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PREFACE 

The material presented in this thesis is claimed as original with 

the exception of those sections where specific mention is made to the 

contrary. 



ABSTRACT 

The thesis is composed of two separate and distinct parts. 

Part one is concerned with the problem of determining when certain 

linear mappings are necessarily continuous with particular attention 

being given to derivations. 

Chapter 1 consists of a discussion of the separating space of 

a linear mapping. Chapter 2 contains a description of the Banach 

algebra L1[0,l1 and some of its properties. In Chapter3 we consider 

derivations on L1[ 0,11 , proving in Theorem 3.1 that they are necess-

arily continuous. In Chapter l we extend this result to module deriva-

tions and in Theorem 4.2 we give sufficient conditions on a Banach 

algebra B such that every module derivation from B is continuous. 

When B is separable and commutative we can improve Theorem 14.2 and 

then it is easily seen that one of the sufficient conditions is best 

possible. In Chapter 5 we give sufficient conditions on a Banach 

algebra B such that certain higher derivations from any Banach 

algebra onto B are automatically continuous. 

Part two is concerned with the recent result of D.E. Marshall and 

CO 

S-Y. A. Chang that every closed subalgebra of L(T) (where T is the 

unit circle) containing H(T) is a Douglas algebra. Using their tech-

niques we give a proof of this result and discuss generalisations of 

these ideas and related concepts to higher dimensions. 

Chapter 6 consists of a discussion of Douglas algebras, functions 

of vanishing mean oscillation (vMo), Carleson measures and other 

topics. In Chapter 7 we generalise the space of VMO and provide a 

characterisation of this new space in terms of Carleson measures. Using 



these ideas we prove the Marshall-Chang theorem in Chapters 8 and 9. 

Chapter 10 discusses, the subject of Douglas algebras in higher dimens-

'ions. Chapter 11 gives a description of.a particular class of Hankel 

operators on L (s) (where S is the unit sphere in C n). In 

Chapter 12 we characterise the Toeplitz operators amongst operators on 

H2 (S) in terms of an operator equation. In Chapters 10, 11 and 12 we 

pose several open questions. 
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1. 
AFTER ONE 

• In this chapter we list some definitions and propositions which 

we shall need throughout the first part of this thesis. 

Notation. X, Y, Z will denote (complex) Banach spaces, 	(x) will 

- denote the algebra of bounded linear operators on X, and (x,Y) 

will denote the algebra of bounded linear operators from X to. Y. 

For aset U in a Banach space the closure of U is given by U. 

Throughout this thesis C  means strict inclusion. 

Central in our approach to proving that certain linear mappings 

are continuous is the concept of the separating space which we now 

define. 

Definition. Let S be a linear mapping from X into Y. The 

separating space, 	(s), of S is given by 

G(S) = {y E Y: there are x -'- 0 in X with Sx -* y in Y}. 

Some elementary properties of c(s) are listed in the follow-

ing lemma. 

LEMMA 1.1 (a) O(S) is a  closed linear subspace of Y, 

S is continuous if and only if G(S) = { o}, 

if U E(Y,z) then (Uc3'(S)) =c(US) and there 

is a constant M (independent of U and Z) such that if US is 

continuous then II US II < MU ull, 

if T E(x), R E=_ 19(Y) .  satisfy RS - ST E(x,Y) 
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then Rd(S)  C(S) and (Rc(s)) =c(ST). 

Proof. (a), (b), (c) are well-known and proofs can be found in [28]. 

(b) is merely the closed graph theorem and it is this property of 

d(s) that will provide us with a criteria for the continuity of S 

in particular situations. (c) is known when RS - ST = 0. We prove 

the case RS - ST E(X,Y): let y Ec.(S) so that there are x  in 

X. x -' 0 and Sx -'- Y. Then Tx 	0 and 
n 	 n 	 n 

STx = (ST - RS)x + RSx + Ry so that Ry E  c(s). Hence 

Rc(s) CC(S). Also it is clear that 	(RS) =c(ST) and so (c) gives 

(Re(s)) =C(Rs) =c(sT). 

The next result and its following special case give stability 

lemmas for the separating space which yield the crucial property of 

the separating space which we shall appeal to in the proofs of our 

main results in part 1. The idea of the lemma is initially due to 

B.E. Johnson and A.M. Sinclair [161 and then A.M. Sinclair [29]. The 

form in which we state it is due to K. Laursen [19] and we give the 

proof for completeness. 

LEMMA 1.2 Let S be a linear mapping from X into Y and let 

{T} be a sequence in (x). Then there exists an integer N such 

that 	(ST1 ...T) = ((ST1 ...T 1) for n > N. 

Proof. Clearly 	(STi•••Tn+i) Cc(ST1 ...T) for n > 1. If this 

inclusion is strict for infinitely many n, then by grouping the T.'s 

into finite products corresponding to the intervals of constancy of 

(ST1 . . .T) we may assume that ((ST1***  T 
 n+l ) C (ST1  ... T) for all 
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n > 1. Let Q denote the nturai quotient mapping from Y onto 

I/((STi••Tn) for each n. Then, by Lemma 1.1 (b), (c), 

Q ST...T 	is continuous and Q ST ..T 	is discontinuous for all 
n 1 	fl 	 n l 	n-i 

n > 2. Assuming, without loss of generality, that flTII < 1 for all 

n, we choose inductively 'a sequence (xl from X so that 

	

(1) 	11x 11 < 211, 	and 

	

(ii) 	IIQST1  ... T 1xfl > n + flQ11ST1  ... Tll + IIQS(T1 ...T. 1x)H 

for n3, 4••• 

CO 

Then let z = 	T1...T 1x 	(the stun converges by (i)). For each 

positive integer n we have 

II Sz II > II Q Sz II 	and 

IIQ ST1.. •TniXnfl = IIQSz - QS(T 1  ... T 1x) 

Go 

- QS( I T...T 	x  
j=n+1 

11 Q 
n 

 SZ11 + IIQ5(T1  ... T 
-l
x )II 

CO 

+ QQ ST ...T 'Mix 	+ 	I T 	...T. j
x 	ii 

n+l 	j+l 

and so 
n-i 

ilSzlI > I1 Q ST ...T 	x 	!IQ s( 	T ...T. 	x.)li 
- n 1. 	n-i " 	' j=2 

- Ii QST1 . . . Tit 	(using (i)) 

>n by (ii). 

This contradiction proves the lemma. 

We shall be interested in situations where operators T, R 

(in ,(x) and (Y), respectively) intertwine with S continuously, 

i.e. ST - RS E(X,Y). In this situation Lemma 1.1 (d) enables us 

to put Lemma 1.2 in the form we shall need for our applications. 



LEMMA 1.3 Let {T} and {R} be sequences in 	(x) and 6?(Y), 

respectively. If S is a linear operator from X into Y such 

that RS - STE(X,Y) for all n, then there is an integer N 

such that (R1...R((s)) =(Rl...RNc(S)) 	for all n>N. 

Proof. By induction R1 ...RS - ST1 ...T E(X,Y) for all n. Lemma 

1.2 and Lemma 1.1 (d) then give the result. 

COROLLARY 1.4 Let X, Y, {T}, {R}, S, N be as in Lemma 1.3. Let 

{Un} be a sequence in (Y) such that UR1...Rd(S) = {O} for all 

n. Then UR1...R 1 ((S) = { o} for all n > N. 
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CHAPTER TWO 

In this chapter we discuss the radical Banach algebra 1'[ 0,11 

and some of its properties. Throughout the next four chapters all 

ideals will be two-sided. 

Definition. L1[O,i] is the Banach algebra of complex-valued functions 

which are (Lebesgue) integrable on the closed interval [0,11 with 

pointwise addition and (convolution) multiplication given by 
x 

f•* g(x) = f f(x - t)g(t)dt 	 (x 	0 '  11 
0 

and norm 
1 

'If" = f 	If(t)Idt. 
0 

Remark. We take the usual liberty of referring to elements of 

L1[O,1]. as functions whereas they are, in fact, equivalence classes 

of functions agreeing almost everywhere (a.e.) on [0,11. 

PROPOSITION 2.1 (1) L1[O,l] is a radical- Banach algebra which is 

singly-generated. 

(2) L1[ 0,11 	has a bounded approximate identity. 

Proof. (1) For f E L1[O,i] let f 	denote f * f * 	* f 
n-i 

(n times). Then (by induction) 1 = (x1),, the norm of which is 

-4, where 1 denotes the function which takes the constant value 1 

on [o,i]. Hence 1 generates the polynomials in x and so the con-

tinuous functions and so all of L 1[O,11. We have Iii 0 and 

so 1 is quasinilpotent. Since 1 generates L1[O,l] every element 

is thus quasinilpotent and so L 1[O,ll is radical. 
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(2) Take a one-sided Dirac sequence e.g. u = flX[0 ,1/] 

Definition. Let V be the continuous operator on L[0,1] given 

by (convolution) multiplication by 1,' i.e. 
x 

Vf(x) = (1 * f)(x) = f f(t)dt. 
0 

V is called the Volterra integral operator. 

Notation. Let a, R E  [0,11. Then 

M = {f E  L1[0,1]: f vanishes a.e. on [o,al }. 

will denote the characteristic function of [,11 for each 

in ['0,1]. 

PROPOSITION 2.2 The closed invariant subspaces of V are the sub-

spaces Ma where 0 < a <1. 

Proof. This proof is due to W.F. Donoghue, Jr. [12]. First, note 

that N is a closed invariant subspace of V for 0 < a < 1. The 

result is first established for C[ 0,11 , the space of continuous 

functions on [O i l]. It is clear that C[0,11 is invariant under V. 

Let M be a non-trivial closed invariant subspace of V in c[o,il. 

Let f be a non-zero element in M. Consider the sequence 

f, Vf, Vf, ... . We choose a measure p on [o,i] -  orthogonal to 
1 

every V 1f, i.e. f Vnf(t)d(t) = 0 for all n > 0. A theorem, the 

0 
most general version of which is due to J. Lions [20] , asserts that 

for any two distributions on 4 with compact support, the convex 

hull of the support. of the convolution is the vectorial sum of the convex 

hull of the supports of the factors. Thus if the convex hull of the support of f 

is (a,b) and the convex hull of the support of 11 
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is (c,d) it follows that the interval (a-d,b-c) is the convex 

hull of the support of f * 	where 	is given by (.t) = 

But f * vanishes on the left half-axis. (We can assume that the 

functions and measures are defined throughout R by defining them to 

be zero outside [0,11). Therefore d < a which implies that ji is 

orthogonal to M • The Hahn-Banach theorem and the Riesz represent -

ation theorem imply that the closed linear span of {V' 1f: n > 01 is 

M, unless a = 0, in which casethe closed linear span will be the 

whole space if f(0) 0 0. Thus any proper invariant subspace.- for V 

in CE 0,11 is a union of spacesi type M and is therefore a space 

of that type itself. 

For the space L1[o,l] the same result follows from the obser-

vation that VL1[0,ll C cEo,il. For let M be a closed invariant 

subspace of V in L'[ 0,11 and let f E  M. If the smallest interval 

containing the support of Vf is [a,b], then the sequence 

n > 11 spans the subspace Ma of CE 0,11 as above and its 

closure in L1[0,lI is the correpponing Ma of that space. Evident-

ly f = 0 a.e. on [O,a] and so {Vrf: n > 01 spans Ma in 

L1[0,1J and the result follows as before. 

Remark. Initially J. Dixmier [iii found the invariant subspaces of 

V on real L1[ 0,1] by considering algebras generated by V and 

similar convolution operators. W.F. Donoghue, Jr. [121 and 

M.S. Brodski [7] independently discovered the invariant subspaces of 

V on complex L 2 	 i [0,1]. Donoghue t s proof n fact works for LP[ 0,11 

where l<p<. 

COROLLARY 2.3 The closed ideals of L1[ 0,11 are the subspaces Ma 
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where 0 <  a < l. 

Proof. The corollary follows from Proposition 2.2 since Vf = 1 * f 

1 and so the closed ideals of L [0,1] are closed invariant subspaces 

of V. 

PROPOSITION 2.11 If a and B are positive and a + B < 1, then 

(fm) = M +B. 

Proof. (fM) 	is a closed ideal of L'[O,ll. and so by Corollary 

2.3 we have (fMa)T = M for some y E [0,1]. We show that 

y = a + 3. By the definition of convolution it is clear that 

(fMa)CMa+B and soy>a+B. Ifa+$1, then y=la+B. 

So suppose a +a < 1 and let c > 0 be chosen such that 

a+B+c<1. Consider f *f: 
- 	 B 	a 

* 	= f f(x - t)f (t)dt = lo 	0 < x < a + B 

	

0 l.x-B 	 x-B 

c 1tt I dt  a a  

a+B<x< 1  

From this it is clear that f * f 	M. But f * f E  M 
B 	a 	a+8+c. 	B 	a 	y 

and so ya+B (otherwise take c=y-a - B). 

It is-clear:that Corollary .2.3 shows - that there do not -  exist any 

non-zero finite dimensional ideals in L 1[0,11. In fact it is possible 

to prove this without appealing to the characterisation of the closed 

ideals. 

PROPOSITION 2.5 (1) L1[0,lI has no non-zero finite dimensional 

ideals. 
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(2) Let I be a non-zero ideal in L1[0,l]. 

Then fI C I for any a E (0,11, and we can choose a so that 

f 	{o}. 

Proof. (i) Let J be any non-zero ideal in L 1[0,11 and choose 

f E J with f 0 0. Then it is clear that if a, E [0,11, a 0 3, 

and neither f * f or f * f is zero then f * f a nd f * f 
a 	 13 	 a 	 13 

are linearly independent and belong to J. Since for any non-zero f 

there is an infinite choice of distinct a ts in [0,11 with 

f * f 0 	it follows that J is infinite dimensiOnal. 
a 

(2) Let 13 = sup4y: f =0.  a.e. on [O,y] for all f E  I). 

Then 13 < 1. For all fE I, f * f = 0 a.e. on [0,51 where 

ô = min(1,a+13) > 13 if a > 0. Hence fI C  I by the definition of 

13, and by choosing a so that a. + 13 < 1. we have faI 	{0}. 
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CHAPTER THREE 

In this chapter we prove that derivations on L [o,i] are 

automatically continuous, and then show that the methods used in the 

proof can be extended to give other known results on the continuity 

of derivations. 

Definition. Let 	B 	be an algebra. 	A derivation on B 	is 	linear 

operator 	D on 	B 	satisfying 	D(ab) = aD(b) + D(a)b for all 	a, .b 

in B. 

We note here that if B is a Banach algebra then D satisfies 

the hypothesis of Lemma 1.3 in the sense that D intertwines contin- 

uouly with continuous operators on B. For 

operation of left multiplication by a on B 

as a fixed element of B then the definition 

DL  - LD EE 12(B) for any a in B. We also 

when D is a derivation on B it is easy to 

closed ideal in B. 

Lf L denotes the 
a 

and if we regard a 

of a derivation yields 

make the remark that 

see that 	(D) is a 

In [17]  B.E. Johnson and A.M. Sinclair proved that every deriva-

tiononasemi-simple Banach algebra is continuous. During a confer-

ence at the University of California, Los Angeles, in July, 1974 the 

related question of whether every derivation on the radical Banach 

algebra L1[0,11 is continuous was raised. Theorem 3.1 answers this 

question in the affirmative. First note that there do exist .non-trivial 

derivations on L1[0,l1 , e.g. pointwise multiplication by the function 

h given by h(x) 	x is a continuous derivation on L 1[0,11. For 
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x 	 x 

h(f * g)(x) =x f f(x - t)g(t) = f (x - t + t)f(x - t)g(t)d.t 
0. 	 .0 	 .. 

x 	 x 

= f (x - t)f(x - t)g(t)dt + f f(x - t)tg(t)dt' 
0 	 0 

(hf*g+f hg) (x). 

In fact H. Kamowitk and S. Scheinberg [18] have characterized the 

bounded derivations on L'[O,ll in terms of certain measures on 

[0,11. 

THEOREM 3.1 Let D be a derivation on L1[ 0,1]. Then D is con-

tinuous. 

Proof. We consider (D) which is a closed ideal in L1[ 0,1]. By 

Corollary 2.3 (D) = M for some a with 0 < a < 1. To prove the 

continuity of D it suffices to show, by Lemma 1.1 (b), that a 1 

which gives 	(D) = {O}. We argue by contradiction. Suppose a < 1. 

We choose a sequence {} of positive real numbers so that 

a + 	+ . . .+ 	< 1 for all n. Then 

(it 	f M)=M 	 DM 
f •• 	a 	 a+ i+...+B +1  

= 	 M ) for all n 
1 	n+la 

(by Proposition 2.14) 

Lemma 1.3 gives us the required contradiction if we take 

X = Y = L1[O,ll , T =R = left multipiicatiónby: f 	and S = D. 

Remarks. (1) The same result holds for L[ 0,l1 , 1 < p < . 

(2) The same method shows that any epimorphism from a 

Banach algebra A onto L1[0,1] is continuous since the separating 

space of an epimorphism is a closed ideal. The only modification 

required in the proof is that we choose X = A and T  = left multi-. 
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• plication by the preimage of f 	under the epimorphism in the 

application of Lemma 1.3. 

• 	 (3) It is clear that the proof will show that any linear 

mapping S on L1[0,1]' which intertwines with L'[O,ll continuously 

(i.e. SL - L.S E(L1[O,1])  for all f in L1[0,l])  is-contin-

uous. However it is not enough to only assume that 

SL1  - L 1 
 S = SV - VS E(L1[O,1]) even though 1 generates L1[O,JJ. 

Since (a) the spectrum of V. is the single point 0, (b) V has 

no eigenvalues, and (c) V has a non-zero divisible subspace (a 

subspace Z of L1[0,1] is divisible for V if (V - pI)Z = Z for 

all complex numbers p) Theorem 1.1 of [281 shows that there exists 

a discontinuous linear operator S on L 1[0,l] satisfying SV = VS. 

Examples. 

(1) We note here that it is possible to prove Theorem 3.1 with-

out out appealing to the characterization of the closed ideals of L [0,11 

by using Proposition 2.5. For.  Proposition 2.5 (1) shows that 	(D) 

must be infinite dimensional if it is non-zero and then we can construct 

an infinite descending chain of ideals contained in (D) as in the 

proof of Theorem 3.1 by using Proposition 2.5 (2). Lemma 1.3 again 

provides a contradiction which gives 0(D) 	{O}. This observation 

is-  useful when looking at the weighted convolution algebra 

where it is not known, as far as we are aware, what all the closed 

ideals are like. LJ0,co) is the Banach algebra of complex-valued'  

functions on the non-negative reals with the property that 
CO 

I If (t) tw(t)dt exists •where w is a continuous weight function mapping 

B + B \ (01 satisfying w(s + t) < w(s)w(t). Addition is pointwise 

and multiplication is defined by convolution as before. The norm is 
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given by Iffl = f If(t)k(t)dt. If W.  is 'rapidly  decreasing', 

e.g. if w(x)1 -* 0 as x ~ , then L{Ooo) is a radical Banach 

algebra and it is not hard to see that it has the same properties as 

L1[ 0,11 given in Proposition 2.5. Thus by the remarks above every 

derivation on L[0,co) is continuous. 

N[O,00) is the measure algebra of all complex-valued Borél 

measures on [0, 00 ) with convolution product. In [9] H.G. Diamond 

showed that derivations on MIO,co) are continuous in the topolo gy 

generated by the seminorms 11 1A  = IpI([o,x]) for each x in 

[o,o). We note here that this result (and the corresponding result 

for MIo,i]) follows from our methods since Lemma 1.3 can be extended 

to the case where X and Y are Frechet spaces and M [O, 0D) has 

the properties of Proposition 2.5,  i.e. it has no finite dimensional 

ideals and given a non-zero ideal I you can construct an infinite 

descending chain of ideals inside I where each ideal in the chain 

is obtained from the previous one by multiplication by a suitable 

element of M[O,00). 

Let c[[t]] denote the algebra of all formal power series 

over the complex field C in a commutative indeterminate t with 

the weak topology determined by the projections p.: Ya.t1  -- ct. A 

subalgebra A of CE [till is a Banach algebra of power series if it 

contains the polynomials and is .a Banach algebra under a norm such 

that the inclusion map A C c[[t]] is continuous. Let I be an 

ideal in A and let n be the smallest integer for which an 
00 

element of the form I  a.t (with a 	0) belongs to I. Then 

tI = (ta: a E I} is an ideal in A and tI C  I since no element 
00 

of the form 
.

. at (with an  0) belongs t0 tI. Also if 

f =I a.t 	(a 	0) is in I then f and tf are linearly in- 
j=n ' 
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dependent. So A has no finite dimensional ideals. Hence we have 

shown that A has equivalent properties to those described in 

Proposition 2.5 for  L1[O,1] and so as before every derivation on 

A is continuous. This result was first proved using more technical 

methods by R.J. Loy [211. 

(14) The final example is a radical Banach algebra which arises 

as a closed subalgebra of (H) where H is a Hilbert space. The 

example is due to G.R. Allan [i]. Let H be a separable Hilbert 

space and let (e 1 , e2 , ...} bean orthonormal basis for H. Let 

T E(H) be a unilateral weighted shift operator given by 

T(e) = ae+1 (n = 1, 2, ...), where the weights {ct} are 

elements of Csuch that a -)-0. Now let B be the norm-closed 
- 	 n 

subalgebra of (H) generated by T. Then B is a radical Banach 

algebra. Once again it is not hard to see that B has no finite 

dimensional ideals and given a non-zero ideal .1 in B there exists 

an operator S in B such that {O}C SI C I. Hence every derivation 

on B is continuous. 

It is clear that in all the examples described the ideals have 

similar properties. We now give a theorem which appears in 1151 and 

which provides sufficient conditions on the closed ideals of a Banach 

algebra B such that every derivation on B is continuous. The 

hypotheses of the theorem cover all the examples mentioned including 

L1[O,l1. 

THEOREM 3.2 Let B be a Bcmach algebra with the property that for 

each infinite dimensional closed ideal J in B there is a sequence 

b1 , b2 , ... in B such that (bi••bnJ) 3 (b1 ...b 1J) 	for all 
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n E N. If B contains no non-zero finite dimensional- nil-potent ideal 

then every derivation on B is continuous. 

Proof. We give an outline of the proof for completeness. Let D be 

a derivation on B. It is clear from Lemma l.' 3 as elsewhere in this 

chapter that the condition on the infinite dimensional closed ideals 

of B forces 	(D) to be finite dimensional. Thus DI(D) is con- 

tinuous. If y, z E G'(D) then there exist x  in B, x - 0 and 

Dx + Y. Then XnZ 
E (D) and xz -'- 0 which implies that 

D(xz) -* 0. Hence yz = lim D(x)z = lim D(x n 
 z) - urn xD(z) = 0 

and so (D) is a nilpotent ideal. The hypothesis in the theorem 

gives 	(D) 	{0} and so D is continuous. 

Remarks. (i) For a commutative Banach algebra. B the hypothesis in 

the theorem concerning infinite dimensional ideals may be replaced by 

the neater one that for each infinite dimensional closed ideal J in 

B there is an element b in B with (bJ) C J and (bJ) infinite 

dimensional. 

It can be shown [151 that semisimple Banach algebras 

satisfy the hypotheses of Theorem 3.2 and thus the theorem yields the 

result of Johnson and Sinclair mentioned at the beginning of the 

chapter. 

If B is a Banach algebra which satisfies the hypoth-

eses of Theorem 3.2 then it can be shown [is] that an epimorphism of 

any Banach algebra onto B is necessarily continuous. 
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CHAPTER FOUR 

Having proved that every derivation on a given Banach algebra 

B is continuous it is natural to ask whether every module derivation 

from B into a Banach-B-bimodule 'i's continuous. (Of course this gen-

eralizes the case of derivations on B since the algebra B itself 

is a Banach-B-bimodule). For example after S. Sakai [271 had proved 

that every derivation on a C*_algebra  is continuous, J.R. Ringrose [26] 

then generalized this by showing that every module derivation from a 

C*_algebra is continuous. In this chapter we extend Theorem 3.1 of 

Chapter 3 by proving that every module derivation from L 1[O,li is 

continuous. We obtain this result as a oorollary of Theorem 4. 11 which 

gives sufficient conditions on the closed ideals of a commutative sep-

arable Banach algebra B so that every module derivation from B is 

continuous. In Theorem 14.2 we obtain sufficient conditions on the 

closed ideals in the general case when B need not be commutative or 

separable. 

Definition. Let B be a Banach algebra and M a Banach-B-bimodule. 

A linear map D: B -* M is a module derivation from B if 

D(ab) = a . D(b) + D(a). b for all a, b in B (where . denotes 

the module operation on M). 

We begin by discussing some ideals which are useful in the study 

of module derivations. Let B be a Banach algebra and M a Banach-B-- 

bimodule, and let 	D: B -* M 	be a module derivation. We define 

= {b E B: b 	.(D) {o}}, 'R = 
	b E  B: 	(D) 	. b 	{O}}. 

We call 	I (and 	IR) the left (and - right) continuityideal for 	D. 
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If B is commutative it is easily seen that I = 	
In this case 

we will denote the ideal by I and refer to it as the continuity ideal 

for D. 

LEMMA 1.1 Let D be a module derivation from B to M. Then 

(i) 'L and 
 'R 

 are closed ideals of B and 

(2) if 'L  has a bounded left (or right) approximate identity 

then D is continuous on 

Proof. (1) Let a E  B, b E 'L Then ab . d(D) = {O} trivially. 

Also a . (D) C (D) by Lemma 1.1 (d) and so ba . G(D) = {O}. Thus 

ab E 'L and ba E 'L i.e. I is an ideal. Similarly 'R is an 

ideal. It is clear that both 'L and 	 are closed. 

(2) [31 Suppose 'L has a bounded left approximate identity 

and let x E 'L with x ~ 0. By a well-known corollary to the Cohen 

factorization theorem [6] there exists a sequence {z} C 'L and 

Y E 'L such that z -'- 0 arid x = yz, n E  N. By Lemma 1.1 (b) (c) 

the map Z + y... D(Z) is continuous since y E I 	 Hence 

D(x) = D(Yz) = D(y) . z + y . D(z) + 0 as n -'- . Similarly D 

is continuous on 'L 
 if I has a bounded right approximate identity. 

THEOREM 4.2. Let B be a Banach algebra which satisfies the follow-

ing two conditions: 

(i) if K is a closed ideal of infinite codimension in B 

then there exist sequences {b}. {c} in B satisfying 

c n
b
i 
 . . .b 

n-i 	 n K and c b
i 

 . .b n E K for all n > 2, 
— 

(2) every closed ideal having finite codimension in B has a 

bounded left (or right) approximate identity. 
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Then every module derivation from B into a Banach-B-bimodule is con- 

tinuous. 

Proof. Let M be a Banach-B-bimoduie and let D be a module deriva-

tion from B to M and let 'L 
 be the left continuity ideal for D. 

Suppose 'L 1S OfinfinitecodUIlenSion in B. We obtain a contradiction 

using condition (i) by applying Corollary 1.1 with X = B, Y 

T x = b x for all x in B, R y = b n . y and U n 	n 
y = c . y for all 

fl 	fl 	 n  

y in M. So I must have finite codimension in B. and so has a 

bounded left (or right) approximate identity by condition (?). Lemma 

4.1 gives D continuous on I L
and so D is continuous on B. 

Remark. We can replace condition (1) by the stronger one that every 

closed ideal K of infinite codimension in B has the propertythat 

given b in B \ K, there exists a, c in B such that ab §E K, 

be g K but abc E  K. A simple inductive argument shows that this 

implies the condition in the theorem: we construct inductively two 

sequences b1 , b2 , ... and c2 , C 3 , ... in B such that b1 . .b 	K, 

c b. . .b 	K and c b . . .b E  K for all. n > 2. To start the in- 
nl 	n-i 	 nl 	n. 	 - 

duction let b1  be any element of B \ K, and then choose b2 , c2  in 

B such that b 1  b2
K, c2  b1

K but c2b1b2  E K. Then, given 

bil 	b rs 
 c2, 	Cr satisfying the three conditions choose 

c 1  in B such that b1 . ..b l  K, c 1b1 ...b 	K and 

c b " b 	EK r+l 1 	r+l 

If B is commutative this condition is merely saying that for 

each b in B \ K, the annihilator of b + K in the quotient algebra 

B / K is not prime. 

In general C*_algebras do not satisfy this condition, e.g. take 
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B to be the Banach algebra of continuous functions on [0,11 U  (2}. 

and let K be the zero ideal. However it is not hard to see that if 

B is a C*_al gebra with the property that for every closed ideal K 

of infinite .codimension in B. B/K has no non-trivial idempotents, 

then B satisfies this condition. A.M. Davie has also pointed out 

that for a Hubert space H, K =X(H), the ideal of compact operators 

on H, does have this property ih .(H). 

We can show, however, that all C*_algebras satisfy the condition 

given in Theorem 4.2, thus obtaining Ringrose's result [261. This is 

the result of the following corollary. 

COROLLARY 4.3 Every module derivation from a C*_algehra is continuous. 

Proof. Let A be a C*_al gebra. Following the techniques used in Ring-

rose's proof [261 we show that A satisfies the two conditions of 

Theorem 4.2. Let K be a closed ideal of infinite codimension in A. 

Then the C*_algebra  A / K contains an infinite dimensional closed 

commutative *_subalgebra B [251. Since the carrier space X of B 

is infinite it follows from the isomorphism between B and c 0(x) that 

there is a positive ourer T in B whose spectrum is infinite. 

Hence there exist non-negative continuous functions 

b19  b2 , ..., c2 , c 3 , ..., defined on the positive real axis, such that 

c n  bi 	n-i ...b 	(T) 	 n i. 
0 and c b ... n  

b = 0 for all n > 2. 
- 

Let ii denote the natural mapping from A onto A / K. Then there is 

a positive element S in A such that n(S) = T. If P = b a (S) 

(j = 1, 2, ...), and Q. = c.(S) (j = 2, 3, ."), then P. Q. E A,  

and rI(QnP1 ...P 	) 	rr(c (S))n(b (S))...ii(b .,(S)) 
n-i 	n 	1 	 n- 



20. 

= cn  (TT  (S))b.i(1r(S))••bni(ir(S)) 	0 	(n > 2). 

Thus p., Q. E A,QP1 . . .P 1 	K, QP11 . .P E  K (n > 2). So A 

satisfies condition (i). Now every closed ideal of a C*_algebra has 

a two-sided bounded approximate identity [iol and so • A also satisfies 

condition (2). Theorem 14.2 then gives the result. 

COROLLARY 14.14 Let L1 (G) be the group algebra of a locally compact 

abelian group G. Then every module derivation from L1 (G) is contin- 

uous. 

Proof. Again we show that L1 (G) satisfies the two conditions of 

Theorem 14.2. First we note some well-known facts of harmonic analysis. 

L1 (G) is a regular semi-simple commutative Banach algebra [i141 . Let 

X denote the carrier space of L 1(G). If F is a subset of X then 

define ker F 	{ E L1(G): f(F) =' {O}}, and J(F) = if E L1 (G): f 

is zero in a neighbourhood of F). The hull of an ideal I in L1 (G) 

is the set 	A E  X: x(i) = (0)1. If an ideal I has hull F then 

the theory of regular semi-simple commutative Banach algebras implies 

that J(F) C  I [1141. Now let K be a closed ideal of finite codinien-

sion in L1 (G) with hull F. We want to show that F is finite. So 

suppose F is infinite. -  By induction we choose two sequences {u) 

and {V} of open subsets in X such that U. fl 	= , U fl F 

and U C V. for 1 < j < n-l. To ensure that the induction can proceed 
n —  j 	 - - 

we also require that V fl..Jv contains infinitely many points of F 
1 	n 

for all n. Choose U1 , V1  disjoint open sets so that U1  fl F 0 0 

and V1  contains an infinite number of points of F. Now suppose 

U19  ..., U 	and V1 , ..., 
V have been chosen. We now choose disjoint 

open subsets W ~1  and V 1  so that Wn+i fl i fl 	fl Vn) fl F 
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and V 
n+1 	 1 	 n contains an infinite number of points of (V fl ... fl V 

) 
fl F. 

Let U 	= W 	fl (V  1) ... fl V ). This completes the inductive choice 

of {u} and {V}. The regularity of L 1 (G) implies that there are 

f, f21- ... in L1(G) with f. = 1 at some point of F inide U. 

and f. zero outside U. Then, for each j, f 	K and the f's 

give rise to linearly independent elements in -L 1 (G) / K which contra-

dicts the fact that K has finite codimension in L (G). Hence F is 

finite. L1 (G) satisfies a strong Dytkin condition i.e. ker{X} has 

a bounded approximate identity taken from J({x}) for each A in X. 

An application of a result of M. Altman ([21 ; see[6, p.58]) then shows 

that with F finite we can deduce that kerF has a bounded approximate 

identity from J(F). Since J(F) C K  C kerF,K has a bounded approximate 

i 	
1 

 

identity.  Thus L (G) satisfies condition (2). 

Now suppose K is a closed ideal of infinite codimension in 

-L (G) with hull H. We show that H is infinite. For if H is finite 

then ker H has finite codimension in L1 (G). Also, as remarked above, 

in this case kerH has a bounded approximate identity from j(ii). and so 

= kerR. But j(n) C K  C kerR and so K = kerll which has finite 

codimension . This contradiction shows that H must be infinite. As 

in the first part of the proof we choose two sequences {u} and {V} 

of open subsets in X such that U fl V = Ø u  fl F 0 and 

U C V for 1 < j < n-l. Again the regularity of L1 (G) implies that 

for a sequence {A} with A. E U. fl F we have b 1 , b2 , ..., C2 , c 3 , ..., 

in L' (G) with b.(Ak) = 1 for k > j, c.(A.) = 1, b. zero outside 

U U , and c. zero outside U.. These conditions and the semi-. 

k~j k 
	

. 

simplicity of L1 (G) imply that cb1* * *  b  n-1 K and cnbi. 
. .b E  K 

for n > 2 so that I}(G) satisfies condition (1). An application of 
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Theorem 4.2 completes the proof. 

Remark. The methods used in the proof of Corollary 14,4 in fact give 

the continuity of module derivations on any regular semi-simple comm-

utative Banach algebra satisfying a ,  strong Dytkin condition. 

W.G. Bade and P.C. Curtis, Jr. [31 have also obtained sufficient 

conditions on the closed ideals of a Banach algebra B so that every 

module derivation from B is continuous. Their condition on the closed 

ideals of finite codimension is identical to condition (2) of Theorem 

1 .2. Their condition on the closed ideals of infinite codimension is as 

follows: if K is a closed ideal of infinite codimension in B, then 

there exists a sequence {x} in B satisfying XXm = 0 (n m) and 

X 
2 0 K for all n. We remark here that the two theorems are in fact 

different and Theorem 4.2 appears to cover a wider class of algebras. 

Below we will show that L1[0,l] satisfies the conditions of Theorem 4.2 

while it does not satisfy the conditions of Bade and Curtis. However 

we have not been able to find a Banach algebra which does the reverse, 

i.e. satisfy the conditions of Bade and Curtis while failing to satisfy 

those of Theorem 11.2, and we have tried to prove that the conditions of 

Theorem 14.2 follow from those of Bade and Curtis without success. 

We now show that L'[O,ll satisfies the conditions of Theorem 4.2 

(which implies that every module derivation from L 1[0,11 is continuous - 

we obtain this result most easily as a corollary to Theorem 14.8 as will 

be shown). Let K be a closed ideal of infinite codimension in L '[O,ll. 

Then K = M(c) by Corollary 2.3 where a > 0. Let g E L1[O,l1 g q K. 

Let p = inf{q: g E M(q)j. Then 0 < p < c. We choose positive real 

numbers 	,y so that p+<a,p+y<cL but a<p+Y.1. 
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Then f()g §E M(a), f(y)g 9E M(a) but f()gf() E M(a) (see Propos-

ition 2.4). The remark after Theorem 1.2 shows that condition (i) of 

Theorem 14.2 is satisfied. The only closed ideal of L 1[0,l] having 

1 finite codimension in L [0,11 is L [0,11 itself which has a bounded 

approximate identity (Proposition 2.1 (2)) and so condition (2) of 

Theorem 4.2 is also satisfied. 	 - 

However L'[O,ll does not satisfy the condition on closed ideals 

of infinite codimension given by. Bade and Curtis and described above. 

For let M(a) be a closed ideal of L1[0,1] where 0 < a < 12. Then 

M(a) is of infinite codimension. Suppose there exists a sequence 

{x} in L31 0,l] with XX = 0 (n 0 m) and x 2 9E M(a) for all 

fl > 1. Let 0 = inf{: x E M()} (n > 1). It is clear that 

0 << CL and 	+ m >1  (n 	
m).. Let y = liminf{}. Then 

> 1 - y for all j > 1 which shows that y > 1,- y, i.e. y > 

But 0 << a < 	y < 12, which yields the required contradiction. 

The next lemma, which is a consequence of Lemma 1.3,is due to 

W.G. Bade and P.C. Curtis, Jr. [14] , and is closely related to Theorem 

3.3 of [29] 

LEMMA 14.5 Let B be a commutative Banach algebra with identity and 

let M be a Banach-B-bmodule. Let D: B - M be a discontinuous 

module derivation. Then there exists x 0  in B such that if 

D0 : B M is given by D0(b) = x0  . D(b) for all b in B . we have 

that D0  is a discontinuous module derivation and 1 0  9 the continuity 

ideal of DO,  is a closed prime ideal of B. 

Proof. Since B is commutative it is clear that D 0*is a module 
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derivation and hence 10 is a closed ideal of B by Lemma 14.1. We 

show that there exists x0  in B such that x0  .(D) {0} and for 

every b in B either bx0  . 	{0} or 

{bx0  . 	= {x0  . ('D)). This is sufficient to give us the required 

conclusion for then 

10 = {b E B: b . (D0) ' { 011 =' lb E B: bx0  . (D) = { o}} 	since 

C(D0 ) =' {x0  . (D)} 	by Lemma 1.1 (c) and it is easy to see that 10 

will be prime. We now prove the existence of the element x0  in' B. 

Either there exists b1  in B so that {o} V '{b1  . (D) } C (D) or 

else for every b in B either b. . (D) = o} or ' {b . 	= (D) 

in which case we can take x0  be the identity of B (we assume that 

the module is unit-linked). If such an element b1  exists then either 

there exists b2  in B so that ' {0} 	{b2b1  . d(D)} C {b .d(D)} 

or for every b in 'B either' bb1  .c(D) = {0} or 

{bb1  .c3(D)} ='{b .(D)} 	in which case we can take x0  to be b1 . 

Lemma 1.3 tells us that this process must eventually stop-.e. we shall 

have b1 , ..., b 	such that.' {o} 	{bb 1 b1  .(D)}C {b_1 ...b1 (D)} 

and for every 'b in B either bbn• . .b1  .(5(D) = {0} or 

{bb ...b1  . (D)} = {b ...b1  .d(D)}. We can then take x0  to be 

b...b1 . Note that {0} 	{bb 1 ...b1  .c(D)} 	gives that D0  is 

discontinuous by Lemma 1.1 (b). 

Remark. We can assume that B does not have an identity by forming 

the algebra B ® Cl, extending D by D(Al) = 0, and allowing x 0  

to be in B G Cl. 10  would then be a prime ideal in B cD Ql with 

={b E B: (b,o) E lo) a prime ideal in B. 

Recently R.J. Loy [2141 and J.R. Christensen [81 have exhibited 
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some interesting consequences of the Borel graph theorem (see [31]). 

We will require some particular cases of their results which we now 

describe. 

PROPOSITION 14.6 Let x1 , x2 , Y be separable Banach spaces and let 

T: x x X -+ Y be a continuous bilinear mapping. Suppose Z is a 

closed subspacè of Y contained in the linear span of the range of T. 

Then there is a constant K and an integer m such that if z E Z 

there exist a. EX1 , b. E  X2 , 1 < j < m, satisfying 

(i) 	z =T(a.,b.), 
j=l 

I 	IIa.IIHb .11 <KOzil. 
j=l 	

J. 	- 

Proof. See [2 14] 

Notation. For a Banach algebra B, B 
2 denotes the ideal spanned by 

two-fold products of elements of A. 

PROPOSITION 4.T Let • B be a separable Banach algebra such that B2  is 

of finite codimension in B. Then B2  is closed. 

Proof. See [2141 or [8]. 

For commutative separable Banach algebras we can now prove the 

following theorem. 

THEOREM 14.8 Let B be a commutative separable Banach algebra such 

that B2  is of finite codimension in B which satisfies the following 

two conditions: 
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there are no closed prime ideals of infinite codimension., 

every maximal ideal M of B has 	of finite codimension 

in B. 

Then every module derivation from B into a Banach-B-bimodle is con-

tinuous. 

Proof. Without loss of generality assume that B has an identity. 

Suppose that D is a discontinuous module derivation from B into 

some Banach-B-bimodule M. Let D0, 10  be as given in Lemma 14.5, so 

that D0  is also discontinuous. 10  is a closed prime ideal and so 

must be of finite codimension. But a prime ideal of non - zero finite codimen-

sion is maximal and so either 10 = B or 10 is maximal and in both 

2. 	 i 	
2.. 

cases 10  is of finite codimension n B. But then 10 is closed 

by Proposition 4.7. We now obtain a contradiction by showing that D 0  

is continuous on i02 . Let f E 1
2

. We apply Proposition 14.6 with 

xl  = x2  = Y = lo , T(a,b) = ab for a, b E Ia and z = i 2 , to obtain 

f = 	g.h. where 	I II g .lIlIh.II <K 'If" for some constant K,  and 
j=l 	 j=1  

g., h. E 10, 1 < j < m. Then in 

• 	1ID0 (f)II 	hI 	D0(gh)O 	l IID(g) . h. + g. . D(h)II 3 	
j 

2MIi g .IIIIh.II 

j=l 	
J 

where M is a constant (by Lemma 1.1 (b) cc)), 

and so 11D0 (r)II < 2M 	IIg.11hIh.II < 2MKIIf II which concludes the proof. 

Remarks. (1) The condition that B 2  is of finite codimension in B 

is necessary since if B 2  is of infinite codimension in B we can con-

struct a discontinuous module derivation from B. For let f be a dis-

continuous linear functional on B, chosen by Zo rnTs lemma, such that 

f(B2 ) = { o}. Let M be any Banach-B--bimodule containing an element 
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m 0 such that B . in = in . B = {O}. Define D: B + M by 

D(b) = f(b)m for b E  B. Then D is a discontinuous module deriva-

tion for which 1 B. 

An example of such an algebra is the algebra of Hubert-Schmidt 

operators on a Hilbert space. 

(2) Given a particular module M we can weaken condition 

(1) slightly to "there are no closed prime ideals of infinite codi.men-

sion in B which annihilate some non-trivial submodule of M". 

We now show that condition (2) of Theorem. 14.8 is best possible. 

Let B be a commutative Banach algebra. Suppose there exists a maxi-

mal ideal J of B such that J2  is of infinite codimension in B. 

Then as in remark (1) of Theorem 14.8 we can construct a discontinuous 

module derivation from J to aBanach-J-bimodule. Of course this deri-

vation can be raised to one mapping B to a Banach-B-bimodule. 

Alternatively (see [281) let J kerO where 0 is a character 

on B. Regard C as a Banach-B---bimodule by defining 

b . A = A . b = O(b)A for all b in B and A in C. Let f be a 

discontinuous linear functional on B, chosen by Zorn's lemma, such 

that f(Cl + J2 ) 	where 1 is the identity of B (adjoined if 

necessary). From the decomposition 

ab = (a - 0(a)l)(b - 0(b)l) + 0(a)b + 0(b)a - 0(ab)l 

we obtain 

f(ab) = 0(a)f(b) + 0(b)f(a). 

Hence f is a discontinuous module derivation from B into the Banach-

B-bimodule C. 

Examples of Banach algebras B with this type of maximal ideal 

are A e Cl where A2  is of infinite èodimension in A such as 



c'[ 0,1] , the Banach algebra of all n times continuously different-

iable complex-valued functions on [o,i] with the norm 

ilfil = 	max 
	If(k)( t )I 

tqo,l]k=o 

It is still open as to how near "best possible" condition (i) is. 

We pose the question: are there any commutative separable Banach alge-

bras with closed prime ideals of infinite codimension on which all 

module derivations are continuous? Alternatively if we have a Banach 

algebra with a closed prime ideal of infinite codimension can we always 

construct a discontinuous module derivation? A(D), the disc algebra 

of functions analytic on the open unit disc D in C and continuous 

on D, is an example of a separable Banach algebra with a prime ideal 

of infinite codimension on which we can construct a discontinuous module 

derivation (see [281). 

The following corollary of Theorem 14.8 extends Theorem 3.1. 

COROLLARY 14.9 Every module derivation from L1[0,l] is continuous. 

Proof. L1[ 0,l] is commutative and separable and has no closed prime 

ideals and no maximal ideals. Since L'[O,ll has a bounded approx-

imate identity (Proposition 2.1 (2)) L1[0,l] 2  = L1[0,i1. Thus L1[0,ll 

satisfies the hypotheses of Theorem 14.8. 

Remark. Bade and Curtis have proved the following result concerning 

singly-generated Banach algebras: 

Let B be a singly-generated Banach algebra with generator z. 

Let M be a Banach-B-bimodule and let p(z) E  (M) be the operator 
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given by p(z)(m) = z • in for in in M. Then if (a) the spectrum 

of p(z) is countable, (b) there are no non.  -zero p(z)-divisible sub-

spaces and (c) p(z) has no eigenvalues,we have that every module 

derivation from B into M is continuous. 

1  
The example L [o,il shows that condition (b) in this result is 

not necessary: for L'[O,ll is generated by 1 and, if we choose 

M = L 1[0,11 , p(z) is the Volterra integral operator V (see. Chapter 

2). V has spectrum the single point 0 and has no eigenvalues. How-

ever although V has a non-zero divisible subspace (e.g. the set of 

f E L1[ 0,11 such that f is infinitely differentiable, f has con-

tinuous derivatives and f(0) = 0, n = 0, 1, 2, ... ) Corollary 

4.9 (or Theorem 3.1) still shows that every derivaticn from L 1[0,1] 

to L'[O,ll  is continuous. 

The methods of this chapter can be used to obtain some results on 

module homomorphisms. Recall that if B is a Banach algebra and M 

and N are Banach-B-bimodules then a linear mapping 0: M - N is 

called a module homomorphism if 0(b . x) = b . 0(x) and 

O(x . b) = 0(x) . b for all b in B, and x in M. The continuity 

ideals for 0 are defined as for module derivations e.g. 

IL(e) = {b E B: b . C'(0) ='J0}}. Again it is clear that 

1
R 
 (0). and 1(0) are all closed ideals. The theorem corresponding to 

Theoreri 11.2 is as follows. 

THEOREM 14.10 Let B be a Banach algebra which has the property that 

if K is a closed ideal of infinite codimension in B then there 

exist sequences {b),{c} in B satisfying cnb1•••bn_i V K and 

Cb1 . •b E  K for all' n•> 2. Let 0 be a module homomorphism between 
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two Banach-B-birnodules. Then IL(o)  and IR(o)  are of finite codi-

mension in B. 

Proof. The proof is exactly analogous to the proof of Theorem 4.2. 

Remarks. (1) Suppose 0: M - N where M, N are B-bimodules. We 

can weaken the hypothesis that N be a Banach-B-bimodu1e by only demand-

ing that N be a Banach space with, continuous B-bimodule operations, i.e. 

for each b in B the operations n -- b . n and n -+.n . b are con-

tinuous. This is important when considering algebra homomorphisms from 

B to other Banach algebras. In this situation IL(0) and IR(o) are 

no longer necessarily closed and the conclusion of the theorem is that 

IL(0) 	and IR(e) 	are of finite codimension in B. We prove this in 

a similar fashion to Theorem 4.2 obtaining a contradiction by using a 

slight adaption of Corollary 1.4. ].ssentially we require that, for 

r3 , r2 , ..., u2 , U3 , ... 	 in B, 

ur1 . . .r E IL(o) 	for n > 2 	ur1. . .r1E IL(0) for n > n 0  

where n0  is some positive integer. It is easily seen that this follows 

from Lemma 1.3. 

(2) If B has the property that every closed ideal of finite 

cod,imension has a bounded left approximate identity then it follows 

that 0 is continuous on IL.M 	which is a closed submodule of M by 

the Banach modulefOrmof Cohen 's factorisation theorem ([1 1i1, Theorem 32.22 

p. 268). For let z E 'L .M; 	by Cohen's theorem we have z = a • m 

where a E 'L' m E M and IlaU < d where d. is the bound, of the approx- 

imate identity in 	Since 0 is a module homomorphism 0(z) E L* N. 

Then there exists b E 'L such that lib . 0(z) - 0(z)11 < IIztI where 

tibit < d, again by Cohen's theorem. Hence 
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IIo(z)II < 110(z) - b . o(z)II + lib . O(z)11 

	

< 11z0 + MllblIllzli by Lemma 1.1 (b), (c) 	since .b E 

< (i + Md)tt z il 

(3) From our earlier work we know that C* r a1gebras, L [0,11 , 

L1 (G) and, in fact, any regular semi-simple commutative Banach algebra 

satisfying a strong Dytkin condition all satisfy the hypothesis of 

Theorem 1 .10. So this theorem covers results for C*_algebras and regular 

semi-simple commutative Banach algebras obtained by A.M. Sinclair [301 

The result for L 1[0,1] appears to be new. 

As in Lemma 1.5 if B is a commutative Banach algebra with iden-

tity and M, N are Banach-B-bimodules with 0: M -- N a discontinuous 

module iomomorphism then there exists x 0  in B such that if 

M -* N is given by 0 0 (m) = x0  . 0(m) for all m in M then 

is a discontinuous module homomorphism and lo , the continuity 

ideal for 005  is a closed prime ideal of B. If B has no closed 

prime ideals of infinite codimension this forces 10 to be either all 

of B or maximal. 

In the case where B is a separable Banach algebra, M and N 

are Banach-B--bimodules, and 0: M -'- N is a module homomorphism we can 

show that 0 is continuous on the linear span of I(e).M 	if this is 

a closed subspace of M. To do this we apply Proposition 14.6 with 

x1  = 1(0), X2  = M, I = linear span of • I(0).M, 	and T(a,m) = a • 

for a E 1(0), m  M. If z is in the linear span of I(0).M 	this 

gives z 	X a. • in. where 	I lla.11Ilm.11 <Kllzlt for some constant 
j=l 	 j=l 	' 	' 

K and a. E I(e), in. E M, 1 < j < m. Then 
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In 	 In 

tIe(z)ll = II 	O(a. . m.)II <. 	ha. . e(m.)h1 
j=1 	• 	3 	j:] 	' 

MhIa.11hIm.hI 
j=1 	4 

where M is a constant (by Lemma 1.1 (b) (c)), 

and so 	h10(z)hl <MIçhlzhl. 
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CHAPTER FIVE 

In this chapter we employ the methods of previous chapters to 

obtain sufficient conditions on the closed ideals of a Banach algebra 

B so that certain higher derivations from any Banach algebra A onto 

B are necessarily continuous. 

Definition. For m in N, a higher derivation.of rank m (respect-

ively infinite rank) from an algebra A into an algebra B is a 

sequence {F1 , ..., F 	(resp. (F1 , F2 , ...}) of linear operators 

from A into B satisfying F (ab) = 	F.(a)F _(b) for each 
i=0 

1 	ni  

n = 0, 1, ..., m (resp. n = 0, 1, 2, ...) and all a, b in A. 

A higher derivation of rank m (resp. infinite rank) is said to 

be continuous if F is continuous on A for each n,= 0 1  1, ..., m 

(resp. n = 0, 1, 2, ...). It is said to be onto if F 0  maps A oiito 

B. 

Another problem raised at the U.C.L.A. conference mentioned earlier 

was whether the result of B.E. Johnson and A.M. Sinclair [171 giving 

the .automatic continuity of derivations on semi-simple Banach algebras 

could be extended to higher derivations. R.J. Loy pointed out subse-

quently that the result could be extended for higher derivations whose 

domain algebra is the same as the range algebra and where F 0  is the 

identity map. To do this he merely used results of N. Heerema [131 to 

express a higher derivation in terms of a derivation. We shall extend 

Lay's result 

(i) by allowing the domain algebra to be any Banach algebra 

whatsoever, 
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by allowing the range algebra to include a wider class than 

just semi-simple Banach algebras, and 

by weakening the condition that F0  be the identity map. 

THEOREM 5.1 Let B be a Banach algebra with the property that for 

each infinite dimensional closed ideal J in B there is a sequence 

{bn} in B such that (b1 ...bJ) D (b1 ...b ~1J) 	for.ali..positive 

integers n. Suppose also that B contains no non-zero finite dimen-

sional nilpotent ideal. Let {F} be a higher derivation of any rank 

from a Banach algebra' A onto B such that ker F0 C ker Fn  for all 

n . Then {F} is continuous. 

Proof. We prove that F is continuous for all n, by induction. 

From the definition of a higher derivation it is clear that F 0  is a 

homomorphism. Since F0  is onto, (F0 ) is a closed ideal in B. If 

is infinite dimensional then there are b1 , b2 , ... in B such 

that (b1 .. .b(F0 )) 3  (b1 .. .b1c(F0)) , for all positive integers n. 

a'here are a , a , ... in A such that F (a ) = b 	for all n. We 
1 	2.. 	 On 	n 

obtain a contradiction by applying Lemma 1.3 with X A, Y = B, 

R  = bnb for all b in B and Tna = aaforafl a in A. Hence (F0) is 

a closed finite dimensional ideal. We want to show that (F0 ) is 

nilpotent and since 	(F0) is finite dimensional it will be sufficient 

to show that (F0) is contained in R, the radical of B. We could 

obtain this immediately from a corollary of B.E. Johnson's deep unique-

ness of norm theorem (see [28 ., p. 140]) which states that a homomorphism 

from a Banach algebra onto a semi-simple Banach algebra is always con-

tinuous. However here we will argue in a more elementary fashion. The 

radical of an ideal is the intersection of the ideal and the radical of 
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the algebra and so is an ideal in the algebra [6, p. 1261 . Hence the 

radical of(F0) is a finite dimensional nilpotent ideal in B, and 

so is zero by hypothesis. Then since 	('F0 ) is a finite dimensional 

semi-simple algebra it has an identity e [6, p. 135]. Let Q be 

the natural map from B to B / R. QF0  is a homomorphism from A 

onto B / R which is a semi-simple Banach algebra [6, p. 1261 . Hence 

ker QF0  is closed [6, p. 1311 . Define iii: A/(ker QF0) ~ B / R by 

+ ker QF0 ) = QF0 (a). Then p is an isomorphism of A/(ker QF0 ) 

onto B / R. Also Q(F0 ) C 	Now let M = F0  1{d(F0 ) }/(ker QF0 ). 

j) maps M onto 	(F0)/R which is finite dimensional and so M is a 

finite dimensional ideal in A/(ker QF 0 ). Now let y EG'(F0). There 

exist x E  A/(ker Q70 ), x -' 0 with (x) -'- Qy as n ± . Also 

there exists x E M such that ip(x) = Qe. So 

p(xx) = (x)p(x) ± ey + R =.y + R in B I R as n ± . But 

xx E  M, xx - 0, and 4IM is continuous since M is finite dimen-

sional and so ip(xx) - 0 in B I R. Hence y ER. Thus We have ShoWnthat 

is a finite dimensional ideal contained in the radical of B. It 

is thus nilpotent and hence is zero by hypothesis. Lemma 1.1 (b) then 

gives F0  continuous. (An alternative way of showing that (F0) is 

nilpotent is to appeal to a result of B. Barnes 151 which shows that 

each element of the separating space of a homomorphism has connected 

spectrum containing 0). Note that this proof of the continuity of F 0  

justifies the remark made after the proof of Theorem 3.2. 

We now assume that F is continuous for 0 < n < k-l. We have 
- - 

Fk(ab) = 	F.(a)Fk. (b) for a, b in A. Hence 
10 

Fk(ab) - FO(a)Fk(b) = 	F.(a)Fk.(b). For a fixed a we then have 

(FkL(a) - 
L(FQ(a))Fk)(b) =C(b) where C is continuous by the induc-

tive hypothesis and L(a) denotes the operation of left multiplication 



36. 

by a. (We use the same letter to denote this operation in A and B 

although, of course, they are different operators.) Now using the 

fact that F0  is onto and the inductive hypothesis it is clear that 

is a closed ideal in B. If d(Fk)  is infinite dimensional 

then, exactly as in the case of F0 , we obtain a contradiction by 

applying Lemma 1.3. Hence d(Fk)  is a closed finite dimensional ideal 

in B. We now show that(Fk) = {0} using a similar method to the 

one employed when dealing with F0  although the situation is rather 

different since Fk  is.not necessarily a homomorphism. As argued in 

the case of F0  the radical of (Fk)  is zero and so d(Fk)  is a 

finite dimensional semi-simple algebra with identity f. Choose 

h E  F0 1{f}. F0(h2  - h) = f2  - f = 0 and so F.(h) = F.(h 2 ) 

(j = 1, ..., k). This implies F.(h) = 0 for j = 1, ..., k since 

the identity of an ideal in an algebra is a central idempotent in this 

algebra. 

A / ker F0  is a Banach algebra and consider its subalgebra 

hA / ker F0 . Define F0 ': hA / ker F0  -).- fB by F(ha + kerF0 ) = fF0(a). 

F0 ' is one-one and onto fB which is finite dimensional and so 

hA /kerF0  is finite dimensional. Define Fk': hA / ker F 0  -'- fB by 

Fk'(ha + ker F0) = fFk(a) which is well-defined since 

ker F0  C  ker Fk  and F.(h) = 0 (j = 1 ..., k). Fk'  is continuous 

since hA I ker F0  is finite dimensional. Now let y E(Fk). There 

exist x in A, x.' 0 with Fk(xfl ) + y as n 

Fk'(hx n * ker F 0  ) = fFk(X) -' fy = y as n 
	But 

Fk'(hx + kerF0 ) ± 0. Hence y = 0 and so (Fk) = CO} which by 

Lemma 1.1 (b) gives Fk  continuous and induction completes the proof. 

Remarks. (1) The class of Banach algebras described by the hypotheses' 



31. 

in the theorem includes all the examples considered in Chapter 3 includ-

ing L1[0,1J and semi-simple Banach algebras (see the remark after 

Theorem 3.2). For certain Banach algebras of power series the - continuity 

of higher derivations under the restricted conditions of A = B, 

F0  = the identity map was first proved by R.J. Loy [221 

The result for Banach algebras (such as L'[O,ll.,  Banach 

algebras of power series and others described in Chapter 3) which sat-

isfy the hypothesis on infinite dimensional closed ideals and for which 

there are no non-zero finite dimensional ideals can be proved without 

requiring the assumption on the kernels of the F.'s. 

Using the methods of [13] and [18] it is posible to 

classifyali the higher derivations acting on L 1[0,l] where F0  is 

the identity map. 

(14) The methods of the proof also give the continuity of 

higher derivations on n indices of A into B (see [221 ) -under 

similar hypotheses to Theorem 5.1. 

The following examples from Loy [23] show that the conditions 

on the F's are required. 

Examples. We consider £2  with poiñtwise addition and product. Let 

o be a discontinuous linear functional on £2  which.vanisheson the 

dense subset £ = (2.. ) 

(a) Take A = B = £2 Then. B is semi-simple and so satisfies 

the hypotheses of the 

shift F0(x1 , x2 , 

homomorphism of A I 

F. 
1 
= 0, 1 < i<  n-i 

- 

theorem. Define F0 : A -'- B to be the unilateral 

= (0,x 1. x2, ...) so that F is a one-one 

ito B. Given a positive integer n, define 

and F(x) = (0(x), 0, 0, ...). Clearly,  



ker F0  C  ker F 	for 1 < j < n. Then (F0 , .F1 , ..., F} is a higher 

derivation of rank n of A into B and F is clearly discontin- 
n 

uous. In this example F0  is not onto B. 

(b) Take A = £2 with identity e adjoined and B = C. It is 

trivial that B satisfies the hypotheses of the theorem. Let 	be 

a character on A with kernel £2  and extend 0 to A by 0(e) = 0 

and linearity. Define F0  = 	which is onto B.. Then F0  = 

= 0, 1 < i < n-i, F = 0 	is a higher derivation of 'rank n of 

A 'onto B with F discontinuous. Here ker F 	ker F n 	 0 	n. 
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CHAPTER 'SIX 

In this chapter we shall introduce some basic definitions and 

concepts which we shall use throughout the second half of this thesis. 

We also list some well-known results which we shall need and give a 

brief introduction to the problem we shall be discussing in Chapters 7, 

8, 9. 

Notation. Let T denote the unit circle {z E C: Izi = i}.. and D 

the open unit disc {z E C: Iz  < l}. Lebesgue measure on T will 

usually be denoted by .  dt; for convenience, however, if E is a. 

measurable subset of Ti lEt . will also denote the. Lebesgue measure 

of E. All functions discussed are complex-valued. C is the algebra 

of continuous functions on P  and A is the algebra of continuous 

CO 

functions on D which are analytic on D. L will denote the Banach 

algebra of essentially bounded, Lebesgue measurable functions on T. 

The norm ilfil of a function f in L is the essential supremum of 

If I  on T. The collection of boundary functions (via radial l±mits)of 

CO 

bounded analytic functions on D forms a closed subalgebra H of L 

rY (1 < p < co) denotes the Banach space -of Lebesgue measurable functions 

on T such that f If Idt < . The maximal ideal space of any closed 
T

CO 

subalgebra B of L will be denoted by (B). 

1 	 iO 
For each f in L , re ±0 E D, let f(re ) denote the harmonic 

extension of f into D by means of its Poisson integral, i.e. 

f(reiO) 
= 	4 

f(eit)P(r, e - t)4: where P is the Poisson kernel given 

by 

P(r,t) = 	 2 
l-2r cos t+r 	- 
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We shall often not distinguish between f in L1  and its harmonic 

extension to D. 

Definitions. A unimodülarfuñction is a function f E L for which 

fi = 1 almost everywhere (a.e 0 ) on T. An inner function is a ml- 

co  modular function f in H. A Blaschke'product Is an inner function 

5 	A.-z 
of the form B(z) = k II ith k a non-negative integer, 

. 	
1 

' 	j 

and {A.} a sequence of non-zero complex numbers of modulus less than 
00 

1 such that 	X (1 - 	< ; (this last condition insures the con- 
j=1 

vergence of the infinite product). 

A sequence {z} in D is an interpolating sequence if for every 

CO 

bounded sequence {w} in C, there is an f in H such that 

f(z) = w for all n. ABlaschke product whose zeros form an interpol-

ating sequence is called an interpolating Blaschke product. 

A useful property of interpolating Blaschke products is given by 

the following proposition. A proof can be found in K. Hoffman's book 

p. 2061. 

PROPOSITION 6.1 Let D be an interpolating Blaschke product with zero 

set {z}. Let 4 E (H) and q(B) = 0 then 4  is in the closure of 

{z n } 
in (Hb0). 

We shall be interested in obtaining concise expressions for the 

relative size of a function . Thus for g defined on T and for each 

a consider the set where Igi is greater than a, {x: g(x) > a). 

The function X(cz), defined to be the Lebesgue measure of this set,is 
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called the distribution function of I g I. The decrease of x() as 

a. grows describes the relative size of the function- this is our main 

concern locally. Any quantity dealing solely with the size of g can 

be expressed in terms of the distribution function X(cz). For example, 
CO 

if g E LP . then f 
g(e1t)Pdt = p f 	X(a)da.. 

We now introduce the Hardy-Littlewood maximal function . A des-

cription of this function and its properties can be found in E.M. Stein's 

excellent book 1531 

Definition. Let f be a function in L1 . We define 
0-I-s 	

it iO 	1 M(f)(e ) = sup— f 	f(e  )Idt. 
s>O 	0-s 

M(f) is the Hardy-Littlewood maximal function and a partial integration 

- 	shows that there is an absolute constant A so that 

f(re' 0 ) < AM(f)(e' 0 ) 	(re 	E D) 

where we consider f as being defined on D by its harmonic extension. 

The most useful theorem concerning the maximal function is the 

Hardy-Littlewood maximal theorem. The proof is not difficult but it in-

volves a covering lemma of "Vitali-type". Readable accounts of the 

proof can be found in [531 or [331 

THEOREM 6.2 Let f be a given function defined on T. 

If f E L1, then for every a. > 0 

I{e'.°: 	M(f)(e10) >}I 

• 	where B0  is a constant. 

If f E L, 1 < p < , then M(f) E  L and 

IIM(f)ll 	
p p 	p 

< B Itfil 	where B 
p 
 depends only on p. 

—  
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If f is a function in L' and I is any sub arc of T let 

= 	f f(t)dt. For 0 < a < 21r. we then defineTIT  

Sa(f)
ii1 	

I If(t)- f1ldt, and we put. 

S 0 (f) = urn s(r), 	IIfI1 = S2  (r).. 
a-0 

The function f is said to have bounded mean oscillation, or to belong 

to BMO, if IIfII < . The space BMO is a Banach space under the norm 

fLII, provided that two functions differing by- a constant are identified. 

A function f in BMO is said-to have vanishing mean oscillation, or to 

belong to VMO, if S0  (f) = 0. It is clear from elementary considerations 

that VMO is a closed subspace of BMO. Intuitively a function is in VMO 

if its mean oscillation is locally small. 

The concept of bounded mean oscillation was first introduced by 

F. John and L. Nirenberg [ 1i61 and vanishing mean oscillation was first 

described by D.E. Sarason in 152] where various characterizations of 

VMO are obtained. In John and Nirenberg's paper they prove various in-

equalities concerning functions in BMO one of which we now state as we 

shall require it later. Again the proof is not hard but it uses a 

rather technical and involved decomposition of integrable functions due 

to F. Riesz. 

LEMNA 6.3 Suppose f is a function in -BMO and I is a subarc of T. 

For each a > 0, let A(a) 7 be the distribution function of I f - r1 j. 

Then there exist constants c 1 , c2  and c&, (independent of f) such 

that 

I I(t) - f i Idt) e c2a I * A(a) < U II 
I 

for all a > IEfIIa. 
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Definition. For any subarc I of T  with centre elt  and measure 

26 > 0, let R(i) 	{re'0 E D: 10 - t < 5, 1 - 6 < r < 11. A finite 

positive measure i on D is said to be a Carieson measure if there 

exists a constant c such that ji(R(i)) < cjIj for all subarcs I of 

T . 

Ahy rectifiable curve r C D induces a finite measure on D by 

defining the measure of any Borel set S to be the length of r fl S. 

We say that r induces a Caraeson measure if the induced measure is 

Carieson. 

The following lemma is a version of Green's theorem which we shall 

use in the proof of Theorem 6.5 and in later chapters. In the form given 

it is due to D.E. Sarason. 

LEMMA 6.1. If f, g E  L2  and f(0)g(0) = 0, then 

- f f( e lt) g ( elt)dt = 	ff Vf(re 0 ) . Vg(re)r log i drd0 
-ir 	

±0 	 •0]D 	3f 	iO 	2 where Vf(re ) = C 	(re ), ---- (re )) E C 

00 	 CO 

Proof. Let j ae0, 1 be °  be the Fourier series of f and g 

00  

	

±0 	 ml mO 	iO 	 ml mU respectively. Then f(re ) =. 	anr 	e 	, g(re ) = 	br 	e
CO —CO

and by direct computation 
CO 

	

-f f(e1t)g(elt)dt = 	a.b 	(a0b0  = 0), 

n0 

00  ni-i mO 	mi -i 	me 1 Vf(re1O) = [. V a 	irl 	e 	, 	a r 	nie 	, L 	
In 

I 	 fl

co 
±0 	 ni-line gre ) =[ 	b n rI 	e 	, 	 nie 	1. b rIn1H1 

. nhI 	 n 
- 	 -00  

1 
Again by direct computation, using the fact that f r"iog rdr = -i 

0 	 (n+l)2 
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for n -1, we obtain 

if f Vf(re10) . Vg(re' 0 )r log drdO = 

	

anbn 

and so the lemma is proved. 

In their fundamental paper on BMO and Hp spaces of several 

variables C. Fefferman and E.M. Stein [1i1 proved the following theorem 

which exhibits the relationship between functions in BMO and Carleson 

measures. (Note that we have transferred their result from the real line 

to T). 

THEOREM' '6.5 For a function f defined on T the following conditions 

are equivalent: 

(i) fEBMO, 

(2) f E L and the measure p on D defined by 

- 

dp = (i - r)IVf(re 
iG  )I 2  rdrdO- is a Carleson measure. 

Furthermore (if either condition holds), if c = sup 	p(R(I)), then. 
I<2iT 

11 	 - 

there exists a constant A1  with c < - A 1ifu 2  

Tke. 	 As S 	 Of 	 S' 
Proof. We shall prove the equivalence only in the direction that we 

shall need later, i.e. (i) 	(2). So suppose f E BMO. We note first 

that a consequence of Lemma 6.3 is that 

f E BMO 	sup -4- f If(t) - f1I2dt < c3 llftI *2   
1 .<.2  7r 	

1 	 ' 

where c 3  is a constant. This follows since 

co  I If(t) - f1tdt = p f c?A(a)da where , A(c) is the distribution 

function of If - 1 I. 
Let I be any subarc of .T with III = 26 > 0. We will assume 

without loss of generality that I has centre 1.' Let 

1 	(e E  T: Iti <146), and write x for the characteristic function 
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of I, and X for the characteristic function of the complement of 

I 	in T. We have 

f = f1 	+ Cf -t 
	

1 	2 
] ) x + Cf - f 	)x = f + f + f 

46 	 46 	 46. I 	 3 

We also have f(relO) = f1 (re  i) + f2 	lO (re) + f3 (re  i)  for the corres-

ponding Poisson integrals where re   E D. Now 

	

• 	 = ff; (1 - r)IVf(re'°)I2rdrdo. In this integral f 1  contributes 

	

• 	 R(I) 

	

• 	nothing since it is constant. Now 

ff (1 - r)IVf2 I 2 rdrdO < ff (1 - r)lVf2I2rdrdO. 
R(I) 	 D 

• 	 If I-V 
f2 

12 
 r log 	drd0 

D 	 1 
since 1 - r < log - for 0 < r < 1, 

Tr 

	

= 	I 1f2 ( e lt )I 2dt by Lemma 6. 

= 12 I 	12 d 	0 

1 46 	
46 

• 	 < 4c36IIfII 2 	by 	(1). 	 . . .(2) 

Tr 

Also 	IVf (re  '°)I<f IVP(r,0t)Hf(elt)Idt 

	

3 .27T 	
IT 

i 	If(e 	

3 

) - 

	

=— 	 dt 
 46 1  

• 	

•f 	it 	i02 
TI 	e -re 

2 
since IVP(r,0t)I = 	it 	10 2 

• 	 le -re 

Now if *5 > 	this integral is zero since T \ •I 	is empty and if 

*5 	we have, for elt ET \ 	an 	reI0E R(I), that, 

I e it-re  i OI 2  >k1 s 2  + k2 (0-t) 2  •where k 	 and k2 • are positive consi- 

tents. AlsO itis clear (see [Itl, p.1421) that for .g E BMO 

I g(e it )-gi j5 . 	 llU 
• 	 ____ 

we have 1 	2 	2 dt < 	
• Hence for any value of *5 

T k16 +k2 (0-t) 	 • 

we have I3 (relO)( < 	IIfll.whi.ch  implies that 
 7T 6 

	

ff (l-r)Vf 
1 2

rdrd0 < C *5I1 ftl 2  where c 	is a constant. 

R(I) 	2 	 2 	2 	
• 

Since IVf I < 2( jVf2j +lVf3 I ) we deduce from (2) and (3) that 
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ff (i - r)IVfI2rdrdO < c 6óllfll 2  where c 6  is a constant, i.e. 

R(I) 

p(R(I)) < clii for some constant c and so p is a Carleson measure, 

The next theorem was a crucial part of L. C arle s on ts proof [321 of 

the corona theorem (i.e. the theorem which shows that D is dense in 

It is easily proved using the Hardy-Littlewood maximal theorem 

(as was shown in [53]). 

THEOREM 6.6 Let p be a Carleson. measure on D with p(R(I) < ci 

for all subarcs I of T. Then for 1 < p< oo, 

If If(z)Idp(z) < cA llftl, for all f in L, 
D 	 p 

where A is a constant depending only on p. 

Proof. Let y(re 
1 

) and ip(e 
1 ) be non-negative functions on D and 

T respectively which are related by the non-tangential inequality 

i4s 	iO 	 iO 	 A
sup 	''(re ) <l(e ). Then p{re : 'I' > a} <cI{e 	> a} 	for 

I 0 i <lr 

each a, and as a result Jf i'dp < c f i(e1t)dt. Once this is observed 

- 	D 
we need only take 1P( re lO ) = If( re lO )I, p(e' 0 ) = AM(f)(e 1  ). The non- 

tangential inequality 	sup 	'(re') < ip(e' 0 ) is contained in the remark 

after the definition of the maximal function and the theorem then follows 

from Theorem 6.2 (2). 

We now give an elementary measure theoretic lemma due to D.E. Sarason 

[52] which we shall require later. 

LEMMA 	6.1 Let (x,v) be a probability measure space and f. a function 

in 	L ° v) such that 11 f 11 	< 1 	and f f dv = 1 - b3 , 	where 0 < b < 
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Let E be the set of points in X where ii - fl > b. Then v(k) < 2b. 

Proof. We have 

1 	i3
' 	

. + 	
dv < f 	dv + v(x \ E). 2 	

dv+ 

	

E 	 JE 
2 	

E 
By an elementary calculation, if lxi <1 and fi - XI >b then 

< 1 1 
Hence 	f  + f 

 
dv < 2 	- 	2 	 - (1 - 	 so that 

E 2 

1 - b3  < (1 - 	) v(E) + v(X \ E) 	1 - 	v(E). The desired inequality 

is now immediate. 

Notation. Let {f:  A E  Al be a collection of functions in L. 

[H,f: A E Al will denote the (uniformly) closed subalgebra of 

generated by H and the set A E Al. 

We now turn to discuss the problem which is at the heart of the 

work in Chapters 7 to  9. We will be interested in the closed subalgebras

00  
of L which contain H properly. If A is such an algebra we let 

	

CO 	 00 

Aã denote the closed subalgebra of L generated by H and the complex 

conjugates of the inner functions that are invertible in A, i.e. 

CO  

Ad = [H ,b: b E A and b is inner]. Clearly Ad C A; if Ad = A, A 

is called a Douglas algebra. R. Douglas [ILO] conjectured that equality 

is always the case for such A, i.e. Ad = A for every closed subalgebra 

A containing Ha' . This conjecture has attracted much interest in the 

past few years and in particular it was soon shown that many natural 

00 	 CO 

examples of closed subalgebras of L containing H were Douglas alg-

ebras, e.g. L 	itself (see [511). Recently the question has been ans- 

wered in the affirmative, the proof being contained in papers by 

S-Y.A. Chang [31] and D.E. Marshall [I'(J. Chang proved that if A is a 

Douglas algebra and B is a closed subalgebra of L which contains HOO  
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with 	(B) = (A) then B = A, i.e. a Douglas algebra is uniquely 

00  determined amongst those closed subalgebras of L containing H 

properly by its maximal ideal space. Marshall proved that if A is a 

CO 

closed subalgebra of L containing H then 	(A) = (A). It is 

clear that the two results together show that every closed s.ubalgebra 

00 	

co of L containing H is a Douglas algebra. 

In Chapter 9 we shall give a direct proof of the Marshall-Chang 

theorem using the techniques of Chang and Marshall but avoiding almost 

entirely any reference to maximal ideal spaces. This shortens their 

proof a little and avoids using the corona theorem' of Carleson (as 

Marshall does in his proof). We are grateful to A.M. Davie who suggested 

the possibility of tackling the proof in this way. 

As Marshall pointed out his proof in fact yields the following 

stronger result which is the theorem we shall prove in Chapter 9. 

00 

THEOREM 6.8 Every closed subalgebra A of L ccisitaining H is 

given by A = [ If ,: BE  E  A and B is an interpolating Blaschke product.] 

It is clear that this theorem shows that every closed subalgebra

CO  
A of L containing H is a Douglas subalgebra. 

At this point note that it is sufficient to prove Theorem 6.8 when 

A = [H,u,i] where u is a unimodular function in L. For suppose A 

is a closed subalgebra of L containing H. A is, generated by its 

invertible elements; so suppose f is invertible in A and let 

g = exp[logIf + i(logf) I where (logf) 	is the harmonic conjugate 

function of logff. Then Igi = 	a. e. on T and g is invertible 

00  
-1 	- 	-1 

in, H . Therefore u = fg 	and u = f g are unimodular functions in 
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00 

L and this shows that A is generated by H and {u E A: u is uni-

modular and u E A). 

Marshall's construction of the relevant Blaschke products required 

for the proof of Theorem 6.8 is based on a construction due to 

L. Carleson which was used in his proof of the corona theorem [321. In 

order to describe Marshall's construction (see chapter 8) we now give 

some preliminary definitions. 

Definition. The hyperbolic distance between two points in D is defined 

by p(z,w) = 	=j (z,w E  D). This defines a metric on D. 

The relevance of the p-metric to our problem rests in the following 

characterisation of interpolation: a sequence 	in D is interpolat- 

ing if and only if there is some y > 0 for which p(z. , zk) '> y for 

j 	k and the measure 	( 1 - z. 	is a - Carleson measure ( 
3 	 3 

denotes the point mass at z.) (for a proof of this fact see [ 1121). 

Definition. Let V be a bounded domain bounded by a finite number of 

rectifiable Jordan curves r. Let r = p U Q, Int(P) flint(Q) = , where 

P and Q are finite sets of Jordan arcs. The function (z,P;V) which 

is harmonic in V and assumes the value 1 on P and the value 0 on 

Q is called the harmonic measure of P with respect to V, evaluated 

at the point z. (For the fact that the harmonic measure always exists 

in the above situation see [431). 

The following proposition is a form of the maximum modulus theorem. 

It is a special case of Theorem 1.6.3 of [ 1i8J and a proof of the result 

Al 
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can be found there. 

PROPOSITION• 6.9 Let f be a bounded analytic function on a domain 

V C iEi, and let X be a subset of. av of harmonic measure zero. If 

urn If(z)I...K, then II <K in V. 
z-'-Il 

EV\.X 

Finally we note two well-known theorems which we shall use in sub-

sequent chapters. 

THEOREM 6.10 Every closed subalgebra of L which contains H prop-

erly also contains C. 

Proof. See [I1] 

THEOREM 6.11 The quotient space Lull is the dual of the space li01, 

the space of functions in L1  whose harmonic extension into D is 

analytic in D and has mean value 0. 

Proof. See [39] 

o 
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CHAPTER SEVEN 

In this chapter we extend the definition of VNO given in Chapter 

6. We then characterise the generalised concept in terms of.Carleson 

measures in a similar fashion to the way that BMO is characterised by 

Theorem 6.. The techniques we use are extensions of those used by 

D.E. Sarason [52] and S-Y.A. Chang [34] to examine the particular case 

of VMO. 

Suppose B is a closed subalgebra of L which contains H.

00 

If B is generated by H and the complex conjugates of certain inner 

functions, then it is clear that 	(B) consists precisely of the set 

of points in (H) at which the Gelfand transforms of the inner func- 

tions involved all have unit modulus. Now let b be an inner function. 

Given 0 < 6 < 1 we let G6 = {z E D: Ib(z) > 1 - 61. We begin by 

CO 

looking at the Douglas algebra B generated by H and the complex 

conjugate of b, i.e. [H,bl. Functions in [H,] have the follow-

ing asymptotic behaviour in the region G 6 : 

	

urn sup f(z)g(z) - (fg)(z) = 0 for all f, g' in 	Hco  

6-*0 zEG6  

For if this does not hold for some functions f, g in [H,] , then 

there exists c > 0 such that If(z)g(z) - (fg)(z)l > c for some 

point z E  Gl,, for n '= 2, 3, 	If  we choose 	to be a limit 

point of '(z} in 4(H), then I(b)I = 1 and so • E 4([H,]) by 

the comment above. But we have 	(f)4(g) - 4(fg) I > c, giving a 

contradiction. 

This yields the following lemma. 
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LEMMA 7.i If f E [H°° ,b] is unimodular and invertible in [H,] 

then for every c > 0, 36 > 0 such that I f(z.)J > l-c 	whenever 
z E G6 . 

Proof. Take g to be the inverse of f in (i), i.e. g = f. 

In our definition of VMO(b) which we give below we will only be 

interested in a certain class, 	, of subarcs of T, which we now 

describe intuitively. We fix a 6 > 0 and choose any z = r 0e' 0 0 E G6 . 

Let I be a.subarc of T. centred at e100.  The "value" which deter-

mines whether I E  e or not is the proportion of the length of I to 
the distance of z from the boundary of the unit circle. We now give 

a precise definition. 

Definition. Let b be an in 

we say that I is in VNO(b) 

exists some 6 > 0 such that 

I = {e 
it 	100-tI 

aer function. If f is a function in BMO 

if for every c > 0 and r > 1, there 

for r0e 1 O E G6  and 1 < < 	we have 

If(e') 	f1Idt < C. 

Note that in the particular case when b(z) .z (z E  T) then 

vMo(b) is simply the space YMO defined in chapter 6 since in this 

case includes all subarcs of T. 

We now adapt the methods of D.E. Sarason 1521 and S-Y. Chang [311] 

to establish some of the properties of VMO(b). 

THEOREM 1.2 Let f be a unimodular function in L. Then 

fE vMo(b) Vc > 0, 36 >0 such that z E  G6  implies If(z)I 
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Proof. () Suppose f E  VMO(b), and let c > 0. Recall that for 

z = re in E 

	

	 iO - 	f P(r,0_t)f(elt)dt where P is the D we have fre s 

Poisson kernel. It is clear from the expression for the Poisson kernel 

that we can make I P(r,0-t)dt as small as we like by choosing F to 
T F. 

±0 
be a suitable arc centred at e , i.e. there exists an > 1 such that 

3 
f P(r,O-t)dt < -

' ir 
-i:r 	where 

E 

	

it 	Io-tl•• 

	

E = {e : 	l-r  

Note that n depends only on 	and not on r or 0. Now there exists 
10 

> 0 such that for !b(r0e 0)1 > 1 - 	and 1 < 	< 	we have 

it it 	100 t1 	 3 
I = {e 	 . 'P} 	][ I I( 	- f1ldt < 	...( 3) l-r0  

10 
Fix z0  = r 

0  e 
	E G6 . We have to Trove that lf(z 0 )I > i - c. Define 

it 	o0-tl 
a subarc J of P by J = {e : 	r0 	

so that 

f f(e ' ) - fIdt < 	by (3) 	. 	. 

We then have 

	

l 	
I.f(eit) - fIdt + -j- I lfidt 1P 	

lf(eit)ldt1 

i.e. 	 1 <-—+ If 	> 1 — 	. 	 ...(5) 

c 3 ir 
Also k  P(r0 ,0 0-t)dt < 4 	(2) which implies that 

	

i — f P(r0 ,06-t)dt < 	since 	f P(r0 ,00-t)dt = 1 	...(6) 
27r

Collecting these inequalities together we have 

If(z0)fI = l 	i 1 r f(elt)_fj]P(r0,00_t)dtl 

< 	
1 Il f(eit)_fjIP(r0,00_t)dt -'-- 

- 2 rrT\J 

( ±t 
27r I Ife )_fI P(r0 ,0 0-t ) dt 

1f1 (lt  
+ — f e )-fP(r0 ,00-t)dt by (2) 

— 4 	2ir 
J 

3 c 	1 	P(r0 ,0 0-t)J If( elt U 	 )_fjldtl 
J 

1 + 	I lf(eit)_fjldt 
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3 	3 

	

<r + 	+ 2[1 - 	f P(r0 ,00-t)dt] by () 
• 	 33 	3 	

J 

by (6). 
3 	 3 

So 1 - •T< IfI < if(z0 )—fI + If(z0 )I <-—+ If(z0 )I, by (5) 

i.e. 	If(z0 )I> 1 - c 3 . 

• () Let c > 0 and n > 1. There exists S > 0 such that 

z E Go 	Jf(z)I > 1 -. 	
c 2 
	

= 1 - a3 , say. Without loss of-1 3  
1 2+8ff(l+ q  

generality .  we may suppose that 0 < a < . Let zo  = r 
 0  e 
	E G so 

that I f(z010)  I > i - ct. Suppose I is the subarc of •T given by 

I = {e ' : 	0 
 —ti 
 < ip} . where 1 < ij.i < r. We have to show that 
0 

liT 	If(elt) 	f1idt < e. 
By multiplying f by a constant of modulus one if necessary we may 

	

A
0 
 . 	 i00 	

3 assume that f(r0e 	) > 0, say f(r0e 	) = 1 - 	where 	< a. 

Let E be the set of points on T where Ii - l > cx. It follows 

from Lemma 6.7 that 	f P(r0 ,00-t)dt < 2a. By a simple estimate 

based on the identity P(r,t) 
= 	2 1 

- r 	
it follows that 

(l-r) +4r sin (•) 
P(r .,00-t) 

> 	1 	
for elt E I. Thus 

0 	(l-r0)(l+ip2) 

	

1 	
fdt<f 

	

2(1-r0 ) 	— 2 	
E P(r0,00-t)dt 

ITIr-E
11E 

 

(i+n) 
. 47Ta = 2ira(l+ 2 ) 

2 

We thus have 

1 f( elt )_li dt 

	

FIT I 
If( eit)_lldt = 	If( e 1t)_lldt + 

71IE 

	

< 	[fdt + 	I dt < a[ 1 + )41r(l+fl 2 )] 51 

IE 

and so 

i+i-:c If(elt)_fildt  1i4i 	
If(elt)_lIdt 

~ I.'- 1 I 

2  < 241 + 47r(i+n)1 = C. 
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LEMMA 1.3 L P  VMO(b) is a C*_algebra.  Also if CB  is the C* 

algebra in L generated by the inner functions which are invertible 

in [H,] then CB 	VM0(b). 

Proof. It is clear that L fl  VMO(b) is an algebra in L closed 

under uniform limits and complex conjugation and so is a C*_algebra. 

Suppose g is an inner function invertible in [Ha,] . Let c > 0. 

g' is unimodular and so, by Lemma 1.1, there exists 6 > , 0 such that 

I g(z) > l- whenever lb(z)l > - 1-6. Hence Theorem 1.2 shows that 

g E VMO(b). 

We are grateful to S-Y.A. Chang for allowing us to see a preprint 

1351 which has not yet appeared in publication. This enabled us to 

prove the following remarks which meant that we can replace an "ad hoc" 

argument in the proof of Lemma 1.4  (which is leading up to the proof of 

Theorem 7.1) by one which corresponds to the proof of Theorem 6.5 given 

by Fefferman and Stein. 

Suppose f E  ITMO(b) and let e > 0. Choose n to be the small-

est integer 2 	 such that 2 1 1+2n 
 < e. Now choose 6 from the 

n=N 2 	 . 
definition of VMO(b) with r 	•so that if z = re 1  E  G and6. 

1 < 	<then I 	{e  1t : 	ltI 	p} 	T 	If( eit )fi Idt < c. 

• ______ Suppose z = r e 	E G and let J = Ce'. 
	

< 1). We want to 
0 	0 	6 	 1-r0 -- 

show that 

A(J) = 	I If(elt)_fjIP(rO,00_t)dt < C
7 

 E: . . 

where C7  is a constant depending only on IIfII. 
i00  

	

- Let J be the arc with the same centre, e 	, as J and with 
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length 2''IJI . Suppose rlc 
= 2N 	

We will prove (7) for the case 

2N11< 
ff. (The same proof works in the contrary case with a slight 

change in the constant C 7 .) We have 

A(J) = 	 I 	If(eit)fjIP(r0,00t)dt 27T nOJ\J 

2TiTJ JOO 

where 	is taken to be the empty set. 

The estimate 

I f_1 - 	TI 	
If - fI dt 

Ii I ____ 

Ii1f IjI 	
I 	- f'ldt < 2c 1  

valid for •n = 1, 2, ..., N gives 

I fj - 	 ' < 2nc, 	n = 0,1,2,...,N, 
k  

which together with an elementary estimate of P(r0 ,00-t) yields 

- 	(If(e it) _ fIP(r000t)dt 

7T 2 

TJT
2 
 2' 

[1(1 f( it) 
 f 	+ I f -fI ) dtl 

2 	nI j 
(If( e lt )_fj l + 2ne)dt 

2 (l±2n) 
TF 	

n-1 '  

2 

Hence 	 lf(eit)fjlP(r0,00t)dt < ( 	 -Using 
nO 	J J 	 nO 2 

n n-i 

similar estimates we have, for N1  the largest integer such that 

2N111 < 2ir, 

N N .  
= 	i 	f 	If(elt)fjIP(r0,00t)dt 

n=NJ \J n+l n 

I If(eit)_fjIP(r0,00t)dt 

N1 



am 
co 

l+2n 	 (li-2N) 
< TI 	V 	Uf'II 

nN 2 	 2 N 

< eiTIlfll., by the definition of 
00 

J2n 	IIfIl). r( 	
J- 	

+ Hence A(J) < C1c where C, 1, = 
n=O 2 n 

We now prove- three lemmas which will enable us to describe the 

bounded functions in VM0(b) in terms of Carleson measures. 

LEMMA 7 .4 Suppose f E  VMO(b) and let 0 < e < 1. Then there exists 
i00  

cS > 0 such that if z0  = r 
0  e 
	E G then there exists a constant C8  

independent of c) such that 	f f (1-r)lVfI2rdrdO < c 86(1-r0 ), 
s(e

0 
 ,r

0 
 ) 

1 
where S(,r0 ) 	is the region {re' 

.0 	

1-r  
o0-aI 

< 4, r0  < r < 1). 

Proof. Let 0 < c < 1, and, as before, let 	be the smallest integer 
CO 

such that 2 	
21+2n 

 E. From the definition of VMO(b) with 

= max(5, 0 ) choose 	. so that if z = re lO 

	

n 	E G and 1 

then I = e1t: 	< p} 	--4- flf( e 1t )_fi ldt < E. Suppose 

	

iO 	 . 
lt 	

100-tI 
zo = r 

0 
 e 0 E G6  and let J be the arc {e: 1-r0 < 51. Put 

f1 = x(f-f) 	f2 = X1\J-(ffJ) where x1  denotes the characteristic 

function of the arc I. 

We have f] I 
If( e 1 t)_fj ldt < E. Thus 

f 5 (1-r)Vf I 2 rdr 	< ff (I-r)Vf  2lrdrdo 

	

SO,r) 	 D 

ff Vf1  r log - drd0 
D 

= 	I Ifi ( e lt)I 2dt by Lemma 6.14 

= 	I If_fI 2dtC9cIJI11f0 

by Lemma 6.3 

= C10E(1-r0 ). 	 ...(8) 

(C9 11 C 10  are both constants). 
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Also j1f 	 < - fVP(r,0-t)' 	( 

	

2 re 	l - 2ii T
' 	i 	it 

I 

- 	
1 f(e 	)-fI 

- 	 dt 
Tr  T\J I eit 	10 2 

-re 

Hence if re 1 O E S(0 0 ,r0 ) we have, using an elementary estimate of 

it --i02 
e 	re 

f(e it )-fJI 
IVf ( 	10 )1 <-C 	 dt 

	

2re 	- 	 it 	2 
T 	le 	z0 j 

Cli 	If(elt)_fjl 	- I-fIl 

it 	
dt+2ir 	

2 LT le -z 
 

0 j
2 	 1-r0 	

j 

it 100-tI 
where J0  = e : l-r0 

	
1}, 

< c12 
C 

i-r 	
since f f(e it )-f jP(r 0 ,0 0-t)dt < 2urC 

0 	 T 	 0 

by the remarks before the lemma. 

(C 12  is a constant). 

22 C 	C 

Thus 	f f (1-r)jvf212rdrde < 	f f 	1-2(1-r)rdrd0 
S(005 r0 ) 	 S(0 031 r0 ) (1-r0 ) 

22 
= 2C12  c (1-r0 ). 	 . . .(9) 

Since 1Vf12 < 2(jVf1
1 2  + jvr2

1 2 ) we obtain the desired conclusion from 

(8) and (9). 

LEMMA 7.5 Suppose f E  VMO(b) and let 0 < c < 1. Then there exists 

(S > 0 such that the measure 1J(S  on D defined by 

= XG(lr)IVflrdrd0 is a Carleson measure with p (S (R(I)) < C8c1 1 1 
for all subarcs I of T. (c 8  is the same constant as in Lemma 7. 4). 

Proof. (Chang [341) By Lemma 7.4 we choose (S such that if 

zo = rOelOO E G  then 	f f (1-r)jVff 2rd0 < C(l-r), where 
S(00,r0) 
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10-el 
s(005 r0 ) is the region {relO: 	lr 	

< 	r0  < r < 1} and where 
0   

C8  is a constant We assume without loss of generality that 

I = (e: -a < t-< a } for some a < it. To establish the result it 

suffices to find a collection F of regions of the form S(Or) with 

re 0  E G , 	U S(0,r) DR(I) fl  G 	and 	 (l-r) < 2a. We 
S(0,r) 	 S(0,r) F 

shall choose the collection F by the following inductive process. 

For each n = 0,1,2,... and j = 
1,2,3,•0,2n, let 

= { re  1O: 0 E [-a+(j-l)a/2 1 , -a+ja/2] , l-a/2"  < r < 

with R0 = R(I). 

Let r0  = inf{r reIO E R0  fl G6 } and choose 00 so that 
iO 

r0e 0 E R01  fl  G6 . Notice that if 1 - r0  > a/2, then R(I) fl  G6  is 

contained in S(0 0 ,r0) by the definition of r0  and so we can pick 

S(00
1)
r0 ) in our collection F and stop the process. If 1 - r 0  < a/2, 

let r 	= inf{r: relO E R 	fl G } for j = 1, 2. Choose 0. 	so 
l,j i0 	

. 	 1, j 	6 

that r .e l,j E H 	fl G . If 1-r1,j > a/2 2  then R 	fl G 	is 
l,j 	6   

contained inS(O 
l, j

,rl, j )and hence we can pick S(0l,j,rl,j) in F and 

stop the procedure in the region ;R l,j
. If 1 - r1 ,J . < a/22 , then we 

continue the process in R
l,j 	 2,2j-1 to the regions R 	and R 	.. It 

is clear that we can continue the above process inductively, and the 

collection F thus chosen satisfy our requirement. 

Notation. Let X be a Banach space and suppose that E is a closed 

subspace of X. For x E  X the distance of x to E, d(x,E) is 

given by d(x,E) = inf{I!x-yll: y E  E}. 

CO 

LEMMA 7.6 Let f E  L. Suppose that for every c > 0 there exi'sts 

- some 6 > 0 such that the measure p6  on D defined by 
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d116 = XG (l-r)IVfI 2rdrdO is a Carleson measure with p 6 (R(I)) < cI 

for all subarcs I of T. Then for every c > 0 there is an absolute 

constant C 	 such that d(Thn,H) < C 3c for n sufficiently large.
13  

Proof. Let C > 0 and choose 6 so that 116 is a Carleson measure 

on D with 1J 6 (R(I)) < EIII for all subarcs I of T. First notethat 

without loss of generality we may assume that G C {z: . < Izi < i}. 

For by Theorem 6,10 we deduce that [H,] = [H,b] and so

CO 

d(f,[H,b] ) = d(f,[H ,zb] ). This implies that if d(fZnbn,H) < ke 

for some constant k and sufficiently large n then d(fb
n  ,H ) < kc 

for sufficiently large n. Thus we could consider the inner function 

zb(z) instead and clearly the region G 6  for the inner function 

zb() satisfies our requirement so long as we choose 6 < 

From this point on the proof follows Chang 1314, Lemma 61 

co co  Without loss of generality assume that 0 < c < 1. Since L / H 

is 'the dual of 1101  by Theorem 6.11 d(fb,d o ) equals the norm of the 

functional that fb i'  induces on 1101 . It is therefore sufficient to 

show that, for all g E H  l , 	f 	 < C1I g I1 1  
T 

where C is a constant which is less than C e 2  for some constant 
n 	 13 

as n -'- 00 . Without loss of generality we can assume that g is in

00 

13 

H 	since H 
CO 	1 is L -dense in H

1  • We may also assume without loss of 

generality that 'If II < 1 and f(0) = 0. By Lemma 6.14 we can writeCO  

J f ( e it) br( e it) g ( e it)dt = 	ff Vf.V(brg)r log -!  drdO. Roughly
7T 	 r 

speaking we shall estimate this integral by splitting it into to parts 

- first integrating over G where we obtain our estimate by using the 

fact that XG(1_r)IVfIrdrd0 is a Carleson measure, together with 
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Carleson's inequality (Theorem 6.6) - second integrating over D \ G 6  

where we use the fact that [b(z)j < 1-6 to obtain our estimate. 

Since b"  and g are both analytic functions we have 

( bnl g )( z ) = b'' (z)g(z) for all z E  D and hence V(bg) = bnvg + gVb. 

We assume first that g is without zeros in D. Then there exists a 

function h, also analytic in D with g = h 2 . We can then make an 

estimate: 

	

I 1 	I 
V 	Vg r log 	drdO<ff 	b I ff Vf.(bVg)r log 	i drdO - 	 r lTD 	 D  

	

- 	ff 1bnj IVfI Ig' 	log 	drdO, lTD 	 r 

since 	vg I 2 	21g' 12 
1'aff 
lTD 

< /2(i ff 	
1 

log drdO) 2  
Tr 	 r 

D 

1 ,. 	i 	-ii 
X (— jf igi 	jg ! 2 r  log 	drdO ). 

lTD 	 r 

For the second factor we have 

1 	-1 
- ff 	g' 2r log -!  drdO 	- ff Ih'12r log drdO, 

r 	TT 
D 212 

sinc,e 	g'I = 

a ff IVhl2r log -drdO 
D 	

r 

= 	f h - h I 2dt by Lemma 6.4
iTT 	T 

= 811h_hT1122 < 811h11 2  = 8i1 g 11 1 	. . 

To estimate the first factor we put 

S1  = 	ff b2Jg  IVfI2r log -- drdO 
G6  

= - 	ffn2jg IVfI2r log - drdO. 
D\G6  

Now log - < (21og2)(1-r) when 12  < r < 1. So 
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S < 2log2 jj IbI 2 lh2 IIvfl 2 (lr)drdO 

	

1— 	it 
G6  

2log2 A2 il 9 b 22 IIhII 22 	by Theorem 6.6 

2A
4 1  = 21og2 A2ilhfl22 < 	gIl  

it 

Also S < 	 If (1_6) 2f IVfI 2 IhI 2r  log 	drdO. 
DcG

CO 
Since functions in L are clearly in BMO we have 

< 
21og2 (1o)2 If IVfI 2 IhI 2 r( 1-r)drd6  it 	 D 

(l_*5) 2 A1 ilfll 2A2 llhIl 2  

by Theorems 6.5 and 6.6. 

So 2k A 
S 

< 	1 2 
(16)2I1f11 

2 11g1l1  

	

2 — 	it 

Combining (11) and (12) we have 
2A c ~ 2A1A2 (1)2flji2)ijii I jf 	 log cirdO < 	

2 	_____ 

Tr 	 r 	 ff 	 Tr 
D 

.. .(13) 

Combining (10) and (13) we have 

	

1 2A 	2A  

I 	fT vf.(b!lvg)r log 1 drdOl < /2 (811 gIl1) 	C 	+ 	1 2 ( 1_) 2nII f II 2 )II g lI 
Tr 	

1 

D 2Ac 2AA 
= 	2 	+ 	1 ?() 21hll fIl2 ) 2Il g ll 1.  

ii 	 it 

(l1 ). 

To estimate 	If Vf.(gVbr)r log 1 drdO we set 
Tr

D  

53' 1 ff Vf.(gvb" )r log 1drdO and 

1 	Vf. ( gVb  nl )r log 1 drdO. 

D\ GÔ 

Then 	S 3 	•( 	If Ivr 2 IgIr log ! drdO)2( 1 ffvbh12gr log I drdO). 

By the same reasoning as we used in estimating S1  and S2  we obtain 
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Jf jV f121 	
2A 

gI r log drde < 	
c 

	

"gil l , 	and 
Tr 

G 	
r 	 7T 

1 ff Ivb'l 2 lgr log 1 drdO 	
8A1A2 
 11 go 

Tr 	 r 	- TT 

(aince llbrll* I 2IIbIi = 2). 
1 	 - 

2A c 	- •8A A 1 	1tAA 	1 

Thus 	15 3 1 <. ( 	llgll1)( 	1 2 llgii1) 	
ir 	

cilgil 	...(i) 

For S we have 

Isl < ( - 
df Vf 2 gIr log 	drdO)( 1 If Vbfl2gr log drdO) 

c G 

The same estimate as S 2  gives that 
2A  

- 	T IvfJIgIr log 	drdO < 	1 2 11 fli 2 ll g Ii 1 	and 
1T 	 r 	 7r 

. 	
log 1 drdO < 	 log 1 drdO 

	

DcG 	 D 

	

2 	2 2(n-1) 
(since I Vb 	= " lb 	llVbI 2 ) 

8AA 
2 

	

< 	 1 2(1_6)2(n_l) 	
g 

Hence we have 
2AA 	

( 	
8A  

1 S4 	1 2 	2 	2(lo)2(fl_1) 	1 2 ilgil < 1 ) ( 
- 	11 	* 

gill)
Tr 

14A 
1 

 A 
2 ilfilligll1. 

Tr 

Combining (15) and (16) we obtain 	 - 
I 

4Al 2A2  1 	 n-i A1A ff Vf.(gVb" )r log 
 

ii g lI 1+14n(1-) 	ilflilI g ll 1  
Tr 	 r

Ii 	 drdol - c  
it 

+ fl(1_ 1A1 11fll111gH 1 . 

 Tr 

= 	[ c  

So from (iLi) and (ii) we have 

2A2
c 2AA 

I 	ff Vf.V(b'1g)r log 	drdol < 14 	+ 	1 2 (1_ ) 2n iIfIi 2 2 tl g tl 1  

	

D 	 r 	- 	it 	 it 
1 + 
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Letting n + , we have proved, under the assumption that g has no 

zeros in D, that 
C 	1 

I ff Vf.(Vb"g)r log 	drdO < -f cIIgO 	, 	...( i8) 

when n is sufficiently large and C 13  is a suitable constant. 

For the general case, let y be the Blaschke factor of g and 

let W = 	so that g = w + - w(v-l). Since w and' w(v-l) are both 

functions in H without zeros in D we can apply (18) to the functions 
C . ' 1 

w and w(.v-1) to. obtain t ff Vf.(Vb). log 	drdOl <_--3E0WH 1  = 

II g II 1  and 	if Vf.(Vbw(v-l))r lo 	drdOl <IIg ll 1, when n 

is sufficiently large. Since V(b'g) = V(bw) + V(bw(v-l)) we obtain 

the desired inequality I ff Vf.V(b"g)r log drdel< C13cIIgIl 1  for n 

sufficiently large, and hence conclude the proof. 

We can now give our characterisation of the bounded functions in 

vMO(b) In terms of Carleson measures. 

THEOREM 7.7 Let f E L. Then f E vMo(b) if and only if for every 

c > 0 there exists ó >' 0.. so that the measure p defined by 

= XG (l-r)IVfI 2rdrdO is a Carleson measure with p(R(I)) < eIII 
'5 

for all sulxzrcs I of T. 

00 

Proof. Denote the functions in L satisfying the property described 

by the second part of the statement of the theorem by L('b). Suppose 

1' is in vIIo(b). Then by Lemma 7.5 it follows that there exists some 

'5 > 0 such that the measure P has the required properties and so 

f E  L(b). On the other hand if f is in L(b) then from Lemma 7.6 it 
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follows that f E [H,J 	Similarly 1' E 
	

Hence 

L(b) C  [H°°,] fl 	 If f is unimodular. in [H,1 fl  EH, 	then 

by Lemma 7.1 and Theorem 7.2 1 C VMO(b). Since [H,]fl[H,] is a 

C*_algebra spanned by its unimodular functions an d VNO(b)flL i s a 

linear space it follows that [H,1 fl [H0 ,b] C  VMo(b) and the result 

follows. 

It is clear that we can generalise the concept of VMO(b) and 

the results concerning this space where we are concerned with the single 

inner function b to a concept which involves an arbitrary collection 

of inner functions bA,  for A in some index set E. 

Notation. For each finite subset F of the index set E, let b  

be the innr function II band for ô > 0 put 
AEF 

G(F) = {z E D: 	ibF(z)l > 

Definition. Let {b:  A C  E} be a collection of inner functions in-

dexed by the set E. If f is a function in BMO we say that 

f C  VMO(b: A E E) if for every C > 0 and r > 1, there exists some 

S > 0 and some finite non-empty subset F of E such that for 
iO 

r0e 0 C G6 (F) and 1 < < r we have 

it 	leo_ti 	i 	it 

	

I = {e :- 1-r 	
III J f(e )-f1ldt < c. 

	

0 	 I 

We have the following results parallel to Theorem 7.2, Lemmas 7.3, 

7.5, 7.6 and Theorem 7.7. 

THEOREM 7.8 Let I be a unimodular function in L. Then 
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f E VMO(bA: 	A E E) Vc > 0, 36 > 0 	and some finite non-empty subset 

F 	of 	E 	such that z E If(z)1 	. 

LEMMA 7.9 Lfl VMO(b: A E  E) is a C*_algebra. Also let CB  be the 

C*_algebra in L generated by the inner functions which are invertible 

in EH,A: A E  El. Then CB C VMO(bA: A E E). 

LEMMA 7.10 Suppose f E VMO(bA: A € E) and let 0 < c < I. Then 

there exists 6 > 0 and some finite non-empty subset F of E such 

that the measure p 6 (F) on D defined b dp6(F) = XG (F)( 1_r)IVfIrdrd0  

is a Carleson measure with p 6 (F)(R(I)) < c16III for all subcwcs I 

of T. (C 1  is a constant independent of c). 

LEMMA 7.11 Let f IE L. Suppose that for every c > 0 there exists 

some 6 > 0 and some finite subset F of E such that the measure 

on D defined by d.p6(F) = XG(F)(1_r)IVfI2rth'dO is a Carieson 

measure with V 6 (F)(R(I)) < cI I for all subarcs I of T. Then for 

every c > 0, there is an absolute constant C 15  such that 
1 

d(fbF ',H')  < C15 c 2  for n sufficiently large. 

THEOREM 7.12 Let f E  L. Then f E VM0(b: A E E) if and only if 

for. every c > 0 there exists 6 > 0 and some non-empty finite subset 

F of E so that the measure p 6 (F) defined by 

dp6(F) = XG 6 ' F\(1—r)II 	d0 is a Carleson measure with 
( 

< clii for all subarcs I of T. 

The proofs Ofthese results are more or less identical with the 

proofs of the corresponding results given earlier with only minor alter- 

ations needed. 



We conclude this chapter with a problem: in the definition of 

VIvlO(b) can we restrict attention to merely those arcs where = 1 ? 

If not what sort of function provides a counter-example? 
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CHAPTER EIGHT 

In this chapter we describe Marshall's construction of the inter-

polating Blaschke products which we shall need to prove Theorem 6.8. 

There are two differences in our approach to the construction: 

we describe the construction on D rather than on the upper half-

plane, and 

by using an argument due to A.M. Davie we avoid the use of harmonic 

measures in the construction.. 

CO  

Let u be a unimodular function in L and let A = [H,u,] 

By the remarks made in Chapter 6 it is sufficient to prove Theorem 6.8 

when A is of this form and so we restrict our attention to this 

situation. For each a, 0 < a < 1, we wish to construct an interpol-

ating Blaschke product B so that 

(i) supu(z)l < 1 where the supremum is taken over the zeros of B; 

(2) 	1u(z) 	< a => 1 a (z) 10 

The idea of the construction will be to surround the places' where 

u < a by a contour r which is not 'too long'. That the contour 

is not 'too long' will mean that the arclength measure it induces is a 

Carleson measure.* This construction is derived from the proof of the 

Corona theorem due to L. Carleson [32] . We then uniformly distribute, 

in the p-metric, a sequence {z} on the contour, sufficiently separating 

the points of the sequence so that the remark on p.50  will tell ,  us that 

the Blaschke product with {z} as its zero set is interpolating. We 

will require for the proof of Theorem 6.8 that each Ba constructed is 

invertible in A. We obtain this as a consequence of Theorem 6.1 using 

(1). 	 ' 
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First we need some technical lemmas prior to describing the- 

co nstruction. Throughout this chapter we take the liberty of using u

CO 

to denote 'oath the function in L and its harmonic extension to D. 

LEMMA 8.1 There exists an a < 1 such'that if Iu(a)I < a for a in 

some region of the form Q = fre'0 : 1-2 < r < 12-n-2 
	< e < o} 

then supu(z) < CL1 . 
Q 

Proof. Let 	be the set of functions of modulus 1 a.e. on T. We 

shall think of functions in O1.  as extended harmonically to D. Suppose 

that for every a1  < 1, there exists a region Q of the type given 

in the statement of the lemma and there exists f E 31 such that 

I f(a) I < a for some a C 	but sup lf(z)I > a 1 . Then there exists a 

00 	
Q 

sequence {f} 1  of functions in 'fl , a sequence of regions {Q} of 

the given type and a set of points {an} where a E Q 	(n > i) such 

that If(a)I < a and suplf(z)I > 1 - . By a translation and 

dilation we may assume that each region is of type given in the statement 

of the lemma with n = 0; call this region Q. The sequence {f} 
00 

forms a normal family. Thus there exists . a subsequence {f } 	of 

f} and a function f, harmonic on D such that f -' f uniformly 
k 

on compact subsets of D and a -- b, say. where b E Q. We then 
k 

have jr(b)I < a < 1 and suplf(z)I = 1. But suplf(z)I 	1 and so 

Q 	 D 
f is a harmonic function on D which attains its supremum inside D. 

Hence f is the constant function 1 whjchcontradictS the fact that 

I f(b)I < 1. This contradiction proves the lemma. 

iO 
Let s(o6) = {re : 1-6 < r < 1, 80 - - < 0 < O o  + 

a1+5 
---where 6 < 1. Let V = 1 + 26 	

where a1  is obtained from Lemma 8.1, 
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1-a1 _____ 

and define 	by 1 	= 	2 2 16B 	
where B0  is the, constant 

K 
l+vir 	0 

appearing in Theorem 6.2(1) which can be assumed greater than 1. 

Notice that 1 > a > a 3 . 

For a set F C  D let F* C T 'denote the projection of F onto 

T, i.e. F* ='{e it :  relt  E F for some r, 0 < r < l}. 

The proof of the following lemma is due to A.M. Davie. 

iq 
LEMMA 8.2 Suppose Ju(a)l > 	where a = pe 	is such that 

1-6 < p < 1-6/2 and 0--- < 	< 	 for some 6, 0 < 6 < 1 and 

00, 0 < oo < 2rr. Let E 	{re'0  E S(0 0 ,6): Iu(re'°)I < c}. Then 

IE*I < 6/2. 

Proof. Without loss of generality we may assume that u(a) is real 

and positive. Let g = 1 - Reu so that g > 0. Let 

I = {e: q-vôir < t < q+v67r} and let 	h = gx1 on T, (and extend 

into D using the Poisson integral). From the definition of v, 

Ireg(1O) - h(re'°)I < 
	for relO E s(00 ,6) 	 ...(3) 

Moreover 	f P (qt)g(e1t)dt < g(pe)' = 1-u(a) < l-. 
I 	 2 

Now p < 1-612 and P (q-t) = 	- 	
2( -t) > 
	12 2 

	

p 	(1-p) +1 p sin 	2 	
26(1+v it ) 

-, 
for e it 

2 2 	
(1-a1). 

and so f g(elt)dt < )6ir(l+v it )(l-) = lB0 	
6 	

.1-a1 

Now, onE, lul <and so g > 1-a1  which implies h > 2 	
by 

(3). So, on E*,  M(h)> 1 - --. Then, by the Hardy-Littlewood maximal 

theorem (Theorem 6.2), 

	

IE*L I{ e 1t :  M(hXe1t) 	3 	. fh(e')dt 

1-a i g(elt)dt 
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2B (1-a ) 

	

0 	 __ = 612 by (1) 

	

1-a1 	B0  

We-'now turn to the construction of the contour F. First we 

introduce some notation: 

S 	= { z = re 	2-n-1 < i-r < 2 fl 	2k7r < 0 < 2(k+1Ji 
k 	 - 	n+l — 	n+1 

- 	for n = 0,1,...; k = 

(see Figure i) 

For-'a region S = {relO: r 0  < r < r1, 00 < 0 < Ol} let T 5  be given 

by T5  = {re ' 0 : r0  < r < r1-(r1-r0), e 0 < 0 < el } . 

• We describe two procedures which we apply to the regions of - the 

form S = 	
iO 

U {z = re : 0 < l-r < 2-n-1 2kii 2n-a 
< e 2(k+l)Tr

11

Denote this class of regions by 

Case I. If sup 
T 

where Ju(z)I 	a 

S w111 be in the 

suplul < a1  < 
T 

iI > a, shade 

for some z 

'radial cjuar 

By Lemma 8.2 

the regions S E 	contained in S 

in T. Note that by Lemma 8. 1, each 

ter' of S 'nearest' T, and 

- 	lI 	IsI 	- 
S shaded 

Case II. If suplul < 	shade the regions S E  7 in S where 
IT S 

suplul > , and let R5  = s \ - U 	S. • Note that 
T 	 S shaded 

len I 	It+2ffj 5 1 	• 
S—ir 	 • 

We now proceed as follows: consider the two 'halves' of the 

disc, (z 	re 
iO 	0<r<1, 0<0<ir} and 

{z = relO: 0 < r < 1, ir < 0 < 27r}, separately. Apply the appropriate 
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case to the top half of the disc first, obtaining shaded regions 

	

(i) 	............. On each 	•( 	apply the appropriate case 

obtaining doubly shaded regions 	
(2) 	(2) 	(2) Repeat 

this process indefinitely. Observe that we alternate cases in passing 

from one shaded region to a shaded descendant. Carry out the same 

procedure for the bottom half of the disc and define r to be the 

union of all the boundaries of the RS  Is obtained from applications 

of Case II in both halves of the disc; (see Figure 2). To see that 

r induces a Carleson measure, it suffices to check that 

Ir flsI < CIS*I where C is some constant and S is a region in 9• 

By (5) and (6)we see that 

Ir n S1 
< 00   

I 	Tr 
(lt+2ir) 2S*I < 8s*. 

Note that any point in D for which Iu(z)I < ci will be in some R5 . 

Also JDR fl  TJ 	0. This follows since u has unimodular. radial limitsa.e. 

and any point in 9R5  fl  T is a point where lim sup 	
iO

u(re )I < 	< 1. 
r±l 

We now consider the construction of the Blaschke product B  

whose zeros are located on r C D. Choose y < 	and place points 10 

	

a 	(n > i) . on F so that y < p(a ,an+1) < 2y where a and 

a+1 are adjacent points on r and so thatp(an,am) > y for m 0 n. 

The proof of the following lemma is due to S. Ziskind 1551. 

LEMMA 8.3 {a} is an interpolating sequence in D. 

Proof. Since we have explicitly made p(an , am) > y for in n, by 

the remark on p.50 we need only show that the measure p = 

is a Carleson measure. Since r is composed of various edges of the 

regions S E  Y and since r induces a Carleson measure, we need only 



Figure 1 

714. 

FA 

- 

p 

Case I 
	

Case II 

Figure 2 
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show that, whenever A is an edge of a region S E ° and. 
10. 

z1, ..., z 	(z. = r.e 	are points on A for which the adjacent 
k 

p-distance exceeds y, then 	I (i-lz.I) < CIA1 where the-constant 
j=l 

C may depend on y. Consider first the case where A has fixed 

distance from the origin. Here r. = R is fixed (1 < j . k) and 

0 < 0 < ... < 0, say. We then have 
- z-z 	(o + -o) 

P Zyzj4.1 - ]-

+
1  

k 	

z 	l-R 

Thus 	(l-r 	 j .) < 	1 (0 	-0.) < 	Al. 
J=i 	- 	

+l 3 - 

In the case when A has fixed argument we have. 0 = 0 is fixed 

(1<j'zk) and rl<r2< ... <rk, say. Then 

r. -r. 	r. -r. 
j+l p 	j+1 3 v<n;z < 

- 	3' 3+1 	l-r. r. - l-r. 
J+l3 	3 

so that i- 	< 	(r.-r), giving • 
	

(l-r) 	Al. 

We now wish to verify that (1) and (2) (see p.69) hold for the 

Blaschke product B whose zero sequence is {a}. By our construction 

(1) holds since lu(z)l < 	on r. If z E  D and Iu(z)I < c, then 

z is in some Rs. But 	a  < y on 3R \ T and @R (1 T has 

harmonic measure zero as a subset of aRSS since it has length zero. 

We conclude from Theorem 6.9 thatIB.I < y < 	on 	and so (2)10 	S 

holds. 
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CHAPTER NINE 

We are now in a position to give our proof of the Marshall-Chang 

theorem (Theorem 6.8) described in Chapter 6. 

As noted in Chapter 6 it is sufficient to prove Theorem 6.8 for 

the case A 	 I where u is a unimodular function in L. 

00 

So suppose u is a unimodular, function in L. As described in Chap-

ter 8 we construct Blaschke products Ba for each a E (o,i) with 

the properties that for each a 

supu(z) I < 	< 1 where the supremum is taken over the zeros of 

-a
B , and 

1 
Iu(z)I < a lB (z)I <- 

-(X 	—10 

C 
LEMMA 9.1 For each a E (0,1), 	

a 
is invertible in A = 1H,u,u1. 

Proof. Suppose 	E A) and (B) = 0 for some a. By Theorem 

6.1 	is in the closure of the zeros {a} of B 	in 4,  (H). By 

(i) above Ma )I < 	< l for each n > 1 so that I(u)I 	< '• 

This contradicts the fact that 4 E (A). Thus each B is invert-

ible in A. 

Lemma 9.1 shows that 	a 
0 < a < 1] C A since B -a 

 is the 
- 	

-  

inverse of B. To obtain the opposite inclusion and thus prove 

Theorem 6.8 (since from Chapter 8 each B  is interpolating) we need 

only 	show that we can approximate u and U as close as we like 

in the uniform norm by functions from [H,: 0< a < ii,. First 

note that with 0 < E < l 	and 1 > l-tS > 
-th 

we have, by (2), 

z E G(B 3 ) 	lu(z)I 1 
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So using Theorem 7.8 we deduce that u C  VM0(B: 0 < cc < 1). By 

Lemma 7 .9 11 C VMO(Ba: 0 < cc < 1) also. Then by combining Lemmas 

7.10 and 1.11 we deduce that both u and u can be approximated as 

close as we like by functions from [H"0,: 0 < cx < ii . Hence u 

and 11 belong to 	 0 < cc < 11 and so A C [HCO, : O'< a < ii. 

So A = [HC,: 0 < cx < 11 and Theorem 6.8 is proved. 

We conclude this chapter by describing some recent results of 

CO 

S-Y.A. Chang concerning the structure of closed subalgebras of L 

containing H. If A is a closed subalgebra of L containing H co  

properly let CA  be the C-algebra generated by inner functions inver-

tible in A. Then in 1351 Chang has shown that the linear space H+CA 

is a closed algebra which is equal to A. Thus she has shown that any

00 

closed subalgebra of L containing H properly is of the form 

H + some C*_algebra. 
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CHAPTER TEN 

In the last four chapters we have been concerned with uniform 

algebras of functions on the unit sphere in C i.e. T. We now turn 

our attention to algebras of functions on the unit sphere in higher 

dimensions. In this chpter.we consider the possibility of extending 

the idea of Douglas algebras into higher dimensions. 

Notation. C n1  denotes the n-dimensional complex Euclidean space of 

all ordered n-tuples z = (z 1 , ..., z) of complex numbers z 1 , with 

the inner product ( z,w ) = z 1w1  + ... + z 	and the corresponding-  

norm li z " = 	z,z ) . Let B denote the open unit ball 

{z E Cr1: 11 z11 < l} and S the unit sphere {z E C: liz11 = i). From 

now on we will assume that n > 1 unless otherwise stated. a denotes 

surface area measure on S. We write L (s) for L 	
2 (a) and L (s) 

for L2 (a). H2 (S) denotes the closure in L2 (S) of the polynomials 

in the coordinate functions z 1 , ..., z. L2 (S) and H2 (S) are 

Hubert spaces and we also use angled brackets ( , ) to denote the 

inner product in these spaces. We write C(s) for the algebra of all 

continuous functions on S. 
2..n 

l-z 
The Poisson kernel is given by P(u,z) = 2 	

(z E B, u EE  s). 

As in the case n = 1, if f E L(S) then the Poisson integral of 

f gives a bounded harmonic function F on B, and F has radial 

boundary limits equal to f 

F(z) = 
	j 
2rr S ji z, 

This correspondence gives an 

a.e. • F is given by 

f(u)da(u), 	(z E  B). 

isometry between- L(S) and the space 

of bounded harmonic functions on B with the supremum norm. Under 
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this correspondence the algebra of bounded analytic functions on B 

COCO  

corresponds to the closed subalgebra H(S) of L(S). 

We denote by HO(S) + c(s) the set of all functions f E  L(S) which 

can be expressed in the form f = u + v where u E H(S) and 

V  C(s). W Rudin 1501 recently showed that H(S) + c(s) is a closed 

subalgebra of 17(s). 

Definition. A function • E L(S) is inner if 4) Eli(S) and 

14)1 = 1 

 

a. e. on S. 

It is not known whether any non-constant inner functions exist 

when n > 1. For a discussion of this. and similar problems see 

L.A. Rubel and A. L. Shields R91. In Chapter 6, for the case n = 1, 

we defined Douglas algebras in terms of inner functions. So in our 

attempt to extend this definition to algebras of functions on S we 

are immediately faced with this problem concerning the existence of 

inner functions. However one way of extending the definition is as 

follows. 

Definition. Let A be a (uniformly) closed subalgebra of L(S) 

which contains H(S) properly. We say that A is a Douglas algebra 

if A is equal to the closed subalgebra of L(S) generated by 

H(S) and the inverses of those functions in H which are invertible 
= 

in A. (i.e. in our previous notation, if A = [H ,b E A: b  Hi). 

Co 

Because of the inner-outer factorization of functions in H in 

the case n = 1 this definition applied to that case is equivalent 

to the definition of a Douglas algebra given in Chapter. 6' (for with 



n = 1 9  if a.function in H. is invertible in L, then its outer 

factor is invertible in H. and so the function itself is invertible 

in A if and only if its inner factor is), 

However it is soon evident that we cannot hope to piove that every 

closed subalgebra of L(S) containing H(S) is a Douglas algebra 

in the sense of this definition - in fact, not even H(S) + c(s) is 

a. Douglas algebra in the sense given, as we now show. 

PROPOSITION 10.1 Let h E  H(S) be invertible in H(S) + C(s). 

Then h is invertible in H(S). 

Proof. By examining the form of the Poisson kernel it is clear that 

as Izi -+ 1 the 'mass' of P(u,z) inside a small neighbourhood V 

of w on S (where z = rw for some' r, 0 < r < 1) tends to 1, 

i.e. - 2 f P(u,rw)di(u) -+ I as r -'• 1. 
2IT V 

(Compare the beginning of the proof of Theorem 7.2). From this it is 

clear that if f' E c(s) and g E L(S) then IIfg - (f'g)tI 	0 as 

r -* 1 where f'r(hl) = f(ru), g(u) = g(ru) for 0 < ± < 1 and u E  S 

and f, g are considered as being extended to B via the Poisson 

integral. An immediate consequence of this is that if 

f, g E H(S) + c(s) then Of 	- (fg)II, ~ 0 as r ~ 1. 

Now take h E  H(S) with hHL E H(S) + C(S). By putting f' h 

and g = h'- in (1) it follows that Ih(z)I > 	> 0 for all z in 

a shell of the ball, T, near the sphere, i.e. T = {z: r0  < Izi < l} 

for some r0  > 0. Thus 	is analytic in T. A theorem of Hartogs 

(see Hormander R51)tells. us that given c, open in C where n > 1, 

and K, a compact subset of 0 such that Q \ K is connected, then 

or every u analytic in 0 \ K we can find U analytic in 9 such 
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that u = U on c \ K. We apply this result with 0 B, K = B \ T 

and u = 	to obtain a bounded analytic function on B whose radial 

limits give a function which is the inverse of h, i.e. h is invert- 

= 
ible in H 

In fact in the case of a shell it is easy to see how to construct the 

analytic function U given by Hartogs' theorem. For if u is analytic 
u(z ,ri) 

in T then define U by U(z 05w) = 	w 	
dri for (z0 ,w) E B 

27Ti r,  

where r is described in the figure. 

2 
Proposition 10.1 implies that 

[H00(S),b1EHC0(S) + C(S): bEH(S)1 = H(S). It also shows that a 

non-constant inner function (if one exists) cannot be invertible in 

H(S) + C(S). This contrasts with the case when n = 1 where the 

function f(z) = z is inner and f 1  E C. This leads us to make two 

conjectures which we have been unable to prove: 

if f E  H(S) and f is invertible in L(S) then f is invert- 

CO 

ible in H(S) ;  

if f E H°° (S) + c(s) and f is invertible in L° (S) then f 

is invertible in H(S) + C(s). 

Proposition 10.1 shows that (1) follows from (2). (1) implies that 
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any inner function is constant. For a discussion of questions of this 

type see [491, [381. 

- There remains one further alternative method of defining a 

Douglas algebra in higher dimensions. Suppose we say that if A is 

a closed subalgebra of L(S) containing H(S) properly then A 

is a Douglas subalgebra if A is generated as a closed algebra by 

H(S) and those complex conjugates of functions in H(S) which are in 

A. i.e. if A = [H(S), 	E A: b E  H(S)1. For the case n = 1 

this is equivalent to our two previous definitions. For the case 

n > 1 H(S) + c(s) is now a Douglas algebra in this sense. This is 

because H(S) + C(s) is generated by H(S) and the complex conjug-

ates of the coordinate functions. However we conjecture that L 

is not a Douglas algebra in this sense, i.e. L OO(S) is not generated 

as a C*_algebra by H(S). Despite our intuitive feeling of the 

truth of this conjecture it may still be of interest to decide which 

subalgebras of L(S) are Douglas algebrasin this sense. 

We conclude this chapter by pointing out that Hoffman and Singer's 

theorem (Theorem 6.10) is not true for n > 1. This theorem shows 
00 

that when n = 1 every closed algebra which contains H properly

00  
also contains H + c, i.e. H + c is the smallest closed subalgebra 

of L containing H properly and is minimal amongst such algebras.. 

For n > 1 and 1 < i < n define C to be the following algebra 

of functions: 

C. 
1 	

{f E C(S): for each fixed value 

coordinate function 

ytic function in the 

1 z1 1 2+...+I zi_1 1 2+Iz 

w0  (with 1w01 < i) of the 

z. we can extend f to an anal- 
1 

'disc' 	{(z1 , ..., zn ): 	z = wos 

.+i z.12< l I w  12}L 



We now prove a well-known lemma which will enable us to show that 

H(S) + C. is closed. 

LEMMA 10.2 If H and B are closed subspaces of a Banach space L 

then the following assertions are equivalent: 

(1) there is a constant a > 0 such that d(f,HflB) < ad(f,H) for 

all f in B 

(2). H + B is a closed subspace of L. 

Proof. 'The natural mappings B -- L -'- L/I{ induce a mapping 

a: B/HflB -5- L/H. By the open mapping theorem, there is a constant a 

such that d(f,HflB) < ad(f,H) for all f in B if and only if the 

range B/H of a is closed.. Since H + B is the pre-image of B/H 

under the quotient map L 4- L/H, the space B/H is closed if and 

only if H + B is closed. This proves (1) and (2) are equivalent. 

This lemma together with W. Rudints result [501 that K(S)+C(S) 

is a closed algebra allow us to prove that nm (s) + C is a closed 

algebra for 1 < 1 < n. 

PROPOSITION 10.3 Let n > 1. For each i, 1 < i <n, H(S) + 

is a closedsubalgebra of L(S). 

Proof. Let 1 < i < n and let f E  C.. We have 

d(f,H(S)1t 1 ) = d(f,H(S)(_C(S)) 

5. ad(f,H(S)) 

for some constant a >0, by Lemma 10.2 since H(S) + C(s) is closed. 

°° Hence, by Lemma 10.2 again, H(S) + C. is a closed subspace of L(S). 
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Now let f E  am (s) and g E  C.. Then, since nm(s) + c(s) is an 

algebra, fg = h + k where h E H(S) and k E C(S). Fix z. = w , 
1 	0 

where 1w0 1 < 1. Then k = fg - h and fg - h is analytic in the 

'disc' 	{(z1 ,...,z): 	zi = w0, Iz ]j 2+...+Iz. 	12+Iz 	t 2+...i-lz 12<l-Iw 2 i-i 	i+l 	 0 

since f, h E ii(s) and g E  C.. Hence k E C. and so fg E H(S)+C. 
1. 	 1 	 1 ••  

Co 

Thus H + C. is a closed algebra. 
1 

Note that 	.fl (HCo(s) + c.) = HCo(S) and so, by symmetry, each 
liCo(s) + C i  is properly contained in 11(5) + C(S). Thus H(5)+C(s) 

is not the smallest closed subalgebra of L(S) containing H(S) 

properly. In fact there does not exist such a smallest closed algebra 

CO 

since if one existed it would be contained in i(s) + C. for each 1, 

1 < I < n, and so would be contained in li(s). We conjecture however, 

that, for each i, 1 < i < n, fl (HCo(S) + C.) is a minimal closed 

CO 	
ji 	 3. 

subalgebra of L(S) containing H(S) properly. 



85. 

CHAPTER ELEVEN 

The Toeplitz operators on the classical Hardy space H 2  on the 

unit circle have been the object of much study. They are operators of

00 

the form T 4) f = P(4)f) where 	E L and P denotes the projection 

of L2  onto H2 . An account of this theory, which is concerned mainly 

with describing the spectra of these operators, and with operator 

algebras generated by them, can be found in Chapter 7 of R.G. Douglas' 

book E 391 . Connected with the Toeplitz operators are the Hankel 

operators which are operators from . 	to L20112  of the form 

H4)f = (I-P)(4)f), i.e. H4) = M 4)  - T ,  where M 	denotes multiplication 

by 4) on L2 . The object of the two remaining chapters of this thesis 

is to study some aspects of Toeplitz and Hankel operators on the unit 

sphere in Ci', in particular to determine how, far the one -variable 

theory remains valid. In this context Toeplitz operators with contin-

uous symbol have been studied by L.A. Coburn [36] and some relatedoper-

ators byR.R. Coifman, R. Rochberg and G. Weiss [371. Some recent 

developments along these lines are described in [381. 	- 

Notation. For 4) E Lco(S) we denote by T4)  the operator on the Hubert 

space 112(5) defined by T 4) f = P(4)f) where P denotes the orthogonal 

projection of L2(S) onto 112(5). T 4)  is called the TOeplitz'operatOr 

with symbol 4). We denote by 11 4)  the operator from ii2 (s) to 

L2 (S)9H2 (S) defined by H4) f = (I-P)(4)f) where I is the identity 

operator on L2 (S). 11 4)  is called the Hankél operatOr with'symbol 4). 

We will make use of many easily checked results such as thelinear-

ity of the map 4) 4- T 4)  and the fact that T 4)  = T. Moreover, if 
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p E H(S) we have T T = T. 

We will also use the naturalorthonorma]. basis for H2 (S) given 

'l• 	(n+IkI-1)! 	k 
by ek = (2) 
	

k 	
z 	where k = (k1 , ..., k) is an 

n-tuple of non-negative integers and we take Iki E k 	+ k 1  + ... 
• 	 k 	k 	k 

- 	, 	, 	k_ 	1 	1 	n 
k.,  = k1 . k2 . .. k., z =z1 	z2 	... z 	where z = 

For the sake of simplicity we assume for the moment that n = 2. 

We wish to make use of the following parametrisation of the unit sphere: 

io 
Z = ( z1 ,z2) = (pe,(l-p)e) 	(0 < p < 1; 0 < 0, 4 < 2ir). For 

f E c(s) define f by f(rz) = f(z) 	(r > 0, z E s). Then 

f fda = 	C f fdp) 1  where B is the ball centred at the origin, of 
S 	 B 	

r. 

radius r, with volume measure dPr• So 

f fda = limd 	2 	
0 9  02 )r,r2 dr1dr2 0 1d02  

S 	6401<r +r <(i+ô)
2 	(r +r2  

i01 	 102 
where z• = r1e 	, z2  = rae. 

= lim 2 
 f( 	 , 0 , 02 )dp 1dp 2d0 do  

5-*0 	l<p1+p .(l+5) 	(p1+p2) 	
1 

= l+2ô+62  

putting p 1  = r1 2 , p 2  = r2 2  

1 
2ir 27r 	 p1 

2  

urn 1 1 	f 	2 ±'( 	1 	Oi 02)dp1dp2dO1dO2 
-0 	0 0 1<p 1+pl+26+6 

1 

2ir 2ir 1 	1+25+62-p 
= urn -j j f.r 	f 	' f( 	 1 , 	02 )dp 2l dp 1d.Da 

540 	0 0 0 	1-p1  

2ir2irl 	1 _1 
- 	 1. f f f(p1,0,02)dp1d01dO2. 

000 

Since the continuous functions are dense in L 1(S) this shows that 

with respect to the (p,0,) set of coordinates the measure becomes: 

da = dpdOd. 

The standard basis for ii 2 (s) is now given by: 
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e 
1 	(k++1) 	1 ] k/2(-p) 	e 	e 

£12 ikO ip 
=-[ 

	

k& 	2 	k!9 
7r2 	 (k, £>O). 

Note that this parametrisation extends to the case n > 2. In 

that situation we put 
.ie 
- 	

iO 
	
ion_ 	 iO 

 (pe 
i p e 	,...,p 	 1_P_.._P)e  ). _1e 1 	, 2 	 i 	n_i   

For the case n = 1, P. Hartman 151 proved that H 	compact

00  
if and only if 4, E  H + C. We now show that the corresponding theorem 

is not true for n > 1. We look at the case n = 2 and consider 

Toeplitz operators T 4, where the symbol 4, depends on only the coor- 

dinate p, i.e. 

i0 

	

4,(z1 ,z2 ) = 	e , (l-p) e ) = g(p) where g E L [0,11 , 

(where L[O,11 denotes the space of complex-valued essentially bounded 

functions on [o,i]). 

It is clear that this type of symbol cannot occur when n = 1 and it is 

among Toeplitz operators of this class that we discover some differences 

between properties in the cases n = 1 and n > 1. For example there 

exists symbols 4, E  C(s) and p E L(S) of the above form for which 

the spectrum of T 4, is disconnected and the essential spectrum of T 

is disconnected [38] . This contrasts with the case ri = 1 where the 

spectrum and essential spectrum of any Toeplitz operator is always 

connected (see [391). 

First we note when a symbol of the above form is in Hrs) + c(s). 

PROPOSITION 11.1 Let 4, be a symbol which depends only on p. Then. 

4, E H(S) + c(s) if and only if g is continuous on [0,11. 

Proof. One implication is clear. Conversely ,  if 4, EH(S) + C(s), 

.-W-.rite 4, = U + Y with u E H(S), v E C(S). Let 



p(z1,z2 ) = q( I z112) where q E  L[ 0,1] and let q be orthogonal to 

H (S); notice that this is equivalent to q annihilating the constant 
1 

functions of t ,. i.e. f q(p)dp = 0. Then f upda = 0, i.e. 
0 	27t 27r 	. 	 S 

f (q-v)qapdodp = 0. Let v(p) =If f v(p,O,p)dOdp, 0 < p < 1. Then' 
S . 	 . 	

. 

1 

f [g(p) - (p)Jq(p)dp = .0. This is true for all such' q. Hence g - 

0 
is a constant. But 	is continuous and so g is continuous. 

PROPOSITION' '11.2 Let 	be a symbol which depends only on P. Then 

T4,  is a diagonal operator. 	 . 

Proof. We. 'have 

P 	(l-p) 	e . e 	g(p)} T)ek, 
= 	 k/2 	£12 ikO i9 

k 
k!2 	

p (i-p)g(p)dp1ekk  
0 

(k++1) 1  k 
where 	= 	k! 	I p (1-p)g(p)dp. 

We now consider the Hankel operator H 4)  when 4) is a, symbol which 

depends only on p. Let f E  He (S) have Fourier series 

a 	,41Tek. Then if 4)(p,(3,4i) = g(p) we have 
k,2>0 

H4)f = (I-P)(M4) f) = a[g(P)e 	
-. 

Ak&IUIkk 
k, £>0 

Thus 11 4) 	is compact kR,.-;kkk 	
0 as k, £ 	i.e. if 

(k++l) 	pk(_p)g(p) 
-. AkI2 	~ 0 and only if 

0 

as k, £  

Note that the ,•  Xk t s are 'weights'of , g on [0,11 against the 

functions 	 p1(1-p) 	and so the requirement (1) above for 11 4)  

to be compact is that g satisfies' a type of 'weighted VMO' condition 
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on [0,11.. This observation leads to the following theorem. 

'THEOREM 11.3 Let ' 0 (p 	= g(p) where g E LOO[ 0,l) . Then H i8 

compact if and only if g E VMO on [o,il. 

(Remark. By g E VMO on [o,il we mean that the function h defined 

be h(elt) = g( jt ) for 0 < t < 2w belongs to VMO as defined in 

Chapter 6.) 

Proof. (a) Let g E VMO and let c > 0. Choose a <' such that 

S(g) < c (where S() = S2•a(h) as defined in Chapter 6). 'Let 

be the interval [ 	- a, j 	+ a] fl [0,11'. It is clear from 

the nature of the functions 	 that 

(k+9.-I-l) 	k 	£ 
(a) 	, sup 	 , , 	 p (i-p) = c 	~ 0 as k, 9. ~ , and 

 kk 
pel 01].]9, 	. 

I'9.I ' 	'k:9.! 	
- i1 	= k9. 	

0 as k, 9. 

Now chodse k, '9. large enough so that c. Then 

Igi 	= 
! 

g(p)dp 
(k+9.+l)JJ 

ki 
- (k+9.~l) 

IjI9.I 
'k& 

,. 	 k 	.9.' (l-p) 	g(p)dpl 
+ I[ k9. 1\i kZ  

< T-I-7  fg(p)[ 1 
- (k+9.+11 1 	

k9.1 dp+ak9.11 g 	- 

•5• hg11 	(ak9. 	+ k2) 	
< 2chIgll ' 

Also 'IIg(p)e9. - 	 I9.ekL2 
(k+9.+l) pk(1_p)9.(p)_g 	12 dp

kk 
, 	 k, 	 2. 

'l-pJ 	1g
/
p)-g1 	dp 

ic 
'k 	

' 	 R. 
2.  

. 	 k 	9.' 	 2 
+ 	 j 	p 	(l-p) 	g(p)-g1 , 	dp 

k' 9.' 
•. 10, 11T 	 ' 	 k9. 

kt 
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1 	f tg(p) - g1  1 2 dp 
I 	 kZ 

+ 	1 	f 	(k+2.+11 1  1k(1)21] Ig(p)-g1 1 2  dp II 	I 
kt 'k2. 	

kk 

+ 1tallgO 2  

KSa( g) + 1tBlI g1l2 + 	k2. g 2
00 'kk

where K is a constant, using Lemma 6.3 (as in the proof of Theorem 

6.5) 

<Ke + 811g11 2 c 	 ...(3) 
CO 

Now 1g1  ek 2. 	Ak ekfl2 = 1g1 	-. A1. 	201gll 	by (2). Hence 
2. k 	 k  

hlg(P)e2. -: Akekfl2 .. llg(p)e 	- g] 	ek2.112 + g1  ek 2.
kk  

,-1 	1 

< (K + 811 g1h) 2 e + 2chlghl 	by (s), 

i.e. hlg(P)e2. - Ak2.ek2.l12 -' 0 as k, 2. - 	. The remarks before the 

theorem show that this implies that H is compact. 

(b) Suppose Hc, is compact. Then, by (i), 

1 k£ 
• 	 kL! 	

p (1-p) Ig(P) TA 2.I 2dP -* 0 as k, 2. + . 

We wish to show that g E VMJ on [0 ,il. 

Let c > 0 and let b E  [0,1] be rational. Let I be any interval 

contained in [o,iJ with centre b. Suppose III = a. 

k 
Amongst those k, 2. that satisfy j 	=b choose k, 2. large enough 

• 	• so thatO'kX 	
c and f 	 < c, and

kk 
(k+2.+l) 	pk(1_p)2.g(p)_x2.2 	< c. We then have 

k!2 
0 

2. (k+2.+1)' 
--j-f g(p)X2.I2dp =TI -j-  I Ig(p)-A 2.I 2[1_IIIp i1-p) 	k!2. 

	

(k+2.+1)! 	
Ak2.12 k 
	2. 

+ 	k2. 	 - 	p (1-p) dp 

• 	• < )411g11 
2 k2. + 	

< c(11lghl 2 + 
- 	co 
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and Ig1X9j< 	kk) as in (a) 

.:5. 2cIIgIl0 

Therefore ]TJ f 1g(p)-g1 dp [ *r fIg(p)-g1I2dp1 

[ l4r fIg(p)-AI2dpI 

2 	1 

+ [-jj f I .— Al2,IdP1 

1 	 1 

I c(1IIgll 	+ l) .  + 2 e II gfl. 

Now since I was any interval contained in [0,1] with rational centre 

and since the rationals are dense in [0,11 we have shown that f E VMO 

on [0,1]. 

Remarks. (i) Independent of the above work R.R. Coifman, R. Rochberg, 

and G. Weiss [37] have extended the definition of VMO from the circle 

to the sphere in C  (n > i) and with this definition they essentiä.11y 

prove 	the result that, for 4 	L(S), 

E VMO PM - MP is compact on L2 ( s). 

Now H = M 	PM4, : H2 (S) -'-L2 (S) and so H 4, is essentially 

M4,P - PM 4,P acting on L2 (S) which shows that 

4, E  VMO 4 H and H are both compact 

and so in particular their results contain Theorem 11.3. However their 

proofs are not easy and involve the study of commutators ofsingular 

integral operators. 

(2) Theorem 11.3, together with Proposition 11.1, show that 

there exist symbols 4, E  L(S) such that 11 4, is compact but 

4, q H(S) + C(S). 

The methods of L.A. Coburn [36] show that if 4, E c(s) then 114, 
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is compact. One may ask: for what 	E L(S) is 11 compact? It 

is clear that the set A of such 4) is a closed subalgebra of 

L(s) 	containing H(S). In the case n = 1, A = H + C. Remark 

(2) above shows that this is not true in general and remark (1) showsthat 

the largest C*_algebra contained in A is the algebra 

L(S) fl VMO = QC. It is natural to ask whether A = H(S) + QC - 

especially in the light, of the results of Chang (mentioned at the end 

of Chapter 9) which show. that,when 'n = 1, any closed subalgebra of
00 L containing H is of the form H+ some C*_algebra. We can split 

this problem into three parts: 

00 

Is H + QC closed? 	 . 

Is (H + QC) 	an algebra!? 
00 

Th A the closed algebra generated by H + QC? 

We have been unable to answer any of these questions. This would seem 

to be a test case for' extending Chang's work to the spheres in higher 

dimensions. A related problem is to describe the largest C*_algebra 

contained in H(S) + c(s). When n .= 1 it is QC (see 1511 	but 

since QC H(S) + c(s) this is false for n > 1. 
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CHAPTER' TWELVE 

In the classical situation the Toeplitz operators are character -

ised among operators on H2  by the operator equation TZ*T]Z = T, 

where T is the Toeplitz operator with symbol + where fi(z) = z 

on T. It is well known that T acting on H 
2. is the canonical 

model for the unilateral shift (of multiplicity one) acting on a separ- 

able Hubert space. In this chapter we extend this result by character -

ising the Toeplitz operators on H2 (S) by the operator equation 

T *TT = T where T 	is the Toeplitz operator with symbol 

where 4(z l ••• zn ) = 	on S, 	(1 < s < n). 

One part of the characterisation is easy: for if T = T. is a 

Toeplitz operator then I T *TT =. 	T- 	= T n 	T = T. 
z 	z 	z.4Z. 	 . 	2 	4 

	

s=l.s 	s 	sl 	S S 	Lz 
.s1 

We now want to show that if 	T' *TT = T then T is a Toeplitz 

operator. 

First note that if 4i is a non-negative measurable function on C. if 

z E  S and if F() = p(( z 9 TI) ) ( r 	c'' ), then f Fd(n) is inde- 
- 	 S 

pendent of z. This follows since da is a rotation-invariant measure. 

We want to use this fact in a particular situation, namely when 

= I1+x I 2m (x E C, mEN). This gives that C 	fI1z,r I2mau(n) 
S 

is independent of z in S. So, since Ii + (z,r? 	'peaks'.when 

Tj = z, for any neighbourhood U of z in S we have 

-it 	 ri) .2m 
Cm  j fi + 	( z, 0  da(n) - 0 as m -- Co 

\U. 
as the 'mass' of the integrand lies in U more and more as m -'- T. 

So, for any g E c(s), it follows that 

Cm 1  f 
g(n) 
	+ ( z,) I 2mdY(n) -'- g(z) as m -  00 

(ES) 



Let f (k)() _Ck.(1 + (z, )k 

. (k) E H2 (S) and Of 
 (k) 

TI 	 n 	T 	2. 

Suppose . 	T. *TT 	= T 
s=l z 	z  

Let 4' be a weak*_limit point of 

Then, for each n E 5,  k E N, 

and put 4'k 	
= < 

in 	TI 

in L°° (S). Then, for any 

914. 

g E C(S), 

f g(n) 4' (n)da(ri) + f g(n)4'(ri)da(n) as  j 

	

5. 	 S 
for some subsequence 4'k of 4'k (since the weak*_topolOr on the 

Co 

closed unit ball of L (s) is metrizable - see 156, p.14261) i.e. 

	

(k.). 	(k..) 
urn f g() ( Tf, f 	) da(ri) = f g (r)4'()da(n). Now,by (u), 
jS 	

.rl 	n. 	. 	 S 
the right hand side is given by 

I g(n)0(n)dc(n) = urn f 	C 	n)g(z)i+(n,z) I2rnd()da() 
S 	 rn4°SS 

rn 

	

= urn f f C 	(n)g(z)i+<z,r [2md()d() 
m-* 	rn 

	

(k.) 	(k.) 
Therefore urn f g()( Tf 	' If 	' )da(rI) 

	

11 	11 

	

= urn f / C 	4'(n)g(z)i+(z,r? I 2mda(z)d(n) 	. 	...(2) 

m-'°SS 

For the sake of simplicity we will assume from now on that n . 2; 

the same results can be shown, in an identical fashion, for the 

general case n > 1. 

By choosing g to be suitable continuous functions on S we will use 

(2) to evaluate (pQtt 
	in terms of 4' for all integers 

Ps q, t, u > 0. However we have to be careful about the order in 

which we evaluate the inner products. 

-  
To start with choose g() 	

r t- u2 with t, u non-negative integers 

(k) 
(and from now on). Then. f g(r) (Tf 

(k)  
 ,f 	) da(n) 

S 
k 

	

— 	U 
<T(. 	

(k] (i j 	j— j ..  1-i 
 

- 

	

TI Z L i 2 	i=O 5=0 	1 

k v 

  d(n) 
 

P° q0 pJq 
 



k k 

Ck '..  
i0 P=O 

x  
S 

j=0 	o(;) (}.1] (} 
- j+t- i-j+u q p-q 
T1 
	112 	Ti 1  r 2 	dar 
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J +t k 	1 
(k] (i] ( k  ) 1i+t+uCk 	 ± 	 j 

(Tz 3 z' 	z1 	 X 

10 j=0 

1 j+t x f p 	(1-p) 	dp 
0 

(where the bonimial coefficients here, and from now on, are taken to be 

zero if they have no meaning), 

= 	-' 
 	-

k)
J 
 fi

j
)
J 
 f k 

+u
) 

-
(i+t+u) (jt)(i-j+u)! 

k 	-.  0
1
i 	-+t Lj+t-j 	(i+t+u+1)-! 0 

 

X <Tz z 	
z j+t 1J+U 

	

= Ck' 	(+ti+u} i+t+u+1 	
(}(TZ1i Z2 i-i ,z1j~t z2i_j +  i=0  (k) 

Now T *TT + T *TT = T, and by iterating this equation we 
zi 	zi 	z2 	z2  

obtain 

(Tf, 	
r 	in 	9. m- 	9. 

	

= L 
m 	

(Tz1  z2 
2.  f,z 1  z2 	for all f,g in 112 (S) 

=0 

and any in in N. 

f - 	 U 	(k)  ,f  (k)> du(n) 	[Ck 	1)f i 
So 	

Ti 	Ti 	 i=0' 	
i+t+U+l1xi 	t+U] 

x (Tl ,z1t z2  * 

In an identical fashion the terms on the right hand side of (2) are 

given by 

f fc' z2  I1z, I2mda(z)dG(n) 
S  

n 	T1  
1 

= [C T 
M 	. 

in 

kj i+t+
in
uJ i-t+u+i' f(n)1t2 

1 

	

	

Uda(n) 

=0 

M f
rn

)[c 	
i0 	

1+t+UJ i+t+u+11 (,z1tz2 

Now since C 0 
in 	

() (i.- 	 )' 
in . 	1 	t+u i+t+u+l 	

as in ~ 	for any 
i0 
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t, u E N, (2). together with (It) and (5) give 

(T1,z1t.z2 	= <,z1 Ez2 	t, u > 0. 

We next evalaluate the inner products of T 	against the basis 
zi  

elements of. H2 (S). For this we choose g(n) =n i rl i  r1 2
tU• Then, as 

before. f g(r) ((k)f(k)) da(n) 
S 

k 	k 	 (k] (k]_((TzP1  = C' 	 j 	1 
Z 2 	,Z1 Z 2  

	

Ic 	 ')X 

i0 p0 j0 q=O 

t- u- j- i-j •q p-q 
f fl 	fl 2  fl u  fl2 	i 2 	d(r) 

= 	
-1 	 fkfl'i) ( i .   k 	I (i+t+u-i) 	. 15 1-15 	t+j-1 i+u-j

Ic 	i=0 	0 W iJ +t+u-iJ t+j-1 j Tz z
2 	,z1 	Z2 	X 

X f Pt+J(lp)i_J+Udp 

= 	
-1 	 (k] (i] I Ic 	](i+t+u-1

I
(t+j)!(l

- 
 i+uJI 

	

Ic 	j=0 	j 1+t+u-1 	tl-j-i 	(i+t+u+i)1 

t+j-1 i+u- 
(Tz 3 z 115 ,z 	z2 	

j ) 

k 	t, 	 . 	 1 	i'. 	 1 	r. 
kj 	k 	i (i+t+u-1)! 	r l'I 	v 111 

- Ic 	1=0 ifli+t+uiJ (i+t+u+1)! 	j=0 	
+ 1 

j1 j-1 

15 1-15 	t+j1 1+u+j 
x 	z2 	,z1  

Now (3) shows that 
rn 

(Tz1,z,tZ2 	 NX0  
£.+1 M_ 91 	9+t m+u-2 

(Tz1 	z2 	,z1 	z 2  

for any rn in 

w(V-11 
w-1v w-v t+v-1 W+UV) 

 <Tz1  z2 	,z1  
V=1 

and so 

I nini
- 	( Tf (k)

, 
 (Ic)) da(ri) 
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= C. 	.i!o: [ .(i+t+u1) .::-i t (Tl,zlt1z2  

+ i (Tz1,z1tz2)1 for any t, u > 0. 	 ...(T) 

Again, in an identical fashion we obtain 

f f CM-
1  4Wzl  z 1 t Z 

2 
U 11+  (z,r I 2mda(z)d(fl) 

- [c 	 m 	) '(j+t+u-l)! 	tl 
- 	m 	. 	

iJi+t+u-ij (i+t+U+l)11[t 	
,zi 	z2  

+ i ( z1,z1tz l for any t, u>0. 

So proceeding as before, by using (2) together with (1) and (8), and 

since we know the inner products of Ti from (6), we obtain 

<Tz1,z1tz2 	= <z1,zz 	t, u>0. 	 ...(9) 

By symmetry, with g() n21 n2 
 the same procedure gives 

<Tz2,ztz2 	= < z 5 z1 z 	t, u > 0. 	...(io) 

Next we evaluate the inner products of Tz 12  by choosing 

g() =n 1 ri  1 T1 . Then, as before, 

f g(n) (Tf,f')dci(ii)T1 	T1 

k k i 

Ck '  
i=0 P=O j=0 

xfn 
S 

PO (k] (ki ífl  (p 
 pJ jj qJ 

(Tz1 	, 12P- 

q= 
2- t- u- j- i-j 
L ni 2 	2  

	

(i+tk
+u-21 

( 

j

t+j-2 i+uk 	[ic) 	 fi+t+u-2
Ck' 	

. 	iJ j 	t+j-2 J Tz 13 z213  ,z1 	z2 	) x 

i=0 
1 	 - t+j 

x 	p 	(l-p)
i+u-j  dp 

0 

	

- c -1 	 (kj Ii)I 	k 	)(i+t+u-21 (t+j)(i+u-j)! 
k 	i0j0 iiiti+t±u2J t+j-2 ) 	(i+t+u+l) 

j i-j t+j72 i+u-j 
x <Tz1  z2 	,z1 . 	z2. 	> 
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= Ck 	Jofl(t±2 	
([(t 2 1) .'( ~(2t*l)i. 	(=} 

	

+ 1(1-i) 	
(i72]l.T1iz2i,z1t+i2zi+Ui 

(3) shows that 
in 	 Z+2 ni-9 	+t m-P..+ 

	

(Tz12,z1tz2 	= j (Tz 	z2 	,z1 	z2  

- 	 = 	w-2 (T 	
t+v-2 u+w-v 

2 v-2} 	
Zi  Z2 	,Z1 	Z2  

and so 

T1 1  T1  1 T12 	T1 

2- t- u (Tf 	,f 
(k)> 

 da() 
T1 

k (k]" (i+tk u_ 	(i+t+u-2)! (t2-i)(Tl,z1t2z
[c

2
= k  +2J (±~t~u+i)111  

1=0 

+ (2t+l)i (Tz12z1t_l z21J) +i (i-1) (TZ12,Z1tZ2u) 

As before, by comparing both sides of (2) and since we know the inner 

products of Ti and Tz1  from (6) and (9) we obtain 

(Tz12 ,z1t z2  = ( z12 ,z1t z2u) t, 	u > 0 	 .. .(ii) 

By symmetry, with g() =n 
2 T1 1  n2 

the same procedure gives 

(Tz22 z1t z2  = (. z 2 z t z  t, 	u > 0 	...(12) 

If 	t + u>l 	we can evaluate the inner products 	(Tz1z2 ,z1t z2 	by 

using the Operator equation and our previous results: 	for if, for 

example, t > 1 we have 

(Tz1z 2' 1 z 	2 
U) = < Tz2,z1 t-I  z2  U)  - ( Tz2',z1 

.1.  z2 

t-1 	 2 t-1 = ( z2 ,z1 	z2 u - ( z 2  ,z1 	
z2 u+l ) by (io), (12), 

= (z1z2 ,z1 z2  

If t = u = 0 we evaluate (Tz 1z2 ,]) as bfore by equating both sides 

of (2) with g() = rì 1n2 . 

If we continue in this fashion, i.e. we next evaluate the inner products 

of Tz13 , then 	theti Tz12 z, then Tz1z22 , then Tz1 , etc., 

and collect all the identities such as(6), (9), (io), (ii), (12), etc., 



we obtain 

	

p q 'r 5.. 	 pq 	r 

	

(Tz1  z2  ,Z1  Z2  1 	z1  z2  ,z1  z2  

- 	for all. non-negative integers p, q, r, S. 

Since the polynomials in z1 ,z2  are dense in H (s) this shows that 

(Tf,g) = (4)f, g  )= (Tf,• for all f, g in H 2 (S) and so T = T 4) ,' 

i.e. T is the Toeplitz operator with symbol 4). We have thus proved 

the following theorem. 

THEOREM 12.1 Let T E(j-j2 ) 	Then T = T 4)  for some • E L(S) if 

and only if . 	T *TT = T. 
sl Z 	s 

Remarks. (i) If T is a diagonal operator on ii 2 (s) then T is the 

Toeplitz operator, TA , 
if and only if I T *TT = T and here the 

s1 	s 	
s 

symbol 4) is of the type described' in Chapter 11, e.g. when n = 2, 

= g(z1 I ) = g(p). This can be proved in an elementary fashion 

by appealing' to the solution of a classical Hausdorff moment problem 

which gives necessary and sufficient conditions on a sequence Il k  } such 
1 

that 	= j 	 for some function 	E L[O,1]  (see 154, p. 1111). 
0 
(2) An alternative approach to proving Theorem 12.1 is as 

follows: first prove that any T satisfying 	T 
*TT  z = T can 

s1  
-be 'lifted' to an operator S on L (5) which satisfies 

M*SM = S (where M4)  is multiplication by 4) on L2 (S)) and 
s=1  

2  such that T is the compression of S to H(S). The proof of the 

theorem is completed by showing that this operator equation involving 

' 

operators on  
2 (s) characterises the multiplication (by LOO(S) functions) 

operators on L2 (S). This can be achieved by elementary Hilbert space 

inner product calculations using the fact that an operator which commutes 

with M4)  for all 4) in L2 (s) is itself a multiplication operator. 
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For details of this argument see [38] 

It is well-known in the classical case that 0 is the only compact 

Toeplitz operator on H2 . We extend this result to higher dimensions. 

COROLLARY 12.2 .0 is the only conrpact Toeplitz operator on H2 (S). 

Proof. Suppose T is a compact Toeplitz operator.. Then by Theorem 

12.1 	T 
z 
*TT = T and iterating this equation we obtain 

 s1 

T 
= s 1+..+s.=m 55  fl 

T- '...T- 	. 

	

'..T 	...(13) 

for any m>l. 

k 	 CLS 
Now for 1<i<n, T 	~ 0 weaklye k-* 	and so as m ~ 

Si 	Si 

e ach of T 	. . .T n ~ 
z 	 1 0 weakly where s +.. .+s n = M. T is compact 

z  1 	n 

and-so TT 	T 	 ~ 0- strongly as m 	(s1+...+s = m).Hence 

the operator on the right hand side of (13) converges to zero strongly 

as in -*- co . The identity (13) then gives T = 0. 

There are many other interesting questions in the case n > 1 which 

arise by looking at the vast literature on Toepiitz operators in the 

case n = 1. We conclude this chapter by suggesting some further 

operator-theoretic generalizations to the case n > 1. 

	

(i) For 1 < i < n it is not hard to see that T 	is the direct  Z. 	. 

1 

sum of a countable number of weighted shifts e&h of which is similar 

to the unilateral shift of multiplicity one. (Tzi is not, however, 

similar to a countable direct sum of unilateral shifts of multiplicity 

one, i.e. a unilateral shift of countable multiplicity.) What are the 

invariant subspaces of such operators? Or, what is perhaps the proper 
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question to ask, what are the common invariant subspaces for T, 

1 < i < ii? Is it possible to deduce anything concerning function theory 

on the sphere by examining such operators? 

{T: 1 < i < n } is. a set of n commuting contractions on a 

Hilbert space. Can we learn something by examining the dilation theory 

which exists for such sets of operators. 

In the abstract classical theory isometries play a crucial role, 

e.g. the Wold decomposition tells us that every isometry V has a 

unique reducing (closed) subspace M (i.e. invariant for V and V*) 

such that VIM is unitary and VIM is unitarily equivalent to a 

unilateral shift operator. It seems plausible that a corresponding 

theory exists for commuting n-tuples of operators (T1 ,...T} which 

satisfy T1*T1+...+T n *T = I. e.g. can we extend the Wold decomposi-

tion to the following result: if {T 1 ,. ••Tn} is a set of n commut- 

ing operators on a Hubert space H with X T.*T. = I, then there 
j1 

is a closed subspace M of H, reducing for each Tj  31 1 < j < n, 

such that T.IM is normal and T.IM is unitarily equivalent to a 

countable sum of weighted unilateral shift operators for each j, 

1 < j < n (the weights of these operators being determined by the weights 

of the operator T 	on H2 (S))? 
Z. 
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