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'PREFACE

'_The material presented in this thesis is claimed as original with
the exception of those sections where specific mention is made to the

contrary.



ABSTRACT
The thesis is composed of two separate and distinct parts.

Part one is concerned with the problem éf'determining when certain
linear mappings are necessarily continuous with partiéqlar attention
being given to derivations.

Chapter 1 consists of a discussion of the separating space of

'aviinear mapping. Chapter 2 contains a-description 6f the Banach
algebra Ll[O,i] and some of its properties. In Cﬁapter,B_ﬁe considgr
defivations on Ll[O,ll, proving iﬁ Theorem 3.1 that they afe necess-
arily continuous. In Cﬁapter 4 we extend this result to module deriva-
tions and in Theorem k4.2 ve gi§e sufficient conditions on a‘Banach
algebfa B such that every module derivation from VB is continuous.
When B is sepafable and commutative we can imﬁrove_Theorém h,e.and
then it is easily seen that one of the sufficieni conditions is best
possibie. In-Chapter 5 we give sufficient conditions on a Banach'

algebra B such that certain higher derivations from any Banach

algebra onto B are automatically continuous.

Part two is concerned with the recent result of D.E. Marshall and
S-Y. A. Chang that every closed subalgebra of L(T) (where T _is the
unit circle) éontaining Hm(T) 'is a Douglas algebra. Using their tech-
niques we give a proof of this result and discusé generalisations of
these ideas and related concepts to higher dimensions.

Chaﬁter 6 consists of a discussibn of Douglas algebras, functions
of vanishing mean oscillation (VMO), Carleson measures and other
topics. In Chapter T we geheralise the spéce of VMO and provide a

characterisation of this new space in terms of Carleson measures. Using



,theée ideas we.prove the Marshall-Chang theorem in Chapters 8 and 9.
Chapter-lo discusses the subject of Douglas algebras in higher dimens-
ions. Chapter 11 gives a description of a particular class of Hankel

. operators on L2(S) (where S is the unit sphere in gn). In
'Chaptef lé we characterise the Toeplitz‘operators amongst operators on'

HQ(S) in terms of an operator equation. In Chapters 10, 11 and 12 we

pose several open questions.
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CHAPTER ONE

In this chapter we list some definitions and propositions which

we shall need throughout the first part of this thesis.

Notation. X, Y, Z will denote (évomplex) Banach spaces, ®(X) will
denote the algebra of bounded linear operators on X, and ®B(X,Y)
will denote the algebra of bounded linéar operators from X to Y.
tFor a'set U in a Banach space the clésure,of U is given by U.

Throughout this thesis C means strict inclusion.

Central in our approach to proving that certain 1ineér mappings
are continuous is the concept of the separating SPace which we now °

define.

Definition. Let S be a linear mapping from X into Y. The

separating space, G(S), of S .is given by

G(s) = {y € Y: there are x >0 in X with Sx ~+y in Y},

Some elementary properties of (S) are listed in the follow-

ing lemma,

LEMMA 1.1 (a) G(8) is a closed linear subspace of Y,

(b) S Zs continuous if and only if G(S) = {0},

(¢) <Zf UEB(Y,z) then (UG(S)) =G(Us) and there
18 a constant M (independent of U and 2Z) such that if us 18

continuous then lusl < miul,

(d4) Zf T €8(X), R EWB(Y) satisfy RS - ST € B(X,Y)



then 'Rc;(s) gc;(s) and (R@G(s)) = G’(ST),

| “Proof. (a), (b), (c) are well-known and proofs can be found in [28].
(v) is merely the ¢losed graph theorem and it is this property of" A |
a(s) that will provide us with a criteria for 'the continuity of S

inA particﬁlar situations. (c) is known when RS - ST = O. We prove
the case RS - ST EB(X,Y): let y EG‘(S) —so that there are Scn in
X, xn+0 and an+y. Then Txn+0 and ‘ |
8Tx = (ST - RS)x + RSx_ - Ry so that Ry € G(S). Hence

‘ﬁG(S) Cg(s). Also it is clear that G(RS) ¥G;(ST) a.nd sov(c)' gives

(R G(S)) =G(RS) = a(sT).

The next result and its follow‘ing. special case - give stability"
lemmas for the separating space which yield the crucial property of
the separating spacé which we shall api)eal to in the proofs of our
main results in part 1. The idea of the lemma is initially due to
“B.E. Johnson and A.M. Sinclair [16] and then A.M. Sinclair [29]. The
form in which we state it is due to K. Laursen [19] and we give the-

proof for completeness.

LEMMA 1.2 Let S be a linear mapping from X into Y and let
' {T } be a sequence in ®(X). Then there exists an integer N such

that G(ST,...T ) =G(STi..,T ) for n>N.

n+l
C . 1
Proof. .Clearly G(ST...T . ) CG(STy...T ) for n > 1. If this
inclusion is strict for infinitely many n, then by grouping the Ti's
into finite products corresponding to the intervals of constancy of

.(,'(STl...Tn)‘ we may assume that G(S'I'l...T

C LN )
n+l) G(STl._ Tn) for a].l_



3.
n>1. Let Qn denote the natural quotient mapping from Y onto
Y /(8T "'Tn) for each n. Then, b& Lemma 1.1 (b), (c),

Q STl...T is continuous and Q ST'.;.T ne1 'is discontinuous for all

n > 2. Assumlng, without loss of generallty, that “Tn“ <1l for all
'n, we choose inductively 'a sequence {xn} from X so that

(1) fx I <27, and
n-1

x I >0+ lgsr ...l + g s( z L SRR

34) -
(ii) QnST T L 1° 3-1%

_ 1 ‘n-1"n
for n = 3, h,‘.;.
Then let 2 z T, ...T —1xn (the sum converges by (i)). For each
‘ ‘ n—2 : '

positive integer n we have

szl E_HQnSz“ and

‘n-1
g st ...T _x = IIQ Sz - Q s(J{ Tyoee j—lx-j)
- q_s( 2 T ...T, )Il
n jen+l 1775~ 1% J
ll I+ 1 ast
< Szl + S T eseT
Q, Q s( 2 s5-1% 51
J=
+lqgst ...t lllx . + { T _...T.x. .|
n 1 n n+l jen+l n+l "] J+l
and so .
|| o sl I
" / : ) - ce o - -
Sg > “QnSTlf. —1%n Q, s( X T, J—lxa)
- “QnSTl...Tn" (u51ng (1))
>n by (ii).

This contradiction proves the lemnma.

We shall be interested in situations where operators T, R
(in &(X) and ®(Y), respectively) intertwine with S continuously,
j.e. ST - RS € B(X,Y). In this situation Lemma 1.1 (4d) enables us

to put Lemma 1.2 in the form we shall need for our applications.



h.’
LEMMA 1.3 Let {r } and {R_} be sequences in .B(X)v and B(Y),
respectively. If S is a linear operator from X <into Y such
. that ~ R S - STnE B(X,Y) for all n, then there is an integer _'N'

such that (R

l.,,RnG(s))" = (Ry...Ry a(s))  for az; n > N.

Proof. By induction R --.R 8 - 8T e T €ERQ(X,Y) for all n. Lemma

1 1
1.2 and Lemma 1.1 (d) then give the result.

COROLLARY 1.k Iet X, Y, {T_}, {R }, 8, N be as in Lemma 1.3. Let

...R_a(s) = {0} for all

'{Un} bé a sequence in ®(Y) -such that ‘Ur;Rl

Rn_lG(S) = {0} for all =n > N.

n. Then UR,...
nl



CHAPTER _TWO

In this chapter we discuss the radical Banach algebra L}[O,l]
and some of its properties. Throughout the next four chapters all

ideals will be two—sided.

Definition. Ll[O,l] is the Banach algebra of complex—valued functions
which are (Lebesgue) integrable on the closed interval _[O,l]' with

. pointwise addition and (convolution) multiplication given by

£ * g(x) = f% f(x - t)g(t)at" C(x G_[o',ll)' ,
_ . 0 '
and norm
: 1
Iel = [ |£(t)]at.
: 0

Remark. We take the usual liberty of referring to elements of
Ll[O,l} as functions whereas they are, in fact, equivalence classes

of functions agreeing almost everywhere (a.e.) on [0,1].

PROPOSITION 2.1 (1) Ll[O,l] is a radical Banach algebra which is

stngly—-generated.

(2) L1[0,1] has a bounded agproximate identity.

n

V *
Proof. (1) For f € 10,11 1et ¢ denote f ¥ f % °°° ¥ f
A ‘ %I xn—l
(n times). Then (by induction) 1 = e the norm of which is

;%, where 1 denotes the function which tekes the constant value 1

on [0,1]. Hence 1 generates the polynomials in x &and so the con-

. - . 1 *n"l/n
tinuous functions and so all of L [0,1]. We nave I1

>+ O and
so 1 is qguasinilpotent. Since 1 generates Ll[O,l] every element

is thus quasinilpotent and so Ll[O,l] is radical.



(2) Take a one-sided Dquc sequence e.g. W, = DX[q y/p]°

Definition. Let V be the continuous operator on Ll[O,l] given
by (convolutlon) multiplication by l, ‘i.e.
ve(x) = (1 * £)(x) = jf(t)dt.
0]

V 1is called the Volterra integral operator.

Notation. Let a, 8 €[0,1]1. Then
M = {frEL [0 1]: f vanishes a.e. on' [0,0} ).
fB will denote the characteristic function of [B,1] for éach
g in "[O0,1].

PROPOSITION 2.2 The closed invariant subspaces of V are the sub-

spaces M, where 0 < a < 1.

Proof. This proof is due to W.F. Donoghue, Jr. [12]. First, note

that M, is a closed invariant subspace of V for 0 < a < 1. The
“result is first established for C[O,l], the space of continuous
functions on [0,1]. It is cleaf that C[0,1] is invariant under V.

Let M be a non-trivial closed invariant subspace of V in cio,1l.

Let f be a non—zero element in M. Consider the sequence

£, V£, V2f, ces . We choose a measure u on [0,1] orthogonal to

every Vs, i.e. fl V?£(t)au(t) = 0 for all . n > O. A theorem, the
most general versionoof which is due to J. Lions [20] , asserts thét

for any two distributions on Bn with compact support, the convex

hull of the support. of the convolution is the vectorial sum of the convex
hull dfthesupportsofthefactors. Thus if the convex hull of the éupport of £

is (a,b) and the convex hull of the support of u



1.

is (c,d). it follows that the interval (a-d,b-c) is the convex
hull of the support of f ¥ ﬁ where 3 is given by n(t) =-u(—t).
But f ¥ ﬂ vanishes on the left half-axis. (We cén assume that tﬁé
functions énd measures are defined throughout R by defining;them to
be zero outside [0,1]). Therefore d>§_a which implies that p is
orthbgongl to Ma’ The Hahn—Banach theorem and the Riesz represent-—
ation theorem imply that the closed linear span of {V'f: n > 0} is
_ M&,_'upléss a =0, in Which case the closed linear sﬁan will be-the
~ whole space if £(0) # 0. Thus any bfoper invariant subspacéf for V
in cl0,1] -is a ﬁnion of spacesof type M_ and is therefore & space-
of that type itself. A

For the space Ll[O,l] the same result follows froﬁ the obsér%
vation that VL{0,1] € clo,1]. For let M be a closed invériant
subspace of V in Ll[O,l] and let £ € M. If the‘smallest_inter?al‘
containing the support of Vf is [a,b]l, then the Sequencé.
{(Vf: n > 1} spans the subspace M_ = of c[0,1] as above and its
closure in Ll[O,ll is the correﬁbqnding 'Ma of that space. Evident-
ly £ =0a.e. on [0,8] eand so {V'f: n > 0} spans M_ in

a

Ll[O,l] and the result follows as before.

Remark. Initially Jf Dixmier [11] found the invariantAsubspaces of
V on real Ll[Ogl] by considering'algeﬁras generated by .V 'and~'
éimilar convolution operators. W.F. Donoghue, Jr. [12] aﬁd

M.S. Brodski [ 7] independently discovered the invariant subspaces of
V on complex L2[0,l]. Donoghue's proof in féct works for LF[0,1]

where 1 < p < =,

COROLLARY 2.3 The closed ideals of L0,1] are the subspaces M;



where 0 < a < 1.

Proofl The corollary follows from Proposition 2.2 éince ViE=1%Tf¢f
and so the closed igeals of ’Ll[O,ll are closed invariant subspaces

of V.

PROPOSITION 2.4 If o and B are positive and o + 8 < 1, then
R B = . . A

(fBMa) Ma+8

Proof. (fﬁMa)— is a closed ideal of Ll[O,ll and so by Corollary
2.3 we have (nga)f = M.Y for some y € [0,1] . We show that

Yy = a + B. By the definition of convolution it is clear that

(fEMa) - Ma+B

So suppose a + B <1 and let € > O be chosen such that

and so y>a + 8., If a+8 =1, then y=1=a+8.

a+B +e < 1. Consider f, ¥ fa:

B
- X
(£, * £ )(x) = f(x-t)f (t)at =[O 0O<x<a+8
B o fo B e x-8  x-B
)’fs(x—t)dt;f at
a . a
=x - (o + B) a+B<x<1

c el s % % c
From this it is clear that fB £, & Ma+B+67 But fB' £, .MY

and so y =a + B (otherwise take e =y - a — B).

.~ It is-clear:that Corollary 2.3 shows that there do not exist any
non-zero finite aimensional ideals in Ll[O,ll. In fact it is possible
to prove this without appealing to the characterisation of the closed
ideals;

I

PROPOSITION 2,5 (1) Ll[O,ll has no non-zero finite dimensional

ideals.



(2) _,Lét I be a non—-zero ideal in Ll[O,l] .
Then faI CI for any a € (0,1], and we can choose o so that

£ I # {0}.

Proof. (1) Let J be any non-zero ideal in L.l[0,1] and choose
fE€J with £ # 0. Then it is clear that if «, B €[0,1], o # B,
and neither foz ¥ f or fB *¥ £ is zero then fa * £ and fB ¥ £ -

are linearly independent and belong to J. Since for any non-zero f

there is an infinite choice of distinct a's in [0,1] with

fa ¥ £ 40 it follows that J is infinite dimensional.

(2) Let B = sup{y: £=0 a.e. on [0,y] for all - f €1}
Then B < 1. For all €I, foz *£=0 a.e, on [0,6] where
8§ = min(l,a+B) > B 1if a > O. Hence- £,I C I by the definition of

B, and by choosing o so that o #+ B < 1 we have 'faI"#' {0}.
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CHAPTER THREE

In this chapter we prove that derivations on Ll[0,1] are
automatically continuous, and then show that the methods used in the
proof can be extended to give other known results on the continuity

of derivations.

Definition. Let B be an aléebra.' A derivation on B 1is-a linear
operator D on B satisfying D(ab) = aD(b) + D(a)b for all a, b

in B.

We note here that if B -is é Banach algebra_then D satisfiéé
the hypotheéis of Lemma 1.3 in the senée that D intertwines contin-
uondly wifh continuous.opefatorsﬂon B. For if La denotes the
operation of left multiplication by a on B ,and>if ﬁe régard a
~as a fixed element of B then the definition of a derivation yields
DL, - LD GB(B) for any a in B. We also make the remark that
when D 1is a derivation on B it is easy to see that (S(ﬁ) is a

. closed ideal in B.

In Dj] B.E. Johnson and A.M. Sinclair proved that every deriva-
£ion on a semi-simple Banach algebra is continuous. During a confer—
ence at the Univéréity of California, los Angeles, in July, 1974 the
related question of whether every derivation on the radical Banach
algebra Ll[O,l] is cqntinuous was raised. Theorem 3.1 answers this
question in the affirmative., First note that there do exist -non-trivial
derivations on Ll[O,l], e.g. pointwise multiplication by the function

h given by h(x) = x 1is a continuous derivation on L1[0,1]. For



11.

X - . : X .
n(f * g)(x) = x [ f£lx - t)glt) = [ (x -1t +t)e(x - t)g(t)at
-0 - | 0 S
X . X .
= [ (x-4)f(x - t)g(t)at + [ f£lx = t)tg(t)at
0 SN _ .

i

(hf * g + £ ® hg)(x).
In fact H. Kemowitg .and S. Scheinberg [18] have characterized the
bounded derivations on Ll[O,lj in terms of certain measures on

[0,1].

THEOREM 3.1 Let D be a derivation on 1'[0,11. Then D <is con-

tinuous.

Proof. We consider G(D) which-is a closed ideal ‘in .Lllo;l]. By
Corollary 2.3 G(D) = M_ fér some a with 0 <a < 1. To pfove the
continuity of D it suffices to show, by Lemma l;l (b), that a =1
which gives_(S(ﬁ) = {0}. We argue by contradiction. Suppose a < 1,
We choose a sequence {Bn}' of positive real numbers so that

a + Bl + ..t Bn <1 for 8l n. Then

(£4..98, M) =M oM
A ey o ke tBy Byt
= (£ &....8¢ M) for all n
Bl Bn+1 a

 (by Proposition 2.k4)
Lemma 1.3 gives us the required contradiction if we take

X=Y = Ll[O,l] » T =R = left multiplication by: f—B-- and S = D.
* n

Remarks. (1) The same result holds for LP[O,l], 1<p<w.

(2) The same method shows that any epimorphism from a
Banach algebra A onto Ll[O,l] is continuous since the separating
space of an epimorphism is a closed ideal. The only modification

required in the proof is that we choose X = A and Tn = left multi-
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plication by the preimage of f under the epimorphism in the

Ba
:application of Lemma 1.3.

| '(3) . It is clear that the proof will show that any linear
- mapping 'S on tho,ll which intertwines with. Ll[O,li continuouslyl
(i.e. SL.- LS €®(1[0,1]) for a1l £ in LY0,1]) is contin-
uous. .Howevef it is EQE enough to only assume that
SL, - LS = 8V - V§ € 8(140,1]) even though 1 generates L0,1l.
éince (a) the spectrum of . V. 1is the single point 0, (b) 'V has
no eigenvalues, and (¢) V has a nén—zero divisible subspace (a
subsﬁace Z of Ll[0,1] is divisible for V if (V- ui)Z = Z  for
all complex numbers p) Theorem hfl of [ 28] shows thaf there exists

a discontinuous linear operator S on L1[O,l] satisfying SV = VS.

Exam.]glesf

(1) We note here that it is possible to prove Theoiem 3.1 with-
out appealing to the characterization of the closed ideals of Ll[O,l]
by using Proposition 2.5. . For Proposition 2.5 (1) shows that &(D)
must be infinite dimensional if it is non-zero and then we can construct
an infinite descending éhain of ideals contained in @(D) as in the
proof of Theorem 371 by using Proposition 2?5 (2). Lemma l73 agaein
provides a contradiction which gives G (D) = {0}. This obsérvatiqn
is useful when looking at the weighted convolution algebrg ‘Lt[o,w)
where it is not known, as far as we are aware, what all thé CIOSéd
ideals are like. I%JO,@) is the Banach algebra of complex-valued
functions on the non-negative reals with the property that

(-]

f |£(t) |w(t)at exists where w is a continuous weight function mapping

R9 §+ \ {0} satisfying w(s + t) < w(s)w(t). Addition is pointwise

-~

and multiplication is defined by convolution as before. The norm is



’ 13.
given by lell = f

|f(t)|w(t)dtf If v is 'rapidly decreasing',
1/x - .

0

e.g. if w(x) +0 as x - ﬁ,- then I&[O;w) is a radical Banach

élgebra and it is not hard to see that it has the same properties as
Ll[O?l], given in Proposition 2f5. Thus by the remarks above'every
derivation on Lé[o,w)‘ is continuéus.

(2) Mo0,») is the measure algebré of all complex-valued Borel‘.
measures on A[O,w) with convolution product. In [9] H.G. Diamond
showed that derivations .on M[O,w) are continuous in_the‘topologf
generated by tbe seminorms ﬂp“x = |u|([0;x]) for each x in
[O,°°‘). We nbté here that this result (and the correspoﬁding reéui*l;
for Mo0,1]) follows froonur methods since Lemma, 173_cah be extended
to the case where X and Y are Frechet spaées and M_[d,w) has
the properties of Pioposition 2.5, i.e.Ait has.ﬁo finite dimensionél
ideals and'gifen a non—zero ideal I you caﬁ const?uct an infinite
descending chain ofAideals inside I where each ideal in the'chaiﬁ
is obtained from the previous one by multiplication by a suitable
‘element of MoO,=).

(3) Let 9[[tT] denote the aléebra of all formal power series
over the complex field Q‘ in a commutative indeterminate t with
the weak topology determined by the projeétions. pj: Zaiti - aj.' A
subalgebra A of C[[t]] is a Banach algebra of power series if it
contains the polynomials and is a Bénach algeﬁra under & norm such
that the inclusion map .A.S 9[[£]] ié continuous. Let} I be an
ideal in A and let n be the smallest integer for which an |

o]

element of the form .Z a.tj (with a # 0) belongs_to I. Then

tI = {ta: a € I} isJ;g ideal in A and tI CI since no element

of the form ;2 ajtj (with a, # 0) Dbelongs to tI. Also if

f = 2 ajtj Jzzn #0) is in I then f and tf are linearly in-

J=n



1h,'

dependent. So ‘A has no finite dimensional ideals. Hence we have
shown thét ‘A has'equivalent propefties to those deécribed in
Proposition 2.5 for Ll{O,l] and 50 as before evefy defivation on
A is continuous. This result was first pfoved using more technical
methods by R.J. Loy [21]. |

(4) The final example is & radical Banach algebra which arises
as a closed subaléebra of B(H) where H is a Hilbért spa.éeT ‘The
,exaﬁplé is ‘due to G.R. Allan [1]. Let ﬁ be a separable Hilbert
space and let ‘{el, €5s 7,7} be an Srthpnormal basis for .Ht' Let
T €EB(H) be é unilateral weiéhted shift operator given by

T(en) = q (n =1, 2, ¢ca)s where the weights {an} are

n®n+l
elements of 9 such that “n,* O.- Now let B be the norm-closed
subalgebra of ®(H) vgenerated by T. Then B 1is a radical Banach
algebra. Once again it is not hard to see that B has no finite
dimensional ideals and given a non-zero ideal .I ih B there exists

‘an operator S in B such that {0}C sI C1I, Hence every derivation

on B 1s continuous.

It is clear that in all the examples described the ideals have
similar prépertiesfl We now give a theorem whiéh appears‘in [15] and
which proviAes sufficient conditions on the closed ideals of a Banach
algebra B such fhat every derivation on B is continuous. The
hypothesés of'the theorem cover all the examples mentioned including

L 0,1].

THEOREM 3.2 Let B be a Banach algebra with the property that for

each infinite dimensional closed ideal J in B there is a sequence

by by eee TN B -such that .(blff.an) D(bl...bn+lJ) for all
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n €N. If B contains no non—zero finite dimensional nilpotent ideal

then every derivation on B is continuous.

Proof. We give an outline of the proof for completeness. Let D be
a derivation on B. It is clear from Lemma 1.3 as elsewhere in this
chapter that the condition on the infinite dimensibnal ciosed ideals
of B forces (S(D) to be-finite dimensiqnél.- Thus D|@(D) is con-
tinuogs. If ¥, z Ek§(D) then there exist X, in B, x =0 and -
Dx +y. Then X z € G(D) and x z + 0 ﬁhich imp;ies that
D(xnz) >'0. Hence yz = lim D(xn)z = 1im D(xnz) - lim an(z) =

: n-® n>e n->

and so G(D) 1is a nilpotent ideal. The hypothesis in the theorem

gives G(D) = {0} end so D is continuous.’

ﬁemarks. (1)A For a commutative Banach algébra_ B the hypothesis’ in
the theorem concerning infinite dimensionél ideals may be replaced by
the neater one that for each infinite dimensional closed ideal J in
B there is an element b in B with (bJ)” CJ and (bJ)  infinite
dimensional. | |

(2) It can be shown’ [15] that sem1s1mple Banach algebras
satisfy the hypotheses of Theorem 3.2 and thus the theorem yields the
result of Johnson and Sinclair mentioned at the beginning'qf the
chapter.

(3) If B 1is a Banach algebra which satisfies the hypoth-
eses of Theoreﬁ 3.2 then it can be shown [15] that an epimorphism of

any Banach algebra onto B 1is necessarily continuous.
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CHAPTER FOUR

Having proved that everj derivation on a given Banach algebra
B, is continuous it is natural to ask whéther évery module derivation
from B into a Banach—B—bimodule‘ié‘continuouéi (Of course thié éeﬁ—
eralizes the case of derivations on B since fhe'algeﬁra B Aitself
is a Banach—B—bimodule)- For example after S. Sakai [27] had provedA
that every derivation on a C¥-algebra 1is continuoﬁs, J.R. Ringrose [ 26}
then geﬁeralized thié-by showing that every module derivation frdm a
C*-algebra is continuous. In this chapter we extend fheorem 3.1 of
Chapter 3 by proving thgt every module derivation from >L1[O,l]_ is
continuous. We obtain this result as a aorollary ofl Theorem 4. which
gives sufficient conditions on the closed'ideals of a commutative sep—
arable Banach algebra B so that every module derivation from B is
continuous. In Theorem hf2 we obtain sufficient conditions on the

closed ideals in the general case when B need not be commutative or

separable.

Definition. Let B be a Banach algebra and M a Banach-B-bimodule.

A linear map D: B + M 1is a module derivation from B if
D(ab) = a . D(b) + D(a) . b for all a, b in B: (where. . denotes

the module operatioﬁ on M).

We begin by discussing some ideals which are useful in the study
of module derivations. Let B be a Banach algebra and M -a Banach~B-
bimodule, and let D: B + M be a module derivation. We define
I. = {b €B: b .G(D) = {0}}, 1

L R
We call I (and Ip) the left (and right) contiruity ideal for D.

= {b € B: &(D) . b = {0}}.
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If B is commutative it is easily seen that I =1

L R* In thls.case

we will denote the ideal by I and refer to it as the continuity ideal

for D.

LEMMA 4.1 Let D be a module derivation from B to M. Then

(1) IL and IR are closed ideals of B, and

(2) zr I has a bounded left (or right) approximate identity

then D 1s continuous on IL.

. Proof. (1) Let a€B, b€ I . Then ab .C(D) = {0} trivially.
Also a .G (D) C&(D) by Lemma 1.1 (d) and so ba .G(D) = {0}. Thus

e . e » - - - - -
ab IL and ba IL, l1.e. IL is an ideal. Similarly IR 1s an

ideal. It is clear that both I, and I, are closed.

L R

(2) [3] Suppose IL has a bounded left approximate identity

and let X €1 with X + 0. By a well-known corollary.to the Cohen

L
factorization theorem [ 6] ~there exists a sequence i{zn} C IL -and

yE€I

= € ’
[ -Such that z -0 and x =yz, n N. By Lemma 1.1 (v) (e)

the map z =+ y.. D{z) is continuous since y € IL. Hence
D(xn) =»D(yzn) = D(y) . z, *tY . D(zn) -+ 0 as n + o, Similarly D
is continuous on I. if I. has a bounded right approximate identity.

L L

THEOREM 4.2, Let B be a Banach algebra which satisfies the follow-

ing two conditions:

(1) Zf K <s a closed ideal of infinite codimension in B,
then there exist sequences {bn},'{cn} in B satisfying

N $K and c b, ...D € K for all n > 2,

l

(2) every closed ideal having finite codimension in B has a

bounded left (or right) approximate identity.
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Then every module derivation from B into a Banach-B-bimodule is con-

tinuous.

Ppoof. Let M be a Banach-B-bimodule and‘letA D be a module deriva-—
tion from B to M and let IL' be the left continuity ideal for D.

Suppose IL is ofinfinitecodimension in B. We obtain a contradiction

using condition (1) by applying Corollary 1.4 with X =B, Y = M,

T x = bnx for all x 1in B, Rny = bn .y and Uny

n c, ¢ y for all

y 1in M. 'So IL must have finite codimension in B, and so has a

bounded left (or right) approximate identity by condition (2). Lemma

4.1 gives D continuous. on I. and so D is continuous on B.

L

Remark. We can replace conditioﬁ (1) by the stronger one that‘every
closed ideal K of infinite codimension‘in-'B has the property that
given b in B\ K', there exists &, ¢ in B such that ab &K,
be € K but abe € K. A simple inductive afgument shows that this

implies the condition in the theorem: we construct inductively two

sequences 'bl, b2, ... and Chs Cgs eee in B such that bl"'bn K,

c b, ...b &K and c b....b €K for all. n > 2. To start the in-—
n 1 n-1 n 1 n. - ;

duction let bi be any element of B \ K, and then choose by ¢y in

, c .
B such “that blb2 & K, c2bl & K- but c2blb2 K. Then, given

' bl’ ...,vbr,' Cos eoes Co satisfying the three conditions choose
#41° Crel in B such that bl...br+l K, c

€
Cry1PrePryy & K-

P r+lblff'br ¢ K eand
If B is commutative this condition is merely saying- that for
each b in B \ K, the annihilator of b + K in the quotient algebra

B / K 1is not prime.

In general C¥-algebras do not satiéfy this condition, e.g. take
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B to be the Banach algebra of continuous functions on [0,1] UV {2}
and let K be the zero ideal7 However it is not hard to see that if
B is a C*—aigebra with the property that for evéry closed ideal K
of infihite4coaimension in B, B/K has no non—triviéividempotents,
then' B satisfies this conditionT A.M. Davie has also poinﬁed out
that for a Hilbert space H, K =X(H), the ideal of compact operators

on H, does have this property inh ®(H).

We can show, however, that all C*-algebras satisfy the condition
given in Theorem 4.2, thus obtaining Ringrose's result [26] . This is

the result of the following corollary.

COROLLARY 4.3 Every module derivation from a C*-algebra is continuous.

Proof. Let A be a C*-algebra. Following the fechniques'used in'Ring—
rose's proof [26] we show that A satisfies the two conditions of
Theorem 4.2. Let K be a closed ideal of infinite codimension in A.
Then the C*-algebra A / K contains an infinite dimensional clgsed
commutative ¥-subalgebra B [25]. Since the carrier space X of B

is infinite it follows from the isomorphism between B >and CO(X) that
there is a positive 2%2::351 T in B whose spectrum is infinite.
Hence there exist non-negative continuous functions

b

b defined on the positive real axis, such that

o9 c3, seey
bn_l(T) #0 and cD

l’ 2, s e g (o]

= > 2.
cnbl... lf"bn O for all n > 2

Let 7 denote the natural mapping from A onto A / K. Then there is
a positive element S in A such that =(8) = T. If Pj = bj(S)
(3 =2,2, ...), and Q = cj(S) (j =2, 3, ...), then P; Q. €A

Cana m(QPy... 1) = w(c (8))m(by(8))...m(b ., (8))
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| = c (n(8))p, (n(s))...p _,(n(8)) # 0 (n > 2).
., Q. € ..P_E} .
Thus P.J’ Q,J A, QnPl' Pn-l?K’ QnPl’. Pn K (niZ) So A
satisfies condition (1). Now every closed ideal of a C*¥-algebra has
a two-sided bounded- approximate identity [10] and so- A also satisfies

condition (2). Theorem 4.2 then gives the result.

COROLLARY 4.4 Let Ll(G) be the group algebra of -a locally compact
abelian group G. Then every module derivation from Ll(G) 18 contin—

UOUS.

Proof. Again we showAthat Ll(G) satisfies the two conditibns of
Theorem 4.2. First we note some well—knowﬁ facts of hafmbnic analysis.
Ll(G) is a regular semi-simple commutative Banach algebra [lh]. Let
X denote the carrier space of Ll(G). If F' is a subset of X then
Sefine ker F = {f € LX(6): £(F) = {0}}, ana J(F) = {f € le): €

is zero in a neighbourhood of F}. The hull of an ideal I in Ll(G)

is the set {A € X: A(I) = {0}}. If an idesl I has hull F then

the theory of regulér semi-simple commutative Banach algebras implies -
that  J(F) €I [14]. Now let K be a closed jdeal of finite codimen-
éion in 1Y(G) with hull F. We want to show that F is finite. BSo
suppose F 1is infinite.~ By induction we choose two sequences -{Un}
and'*{vn} of open subsets in X such that U NV = ¢, U OF # 0,
and U, - Vj for 1 < J <n-l. To ensure thaf the induction can proceed

we also require that V n,..Ny contains infinitely many points of F
. - n

1

for all n. Choose ‘Ul’ Vl disjoint open sets so that Ul NF # 0

and Vl contains an infinite number of points of F. Now suppose

Ul’ ooy Un and Vl’ cees Vn have been chosen. We now choose disjoint

n n...’n nF )
open subsets wn+l and. Vn+l so that wn+l (Vl . Vh) # 0
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and Vn+l contains an infinite number of points of (Vl n...nN Vn) N F.
= N N nv) i i i i
Let U .. Wn+l (Vl e Vn). This completes the inductive choice

of 'fUn}4 and '{Vn}. The regularity of Ll(G) implies that there are
£y s
and fj zero outside Uj' Then, for each Jj, fj & K and the fj's

veo 1n Ll(G) with fj =1 at some point of F inside Uj

give rise to liﬁearly independent elements in 2}(¢) / X which cbnﬁra—
dicts the fact that K has finite codimension ink Ll(G). Hence F ié
finite7 Ll(G) satisfies a strong Dytkin condition: i.e. ker{A} has
.a bounded approximate identity taken from J({A}) for each A inA X.
An application of a result of M. Altman ([2] ; seel6, p.58]) then shows
that with F finite we can deduce that kerF has & bounded approximate
identity from J(F). Since J(F) &K & kerFK has a bounded approximate -
identity. Thus Ll(G) satisfies condition (2). o
Now suppose K 1is a closed ideal of infinite codimension in
ALl(G) with hull H. We show that H is infinite. For if H is finite
then ker H has finite codimension in Ll(G). Also, as remarked_@bove,
in this case kerH has a 5ouhded approximate identity from J(H). and so
J(H)” = kerH. But J(H) CK CkerH end so K = kerH which has finite
codimension . This contradiction shows that H mst be infinite. As
in the first part of the broof we choose two sequences '{Un} and '{Vn}
-of open‘subsets in X such that Un N Vn = @, Un NF#@ and
U, C VJ. for 1 <J <n-l. Again the regularity of Ll(G) implies that
for a sequence _{An} with -Aj € Uj NF we have bl’ b2, “ees Cps Cgs cees
in Ll(G) with fn.(x ) =1 for k > j, ;.(x.) =1, b. zero outside
o J k JJ J
U U , and cj zero outside Uj' These conditions and the semi-

kyJ

. . . 1 .
simplicity of L (G) imply that cnbl”?b & K and Cnbl'f'.bn € K

n—-1
for n > 2 so that Ll(G) satisfies condition (1). An application of
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Theorem 4.2 completes the proof.

Remark. The methods used in the proof of Corollary 4.L in fact give
the continuity of module derivations on any regular semi-simple comm-

utative Banach algebra satisfying a strong Dytkin condition.

W.G. Bade é.nd P.C. Curtis, Jr. [3] have also obtained sufficient
'conditions-on’thé closed ideals of a Banach algebra B so that'every
module derivation from B 1is coﬁtinuous? Their condition on the closed
ideals of finite codimension is identical to condition (2) of Theorem
14.2f Their condition on the closed ideals of infinite codimension is as
follows: if K is a closed ideal of infinite codimension in B, then
there exists a sequenéel‘{xn} in B satiéfying_ X X = 0 (n #‘m) and
xn2 ¢ K for all n. We remark hLere that the two theorems are in fact
different and Theoreﬁ h72 appears'to cover a wider cléss of algebras.
Below we will show that Ll[O,l] satisfies the conditions of Theorem hfz
while it does not satisfy the conditions of Bade and Curtis. However
we have not been able to find a Banach algebra which does the reverse,
ifef satisfy the conditions of Bade and Curtis while failing to satisfy
those of Theorem h72; and we ha&e tried to prove that the conditions of
Theorem hf2 follow from those of Bade and Curtis without succeés.

We now show that Ll[0,1] satisfies the conditions of Theorem hf2
(which implies that every module derivation from Ll[O,l] is confinuous -
we oﬁtain this result most. easily as a coroklary to Theorem hf8 aslwill
be shown)T Let K be a closed ideal of infinite codiménsion in Ll[o,l].
Then K = M(a) by Corollary 2.3 where o > O. Let g € Ll[O,ll g ¢ K.
Let p = inf{q: g € M(Q)}? Then O < p < a. We choose poéitive real

numbers B,y So that p+ B <o, p+y<a but a<p+B+y<1.
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Then f(B)g & M(a), f£(y)g & M(a) but f£(B)gf(y) € M(a) (see Propos-
ition 2.’4)f The remark after Theorem h72 shows that condiﬁion (1) of
Theorem hgz is satisfied? The only closed ideal of Ll[O,l] havﬁng
finite codimension in :Ll[O,l] is ’Ll[O,l] itself which has a bounded -
approximate identity (Proposition 2.1 (2)) and so condition (2) of
Theorem hf2 is also satisfied.

However Ll[O,l] does not satisfy the ébndition on closed ideals
of infinite codimension given by,Béde and-Curtié and described above.
For let M(a) be a closed ideal of 110,11 where O < a < 3. Then
M(a) is of infinite codimension. ‘Suppose there exists a sequence
{xn} in Ll[O;l] with X X = O (n#m) and xn2 & M(&) for all
n>1l. Let B = inf{B: x_ € M(B)} (n >1). It is clear that
O<B <a end B +B > 1 (n#m). Let y = 1lim inf{sn}f, Then

n->xe

n
Bj >1 -y for all’ j > 1 which shows that y > 1 -y, i.e. vy > 3.

But O < Bn <a<3@yc< 3, which yields the required contradiction.

The next lemma, which is a consequence of Lemma 1.3,is due to
W.G. Bade and P.C. Curtis, Jr. [L4], and is closely related to Theorem

3.3 of [29].

LEMMA 4.5 Let B be a commitative Banach adebra with identity and
let M be a Banach-B-bimodule. Let D: B + M be a discontinuous

module derivation. Then there exists X in B such that if

Dy: B> M is given by Do(b) = Xg - D(b) for all v in B .we have
that Do i8 a discontinuous module derivation and Iys the continuity

ideal of D, , is a closed prime ideal of B.

09

Proof. Since B 1is commutative it is clear that Do' is a module
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derivation and hence IO is a closed ideal of B by Lemma 4.1l. We

show that there exists Xq

in B such that x, .G (D) # {0} and for

- every b in B either " bx ;(S'(D) = {0} or | A

.’{bxo .G3(D)} = {x, - (';',‘('D)}—f This is sufficient to give us the required
conclusion for then |

I, = {bé B: b . G(p,) = {0}} = {b € B: bx, . G(D) = {0}} - since

G’(DO) = {xo .G(D)} | by Lemma 1.1 (c) and it is easy to see that I,

will be prime. We now prove the existence of the element X, in B.

Either there exists b, in B so that {0} # {b; .G(D) }” Cd(D) or

1
else for every b in B either b. TIO’(D) = {0} or {b 7G(D)}— = 3(D)

in which case we can take Xq be the identity of B (we assume that

the module is unit—linked). If such an element by exists then either

there exists b, in B so that {0} # {bebi ,G‘(D) } C {bl ,G(D)}—

or for every b- in B either’ bbl .a3(p) = {0} or

{bb, .G(D)} ‘{bl .@(D)} in which case we can take X, tobe b,.

Lemma 1.3 telis us that this process must eventually stopji.e. we shall

have b;, ..., b~ such that. {o} # {b b _,...D) .G(D)} C {bn_l...blG(D)}

and for every b in B either bbn...bl .G(D) = {0} or
{bbn.f,bl- . C;’(DA)} = {bn...bl .G(D)} . We can then take x, to be

.Q(D)} gives that D_ is

bn...b O

,- Note tpat {0} # {p > _,...Dy

discontinuous by Lemma 1.1 (b).

Remark. We can assume that B does not have an identity by forming

the algebra B ® Cl, extending D by D.()\l) = 0, and allowing Xq

to be in B & Cl. IO would then be a prime ideal in B @® Cl1 with

IO' = {b €B: (b,0) € IO} a prime ideal in B.

Recently R.J. Loy [24] and J.R. Christensen [8] have exhibited
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some interesting consequences of the Borel graph theorem (see [31]).
We will require some particular cases of their results which we now

describe.

PROPOSITION 4.6 Let X X5, Y be sepdrable Banach spaces and let

T: X; xX,>Y be a continuous bilinear mapping. Suppose 7 s a

closed subspace of Y contained in the linear span of the range of T.
Then there is a constant K and an integer m such that ©if z €12
there exist a. € X,
(i) z= § T(a.,b.),
s 973

b €X,, 12jz<m satisfying

m
(i) § la v, < xlal.

Proof. See [24].

Notation. For a Banach algebra B, B2 denotes the ideal spanned by
two—fold products of elements of A.

PROPOSITION L.7 Let ‘B be a separable Banach algebra such that 8% s

of finite eodimension in B. Then B® 1is closed.

Proof. See [2U4] or [8]f

For commutative separable Banach algebras we can now prove the

following theoremn.

THEOREM 4.8 Let B be a commtative separable Banach algebra such
that B 4s of finite codimension in B which sdtisfies‘the following

two conditions:
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(1) there are no closed prime ideals of infinite codimension,
(2) every maximal ideal M of B has Y of'finite codimension
in B. |
Then every module derivation from B into a Banach—B—bimo_duZe 18 con-—

tinuous.

Proof. Without loss of generality assume that B has an identity.
Suppose that D 1is a discontinuous module derivation from B into

some Banach—-B-bimodule M. Let DO’ Io be as given in Lemma h.ﬁ, so

that D, is also discontinuous. I is a closed prime ideal and so

must be of finite codimension. But a prime ideal of non-zero finite codimen-

sion is maximal and so either IO =B or 'IO' is maximal and in both

cases 102 is of finite codimension in B. But then 102 is closed

by Proposition L4.7. We now obtain a contradiction by showing that D0

is continuous on I 2. Let f €I 2. We apply Proposition 4.6 with

0 0
’ 2 .
X, 32 Y =1, T(agp) eb for a, b€ I, and 2 I, » to obtain
f= Y g.h. where ) lglln.ll <klfl for some constant K, and
jo1 9 d jop o9 9T
g., h. € IO’ 1< Jj<m. Then )
(e = 1 5o I
p.(£)l =1 D (g .h. )l < ID(g.) . h. + g. . D(h,
o' ) '21 oleny)l = b Inley) - my + g 5
J= J=1
m
< ) oMig.lln.l , ;
. =9 :
where M is a constant (by Lemma 1.1 (b) fc)),
o : : .
and so “Do(f)“ < 2M Z "gj"“hj"_g oMKl £l which concludes the proof.
51 o

Remarks. (1) The condition that B2 is of finite codimension in B
is necessary since if 32 is of infinite codimension in B we can con-
struct aAdiscbntinuous module derivation from Bf "For let f be a dis-
continuous linear functional on B, chosen by Zorn's lemma, such that

f(Bz) = {0}. Let M be any Banach-B-bimodule containing an element



27?
m# O such that B . m=m. BA='{O}7 Define D: B + M by
D(v) = f(b)m for bve B. Then D is a discontinuous module deriva-
tion for which ;_= B.. .
An example bf such an algebré is the algebra of Hilbert-Schmidt
operators on a Hilbertispaée. | -
(2) Given a particulér moduie M wé can weaken condition

(1) slightly to "there are no closed prime ideals of infinite codimen-

sion in B which annihilate some non-trivial submodule of M".

We now show that condition (2) of Theorem 4.8 is besf possible.
Let B be a commutative Banach algebra. Suppose there exists a maxi-
mal ideal J of B such that »J2 is of infinite codimension in B.
Then as in remark (1) of Theorem 4.8 we can construct a discontinuous
module derivation from J to a Banach-J-bimodule. Of course this‘déri—
vation can be raised to one mapping B to a Banaéth—bimodule..

Alternatively (see [28]) let. J = ker6 where 0 is a character
on B. Regard C as a Banach-B-bimodule by defining
b .A=2x.b=6(b)x forall b in B and hi in C. Let f be a
discontinuous linear functional on B, chosen b& Zorn's lemma, such
that f(C1 + J2) = {0}, where 1 is the identity of B (adjoined if
necessary). From the decompositioﬁ |

ab = (a - 6(a)1)(b - 6(b)1) + 6(a)b + 8(b)a - 6(ab)l
we obtain

f(ab) = o(a)f(p) + o(b)f(a).

Hence f is a discontinuous module derivation from B into the Banach-
B-bimodule c.

Exampies of Banach algebras B with this type of maximal ideal

are A ® Cl where A2 is of infinite codimension in A such as
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Cn[O,l], the Banach algebra of all n times continuously different-

iable complex-valued functions on [0,1] with the norm

SN
I N i1

k! :
t4 0,1]1k=0 ° -

'It is still open as to how near "best poséible"-bondition (1) is.
We pose the guestion: are there any commutative separable Banach alge-
bras with closed prime ideals of ipfinite codimension on which all
module derivations are continuoﬁs? Alternati&ely if we have a Banach
~algebra with a closed prime ideal of infinite codimension can we always
construct a discéntinuous module aerivation? A(D), the disc algebra
of functions anaiytic"on the opgn.unit disc D in C and continuous
on 5, is an example of a separable Banagh'algebra with a prime ideal

of infinite codimension on which we can construct a discontinuous module

derivation (see [28]).

The following corollary of Theorem 4.8 extendszheorem 3.1.

COROLLARY 4.9 Every module derivation from L'l[o,ll is continuous.

Proof. Ll[0,1] is commutative and separable and has no closed prime
ideals and no maximal ideals. Since Ll[O,ll has & bounded approx-
imate identity (Proposition 2.1 (2)) -Ll[o,l]2 = Ll[O,ll . Thus Ll[O,l]

satisfies the hypotheses of Theorem L.8.

Remark. Bade and Curtis have proved the following result concerning
singly—generated Banach algebras:
Let B be a singly-generated Banach algebra with generator z.

Let M be a Banach-B-bimodule and let p(z) € ®(M) be the operator
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given by p(z)(m)'= z .m for m in Mf Then if (a) the spectrum
of p(i) is countable, (b) there are no non-zero p(z)-divisible sub-
spaces and (c¢) p(z) has no eigenvalués,we have that every module
derivatiog—from B into M 1is continuous.

The>¢xample L1[0,1] shows that condition (b) in this.result is
not necessary: fér Ll[b,l] is generated by 1 and, if we choosé
M = Ll[O,l], p(z) is the Volterra integral operator V (see Chapter
25. V has épectrum the single point O and has no eigenvaluesT How-
ever although V has a non-zero divisible subsﬁace (e.g7.the set of
7f S Ll[O,l] such that f 1s infinitely differentiable, f has con-
tinuous derivatives and f(n)(O) =0, n=0,1,2, ... ) Corollary
h79 (or Theorem 3?1) still shows that every derivatien from Ll[O,l]

to Ll[O,l] is continuous.

The methods of this chapter can be used to obtain somé résults on
module homomofphismsf Recall that if B 1is a Banach algebra and M
and N are Banach-B-bimodules then a linear mapping 6: M-> N is
called a module homomorphism .if 6(b . x) =Db . 6(x) and
o(x . b) = 0(x) . b for all b in B and x 1in M. The cqnﬁinuity
ideals for '8 are defined as fér module derivations e.g.

1.(8) = {b €B: b .cG(6) = {0}}. Again it is clear that I,(8),
IR(G)_ and I(8) are all closed ideals. The theorem corresponding to

Theorem L.2 is as follows.

THEOREM L4.10 Let B be a Banach algebra which has the property that

if K s a closed ideal of infinite codimension in B then there

exist sequences '{bh};{cﬁ} in B satisfying c b b X and

1°°'"n

¢ by...b € K fbr all> n-3> 2. Let 8 be a module homomorphism between
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two Banach—B-bimodules. Then iL(e) and IR(B) are of finite codi-

mension in B.
Proof. The proof is exactly ahaldgous to the proof of Theorem k4.2.

Remarks. (1) Suppose 6: M ; N whére M, N are B—bimodulesT We

can weaken the hypothesis that N be a Banach-B-bimodule by only demand;
ing that N be a Banach épace with. continuous B-bimodule operations, i.e.
for each b in B the operations n>b . n and n -+>.n . b. are con-
tinﬁous. This is important when considering algebra homomorphisms from

B to other Banach algebras. In this situaﬁion IL(G) ~and IR(e) are
no longer necessarily closéd and the conclusion of the theorem is that
IL(B)_ and IR(S)_ are of finite codimension in B. We prove this in

a similar fashion to Theorem 4.2 obtaining a contradigtion by using a
slight adaption of Corollary lfh’ Essentially wé require that, fof

r

0 r2,'..., Uss Ugs «ee in B,

€ - =
ur)...r IL(G) for n>2=ur

' (S
= SE SRR N IL(e) fqr n > n,

where n, is ‘some positive integerf It is easily seen that this follows
. from Lemma 1.3.

(2) If B has the property that every closed ideal of finite
codimension haé & bounded left approximate identity then it follows

that © is continuous on I_.M which is a closed submodule of M by

L
the Banach moduleformofCohen's factorisation theorem ([ 14], Theorem 32.22

p. 268). TFor let =z € I, -M; by Cohen's theorem we have 2 = a . m

where a € 1 m€E€M and lal < d where a is the bound of the approx-

L’

imate idehtity in I Since 6 is a module homomorphism 6(z) € IL‘N'

L.
Then there exists b € I, such that b . 6(z) - 6(z)l < lzll  where

vl < &, again by Cohen's theorem. Hence
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lo(z)l le(z) - b : o(z)l + My . o(2)ll

| A

Izl + Mzl by Lemma 1.1 (b), (¢) since .b €I

| A

L
< (1 + Ma)ll 2l

(3) From our earlier work we know that C¥-algebras, Ll[O,ll,
Ll(G) and, in fact, any regular semi-simple commutative Banach algebra
satisfying a strong Dytkin condition all satisfy the hyfothesis of
Theorem 4.10. So this thoorem covers results for C¥-algebras and regular
semifsimple commuta£ivé BénachAalgebras obtained by A.M. Sinclair [30]. |

The result for Ll[O,l] appears to be new.

As in Lemma 4.5 if B is a commutative Banach algebra with iden-
tity and M, N are Banach-B-bimodules with 6: M ~+> N a discontinuous
module homomorphism then there exists X in B such that if

8 M > N 1is given by 'Go(m) =x_ . 06(m) for all m in M then

o 0

BO is a discontinuous module homomorphism and IO, the continuity

ideal for 6 is a closed prime ideal of -B. If B has no closed

O,
prime ideals of infinite codimension this forces IOV to be either all

of B or maximal.

In the case where B is a separable Banach algebra, M .and N
are Banach-B-bimodules, and 6: M -+ N is a module homomorphism we can
show that 6 1is continuous on the linear span of I(é).M i3 this 1is
a closed subspace of M. To do this we apply Proposition 4.6 with
Xy = 1(8), Xé =M, Y = linear span of I1(8).M, and T(a,m) = a . m
for a € I1(8), mE€ M. If =z 1is in the linear span of I(e)-M‘ this

m

gives z= )} a. .m, where ) la.llm.ll <Kllzll for some constant
e J J = J Jd -
J=1 J=1

K and as € 1(0), m, €M, 1< j<m. Then



m

lo(z)l = 1} ola, .

J=1

wvhere M is a constant (by Lemma 1.1 (b) (c)),

and so lo(z)l < mlizll

m
< ¥ ula llm,l

32.
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CHAPTER FIVE

In this chapter we employ the methods of previous chapters to
obtain sufficient conditions on the closed ideals of a Banach glgebra -
B so that certain higher derivations from any Banach algebra A onto

B are necessarily continuous.

Definition. For m in N, a higher derivation of rank m .(respect-

jvely infinite rank) frbm an algebra A intovan'algebfa B is a
sequence '{Fl, cees Fm}' (resp?"{Fl, F2, ;77}) of’lineaf-operators
from A into E satisfying Fn(ab) = 'io Fi(a)Fn_i(b) ‘for e@ch
n=0,1, ..., m (resp. n=0,1, 2, t:.) and all a, b in A.

A higher derivation of rank m (resp. infinite rank) is said to
be continuous if Fn is continuous on A fér each n = O’Al"fif’ m

(resp. n=0, 1, 2, ...). It is said to be onto if Fy maps A ohto

B.

Another problgm raised af the U.C.LfA. conference mentioned earlier
was whether the result of B.E. johnson and A.Mf'Siﬁclair [17] giving
the .automatic continuity of derivations on semi-simple Banach algebras
could be extended to higher derivationsf R.Jf Loy pointed out subse-
qgently that the result could be e;tended fqr higher derivations whose
domain algebra is the same as the range algebra and where FO is the
identity map. To do this he merely used results of N. Heerema [13] to
express a higher derivation in terms of a derivation. We shall extend
Loy's result

(1) by allowing the domain algebra to be any Banach algebra

whatsoever,
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(2) by allowing the range algebra to include a wider class than
" just semi-simple Banach algebras, and

(3) - by weakening the condition that F

o be the identity map.

THEOREM 5.1 Let B be a Banach algebra with the property that for

each infinite dimensional closed ideal J in B there is a sequence

. . . ’ _D - -,‘“‘-o
_{bn} in B .such that (blff'an) (blff'bn+1J) for.all positive

integers n. Suppose also that B contains no non—zero finite dimen—
stonal nilpotent ideal. .ﬁei '{Fﬁ} be a higher derivation of any rank

from a Banach algebra - A- onto B- such that ker F. C ker F for all *:

0

n . Then {Fn} 18 continuous.

Proof. We prove that Fn is continuous for all n. by induction.

From the definition of a higher derivation it is gleér that Fg is a
homomorphism. Since FO is onto,(}(Fo) is a closed ideal in B. If
G(FO) is infinite dimensional then there are bl, b2, e in‘ B such
that (blff'bﬂG(Fo))— 2 (bl"fbn+f3(FO))_ _for all positive integers n.
there are a,, 855 -« in A suéh that Fb(an) =b, for all n. We
obtain a contradiction by applying Lemma 1.3 with X = A, Y = B,
Rb=5bb forall b in B and T a = aaforall a in A. Hence G(_FO); is
a closed finite dimensional ideal. We want to show that (S(Fo) is
nilpotent and since cg(FO) is finite dimensional it will be sufficient
to show that (;(FO) is contained in R, the radical of B. We could
obtain this immediately from a corollary of BTEf Johnson's deep uniqgue-
ness of norm theorem (see [28, P. 40] ) which states that a homomorphism
from a Banach algebra onto a semi-simple Banach algebra is always con-
tinuousT However here we will argue 1in a more elementary fashion. The

radical of an ideal is the intersection of the ideal and the radical of
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the aigebra and so is an ideal in the algebra [ 6, P. 126]T Hence the
radical of(S(FO) is a finite dimensional ﬁilpoteﬁt ideal in B, and
so is zero by hypothesisT Thén since (3(?0) is a finite dimensional
semi-simple algebra it has an idenfity e [6, p. 1351. Let Q be
the natural map from B to B / R. QFO is a homomorphism from A
onto B /R which is a semi-simple Banach algebra [6, p. 126]f Hence
ker QF is closed [6, p. 131]. 4Define v: A/(ker YQ,FO) +B /R by
p(a + ker QFO) = QFO(a). Thén ¢ is an isomorphism of A/(ker QFO)
onto B /R. Also Qa&(Fy) CG(y). Now let M - Fo’l{d(f‘o)}/(ker QF,) .
Y maps M onto (j(FO)/R thch is-finife dimensional and so M is a
finite dimensional -ideal in A/(ker QFO). Now let ¥y Gl:(FO); There
exist X, c A/(kér QFO)! xﬁ + 0 with w(xn) > Qy as n > . Also
there exists x € M such that y(x) = Qe. So
w(xxn)'= W(x)¥(x ) >ey +R=y +R in B/R as n~>=. But
xx €M, xx > 0, and ylM is continuous since M is finite dimen-
sional and so w(xxn) + 0 in B / R. Hence y €R. Thus we have shownthat
(ﬁ(Fo) is a finite'dimensional ideal contained in the radical of B. It
is thus nilpotent and hence is zero by hypothesis. Lemma 1.1 (b) then
gives FO continuous. (An alternative way of showing that (S(FO) is
nilpotent is to appeal to a result of B. Barnes [5] which shows that
each element of the separating space of & homomorphism has connected
spectrum containing O0). Note that this proof of the continuity of Fy
justifies the remark made after the proof of Theorem 3.2.

» We p;w assume fhat Fn is continuous for O <n < k-1l. We have
Fk(ab) = iz

=0
Fk(ab) - Fo(a)Fk(b) = izl Fi(a)Fk—i(b)f For a fixed a we then have

Fi(a)Fk_i(E) for a, b in A. Hence

(FkL(a) - L(Fo(a))Fk)(b) =Cc(b) where C is continuous by the induc-

tive hypothesis and L(a) -denotes the operation of left multiplication
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by a. (We use the same letter to denote this operation in A and B
although, of course, they are different operators.) Now  using the

fact that Fd is onto and the inductive hypothesis it is clear that

(jGFk) is a closed idesl in B. If (S(Fk) is infinite dimensional

then, exactly as in the case of F we obtain a contradiction by

o’

applying Lemma 1.3. Hence cj(Fk) is a closed finite dimensional ideal
in B. We now show that G(Fk) = {0} wusing a similar method to the

one employed when dealing with F,. although the situation is rather

0

different since F

Xk is.not necessarily a homomorphism. As argued in

the case of F. the radical of~J3(Fk) is zero and so (S(Fk) is a

0
finite dimensional semi-simple algebra with identity f. Choose
h € P, Mr}. Fy(h®-h) =1 -f=0 andso F.(n) = Fj(hz)

1]

(J

the identity of an ideal in an algebra is a central idempotent in this

0 J
1, ..., k). This implies Fj(h) =0 for j=1, ..., k since

algebra.
A / ker F0 is a Banach algebra and consider its subalgebra
- 3 1. 1 + i = .
hA / ker Fo+ Define F,': hA / ker Fy » fB by Fo(ha kerFO) fFo(a)
FO' is one-one and onto fB which is finite dimensional and so
hA /AkerFO is finite dimensional. Define Fk': hA / ker FO + fB by

Fk'(ha + ker FO) = ka(a) which is well-defined since

ker F, C ker F_ and Fj(h) =0 (j =1, «cus k). F' is continuous

since hA / ker F, is finite dimensional. ©Now let ¥ EEG(FK). There

o)

exist x in A, x = 0 with Fk(xn)a-y as n > o,

1 = [.-]
Fk (hxn * ker FO) ka(xn) > fy =y as n > «, But

F'(hx + ker'Fy) ~ 0. Hence y =0 and so G(F,) = {0} which by

Lemma 1.1 (b) gives Fk continuous and induction completes the proof.

Remarks. (1) The class of Banach algebras described by the hypotheses -
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in the theorem includes all the examples considered in Chapter 3 includ-
ing L [Q,l] and semi-simple Banach algebras (see the remark after
Theorem 3f2)‘ For certain Banach algebras of power series the continuity
of higher derivations under the restricted conditions of :A = B,
F, = the identity map was first'proveq by R.J. Loy [22]. | _

(2) Tﬁe result for Banach algebras (such as Ll[O,ll, Banach
algebras of power series and others described in Chapter 3) which sat-
isfy the hypothesis‘on infinite dimensional closed ideals and for which
there are no non-zero finite dimensiohal ideals can be proved without
' requiring thé assumption on the kernels of the WJ's.

(3) U51ng the methods of [13] and [18] it is possible to
claCSlfyall the hlgher derivations acting on L [O l] where ‘Fb is
the identity map.

(4) Tne methods of the proof also give thé'continuity of -

higher derivations on n indices of A into B (see [22]) under

similar hypotheses to Theorem 5.1.

The following examples from Loy [23] show that the conditions

on the Fj's' are required.

Examples. We consider 22 with pointwise addition and product. Let

® be a discontinuous linear functional on £° which -vanishes on the
dense subset ll = (22)2.

(a) Take A =B = 22. Then B is semi~simple and so satisfies

the hypotheses of the theorem. Define FO: A > B to be the unilateral

shift Fo(xl, X5 .ee) = (O,'.xls X5 T?T) so that F 1is a one-one

homomorphism of A into B. Given a positive integer n, define

F, =0, 1<i<nl and F (x)=(6(x), 0,0, ...). Clearly
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ker FO C ker Fj for 1< :vn? Then '{FO,.Fi,

derivation of rank n of A into B and Fn is clearly discontin-

cees Fn} is a higher

uous. In this example Fb is not onto B.

(b) Take A = 22 with identity e adjoined and B = C. It is
trivial that B - satisfies the hypotheses of the theorem. Let ¢ Dbe
a character on A with kernel 22 and extend 8 to A by 6(e) =0

and linearity. Define Fo = ¢ which is onto B. Then FO = ¢,

F. =0, 1<1i<n-1, F =8 ~is a higher derivation of rank - n of

A -onto B with F = discontinuous. Here ker F, Z ker F_.



Part Two

Uniform ‘Algebras on 0dd Spheres

39.



Lo.

CHAPTER 'SIX

In this chapter we shall introduce some‘basic definitions and
. concepts which we shall use throughoutAthe second haif of this thesis;‘
We also list some well-known results whichiﬁe shall need and give a
brief introduction to theAproblem we shall be discussing in Chapters T,

8, 9.

Notation. Let T denote the unit circle {z €C: '|zl = 1}  end D
the open unit disc {z € C: lz| < 1}. Lebesgue measure on T will-
usually be denoted by . dt;"for con&enience, however, if E is a.
measurable subset of T, IEI‘ wili also denote the. Lebesgue measure
‘of E. All functions discussed a;e complex-valued. C 1is the algebra
of continuous functions on T and A 1is the algebra of continuous
functions on D which are analytic on D. L” will denote the Banach
algebrajof essentially boundea, Lebesgue measurable functions on T.
The norm lfl of-a function f in L= is the essential supfemum of
|f| on T. The collection of boundary functions (via radial limits)of
bounded analytic functions on D forms a closed subalgebra " of L.
P (1 <p<«< ) denotes the Banach space of Lebesgue measurable functions
£ on T such that { |£|Pdat < . The maximal ideal space of any closed
subalgebra B of L° will be denoted by o(B).

For each ‘f in Ll, reie € D, let f(reie) denote the harmonic
extension of f into D by means of its Poisson integral, i.e.

16 . i . . .
f(re'’) = E% { f(elt)P(r, 6 - t)dt where P is the Poisson kernel given

by

1l - r2

P(r,t) = , 5 .
"l - 2r cos t + r
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We shall often not distinguish between f 1in Ll and its harmonic

extension to D.

Definitions. A unimodular func¢tion is a function f € L” for which

|f|] = 1 almost everywhere (a.e.) on T. An inner furction is & uni-

modular function f in H . A Blaschke product is an inner function
. Kk © )\_— A. — 32 } .
of the form B(z) =z 1 TXJT'I%:—f_E with k a non-negative integer,
' Jg=1"'"3" ) - -

and '{Aj} a sequence of non-zero complex numbers of modulus less than

. o0
1 such that z (1 - 1%51) < »; (this last condition insures the con-
=1 |
vergence of the infinite product).

A sequence '{znl in D is an interpolating sequencé if for every

bounded sequence-:{wn} in C, there is an f 1in H  such that -

~

f(zn) =W for all n. .ABlaschkeproducf whose zeros form an interpol-

ating sequence is called an interpolatirig Blaschke product.

A useful property of interpolating Blaschke products is given by
the following proposition. A proof can be found in K. Hoffman's book

[4%, p. 206].

PROPOSITION 6.1 Let B be an interpolating Blaschke product with zero

set ‘{zn}. Let ¢ E‘Q(Hm) and ¢(§) =0 then ¢ s in fhe closure of

{z } in o(H”).

We shall be interested in obtaining concise expressions for the
relative size of a function . Thus for g defined on T and for each
a consider the. set where |g| is greater than a, {x:.|g(x)] > al.

The function A(a), defined to be the Lebesgue measure of this set,is
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called the distribution function of .lgl.' The decrease of A(a) as
o grows descrifes the>rela§ive size of thé function - this is our main

coﬁcgrn locallyT Any quantity dealinéso;elywdth the size of g  can
be expréssed ip terms of thé distribution function A(d)f For example;

it g€1P, then [ |g(el®)|Pat = p cfo oP1A(a) da. | |
We now introd;ie the Hardy—Littgewood maximal function . A dés—

cription of this function and its properties can be found in E.M. Stein's

excellent book [53].

Definition. Let f ©be a function in Ll. We define -
. 6+s .
M(f)(ele) = sup El- f [f(elt)ldt.
s , ’
s>0 ~ O-s : .
M(f) is the Hardy-Littlewood maximal function and a partial integration
shows that there 1s an absolute constant A so that
£(re*®) < am(e)(e*®) (re*® € p)

where we consider f as being defined on D by its harmonic extension.

The most useful theorem concerning the maximal function 1is the
Hardy-Littlewood maximal theorem. The proof is not difficult but it in-
volves a covering lemma of "Vitali-type'". Readable accounts of the

proof can be found in [53] or [33].

THEOREM 6.2 Let f be a given function defined on T.

(1) If £ € Ll, then for every o > O

. . B .
[ m(e)(e*®) >a}] <= [ [£(e™)]at
RS

where B, 18 a constant.

0
(2) If £€1P, 1<p<w, then M) ELP and

Im(£) el | .
M(f) o S_BP f o where Bp depends only on p
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If £ 1is a function in Lt and I 1is any subarc of T let

£ = T%T"f f(t)dt. For O < a < 2m. we then define

I
I .. . .
1
8 (f) = sup f [£(t) - f_|dt, and we put
a III__(_a' III I I ’ . .
8,(f) = ii? 5,(f), ﬂ:ﬂ* = 8, (f).

The function f 1s-said to have boundéd mean'qscillation, or to belong
to BMO, if "f"* < ©, The space BMO is a Banach space under the norm
"-"*; provided that two functions differing by a constgnt are identifiedt
A function f‘ in BMO is said to have vanishing mean oscillation, or to
belong to VMO, if So(f) = 0. It is clear from elementary cbnsideraﬁions
that VMO is a closed subspace of BMO. Intuitively a funcfion is in VMO
if its mean oscillation is locally small?

The concept of bounded mean oscillation was first intfoduced by
F. John and L. Nirenberg [hé] and vanishing mean oscillation was first
described by D.E. Sarason in [ 52] where various characterizations of
VMO are obtained. In John and Nirenberg's paper they prove various in-
equalities concerning functions in BMO one of which we now state as we
shall require it later. Again the proof is-not hard but it uses a
rather technical and.involved decompésition of integrable functions due
to F. Riesz.
LEMMA 673 Supposé_ f s a function in BMO and 1 <s a subarc of T.
Fér each o > 0, let A(a): be the distribution function of |f - fIIf

Then there exist constants c¢., ¢, and ao. (independent of f) such

. 1* "2 0
that
~ €1 ~coa/l £llx
A A(“)-i'EEW; ( [ |£e) - £ lat)e
I

for all « z_ﬂf"*ao.
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‘Definition. For any»subérc I of T with centre elt and measure
2§ > 0, let R(I) ='{rele_e D: |6 -t] <8, 1-6<r <1}. A finite

positive measure W on D 1is said to be a Carleson measure if there

exists a constant ¢ such that u(R(I)) < c|I| for all subarcs I of
T. | | |

Ahy rectifiable curve I €D induces a finite measure on D by
defining the measure of any Borel set § to be the length of T N S.

We say that T induces a Carleson measure if the induced measure is

Carleson.

The following lemma is a version of Green's theorem which we shall
use in the proof of Theorem 6.5 and in later chapters. In the form given

it is due to D.E. Sarason.

LEMMA 6.4 If f, g € 1° and £(0)g(0) = 0, then
T . . . . ’
E% f f(elt)g(elt)dt =<% ff Vf(rele) . Vg(rele)r log'%_drde

- . . oD .
16 of 16y,- 1 af 16 2
= (2L L 9t 1=
where Vf(re ") = ( ar (re™ ), =~ 38 (re”™7)) € C".

Proof. Let ) anelne, )) bnelne be the Fourier series of f and g
respectively. Then f(rele) = 3 anrlglelne, g(rele) =3 bnrlnlelne
and by direct computation
™ - . : ©© .
1 1t it
E}'f f(e”"gle")at = ) a.b_ (ajby = 0),
o 70
.. ) ’ . © .
10y _ n{-1 1no6 n{-1 . 1n@
Vi(re™”) = [ § anlnlrl l e, ¥ anr[ | nie '],
—oo ~
e, _ % n|-1 ing T n|-1_. in®
veg(re™ ) -v[-z bn|n|rI |=21e , _Z bnr[ l nie ],
. : 1 =1
Again by direct computation, using the fact that f r log rdr =-?———;§
0 n+l
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for n # -1, we obtain
%‘f! Vf(rele) . Vg(re )r Zl_og-l drdé = 2 ab
‘D

_ n -n
T . n?O ’
and so the lemma is proved.

In their fundamental paper on BMO and HP spacés of several
variables C. Fefferman and E.M. Stein [ 41] provéd the following theorem
which exhibits the relationship between functions in BMO and Carleson
measures. (Note that we have tranéferred théir result from the real line

to  T).

THEOREM 6.5 For a function f defined on T the beZowing'conditions

are equivalent:

(1) f € BMO,

1

(2) £ €L and Bhe measure ﬁ on D defined by

= (1 - r)IVf(rele)Izrdrde? 18 a Carleson measure.

Furthermore (if either condition holds), if c = sup -AT%T'u(R(I)), then.
| | |zf<em 21
there exists a constant A, with c S;Alﬂfﬂ*

The c«ansMC' A, s independent of H\e— Suiction §.

Proof. We shali prove the equivalence only in thé direction that we
shall need later, i.e. (1) = (2). So suppose f & BMO. We note first
that a consequence of Lemma 6.3 is that

2 2 :
f € BMO = sup ——T-f |£(t) - £ |at < e Mgl = ...(1)
II <2m II 3 * o

where ¢ is a constant. This follows since

3 o
f |£(t) - fIlpdt = p f ap—;k(a)da where A(a) is the distribution
Lan o - ‘
function of |f - £].

Let I be any subarc of T with |[I| =2§> 0. We will assume
' without loss of generality that I has centre 1. Let

I)s =.{elt €T: |t| <46}, and write x for the characteristic function
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-~

of Ihd’ and x for the characteristic funcﬁion of the complement of

Ihé in T. We hgve

-~

= + .
)X fl + f f

f=f + (f - £ )X + (£ - F 5 3

Tus bs Tys

We also have f(re*?) = fl(rele) +'f2(rele) + f3(rele) for the corres- -

ponding Poisson integrals where retf € D. Now

w(R(I)) = ff. (1 - r)IVf(rele)Izrdrde.A In this integral f, contributes
R(I) : ‘

nothing since it is constant. Now

[f (1 - r)]Vf2|2rdrde_5 [ (- r)]Vfélzfdrd&
R(I) ' D
< [f Lerlzr log'% drde
D . o
since 1 - r <log for O <rc<1,
Ul ©. _
=3 |f2(elt)|2dt by Lemma 6.L
—-n' : .
=32 [ |£-1£ |2dt
I, hg
8 .
< heslel,® by (1) | L (2)
iy 1 oo, it
Mso IVf3(re )|§_§; _£ IVf(r?B—t)||f3(e )| at
Lo it
1 1£(e™) - £
== [ — - at
m it 16,2
T Ihé le — re l
. 2
since |VP(r,6—t)| = lt-rei°|2 .

Now if 6§ > %- this integral is zero since T } I is empty and if

. .- o |
§ < %- we have, for elt €T \ IhS and re € R(I), that
Ielt—rele|2 z_k152 + kz(e—t)2 ‘where k, and k, are positive const

tents. Also it.is clear (see [L1, p.142]) that for .g & BMO
| gle*®)-g
| 0l e lel |
we have f > 5 dt <5 - Hence for any value of & -
T k6 +k2(e—t) ' :

. ) C _
we have IVf3 (rele)[ 5_;%;Hfﬂ*s.which implies that

/] (l—r)lVf3|2rdrde i_csdﬂf"*z where C. 1is a constant. T?7(3-)4

R(I) _
since |vE|® < 2(|ve,i®

5
+|Vf3|2) we deduce from (2) and (3) that
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2 ‘ . .
: ff (1 - r)|Vf| rdrd6 §_c66"f"*2 where cg 1s a constant, 1.e.
R(I) A ‘ o ' S

w(R(I)) < cjI| for some constant c¢ and so u 1is a Carleson measure.

The next theorem was a crucial part of L. Carleson's proof [32] of
the corona theorem (i.e. the theorem which shows that .D is dense in
o(H)). It is easily proved using the Hardy-Littlewood maximal theorem

(as was shown in [53])7

THEOREM 6.6 Let w be a Carleson measure on D, with p(R(I) §_c|I|
for all subarcs I of T. Then for 1 < p < =,

§/ | £(z) | Pau(z) f.cAp"f"pp, for all £ 1in P,
D .
where Ap 18 a constant depending only on p.

Proof. Let W(rele) and ¢(ele) be non-negative functions on D and

T respectively which are related by the non-tangential inequality

e .

sup W(rei¢) f_w(eie). Then u{rei ¥ > q} f_cl{eie: Y > a}| for

le-¢] <1-r
each a, and as a result ’f Wpdu_g c f wp(elt)dt. "Once this 1is observed
ig, D igy, T . io ie
we need only take Y(re ) = |f(re Y, wle ) = AM(f)(e ). The non-
C . S id ify . . .
tangential inequality sup ¥(re’) < y(e” ) 1is contained in the remark .
|6—¢|<1—r

after the definition of the maximal function and the theorem then follows

from Theorem 6.2 (2).

We now give an elementary measure theoretic lemma due to D.E. Sarason

[ 52] which we shall require later.

ILEMMA 6.7 Let (X,v) be a probability measure space and . £. a function

in L) such that £l <1 and [ fav =1 - b3, where O < b < 3.
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Let E bDe the set of points in X where |1 - £| > b. Then v(E) < 2b.

Proof. We have

— -

. f+. ) . +— .' '.
1—b3=.j_2fdv+{f2fdvijf+,fdv+v(x\E).
: E X\E E ' ‘
By an elementary calculation, if JAI <1l and [l - AI > b then

: T 2 z 2

+ :
Ar A 1 - 2—. Hence f ft+f dv < (1 - 2—-)\)(E) so that

2 - 2 g 2 . 2 ' :

3 v

l1-D

2 ) .
< (1 - %—)v(E) +v(X\E)=1- Vv(E). The desired inequality

2

1s now immediate.

Notation. Let '{fA: A €A} be a collection of functions in L .
A A € Al will denote the (uniformly) closed subalgebra of L
generated by H  and the set :{fA: A €A},

(8”,f

We now turn to discuss the problem which is.at the heart of the
work in Chapters 7 to 9. We will be interested in the closed subalgebras
of L~ which contain H properly. If A is such an algebra we let

Ad denote the closed subalgebra of LO° generated by H°° and the complex

conjugates of the inner functions that are invertible in A, i.e.

Ad = [Hw,i: bEA and b is inner]. Clearly Ad Ca; if A = A, A

d
is called a Douglas algebra. R. Douglas [40] conjectured that equality

is always the case for such A, i.eT Ad = A for every closed subalgebra
A containing H . This conjecture has attracted much interésf‘in the
past few years and in particular it was soon shown that many natural
examples of closed subalgebras of > containing H  were Douglaé alg-
ebras, e.g. L” itself (see [Sl])f Recently the questiqn has been ans-
wered in the affirmative, the proof being contained in papérs by

S-Y.A. Chang [ 34] and D.E. Marshall [U47]. Chang proved that if A is a

Douglas algebra and B is a closed subalgebra of L* which contains H
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with ¢(B) = ¢(A) then B ; A, iTeT a Douglas algeora is nniqnely
detcrmined amongst those cioscd subalgcbras of L containiné H
propérly by its maximal idcal spaccT Marshall proved that if A is a
closed subalgcbra of L” containing H  then o¢{A) = ¢(A ). It is
clear that the two results together show that every closed subalgebra
of L containing H is a Douglas algebra.

In Chapter 9 we shélligive a ‘direct proof of the Marshall-Chang
theorem'using the techniques of.Chang and Marshall butlavoiding almost
entirely any reference to maximal ideal spaces. ‘This shortens thcir
proof a little and avoids using the corona tneorem'of Carleéon (as
- Marshall does in his proof). We are grateful to A.M. Davie who suggested
the poss1b111ty of tackling the proof in thls way.

As Marshall pointed out his proof in fact yields the follow1ng

stronger result which 1is the theorem we shall prove in Chapter 9

THEOREM 6.8 -Every closed subalgebra A of L” containing :

given by A = [H”,E: E €A and B is an interpolating Blaschke product.]

It is clear.that this theorem shows that every closed subalgebra
A of L°° containing Hm is a Douglas subalgebraf

At this point note that it is sufficient to prove Theorem 678 when
A = [Hm,u,ﬁ] where u 1is a unimodular function in L. ' For suppose A
is a closed subalgebra of L containing HmT A 1is generated by 1its
invertible elements; so suppose f is invertible in A and let
g = expllog|f| + i(log]f[)~] where (1og[f|)f is the harmonic conjugate
function of log|f|. Then |g| = |£| -a.e. on T and g 1is invertiblc

in H . Therefore u = fg and u = f—lg. are unimodular functions in
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L and this shows that A is generated by H and {u€A: u is uni-

modular and u € A}.

Marshall's construction of the relevant Blaschke products required
for the proof of Theorem 6.8 is based on a construction due to
L. Carleson which was used in his proof of the corona theorem [32]. 1In

order to describe Marshall's construction (see Chapter 8) we now give

some preliminary definitions.

Definition. The hyperbolic distance between two points in D is defined

z.;
by o(z,w) = [F——

1l - wz

(z,w € D). This defines a metric on D.

The‘relevance of the p-metric to our problem rests in the following
characterisation of interpolation: a sequence '{zj}‘ in D jis interpolat-
~ing if and only if there is some vy > O for which p(zj,zk)lz_y for
j-# k and the ﬁeasure Y (1 - ]zjl)GZ' is a’Carleson measure (Gz'

J J
"denotes the point mass at zj) (for a proof of this fact see [42]).

Definitionf Let V be a bounded domain bounded by a finite number of

rectifiable Jordan curves . LetT =PuUQ, Int(P) N Int(Q) = ¢, where
P and Q are finite sets of Jordan arcs. The function w(z,P;V) which
is harmonic in V and aésumes the‘value 1l on P and the value O on

Q 1s called the harmonic measure of P with respect to V, evaluated

at the point 2. (For the fact that the harmonic measure always exists

in the above situation see [L43]).

The following proposition is a form of the maximum modulus theorem.

It is a special case of Theorem 1.6.3 of [48] and a proof of the result
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can be found there.,

PROPOSITION 6.9 Let f be a bounded analytic function on a domain
VCD, and let X be a subset of . 3V of harmonic measure zero. If
lim |f(z)| <K, then |[£f] <K Zn V.

Z-mM
nEav\ x

Finally we note two weéll-known theorems which we -shall use in sub-

sequent chapters.

THEOREM 6.10 Every closed subalgebra of 1 which contains H  prop-

erly also contains C.

Proofi See [hh]7.

1
3

THEOREM 6.11 The quotient space L [H 1is the dual of the space H,

the space of functions in 11 whose harmonic extension into D s

analytic in D and has mean value O.

Proof. See [39].
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CHAPTER SEVEN

In this éhapter we extend -the definition of VMO given iﬁ Chapter
67 We then characterise fhe generaliséd concept in terms of Carleson
measures in a similar fashion fo_the ﬁay that BMO is éharacterised by
Theorem 6.5f The techniques we use are‘extensions of those used by
D.E. Sarason [52] and S-Y.A. Chang [34] to examine the particular case

of VMO.

Suppose B 1is a closed subalgeﬁra of L~ which qontains H .
If B 1is generated by H  and the comélex conjugates of certain inner
functions, then it is clear that ¢(B) consists precisely of the set
of points in ®(H') at which the Gelfand transforms of ﬁhe inner func-
tions involved all have unit modulus. Now let b be an inner functionf
5 = {z € D: [b(z)] > 1 - 6}. We begin by
looking at the Dbuglas algebra B generated by H  and the complex

Given 0 < 8§ <1 we let G

conjugate of b, 1i.e. (E7,b]. Functions in [E7,5] have the follow-
ing asymptotic behaviour in the region GG:

lim sup |f(z)g(z) - (fg)(z)|] = 0O for all f, g in [ ,0].  ...(1)"
§->0 ZGG6

For if this does not hold for some functions f, g in [E",5], then
there exists e > O such that If(zn)g(zn) - (fg)(zn)| > ¢ for some

point z_ € G for n=2, 3, ... . If we choose ¢ to be a limit
n

1/n’
point of {z_} in o(H"), then [¢(b)| =1 and so ¢ € o([H ,bl) by
the comment above. But we have |¢(f)¢(g) - ¢(fg)| > €, givinga

contradiction.

This yields the following lemma.
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LEMMA 7.1 If £ €[H ,bl is wnimodular and invertible in [H,%]
then for every e > 0, 38 >0 such that |f(z)] 3_1—s3 whenever
z € Gd'

Proof. Take g to be the inverse of f in (1), i.e. g = f.

In our definition of VMO(b) which we give below we will only be

interested in a certain class, ® , ‘of subarcs of T, which we now

.

describe intuitively. We fix a 6 > 0 and choose any zy = I‘oel 0 €& G-

Let I be a subarc of T, centred at eleo. The "value" which deter-
mines whether I € ® or not is the proportion of the length of I to
the distance of 24 from the boundary of the unit circle. We now give

a precise definition.

Definition. Let b be an inner function. If f is a function in BMO
we say that f is in VMO(b) if for every € >0 and n > 1, there

exists some & > O such that for r.e 00 € G, ana 1<y <n we have

0 §
g, 1997t .1 it
I ={e ": —1:;3— < ¢} f‘TfT { [£(e™™) - fIIdt < g,

Note that in the particular case when b(z) =z (z € T) then
VMO(b) is simply the space VMO defined in Chapter 6 since in this

case ® includes all subarcs of T.

We now adapt the methods of D.E. Sarason [52] and S-Y. Chang [ 34]

to establish some of the properties of VMO(b).

THEOREM 7.2 Let f be a wnimodular function in L. Then

FEVMO(b) ¥ Ve > 0, 38 >0 such that z € G, implies |f(z)]| > l-e.

é
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Proof. (=) Suppose f & VMO(b), and let € > O. Recall that for
) i6 ‘ e
z =ree €D we have f(re ) = f P(r e—t)f(e )dt where P is the

Poisson kernel. It is clear from the expression for the Poisson kernel

that we can make { P(r,0-t)dt as small as we like by choosing F to
T\F ' '

be a suitable arc centred at ele, i.e. there exists an n > 1 such that

[ P(r,e-t)at <-Eﬂl where
S A . -
| - g = {: l%:gL_z n} | T (2)
Note that n depends only on € and not on r or 6. Now there exists
16 :
§ > 0 such that for lb(roe O)| >1 -6 and 1 <y <n we have
1 = {t: 197l ob =20 et - £ |at e . (3)
. 1-ry = [T 1 | I 4
Fix z4 = rge Oe G- We have to rovelthat If(zo)l > 1 - 3. Define
. 6 .-t| '
a subarc J of T by J ='{elt: —~9:;—<§ n} so that
. . 0 .
1 it €
5T glf(e ) - fylat < = by (3) . ()
We then have
1 ; 1
1=13 fle')|at < - f_|at + S| fLlat
T31'£ |£(e™®)] T_T L 5l TjT‘£ |25
- 8 =
i.e. li——+|f| IJIZl"Sﬂ- ... (5)

3, |
Also { P(ro,eo—t)dt < EH_ by (2) which implies that

3

1 € . 1/
1 - 5= [ Plrg,6,-t)dt < =g since ¢ f P(r,0

5 -t)dt =1 ...(6)

I 0 2m T 0

Collecting these inequalities together we have

1]

| £(2) 15 | { [£(el®)-2 A PB(rg,0,-t)at|

IA

it
r;i{Jlf(e )=£ | P(ry,6,-t)dt

| |£(e™®)~£ | B(ry,0,-t)at
J
EE-+ —l-f|f( 1ty ¢ |P(r.,06 -t)dat by (2)
T ¢ J 0% Y
3 . :
<E s+ | I+ P(r ,6.-t)1 | £(e)-r_|at|
| <5l 0 ;
1
+

5 g ]f(e )—ledt>
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83 e3 1
<ty el -5 [ Plrg.e-t)atl by (W)
4 b S2n
3 3 3 J
< E_ L E _ 3e” y (6).
3 - 2 Y Y 3
So 1 -0 < ] < [£(z)-£,] + lf(zo)l <3 vy (5)

3

i.e. lf(zo)|_i 1 - €.

"(¥) Let € >0 and n > 1. There exists 6 > O such that

z € Gg = lf(Z)I‘Z 1 - _—-—_E__E— 329 - a3, say. Without loss of
2487 (1+n") ie
generality we may suppose that 0 < a < 3. Let zg = rye 0 € Gs so
that |f(z0)|.3 T - a3. Suppose I is the subarc of T givén by
. |6 -t '
T = {e*%: l?r < P} where 1 < ¢y < n. We have to show that

0]
L[ 1ee*®) - £ |at < e.
[I] 1 I
By multiplying f Dby a constant of modulus one if necessary we may
i@ i8

assume that f(roe O) > 0, say f(roe =1 - 63 where B < a.

Iet E be the set of points on T where Il - fI.Z a. It follows

from Lemma 6.7 that E%—f P(ro,eo—t)dt < 2a. By a simple estimate °
i E 2
based on the identity P(r,t) = l-r it follows that
2 .2, t
(1-7)%+k4r sin (5)
P(ry.6,7t) > 1 5 for eit € I. Thus
(1-ry) (1+y7)
2
% [ at =§_(_11_}__) [ at il—;;’[j—j’P(ro,eo—t)dt
R Vi) 1 E '
2
j_iliﬂ—l . bma = 2ﬂa(l+n2)

2
We thus have
1

1 it _ - it _ 1 it _
'rfr { lf(e ) lldt TETigElf(e ) lldt + TETi{EIf(e ) lldt

2 o < 2
TI—rIAEdt T I{Ed’c < af1 + (1409,

| A

and so

% { | f(elt)—flldt

IA

-l—%l-{ |£(ett)-1]at + |1-£|

20[1 + hn(1+n7)] = e.

| A
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LEMMA 7.3 L~ 0 VMO(b) <s a C*-algebra. Also if c, is the C*-
algebra in L~ generated by the inner functions which are invertible

in [H ,b] then ¢, C VHo(b).

Proof. It 1s clear that LN VMO(b) is an algebra in L” closed
under uniform limits and complex conjugation and so is a C¥-algebra.
Suppose g 1is an inner function invertible in [Hw,g]. Let € > 0.

g 1is unimodular and so, by Lemma T.l, there exists & > O such that

3

lg(z)| > 1-e” whenever |b(z)| > 1-8. Hence Theorem 7.2 shows that

g € VMO(b).

We are grateful to S—Y.Af_Chané for allowing us to see a preprint
[35] which has not yet appeared in publication. This enabled us to
prove the following reﬁarks which meant that we can replace an "ad hoc"
argument in the proof of Lemma 7.4 (which is leading up to the proof of -
Theorem T.T) 5y one which corresponds té the proof of Theorem 6.5 given

by Fefferman and Stein.

Suppose ‘f € VMO(b) and let € > O. Choose N to be the small-
1+2n

o]
est integer 2N such that 2 z L S € Now choose & from the
n=N 2

e e, . . . ) 1.6
definition of VMO(b) with n =-ny 'so that if z = re'~ € GG and

1<V <ny then I =‘{eit: l§551-5_¢} =>T%T-f |f(eit)fflldt < e.

18, iv, 197l
Suppose z. = r.e € G, and let J = {e ;1 ——— < 1}. We want to
0 0 8 l—ro —
show that
1 it
A(J) = 57 4 |£(e™")-1;|P(ry,0,-t)dt < C.e e ()
vhere C, is a constant depending only on “g“*f
i
0

Let J  be the arc with the same centre, e ~, as J and with
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length 2n|J|. Suppose no = EN. We will prove (7) for the case
Ny oy . ' . .
2 |J|< m. (The same proof works in the contrary case with a slight

change in the constant C_.) We have

N ! '
= L ity _ - '
| A(T) = 52 nZO | \g |£(e™ ")~ ;| P(x,0,-t)dt
n. n-1 ‘
1 it ‘
* 5 { |£(e™") fJ|P(rO,60—t)dt,
oy

vhere J_; is taken to be the empty set.

The estimate

£, - f; | <
Jn—l 'Jn Jn—l J__ n

valid for n =1, 2, ..., N gives
n
. -] < Y |f - f < 2ne, n = 0,1,2,...,N,
J Jn k=1 Jk—l. Jk

which together with an elementary estimate of P(rb,eo—t) yields
|£(e™®) - £_|P(r.6,-t)dt
J 00
J \J .
n n-1

2 i
T 1 1t

- ——— [ [ (|£(e"")-£ | + |£, -f.])at]
[JT ,2n-1 "7 . I I, J

| A

n
m 1 it
ST [ (Je(e*®)-f_ | + 2ne)at
2n 1 Jn Jn Jn
2 (1+en) e, n = 0.1,%...N.
- 2n—l ’

N R . . . N
Hence ) = If(elt)—f |P(r.,6.,-t)at < ( } 'l+2n)en. . Using
T op=0 2" g \g J7 70770 -

n-1 n=0 2
similar estimates we have, for Ny the largest integer such that

M g| < 2m,

-

1 1t
5y { |£(e™*)-£ | P(r ,8,-t)at
e

N i
1 vl t
= 57 Z [ lecet )—fJ[P(ro,eo—t)d§

n=N Jn+iJn
o + L f If(eit)—f [P(r 6.-t)dt

2m J 0’"0

T\JN _
1
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R N P
n=N 2" ‘ 2.

< enlfl, by the definition of " nj.

Hence A(J) < C.e where C_ = u( } 228 4 lgl,).
- T - n=0 2" *

We now prove. three lemmas which will enable us to describe the

bounded functions in VMO(b) in terms of Carleson measures.

LEMMA T7.L Suppose f € VMO(b) and let O < e < 1. Then there exists

10 :
8§ > 0 such that if zg = T 0 e G then there exists a constant Cg
independent of €) such that f f (- r)[VfI rdrdf < c8e(l r ),
®02%0
. . T '
where S@,r.) is the region {re : ——— < U4, r_ <r <1}.
0" 0 1-ry, — 0 —

Proof et O < e <1, and, as before, let n. be the smallest integer

V]
oV " such that 2 Z l+2n45 e. From the definition of VMO(b) with
n=N 2" ‘ o

n = max(S,nO)‘ choose & so that if z = re = € Gg and 1 <y <n
then I = {elt: i_i < ¢} =’T%T {lf(elt)—fl|dt < €. Suppose

% gy, legel -
z. =1T1_.e € G and let J be the arc {e: ——— < 5}. Put

0 0 ) l—-rO —

£, = xy(£-f;), £

8 fr, = XT\J(f—fJ) where x; denotes thg characteristic

function of the arc 1I.

We have T‘T i If( Idt < €. Thus
[ G- r)IVf |Prard®. < ff (1-r)|vey |rdrd6
S(eo,rO

< ff v, |°r 1log l drde

Nl=

/ lfl(elt)l dt by Lemma 6.k
T A

|
[V

2 .
£ |t [“at < C9e|J|HfH*
by Lemma 6.3

= Cloe(l—ro). 5,.(8)

(C9, C are both constants).

10
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"Also IVf2(rele)| j_zl-f|VP(r 6~-t) Ilf (e )|dt
‘ T oy 1t
1 | £ (e )£ l
- = . d
- ™ f ) 162 v
\J Ie -re | .
Hence if rele € S(eo,r ) we have, using an elementary estimate of
|eit—reie|2
, .
- . |£(e*®)-1 |
lve (re®®)] <L c o f — I at
2 -7 1 1t 2
T e -z |
0
it
o | £(e )-£5 | |£; -f
11 0 0.
< [ —— dt + om ————5—
- T |elt Z |2 1l-r 2
ok 0
. 6 .-t |
_ it, | 0
where J, = {e”7: 4 < 1},
] 0
€ . it
— — < C
< Cj, 75~ since [ 1£(e™™) £ ]P(ro,eo t)dt < 2n 7€
T 0
by the remarks before the lemma.
(C12 is a constant).
2 C122’32
Thus I (1-7)|vf,|"rarde < [ | —=——,(1-r)raras
s(eo,ro) _ s(eo,ro) (1~ro)
2 2
= 2012 € (l I‘O). .--(9)

Since IVf|2 5;2(|Vfl|2 + lVf2|2) we obtain the desired conclusion from

(8) ana (9).

LEMMA 7.5 Suppose f € VMO(b) and let O < € < 1. Then there exists
§ > 0 such that the measure g on D defined by

dug = Xg (1-r)|v£|®rarde is a Carleson measure with ug(R(I)) < cgel I
8

for all subarcs I of T., (08 is the same constant as in Lemma 7.4).

Proof. (Chang [34]) By Lemma T.4 we choose & such that if
ig. '
) V) 2
725 = Tpe € G, then [ | (1-r)|v£|“rarae < Cge(l-ry), vhere
S(eo,rO
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e 8570l

s(e is the region {re , T, <r <1} and vwhere

o’ro) 1r. — 0

_ 0
Cg is a constant. We assume without loss of generality that

I ='{e1t: -a <t <a} for some a < m. To establish the result it
suffices to find a collection F of regions of the form s(8,r) with

re*® € ¢ U s(e,r) DR(I) NG, and Y (1-r) < 2a. Ve

8 s(e,r)eF. § s(6,r)EF

shall choose the collection F by the following inductive process.

For each n = 0,1,2,... and j = 1,2,3,...,2", 1let
e: n—l]’ l—a/2n.i r < 1},

R .= {re' IS [—a+(j—l)a/2n—l, ~a+ja/2

n,J

with Ry q = R(I).
. 16 .

= : S N
Let 1, inf{r: re Ro,l GG} and choose 6, 50 that

16 .
: 0 . 3 . : ' .
S N - N
rge Ro’l G Notice that if 1 - rgy > a/2, then R(I) Gg is

contained in S(Go,ro) by the definition of r and so we can pick

0

s(e ) in our collection F and stop the process. If 1 - r. < a/2,

0°%o 0

let r, . = inf{r: ret® € R .NG.} for j=1, 2. Choose 0. . soO
1,0 ;% 1,3 S 1,
1, 2 .
that r, .e > ER .NG.. If 1- . > 2 th R. . N
a 1,3 A 1,; 5 Ty 3 > a/ en R, Gs is

contained inS(6_ _,r ) in F and

1,3 )and hence we can pick S(8
, _

.q L .
1,] 1,3°71,9

. If 1 -1, .< a/22, then we

stop the procedure in the region .R 1,3
° 3

153

- L4 . t 2 - d
continue the process 1n Rl,J o the regions R2,2J—l and R2’2J It

is clear that we can continue the above process inductively, and the.

collection” F  thus chosen satisfy our requirement.

Notation. Let X be a Banach space and suppose that E 1s a closed

subspace of X. For x € X the distance of x to E, d(x,E) is

given by da(x,E) = inf{lx-yl: y € E}.

LEMMA 7.6 Let f € L°. Suppose that for every € > O there exists

some & > 0 such that the measure g on D de fined by
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aMg = Xg (1—£)|Vf|2rdrd6 is a Carleson measure with ud(R(I)) < el 1|
§

for all subares 1 of T. Then for every e > O there s an absolute

.- h .
constant C such that a(fo",H ) < Cl e? for n sufficiently large.

13 3

Proof. 'Let € > O and chéose § so that s is a Carleson measure

on D with HHG(R(I5)_i e|1] for all subarcs I of T. First notethat
without loss of generality we may assume that Gg E;{é: 3 < |z| <1}
For by Theorem 6.10 we deduce that [u",b] = [H ,zbl and so
a(e,[n”,6]) = a(£,[H ,zb]). This implies that if a(£z"™,H") < ke

for some coﬁstanf k and sufficiently large n ‘then d(fbn,Hw) < ke
for sufficiently large n. Thus we could consider the inner'function
zb(z) instead and cléarly the region G6 for the inner function

2b(z) satisfies our requirement so long as we choose § < %f

From this point on the proof follows Chang [ 3L, Lemma 6].

Without loss of generality assume that O < e < 1. Since L / H

is the dual of HOl by Theorem 6.11 d(fbn,Hm) equals the norm of the

functional that fbn induces on HOl.» It is therefore sufficient to

1 1 ! 1t it
show that, for all g€ H , fg; / f(elt)bn(el Ye(et)at| < Cn"g"l
T

At
2

138 for some constant

where C_ is a constant which is less than C

Ci3 as n > ©., Without loss of generality we can assume that g is in

(o] [+

H since H is Ll—dense in Hl.A We may also assume without loss of

_generality that "f"m.§ 1 and f(0) = 0. By Lemma 6.4 we can write

2%

X f f(elt)bn(elt)g(elt)dt ='% [ ve.v (v g)r log-% drde. Roughly
T D

speaking we shall estimate this integral by splitting it into two parts

~ first integrating over GB where we obtain our estimate by using the

fact that Xxg (l—r)IVfIZrdrde is a Carleson measure, together with
6
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Carleson's inequality (Theorem 676) - second integrating over D \ GS
where we use the fact that |b(z)] < 1-8 to obtain our estimate.

Since b~ and g are both analytic functions we have

(bng)(z) = bn(z)g(z) for all z € D and hence V(bng) = ang + ngn.
We assume first that g 1s without zeros in D. Then there exisfs a
fuﬁction h, also analytic in D with g = h2. We can then make an
estimate:

|% ]j;f VE.(b'Vg)r log —;L; arae| < % é[ | bn‘| |vel|velr iog% drae

1}

2 {f 10" ]|ve]]g'|x 1log L rae,
™D ‘ T :

since |vg|®'=2|g'|®

Ii

1 22 '
22 (1 15" 9efal? el Ht v t0g  aras
D .

' ]
< ,/2(—_[lr~ [ 0% ve|?] g r 1og%_- drae)?
D .

Ol

x (% ]f)f le| Y et | Pr 10g% drde )°.

For the second factor we have
L (1 lel e |°r 1og = aras = Y rf In|Pr 106t arae,
T D . r ™ T

D
since 1g'|2 = hlgllh'l2

[ |m|?r log L arae
D r

[ |n - hT|2dt by Lemma 6.k
T .

Al =3

_ ~ 2 2 _
= 8lln hT“2 §_8"h"2 8ngl .i.(lO)

To estimate the first factor we put

5, =L /1 |v*|?|g||v£]|%r 10g = aras
™ r
G
8
1
™

\fflbn|2|gl |ve|®r 1log -:lL; dras.
D\G

)
1
Now log = < (210g2)(1-r) when 3 <r < 1. So
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21og2 .
s, < =8 [ |27 2[02] |ve| Pr(1-r) aras
G ) o .

, s

21082 5 1p™ 2lnl 2
< == AT hl2 € by Theorem 6.6

' 2A e :

- 2log?2 “ " 2 2 .

——;gL-Ae nll e f-—;——“g"l ...(11)

Also S, _<_£ {f (l—d)eanf|2|h|2r log < aras.
" ol\a T
§

Since functions in L” are clearly in 'BMO we have

s, < Ho82 (1-5)%" [] |ve|2|n|®r(1-r)arae
. 5 '
210%2 _ 2n " 2 2
< (1-6) Ay £ll, A2llhll2
by Theorems 6.5 and 6.6.
So
2A_A
' 12 2n 2 .
S, < 5 (1-8)"lhsel, ‘"g“l ..'.(12)

Combining (11) and (12) we have
2A.e 2AA
L pf v [ve]?| el 1o L aras < ( 2 + —=2 (1-6)2"el,B)lgl
D ‘ ‘ ,

...(13)

Combining (10) and (13) we have

' v 2Ae 2A_A ; ,
12 [ v£.(bPVg)r log = arael < v2 (8lgh ) ¢ 27, 21201 5)20 £l 2) 2l 2
LIRS r 1 1r m * 1
2A_ e 2A_A 1
_ 2 1%2, 2 23
=4 ( —=— + ——(1 §) el <) |g"l,
coo(1k).
. 1 n 1
To estimate = ff Vf.(gvb )r log - drde® we set
b
S, = L /f vE. (gvb™)r log 14rae ena
3 T4 L r
6
S), =31 {f vf. (gVb)r log < dras.
T NG r
6 .
1 2 1 3,01 2 1. 1 \ 3
Then |S3| ii( = (j;I [ve]“|g|r 1log . drde)*( P _(f}flVan |g|r log = drde)®.
§ é

By the same reasoning as we used in estimating S, end S, we obtain
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1 o 1 2A € .
= [f 1v£[%|e| r 10g ¢ arae < lgl,  ana
o :
L /1 |w®|?|e|r 108 = arao < 2 gl
Ll G r . - _']_
6 .
(since “bn" < 2anﬂm£ 2).
) 2h e ; 8A.A 1 ha_ %A 1 :
2 12 1 2 :
Thus |85] < ( —— Mgl )3 ——= lgh )? = ——= ¢*lgh) ...(15)

For Sh we have

syl < (5 {I.IVflz_lelrlosldrde) e {f |77 lglrlogldrdm
: L\ Y] ¥ m

- The same estimate as 82 gives that

2A_A
{é |v£]%|g|r 10g T arde < —= Il lgl, -~ ana

{ﬂVbnlelglr log % arae < n2(1-6)22[f|vb|?|g|r log % drde
5

(since | Vbnl2 = n2|b2(n?l)|lVb[2)

aa
< n?(1-6)2(n" ) L2 g
Hence we have
,
syl < ( —=2 11, 2hgl )E(n(1-6)2(7" - 2 2 gl )?
- La A .
= n(1-8)""t —=2 Izl lgl. . | ... (16)
Combining (15) and (16) we obtain
,
LA %A o AA,
B j[ vE.(gVb")r log T = aras| < 2 e2lgl *in(1-6)""" -2 Iel, gl
h 2A .1 ' 1 . V
Al e + n(1—5)n"lAl§Ilfﬂ*] el .

Ceo(17)

So from (14) and (17) we have

2A e 2A_A 3
|12 [f v£.9(%g)r 10g T aras| < UM —— + —=2 (1-6)7"Meh, 71 20gl
D

)"'A A2 b 1 -
_L_ 2 - n-1 2
+— [e*+n(1-8)" "A; "f"*]“gﬂl
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Letting n *'w, we have proved;.under the assumption that g has no
zeros in D, that

_ Co. 1 _
|% [ v£.(v g)r log % dras| < —%—3 efllgly 4 ...(18)
Lo

wvhen n 1is sufficiently large and C 13 is a suiteble constant.

For the general case, let ¥ be the Blaschke factor of g and
let % = % so that g = w +w(v-1). Since w and w(v-1) are both
functions in H  without zeros in ‘D we can apply (18) to the functions

w and w(v-1) tOAGBtain L— ff Ve, (Vo) r log l drdel < 33 E“w" =
13 §llgll and |—-ff Vf. (Vb w(v—l))r log-L drdel < ;3 E“gﬂ when n

is sufficiently large. Since v(p"™ g) =‘V(b w) + V(b w(v-1)) we obtain

. - 1
the desired inequality [%-ff vE.v (b g)r 1og-% drdé|< C e?"g“l for n
D

13

sufficiently large, and hence conclude the proof.

We can now give our characterisation of the bounded functions in

VMO(b) in terms of Carleson measures.

THEOREM 7.7 Let £ € L°. Then f € VMO(b) <f and only if for every

€ > 0 there exists & > 0. so that the measure Mg defined by

dug = Xg (1—r)|Vf|2rdrde is a Carleson measure with u (R(I)) < e|1]
§

~ for all subares I of T.

Proof. Denocte the functions in L satisfying the property described
by the second part of the statement df the theorem by L(b). Suppose
f is in VMO(b). Then by Lemma 7.5 it follows that there exists some
§ > 0 such that the measure Us has the réquired properties and so

f € L(b). On the other hand if f is in L(b) then from Lemma 7.6 it
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follows that re [57,b]. sSimilarly T € [E°,5]. Hence
L(b) Cla,bl N [5”,6]. If £ is unimodular in [57,5] N[H ,b] then
by Lemma 7.1 and Theorem T.2 £ € VMO(b). Siﬁce 15,51 N [Hm,S] is a
C*-algebra spanned by its unimodular functions énd vMo(b) N Lé is a
linear space it follows that [H,b] N [Hé;il C vMO(b) and the result

follows.

It is clear that we can generalise the concept of - VMO(b) and -
the results concerning this épace where we are concerned with the single
inner function b to a coﬁcept which involves an arbitrary collection

of inner functions b

A for A in some index set E.

Notation. For each finite subset F of the index set E, let bF

be the innér* function I b and for & > O put
. A o -
~AEF -
Gy(F) = {z €D: [by(z)] > 1-8}.

Definition. Let {bA:._A € E} be a collection of inner functioné in-
dexed by the set E. If f is a function in BMO we say that

£ € VMO(bA: A € E) if for every € > 0 and n > 1, there exists some.
§ > 0 and some finite non—empty subset F of E such that. for

roeleo € GG(F) and 1 < ¢y < n we have

it 1907t

R R N :T%_I{ |2(e*®)-2 | at < ..

We have the following results'parallel to Theorem 7.2, Lemmas T.3,

7.5, 776 and Theorem T.T.

THEOREM 7.8 Let f be a wunimodular function in L. Then
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f € VMO(by: A €E) #Ve >0, 38 >0 and some finite non—empty subset

"F of E such that =z € GG(F) =°'If(z)l > 1—63,

LEMMA 7.9 LN VMO(bA:;,A € E) <8 a C*-algebra. Also let Cy be the
C¥—qlgebra in L. generated byAthe inner functidns which are invertible

in [H ,b

X A €El. Then CBSVMO(bA: A €EE).

LEMMA 7.10 Asuppose f € VMO(bA: AE€E) and let 0 < e < i% Then
there exists & > O and some f%nite non—empty subset F of E such
‘that the measureA uG(F) on D dgfined by dua(F),= xGG(F)(i—r)Ivflzrdrde
18 a Carleson measure with ﬁG(F)(R(I)) f.CluEIiI for all subqrcé I

of T. (Cy), <s a constant indgpendent of e).

LEMMA T.11 Let f € L. Suppose that for every e > O there exists

some 6 > 0 and some finite subset F of E such that the measure

u (F) on D defined by au (F) = X (1—r)|Vf|2rdrde s a Carleson
8 8 Gs(F)*

measure with QG(F)(R(I)) < €|1| for all subarcs I of T. Then for

every € > 0, there is an absolute constant C15 such that
’ A

d(be?,Hm),i C,.e2 . for n sufficiently large.

15

THEOREM 7.12 Let f €L, Then fE€ VMO(bA: X €E) zf and only if
for.every € > O there exists 6§ > 0 and éome non—empty finite subset
F of E so that the measure 'NG(F) defined by

.dua(F) = xGG(F)(l—r)|Vf|2rdrde is a Carleson measure with

ug(F)(R(1)) < e|1| for all subares I of T.

The proofs ofthese results are more or less identical with the
proofs of the corresponding results given earlier with only minor alter-

ations needed.
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We conclude this chapter with a problem: in the definition of
VMO(b) can we restriét-attention to merely those arcs where ¢ =1 7

If not what sort of function provides'a counter-example?
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CHAPTER EIGHT

In this chapter we describe Marshall's construction of the inter?
polating Blaschke products which we shall need to prove Theorem 6.8.
There are two differences in our épproach to the constrﬁction:
(a) we describe the construction on D rather-than on.the upper half-
plane, and
l(b) by using an argument due to A.M. Davié we avoid the use of harmonic

measures in the construction.

Let u be a unimodular function in L and let A = [va,u»,GL
By the remarks maae in Chapter 6 it is sufficiént to prove Theorem 678
when A 1is of this form and so we restrict our attention to this
situation. For each o, O < a < 1, we wish to construct an interpql—
éting Blaschke product B  so that

a

(1) suplu(z)| < 1 where the supremum is taken over the zeros of B3

(2) lutz)] <a=lp(a)] <75 -

The idea of the construction will be to surround the placés'where
[ur <a bj a contour I which is not 'too long'. That the contour
is not 'too long' will mean that the arclength measure it induces is a
Carleson measure. This construcfion is derived from the proof of the
Corona theorem due to L. Carleson [3217 We then uniformly distribute,
in the p-metric, a sequence .{zn} oﬁ the contour, suffigiéntly separating
the points of the sequence so that the remark on p750 will tell us that
the Blaschke product witﬁ {zn} as its zero set is interpolat'fingT We
will require for the proof of Theorem 6?8 that each ?& constructed is

invertible in A. We obtain this as a consequence of Theorem 6.1 using

(1).
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First we need some technical lemmas prior to describing the.
construction. Throughout this chapter we take the liberty of using u

to denote woth the function in Lm and its harmonic extension to D.

L <1 such that if |u(a)| <o for a 1in
i6 -n -n-2

some region of the form Q = {re” : 1-2 < r < 1-2 » 8526 <8}

LEMMA 8.1 There exists an o

then sup|u(z)| < a

Q 1

Proof. Let Gl be the set of functions of modulus 1 a.e.ubn' T. We
shall think of functions in Ol as extended harmonically to D. Suppose

that for every a, < 1, there exists a region Q of the type given

in the statement of the lemma and there exists f E U such that

|£(a)| < o for some a €Q but sup|f(z)| >« Then there exists a
Q

sequence ‘{fn}n:l of functions in 31, a sequence of regions '{Qn} of

lo

the given type and a set of points '{an} where a S Q (n > 1) such
that lfh(an)l < o end suplfn(z)l > 1 —-%7 By a translation and
dilation we may assume thatneach region is of type given in the statement.
of the lemma with n = 0; call this region Q. The sequence -{fn}

forms a normal family. Thus there exists a subsequence {r }k:l of

'{fn} and a function f, harmonic on D .such that f > f uni formly

k
on compact subsets of D and a, > b, say, where b € Q. We then
. . k
have ]f(b)l <a <1l and sup|f(z)| = 1. But sup[f(z)l =1 and so
Q - D

f is a harmonic function on D which attains its supremum inside D.
Hence f 1is the constant function 1 which..contradicts the fact that

| £(b)] < 1. This contradiction proves the lemma.

10, 3§ <r<1, o -1
- ) 0 2

4 s ' ,
~where 6 <1. Let Vv =1+ —% where o, is obtained from Lemma 8.1,

Let s(eo,s) = {re

L ém
<0 <8+ 751}
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l—al 1.
22| 1678,

and define B by 1 -8 = where BO is the constant
1 o

appearing in Theorem 6.2.(1) which can be assumed greater than 1.

1°
For a set FCD let F¥ E;T ‘denote the projection of F onto

Notice that 1 > B > a

T, i.e. F¥ ='{elt: -relt €EF for some r, O < r < 1}.

The proof of the following lemma is due to A.M. Davie.

LEMMA 8.2 Suppose |u(a)| > B where a = pe*? s such that

8w 8w
o 3 laz 0yt for some §, 0 < § <1 and

0 <6, <2r. Let E =‘{rele 1S3 S(BOQG): lu(rele)|‘< al}. Then

1-§ < p <1-6/2 and ©

Proof. Without loss of generality we may assume that u(a) 1is real
and positive. Let g = 1 - Reu so that g > 0. Let
I= {elt: g-vém < t < qtvén} and let h = gxy on T, (and extend

into D wusing the Poisson integral). From the definition of v,

10 i 1o i6 '
Ig(rel ) - h(re )| < —5— for re € S(GO,G) ' ..7(3)
Moreover 5% f P (q—t)g(elt)dt < g(pelq)'= 1-u(a) < 1-B.
v T P - ' ) k
Now p < 1-§/2 and P_(g-t) = é - 2‘(‘;t)-i : 12 >
p (1-p)“+4p sin _SE—_ 25(1+v w
for elt €I, . i
. . (1-a,). : :
it 2 2 _ 1
and so { gle ")at < bem(1+v"n7)(1-8) = —ﬂgg—— S : ooo(l)
Ad-a
Now, on ~E, |u] < @, and so g 2 1-a; which implies h > -3 1 by
a
(3). So, on E¥, M(h)> 1 - —-é— Then, by the Hardy-Littlewood maximal
theorem (Theorem 6.2),
. T 1-a. 2B .
[8%]< [{e*®: Mm(nXe'®) > —21} < =2 [ n(e™®at
- 2 - = 1-a :
1T
2B .
70 t
= 1= ) glet®)at
11
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We-mow turn to the construction of the contour T. First we

introduce some notation:

S™ =g =rpet® oMl .o o8, 2km 0 o 2(k+l)m }

+
for n = 0,1,...; k=0,1,...,2%%"01,

( see Figure 1)

. . S ' : ‘ .
For a region S = {re : Ty <rc< rl, 90 < 8 < el} let 'TS' be given
16 '

A

. _ . i
by TS—{re .'rof_r<rl§(rlro), 60_6<61}.

‘We describe two procedures which we apply to the régicns of -the

n oy i6 -n-1  2km 2(k+1)w
= V) = : - e AT Y AR
form S S] {z=re": 0<1lrc<2. ,2]<6< 1 }

Denote this class of regions by F . .

Case I. If sup|u| > B, shade the regions S € F contained in S
T

where |u(z)] 2 o for some z in Tz. Note that by Lemma 8.1, each

S will be in the 'radiel . quarter' of S ‘'nearest' T, and

sup|u| < @, < B. By Lemma 8.2 z Ié*[ < 3|s¥| C...(5)
T§ ' S shaded

Case II. If sup|u] < B shade the regions S € F in S where -

T
s . .
suplu| > 8, and let Ry =S \ . U S. Note that
Té S shaded
442 :
[org| < <=={s%| | (8

We now proceed as follows: consider the two 'halves' of the

disc,'{z=rele: O<r<1l, 0<6 <7} and-

i0
e

{z=r O<r<1l, w<86 <21}, separately. Apply the appropriate
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case to the top half of the disc first, obtaining shaded regions

p (1) 5 (1) (1) (1)

1 apply the appropriate case

(2) - (2)
] 3 ]

this process indefinitely. Observe that we alternate cases in passing

s P ees » On each P,

2 3
obtaining doubly shaded regions Pi(z), P2

coe Repeat
from one shaded region to a shaded descendant. Carry out ﬁhe same
procedure for the bottom half of the disc and define T +to be the
union of all the boundaries of.the Rs's obtained from applicatiqns
of Case II in both halves of the'disc;_(see'Figure'2)f TQ see that
T induces a Carleson measuré, it suffices to check that

Ir N sl < C|s*| where C is some constant and S is a region in F.
By-(S) and (6) we see that |

lrns] < } Q‘{"—")—z‘n[sﬂ < 8|s*|.
n=0

Note that any point in D . for which [u(z)| < a will be in some Rg.
Also laRS N T| = 0. This follows since u has unimodular. radial limitsa.e.
and any point in aRS N T is a point where lim sup[u(rele)|.i B < 1.
' r~1 : ‘
We now consider the construction of the Blaschke product ga

whose zeros are located on T € D. Choose Y < - and place points

10
a (n>1) on T so that ¥ §_p(an,an+1) < 2y vhere a and
a ,, are adjacent points on T and so thatp(an,&m)'l y for m# n.

The proof of the following lemma is due to S. Ziskind [55].

LEMMA 8.3 {a,} s an interpolating sequence in D.

Proof. Since we have explicitly made p(an,am) >y for m#mn, by

the remark on p.50 we need only show that the measure u = Z(l—lzjl)dz
: _ 2

is a Carleson measure. Since T is composed of various edges of the

regions S € # and since I induces a Carleson measure, we need only
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Figure 1

Case II

Case I

Figure 2



show that, whenever A is an edge of a region S € F and
. il .
(z. =r.e J) are points on A for which the adjacent

2 LIRS SR B K
p-distance exceeds Yy, then J (l—|zj|) < C[A| where the.constant

. ' J=1 _
C may depend on y. Consider first the case where A has fixed

- distance from the origin.  Here rj =R is fixed (1 <J < k) and

0. < B, < ... < 06,, say. We then have

1° 72 k
: . -z (8. .-6.)
‘Yip(z"Z-+1) = l.J+1 d ot < JI}RJL)_ .
| o zj+lz.i o
Tk ok
Thus jgi (1-r;5) < Zl y O5a78) =7 |A|

In the case when A has fixed argument we have ej = 9 is fixed

(1<j<k) end ry <71, <...<1, say. Then
S r...-r. r. .-r.
v < plzgnzg,,) = o s
' J*1l7J 7

k : 1 ]
-r.), giving ) (l—rj) f_;-IAl.

so that 1-r. <L (r.
. ) Y J+l 3 5=1

J
We now wish to verify that (1) and (2) (see p.69) hold for the
Blaschke product B - whose zero sequence is {an}. By our construction
(1) holds since |u(z)] <B on T. If zE€ D and |u(z)| < @, then

z is 1in some R But |§a| <y on 3Rg \'T and 3Rg N T has

S.
hermonic measure zero as a subset of BRS, since it has length zero.
We conclude from Theorem 6.9 that ~|§al <y < i% on Ry and so (2)

holds.
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CHAPTER NINE

We are now in a position to give our proof of the Marshall-Chang
theorem (Theorem 6?8) described in Chapter 67

As noted in Chapter 6 it is sufficient to prové Tﬁeorem 6.8 fdr
the case A = [H ,u,u] where u is a unimodular function in L.
So suppose u 1is a unimodﬁlar function in L . As described in Chap-
ter 8 we construct Blaschke products @&' for cach « € (0,1) with
the properties that for eéch o |
(1) suplu(z)] < B8 <1 where the supremum is taken over the zeros of -

B , and

1

@) Ju(x)] < o [B(2)] <= .

LEMMA 9.1 For each o € (0,1), B, <s invertible in A = (E,u,ul .

Proof. Supposé ¢ € o(A) and ¢(§a) = 0 for some o. By Theorem
6.1 ¢ dis in the closure of the zeros '{an} of B, in o(H ). By
(1) above lu(an)l_g B <1 for each n > 1 so that -[¢(u)l_§ B< 1.
This contradicts the fact that ¢ € @&(A). Thus each B, is invert-
ible in A,

Lemma 9.1 shows that [HQ,B : 0<ac<1l CA since Ea is the

-~ ~

inverse of ?a' To obtain the opposite inclusion and thus prove
Theorem 6.8 (since from Chapter 8 each ?a is interpolating) we need
only show that we can approximate u and u ~as close as we like
in the uniform norm by functions from [Hw,ga: 0< a < 1]. First

note that with O <e <1, and 1 > 1-§ > i% we have, by (2),

z € G6(§ 3):=> [u(z)| 3_1—83.

1l-¢€
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So using Theorem 7%8 we deduce that u € VMO(?G: 0‘< o < 1). By
_Lemmé 7.9 u € VMO(?a: 0<ac<1l) also. Tﬁen by combining Lemmas
T7.10 and 7711 we deduce that both u and u can be approximated as
close as we like by functions from [Hm,ga: O <a<1ll. Hence u

and ‘u belong to [H,B : 0<a<1] and so A C [Hm,Ea; 0 < a < 1l.

-~

So A = [Hw,ga: 0 < a < 1] and Theorem 6.8 is proved.
We conclude this chapter by describing some recent results of

5-Y.A. Chang concerning the structure of closed subalgebras of Lm

containing H . If A is a closed subalgebra of L containing H

properly let C be the C*-algebra generated by inner functions inver-

A
tible in A. Then in [ 35] Chang has shown that the linear space Hm+CA
is a closed algebra which is equal to A. Thus she has shown that any

closed subalgebra of L containing H properly is of the form

H + some C*¥-algebra.
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CHAPTER TEN

In the last four chapters we have been concerned with uniform
algébras of functions on the unit sphere in C i.e. T. We now turn
our éttention to algebras of functions on the unit sphere in hiéher
dimensions. In this chgpfer.we consider the possibility of extending
the idea of Douglas algebras into higher dimension37
Notation. gn -denotes the n—dimensional complex‘Euclidean'space of

all ordered n—tuples z = (Zl’ cees zn) of complex numbers 'zi, with
the inner product { z,w) = Zl—l + ... 4+ zhan and the corresponding -
norm lzll ={ 2,2) 2%, Let B denote the open unit ball
‘{z€c Nzl <1} and S the unit sphere {z € c®: lzl = 1}. From
now on we will assume that n > 1 unless otherwise stated. o denotes
. o e | 2
surface area measure on S. We write L (S8) for L (o) and L(S)
for L2(o). H2(S) denotes the closure in L2(S) of the polynomials

in the coordinate functions =z cees Zs L2(S) and H2(S) are

l’
Hilbert spaces and we also use angled brackets ( ,) to denote the
inner product in these spaces. We wfite C(s) for the algebra of all

continuous functions on S.

: 2\n
The Poisson kernel is given by P(u,z) = TLJ;JEJ—%EE- (z €B, u€89).
‘ ' 1<z, w ’

As in the case n = 1, if f € L (S) then the Poisson integral of
f gives a bounded harmonic function F ‘on B, and F has radial

boundary limits equal to° f a.e.. F 1is given by

2\n’
F(z) = 12 f (l-lél,)2 f(u)do(u), (z € B).
21” § |1~(z,w |77 '

‘This correspondence gives an isometry between - L7(S) and the space.

of bounded harmonic functions on B with the supremum norm. Under
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this correspondence the algebra of bounded analytic functions on B
corresponds to the closed subalgebra H™(S) of L7(s).
We denote by H (S) + C(Sj the set of all functions f € L7(8) which
can be expressed in the form fv= u+ v where u€ Hm(S) and
v € C(S). W. Rudin [50] recently showed that va(s) + C(S) 1is a closed

0o
subalgebra of L (S).

Definition. A function ¢ € L°(S) is inner if ¢ €H (S) and

|[¢] =1 a.e. on S.

It is not-known whethef any non-constant inner functions exist
when n > 1. TFor a discussion of this and similar prob;éms éee
L.A. Rubel and A.L. Shields [149]. In Chapter 6; for the case n = 1,
we aefined Douglas algebfas in terms of inner functionsf So in our
attempt to extend this definition to algebrés of functions on S we
are immediateiy faced with this problem concerning the existence of
inner functions; However one way of extendingAthe definition is as

follows.

Definition. Let A be a (unifofmly) closed subalgebra of L (8)
which contains H (S) properly. We say that A is a Douglas algebra
if A 1is equal to the closed subalgebra of L (s) genefated'by‘
H (S) and the inverses of those functions in H  which are invertible

[ =

in A, (i.e. in our previous notation, if A =[H ,b ; €a: DEHI).

- - - - - m -
Because of the inner-outer factorization of functions 1in H in

the case n = 1 +this definition applied to that case is equivalent

to the definition of a Douglas algebre given in Chapter.6 (for with
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n =1, if a.function in H. is invertibie in Lm, then its outer
factor is'invertible in H. aﬁd so the function itself is invertible
in A if and oniy if its inner factor‘is)7
However it 1is soon evident that we cannot hope to prove that every
closed subalgebra of L (8) cdntéining H (S) is a Dpﬁglas algebra
in the sense of this definition - iﬁ.fact; not e?en H(S) + ¢(8) is

a. Douglas algebra in the sense given, as we now show.

PROPOSITION 10.1  Iet h € H(S) be invertible in H (8) + C(S).

Then h s invertible in H(8).

Proof. By examining the form of the Poisson kernel it is clear that
as {z| + 1 the 'mass' of P(u,z) inside a small neighbourhood V
of W on S (where z = rw for some’ r, O <1r < 1) tends to 1,

ie. —= [ P(u,rw)ds(u) 1 as r > 1.
2 .

2n- V.
(Compare the beginning of the proof of Theorem 7.2). From this it is
clear that if f € C(S) and g€ L(S8) then lf g - (rg) I >0 as
r » 1 where fr(u) = f(ru), gr(u) = g(ru) for O0<t <1l and u€s
and f, g are considered as being extended to B via the Poisson
integral. An immediate consequence of this is that if
£, g €H (8) + c(8) then lf g - (rg) I, +0 as r~1. L. (1)
Now take h € H (8) with hfl € HW(S) + C¢(S). By putting f =h
and g =h 1 in (1) it follows that |h(z)| > § >0 for all =z in
a shell of the ball, T, near the sphere, i.e. T = {z: ry < [z| < 1}

for some r. > O. Thus %- is analytic in T. A theorem of Hartogs

o)
(see Hormander [L45])tells us that given @, open in ¢ where n > 1,
and K, & compact subset of @ such that @ \ K is connected, then

~for every u analytic in Q \ K we can find U analytic in £ such



81.
thet u=U on €\ K. We apply this result with 2 =B, K=B\ T
and u = % to obtain a bounded analytic function on B whose radial
limits give a function which is the inverse of h, i.e. h 1is invert-
. . (o]
ible in H .
In fact in the case of a shell it is easy to see how to construct the

analytic function U given by Hartogs' theorem. For if u is analytic
. l § u(zoyn)

in T then define U by U(zo,w) =3 dn for (zo,w) € B

Tl T w -

where T is described in the figure.

Proposition 10.1 implies that
[E°(S) b 1€ H™(S) + C(S): bEH(S)] =K (5). It also shows that a
non—-constant inner function (if one exists) cannot be invertible in
Hw(S) + C(S). This contrasts with the case when n = 1 where the
function f(z) = z is inner and £ L1 EC. This leads us to make two
conjectures which we have been unable to prove:

(1) if £ E€E(S) and f is invertible in L (S) then f is invert-
- - o -
ible in H (8);
(2) if fEH(S) +C(8) and f is invertible in L"(S) then f
- - - - o '
is invertible in H (8) + C(8).

Proposition 10.1 shows that (1) follows from (2). (1) implies.that
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any inner function is constant. For a discussion of questions of this

type see [L49], [3817

" There remains one further alternative method of defining a
Doﬁglas algebra in higher dimensions. Suppose we say that-if A is.
a closed subalgebra of 17(s) containing Hw(é) properly then A
is a Doug;as subalgebra if A. is_genefated as a closed algebra by..
'H (S) and fhose complex conjugates of functions in 'H(S) which are in
A, i.e. if A = [ﬁm(S), b S A: bEH(8)]. Fér the case n = 1
this is equivalent to our two pfevious definitions. For the case
n>1 H(S) + C(S) is now a Douglaé algeﬁra in this sénsef This is
because H (8) + C(S) is generated by Hm(S)‘ and the complex cqnjug—
ates of the coordinate functions. However we conjecturé that L
is not a Douglas algebra in this seﬁse, i.e. Lw(S) is not generafed
as a C¥-algebra by Hw(S)f Despite our intuitivé feeling of the
truth of thisiconjecture it may still be of interest to decide which

subalgebras of Lm(S) are Douglas algebras.in this sense.

‘We conclude this chapter by pointing out'that Hoffman aﬁd Singer's

theorem (Theorem 6.10) is not true for n > 1.  This theorém shows

that when n = 1 every closed algebra which contains H°° properly

also contains H + C, ifef H + C is the smallest closed subalgebra

of L containing " properly and is minimal amongst sucﬁ algebras..

For n>1 and 1 < i <n define Ci to be the following algebra

of functions:

C; = {f €C(8): for each fixed value Wy (with lw'o[ < 1) of the
coordinate function z; we can exténd f to an anal-
ytic function in the 'disc"'{(zl, cees zn): z; = Vo,

2 2 2 . 2 . 1. 124
Izll +‘T'+|Zi—ll +|zi+ll +?’T+|Zhl < l—lwol 1.
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We now prove a well-known lemma which will enable us to show that

m -
H (S) + Ci is closed.

LEMMA 10.2 If H and B are closed subspaces of a Banach space L

. then the following assertions are equivalent:
(1) there is a constant a > 0 such that d(f,HﬂB).i ad(f,H) for
all f in B;

(2). H+B s a closed subspace of L.

Proof. The natufal mappings B +>L + L/H induce a maﬁping

a: E/HFB + L/H. By the‘open mapping tﬁeorém; there‘is a éonstant a
suéh that a(f,HfB) ﬁ_ad(f,H) for all £ in B if aﬁd only if the
range B/H of a is closed.. .Since H ; B is thé pre-image of B/H
under the quotient map L +-L/ﬁ, the space B/H is closéd if and

only if H + B is closed. This proves (1) and (2) are equivalent.

This lemma together with W. Rudin's result [50] that H (8)+C(8)
is a closed algebra allow us to prove that Hw(S) + Ci is a closed

algebra for 1 < 1 < n.

PROPOSITION 10.3 Let n > 1. For each i, 1 <i <n, H(8) +C;

is a closed subalgebra of Lm(S).

Proof. Let 1 <i<n and let fE C;. We have
a(£,H (s)c;) = a(£,H (8)(C(s))
< ada(f,H (8))
for some constant a > O, by Lémma 10.2 siﬁcé "H (8) + C(s) is closed.

Hence, by Lemma 10.2 again, H (8) + Ci' is a closed subspace of L7(s).
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Now let f € H (S) and g € Ci’ Then, since H (8) + C(8) is an

algebra, fg =h + k where h € H (8) and k € c(S). Fix z; = LAY

where Iwol < 1. Then k

fg ~ h and fg - h is analytic in the

2 2
Zi—ll +|zi+ll~

since f, h €H (S8) and g€ C;. Hence k €C, andso fg€ H°°(s)+ci.

'disc" '{(zl,.f.,zn):= z; = Vs [zﬂza.f.+|

2 2
i +...+|zn| <l—[wo| }

Thus H  + Ci is a closed algebra.

n ,
' Note that - ;ﬂ (HW(S)'+-Ci)'= H (S) and so, by symmetry, each
H(S) + C; is pr;;irly-céntained ;n H(8) + C(S)f Thus H (8)+C(S)

" is not the smallest closed subalgebra'of L (8) containing H (8)
properly. In~fact~there doesAnoﬁ exist‘sucﬁ a smallest clbsed algebra
since if oﬁe existed it Would'bé confainedviﬁv Hm(S) + Ci for eaéh i,
1 <i<n, and so would be contained iﬁ H (8). We conjecfure however,
that, for each i, 1<i<n, N (H(8) + Cj) is a minimal closed
subalgebra of L7(s) containingJ#Ew(S) properljrhT
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CHAPTER ' ELEVEN

" The Toeplitz operators on the claésical ﬁardy space H2 on the
unit circle have been the object of much study. Théy are operators of
the form T¢f = P(¢f) where ¢ € 1L” and P denotes the ﬁrojection-
of L2 onto- H2. "An account of this theory, which is éonéerned mainly
with describing the spectra of these operators, and with operator
algebras generated by them, can be found in-Chaptér T of Rfo Douglas'
book [39]. Connecfed with fhe Toeplitz operators are the Hankel
operators which are operators from ‘HZ to LZQH2 of the form
H¢f = (I—P)(¢f); i.e. H¢ = M¢ - T% where M¢v denotes multiplication
by ¢ on sz The object of the two remaining éhapters of this thesis
is to study some aspects of Toeplitz and Hankel operatofs on the unit
sphere in gn, in particular to defermine how far the one—variablé
theory remains valid. In this context Toeplitz operators with céntin—
uous symbol héve been studied by L.A. Coburn [36] and some related.oper-

ators by R.R, Coifman, R. Rochberg and G. Weiss [371. Some recent

developments along these lines are described in [38].

Notation. For ¢ € L7(S) we denote by T# the operator on the Hilbert

space H2(S) defined by T,f = P(¢f) where P denotes the orthogonal

¢
projection of L2(S) onto H2(S). T¢ is called the Toeplitz operator

with symbol ¢. We denote by H the operator from H2(S) to

¢

Lz(s)ena(s) defined by H.f = (I-P)(¢f) where I is the identity

¢
operator on L2(S). H¢ is called the Hankel operator with symbol ¢.

We will meke .use of many easily checked results such as thelinear-

. « .
ity of the map ¢ - T¢ and the fact that T¢ = TE. Moreover, if
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Y € Hm(s) we have =T

T 7T .
oY op- ‘
We will also use the naturalorthonormal basis for HZ(S)' given

1 'r(n+|kl‘l);}%zk

by e, = T . where k = (k., ..., kK ) is ean
. k (2"n)z . k!l 1° .7 'n
n-tuple of non-negative integers and we take Ikl = kl + ... + kn’
L X koK k, o |
1 = t 1 1 =. - .
k! = k! k! oLl k1, oz 2z Tz, ...z where =z (zl”f'zn)’

For the sake of simplicity we assume for the moment that n = 2.

We wish to make use of the following parametrisation of the unit sphere:

3 ie 3 iy o :
z = (zl,zz) = (pZerV,(1-p)2e™) (0<p<1l;0<86, ¢ <2m). For

f € ¢(s) define f by f(rz) = f(z) (r >0, z €8). Then

[ ' -
f fdo = ar ( f fdur)r=l where Br.ls the ball.centred at the origin, of

S B

r .
radius r, with volume measure du... So
J L L . x
fdo = 1lim % f( —————r, 6., 6,)r,r dr,dr_a6_d4de
S 520 & 1<r 24r 24(145)2 (r.247 22 1 2/ 1721212
—"1. T2 = 1.:2 :
‘ , A 191 162
where zy = T,€ s 2o = r,e s
APOE
= lim 7= £( P16, 6.)ap. . as. e
- 48 2 3 1 2/ iteTT12
850 ;5p1+p2§(;+6) (p +p,) : :
= 1+28+6§
. 2 _ .2
putting Py = rl s Po r2 s
’ 1
o 1 2T 21w pl2 ' '
= lim 1% [ ] f , T —=— , 08, 8,)d0,3p,d0,46,
&0 0O O 1§pl+p2§;+26+6 (pltp2)_
J2renl 1+26+62—pl- o, ® '
=umpy [ [ S J £( —— , 8,5 0,)dp,ldp,dR A8,
620 0O 0 O l—pl (pl+p2) :
2T 21 1 %
= 1 : '
= 3 é. é. é f(pl +0,,6,)dp,d6, de6,.

Since the continuous functions are dense in Ll(S) this shows that
with respect to the (p,8,y) set of coordinates the measure becomes:
do = 3dpdedy.

The standard basis for H2(S) is now given by:
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1o (k+2+1) ! 3 k/2
1

2/2 ike iz
5 kie! -1 P (l—p) / e e w
e e

e = :
k& (k, & > 0).
Note that this parametrisation extends to the case n > 2. 1In
that situation we put
: ie ie, ie, 4
1 *1 3% h “¥ny
(2)52550052,) = (py7e Tipye Th..enpp g€ o(1mpymeeempy

For the éase n = l! P. Hartman [57] proved that H¢ is compact
- if and only if ¢ € H” + C. ‘We now show that the corresponding theorem
is not true for n > 1. We look at the-cése ‘n = 2 and consider
Toeplitz operators T¢ where the symbol ¢ Vdepends on only the coor—
dinate p, i.e. ‘ v |

¢(z,,2,) = ¢(p%eie, (l-p)%eiw) = g(p) where g € 1[o,1,
(where L[0,1] denotes the space of comélex—valued eséentially bounded
functions on [0,1]). | |
It is clear that this type of symbol cannot occur wvhen n =1 and it is
among Toeplitz operators of this class that we discover some differences
between properties in the cases n =1 and n > 1. For example there
exists symbols ¢ € C(S) and ¢ € L7(S) of the above. form fof which

the spectrum of T is disconnected and the essential spectrum of T¢

¢
is disconnected [ 38] . This contrasts with the case n = 1 where the
spectrum and essential spectrum of any Toeplitz operator is always

connected (see [39]).

. First we note when a symbol of the above form i$ in H(S) + c(8).

PROPOSITION  '11.1 Let ¢ be a symbol which depends only on p. Then.

¢ EH (8) + C(S8) if and only if g is continuous on [0,1].

Proofi One implication is clear. Conversely if ¢ € H(8) + c(s),

write ¢ =u + v with u€H(S), v € c(S). Let
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P(Zl,z2 q([z | ) where q € L[0,1] and let q be orthogonal to

H (S); notice that this is equivalent to q énnihilating the constant

1 ‘
functions of 6, i.e.. f alp)dp = 0. Then fupdo =0, 1i.e.
A S0 em 2m . S
(¢-v)qdpdedy = 0. ILet v(p) ﬁ;gf [ v(p,8,9)d6dy, O < p < 1. Then’

0O O

~

[glp) - v(p)lalp)dp = O. Thisistrue for all such q. Hence g - v

/
S
1
/
0

is a constant. But Vv is continuous and so g 1is continuous.

PROPOSITION 11.2 Let ¢ be a symbol which depends only on p. Then

T, s a diagonal operator.

¢

Proof. We have

- __;{ (k+£+1) ]2 k/2,_ )z/zeikeeiz¢g(p)}

T.e R igt

¢Sk

[(k;%z%) f pk(l—p)zg(p)dplekg

(k+2+1) !

o f 0" (1-0)"a(p) 0.

N

Aklekl where Akz

We now consider the Hankel operator H, when ¢ is a, symbol which

: , . ¢
depends only on p. Let f € H2(S) have Fourier series

z akzeﬁgb;¢7ekg° -Then if ¢(p,0,¢) = g(p) we have

k,2>0
Hyt = (I-P)(,0) = . 2 akz[g(p)ekn Aeefil *
’ ’ - 3
Thus H¢ is compact ﬁ’ﬂg(p)eklkaz k2"2+ 0O as k, & +», i.e., if
. K+2+41)! k 2 2
and only if ——ETI%l— f p (1-p) [g(p) - Akzl dp + O

as k, & > =, © e (1)
Note that the .Akg's are 'weights'of g on [0,1] against the
. (k1) o .
functions (k;%i% . k(l—p)z and so the requirement (1) above for H¢

to be compact is thafn g satisfies a type of 'weighted VMO cqﬁdition



on [0,1],,

"THEOREM':il.3 Tet ¢(p,0,9) = glp)

compact if and only if

g€V on [0,1].

where g € LQ[d,l]

89 .

This observation leads to-the»follqwingltheorem.

. .Men H¢ 18

‘(Remark. By g € VMO on [0,1] we mean that the function h  defined
be n(e'?) =,g(‘§% ) for O0<t<o2m belongs to VMO as defined in
Chapter 6.)
Proof. (a) Let g€ VMO and let e > O. Choose a <} such that
Sa(g) < e (where s (g) = Szwa(h)' as defined in Chapter 6).. Let
R 1 L
I, be the interval [ k+£ da, gt 3a] fl[o,1], .It is clear from
. : ! o
the nature of the functions (k;%ﬁ L o%(1-0)* that
. - ' ’ N
(a) ~ sup LE%%%%lL pk(l—p)k =a, >0 as k, & + =, and
o€ O, 1]\1 < ' ‘
2 (k+2+1)!
(b») T——FI f[lIk,L[p (1—) i -1ldp =8, + 0 as k, 2>
Now chodse k, 2 large enough sO that ak2 . Bk2-< €. Then
(k+2,+1) kp; & -
|g - | = I-I——T f s(p)dp "_':—"‘_f o (1-p)e(p)ap|
T 2 )\Kf, 2.. 0 )
Keg31) ! 1o 1 ke R
< |-|———T I [g(p) Li"'z'_)— IImlp (1-0)"g(p)) ap]
+2+
+Q‘m}—)—| { pX(1= p) g(p)dol
*rolo,alNg,
' 1. (k+2+1). k 2 _
< e S st - S le (e Taeray el
el 1, kitt kR -
; “g“w(“kg, + ) < 2elgll ...7(2)’
Mso lglple,, - g, e .“ 2 _ (k#2+l)L } pk(l—p)llg(p)‘g |2 dp
- Tt
ke~ 81 ke2 K12l g T o
(kHR4L)! k L 2.
< {ktatl)t % ,)_ [ o (1-p)"|&lp)-8 | “ap
+ (k;%;],‘ > { o (1-p) Ig(.p)-sl. | “ap
T [0,1]4Ik2 k%
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<o [ lel) -8 |2
Thal ), 100 o1,

1 (k+2+1)! Tk £ 2
+ /I Ll T et (1-p) " -1) |elp) -8 do
|Ik£| I, k!L! kzl I _ -Ikzl
| *lh“kz"gsz

) '2 ‘ 2
<xs_(g) + 48, gl = + bo Ugl

where K is a constant, - using Lemma 6.3 (as in the proof of Theorem

6.5)

< ke + 8lgl Ze vee(3)
Now "gI ey = )\kzekzuz = lgI - Akﬂ,l'f—- 25:||g"0° by (2). Hence
9} ke
- _ . _ . . en - _ n .
lelp)eyy = Agepyly < Taledey, gIkzekZHQ * “glkzekl - Mee®ka' 2

12 . R
< (x + 8lgl #)2e? + 2¢lgl vy (3),

i.e. “g(p)ekz _-Aklek2"2 +~0 as k, £ ©. The remarks.before the

theorem show that this implies that H, 1s compact.

¢

(b) Sﬁppose H, is compact. Then, by (1),

: ¢
1
(k+2+1)! k 2 2
'——3533—*'£ p (1-0)"|e(p)-A ,|“dp >0 &s Xk, & >,

We iwish to show that g€ VM0 on [0,1].
Let € >0 and let b €[0,1] be rational. Let I be any interval
contained in [0,1] with centre b. Suppose [I| = a.

Amongst those k, £ that satisfy E%f = b choose k, & large enough.

so that %o < g and 6k2 < g, and

)¢ 1 ‘

(k;%;} 2 f Pk(l‘P)zlg(p)fAkzlzdp < €. We then have
X200

| TT% { &)1, %80 = TT} { lelo) A, |PL1-|T] (1-p)* Q_}g%)_]dp

LE%%%%lL {'lg(p)fkkzIQPk(l-p)zdp

< gl P+ e < e(ullgl 2 + 1),
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and

|A

ﬂg"m(a 4B, .) as in (a)

ngkkzl- k% "k&

< QE"g“m .
S - ' 1
. Therefore -’%r{ Ig(p)—gIIdp <[ T_}T ”g(p)_gI|2dp]2
: | I _

1

1 2
< TT {Ig(p)fkkzl dpl
1 2,13
+ [m{ les-2, . | “apl
1 1 -
<eP(blgh ® + 1)2 + 2¢lgl .

~Now since I was any interval contained in [0,1] with rational centre
and since the rationals are dense in [0,1] we have shown that f € VMO

on [0,1].

‘Remarks. (1) Independent of the above work R.R. Coifman, R. Rochberg,
and G. Weiss [ 37] have extended the definition of VMO from the circle

to the sphere in Qn (n > 1) and with this definition they essentially

prove the result that, for ¢ € L7(S),

¢ € VMO ¢>PM¢ - M¢P is compact on L2(S).
Now Hq) = M¢ - PM¢: H2(S) > L2(‘S) a.n@ so H¢ is essentially
M&P - PM¢P acting on L?(s) which shows that

¢ € VMO & H¢ and H$ are both compact

and so in particular their results contain Theorem 11.3. However their
proofs are not easy and involve the study of commutatorsofsingular
integral operators.

(2) Theorem 11.3, together with Proposition 11.1, show that -

there exist symbols ¢ € Lw(S) such that H is compact but

¢
¢ EH (5) + c(s).

The methods of L.A. Coburn [ 36] show that if ¢ € C(S) then ,H¢
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is compact. One may ask: for what ¢ EL(S) is H¢ coméact? It
is clear that the set A of such ¢ is a closed-subalgebfa of
pa(S) containing Hm(S)f In the case n ; 1, A= H + C. Remark
(2) above shows that this is not true in général and remark (1) showsthat
the iargést C*-algebra contained in A 1is the aigébra |
L7(s) N VMO = QC. It is natural to ask whetﬁer A=H(8) +Qq -
especially in the liéht.of the results 6f Chang (mentiqned at the end -
of Chapter.Q) whicﬁ show.- that,whén 'n =1, any closed subalgebra of
> containing Hw' is of the form H + some C*fa.lgebréf We can split
tﬁis problem into three parts:‘ |
(a) Is H + QC closead? |
(p) 1Is (15° + QC)” an algebra?

(¢) Is A the closed algebra generated by H + QC?

We have been unable to ansﬁer any of thése quéstions. This would seem
to be a test case for extending Chang's work to the'sphéres in higher
dimgnsiOnsf A related problem is to describe the largest~C*—algébra
contained in H(S) + C(S). VWhen n =1 it is QC (see [51]1), but

since QC E}Hm(S) + C(S) this is false for n > 1.
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CHAPTER ' TWELVE

In thé clﬁssical situation tﬁé Toéplitz>opérafors are character-—
iséd among operafors on H2 by thé opérator equation TZ*TTZ =‘T,
where iz is the Toeplitz opérator with symbol ¢ where ¢(z) = 2
on T. It is well known that T, acting on H2'-is the canonical
model'fbr thé unilatéral shift (of multiplicity one) aéting on a separ-—

able Hilbert space. In this chapter we extend this result by character—

ising the Toeplitz operators on HQ(S) by the operator equation

n . . . . .

Y T XIT =T, where T is the Toeplitz operator with symbol ¢
=1 %s Zs s - -

whe?e _¢(zl,.77,zn) =z, on S, (1 <8< n)f

One part of the characterisation is easy: for if T = T¢, is a
_ n v n :
Toeplitz operator then D) 'Tz *TTz =. 2 T- T =T.
' s=1 :

=Tn ‘ =
s=1. s s Zs¢zs ) ¢|ZS|2. ¢
- .os=1

We now want to show that if. X Té *TTz =T then T is a Tdeplitz
operator. ° °
First note that if ¢ is a non-negative measurable function on C, if
2 €8 and if F(n) = v z,m?) (n e'gn);‘ then deo(n) is inde-
pendent of z. This follows since do is a rotatiin—invariant meaéuref
We want to use this fact in a particular situation, namélyAWhen
p(x) = |1+x|2m (x €EC, m €EN). This gives that C_= f|l+$z,n?|2mdo(n)
is independent of z in S. So, since |1 + (ZQQI 'ieaks',when
n = z, for any neighbourhood U of z in S we have
.Cmfl { {1+ (z,n}f2md0(n) +0 as m~>®,
S\u
as the 'mass' of the integrand lies in U more and more & m > %.
So, for ény g € c(s), it folléws that
c* IEOIRERER |®Pao(n) ~ glz) as m~><

(z €8) ...(1)
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Let f (k)( ) = Cp %(l +(z, & ) Then, for each n € 8, = N,

k

e ) e 2is) ona e (N, - o

n .

SuPPOse Z T, *IT, =T and put ¢ (n) = ¢ Tf (k),f (k).y
25 2g k on n

Let ¢ be a weak*—llmlt p01nt of ¢ in 1L7(S). Then, for any

g € c(s),

i g(n)¢, (n)as(n) » [ g(n)¢(n)do(n) as j =
. 'S J - S o -
for some subsequence ¢k of ¢k (since the weak*-topology on the

closed unit ball of L (S) is metrizable - see [56, p.k26]) i.e.
(k.) (k.) , : S '
1im [ g(n) ¢ Tf I, 9 > dao(n) = [ & (n)¢(n)ao(n). Now,by (1),
Joo S n S o . ’
the rlght hand side is glven by

i ; f c_e(n)g(z)|14n,2 |Z™a0(z)do(n)

[ g(n)¢(n)do(n)

S
= 1im [ ] Cm_l¢(n)g(z)|l+(z;n>lemdo(z)do(n).
m S S '
: (k.) (k.)
Therefore m [ g(n)( Tf d,r 9 dao(n)
J—>°° S . n ’
= lim [ f C Y (n)g(z) | 1K 2,0 Izmdo(z)do(n) , ... (2)
m> S . .

For the seake of simplicity we will assume from now on that n = 23
the same results can be shoﬁn, in an identical fashion; for the
general case - n > 1.

By choosing g to be suitable continuous functions on S5 we will use
(2) to evaluate (Tz 1p 2q,z z‘B in terms of ¢ for all integers

P, 45 t, u > 0. However wve have to be careful about the order in

which we evaluate the inner products.

To start with choose g(n) = ﬁltﬁzu with t, u non-negative integers
(and from now on). Then. f g(n) (Tﬁl(k) q](k)) do(n)
3 .
k4
"1 S t-un ki Jz 3, 1—3- i-J
f sl “2 (:_Z ) [i][j] z 0y "2y Ty ),

i=0 j=0

_lf B[ 2]y, 0,7 ot

p=0 g=0 P
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o5 L LOEE et

i=0 p*O j=0 q=0
- J+t— i- J+u q p-q
x é o on, ny ny- do(n)

—l k| {1 k i+t+u S J. 1) J+t 19+
Z L u (J] (i+t+u]( j+t ] (272,770,200 2,

1. ..
+t i-j+
x [ pd7 (1-p) 9 Map
)

(where the bonimial coefficients here, and from now on, are taken to be
zero if they have no meaning),

¢ 1 2 i [](]( X MHW] () L (Esge)t
N e A i+t+uj |- -j+t (1+t+u+l)'

5, dm5 , ve imit
x (Tzl Z, 22"z Y
1 K SRR T CA PPN S S S PO Y
= C ' —d -
Ck z ( ][1+t+u] i+t+u+l jzo (j]<Tzl Z5 229 Z, 1§f
Now T *TT 4+ T *TT = T, and by ' iterating this equation we
vA z Z z -
1 1 2 2
obtain
m
(re,9 = ) |7 (1= 2, m8e ;%2 B2 for all f,g in H2(S)
L olg 1 %2 1% & -
2=0 :
and any m in N. ... (3)
- t-u (k) (k) _ -1 i |1
So é M N2 (Tfn > T » do(n) [C z i+t+u E:%:E:ilx
t
x {T1,z, z2“>f veo(l)

In an identical fashion the terms on the right hand side of (2) are

given by ‘ ‘
é é ¢ "Ho(n)z, 2, 1K 2, |*ao(z)ac(n)
. om (
-1e, T 1 N TR AR
v m
= [c, 120 (1] (1+ +u] 1+t+u+l] (¢’ 2u? eee(5)
. -1 ¢ [(m R S

Now since C 120 [1](1+t+u] TFerar #0 as m >+« for any
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t, u €N, (2) together with (4) and (5) give

<Tl,zl z2‘5 = (¢, 2, 2“) t, u > O. ..o (6)
We next evalaluate the inner products of Tz against the basis
L - 2 . 1 = t=-u
elements of . H°(8). For this we choose g(n) =n;n, n, - Then, 8&s
before; . f g(n) (Tfn(k),fn(k)) do(n)
k i . ...
- —1 § k{(kl{{r{{p 0 J 1—J Q, P~
53 b ERIGE ek mm
=0 p=0 j=0 ¢=0 .
F = t-us j- i) p-q
x é 1112 M1 N2 ny n2 ao(n)
I A K i+t+u-1 i i-j t+j1‘i+uj
= L <] tusl) (o - - -
%k Z p) [1] (J] [1+t+u—1][ t+3—l] Tzy725 757 ay X
1=0 J=0 ‘- :
1 . ..
t+ ~j+
x [ o T9(1-p) "9 ap
0]
¢l y ) [k] (1]( k ](1+t+u—l](t+g)!(1—3+u)! "
= NI : s : T
X 120 320 1}1J) \1tttu 1 t+3-1 (1+t+u+1).
5 im§ L teiel itunj
<.TZ1 2, "%y z, )
e (k]( ] ot ; [ - s : Ik
= 1. . — : - _
ko kU i+t+u~1) (i+t+u+l)! 320 J 521 Y-

5 i-j  tei-l_ itutj
x (Tzl 2, “s2q Z, > )

Now (3) shows that

n
~ B

t
{ Tz 22 zzu)

1

m ( Tz SL+1z m-£ z SL+1:Z m+u—2,,>
0 £ 1 2 71 2

for any m in N,

-~

w
v WV t+v-1_ wtu—W
)
v_z_l [v—-l]<Tl 2 %R %2

and so

[ nyn, (Tfn(k),fn(k)) ao(n)
! . |



(c

~ L
~
o~

. |
‘[3][;' k ] iliiiﬂ;}l—][t (Tl 2. 071 Y
0

.i= il i+t +u-1 (1+t+u+l)' 1 2!

+ i{(Tz %1 for any t, u > 0. | T"(7)

1221 Z2

Again, in an identical fashion we obtain

I Cmfl¢(n)zlzlt22u[l+ (z,r?lzmdo(z)do(n)

S 8 '
= -1 ¢ [m m (1+t+u i) © -1
- [Cm :Zo (1] (i+t+u—1] (_m][t <¢’ z2u>
+ 1 (¢z1,zltzé%]- for any t, u > O. : 'T'(8)

So proceeding as before, by using (2) together with (7) and (8), and
since we know the inner products of Tl from (6), we obtain

(Tzl,zltz2u> = (q)z z Y t, u > 0. -ff(9)

By symmetry, with g(n) = neﬁltﬁau the same procedure gives

(Tz ,zltzgu? = ¢z

t
5 2, t, u > O. ...(10)

22?1

Next we evaluate the inner products of Tzl2 by choosing
_ 2- t—- u

g(n) = Ny Nq Mo e Then, as before,

[ &(n) <Tfn(k),fn(k% do(n)
S
k k i P

ot b 3 5 b BB et

i=0 p=0 J=0 g=0

2- t—- u- j- i-j_ q_ p-aq
x é Ny Ny Ny Ny, nl N, do(n)

ki ) : . : .
-1 kf{f1i k i+t+u-2 J_1=) t+j-2_ 1+u—)
= L ) (i](j](i+t+u-2}( t+j-2 ] (T2 "2, %>z Z2 e

1=0 j=0 .
+ t+3 itu-j
x [ p"9(1-p) dp
0
k i . . . . .
c -1 Z z k)1 k 1+t+u—2],(t+1)!(1+u—3)!
R LNt Rl Reh e (WS EC I CE i

i-j _ t+j-2_ . itu-j
Z, 2% Z, }
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_ —1 K ) (itteu=2)! (i), R ST
= 2 [ ](1+t+u_21 (irtrurn) ! ([(t -1) JZO (jl+(2§+1)1.jzl (é-ll
i . .
' i(i_l)jJZa (J 2]] (T2, %2 2lfJ’zlt+J7zzél+u_J?)

(3) shows that

m , )
2 t m L+2 m—% L+t m-2+
(Tzl ,zl,zéu? Z (2] (Tzl 2, sZy  Zp '5
2=0
w
w—2 v WV t+v—-2 utw-w
) [v_al EORCARSR A
v=2 )
and so
2- t- u (k) . (k)
énl ny Ny <Tfn T ) do(n)
k :
_ -1 k)’ k (i+t+u-2)! t—2
B [Ck i—z-o [1] [i+t+u—2] (i+t+u+l)! ][(t -1) <Tl’zl' zzu)
+ (2t+1)i (Tz. ,2 -1, Y 4i(i-1) (Tz R
1’71 2" 1° l 2

As before, by comparing both sides of (2) and since we know the inner

products of T1 and Tz. from (6) and (9) we obtain

1
- t :
(Tl,122u7 -<q>l,zl 2“) : t, u>0 ...(11)
By symmetry, with g(n) = nezﬁlrﬁz the same procedure gives
-<Tz2 sz, z2“) =<¢z2 ,Zy z2“> t, u>0 ...(12)

If t +u>1 we can evaluate the inner products (Tz ze,zl zu) by
using the operator equation and our previous results: for if, for

example, t > 1 we have

t,w L -1 ouy 2 t-1 utly .
(Tzlzz, 1 2o = ¢ Tz,52, % > -« Tz2 22y 2y ?
t-1 1 +1, :

= ( 92,52, 2 u> -« ¢22 , lt z2u Y by (10), (12),

»= ( ¢z z2,zl‘zé3 .
If t =u=0 we evaluate (Tz z ,l) as before by equating both sides

. 1%2 . . A

of (2) with g(n) = njn,.

If we continue in this fashion, i.e. we next evaluate the inner pfoducts

13, then Tz23, then Tz 2z then Tz z 2 then Tz 4

of Tz 5 13

1 é,‘ etec.,
and collect all the identities such as (6), (9), (10), (11), (12), etec.,



99.
we obtain _
- p_a_'T - p,a T
(T2,P2,%2, 72,9 = (42,72,%, 2,720
for all non-negative integers p, q,-r, S.
Since the polynomiglé in 2y,2, are dense 1in H2(S) this shows that
(Tf,0 =(¢f,g)=<T'¢f,g>- for all f, g in H°(S) and so T = T,s
i.e. T 1is the Toeplitz operator with symbol ¢. We have thus proved

the following theorem.

for some ¢ € L°(S) if

THEOREM 12.1 Let T EB(Hz).. Then T = T¢

: n
and only if ) T, *IT, = T.
s=1 s s

Remarks. (1) If T is a diagonal operator on H2(S) then T 1is the

n ,
Toeplitz operator, T if and only if Z TZ *TTZ ‘= T and here the
=1 '

¢’ s s
symbol ¢ is of the type described in Chapter 11, e.g. when n = 2,
¢(zl,z2) = g(lzlle) = g(p). This can be proved in an elementary fashion
by appealing to the solution of a claséical Hausdorff momenp problem
"which gives necessary and sufficient conditions on a sequenqe'{ uk} such
that ﬁk = Z pk¢(p)dp for some function ¢ € L [0,1] (see [5%4, pflll]).
(2) An alternative approach to proving Théorem 12.1 is as
follqws: first prove phgt any T sa#isfying %l Tz *TTZ =T can
Dbe 'lifted' to an 6perator S on LE(S) whichs;atis;ies °
‘El MZ *SMZ = S (where M¢ is multiplication by ¢ on L2(S)) and
s;ch ﬁ;at ; is the ‘éompression of S to H2(S). The proof of the
theorem is completed by showing that this operator equation involving
operators oﬁ[?(S)characterises the multiplicatiqn (vy L7(8) functions)
qperatqrs on L2(S)f This can be achieved by elemenpary Hilbert space
inner préduc@ célculatiqns uéing the fact tha? an operator which commutes

with M, for all ¢ in L?(S) 'is itself a multiplication operator.

¢
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For details of this argument see [ 38].

It 1s well-known in the classical case that O 1is the only compact

Toeplitz operator on H2. We extend this result to higher dimensions.

COROLLARY '12.2 .0 s the only compact Toeplitz operator on H2(S).

Proof. Suppose T is a compéct Toeplitz operator.. Then by Theorem

. n :
12.1 ) T, *¥TT, =T and iterating this equation we obtain

s=1 s s
, . s s s s
T = ) — o T oors o B ... (13)
S.+...45. =m 1°7°""n° 1 ’ n 1 n '
1 .. n
for any m > 1.
) k as '
Now for 1 <1 < n, TZ + 0 weakly @ k » « and so as m > @
Sy s i
each of T eeoT +~ 0 weakly where s.+...+s_ =m. T 1is compact
z z ] 1 n
1 n
51 n '
and- so - TT eeoT + O- strongly as - m » » (s, +...+s_ = m).~ Hence
zl . zn 1 n

the operator on the right hand side of (13) converges to zero strongly

-as .m + », The identity (13) then gives T = O.

There are many o#her interesting questions in the case n > 1 which
arise by looking at the vast literature on Toeplitz operators in the
case n =1. We conélude this chapter by suggesting some further
operator—theoretic generalizaﬁions to the case n > l;

(1) For 1 <i<n it is not hard to see that T is the direct
sum of a countable number of weighted shifts eabh of w;ich is similar
to the unilateral shift of multiplicity one. (Tz. is not, however,
similar to a countable direct sum of unilateral s;ifts of multiplicity

one, i.e. a unilateral shift of countable multiplicity.) What are the

invariant subspaces of such operators? Or, what is perhaps the proper
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‘ questiqn tq ask, wha? are the common invariant subspaces fqr. Tz.’
1 S_i < n? Is it -possible tq deduce anything concerning funcﬁio; theory
on the sphere by examining such opérators?

(2) '{Tz.f 1<icx< n}isa séﬁ of n ‘commuting contractions on a
Hilbért spaze? Can we léafn soﬁething by éxamining the dilaﬁion theory
which'exists.for such sets of opératbrsf

(3) In the-abstract classical theonyisometriespla& a crucial rSle,
e.g. thé Wold . decomposition télls us that évéry isometry V has a
unique reducing (closed) subspace M (i.ef.invarianf for V and V¥)
such that VIM is unitary and V|ML is unitarilyAequivalenp to a
unilateral shift operator. It seems flausible that a corresﬁqnding
theory exists for commuting n-tuples of opérators ‘{Tl,..fTh} which
satisfy Tl*Tl+...+Tn*Tn =1, e.g. can we éxtend the Wold decomposi-
tion to the following result: if '{Tl,...Th} is a set of n commut-
.ing operators on a Hilbert space H with '3 T.¥T. = I, then there
is a closed subspace M of H, reduging fg;leach Tj’ 1<J<n,
such that Tj[M is normal and Tj MLl is unitarily equivalent to a
countable sum of weighted unilateral shift operators for each Js

1 <j <n (the weights of these operators being determined by the weights

of the operator Tz on H2(S))?
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‘The thesis is composed of two separate and distinct parts.
Part one is concerned with the problem of determining when certain linear mappings
- are necessarily continuous with particular attention being.given to derivations.

Chapter 1 consists of a discussion of the geparating space of & linear mapping.
Chapter 2 contains a deséription of the Banach algebra L1[O,l] and some of its prop-
erties, In Chapter 3 we .consider derivations on L1[0,l], proving in Theorem 3.1 that

they are necessarily continuous. In Chapter 4 we extend this result to module deriva-

o

tions and in Theorem 4.2 we giﬁe sufficient ccnditions on a Banach algebra B such thet.
every module.derivatisn from B is continuous. When B 1is separable and commutative
uﬁéAéam imbrové.Theofem .2 dn&ﬁfﬁen itmiéﬂeééi;y séen théi‘ohe of the sufficieht.conﬁi-
tions is best possible. In Chapter 5 we give sufficient éonditions on a Banach algebra
B " guch thet certain highes- de:éiv&tiéxii :fém any ‘Banach-elgebra onto "B~ are ‘automaticall-

continuous,

Part two is concerned‘with the recent result of D.E; Maréhall and S—Y.A. Chang
that every closed subalgebra of L (T) (where T is the unit c1rcle) contalnlng HAT)
is & Douglas algebra. .Using thelr technlques we give éﬂéfoof of thls result ‘and dlSCUuS
generalisations of these ideas and reiated concepts to higher dimensions. —

Chapterv6 consists of a discussion of Douglas aigebras, functions ;f vanishing
mean oscillation (VM0), Carleson measures and other topics.‘ In Chapter Tﬂwe.géneralise
" the space of VMO and provide a characterisation‘of the new space in terms of Carleson
measures. Using these ideas we prove the Marshall-Chang theorem in Chapters 8 and 9.
| Chapter 10 discusses the. subject of Douglas'algébras in highe: dimensions. Chapter 11

Use other side if necessary.
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gives a description of a particular class of Hankel operators on L2(S) (where S is

the unit sphere in ~gn). In Chepter 12 we characterise the Toeplitz operators amongst
operators on H2(S) in terms of an dperator‘eQuation.' In Chapters 10, 11 end 12 we

R N

pose several open questions.
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