For 

each gene, the expression level was normalized to the expression level in the wild type 

w
1118

 after normalizing to Gapdh. Error bars are standard error. Student t-test was used 

to calculate p value. 

 

 

Do the Adar
5G1 

flies have activated autophagy caused by multiple stresses? Since most 

of the neural-behavioural phenotypes and abnormal transcriptome changes were 

detectable in the 5-day old adult flies, I examined autophagy level by Lysotracker Red 

staining the adult mid gut of Adar
5G1

flies, and quantified the staining intensity and the 

size of the stained dots. There was no significant change between Adar
5G1

 adult fly gut 

and wild type flies (Figure 4.7).  
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Figure 4.6 LysoTracker Red staining of Adar
5G1

 adult guts. A-C Red is 

LysoTracker Red staining, and blue is DAPI nuclei staining. Scale bar: 50µl. (A) 

Adar
5G1

. (B) FM7, wild type. (C) Starved CaS as a positive control. (D) Quantification 

of the LysoTracker Red positive dots. The analysis was done in Image J. The average 

size and the total number of dots in an area of the same size was counted using the script 

in the software. Black columns show the average size of the dots and the white columns 

show the average area fraction. Three areas in each gut, and three different guts of each 

genotype was used for quantification. Error bars indicate SEM. ** P<0.005, comparison 

with FM7,GFP wild type flies.  Student t-test was used to calculate p value. 
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4.2.4 MARCM analysis of Adar
5G1

null cells in fat bodies and in the brain. 

Fat bodies from early third instar Adar
5G1

, P{neoFRT}19A / P{neoFRT}19A, P{tubP-

GAL80}LL1, P{hsFLP}1, w[*]; Collagen-GAL4/ P{UAS-mCD8::GFP.L}LL5 flies was 

dissected after clones were generated in embryos. There was variation in LysoTracker 

Red signal among different sheets of fat bodies (Figure 4.8; compare A to D, and C to 

F.). No differences in the LysoTracker Red intensity were detected in Adar
5G1

 

homozygous clone cells compared with neighbouring wild type or heterozygote cells. 

This suggests that upregulation in the Lysotracker Red staining in the fat body sheets of 

individual larvae may be an indirect metabolic effect rather than being triggered directly 

by knocking down Adar cell autonomously (Figure 4.8).  

 

     

Figure 4.7 No increased LysoTracker Red staining in Adar
5G1 

cell clones in the fat 

body.Membrane GFP marks Adar
5G1

 null cell membranes. Blue is DAPI. A-C and 

D-F are two different sheets of fat body derived from two individual flies.  Scale bar: 

50µm.  
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To examine whether neuronal loss occurs in the Adar
5G1

 flies with the development of 

vacuoles, and to determine when and how the neuronal loss occurs, I used the MARCM 

system to mark and trace Adar
5G1 

mutant neurons in aging flies. Vacuoles were detected 

in the MB calyces in the Adar
5G1 

flies (McGurk Thesis, University of Edinburgh 2008). 

Therefore, I generated the Adar
5G1

 null cells in the MB neurons using the 201Y-GAL4 

driver. The Adar
5G1

, P{neoFRT}19A / P{neoFRT}19A, P{tubP-GAL80}LL1, P{hsFLP}1, 

w[*]; 201Y-GAL4/ P{UAS-mCD8::GFP.L}LL5 animals were heat-shocked at embryo or 

first instar larval stages and the brain was dissected when flies were 30 days old, because 

the massive vacuole formation was detected by day 30 in the Adar
5G1

 flies. The GFP 

signals in the individually marked Adar null cholinergic neurons were still observed in 

30-day old mosaic fly brains (Figure 4.9). The morphologies of the individual Adar
5G1

 

cholinergic neurons were compared with wild type single neuron morphologies (Figure 

4.9E) from an on-line data base (A.-S. Chiang et al. 2011). The database gives 

reconstructed single neuron confocal images from wild type MARCM clones driven by 

different neuronal drivers in the wild type. I also generated wild type cholinergic 

neuronal clones in P{neoFRT}19A / P{neoFRT}19A, P{tubP-GAL80}LL1, P{hsFLP}1, 

w[*]; Cha-GAL4/ P{UAS-mCD8::GFP.L}LL5 flies to compare with Adar
5G1 

null 

neurons. In most of the cases, the Adar
5G1

 null neurons still maintained axon branches 

and looked normal morphologically (Figure 4.9 C-D’). Nevertheless, swelling in the 

axon or fragmentation of the axon branches was sometimes observed (Figure 4.9 B, B’ 

and E, E’) in the midbrain.    
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Figure 4.8 Example confocal images of Adar
5G1

 cholinergic neurons and mushroom 

body gamma neurons. The images are z-stack projections. (A and A’) Wild type 

cholinergic neuron clones generated by MARCM using the Cha-GAL4 driver. (B-D’) 

Adar
5G1

 neurons generated using Cha-GAL4. The arrow points to an axonal branch 

where the swelling occurred and the inset box in B’ shows an enlargement of this region. 

(E) Image from the online data base: http://flycircuit.tw/modules.php?name=clearpage& 

op=detail_table& idid=13456, ChaMARCM-F000194_seg001_lsm, shows the same 

neuron as the Adar
5G1 

clone shown in C. C and E marked the same neurons. (F and F’) 

Adar
5G1

 neuron generated using 201Y-GAL4. The arrow points to the axon where 

degradation occurred. (A-D’, F and F’) Green: mCD8-GFP marking Adar
5G1

 null neuron 

membrane. Red: FasII staining of MB gamma neurons in (F). Blue: DAPI staining. All 
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the images are the CNS from 30 day old flies while the clones were generated 16hours 

after 24 hour egg collection. Scale bar: 50µm.  
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4.3 Discussion 

Comparison of Poly A+ mRNA sequencing data of w
1118

 wild type and Adar 
5G1

 heads 

suggests that the Adar
5G1

 mutant does not affect transcriptional levels of the edited 

transcripts more than other transcripts.  

There are several possibilities to explain for the transcriptional changes in the Adar 
5G1

 

flies. Loss of editing in some RNAs may lead to further transcriptional changes in other 

genes. Changes in the A-to-I edited level in the translated transcripts may further induce 

the changes in the transcription of other genes. For instance, loss of editing in the 

transcripts encoding membrane proteins like ion channels cause abnormal ion 

transmission in neurons (Jepson and Reenan 2009) that may cause stress to the cells. As 

a response, the cells activate expression of heat shock proteins and a range of emergency 

responses. These possibilities are not mutually exclusive. 

Approximately 20% of esiRNAs (Kawamura et al. 2008), and some pre-miRNAs are 

edited in Drosophila (Heale et al. 2009). Differences in transcriptional levels of miRNA 

or siRNA target genes may be caused by changes in the amount of miRNA or siRNA 

production or by retargeting or other effects on mature miRNA or esiRNA due to A-to-I 

conversion. In C. elegans, it has been shown that loss of ADAR causes an accumulation 

of RNAi-dependent 23-24nt small RNAs from several loci throughout the genome that 

encode A-to-I edited dsRNAs in wild type (Wu et al. 2011). This supports a competitive 

role for ADARs acting against the RNAi pathway. It is possible that the fly genome 

shares a similar feature.  

Alternatively, loss of dsRNA binding activity of ADAR may account for some of the 

transcriptional changes. Catalytically inactive ADAR with only two functional dsRNA 

binding domains corrects some of the down or up regulated genes when overexpressed 

in cholinergic neurons of Adar 
5G1

 flies (Hogg Thesis, University of Edinburgh 2011), 

which strongly indicates that the dsRNA binding activity of Adar may control 

transcriptional levels of some genes. If this is true, there must be a set of transcripts with 
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important physiological roles that ADAR binds to. This hypothesis can be supported by 

the existence of ADAR3 in mammals that does not have editing activity but retains 

dsRNA binding function. This hypothesis is further supported by the fact that inactive 

human ADAR1 p150 can inhibit the siRNA pathway in Drosophila (Heale, Keegan and 

O’Connell 2009). This provides the possibility that the unedited but bound targets of 

ADAR are some specific double-stranded small RNAs.  

The over-represented gene categories among Adar
5G1

-reduced transcripts are mainly 

involved in catabolic pathways and in reproduction while the upregulated transcripts 

respond to stress or infection. These gene enrichment results except the up-regulation of 

immune-related genes may be easily explained by the physiological adaptation to the 

stress caused by loss of Adar. However, the role of vertebrate ADAR1 clearly involve 

the immune system (Taylor et al. 2005; Toth et al. 2009). Significant upregulation of 

immune-related genes is intriguing. It may be the case that Adar
5G1

 has significant 

upregulation of dsRNAs encoded by repetitive sequences and that accumulation of the 

dsRNAs from these sources are sufficient to induce anti-viral responses when ADAR is 

absent. Some individual transcripts of Gypsy and other retrotransposons show increased 

levels in the poly A+ RNA seq data but a more complete analysis requires total RNA 

Seq after ribosomal RNA depletion. Elevated dsRNA could induce immune genes 

through dsRNA sensor. Dicer2 has been proposed to act as such a sensor (Wang et al. 

2006).  

More interesting still is the rescue of Adar
5G1

 gene expression changes by the inactive 

Adar construct. Catalytically inactive Adar rescued the neurodegeneration phenotype 

(McGurk Thesis, University of Edinburgh 2008 and Hogg Thesis, University of 

Edinburgh 2010.), and also improved the mobility of Adar null flies in the climbing 

assay. Undoubtedly, inactive ADAR protein has an important physiological role that 

requires binding to some double-stranded RNAs. ADARs may interact with other 

dsRNA-binding proteins such as the immune RNA sensors, to prevent them from 

signaling to induce immune responses. Using CLIP and other related techniques, we 

may be able to find a new set of the Adar target transcripts whose structured RNAs bind 
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to ADAR. Once these new target transcripts are found, we may be able to examine 

whether these dsRNAs trigger immune response in the animal.  

Although we do not know how the innate immune response is induced, I confirmed that 

expression levels of TotA, TotC, and TotX are significantly upregulated in the Adar
5G1

 

fly. Expression levels of AMP genes Drs, Def and AttD are also moderately altered 

although the directions of changes are sometimes different between the head RNA Seq 

data and whole bodies overall. Induction of Tot genes can be triggered by a variety of 

severe environmental stresses including infection, heat stress, oxidation stress and other 

insults (Ekengren et al. 2001). Compared with the induction of heat-shock proteins or 

AMP, the upregulation of Tot genes is strong and consistent (Ekengren and Hultmark 

2001). 

Overexpressing Adar 3/4 EA or wild type Adar 3/4 did not bring the expression of Tot A, 

C and X down to wild type levels, but decreased the expression of the AMP genes AttD, 

Def, and Drs to wild type levels. Overproduction of Tot genes is known to be protective 

and expression of one Tot gene does not induce more Tot gene expression or immune 

genes (Ekengren and Hultmark 2001). The high expression of Tot genes even when the 

Adar constructs were expressed in Adar
5G1

 null flies suggest that flies overexpressing 

these Adar constructs are still under some stress, possibly caused by ectopic 

overproduction of ADAR protein per se. The down-regulation of AMP genes even by 

inactive ADAR may indicate that dsRNA binding activity of Adar can eliminate innate 

immune response caused by loss of ADAR. Is ADAR protein more specifically involved 

in the immune gene control whereas increased autophagy rescues a more general stress 

response? Might Adar knockout lead to an accumulation of immunogenic dsRNA whose 

accumulation or immunogenic property is normally prevented by binding to ADAR 

protein? To test this hypothesis more fully across the whole genome, we have sent RNA 

samples from Adar
5G1

 null flies and wild type flies to be sequenced for total RNA and 

small RNA.  
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The effects of Tor
K17004

 mutant and of Atg5 overproduction on the expression levels of 

Tot genes and AMP genes were quite different from the effects of the Adar constructs. 

The Tot gene expression levels were dramatically reduced while the AMP gene 

expression levels were not consistently affected. This suggests that increased autophagy 

removes the key cellular stress that underlies important phenotypes, but not the induced 

immune response caused by loss of Adar. Innate immune genes respond very selectively 

to different infections, so a more general examination of transcription may be needed to 

be clear about immune gene transcript effects.  

Whether autophagy is activated in the Adar
5G1

 null flies is unclear. In the 5-day old fly 

heads, no changes in transcripts of genes involved in autophagy were detected from 

RNA sequencing. In addition, I did not see differences in LysoTracker Red staining in 

guts of 5-day old Adar
5G1

 flies compared to wild type flies. Adar
5G1

 flies of 5 day old 

have not developed vacuoles in the brain yet, but show severe locomotion defects and an 

accumulation of stress gene transcripts most of which are likely to be cleared by 

upregulated autophagy. These results indicate that although causing severe stress, loss of 

Adar does not seem to induce a high level of autophagy in the young adult flies. 

Nevertheless, increased LysoTracker red dots were observed in the Adar
5G1

 null larval 

fat body (Paro Thesis, University of Edinburgh, 2012). This did not seem to be a cell-

autonomous effect, based on the MARCM clone analysis. The acidified lysosomes 

detected by LysoTracker represent the final step in autophagy (Levine and Klionsky 

2004). If defects arise in the autophagy pathway itself, then increased acidified 

lysosomes may not be seen. Autophagy will need to be assessed using western blots to 

detect LC3 isoforms (Levine and Klionsky 2004). I did not detect differences in the 

LysoTracker Red dots between the homozygous Adar
5G1 

fat body cell clones and the 

neighbouring wild type or Adar
5G1 

heterozygous cells.               

Mosaic analysis showed morphological defects in Adar
5G1

 null neurons in the midbrain. 

Loss of Adar does not cause axonal degradation in every mutant neuron by 30 days. 

However, the incidence is much higher than in the wild type neurons. This again 

indicates that Adar
5G1

 null neurons are much more prone to neurodegeneration. Innate 
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immune genes have been shown to play an important role in neurodegeneration (Nguyen 

et al. 2002; Greene & Whitworth 2005). So activation of immune genes in Adar
5G1

 may 

contribute to neurodegeneration. The cell-autonomous neural degeneration phenotype of 

Adar
5G1

 do not exclude the possibility that abnormal immune induction in Adar null glial 

cells also plays an important role in neurodegeneration in the Adar
5G1

 null flies. The 

Adar
5G1 

 MARCM clone system can be used in future for a further study of cell-

autonomous effects of Adar
5G1

 by staining with further cell markers, or to design a 

screen for rescue in a well-controlled in vivo system.   

In summary, the experiments conducted in this chapter allow me to draw three main 

conclusions. First, innate immune genes and general stress response genes were up-

regulated in the Adar
5G1 

null adult flies. Second, inactive Adar with dsRNA binding 

activity is capable of reducing the expression levels of AMP genes fully, and Tot genes 

partially, suggesting that ADAR protein affects primarily the innate immune response. 

In contrast, Tor
K17004 

mutation or Atg-5 overproduction reduce the expression level of 

Tot genes but not the AMP genes fully, indicating that increased autophagy removes a 

more general stress caused by loss of Adar. Third, loss of Adar causes axon swelling and 

degradation cell-autonomously. Future experiments may focus on elucidating the role of 

dsRNA binding activity of Adar in innate immunity in Drosophila, and clarifying the 

stress caused by Adar
5G1

 at a single cell level.        
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5 CHAPTER V: Genetic screen for heterozygous 

deficiencies on Chromosome III that rescue the 

reduced viability of Adar 5G1. 

 

 

 

 

 

 

To kill an error is as good a service as, and sometimes even better 

than, the establishing of a new truth or fact. 

 

- Charles Darwin 
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5.1 Introduction 

The Adar
5G1

 null and Adar
1F4

 hypomorphic mutant flies show strong adult neural-

behavioral defects (full description: Section 1.2.2, Chapter 1). Despite all these defects, 

the originally characterized Adar
1F4

 mutant which was subsequently shown to be strong 

loss of function rather than a null mutant is morphologically normal and not short-lived 

(Palladino et al. 2000a). The Adar
5G1

 null mutant fly strain bears a deletion that removes 

the entire Adar gene (Palladino et al. 2000a), resulting in the strongest phenotypes 

among the existing Adar mutant fly strains in terms of neurodegeneration, locomotion 

defects and low viability (McGurk Thesis, University of Edinburgh, 2008). For Adar
5G1

 

though not for Adar
1F4

, the reduction in viability at eclosion was sufficient to allow a 

viability rescue screen. The low viability may be an indication of the physiological 

competitiveness of Adar
5G1

 null larvae. Our starting hypothesis was that a deletion 

rescuing the low viability of Adar
5G1

 flies will bypass ADAR to remove general stress or 

other specific defects that lead to neural-behavioural phenotypes in Adar
5G1

. If this is 

true, rescuers of the low viability will probably also rescue locomotion or 

neurodegeneration in Adar
5G1

 flies.    

DrosDel, a very complete collection of well-defined genome deletions, became 

publically available in 2007, and this deficiency collection provided a genetic tool for 

the viability screen of Adar
5G1

 flies. The DrosDel deletion set made high-throughput 

genome-wide screens more interpretable because the DrosDel set is composed of 

molecularly mapped deletions on an isogenic background, covering ~77% of the Release 

5.1 genome for Drosophila melanogaster. Each deletion covers an average of 44 genes 

or 368 kb. The Exelixis collection is also generated in an isogenic background, but with 

a much smaller average deletion size of 140kb (Parks et al. 2004). Both of these 

deficiency kits, in addition to the original and more recently made Bloomington Stock 

Centre (BSC) deficiencies, are now available to the public from Bloomington 

Drosophila Stock Centre (BDSC). All the DrosDel, Exelixis and new Bloominton 

deficiencies were generated by FRT-FLP recombination between P-element containing 

FRT sites which makes the deletion breakpoints precise and these have been confirmed 
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by sequencing (Roote and S Russell 2012). Compared with DrosDel deficiencies and 

Exelixis deficiencies, the size of BSC deficiencies vary from as small as one gene 

deletion to more than a hundred genes removed by a single deficiency. A combination of 

these three collections, assisted with old deficiencies of which the breakpoints are 

known with only cytogenetic accuracy, covers up to 98.9% of all the chromosome arms 

(Table 5.1, (Roote and Russell 2012)). This makes a genome wide screen for genetic 

modifiers of a mutation possible using the available deficiency kits.   

 

 

Table 5.1 Percentage coverage of euchromatic genes by genetic deletions. 

    

 

 

Prior to the thesis work, Paro carried out a small scale deficiency screen on the left arm 

of Chromosome II for rescuers of Adar
5G1 

low viability. She found that Df(2L)ED778 

rescued the viability of Adar
5G1

 significantly and mapped the effect to the Tor gene 

(Paro Thesis, University of Edinburgh, 2012). Further, she demonstrated that reduction 

in Tor or overproduction of Atg5 also rescued neurodegeneration and locomotion defects 

in Adar
5G1

 flies (Paro Thesis, University of Edinburgh, 2012). With this successful 

screen result on the Chromsome II L, we decided to do a large scale complete screen for 

deficiencies rescuing Adar
5G1

 viability. 
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By doing a deficiency screen for Adar
5G1

 viability rescue, we expected to find positive 

results with deficiencies that deleted one of these genes:  

1. Negative regulators of autophagy, such as Drosophila homologs of mammalian 

Bcl-2, NAF-1, PtdIns(3)-P phosphatase, Jumpy etc. (Liang 2010), that would 

further confirm the rescue observed by Paro.   

2. Genes that contribute to a major stress that causes the pathological state of 

Adar
5G1

 flies. Although we predict that Adar
5G1 

null flies undergo a variety of 

stresses, including oxidation stress and probably ER stress, and stresses caused 

by upregulated immune responses, we do not know whether any of these stresses 

is a leading cause of the Adar mutant phenotype.  

3. Genes encoding small RNAs that form double strand structures. This prediction 

is based on our hypothesis that the main stress in the flies may be caused by an 

accumulation of small RNAs that may induce stress or immune response when 

ADAR protein is not present.  

With these hypotheses and predictions, I conducted a large scale forward genetic screen 

using the DrosDel deficiency set primarily, assisted by some Exel deficiencies and BSC 

deficiencies to increase the gene coverage. This chapter will describe the screen for 

Adar
5G1

 viability using the deficiencies on Chromosome III left and right arms.       

The primary aim of the work presented in this chapter was to screen for deficiencies 

rescuing the low viability caused by the lack of ADAR RNA editing. Rescuing 

deficiencies may potentially also rescue the neural-degeneration and locomotion defects 

of the Adar
5G1

 null flies. The second aim is to better understand the physiological role of 

Adar on the basis of the genetic screen results.    
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5.2 Results 

 

5.2.1 Six regions on Chrosomosome III rescue the low viability of Adar
5G1

 null. 

DrosDel deficiencies (from BDSC, some were a kind gift from Dr. Penneta), Exelixis 

deficiencies (from BDSC) and BSC deficiencies (from BDSC) were used for the 

viability screen (Figure 5.1), covering approximately 80% of Chromosome III.  
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Figure 5.1 Cytogenetic map positions of deficiencies tested for rescue of reduced 

viability of Adar
5G1

 (A) The deficiency map on Chromosome III L tested in the screen. 

(B) The deficiency map on Chromosome III R tested in the screen.The regions 

highlighted in green are covered by DrosDel deficiencies used; these are marked as ED 

followed with numbers. The violet color highlights regions deleted by BSC deletions 

used, and regions with blue highlights are covered by Exelixis deficiencies used. 

Exelixis deficiencies are marked as Exel followed by numbers. Regions without any 

highlights are the regions not covered in this deficiency screen, either because there 

were no available deficiencies for that region, or because the deficiency flies harboring 

heterozygous deletions were too weak and did not give enough progeny when crossed 

with Adar
5G1

 flies. The shown deficiencies are the majority of the deficiencies used in 

the screen. Approximately twenty more fly deficiency strains that were used for further 

narrowing down genetic effects are not shown in the map. The figure is modified from 

the DrosDel deletion official site.     

 

 

The screen is based on the fact that Adar
5G1

 flies have a low viability, ranging from 20% 

to 50% compared with FM7 balancer siblings. When heterozygous deficiencies on 

Chromosome III left arm (73 deficiencies) or right arm (72 deficiencies) were crossed to 

Adar
5G1

 flies, approximately one third of the Adar
5G1

;;Df flies showed at least a two-fold 

increase in their viability compared with sibling Adar
5G1

 ;;Balancer flies. However, the 

viabilities of Adar
5G1

;;Df flies in the different deficiency backgrounds were still lower 

than 80% in most of those cases. These viability comparisons (ie compared to FM7;;Df 

sibling flies) are all relative to their siblings and are affected by the population density in 

a single vial. Many variables in the environment like moisture and density of the food 

may also affect the relative viability. In order to minimize uncontrolled variables and 

reduce the false positive rate, a one-tailed Fisher’s exact test and the Benjamini-

Hochberg multiple hypothesis testing correction were used to calculate p values for the 

significance of the Adar
5G1

 viability rescue by each deficiency. Seven deficiencies from 

six regions of Chromosome III significantly increased Adar
5G1

 fly viability (Figure 5.2). 
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 Figure 5.2 Viability 

rescues in F1 
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Adar
5G1

;;Df males from ♀Adar
5G1

/FM7 X ♂Deficiency/Balancer crosses. (A) 

Viability rescue by the deficiencies on Chromosome III left arm. (B) Viability rescue by 

the deficiencies on Chrosomosome III right arm. In both (A and B), on the X axis are the 

deficiency (Df) names in chromosome sequence order. Approximately 30% of the 

deficiencies overlap with each other. Black columns are Adar
5G1

 viability in each 

deficiency background, as a ratio of the numbers of Adar
5G1

;;Df/+ and FM7;;Df/+. The 

black dashed line shows Y axis=1. White columns indicate the fold change of Adar
5G1

 

viability that is due to the deficiency, corrected by taking account of the effect of the 

deficiency on viability among the FM7 progeny (refer to Section 2.1.4, Chapter 2). Red 

dots are the absolute log of the p value. The p value tells the significance of the effect of 

deficiency on Adar
5G1

 viability. The red dashed line is the threshold of the significance, 

as the absolute log of p=0.05. Arrows indicate the cases of significant viability rescue. A 

one-tailed Fisher’s exact test and the Benjamini-Hochberg multiple hypothesis testing 

correction were used to calculate p values for the significance of the Adar5G1 viability 

rescue by each deficiency. 

 

 

The seven deficiencies that rescued Adar
5G1

 viability are Exel7208, Exel9058, RDL-2 

and Exel6086 on Chr.IIIL and ED5066, Exel7284, and Exel7378 on Chr.IIIR (Figure 

5.2). Exel9058 is entirely included in the deleted region of Exel7208. Therefore, these 

seven deficiencies point to six chromosomal regions that rescue Adar
5G1 

viability. 

Although their viability was increased, the rescued flies still showed noticeable age-

dependent weaknesses, such as severe locomotion defects and early death, under normal 

handling conditions in the laboratory (most die by day 20, stuck on the food). 

Nevertheless, four viability-rescuing deficiencies out of the six examined increased the 

locomotion of 2-day old adult flies significantly. Compared with Adar
5G1

 null flies, the 

viability rescued flies showed a wide range of climbing abilities. Apart from ED5066 

and Exel6086, all the other viability-rescuing deficiencies improved the average 

climbing ability of the flies. The RDL-2 deficiency showed the best locomotion rescue, 

almost to the wild-type level and Exel9058, Exel7378, and Exel7284 showed similar 

moderate levels of rescue (Figure 5.3). However, only the RDL-2 rescue was 

comparable to the rescue by the Tor mutant (Figure 4.6, Chapter 4). ED5066 and 

Exel6086 did not improve the mobility of Adar
5G1

 flies at any stage. 
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We were interested in knowing whether the viability and locomotion rescuing 

deficiencies affect the general stress or immunity of the flies. I tested whether these 

deficiencies correct the expression levels of Tot genes and AMP genes in Adar
5G1 

flies, 

as seen in the rescues by Tor or Adar constructs. I examined mRNA levels of the six 

immune-related genes TotA, TotC, TotX, AttD, Drs, and Def using qRT-PCR in Adar
5G1

 

flies bearing heterozygous deletions RDL-2, Exel7284, Exel9058, Exel6086 and 

Exel7378 respectively. 

 

 

 

Figure 5.3 Climbing analyses of 2-day old Adar
5G1

 flies with deficiencies that rescue 

viability. Fly genotypes are shown on the X axis. The same number of flies was used for 

the analysis of each genotype. ***p<0.001 *p<0.05, compared with Adar
5G1

 flies. 

Student t-test is used to calculate p value. Box plot: Five lines from top to bottom are 

maximum, third quarter, median, first quarter, and minimal climbing indexes, 

respectively.  
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The Def expression level was not increased in the Adar
5G1

 flies in this set of qRT 

comparisons, which used Adar
5G1 

and FM7 progeny from outcrosses to w
1118

 as the 

mutant and wild type controls. In previous qRT PCR experiments, gene expression 

levels were compared with w
1118 

wild type controls. This may be due to either the 

variability in the different batches of flies, or due to the fact that the gene expression 

levels were normalized to a different wild type. Although the Def expression level was 

not increased in Adar
5G1

 flies compared to FM7, it was much reduced with heterozygous 

deficiencies Exel6086 and Exel9058. Exel7284, Exel7378 or RDL-2 deficiency did not 

affect the expression level of Def (Figure 5.4 and Table 5.2).     

Expression of all Tot genes is reduced in all the rescued flies. This result indicates that 

the rescue of the Adar
5G1

 mutant phenotype relieves stress that is induced by loss of 

ADAR. RDL-2 deficiency showed the least complete rescue of Tot gene expression 

levels. Surprisingly, the RDL-2 deficiency increased mRNA levels of AttD, Drs and Def 

in the viability-rescued flies, instead of reducing the expression as expected (Figure 5.4 

and Table 5.2).  

Exel6086 and Exel9058 also reduced the expression levels of AttD, Drs and even Def.  

Intriguingly, no AttD expression was detected at all in Adar
5G1

;;Exel9058/+ flies (Figure 

5.4 and Table 5.2). If not considering Def expression level, Exel7284 consistently 

reduced expression of the other genes to the wild type level as well, while Exel7378 and 

RDL-2 increased these AMP gene expression level significantly (Figure 5.4 and Table 

5.2).  
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Figure 5.4 Relative expression levels of TotC, TotX, TotA, Drs, AttD and Def in 

Adar
5G1

 flies with rescuing deficiencies. Black bars represent expression levels of 

immune genes in FM7 flies, used as wild type control in this assay. The expression level 

of each gene, as shown on the Y axis, is the relative expression level normalized twice, 

first to Gapdh expression level in the same flies, and then to the expression level of the 

same immune gene in the FM7 flies. The red dashed line shows when the gene 

expression level is the same as in FM7. Error bars are S.E.M. The p values are for 

comparisons with the expression level of the same gene in Adar
5G1

.  Student t-test is 

used to calculate p value.  

    

 

The Tot genes or AMP genes expression level rescues by these deficiencies were not 

tightly related with the level of the locomotion rescue (Table 5.2).  Table 5.2 shows that 

overall, expression of Tot and AMP genes were corrected by rescuing deficiencies. The 

RDL-2 and Exel 7378 rescue different in detail but these also affect all the tested genes, 

even if the effect is most in the expected direction. In vertebrates, a set of approximately 

three hundred genes can be activated simultaneously by interferon. In Drosophila, the 

immune and stress genes are individually regulated (Ferrandon and Imler 2007).  
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Table 5.2 Summary of effects of viability-rescuing deficiencies on the expression 

levels of Tot genes and AMP genes in Adar
5G1

 and locomotion rescue. 

Downward arrows indicate that the expression levels of the genes in Adar
5G1

 combined 

deficiency is reduced compared with that in Adar
5G1

 flies. The number of arrows in each 

column indicates the degree of expression of change. One arrow indicates that the level 

of expression is back to near the wild type level; two arrows means that the expression 

level of the gene is much lower than in wild type; three arrows, only shown in the AttD 

expression level in Adar
5G1

; Exel9058/+, means no detection of the expression from 

qRT PCR. ‘↘’ indicates the case where the expression level of the gene is reduced but 

still higher than in the wild type. Arrows pointing up means the heterozygous 

deficiencies further increased the gene expression level above that seen in Adar
5G1

. One 

or two arrows indicate the degree of increase. ‘─’ symbols are placed in the columns 

where the gene expression levels were not changed in Adar
5G1

 compared with the wild 

type flies, and the deficiencies had no effect either. The significance of locomotion 

rescue is shown with “─” and one to three “+”.  
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5.2.2 Mapping genes rescuing Adar
5G1

 within the rescuing deficiencies. 

Mapping individual genes rescuing within these rescuing deficiencies was not very 

successful. Two unsuccessful attempts to map genes within the RDL-2 deficiency 

(Figure 5.5) and the Exel9058 deficiency (Figure 5.6A) are described below as examples. 

5.2.2.1 Mapping genes within the RDL-2 deficiency.    

The RDL-2 deficiency on Chr. 3L at 66F-67A was the only viability-rescuing deficiency 

that covers a gene encoding an edited transcript. Therefore, we were interested in 

knowing whether reduction in this edited transcript, Rdl, was responsible for the rescue 

of Adar
5G1

 viability. When Adar
5G1 

was crossed with Rdl
1
 or Rdl

MD-RR
 mutant fly strains, 

the low viability was not rescued (Refer to Figure 3.10, Chapter 3 for information about 

the mutant alleles). Also, expressing shRNA against Rdl using the cholinergic neuron 

driver Cha-GAL4 did not rescue the phenotype of Adar
5G1

 either (Table S4 and Figure 

S1 in the Appendix II). Therefore, it is not likely that reduction in Rdl expression 

accounts for the viability and locomotion rescue of the Adar
5G1 

flies. This was partially 

expected, because overexpressing Rdl unedited cDNA constructs in the Adar
5G1

 

background increased the viability of the Adar
5G1 

flies (Figure 3.12 Chapter 3).  
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Figure 5.5 Genes and other deficiencies in the RDL-2 deficiency region. Red bars 

indicate the regions uncovered in the deficiencies. The break points of RDL-2 are not 

clear, but are reported to be in the 66F5 chromosomal region. The genes reported to be 

affected by the RDL-2 deletion are enclosed in the red circles.  

 

 

RNAi against nwk did not rescue the viability or locomotion defects of Adar
5G1 

either 

(Table S4 and Figure S1 in the Appendix II). We were interested in mir4940 (Figure 

5.6A), whose biological activities or downstream targets were not known. Very close to 

Rdl, the mir4940 gene was deleted in the RDL-2 deficiency that rescues Adar
5G1

 

viability, but not affected in the Rdl
1
 mutant that did not rescue Adar

5G1
 viability (Figure 

5.6 B). 
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Figure 5.6 Expression levels of pri-mir4940 in adult Adar
5G1 

or deficiency male flies. 

Pri-mir4940 expression level, normalised to Gapdh in the adult male flies. *p<0.05, 

calculated in comparison with the expression level in wild type w
1118

 flies. Student t-test 

is used to calculate p value.  

 

 

We argued that if mir4940 is responsible for the rescue, overproduction of this pri-micro 

RNA may worsen the phenotype of Adar
5G1

. Unexpectedly, we did not get any surviving 

transformant flies that have UAS-mir4940 integrated in the genome.  

To sum up, in the rescue of reduced Adar
5G1

 viability by the RDL-2 deficiency, we do 

not know whether there is a gene or some genes together that have a function on Adar 

viability and locomotion. The rescuing gene does not seem to Rdl or nwk. Also we could 

not rule out the possibility that the gene encoding mir4940 or some other proteins are 

responsible. It remains extremely surprising that a single deficiency such as RDL-2 

rescues losses of viability associated with either ADAR loss or ADAR overexpression. 

No other rescuing deficiency identified in the Adar 3/4 S overexpression screen affected 

Adar
5G1 

viability.         
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5.2.2.2 Mapping genes within the Exel9058 deficiency. 

The viability-rescue by Exel9058 on Chr. 3L (Figure 5.7A) was the most significant of 

all the rescuing deficiencies, and only one gene—CG11357, is indicated to be affected 

by Exel9058. CG11357 is predicted to encode an N-linked glycosyl transferase 

(Schwientek et al. 2002). The expression level of CG11357 in Exel9058 adult flies was 

61% of that in wild type flies (Figure 5.7B). Actin 5c-GAL4 driven RNAi knockdown of 

CG11357 did not rescue the Adar
5G1

 viability, although the RNAi efficiently knocked 

down the expression of the CG11357 transcript (Figure 5.7B). Initially, we thought the 

RNAi against CG11357 was not able to rescue because shRNA against CG11357 

knocked down expression of CG11357 which is an essential gene, too much (Figure 

5.7B). As we will show further here, mapping DrosDel rescue effects to deleted genes is 

unreliable. We tested whether deletions affect expression of flanking genes and found, 

unexpectedly, that the expression levels of the three genes (CG32243, CG33777, and 

CG42540) near the breakpoints of the deficiency Exel9058 increased significantly 

(Figure 5.7A and C). We do not know how far this effect extends but it does suggest that 

elevated expression of flanking genes may contribute to DrosDel rescue effects.     
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Figure 5.7 Exel9058 and the expression levels of CG11357, CG33777 and CG42540. 

(A) The map of Exel9058 and its overlapping deficiencies. Red bars indicate the regions 

uncovered in the deficiencies indicated. The dashed line continuing from the left side of 

the Exel7208 red bar means the region is predicted to be deleted, while without solid 

evidence. The red box encloses the region deleted in Exel9058. The ED4341, ED4342, 

Exel7208, ED210 and Exel6102 were also tested in the primary viability screen. The 

deficiencies that did not show significant viability rescue of Adar
5G1

 were highlighted 

with Blue. (B) Comparisons of CG11357 mRNA expression levels in the wild type, 

Exel9058 and Actin 5c> CG11357 RNAi adult male flies, normalized to Gapdh level and 

then to CG11357 expression level in w
1118

. (C) Relative expression levels of CG11357, 

CG33777 and CG42540 in Exel9058 compared with w
1118

 adult male flies. For each 
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gene, the expression level was first normalized to Gapdh, and then to the gene 

expression level in w
1118 

wild type flies. Black columns indicate mRNA levels in the 

wild type flies. White columns indicate the relative mRNA level in Exel9058. * p<0.05 

**p<0.0005 ***p<0.0001.  Student t-test is used to calculate p value.  

              

 

The big deficiency Exel7208 (Figure 5.7A), which deleted 237.5kb including CG11357 

and the three flanking genes mentioned above, rescued the viability of Adar
5G1

, but 

ED4341 and ED210 that overlap with different parts of both Exel7208 and Exel9058 did 

not rescue the Adar
5G1

 viability. Intriguingly, ED4342, a larger 354.1kb deficiency, 

which overlaps with Exel7208 and includes the Exel9058 region entirely, did not rescue 

the Adar
5G1

 viability (Figure 5.1, Figure 5.4B). Considering all this information, it seems 

that the rescue of viability and locomotion of the Adar
5G1 

flies by the deficiencies were 

not simply due to reduction of one single gene. In the case of the rescue by Exel9058, 

the viability rescue may have been caused by a combination of reduction in CG11357 

expression level and the overexpression of the neighbouring genes. The three genes 

close to CG11357 are poorly annotated in the flybase. Their functions are not clear.    

5.2.2.3 Mapping genes within the Exel7378 deficiency and other deficiencies.  

The rescue effect of Exel7378 on Chr.3R at 100A (Figure 5.8) was narrowed down to 

smaller regions thanks to overlapping deficiencies that do not affect Adar
5G1

 viability. 

Exel7378 significantly increased Adar
5G1

 viability (P value=0.027), but the overlapping 

deficiencies BSC504 and Exel8194 that uncover parts of the same region as Exel7378 

do not rescue Adar
5G1

 viability (Figure 5.2B). This narrowed the genetic region to less 

than 70kb and ten potential rescuing genes (Figure 5.8, Table 5.3).  
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Figure 5.8 Genes and other deficiencies in the Exel7378 deficiency region. Red bars 

indicate the regions uncovered in the deficiencies marked above the red bars. The red 

box encloses the chromosomal region that is affected in Exel7378, but not in BSC504 or 

Exel8194 that did not rescue the viability of Adar
5G1

 flies.    
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Table 5.3Gene ontology descriptions of potential rescuing genes in the Exel7378 

deficiency region. 

 

The other three deficiencies, Exel6086, ED5066, and Exel7284, were not narrowed 

down to smaller rescuing regions using the overlapping deficiencies. Instead, large 

deficiencies indicated as black boxes in Figure 5.9 that also covered the regions deleted 

in these deficiencies did not rescue the viability (Figure 5.2 and Figure 5.9). It appears 

that the simple interpretation that DrosDel effects are due to the genes removed by 

deletion cannot be consistently applied. It might be that many rescue effects are due to 

creation of aberrant or stronger enhancers across particular breakpoint junctions that 

increase expression of nearby genes as I have shown in Figure 5.7C.  
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Figure 5.9 Schematic maps of deficiencies Exel6086, ED5066 and Exel7284. Red 

bars indicate the regions uncovered in the deficiencies marked above the red bars and 

red boxes enclose the chromosomal regions that are affected in Adar
5G1

 viability-

rescuing deficiencies. Black boxes enclose the regions deleted in the deficiencies that 

did not rescue Adar
5G1

 viability.  

 

 

5.2.3 Candidate approach identifies genes that ameliorate the Adar
5G1

 mutant 

phenotypes. 

While the deficiency screen was being conducted for deficiencies rescuing Adar
5G1 

viability, some mutants and RNAi knockdowns of candidate genes were also tested. 

These genes (Table 2.2, Chapter 2) were selected because firstly, they were in regions 

deleted by deficiencies that rescued the low viability of Adar
5G1

 during the first-round 

genetic screen. Secondly, the annotations of the genes in the database suggest that they 

may play a role in neural development or diseases.  

Amongst the 31 examined mutant alleles, four hypomorphic mutant alleles, cry
d10630

, 

JIL-1
scim

, Gem3
rL562 

and neur
11

 increased Adar
5G1

 viability when (Table S3, Appendix II). 
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cry MB08493
 and JIL-1

3
 were also examined for the effect on Adar

5G1
 viability and neither 

of these mutants rescued Adar
5G1

 viability.  

cry, or cryptochrome is a photoreceptor controlling circadian rhythms (Zheng et al. 

2008). Both cry mutants are P-element inserted mutants, with the P-element inserted 

upstream of the transcription site for cry
d10630 

 and in the third exon of cry for cry MB08493
. 

Phenotypic defects of neither cry
d10630

 nor cry MB08493
 have been described.  

JIL-1 encodes a histone kinase (H3-S10 specific), and functions as a negative regulator 

of chromatin silencing (Zhang et al. 2006). It is shown that reduction in JIL-1 protein 

level leads to severely reduced euchromatic regions of polytene chromosomes and more 

condensed chromosome structures (Wang et al. 2001). The P-element inserted weak 

hypomorphic allele JIL-1
scim

 is a P-element inserted weak hypomorphic allele that 

reduces JIL-1 protein level (Zhang et al. 2003). JIL-1
3
 (also known as JIL-1

Su(var)3-1[3] 
) is 

an EMS-induced gain-of-function allele (Bao  et al. 2007), while JIL-1
scim

 is a 

hypomorphic allele. JIL-1
3
 significantly reduced the viability of Adar

5G1
 (Table S3, 

Appendix II). 

Gem3 is a DEAD-box RNA helicase involved in larval motor neuron function that 

interacts with survival motor neuron SMN complex (Cauchi et al. 2010; Cauchi et al. 

2008). Gem3
rL562 

is a P-element inserted amorphic allele (Shpargel et al. 2009). 

Although Adar
5G1

 flies heterozygous for mutant alleles of cry
d10630

, JIL-1
scim

, Gem3
rL562 

still had locomotion defects at day 5, their mobility was much better at earlier days 

compared with Adar
5G1

 flies (Figure 5.10 A).       

Adar
5G1

;;neur
11

 flies were extremely sick from birth, so the viability-rescue by neur
11 

was not further considered for the locomotion rescue. neur (neuralized) is known to 

have ubiquitin-protein ligase activity and is involved in developmental process of many 

organs including neurogenesis and neuromuscular process (Yeh et al. 2000). The EMS 

induced mutant neur
11

 is a loss of function allele and the relatively normal viability of 
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Adar
5G1

 observed in the heterozygous of neur
11

 background may be due to the fact that 

neur
11

 heterozygous flies have similar viability with Adar
5G1

 compared to wild type flies.  

None of 32 shRNA constructs against candidate genes expressed in Adar
5G1

 using Cha-

GAL4 driver significantly improved the Adar
5G1 

viability (Table S4 and Figure S1, 

Appendix II). The UAS-shRNA constructs were all viable in combination with the Cha-

GAL4 driver. It may be not easy to detect the effect however in a viability screen, since 

there are eight different progeny genotypes in each cross. Each standard cross produced 

only at most 200 flies in total and having eight genotype classes lowered numbers. 

Therefore, I conducted a mobility screen on Adar
5G1

 flies expressing shRNAs against 

candidate genes in the cholinergic neurons to find any potential rescuers that improve 

the Adar
5G1

 fly locomotion. The Trikinetics fly locomotion monitor was used for the 

mobility screen. Free horizontal movement of the 5 day old flies was recorded for 1 hour 

from 5pm-6 pm. Neither JIL-1
scim

 nor cry
d10630

 increased the flies’ mobility, which was 

not unexpected based on rapid deterioration with age in the climbing assay. The Adar
5G1

 

flies expressing shRNA against rtp (retinophilin) which reduced the Adar
5G1

 viability 

hardly walked around and the RNAi against cas, mthl-8, crc, or CG10089 that improved 

the Adar
5G1

 viability slightly, did not improve Adar
5G1

 flies’ mobility in this assay 

(Figure 5.10 B).     

From these assays, it seems that there is a positive link between the viability and the 

early stage mobility and especially the climbing ability of young adult flies. However, 

none of the knockdowns effectively improved mobility of the Adar
5G1

 null flies.  
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Figure 5.10 Locomotion tests on Adar
5G1

 flies bearing second mutations in rescue 

candidate genes. (A) Climbing ability was tested for each fly genotype on day 1, day 3, 

day 5 and day 7. The graph shows the average and the error bars are standard deviations. 

(B) Horizontal mobility of 5 day old flies. Count of beam light breaking in the 

horizontally placed Trikinetics locomotion monitor. The count is the sum of the 1 hour 

movement for each fly.  Box plot: Five lines from top to bottom are maximum, third 

quarter, median, first quarter, and minimal climbing indexes, respectively.  
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5.3 Discussion 

Our heterozygous deficiency screen on Chromosome III for the rescue of Adar
5G1

 

mutant viability has identified six regions on Chromosome III that significantly improve 

the Adar
5G1

 viability. Not all these viability-rescuing deficiencies improve the 

locomotion defects of 2 day old flies, and none of them prevented the Adar
5G1

 null flies 

from developing more physical impairment with age like neurodegeneration and 

locomotion defects (data not shown). Very few viability-rescued flies lived to day 20. 

However, all these viability-rescuing deficiencies reduced expression levels of Tot genes, 

indicating that the viability rescue may act by removing the unknown stress caused by 

loss of ADAR in the flies. This common effect on Tot gene expression levels of the 

viability-rescuing deficiencies is the same as the effect of the Tor
k17004

 mutant or 

overexpression of Atg5 though with less complete rescue effects in most cases.  

Unexpectedly, the level of locomotion rescue was not comparable with the rescue of Tot 

gene expression levels. The Exel6086 deficiency that did not improve the mobility of the 

flies in the climbing assay consistently reduced the expression levels of all the Tot genes 

and AMP genes. In contrast, the RDL-2 deficiency that showed the best rescue of the 

Adar
5G1

 mobility showed the least complete rescue of Tot gene expression levels, and it 

even increased Drs an AttD expression levels significantly. This suggests that the causes 

of locomotion defects in the Adar
5G1

 flies involve more than general stress or immune 

response. The low viability of Adar
5G1

 flies is more likely primarily caused by general 

stress but full locomotion rescue is more difficult obtain. Motor neurons may be 

particularly important for locomotion rescue.   

An effort to map the genes from the viability-rescuing deficiencies was not successful. 

Recently, we have found that the heterozygous deletions not only affect the genes 

deleted in the region, but also affect the expression levels of genes not included but close 

to the boundary of the deficiency. In addition, the expression levels of deleted genes are 

not always near 50% (personal communication, 52
nd

 Drosophila Conference, San Diego, 
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2011). All these facts made the mapping of causative genes from the positive 

deficiencies difficult.  

Exel9058 showed the most promising viability-rescuing phenotype and the deficiency 

also improved the climbing ability of Adar
5G1

 flies. In addition, the deficiency 

significantly reduced the expression levels of all the Tot genes and AMP genes 

examined. Although Exel9058 deleted only CG11357, it is still not confirmed yet 

whether the rescue was due to reduction in the expression level of CG11357 or assisted 

by the increase in the expression levels of neighbouring genes CG32243, CG32777, or 

CG42540. InterPro domain predictions suggest that the protein encoded by CG11357 is 

involved in protein glycosylation and has UDP-galactose:beta-N-acetylglucosamine 

beta-1,3-galactosyltransferase activity (Schwientek et al. 2002). There is not much 

experimental data available about this gene, but there is one report about the 

involvement of CG11357 in stress responses: CG11357 was in a list of two fold 

decreased mRNAs, induced by acute ER stress after the unfolded protein response (UPR) 

induced with the reducing agent dithiothreitol (DTT) in Drosophila S2 cells (Hollien 

and Weissman 2006). Hollien and Weissman demonstrated that these repressed mRNAs 

that are ER associated, including CG11357 are destabilized by IRE before the 

expression changes mediated by XBP-1 takes effect, as the changes in expression of 

these genes are dependent on Inositol-requiring enzyme-1 (IRE1) and independent of X-

box-binding protein 1 (XBP-1) (Hollien and Weissman 2006). They argued that such an 

effect relieves acute ER stress because it would relieve the burden on the ER more 

rapidly than the transcriptional turn-on of the protective mechanisms of the XBP-1–

dependent pathway (Hollien and Weissman 2006). CG11357 is an essential gene since 

homozygous deletion of CG11357 is lethal. Too much knockdown of the expression 

levels of CG11357 causes additional problems to the animal which may explain the 

failure to mimic the rescue effect by RNAi against CG11357 although these knockdown 

flies were viable. No molecular function or biological role is known yet for any of the 

three genes whose expression levels are increased by Exel9058.   
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There are two strong candidates in the RDL-2 deficiency, the mir4940 gene discussed in 

the Results is one, and the other one is Tequila which is predicted to have a serine-type 

endopeptidase activity (Ross et al. 2003). Like the CG11357 transcript, the Tequila 

mRNA level was also reported to have reduced in response to DTT to relieve acute ER 

stress (Hollien and Weissman 2006).  

The Exel6086 deficiency, although it did not improve the locomotion of Adar
5G1

 greatly, 

did reduce both Tot gene expression levels and AMP gene expression levels. Exel6086 

deletes 210 kb including eleven snoRNAs, two tRNAs and other protein coding genes. 

These snoRNAs interest us because through alternative processing, they might also act 

as small RNAs that could interact with ADAR and contribute to induce stress and 

immune response in the Adar
5G1

 null flies. It would be interesting to see if the small 

RNAs in the Exel6086 deleted region accumulate in the Adar
5G1

 fly or if the RNAs bind 

to ADAR in the normal physiological condition. If this is the case, then the rescue of 

Adar
5G1 

phenotype by Exel6086 provides good evidence for our hypothesis that the 

noncoding RNAs play an important role in Adar
5G1 

null fly phenotypes. It is also 

possible that dpr20 removed in Exel6086 contributed to the reduction in AMP genes 

since dpr20 encodes a protein of immunoglobulin subtype.  

To sum up, from the Adar
5G1

 viability-rescuing heterozygous deficiencies on 

Chromosome III, we could not define any genes that seem to play a role in autophagy or 

in any common stress-related genes. However, all these viability rescuing deficiencies 

reduced the expression levels of Tot genes, indicating that they somehow reduced certain 

stresses, presumably in different ways. Even without identifying individual rescuing 

genes, the general nature of rescuing effects does achieve some of the goals of the screen.   

Finally, our results have implications for the successful use of DrosDel deficiencies in 

genetic screens. It appears from our data that knowing the deletions end points with base 

pair accuracy has not eliminated the difficulties that arise from using deficiencies. Our 

screen may have involved too subtle a phenotype but communication with other 

researchers suggests that this is not the main issue with DrosDel screens. It appears that 
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many of our most strongly rescuing deficiencies may rescue because of de novo genetic 

effects associated with the breakpoints. Flanking genes are upregulated in one case and 

genetic effects may depend on specific breakpoints and/or flanking genes in several 

other cases. In future work, it may be worthwhile to test UAS constructs overexpressing 

candidate genes adjacent to but not deleted by rescuing deficiencies as overexpression of 

these may contribute to rescues. 
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6 CHAPTER VI: Discussion 

 

 

 

 

 

 

A fact is a simple statement that everyone believes. It is 

innocent, unless found guilty. A hypothesis is a novel 

suggestion that no one wants to believe. It is guilty, until 

found effective. 

 

― Edward Teller 
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6.1 Summary of the results 

The main findings of my thesis work are as follows:  

1. In Chapter 3, I showed that reduction in GABA signalling can rescue the 

lethality caused by Adar 3/4 S OE. I also examined the effect of Adar 3/4 S OE 

and of the Adar
5G1

 null on neuronal excitability using in vivo extracellular current 

recordings of aCC motor neurons. The observations that Adar 3/4 S OE motor 

neurons have significantly reduced excitability while the aCC motor neurons of 

Adar
5G1

 null flies have higher neuronal excitability supports the hypothesis that 

one of the important physiological roles of ADAR and RNA editing is fine-

tuning neuronal activity synergistically with GABA fast inhibitory signalling 

(Figure 6.1). I showed genetic and electrophysiological evidence to argue that 

manipulating Rdl-containing GABAA fast inhibitory receptor responses may 

rescue neuronal excitability of Adar mutants.  

2. I confirmed that expression levels of Tot genes and AMP genes are significantly 

upregulated in the Adar
5G1

 fly. The induction of systemic immunity is 

independent of editing activity of ADAR since the expression levels of AMP 

genes can be rescued by overexpressing catalytically inactive Adar 3/4 EA in the 

Adar
5G1

 null background (Figure 6.1). Expression levels of Tot genes, an 

indicator of a variety of general stresses (Sophia Ekengren et al. 2001), however, 

are not rescued by the inactive Adar construct, indicating that loss of editing in 

ADAR substrates causes other stress in addition to induced immunity. 

Upregulation of autophagy by the Tor
k17004

 mutant or overexpression of Atg5 

eliminates the stress but not AMP gene expression level and rescues Adar mutant 

phenotypes without restoring the editing level in these substrates, seen from the 

reduction in the expression levels of Tot genes (Figure 6.1).  

3. I generated Adar
5G1 

MARCM clones, and showed cell-autonomous 

morphological defects in Adar
5G1

 null neurons in the midbrain. Generation of 

Adar
5G1

 MARCM
 
clones can be a useful tool to further study cell-autonomous 

effects of Adar
5G1

. 
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4. Seven deficiencies were identified in the heterozygous deficiency screen on 

Chr.III for rescuers of the Adar
5G1 

low viability. These viability-rescuing 

deficiencies also reduce expression levels of Tot genes upregulated in Adar
5G1

. 

Although individual rescuing genes were not identified, the general nature of 

rescuing effects indicate that the low viability of the Adar
5G1

 flies can be rescued 

by removing stress caused by loss of Adar.  

5. In addition, the deficiency genetic screen suggests that the genetic effects of the 

deficiencies may depend on specific breakpoints and/or flanking genes.     

6. Individual gene mutant alleles JIL-1
scim

, Gem3
rL562

, and cry
d10630

 improve the low 

viability and locomotion defects of Adar
5G1

 flies. Experiments to understand 

mechanisms underlying these rescues may be continued.    

 

 

Figure 6.1 A schematic model of the physiological consequences of loss of ADAR 

and the rescue by inactive ADAR or enhanced autophagy.  Loss of ADAR during 

early developmental stage leads to increased neuron excitability probably by controlling 
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many cellular components of neurons like serotonin receptor (5HT2cR), Ca
2+

 transport, 

potassium channels and many ion channels that determine neuron activity threshold and 

firing pattern.  Aberrant dsRNA accumulation may be the cause of immune activation 

which can be blocked by inactive ADAR expression, with its dsRNA binding activity. 

Upregulation of autophagy rescues general stress, probably by clearing aberrant protein 

accumulation which is caused by lack of ADAR editing. Abnormal neuron excitability 

in the early stage of the flies may also contribute to the defects in the adult flies by 

increasing general stress and probably also immune stress. All those physiological 

defects may contribute to age-dependent neurodegeneration.  
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6.2 A conserved yet distinct Drosophila ADAR. 

Compared with vertebrates that have two functional ADAR family proteins ADAR1 and 

ADAR2, Drosophila has only one ADAR that is highly conserved with ADAR2. It is 

hypothesized that Drosophila ADAR is an orthologue of vertebrate ADAR2, and lost 

ADAR1 during eveolution (Figure 6.1) (Keegan et al. 2011). The hypothesis is 

supported by the observations that human ADAR2 rescues age-dependent 

neurodegeneration and locomotion defects of Adar
5G1

 flies whereas human ADAR1p150 

does not (Keegan et al. 2011). But interestingly, ADAR1p110 does suppress the 

neurodegeneration in the Adar
5G1

 flies (Keegan et al. 2011), suggesting that there are 

also functional overlaps between Drosophila ADAR and human ADAR1.   

The abundance of site-specific editing events that change codons is much smaller in 

vertebrates compared with in Drosophila. A recent study identified 239 edited sites in 

207 trancripts in human, and only 38 of them are predicted to change codons (Li et al. 

2009). We know at least 972 sites within transcripts of 596 genes are edited and 630 of 

them are predicted to change codons in Drosophila (Graveley et al. 2011). Intriguingly, 

the Drosophila Adar mutant phenotype is not as severe as those caused by individual 

ADAR mutations in vertebrates. This suggests that the many codon changes caused by 

site-specific editing events have been highly evolutionarily selected.   

Adar2 knockout mice die shortly after birth due to severe seizures and this can be 

completely rescued by expressing edited GluR-B receptor (Higuchi et al. 2000a). The 

rescued mice did not show any other profound defects, suggesting that the main 

physiological role of Adar2 in mice is editing of the GluR-B Q/R site which prevents 

excess Ca
2+

 influx through AMPA receptors that is toxic to neurons (Higuchi et al. 

2000b; Melcher et al. 1995). A microarray comparison between rescued Adar2 KO by 

GluR-B R/R and GluR-B R/R mice revealed statistically significant upregulation of 80 

genes overrepresented in nucleic acid metabolism, cellular growth, hematopoiesis, lipid, 

carbohydrate and amino acid metabolism, immune response, cancer, and cell-to-cell 

signaling functional annotations (Horsch et al. 2011). This indicates that Adar2 knockout 
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mice are still physiologically challenged even though the major seizure phenotype is 

rescued by GluR-B R/R. This also hints overlaps between Adar1 and Adar2 phenotypes 

but this will require study of double mutant mice.   

Adar1 null mice die by embryonic day E12.5 with defects in haematopoiesis and mutant 

MEFs (mouse embryonic fibroblast) are susceptible to stress-induced apoptosis (Wang 

et al. 2004; Hartner et al. 2004). This lethality caused by loss of Adar1 has not been 

rescued nor is there any indications that a site specific editing event is involved. Recent 

work in our group showed that the lethality can be partially rescued (survival from E12.5 

to birth) by modulating the NF κB signalling pathway (Keegan et al., unpublished data). 

An increased dsRNA accumulation and induction of interferon and other cytokines in 

the MEF cells from Adar1 knockout mice are observed by anti-dsRNA antibody staining 

and cytokine expression examination (Greenwood and Mannion, unpublished data). 

We observed significant induction of immune system genes in the Adar
5G1

 flies as well, 

suggesting that ADAR possibly plays an important role in the Drosophila immune 

system which may be parallel to what happens in Adar1 knockout mice. The 

temperature-sensitive paralysis in Adar
5G1

 (Palladino et al. 2000a) and the recording of 

increased excitability in Adar
5G1

 larval aCC motor neurons show similarities to Adar2 

knockout mice. Besides these phenotypes, Adar null flies develop locomotion defects, 

age-dependent neurodegeneration, resistance to paraquat, male sterility (Palladino et al. 

2000a) and probably many other phenotypes that have not been identified yet. However, 

not like the Adar2 knockout phenotype in mice, loss of Adar is not lethal in flies and no 

edited sites are found to be more important than the other edited transcripts.   
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Figure 6.2 The phylogenetic tree of ADAR1 and ADAR2 genes in the Metazoa. Red 

lines and blue lines indicate positive identification of ADAR1 or ADAR2, respectively. 

Green line indicates ADARs that cannot be classified as either ADAR1 or ADAR2. 

Species names highlighted in yellow represent ADAR1 and ADAR2 orthologues 

identified in genome, available in on-line databases. Species names highlighted in purple 

represent the cases where ADARs were identified by cloning. Insecta and crustacean 

lack ADAR1. A similar loss of ADAR1 may have occurred in Corals or Hydrozoan but 

genome are not fully complete. Figure is taken from Keegan et al., 2011.  
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Nevertheless, with so many severe defects, Adar null flies are morphologically normal 

(Palladino et al. 2000a). In an ideal situation without any stress, we may expect normal 

viability and uncompromised lifespan. Flies can live without ADAR and editing 

although they are very weak. In contrast, flies are unable to survive with overexpressed 

ADAR active since Adar 3/4 S overexpression causes lethality (Keegan et al. 2005). 

Editing, in general, increases with development and many edited events are only 

detectable at late pupal stages and adult stages (Graveley et al. 2011). Tight control of 

the level of editing may be needed. Ectopic overexpression of Adar 3/4 S from the 

embryonic stage, possibly by editing some substrates too much, may hinder normal 

development. The phenotypes of loss of ADAR are mostly detected at the adult stage 

and the phenotypes worsen with aging, which makes sense when we consider the 

temporal profile of editing in Drosophila. 
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6.3 A role of ADAR: fine-tuning neural activities? 

Ectopic overexpression of Adar 3/4 S is lethal, indicating that inappropriate or excessive 

editing at some editable sites is deleterious to the development of the Drosophila. 

Reduction of the expression level of GABAA receptor subunit Rdl or reduction in the 

functional GAD1 protein level rescues the lethality.  

One of the most important physiological roles of ADAR in Drosophila may be its role in 

guarding proper physiological functions of neurons and muscles and other organs. 

Drosophila ADAR may act like a conductor of an orchestra consisting of a variety of ion 

channels and other transcripts rather than affecting just one or two (Figure 6.2).  

The fact that the Rdl transcript is edited may not be very relevant to rescue of the Adar 

overexpression phenotype. It may simply be more important that Rdl is the key 

inhibitory receptor in Drosophila.  Neither Rdl nor other transcripts showed significant 

increases in editing levels in the Adar 3/4 S overexpressing larvae. Based on the in vitro 

elctrophysiological studies on Drosophila ion channels, editing affects the properties of 

the channels but not greatly (Ryan et al. 2008; Jones et al. 2009). It is likely that 

overexpression of Adar 3/4 S changed editing levels of only a subset of editing sites and 

the effects of these changes are quite mild for the functions of each edited transcripts. 

Nevertheless, the total effect of adding up these mild changes on the physiology of the 

fly may be very significant.  

From my experiment results, it seems that Adar 3/4 S OE flies have much suppressed 

neuronal activities and this might be one of the most important reasons for the lethality. 

The fact that reducing GABA signalling during development of Drosophila rescues the 

lethality of Adar 3/4 S OE strongly supports the argument. In addition, I observed the 

hyper-excitable neuronal activities in the Adar
5G1

 null larvae, in agreement with the 

hypothesis that editing fine-tunes neuronal activity synergistically with GABA fast 

inhibitory signalling pathway.   
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Figure 6.3 Schematic model of ADAR, ion channels and the synapse. ADAR edits 

ion channels and transcripts involved in synaptic transmission. ADAR plays an 

important role in regulating neuronal physiology by editing transcripts and by affecting 

the expression levels of many transcripts important for neuronal activities. By 

modulating the fast inhibitory signal through the GABAA receptor, the effect of ADAR 

mutation may be partially corrected. Figure is adapted from Destexhe et al., 1994.     

 

 

To confirm the hypothesis, further experiments are needed. For instance, cell-

autonomous effects of loss of ADAR, the dependence on editing activity rather than 

ADAR acting as an RNA-binding protein to control neuronal excitability, and the rescue 

of the neuronal excitability by manipulation of GABA signalling should be examined. 

These are easy experiments utilizing the in vivo extracellular current recording technique 
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as described in section 2.4 of Chapter II. It will be also interesting to determine the 

mechanism of the neuronal activity control by editing. The frequency of firing events of 

neurons is known to be directly controlled by large-conductance calcium and voltage-

gated potassium channels (BK channels) and indirectly by calcium channels (Burdyga 

and Wray 2005). Therefore, to understand the mechanism of the neuronal excitability 

control by ADAR, we may need to study the effects of ADAR on these ion channels 

separately and sum up the effects. These can be done in vitro, but may not reflect the in 

vivo physiological situation, since the composition of the channels and the choice of 

isoforms for each ion channel subunit are not clear in a single cell model. One of the 

approachable ways to address the problem may be by building a computational model 

with published experimental data to predict the in vivo composition of ion channels and 

the proportional contributions of RNA editing on each edited channel transcripts.    

The hypothesis that ADAR and editing fine-tune neuronal activities in concert with 

GABA fast inhibitory signalling is a novel idea, which is not yet reported in any animal 

models or human cases. After confirming the hypothesis in the flies, we may further test 

the hypothesis in vertebrates as a long-term goal. This physiological interaction of 

ADAR and GABA fast inhibitory signalling could operate similarly in adult mice. 

During development in mammals, GABA signalling is excitatory rather than inhibitory 

(Ben-Ari et al. 2007; Stein and Nicoll 2003).  

Nevertheless, many editing of ion channels in mice or rat can be accommodated to the 

hypothesis that A-to-I RNA editing reduces neuronal excitability. For instance, in 

simplified scenarios, editing reduces calcium permeability of glutamate gated ion 

channel, decreases serotonergic potency of 5HT2C receptors, makes GABAA receptors 

more sensitive to GABA, and reduces the inactivation rate of Kv1.1 channel (Table 1.1) 

(Gardiner and Du 2006; Decher et al. 2010; Ohlson et al. 2007). Summarizing these data 

seems to suggest that editing makes the excitatory ion channels less sensitive and the 

inhibitory ion channels more sensitive. In a sense, this is also true for GluR-B Q/R site. 

Another strong evidence is the observation that loss of ADAR2 induces seizures cell-

autonomously in mice since the seizure can be rescued by introducing fully edited GluR-
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B subunit (Brusa et al. 1995; Higuchi et al. 2000a). In other words, physiological roles of 

ADAR and RNA editing at the higher level of overall neuronal activities may be well 

conserved from insects to mammals.  

One of the fastest and reliable ways to examine this hypothesis will be building a one-

cell based computational model of neuronal activity of a mammalian pyramidal cell. 

Using the published data about the effect of editing on individual ion channels, we may 

be able to build a cell model of excitability thresholds and predict the hyper-excitable 

neurons in the complete loss of editing event. In addition, effects of stress from induced 

immunity on the neuronal physiology may be taken into consideration. 

As discussed before, I propose that editing by ADAR functions to inhibit neuronal 

excitability in humans as well as in the insects and rodents. Based on this hypothesis, we 

may build a computational epilepsy model where excitatory ion channels are more 

excitable and the inhibitory channels are less active due to lack of RNA modification by 

ADAR protein. This will provide a comprehensive computational model in which 

epilepsy is not merely due to malfunction of one channel activity. 

Around 50 million people worldwide have epilepsy and over 30% of these patients do 

not have seizure control even with the best available medication. My observation of the 

abnormal long burst of spontaneous activity of the Adar
5G1

 null Drosophila larvae motor 

neuron is very similar to EEG (Electroencephalography, the hallmark of epilepsy in 

clinics) patterns recorded from pyramidal neurons of the catastrophic neonatal/infancy 

peilepsy disorders in humans. Adar
5G1

 null flies are a good model for complicated age-

independent epilepsy which so far does not have an animal model. In the PTX 

(Picrotoxin, GABAA receptor antagonist)-induced seizure model in flies, eight anti-

epilepsy drug (AED) including Diazepam and Nifedipine were shown to reverse the 

effects (Stilwell et al. 2006). New combinations of FDA (Food and Drug Administration) 

proven drugs screened on the Adar
5G1

 null fly model with these reported eight AED 

drugs as controls may be able to find new efficient AED drugs.  
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Yet to consider is the effect of non-specific editing on the neuronal excitability and the 

lethality. We do not know whether overexpressing Adar 3/4 S induces expression level 

changes in new categories of RNA such as non-edited transcripts or small RNAs. By 

doing the Next Generation RNA-seq on the Adar 3/4 S OE larvae compared with the 

wild type larvae of the same developmental stages, we may be able to detect additional 

problems in these flies.  
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6.4 The role of ADAR in the adult: a guardian against stress 

including immunity? 

Adult flies have much higher editing levels in most of the substrate transcripts compared 

with the embryos or larvae. The direct consequence of loss of ADAR is the complete 

loss of editing and probably changes in the expression of many unedited transcripts. The 

changes in gene expression levels detected in both microarray and RNA sequencing 

analysis of Adar
5G1

 null fly heads may be the systemic physiological response to the 

stress caused by loss of ADAR. Alternatively, the gene expression changes observed in 

Adar
5G1

 null fly heads may be the effects mediated by RNA interference through 

changes in the production of miRNAs or retargeting caused by loss of ADAR.  

The overall effects of loss of ADAR are making the flies very vulnerable in many 

aspects. In this sense, ADAR and RNA editing can be seen as the guardian for the flies 

from environmental and cellular stress.   

One of the most exciting and interesting aspects is the relationship between ADAR and 

the immunity. Loss of ADAR significantly increased expression of AMP genes and also 

many proteases which may play important roles in the Toll and IMD signaling pathways. 

And more interestingly, catalytically inactive ADAR could rescue the expression 

changes of the AMP genes in the Adar
5G1

 null flies. There are two possible explanations 

for the induction of AMP genes in the Adar
5G1

 null flies. Loss of ADAR may make flies 

much more susceptible to the infections. Alternatively, loss of ADAR may mimic the 

infectious situation, which turns on the innate immunity without any infection, similar 

with the autoimmune diseases.  

The first model involves the weakened physical barrier against the infection in the 

Adar
5G1

 null flies compared to the wild type flies. The digestive tract of flies is the 

primary source of contact with microbes and many microbes cannot reach the intestinal 

epithelium because of the chitinous peritrophic matrix lining the midgut epithelium, 

secreted by the cardia (Nehme et al. 2007). Whether the induction of AMP genes are due 
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to the weakened physical barrier can be examined in many different ways. For example, 

we may examine the susceptibility of the Adar
5G1

 flies upon oral infections or observe 

the thickness of the peritrophic matrix using EM imaging. If Adar
5G1

 flies are more 

susceptible to the microbial infections and/or have thinner or much reduced peritrophic 

matrix, we may further predict that the loss of ADAR impaired the secretive functions of 

cardia.  

In the other model, loss of ADAR induces immune responses through accumulation of 

some immunogenic materials which may be some non-coding double-stranded RNAs 

(Figure 6.3). There is experiment data in different organisms to suggest the possibility of 

this hypothesis. Firstly, knocking out ADAR family genes in C elegans leads to 

accumulation of 24nt small (Wu et al. 2011). The same may be the case in Drosophila, 

and it can be proven by comparing the small RNA pools between Adar
5G1

 and wild type 

flies by Next Generation sequencing analysis. 

Immune activation may depend more on larger dsRNA precursors but also, short 

dsRNAs (siRNA and shRNA) have been shown to initiate immune response through 

TLR3 sequence-independently when transfected to HEK293 (human embryonic kidney 

293) cells (Kariko et al. 2004). Once we identify classes of accumulated dsRNAs, we 

may prove the immunogenic nature of the RNAs. RNAs of distinct sizes or families that 

are enriched in the Adar
5G1

 null flies can either be purified or synthesized and 

transfected to S2 cells to determine the immune response by examining the expression 

levels of several AMP genes.            

These two models are not mutually exclusive. We are interested in the editing-

independent role of ADAR in the innate immunity, based on the result that catalytically 

inactive ADAR can correct the expression levels of the AMP genes induced in Adar
5G1

 

null flies. RNA samples extracted from the Adar
5G1

 null flies and wild type flies will be 

sent for small RNA and ncRNA sequencing soon as the first step to test the working 

models. We expect to achieve clear answers by analyzing the sequencing data.      
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Figure 6.4 Schematic model of the competition between RNAi and ADAR for 

dsRNAs and the induction of innate immunity by the loss of ADAR. (A) In the wild 

type, ADAR binds to some long dsRNAs, which may inhibit access of Dicer to the 

dsRNA for further processing into the RNAi pathway. Alternatively, ADAR may bind to 

the small dsRNAs to interfere with the biological functions of small dsRNAs. (B) When 

ADAR is mutated or absent, an excessive amount of long dsRNAs and small dsRNAs 

may be produced. The accumulated dsRNAs are sensed by the immune system possibly 

because Dcr2 also acts as a signaling sensor. (C) Inactive ADAR, which does not have 

editing activity but have intact dsRNA binding domains, may bind to some long 

dsRNAs or small dsRNAs to prevent excessive amount of long dsRNAs and small 

dsRNAs from being detected by the immune system. Figure is adapted from Wu et.al, 

2011.  

 

 

Undoubtedly, ADAR is involved in immunity. The interferon inducibility of ADAR1 

p150, the extensive editing of virus RNAs (including measles and HIV) by ADAR and 
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the ADAR1 mutant families with Aicardi-Goutières syndrome all links ADAR1 to the 

immune system (Sato et al. 2001; Doria et al. 2009; Rice et al. 2012; Liu et al. 1997). 

However, the relationship between ADAR1 and immune system is complicated and still 

needs to be elucidated. For the first time, we discovered that Drosophila Adar
5G1

 null 

flies also induced innate immunity. Elucidating the mechanism by which ADAR is 

involved in the immune system using Drosophila will shed light on studying the 

mechanism in the mammals and the treatment of immunological human diseases 

involving ADAR1 mutation.        
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Appendix I Supplementary materials 

Table1. Deficiencies used for the genetic screens   

Symbol Chromosome Deletion Start Deletion End BDSC Number 

ED4079 3L 40319 131780 8046 

Exel6083 3L 104350 180193 7562 

ED201 3L 123924 347941 8047 

ED4177 3L 319846 1035182 8048 

ED207 3L 738739 1568108 8053 

Exel6086 3L 749809 959651 7565 

Exel6087 3L 1478674 1586881 7566 

ED4256 3L 1546104 1586663 8054 

ED4287 3L 1795442 2551761 8096 

ED4284 3L 1795442 1963552 8056 

ED4288 3L 3070827 3149091 8057 

ED4293 3L 3226338 3250564 8058 

ED4341 3L 3905091 4542236 8060 

ED4342 3L 4277987 4625372 8062 

Exel7208 3L 4458589 4692071 7926 

Exel9058 3L 4542105 4554415 7923 

ED210 3L 4544234 5348442 8061 

Exel6102 3L 4692405 4976311 7581 

Exel6103 3L 4976403 5177896 7582 

Exel6104 3L 5177896 5359162 7583 

Exel6105 3L 5359162 5601375 7584 

Exel6106 3L 5601375 5684102 7585 

Exel6107 3L 5746110 5895644 7586 

BSC410 3L 5763773 6483285 24914 

ED211 3L 6211235 6545859 8063 

Exel6109 3L 6736213 6936639 7588 

BSC224 3L 6957557 7150109 9642 

Exel8104 3L 7353086 7522363 7929 

BSC459 3L 7427327 7999689 249663 

ED4408 3L 7972207 8292674 8065 

ED4421 3L 8738426 9377175 8066 

RDL-2/Sb 3L 66F5 66F5 1688 

BSC113 3L 9342609 9416591 8970 

BSC391 3L 9439870 9690291 24415 

BSC392 3L 9671803 9892355 24416 
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BSC673 3L 9756714 10174058 26525 

ED4457 3L 10357051 11118909 9355 

BSC439 3L 10500147 10957206 24943 

BSC378 3L 10735370 11091445 24402 

ED4470 3L 11090089 11826330 8068 

ED4475 3L 11580140 12401701 8069 

ED4483 3L 12270320 12686314 8070 

ED4486 3L 12507519 13025585 8072 

ED4502 3L 13220865 13986651 8097 

ED4543 3L 13928325 14751140 8073 

ED217 3L 14751170 15582196 8074 

ED218 3L 15007168 15582196 8075 

BSC442 3L 15467849 15613088 24946 

ED220 3L 16080584 16404777 8077 

ED223 3L 16444925 16883977 8079 

ED4674 3L 16654384 17042518 8098 

ED4685 3L 16884176 17605270 8099 

ED4710 3L 17480563 18132399 8100 

ED224 3L 17962303 18391619 8080 

ED225 3L 18179245 18614437 8081 

BSC416 3L 18572608 18884362 24920 

ED4782 3L 18988994 19163802 8082 

ED4786 3L 19094051 19288762 8083 

BSC417 3L 19163798 19597367 24921 

ED228 3L 19163806 19864908 8086 

ED4799 3L 19163806 19288762 8085 

BSC797 3L 20445923 20942833 27369 

BSC449 3L 20850015 21196030 24953 

BSC419 3L 21218032 21597878 24923 

ED4978 3L 21526907 21873785 8101 

ED230 3L 22127751 22827471 8089 

ED5017 3L 22828597 22991401 8102 

ED231 3L 22864916 22938620 8090 

ED5100 3R 22995 912807 9226 

ED5021 3R 22995 216113 9196 

ED5020 3R 107408 216113 9075 

ED5142 3R 279018 1090605 9198 

ED5066 3R 475607 778404 8092 

ED5095 3R 475607 912807 8093 



207 

 

ED5177 3R 1426351 1449817 8103 

ED5196 3R 1510301 1833866 8681 

Exel6145 3R 1542490 1638975 7624 

Exel7284 3R 1641744 1833511 7953 

BSC681 3R 2111067 2206257 26533 

BSC467 3R 2365827 2824771 24971 

ED7665 3R 2916249 3919805 8685 

ED5230 3R 3803496 4478856 8682 

ED5330 3R 4495308 5055517 9077 

Exel6151 3R 4878552 4983798 7630 

ED5343 3R 4859916 5178097 150524 

Exel6152 3R 4983798 5073203 7631 

ED5339 3R 5052798 5178097 9204 

ED5454 3R 5552399 5937180 9080 

ED5516 3R 7059892 7445622 8968 

ED5559 3R 7394904 8269738 8920 

ED5591 3R 8176253 8545732 9086 

ED5610 3R 8269738 8821397 9087 

ED5612 3R 8545707 9470856 9089 

ED5642 3R 9509544 10307496 9279 

ED5664 3R 10523031 11054571 24137 

ED5705 3R 11117380 11619518 9152 

ED10639 3R 12038635 12306942 9481 

ED10642 3R 12279479 12450993 9482 

ED5780 3R 12882199 13507523 8104 

ED2 3R 14224953 14922493 6962 

ED5911 3R 14568649 14991505 8683 

ED5938 3R 14732356 15467758 24139 

ED5942 3R 15052016 15660809 8922 

ED6025 3R 15468450 16135241 8964 

ED10820 3R 16774462 16937182 150268 

BSC508 3R 16886325 16966208 25012 

ED10845 3R 16890893 17122221 9487 

ED10838 3R 16960036 17122221 9485 

ED6058 3R 17122217 17545322 8923 

ED6076 3R 17459227 17868550 8962 

ED6085 3R 17706717 18413461 8923 

ED6096 3R 18413403 19047691 8684 

ED6103 3R 18724275 19084137 8963 
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BSC619 3R 18887281 19172138 25694 

Exel6280 3R 19017039 19121235 7686 

BSC489 3R 19273602 19768726 24993 

ED10893 3R 19713027 19930781 28827 

ED6220 3R 20369520 21009495 9211 

Exel6203 3R 21341620 21463598 7682 

ED6235 3R 22360956 22806229 7709 

ED6255 3R 22624758 23107623 7723 

BSC567 3R 23763552 24627253 25390 

ED6310 3R 24964617 25337875 8961 

BSC620 3R 25702740 25860612 25695 

Exel6214 3R 25925104 26028690 7692 

ED6332 3R 26103647 26215013 24141 

BSC504 3R 26253789 26512985 25008 

Exel7378 3R 26388946 26620677 7997 

Exel8194 3R 26582117 26713967 7918 

ED6346 3R 26609284 26874606 24142 

BSC749 3R 26837657 27136770 26847 

ED6361 3R 27434853 27904166 24143 
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Appendix II Supplementary figures 

Table S1 Numbers of male progeny from the crosses of Adar
5G1 

females with 

heterozygous deficiencies on Chr3L and relative viability calculations.   
 Number of male progeny Viability calculation 

♀ Adar
5G1 

Adar
5G1

;;D

f 
Adar

5G1
 FM7;;Df FM7;;Bal 

a/c 
(a/c) 

(b/d) 
P Value 

×♂ a b c d 

ED4079 73 0 55 0 1.33 - 1.00 

Exel6083 57 21 98 66 0.58 1.83 0.30 

ED201 38 44 61 50 0.62 0.71 1.00 

ED4177 17 24 26 23 0.65 0.63 1.00 

Exel6087 35 18 85 70 0.41 1.60 0.49 

ED218 35 0 80 0 0.44 - 1.00 

ED4256 31 12 49 49 0.63 2.58 0.15 

ED4284 21 20 44 43 0.48 1.03 1.00 

ED4287 15 10 33 23 0.45 1.05 1.00 

ED4288 13 9 46 38 0.28 1.19 0.93 

ED4293 27 0 57 0 0.47 - 1.00 

ED4341 23 18 28 38 0.82 1.73 0.50 

ED4342 15 11 42 41 0.36 1.33 0.84 

Exel7208 55 16 53 49 1.04 3.18 0.02 

Exel9058 85 27 47 79 1.81 5.29 0.00 

ED210 58 36 89 87 0.65 1.57 0.37 

Exel6102 29 19 66 39 0.44 0.90 1.00 

Exel6103 39 41 95 66 0.41 0.66 1.00 

Exel6104 53 28 83 63 0.64 1.44 0.50 

Exel6105 27 18 39 17 0.69 0.65 1.00 

Exel6106 36 15 37 18 0.97 1.17 0.92 

Exel6107 22 9 23 16 0.96 1.70 0.65 

BSC410 28 18 31 29 0.90 1.46 0.65 

ED211 9 3 25 29 0.36 3.48 0.39 

Exel6109 25 8 23 20 1.09 2.72 0.34 

ED224 44 46 82 84 0.54 0.98 1.00 

Exel8104 42 16 37 28 1.14 1.99 0.37 
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BSC459 29 29 64 54 0.45 0.84 1.00 

ED4408 48 42 70 52 0.69 0.85 1.00 

ED4421 18 4 63 26 0.29 1.86 0.65 

Rdl-2 44 15 56 53 0.79 2.78 0.05 

BSC113 37 5 33 7 1.12 1.57 0.84 

BSC391 2 0 2 4 1.00 - 0.65 

BSC773 2 4 11 9 0.18 0.41 1.00 

BSC392 34 28 26 31 1.31 1.45 0.65 

BSC673 28 22 23 21 1.22 1.16 0.92 

ED4457 13 24 30 39 0.43 0.70 1.00 

BSC439 22 22 21 22 1.05 1.05 1.00 

BSC378 41 20 39 37 1.05 1.94 0.35 

ED4470 105 78 132 115 0.80 1.17 0.66 

Ed4475 36 0 55 0 0.65 - 1.00 

ED215 16 11 34 50 0.47 2.14 0.39 

ED4483 15 19 28 28 0.54 0.79 1.00 

ED4486 17 31 43 44 0.40 0.56 1.00 

ED4502 52 0 101 0 0.51 -! 1.00 

Ed4543 13 8 19 14 0.68 1.20 0.96 

ED217 26 19 47 58 0.55 1.69 0.49 

ED207 61 0 64 0 0.95 - 1.00 

Exel6086 33 11 49 58 0.67 3.55 0.02 

BSC442 18 21 22 11 0.82 0.43 1.00 

ED220 6 2 16 18 0.38 3.38 0.53 

ED223 13 18 26 22 0.50 0.61 1.00 

ED4674 15 16 46 49 0.33 1.00 1.00 

ED4685 6 16 43 45 0.14 0.39 1.00 

ED4710 15 14 28 40 0.54 1.53 0.65 

BSC224 25 22 22 34 1.14 1.76 0.50 

ED225 21 28 38 40 0.55 0.79 1.00 

BSC416 15 16 33 39 0.45 1.11 0.96 

BSC416 6 10 13 20 0.46 0.92 1.00 

ED4782 19 18 39 50 0.49 1.35 0.75 

ED4786 10 0 50 0 0.20 - 1.00 

BSC417 12 12 30 31 0.40 1.03 1.00 
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ED228 8 14 30 36 0.27 0.69 1.00 

ED4799 26 12 52 51 0.50 2.13 0.35 

BSC797 26 26 36 47 0.72 1.31 0.75 

BSC449 33 19 36 39 0.92 1.88 0.39 

BSC553 1 2 6 13 0.17 1.08 1.00 

BSC419 21 22 30 45 0.70 1.43 0.65 

ED4978 5 7 17 20 0.29 0.84 1.00 

ED230 12 13 35 15 0.34 0.40 1.00 

ED5017 13 26 38 28 0.34 0.37 1.00 

ED231 16 9 25 24 0.64 1.71 0.65 
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Table S2 Numbers of male progeny from the crosses of Adar
5G1 

females with 

heterozygous deficiencies on Chr3R and relative viability calculations.     
 Number of male progeny Viability calculation 

♀ Adar
5G1 Adar

5G1
;;Df Adar

5G1
 FM7;;Df FM7;;Bal 

a/c 

(a/c) 

(b/d) 

P Value 

×♂ a b c d 

ED5100 49 0 140 0 0.35 - 1.00 

ED5100 12 1 39 14 0.31 4.31 0.50 

ED5020 28 5 50 4 0.56 0.45 1.00 

ED5021 19 25 39 63 0.49 1.23 0.84 

ED5142 17 17 27 26 0.63 0.96 1.00 

ED5066 39 19 52 80 0.75 3.16 0.02 

ED5095 19 19 81 56 0.23 0.69 1.00 

ED5095 12 15 68 84 0.18 0.99 1.00 

ED5171 27 22 80 58 0.34 0.89 1.00 

BSC525 0 3 14 8 0.00 0.00 1.00 

Exel7283 2 0 12 6 0.17 - 0.96 

ED5196 37 26 41 63 0.90 2.19 0.15 

Exel7284 65 20 61 54 1.07 2.88 0.02 

Exel6145 49 29 33 38 1.48 1.95 0.32 

BSC319 11 1 25 26 0.44 11.44 0.10 

BSC681 10 30 37 37 0.27 0.33 1.00 

BSC467 11 11 9 9 1.22 1.00 1.00 

ED7665 34 29 32 28 1.06 1.03 1.00 

ED5230 18 16 17 22 1.06 1.46 0.75 

ED5330 22 25 29 19 0.76 0.58 1.00 

Exel6151 17 3 24 15 0.71 3.54 0.37 
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ED5343 43 16 56 45 0.77 2.16 0.25 

Exel6152 27 10 23 15 1.17 1.76 0.61 

ED5339 25 21 36 36 0.69 1.19 0.88 

ED5454 31 10 74 30 0.42 1.26 0.86 

ED5516 11 12 50 45 0.22 0.83 1.00 

ED5559 38 38 90 73 0.42 0.81 1.00 

ED5591 35 38 50 31 0.70 0.57 1.00 

ED5610 49 47 67 72 0.73 1.12 0.87 

Exel6167 3 0 12 11 0.25 - 0.59 

ED5612 21 16 20 17 1.05 1.12 0.97 

ED5642 39 0 104 0 0.38 - 1.00 

ED5664 33 34 36 28 0.92 0.75 1.00 

ED5705 30 0 25 0 1.20 - 1.00 

ED10639 17 20 32 29 0.53 0.77 1.00 

ED10642 32 0 114 0 0.28 - 1.00 

ED5780 22 21 30 32 0.73 1.12 0.95 

ED2 43 26 67 68 0.64 1.68 0.37 

ED5911 5 6 60 53 0.08 0.74 1.00 

ED5938 45 24 57 47 0.79 1.55 0.50 

ED5942 11 19 30 48 0.37 0.93 1.00 

ED5942 38 0 105 0 0.36 - 1.00 

ED6025 17 16 50 59 0.34 1.25 0.84 

ED10820 10 3 65 52 0.15 2.67 0.50 

BSC508 3 4 17 16 0.18 0.71 1.00 

ED10845 25 11 22 26 1.14 2.69 0.28 
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ED10838 15 14 24 42 0.63 1.88 0.50 

ED6058 9 12 29 37 0.31 0.96 1.00 

ED6076 33 22 38 31 0.87 1.22 0.84 

ED6085 32 31 27 32 1.19 1.22 0.84 

ED6096 38 26 79 79 0.48 1.46 0.50 

ED6103 30 23 34 41 0.88 1.57 0.50 

BSC619 18 36 18 34 1.00 0.94 1.00 

Exel6280 37 14 36 25 1.03 1.84 0.49 

BSC489 40 31 72 43 0.56 0.77 1.00 

ED10893 44 36 45 38 0.98 1.03 1.00 

ED6220 18 16 40 48 0.45 1.35 0.75 

Exel6203 24 15 35 23 0.69 1.05 1.00 

ED6235 13 6 60 56 0.22 2.02 0.50 

ED6255 9 11 15 13 0.60 0.71 1.00 

BSC567 5 17 33 34 0.15 0.30 1.00 

ED6310 21 17 46 66 0.46 1.77 0.48 

BSC620 23 10 18 20 1.28 2.56 0.36 

BSC861 6 1 12 8 0.50 4.00 0.65 

Exel6213 7 0 13 7 0.54 - 0.47 

Exel6214 2 4 10 9 0.20 0.45 1.00 

ED6332 20 13 36 19 0.56 0.81 1.00 

BSC504 39 25 73 52 0.53 1.11 0.92 

Exel7378 35 6 21 19 1.67 5.28 0.03 

Exel8194 52 28 49 44 1.06 1.67 0.39 

ED6346 25 16 49 58 0.51 1.85 0.39 
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BSC749 16 27 32 25 0.50 0.46 1.00 

ED6361 0 10 9 15 0.00 0.00 1.00 

ED6532 9 3 55 51 0.16 2.78 0.50 
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