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Abstract 

This thesis is primarily concerned with the development of adaptive algorithms for equaliser 
coefficient computation within the highly time variant radio communications environment. More 
specifically the problem of equaliser coefficient computation within the pan European digital mobile 
radio system is considered. The work encompasses both equaliser and channel estimator adaptive 
algorithms and techniques for the automatic synthesis of linear transversal equalisers (LTE), deci-
sion feedback equalisers (DFE) and adaptive maximum likelihood sequence estimators (MLSE) are 
developed. 

Within the thesis it is shown that equaliser performance can be significantly improved by adap-
tively updating the equaliser throughout unknown data transmission. Initially the performance of 
conventional techniques, such as gradient search (GS) and least squares (LS) algorithms, when 
employed in this respect is investigated. Although each is shown to yield performance improve-
ment over the system in which no adaptive update is employed, it is shown that under highly time 
variant conditions the performance of the conventional algorithms is subject to several limitations. 
This conclusion provides the motivation for the development of a number of alternative adaptive 
algorithms which offer performance advantage under highly time variant conditions. 

Two classes of algorithm are proposed. Within each a priori knowledge of the time variant charac-
teristics of the channel is used in order to partially cancel estimation error due to the channel time 
variation. Within the first this is achieved by augmenting the update equation of each of the con-
ventional algorithms by inclusion of an additional parameter set representing an estimate of the rate 
of change (ROC) of the channel coefficients. The algorithms are thereby able to form a prediction 
of the instantaneous channel variation and, therefore, to compensate for the channel non-
stationarity. In the second class of algorithm a predetermined model of channel time variability is 
incorporated directly into the algorithm structure. The algorithm, which is derived using Kalman 
filtering theory, essentially performs an LS fit of the equaliser coefficients to the received signal 
samples and the model assumed. Since optimal filtering theory is used within algorithm derivation 
the resulting algorithm represents the optimum linear estimator for the channel conditions assumed. 

Initially the algorithms are applied to the problem of channel identification and are shown to yield 
performance advantage over the conventional alternatives under highly time variant conditions. 
The performance of the algorithms is then investigated when applied to adaptive equaliser 
coefficient update. Two alternative techniques by which this may be achieved are described. In 
the first, the algorithm is applied directly to the equaliser coefficients. In this case it is shown that 
due to the non-linear relationship between the equaliser and the coefficients of the distorting 
medium, this technique results in suboptimal equaliser performance. An alternative is, therefore, 
proposed. Here the equaliser coefficients are computed indirectly from a channel estimate. Conse-
quently, the adaptive algorithm is applied to the problem of channel identification rather than to 
that of equalisation. When applied by this method both the conventional algorithms and the algo-
rithms described above are shown to yield performance improvement with respect to the direct 
update technique. 
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Chapter 1 
Introduction 

1.1 Introduction 

Digital mobile radio is currently a major growth area within the communications industry. Evidence 

of this is the recent introduction of the pan European cellular radio system throughout Western 

Europe, and the imminent introduction of the North American digital cellular radio system. Unfor -

tunately, the mobile radio signal environment is a very difficult medium through which to pro-

pagate digital signals. Sophisticated signal processing techniques are, therefore, often required to 

enable reliable communication. One of the most important of these techniques is that of equalisa-

tion, which is employed to compensate for the effects of intersymbol interference (ISI). Since the 

transmission medium is also highly time variant the equaliser structures must have the capability to 

self adapt to suit the continuously varying channel conditions. The adaptive algorithm for equaliser 

coefficient computation is, therefore, an important aspect of the system design. 

Within this thesis the problem of adaptive algorithm design for equaliser coefficient update under 

highly time variant conditions and specifically the conditions found within the pan European cellu-

lar radio system is considered. The contribution of this work is the development of several novel 

adaptive algorithms suited to the time variant environment. The purpose of this chapter is to intro-

duce the work undertaken on this project. The chapter begins with a discussion of the principal 

motivation for the work and then gives an overview of present and future digital mobile radio sys-

tems. Following this, the principal areas of work within the project are summarised and other 

salient research reviewed. Finally, the organisation of the thesis is described. 

1.2 Motivation 

The European standard digital cellular radio communication system, GSM 1 [1], was introduced in 

1991. The system is a wide-band hybrid frequency-time division multiple access (FDMA[FDMA) 

scheme. In this each user is allocated a frequency channel of 200kHz which is shared on a time 

basis with seven other users. The communication system, therefore, has a block data format. The 

wide-band nature of the system means that signal transmission is subject to severe time dispersion. 

1. The initials GSM are an abbreviation for the joint European committee, "Groupe Speciale Mobile", set up in the early 
1980's to devise the standards for the common European mobile radio system. 
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Under such conditions some means of channel equalisation is essential. Moreover, since the system 

user is most often in motion, the transmission medium is also highly time variant. Consequently, 

the equaliser must have the ability to self adapt to suit the variable channel conditions. 

GSM standards specify in great detail many of the transmission aspects of the system [2].  However, 

the design of the receiver is not dictated by the recommendations. Here the approach taken is to 

specify several performance criteria which the receiver must meet; actual system design is then the 

responsibility of the equipment manufacturer. One of the most important choices which the 

manufacturer has is that of equaliser design. In particular the equaliser structure used and the algo-

rithm employed to derive the equaliser coefficients. A wide variety of equaliser structures have 

been developed to suit this requirement. Several of these are considered within this thesis. The pri-

mary objective of this work is, however, the development of adaptive algorithms for equaliser 

coefficient computation. 

In many proposed GSM receivers the equaliser coefficients are derived at one instant within the 

TDMA block using a fast converging algorithm. The coefficients are then held constant throughout 

information transmission. This technique has the advantage of computational efficiency since no 

adaptive algorithm is required for continuous coefficient update. Due to the highly time variant 

nature of the medium, however, the impulse response of the channel may be subject to significant 

variation within the block period. This results in equaliser performance degradation as the equaliser 

coefficients become increasingly suboptimal. System performance may, however, be improved by 

updating the equaliser coefficients throughout the data block and thereby compensating for the 

apparent channel time variation. This may be achieved by using an adaptive algorithm in conjunc-

tion with an estimate of the transmitted data sequence; available in the form of tentative decisions 

fed back from the equaliser. The task of the adaptive algorithm used to derive the equaliser 

coefficients is, therefore, twofold. Firstly, initial training in which fast convergence is essential, and 

secondly, channel "tracking" in which the steady state performance of the algorithm is of prime 

concern. 

The GSM signal environment is a particularly difficult scenario in which to accurately estimate the 

optimum equaliser coefficients, it being dispersive, highly time variant and subject to high levels of 

interference. In addition, data block lengths are relatively short making the task of deriving 

knowledge of the characteristics of the channel from the incoming signal difficult. However, since 

it is possible to improve the performance of the equaliser using continuous coefficient update, there 

is great motivation to develop algorithms suited to these conditions. In order to achieve this objec-

tive it is important to address several fundamental questions. These are, firstly, what degree of 

degradation is incurred in the equaliser performance by "fixing" the equaliser coefficients 

throughout the data block? Secondly, how much performance improvement can be gained by apply-

ing existing conventional algorithms to this adaptive update problem? Finally, is it possible to 

develop novel algorithms which may result in a significant improvement over the performance of 

conventional techniques? This thesis attempts to answer each of these important questions. 
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13 Digital Mobile Radio Communication 

Over recent years the demand for mobile communications has increased significantly. Within the 

communications industry it is widely believed that this trend will continue. Services offered at 

present include cordless telephones, cellular mobile radio telephones and radio paging systems. The 

ultimate goal of the industry is, however, to combine each of these services within a universal 

mobile telephone system (UNITS) [3] which, it is hoped, will be internationally compatible. Future 

systems, therefore, must have the ability to carry speech, data and video signals. These require-

ments impose stringent technical demands on the design and performance of the systems. Hence, 

much strategic planning, research and development is needed to meet these requirements. 

The interest in the types of systems and services described above has been evident for some time, 

however, only recently have advances in semiconductor technology enabled these problems to be 

addressed. Foremost among these advances has been the advent of powerful relatively inexpensive 

very large scale integration (VLSI) hardware and the application of this technology to digital signal 

processing (DSP) problems [4].  Another important development has been the availability of reli-

able semiconductor devices that perform well at high frequencies. These enabling technologies have 

made digital communication for mobile radio an attractive alternative. 

The increased demand for mobile communication services has resulted in the need for high levels 

of spectrum utilisation. This has motivated much work on low bit rate speech coders [5-7], 

bandwidth efficient modulation techniques [8-10] and efficient multiple access schemes. An addi-

tional technique widely used in mobile radio applications to increase spectrum usage is frequency 

re-use. Here, a single user frequency is re-used many times within the coverage area as a whole. 

Isolation between users operating on the same frequency is maintained by ensuring that the propa-

gation path loss of interfering signals results in sufficient signal attenuation such that acceptable 

signal to interference ratios are obtained. A major objective within the design of any cellular net-

work is to increase spectrum usage by maximising the system re-use efficiency 2  High re-use 

efficiency, however, results in high levels of interference between users operating in the same band; 

this being referred to as co-channel interference. In addition, in order to increase spectrum 

efficiency guard-bands between adjacent frequency slots are minimised. The system is, therefore, 

also subject to high degrees of adjacent channel interference. Consequently, signals propagated 

within this environment are subject not only to the fading multipath propagation conditions 

described earlier but also subject to relatively high levels of interference generated by other system 

users. The combined effect of each of these factors means that the transmission conditions on the 

radio channel are extremely hostile to reliable communication. Hence, highly sophisticated receiver 

structures are required to compensate for these non-idealities. 

2. That is the geometric regularity with which an identical frequency assignment is employed, eg., if the same frequency as-
signment is used every seven cells then the resulting reuse efficiency is 1/7. 
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1.4 Summary of the Work 

Within this thesis the problem of equaliser coefficient update within the highly time variant mul-

tipath environment common to mobile radio communication is investigated. More specifically, this 

work is focussed on the equalisation problem within the GSM system. The algorithms developed 

and the ideas presented may, however, be applied to other time variant applications. The thesis con-

siders the problems of initial equaliser coefficient derivation and, more importantly, the steady state 

performance of adaptive algorithms when used for continuous coefficient update throughout unk-

nown data transmission. The main contribution of this work is that several novel adaptive algo-

rithms for both equalisation and channel estimation are derived. In addition, it will be shown that 

within the GSM system significant performance improvement can be obtained by the application of 

relatively simple adaptive algorithms to the problem of continuous equaliser coefficient update. 

Initial equaliser training is performed within a relatively short training sequence. Within this work 

several algorithms which may be used to compute channel estimate coefficients under these condi-

tions are described. The performance of these algorithms, under both time invariant and time vari-

ant conditions, is then considered. Techniques by which the coefficients of the linear transversal 

equaliser (LTE), the decision feedback equaliser (DFE) and the maximum likelihood sequence esti-

mator (MLSE) may be computed from the initial channel estimate are then derived and the perfor-

mance degradation of each of these structures due to channel estimate misadjusiment is considered. 

The problem of continuous channel estimate update throughout unknown data transmission is then 

considered. Initially, the performance degradation of the MLSE due to the use of a fixed channel 

estimate under GSM conditions is investigated. Conventional adaptive algorithms, such as the least 

mean squares (LMS) and recursive least squares (RLS) algorithm are then applied to this problem 

and the performance of these algorithms compared. Several novel adaptive algorithms which incor-

porate some degree of a priori knowledge of the time variant characteristics of the channel within 

the algorithm are then derived. The performance of each of these algorithms is then investigated 

both theoretically and by computer simulation under both general and GSM specific channel condi-

tions. In addition, the problem of equaliser performance degradation due to the necessity of basing 

adaptive update on tentative decisions feedback from the MLSE is addressed, and a technique 

which results in equaliser performance improvement by exploiting the block nature of the GSM 

system is described. 

The investigations are then extended from purely channel identification algorithms to encompass 

adaptive equaliser coefficient update algorithms. More specifically, linear transversal equaliser and 

decision feedback equaliser adaptive algorithms are considered. Initially, the performance degrada-

tion of the aforementioned equaliser structures due to the use of fixed equaliser coefficients is 

investigated. The problem of continuous equaliser coefficient update is then considered and two 

alternative techniques by which this may be achieved are presented. The first technique represents 

the conventional method by which the coefficients of the adaptive equaliser may be updated. In this 

the adaptive algorithm is applied directly to the equaliser coefficients; this technique is referred to 
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hereafter as the "direct method". In the second technique, referred to as the "indirect method", the 

coefficients are derived indirectly from a channel estimate, which is itself adaptively updated. The 

performance of conventional adaptive algorithms when applied directly and indirectly to the prob-

lem of equaliser coefficient update is then compared. It is shown that in terms of both transient and 

steady state performance the indirect technique offers performance advantage. 

The variation of the coefficients of the LTE and DFE under time variant conditions is then investi-

gated. From these investigations two algorithms, which incorporate a priori knowledge of equaliser 

coefficient time variant behaviour are proposed. These algorithms, which are similar to the ones 

derived for channel estimate update, are designed to be applied directly to equaliser coefficient 

update. The performance of the "a priori" algorithms when applied both directly and indirectly is 

then investigated. These investigations allow comparison of the performance of the conventional 

algorithms with that of the 'a priori" algorithms. Finally, from the previous work the performance 

of LTE, DFE and MLSE structures, under GSM conditions, is compared. 

15 Related Research 

Adaptive equalisation has been an active area of research for over 20 years. Within this time a con-

siderable volume of work has been published. Much of this work is summarised in an overview 

paper by Qureshi [11], which, although published over seven years ago remains one of the most 

useful sources of background information on the subject. Qureshi considered the application of 

equalisers to principally time invariant channel conditions, however, many other researchers have 

investigated the performance of equalisers under fading conditions. For example, Monsen [12] 

analysed the performance of the DFE under time variant channel conditions, Magee and Proakis 

[13] proposed an adaptive version of the MLSE designed for use under unknown or time variant 

conditions, Eleftheriou and Falconer [14] investigated the performance of adaptive equalisers for 

high frequency (HF) channels, Clark and Harun [15] assessed the performance of the Kalman filter 

for channel estimation of the BF channel, Hsu [16] studied the performance of a Kalman DFE 

under similar channel conditions and Muigrew and Cowan [17] proposed an adaptive Kalman 

equaliser. 

Investigation has also been carried out to characterise the performance of adaptive algorithms 

within the time variant environment. Most notable among this work being, Widrow et a!, [18,19], 

and Eweda and Marchi [20-22] in which the non-stationary performance of the LMS algorithm is 

investigated. Similar investigations are performed by Eleftheriou and Falconer [23] and McLaughlin 

et a!, [24] for the RLS algorithm. In addition to these investigations several novel algorithms have 

been proposed which are designed to operate under time variant conditions. Proakis [25] first pro-

posed a variant of the LMS algorithm for channel estimation in which an additional filtered gra-

dient vector is incorporated into the algorithm, whilst Clark [26,27] proposed a similar algorithm 

designed for channel estimation over an HF radio link. A variant of this technique was later applied 

to the GSM system by Dahlman in [28,29]. In [30,31] McLaughlin et al took a different approach 

to channel estimation and used an extended Kalman algorithm as an HF channel estimator. 
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The performance of equaliser structures under GSM conditions has been characterised within a 

number of publications [32-36]. In [32,33,34] and [351 D'Avella et al, Rashidzadeh et al, Lom-

bardi and Reggiannini, and D'Aria et a!, respectively, investigated the performance of the MLSE 

detector under GSM conditions and in [36] Uesugi considered the applications of an LMS DFE to 

the same problem. Much work has also been carried out on other mobile radio systems. Future 

universal digital portable radio communications are considered in general in a useful overview 

paper on the subject by Cox [3].  However, more specific work on adaptive equalisation and diver-

sity combining has been undertaken for the North American standard for digital cellular radio by 

Lo [37,38] and Adachi et al [39]. 

1.6 Thesis Organisation 

Within this thesis, after this brief introduction in which the fundamental motivation and objectives 

of this work are described, the problem of adaptive equaliser design within the highly time variant 

environment is considered. In Chapter 2 much of the necessary background to this work is 

presented and subjects such as mobile radio systems, the mobile radio signal environment, optimal 

detection of digital signals when corrupted by additive noise and IS!, equaliser structures, and adap-

tive systems, are discussed. The chapter then proceeds to consider the salient points of the GSM 

system and concludes by presenting a technique by which equalisation may be performed under 

GSM conditions. 

In Chapter 3 the problem of the derivation of the initial equaliser coefficients within the GSM 

training sequence is considered. The principal objective of this work is the investigation of the tran-

sient performance of channel estimation algorithms and the effect of estimation errors on equaliser 

performance. The problem of continuous channel estimate update throughout unknown data 

transmission is then considered in Chapter 4. In this chapter, initially equaliser performance degra-

dation due to the use of a fixed channel estimate is investigated. Then the performance improve-

ment obtainable using both the LMS and the RLS algorithm is considered. An alternative adaptive 

algorithm which incorporates an additional parameter set describing the rate of change of the chan-

nel coefficients into the update equation of the conventional adaptive algorithms is then presented 

and its performance investigated. 

In Chapter 5 an alternative adaptive algorithm for channel estimation, in which a model of the 

channel time variability is incorporated directly into the algorithm structure, is proposed. The per-

formance of this algorithm is then investigated. Both Chapters 4 and 5 consider only channel 

identification algorithms for use within the MLSE receiver. In Chapter 6 adaptive equaliser 

coefficient update is considered and equaliser performance under conditions in which update is not 

performed, performed using conventional adaptive algorithms, and performed using novel algo-

rithms similar to those presented in Chapter 4 and 5, is investigated. Finally, in Chapter 7 the con-

clusions of this work are summarised and areas in which further work may prove useful are sug-

gested. 



Chapter 2 
Background 

2.1 Introduction 

This thesis is primarily concerned with the development of adaptive algorithms for equalisers and 

channel estimators operating in the highly time variant radio communications environment. In par-

ticular algorithms suited to the conditions prevalent within GSM system are considered. In order to 

understand this work clearly, it is necessary to possess background knowledge on several disparate 

topics. For this reason, within this chapter topics such as mobile radio systems, equaliser struc-

tures, adaptive filters and adaptive algorithms are introduced. The chapter begins with an overview 

of mobile radio systems and propagation of radio signals over typical mobile radio channels. Fol-

lowing this, the problem of detection of digital signals corrupted by linear distortion and AWGN is 

described and several equaliser structures which may be used to compensate for this are presented. 

Adaptive systems and their principal applications within communication engineering are then con-

sidered. In addition adaptive algorithms based on both the gradient search and the least squares 

estimation technique are introduced. Finally, the most salient characteristics of the GSM system are 

described and the problem of equalisation within this environment is considered. 

2.2 Mobile Radio 

The requirement of communication with moving vehicles has long been established. In order to 

satisfy this requirement various systems have been developed. Over recent years, however, the 

demand for this service has increased rapidly. Consequently, systems based on the concept of cellu-

lar radio [40-42], which offer the benefits of wide coverage area and high system capacity, have 

gained pre-eminence and increasingly offer the preferred alternative for mobile communication. 

Unfortunately, the mobile radio channel represents a difficult environment in which to propagate 

radio signals; the medium being, lossy, dispersive and highly time variant. In order to design reli-

able communication systems for such an environment it is, therefore, important to possess a good 

understanding of both the system and the effects of propagating radio signals through the medium. 

Within this section each of these aspects are considered. 
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21.1 Cellular Radio Systems 

The concept upon which all cellular radio systems are based may be summarised as follows. The 

geographical location is subdivided into various relatively small coverage areas, referred to as cells. 

Each cell is served by a fixed base-station which acts as an interface between the mobile users and 

a central controller, or mobile switching centre (MSC). The MSC controls the mobile network and, 

in addition, provides the connection to the public switched telephone network (PSTN). Mobile users 

communicate with the fixed network via a radio link to the cell base-station and on through a dedi-

cated link to the MSC. Since mobiles are free to move within the coverage area, it is possible that 

during a call the mobile will cross cell boundaries. Under such conditions a process referred to as 

"handover" is initiated, in which the call is transferred to the base-station of the new cell. This pro-

cess takes place with no discernible degradation in system performance to the user. 

Until recently cellular radio systems have been used mainly for analogue voice-band communica-

tion, which essentially represents narrow band transmission. Within these systems isolation between 

users is obtained using the technique of frequency division multiple access [42,43]. Here each cell 

is allocated a band of frequencies which is further subdivided into several relatively narrow band 

frequency slots. Each user then operates on two associated frequency slots; one of which is used for 

communication between the mobile and the base-station, referred to as the system "uplink", the 

other being used for communication between the base-station and the mobile, or system "down-

link". Using this technique full duplex transmission is achieved. In order to increase the system 

capacity, frequencies allocated to one base-station are re-used many times within the coverage area 

as a whole. Isolation between cells operating on the same frequency is provided by the transmission 

path loss between the cells. However, co-channel interference remains one of the principal limita-

tions on the capacity and performance of any cellular system [40,41,44]. 

Recently there has been a move towards digital techniques for mobile communication. Digital com-

munication has several advantages over the conventional analogue techniques, foremost among 

these being data transmission capability, increased system capacity, transmission security and com-

patibility with modern integrated switching digital network (ISDN) systems. Within digital com-

munication systems several alternative multiple access techniques may be used, however, within the 

following work a mixed frequency-time division multiple access [42,43] technique is assumed. 

Within this technique in addition to the frequency division described above, users are also allocated 

separate time slots. This technique necessitates relatively high data rates, consequently, systems of 

this type most often represent wide-band communication systems. 

Within cellular radio systems maximum transmission ranges are approximately 25km, this being 

dependent upon the expected system traffic, antenna heights and the characteristics of the interven-

ing terrain. System capacity may, however, be increased by reduction of cell sizes, therefore, in 

areas of high system utilisation cell coverage ranges may be considerably smaller [40,41]. Typical 

antenna heights are approximately 30m and 2m for the base-station and the mobile respectively. 

Cellular operating frequencies are normally within the range 450MIHz to 2GHz. High frequencies 
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are preferable to increase spectrum utilisation, there are, however, practical limitations on the 

higher frequency range. These occur primarily due to the fact that the severity of multipath fading 

increases as the carrier frequency increases. Frequencies above 10GHZ are rarely used in mobile 

systems [45]. 

2.2.2 The Mobile Radio Signal Environment 

Due to the relatively low antenna heights used within mobile radio systems, transmitted signals are 

subject not only to the same propagation path losses which affect other types of atmospheric propa-

gation, but, in addition, are significantly affected by path loss due to terrestrial propagation [40,46]. 

Indeed, within mobile communications topographical effects on propagation dominate all others. 

This scenario has two major implications. Firstly, propagation path losses are greatly increased 

from those experienced within free space [40]. Secondly, due to the presence at ground level of 

many reflecting scatterers, for example terrain contours buildings and other vehicles, a signal pro-

pagated in such an environment will most often be reflected by several of these obstructions 

thereby resulting in multipath transmission [40,47]. This leads to time dispersion of the transmitted 

signal which, due to the wide band nature of the communication channel under consideration, is 

received as a series of attenuated echoes. This phenomenon may result in severe ISI within the 

transmitted information, consequently, some method of signal equalisation is often necessary. 

The existence of the multipaths also results in complex interference patterns being created within 

the medium [40,42,48]. This causes path strength to be critically dependent upon the position of 

the mobile receiver. Indeed, a positional deviation of as little as half a wavelength of the carrier 

frequency often results in gross variation in the received signal strength. A mobile travelling 

through this medium will, therefore, encounter a fading multipath environment. Fades of up to 

40dB or more below the mean level being common with successive minima occurring approxi-

mately every 15cm. Consequently, a vehicle travelling at average velocities will experience rapid 

fades; fade rates of greater than 100Hz being possible. 

Fading created by the interaction of several multipaths of approximately equal intensity is referred 

to as "Rayleigh fading", since the statistics of the received signal envelope are well modelled by 

the Rayleigh distribution [40,48,49] . Within the mobile radio environment, however, in addition 

to short term signal variation due to Rayleigh fading, the effects of terrain contours also result in 

long term variation of the received signal strength. Generally, long term fading, which is also 

referred to as shadow fading, can be considered to contribute only to propagation path loss and 

may, therefore, be assumed to result, simply, in long term SNR deviation. Signal amplitude varia-

tion due to long term fading is most often modelled as being log-normally distributed. 

1. More specifically the received signal envelope is modelled as Rayleigh distributed whilst its phase is assumed to be uni-
formly distributed. This implies that a single path may be described as a complex variable in which the quadrature com-
ponents are characterised as independent zero mean narrow band Gaussian noise. 



When a mobile travels within a multipath environment each of the multipath components reach the 

receiver at different angles relative to the velocity vector of the mobile. Each component will, 

therefore, experience a frequency shift due to the Doppler effect which is related to the angle of 

arrival of the multipath. This may be expressed for the i th multipath by, 

	

fd, = (V/A) cos O , 	 (2.1) 

where fd.  is the frequency shift due to the Doppler effect, V is the relative velocity of the vehicle, 

A is the wavelength of the signal, and 0, is the angle of arrival of the signal. The effect of the 

Doppler shift of each multipath is to add an additional frequency component to the received signal, 

thereby producing a frequency modulation type effect. This results in the theoretical received signal 

spectrum shown in Figure 2.1, where the maximum Doppler frequency, fd'  is given by, fd = V/A. 

It can be shown [40,42,48] that the frequency at which Rayleigh fading occurs is dependent upon 

the Doppler bandwidth of the medium, and that the maximum fading frequency is equal to the 

maximum Doppler frequency. 

2.23 A Mathematical Model of a Fading Multipath Channel 

To enable analysis of the effects of propagating radio signals over fading multipath channels it is 

necessary to describe the characteristics of the channel using a mathematical model. A model 

which is commonly adopted, is to describe the channel as a time varying linear filter [49,50,511. 

Due to the complexity associated with modelling the characteristics of modulated signals this is 

most often performed at the complex base-band signal level. The mathematical model may be 

described by either a continuous or a discrete function, the form adopted being dependent upon the 

application. Within the continuous model the received signal is viewed as comprising a continuum 

of multipath components. The complex base-band channel impulse response is given by [8,52], 

c(w) = a(t;t)e(2'c 	, 	 (2.2) 

where c(w) represents the response of the channel at time t due to an impulse applied at time 

t--T, a(t;t) represents the signal attenuation factor, t represents the propagation delay and f, is the 

carrier frequency. 

In mobile radio applications the discrete form is more often used. Within this model it is assumed 

that the channel exhibits a finite number of statistically independent propagation paths, each of 

which has time variant amplitude, phase and arrival time. The complex base-band channel impulse 

response may be expressed [8,50,51,52], 

c( 	 -j2fr (t)ö( 
	 (2.3) T;t) = Ean(t)e 

1t 
 

n 

where a (t) represents the time variant amplitude of the n th multipath and is assumed to be Ray-

leigh distributed, ; (t) represents the time variant time of arrival of the n th multipath and is 

assumed to be modelled by a Poisson process, and ö(x) is the impulse function. Since r(t) is time 

variant, the product 2itf t,1  (t) is also time variant. This implies that the phase of each multipath 
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varies with time and that due to the statistical characteristics of t (t), may be represented by a uni-

formly distributed variable. 

This channel model can be envisaged as a complex tapped delay line; each tap representing one 

delayed multipath. Within the delay line model each coefficient has a complex valued weight, the 

quadrature components of which are characterised by independent Gaussian random processes. 

Rayleigh fading is simulated by filtering, independently, the quadrature components of each mul-

tipath using a narrow band filter the frequency response of which is given by the Doppler spectrum 

of the medium, this may be written as [531, 

S(f) = 	 for —fd<f<fd 
(1 	

1 

—(f/fd)2)"2 

S(f) - 0 elsewhere. 	 (2.4) 

Since the Doppler spectrum described by Equation 2.4, and depicted in Figure 2.1 for a Doppler 

frequency of 10011z, is non causal, for the purpose of computer simulation, within this work, the 

ideal Doppler spectrum is approximated using a second order low pass infinite impulse response 

(IIR) digital filter [54,55] 2  The structure of the filter used is shown in Figure 2.2, also shown is 

its frequency response plotted for the same Doppler frequency as shown for the ideal spectrum. 

The filter characteristics are defined by appropriate choice of the feedback coefficients, c0 and c1. 

The multipath gain term, p,, is used to normalise the power at the filter output. 

In order to impose any required multipath RMS power delay proffle (MPDP) 3  onto the channel, an 

extra gain term, a, is also employed; this constant being common to both the real and imaginary 

components of the delay line weights. Within this work the MPDP is described by the z transform, 

Ha  (z) , which, in general, may be expressed, 

H,, (z) = a0  + a1z + a2z 2  . . . aN_lz 	, 	 (2.5) 

The complete channel model used within subsequent simulations is depicted in Figure 2.3. 

2.3 Equalisation 

The problem of signal distortion caused by transmission over dispersive media is widespread within 

communication systems [58]. In digital radio time dispersion often results in 151 and, therefore, in 

severe degradation in the performance of the communication system. The technique of equalisation 

has, therefore, been developed to compensate for the effects of 1ST. Within this section the equali-

sation problem is considered and several equaliser structures are described. The section begins 

with a brief overview of a generic digital communication system. The problem of optimum detec-

tion of digital signals in the presence of additive noise is then considered and the problem of IS! 

For information on digital filters see [56,57]. 
This is defined to be the average power output of the channel as a function of the arrival time variable t, and is referred to 

elsewhere as the "multipath intensity profile' or the "delay power spectrum' [8]. 
Unless otherwise stated the MPDP is assumed to be normalised within any computer simulations. 
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introduced. Finally, a number of equaliser structures are described and their relative merits con-

sidered. 

23.1 A Generic Digital Communication System 

Figure 2.4 shows the block diagram of a generic digital communications system 5 . Several basic 

signal processing operations are identified, these are channel coding, modulation/demodulation and 

detection. Channel coding [8,9,59] is performed to provide an error detection and correction capa-

bility on the received information sequence. This is achieved by the systematic addition of redun-

dant symbols into the transmitted data sequence. These known symbols are detected at the receiver 

and subsequently used to identify errors within the received data sequence. Channel coding is not 

essential within digital communication systems, however, the technique is very powerful and is 

finding an increasing number of applications. Modulation is performed to enable efficient transmis-

sion of the signal over the channel. Within digital radio communications this is achieved by switch-

ing the amplitude, frequency or phase of a high frequency carrier in accordance with the base-band 

data [8,9]. At the receiver the carrier wave is removed from the incoming signal using the demo-

dulation process, which essentially represents the inverse of modulation. Within the detector the 

output from the demodulator is used to reconstruct the initial coded information sequence. This is 

achieved using several processing stages, including signal timing recovery, sampling, equalisation 

and decision making. It is the equalisation phase which is the principal subject of the remainder of 

this section. 

The process of communication using a system such as the one depicted in Figure 2.4 may be sum-

mensed as follows. The original data sequence is initially coded for the purposes of error control. 

The resultant coded waveform is band limited, and then modulated on to a high frequency carrier. 

This modulated signal is then transmitted over the channel, where it is subject to signal distortion 

and additive noise. The received signal is, firstly, isolated from all other transmitted signals by con-

volution with the receiver filter. The remaining signal is then demodulated to base-band at which 

point signal distortion is removed using equalisation. The coded data sequence is then reconstructed 

using a decision device and, finally, the original data sequence is recovered by decoding the input 

sequence and performing error correction. 

For the purposes of analysis and computer simulation it is more convenient to consider the system 

operation at the complex base-band signal level. Consequently, the idealised system model of Fig-

ure 2.5 is often used. Within this model, since the data is represented at base-band, the requirement 

of modulation is removed, accordingly, the functions of modulation/demodulation are not modelled. 

Additionally, since investigation of the performance of channel coding schemes is beyond the scope 

of this thesis, the requirement of channel coding has been neglected from the model. 

5. This system is not exhaustive since other processes such as source coding [8,9] may be included within the structure. Con-
versely, not all digital communication systems include all of the blocks shown. 
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Within the idealised model, if all system components are assumed to be linear and time invariant, 

or only slowly time variant, then using superposition the block diagram of Figure 2.5 can be rear-

ranged to give the system depicted in Figure 2.6. In this the complete transmission path is modelled 

as a single linear filter, the impulse response of which is given by the convolution, 

h(t) = ht(t)*C(t)*hr(t) . 	 (2.6) 

The linear filter, h (t) is referred to, hereafter, as the linear base-band channel (LB C), and its 

impulse response referred to, simply, as the channel impulse response (CIR). This model is 

assumed within subsequent analyses and computer simulation. 

23.2 Intersymbol Interference 

For digital communication the ideal transmission medium would be expected to pass all frequencies 

with zero attenuation. The electromagnetic spectrum, however, can be characterised as a linear 

filter, consequently, any signal propagated through the medium will be subject to the band limiting 

effects of the channel. In addition, in order to provide frequency isolation between spectrum users, 

signals must be band limited prior to transmission. Each of these factors result in signal time 

dispersion and, therefore, in ISI. This situation is particularly severe if signalling rates are high and 

transmission filters with relatively long impulse responses are employed. 

Considering, initially, the case of signal propagation over the communication channel in which 

transmission introduces no signal distortion other than additive Gaussian noise; this type of channel 

is referred to as the added Gaussian white noise (AWGN) channel [8,9]. If an ideal low pass filter 

is used for band limiting of the transmitted signal, then the pulse will possess the characteristic 

sinxlx time response. If pulses are transmitted at T-spaced intervals, where T=112B, and B is the 

signal bandwidth, the received signal, when observed at the correct sampling instant, will contain 

zero interference between adjacent pulses. In this instance transmission occurs on subsequent zeros 

of the transmission filter impulse response; this is referred to as Nyquist rate transmission. 

In practise the attainment of zero interference is difficult for various reasons. Firstly, this condition 

requires precise synchronisation between the transmitter and receiver and, secondly, it demands that 

the pulse shaping filter is ideal. Such an ideal filter is not realisable and is, in addition, susceptible 

to large amounts of interference if sampling is not perfectly synchronised, since the tails of the 

impulse response decay at a rate of lit. The condition of zero interference can, however, be 

obtained using filters other than the ideal low pass filter provided that the filter used results in uni-

formly spaced zeros at all non zero multiples of the sampling period. This may be achieved if the 

filter has odd symmetry about the low pass cut-off frequency 1/2THz. Such a filter is the raised 

cosine filter [8,43]. The raised cosine filter is also not as susceptible to interference due to syn-

chronisation error since the tails of the impulse response of the filter decay proportionally to 11t 3 . 

Even assuming that the pulses used within transmission conform to the condition of zero ISI, time 

dispersion due to the channel will result in time "smearing' of the transmitted pulses such that 
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adjacent symbols contribute to the received signal at each sampling instant. The effect may be most 

simply illustrated at complex base-band by considering the operation of a pulse-amplitude modula-

tion (PAM) system in the presence of multipath interference; this is depicted in Figure 2.7. Here 

the channel is assumed to comprise the composite filter referred to earlier as the LBC and is, there-

fore, defined as the convolution of the transmission filter, the receiver filter and the channel. The 

received signal, r (t), is given by the convolution of the weighted PAM symbols which are assumed 

to be T-spaced impulses, denoted x(kT), and the composite filter, h(t), plus an additive noise com-

ponent, rl(t), and is, therefore, given by, 

r(t) = E x(kT) h (t—kT) + 1(t) . 	 (2.7) 
k 

At the sampling instant, t = mT +t, where t is the channel propagation delay and m is a positive 

integer, the received signal is given by, 

r(mT +t) = x(mT)h(t) + Ix(kT) h(r +mT - kT)1 +1(mT + t). 	(2.8) 
lk*rn 	 J 

The first term on the right hand side (RHS) of Equation 2.8 is the desired received signal, the 

second term is the interference generated by each of the other transmitted symbols and, therefore, 

represents the IS!, and the last term is the additive noise. To enable reliable symbol detection it is 

clear that at the decision instant the interference due to the IS! and the additive noise term must be 

small in comparison with the desired signal. 

Assuming that the channel exhibits the characteristics of the ideal AWGN channel and that Nyquist 

rate transmission is employed, it can be seen that, h (t  + mT - kT) = 0 if m * k, hence the IS! 

term is zero. However, if the channel results in time dispersion of the transmitted signal, then the 

position of the zero crossings of the response of h (t) will alter. Therefore, the received signal may 

be subject to a significant ISI component. From this discussion it can be seen that the most severe 

ISI is caused if the CIR is characterised by symbol spaced interferers of equal amplitude. Under 

these conditions, assuming that each multipath component is unity and that the propagation delay is 

zero, the received signal is given by, 

r(mT+ t) =x(mT) + x(kT) + 'rl(mT +T). 	 (2.9) 
k om 

Consequently, both the required received signal and each of the IS! components have equal weight, 

hence, without some form of equalisation detection accuracy is severely degraded irrespective of 

the level of additive noise; this is also true even under less spectrally severe channel conditions. 

233 Detection of Digital Signals in the Presence of AWGN 

Consider the simplified model of a digital communication system depicted in Figure 2.8. Within 

this system the message source emits a symbol, 4, (t), every T seconds. The symbol is assumed to 
be chosen from an alphabet of M orthogonal symbols, which are also assumed to possess equal 

energy and be equally probable. The symbol is then transmitted over the communication channel, 
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which in this instance is assumed to comprise the AWGN channel. At the receiver the incoming 

signals are processed such that a decision can be made as to the identity of the transmitted symbol. 

An important question with regard to this system is how should the receiver be configured in order 

to minimise the probability of decision error. 

Under the conditions described above, assuming that the receiver is time and phase synchronised to 

the transmitter, it can be shown [8,9] that there are two methods by which optimum detection can 

be achieved. The first, referred to as the correlation receiver, is shown in Figure 2.9. Here, the 

received signal is first multiplied by the complex conjugate of time response of the symbol. The 

resulting products are then integrated over the symbol interval. Within the decision block the out-

puts from each of the product integrators, or correlations, are compared and the one which exhibits 

the largest correlation is selected as the best estimate of the transmitted symbol. 

The alternative technique, which is termed matched filter (MF) detection, is shown in Figure 2.10. 

In this technique the correlators are replaced by a bank of filters, hi(t). The output of the filters is 

sampled at time t =T and compared within the decision block as described above. In many 

instances this option is more desirable since the use of analogue multipliers may be avoided. The 

main requirement of each of the signal filters is that the filter should maximise the peak signal in 

the presence of additive noise. Hence, the filter is designed to maximise the SNR at the decision 
instant . In order to do this it can be shown [8,9,43,601 that the filter should be designed such 

that, hi(t) =  4 i '  Q,, —t), that is the optimum filter is a delayed time reversed version of the transmit-

ted symbol. In practical terms this filter will strongly attenuate frequencies in which the signal has 

little relative power, but attenuate very little frequences in which the signal power is high. The 

delay variable, tin , must be chosen such that the filter is causal. This condition is met provided 

t,,, ~ T. Most often a delay of trn  =T is chosen since this both satisfies the causality requirement 

and minimises the delay in obtaining the decision. 

The above discussion implies that for transmission over the linear baseband channel, in order to 

minimise the probability of decision error, the receiver filter, h (t), should ideally be matched to 

the convolution of the transmitted symbol with the complete transmission path, which may be 

expressed as, 

y(t) =X(t)*hr(t)*C(t) 
. 	 (2.10) 

In practise, however, since the channel response, c (t), is unknown, the receiver filter is most often 

matched only to the convolution of the symbol with the transmission filter and may, therefore, be 

expressed, hr(t) 
= 4)* 

(T—t), where 4)(t) = X(t)*h r (t). Moreover, if the introduction of ISI by the 

transmitter and receiver filter is to be avoided it is clear that the composite transmitter/receiver 

filter must satisfy the Nyquist criterion described in Section 2.3.2. Consequently the required 

Nyquist filter response must be divided equally between the transmitter and receiver filter. Within 

6. It can be shown that, assuming the transmission channel exhibits the characteristics of the ideal AWGN channel and that 
the a priori probabilities of the transmitted signal are known, the maximisation of the MF output SNR is equivalent to the 
minimisation of the average probability of error. 
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this work matched filter detection is assumed throughout. 

23.4 Detection of Digital Signals in the Presence of AWGN and IS! 

Within Section 2.3.3 it was shown that for the AWGN channel the optimum receiver comprises an 

MIF, symbol rate sampler and a memory-less detector. Consider, however, the case in which the 

signal is subject to both AWGN and linear distortion in the form of amplitude distortion, phase dis-

tortion and time dispersion. In this instance the received signal is distorted by a linear combination 

of past and future data symbols and is, therefore, subject to ISI. Under these conditions, although 

the symbol rate sampled sequence still provides a set of sufficient statistics for estimation of the 

transmitted sequence , the structure described above is no longer optimal with respect to either the 

maximisation of the SNR at the decision instant or the minimisation of the probability of decision 

error. 

The optimum linear detector for the system in which the signal is distorted by ISI can be shown 

[11] to comprise an MF, a symbol rate sampler, an infinite length symbol spaced equaliser and a 

memory-less detector. The MF is ideally matched to the complete transmission path and the 1ST 

resulting from multipath transmission is removed using the linear equaliser. This system is often 

referred to as the conventional linear receiver and is designed to maximise the SNR at the decision 

instant. The structure is, however, unrealisable for two principal reasons. Firstly, since the charac-

teristics of the transmission path are often unknown or time variant, the ideal MF cannot be 

designed. Hence, as described in Section 2.3.3, the MF is most often fixed and matched to the 

transmitter filter alone. Secondly, the practical symbol spaced equaliser must have finite length. 

The practical structure is, therefore, suboptimum. Moreover, even assuming an infinite length 

equaliser, the minimum achievable MSE of this structure is dependent upon sampler phase. Hence, 

any inaccuracies within timing recovery may result in significant performance degradation. 

An alternative structure, which may be shown to be the equivalent of the conventional linear 

receiver, is offered by the infinite length fractionally spaced transversal filter. Here, both the func-

tion of the MF and the symbol spaced equaliser are performed concurrently within the fractionally 

spaced filter. Consequently, the optimum receiver may be configured as a fractional rate sampler 

followed by a fractionally spaced filter, symbol rate sampler and a memoryless detector. This struc-

ture has a number of advantages over the conventional linear receiver. Principal among these are 

the following. Firstly, since the filter performs the function of both the MF and equaliser, in an 

adaptive formation of the structure it is not necessary to employ the suboptimal form of the MF. 

Secondly, due to the higher sampling rate used within the fractionally spaced alternative, the struc-

ture is not as sensitive to the effects of sampling phase errors as is the symbol space equaliser. 

Within the practical implementation of this structure the infinite length fractionally spaced filter 

must be replaced by a suboptimal filter of finite length. 

7. Assuming that the signal is sampled with the correct timing phase. 
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The above discussion has considered the instance in which the additive noise can be described as 

AWGN. If the problem is now extended to the case in which coloured noise is assumed, then to 

enable optimum detection the function of the ME is to both maximise the SNR at the decision 

instant, and additionally to 'whiten" the additive noise. These functions are combined in what is 

termed the whitened matched filter (WW [61]. The WMF can be formed as the cascade of a filter 

matched to the transmission path, a symbol-rate sampler and a T-spaced transversal noise whiten-

ing filter. The impulse response of the whitening filter is the anticausal part of the inverse filter of 

the signal spectrum at the output of the MF after symbol spaced sampling. Under unknown or time 

variant channel conditions the design of such a filter is not simple, however, as was pointed out in 

[61] the function of the WMF can be shown to be performed by the forward section of zero forcing 

DFE; recently other formations have also been proposed [62]. 

The structures considered so far have been linear. However, since the sampled output of the WMF 

contains a set of sufficient statistics for estimation of the transmitted sequence, such a receiver filter 

is optimal irrespective of the technique employed to process the sampled data. Hence, the WMF is 

the optimal receiver filter for both linear and non-linear equaliser structures. 

23.5 Linear Equalisers 

The purpose of any linear equaliser is to minimise the signal interference due to ISI and thereby 

reduce the probability of decision error. A wide variety of equaliser structures have been proposed. 

Within this thesis, however, the discussion is limited to digital finite impulse response (FIR) imple-

mentations. The simplest linear equaliser structure is the linear transversal equaliser (LTE) 

[8,9,11], shown in Figure 2.11. This equaliser comprises a T-spaced tapped delay line in which the 

output, ;, is given by a linearly weighted sum of the past and current samples of the received sig-

nal, y,, and is in general computed once per symbol. The equaliser output may be expressed as, 

Neq l 
= 	W)_ , 	 (2.11) 

1=0 

where Wn represents the equaliser weights and Neq  is the number of equaliser coefficients. The 

coefficients of the equaliser are computed to satisfy one of a number of performance criteria, the 

most commonly used being the zero forcing (ZF) and the minimum mean squared error (MMSE) 

criteria. In order to satisfy the ZF criterion the equaliser coefficients are chosen to force the sam-

ples of the combined channel-equaliser response to zero at all but one of the, Neq , equaliser T-
spaced coefficients [11]. Hence, assuming an infinite length equaliser, zero ISI is achieved if the 

combined channel-equaliser satisfies the following, 

W(f) . H'(f) = 1 , 	If I :9 1/2T , 	 (2.12) 

where H'(f) is the folded spectrum of the CW and is given by H'(f) = H(f) + H(f-.1/T). From 

Equation 2.12, it can be seen that the infinite length ZF LTE is the inverse of the folded CIR spec-

trum. 
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An alternative way in which the operation of the ZF LTE can be viewed is to consider the 

equaliser to be a compensation filter which cancels all poles and zeros introduced by the LBC. As 

the model assumed for the channel is a tapped delay line, it is clear that all poles introduced by the 

channel will occur at the origin. Zeros may, however, occur either inside or outside the unit circle. 

If the channel introduces zeros which all occur within the unit circle then the channel response is 

characterised as being purely minimum phase (MP). Conversely, if one or more channel zeros 

occur outside the unit circle then the channel response does not possess MP characteristics and is 

described as non minimum phase (NMP). Using the inverse filtering approach the channel is equal-

ised by cancelling channel zeros with coincident poles and channel poles with coincident zeros. 

Therefore, to equalise an NT\4P channel it is necessary for at least one equaliser pole to occur out-

side the unit circle. The implication of this is that the equaliser must be unstable and, therefore, 

incapable of equalising the NMP channel. The problem may, however, be resolved by the incor-

poration of a delay within the equaliser which enables the equaliser to compensate for zeros outside 

the unit circle by cancelling reciprocal zeros and time reversing the appropriate part of the 

equaliser response [63].  Using this technique the equaliser theoretically becomes capable of corn-

pensating for either MP or NMIP channels with similar efficiency. 

The ZF criterion neglects completely the effects of additive noise, hence, the ZF equaliser may be 

subject to significant noise enhancement particularly under conditions in which the channel exhibits 

severe amplitude distortion. If, however, the equaliser is designed to satisfy the MMSE criterion 

then the equaliser coefficients are chosen such that the MSE at the equaliser output is a minimum. 

Consequently, 1ST and additive noise are jointly minimised and noise enhancement reduced. 

Minimisation of the equaliser output MSE is achieved by designing the equaliser to satisfy the 

Wiener equation [64,65]. 

Within the practical system the number of equaliser coefficients must be finite. A finite length 

equaliser is, however, suboptimal and will exhibit residual 1ST at its output irrespective of the cri-

terion used within the equaliser design. 

A development of the LTE is, what is termed, the fractionally spaced equaliser (FSE) [11,66,67]. 

Within this structure the delay line taps are spaced at an interval, T1 , where T1  is chosen to be a 

fraction of the symbol interval. In digital structures T1  is most often chosen such that T1  = TIM, 

where M is a positive integer; T/2 spacing being the preferred form. The output of the FSE is 

given by 

Nfs 1  

Zn  = 	W1 Yn—i(T/M) , 	 (2.13) 
1=0 

where N1 is the number of fractionally spaced equaliser taps. Within the FSE the received signal 

is sampled at the rate of MIT and the output computed once per symbol as a linear weighted sum 

of the present and past fractionally spaced signal samples. The FSE has various advantages over 

the conventional structure, the most important of which are the following. Firstly, due to the frac-

tional tap spacing, the FSE is less sensitive to the effects of sampling phase error than is the T - 
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spaced equaliser. This is an important property under conditions in which timing recovery is 

difficult. Secondly, since the FSE can combine, in a single structure, the functions of both the 

matched filter and the symbol spaced equaliser the FSE can realise the optimum linear receiver. 

Finally, an FSE results in less noise enhancement than does the T-spaced structure, it can, there-

fore, compensate more effectively for severe amplitude distortion. Unfortunately, the FSE requires 

more coefficients than an equivalent T-spaced equaliser designed to span any given CIR length. 

This results in additional equaliser self noise due to coefficient misadjusiment and in an adaptive 

formation slower coverage rate. 

In addition to the transversal equalisers structure it is also possible to generate lattice filters [68-70]. 

However, since the primary objective of this work is the development of adaptive algorithms, the 

discussion is limited to transversal structures. Moreover, since the computation of the coefficients of 

the LTE and FSE is similar, within all subsequent work, symbol spaced structures are assumed. 

23.6 Non Linear Equalisers 

An alternative to the linear equalisation techniques described previously is offered by a number of 

generally more complex options based on non-linear structures. One of the simplest of these is the 

decision feedback equaliser (DEE) [8,11,71,72]. This structure, which is depicted in Figure 2.12, is 

useful for equalisation of channels which exhibit high degrees of amplitude distortion and operates 

by using past decisions to cancel the interference caused by signals which have already been 

detected; ie., post-cursor interference. 

The DEE comprises two linear filters referred to as the forward and feedback filter. The forward 

filter, c•, is similar in structure to the LTE, and is employed to remove interference caused by sig-

nal echoes which occur prior to the main path; ie., precursor interference. This is achieved by chos-

ing the equaliser coefficients such that the combined impulse response of the channel and equaliser 

forward section has no non-zero samples prior to the main signal pulse. Consequently, most of the 

signal energy is shifted to the signal post-cursors. The residual 1ST then comprises only signal post-

cursors which are subsequently eliminated by subtracting appropriately weighted decisions from the 

output of the forward filter. Since the forward section of the DEE is not constrained to approximate 

the inverse of the channel, the DEE is not subject to the excessive noise enhancement and sensi-

tivity to sampler phase as described for the LTE. 

The input to the equaliser forward section is the received sampled signal sequence, y (n), and the 
input to the feedback section is the past decision sequence, 1(n). The equaliser output is computed 
using the following relationship, 

Nf_1 	Nb 
= 	C'_j + Fbj-in-j, 	 (2.14) 

i=O 	 j1 

where b represents the feedback coefficients, N1  is the number of equaliser forward coefficients 
and Nb is the number of feedback coefficients. Assuming that past decisions are correct, 1,, = x ..d' 
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(d being the inherent equaliser delay) then the removal of signal post-cursors within the feedback 

section does not result in noise enhancement. However, if the decision is incorrect then error propa-

gation occurs as the incorrect decisions propagate through the equaliser feedback section. During 

this period the equaliser performance is degraded since the probability of further error is increased. 

The coefficients of the DFE can be chosen to satisfy either the ZF or MMSE criterion. If the 

equaliser is designed to satisfy the ZF criterion, then the forward coefficients are chosen to force 

the combined channel-forward filter response to zero at all taps prior to the main tap. The feedback 

coefficients are then chosen to reduce the residual ISI to zero. Alternatively the equaliser forward 

and feedback coefficients may be chosen to minimise the MSE at the equaliser output. This 

involves finding the Wiener optimum for both sets of coefficients and is discussed in greater detail 

in Section 3.7. 

Each of the structures described so far utilise either the ZF or the MMSE criterion in order to 

minimise the 1ST at the equaliser output. This, however, is not necessarily optimum with resect to 

the minimum probability of symbol error. This deficiency has motivated work by several authors in 

which the performance of other non-linear structures, designed to satisfy various alternative perfor-

mance criteria [73],  has been investigated. Such structures are most often based on the maximum a 

posteriori decision criterion, and are termed maximum likelihood (ML) receivers [61,74]. Within 

these structures it is recognised that a symbol by symbol decision is not optimal under conditions in 

which the channel introduces amplitude distortion. In these instances a more optimal solution is to 

attempt to detect the entire transmitted message sequence. Unfortunately, the complexity of classi-

cal ML receivers [75] grows exponentially with the length of the message sequence, hence such 

structures are impractical. 

A solution to this problem was proposed by Forney in [61], in which the Viterbi algorithm (VA) 

[76] was applied to the problem of maximum likelihood sequence estimation (MLSE) of digital sig-

nals in the presence of 1ST and AWGN. Forney pointed out that in order to perform MLSE using 

the VA it is necessary to possess a priori knowledge of the characteristics of the distorting mechan-

ism. Under unknown or time variant channel conditions this information must be extracted from the 

received signal. The MLSE receiver, therefore, must be adaptive. The adaptive MLSE [13], which 

is depicted in Figure 2.13, comprises three principal components, these being the whitened matched 

filter (WMF), the VA and an adaptive channel estimator. The WMF is required prior to sampling to 

ensure that noise samples are uncorrelated; this being a fundamental requirement in order for the 

VA to perform an MLSE process. The VA is the main processor and decides upon the most likely 

transmitted message sequence. The VA, however, requires knowledge of the dR. Since this is gen-

erally unknown at the receiver an adaptive system is used to derive the channel characteristics and 

thus provide the required information. 

The VA is a recursive algorithm which determines the transmitted data sequence which maximises 

the probability P [y (n )/x (n )], where y (n) is given by, 
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N-i 

y(n)= Lh,x(n—i)+T(n) , 	 (2.15) 
i-0 

x (n) is the data sequence, hi  represents the i th coefficient of the CIR and 11(n)  represents the 

AWGN term. In order to achieve this, within the VA, the log-likelihood of each possible channel 

input sequence is calculated and then compared. The sequence possessing the minimum log-

likelihood being the maximum likelihood sequence. As the additive noise sequence is white, the 

VA can be implemented as a simple distance measure, the likelihood function for each possible 

sequence being given, for the case of time invariant channel estimates, by, 

L-i 	N-i 	 1 2 1 
Fm = 	I '

[1 
Yk - 	 hjX(k.j) 	

, 	
(2.16) 

k .OLI 	i 	ii 

where £I(n) is the estimate of the channel impulse response, Fm is the log-likelihood of the m th 

sequence, X(m)  representing the m th sequence and x(m ) (k —i), where i = 0 to N—i, being that part 

of the sequence contained within the memory of the channel, and L being the number of data sam-

ples. Error rate performance analysis of this structure has been performed [61],  resulting in the fol-

lowing theoretical upper bound on performance. 

Pr (e) z KQ[dJ2a]. 	 (2.17) 

Where, 

Q  (X)_(2n)- 112 f e  41~~2)d 	 (2.18) 

and, 

KBI 
[ 
w(s)rI(1—lek 1/4) . 	 (2.19) 

EEZL 

Where E represents the "sequence error event" from time k 1 to k 1+M, M being the length of the 

error sequence and ek  denoting the k th error sequence. w (E) is the number of decision errors 

entailed in each error event and Z represents a subset of the set of sequence error events which, in 

the practical system, dominate. d rnin  represents the minimum distance separating the received 

sequence from the correct sequence of events and 0-2  represents the noise variance. The term K is 

independent of SNR and, for any given system and data format, can be considered constant. Thus, 

once the system is defined, the probability of error is dependent, primarily, upon the minimum dis-

tance term, d, and the effective noise variance. In the situation in which the CIR estimate is per -

fect, the effective noise variance is given simply by the variance of the additive noise. However, if 

the CIR is incorrect then the MMSE at any step within the algorithm is given by, 

E [e 2(a)] = a 2+E lE (hj(n)—hj(n))x(n _ i  ))2]. 	 (2.20) 

The effective noise apparent within the VA is, therefore, dependent not only upon the variance of 

the additive noise but also upon the mean squared deviation of the CIR estimate from optimum. 
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Unfortunately, the improvement in error rate performance obtainable using the MLSE is achieved at 

the cost of processing delay and computational complexity. The processing delay results directly 

from the requirement of using the entire received sequence to achieve the optimum estimate of the 

transmitted message sequence. In practical systems, however, decisions can be taken after delays of 

approximately 20 data samples with only slight degradation in system error rate performance [61]. 

The computational complexity of the VA is proportional to the number of channel states, which is 

dependent upon the CIR length and the symbol alphabet size. For a given alphabet it can be shown 

that the VA complexity varies exponentially with multipath delay spread, hence for highly disper-

sive channels VA complexity may precluded its use. 

2.3.7 Alternative Equaliser Structures 

The equaliser structures presented earlier within this section are by no means exhaustive. Indeed, a 

considerable number of equalisation techniques have not been described. These include linear 

equalisers based on hR and lattice structures, non-linear equalisers based on neural networks [771, 

Volterra series [78] or radial basis functions [79] and analogue equalisers. However, even limiting 

the discussion to structures similar to the ones described earlier, numerous hybrids and adaptations 

of these structures have been proposed. Several of the more important structures are now reviewed. 

Fractionally Spaced DFE 

A simple enhancement to the DIE which is often implemented [37] is to replace the symbol spaced 

forward section of the equaliser with a fractionally spaced filter; most often a T12 spaced structure 

is used. The fractionally spaced forward filter is used since it enables a finer resolution of the chan-

nel multipaths. Furthermore, since the fractionally spaced filter is able to process unaliased received 

signals it is possible to independently compensate for signal distortion at both band edges. Hence, 

using a fractional spaced forward filter it is possible to compensate for asymmetry within the chan-

nel amplitude or delay characteristics without noise enhancement. Moreover, due to the higher sam-

pling rate the fractionally spaced forward section also possesses greater immunity to errors within 

the sampling phase. Therefore, under conditions in which timing recovery is difficult this structure 

will yield performance advantage over the conventional structure. The complexity of the structure 

is, however, greater than that of the symbol spaced alternative and, in addition, it suffers from the 

same problems with regard to self-noise and lower convergence rates as described earlier for the 

FSE. 

Decision Aided 1Sf Cancellation 

An extension to the concept of using past decisions to cancel interference caused by previously 

detected symbols as used within the DIE, is offered by what is termed decision aided ISI cancel-

lation". Here, in addition to using past decisions for ISI cancellation, future data symbols are used 

to remove ISI due to signal precursors. This system is implemented using a two phase process [80-

82], in which tentative decisions are initially made on the received data using a primary receiver, 
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these decisions are then used as the basis on which the ISI is removed within a second receiver. In 

practise since it is necessary to identify future symbols, some finite delay must be implemented at 

the final receiver. Provided that the tentative decisions contain no errors and that the channel 

characteristics are known precisely, then the ISI can be cancelled exactly. Moreover, it has been 

shown [81] that in the absence of tentative decision error, assuming perfect MF detection, the zero 

ISI MF bound on MSE may be achieved using this structure. However, the critical problem of deci-

sion aided IS! cancellation is performance degradation due to tentative decision error and resultant 

error propagation. This is analogous to the problem encountered within the DFE, however, since 

decisions are used to cancel both signal post and pre-cursors the structure is potentially more sensi-

tive to this problem. 

Practical MLE 

The adaptive MLSE structure described in Section 2.3.6 comprises three components, the VA, an 

adaptive channel estimator and the WMF. The purpose of the WMF is to perform the function of 

an MF and, in addition, to whiten the additive noise sequence. Unfortunately, it is not simple to 

derive an algorithm for computing the coefficients of such a filter. Several authors have, however, 

recognised that the optimum fractionally spaced forward filter of an infinite-length DFE approaches 

the ideal WMF. Consequently, the combined DFE-MLSE structure of Figure 2.14 has been pro-

posed. Within this structure the coefficients of the DFE are computed to suit the prevalent channel 

conditions. The forward filter is then used as the WMF and processes fractionally spaced samples 

of the received signal. The coefficients of the symbol spaced feedback section then represent all but 

the first coefficient of desired impulse response (DIR) of the transmission channel and are, there-

fore, fed to the VA as the required channel estimate 8  This structure can be made adaptive by 

updating both the DIE forward and feedback sections to jointly minimise the MSE at the DFE out-

put. Alternatively the coefficients of the DFE may be computed directly from a channel estimate. 

Reduced Complexity MLSE 

In practise the most significant drawback of the MLSE receiver is its computational complexity. 

Even if the VA is used to compute the ML sequence the computation complexity can be shown 

[61] to be proportional to the number of channel states, which is given by, mN,  where m is the 

number of symbols within the symbol alphabet and N is the number of T-spaced coefficients 

within the system DIR. Hence, it can be seen that for very dispersive channels the computational 

complexity of the MLSE may prohibit its use. In order to circumvent this problem several reduced 

complexity MLSE structures have been proposed [83-86]. In [83] and [84] the mathematical com-

plexity of the Viterbi algorithm is reduced by replacing arithmetic multiplies with a number of 

additions. It is argued that these may be implemented with greater efficiency within the decoder. 

In [85] and [86] the approach adopted is to produce a sub-optimum MLSE receiver in which the 

DIR is truncated using a signal pre-filter; hence performance is traded against complexity. 

8. The first coefficient of the DIR is assumed to be unity. 
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Unfortunately, it is not simple to derive a general explicit solution for the optimum truncated DIR 

of given length. The approach generally taken is, therefore, to constrain to the DIR to satisfy one of 

several criteria. The problem common to these structures is that since the pre-filter is in effect used 

to remove some signal ISI, the input to the VA will contain residual ISI with respect to the DIR, 

hence performance degradation is unavoidable. Further, due to the design of the pre-filter the noise 

sequence is most often coloured. Consequently, the requirement of an uncorrelated noise sequence 

within the VA is not satisfied. In such instances a modified VA which is able to compensate for 

coloured additive noise is often used [83,84]. 

An alternative to attempting to truncate the DIR used within the VA is to simply neglect signal 

paths of relatively low energy levels [87].  Within this technique no attempt is made to eliminate 

the ISI caused by these paths, hence, the sequence estimate may be grossly sub-optimal. 

The concept of DIR truncation may be extended to a hybrid DFE-MLSE technique often referred to 

as "soft decision feedback equalisation" (SDFE). Within this technique the problem of DFE error 

propagation is tackled by using the MLSE to make decisions as to the transmitted symbol 

sequence. This technique has several advantages over the others described. Firstly, due to the use of 

the MLSE within the feedback path, the likelihood of a correct decision is increased, consequently, 

equaliser performance degradation due to error propagation is reduced. Secondly, as the DFE is 

effectively used as a pre-fitter for the MLSE, the complexity of the VA need not be high. More-

over, since the DEE may more effectively remove the residual IS! than is possible using a linear 

structure, the performance of the entire structure will approach more closely the performance of the 

full MLSE. Finally, the performance of the DIE may be improved still further because incorrect 

soft decisions fed back to the DEE may be corrected as more data becomes available within the 

MLSE, hence, the effect of error propagation may be reduced. The DEE may be configured to 

comprise either a symbol spaced or fractionally spaced forward filter. Investigations carried out into 

the performance of this structure [88] have shown that the equaliser may approach the performance 

of the full MLSE with significantly reduced complexity. 

Equalisation and Diversity Combining 

A technique often adopted for improving system error rate performance in the presence of channel 

fading is that of diversity combining. Here, redundancy is added to the signal in order to reduce 

the probability that the signal will be corrupted by channel fading. This is achieved by 

transmitting/receiving multiple versions of the signal which are each subject to independent distor-

tion caused by uncorrelated fading channels. At the receiver these signals are combined and since 

each of the signals is used within the estimation of the transmitted message sequence the probabil-

ity of decision error is reduced. Diversity may be obtained using frequency, time or space diversity 

techniques [45]. Within mobile radio applications the most common form is space diversity imple-

mented using multiple receiver antennas. It is possible to use diversity schemes in conjunction 

with equalisation techniques [38]. In general, for each diversity branch an equaliser is incorporated 

to remove ISI on the received signal, the equalised signals may then be optimally combined to 
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provide diversity gain. 

2.4 Adaptive Systems 

In many communication systems the characteristics of the distorting medium are either unknown or 

time variant. Under these conditions the design of an equaliser to compensate for the distortion is a 

choice between designing a structure with fixed parameters such that on average the most optimal 

performance is obtained, or utilising a structure which will self adapt to suit the prevalent channel 

conditions. In most instances the second option is more optimal and is, therefore, finding an 

increasing number of applications. Adaptive systems find applications in many disciplines and are 

not unique to the field of communication engineering. Here, however, specifically communications 

orientated systems are considered. Within this section the concept of adaptive systems is introduced 

and their principal applications for communication systems are described. Additionally, a number of 

algorithms by which adaptive parameter update may be performed are presented. 

2.4.1 Adaptive Systems and their Applications 

An adaptive system [89-92] may be defined as a structure in which the system parameters are self 

adjustable such that the performance of the system may be optimised through contact with the 

environment. Within this work the adaptive system under consideration is exclusively that of an 

adjustable linear digital filter, although it should be noted that the system may also be both continu-

ous and/or non-linear in nature [90,911. A generic block diagram of an adaptive filter is given in 

Figure 2.15. The system comprises two key elements, an adjustable filter and an adaptive parame-

ter update algorithm. The filter may be configured in any desired form, here, however, only FIR 

based structures are considered. The objective of the adaptive system is to modify the filter 

response to ensure that the system output satisfies some criterion of optimality. To do this the filter 

parameters are continuously updated via the adaptive algorithm, which monitors the filter output 

and computes the optimum filter parameters. In general the response of the filter is adjusted in 

order to reduce some function of the apparent error between the actual filter output and its desired 

output; this function is referred to as the cost function. By reduction of the cost function the system 

is able to derive information as to the characteristics of the signal environment. Moreover, since the 

filter parameters are updated continuously, the system is able to operate within unknown or time 

variant environments. 

Within communication systems there are four main applications of adaptive systems, these are 

prediction, noise cancellation, system identification and inverse modelling. Each of these are now 

briefly described. Signal prediction is depicted in Figure 2.16. Here the desired response of the 

filter is defined to be a future filter input, x (n +d). Since the adaptive algorithm attempts to minim-

ise the error between the filter output and the future data sample it is clear that the filter output will 

attempt to estimate x (n +d), and thereby form a prediction. In practise the system is implemented 

using a delay element applied to the data input signal. Applications of this type of system include 

cancellation of periodic interference [93] and speech coding algorithms [5-71. 
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Figure 2.17 shows a typical adaptive noise cancelling system [94].  Within this system a signal, s, is 

corrupted by additive noise, n, resulting in the combined signal, s+n. A distorted but correlated 

estimate of the noise, 11, is also available. In this instance the noisy signal, s+n, is used as the 

desired filter response and the noise estimate is the filter input. By minimising the error, e, the 

filter is configured to estimate the actual noise. The noise estimate may then be subtracted from the 

noisy signal resulting in an estimate of the original signal. Typical examples of the application of 

this technique are, the cancellation of additive noise from speech signals [95] and cancelling mains 

hum [96]. 

The remaining adaptive system applications are the ones of most relevance within this work, since 

both can be used within adaptive equaliser design. The key differences between these techniques 

are illustrated in Figures 2.18 and 2.19. Considering initially system identification [8,26,27,90,91]. 

Within this application the objective of the adaptive system is to determine the parameters of the 

unknown system. Here it is assumed that both the input to the unknown system and its output are 

available. The adaptive system is updated such that its output provides an estimate of the unknown 

system output. Provided that a priori knowledge of the general characteristics and structure of the 

unknown system is available, then the impulse response of the adaptive system will closely approx-

imate the response of the unknown system. The principal application of this arrangement under 

consideration in this work is that of channel estimation for the adaptive MLSE receiver. In this 

application it is assumed that the channel may be modelled as an FIR filter, therefore, the adaptive 

filter is configured similarly. The input to the system, x (n), represents the transmitted data and the 

system output is the received distorted signal. The principal requirement of this system is that a 

priori knowledge of the transmitted data is available. This is facilitated by periodically transmitting 

a predetermined data sequence between normal data transmission. Since this sequence, which is 

referred to as the "training sequence", is known a priori it can be generated simultaneously at the 

receiver and, therefore, used to generate the required inputs to the adaptive channel identifier. 

Throughout normal data transmission the estimate may either be fixed or updated on the basis of a 

data sequence estimate derived from the received signal; this being substituted for the training 

sequence as the adaptive system input. An additional application of this configuration is that of 

echo cancellation for telecommunications. 

The final configuration of the adaptive system is that of inverse system modelling. The principal 

application of this being adaptive channel equalisation [8,11,90,91,97]. Within this technique the 

desired adaptive system output is an estimate of the original transmitted message sequence and the 

input to the adaptive system is the received data sequence, which is subject to distortion due to 

transmission through the channel. The adaptive system is updated such that the error between the 

equaliser output and the desired response, which is again available as either the training data or 

past equaliser decisions, is minimised, hence signal distortion is removed. This application is simi-

lar to system identification, however, in this instance the unknown system is defined to be within 

the filter input path rather than in the desired response input path. As a result the adaptive system 

estimates the optimum of the inverse of the unknown system. The adaptive equaliser may be 
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configured to be any of the structures described within Section 2.3, 9  Within this work, however, 

only the classical LTE and the DFE structures are considered. 

2.4.2 Adaptive Algorithms 

A large number of algorithms for adaptive filters have been proposed [89-92]. Most of these algo-

rithms are designed to optimise the filter response such that the MSE between the system desired 

response and its actual response is minimised. Using this definition of optimality, within the station-

ary environment, the optimum filter is described by the Wiener equation [64,65]. A useful concept 

often used to envisage this optimisation process is that of performance surfaces. Here, some meas-

ure of the system performance is plotted against the values of the system parameters. Hence, in the 

case of the adaptive filter the performance surface is defined as the system output MSE plotted 

against the filter tap-weight vector. If the discussion is limited to linear transversal filters then the 

surface can be described by a N-dimensional paraboloid with a single global minimum given by 

the Wiener optimum. No local minima exist. The objective of the adaptive algorithm is to estimate 

this global minimum. 

One method by which this may be achieved is the stochastic gradient (SG) technique [89].  Algo-

rithms based on this technique optimise the coefficients using an iterative process in which, ini-

tially, the gradient vector of the error surface is estimated at the current tap-weight vector. The 

tap-weight vector is then updated in the direction of steepest descent of the error surface. The algo-

rithm achieves the optimum by performing each of these steps repeatedly. In the time variant 

environment the position of the optimum is subject to variation, as is the overall shape of the error 

surface. Under these conditions, provided that time variation is not so rapid that it is not possible to 

form reliable estimates of the gradient, the algorithm is able to track the optimum solution [18,19]. 

Probably the most important algorithm which is based on the SG technique is the least mean 

squares (LMS) algorithm [89,90,91,98,99]. Within this algorithm the gradient estimate is derived 

from a single sample of the input data vector and the error between the filter's desired and actual 

outputs. The filter coefficient vector is then updated using this gradient estimate. However, since 

the gradient vector is subject to significant instantaneous error 10,  it is necessary to limit the algo-

rithm iterative step size. The choice of algorithm step size is a compromise between algorithm con-

vergence rate, stability and steady state performance. Under time invariant conditions it can be 

shown [89,90,91,100] that provided the algorithm step size, .t, is limited to the range, 

0<j.L< 	
2

1 
	 (2.21) 

max 

where X 	represents the maximum eigenvalue of the autocorrelation matrix of the adaptive filter 

input sequence, (F, which is given by F = E [X(n )XH  (n)], the adaptive algorithm stability is 

assured. 

With the obvious exception of the MLSE based structures. 
The gradient estimate being based on time rather than ensemble averages. 
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The LMS algorithm can be written [99], 

e(n-i-1)=y(n+1)—W'(n)X(n+1), 	 (2.22) 

I(n+1) = ft(n) + 2p.X(n+1)e*(n+1), 	 (2.23) 

where y (n) is the adaptive filter desired output, X(n) is the filter input vector, ft(n) is the filter 

coefficient vector and p. is the adaptive gain term. 

An alternative to the gradient search technique is provided by the method of least squares (LS) 

[54,101,102,103]. The objective of LS estimation is to minimise the total sum of filter errors 

squared. In this case, the MSE cost function utilised within the Wiener equation, is replaced by a 

sum of squared errors cost function. Hence, ensemble averages can be replaced by the actual avail-

able data. This process involves the minimisation of a completely determinisation expression rather 

than the statistical quantities used within the SG technique. This minimisation effectively results in 

a set of linear simultaneous equations from which the filter parameters can be derived. LS algo-

rithms used within communication applications essentially represent efficient techniques by which 

these equations may be solved. Within this work both recursive and non-recursive techniques are 

employed, however, probably the most important algorithm used is the recursive least squares 

(RLS) algorithm [90,91,104]. This algorithm uses an iterative technique to solve the system equa-

tions. Within the RLS algorithm the computational complexity of the generic LS technique is 

reduced by utilising information as to the solution to the system equations at the previous algorithm 

iteration. LS algorithms can also operate within the time variant environment, however, since the 

solution is based on all previous filter outputs, it is necessary to impose a finite "memory length" 

onto the input data sequence such that the estimates produced are based on only recent system 

inputs. 

The performance and computational complexity of algorithms based on the LS and SG technique 

are quite different. In general, SG algorithms take significantly longer to converge than do LS algo-

rithms [90,91]. This is because SG algorithms are based on the statistics of the input data and, 

therefore, require a relatively large amount of data from which to derive the relevant information. 

Within the time invariant environment the steady state performance of each algorithm is compar -

able, however, it is important to note that in the case of the LMS algorithm steady state perfor-

mance is ultimately limited by the step size, p.. In comparison, provided that the algorithm memory 

is not truncated, LS algorithms have no such limitation and, therefore, theoretically result in more 

optimal performance. Under time variant conditions, however, it is not simple to identify which 

algorithm offers the more optimal steady state performance; the performance of the LMS algorithm 

being dependent upon the adaptive step size, whilst that of the RLS algorithm is dependent upon 

the finite memory length. Recent work [21,22,24,105] has, however, shown that the more rapid con-

vergence of the LS type algorithm does not necessarily translate to better steady state performance 

within the time variant environment; this subject is discussed in greater detail in Chapter 4. In 

terms of computational complexity the SG algorithms possess considerable advantage over the LS 

algorithms. The LMS algorithm has very low computational complexity and can be shown to 
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require of the order, N, numerical operations per iteration, where N is the number of coefficients 

within the adaptive filter. This makes it suitable for high speed real time operation. In comparison, 

LS algorithms have a much higher computational complexity and require of the order N 2  to N 3  

numerical operations per iteration 11 . 

2.5 The GSM System 

In order to standardise European mobile radio, in 1991 the countries of Western Europe adopted a 

common digital cellular radio system, this is referred to as the GSM System [1].  GSM standards 

embrace all aspects of the application and define system operation from the services to be imple-

mented to the signal processing algorithms to be used within each transmitter. The majority of the 

specifications have little relevance when considering channel equalisation and are not, therefore, 

described within this work. The recommendations of most relevance to this work concern the "phy -

sical" layer organisation, and in particular the system data block arrangement, the modulation 

scheme and various transmission aspects, such as expected radio propagation conditions. Within 

this section, after a brief overview of the GSM physical layer functions, each of these aspects are 

discussed. Following these descriptions the problem of equalisation within the GSM environment is 

described. 

25.1 The GSM System Physical Layer 

A simplified block diagram of a GSM transmitter is shown in Figure 2.20 [2] 12  The transmitter 

structure comprises six basic elements, these being speech coding, channel coding and interleaving, 

encryption, framing, modulation and transmission, each of these are now briefly described. The 

basic GSM speech data rate is 13kbps 13,  which is achieved using a residual pulse excitation (RPE) 

linear predictive coder (LPC) [109] with long term predictor. Within the speech coder analogue 

speech is sampled and segmented into 20ms blocks, each speech block is then digitally encoded. 

The digital information output from the speech coder is then protected against interference using 

channel coding techniques [8].  Within the coding block the information bits are initially encoded 

using a systematic block code, the resulting information bits, plus parity bits, are then further 

encoded using a 1/2 rate convolutional coder [110] 14  After coding the data blocks, which consist 

of 456 coded information bits, are interleaved over eight time slots in order to reduce the correla-

tion between adjacent symbols. The resulting bit rate from the coding block is 22.8kbps. The inter-

leaved bits are then encrypted to provide transmission security. The TDMA frame is then produced 

by multiplexing together eight such channel encoded, encrypted, speech sources using equal 

Fast least squares algorithms [106,107,108] can be shown to exhibit comparable complexity to the LMS but are, however, 
subject to severe numerical instability unless stabilised. 

Within the GSM recommendations no similar diagram specifying the receiver structure is defined, the receiver being 
specified only in terms of its overall performance requirements. The exact design of the receiver structure is, therefore, left to 
the manufacturer. 

Provision is made in future GSM systems for half rate speech. 
It should be noted that not all bits are encoded. Hence a number of the least significant bits are transmitted without error 

protection. 
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duration time slots [111]. This results in a transmission bit rate of 270.83kbps, each data time slot 

comprising 156.26 bits, giving a time slot duration of 0.577ms. The resulting bits are then modu-

lated using a Gaussian minimum shift keying (GMSK) modulator with a BT product of 0.3 [112]. 

This allows data to be transmitted using a bandwidth of 200kHz with out of band radiation of less 

than 40 dB below the desired signal being achievable. The spectrum available to the GSM system 

is 890-915M}lz for the system uplink and 935-96OMIHz for the system downlink. The RF channel 

spacing is 200kHz, yielding 124 radio frequency channels and two guard bands of 200kHz to pro-

vide system frequency isolation [531. 

The GSM system also provides a number of additional, optional, facilities which may be employed 

to improve system performance. The ones of most relevance within this work are frequency hop-

ping and discontinuous transmission [2]. Frequency hopping is employed to provide diversity on 

each transmission link and, thereby, to increase the efficiency of the error coding and interleaving 

schemes. Within the system each user operates on one frequency per data block and "hops" to a 

predetermined alternative frequency at the completion of the block. Frequency assingrnent is 

arranged such that no "collisions" occur between communications within the same cell. Discontinu-

ous transmission is employed to reduce the general levels of co-channel interference, and operates 

by restricting transmission to periods in which the user is active. This relies upon a voice activity 

detector (VAD) within the speech coder which inhibits transmission under no activity conditions. 

Within this work the operation of the speech coder, channel coder and encryption scheme are not 

investigated. Therefore, for the purposes of analysis and computer simulation, within the system 

model assumed, these blocks are neglected. As a result, within all subsequent work the data is 

assumed to be produced from a random source and all error rates quoted refer to the system error 

rate performance prior to channel coding; often referred to as "raw" bit error rate. 

2.5.2 The GSM Data Format 

Within the GSM system multiple access is achieved using a combination of frequency and time 

division multiplexing. Each cell is assigned a band of eight related frequency divisions for both the 

system uplink and downlink. Each frequency slot is further subdivided into eight time slots result-

ing in a total of 64 physical channels. An individual user is assigned a single uplink and associated 

downlink channel on which to operate. Not all channels may be used for information transmission 

since several are defined to be signalling channels, and perform control and paging functions. 

Within this work discussion is limited to data, or "traffic" channels. 

The eight concatenated time slots per frequency division are referred to as the "TDMA frame" and 

the content of each time slot is referred to as the "burst". The TDMA frames are grouped together 

into multiples of frames referred to as "Hyperframes", 'Superframes" and "Multiframes" [2] which 

are implemented in order that the system can support control functions such as the cryptographic 

mechanisms referred to earlier. Considering only equalisation requirements the structure may be 

simplified to that shown in Figure 2.21, which shows a single TDMA frame and a single data burst. 
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The burst shown is referred to as the 'normal" burst and is used for information transmission 15 

The normal burst consists of two sequences of 58 bits containing the transmitted information, a 

training sequence of 26 bits situated in the centre of the block and various tail and guard bits. The 

training sequence comprises a 16 bit predefined pseudo random sequence which is used for 

equaliser adaptation. This sequence is preceded and followed by a block of five known tail bits 

which are used for equaliser initialisation. The information blocks are placed immediately before 

and after the training sequence. The equaliser must, therefore, train in the centre of the burst and 

equalise the received data from the centre to the extremes. The remaining guard and tail bits are 

used for separation and initialisation respectively. A complete TDMA frame has a duration of 

approximately 4.62 ms, which comprises eight time slots of approximately 576.9 J.Ls duration. 

2.53 GSM Modulation 

Within the GSM system the modulation scheme adopted is GMSK [113-115]. GMSK is a constant 

amplitude differential phase modulation scheme, in which information is conveyed via the phase 

difference between consecutive modulator phase states. Phase rotation per bit is defined to be 'rr/2 

rads, the sign of the transmitted bit being indicated by the direction of rotation. GMSK has various 

attributes which make its use suitable for mobile radio applications, the principle of these being, 

constant amplitude characteristics, narrow transmission bandwidth, low levels of out of band radia-

tion and coherent detection capability. Within this section the GSM modulator is described. 

The GSM GMSK modulator is depicted in Figure 2.22. The operation of this system can be 

described as follows. Each data bit, d,, is firstly differentially encoded, according to the following 

rule, 

d'1  = d + d11 , 
	 (2.24) 

where d, is chosen from the set {0,1} and + denotes modulo 2 addition. The modulating signal a, 

which is assumed to be an impulse, is then given by, 

ai  = 1 - 2d' 
	

(2.25) 

This signal is then convolved with the base-band premodulation filter, g (t), which is defined to 

have a time response given by the convolution of a rectangular filter, rect (t/T), with a Gaussian 
filter, h(t), and may be expressed, 

g(t) = h(t)*rect(t/T) 	 (2.26) 

where 

rect(t/T) = lIT 	 for It I <T/2 

= 0 	 elsewhere, 	 (2.27) 

15. Three other types of burst are defined within the system, these being referred to as the frequency correction burst, syn-
chronisation burst and the access burst. Each of these bursts perform functions other than normal data transmission and, 
therefore, are not considered here. 
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h (t) 
=1 	exp(_22T2) , 	 (2.28) 

boT 

a = 	/ (2m BT), BT = 0.3, B is the 3dB bandwidth of the Gaussian filter, and T is the dura- 

tion of the input data bit. The filter output, s(t), is given by, 

S (t) = i ag(t—nT). 	 (2.29) 

This signal is then used as the modulating signal within the frequency modulator, the output of 

which may be written, 

q (t) = cos(27tf, t + 4 (t)) , 	 (2.30) 

where, 

4 (t) = 2nh J E an  g (v -nT)dv + 4, 	 (2.31) 
v-=  n=-=  

h is the modulation index per bit, which is 1/2 in this case, f is the carrier frequency and 4 
represents the required phase offset. 

The purpose of the premodulation Gaussian filter is to limit the level of out of band radiation of the 

transmitted signal, this being an important aspect within the GSM specifications. However, the 

inclusion of the premodulation Gaussian filter also results in the introduction, by the modulator 

itself, of some degree of system generated 1ST. Moreover, since the filtering is performed at base-

band, the resultant modulator introduced 1ST appears as non linear distortion. For optimum system 

performance this non linear distortion must be removed prior to the decision device within the 

receiver. Within the GSM system, however, distortion due to other sources, such as channel intro-

duced 1ST, additive noise and co-channel interference, tends to dominate, therefore, additional pro-

cessing to remove the non linear distortion is most often neglected. 

Within this work, to avoid the necessity of non linear system analysis caused by the inherent non 

linearities within the GMSK modulation scheme, the data is considered to be modulated as an 

offset QAM signal [116,117], the characteristics of which are similar to GMSK modulation. The 

analytical and experimental results obtained, therefore, give good approximations to the GMSK 

instance. For the case of offset QAM the received signal, y(t), is given by [117], 

N -1 	 N -1  

y (t) = 	a• h (t —2iT) + j , f3, h (t —2iT—T) + 11(t), 	 (2.32) 
i.O 

where a (n) and 13(n) represent the I and Q channel data respectively and are each chosen from the 

set {1,4}. It should be noted that the overall bit rate is lIT and that the data rate on the I and Q 

channels is 1/2T. 
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25.4 The GSM Channel 

In order to allow practical simulation of the GSM system, GSM recommendations [53] define typi-

cal radio signal propagation conditions. The models used, in general, follow the format described in 

Section 2.2.3, however, each of the parameters used are specified explicitly. The recommendations 

specify in detail the Doppler spectra of the fading multipaths, the delay spread, the number of mul-

tipaths and their arrival times, and relative average amplitudes. Several propagation scenarios are 

defined, the most important of these being, typical urban transmission (Thx), transmission within 

hilly terrain (HTx), transmission within rural areas (RAx) and an equaliser test profile (EQx). Under 

each of these conditions Doppler frequencies of between 0Hz and 250Hz can be reasonably 

expected 16,  however, in practise fade rates of approximately 50Hz are more common. 

The models themselves, generally, comprise twelve fractionally spaced multipaths and were derived 

from extensive channel sounding experiments [117]. Times of arrival are not necessarily symbol 

spaced and require, for the full GSM model, a sampling rate of at least T140. This results in a large 

computational overhead. For this reason within this thesis all simulations are performed using 

simplified symbol spaced channel models of similar MPDP and Doppler Characteristics. 

2.5.5 Equalisation within the GSM System 

The GSM system imposes several severe restrictions on the design of the equaliser. The radio path 

itself presents a difficult medium over which to transmit signals, it being both dispersive and highly 

time variant. The maximum delay spread is assumed to be nominally 16ps [117], which 

corresponds to approximately four symbol periods 17  . The relative channel fade rate 18  found 

within the GSM system is also high, for example, at a Doppler frequency of 250Hz, within a single 

GSM time slot the mobile will travel almost 1/6th of a wavelength and will, therefore, be subject to 

very rapid fading. In addition, propagation is subject to high levels of additive noise and both adja-

cent, and co-channel interference. The combined interference results in signal to noise ratio (SNR) 

levels of within the range 6dB to 20dB. 

In addition to the restrictions imposed by the radio link, the GSM data structure also has a number 

of important implications for equaliser design. Firstly, the data streams used are relatively short in 

length, therefore, it is not simple to derive information regarding the characteristics of the distorting 

medium from the received signal. This is typified by the problem of equaliser initial training. 

Since the GSM training sequence is limited to 16 bits per data block, any equaliser operating 

within such an environment must have the ability to train rapidly. The choice of adaptive algorithm 

is largely constrained by this requirement and, in practise, this constraint precludes the use of OS 

type algorithms as convergence rates are relatively low. Therefore, algorithms based on the method 

This corresponds to vehicle velocities of approximately 0 to 300 km/h. 
It should be noted that in practise, under hilly terrain propagation conditions, delay spreads of significantly greater than 

this have been reported [117]. 
i.e., the ratio of the channel fade rate to the base-band data rate. 
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of LS must be employed for initial equaliser training. Moreover, equaliser convergence rate is 

dependent not only upon the algorithm used but also upon the equaliser type and order. Conver-

gence, within the limited training period is, therefore, not guaranteed irrespective of the adaptive 

algorithm used. In order to guarantee equaliser convergence under these conditions, an alternative 

solution must be used. Within this work the technique adopted is to use the training data to derive 

a channel estimate. The channel estimate is then used as the basis from which the coefficients of 

either the equaliser or MLSE are derived. Since the channel is constrained to be a maximum of 

five taps, by virtue of the maximum delay spread assumed, system convergence is assured. 

The short GSM data block also means that at low vehicle velocities the channel characteristics may 

not alter significantly throughout information transmission, hence, once established the channel esti-

mate may be "fixed' throughout the data block. At high vehicle velocities, however, this may cause 

significant equaliser performance degradation. In order to compensate for this it is necessary for the 

equaliser coefficients to be continuously updated throughout information transmission [118]. 

Secondly, since the GSM training sequence is situated in the centre of the data block the equaliser 

must be trained at the block centre. Subsequently, the received signal is equalised from the conclu-

sion of the training sequence to the data block extremes. This involves processing the received sig-

nal both forwards and backwards in time; this being possible since the data structure employed 

means that data processing does not have to be performed in strict time order. The necessity of 

equalisation both in forward and reverse time has an important implication for the CIR estimate 

derived. This being that when processing data backwards in time the effective channel estimate is 

the time reversal of that derived conventionally. Due to the assumption of linearity of the LBC this 

causes no fundamental problems for the equaliser, however, it is important to note that a channel 

which may be classified as MP when viewed conventionally becomes maximum phase when time 

reversed. For this reason, within the GSM system, the channel can not be assumed to be predom-

inantly MP. 

Finally, due to the arrangement of the data block within the GSM system, it is not possible to 

derive a priori knowledge of the channel conditions at future data blocks from the present channel 

estimate. This is true since under highly time variant conditions the CIR may change considerably 

between data blocks. The problem is further compounded by the frequency hopping facility of the 

GSM system. The implication of this is that the channel estimate must be derived anew at each 

data block without prior knowledge of the dR. 

The GSM data format does, however, result in several benefits for the design of the equaliser. Prin-

cipal among these is that since the data burst only forms one eighth of the TDMA frame, equalisa-

tion does not have to be completed within a single burst. Therefore, it is possible to apply tech-

niques which may not simply be applied within continuous data transmission systems. Conse-

quently, equaliser performance may be improved over and above that obtained using conventional 

systems. Within subsequent work this aspect of the GSM system is exploited to yield a two stage 

equalisation technique, in which a pre-equalisation process is performed in order to derive 
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parameters concerning both the transmitted data and the distorting medium. 

From the discussion of this section it is possible to develop a strategy for equalisation within the 

GSM system, this is depicted in Figure 2.23. Throughout this thesis wherever it is stated that GSM 

conditions are assumed this strategy is adopted. In explanation of Figure 2.23. The data is initially 

assumed to be received, sampled and stored in memory. The training sequence is then identified 

and used to form the estimate of the dR. This processing is implemented in the forward direction 

from bit 60 to bit 86. The equaliser, or MLSE, coefficients are then computed from this estimate. 

The data, from bit 87 to bit 144, is then equalised in the forward direction, during this operation 

the channel estimate, or equaliser, coefficients may be fixed or continuously updated using one of 

the adaptive algorithms to be described later within this thesis. The training sequence is then used 

in the reverse direction, from bit 86 to 60, to identify the reverse CIR 19  This estimate is then 

used as the basis on which the reverse time, or "backwards", equaliser coefficients are computed. 

Finally the data bits from 60 to bit 2 are processed using the backward equaliser. Again the 

equaliser, or channel estimator, coefficients may be either fixed or continuously updated. 

25.6 Computer Simulation System Model 

The system model used for computer simulation throughout this work is depicted in Figure 2.24. 

Within this model several important simplifications with respect to the GSM system have been 

made. Firstly, all functions peripheral to data transmission, such as channel coding and block inter-

leaving have been neglected. Secondly, the channel is modelled as being symbol spaced, and is 

defined in terms of a specified MPDP and Doppler frequency. In addition the additive noise is 

assumed to be AWGN. Next, linear OQAM modulation is used and it is assumed that the 

transmitter and receiver filter are ideally matched and introduce no 1ST. Finally, it is assumed that 

the receiver is perfectly time and phase synchronised to the transmitter. Within this thesis these 

simplifications are deemed valid since the primary objective of the work is the development of 

adaptive algorithms for channel estimators and equalisers, and it is not the intention to characterise 

the performance of the complete GSM radio link. 

Within the majority of simulations the GSM data format is adopted, however, within simulations in 

which the objective is to investigate adaptive algorithm transient performance or performance under 

low noise or highly time variant conditions, a continuous data format is frequently used 20•  Within 

all simulations a data rate of 270.833 kbps is employed. 

In practise this is not strictly necessary as the reverse time channel is simply the time reversal of the initial estimate. 
However, under very highly time variant conditions each of these methods may yield slightly different results, therefore, 
within this work, the more optimal approach is adopted. 

Instances in which this is the case are explicitly denoted as such. 
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2.6 Summary 

Within this chapter each of the system aspects of greatest relevance within the remainder of this 

thesis have been introduced. These include mobile radio systems, and the GSM system in particu-

lar, equalisation and adaptive filtering. Within the remainder of the thesis many of these concepts 

are reconsidered in greater detail. 
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Chapter 3 
Initial Channel Identification 

3.1 Introduction. 

The requirement of initial CIR identification is common to each of the equaliser structures 

presented within the preceding chapters. In each, system performance is related directly to the 

accuracy of the channel estimate. Efficient CIR estimation is, therefore, of fundamental importance 

to equaliser operation. Ideally, the principal objective of any channel identification technique is to 

estimate, as accurately as possible, the impulse response of the distorting medium at any instant in 

time. In order to do this the identification technique must ideally perform two related, but separate, 

functions. Firstly, form an initial Cifi estimate using the known training data, and secondly, update 

this initial estimate in such a way as to compensate for the CIR time variation throughout normal 

data transmission; clearly compensation is of importance only if the CIR is subject to significant 

variation throughout data transmission. Within this chapter the problem of initial channel 

identification is considered. 

Initial channel identification is performed within the training period. During this phase, since both 

system input and output are known it is possible to derive a relationship between the two. In the 

time domain this relationship is given by the CIR. Several techniques may be applied to this prob-

lem, however, due to the limited length of the training sequence LS estimation techniques prove 

best suited. Either block or recursive LS algorithms are applicable, however, in this instance block 

techniques provide the more computationally efficient alternative. 

Within this chapter, firstly, both block and recursive techniques for initial channel identification are 

reviewed. Equations for the asymptotic accuracy of LS estimation in both the stationary and time 

variant environment are then derived. Next, a relationship between the channel estimate coefficients 

and the equaliser coefficients is derived for both the LTE and DFE. Computationally efficient tech-

niques by which the coefficients of each equaliser may be computed are then considered. Finally, 

the effect of channel estimate misadjustment on the performance of the conventional LTE, DIE 

and MLSE is investigated both by analysis and computer simulation. 

3.2 Channel Identification using Least Squares Estimation 

The objective of any initial channel identification technique is to obtain, using the known training 

data and the observed system output, an optimum estimate of the CIR, H(n), such that, 
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(3.1) 

If the MSE definition of optimum is used, then the estimation problem may be expressed, by the 

Wiener equation [64,65], which, in this instance, may be written, 

H01  = 	, 	 (3.2) 

	

where, 	is an Nx N element matrix representing the 	autocorrelation characteristics of the 

transmitted training data, defined as, 

	

=E IX(n)XH(n) 1 	 (33) 

and I is an N element vector representing the cross correlation between the system input and 

output, defined as, 

	

= E 1X (n )y * (n ) I - 	(3.4) 

In practise, the ensemble averages, I and ct,, are most often not available it is, therefore, neces-

sary to base the estimate on time rather than ensemble averages. An approach which is often 

adopted is to choose the estimate coefficients in such a way as to minimise a sum of squared errors 

(SSE) cost function, which may be expressed, 

= 	Iy(k)-9(k)J 2 . 	 (3.5) 

Minimisation of this cost function with respect to H(n), results in an LS estimate, which may be 

computed using the following relationship, 

(3.6) 

where, R represents the LS autocorrelation matrix defined as, 

	

R = X(k)X"(k), 	 (3.7) 

and r, represents the LS cross correlation vector defined as, 

	

r =X(k)y*(k). 	 (3.8) 

Optimal LS channel estimation, therefore, comprises the solution of a set of N linear algebraic 

equations. This is a common mathematical problem, hence a wide variety of both recursive and 

non-recursive solutions to it have been derived. The techniques of most relevance to the problem of 

initial channel identification within the GSM system, are reviewed within subsequent sections. 

3.3 Non-Recursive Techniques for Initial Channel Identification 

Due to the block arrangement of the data structure employed within the GSM system non-recursive 

estimation techniques are well suited to the problem of initial channel identification. Within block 

estimation the approach adopted is to compute the .LS channel estimate once per data block. The fru 



estimate is, therefore, based on the information available within the complete training period. In 

general, block LS estimation comprises a two stage process. Firstly, the system autocorrelation 

matrix and cross correlation vector are computed using Equations 3.7 and 3.8. These are then used 

within the derivation of the LS channel estimate, which may be obtained via the relationship 

expressed in Equation 3.6. This involves the solution of a set of N linear equations. A variety of 

standard mathematical techniques are available to do this [120,121] several of the most relevant are 

now considered. 

Direct solution of the estimation problem by use of techniques such as Gauss-Jordan elimination 

[121] is computationally intensive, requiring of the order N 3  complex mathematical operations per 

data block. Most of the computational load of this process is due to the necessity of matrix inver-

sion implicit within the calculation. The complexity may, however, be reduced by exploiting the 

structure of the training sequence used within the system. The GSM training sequence is designed 

such that it commences and concludes with a sequence of known, identical, initialisation bits. This 

structure leads to a Toeplitz autocorrelation matrix [81. Since the autocorrelation matrix, R, is 

Toeplitz the estimation problem may be solved using the Levinson recursion [8,121], which reduces 

the necessary computation to order N 2 . 
Computational complexity may be reduced still further provided that the training sequence is 

configured such that the resulting autocorrelation matrix is equal to some multiple of the identity 

matrix, 'N  This may be achieved by designing the training sequence to be white over the block 

length [122], in which case the following conditions must be satisfied, 

• [x (n –i )x*  (n_i)] = 1 when i=1, and, 

• IX (n _i)x*  (n_i)] = 0 elsewhere. 	 (3.9) 

In this instance the LS optimum may be re expressed, 

H0 	
1 

= —IN r Y  
Pa 

(3.10) 

where Pa represents a scalar power correction term. Solution to the channel identification problem 

then comprises merely the computation, and power correction, of the system cross correlation vec-

tor. This technique, referred to as block correlation, provides the most computationally efficient 

method by which the channel estimate may be derived. However, if the training sequence 

possesses any degree of autocorrelation then the expression of Equation 3.10 does not represent 

optimum LS estimation. Under these circumstances the accuracy of the estimate will degrade con-

siderably, the performance of the technique is, therefore, critically dependent upon the statistical 

characteristics of the training data. 

An alternative approach to the reduction of computational complexity is to use a priori knowledge 

of the training sequences in order to precompute, for each training sequence, a partial solution to 

the LS problem. Each partial solution is then stored within system memory. Estimation of the CIR 

in this instance then comprises computation of the cross correlation vector and subsequent 
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multiplication of this vector by the stored coefficients. The computational complexity of this tech-

nique is compared with that of each of the others described above in Table 3.1 1 . 

Technique Pre-Computation LS Computation 

Gauss-Jordan 2(2N xn) N 3  

Cholesky Decomposition 2(2N xn) 113N 3  

Levinson Recursion 2(2Nxn) N 2  

Block Correlation 2IVxn - 

Partial Pre-Computation 2N xn 1/2N 2-i-N /2 

Table 3.1: Computational complexity of block least squares channel identification algo-

rithms with pre-computation. 

3.4 Recursive Techniques for Initial Channel Identification 

Recursive algorithms, although conventionally employed within sequential signal processing appli-

cations, are equally relevant to the problem of initial channel identification within the GSM system. 

In this type of application the computational complexity of any of the possible recursive alterna-

tives is greater than that exhibited by the block techniques described earlier. Recursive solutions 

do, however, have several important performance advantages. Firstly, since each of the techniques 

to be presented perform optimal LS estimation, algorithm performances are not critically dependent 

upon the statistical characteristics of the training sequence. Secondly, within each of the recursive 

techniques under consideration estimates of the autocorrelation matrix and cross correlation vector 

are made implicitly within the algorithm. There is, therefore, no need to compute these explicitly 

using distinct correlation algorithms. Finally, a recursive algorithm implemented for initial channel 

identification may be applied, without change in structure or increase in complexity, directly to the 

problem of channel tracking. The same is not true of block techniques. 

The recursive identification algorithms to be discussed are based upon the techniques developed for 

the more general adaptive signal processing applications described in Chapter 2. An adaptive sys-

tem configured for system identification is illustrated in Figure 3.1. In this, the known training sig-

nal, x (n), is convolved simultaneously with the unknown channel and the channel estimation filter. 

These processes result in two outputs, the actual channel output, y (n), which represents the desired 

response of the adaptive system, and may be expressed, 

N—i 
y(n) = 	hj*x(n_i) + 1(n) , 	 (3.11) 

iO 

1. Table 3.1 expresses the number of arithmetic operations per data block. 
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Figure 3.2 - Multipath Tap Generation Filter Model 
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and an estimated output, 9(n), given by, 

N-i 

9(n) =F, 

h*x(n_i) . 	 (3.12) 
iD 

These signals are then combined to generate an error signal, e (n), where, 

e(n) =y(n)-9(n). 	 (3.13) 

The error signal is then used in conjunction with the input signal vector, X(n), as update criteria 

within the adaptive algorithm. The objective of the adaptive algorithm, in the case of LS estima-

tion, being to minimise the SSE between the actual and estimated outputs. Minimisation is 

achieved by updating, at each algorithm iteration, the coefficients of the estimation filter, thus solv-

ing, iteratively, Equation 3.6. 

In conventional system identification applications, adaptive algorithms based on either LS or gra-

dient search techniques may be employed in this respect. In the GSM system, however, due to the 

limited training period, the algorithm used must have the ability to train rapidly. In practise this 

constraint precludes the use of gradient search type algorithms. Algorithms based on the method of 

LS must, therefore, be utilised. Several alternatives exist. One such is provided by the RLS algo-

rithm. The RLS algorithm represents a time recursion in which the current LS estimate, 11(n), is 

derived using the LS estimate at time n—i, the error signal and the current data samples. Within 

the algorithm the necessity of matrix inversion is avoided by forming a recursive estimate of the 

inverse autocorrelation matrix, R'(n), implicitly. Therefore, in the sequential application the 

algorithm provides a more computationally efficient approach than does direct solution. In the 

channel estimation application the exponentially windowed version of the algorithm, which is 

derived in [90,91,104], may be expressed as the following recursion, 

Compute the error signal, 

e(n) = y(n) - X"(n)fI(n-1). 	 (3.14) 

Update the gain coefficients, 

K(n) = P(n-1)X(n) [X+XH(n)P(n—l)X(n)]' , 	 (3.15) 

P(n) = -j-[P(n_1) - K(n)X'(n)P(n_1)], 	 (3.16) 

Update the channel estimate, 

fl(n) = fl(n_1)+K(n)e*(n), 	 (3.17) 

where X represents the exponential weighting factor, which is chosen to be a positive constant less 

than unity and P(n) represents the inverse autocorrelation matrix, ie., P(n) = R'(n). 
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The inverse correlation matrix, P, is initialised either on the basis of a priori knowledge of the 

characteristics of autocorrelation matrix, or, more typically, by setting P(0) = GIN, where (J is a 

1 
large positive scalar chosen such that a>> 

Var {x(n)} 
In the absence of any a priori knowledge 

all other variables are initialised to zero. 

The computational complexity of the conventional RLS algorithm is of the order N 2  mathematical 

operations per iteration. This complexity may, however, be reduced by exploiting the shifting pro-

perties of the input sequence with time. Using these properties several computationally efficient 

RLS algorithms have been developed, most notably, the fast Kalman (FK) algorithm [106,123], the 

fast transversal filter (FTF) algorithm [108,1241 and the fast a posteriori error sequential technique 

(FAEST) [107,125]. The computational complexity of all of these RLS based algorithms is com-

pared in Table 3.2 2 

Algorithm Complexity Algorithm Complexity 

RLS 2.5N 2+4.5N Fast Kalman ION +3 

FAEST 7N+10 FTF 7N+14 

Table 3.2: Computational complexity of fast RLS channel identification algorithms. 

Unfortunately all of the fast algorithms mentioned suffer from severe numerical instability[126,127] 

and are liable to diverge from the correct solution after a relatively small number of iterations. 

This behaviour is caused by the sensitivity of the algorithms to the effects of accumulated errors 

within recursive computation; the errors themselves being due to the use of finite precision arith-

metic. For this reason practical implementation of these algorithms has, to date, been limited 

although a number of recent developments offer the possibility of numerically stable algorithms 

[127-129]. Under GSM conditions there is, however, another more important reason why fast RLS 

algorithms may not be used. Which is, that since the number of parameters to be estimated is rela-

tively small the computational advantage gained by the application of fast algorithms is not great. 

Therefore, as the conventional algorithm results in only a marginal increase in computational com-

plexity there is little motivation to utilise the fast algorithms. 

3.5 Asymptotic Accuracy of Least Squares Channel Estimation 

In order to assess the performance of each of the channel identification techniques described, it is 

important to be aware of the optimum accuracy with which the exact LS estimator is able to iden-

tify the CW coefficients. A useful measure of this is provided by the norm tap-weight error (NTE). 

The NTE represents the deviation of the estimated coefficient vector from the Wiener optimum, 

and is defined, 

2. Table 3.2 expresses the number of arithmetic operation per algorithm iteration. 
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II H0 -i(n) 11 2  
NTE 10g  = 10 log10 	

H 	. 	 (3.18) 
opt I I

2  

where I I A I I denotes the vector norm of A. An expression for the optimum obtainable NTE using 

LS estimation may be derived, under stationary channel conditions, by analysis of the MSE cost 

function, which is defined, 

	

(n)=E I I e (n) 12 1 - 	(3.19) 

The error signal, e (n), given by Equation 3.13, may alternatively be expressed as the sum of the 

additive noise and the error due to the misadjustment of the estimator coefficients, 

e(n) = 11(n) + X"(n)H(n-1) , 	 (3.20) 

where the parameter estimation error vector, H(n -1), is defined, 

ii(n-1) = Ifi(n -1) - HOP, I . 	(3.21) 

The MSE is, therefore, given by, 

E I  I e (n )12 1 = E I  1'n(n) 12 1 + E [jjH (n -1)X(n)XH  Wii(n -1) 1 
- E 1X H  (n )H(n _1)fl* (n) 	E 1Tj(n)ftH(n-l)X(n) I - 	(3.22) 

Since it is assumed that there is no correlation between the additive noise and the data sequence, 

E IXH (n )H( n _i)rl * (n)] = E lil(n)fiH  (n-1)X(n) I = 0, 

thus, 

E I  I e (n )12 1 =
C111 2+tr{E IX(n)XH(n) 

I  E [ii(n _l)jjH  (n -1) ] - 	 (3.23) 

where tr denotes the matrix trace operation. The first expectation of Equation 3.23 can be recog-

nised as the autocorrelation matrix, (J),  and the second as the tap-weight error correlation matrix 

at time (n -1); this is denoted hereafter as E(n -1). It may be shown [90],  that if the additive noise 

process is white, then the error correlation matrix is given by, 

E(n) = o 2R(n) 
	

(3.24) 

and, for large n, that the Wiener autocorrelation matrix may be related to R by the following 

approximation, 

Therefore, 

41. z -1-R(n). 	 (3.25) 

a 2  
E(n) = 	. 	 (3.26) 
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In order to approximate the MMSE obtainable using LS estimation, the number of data samples, n, 

of Equation 3.26 must be replaced by n–i, the resulting expression may then be substituted into 

Equation 3.23, yielding, 

ce E I Ie(n) 2 	+ ] a2 	
a2 	14).4)._

i ] 	 (3.27) —tr 
n–i 

The MMSE due to coefficient misadjustment possible using this technique M15  is, therefore, given 

by, 

Na 2  
M 5  = I I H0 ,, –11(n) I 2 

 = n–i 	
(3.28) 

The above result is derived for the infinite memory LS estimator, it, therefore, represents the upper 

bound upon the performance of any LS identifier. In time variant situations, however, it is often 

advantageous to truncate the algorithm memory by application of an appropriate data window. To 

reflect this, in the finite memory case, the denominator of Equation 3.28 must be replaced by a 

term representing the effective number of data samples available for estimation. The exact form of 

this term is dependent upon the type of data window employed, the two most common being the 

rectangular and the exponential window. in the rectangular windowed case the equation may be 

expressed, 

Na 2 
Mil 	

neff 
	 (3.29) 

where, neff = n–i if n <Lw , and neff = L –1 elsewhere, L representing the window length. For 

the exponential case, 

M 5  z 
Na2(1–X) 

(i+X) (3.30) 

The effect of windowing the data is, therefore, to impose an asymptotic limit upon the accuracy of 

the estimate which is largely independent of n. The window length is, in general, chosen to jointly 

minimise the error caused by this asymptotic behaviour and the error due to the time variation 

within the system. 

From this analysis it can be seen that the optimum accuracy obtainable using LS identification is 

dependent upon the variance of the additive noise, the number of coefficients within the channel 

estimate and the effective number of data samples available for estimation. Within the GSM sys-

tem, both the maximum number of coefficients and the number of training data samples are 

defined, hence, in this instance the LS estimate accuracy may be approximated by, 

M15  z  0.25a 2 , 	 (3.31) 

this approximation being valid for all practical window lengths. 
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3.6 Initial CIR Estimation Accuracy in the Time Variant Environment 

The analysis of Section 3.5 results in expressions which may be used to determine the accuracy of 

the initial channel estimate under time invariant channel conditions. In order to derive correspond-

ing expressions for the time variant case, account must be taken of the variation of the CIR 

coefficients within the training cycle. The approach taken within this work is to assume that over 

short data sequences, such as the GSM training sequence or the finite memory length of windowed 

LS algorithm, CW time variation may be envisaged as an additional noise term, the variance of 

which is directly dependent upon the time variability of the channel. Within this approach the total 

mean squared deviation (MSD) of the channel estimate from optimum may be decomposed into 

two components, referred to as the measurement error and the lag error. The measurement error 

represents the MSD of the channel estimate due to additive noise, often referred to as measurement 

noise, and occurs under both time variant and time invariant channel conditions 3 . The lag error 

represents the identification error due to the time variation of the channel and is directly dependent 

upon the rate of change of the channel coefficients. 

In order to derive equations for the accuracy of the LS estimate under time variant channel condi-

tions it is firstly necessary to define a variable which describes the time variation of the channel 

coefficients. Within this work an N element vector, öH(n —k), is used as a measure of the channel 

non-stationarity, and is defined as, 

ÔH(n—k) = Hopt 	- Hopt 	, 	 (3.32) 

where k is a positive integer and represents the number of algorithm iterations over which the time 

variation of the channel is measured. The vector, 8110 —0, is referred to hereafter as the source 

non-stationarity of the channel and is most often used to represent the channel time variation over a 

single algorithm iteration, ie., k=1. 

The object of the following analysis is to relate the variance of the source non-stationarity, which 

may be written for each vector coefficient as, E 
I 

 1 6h1  (n —k)1 2 1, and denoted a 0 2(k), to the error 

of the channel estimate. This has been performed for LS estimation by several authors [23,24,55], 

however, the results used within this thesis are taken from work by Mclaughlin [24,55]. This work 

has shown that the total MSD of the channel estimate is given, in the case of coloured inputs, by, 

IN-i 	1 
iEiictj I(1_X)a2 	

tr[cIxD) 
= 	 + 	 (3.33) (2 - (1—),))  

where the terms, a1 , represent the eigenvalues of the input signal autocorrelation matrix, 

13 = N-1-i-E I I lxi 4(n)], and D is an NxT'I element matrix, defined, 

D=E  [ 	 (3.34) 

3. It should be noted that in the time invariant environment Equation 3.30 represents the measurement error of the exponen-
tially windowed LS algorithm. 
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which represents the variance of the source non-stationarity of each multipath when considered over 

a single algorithm iteration. Assuming that there is no correlation between the instantaneous time 

variation of each multipath this may be simplified and rewritten , 

D = diagonal I cr, 0 2 , 	, . . . Cy 
101V - 1 2 ] . 
	 (3.35) 

Equation 3.33 was derived using the following assumptions. The sequence, X(n), is stationary and 

Gaussian in nature with finite moments, the noise sequence, fl(n), is identically distributed and is 

independent of X(n), the time variation of H0 , (n) is random and independent of X(n) and fl(n), 

and the LS estimate of the autocorrelation matrix can be represented 5  as, R, = I(1X) 1 . As 

was pointed out in [55] these assumptions are not necessarily representative of the conditions in 

which the algorithm operates, however, investigations have shown that theoretical analysis based on 

these assumptions yields close agreement with simulation results [24]. 

In the case of white input data, as within the GSM training sequence, Equation 3.33 may be 

simplified and be shown to be given by, 

M1 
- Ncy 2 (1—A) 

- (2—(1—X)) 

tr [D] 
(3.36) 

Within each of the expressions for the total MSD of the channel estimate, ie., Equations 3.33 and 

3.36, the first RHS term of the equation represents the measurement error and the second term the 

lag error. 

In order to relate the MSD of the channel estimate to the characteristics of the time variant chan-

nel, such as Doppler frequency and average path amplitude, it is necessary to derive an expression 

for the variance of the source non-stationarity, a0) 2(k), in terms of these variables. This can be 

achieved by consideration of the tap weight generation model assumed. In the GSM system the 

time variant behaviour of each multipath is modelled as an independent band limited noise process 

[53]. This is illustrated in Figure 3.2. Each filter is configured such that, E [h1  (n)] = 0 and 
Var {h 1  (n )} = a, where the vector AT = [a0,a 1 , . . . a_] and represents the mean squared ampli-

tude response of the channel 6  The frequency response of each filter is given, for the classical 

Doppler spectrum [53], by, 

and 

S(f)= 
(1 	

1 
—(f/fd )2)"2  

for 7fd  <f <fd, 

 

S(f)=O elsewhere, 

 

(3.37) 

where fd' represents the Doppler frequency and is given by Equation 2.1. As described in Section 

In the instance in which the source non-stationarity is computed over a single algorithm iteration, that is k 1, the depen-
dence on the delay variable, k, is dropped from the notation, hence, cJ.2(l) is denoted simply, CY() 2 . 

This assumes that A lies close to unity (normally 1 > A> 0.9). If this condition is not satisfied then this assumption can-
not be considered valid. 

That is the symbol spaced multipath RMS power delay profile described in Section 2.2.3. 
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2.2.3, the ideal Doppler spectrum may be approximated using the second order 1W filter model 

depicted in Figure 2.2. The output of the tap generation filter in response to an AWGN input, g (n), 

is given by, 

1 22 c1  h0 ,, (n—i) 1 
(3.38) 

[i_O 	 i1 	q1 	J 
where the subscript 1 denotes I th multipath component, a1  represents the tap-weight coefficients of 

the forward filter section, which are 1, 2 and 1 for a 0, a1  and a2  respectively, c• represents the 

coefficients of the filter feedback section, which are dependent upon the filter Doppler spectrum, 

and q1  represents the filter output power correction factor, given by q1 = (p .a1),  Pi  being a nor-

malising multiplier. Using Equation 3.38 the time variation of the real component of the I th mul-
tipath 7 , ôh (n —k), may be expressed, 

1 2 	 2 c1 h0 ,(n—i)] 
öh,(n—k) = q1 1a,g(n—i) - _________ 

i1 	q1 	J 
- q 	g (n—i—k) - ± c 

	(n—i—k) 

[iJ 	 i1 	q, 	

j 

2 	 2Jcöh0  (n —k) 
6h1  (n —k) = q1 E(xi  Og (n —k) - 	 , 	 (3.39) 

i1 	 i1 	q, 

where Og (n—k) = g (n) - g (n —k). The z-transform of the tap generation filter may be obtained 

directly from Equation 3.39 and can be written in terms of the input variable, g (n), as, 

q1  (l—z )(1-i-2z+z 2) 

(l+cçjz t+c 1z 2) 

- qi (z k_l)(z 2 i 2z+1) 

- 	z"(z 2+c0z-i-c 1 ) 

(3.40) 

Given the variance of the AWGN at the filter input, which within the model used is assumed to be 

unity, and the above filter transfer function, it is possible, using the Wiener-Khintchine theorem [9], 

to characterise the filter output power spectral density (PSD) and, therefore, calculate the variance 

of the filter output. In this instance the PSD at the output of the filter, Shh ((o), is given by, 

Shh(o) = IH(e ° )I 2  ag , 	 (3.41) 

.where, IH(e°')I 2  = H(e'°)H(e°), and ag  is the PSD of the additive noise sequence. The 

7. It should be noted that the imaginary component of the tap-weight may be similarly represented. For brevity, therefore, 
only the real component is considered within the following analysis. 
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variance of the filter output c, 2(k) is, therefore, given by, 

ah 2(k) = 	do). 	 (3.42) 

In order to obtain the filter output variance it is, therefore, necessary to compute the area under the 

graph of the PSD of the tap-weight generation filter. A simple and elegant method by which this 

may be achieved directly from the filter z-transform is integration by the method of residues [130]. 

The residue theorem may be stated as follows. Let  (z) be a function which is analytic inside and 

on the boundary, c, except for finitely many singular points, a I  , a 2 . . . am , inside c. Then, 

Jf(z)dz =2mj ym,  Res f(z), 	 (3.43) 
i1 za1 

the integral being taken in the anticlockwise sense around the path c. The term, Res, is referred to 

as the residue off (z) at the pole z = al  and can be computed using the formula, 

Res f (z) 
1 	J_d'1 

[(z—a )mf 	1 
}. 	

(3.44)
lim 

= 
(M—I)! z-,aldzm_l 

Hence, in this instance, the integral of Equation 3.42 can be evaluated by performing the method of 

residues on the function H(z)H(—z),  where the path c is the unit circle. Since the tap-weight 

coefficient itself comprises both real and imaginary components the variance of the source non-

stationanty of the I th multipath, cy., 2(k) is twice the variance at the filter output. 

An approximate upper bound for the variance of the source non-stationarity may be obtained by 

assuming that the time variation of each multipath may be modelled as a single frequency sinusoid, 

the frequency of which is given by the channel Doppler frequency, fd.  For such a sinusoid the 

variance of the source non-stationarity may be obtained, for any given Doppler frequency, mul-

tipath power, and delay term, k, by determining the difference, or error, between a time sample of 

the sinusoid taken at time, n, and a time sample of the same sinusoid delayed by, k, samples; this 

is illustrated in Figure 3.3. The MSE of this error may then be found by integrating the square of 

the expected error over one oscillation, thus for the I th real channel coefficient, 

227 	
fdk 	 ~dtCyh 	 Jsin(t+ sin(t)

a
2(k) = E oh, 2(n —k)  

27c I 
fd k 

z2a, 2  sin  21 
f (3.45) 

where f is the sampling frequency. Since the model used for the time variation in real and ima-

ginary planes is identical, the variance of the source non-stationarity may be approximated, 

1 
4 ai2sin2 fd k 

{ 	

J. 	 (3.46) 

Provided that, 
ltfd k

< 1, then Equation 3.46 may be simplified and can be shown to be approx-

imated by, 
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[2a,mfd k 	
(3.47) 

[ 

From this equation it can be seen that the variance of the source non-stationarity is proportional to 

the square of the multipath power, the order of the delay and the ratio of the Doppler frequency to 

the sampling frequency. The accuracy of this approximate upper bound is investigated in the plots 

of Figure 3.4, which compare the approximation of Equation 3.47 with the actual variance of the 

source non-stationarity computed using the method of residues. For these results it can be seen that 

Equation 3.47 provides a good first order approximation of the variance of the source non-

stationarity of the channel coefficients. In addition, it can be seen that the square relation of 

between the source non-stationarity, the path powers, the relative Doppler frequency and the delay 

order, is indeed valid. It should be noted, however, that the close correlation between the approxi-

mation and the actual variance is due, largely, to the peaks which occur at the band edges of the 

Doppler spectrum. If the Doppler spectrum were to exhibit more gradual role-off, as within the 

high frequency (HF) radio communication environment, then the accuracy of the estimate may be 

expected to degrade. 

The theoretical expression for the accuracy of the initial channel estimate within the time variant 

environment, Equation 3.36, is compared with computer simulation results in Figure 3.5. These 

comparisons show the way in which the NTE of an LS channel estimator varies with SNR for vari-

ous Doppler frequencies, when derived using a GSM type training sequence. Both MP and NIMP 

channel conditions are shown, the CIRs being detailed in Table 3.3. 

Channel Type CIR (stationary) / MPDP (Time variant) Classification (stationary) 

A 1+0.5 z 1  Minimum Phase 

B 1+2.5 z 1  + z 2  Non Minimum Phase 

Table 3.3: Channel conditions used within computer simulations 

Tables of des bing the -channel conditions used within each cóniiiièr iiiiiu16on are reprinted in Appendix B. 

From Figure 3.5 it can be seen that simulation results correspond closely with those predicted by 

theory. It is interesting to note that at maximum Doppler frequencies the asymptotic accuracy of 

the channel estimate is dictated by the additional additive noise due to channel time variation, and 

at SNRs in excess of 15dB this becomes the dominant source of error. At Doppler frequencies 

more typical of those encountered within the GSM system, however, the channel estimate is only 

slightly degraded by channel time variation. 

3.7 Initial Equaliser Coefficient Computation 

Once established, the channel estimate may be used either directly within the path metric calcula-

tion of an MLSE, or as the basis on which the initial coefficients of an adaptive equaliser are 

derived. Within this section this latter alternative is considered. 
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In order to compute the equaliser coefficients directly from the channel estimate it is necessary to 

derive the relationship between the required equaliser and the channel estimate coefficients. This 

may be achieved in several ways, however, the approach taken within this work is to consider the 

problem as an application of Wiener filtering theory. Accordingly, this theory is applied to both 

the linear and decision feedback equaliser in order to derive algorithms by which equaliser compu-

tation may be performed. 

Considering, firstly, the LTE. The equalisation problem, which is depicted in Figure 3.6, can be 

expressed by the following system equations, 

	

y (n) = XH (n )H(n ) -I-rl(n), 	 (3.48) 

yT() = [y(n) y(n-1). . . Y(n_N eq _1)], 	 (3.49) 

eeq  (n) = x (n —d )—I (n) = x (n —d) - WH (n )Y(n). 	 (3.50) 

where W(n) represents an Neq  element vector containing the equaliser coefficients. In order to 

minimise the MSE at the output of the equaliser the coefficients W(n) must be chosen such that 

they satisfy the Wiener equation, which, in this instance, may be expressed, 

c1 yy  W.pt  = 'J?x , 	 (3.51) 

where, c, represents an Neq  X Neq  element autocorrelation matrix, defined, 

= E ly(n)yH(n) 1 	 (3.52) 

and I represents an Neq  element cross correlation vector, defined, 

I =E [Y(n )x * (n —d) I - 	 (3.53) 

Assuming that the data sequence is white and that the channel and data statistics are wide sense 

stationary (WSS), then the resulting autocorrelation matrix is symmetrical Toeplitz [121]. Hence all 

matrix elements can be generated from the first row. Considering elements in the first row of 

I (1,m ), where 1=0, and assuming that the channel may be considered time invariant over short 

time periods, then each row element may be represented, 

= E I  y (n)y * (n +m) I 
= E [[HH  (n )X(n )+11 (n)] [XH  (n +m )H(n )+11 (n +m ) Y I - 

Since the data and noise sequences are uncorrelated, 

	

I(1,m) = H'(n)E IX(n)X H (n+m) IH(n) +E 	 (3.54) 

or explicitly, 

(Dyy 	= 	h1(n)E IX (n—i)x * (n+m—j)]hj (n) - E 171(n)Tl * (n+m) 1 	(3.55) 

The right hand term of Equation 3.55 represents the statistical characteristics of the additive noise 
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and may be generated using a priori knowledge of the noise process. In the case in which the addi-

tive noise is characterised as WGN the expectation is given by, 

E [1j(n)Tj * (n+m)] = CT j26(M), 	 (3.56) 

where ö(m) is the dirac function and is given by, ö(m) = I if m =0 and 0 elsewhere. 

The expectation of the first term of Equation 3.55 is only non zero when f—in—i, therefore, assum-

ing AWGN, the coefficients of the first row of the autocorrelation matrix may be generated using 

the following equation, 

N-i (DYY 
	= 	h(n)h1 .(n) - a 2ö(m). 	 (3.57) 

i-O 

The complete autocorrelation matrix may then be generated by either exploiting the Toeplitz nature 

of the matrix, or by using the following relationship, 

N-i (DYY  (I'M) 
= 	h1  (n )h1 . ... (n) - a 26(m —1) . 	 (3.58) 

Now considering the cross correlation vector, the I th term of which may be expressed, 

(1) = E I IX 
H (n +1 )H(n )+1(n ) I x (n _d)], 

=E IX H (n  +1 )x*(n—d) 
I 
 H(n) , 

or explicitly, 

N-I 	IX ), h•(n )E x (n +1—i )x*  (n —d) 
i-O 

(3.59) 

The expectation of this expression is non zero only when 1—i=—d, therefore, the cross correlation 

vector may be generated using the following equation, 

= hl-d(n) . 	 (3.60) 

The optimum linear equaliser, W 0 , (n), may be computed by, firstly, forming the autocorrelation 

matrix and cross correlation vector using Equations 3.57 and 3.60, and secondly solving the Wiener 

equation, expressed by Equation 3.51. In mathematical terms the problem represents a set of Neq  

linear equations which may be solved using any of the techniques described in Section 3.3. In this 

instance, however, since the autocorrelation matrix is Toeplitz the most computationally efficient 

alternative is provided by the Levinson recursion [8,121]. 

In the case of the DFE the equalisation process, which is depicted in Figure 3.7a, is non linear in 

nature. Therefore, in order to derive a relationship between the channel and equaliser coefficients 

using Wiener filtering theory, a linear approximation must be made. The approach adopted within 

this work is to assume that decisions propagated back through the feedback section are correct, 
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thus, i (n )=x (n —d). This being true the process can be represented as the linear system of Figure 

3.6b. In this instance the system output is given by, 

I(n—d) = C"(n)Y(n)-i-B' 1 (n)X(n—d-1), 	 (3.61) 

where the vector C(n) represents an N1  element vector containing the feed forward coefficients of 

the equaliser, and the vector B(n) represents an Nb element vector of the feedback coefficients 8 

Defining new vectors V and Z as follows, 

V11(n) = I CH (n )B H  (n) I  , 	 (3.62) 

Z"(n) = IYH(n)XH(n—d-1) I 
	

(3.63) 

allows Equation 3.61 to be rewritten, 

I(n—d) = yH(fl)z(fl) 	 (3.64) 

In order to minimise the MSE at the system output both equaliser forward and backward 

coefficients must be chosen such that they satisfy the Wiener equation, which, in this instance, may 

be expressed, 

= 
	

(3.65) 

where, 

= E IZ(n)ZH(n) 1 , 	(3.66) 

= E IZ(n )x * (n —d)], 	 (3.67) 

Expanding Equation 3.65 using Equations 3.66 and 3.67 and the definitions of Z(n) and V(n), 

yields, 

YX(1)1 [c0 (n)1 - [ 	I' 	(3.68) 
x ( _ l 	X((n) j [Bop:()j [x( _I(fl _ l)  

where, 

(dl)Y 
=E IX(n —d —1)Y H  (n ) 1 1 

	 (3.69) 

(-d-1) 
=E [Y(n)XH(n—d-1) 1 1 

	 (3.70) 

(-d-I) 
=E IX(n —d _I)XH  (n—d-1)], 	 (3.71) 

- (n-.d) 
=E IX(n —d—I)x *  (n —d) I - 	 (3.72) 

Using similar assumptions to those made earlier concerning the statistics of the data, noise and CIR 

it can be seen that, 

8. In this instance since the output of the feedback section is added to the forward section output, as described by Equation 
3.61, the equaliser coefficients, B, take on negated values with respect to those nomially dictated by convention. 
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E IX(n—d—l)x*(n—d) I = ON 

and 

E IX(n —d _1)XH  (n—d-1) I = 1N 

Equation 3.68 may, therefore, be simplified and expanded to give the following equations for the 

optimum feed forward and feedback coefficients, 

B0,(n) = 	x (_d _ l)y Copt (fl) , 	 (3.73) 

{4)yy  - [(Dyx ( 1)(nl )Y I } copt = yx 	 (3.74) 

The autocorrelation matrix, I, and the cross correlation vector, I, may be computed, with 

appropriate changes in matrix dimensions, ie., Neq  becomes N1 , using Equations 3.57 and 3.60 

respectively. Again assuming that the channel may be considered "locally' time invariant, the 

other cross correlation terms may be expanded as follows, 

HH(n)X(n)+1(n) 	1 	1 

	

1(n-1) 	
X 11  (n—d-1) 	(3.75) . 

=E 	

HH(n  )X(n-1) + 

[ 	 . 	 I  

YX(_,J_l) 	

. 	 I HH (n)X(n_N eq _1)+11(n_Neq _1) j  

Considering individual elements of this matrix, 

yx (1)(l ,m) = E {{H -V (n)X(n+I)+Tl(n+1) 	(n _1n)] 

= HH (n )E IX(n+I)XH(n—d—l+tn) 11 	 (3.76) 

or explicitly, 

N—i 	N—i Ix  hs(n)EE 	(n_i+l)x*(n_d_l_j+m)j. 	 (3.77) 
iO 	jD 

The expectation within this equation is non zero only when j =m —1 +i —d —1. Hence, the coefficients 

of the cross correlation matrix, (I)YX(J  may be computed as follows, 

	

= hm_j.,j_1 . 	 (3.78) 

Since 	= 	YX(_l)' the combined correlation matrix,
(DYY 	 I may be 

computed using Equations 3.57 and 3.78. The feed forward DFE coefficients may then be derived 

using Equation 3.74. This equation represents a set of N1  linear equations which may be solved 

using the techniques described in Section 3.3. Unfortunately the combined matrix, although sym-

metrical, is not guaranteed to be Toeplitz, therefore, the Levinson recursion cannot be applied. 

However, as the matrix is symmetrical other computationally efficient techniques such as Cholesky 

decomposition [1211 may be used. Once the feed forward coefficients are derived the feedback 
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terms follow directly from Equation 3.73. 

3.8 Equaliser Performance when using Imperfect Channel Estimates 

The accuracy of the channel estimate is of fundamental importance to the performance of each of 

the equaliser structures described earlier. Errors within the channel estimate result in equaliser 

coefficient misadjustment and, therefore, in suboptimal system performance. In the forgoing sec-

tions of this chapter the accuracy with which the channel coefficients may be estimated has been 

derived. In this section the way in which imperfect estimates affect the performance of each of the 

three basic equalisation techniques is investigated. 

Within the following work firstly, wherever possible, expressions for the additional MSE at the sys-

tem output due to coefficient misadjustment are derived. This analysis is then extended to the 

derivation of equations relating coefficient misadjustment to system BER performance. Each of 

these analyses are performed for the LTE, the DFE, and finally the MLSE. 

3.8.1 LTE Performance when using Imperfect Channel Estimates 

Firstly considering the Lit. The MSE at the equaliser output, J (n), is given by, 

J(n) = E I [X 
(n —d)—.i (n ) I [x(n_d)_e(n)]* 

I  . 
	 (3.79) 

Substituting Equation 3.50 and expanding yields the following expression, which gives the MSE as 

a quadratic function of the equaliser coefficient vector, 

=E Ix (n —d)x *  (n —d) 
I  —E 1x(n—d)WH(n)Y(n) I 

—E 1WH  (n )Y(n )x * (n —d) 
I  +E [WHO)YOWHO)W(n) 11 

which may alternatively be expressed, 

J (n) = ad2 - WH (n )I - (DYX  H W(n) + WH (n )cI,, W(n), 	 (3.80) 

where ad represents the variance of the desired response. The MMSE at the equaliser output is 

obtained when the equaliser coefficients are chosen such that they satisfy the Wiener equation, 

(3.51), in which case J, is given by, 

J. = ad W ' (n)4  . 	 (3.81) 

However, since the channel estimate is imperfect the equaliser coefficients do not represent the 

Wiener optimum. This leads to an increase in the MSE at the system output. The total MSE is, 

therefore, given by J7  J+LiJ; M representing the excess MSE due to the misadjustment of the 

equaliser coefficients, which, assuming that the data sequence is uncorrelated with the misadjust-

ment, may be expressed, 

AJ = E [(*(n)—W,,) H Y(n)Y H (n)( W_(n )—W 0 , )] 
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and rearranged, 

= tr [ctyyE 
I  iV(n )ii H  (n ) I I - 	 (3.82) 

where, W(n) = (W(n )—W 0 ) 

In order to determine M for this case it is necessary to derive a relationship between the channel 

estimate misadjustment and the resulting equaliser coefficient misadjustment. The equaliser 

coefficient misadjustment vector is given, 

W(n) = 4 	- t, -1 j 

which may be expressed in terms of autoconelation and cross correlation misadjustment, AI and 

as, 

W(n) = [OYY +Aq)yy  ]-I [i+] - 	 , 	 (3.83) 

Due to the matrix inversion implicit within this expression no linear relationship between misad-

justment vectors exists, therefore, derivation of an expression for equaliser misadjustment is not 

simple. For this reason, within this work an alternative approach has been adopted. In this 

equaliser excess MSE is related to channel estimate error using the assumption that the niisadjust-

ment of the channel estimate results in an additional additive noise term, which, within the follow -

ing analysis, is assumed to be white. Justification for this assumption is as follows. The equaliser 

coefficients are optimised, via the Wiener equation, for the channel estimate, 11(n). The actual 

channel may then be envisaged as comprising the estimate plus a misadjustment vector, 

H(n )=(n )-i-H(n), the channel output is therefore given by, 

- H 
y(n) = H(n)+H(n) X(n)+(n), 

fjH (n )X(n )+H'' (n )X(n )-i-11  (n). 	 (3.84) 

Since the equaliser is optimised for the channel estimate, H(n), the mean square additional error 

may be expressed, 

i\J =E [jjH  (n )X(n )X H  (n )ii(n 

- tr[cIE [ii(n )fiH  (n) I I 	 (3.85) 

which, using Equations 3.24, 3.25 and 3.26, may be approximated, within the time invariant 

Nr 2 

environment assuming LS estimation as, iSJ z  . Hence the total MSE at the equaliser output 

is approximated, 

i 
Jd2 - wH(n) + o 	N 2 [+ 	I I IW(n)I 12 	 (3.86) 

n—i J 

Using this assumption the variance of the additional additive noise term is, therefore, equal to the 

MSE due to the channel estimate misadjustment. 
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In order to verify this approximation computer simulation of the linear equaliser MSE performance 

under various channel conditions has been performed; simulation results appear in Figure 3.8. The 

system configuration simulated is that depicted in Figure 3.6. In this complex data is passed 

through a time invariant channel and the CIR is estimated sequentially throughout data transmis-

sion. The resulting estimate is then used as the basis for computation of the LTE coefficients, 

which are recomputed at each data symbol. 

In Figures 3.8 (a) and (b) the MSE at the equaliser output is compared with the optimum MSE for 

the system which is computed using an exact channel estimate, also shown is the MSE at the chan-

nel estimator output. MSE performance is investigated under both the MP and NMP channel condi-

tions, detailed in Table 3.3. From these plots it can be seen that the error within the CW estimate 

is closely related to the degradation in equaliser performance. In order to emphasise this point, 

Figures 3.8 (c) and (d) show the MSE deviation from optimum of both the channel estimator and 

the equaliser for the MP and the NMP channel conditions described earlier. As can be seen, pro-

vided that the algorithms have converged there is close correspondence between the two. 

The results of this analysis raise an interesting point concerning the computation of optimum 

equalisers from channel estimates. The point is this, since channel estimate misadjustment results 

in additional additive system noise, equaliser coefficient computation must be based on the total 

noise apparent to the equaliser. Hence, in derivation of the system autocorrelation matrix, 1,, the 

additive noise variance, which in the case of AWGN is added to the leading diagonal, must be aug-

mented by the equivalent noise variance of the error due to the CIR estimate misadjustment. If an 

estimate of the noise variance is obtained directly from the channel estimator, then the variance of 

the additional noise term is implicit within this. However, if the variance is determined a priori 

then the same is not necessarily true. 

Extending the results obtained above to the derivation of expressions relating equaliser MSE perfor-

mance to error rate performance is not simple. Difficulties arise because the MSE at the equaliser 

output contains, in addition to additive noise, some residual ISI. Consequently, equaliser output 

noise is not independent of the input data sequence. For this reason it is not possible to apply the 

normal Gaussian assumptions within the derivation of performance bounds. One procedure which 

may be used to derive theoretical equaliser error rate performance is described, for PAM signals, in 

[8]. In this approach, firstly an Neq  +N —1 element vector, Q, representing the residual ISI is deter-

mined by convolution of the channel and equaliser impulse responses; the elements of Q may, 

therefore, be expressed, 

N, /2 

q = 	: wjhn_j*. 
i 	/2 

(3.87) 

The error probability for each possible input sequence, X, is then computed by subtracting the 

conditional residual IS! related to that data sequence, D, from the desired system response at q0 

and subsequently applying standard error rate analysis techniques to determine the effect of AWGN 

on the corrupted signal; the residual 1ST term D is defined, 
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D = ,j(j)q*(fl_j) , 
	 (3.88) 

ion 

The overall error probability is then obtained by averaging over all of the conditional probabilities. 

Similar analysis may be applied to the GSM system provided that the differences in modulation 

schemes are taken into account. Assuming OQAM modulation the following error probabilities 

may be derived. The conditional error probabilities may be expressed, 

Pe (Dj) =P [i1(n)+Dj >qo  

I r 	)21h/2 1 

I I [qo_DjjI  I 
= erfc [ 

2cr2 	j J 	
(3.89) 

Averaging over all of the conditional probabilities yields the overall probability of error, which is 

given by, 

2'eq + N—i) 

'e 	Pe(Dj)P(Xj), 
jO 

11/21 
2eq+N_) 	I r [qo—D J 

[ 

2 	

] 

JP(XJ) 
a 

= E 
erfcll 

(3.90) 

Equation 3.90 provides the exact error probability for any given equaliser-channel combination. 

However, due to the necessity of computing the error probability for a large number of terms it 

often proves of limited value. As a computationally more tractable alternative it is possible to 

derive an upper bound for probability of error. This can be achieved by examining the worst case 

error situation. This occurs when input conditions dictate that the conditional residual IS! term is a 

maximum, which is the case when, 

D.-'ax m 
 =IqkJ, 

kOO  

Under these conditions the error probability is given by, 

  1 [,i _ 

	

m 	
(3.91) Pe (Dj ) = +erfc{ 	

121"2  

q0 
	j11 

The performance degradation due to equaliser misadjustment may then be evaluated directly from 

the above equations by computing the difference in error probability for instances in which the 

equaliser is computed from, firstly, the exact channel and, secondly, from a channel estimate. 

An alternative way in which equaliser BER performance degradation due to coefficient misadjust-

ment may be evaluated is to use computer simulation. The results of such simulations are given in 

Figure 3.9. In these simulations GSM conditions are assumed. Hence, firstly, the channel estimate 
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is established within the training sequence. The equaliser coefficients are then computed and held 

constant throughout the data transmission period. For the purposes of these simulations stationary 

channel conditions are used, the impulse responses of which are detailed in Tables 3.3 and 3.4. 

Channel Type Impulse Response Classification 

C 1+2 z 1  + z 2  Non Minimum Phase 

D 1+2 z 1  +3 z 2  + 2 z 3  + z Non Minimum Phase 

Table 3.4: Channel Conditions used within computer simulations 

Error rate plots for the equaliser under each of these channel conditions are illustrated in Figure 

3.9. As can be seen from these plots in the case of channel A performance degradation due to 

equaliser coefficient misadjustment is largely independent of SNR and represents a degradation of 

approximately 0.5 dB. This result may be predicted from the forgoing theory and MSE plots. Under 

the more severe transmission conditions of channel C and D performance degradation is more 

marked and is less predictable. This is due to the high sensitivity of the equaliser coefficients to 

dR estimate misadjustment when zeros occur on, or close to, the unit circle. 

3.8.2 DFE Performance when using Imperfect Channel Estimates 

Similar performance analysis to that described above may be applied to the DFE. In this instance, 

however, equaliser performance is further complicated due to the effect of error propagation within 

the feedback section of the equaliser. An upper bound on performance may be obtained using the 

assumption that only correct decisions are fed back. In this optimum case the MSE apparent at the 

DFE output is given by, 

(n) = E I I (n —d )_yH  (n )Z(n )] {x (n —d )—V" (n )Z(n ) 1*1. 	(3.92) 

Substituting Equations 3.62 and 3.63 into 3.92 and expanding yields, 

J(n) = Cyd - CH (n ) 	- qH C(n) + CH (n )I C(n) + BH (n )'t B(n). 	(3.93) 

The MMSE at the equaliser output is obtained when the equaliser coefficients are chosen such that 

they satisfy the Wiener equation, (3.65), in which case J,,,i,, is given by, 

mm = 	- C" (n )q)1 	 (3.94) 

Hence, the MMSE at the DFE output is dependent only upon the feed forward coefficients of the 

equaliser. Since the channel estimate is imperfect the equaliser coefficients possess some degree of 

misadjustment from optimum. Consequently, the total MSE at the system output is increased. The 

total MSE is, again given by r J+iJ; the excess MSE due to the equaliser misadjustment, Al, 

being given by, 

Al =E [HY( n )YH( n )(n )] + E [jH (n )X(n —d — l)XH  (n —d —1)i(n ) 11 
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= tr [ (D,,,  E [E(n)&(n) ] I + tr IIN E [g(n)gH(n) I 1 	(395) 

where C(n) and B(n) are defined, 

C(n) = e(n) - Copt, 

B(n) = (n) - 

The first expectation of Equation 3.95 may be approximated following similar arguments to those 

used for the linear equaliser and may be expressed, 

tr{q yy  E [E(n)H(n)]}_tr{E [
] } 

Np2 
(3.96) 

where H(n) represents a vector containing CIR precursors alone and Npre  represents the number of 

precursors within the dR. The second term, which represents the misadjusiment of the equaliser 

feedback coefficients, may be evaluated using the assumption that the feedback taps are derived 

directly from the post-cursors of the CIR estimate, in which case, 

tr[IN E [i(n)gH(n) 11 Z tr 	E [fi-(n)ii'(n)] 
} 

Na2 
(3.97) 

where H(n) represents a vector containing CW post-cursors alone and Np,,,t  represents the number 

of post-cursors within the dR. In practise computation of the feedback taps in this manner leads 

to suboptimal equaliser performance, however, for MSE estimation purposes the approximation is 

valid. The total MSE at the output of the equaliser may, therefore, be approximated, 

J d 2_CH  (n )2  I + 	1 C(n) II 	
a2 	

(3.98) 
 fl—i] 	 n—i 

This implies that the additional MSE due to equaliser coefficient misadjustment is similar for both 

the LTE and DFE. 

Computer simulation of the MSE performance of the DFE appears in Figure 3.10. Similar simula-

tion conditions to those used within the investigations into the performance of the LTE are again 

applied. From Figure 3.10 it can be seen that although the absolute MSE performance of the DIE 

is superior to that of the LTE the degradation of MSE performance of the DFE due to dIR estimate 

misadjustment is similar to that of the LTE; dIR estimate misadjustment and equaliser coefficient 

misadjustment again being closely related. 

Similar error rate analysis to that applied to the LTE may be applied to the DFE, again an upper 

bound on performance may be derived using the assumption that only correct decisions are fed 

back. In this instance analysis differs from that of the linear equaliser in that the effect of the feed-

back terms must be taken into account. If the misadjustment of the feedback taps is assumed to 

have zero mean and a Gaussian distribution about the mean with variance, aíe 2  , then, assuming 

that the input data is white, the effect of the misadjustment on the feedback coefficients is to add 

additional WGN to the system output. Since the feedback taps may be derived directly from the 

channel estimate this approximation is reasonable. The effect of the misadjustment of the forward 
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taps may be analysed using the same approach as that adopted for the LTE. In this instance, how-

ever, post-cursors within the CW are assumed to introduce no ISI, as this is assumed to be reduced 

to zero by the feedback section of the equaliser. The conditional residual IS! related to the input 

sequence X is given by, 

= x1(i)q(n—i) , 	 (3.99) 
I *n 

where, 

N1 /2 

q= F, c1 h_ 
i-N1 /2 

The overall error probability is then given by, 

(3.100) 

2 11/21 

2' 
(N,+N-1) 	I [ [q o—D j  ] 

 II 
L erfcll 

[ 22+a2 j 	
Pj) , 	 (3.101) 

N 
where, cyfb Z 

n—i 

Again an upper bound for error probability may be determined by evaluating the worst case ISI 

term, Djmax  and substituting this into Equation 3.91. 

Computer simulation results of the DFE BER performance appear in Figure 3.11. These are 

obtained for identical simulation conditions as those described earlier for the LTE. For the MP 

channel degradation due to the equaliser misadjustment is approximately a constant 1.0dB. Under 

more severe channel conditions degradation again increases and is, in addition, SNR dependent. 

For channels C and D, however, degradation in performance is less significant than in the case of 

the LTE. 

3.83 MLSE Performance when using Imperfect Channel Estimates 

In the case of MLSE, since computation of the ML sequence is based directly upon the channel 

estimate it is possible to relate system error rate performance directly to the misadjustment of the 

Cifi estimate. An upper bound on MLSE BER performance has been derived by Forney in [611 

and may be expressed, 

KQ [dmjr./2ae1121 , 	 (3.102) 

where, 

Q (x)-(27r)-112  fe -(/2)d y. 

and CJff 2  represents the effective MMSE apparent at each iteration of the VA. This result has 

been quoted previously in Chapter 2 where it was stated that the term K is independent of SNR 

and for any given system and data format may be considered constant. Therefore, for any given 
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system the probability of error is dependent upon the minimum distance term, d, and the 

effective MMSE. The effective MMSE comprises two components, the error due to the additive 

system noise and the channel estimate misadjustment, and may be expressed, 

E I  I e (n )12 1 	= CFTI 	[fI(n—l)X(n)XH(n) f4 (n—l) 1 	(3.103)  min 

The expectation represents the MMSE due to the estimate misadjustment and is dependent upon the 

channel characteristics, the statistical characteristics of the data, and the performance of the algo-

rithm by which the estimate is derived. Assuming that the CIR is time invariant and that the chan-

nel estimate is derived using LS estimation and fixed throughout data transmission, following the 

analysis of Section 3.5, Equation 3.103 may be re expressed, 

E I  I e (n )12 1 min = CFTI 
2 +

G'1 2  N 	
(3.104) 

This implies that for any given channel the degradation in BER performance due to CIR estimate 

misadjustment is largely independent of SNR and under typical GSM conditions may be approxi-

mated, 

E I  I e (n) 12 1 min = 
CYT12 + 0.25Cr,12, 	 (3.105) 

Which represents a degradation of approximately 1.0dB. 

Computer simulation of the error rate performance of the MLSE under the conditions described in 

Section 3.8.1 appear in Figure 3.12. For channels A and C performance degradation is approxi-

mately as predicted by Equation 3.105, and is independent of SNR. In the case of channel D the 

performance degradation is more severe and represents an equivalent increase in SNR of around 

2.0dB, this being due to the larger number of channel coefficients. Degradation, however, remains 

SNR independent. 

3.9 Conclusions 

Within this chapter several recursive and non-recursive techniques by which the initial channel esti-

mate may be derived have been presented. Due to the requirement of fast algorithm convergence 

each of these techniques are based on the method of least squares. In general, block techniques pos-

sess greater computational efficiency and are well suited to the problem of initial CIR identification 

within the GSM system. Several highly efficient alternatives have also been considered. 

Expressions for LS asymptotic accuracy have been derived for both stationary and non stationary 

channel conditions, these results have subsequently been extended to the GSM system. From these 

analyses it may be concluded that in the GSM system at low to moderate Doppler frequencies CIR 

estimate misadjustment is dominated by additive system noise. Hence misadjustment due to channel 

time variation is largely insignificant. However, at high Doppler frequencies and SNR of greater 

than 15dB, CIR time variation is the dominant cause of CIR estimate misadjustment. Each of the 

results presented have been validated by computer simulation. 

- 85- 



10 

10 1  

Channel A 	 jChanne1 D 

11 	2 

10 

2 

2 	4 	6 	8 	10 
SNR (Eb/No) 

10 -r 
±-- ---------------4------------------- 	 - ----------------- ----------------- ------------------ ----------------- -

IL  -- --------- ------- - ------------------ 

10 
	

: 

Channel C 

10 -  

1 	 1 	 2 

10 

z 	 41 	 b 	 8 
	

10 

SNR (Eb/No) 

Figure 3.12 - MLSE Error Rate Performance For Stationary Channel Conditions 

1 - MLSE Performance when Derived from a Perfect Channel Estimate 

2 - MLSE Performance when Derived from an Estimate of the CIR 

- 



Techniques by which equaliser coefficients may be derived from the channel estimate have also 

been presented and the effect of channel estimate misadjustment on equaliser performance has been 

investigated. Several important conclusions may be drawn from these analyses. Firstly, under spec-

trally non-severe channel conditions, which may be characterised as channels in which no zeros 

occur close to the unit circle, additional equaliser output MSE may be approximated by an addi-

tional noise component, the variance of which is equal to the variance of the Cifi estimate misad-

justment noise. This implies that the degradation in error rate performance under these conditions 

is largely independent of SNR. This being true for both the LTE and the DFE. Secondly, under 

more spectrally severe channel conditions the effect of CIR estimate misadjustment is less predict-

able and results in increased equaliser output MSE. In this instance error rate performance degrada-

tion is more severe and is SNR dependent. This is particularly apparent in the case of the LTE. 

Finally, in the case of the MLSE error rate performance degradation due to the imperfect channel 

estimate may be related directly to the estimate misadjustment. CW misadjustment results in an 

additional noise term within the VA the variance of which is again given by the variance of the 

channel estimate misadjustment noise. The performance degradation of the MLSE is, however, less 

dependent upon channel characteristics and is largely SNR independent under all channel condi-

tions. 

-87- 



Chapter 4 
Adaptive Channel Estimate Update 

4.1 Introduction 

The initial channel estimate provides the basis from which the initial coefficients of either an 

equaliser or MLSE may be derived. In many proposed GSM equalisers the coefficients, once com-

puted, are subsequently fixed throughout data transmission. However, due to the highly time variant 

nature of the transmission medium the CW may be subject to significant variation within a single 

data block. Consequently, an equaliser designed solely on the basis of the initial channel estimate 

may diverge significantly from optimum, particularly at the data block edges. The error attributable 

to the fixed CIR estimate may, however, be reduced by continuous equaliser, or channel estimator, 

coefficient update throughout data transmission. The principal objective of this thesis is to develop 

efficient techniques by which this may be achieved. This chapter is, however, primarily concerned 

with channel estimation algorithms, therefore, the performance of the algorithms is investigated 

when used as an integral part of an adaptive ML receiver. The adaptive update of conventional 

equaliser coefficients presents rather different problems and is considered in detail in Chapter 6. 

The application of an adaptive system to the problem of continuous channel estimate update 

throughout unknown data transmission is depicted in Figure 4.1. As can be seen the technique is 

essentially similar to that described within Chapter 3 for recursive identification algorithms when 

used for initial channel estimation. There are, however, two fundamental differences. Firstly, since 

it may be assumed that the initial channel estimate has been derived a priori, algorithm transient 

performance is of only secondary importance. Consequently, either gradient search or LS tech-

niques may be applied to the problem. Secondly, since continuous channel estimate update is 

necessarily performed within the data transmission period, the desired system output is unknown. In 

order to obtain the CIR estimate it is, therefore, necessary to derive an estimate of the transmitted 

data sequence. Several techniques may be applied to this problem, however, within this work the 

Viterbi equaliser itself is used to make tentative decisions on the incomplete received sequence. An 

important aspect of the work of this chapter is, therefore, to investigate the impications of the use 

of these occasionally incorrect decisions on system performance. 

Within this chapter, firstly, the degradation in MLSE performance due to the fixed channel estimate 

is investigated. Secondly, various conventional algorithms which may be used for CIR estimate 

update throughout data transmission are presented and their performances investigated by analysis 

and computer simulation. In addition, the effect on estimator accuracy of tentative decisions fed- 
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back from the VA is considered and techniques by which errors can be minimised are presented. 

Thirdly, an algorithm which attempts to improve upon the tracking performance of the conventional 

algorithms by incorporation of some degree of a priori knowledge of the channel time variant 

characteristics is presented. The transient and steady state performance of this algorithm is then 

investigated and several techniques by which the required a priori knowledge may be derived from 

previous channel estimates are presented. Finally, the performance of each of the techniques 

described is investigated under GSM conditions and conclusions drawn. 

4.2 MLSE Employing No CIR Estimate Update 

The most straightforward technique by which MLSE may be performed within the GSM system is 

to base the ML computation on a channel estimate which is fixed throughout the information 

transmission cycle. The underlying assumption adopted within this approach is that throughout 

data transmission the CIR is time invariant. As has been described earlier this assumption is often 

invalid and results in suboptimal system performance. Within this section MLSE performance 

degradation due to this stationary assumption is investigated. 

In order to examine the error rate performance of the MLSE under these conditions it is firstly 

necessary to derive expressions for the additional channel estimate MSE due to channel time varia-

tion within the data transmission period. Following the analysis of Section 3.5 the total MSE at the 

channel estimator output may be expressed, 

E[ e(n) 12] = 2+E{[(fl)_H f(fl)rX(fl)X (12) Ift(n)H pt (n)]} 

= a 2+tr{E [fl(n )—H, t (n ) ] [ft(n )—H,, (n
)r }. 	

(4.1) 

Since under the conditions described above, the Wiener optimum is time variant but the channel 

estimate is fixed, Equation 4.1 may be alternatively expressed, 

= a2 + tr 	E  [jj(0)_jjH (0)]} 

+ tr{ xx E [6H(n—k)6H H  (n —k) ]}' 	 (4.2) 

where H(0) represents the misadjustment of the channel estimate at the completion of the training 

sequence, and ÔH(n —k) represents the deviation of the current Wiener optimum from the optimum 

at time n —k and is defined, 

ÔH(n —k) = 	(n )—H0  (n —k) , 	 (4.3) 

and may be recognised as the source non-stationanty described in Section 3.6 and defined by Equa-

tion 3.32. The total MSE, therefore, comprises three components, the additive system noise, cy I  

the misadjustxnent of the Cifi estimate at the completion of the training sequence, and the misad-

justment of the CW estimate due to time variation of the Wiener optimum throughout information 
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transmission. The latter is dependent upon the relative channel fade rate and the delay period, k. 

An expression for CIR misadjustment due to channel time variation in terms of these variables was 

derived in Section 3.6, and, assuming white input data, can be shown to be given by, 

tr{ xx  E [6H(n-k)6HH(n-k)]} = tr{rx D} 	 (4.4) 

where each of the coefficients of the vector, D, may either be computed exactly using Equations 

3.40, 3.43 and 3.44 or estimated using Equation 3.47. Assuming the approximation is used, an 

expression for the total MSE may then be obtained by substituting Equations 3.36, 3.47 and 4.4 

into 4.2, yielding, 

N-i 2 Irrfd n 12 
________ 4ajf t Ncr 2(1—X) 	__________________ 

T 2(k) = E[ le(n_k)12] = (
2— (1—X)) +  

rrfdk' 

{ 
f Jdf 

i  

(4.5) 

where, n is the number of data points on which the initial CW estimate is based and X is the 

exponential weighting factor of the initial LS identification algorithm. It is important to note that 

within any block data system the maximum effective value of the RLS weighting factor, A, is dic-

tated by the length of the data block and can be computed using the approximation [90], 

tz —l/log ioAeff , where 'r is block length. Consequently, within the GSM training sequence, which 

is defined to be 26 bits in length, the maximum effective value of A is 0.90. Hence, if A is chosen 

to be greater than this value, the effective maximum value, X ff  must be used within Equation 4.5 

in order to estimate the total MSE. From Equation 4.5 it can be concluded that the MSE perfor-

mance of the CIR estimator is directly dependent upon the Doppler frequency of the channel and 

the length of the data block. Moreover, it is clear that the accuracy of the estimate will tend to 

degrade severely at high Doppler frequencies. 

A theoretical upper bound on BER performance of the MLSE under any given channel conditions 

and delay period may be derived by substituting Equation 4.5 into Equation 3.102, yielding, 

Pe  z KQ [d/2ar2(k)] , 	 (4.6) 

where all terms are defined in Section 3.8.3. Since the misadjustment of the channel estimate due to 

the time variability of the channel can be seen to increase with the square of the delay variable, k, 

the total MSE will increase significantly throughout the data block. The probability of error of any 

particular symbol is, therefore, dependent upon its relative position within the block and may be 

subject to severe degradation toward the block edges. 

In order to highlight system performance degradation due to the CIR time variability computer 

simulation has been performed, results are given in Figure 4.2. Two aspects of system performance 

are considered, firstly, channel estimate NTE variation throughout the data block and, secondly, the 
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BER performance of the complete system. In each simulation the GSM data structure has been 

adopted, the channel estimate being derived within the training period and subsequently fixed 

throughout data transmission. Figures 4.2(a) and (b) show the average channel estimate NTE 

throughout the data block for a range of SNRs when subject to the following time variant channel 

conditions 

Figure MPDP (H0  (z)) Channel Type Doppler Frequency 

Figure 4.2(a) 1 +z 1  +z 2  E 250Hz 

Figure 4.2(b) 1 +z 1  +z 2  F 50Hz 

Table 4.1: Time Variant Channel Conditions used for Computer Simulation Tests 

From these plots it is clear that at high Doppler frequencies the fixed CIR estimate results in 

significant additional estimation error particularly at the data block extremes. It is interesting to 

note that at SNRs of greater than 10dB the error contained within the CIR estimate at the data 

block edges is almost an order of magnitude greater than the NTE of the initial estimate. At lower 

Doppler frequencies the performance degradation is less significant, however, particularly at high 

SNRs, some performance degradation is still evident. 

MLSE BER performance curves for identical time variant channel conditions to those described 

above are shown in Figure 4.2(c). Again, at high Doppler frequencies channel time variation 

results in a marked degradation in system performance and at SNRs above approximately 15dB this 

source of error tends to be the principal limitation on system error rate performance. At more typi-

cal Doppler frequencies some performance degradation is still evident, however, this is significantly 

less than that apparent at maximum Doppler frequencies. Within the range of SNRs shown degra-

dation from optimum performance, which is computed for identical channel conditions using a per-

fect CIR estimate, is around 3dB, hence even at lower Doppler frequencies some performance 

improvement is still achievable. 

43 Continuous Estimate Update using Conventional Adaptive Algorithms 

The performance degradation of the MLSE due to channel time variation within the data block may 

be reduced by basing the ML computation on a channel estimate which is continuously updated 

throughout data transmission. In order to achieve this two problems must be addressed. Firstly, it 

is necessary to implement a version of the VA which is capable of incorporating a time variant 

channel estimate into the computation of the path metrics. Secondly, it is necessary to employ an 

1. Within these simulations "average" Nit performance is obtained by computing the Nit throughout the data block over a 
large number of different instantaneous channel conditions of specified MPDP, SNR and Doppler frequency. This should not 
be confused with an "ensemble average" in which the performance of the system is examined when subject to precisely 
defined instantaneous channel conditions. Within this chapter exclusively "average" performances are given. 
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algorithm by which the channel estimate may be updated periodically in order to compensate for 

the channel time variation. Within this section, after the necessary modifications to the VA are 

described, the performance of conventional recursive LS and gradient search adaptive algorithms, 

when applied to the problem of continuous channel estimate update, is considered. 

43.1 The Time Variant Implementation of the Viterbi Algorithm 

The time variant implementation of the VA is similar to the conventional algorithm, the principal 

difference being that the fixed CW estimate vector, H(0), must be replaced by a time variant vec-

tor, H(n), which may be envisaged as a CW estimate matrix, defined, 

= Ift(n) ft(n-1) . . 11(0)]. 	 (47) 

Using the assumption that the CIR estimate is updated at every symbol, the algorithm likelihood 

function is given by, 

Fm=Uyn— 

	

h 	(m) 
L 1 	

N-1 	12} . 	(4.8) (n ,i)r 	(ii- 
n.=olI 	i=O 

From Equation 4.8 it can be seen that the computational complexity of the VA is identical for both 

the conventional and modified algorithms. Hence, the only additional complexity is incurred within 

the update algorithm itself. 

43.2 Optimum Performance of Conventional Adaptive Algorithms 

To enable the computation of the estimate matrix, H,,, (n), the channel estimate vector, Ü(n), must 

be updated periodically. Within the following work symbol by symbol update is assumed. This 

may be achieved by utilising a recursive update algorithm in conjunction with a data sequence esti-

mate; this mode of operation being analogous with the decision directed mode used within conven-

tional equalisers. In order to investigate optimum algorithm performance, initially, the data 

sequence estimate is assumed to be perfect; the analysis is later extended to the case of more realis-

tic data estimates. In this instance the operation of the channel identification algorithm is identical 

to that within the training sequence and is described in Section 3.4. 

Since the initial channel estimate is derived within the training sequence the choice of adaptive 

algorithm for continuous update is not limited by the convergence properties of the algorithm. Of 

greater importance in this time variant application is algorithm steady state performance. For this 

reason it is possible to employ algorithms based on either LS or gradient search techniques. Within 

this section the performance of the RLS and LMS algorithms is investigated. 

Firstly considering LS estimation. The steady state performance of the exponentially weighted RLS 

algorithm, when used for system identification, has been analysed by several authors [23,24,55]. 

From these analyses it may be concluded that when applied within the nonstationary environment 

the total identification MSE may be decomposed into two constituents, referred to earlier as the 
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measurement and the lag error. It can be shown [24] that in the non stationary environment the 

total MSE at the output of the exponentially weighted LS channel estimator may be approximated 

by, 

E[Ie(n)I2] - 
Na 2(1—A) 	atr(I) 

- (2—(1—X)) + (1—X)(2—(1+X))' 

where the first RHS term of Equation 4.9 represents the measurement error and the second term the 

lag error; all variables being defined with Section 3.6. This result has been quoted previously in 

Section 3.6, however, in this instance it is assumed that, a2 = CF 
100  2 = 	hence the matrix 

D may be simplified and represented D = a 2IN. Since the expression of Equation 4.9 is derived 

under the assumption that the transmitted data is known a priori, no account is taken of errors 

apparent within the data estimate, consequently, this expression represents a best case estimate. 

Of principal concern within this work is the dependence of the MSE upon the exponential weight-

ing factor, X. From equation 4.9 it can be seen that it is possible to derive an optimum value of X 

by differentiating the expression with respect to X and setting the result equal to zero. This leads to 

the following expression, 

a 	

Xopt = 112€ {(1+2€) +1- (1E)h/2}, 	 (4.10) 

2  
where, = -s-. Substitution of this result into equation 4.9 gives the minimum MSE under any 

(YQ)  

given channel conditions. 

Similar analysis to that performed for the RLS algorithm has been carried out on the LMS algo-

rithm [18-221. The corresponding expression for total MSE can be shown to be, 

E[ I e (n ) 12] Z ttr 	a2 
+ a2tr 	

(4.11) 
4jx 

In derivation of this equation similar assumptions to those made within the derivation of Equation 

4.9 are made. In equation 4.11 the first term represents the MSE due to the measurement noise and 

is analogous to the RLS asymptotic accuracy. The second term represents the error associated with 

the LMS lag error and is dependent upon the variance of the source non stationarity, the algorithm 

step size and the statistical characteristics of the data. Again it is possible to find an expression for 

the value of ji which results in the minimum total CW estimate MSE. This can be shown to be, 

1 
(4.12) 

The value of ji is, however, subject to a further constraint and must be chosen to conform to the 

LMS stability criterion, which, for white inputs, may be shown [89-91] to be given by the inequali-

ties, 

0<j.t<2/X, 	 (4.13) 

where A,, is the largest eigenvalue of the autocorrelation matrix, (I), and is, therefore, dependent 
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upon the statistical characteristics of the data. From the preceding discussion it can be seen that 

the performance of each of the algorithms is critically dependent upon the values of j.t and X, there-

fore, when comparing relative algorithm performance under time variant conditions it is important 

that optimum values are chosen. 

In order to assess the performance of each of these algorithms when used for continuous estimate 

update, computer simulation has again been used. Similar simulation conditions to those described 

in Section 4.2 have been applied. Figures 4.3(a), (b) and (c) show the NTE performance of the 

GSM channel estimator for the case in which the estimate is continuously updated throughout the 

data sequence using both the RLS and the LMS algorithm. In all simulations optimum algorithm 

update parameters are used. From the simulation results it is clear that at high Doppler frequencies 

considerable MSE performance improvement over the no update case is possible. Moreover, it can 

be seen that similar performance is obtained using RLS and LMS adaptive update. 

The system BER performance improvement over the no update case is shown in Figures 4.3(d) and 

(e). Here, at high Doppler frequencies and SNRs in excess of 10dB significant performance 

improvement is apparent. Predictably, system error rate performance when updated using LMS or 

RLS update is similar, hence for brevity only LMS performance is shown. At lower Doppler fre-

quencies BER performance improvement is still apparent, although less significant. It should be 

noted that within the simulations described above, the value of the update parameter, J.t, was fixed 

for all SNRs. Since the optimum value of j.t is dependent upon both the Doppler frequency and 

SNR, this leads to sub-optimal system performance. It may, therefore, be concluded that further 

performance improvement over the results given may be achieved by employing an algorithm in 

which the update parameter is itself adaptive [133] and is dependent upon the system SNR. 

433 Performance Degradation due to Tentative Decision Based Update 

Within the previous section, MLSE performance evaluation was undertaken using the assumption 

that the data sequence estimate is perfect. In practise, however, since the data estimate must be 

derived from the received signal, it is likely to contain errors. The performance obtained in Section 

4.3.2, therefore, represents optimum update algorithm performance. Within this section the perfor -

mance of the algorithms when implemented using more realistic data estimates is considered. 

The data sequence estimate may be produced in several ways, the simplest of which is to utilise the 

VA itself to make tentative decisions on the incomplete received sequence. However, since the VA 

performs MLSE and ideally bases the ML computation on a large number of signal samples, it is 

not well suited to symbol by symbol operation; the error rate performance of the algorithm being 

critically dependent upon the number of signal samples encompassed within the computation. Even 

so, tentative decisions may represent a reasonable data estimate provided that the ML computation 

is based on at least a predetermined minimum number of data samples, say d. As a consequence of 

this requirement tentative decisions can only be made on symbols which occur at, or before, time 

n —d, hence, a delay of d is necessarily incurred within the feedback of decisions. This process is 
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Figure 43 (a) - Mean Squared Deviation of the Channel Estimate Throughout the GSM Data Block 

when Adaptively Updated Using an RLS Algorithm under Channel Conditions Denoted Channel E 

(250Hz Doppler Frequency) 

10 
C 

10_ i  
_ 1 

10 2  

- - - - - - - - - - - - - - - I --------------.1  -- - - - - - - - - - - - -  ---------------- --------------- 

 

 - 

 

-------------- - 

• - - - - - - - - -- - - - -I ---------------1 --------------------------------------------- ____ ---------------------
iJ__ 	_________ 

3 

_____ 

- 

10 	20 	30 	40 	50 	60 
Number of Data Samples 

Figure 4.3 (b) - Mean Squared Deviation of the Channel Estimate Throughout the GSM Data Block 
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depicted in Figure 4.4. 

From the above discussion it can be concluded that the use of the VA to produce tentative deci-

sions results in two additional sources of system error. Firstly, since the data sequence estimate is 

subject to error, the adaptive update computation may be based on incorrect data. Therefore, the 

MSE at the channel estimator output will inevitably degrade. In order to minimise this error the 

delay period should be maximised. Secondly, as the channel estimate is based, not upon present 

data samples but on delayed decisions, the lag apparent between the channel estimate and the 

actual channel will be increased by a period equal to the delay, this, thereby, reduces the accuracy 

of the estimate. Error due to this source can be minimised by minimising the delay period. As can 

be seen, the length of the delay period is critical and is subject to these contradictory dependencies. 

In order to obtain optimum system performance the length of the delay should be chosen to jointly 

minimise each of these errors. Unfortunately, it is not simple to derive analytical expressions on 

which this choice may be based, the optimum length of delay being dependent upon a large number 

of variables, including the impulse response of the channel, the Doppler frequency, the SNR and 

the statistical characteristics of the data. For this reason, within this work the problem has been 

analysed by computer simulation. Figure 4.5 shows simulation results typical of the type on which 

the choice may be based. 

In Figure 4.5 the probability of error of the tentative decisions is plotted against the number of 

symbols on which the decision is based. Several channel conditions and SNRs are considered, 

however, in order to simplify the analysis only stationary channel conditions are examined. From 

each of these simulations it can be seen that the choice of delay is dependent upon both the SNR 

and the impulse response of the channel, and, in general, the more severe the transmission condi-

tions the greater the number of samples required in order to achieve near asymptotic performance. 

Under the simulation conditions used it may be concluded that near asymptotic performance is 

achieved using delays of between five and ten data samples. Within subsequent simulations, there-

fore, delays of this order are implemented. 

In order to observe the effect on system performance of basing the adaptive update on delayed ten-

tative decisions, further simulation has been undertaken. The purpose of this work being to com-

pare system performance for various tentative decision delays. Channel conditions similar to those 

defined within Section 4.2 are again used. In terms of MSE performance, shown in Figures 4.6(a) 

and (b), improvement over the no update case is still significant, however, performance degradation 

from the case in which estimate update is based on perfect decisions is evident. Under the channel 

conditions used for simulation, a delay of five data bits results in the least CW estimate error, even 

though a relatively high number of incorrect decisions are fed-back. Hence, it can be concluded 

that under these particular conditions the error caused by additional delay is more significant than 

the error due to suboptimal estimate update. In each of the above simulations the performances of 

the LMS and RLS algorithms again proved similar. 
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Figure 4.4 - An Adaptive MLSE Using Tentative Decisions Fed-Back From the Viterbi Algorithm 
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Figure 4.6 (b) - Mean Squared Deviation of the Channel Estimate Throughout the GSM Data Block 

when Adaptively Updated Using an LMS Algorithm Utilising Decisions Fed-Back from the Viterbi 
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In terms of error rate performance, shown for identical channel conditions in Figures 4.6(c) and (d), 

it can be seen that at high Doppler frequencies the performance of the system employing tentative 

decision feedback is degraded from optimum by approximately 2dB within the SNR range of 

interest. This represents a degradation in performance of about 1dB due to the use of tentative deci-

sions. Significant performance improvement over the no update case is still, however, apparent. 

Similar comments can be applied to the case in which Doppler frequencies are more typical of the 

physical system. However, performance degradation due to the use of tentative decisions is less 

marked. 

43.4 Algorithm Performance Improvement using Multi-Pass Equalisation 

Although the use of conventional adaptive algorithms for continuous estimate update results in 

significant system performance improvement, further improvement is possible. The principal area 

in which performance enhancement may be realised is within the reduction of the lag error of the 

adaptive algorithm. This may be achieved in two ways. Firstly, by reducing the adaptive algorithm 

steady state error, which is the subject of subsequent work within this and later chapters, and 

secondly, by minimising the delay within the feedback of the tentative decisions. Within this sec-

tion the second of these options is considered. 

Within this work, in order to minimise the delay a two stage equalisation scheme is proposed. This 

comprises a parameter estimation phase, in which the received signal is preprocessed in order to 

form a data sequence estimate, and an equalisation phase, in which the information derived from 

the initial pass is used as the basis on which channel estimation, and ultimately equalisation, is per-

formed. Within this technique, since the data estimate is known a priori within the equalisation 

pass, the delay in decision feedback may be reduced to zero. Moreover, as the data sequence esti-

mate is based upon the entire message sequence, error probability within the sequence is minim-

ised. 

The parameter estimation phase essentially represents an additional equalisation pass and may be 

implemented using either fixed or adaptive channel estimate update. Assuming adaptive update, the 

complete equalisation process, which is depicted in Figure 4.7, may be suminerised as follows: 

The channel output is initially received, sampled and stored in memory. 

Initialisation and training 

This is performed within the training sequence and is employed to derive the initial channel esti-

mate. 

Form an LS estimate of the CIR within the training sequence using one of the block estimation 

algorithms described in Section 3.3. 

Initialise the adaptive update algorithm on the basis of the initial LS estimate. 
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Parameter Estimation Pass 

This represents the first equalisation pass and is performed on both the forward and reverse data 

sequences. The objective of the process is to derive a data sequence estimate. This is achieved 

using the VA, the adaptive update algorithm and tentative decisions fed-back from the VA. In 

effect this phase is identical to the conventional "single pass" equalisation technique conventionally 

used. 

The following steps are performed sequentially for each data sample within both the forward and 

reverse data blocks. Processing takes place from the conclusion of the training sequence to the data 

block extremes. 

Add the current channel output to the VA. 

Perform the MLSE computation based on the time series of channel outputs and the current 

CW estimate. 

Feedback tentative decisions from the VA in order to produce the data sequence estimate. 

Update the CIR estimate based on a delayed channel output sequence and the tentative deci-

sions. 

At the completion of the data blocks the final data sequence estimate is formed and used as input 

information within the equalisation pass. 

Equalisation Pass 

This is performed on each data sequence and is used to derive the final equaliser output. 

The following steps are performed sequentially for each data sample within both the forward and 

reverse data blocks; Processing again takes place from the conclusion of the training sequence to 

the data block extremes. 

Add the current channel output to the VA. 

Update the CIR estimate based on the current channel output and the a priori estimate of the 

data sequence. 

Perform the MLSE computation based on the time series of channel outputs and the current 

CW estimate. 

In order to investigate the performance improvement which may be obtained using this technique 

computer simulation has been performed. Simulation results are given in Figure 4.8. Similar simu-

lation conditions as applied within Section 4.2 have again been used. Channel estimate NTE curves 

are shown in Figures 4.8(a) and (b). As can be seen by comparison with the curves of Figures 

4.6(a) and (b) only slight performance degradation from the optimum update case is apparent. This 

is predictably more significant under high noise conditions. In terms of system BER performance, 

shown in Figure 4.8(c), within the SNR range of interest, performance approaching that obtained 

using a perfect data sequence estimate, shown in Figure 4.3(d) for similar channel conditions, is 

achievable. 
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Figure 4.8 (a) - Mean Squared Deviation of the Channel Estimate Throughout the GSM Data Block 

when Adaptively Updated Using an LMS Algorithm Utilising a Multi-Pass Equalisation Scheme 

under Channel Conditions Denoted Channel E (250Hz Doppler Frequency) 

p. = 0.028 (SNR 10dB) p. = 0.050 (SNR 20dB) 

1 0 
C 

10_ i  _, --------------------------------------------- 
C,) 

z 

1 0 
- 2 

±0 	20 	.30 	40 	50 	60 
Number of Data Samples 
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1 - MLSE Error Rate Performance when Supplied with a Perfect Channel Estimate which is Con-

tinuously Updated. 

2 - MLSE Error Rate Performance when Supplied with an LMS Updated Channel Estimate using 

Multi-Phase Equalisation, p=0.010 

3 - MLSE Error Rate Performance when Supplied with an LMS Updated Channel Estimate using 

Delayed Tentative Decisions (delayed by 10 data samples), A--0.010 

4 - MLSE Error Rate Performance when Supplied with a Fixed Channel Estimate. 
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4.4 Channel Estimation using Algorithms Based on Rate of Change Estimates 

The objective of the algorithms to be presented within this section is to use a priori knowledge of 

the time variant characteristics of the channel in an attempt to reduce the steady state error at the 

output of the channel estimator. This is achieved by utilising modified versions of the conventional 

algorithms in which algorithm update is augmented by additional information in order to compen-

sate for the channel time variation. The approach adopted within this work is to use past CIR esti-

mates in order to identify a vector representing the instantaneous rate of change (ROC) of the dR. 

This vector is then incorporated into the algorithm recursion such that channel time variation is, to 

some extent, offset. 

If the ROC is known exactly then the lag error of the algorithm may be eliminated completely, 

hence, algorithm performance will approach the asymptotic stationary performance of the conven-

tional algorithm. However, since the ROC is unknown at the receiver it must be estimated from 

the received information. This can be achieved in several ways. The approach taken within this 

work is to view the problem as an application of linear filtering, in which the ROC coefficients 

must be computed from a time series of noisy CIR estimates. This approach leads to a family of 

algorithms, the principal difference between each being the category of filter used within the 

derivation of the ROC estimate. Within the following section several alternatives are considered. 

The work of this section is organised as follows, firstly, the generic form of the algorithm is 

presented and the optimum performance of it derived. Secondly, a simple approach to the computa-

tion of the ROC estimate is suggested and stability and convergence issues are considered. Next, a 

more sophisticated version of the algorithm is presented. In this the ROC is estimated either by a 

higher order filtering technique or by an optimal filtering technique. The performance of each of 

these options is then investigated by computer simulation. Finally, algorithm performance improve-

ment under GSM conditions using multi-pass equalisation is considered. 

4.4.1 Optimum Algorithm Performance 

In order to implement the "ROC algorithm', it is firstly necessary to identify a time variant vector 

which represents the instantaneous ROC of the CIR. The exact ROC vector may be determined 

from the optimum CIR vector, H 0  (n), and is defined, 

Vopt 	= H0 (n) - H,,pt 	. 	 (4.14) 

The optimum ROC algorithm is then obtained by incorporating this vector into the update equation 

of a conventional adaptive algorithm in such a way as to compensate for channel time variation. 

This can be achieved as follows, 

fl(n) = i(n-1) + F(n )e*  (n) + V0 (n-1) , 	 (4.15) 

where, F(n) represents the algorithm update vector, and is dependent upon which algorithm the 

ROC algorithm is based. For the RLS algorithm F(n) is given by, F(n) = K(n), and for LMS 
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update by F(n) = 2pX(n). The asymptotic MSE of the algorithm may be derived, as for conven-

tional algorithms, by analysis of the estimator output error, which in the case of optimum ROC 

estimation is given by, 

(n) = r(n )+XH  (n) [H0  (n )—fI(n —1)+V 0  (n )—V 0  (n—i)] , 	 (4.16) 

If a difference vector, 6V 0 , (n), is defined, 

6V01 (n) = VOPt 	, 	 (4.17) 

then following the analysis of Section 3.5, the MSE may be expressed, 

E[ le(n) 12  = 2+E{[fi(nV(n)TX(n)XH(n)[n(n)VH(n)1} 

a2+tr{ 	[E [(n )HH  (n +E E [ 	
] } , 
	(4.18) 

which, using the results of Section 4.3.2, may be approximated, 

tr { E 16VOPt  (n  )6VOPt H (n)] 
} a 2+ 2trcIp 1+ 	 , 	 (4.19) 

P2 

where Pi  and P2  represent scalar multipliers and are dependent upon which algorithm the ROC 

algorithm is based. For RLS update Pi  and P2  are obtained from Equation 4.9 and given by, 

Pi 
(2 OXD' 

and p2z(l—X)(2 - P(1—X)) and for LMS update they are obtained from Equation 

4.11 and given by, p lzg and P2Z4P. The expectation E 18VOPt (n )8V0  H (n) I  is an N xN matrix 

in which the leading diagonal represents the expected value of the square of the first derivative of 

the instantaneous ROC vector; since it may be assumed that there is little correlation between the 

instantaneous ROC of the individual terms all cross terms are close to zero. An explicit expression 

for this matrix may be derived by, firstly, expanding the expectation, using the definition of 

ÔVOM (n) and the assumption that, 

E [V,, (n )V"H  (n)] = E [V,,(n_I)V,, H (n_l)],  

to give, 

[6V,, (n )oV OPt H  (n)] = 2E [v0 , (n )VOH  (n)] - 2E [v0 , (n )V"" (n—i)] . (4.20) 

The two resulting expectations may then be determined by following analysis similar to that of 

Section 3.6. Under GSM conditions, however, 

E [ E [V,,(n )V"H  (n-1)] , 	 (4.21) 

hence, the error attributable to this source is negligible, which implies that the asymptotic perfor-

mance of the ROC algorithm approaches closely the stationary asymptotic performance of conven-

tional algorithms. 
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4.4.2 Algorithm Stability, Convergence and Asymptotic Performance 

In Section 4.4.1 the optimum ROC algorithm was derived, in this derivation it was assumed that 

the exact ROC vector is known a priori. In practice, however, this information is unknown and 

must, therefore, be estimated from the received signal. A number of techniques may be applied to 

this problem, the approach taken within this work being to base the ROC estimate on previous CIR 

estimates. The general form of the algorithm may, therefore, be expressed, 

fl(n) = i(n —1)+F(n )e*  (n )+a'cI(n), 	 (4.22) 

where a represents the algorithm ROC gain parameter. 

Due to the incorporation of the ROC estimate into the update of the CIR estimate the resulting 

adaptive algorithm exhibits the properties of a second order recursion. For this reason the choice of 

update parameters has important implications for the stability, convergence and asymptotic perfor-

mance of the algorithm. This may be demonstrated by considering the simple case in which the 

ROC estimate is obtained using two previous CIR estimates. In this instance the adaptive algorithm 

may be expressed, 

Ü(n) = ii(n —1)+F(n )e * (n )-I-a[fI(n —1 )-1(n -2)1. 	 (4.23) 

Hence, in this instance V(n) is given by, 

V(n) = Ü(n —1)—H(n —2). 	 (4.24) 

The adaptive update of the algorithm is given by the product F(n )e(n), which essentially 

represents a gradient vector indicating the direction of estimate update, this may be expressed, 

G(n) = F(n )e*  (n) = 2 '1(n)iiI(n-1) - 2 b(n) . 	 (4.25) 

Using the above relationships the algorithm may be expressed as the following difference equation, 

(n) = fl(n_1)_13G(n)+a[fI(n_1)_fI(n_2)], 	 (4.26) 

where 13 represents the update parameter of the algorithm, if adaptive update is based on the 

method of LS then the gradient vector indicates the LS optimum direction of update, in this case 

the update of each CW estimate coefficient may be considered independently, and, for the i th 

coefficient, may be expressed, 

= (1+a)h,(n-1)—aJ(n-2)-13g1 (n). 	 (4.27) 

If 13g1  (n) is assumed to result in perfect estimate update, then 13 is equal to unity, and the 

difference equation may be expressed as the following z-transform, 

H(z) = 
1 

—1+(a+1)z' 1—az'2  
(4.28) 

To ensure algorithm stability the poles of this z-transform must lie within the unit circle of the z-

plane, hence, under these ideal conditions, a must be chosen from the range 0 < a < 1. 
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In the case in which the gradient estimate is based upon the LMS algorithm, since it is not possible 

to consider each CIR estimate coefficient independently, it is necessary to perform a unitary 

transform on each of the terms within the update equation. The autocorrelation matrix may then be 

expressed in terms of a diagonal matrix A and a matrix U which contain, respectively, the eigen-

values and eigenvectors of I. Hence, 4D, is given by, = UAU', where, 

A = diagonal I;kO,kl . . .Xv_i ]. Then defining vectors G'(n )=U 1G(n), b', =U'F, and 

'=U_'(n), Equation 4.26 may be rewritten in terms of the transform vector space, 

cI'(n) = (1-i-(x)H'(n —1)—aH'(n —2)-I-J.iAfI'(n —1)+I' . 	 (4.29) 

In order to ensure algorithm stability [25] the gradient vector must converge to zero as n —*°, 
therefore, 

G'(n)—(1+a)G'(n-1)-l-MG'(n-1)-i-aG'(n-2) = 0, 	 (4.30) 

and the roots of the difference equations (4.29) and (4.30) must lie within the unit circle. Hence the 

following conditions for stability may be obtained, 0 < a <1 and 0 
< g < 2(1-i-a) 

The choice of the update parameter also has implications for algorithm convergence rate and steady 

state performance. Firstly considering steady state performance. The optimum asymptotic perfor-

mance of the algorithm detailed in Equation 4.22, may be obtained by following analysis similar to 

that of Section 4.4.1. In this instance, however, the exact ROC vector, V 0 , is replaced by a scaled 

estimate, A. Substituting this vector into Equation 4.16 yields, 

e(n) = r(n)+XH(n) [ii(n )+V(n )—(xV(n —1) ] , 	 (4.31) 

then, defining an error vector, V(n), 

	

V(n) = '(n) - V 0 ,(n), 	 (4.32) 

Equation 4.31 may be expanded, using the definition of Equation 4.32 to give, 

	

= 1(n )+X" (n) [ii(n)+(l—(x)V O (n )—aV(n)]. 	 (4.33) 

Using the assumption that each coefficient of the error vector, V(n), may be described as a zero 

mean independent Gaussian variable each of which is uncorrelated 2  with the coefficients of both 

H(n) and VOPt  (n), then using the results of Section 4.3.2 the total MSE at the output of the channel 

estimator may be approximated, 

2. In practise, since H(n) is used to derive V(n) some correlation will exist. The degree of correlation is dependent upon 
the technique used to compute V(n), however, assuming that a large number of CIR estimates are used to derive the ROC 
estimate the correlation may be considered negligible. 
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E[ le (n ) 12] 	
(1-2a 2)tr 	IV.Pt  )V01H(n)] 

P2 

a2tr'E [ii(n)'i2H (n)] 
- 	

. 	 (4.34) 
P2 

From Equation 4.34 it can be seen that if an exact estimate of the ROC vector is obtained then 

V(n) = °N• Hence if a is chosen to be equal to unity then asymptotic algorithm performance 

approaching that achievable within the time invariant environment is possible. Conversely, if the 

ROC estimate is excessively noisy then the error due to misadjustment of the ROC estimate may be 

significantly greater than error due to the source non stationarity, in which case, 

E [v0 v01 H (n)]<<E 
[
~(n)~H(n) I 

In order to obtain optimum algorithm performance under these conditions a should be chosen to be 

small. It is important to note that if a=O, algorithm performance is identical to that of the adaptive 

algorithm on which the ROC algorithm is based. 

In conclusion it is clear that the choice of a is dependent upon the accuracy with which V(n) is 

estimated. In order to demonstrate this consider the algorithm asymptotic MSE within the non-

stationary environment. Assuming that there is no correlation between the instantaneous time var i-

ation of each multipath, then the source non stationarity may be expressed, 

E [V,,, (n )V0 H  (n)] = diagonal [CF.02 	2 	
0'coN1 2 ], 	 (435) 

also, since each of the coefficients of the vector V(n), are assumed to be independent, 

	

E IV(n )VH (n) I = diagonal [CF, 
 0 
 2CY,  2 
	OeN 2 ]. 	 (4.36) 

Making the further assumption that 	2 = Cy.  2 = 	
= 	and similarly thatCD  

Cye =  e0  = 	= 	then the third and fourth RHS terms of Equation 4.34 may be rewritten, 

(1-2a+a2)a 2trI 	a2cre  2tr'J 

	

+ 	 . 	 (4.37) 
P2 	 P2 

In order to obtain optimum performance within the time variant environment these terms must be 

jointly minimised. Consider the case in which the error due to the source non stationarity and the 

error due to ROC estimate misadjustment are equal, ie., a ()2  = ae 2 It is possible to minimise the 

error expressed by Equation 4.37 by appropriate choice of a. The optimum value of a may be 

obtained by differentiating Equation 4.37 with respect to a and setting the resultant to zero, hence, 

the algorithm MSE may be minimised if, 

	

= 0 	 (4.38) 
da 

which is satisfied under the conditions described above when a=1/2. Computing similar optima for 
2 

the cases in which cy2 = y 2  and a 2  = 	results in the following respective values for a, 
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a=2/3 and a=1/3. 

From the above analysis it may be concluded that under non stationary conditions the steady state 

error of the channel identifier may be reduced by the inclusion of an ROC estimate, and that pro-

vided the optimum value of a is chosen the asymptotic performance of the ROC algorithm will be 

at least as good as that of the algorithm upon which it is based. The choice of ROC gain term a 

is, however, dependent upon the accuracy with which 'I(n) is estimated. Consequently, it is not 

simple to identify the optimum value of the ROC gain term. In addition, as can be inferred from 

the z-transform of Equation 4.28 and subsequent discussion, algorithm convergence rate is also 

dependent upon a . Hence, the choice of cx is subject to these potentially contradictory require-

ments. Therefore, in order to obtain optimum algorithm performance under any given conditions, 

compromise between convergence rate and steady state error may be necessary. 

4.43 Rate of Change Estimation using Higher Order Filtering 

The adaptive update equation (4.23) described within the previous section utilises a first order ROC 

estimation process and, therefore, represents the simplest of all possible ROC based algorithms. 

However, since the ROC estimate is derived from only two previous CIR estimates, which are 

themselves subject to misadjustment due to algorithm measurement noise, the ROC estimate will 

contain significant misadjustment error. The ROC vector misadjustment is directly dependent upon 

CIR estimate misadjustment and may be envisioned as a similar measurement noise process. The 

mean and variance of this process may be expressed, assuming that algorithm lag error is reduced 

to zero, as, E [V(n)] = 0 and E [v(n)vH(n) I = Je 2IN. 

It is possible to reduce ROC estimate misadjusiment by basing the computation of the ROC esti-

mate on a larger number of CIR estimate samples. This higher order filtering operation may be 

implemented using any pertinent digital filtering technique; the two of concern within this section 

being FIR and 1W filtering. Considering firstly the FIR option, the filtering process may be 

expressed, for the jth ROC coefficient, as, 

Na i 

v(n) = 	a / ) , 	 (4.39) 
j.S3 

where the sequence, {a }, represents the filter impulse response and Na  the number of past ROC 

estimates used within the ROC computation; these being chosen to give the required filter type, 

order and cutoff frequency. The variance at the output of such a filter is given by, 

Na i 

E [*j(n)*j_(n)] = Cre  2 E ai 2. 	 (4.40) 

From Equation 4.40 it can be seen that if the FIR filter were configured to simply average the ROC 

3. Evidence of this can be obtained by consideration of the case in which the dR estimate is based on LMS update and an 
ROC estimate derived from two previous CIR estimates. Here it can be seen that since it is possible to choose R from a 
larger range than that of the conventional algorithm, convergence rate may be increased. 
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vector then a reduction in the variance of the estimate misadjustment of Na  would result from the 

filtering process. 

The filter may alternatively be implemented as an hR filter, in which case the ROC estimate is pro-

duced using the following process, 

N0 -1 	 Nb -i 

i'(n) = 	a E(n—i)—I(n—i-1) - 	bi(n—i), 	 (4.41) 
i=O 	 1=1 

similar reduction in estimate misadjustment variance being possible by appropriate choice of the 

filter coefficients. 

Each of these filtering techniques may be configured to reduce the ROC estimate misadjustment, 

however, since the estimate is based on several CIR estimate samples an unavoidable lag between 

the actual ROC and the estimate is incurred. The algorithm update equation will, therefore, be 

based upon a delayed ROC estimate, hence estimator performance will be suboptimal. One 

approach by which this problem may be obviated is to use a priori knowledge of the time variant 

characteristics of the CIR in order to fit the resulting time series of ROC estimates to some 

predetermined model. The simplest model which may be assumed is that of linear CIR time varia-

tion , in which it is assumed that, within the block period, the ROC vector is constant. This 

approximation is valid for all but the highest Doppler frequencies which occur within the GSM sys-

tem. The estimation problem may then be characterised as an application of least squares estima-

tion theory, in which the objective is to identify the constant ROC vector. In general this problem 

may be expressed for the j th ROC coefficient as, 

Sj(fl)N e Yj 
(4.42) v(n) 

= i2(n)—Ni 2  

where, Ne , represents the number of CW samples and 

1 N—i 
(4.43) 

n 

= Ix2 (n—i), (4.44) 

N-i 

Ti = 	Y j (fl1), (4.45) 
n 1=0 

N-i 
S(n) = 	h(n—i)x(n—i). (4.46) 

1=0 

Equation 4.42 represents the general case for estimation of (n) and as such uses all previous esti-

mates of 11(n). Under channel conditions exhibiting high Doppler frequencies, however, it is use-

ful to weight recent CIR estimates more heavily than earlier estimates. This can be achieved by 

imposing a window ,  function on the CIR estimates; the window types of greatest relevance within 

4. It should be noted that it is possible to extend the model to any order required. 
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this application being the sliding and the exponential window. In each case computation of V(n) 

may be reduced using a recursive solution, which, in the case of the exponential windowed version, 

is given by the following relationships, 

Ne (fl) = 	 (4.47) 

(n) = 	(n —l)(l--'y' IN c  )+x (n )/N. 	 (4.48) 

= 2(n-1)+x2(n), 	 (4.49) 

5T(n) = 	(fli)(1"/IN e )+y (n )/N 	 (4.50) 

S(n) = yS (n —1)+x (n )y (n ). 	 (4.51) 

If the exponential weighting factor 'y is made equal to unity then the algorithm has infinite memory, 

hence the ROC estimate is then based on all previous CIR estimates. 

An alternative solution to the same problem is provided by the sliding window algorithm, in which 

the ROC estimates are dependent upon a finite number of past CIR estimates. In this algorithm the 

values of 1 and T2  may be precomputed using Equations 4.43 and 4.44, but the values of 3 (n) and 

Si  (n) must be computed for each algorithm iteration as the following two stage process. Firstly, a 

new CIR estimate is added using equations 4.45 and 4.46, and secondly, the CIR estimate at time 

(n —L), where L is the window length, is discarded using the following equations, 

5Tj 	=(n)—i'j (n—L)IN e 	 (4.52) 

S3  (n) = S(n )—ic(n—L)x(n—L). 	 (4.53) 

The algorithm has the advantage that abrupt changes in the input statistics can be tracked more 

effectively than with the exponentially weighted algorithm. However, algorithm complexity is 

increased due to the necessity of storing, in memory, L +N, CIR vectors. 

Clearly within the algorithm based on higher order ROC estimate filtering the same constraints with 

regard to the choice of update parameters that are apposite to the basic algorithm apply. However, 

within the algorithms presented within this section, due to the greater accuracy with which (n) 

may be estimated it is possible to choose values of a closer to unity, thereby increase steady state 

accuracy. 

4.4.4 Rate of Change Estimation using Optimal Filtering 

Within the previous section a CIR ROC estimation algorithm based on a priori knowledge of the 

time variant characteristics of the channel was presented. The a priori knowledge of the channel 

behaviour is embedded within the algorithm in the form of a predetermined model, the model used 

within Section 4.4.3 being that of a constant ROC of the C[R coefficients. This approximation 

results in adequate CIR estimator performance at medium to low Doppler frequencies, however, at 

high Doppler frequencies the model becomes increasingly suboptimal and consequently leads to 

estimation error. Under such conditions it is, therefore, necessary to employ a more realistic 
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model. One way in which this may be achieved is to extend the CIR ROC model to encompass a 

higher order polynomial approximation. The approach taken within this work, however, is to use 

Kalman filtering (1(F) theory [65,119,134] in order to incorporate, within the ROC estimation algo-

rithm, a model for CIR time variability similar to the one defined within the GSM system. This 

technique thereby results in a near optimum ROC estimation algorithm. 

The Kalman filter, first proposed by Kalman and Bucy [119], is a recursive estimation technique 

which yields the best linear estimate for any linear system which can be described as a vector Mar-

kov process. The principal attraction of the KF within this application, is its capacity to deal with 

time variant systems. In order to apply KF theory to any estimation problem it is firstly necessary 

to assume a model for the time variant characteristics of the system. This model must then be 

described using state space techniques as a set of linear difference equations representing the evolu-

tion of the system coefficients in time. Finally, the resulting system matrices are substituted into the 

standard KF equations in order to derive the recursive estimation algorithm. It is important to note 

that the KF is only optimal provided that the model on which the filter is based is accurate and that 

all model parameters are known a priori. Within this section this is assumed to be true, hence the 

resulting algorithm represents the minimum variance ROC estimator. 

Within the GSM system each CIR coefficient is modelled as an independent band limited WGN 

process[53]; this has been described in Chapter 3. The spectral characteristics of the coefficient 

generating filter are described by Equation 3.37 and may be approximated by the second order HR 

filter shown in Figure 4.9. In order to apply KF theory to the derivation of the ROC estimate it is 

necessary to derive a state space representation of CIR coefficient ROC time variation. This may 

be achieved by extending the hR filter model to yield a model for instantaneous CIR ROC. Such a 

model is shown in Figure 4.10. In this instance the CIR time variation may be represented, in state 

space, by the following difference equations. 

State transition equation, 

S(n+1) = AS(n)+G(n+1). 	 (4.54) 

Observation equation, 

= CTS(n+1)±u(n+1)_w(n+1) , 	 (4.55) 

where the state vector, S(n), represents the internal state of the filter and is given by 

ST (n) = IX (n) x (n —1) x (n -2)1, the matrix, A, is termed the state transition matrix and describes 

the way in which the internal states evolve with time, in this instance this may be expressed, 

a0 
A = 1 0 0 , the vector C is termed the observation vector and is given by 

010 
CT = 1( 1—(X) (-1—n) (_1)], and the quantities G(n+1), u(n+1) and w(n+1) represent the system 

and observation noise, which in this instance are assumed to be zero-mean WGN processes, hence 

the vector, G(n-i-1), may be expressed, GT(n+1) = lg(n+l) 0 0]. 
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Figure 4.9 - The Second Order HR Filter Model of the Multipath Weight Generation Process 

Assumed Throughout this Work 
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Figure 4.10 - The Second Order hR Filter Model of the Instantaneous Rate of Change of the Chan-

nel Impulse Response. Shown for ROC Coefficient v, 
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It is possible to expand these equations in order to encompass the complete channel model by 

defining the system equations to enable the algorithm to operate as a multiple-input and multiple-

output system. However, since each CIR coefficient is assumed to be independent, a more computa-

tionally efficient alternative is to derive each ROC coefficient using a separate recursion, which is 

the approach adopted within this work. The recursion is obtained by substituting the quantities 

defined above into the standard KF equations, this results in the following ROC estimation algo-

rithm, expressed here for the jth channel coefficient, 

S(n+l) = AS(n) + K(n+l) Ivj  (n +1)-17j  (n +1) 11 
	 (4.56) 

K (n +1) = P (n +1 )CT [ (n )+CP (n +1 )CT 
	

(4.57) 

	

P(n+l) = [APj (n)AT  - AK1 (n)CP(n)AT  + Q(n+1)], 	 (4.58) 

= CAS(n), 	 (4.59) 

where the input scalar v (n +1) is derived from previous CIR estimates using the following relation-

ship v (n +1) = h (n +1)—h (n) and the noise terms are given by, 

a 2  00 

Q(n+1)=E IG(n)G T  (n) 1= 
0 00 

CYVW 0 0 

Z(n) = E 
I 
 (V(n )+W(n) V(n )—W(n ))T] 	f 0  0 

and ag 2  is the variance of the system noise and a 2  = a 2  + a 2  where a 2  and a 2  are the vari-

ance of the observation noise terms. In order to identify the ROC vector using this algorithm, the 

recursion of Equations 4.56 to 4.59 must be performed for each ROC coefficient at each iteration of 

the overall CIR identification algorithm. The resulting ROC vector is then incorporated into the 

CIR estimate update as described by Equation 4.22. Again the resulting CIR identification algo-

rithm is subject to similar constraints with regard to the algorithm update parameters as described 

for the previous examples. 

Initialisation of the algorithm is important and is subject to similar constraints to those described 

for the RLS algorithm. The inverse correlation matrix, P, is initialised either on the basis of a 

priori knowledge of the characteristics of autocorrelation matrix, or, more typically, by setting 

	

P (0) = aIN , where a is a large positive scalar chosen such that a>> 	. In the absence of 
Var {g(n)} 

any a priori knowledge all other variables are initialised to zero. 

Although the resulting CIR identification algorithm can provide the most accurate channel estimate 

obtainable when derived using any of the ROC algorithms it is subject to several practical limita-

tions. Firstly, since the parameters of the model are unknown at the receiver these must be 

estimated from the received signal. This results in unavoidable modelling error and, hence, 
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performance degradation. Secondly, the computational complexity of the algorithm is high, requir-

ing a KF operation for each channel coefficient. This represents a computational load of order N 3  

arithmetic operations per iteration. In the practical system this complexity may be unacceptable. 

Study of this type of algorithm, however, remains useful since it allows bounds to be set for the 

minimum achievable MSE for any ROC algorithm. 

4.4.5 ROC Algorithm Performance Comparisons 

In order to compare the performances of each of the ROC algorithms described, computer simula-

tion has been performed. Simulation results are given in Figure 4.11. The principal objective of 

these simulations is to observe the steady state performance of each of the alternative ROC algo-

rithms under highly time variant channel conditions. In order to achieve this, algorithm perfor-

mance is investigated under continuous data transmission conditions. Here, since initial training is 

not assumed to be performed prior to data transmission, in addition to the steady state performance 

comparisons algorithm transient behaviour may also be observed. In each of the simulations the 

transmitted data is assumed to be known a priori, hence, within the resulting performance plots no 

account is taken of the effects of suboptimal update due to delayed, possibly incorrect, data. 

The results of Figure 4.11 show, for a variety of channel conditions, the average NTE performance 

of a channel estimator when updated using ROC algorithms based on both LMS and RLS update. 

Three methods of computing the ROC estimate have been used. These are, the computationally 

simple method of Equation 4.23 in which the estimate is based on only two previous CIR esti-

mates, the method of higher order filtering using the recursive algorithm of Equations 4.42 and 4.47 

to 4.51, and the method of optimal filtering of Equations 4.56 to 4.59. In the latter algorithm full a 

priori knowledge of the characteristics of the channel is assumed. For comparison purposes the 

performance of the conventional LMS and RLS algorithms is also shown. The conditions used for 

computer simulation are summarised in Table 4.2. 

Figure MPDP (Ha  (z)) Doppler Frequency SNR Adaptive Update 

4.11(a) 1+z 1+z 2  1000Hz 50dB LMS 

4.11(b) 1+z 1+z 2  250Hz 30dB LMS 

4.11(c) 1+z 1+z 2  50Hz 10dB LMS 

4.11(d) 1+z 1+z 2  1000Hz 50dB RLS 

4.11(e) l+z 1+z 2  25011z 30dB RLS 

4.11(f) l+z 1+z 2  50Hz 10dB RLS 

Table 4.2: Simulation Conditions used within Computer Investigation into the MSE 

Performance of the ROC Algorithm 
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Figure 4.11 (a) - Mean Squared Deviation of the Channel Estimate when Adaptively Updated Using 

an LMS Algorithm Under Continuous Data Transmission Conditions for a Channel of MPDP 

Ha (Z) = 1 + + z 2 . ( 1000Hz Doppler Frequency, SNR=50dB) 
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Figure 4.11 (b) - Mean Squared Deviation of the Channel Estimate when Adaptively Updated Using 

an LMS Algorithm Under Continuous Data Transmission Conditions for a Channel of MPDP 

Ha  (z) = 1 + z 1  + z 2. (250Hz Doppler Frequency, SNR=3OdB) 
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Figure 4.11 (c) - Mean Squared Deviation of the Channel Estimate when Adaptively Updated Using 

an LMS Algorithm Under Continuous Data Transmission Conditions for a Channel of MPDP 

Ha  (z) = 1 + z 1  + z 2. (50Hz Doppler Frequency, SNR=lOdB) 

1 - Conventional LMS Update 

2 - LMS Update Incorporating an ROC Term Computed using Equation 4.23, a=0.8 (Fig. 4.11 a) 

a=0.5 (Fig. 4.11 b ) a=0.3 (Fig. 4.11c) 

3 - LMS Update Incorporating an ROC Term Computed using the Higher Order Filtering Technique 

(Equations 4.42 and 4.47 to 4.51), a=1.0 '0.8 (Fig. 4.11 a ) a=0.95 y=0.90 (Fig. 4.11 b ) 

a=0.5 0.95 (Fig. 4.11c) 

4 - LMS Update Incorporating an ROC Term Computed using the Optimal Order Filtering Tech-

nique (Equations 4.56 to 4.59), a=1.0 (Fig. 4.11 a) a=0.95 (Fig. 4.11 b) a=0.5 (Fig. 4.1 ic) 
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Figure 4.11 (d) - Mean Squared Deviation of the Channel Estimate when Adaptively Updated Using 

an RLS Algorithm Under Continuous Data Transmission Conditions for a Channel of MPDP 

Ha  (z) = I + + z 2. (100011z Doppler Frequency, SNR=50dB) 
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Figure 4.11 (e) - Mean Squared Deviation of the Channel Estimate when Adaptively Updated Using 

an RLS Algorithm Under Continuous Data Transmission Conditions for a Channel of MPDP 
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Figure 4.11 (f) - Mean Squared Deviation of the Channel Estimate when Adaptively Updated Using 

an RLS Algorithm Under Continuous Data Transmission Conditions for a Channel of MPDP 

Ha (z) I + z1 + z2. (50Hz Doppler Frequency, SNR=lOdB) 

1 - Conventional RLS Update 

2 - RLS Update Incorporating an ROC Term Computed using Equation 4.23, a=0.8 (Fig. 4.11 a ) 

a=0.5.(Fig. 4.11 b ) a=0.3 (Fig. 4.11c) 

3 - RLS Update Incorporating an ROC Term Computed using the Higher Order Filtering Technique 

(Equations 4.42 and 4.47 to 4.51), a=1.0 '=0.8 (Fig. 4.11 a ) a=0.95 'p0.90 (Fig. 4.11 b ) 
a-0.5 '0.95 (Fig. 4.11c) 

4 - RLS Update Incorporating an ROC Term Computed using the Optimal Order Filtering Technique 

(Equations 4.56 to 4.59), a=1.0 (Fig. 4.11 a) a=0.95 (Fig. 4.11 b) a=0.5 (Fig. 4.1Ic) 
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Comparing the performances of each of the algorithms it can be seen that the ROC algorithms do 

offer superior steady state performance to that of the conventional update techniques. Predictably, 

however, the most significant performance improvement occurs under highly time variant channel 

conditions. Here, the optimum ROC estimation algorithm results in performance which is approxi-

mately an order of magnitude better than that achievable using conventional update techniques. 

Under these conditions the computationally simpler ROC algorithms also offer significant perfor-

mance improvement, and indeed the performance of the higher order filtering technique approaches 

closely the optimum defined by the optimally filtered algorithm. At low Doppler frequencies and 

high noise levels the performance improvements are not as great, each ROC algorithm offering 

only marginal performance advantage over the conventional techniques. The principal reason for 

this is that within the high noise environment estimate misadjustment error is predominantly caused 

by the additive noise itself, hence compensation for the time variation, which is only moderate in 

the case of Figures 4.11(c) and 4.11(1), results in little performance improvement. 

In terms of transient performance, the convergence of the conventional update algorithms may be 

characterised as being, in general, smooth and monotonically decreasing. This behaviour is, how-

ever, not typical of the algorithms in which ROC estimation is utilised. The performance of these 

algorithms is characterised by an initial degradation in MSE performance which is principally due 

to overshoot of the CR estimates. The degree of overshoot may be reduced by decreasing the 

value of the ROC update parameter, a, which in each case is chosen to minimise the steady state 

error. In general, the convergence rate of the ROC algorithms is, therefore, greater than that of the 

conventional algorithms. It is interesting to note, however, that in the case in which ROC estima-

tion is based on only two previous CIR estimates, convergence rate is slightly higher than that of 

the conventional algorithms. Hence it can be seen that the value of a may be chosen to increase 

the convergence rate of the algorithm upon which it is based, although this may not necessarily 

optimise algorithm steady state performance. 

Comparing the performances of the LMS and RLS based algorithms it can be seen that the steady 

state performance of each of the corresponding algorithms is similar. However, the convergence 

rates of the RLS based algorithms are significantly higher than those of their LMS counterparts. 

4.4.6 Application of the ROC based Algorithm to the GSM System 

The ROC based algorithm, 4.22, may be applied to the problem of channel identification within the 

GSM system using one of several approaches. The most straightforward of these is to apply the 

algorithm using a similar procedure to that adopted within the application of conventional algo-

rithms. Within this technique, firstly, an initial CIR estimate is computed within the training 

sequence. This information is then used as the basis on which the channel identification algorithm 

is initialised. The algorithm is then used to recursively update the CIR estimate throughout the 

equalisation phase. The procedure may be summarised as follows: 

- 128- 



The channel output is initially received, sampled and stored in memory. 

Training and initialisation 

This is performed within the training sequence and is employed to derive the initial channel esti-

mate. 

Form an LS estimate of the CW within the training sequence using one of the block estimation 

algorithms described in Section 3.3. 

Initialise the adaptive update algorithm on the basis of the initial LS estimate. 

Equalisation 

The following steps are performed sequentially for each data sample within both the forward and 

reverse data blocks. Processing takes place from the conclusion of the training sequence to the data 

block extremes. 

Perform the MLSE computation based on the time series of channel outputs and the current 

CW estimate. 

Feedback tentative decisions from the VA in order to provide the data sequence estimate. 

Estimate the CIR ROC using past CIR estimates and one of the algorithms described within the 

foregoing sections. 

Update the CIR estimate on the basis of the current channel output, the data estimate and the 

ROC estimate using the update of Equation 4.22. 

This procedure, although straightforward, is subject to several practical limitations. Firstly, the algo-

rithm will exhibit similar performance degradation due to the use of delayed, possibly incorrect, 

decisions within the adaptive update process as that described for the conventional algorithms. 

Secondly, since the ROC vector is estimated within the equalisation phase, the algorithm may not 

achieve the steady state within the data block. Consequently, the ROC estimates derived during this 

period may be subject to significant misadjustment error. The resulting CW estimate will, therefore, 

be suboptimal, and under certain conditions may be inferior to that obtainable using a conventional 

algorithm. 

In order to investigate the performance of the ROC based algorithms when applied to the problem 

of channel identification using the technique described above, computer simulation has been per-

formed. Simulation results are given in Figure 4.12. For brevity only the performance of the LMS 

based ROC algorithm is shown; the RLS based ROC algorithm can be shown to yield similar 

results. For the purposes of these investigations the GSM data structure is adopted. Figures 4.12(a) 

and (b) show the NTE variation of the channel estimate throughout the data block when update is 

implemented using tentative decisions fed-back from the Viterbi algorithm delayed by five data 

samples. From these plots it can be seen that at high Doppler frequencies and high SNRs some 

performance improvement is achievable. However, when considered over the complete data block, 

even under these channel conditions, improvement is only marginal. Conversely, under high noise 

conditions each of the ROC algorithms result in performance degradation when compared with the 

conventional algorithm. The principal reason for this is that under these conditions estimate misad-

justment is predominantly caused by additive noise. Therefore, if based on a limited number of 
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Block when Adaptively Updated Using an ROC Algorithm Based on LMS Update under Channel 
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Figure 4.12 (b) - Mean Squared Deviation of the Channel Estimate Throughout the GSM Data 

Block when Adaptively Updated Using an ROC Algorithm Based on LMS Update under Channel 

Conditions Denoted Channel F (50Hz Doppler Frequency, SNR=lOdB) 

1 - Conventional LMS Update 

- 

2 - ROC Estimate Derived using Two Previous cm Estimates, a=0.5 (4.11 a) cz=0.3 (4.11 b) 

3 - ROC Estimate Derived using Higher Order Filtering a=0.95 '0.9 (4.11a) a=0.8 '0.95 (4.1 Ii,) 

4 - ROC Estimate Derived using Optimal Filtering a=0.95 (4.11 a) a=0.8 (4.1 lb) 
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CIR samples, the ROC estimate itself will tend to be inaccurate. Hence the algorithms cannot fully 

converge within the data block. In the case of the more complex ROC based algorithms this prob-

lem may be overcome provided that the ROC estimate is based on a large number of data samples, 

however, within the GSM system the data block is, in general, too short for performance improve-

ment to be observed. 

From these simulations it can, therefore, be concluded that if the ROC algorithm is applied to the 

estimation problem as described within this Section, transmission conditions are frequently such 

that the ROC algorithms result in no significant performance improvement. 

4.4.7 Algorithm Performance Improvement using Multi-Pass Equalisation 

The problems which have been highlighted within Section 4.4.6, with regard to the application of 

the ROC algorithm within the GSM system may be, to some extent, overcome by using a similar 

two stage equalisation scheme to that described in Section 4.3.4. Again separate parameter estima-

tion and equalisation phases are proposed. In this instance the purpose of the parameter estimation 

pass is twofold, firstly, to obtain a data sequence estimate from which subsequent CIR estimates 

may be derived and, secondly, to compute an overall ROC estimate which is based upon the entire 

data block; this may be achieved using the higher order filtering algorithm described in Section 

4.4.3. The overall ROC estimate is then used in conjunction with the initial CIR estimate in order 

to initialise the ROC algorithm. Within the equalisation pass the ROC estimate may be held con-

stant throughout equalisation or updated adaptively using current CIR estimates as previously 

described. Assuming adaptive ROC update, the complete equalisation process may be summarised 

as follows: 

The channel output is initially received, sampled and stored in memory. 

Initialisation and training 

This is performed within the training sequence and is employed to derive the initial channel esti-

mate. 

Form an LS estimate of the CIR within the training sequence using one of the block estimation 

algorithms described in Section 3.3. 

Initialise the adaptive update algorithm on the basis of the initial LS estimate. 

Parameter Estimation Pass 

This represents the first equalisation pass and is performed on both the forward and reverse data 

sequences. The objective of the process is to derive both a data sequence estimate and an initial 

ROC estimate. This is achieved using the VA, the adaptive update algorithm and tentative deci-

sions fed-back from the VA. In effect this phase is identical to the conventional "single pass" 

equalisation technique described earlier. 

The following steps are performed sequentially for each data sample within forward and reverse 

data blocks. Processing takes place from the conclusion of the training sequence to the data block 

extremes. 
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Perform the MLSE computation based on the time series of channel outputs and the current 

CW estimate. 

Feedback tentative decisions from the VA in order to provide the data sequence estimate. 

Update the CIR estimate based on a delayed channel output sequence, the tentative decisions 

and the current ROC estimate. 

Use past dR estimates in order to compute an ROC based on all available data using the 

higher order filtering algorithms described in Section 4.4.3. 

At the completion of the data blocks the final data sequence estimate and ROC estimate are formed 

and used as input information within the equalisation pass. 

Equalisation Pass 

This is performed on each data sequence and is used to derive the final equaliser output. 

Initialise the CIR estimate algorithm on the basis of the initial CIR and ROC estimates. 

The following steps are subsequently performed sequentially for each data sample within forward 

and reverse data blocks. Processing again takes place from the conclusion of the training sequence 

to the data block extremes. 

Update the CIR estimate based on the current channel output sequence, the a priori estimate 

of the data sequence and the current ROC estimate. 

Perform the MLSE computation based on the time series of channel outputs and the current 

Cifi estimate. 

Update the ROC vector on the basis of the initial estimate and past Cifi estimates. 

This technique has several advantages over conventional "single pass" equalisation. Firstly, since 

the ROC estimate is based on the entire data sequence the resulting vector, V(n), is less sensitive 

to additive noise and thus represents a more accurate estimate than is possible using a limited data 

set. Secondly, because a data sequence estimate is obtained prior to equalisation, it is not neces-

sary to operate the equaliser in the decision directed mode, hence the resulting CIR estimate is 

based on current, rather than delayed, data. 

The performance improvement obtainable using multi-pass equalisation has been investigated by 

computer simulation. Simulation results are given, for similar channel conditions as used in the 

investigations of Section 4.4.6, in Figure 4.13, again only LMS based update is shown. These 

results give the relative performances of three system types, which are, the conventional LMS algo-

rithm, the ROC based algorithm incorporating a fixed ROC estimate 5 , and the ROC based algo-

rithm in which the initial ROC estimate is updated continuously throughout data transmission using 

the algorithm described by Equations 4.42 and 4.47 to 4.51. Several important points are evident 

from these plots. Firstly, the use of the pre-equalisation parameter estimation phase results in 

significant performance improvement for each algorithm, particularly under highly time variant con-

ditions. Secondly, the ROC algorithm yields superior performance to that of the conventional algo-

rithm throughout the entire data block, again this performance improvement is more significant at 

5. It is important to note that within these simulations the initial ROC estimate is derived using both forward and reverse in-
formation sequences. 
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Figure 4.13 (b) - Mean Squared Deviation of the Channel Estimate Throughout the GSM Data 

Block when Adaptively Updated Using an LMS Algorithm Incorporating an ROC Estimate and 

Utilising a Multi-Pass Equalisation Scheme under Channel Conditions Denoted Channel F (50Hz 

Doppler Frequency, SNR=lOdB) 

1 - Conventional LMS Update 

2 - ROC Estimate Derived Using Higher Order Filtering, No ROC Update Throughout the Equalisation Phase, 

3 - ROC Estimate Derived Using Higher Order Filtering, ROC Update Throughout the Equalisation Phase, 
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higher Doppler frequencies. Lastly, that the performances obtained from the fixed ROC algorithm 

and from the continuously updated ROC algorithm are almost identical. From this it may be con-

cluded that, under GSM conditions, the ROC algorithm modelling error due to the constant ROC 

approximation is negligible compared with other system errors. 

In terms of error rate performance, simulation results of which are given in Figure 4.14, it can be 

seen that at high Doppler frequencies the ROC based algorithm, when applied using multi-pass 

equalisation, does offer performance advantage over the conventional algorithm when similarly 

applied. The performance advantage is, however, only significant at SNRs over approximately 

12dB. Indeed at SNRs of less than 10dB performance of the ROC algorithm is marginally inferior. 

At lower Doppler frequencies simulation results indicate that the performance of each of the tech-

niques becomes increasingly similar. 

45 Conclusions 

Within this chapter various techniques by which continuous channel estimate update throughout 

unknown data transmission may be accomplished have been presented. The relative performances 

of each of the techniques have been established by analysis and computer simulation. From these 

analyses it has been shown that within the GSM system, particularly at high Doppler frequencies, 

continuous estimate update algorithms do offer significant performance advantage. 

In order to justify the above conclusion it is necessary to compare the performances of each of the 

channel estimation techniques described. Considering, firstly, the case in which no estimate update 

algorithm is employed. From the work of Section 4.2 it is clear that at high Doppler frequencies 

estimate quality degrades rapidly throughout the data block and is ultimately the principal limita-

tion on system asymptotic error rate performance. At more typical Doppler frequencies significantly 

less degradation is evident, however, performance improvement is still achievable. 

From the work of Section 4.3 it can be seen that the use of conventional algorithms for adaptive 

update results in significant estimator MSE performance improvement, particularly at high Doppler 

frequencies; it is also interesting to note that under the GSM conditions used within the simulations 

the performance of each of the conventional algorithms proved comparable. Under highly time vari-

ant channel conditions, however, the performances of the conventional update algorithms were 

shown to be suboptimal, and, under GSM conditions, subject to two limitations. These can be sum-

marised as follows: firstly, since the data sequence estimate is necessarily derived from the Viterbi 

equaliser, an unavoidable delay in the feedback of decisions is incurred. The performance of the 

update algorithm was shown to be critically dependent upon this delay, which for optimum system 

performance was shown to lie within the range five to ten data samples. Secondly, since conven-

tional algorithms are suited to the time invariant environment they tend to be subject to significant 

lag error. 
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Figure 4.14 - Probability of Error versus Eb/No Shown for an MLSE Supplied with a Continuously 

Updated CW Using Multi-Pass Equalisation. Simulated for Channel Conditions Denoted Channel-E 

(ie., 20Hz Doppler Frequency) 

I - MLSE Error Rate Performance when Supplied with a Perfect Channel Estimate which is Con-

tinuously Updated. 

2 - MLSE Error Rate Performance when Supplied with a CIR Estimate Derived using an LMS based 

ROC Algorithm Using the Higher Order Filtering Technique and Multi-Pass Equalisation. 

j.t=0.05 a=0.95 =0.9 

3 - MLSE Error Rate Performance when Supplied with a CIR Estimate Derived using a conventional 

LMS Algorithm Using the Multi-Pass Equalisation Technique. p=0.05 
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In order to obviate the former problem a multi-pass equalisation technique was presented. In this 

the data sequence estimate is derived prior to equalisation. This technique was shown to result in 

significant performance improvement over the conventional single phase technique. To achieve 

reduction in algorithm lag error an alternative adaptive algorithm was proposed. The algorithm, 

which is based on the conventional update techniques, incorporates an additional parameter set 

representing the ROC of the CW coefficients. The algorithm was shown to offer performance 

advantage over conventional techniques within the highly time variant environment. However, 

under high noise conditions algorithm convergence rate proved too low to achieve performance 

improvement. The performance of this algorithm has also been investigated using multi-phase 

equalisation and the resulting technique proved to offer superior performance to that of the conven-

tional algorithms under all simulation conditions. 

Comparing the error rate performance of the MLSE when implemented using each of the methods 

of update described 6  it is clear that application of simple adaptive algorithms to the problem of 

channel estimate update results in significant performance improvement at high Doppler frequen-

cies. Furthermore, although the more computationally complex algorithms do offer further improve-

ment, the improvement achievable is less significant. 

6. Simulation results of several of the techniques are reproduced for convenience in Figure 4.15. 
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Channel E (ie., 250Hz Doppler Frequency) 
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l.t=0.05 a=0.95 =0.9 

3 - MLSE Error Rate Performance when Supplied with a CW Estimate Derived using a conventional 

LMS Algorithm Using the Multi-Pass Equalisation Technique. j.t=0.05 

4 - MLSE Error Rate Performance when Supplied with a CW Estimate Derived using a conventional 

LMS Algorithm and Tentative Decisions Delayed by 10 Data Samples. j.t=0.05 

5 - MLSE Error Rate Performance when Supplied with a Fixed Channel Estimate. 
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Chapter 5 
Model Based 
Identification 

Algorithms for Channel 

5.1 Introduction 

The ROC algorithm described in Chapter 4 represents one method by which a priori knowledge of 

the channel time variant behaviour may be utilised in order to reduce the steady state error of con-

ventional adaptive algorithms under time variant conditions. Within this chapter an alternative to 

this technique is presented and several novel algorithms proposed. The class of algorithms to be 

described, referred to hereafter as "Model Based" algorithms, differ from the ROC algorithms in 

that a priori knowledge of the time variant characteristics of the channel, in the form of a predeter -

mined model, is incorporated directly into the structure of the algorithm. Time variation compensa-

tion is then performed intrinsically within the algorithm recursion. As a result of this process there 

is no requirement to use past CIR estimates in order to estimate, explicitly, additional information 

as to the time variant behaviour of the channel coefficients. 

Model Based algorithms are derived using optimal estimation theory, consequently, provided that 

the model assumed is accurate, the resulting algorithm represents the optimum linear estimator for 

the channel conditions assumed. Essentially, the Model Based algorithm simultaneously performs 

an LS fit of the CW estimate to the received signal samples and the model assumed. The algorithm 

may, therefore, be viewed as the LS solution to the particular time variant environment which the 

model describes. Since the algorithm is based on the method of LS it possesses the ability to train 

rapidly and convergence rates comparable with that of the RLS algorithm are possible. This con-

trasts with the ROC algorithms in which convergence rates are low and are dependent upon the 

channel fade rate and the choice of the ROC gain term. Unfortunately, the Model Based technique 

represents a relatively high computational load, hence, more optimal performance is gained at the 

expense of computational efficiency. 

Within this chapter, in order to establish optimum algorithm performance bounds, firstly, the 

minimum variance model based Kalman estimator is derived. Secondly, a simpler near optimum 

algorithm is presented. An exponentially windowed version of the algorithm is then derived and its 

performance under ideal transmission conditions is investigated. Next, the performance of the algo-

rithm under the conditions which prevail within the GSM system is investigated and techniques 

which may be used to improve system performance are presented. Throughout this work perfor -

mance comparisons with conventional update algorithms are undertaken. 
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51 Minimum Variance Kalman Estimator 

The solution to the channel estimation problem provided by the RLS algorithm represents the 

optimum LS estimate of the CW coefficients within the stationary environment. As is well known, 

when used in this context, the RLS algorithm may be derived using Kalman filtering theory 

[90,104,119]. In the time variant environment, provided that it is possible to describe accurately 

the evolution of the parameters to be estimated in time, it is possible to apply similar theory to pro-

duce an LS algorithm optimised for this more difficult problem '. In the GSM system the model 

used to describe the channel time variant behaviour is that of band limited WGN; each channel 

coefficient being represented by an independent filtering process, as described in Section 2.2.3. In 

order to derive the minimum variance estimator for this particular model of channel time variant 

behaviour using Kalman filtering techniques it is, firstly, necessary to derive a state space represen-

tation of the time variation of the CIR. This may be achieved by assuming that the tap generation 

filter may be modelled using the second order 1W structure described in Section 4.4.4. In this 

instance the model used to describe CIR time variation, which is depicted in Figure 4.9, may be 

represented, for a single channel coefficient, in state space by the following difference equations, 

State transition equation 

	

S(n+1) = AS(n)-i-G(n+i) , 	 (5.1) 

Observation equation 

	

Ii(n+1) = CS(n +1)+u (n +1) , 	 (5.2) 

where the state vector, S(n), is given by ST  (n) = [ (n) s (n—i)], the state transition matrix, A, is 

a 
given by A = [i 0]' the observation vector, C, is given by c = [(2+a) (i+)], and the system 

and observation noise are assumed to be WGN processes and hence the vector, G(n+i), may be 

expressed, GT(n+i) = Ig (n +1) 0 1. 
It is possible to expand these equations in order to encompass the complete channel model by 

redefining the system variables to enable the algorithm to operate as a multiple-output system. In 

order to do this the matrices defined above must be augmented as follows, 

ST(n) = IS 0  T(n) S 1 T(n ) . . . SN4 T (fl)], 	 (5.3) 

	

GT(n+1) = [GOT (n+1)  G 1T(n +1) . . . GN_IT(n+1)], 	 (5.4) 

1. A similar approach was taken by McLaughlin [55] within the derivation of a minimum variance Kalman estimator for the 
high frequency communication channel. 

- 139- 



A ON 

ON  

	

= 	 (5.5) 

ON 	....A 

CO .0 

CC 

	

Cc  = 
	

(5.6) 

0  

where S, and G represent state vectors of order 21V, A represents a 2N x2N element state 

transmission matrix, ON being a 2x2 element null matrix, C represents a Nx2N observation matrix 

and 0 represents a 2 element null vector given by 0 = [0,01. The state transition and observation 

equations must then be modified to be rewritten in terms of these matrices and may be expressed 

as, 

State transition equation 

S(n+1) = Ac S c (fl)+Gc (fl+1) , 	 (5.7) 

Observation equation 

y(n+1) = XT (fl+1)Cc S c (fl+1)+fl(fl+1), 	 (5.8) 

where the terms X(n +1), y (n +1) and r (n +1) represent the channel input vector, the channel output 

and the additive noise respectively and are defined in Figure 4.1 and associated discussion. The 

recursive algorithm is then obtained by substituting these quantities into the standard KF equations, 

which results in the following recursion, 

Pc(fl+1) = [A, P, (n )A c T - AcKc(fl )XT  (fl+1)Cc Pc (fl)Ac T  +Q(n+1)], 	 (5.9) 

Kc(fl+1) = Pc(fl+1)CcTX(fl+1) IGTI 2+XT (n +1)C, P, (n +I)C,  T X(n +1)] , 	(5.10) 

S,(12+1) = Ac Sc (fl) + K(n+1) [y(fl+1)_XT (fl+l)Cc Ac Sc (fl)], 	 (5.11) 

H(n+1) = Cc S(fl+l), 	 (5.12) 

where the noise terms are given by, 
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Q(n+1)=E 1Q, (n)G T (n)]= H 	 (5.13) 

and,' 

C111 	ITI(n ) 71 * (n ) I . 	(5.14) 

Initialisation of the algorithm is subject to similar constraints to those described for the RLS algo- 

rithm. The inverse correlation matrix, P, is initialised either on the basis of a priori knowledge of 

the characteristics of autocorrelation matrix, or, more typically, by setting P(0) = CYIN, where a is a 

large positive scalar chosen such that, a 
>> Var {g (n 

. In the absence of any a priori 

knowledge all other variables are initialised to zero. 

In order to implement the algorithm, which is referred to hereafter as the minimum variance Kal-

man (MVK) estimator, full a priori knowledge of the channel time variant characteristics is 

required. In practise such information is rarely available, therefore, it is most often not possible to 

implement the WK algorithm. The algorithm, however, remains of value for two reasons. Firstly, 

the algorithm represents the optimum linear channel estimator for the time variant conditions 

assumed, and can, therefore, be used to set optimum performance bounds. Secondly, the algorithm 

may be used as the basis on which a suboptimal estimator may be derived, this being the subject of 

the remainder of this chapter. 

53 A Suboptimal Kalman Estimator Based on a Polynomial Model 

Since, in practise, full a priori knowledge of the channel time variant characteristics is unavailable, 

implementation of the MVK is not feasible. In order to apply this type of technique to the channel 

estimation problem it is, therefore, necessary to derive a suboptimal estimation algorithm which 

does not have the requirement of full a priori knowledge. Several alternatives are available, how-

ever, the approach adopted within this work is to remove the requirement of detailed a priori 

knowledge by simplifying the model assumed for channel time variation. Within the simplified 

model, it is assumed that over short time periods, such as the GSM data block, the trajectories of 

the CW coefficients are assumed to be accurately described by a polynomial model of the form, 

H(n) = H(0) + nV 1  + n 2V2  + . 	n'°" VNord 	 (5.15) 

where Nord represents the order of the polynomial, and the vectors V 1  represent the i th derivative 

of the curve traced by the CIR coefficients. The simplest polynomial model on which the algorithm 
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may be based is that of constant ROC of the CIR coefficients. As has been described earlier this 

model is valid for most channel conditions apposite to the GSM system. Within this section an 

algorithm based on this polynomial model is derived. 

In order to apply KF theory it is firstly necessary to represent the evolution of the CW in state 

space. For the first order model the state transition equations are given by, 

H(n) = H(n-1)+V(n) , 	 (5.16) 

V(n) = V(n-1) , 	 (5.17) 

or in vector notation by, 

11(n) 	[IN IN1 

[V(n)l [ON INJ IV(n —1) 1 ' 	 (5.18) 

where IN represents an NxN element identity matrix, and in this instance ON represents an NxN 

element null matrix. The above equations indicate the evolution of states forward in time, how-

ever, within the GSM system it is necessary to perform channel identification based on both for-

ward and time reversed signal samples. It is, therefore, also necessary to derive the state transition 

equation which describes the state at time n—i in terms of the state at time n, this can be shown to 

be, 

	

H(n-1) 	
[ON

IN 'N1 H(n)1 
[V(n-1)l = 	IN 	IV(n)  J 	

(5.19) 

The observation equation may be obtained by consideration of the system model, which is depicted 

in Figure 4.1. This is identical for both forward and backward identification and may be expressed, 

y(n) = [XT(n) 00. .. o] [H(n ) ]+n(n) . (5.20) 

The suboptimal Kalman estimation (SKE) algorithm is then obtained by substituting these quanti-

ties into the standard KF equations and is given by the following recursion, 

F(n+1) = [A P(n) AT - A K( n )XT( n i1)P(n ) AT], 	 (5.21) 

K(n +1) = P(n +1 )X'(n +1) 
I

CF,12+X,T  (n +1 )P(n +1 )X'(n +1)] , 	 (5.22) 

i'(n+1) = A Ü'(n)+K(n+l) 
I 

 y (n +1)_XT  (n +1)A fI'(n)], 	 (5.23) 

where, 

	

xT(n+1) = IXT (n+l) 0 0. . . o], 	 (5.24) 

	

H/T(n +1) = III T  (n+1) VT(n+l)], 	 (5.25) 

IN '1V 
and, the state transition matrix, A, is given, for forward identification, by, A = I 	I , and for 

L 	IN ] 

backward identification by, A = I 	j 
 VON 	LN 
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The performance of the SKE algorithm, which is considered in subsequent sections, is dependent 

upon the accuracy with which the model describes the physical system. Hence, in instances in 

which the channel exhibits high Doppler frequencies the simple constant ROC model may be inade-

quate. Under these circumstances an extended version of the algorithm using a higher order polyno-

mial model may be employed. The extended algorithm is characterised by the following state tran-

sition and observation equations, given here for forward identification, 

''N 'N 	. 'N ' 

[H(n) 1 	 [H(n-1) 1 
I V(n) 	 - 	I V 1 (n-1) I 

= 	. 

 

ON . 	. 	I 	. 	I, 	 (5.26) 

[v,n (flj 	I . 	.. 	V(fl1) 
ON 	. 	. . 	 J 

H(n) 
V 1 (n) 

y(n)= IXT  (n) 00... o] 	. 	+Tj (n) 	 (5.27) 

V. (n) 

The computational complexity of the algorithm is, however, dependent upon the model order and 

represents (NOd +1)2  times the complexity of the standard RLS algorithm. Superior algorithm non-

stationary performance is, therefore, obtained at the cost of increased computational complexity. 

5.4 The Exponentially Weighted Suboptimal Kalman Estimator 

The algorithm derived within the previous section uses all available data in order to form the chan-

nel estimate. This approach is acceptable within a block data system such as GSM, in which the 

channel time variation within the data block is such that it may be accurately described using a 

simple polynomial model. However, within a continuous data transmission system, or a block data 

system in which channel estimates from previous data blocks are used to initialise the present esti-

mate, incorporation of a simple model of channel time variation into the algorithm will result in 

grossly suboptimal algorithm performance. In this instance it is necessary to use either a model 

which more accurately describes the time variation of the channel, as within the MVK estimator, or 

to limit the number of data samples on which the estimate is based. In this latter case the assump-

tion implied is that over relatively short time periods the variation of the channel may be accurately 

represented by the polynomial model. 

One technique by which this latter arrangement can be implemented is to weight recent samples 

more heavily than older samples using an exponential weighting function. The principal attraction 

of this technique is that the resultant algorithm exhibits only a marginal increase in computational 

complexity over the infinite memory algorithm. The exponentially weighted algorithm, which is 

similar in structure to the exponentially weighted RLS algorithm, may be derived by replacing the 

cost function on which the infinite memory algorithm is based 2  by an exponentially weighted cost 

2. Model Based algorithms are designed, through the standard Kalman filter equations, to minimise the SSE cost function ex-
pressed by Equation 3.5. 
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function, which may be expressed, 

n 
;=E Iy(k)-9(k)I 2 X5 	 , 	 (5.28) 

where A5  represents the exponential weighting factor. Since the underlying model for the time 

variation of the channel coefficients is assumed to be identical to that used within the derivation of 

the infinite memory algorithm, the state space representation of the evolution of the CIR 

coefficients remains unaltered. However, the KF equations themselves must be modified to account 

for the exponential multiplier within the cost function. This may be achieved by following the pro-

cedure applied within the derivation of the exponentially weighted RLS algorithm [90,91], in 

which, initially, the autocorrelation matrix and cross correlation vector are redefined as follows, 

R = 	(X(k)XH(k)) Ak_n , 	 (5.29) 

r, = 	(X(k)y* (k)) 	. 	 (5.30) 

Then recursions for both R and r, are formed and the resulting equations rearranged using the 

matrix inversion lemma [90,91] in order to form a recursion for the inverse autocorrelation matrix, 

P(n). The exponentially weighted SKE algorithm is then obtained by substituting the state transi-

tion and observation equations (5.18, 5.20), derived within Section 5.3, into the modified Kalman 

filter equations. This results in the following recursion, 

P(n+1) = [A, - 'A P(n) AT - X, -'A K(n )X/T(n +1)P(n ) AT], 	 (5.31) 

K(n +1) = A5  1P(n +1)X'(n +1) ICIT, 2+X, 
_lX/T (n +1)P(n +1)X'(n +1)] , 	 (5.32) 

I'(n+1) = A '(n)+K(n+1) [y (n+1)_x/T( fl+1)A t'(n)], 	 (5.33) 

where each of the terms is defined within Section 5.3. As within the exponentially weighted RLS 

algorithm the value of the exponential weighting factor, A, should be chosen to minimise the esti-

mate misadjustment, which, within the SKE algorithm, is due to measurement error and modelling 

error. It should be noted that within the RLS algorithm estimate misadjustment is due to measure-

ment error and lag error, hence quite different values of exponential weight are required within the 

respective algorithms. In general, it can be shown that for optimal performance, under any given 

time variant conditions, the RLS algorithm will require a smaller exponential weighting factor than 

that employed within the SKE algorithm. This has implications for algorithm steady state perfor-

mance and is discussed in more detail in Section 5.5. In each instance, however, the value of the 

exponential weighting factor must be chosen to be a positive constant which is less than or equal to 

unity. 
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5.5 Asymptotic Performance and Convergence of the Suboptimal Kalman Estimator 

The asymptotic performance of the SKE algorithm is directly dependent upon the accuracy with 

which the model describes the physical system. Optimum performance bounds may, however, be 

obtained using the assumption that the model is indeed accurate. The asymptotic accuracy of the 

algorithm may then be derived by following a similar approach to that adopted in Section 3.5. 

This proceeds by analysis of the estimator output error, which, in the case of the algorithm based 

on the constant ROC model, is given by, 

	

e(n) = y(n)_XH(n) Ifi(n —1)+V(n —1) 1 - 	 (5.34) 

This may alternatively be expressed as the sum of the additive noise and the misadjustment of the 

estimator coefficients, 

	

= rI(n)+X"(n) Iii(n —1 )+V(n —1) 1 
 1 
	 (5.35) 

where, 

H(n) = fi(n )—H0  , 	 V(n) = l(n )—V01  

The MSE may, therefore, be expressed, 

E [i e (n )I 2 ] 2+E [jjHn_1xn )X'(n )H(n_1)] + E ['H(fl _l)x(fl  )XH(n )V(n_1)] 

[flu (n —1)X(n )XH  (n )V(n -1)1 + E [~H  (n —1)X(n )XH  (n )H(n —1)], 

= a12+tr 	{E [ii(n —l)fiH (n —l)  I  + E [(n l)VH(n l)] 

+E Iii(n —I )i~H  (n —1) 1 +E [~(n —1)iiH  (n —1) 1 
}. 	

(5.36) 

Using the approximation of Equation 3.30 and the assumption that each of the remaining expecta-

tions may be similarly expressed, the MMSE may be approximated, for a first order exponentially 

weighted SKE algorithm, by, 

'opt 
=cY2+ 4No2(1—A) 

(5.37) (1+X) 

This result may be extended to an Nord order SKE algorithm, for which it can be shown that the 

MMSE is given by, 

(Nord +1 )2N a 2( l—X3 ) 
opt Z0T1 2+ 	 (5.38) 

(1+) 8 ) 

From this analysis it may be concluded that, provided the model assumed is accurate, the steady 

state MSE of the SKE algorithm comprises only measurement error and is, therefore, entirely 

independent of Doppler frequency. Unfortunately, due to the increased number of parameters 

implicit within the algorithm, measurement error is often greater than that of conventional algo-

rithms. Hence, under channel conditions in which algorithm measurement error dominates, such as 
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high noise environments, conventional algorithms may offer more optimal performance. However, 

under channel conditions in which lag error dominates, such as highly time variant environments, 

the SKE algorithm may yield performance advantage. 

In order to determine, for any given channel conditions, which of the algorithms offers the more 

optimal steady state performance it is necessary to examine the relative M1MSE of each algorithm. 

Comparison shows that the SKE algorithm will yield performance advantage over the conventional 

algorithms provided that the algorithm measurement error is less than the combined measurement 

and lag error apposite to the conventional algorithms. This condition is described, for a first order 

algorithm, by the following inequalities, 

4N 2(1—X) 	Ncr 2(l—X) 	Na 2  

(l -i-X) 	< (2—(1—X))(1—X)(2—(l—X))' 	
(5.39) 

4Ncy2(1—A) 	2 ____ 

(l+X) 	
< Np.a+ 4p. (5.40) 

where Equation 5.39 expresses the conditions for which the SKE algorithm steady state perfor-

mance is superior to that of the RLS algorithm, given by Equation 4.9, and Equation 5.40 the con-

ditions for which performance is superior to the LMS algorithm, given by Equation 4.11. 

The above inequalities would seem to indicate that due to the relatively high level of measurement 

error exhibited by the SKE algorithm, the resulting steady state error is greater than that of the con-

ventional algorithms under all but highly time variant channel conditions. However, since the 

optimum value of X., is primarily dependent upon the variance of the modelling error, which 

although related to the source non-stationarity is in general significantly smaller, it is possible to 

employ relatively high values of A. This contrasts with the conventional algorithms in which the 

optimum values of X and p. are directly dependent upon the source non-stationarity and are, there-

fore, much lower for similar channel conditions. Consequently, the magnitude of the measurement 

error within the SKE algorithm may not be significantly greater than that of the conventional algo-

rithms. As a result the SKE algorithm can achieve performance advantage under relatively slowly 

fading conditions. 

The above discussion can be illustrated by considering a block data system in which the channel 

conditions are such that the modelling error within the data block may be considered negligible. 

Under these conditions ? can be chosen to equal unity; ie., the SKE algorithm possesses infinite 

memory. The time variation of the channel coefficients may, however, still be significant, therefore, 

the weighting factors of the conventional algorithms must be chosen, using Equation 4.10 or 4.12, 

to jointly minimise the resulting lag and measurement errors. Under these conditions inequalities 

expressing the conditions for which the infinite memory algorithm yields superior steady state per-

formance to that of the RLS and LMS algorithms can be derived, and shown to be given, respec-

tively, by, 

4N 2 	No 2(1—X) 	Nr 2  
n—i 	(1+).) 	(1—X)(2 - 	

(5.41) 
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4N2 < 
	

Ncr,2 

n—i 	
N[tcs2+ 41.L 
	

(5.42) 

These inequalities serve to illustrate the important point that whilst the steady state MSE of the 

infinite memory SKE algorithm 3  is inversely proportional to the number of algorithm iterations, the 

steady state MSE of conventional algorithms is nominally constant throughout the data block. 

Therefore, provided that the number of algorithm iterations is greater than some minimum number, 

say Ne , the SKE algorithm will yield performance advantage. An approximate value for Ne  may 

be obtained by rearranging Equations 5.41 and 5.42, and expressed respectively, for comparison 

with RLS and LMS update, by, 

N 	
4a 2(2 - (1—X)) +1 
	 (5.43) e 

N z 	
4gcFl 	

+1 . 	 (5.44) N, 	222/4 

It may be concluded, therefore, that the SKE algorithm results in superior performance provided 

that the value of Ne  is significantly less than the total number of symbols within the data block, 

and that the data block length is an important criterion when considering the relative performances 

of the algorithms. This argument may be readily extended to the continuous data transmission sys-

tem, in which case the value of Ne  must be compared with the effective SKE algorithm memory 

length, r, which, for the exponentially windowed algorithm, may be approximated [901, 

—1/log X. 

Algorithm convergence rate is also of critical importance within the system. This is primarily 

dependent upon the number of algorithm iterations required to compute the coefficients of the 

inverse autocorrelation matrix, P(n). In an Nord order SKE algorithm the inverse autocorrelation 

matrix has dimensions (Nord+l)N X (Nord +l)N, hence, at least 2(Nord+l)N iterations are required 

in order to form a valid estimate. Considering the example of the first order algorithm convergence 

is completed within 4N iterations after which time the algorithm is able to achieve an MSE, rela-

tive to the noise floor, cy 2 , under stationary conditions, of, 

[CY,12+ 

E  	
4Nc 
  

1010g 10 	
4N-1

3.0dB . 	 (5.45) 
Cr11 2  

In comparison the RLS algorithm achieves convergence within 2N iterations, after which time the 

MSE relative to the noise floor is, 

2 N112 

1010g10 	

l 1 
[E [Cn + m 

a
ij 

] z 1.8dB . 	 (5.46) 

3. Or the exponentially weighted SKE algorithm in which X is close to unity. 
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From these simple comparisons it can be concluded that although the first order SKE algorithm 

nominally converges within twice the number of iterations required by the conventional RLS algo-

rithm, in order to achieve similar levels of MSE, four times the number of iterations are required. 

In order to illustrate the points discussed above computer simulation has been performed, results 

appear in Figure 5.1. The objective of these simulations is to investigate both the transient and 

steady state performance of the Model Based algorithms, and to subsequently compare these with 

the performances of conventional algorithms; within this section comparison is made only with the 

RLS algorithm. To facilitate comparison algorithm performance is investigated under continuous 

data transmission conditions. In each of the simulations the transmitted data is assumed to be 

known a priori, therefore, within the resulting plots no account is taken of suboptimal update due to 

delayed erroneous data. Simulation conditions for each of the investigations are summarised in 

Table 5.1, 

Figure MPDP (H0  (z)) Doppler Frequency SNIR 

5.1(a) 1+z'+z 2  stationary 30dB 

5.1(b) 1+z 1+z 2  1000Hz 50dB 

5.1(c) 1+z'+z 2  250Hz 30dB 

5.1(d) 1+z'+z 2  50Hz 10dB 

Table 5.1: Simulation Conditions used within Computer Investigation into the MSE 

Performance of the Model Based Algorithms 

Considering, initially, the performance of the SKE algorithm under stationary channel conditions, 

simulation results of which are given in Figure 5.1(a). As can be seen from these results both the 

transient and steady state performance of the algorithm conform closely with the forgoing theory. 

Algorithm convergetice can be said to be complete within twelve data samples, which, within the 

example given, does indeed represent 4N data samples. Comparing the steady state performance of 

the SKE and the RLS algorithms it can be seen that under time invariant conditions the NTE is 

approximately four times that of the conventional algorithm throughout the entire data block. This 

represents a performance degradation of approximately 6dB, which is as predicted by Equation 

5.37. 

Comparing the performances of each of the algorithms under time variant channel conditions ', it is 

clear that the Model Based algorithms do offer superior steady state performance to that of the con-

ventional RLS algorithm. Predictably the most significant performance improvement occurs under 

highly time variant conditions. At a Doppler frequency of 1000Hz and an SNR of 50dB it can be 

4. Within these simulations in order for each algorithm to operate under continuous data transmission conditions exponentially 
weighted versions of the algorithms are employed. 
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seen, from Figure 5.1(b), that the SKE algorithm results in a performance improvement over the 

RLS of greater than an order of magnitude. However, when compared with the MVK algorithm, 

performance is suboptimal, hence, under these very highly time variant conditions it may be con-

cluded that the SKE algorithm is subject to significant modelling error. At low Doppler frequen-

cies and high noise levels the performance improvement obtained using the Model Based algo-

rithms is less significant. However, it can be seen that even under high noise conditions some per-

formance advantage is achievable, although this is only apparent after a minimum of approximately 

170 data samples. It is interesting to note that under more slowly time variant conditions the 

modelling error apparent within the SKE algorithm is significantly reduced, hence the performance 

obtained approaches that of the MVK algorithm. 

5.6 Application of the Suboptimal Kalman Estimator to the GSM System 

The SKE algorithm may be applied to the problem of channel identification within the GSM system 

using one of several approaches. The most straightforward of these being to apply the algorithm 

directly throughout the entire data block. Within this technique the algorithm firstly attempts to 

form initial estimates of both the CIR and ROC coefficients within the training sequence. During 

equalisation the algorithm is then used to recursively update these estimates using the tentative 

decisions fed back from the VA. From the results of analysis and computer simulation performed 

within Section 5.5, it is clear, however, that under high noise conditions the algorithm is not 

guaranteed to converge within the training sequence. Hence, the channel estimates provided by the 

algorithm are likely to be unreliable at data points close to the training sequence. Consequently, 

system performance is liable to be grossly suboptimal. 

Since direct application of the algorithm may often result in unacceptable performance degradation, 

alternative approaches must be considered. The most computationally efficient alternative is to 

apply the algorithm using a basic single stage technique similar to that employed for the ROC algo-

rithm, as described in Section 4.4.6. In this approach an initial coefficient estimation algorithm is 

applied within the training sequence. Paramenters available from this process are then used to ini-

tialise the SKE algorithm, which is then used for continuous estimate update within the equalisation 

cycle. The technique may be summarised as follows: 

The channel output is initially received, sampled and stored in memory. 

Training and initialisation 

This is performed within the training sequence and is employed to derive the initial channel esti-

mate from which the SKE algorithm is initialised. 

Form an LS estimate of the CIR within the training sequence using one of the block estimation 

algorithms described in Section 3.3. 

Initialise the SKE algorithm on the basis of the initial LS solution and the assumption that the 

ROC is zero. 

Equalisation 

- 151 - 



The following steps are performed sequentially for each data sample within both the forward and 

reverse data blocks. Processing takes place from the conclusion of the training sequence to the data 

block extremes. 

Perform the MLSE computation based on the time series of channel outputs and current CIR 

estimate. 

Feedback tentative decisions from the VA in order to provide the data sequence estimate. 

Use the recursion of Equations 5.31, 5.32 and 5.33, in conjunction with the data sequence esti-

mate and the time series of channel outputs, to update, simultaneously, both ROC and CR esti-

mates. 

This technique has the advantage of accelerated convergence, which is obtained since a partial 

solution to the estimation problem is provided a priori by the initial channel estimation algorithm. 

Algorithm initialisation is, however, critical, as both transient and steady state performance are 

dependent upon it. Unfortunately, complications arise since it is not possible to initialise the algo-

rithm exactly, as the initial estimate of the ROC coefficients is not based upon signal statistics. The 

problem is analogous to that of initialisation of conventional RLS algorithm, in which inappropriate 

choice of initial coefficients leads to suboptimal performance because the LS solution is biased by 

the incorrect initial coefficients. The solution generally adopted is to assume that the input 

sequence is white, thus the inverse autocorrelation matrix is initialised to P(0) = cylN. All other 

vectors are initialised to zero. Given these initial conditions then as the recursion proceeds the ini-

tial solution is quickly updated and replaced by a more accurate estimate, which is based on the 

received signal. 

Initialisation of the SKE algorithm, when used within this procedure, is not as straightforward since 

it must be based upon both the initial LS solution and the assumption of constant ROC. In general, 

however, similar arguments may be applied. In this instance initialisation proceeds as follows, 

[P1 (n) Bl 
Ü(0) = [ 
	j' 	[ON C] 

where, Hi(n) and Pi(n) are the initial CIR estimate and the initial inverse autocorrelation matrix 

respectively, each of which are available from the initial LS estimation algorithm. The matrices B 

and C are given by, B = b IN and C = C I. the scalars b and c being chosen such that 

c = b > > Var [x(n)] 

In order to investigate the performance of the SKE algorithm when applied to the GSM system as 

described above, computer simulation has been undertaken. The results of this are given in Figure 

5.2. For the purposes of these investigations the GSM data structure is adopted, hence update is 

based on a data sequence estimate. From Figure 5.2(a) it is clear that at high Doppler frequencies 

and low noise levels, some performance improvement is achievable. However, when considered 

over the complete data block it can be seen that initially the channel estimate produced by the SKE 

algorithm is suboptimal. Subsequently, the quality of the estimate improves rapidly and becomes 
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superior to that of the conventional RLS algorithm after approximately 20 data samples. This 

behaviour implies that algorithm convergence is not completed within the training sequence, and 

hence, the method of algorithm partial training is not entirely satisfactory. 

This behaviour is even more severe under high noise conditions, simulation results of which are 

given in Figure 5.2(b). Here, since the steady state is not achieved within the limited GSM data 

block, algorithm performance is suboptimal throughout the entire data transmission period. Figure 

5.2(b) also shows that, when applied to the problem of CIR estimation as described above, the SKE 

algorithm is particularly sensitive to errors within the data sequence estimate. This is illustrated by 

comparing the NTE performance of the SKE algorithm under conditions in which update is based 

on a data sequence estimates of varying accuracy. In Figure 5.2(b) the following examples are com-

pared: a perfect data sequence estimate delayed by five data samples, a data sequence estimate 

derived from the Viterbi equaliser incorporating a delay of five data samples, and a data sequence 

estimate derived from the Viterbi equaliser incorporating a delay of ten data symbols. The results 

show that a delay of only five symbols, which results in a relatively high number of data estimate 

errors, yields inferior performance to each of the other, more accurate, data estimation techniques. 

This is due to the sensitivity of the algorithm to input error during convergence, which under these 

conditions is not completed prior to data transmission. In the example shown the problem is 

further compounded since the exponential weighting factor, ?, is set to unity, hence the algorithm 

is not able to recover from the grossly inaccurate initial estimate. 

From these discussions it may be concluded that if the SKE algorithm is applied to the channel 

estimation problem within the GSM system as described above, transmission conditions are fre-

quently such that the SKE algorithm results in no significant performance improvement over con-

ventional adaptive algorithms. 

5.7 Algorithm Performance Improvement Using Multi-Pass Equalisation 

From the work of Section 5.6 it may be concluded that conventional single pass application of the 

SKE algorithm to the GSM system is subject to several limitations. Firstly, since algorithm initiali-

sation is only partially based upon the statistics of the input signal the convergence rate will be 

reduced. Consequently, the steady state may not be achieved within the training period. For this 

reason both the ROC and CIR estimates may initially be subject to significant inaccuracy. 

Secondly, due to the use of tentative decisions throughout the equalisation cycle, the estimate vec-

tor, fI(n), is based upon delayed, occasionally incorrect, data. It is, therefore, suboptimal and sub-

ject to similar limitations to those described for conventional update algorithms within Section 

4.3.3. Finally, within the GSM system SNRs are generally too high to enable the SKE algorithm to 

achieve significant performance improvement over conventional algorithms within the relatively 

short data block. 

Each of these limitations may be to some extent overcome by exploiting the block nature of the 

problem using a multi-pass equalisation technique similar to that adopted for conventional 
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algorithms within Section 4.3.4. Again a technique comprising separate parameter estimation and 

equalisation phases is proposed. In this procedure the objective of the parameter estimation pass is 

solely to obtain a data sequence estimate. This is achieved by use of an additional equalisation 

phase, in which any of the techniques described within Sections 4.2 and 4.3 may be applied. The 

data sequence estimate is then used as the basis for both initial training and algorithm update 

within the subsequent equalisation pass. The basic concept on which the technique is based is that, 

within the equalisation pass, since the estimated data sequence is known a priori, it is possible to 

use this information to extend the given training sequence in order to ensure that the SKE algo-

rithm achieves steady state before the resulting estimate is used within the MLSE computation. 

The equalisation phase itself comprises two cycles corresponding to forward and reverse equalisa-

tion. In the forward cycle all data is processed in the order in which it is received; this process 

may be summarised as follows: 

The channel output is initially received, sampled and stored in memory. 

Parameter estimation and Initial Training 

This is identical to that described for conventional update algorithms in Section 4.3.4. and 

comprises steps (i) to (vi) of the process described therein. 

SKE Initialisation and training 

This is performed to initialise the SKE algorithm prior to the equalisation pass. 

Initialise the SKE algorithm using the assumption that both CIR and ROC coefficients are zero 

and that the input sequence is white. 

Combine the reverse data and the training data to form an extended training sequence of 84 

symbols. 

Perform initial CW and ROC estimation using the recursion of Equations 5.31, 5.32 and 5.33, 

the time series of channel outputs and the extended training sequence. 

Equalisation 

The following steps are performed sequentially for each data sample within forward data block. 

Processing takes place from the conclusion of the extended training sequence to the data block ex-

treme. 

Perform the MLSE computation based on the time series of channel outputs and the current 

Cifi estimate. 

Use the recursion of Equations 5.31, 5.32 and 5.33, in conjunction with the a priori data 

sequence estimate to update, simultaneously, both the ROC and CIR estimates. 

The reverse cycle is identical to the process described above, however, both the data sequence esti-

mate and the time series of channel outputs must be processed in time reversed order. 

The performance improvement obtainable using this multi-pass equalisation scheme may be demon-

strated using computer simulation. Similar simulation conditions to those described within the pre-

vious section are assumed; results appear in Figure 5.3. Within Figure 5.3 the performance of the 

SKE algorithm is compared with that of the conventional LMS algorithm under a number of fading 
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conditions. Several important points are evident from these plots. Firstly, the use of the pre-

equalisation parameter estimation phase results in significant performance improvement for each 

algorithm, particularly under highly time variant conditions. Secondly, under highly time variant 

conditions, the SKE algorithm yields superior performance to that of the conventional algorithm 

throughout the entire data block. Under high noise conditions, however, the performance of the 

SKE algorithm remains inferior to that of the conventional algorithm. This is due to the fact that 

algorithm steady state is not achieved even within the extended training sequence. From these 

simulations it may, therefore, be concluded that although the SKE algorithm potentially offers supe-

rior performance to that of the conventional algorithm within the time variant environment, when 

subject to high noise conditions this performance improvement may not be realised within the GSM 

system due to the limited length of the data block used. 

5.8 Conclusions 

Within this chapter an alternative class of adaptive algorithm for channel estimation within the 

highly time variant environment has been presented. Within this class of algorithm an attempt is 

made to compensate for channel time variation by the incorporation of a priori knowledge of the 

time variant characteristics of the channel directly into the algorithm structure. This is achieved by 

the incorporation of a predetermined model of channel time variability within the algorithm such 

that the time variation may be estimated and, therefore, partially cancelled. The algorithm may be 

viewed as the LS solution to the estimation problem under the particular time variant conditions 

described by the model. 

Three versions of the algorithm have been described, each of which is based on different assump-

tions with regard to the channel characteristics or the data structure. The first algorithm is based on 

the tap generation filter model defined within the GSM specifications. Within this work this is 

implemented using a second order IIR filter, hence this structure is incorporated into the algorithm. 

Under conditions used for simulation this model is exact, therefore, the algorithm represents the 

optimum estimator and, hence, is referred to as the minimum variance Kalman estimator. Unfor-

tunately the algorithm requires full a priori knowledge of the channel MPDP and Doppler fre-

quency and, consequently, is not implementable in practise. 

The second algorithm presented is based on a polynomial model of the channel coefficient trajec-

tories. This model is of course an approximation, therefore, the resultant algorithm is suboptimal 

with respect to the .MVK. For this reason the algorithm is referred to as the suboptimal Kalman 

estimator. The principal attraction of this algorithm is that only partial a priori knowledge of the 

channel characteristics is required, this being the number of channel coefficients and an estimate as 

to the maximum possible Doppler frequency. Since the algorithm may be based on any order of 

polynomial model, a family of SKE algorithms may be derived. Within this work, however, a first 

order model is predominantly used. In terms of computational complexity, the number of arith-

metic operations within the SKE algorithm is dependent upon the polynomial model order and 

represents (Nord  +1)2 times the complexity of the conventional RLS algorithm. 
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The final algorithm derived represents a development of the SKE algorithm and is again based 

upon a polynomial model. In this instance, however, an exponential weighting factor is incor-

porated into the algorithm to enable it to operate under continuous data transmission conditions. 

The exponential window ensures that the estimate is based only on a predetermined number of data 

samples. Hence, provided that the model is accurate over the reduced number of data samples, 

modelling errors may be reduced. 

The steady state and transient performance of the SKE algorithm has been investigated using both 

mathematical analysis and computer simulation. This has shown that the asymptotic MSE of the 

SKE algorithm comprises predominantly measurement error and that lag error may be almost 

entirely eliminated 5 . This contrasts with the conventional algorithms in which under highly time 

variant conditions lag error may be the principal limitation on algorithm performance. It may be 

concluded, therefore, that under conditions characterised by high Doppler frequencies and low addi-

tive noise levels the SKE algorithm offers significant performance advantage over the conventional 

algorithms. However, under high noise and slowly time variant conditions, the measurement error 

of the SKE algorithm is most often greater than that of the conventional algorithms, hence, conven-

tional algorithms yield more optimal performance. 

In order to highlight these points investigations were undertaken under various types of channel 

condition. Under time invariant conditions it was shown that the asymptotic performance of the 

SKE algorithm is dependent upon the model order and is given by, 
(Nord  +l)2  NO 2( l_?,'  ) 

for the 

exponentially weighted algorithm and by, 
(Nord )2N cr2

(n-1) 	
for the infinite memory algorithm. In each 

instance this represents an increase in steady state error over the conventional RLS algorithm of 

(Nord+l)2 . The convergence rate of the algorithm is also dependent upon the model order, initial 

convergence being completed within [2N (Nord+l)I iterations. This represents (Nord+l) times that of 

the RLS algorithm. Under highly time variant conditions, however, the SKE algorithm was shown 

to result in significant steady state performance advantage over the conventional algorithms. More-

over, even under relatively high noise and low fade rate conditions some performance advantage 

was observed. However, under high noise conditions investigation revealed that algorithm conver-

gence rate was increased significantly and that performance advantage became apparent only after a 

large number of algorithm iterations. 

Under GSM conditions it was found that if the SKE algorithm is applied using a conventional sin-

gle pass equalisation scheme then additive noise levels are generally too high and the data block 

too short to enable the SKE algorithm to exhibit performance advantage over the RLS or LMS 

algorithms. When applied using multi-pass equalisation techniques significant performance 

improvement is achieved. However, under high noise conditions algorithm performance was still 

inferior to that of the conventional algorithms when similarly applied. It may be concluded, 

5. Indeed if the model is perfectly accurate then the lag error may be reduced to zero. 
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therefore, that the most suitable application for the SKE algorithm is within a highly time variant 

system, which employs either continuous data transmission or block data transmission in which the 

effective block length is significantly longer than that of the GSM system. 
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Chapter 6 
Adaptive Equaliser Coefficient Update 

6.1 Introduction 

Previous chapters have considered the application of adaptive algorithms to the problem of channel 

estimation within the time variant environment. This work has been principally concerned with the 

development of algorithms for use within adaptive ML receivers. Within this chapter this work is 

extended to the application of similar techniques to the adaptive computation of the coefficients of 

both the linear and the decision feedback equaliser. The conventional technique by which the 

equaliser coefficients are derived within these structures is to apply the algorithm directly to the 

equaliser coefficients; update being made on the basis of the previous equaliser tap-weight vector 

and the error between the desired and the actual equaliser output. However, since the equaliser 

coefficients are not linearly related to the coefficients of the distorting medium, the problem of 

equaliser coefficient computation is fundamentally more difficult than that of channel estimation. 

Moreover, under time variant conditions the problem is compounded since the adaptive algorithm 

must attempt estimate equaliser coefficients which may vary non-linearly with time. For this rea-

son, direct application of the adaptive algorithm often results in suboptimal equaliser performance. 

Within this chapter an alternative technique by which the equaliser coefficients may be computed is 

described. Here, the equaliser coefficients are derived indirectly from a channel estimate which is 

computed using the adaptive algorithm. Since the algorithm is applied to channel identification, the 

requirement of estimating non linearly time variant coefficients is obviated. Consequently, this tech-

nique can be shown to offer performance improvement over the conventional method. Within this 

chapter the performance of the directly and indirectly updated equaliser is compared. 

The major objective of this chapter is the development of adaptive equaliser algorithms which use a 

priori knowledge of the time variant characteristics of the equaliser coefficients in order to reduce 

the steady state MSE at the equaliser output. If equaliser coefficients are updated indirectly, then 

this may be achieved by simply applying the a priori algorithms developed in Chapters 4 and 5 to 

the channel identification phase of the equalisation process. However, if the coefficients are 

directly updated, then since the time variant behaviour of the equaliser coefficients is not well 

characterised, in order to derive the required a priori knowledge it is firstly necessary to obtain 

models which accurately describe this. Much of the work of this chapter is, therefore, concerned 

with characterisation of the time variant behaviour of the equaliser coefficients. From this work 

approximate models are proposed which describe the time variation of the equaliser coefficients. 
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These models are subsequently used within the derivation of alternative directly applied a priori 

algorithms. 

Within this chapter, firstly, the fundamental limitations on the performance of both the LTE and 

DIE are discussed in Section 6.2. The performance of these structures under conditions in which 

their coefficients are fixed throughout data transmission is then investigated in Section 6.3. Next, 

the performance improvement which may be obtained using conventional adaptive algorithms for 

continuous equaliser coefficient update is investigated in Section 6.4. Here the relative performance 

of the direct and indirect update technique is also considered. In Section 6.5, algorithms which 

incorporate a priori knowledge of the time variant characteristics of the equaliser coefficients for 

direct update are derived, and their performances characterised under both time invariant and time 

variant conditions. Similar investigations are then performed in Section 6.6 for the indirectly 

updated equaliser using the algorithms developed in Chapters 4 and 5; again the relative perfor-

mance of the direct and indirect update technique is considered. Finally, in Section 6.7 conclusions 

are drawn. 

6.2 Fundamental Limitations on the Performance of Conventional Equalisers 

The problem of equalisation is fundamentally different to that of channel identification, the former 

being an application of inverse as opposed to direct system modelling. The inverse relationship of 

the channel and equaliser coefficients means that the performance of the equaliser is subject to lim-

itations over and above those encountered within direct system identification. The most important 

limitation peculiar to inverse system modelling is that the performance of the equaliser is critically 

dependent upon the spectral characteristics of the channel. Indeed, under particularly severe condi-

tions, the principal limitation on equaliser performance is often the inability of the equaliser to 

compensate effectively for the distortion introduced by the channel. This has important implications 

for the performance of the adaptive algorithm when applied to equaliser coefficient computation. 

Within this section this dependency is examined. 

The critical dependency of the equaliser performance on the spectral characteristics of the channel 

may be demonstrated by considering the MSE at the equaliser output. This can shown to comprise 

two components, the variance of the filtered additive noise, denoted a rIout 
2 and the MSE due to 

residual ISI. If the discussion is initially limited to the LTE, then the variance of the additive noise 

at the output of the equaliser is given by, 

a 2  =CY T1 I IW(n)I 12, 	 (6.1) 

where W(n) represents the equaliser coefficient vector and ci 2  represents the variance of the addi-

tive noise at the equaliser input. From Equation 6.1 it can be seen that this source of MSE is 

largely independent of the spectral characteristics of the channel. The residual ISI, however, essen-

tially represents the channel-equaliser mismatch and is dependent upon both the impulse response 

of the channel and the number of equaliser coefficients. This can be demonstrated using a similar 
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approach to that described in Section 3.8.1. In this an Neq +N1 element vector, Q, representing 

the residual IS! is determined by the convolution of the channel and equaliser impulse responses. 

Each element of Q is, therefore, given by, 

	

qn = 	: w.h_*. 
Nf2 

(6.2) 

The error at the equaliser output due to each possible input sequence, X, is then computed by sub-

tracting the conditional residual ISI, D, related to that data sequence from the desired system 

response at q 0, D is, therefore, given by 

Dj
= xj(j)q* (ni) , 
	 (6.3) 

I *n 

The MSE due to this source, aisi2  is then given by the average of the squared errors for all possi-

ble data sequences, and may be expressed, assuming that each data sequence is equi-probable, by, 

	

aj2  E [D2 1 	1 	Neq  -N-2 
= 	= 	 D 2 . 	 (6.4) 

NeqN1 jJ 

If the data sequence, X, is taken from the set {1,4} then the Equation 6.4 may be simplified and 

re-expressed as, 

ajsj2  = 1q 0 1 2  - II Q 112 , 	 (6.5) 

or alternatively as, 

= 	q(_j)q*(_j) , 
	 (6.6) 

1*11 

each of which represent the mean squared deviation of the equaliser coefficients from those of the 

optimum infinite length equaliser. From these equations it can be seen that under spectrally severe 

channel conditions, that is conditions in which the channel inverse cannot be realised accurately 

within the equaliser span, the elements of the vector Q will take on relatively high values. Hence, 

even in the absence of additive noise the equaliser output MSE will be high. It may be concluded, 

therefore, that under such channel conditions often the principal cause of equaliser output MSE is 

the inability of the equaliser to effectively compensate for the time dispersion introduced by the 

channel. 

Similar arguments can be applied to the DFE, however, in this instance it is important to recognise 

that the residual ISI at the equaliser output is due to the equaliser forward section alone. Here the 

conditional residual 1ST related to the input sequence X is given by, 

= x(i)q(n—i) , 	 (6.7) 
ion 

where, 

N1 /2 

	

q= 	Cjh ni 
	 (6.8) 

and H 4  represents a vector containing dR precursors alone. Using similar assumptions to those 
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applied earlier within the analysis of the LTE, the total MSE due to DFE residual ISI can be given 

by, 

= q(n-i)q(n-i) . 	 (6.9) 
ion 

This implies that since residual IS! within the DPE is dependent only upon the equaliser forward 

coefficients, only that part of the channel which is compensated for by the equaliser forward section 

will contribute to the level of irreducible equaliser MSE. Hence, if the channel conditions are such 

that the feed forward coefficients of the optimum DFE are zero, then the MSE at the equaliser out-

put is given simply by the level of additive noise. 

In order to illustrate the above discussion, consider the simple two tap channel given by the z-

transform, 

H(z) = 1 + az 1  . 	 (6.10) 

Computing the optimum equaliser coefficients using Equations 3.51 and 3.65, and subsequently 

deriving the equaliser output MSE for values of a between 0 and 2 results in the plots of Figure 

6.1. Within these investigations a 12 tap linear equaliser and a 6,2 DFE are assumed, each of 

which is subject to an input SNR of 30dB. From Figure 6.1(a) it can be seen that if a lies within 

the range 0 < a < 0.5, then the output MSE of the LTE is approximately equal to the additive 

noise level. Therefore, under these conditions there is little additional MSE due to the equaliser-

channel mismatch. However, as a approaches unity channel inversion becomes increasingly 

difficult, hence, the equaliser MSE performance degrades significantly, and at a=1 the MMSE is 

approximately two orders of magnitude above the noise floor. Under these conditions it is clear 

that the mismatch of the channel and equaliser is the most significant cause of output MSE. If a is 

then increased still further, equaliser performance improves until at high values of a output MSE 

again approaches the noise floor. 

The performance of the DFE is quite different. For values of a of less than unity the output MSE 

of the equaliser is approximately equal to the level of additive noise. Under these conditions the 

channel zero lies within the unit circle, consequently, the distortion is compensated for within the 

feedback section of the equaliser. Therefore, the coefficients of the equaliser forward section are 

zero and the equaliser is able to achieve the MMSE. As a is increased above unity it can be seen 

that the MSE performance is almost identical to that of the linear equaliser. This is to be expected 

since under these conditions distortion comprises signal pre-cursors alone and dispersion is, there-

fore, compensated for in an identical manner within each of the equalisers. 

Predictably, the error rate performance of the equaliser is also dependent upon the spectral charac-

teristics of the channel. Moreover, due to the relationship between the equaliser output MSE and 

the resulting error probability, the dependence is even more critical. This may be demonstrated 

using the analysis of Section 3.8. From this it may be concluded that the equaliser error probability 

is dependent upon the level of additive noise and the residual ISI. Therefore, under conditions in 

which the residual 1ST is small the system error rate performance is dependent, principally, upon the 
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level of additive noise, and is approximated, for both the LTE and DFE, by, 

'e = erfc 
[ af 2  1 - 	 (6.11) 
12a °' 21 
L  

Under conditions in which there is significant residual ISI, the probability of error can be shown to 

be given by Equations 3.90 and 3.101 for the LTE and DFE respectively. However, for the spec-

trally severe channel conditions described earlier by Equation 6.10, in which (x=1, each of these 

equations may be simplified and re-expressed, assuming purely real data and a negligible level of 

additive noise, by, 

— I 2 
(Nq+l) I - 	(6.12) 

Equation 6.12 may be deduced directly from Equations 3.87 to 3.90 and 3.99 to 3.101, however, an 

intuitive explanation of this dependency can be described as follows. Given purely real data 

chosen from the set of equally probable 1 and -1, then, in the absence of additive noise there are 

only three possible channel outputs, y (n), these being -2 , 0 and 2. If equalisation is not employed 

then under these conditions the detection problem may be envisaged in a single dimension, as dep-

icted in Figure 6.2(a). In this situation the detector can only differentiate between the 2 and -2 lev-

els of received signal. Should a 0 be received the detector would be unable to make a decision as 

to the transmitted symbol. The probability of error of that decision is, therefore, Pe = 0.5. Since on 

average the probability of a zero being received is 0.5, the overall error probability is Pe = 0.25. If 

a two tap linear equaliser is applied to the detection problem, then the problem may be envisaged 

in two dimensions, corresponding to channel outputs y (n) and y (n—i); this is depicted in Figure 

6.2(b). In this instance in order to make an estimate as to the transmitted symbol the equaliser must 

form a linear decision boundary between the transmitted symbols. Clearly the optimum boundary 

must intersect the point y (n) = 0, y (n —1) = 0, at which point the error probability of the decision 

is again P , = 0.5. However, the probability that the system output will be given by y (n) = 0, 

y(n-1) = 0 is 0.25, hence, the overall error probability is Pe = 0.125. This argument may be 

extended to higher dimensions in a similar manner. It can, therefore, be seen that equaliser asymp-

totic error rate is as expressed by Equation 6.12. It should be noted that since the channel zero lies 

on the unit circle under the channel conditions described, the performance of the DIE can be 

viewed in exactly the same terms. 

The above discussions have highlighted the important point that under spectrally severe channel 

conditions often the principal limitation on both equaliser MSE and error rate performance is the 

inability of the equaliser to compensate effectively for the channel distortion. Under these condi-

tions equaliser performance degradation due to channel time variation is often negligible in com-

parison. Therefore, no significant performance improvement may be obtained by application of 

adaptive algorithms to the problem of time variation compensation under such conditions. In the 

time variant environment such conditions will inevitably occur, however, it is unlikely that they 

will dominate. 
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63 Equalisation Employing No Coefficient Update 

The most straightforward technique by which equalisation may be performed within a block data 

system is to derive the initial equaliser coefficients within the training period and subsequently hold 

these constant throughout information transmission. The underlying assumption adopted within this 

approach is that throughout the data block the CW is time invariant. Clearly, if the CIR is subject 

to time variation, then as the channel fluctuates the fixed equaliser coefficients become increasingly 

suboptimal. This results in additional equaliser output MSE and, consequently, in degradation in 

system error rate performance. Within this section the degradation in performance apparent within 

both the linear and decision feedback equaliser due the assumption of stationarity is investigated. 

Since this technique for derivation of the equaliser coefficients may only be applied within a block 

data system, these investigations are limited to the GSM system. 

Within the GSM system computation of the initial equaliser coefficients is performed as a two stage 

process. Firstly, a channel estimate is established within the training period. This estimate is then 

used as the basis from which the fixed equaliser coefficients are derived. In order to investigate the 

equaliser performance degradation resulting from the fixed equaliser coefficients under time variant 

conditions, it is useful to derive expressions relating the additional equaliser output MSE to the 

time variation of the channel. Unfortunately, due to the non linear relationship between equaliser 

and channel coefficients, derivation of exact expressions is not simple. However, within Sections 

3.8.1 and 3.8.2 it was shown that under a wide variety of channel conditions the additional 

equaliser output MSE, zV, may be directly related to the misadjustment of the channel estimate. 

Within this work it was shown that under time invariant channel conditions the additional output 

MSE of both the linear and decision feedback equaliser, may be approximated by, 

AJ z tr{ 	E Iii(n)ftH(n) I 
}, 	

(6.13) 

where H(n) represents the channel estimate error vector and is defined by Equation 3.21. This 

equation implies that at any instant in time the misadjustment of the channel estimate is essentially 

reflected within the equaliser output MSE. In Section 4.2, an expression for the misadjustment of 

the channel estimate was derived under conditions in which the channel estimate is fixed 

throughout information transmission. Under these conditions it was recognised that since the 

Wiener optimum is time variant but the channel estimator coefficients are fixed, Equation 6.13 may 

be expressed as the sum of the error due to the misadjustment of the channel estimate at the com-

pletion of the training sequence and the error due to the progressive misadjustment of the 

coefficients throughout the data block, and may, therefore, be expressed as, 

LJ(k)=iV,3  +IIJdb(k) , 	 (6.14) 

where 	represents the equaliser misadjustment after initial training, is given by Equation 3.36 

and expressed, 

Ni 

 
all

2(1—X) 	
4aj21n 	:s 

LJ.ts 
= N _ 	iO 	f 

(6.15) 
(2 - 	

+  
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and 	(k) represents the error due to the progressive misadjustment of the coefficients throughout 

the data block, given by Equation 4.4 and expressed, 

N—i 2 Imf d k 
= 4Lai 	

}2 

fs 	
(6.16) 

iO 	•  

k being the number of data samples for which the equaliser coefficients have been fixed; each of 

the other terms are defined within Section 4.2. The total MSE at the equaliser output can then be 

found by appending Equation 6.14 to Equations 3.86 and 3.98, which with slight manipulation 

yields the following approximations for the LTE and the DFE respectively, 

J(k)(lte ) ZJmm +I,Jts  +iII(k) 	IWI 1 2 , 	 (6.17) 

J(k) (dfe) zJmjn +iJ:s +I11(k)+a 2 IICII22 , 	 (6.18) 

where, Jmin  represents the MMSE of the respective equaliser and is given by Equations 3.81 and 

3.94 and the final term represents the additive noise component. From these Equations it can be 

seen that the equaliser MSE performance is dependent upon the level of additive noise, the spectral 

characteristics of the channel, the channel Doppler frequency and the number of data samples for 

which the coefficients have been fixed. Moreover, under highly time variant conditions, the error 

due to the progressive misadjustment of the equaliser coefficients may represent a significant part of 

the total MSE particularly at the data block edges. 

In order to illustrate the forgoing discussion computer simulation has been performed, results are 

given in Figure 6.3. Within these simulations the GSM data structure is adopted, the equaliser 

coefficients being derived within the training sequence and subsequently fixed throughout data 

transmission. Figures 63(a) to (d) show the MSE performance of both the LTE and DFE 

throughout the GSM data block when subject to strictly defined time variant channel conditions and 

various levels of SNR. For purposes of comparison, the NTE of the channel estimate from which 

the equaliser coefficients are derived is also given. Simulations results represent ensemble averages 

in which a large number of GSM data blocks are transmitted over the channels conditions described 

in table 6.1 1 

Channel Type Initial CIR Final CIR Doppler Frequency Classification 

G 1 +0.6z-1 1 —0.2z 250Hz MP 

H 1 +1.3z 1 +0.8z-1 250Hz Variation from NMP to MP 

Table 6.1: Instantaneous Time Variant Channel Conditions used for Computer Simula-

tion Tests 

1. It is important to note that identical instantaneous channel conditions are used within each data block of the ensemble. 
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Figure 6.3 (b) - MSE at the Output of the LTE Throughout the GSM Data Block using an Equaliser 

with Fixed Coefficients under Channel Conditions Denoted Channel H (250Hz Doppler Frequency) 
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Figure 6.3 (d) - MSE at the Output of the DFE Throughout the GSM Data Block using an Equaliser 

with Fixed Coefficients under Channel Conditions Denoted Channel H (250Hz Doppler Frequency) 

1 - DFEMSEataSNRof 5dB 4- Channel Estimate NTEataSNRof 5dB 

2 - DEE MSE at a SNR of 10dB 5 - Channel Estimate NTE at a SNR of 10dB 

3 -DFEMSEataSNRof2OdB 6- Channel Estimate NTEataSNRof20dB 
- 170- 



10 

I- - 10 

I 
io 

2 

10 

I--------------  

f------------------- ----------------- ------------- - 	---- ------- -- 2 ------------------ 

5 	10 	15 	20 	25 
SNR (Eb/No) 
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the Channel Conditions denoted E and F. 
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Figures 6.3(a) and (c) show the MSE performance of the LTE and DEE under the MP channel con-

ditions denoted channel G. As can be seen, in each case the fixed CIR estimate results in 

significant additional equaliser output error particularly at high SNRs. Predictably, performance 

degradation is most severe at the data block extremes. Comparing the performances of the 

equaliser and channel estimator, it is clear that there is close correlation between the NTE of the 

channel estimate and the MSE at the equaliser output. It may, therefore, be concluded that the 

approximation of the additional equaliser MSE to the channel estimate misadjustment is reasonable 

under these conditions. Figure 6.3(b) and (d) show the MSE performance of the same systems 

when subject to the variable phase conditions denoted channel H. Several points are evident. 

Firstly, the absolute MSE of each equaliser is significantly degraded from the MP case. Secondly, 

there is again close correlation between NTE of the channel estimate and the equaliser output MSE. 

Finally, the additional error due to the channel time variation is small compared with the MMSE of 

the equaliser. From these investigations it may be concluded that if the equaliser performance is 

principally limited by the channel time variation, then the fixed equaliser coefficients result in 

significant equaliser MSE performance degradation. If, however, the equaliser performance is prin-

cipally limited by either additive noise or the spectral characteristics of the channel, then equaliser 

performance degradation due to the fixed CIR estimate is relatively small. Within the GSM system 

each of these conditions is possible. 

Computer simulation of equaliser error rate performance has also been performed; simulation 

results of which are shown in Figure 63(e) and (1) for the LTE and DEE respectively. GSM condi-

tions are again assumed, however, in this instance the results represent time rather than ensemble 

averages. The channel conditions described in Table 4.1 and denoted channels E and F are used. 

From the results it can be seen that at high Doppler frequencies the fixed equaliser coefficients 

result in significant BER performance degradation from optimum in both the LTE and DEE. More-

over, at SNRs of in excess of approximately 15dB this source of error is the principal limitation on 

equaliser error rate performance. It is interesting to note that under these conditions the perfor -

mances of the linear and decision feedback equalisers are similar. At lower Doppler frequencies 

some performance degradation is still evident, however, this is significantly less than that found at 

maximum Doppler frequencies. Within the range of SNRs shown performance degradation from 

optimum is a constant 3dB for each equaliser. It may be concluded, therefore, that at these lower 

Doppler frequencies channel time variation is not the principal cause of equaliser error. 

It is interesting to compare the performance of the conventional equalisers with that of the MLSE, 

which is shown under identical channel conditions in Figure 4.2 (c). Comparison shows that at 

high Doppler frequencies the error rate performance of each of the structures is ultimately limited 

by the misadjustment of the channel estimate due to time variation of the channel. Further, in each 

case asymptotic performance is obtained at an SNR of approximately 15dB. At lower Doppler fre-

quencies the performance degradation from optimum is less significant, and in each of the systems 

is approximately 3dB. From these comparisons it is clear that the performance of each of the sys-

tems is similarly affected by channel time variation. However, due to the inherent error rate 
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performance advantage of the MLSE the performance degradation, from optimum, suffered by the 

MILSE is marginally greater than that suffered by the conventional structures. Under all conditions, 

however, the error rate performance of the MLSE remains superior to that of either of the conven-

tional equalisers. 

6.4 Continuous Equaliser Coefficient Update using Conventional Adaptive Algorithms 

The performance degradation of the conventional equaliser due to channel time variation within the 

data block may be reduced by continuous update of the equaliser coefficients to suit the instantane-

ous channel conditions. There are two alternative techniques by which this may be achieved. In 

the first, which is referred to within this work as the "direct" 2  approach, the adaptive algorithm is 

applied directly to the equaliser coefficients, adaptive update being made on the basis of the 

equaliser output and the previous equaliser coefficient vector. Since the algorithm operates directly 

on the equaliser coefficients, the necessary channel inversion is performed implicitly within the 

algorithm. Within the alternative technique, referred to hereafter as the "indirect" approach, the 

equaliser coefficients are derived indirectly from a channel estimate using the techniques described 

in Section 3.7. Here, since the adaptive algorithm is applied to the problem of channel 

identification rather than to that of equalisation, it is the channel estimate which is adaptively 

updated throughout data transmission. This technique, although computationally more intensive 

than the direct method, is shown in subsequent work to offer performance advantage. 

Within this section the performance of both the linear and decision feedback equaliser is considered 

when updated using conventional algorithms applied both directly and indirectly. The primary 

objective of this section is, therefore, to compare the performances of the direct and indirect 

methods of computation of equaliser coefficients. In order to do this, firstly, each update method is 

described in greater detail in Sections 6.4.1 and 6.4.2. Secondly, some theoretical observations on 

equaliser performance under both time invariant and time variant channel conditions are made in 

Section 6.4.3. Finally, the relative performance of each technique under GSM transmission condi-

tions is investigated in Section 6.4.4. 

6.4.1 Direct Equaliser Coefficient Update 

The operation of the adaptive algorithm when applied directly to equaliser coefficient update has 

been described in Section 2.4.1. In this application, the input to the system is defined to be the 

channel output, and the input to the channel, available as either the training sequence or as past 

equaliser decisions, is used as the desired response. The objective of the algorithm, in the case of 

LS estimation, is to minimise the SSE between the actual equaliser and output the desired output. 

2.The word 'direct" is used in this context to describe the method by which the adaptive algorithm is applied to the problem 
of equaliser coefficient update, it should not be confused with the terms "direct", or "inverse system modelling" which are 
generally used to describe the function of the adaptive system. 
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Minimisation is achieved by updating, at each algorithm iteration, the equaliser coefficients, thereby 

solving iteratively the Wiener equation, which may be expressed in this instance by Equations 3.51 

and 3.65 for the LTE and the DFE respectively. In the case of the linear equaliser, the generic 

form of the adaptive algorithm may be expressed, 

	

*(n) = *(n-1) + F[Y(n)]e(n), 	 (6.19) 

where, *(n) represents a vector containing the equaliser coefficients, e (n) represents the error 

between the desired and actual equaliser outputs, and F [Y(n ) 

I 

 represents the algorithm update 

vector which is dependent upon the criterion upon which adaptive update is based; the term, Y(n), 

indicates that the update vector is based on past channel outputs. In the DFE, adaptation is facili-

tated by application of effectively two algorithms. The first of these is used to update the equaliser 

forward coefficients, which are adjusted in much the same way as described above for the linear 

equaliser. The feedback coefficients are adjusted using the second algorithm, which may be 

expressed as follows, 

	

(n) = (n-1) - F[X(n)]e(n), 	 (6.20) 

where B(n) represents a vector containing the equaliser feedback coefficients and the term, X(n), 

denotes that update is based on the desired equaliser response. 

In order to facilitate equaliser coefficient update throughout unknown data transmission, the 

equaliser is operated in what is termed the "decision directed mode" [90].  Here, the equaliser 

desired response is defined to be decisions fed-back from the equaliser output, therefore, the 

requirement of a known training sequence is obviated. However, since decisions are computed from 

the received signal, they are prone to both occasional error and delay. Consequently, the system is 

subject to similar limitations to those described in Section 4.3.3 for the adaptive MLSE in which 

CW estimate update is based on tentative decisions. 

6.4.2 Indirect Equaliser Coefficient Update 

The indirect technique for equaliser coefficient update is depicted in Figures 3.6 and 3.7 for the 

LTE and DIE respectively 3 . Here, firstly, a channel estimate is formed using one of the algo-

rithms described in Chapters 4 and 5. The objective of the algorithm is to minimise the SSE 

between the actual channel output and the output of the channel estimator. Minimisation is 

achieved by updating, at each algorithm iteration, the estimator coefficients thereby solving the 

Wiener equation, which in this instance is given by Equation 3.2. The channel estimate, H(n), is 

then used as the basis on which the equaliser coefficients are computed. This can be achieved using 

the algorithm described by Equations 3.51, 3.57 and 3.60 for the LTE, and by Equations 3.73 and 

3.74 for the DFE. The equaliser coefficients may subsequently be recomputed at each iteration of 

the channel identification algorithm, however, apparent computational load may be reduced if 

3. Shown for conditions in which the data sequence is known a priori. 
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coefficient recomputation is realised less often. The technique of periodic recomputation at less 

than the symbol period is, however, suboptimal and results in performance degradation. Within all 

subsequent work symbol rate recomputation is, therefore, assumed. Throughout unknown data 

transmission channel estimate update is made on the basis of decisions fed back from the equaliser, 

consequently, the estimate is again subject to the effects of both delay and error propagation. 

6.4.3 Equaliser Performance Using Conventional Adaptive Algorithms 

Within this section the MSE performance of the adaptive equaliser when updated using conven-

tional adaptive algorithms applied both directly and indirectly is considered. Here, algorithm 

steady state and transient performance is investigated, under time invariant and time variant channel 

conditions. In order to achieve this the investigations are not limited to the GSM system. There-

fore, throughout the following work continuous data transmission conditions in which the transmit-

ted data sequence is assumed to be known a priori are assumed. 

Due to the non-linear relationship between the equaliser and channel coefficients, derivation of 

theoretical expressions relating equaliser performance to the apparent channel conditions is not sim-

ple. It is, however, possible, using the approximations described in Section 6.3, to establish 

approximate bounds for algorithm MSE performance. In order to do this, consider, firstly, the case 

in which the equaliser coefficients are derived indirectly from an adaptive channel estimator, as 

depicted in Figures 3.6 and 3.7. For this arrangement it was shown in Section 3.8, that for a wide 

variety of stationary channel conditions, the equaliser output MSE may be related directly to the 

misadjustment of the channel estimate. Hence, under time invariant conditions the additional 

equaliser output MSE due to channel estimate misadjustment is given by Equation 6.13, which, 

assuming RLS channel estimate update may be expressed, using Equation 3.30, as, 

a T1 2tr0,(1—X) 
(6.21) 

(1+X) 

and, assuming LMS update [19],  as, 

AJ Z a 2  J.t tr CI 	, 	 (6.22) 

where X is the RLS exponential weighting factor, j.t is the LMS adaptive gain term, and trc1 

represents the trace of the inverse autocorrelation matrix. As described in Section 6.3, these equa-

tions imply that at any instant in time the misadjustment of the channel estimator is reflected within 

the equaliser output MSE. Extending this argument to the time variant case, the additional equaliser 

MSE may be expressed using Equations 4.9 and 4.11, as, 

cJTitrbX(l—A) 
+ 	

atrtt 
(6.23) 

for RLS update, and as, 

tr cI 
LtJ z aTi2trcJ?L+ 

aTi 	
(6.24) 

4j.t 

- 175 - 



for LMS update. 

In the case of direct equaliser coefficient computation, since the equaliser coefficients are neither 

independent nor, in the time variant case, accurately modelled by a stationary first order vector 

Markov process, it is difficult to determine analytical expressions similar to 6.23 and 6.24 relating 

additional equaliser MSE to the characteristics of the channel. For this reason, within this work 

computer simulation has been used in order to investigate this problem. Considering, initially, time 

invariant channel conditions. In Figure 6.4 the performance of the linear and the decision feedback 

equaliser is compared when updated both directly and indirectly over a number of channels; for 

brevity only RLS update is shown. As can be seen, in each instance the equaliser asymptotic MSE 

performance is similar irrespective of which technique is used within derivation of the coefficients. 

This is predictable, since the equaliser coefficients will tend toward the Wiener optimum in both 

cases. The transient performance of each of the techniques is, however, quite different. Consider-

ing, firstly, the performance of the LTE. In the case of indirect coefficient computation, MMSE is 

achieved within approximately 2N algorithm iterations; N being the number of channel 

coefficients. This corresponds to the convergence rate of the channel estimator. In the case of 

direct coefficient update, initial convergence can be said to be complete within 2Neq  algorithm 

iterations, where Neq  is the number of equaliser coefficients. Since for most practical systems, 

Neq  > N, the indirect technique is guaranteed to converge more rapidly. Moreover, within the direct 

update technique once initial convergence is complete, the rate at which the equaliser output 

approaches the MMSE is significantly lower than that apparent within the indirect approach. In the 

case of the DFE convergence rate is in general lower than that of the LTE, and indeed when 

updated directly the DIE does not achieve the MMSE within the time period shown. The relative 

performances of the direct and indirect techniques, however, remain the same. 

Next, considering equaliser performance under time variant channel conditions, computer simula-

tion results of which are available in Figure 6.5; again only RLS update is shown. The channel 

conditions employed within these simulations are detailed in Table 6.2. 

Channel Type Initial CIR Final CIR Doppler Frequency Classification 

J 1 +0.5z' 1 —0.5z' 250Hz MP 

K 1 +1.5z' 1 +0.5z -1 250Hz Variation from NIvIP to MP 

Table 6.2: Instantaneous Time Variant Channel Conditions used for Computer Simula-

tion Tests 

Firstly, examining linear equaliser performance, shown in Figures 6.5(a) and (b). As can be seen 

under each of the channel conditions shown, indirect coefficient update offers significant perfor-

mance advantage over the direct method in terms of both steady state and transient performance. 

Within indirect coefficient update once convergence is complete, again within approximately 2N 
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iterations, the equaliser output MSE achieves a level approaching the minimum achievable MSE. 

In the case of direct coefficient update the equaliser output MSE degrades significantly, and 

achieves a level of approximately 3dB above the MMSE, this being consistent throughout the 

transmission period. 

Each of the comments made with regard to the performance of the LTE are equally applicable to 

the DFE; the performance of which is shown in Figures 6.5(c) and (d). Indeed the performance 

advantage of indirect update is even more significant in this case. It is interesting to note that 

under channel conditions denoted, K, in which the channel zero crosses the unit circle, the MSE of 

the indirectly computed equaliser reduces rapidly once the zero lies within the unit circle, and 

achieves an MSE marginally above the noise floor. The same is not true of the directly updated 

case, here the MSE remains consistently approximately 3dB above the MMSE. Moreover, the 

equaliser output MSE reduces more slowly as the zero crosses the unit circle. 

From these investigations it may be concluded that under highly time variant conditions, indirect 

update of the equaliser coefficients results in significantly better MSE performance than is achiev -

able using the direct approach, which appears to exhibit an additional lag error over and above that 

apparent within indirect coefficient update. Furthermore, an equaliser derived indirectly approaches 

closely the minimum achievable MSE. An intuitive explanation of why this is true is as follows. 

Within direct system identification each system coefficient may be modelled as an independent first 

order vector Markov process. Within equalisation, which may be viewed as system identification in 

which the system to be identified comprises the optimum equaliser the same is not true. Moreover, 

as will be shown in Section 6.5, the coefficient trajectories of the optimum equaliser exhibit non 

linear characteristics, and under conditions in which the channel zeros cross the unit circle, may not 

even be described by continuous time functions. Hence, to track these non linearly time variable 

coefficients using a linear algorithm is not simple. In contrast, within the indirect approach it is the 

channel coefficients themselves which are derived using the adaptive algorithm. Since the time 

variation of these is both continuous and linear the coefficients may be more accurately estimated; 

the problem of estimating coefficients which vary non linearly with time being obviated since the 

non linear operation is performed explicitly via a separate algorithm. Consequently, in this instance 

equaliser coefficient update may be performed with greater efficiency. 

6.4.4 Equaliser Performance Under GSM Conditions 

Within the previous section the performance of conventional algorithms when employed for 

equaliser coefficient update was investigated under general time variant channel conditions. In this 

section this analysis is extended to encompass the transmission conditions pertinent to the GSM 

system. These differ from those discussed previously in three key aspects: firstly, the data blocks 

used within the GSM system are significantly shorter than those considered in Section 6.4.3, 

secondly, the initial equaliser coefficients are derived within the training period, hence algorithm 

convergence is assumed complete prior to data transmission, and finally equaliser coefficient update 
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is necessarily based on delayed, occasionally incorrect, decisions fed back from the equaliser out-

put. 

In order to investigate the effects of these aspects on system performance further simulation has 

been performed. The results of these simulations appear in Figure 6.6. Figures 6.6(a) and (b) show 

the MSE performance of the LTE and DFE when updated both directly and indirectly, using, in this 

instance, the LMS algorithm; the channel conditions detailed in Table 6.1 are assumed. As can be 

seen the indirect coefficient update technique again exhibits superior performance, particularly 

under the less spectrally severe channel conditions of channel G. Under these conditions it can be 

seen that when updated indirectly both the LTE and DFE achieve an asymptotic MSE of slightly 

above the noise floor. However, when directly updated the equalisers are again subject to an addi-

tional error of approximately 3dB. Under the conditions of channel H the performance advantage is 

not as significant. It is interesting to note, however, that in the case of the DFE, once the channel 

zero crosses the unit circle, equaliser performance improves markedly. 

From these investigations there are several additional points worthy of note. Firstly, in order to 

ensure algorithm stability the adaptive gain term, p, used within the direct update technique is 

smaller than the corresponding value used for indirect update. This is symptomatic of the increased 

eigenvalue ratio of the autocorrelation matrix, , associated with computation of the Wiener 

optimum expressed by Equations 3.51 and 3.65 . Consequently, greater steady state error is 

incurred than is true of similar update based on the RLS algorithm. Secondly, the use of delayed, 

occasionally incorrect, decisions within the coefficient update results in some equaliser performance 

degradation. This is, however, less significant than that apposite to the adaptive MLSE. The princi-

pal reason for this is that under adverse channel conditions the MMSE at the equaliser output is 

dominated by the limitations of the equaliser structure, hence, error due to delay or incorrect data is 

often negligible. Finally, the performance of the equaliser may be improved using the techniques of 

multi-pass equalisation, as described for the adaptive MLSE in Section 4.3.4; this being true regard-

less of which technique is used for coefficient update. In order to illustrate this, computer simula-

tion of a multi-pass equalisation system, in which a data sequence estimate is derived prior to the 

equalisation phase, has been undertaken. Simulation conditions identical to those used above are 

again employed, and the results are available in Figure 6.7. Comparing Figures 6.6 and 6.7 it can 

be seen that some performance improvement is evident within the indirect update case. Asymptotic 

performance improvement is at best approximately 2dB. In addition, it is clear that when updated 

using the technique of multi-pass equalisation, the equaliser is able to respond more rapidly to the 

variable phase conditions of channel G. Performance improvement within the direct update tech-

nique is negligible. 

In terms of error rate performance, computer simulation results of which are shown for single pass 

equalisation for the channel conditions denoted channels E and F in Figure 6.8, it can be seen that 

4. It should be remembered that in indirect coefficient update, algorithm stability is dependent upon the eigenvalue ratio of the 
autocorrelation, (I), which, for white input data, is equal to unity. 
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the indirect technique for adaptive update yields performance improvement over the directly 

updated equaliser. This is particularly apparent at high Doppler frequencies. Under these conditions 

the indirectly updated equaliser achieves an asymptotic error rate performance improvement over 

the directly updated system of approximately 1.5 times. At lower Doppler frequencies some perfor-

mance advantage is still achievable, however, within the range of SNRs shown this is limited to 

approximately 0.5dB. Comparison of the performance of the continuously updated equaliser with 

the "fixed" equaliser 5  shows that direct update yields little performance advantage over the "no 

update" technique; this is symptomatic of the short data block used within the GSM system. 

Indirect update, however, does result in some performance advantage, again, this is most significant 

at high Doppler frequencies. 

Comparing the performance of the continuously updated equaliser with that of the continuously 

updated MLSE, simulation results of which are shown in Figures 43(d) and (e), it can be seen that 

at low Doppler frequencies comparable performance advantage is achievable over the "no update" 

technique within each system. At high Doppler frequencies, however, the performance improve-

ment achieved by the MLSE is almost an order of magnitude greater than that achieved by the con-

ventional equalisers. It may be concluded, therefore, that under highly time variant channel condi-

tions the error rate performance of the MLSE is more critically affected by the misadjustment of 

the channel estimate. Hence, the performance advantage achievable under time variant conditions 

using continuous coefficient update techniques is greater in the case of the MLSE. 

65 Direct Equaliser Coefficient Update using A Priori Adaptive Algorithms 

Within the highly time variant environment the performance of conventional algorithms may be 

improved by incorporation of a priori knowledge of the time variant characteristics of the equaliser 

coefficients into the algorithm. This may be achieved using both direct and indirect coefficient 

update techniques. Within this section the problem of direct update is investigated. The incorpora-

tion of the a priori knowledge into the algorithm may be realised using techniques similar to those 

first introduced in Chapters 4 and 5. In this case, however, since the algorithm is employed for 

direct equaliser coefficient update, the problem is fundamentally more difficult than that of channel 

identification. Difficulties arise since although the time variant behaviour of the channel 

coefficients may be well characterised, and, therefore, accurately modelled, it is not simple to relate 

these models directly to associated models pertinent to the equaliser coefficients. Within this work 

the problem is addressed by establishing a linear approximation of the coefficient time variation, 

and incorporating this into the adaptive equaliser coefficient update algorithm. 

In order to derive these algorithms it is firstly necessary to establish the characteristics of the 

equaliser coefficients under time variant channel conditions. The section, therefore, begins with an 

investigation into the time variant behaviour of the coefficients of both the LTE and DFE under 

5. Computer simulation results of which are shown in Figures 6.3(e) and (0. 

- 185 - 



specific channel conditions. Next, the models developed within this analysis are used as the basis of 

time variation compensation within the derivation of several adaptive algorithms used for direct 

coefficient update. Finally, the performance of each of these algorithms is investigated under typical 

channel conditions. 

6.5.1 Time Variant Behaviour of the Linear Transversal Equaliser 

Within this section an approximate model describing the trajectories of the coefficients of the LIE 

under time variant conditions is derived. Since this is difficult to achieve analytically the approach 

taken within this work is firstly to identify the channel conditions which critically affect the varia-

tion of the equaliser coefficients, and subsequently to investigate the time variant behaviour of the 

coefficients under these particular channel conditions. In order to achieve this, initially, the time 

variant behaviour of the coefficients of the optimum zero forcing (ZF) equaliser is investigated. 

This is performed, since under a large number of channel conditions the coefficients of the ZF 

equaliser may be related relatively simply to the coefficients of the CIR. Hence, using simple 

analysis it is possible to identify the channel conditions critical to the time variant behaviour of the 

equaliser coefficients. The analysis is then extended to the MMSE linear equaliser. However, since 

the relationship between channel and equaliser coefficients is significantly more complex in this 

instance, investigation is performed principally through numerical simulation. Next, the time vari-

ant behaviour of the equaliser coefficients is investigated under conditions more typical of those 

found within mobile communications systems. Finally, an approximate model is proposed. 

Considering, firstly, the ZF linear equaliser. Within the ZF equaliser the coefficients are chosen to 

force the combined channel-equaliser response to zero at all but one of the N T-spaced time 

instants within the span of the equaliser. In order to do this the impulse response of the channel-

equaliser combination must satisfy the zero 1ST condition [11],  which may be expressed, 

W(f) . H'(f) = 1 If I :!~ 1/2T , (6.25) 

where H'(f) is the folded spectrum of the channel and W(f) is the spectrum of the equaliser. 

From this it can be seen that the optimum infinite length ZF equaliser is simply a filter which exhi-

bits the inverse frequency response to that of the channel. This relationship is most easily demon-

strated using a simple example. Consider the ZF equaliser matched to the two tap channel, 

H(z) = 1 + a z -1, (6.26) 

where initially a is limited to the range I a I < 1, and the single channel zero, therefore, lies inside 

the unit circle. The optimum ZF equaliser is the inverse of this, its z-transform is, therefore, given 

by, 

W(z)= 	- 	 (6.27) 
1+az' 

The equaliser coefficient weights may be obtained by either direct inversion of Equation 6.26, or by 

applying the binomial expansion [130], each of which result in the following solution, 
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W(z) = 1 - az + a2z 2  - a3z 3 	, 	
N q l• (Nq•l) 	

(6.28) 

The trajectories of the coefficients of this particular equaliser are, therefore, given by, 

w(t) = a'(t). 	 (6.29) 

As is clear, even in this simplest of examples, the relationship between channel and equaliser 

coefficients is not straightforward. 

If the value of a is chosen such that I a I > 1, then the channel zero lies outside the unit circle, and 

expansion of Equation 6.27 results in a divergent series. An alternative solution must, therefore, be 

found. Within the practical equaliser this situation is resolved by computing the coefficients of a 

ZF equaliser designed to compensate for reciprocal zeros, and time reversing these coefficients . 

This process necessitates the implementation of a delay within the equaliser, which, in the follow -

ing example is chosen to be equal to the total number of coefficients within the equaliser, Neq . For 

the channel of Equation 6.26, it can be shown that the optimum ZF equaliser may be expressed, 

assuming an even number of equaliser coefficients, as, 

—i 	______  W(z) 
= N + N -1 	N 2 ..... + 	, 	 (6.30) 

eq 	a 	 a 

thus, the equaliser trajectories may be expressed as, 

w,(t) = 	
1 	 (6.31) 

again the relationship between equaliser and channel coefficients is relatively complex. 

In the practical system channel zeros may of course occur both within and without the unit circle, 

consequently, for the equaliser to be physically realisable some delay must always be implemented. 

Most often this is chosen to be half the equaliser length, d = N,, 12. Hence, the equaliser structure 

may be viewed as two separate equalisers coupled in cascade, where the coefficients, w, for i <d, 

are employed to compensate for zeros which lie outside the unit circle, and the coefficients, w1 , 

where i ~t d, are employed to compensate for zeros which lie inside the unit circle. Now consider 

the instance in which a is allowed to vary from a = 0 to, say, a - 2. For an eight tap equaliser, 

when I a I <1, the equaliser coefficients may be shown to be given by, 

W(z)=0+0z'+0z 2 +0z 3 +z—az 5 +a2z—a 3z 7 , 	 (6.32) 

and when lal > 1, by, 

1 	-1 	-2 	-3 
(6.33) 

a a a 	a 

When a = 1 all taps are equal to unity. This time variant behaviour is plotted in Figure 6.9. From 

this simple example it may be seen that not only is the relationship between the channel and 

equaliser taps not simple, but as the channel zero crosses the unit circle the equaliser coefficients 

6. This process is described in detail in [63]. 
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are subject to large instantaneous variation. Consequently, it may be concluded that within the ZF 

linear equaliser, under certain channel conditions, it is not always possible to model the coefficient 

trajectories as continuous time functions. This type of analysis may of course be extended to more 

complex channel conditions, however, conditions in which channel zeros occur close to the unit cir-

cle remain the most critical with regard to both equaliser performance and the time variant 

behaviour of the coefficients. 

Considering next the time variant behaviour of the MMSE linear equaliser. This equaliser differs 

from the equaliser designed using the ZF criterion in that equaliser coefficients are chosen such that 

the equaliser output MSE is a minimum, in this way the equaliser output MSE due to both additive 

noise and ISI is jointly minimised. This is achieved by defining the equaliser coefficients such that 

they satisfy the Wiener equation, which in this instance, may be expressed, 

(t' W-P, = Oy. . 	 (6.34) 

Therefore, the coefficients of the optimum MMSE equaliser may be derived by, firstly, computing 

the autocorrelation matrix, 4, and cross correlation vector, using Equations 3.52 and 3.53 

respectively, and then solving Equation 6.34. Performing this computation numerically, for the time 

variant conditions described by Equation 6.26 in which a is varied linearly from 0 to 2, results in 

the tap-weight trajectories depicted in Figure 6.10; again an equaliser delay of Neq  /2 is used. There 

are several points worthy of note concerning these plots. Firstly, the most rapid variation of the 

equaliser coefficients again occurs as the channel zero crosses the unit circle. In this instance, how-

ever, the trajectory of each tap-weight is not discontinuous and may, therefore, be described as a 

continuous time function. Secondly, under channel conditions in which the multipath distortion is 

not severe 7 ,  the coefficients of the optimum ZF and MMSE equaliser have similar weights. How-

ever, as the channel zero approaches the unit circle the ZF and MMSE criteria result in increasingly 

diverse solutions. For this reason under spectrally severe channel conditions the trajectories of the 

coefficients of the MMSE equaliser are not well modelled by analogy with the ZF equaliser. Next, 

there is a high degree of correlation between the time variant behaviour of each of the coefficients 

within the equaliser, this being particularly true under channel conditions exhibiting severe mul-

tipath distortion. It is also notable that the time variation of the "principal taps" 8  of the equaliser is 

the most severe. Finally, under conditions in which the channel zero does not lie close to the unit 

circle, the time variation of the equaliser coefficients is less severe than that of the channel taps. 

However, as the channel zero approaches the unit circle the time variation of the equaliser 

coefficients becomes significantly greater than that associated with the channel coefficients. This 

may be illustrated by considering the characteristics of the equaliser coefficients under similar time 

variant channel conditions, in which both channel taps vary in time; the most critical conditions 

occurring when each tap is defined to vary in contrary directions. In this instance the channel z-

transform is given by, 

ie., when the channel zero is not close to the unit circle. 
Here, the term principal taps' is used to describe the taps closest to the equaliser centre tap. 
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H(z) = P +az 1  , 	 (6.35) 

a being varied linearly from 0 to 2 and P from 2 to 0. Equaliser tap-weight trajectories are shown 

in Figure 6.11. Here, as a and P simultaneously approach unity, equaliser coefficients alter more 

rapidly with time, and at the time instant in which, a = P = 1, the variation of the equaliser 

coefficients is approximately five times that of the channel coefficients. However, even under these 

conditions tap-weight trajectories may be modelled as continuous functions. 

Unfortunately, there are certain channel conditions in which the MMSE equaliser coefficients may 

exhibit discontinuities in time. In order to illustrate this, consider the case in which, for the two 

tap channel described by Equation 6.35, and a is varied from -1 to 1, whilst simultaneously, P is 
varied from 1 to -1. Assuming that each coefficient varies linearly, and at the same rate, then at 

some point in time, say t = k, both a and Ii will be equal to zero. At this instant the Wiener 

optimum is dependent only upon the additive noise term within the autocorrelation matrix, and in 

practical terms has no real significance. Consider, however, the CIR at times t =k —öt and t =k+ot, 

where ôt is a small time increment. At time t =k —öt the CIR is given by, H (z) = ö—öaz', and at 

time t=k-i-öt the CIR is given by, H(z) = —6+6az 1 . As can be seen an equaliser designed to 

compensate for each of these channels will exhibit negated coefficients with respect to one another. 

Moreover, if 6P and öa are small then due to the inverse relationship between channel and 

equaliser, the absolute values of the equaliser coefficients will be large. Hence, instantaneously at 

t =k, equaliser coefficients alter from large positive weights to similar large negative weights. This 

is depicted in Figure 6.12. Within the practical system the likelihood that these precise channel 

conditions will be encountered is small, however, particularly in the case in which the number of 

channel multipaths is small, it is quite possible that all channel weights may be simultaneously 

close to zero, hence similar conditions may result. It is important to note that should these condi-

tions occur equaliser performance will degrade catastrophically regardless of which algorithm is 

employed to update the equaliser coefficients. 

From the above work it may be concluded that although under particularly severe channel condi-

tions it is difficult to model the time variant behaviour of the equaliser coefficients, for the majority 

of channel conditions the coefficients trajectories may be described as continuous time functions. It 

is, therefore, proposed that the time variation of the equaliser coefficient vector is modelled as a 

polynomial of the form, 

W(n) = W(0)+n V 1+n2V2+. . . nN0T(VN , 	 (6.36) 

where Nord represents the order of the polynomial, and the vectors V 1  represent the i th derivative 

of the curve traced by the equaliser coefficients. The order of the model required is primarily 

dependent upon the rate of change of the equaliser coefficients. In order to estimate this under typi-

cal time variant channel conditions, further simulation has been performed. Figure 6.13 shows the 

coefficient trajectories of an optimum ten tap T-spaced linear equaliser, when employed to compen-

sate for the time dispersion due to a three tap channel, of MPDP, 

Ha (Z)1+Z'+Z 2 , 	 (6.37) 
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each tap being subject to Doppler fading at 25011z. For convenience the plots of w•, where 

£ <Neq  /2 and where i ~t N q l2 are again displayed separately. Figure 6.13(a) shows the tap-weight 

trajectories over 1000 T-spaced time intervals. From these plots it can be seen that the time variant 

behaviour of the coefficients is much as predicted by the previous work, the results obtained, there-

fore, serve to highlight several important points. Firstly, there are frequent periods in which either 

the equaliser coefficients wi  where, i <Neq/2 , or those where i ~ Neq  /2, are equal to zero, these 

correspond to conditions of maximum and minimum phase respectively; conditions in which both 

sets of coefficients are non zero correspond to mixed phase transmission conditions. Secondly, there 

are periods in which the equaliser coefficients vary relatively slowly in time, these are, however, 

interspersed by frequent periods of rapid time variation, these correspond to conditions in which 

one or more channel zero crosses the unit circle. Finally, there is a high degree of correlation 

between the time variation of each of the equaliser coefficients, particularly during the periods of 

rapid change. 

Figure 6.13(b) shows the equaliser coefficient time variation over similar channel conditions, how-

ever, in this instance the number of time samples shown has been reduced to 100 T-spaced time 

instances; this corresponds to the period between sample 150 and sample 250 of the plots of Figure 

6.13(a). It can be seen that within this period of rapid change each tap-weight trajectory may be 

approximated using a third order polynomial model, this being typical of these particular transmis-

sion conditions. However, since the periods of rapid time variation correspond to channel condi-

tions in which the channel zeros occur close to the unit circle, the equaliser performance is likely 

to degrade considerably during these periods irrespective of the accuracy of the update algorithm. 

Hence it may be concluded that system performance may only be marginally improved by adopting 

a third order model. Moreover, as has been demonstrated in Chapter 4 and 5, since the number of 

algorithm parameters is dependent upon the model order, algorithms based on high order models 

tend to be subject to high levels of self noise due to parameter misadjustment. Consequently, 

unless it is possible to accurately estimate these parameters, it is likely that they will contribute 

more interference than it is possible to remove by more accurately predicting equaliser coefficient 

trajectories. Hence within this work a first order model is predominantly used. 

65.2 Time Variant Behaviour of the Decision Feedback Equaliser 

The principal objective of this section is to investigate the time variant behaviour of the coefficients 

of the DFE. In order to achieve this it is important to appreciate, in some detail, the way in which 

the DFE compensates for signal time dispersion. Much of this section is, therefore, concerned with 

a detailed analysis of the operation of the equaliser. The subject is introduced by an explanation of 

the operation of the optimum ZF DFE. This is presented since, in general, the coefficients of the 

ZF equaliser may be simply related to the prevalent channel conditions, hence, a useful intuitive 

explanation of the DFE operation may be gained. Following this, the operation of the MMSE DIE 

is considered, particular consideration being given to mixed phase channel conditions and condi-

tions in which the channel classification is subject to variation within the equalisation period. Next, 
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the time variation of the equaliser coefficients is investigated under more realistic channel condi-

tions and finally, an approximate model describing this process is proposed. 

The operation of the ZF DFE is in many ways similar to that of the LTE; the equaliser forward 

coefficients performing much the same function as the LTE coefficients, w•, where i <d , and the 

feedback coefficients performing a similar function to the LTE coefficients, w1 , where i ~t d and d 

represents the equaliser delay. There is, however, a fundamental difference in the way in which 

each of the structures compensate for the time dispersion of the received signal. Within the LTE 

ISI is effectively removed by defining the equaliser coefficients such that they represent the channel 

inverse. Consequently, it is useful to envisage the channel-equaliser combination in terms of its 

pole-zero representation. Within the DEE this representation is not necessarily useful. In this 

instance it is more appropriate to envisage the equaliser operation in terms of the cancellation of 

signal pre and post-cursors. This may be described as follows. Consider the N tap channel depicted 

in Figure 6.14(a), and described by the z-transform, 

	

H(z) = h 0  + 	+ h 2  . . hN_lz' . 	 (6.38) 

Assuming that the channel component, hd, has the largest energy, then the channel can be said to 

introduce a delay of d T-spaced symbol periods. Moreover, the channel may also be viewed as 

comprising two components, the first, denoted hereafter as H(n), comprises the channel response, 

h1 , where i :!~ d, and effectively introduces only precursors to the signal. The second, denoted 

hereafter H(n), represents the channel response, h, where i> d, and introduces only post-cursors 

to the signal. Within the optimum ZF DIE, signal precursors are compensated for by the equaliser 

forward section and signal post-cursors are compensated for by the feedback section. This may be 

demonstrated using a simple example. Consider the channel of Figure 6.14 (b). Since the first chan-

nel tap, h 0(n), has the largest energy, the channel effectively introduces no delay and therefore no 

signal precursors. Neglecting the forward section final tap, which under these conditions simply 

normalises the gain of the received signal, the distortion may be compensated for within the 

equaliser feedback section alone. In order to force the combined channel-equaliser response to zero 

at all but one of the T-spaced time instants 9 , the coefficients of the equaliser feedback section 

must satisfy the following equation, 

1 	NIb -i 	 N-i 

, - 1+ 	bz' = 	. 	 (6.39) 
a 	i-i 

The equaliser coefficients may, therefore, be expressed, 

(6.40) 

BT(n)= 0, 
h 1 	h 2  
-,--,... 

i I 
, (6.41) 

a a 	a 

9. Within the DFE the combined channel-equaliser response is generally forced to zero at the final tap within the equaliser 
forward section, ie., CN1 _1. 
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where a--ho. If the channel conditions now change such that channel tap hd has the largest energy, 

as depicted in Figure 6.14 (c), then the channel effectively introduces a delay of d. In addition, the 

channel taps, h, (n), where i < d-1, introduce precursors into the signal which must then be com-

pensated for within the equaliser forward section. In this instance, in order for the equaliser to force 

the combined impulse response to zero, the equaliser feedback section is given by, 

BT( fl )=[O ,  !L 	,• 	
(6.42) 

where a=hd. The equaliser forward section is then derived using a similar technique to that 

described for the forward section of the ZF linear equaliser, and is obtained by computing the 

inverse of H(n). Hence, the forward section of the equaliser can be viewed as a linear equaliser, 

designed such that when convolved with the channel, the resulting combined response is purely 

MP. It is important to note that it is possible to compensate for all channel distortion within the 

equaliser feedback section alone, however, since hd > h 0 , this arrangement will result in excessive 

noise enhancement and will, therefore, not represent the optimum ZF solution. From the above dis-

cussion it may be concluded that provided the delay introduced by the channel is not subject to 

change within the equalisation period, the equaliser forward coefficients vary with time in a similar 

manner to that described for the coefficients of the ZF linear equaliser w, where i :9d. Further, the 

time variation of the feedback coefficients may be related directly to the variation associated with 

the channel coefficients, H(n). 

The above discussion is useful to provide an intuitive explanation of the operation of the ZF DFE, 

unfortunately, as will be shown within the following analysis, the operation of the MMSE DIE is 

often more complex. The coefficients of the optimum MMSE DFE are chosen such that the 

equaliser output MSE is a minimum. This is achieved by defining the equaliser coefficients such 

that they satisfy the Wiener equation, which in this instance may be expressed, 

= cI 	, 	 (6.43) 

Following the analysis of Section 3.7 this equation may be expanded, resulting in the following 

expressions for the forward and feedback coefficients of the optimum MSE DFE, 

B0  = 4 x(—i'-1)y Copt , 	 (6.44) 

[4'YX(-e-1)4)X(-d-1)Y I 	opt = yx , 	 (6.45) 

each of these terms is defined within Section 3.7. From these equations it can be seen that the exact 

equaliser coefficients obtained are critically dependent upon the input delay term, denoted here as 

d'; it should be noted that this is dependent upon the delay introduced by the channel and is given 

by, d' =N1  —1—d. The crucial dependence of the equaliser coefficients on the delay term implies 

that under conditions in which the inherent delay of the channel, d, is subject to variation, the 

equaliser coefficients may be subject to significant instantaneous deviation. For this reason the time 

variant characteristics of the DFE coefficients are more critically dependent upon the condition of 

the channel than is true of the LTE. This may be illustrated by considering the time variation of 
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the DFE coefficients under conditions described in Section 6.5.1, in which, for the channel z-

transform described by Equation 6.26, the value of a is varied from 0 to 2 10. Performing the com-

putation of Equations 6.43, 6.44 and 6.45 for these time variant conditions, results in the DFE tap-

weight trajectories of Figure 6.15. From these plots it can be seen that at values of a of less than 

unity, all equaliser forward coefficients, with the exception of Cd, are equal to zero, the single feed-

back coefficient being equal to a. This behaviour is exactly as described earlier for the ZF DFE. 

At values of a in excess of unity, the feedback tap becomes zero and the forward coefficients take 

on values similar to those of an equivalent LTE in which the delay is chosen to be equal to the 

number of equaliser coefficients. This is again as predicted. However, the most striking aspect of 

the behaviour of the DFE coefficients is that at a = 1 the coefficients are subject to large instan-

taneous variation, and exhibit discontinuous time variant behaviour. Hence, even within this sim-

plest of examples the time variant behaviour of the DIE coefficients appears significantly more 

complex than that of the LTE. 

This point can be further emphasised by considering the time variant behaviour of the equaliser 

coefficients under channel conditions in which both post and precursors may simultaneously distort 

the signal. Such conditions are described by Equation 6.46, 

H(z) = a + 1.5z'+(3z 2 . 	 (6.46) 

where a is varied linearly from 2 to 0 and (3 from 0 to 2. In this instance H (z) initially introduces 

only post-cursors into the signal, however since a is continuously decreased, at time say t = t1, the 

value of a becomes less than 1.5, consequently, the channel then introduces both post and precur-

sors. Contemporaneously, however, (3 is increased and at time t = t2, 3> 1.5, thereafter the signal 

is then distorted by precursors only. The resulting DIE coefficient tap-weight trajectories are plot-

ted in Figure 6.16. As can be seen from these results, under conditions in which signal distortion is 

due to post or precursors exclusively, the time variation of the coefficients is much as described 

earlier. When the signal is distorted simultaneously by post and precursors, however, the 

coefficient time variation becomes more complex. Again it is interesting to note that under condi-

tions in which the inherent delay of the channel is subject to change, significant instantaneous vari-

ation of the equaliser coefficients is evident. 

In order to extend this investigation to more realistic channel conditions further computer simula-

tion has been performed. Similar channel conditions to those described in Section 6.5.1, by Equa-

tion 6.37 and associated discussion are assumed; results are shown in Figure 6.17. Figure 6.17 (a) 

shows both the forward and feedback coefficient trajectories of the DFE over 1000 T-spaced time 

intervals. From these plots there are several important points worthy of note. Firstly, the trajec-

tories of the DFE forward coefficients are quite similar to those of the LTE coefficients, w1 , where 

i <Neq  /2. However, due to the variation of the channel delay term there is not an exact 

10. It is important to recognise that under these conditions, since the channel has only two taps, the signal distortion may 
comprise post or precursors, but not both simultaneously. Hence, in terms of the operation of the DFE, these conditions are 
not particularly severe. 
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correlation between the two. Secondly, the times at which the effective delay of the channel alters 

are easily discernible, and occur at the intervals denoted, t1, t2, t3 and t4. At these times the 

equaliser coefficients are, of course, subject to large instantaneous variations. During the remaining 

time coefficients vary relatively slowly. Finally, there is again a high degree of correlation between 

the time variant behaviour of the coefficients within each section of the equaliser. Figure 6.17(b) 

shows the coefficient time variation over a reduced time interval, corresponding to the period 

between samples 150 and 250 of the plot of Figure 6.17(a). Comparing these results with the simi-

lar plots for the linear equaliser, shown in Figure 6.13, it can be seen that the time variation of the 

coefficients of the DFE is, in general, more severe. 

The above discussion would seem to suggest that due to the frequent periods in which the trajec-

tories of the coefficients of the DFE may not be described by continuous time functions, a model of 

the time variant behaviour of the equaliser coefficients, similar to the one proposed for the LTE, 

would be inappropriate. However, it is important to appreciate several aspects of the time variant 

behaviour of the channel and equaliser coefficients, which, to some extent, ameliorate these condi-

tions Firstly, within many communications applications, GSM among them, the channel MPDP 

is rarely such that the average energy of each tap is equal, as is the case within the previous exam-

ple. Most often the initial channel tap possesses significantly more energy than each of the subse-

quent multipaths, consequently, the variation in inherent delay occurs less frequently than may be 

inferred from the forgoing discussion. Secondly, and more importantly, in order to derive a model 

of the time variant behaviour of the DIE coefficients, the analysis of this section has been con-

cerned with optimal equaliser coefficients, which, in the examples shown, are computed indirectly 

from a perfect CIR estimate. In the case in which the channel coefficients are derived, and subse-

quently updated, by direct application of an adaptive algorithm, however, the coefficient trajectories 

tend not to exhibit the large instantaneous coefficient variation described above. In order to illus-

trate this additional simulation has been performed. Figure 6.18 shows the coefficient trajectories of 

a T-spaced DIE in which the coefficients are derived, and updated, by direct application of an RLS 

algorithm; similar channel conditions to those described previously are used. From these plots it is 

interesting to note that the tap-weight trajectories obtained, in general, follow similar patterns to 

those apparent using optimum indirect update. However, although the tap-weights of the directly 

computed equaliser may vary rapidly in time, the trajectories remain continuous time functions. 

Hence, if the coefficients are directly updated then in general it is appropriate to attempt to predict 

coefficient time variation using an approximate linear model. 

In summary, from the work of this section it may be concluded that provided that the inherent 

delay of the channel is not subject to variation within the equalisation period, a model similar to 

the one proposed for the time variation of the coefficients of the linear equaliser is also suitable for 

the DFE. Moreover, since the coefficients of the equaliser feedback section follow similar trajec-

tories to those of the channel coefficients, H, which as described in Section 5.3 may be modelled 

11. The following comments apply equally to both the linear and decision feedback equaliser. 
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accurately using a linear approximation, the polynomial model proves particularly accurate for 

these coefficients. During periods in which the phase conditions of the channel are subject to 

change, however, the optimal equaliser coefficients exhibit large instantaneous variation. Although 

in practise, when updated directly, the apparent time variation of the coefficients is reduced from 

that predicted using optimal update. Hence, it is proposed that the polynomial model may again be 

used to describe the trajectories of the equaliser coefficients 12  . The model may be expressed for 

the equaliser forward and feedback coefficients as, 

C(n) = C(0)+n Vc  1-t-n2V2+. 	
N0 	

(6.47) 

B(n) = B(0)+n Vbl+n2Vbl+.. . fl b1 VbN . 	 (6.48) 

Within subsequent work a first order model is predominantly used. 

6.53 A Priori Adaptive Algorithm Derivation 

The model of equaliser coefficient time variation described in the forgoing sections is similar to the 

one used within the derivation of "a priori channel identification algorithms in Chapters 4 and 5. 

Similar techniques by which the a priori knowledge of the time variant characteristics of the 

equaliser coefficients may be incorporated into the adaptive algorithm may, therefore, be used to 

derive analogous algorithms for equaliser coefficient update. Within this work two techniques are 

considered. In the first, adaptive update is based on conventional LS or gradient search algorithms, 

however, in order to reduce the equaliser output MSE under time variant conditions, the update 

equation is augmented by additional information representing the instantaneous rate of change of 

the equaliser coefficients. This information is incorporated into the algorithm such that channel time 

variation is partially cancelled. This technique is identical to that described in Section 4.4, hence, 

the resulting algorithms essentially represent ROC algorithms for adaptive equalisers. The second 

technique yields an algorithm which is analogous with the Model Based algorithm described in 

Chapter 5. Here, the polynomial model is incorporated directly into the structure of the algorithm. 

The equaliser coefficients are then computed by performing an LS fit of the system output to the 

available training data and the model assumed. Consequently, compensation of the time variation 

of the channel is performed intrinsically within the update of the equaliser coefficients. Within this 

section each of these algorithms are derived for both the LTE and the DFE. 

Firstly, considering ROC algorithms. In order to incorporate the first order polynomial model of 

equaliser coefficient time variation into the algorithm, it is firstly necessary to define a time variant 

vector representing the instantaneous ROC of the equaliser coefficients. In this instance the 

optimum ROC vector is defined, for the linear equaliser, as, 

12. It is important to note that if algorithms are derived using these models, then the degree of time variation of the 
coefficient estimates will tend to increase. Coefficient trajectories may then more closely resemble those of the optimally com-
puted equaliser. if, however, the resulting algorithms are based on either IS or gradient search techniques, it is not possible 
to derive algorithms which will result in instantaneous estimate variation, hence the models remain reasonable. 
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V (n) = W0  (n) - W 0,, (n —1) , 	 (6.49) 

and for the DFE as, 

V, (n) = Copt (n) - C 0 (n-1) , 	 (6.50) 

Vb(n) = Bopt 	- Bopt 	. 	 (6.51) 

The ROC algorithms for the LTE and DFE are then obtained by incorporating these vectors into 

the update equations of the conventional algorithms in such a way as to compensate for the channel 

time variation. This may be achieved as follows, 

*(n) = *(n-1) + F[Y(n)]e(n) + aV(n), 	 (6.52) 

for the LTE, and, 

*(n) = *(n-1) + F[Y(n)]e(n) + afVC (n), 	 (6.53) 

(n) = (n-1) - F[X(n)]e(n) + ab V b (n) , 	 (6.54) 

for the DFE, where a, a1  and 1b  represent the ROC gain terms for, the LTE, the DFE forward 

section, and the DFE feedback section, respectively; all other terms are defined within Section 6.4. 

In practise the vectors, V i,, (n ),V (n) and Vb (n) are unknown at the receiver and must be estimated 

from the past equaliser coefficients. This problem is similar to that of CIR ROC estimation as 

described in Sections 4.4.2 and 4.4.3, consequently, several of the techniques described therein may 

be applied. It is important to note, however, that since the exact model of the time variation of the 

equaliser coefficients is unknown, it is not possible to apply the techniques of optimal filtering 

within the derivation of an ROC estimation algorithm. For this reason the algorithm detailed within 

Section 4.4.4 may not be used. 

As described within Section 4.4.2, the incorporation of the ROC vector into the algorithm means 

that the resulting algorithm exhibits the properties of a second order recursion. Hence, the choice of 

update parameters, cc, of  or ab,  has important implications for the stability, convergence rate and 

asymptotic performance of the algorithm. This was discussed in detail for channel estimation algo-

rithms in Section 4.4.2, and in general the comments made therein apply equally to the case of 

equaliser coefficient update. It should be recognised, however, that modelling errors associated 

with the equaliser coefficients tend to be greater than those of the CW estimator, therefore, the 

resulting algorithms may not achieve the optimal asymptotic performance alluded to in Chapter 4. 

In order to compensate for very highly time variant channel conditions it is possible to extend the 

algorithm update equation to incorporate estimates of higher order derivatives of the coefficient tra-

jectories. This may be achieved by defining the update equation as follows, shown here for the 

LTE only 13 

*(n) = *(n-1) + F[Y(n)]e(n) + 	 V1,1  

13. A similar algorithm may, of course, be obtained for the coefficients of the DFE. 
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+ aV(n). . + an,,,, 
ord 

VWN (n) 	 (6.55) 
ord  

where the coefficients, a, represent the algorithm gain terms, the vectors V. represent the higher 

order derivatives of each coefficient, and are defined, 

	

= V.(n) - Vi(n-1) , 	 (6.56) 

and Nord represents the model order. The vectors V 1  (n) may be estimated from the past equaliser 

coefficients, however, since the equaliser coefficients themselves contain significant error, the esti-

mates of the higher order derivatives will tend to be subject to high levels of additive noise. More-

over, in general the values of the coefficients within each vector tend to be small, hence, the esti-

mates may result in large amounts of self noise and are, therefore, of limited value. 

Next, considering Model Based algorithms. Since the model of equaliser coefficient time variation 

used within this work is an approximation, it is not possible to derive the MVK algorithm for 

equaliser coefficient update. It is, however, possible to derive an SKE algorithm based on the first 

order polynomial model. Derivation of the SKE algorithm follows closely the derivation presented 

within Section 5.3 and is not, therefore, repeated in detail. However, since the function of the algo-

rithm is altered from that of system identification to inverse system modelling, there is a change in 

variables within the recursion. In the case of the LTE the state transition matrix and observation 

equation are given, respectively, by, 

[W(n) 1_ I N

i IN1 [(n1) (6.57) vw(n)j  	IN] [v(n_1)]' 

(n)= [YT(fl)OO 	ol 
[V,,w(n)F() 	 (6.58) 

] 	 fl 

Similarly, the equations for the DFE forward coefficients are given by, 

[C(n) 1 	N IN1 [ C(n-1 1 (6.59) [v(n)j [ON IN [V c (n_1)j' 

1 I 1(fl)=[YT(fl)OO  ... Oj [v 
C(n) (n) ]+(n) ' 	 (6.60) 

and for the feedback coefficients, by, 

[B(n) 1_ I IN 'Ni 

[Vb(n-1
)B(n_1) 1

(6.61) Vb(n)j [ONIN] )j' 

[ 

Xb(fl) = XT (n)00. . . O [ B(n) 
Vb(n)F)' 	

(6.62) 1 
1(n) =1f  (n) Xb(fl). 

The SKE algorithm for equaliser coefficient update is then obtained by substituting the relevant 

quantities into the standard KF equations. This results in the following recursion which, for the 

sake of brevity is given only for the LTE update, 

-210- 



= [A P(n) AT - A K( n )Y/T( n +1)P(n ) AT], 	 (6.63) 

K(n+1) = P(n+1)Y'(n+l) ICY 
T1 2+y,T (n +1)P(n +1)Y'(n +1)] '  , 	 (6.64) 

*'(n+l) = A *'(n)+K(n+l) Ix (n +1)_y,T  (n+I)A *'(n)], 	 (6.65) 

where, 

all 
2 =E 	 (6.66) 

y/T(fl+1) = IyT (n+l) 0 0. . . o], 	 (6.67) 

w/T(n+1) = IWT (n +1 VT(n+l)] . 	 (6.68) 

The recursion detailed above represents the infinite memory form of the algorithm. However, since 

the equaliser coefficients are subject to rapid time variation it is advantageous to implement a win-

dowed version. Within this work the exponential widowed SKE algorithm is used. This was 

derived for channel identification applications in Section 5.4 where it was shown that the applica-

tion of an exponential data window results in modifications to the equations by which the Kalman 

gain vector and inverse autocorrelation matrix are computed. In the case of LTE coefficient update 

these can be shown to be given by, 

K(n +1) = X 1 P(n +1 )Y'(n +1) 11Y11_1+X'-1y,T  (n +1 )P(n +1 )Y'(n +1)] , 	(6.69) 

= IX, -'A P(n) AT - X, - 'A K( n )Y/T( n+1)P(n ) AT], 	 (6.70) 

where ?., represents the exponential weighting factor. 

The algorithm may, of course, be extended to higher order polynomial models, this is achieved by 

modification of the state transition and observation equations, as follows; shown again for the LTE 

only, 

IN IN 
H(n) 
V1(n) 	ON IN 

= .0 

• 	IN 
H(n-1) 
V 1 (n-1) 

Vm (fl1) 
'N 

(6.71) 

H(n) 
V 1 (n) 

y (n )=[XT(n )00 ... 0] 	. 	1(n). 

V. (n) 

(6.72) 

- 211 - 



65.4 Equaliser Performance when Updated Using A Priori Algorithms 

Within this section the MSE performance of the adaptive equaliser when updated using the directly 

applied algorithms described in the previous section is investigated. Since this is difficult to achieve 

analytically computer simulation is used. Within this work both algorithm steady state and tran-

sient performance are considered under time invariant and time variant channel conditions. Con-

tinuous data transmission conditions, in which the transmitted data sequence is assumed to be 

known a priori, are used throughout the investigations. 

Considering, initially, equaliser MSE performance under time invariant channel conditions. In Fig-

ures 6.19(a) and (b) the relative performance of the LTE and DFE is investigated under conditions 

in which adaptive updated is performed using both conventional algorithms, and algorithms in 

which update is aided by the incorporation of a priori knowledge. Since both transient and steady 

state performance are considered to ensure rapid convergence adaptive update is limited to algo-

rithms based on the method of LS. For the purposes of these simulations the static MP channel, 

given by the z-transform H(z) = 1 + 0.5 z, and denoted Channel A has been assumed. As can be 

seen from the plots of Figure 6.19(a), the asymptotic MSE at the output of the linear equaliser, 

when updated using the RLS algorithm, converges to a level approximately 20dB above the noise 

floor, which within this simulation is set to be at 50dB. This apparent MSE degradation is due to 

residual ISI at the equaliser output, consequently, this performance represents the minimum achiev -

able MSE for the particular equaliser modelled, and is independent of the algorithm used for adap-

tive update. 

When updated using the SKE algorithm, the asymptotic output MSE of the linear equaliser con-

verges to a level approximately 6dB above the MMSE. This degradation is due to additional esti-

mation error which is related to the additional parameter set used to model the time variant charac-

teristics of the equaliser. This degradation is analogous with that described for the SKE algorithm 

when applied to the problem of channel identification within Section 5.5. However, due to the 

inverse relationship of the LTE and channel coefficients it is not clear whether analysis similar to 

that performed within Section 5.5 may be applied to the case of equaliser coefficient update. It is, 

therefore, interesting to compare the results of Figure 6.19(a) with similar results for channel esti-

mation, shown in Figure 5.1(a). Comparison reveals that for models of similar order 14  the resulting 

performance degradation is similar. Hence, it may be concluded that the expected asymptotic MSE 

performance degradation of the SKE algorithm, when compared with the RLS algorithm, under 

time invariant conditions is proportional to I(No'd+l)2 
115 irrespective of whether the algorithm is 

used for channel identification or inverse system modelling. When updated using the ROC algo- 

rithm 16  the linear equaliser is able to achieve an asymptotic output MSE approaching the MMSE. 

In both cases first order models are assumed. 
This relationship was demonstrated for channel identification in Section 5.8. 
In this instance the ROC algorithm is based on RLS update and the ROC estimate is derived using the technique of 

higher order filtering described for channel identification applications by Equations 4.42 and 4.47 to 4.51. 
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Here, the Wiener optimum may be obtained since when averaged over a large number of algorithm 

iterations the ROC vector approaches zero. Consequently, the RLS algorithm and the ROC algo-

rithm based on RLS update achieve similar asymptotic solutions. 

In terms of transient performance, the RLS based equaliser can be said to have converged within 

approximately 2Neq  iterations, where Neq  represents the number of equaliser coefficients. Using 

SKE update, similar convergence is achieved within approximately 4Neq  iterations, hence, the rela-

tive transient performance of the algorithms is again similar to that found within system 

identification applications. Convergence of the ROC algorithm, however, requires significantly more 

iterations, and in the example shown, MMSE is achieved within approximately 120 data samples. 

This behaviour is due to the critical dependence of the ROC estimate on the equaliser coefficients 

and is typical of that found within ROC algorithms used for both system identification and equali-

sation. 

The MSE performance of the DEE under similar time invariant conditions is shown in Figure 

6.19(b). In general, many of the comments made with regard to the linear equaliser apply equally 

to the DEE, there are, however, several important differences within the results obtained. Firstly, 

under identical channel conditions the DEE is able to achieve an asymptotic MSE only 2dB above 

the noise floor. This is appreciably better than that achievable using the linear equaliser and is due 

to the inherent efficiency with which the DIE compensates for MP channel conditions. Secondly, 

the convergence rate of the DEE is significantly lower than that of the LTE, this being true regard-

less of which algorithm is used for adaptive update. This is again due to the equaliser structure 

and has, therefore, little relevance when considering update algorithm performance. Next, compar -

ing the transient performance of each of the algorithms, it can be seen that the convergence rate of 

the ROC algorithm is extremely low. Indeed convergence is not achieved within the block length 

shown. Initial convergence of the first order SKE algorithm is again achieved within approximately 

twice the number of iterations required by the conventional RLS algorithm. It is important to note, 

however, that asymptotic performance of each algorithm is achieved within a similar number of 

iterations. Finally, the asymptotic MSE of the SKE algorithm is again inferior to that of the RLS 

algorithm. In this instance, however, the apparent degradation is approximately 3dB. This improve-

ment over the performance of the algorithm when applied to the linear equaliser is principally due 

to the fact that within this work the SKE algorithm is applied only to the equaliser feedback sec-

tion, the forward section being updated using conventional RLS update. This technique yields 

superior performance to application of the algorithm to both forward and feed back coefficients 

under both time variant and time invariant conditions. Performance improvement results because 

the model used for time variability more accurately approximates the trajectories of the feed back 

coefficients than it does the forward coefficients, hence modelling errors may be reduced. 

Next considering equaliser performance under time variant channel conditions; simulation results of 

which are given in Figures 6.20 and 6.21. The simulation conditions are summarised in Table 6.3. 

-214- 



10_ i  

CID 

1 

Additive Noise Level of 50dB 

f - ----------------------- ---------------------- 

1 _ 	 ------------------------------------ ::::::::::2:::::::::::::: 

it 	I 	2: 	

r 	 r 	

:: 

::: ::: -
------ 

: 

-3--------- -- 	--- 
tj 	 t2 	 t3 

3 	 x 	 I L 	
-- 	__________ 

-  

- - - --- 
L ---------------------------------------------L ______________________ 

50 100 150 200 250 300 350 400 
Number of Data Samples 

Figure 6.20 (a) - Mean Squared Error at the Output of the 12 Tap LTE, Incorporating a Delay of 6 

Data Symbols, when Directly Updated Under the Time Variant Channel Conditions of MPDP 

Described, jja  (z) - 1 + 0.5 z 1  and Denoted Channel L. 

Additive Noise Level of 50dB 

10 0  

10 

10 

10 -

10 

50 100 150 200 250 300 350 400 
Number of Data Samples 

Figure 6.20 (b) - Mean Squared Error at the Output of the 12 Tap LTE, Incorporating a Delay of 6 

Data Symbols, when Directly Updated Under the Time Variant Channel Conditions of MPDP 

Described, Ha (Z) = 1 + 2.0 z 1  and Denoted Channel M. 

1 - RLS Update A=0.85 

2- ROC Update A=0.85 a=0.5 
- 215 -   

3 - SKE Update X, =0.95 



Additive Noise Level of 50dB 

10 0  

10_i 

iO_ 2  

lo- 
3 

 

1 

------------------------------------- 1---------- 

n 

1 

2 

--__ 

-'----- 
£ -----------J-----------£ ---------- ----------- 	- -=-------------------------------- 

I ----------- ----------- I ---------- I----------- I ---------- I----------- I 
50 100 150 200 250 300 350 400 

Number of Data Samples 

Figure 6.21 (a) - Mean Squared Error at the Output of the 6,2 Tap DFE when Directly Updated 

Under the Time Variant Channel Conditions of MPDP Described, Ha  (z) = 1 + 0.5 z 1  and Denoted 
Channel L. 

Additive Noise Level of 50dB 

10 

10 

Cl, 

10 - 

10 

-L------------------------------------ 
1- 

 
---------- ------------ ----------- ------------ ----------- - F 

I----------=7-------1 --------I-------- 

- ---F------F--------4-4 

-------------

F---

F--------- F--------- F ---------F--- 

1•----------------------F ------------------L ---------------------- 

L --------------------------------- 4 - ---------- - ---------- £ ---------- - ----------- F---------- - -----------  L 

F----------------------L --------------------------------- 

50 100 150 200 250 300 350 400 
Number of Data Samples 

Figure 6.21 (b) - Mean Squared Error at the Output of the 6,2 Tap Lit when Directly Updated 

Under the Time Variant Channel Conditions of MPDP Described, Ha  (z) = 1 + 2.0 z 1  and Denoted 

Channel M. 

I - RLS Update A=0.85 

2 - ROC Update A=0.85 a=0.5 

3 - SKE Update X=0.95 	 -216- 



Channel Type MIPDP Ha  (z) Doppler Frequency Classification 

L 1 +0.5z' 12501z Predominantly MP 

M 1 +2.0z 1250Hz Variation from NMP to MP 

Table 63: Time Variant Channel Conditions used for Computer Simulation Tests 

Within these simulations a two path channel is assumed, in which the first path is specified to be 

time invariant and the second path varied at a Doppler frequency of 125011z. Due to this arrange-

ment, and the relative average powers of each path, the channel denoted, channel L, is most often 

constrained to be MP. The channel denoted, channel M, however, may exhibit both MP and NMP 

characteristics and, more importantly, will be subject to frequent variation in its phase characteris-

tics. 

Firstly considering the MSE performance of the LTE shown in Figures 6.20(a) and (b). As can be 

seen, under each type of channel condition the ROC algorithm offers little steady state performance 

improvement over the conventional algorithm. Moreover, in terms of its transient performance, the 

ROC algorithm exhibits significantly inferior performance to that of the conventional technique. 

The SKE algorithm, however, does offer significant steady state performance improvement under 

MP channel conditions, yet, under the variable phase conditions of channel M, this improvement is 

largely eroded. This behaviour is to be expected, since under channel conditions in which zeros 

approach the unit circle 17  the equaliser performance is limited, principally, by the equaliser struc-

ture rather than by the time variation of the channel. From the results of Figure 6.20(a) it is also 

interesting to note that at time instances denoted, t1, t2, and t3 the performance of the RLS algo-

rithm is superior to that of the SKE algorithm. These instances relate to the periods of low instan-

taneous rate of change of the channel coefficients which occur periodically as the coefficient trajec-

tories vary. Within these periods the equaliser performance reflects the performance obtained under 

time invariant conditions, consequently, the performance of the SKE algorithm is inferior to that of 

the conventional algorithm. Conversely, during periods of rapid instantaneous rate of change, the 

SKE algorithm exhibits a performance improvement of approximately 10dB over the conventional 

technique, under the conditions adopted within this simulation. On average an MSE improvement 

of approximately 7dB is gained. The transient performance of the SKE algorithm is much as 

predicted by the earlier work, convergence being achieved within approximately 4Neq  algorithm 

iterations. 

Next considering the MSE performance of the DFE under similar time variant channel conditions. 

Simulation results of this are shown in Figure 6.21(a) and (b). As is clear from these results, the 

ROC algorithm offers only relatively modest performance advantage over the conventional algo-

rithm. The performance of the SKE algorithm is, however, superior to that of each of the other 

17. ie., as the second channel path approaches unity. 
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techniques, and offers similar performance improvement to that described for the linear equaliser. 

Each of the other comments made with regard to the performance of linear equaliser may again be 

applied to the DEE. 

As can be seen from the above work, the SKE algorithm does offer performance improvement 

under time variant conditions. However, within the SKE algorithm some modelling error is inevit-

able. This modelling error is principally dependent upon the model order and the Doppler fre-

quency of the channel. In order to demonstrate this, it is interesting to examine the performance of 

the algorithm when based upon higher order models. This has been carried out in Figure 6.22. 

Here, under the MP channel conditions described above, the MSE performance of a first order SKE 

algorithm is compared with that of a second order algorithm, when applied to the update of the 

coefficients of the linear equaliser. From this it can be seen that within periods of high instantane-

ous channel variation the second order algorithm results in more optimal performance. However, 

within periods of low variation the resulting MSE is degraded. Within this simulation the average 

MSE achieved by each technique is similar, hence, it may be concluded that, unless Doppler fre-

quencies are extremely high, little advantage is gained by increasing the model order. 

Within the previous work each of the conditions used for simulation essentially represent low noise 

transmission conditions. However, under channel conditions in which the equaliser performance is 

limited principally by the additive noise, rather than by the channel time variation, the relative per -

formance of each algorithm is quite different. Under these channel conditions since the equaliser 

MMSE is primarily dependent upon the noise level algorithm performance is more similar to that 

obtained within the time invariant environment. Therefore, due to the larger MMSE associated with 

the SKE algorithm, under high noise conditions its performance may be inferior to that of the con-

ventional algorithm. In order to illustrate this, the simulations of Figure 6.21(a) are repeated using 

a SNR of 20dB; the results are given in Figure 6.23, for brevity only the DEE performance is 

shown. From Figure 6.23 it can be seen that the performance obtained by the RLS algorithm 

approaches the noise floor, hence, performance degradation due to channel time variability is negli-

gible. Since, the MMSE achievable by the DEE when updated using the SKE algorithm is at best 

3dB above the noise floor, the SKE algorithm is unable to achieve any performance improvement. 

- The performance of the ROC algorithm in this instance is inferior to each of the other alternatives. 

From these investigations several conclusions are evident. Firstly, within both time variant and time 

invariant environments, the ROC algorithm offers little steady state performance improvement over 

conventional update techniques. Moreover, ROC algorithm convergence rate is substantially lower 

than that of each of the other alternatives. Consequently, the use of the ROC algorithm for direct 

equaliser coefficient update is of limited benefit. Secondly, when applied to the LTE, under time 

invariant conditions the SKE algorithm is able to achieve an asymptotic MSE of approximately 

1 01og10 I (N0Td+l )2]  dB above the MMSE and in terms of its transient performance, convergence 

may be said to be complete within [2N q  (Nord+l)] iterations. When applied to the DEE perfor- 

mance degradation is less severe but is again dependent upon the number of equaliser coefficients. 
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Thirdly, under highly time variant channel conditions, the MSE performance of both the linear and 

decision feedback equaliser may be improved using the SKE algorithm. Unfortunately, no perfor-

mance improvement is possible under conditions in which the equaliser performance is limited by 

additive noise or by the spectral characteristics of the channel. Hence, the use of the SKE algorithm 

for direct adaptive update of equaliser coefficients is profitable only under highly time variant con-

ditions. Finally, as a general conclusion, it is clear that although it is possible to improve upon the 

performance of both the LTE and DFE within the highly time variant environment, within the GSM 

system additive noise levels are most often too high to enable profitable application of either of the 

a priori algorithms described. 

6.6 Indirect Equaliser Coefficient Update using A Priori Adaptive Algorithms 

The indirect technique for equaliser coefficient update, first described in Section 6.4.2, comprises 

two distinct phases, channel identification and computation of the equaliser coefficients from the 

channel estimate obtained. Computation of the coefficients of the equaliser is performed using the 

algorithms described in Section 3.7. Channel identification may, however, be performed using any 

one of the adaptive algorithms described within Chapters 4 and 5. Within Section 6.4.3 equaliser 

performance was investigated when updated indirectly using conventional adaptive algorithms. 

Under time variant conditions, however, it is possible to improve upon the performance of the con-

ventional algorithm using algorithms in which adaptive update is augmented by some degree of a 

priori knowledge. Within this section the performance improvement which may be achieved in 

both the linear and decision feedback equaliser when computed indirectly using "a priori" algo-

rithms is investigated. 

6.6.1 Equaliser Performance Under Time Invariant Channel Conditions 

Within this section the performance of the linear and the decision feedback equaliser when updated 

indirectly using the ROC and SKE algorithm under time invariant conditions is considered. In Sec-

tion 6.4.3 similar investigations were carried out for indirect equaliser update based on conventional 

algorithms. From these investigations it was concluded that under a wide variety of channel condi-

tions the additional equaliser output MSE due to channel estimate misadjustment is approximately 

equal to the NTE of the channel estimate. Hence, for an equaliser which is indirectly computed 

from an RLS channel estimate, assuming that the transmitted data sequence is known a priori, the 

additional equaliser output MSE, iV, may be approximated, under time invariant conditions by, 

2tr'I(1—X) 
EJ = 	 (6.73) 

(1+X) 

where each of the terms are defined within Section 6.4.3. Similar expressions may be derived for 

the case in which the channel estimate is computed using the ROC or SKE by simply replacing the 

RHS of Equation 6.73 by the appropriate expression for the channel estimate misadjustment of the 
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algorithm upon which the estimate is based. Hence, for ROC update the equivalent expression may 

be obtained using Equation 4.34, and expressed as, 

a 2trt(l—A) 
M 	

(2—(1—X)) 

(1-2(X+0 2)a 2tr a2ae 2tr't', 
(6.74) 

where a is the ROC gain term, a 2  represents the variance of the source non stationarity, and 0e 2  

represents the variance of the error due to the misadjustment of the ROC estimate; It should be 

noted that within the derivation of this expression it is assumed that the ROC algorithm is based on 

RLS update. In the time invariant environment a 2  is equal to zero, therefore, from Equation 6.74 

it can be seen that the additional MSE at the output of the equaliser, over and above that associated 

with the RLS algorithm, is given by the RH most term of the equation and is dependent upon the 

choice of a and A, and the misadjustment of the ROC vector, S(n). Moreover, if a large number of 

CIR estimates are used within the computation of the ROC vector, then, error due to this source 

will be significantly smaller than the additive noise component. Therefore, the additional error due 

to the misadjustment of the ROC estimate will be negligible compared with the MMSE. Conse-

quently, the MSE at the output of the equaliser will converge to a level similar to that obtained 

using RLS update. 

For SKE based update, assuming a first order polynomial model, the additional equaliser output 

MSE due to estimate misadjustment may be approximated by, 

4Na 2 

(6.75) 
n—i 

assuming no exponential weighting, and by, 

4Na 2(1—X 5 ) 

LV z 	 (6.76) 
(1-i-A5 ) 

for the exponentially weighted algorithm, where N is the number of channel coefficients. From 

Equations 6.73 and 6.76 it can be seen that provided that the exponential weight of the SKE algo-

rithm, A5 , is chosen to be similar to that used within the RLS algorithm, the misadjustment of the 

channel estimate will be four times that achievable using RLS algorithm update. This would seem 

to indicate that the performance of the equaliser updated using the SKE algorithm is significantly 

inferior to that achievable using conventional RLS update. It should be noted, however, that under 

time invariant conditions, provided that A is close to unity, the misadjustment of the channel esti-

mate is small compared with the additive noise. Consequently, the asymptotic performance of the 

equaliser is only slightly degraded from the MMSE obtained using RLS update. It may, therefore, 

be concluded that the asymptotic MSE at the output of the equaliser is almost identical irrespective 

of which of these update techniques is employed. 

In order to illustrate the above discussion computer simulation has been undertaken, the results of 

which are given in Figure 6.24. Within these simulations the time invariant channel conditions 

described in Section 3.6, and denoted channel A, are again assumed. Figure 6.24(a) shows the 

MSE performance of the linear equaliser when updated indirectly using each of the algorithms 
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described above 18  . From this it can be seen that the equaliser output MSE does indeed converge 

to similar levels irrespective of which algorithm is used to compute the channel estimate. The tran-

sient performance of each of the techniques is, however, quite different and is much as expected 

from previous work; convergence of the RLS algorithm being achieved within, approximately, 2N 

iterations, whilst the SKE algorithm requires 4N iterations and the ROC algorithm significantly 

more. In the case of the DFE similar relative performance of each of the algorithms is achieved. It 

should be noted, however, that the MMSE achieved by the DFE is significantly better than that 

achievable by the linear equaliser, although, in general, convergence rates are lower. 

6.6.2 Equaliser Performance Under Time Variant Channel Conditions 

The objective of the work described within this section is to extend the investigation of the perfor-

mance of the indirectly computed equaliser to the time variant environment. Similar investigations 

are described for indirect update using conventional adaptive algorithms in Section 6.5.4. Here it 

was shown that the arguments applied to the time invariant environment, in which the equaliser 

output MSE is related to the misadjustment of the channel estimate, may also be applied under 

time variant channel conditions. Therefore, assuming RLS update and a known data sequence, 

under time variant conditions the additional equaliser output MSE due to CIR estimate misadjust-

ment is given by, 

AJ 
	o 2 (1—X) 

+ 
	cr 2tr 	

(6.77) 

For ROC and SKE based update additional equaliser MSE is unchanged from that quoted in Sec-

tion 6.6.1 and is given by Equations 6.74 and 6.76 respectively. 

Within the time variant environment the misadjustment of the channel estimate, when derived using 

the RLS algorithm, comprises two components termed the measurement and lag error; correspond-

ing to the first and second terms on the RHS of Equation 6.77. From Equation 6.74 it can be seen 

that the CIR estimate misadjustment due to ROC update falls into the same categories. Moreover, if 

the ROC algorithm is based on RLS update, then the measurement error of each algorithm is ident-

ical. For this reason, provided that the lag error of the ROC algorithm is less than that of the RLS 

algorithm, the ROC algorithm will yield more optimal performance. In order for this condition to 

be met the following inequality must be satisfied, 

cJ 2 > ( 1-2(x+a)ci + aae, 	 (6.78) 

which implies that the relative performance of each algorithm is dependent upon the source non-

stationarity, the misadjustment of the ROC estimate, and the value of a. Furthermore, it can be 

inferred from Equation 6.78, and the work of Section 4.4.2, that, provided that the optimum value 

of a is chosen, the MSE performance of the ROC algorithm will always be at least as good as that 

18. Within this and all subsequent simulations the ROC algorithm used is based on RLS update and the ROC estimate is 
determined using the technique of higher order filtering described in Section 4.4.3. 
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of the RLS algorithm 19  This may be demonstrated using the example first considered in Section 

4.4.2, in which the error due to the source non stationarity and the error due to the misadjustment 

of the ROC estimate are assumed to be equal, ie., a 2  = ae 2. In section 4.4.2 it was shown that 

the optimum value of a under these conditions is 0.5. By substituting these values into Equations 

6.77 and 6.74 it can be seen that the CIR estimate misadjustment resulting from ROC update is 

only half that resulting from RLS channel estimation. This CIR estimate performance improve-

ment, however, only translates to similar performance improvement of the equaliser provided that 

the performance of the equaliser is primarily limited by the lag error of the adaptive algorithm. 

The reason for this is that under high noise conditions or conditions in which the equaliser perfor -

mance is limited principally by the spectral characteristics of the channel, the misadjustment of the 

channel estimate is most often negligible compared with the MMSE of the equaliser. Hence, a 

reduction in estimation error does not result in significant reduction in overall equaliser output 

error. Consequently, in cases in which the equaliser performance is primarily limited by additive 

noise or by the spectral characteristics of the channel performance improvement due to the applica-

tion of the ROC algorithm is negligible. 

Next, considering the SKE algorithm. As described in Section 5.5, the steady state error of the SKE 

algorithm comprises only measurement error. As a result, within the time variant environment the 

SKE algorithm may exhibit superior performance to that of the RLS algorithm provided that its 

measurement error is less than the combined RLS measurement and lag errors. This may be 

described using Equations 6.76 and 6.77 by the following inequality, 

4N cr 2( 1_A."  ) 	IN 2  t
TI  

X 	

(1—A) 

(1+) 	< (2—(1—X)) 

(Y CD 	cI 1  
(6.79) 

From this it can be seen that under conditions in which the identification error due to the source 

non-stationarity is significantly greater than that due to the additive noise, the SKE algorithm 

results in the more optimal performance. Conversely, under high noise conditions the RLS algo-

rithm may result in superior MSE performance. Again it should be pointed out that under high 

noise or spectrally severe channel conditions the equaliser MSE performance will be dominated by 

these sources of error, therefore, the equaliser MSE performance will be much the same irrespective 

of which algorithm is used to update the channel estimate. 

In order to illustrate the points discussed above computer simulation has been undertaken, the 

results of which are given in Figure 6.25. Within these simulations the time variant channel condi-

tions described in Section 6.4.3 and denoted channels L and M are again assumed. Firstly consider-

ing the performance of the linear equaliser, shown in Figure 6.25(a), (b) and (c). Under the 

predominantly MP channel conditions of channel L it can be seen that on average RLS update 

results in an MSE at the equaliser output in excess of an order of magnitude larger than the 

MMSE, which is computed using an exact channel estimate. The ROC algorithm achieves on 

19. However, if a suboptimal value of a is chosen then the ROC algorithm may result in performance degradation with 
respect to RLS algorithm. 
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average approximately 2dB improvement over the conventional algorithm, however the conver -

gence rate is significantly worse. The SKE algorithm results in a significant improvement in MSE 

performance over each of the alternatives and offers on average an 8dB reduction in MSE over 

conventional update. In addition it can be seen that the MSE performance of the SKE algorithm 

more closely reflects the MSE time variation of the optimum equaliser. 

Under the more severe channel conditions of channel M the performance of each of the algorithms 

is predictably more similar. It is interesting to note, however, that again the performance of the 

SKE algorithm follows closely the performance of the optimum system. An explanation of why 

this is so is as follows. As described earlier, the MSE of the SKE algorithm exhibits no lag error, 

therefore, the variation of the Cifi with time can be tracked quickly. Unfortunately, the measure-

ment error of the SKE algorithm is greater than that of the conventional RLS algorithm, hence, the 

channel estimate produced, although not delayed with respect to the actual channel, will possess a 

significant additive noise component. An equaliser designed from this estimate will, therefore, 

approximate the optimum equaliser but will be subject to misadjusiment due to the additive noise 

component of the channel estimate. In terms of MSE performance this implies that the equaliser 

updated indirectly using the SKE algorithm will yield similar MSE time variant performance to the 

optimum equaliser, however, the performance will be degraded by the additive noise component. 

Conversely, the RLS algorithm is subject to both measurement and lag error. The resultant channel 

estimate is consequently always delayed with respect to the optimum channel. This means that the 

MSE at the output of the equaliser will exhibit a phase lag from the MMSE, which results in the 

apparent disparity within the time variant performance of each of the algorithms. 

Next considering the performance of the DFE. Computer simulation results for channel conditions 

similar to those described above are shown in Figure 6.25(d), (e) and (f). From these it can be 

seen that under both MP and variable phase conditions the relative performances of each of the 

update techniques is similar to that described for the linear equaliser. 

Each of the simulations described so far essentially assume low noise transmission conditions. 

Under these conditions the performance of the equaliser is most often limited by the channel time 

variation. Under conditions in which the equaliser performance is limited, principally by the addi-

tive noise, however, as can be inferred from earlier work, the equaliser MSE performance will be 

much the same irrespective of the algorithm used for adaptive update. This is illustrated in Figure 

6.26 which shows the performance of the DFE under the predominantly MP channel conditions of 

channel L for a SNR of 20dB. From this it can be seen that the MSE achieved using the conven-

tional RLS algorithm approaches closely the MMSE. Naturally, neither the ROC nor the SKE algo-

rithm is able to improve upon this. It is, however, interesting to note that the MSE performance of 

each of these algorithms also approaches the MMSE. 

From the above work several conclusions may be drawn. Firstly, under each of the channel condi- 

tions described, the ROC algorithm offers only marginal performance advantage over the conven- 

tional RLS algorithm. Secondly, under highly time variant conditions the MSE performance of 
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both the linear and decision feedback equaliser may be improved significantly using the SKE algo-

rithm. Thirdly, under high noise conditions the performance of each of the algorithms is similar, 

hence, the application of the more computationally complex "a priori" algorithms is of no practical 

value under these conditions. Finally, under GSM conditions noise levels are in general too high to 

obtain significant performance advantage by using either ROC or SKE update for indirect equaliser 

computation. 

6.63 A Comparison of Direct and Indirect Equaliser Update 

The forgoing work of this chapter has been principally concerned with the two alternative tech-

niques by which the coefficients of the adaptive equaliser may be computed. For each technique 

several algorithms have been described and their performance characterised under typical channel 

conditions. Of principal concern within this section is the relative performance of the equaliser 

when updated using each of these techniques. Similar comparisons have been made assuming con-

ventional adaptive update in Section 6.4.3. Within this section these investigations are extended to 

the case of ROC and SKE based update. In order to facilitate performance comparison computer 

simulation results of the MSE performance of both the directly and indirectly updated equaliser 

under stationary and time variant conditions are presented in Figure 6.27. 

Firstly considering the equaliser transient performance. When updated indirectly using the SKE 

algorithm, equaliser 20  convergence is achieved within 12N(N,,,d+l) 
I 
 iterations. In comparison, 

when updated directly similar convergence is obtained within [2kq  (Nord +1)1 iterations. Since in 

most practical applications Neq  > N, more rapid convergence is achieved using indirect coefficient 

computation. If adaptive update is performed using the ROC algorithm, convergence rate is more 

difficult to determine. It is related to the algorithm upon which the ROC algorithm is based, the 

number of coefficients to be estimated, and the value of the ROC gain term, a. Since convergence 

rate is directly dependent upon the number of coefficients to be estimated, it is clear that indirect 

update will yield faster convergence. As shown earlier, however, for values of a significantly 

larger than zero, the convergence rate of the algorithm is relatively low irrespective of the tech-

nique by which the algorithm is applied. Therefore, the increase in convergence rate due to the 

smaller number of algorithm coefficients required within indirect update technique is most often 

relatively modest. Consequently, equaliser convergence is achieved in much the same period for 

both the direct and indirect update technique. The points made above are illustrated in Figures 

6.27(a) and (b), which show the equaliser MSE performance under the time invariant conditions 

denoted Channel A. 

20. For brevity, within this section the discussions are limited to the linear equaliser, similar arguments may, however, be ap-
plied to the DEE. 
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Next considering the equaliser steady state performance. Under time invariant conditions, if 

applied directly the SKE algorithm achieves an asymptotic MSE of approximately 

10 loglo[(Nord+1)2]  dB above the MMSE. In comparison, if the algorithm is applied indirectly 

then the MSE is dependent upon the misadjustment of the channel estimate and may be expressed 

[ O,.+l)2(lX) 1 
as, 10 log 	

(N 
io[ 	

(1X) 	
] dB above the MMSE. Assuming that X is chosen to be close to 

unity, it can be seen that the MSE at the output of the indirectly updated equaliser will approach 

the MMSE. Consequently, the indirectly updated equaliser yields significant performance advantage 

over the directly updated structure. Under similar conditions the optimum MSE achievable using 

the ROC algorithm approaches closely the MMSE irrespective of the method by which the algo-

rithm is applied. Each of these points is again illustrated in Figures 6.27(a) and (b). 

Under time variant conditions it is to be expected that the indirect update technique will yield per-

formance advantage over the direct method. There are several reasons for this, foremost among 

these are the following. Firstly, since direct equaliser coefficient computation involves inverse sys-

tem modelling, under time variant conditions the equaliser coefficients trajectories exhibit non 

linear behaviour. Direct estimation of these coefficients using linear adaptive algorithms is, there-

fore, suboptimal. For this reason, each of the algorithms is subject to significant modelling error 

and, therefore, additional measurement and lag error over and above that associated with indirect 

update. Secondly, since the time variation of the equaliser coefficients is potentially more severe 

than that of the associated channel coefficients, it is fundamentally more difficult to track the 

equaliser coefficients. This again results in increased modelling and lag error. Finally, in the case 

of the SKE algorithm, due to the larger number of coefficients associated with equalisation if 

applied directly the algorithm exhibits a significantly larger measurement error than that associated 

with indirect update. Consequently, under both time invariant and time variant conditions indirect 

application of the algorithm results in more optimal steady state performance. It is important to 

note, however, that since the ROC algorithm is not subject to this additional measurement error 

when applied directly, indirect application of the ROC algorithm does not result in performance 

improvement from this source. For this reason it is to be expected that more significant perfor-

mance advantage is achievable from indirect update, in the case of the SKE algorithm. 

The above discussion is supported by computer simulation, the results of which are given in Fig-

ures 6.27(c), (d), (e) and (f). These results show equaliser MSE performance under time variant 

conditions denoted channels L and M. From these it can be seen that the indirect technique does 

indeed offer significant steady state performance improvement over the direct method. As expected 

the performance advantage is most significant in the case of SKE update, which under both 

predominantly MP and variable phase conditions achieves, on average, a 10dB reduction in MSE. 

This is principally due to the reduced measurement error. In the case of the ROC algorithm an 

average performance improvement of approximately 5dB is obtainable, this performance improve-

ment resulting primarily from reduced lag error. 
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Under high noise conditions, simulation results of which are given in Figures 6.27(g) and (h), it can 

be seen that the equaliser performance is typical of that found under time invariant channel condi-

tions. Therefore, the performance of the ROC algorithm is similar irrespective of the method by 

which the algorithm is applied. Limited transient performance advantage is, however, achievable 

using indirect update. For SKE update the indirect technique yields both transient and steady state 

performance advantage. 

In conclusion, it is clear that in terms of both transient and steady state performance, both the ROC 

and SKE algorithm perform more optimally when applied indirectly. Unfortunately, due to the 

requirement of both channel estimation and equaliser coefficient computation, the indirect update 

technique potentially results in increased computational complexity. Recent work [135], however, 

suggests that this computational load may be reduced to levels similar to that of direct update. The 

choice of update technique, however, remains a compromise between these contradictory require-

ments. 

6.7 Conclusions 

Within this chapter the problem of continuous equaliser coefficient update throughout unknown data 

transmission has been considered. Two alternative techniques by which adaptive algorithms may 

be applied to this problem have been described, and the performance of several algorithms when 

applied by each of these methods to both the linear and decision feedback equaliser has been inves-

tigated. In addition, the work of Chapters 4 and 5 has been extended to the problem of equaliser 

coefficient update, and two algorithms which incorporate some degree of a priori knowledge of the 

time variant characteristics of the equaliser coefficients have been derived. The investigations of 

this chapter have shown that within the GSM system significant performance advantage may be 

achieved by continuous update of the equaliser coefficients. However, the performance advantage 

achievable is, in general, less than that pertinent to the MLSE. 

The conventional method by which equaliser coefficients may be updated throughout data transmis-

sion is to apply an adaptive algorithm directly to the equaliser coefficients. Within this chapter an 

alternative to this has been described. Here, the equaliser coefficients are computed indirectly from 

a channel estimate, hence, in this instance, the adaptive algorithm is applied to the problem of 

channel identification rather than to that of equalisation. This work has shown that for each of the 

algorithms under consideration, if adaptive update is performed indirectly significant steady state 

and transient performance advantage may be gained over the directly updated equaliser. This per-

formance advantage is particularly significant under time variant channel conditions. Under GSM 

conditions it has been shown that the direct method for equaliser coefficient update results in only 

marginal performance improvement over the case in which the equaliser coefficients are fixed 

throughout data transmission. However, if the coefficients are indirectly updated, then particularly 

at high Doppler frequencies, significant performance improvement may result. Unfortunately, due 

to the requirement of both channel identification and equaliser coefficient computation, the 
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computational complexity of this technique is greater than that of direct coefficient update. 

Several novel adaptive algorithms have also been proposed and their performances, when applied 

both directly and indirectly, investigated. These algorithms are similar to those presented in 

Chapters 4 and 5 and incorporate some degree of a priori knowledge of the time variant charac-

teristics of the equaliser, or channel estimator, coefficients into the algorithm. Investigations have 

shown that under conditions in which the equaliser performance is principally limited by the time 

variation of the channel, the equaliser performance may be significantly improved by application of 

"a priori" adaptive algorithms. However, under channel conditions in which the equaliser perfor-

mance is limited by additive noise or by the spectral characteristics of the channel, little perfor-

mance advantage over the conventional algorithms is achievable; this being true irrespective of the 

technique by which the algorithm is applied. Under GSM conditions noise levels are in general too 

high to enable significant performance advantage to be obtained by use of these algorithms. How-

ever, under lower noise conditions each of the algorithms proposed may offer a valid option. Of 

the alternatives proposed the SKE algorithm yields the more optimal performance, however, its 

computational complexity is significantly greater than that of the alternative techniques. 
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Chapter 7 
Conclusions 

7.1 Introduction 

The work described within this thesis is primarily concerned with the development of adaptive 

algorithms for equaliser coefficient update within the highly time variant radio communications 

environment. In particular, algorithms suited to the special demands of the GSM system have been 

considered. Within the thesis several novel adaptive algorithms have been developed. These algo-

rithms have been applied to both direct and indirect system identification applications and their per-

formances characterised under conditions typical of those found within the mobile radio signal 

environment. Within this chapter the main conclusions of this work are highlighted. In addition, 

the limitations of the experimental methods adopted and the techniques developed are discussed. 

Finally, areas in which future work may prove productive are suggested. 

7.2 Achievements of the Work 

Within this thesis it has been shown that the performance of the equaliser within the GSM system 

can be significantly improved by continuously updating the coefficients of the equaliser throughout 

unknown data transmission. Initially, conventional [S and SG algorithms were employed in this 

respect and, although each was shown to yield performance improvement, it was found that under 

highly time variant conditions the performance of both is subject to a number of limitations. This 

conclusion provided the motivation for the development of several novel adaptive algorithms which 

offer performance advantage over the conventional algorithms under highly time variant conditions. 

Unfortunately, under GSM conditions it was found that additive noise levels are, in general, too 

high to allow significant performance improvement to be achieved using these algorithms. Within 

this section each of these points is considered in greater detail. 

The problem of equalisation within the mobile radio environment requires the application of several 

disparate branches of communication theory. In Chapter 2, therefore, topics such as the mobile sig-

nal environment, equaliser structures and adaptive systems were introduced. In addition, a technique 

by which equalisation, using either a conventional equaliser or an MLSE, can be performed under 

GSM conditions was presented. In this technique it was proposed that during the data block training 

sequence an [S algorithm is applied to derive an initial estimate of the CIR. The equaliser, or 

MLSE, coefficients are then computed from this estimate. Subsequently, the received information 

sequence is equalised both in "forward" time and "reverse" time from the conclusion of the training 
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sequence to the data block extremes. During the equalisation phase it was suggested that the 

equaliser, or channel estimator, coefficients may be either"fixed" or continuously updated. In sub-

sequent work this technique was shown to be a reasonable method by which equalisation may be 

performed within the GSM system. 

In Chapter 3 the problem of initial CIR estimation within the GSM training sequence was 

addressed and the performance of several recursive and non-recursive algorithms based on the 

method of LS investigated. This work has shown that under the conditions imposed by the GSM 

system, block estimation techniques can be implemented with greater computational efficiency, and 

are, therefore, well suited to the problem of initial CIR identification. Expressions which apply 

specifically to the GSM system for the asymptotic accuracy of the LS channel estimator have also 

been derived for both time invariant and time variant channel conditions. From these analyses it 

was concluded that at typical Doppler frequencies the Cifi estimate misadjustment due to channel 

time variation within the training sequence is largely insignificant. However, at high Doppler fre-

quencies and additive noise levels of above approximately 15dB, it was found that CIR estimate 

accuracy is ultimately limited by the time variation of the channel. 

The effect of initial CIR estimate misadjustment on the performance of the LTE, DFE and MLSE 

has also been investigated. The major finding of this work is that under spectrally "non-severe" 

channel conditions the additional MSE at the output of both the LTE and the DEE may be approxi-

mated by an additional noise component, the variance of which is equal to the variance of the CIR 

estimate misadjustment noise. The implication of this is that under these channel conditions the 

equaliser performance degradation due to channel estimate misadjustment is largely independent of 

SNR. Under spectrally more severe channel conditions I equaliser performance degradation due to 

this source is less predictable. However, since under these conditions equaliser performance is dom-

inated by the inability of the equaliser to compensate effectively for the distortion introduced by the 

channel, equaliser error due to CIR estimate misadjustment is negligible. In the case of the MLSE 

it was shown that degradation in system error rate performance may also be directly related to the 

misadjustment of the CW estimate. However, since the performance of the MLSE is less dependent 

upon the spectral characteristics of the channel, performance degradation is similar irrespective of 

the channel conditions and is again independent of SNR. 

The principal objective of Chapter 4 was to investigate the performance of various methods by 

which the channel estimate may be updated throughout unknown information transmission. The dis-

cussion of this chapter was limited to adaptive ML receivers. Initially the performance of the sys-

tem in which no adaptive update is employed was investigated. From these analyses it was con-

cluded that at high Doppler frequencies the estimate accuracy degrades rapidly throughout the data 

block and is ultimately the principal limitation on the system asymptotic error rate performance. At 

more typical Doppler frequencies less degradation was shown to occur, however, significant 

1. ie., conditions in which channel zeros occur on or close to the unit circle. 
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performance improvement was still found to be achievable. The performance of the conventional 

LMS and RLS algorithms for continuous estimate update was then investigated. Each of these tech-

niques were shown to result in significant estimator MSE performance improvement. Moreover, it 

was shown that under GSM conditions the performance of each of these algorithms was compar-

able. Therefore, it was concluded that the computationally more efficient LMS algorithm proved 

more applicable to GSM conditions. 

Under highly time variant channel conditions the performances of the conventional algorithms 

proved deficient in two respects. Firstly, since the algorithms are updated on the basis of decisions 

fed back from the Viterbi equaliser, the adaptive algorithms were found to be subject to both deci-

sion delay and the degrading effect of occasional incorrect decisions. The performance of each 

algorithm was shown to be critically dependent upon this delay. Investigations into this dependency 

revealed that the optimum delay period is within the range five to ten data samples. Secondly, each 

of the conventional algorithms were shown to exhibit significant lag error. Within this work solu-

tions to each of these problems were proposed. 

In order to obviate the problem of decision delay a multi-pass equalisation scheme was proposed. 

Within this technique the block format of the GSM data structure is exploited such that a pre-

equalisation data estimation pass is implemented within the system. Within the pre-equalisation 

phase, tentative decisions are formed and then used to minimise both the decision delay and the 

probability of decision error. This technique was shown to result in significant performance 

improvement over conventional single pass equalisation, although computational complexity is 

approximately doubled. 

In order to reduce the lag error of the conventional algorithms, the operation of both the LMS and 

RLS algorithm was enhanced to suit time variant conditions. This was achieved by the inclusion, 

within the update equation of each algorithm, of an additional parameter set representing an esti-

mate of the rate of change (ROC) of the channel coefficients. Theoretical analysis of the stability, 

convergence rate, and steady state performance of the modified algorithm was undertaken and it 

was shown that provided the ROC gain term is chosen from the range 0 to 1 algorithm stability is 

assured 2  Moreover, under time variant conditions it was shown that provided that the optimum 

value of ROC gain term is selected the enhanced algorithm results in improved steady state perfor-

mance over the corresponding conventional algorithm. Under time invariant conditions the perfor-

mance of each algorithm was shown to be comparable. However, the convergence rate of the ROC 

algorithms was found to be inferior to that of the conventional algorithm. 

Analysis also shows that the performance of the ROC algorithms is critically dependent upon the 

accuracy with which the ROC parameters are estimated, and that in order to gain performance 

advantage over the conventional algorithms estimation accuracy must be relatively high. For this 

reason, three techniques by which the ROC estimates may be derived were presented. Each of 

2. This assumes that the conventional algorithm upon which the ROC algorithm is based is also stable. 
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these methods utilise previous CIR estimates in order to form estimates of the ROC coefficients. 

Within the first technique only two previous CW estimates are used within the computation. This 

computationally efficient method was shown to result in significant estimate noise enhancement for 

high values of the ROC gain term. Therefore, relatively low values of ROC gain term must be 

used, hence, no significant improvement in CIR estimator performance is achievable. Within the 

second technique, referred to as the "higher order filtering method', all previous estimates of the 

CIR coefficients are included within the computation of the ROC estimate. This is achieved by per -

forming an LS fit of the CW estimate data to a predetermined polynomial model of characteristics 

of the ROC of the channel coefficients. Within this work a first order algorithm was derived. In 

order to reduce modelling error an exponentially weighted version of the algorithm, in which recent 

CW estimates are weighted more heavily than "older" estimates was also derived. This technique 

for ROC estimation, although computationally more intensive than the technique described above, 

yields significant ROC estimate accuracy improvement. Therefore, when implemented using this 

technique for ROC estimation, the ROC algorithms were shown to result in performance improve-

ment over the conventional algorithms. 

The final ROC estimation algorithm presented, referred to as the "optimal filtering method", again 

uses all previous CIR estimates within the computation of the channel ROC parameters. In this 

instance, however, the CIR estimates are fitted to a model of channel coefficient time variability 

derived directly from the GSM definitions of Doppler fading. This technique, which is computation-

ally complex, requires full a priori knowledge of the channel characteristics and is, therefore, not 

implementable in practise. However, the technique results in an optimum linear estimate of the 

ROC, hence algorithms based on this technique are useful within the derivation of generic algo-

rithm performance bounds. Investigations have shown that using an optimum ROC estimate, the 

ROC algorithms result in significant performance improvement over the conventional algorithms, 

and under a wide variety of transmission conditions that the ROC estirnate& derived using the 

"higher order filtering" approach are only slightly suboptimal. 

The performance of the ROC algorithms was also investigated under GSM specific conditions. 

These investigations revealed that under these conditions, in general, the levels of additive noise are 

too high, and data blocks too short, to enable significant performance advantage over the computa-

tional simpler conventional algorithms. However, when implemented using a multi-pass equalisa-

tion technique in which in addition to deriving the data sequence estimate prior to the equalisation 

pass an initial ROC estimate is also derived, this technique proved to offer superior performance to 

that of the conventional algorithms under all channel conditions, although computational complex-

ity is considerably increased. 

In Chapter 5 an alternative approach was proposed for the reduction of the lag error of the conven-

tional algorithms. Here a novel adaptive algorithm was proposed in which a priori knowledge of 

the time variant characteristics of the channel is incorporated directly into the structure of the algo-

rithm. Consequently, within this algorithm, referred to as the Model Based algorithm, there is no 

requirement to use past estimates of the CIR in order to estimate additional algorithm parameters, 
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time variation compensation being performed intrinsically within the algorithm. The algorithm 

derived essentially performs an LS fit of the CW estimate to the signal samples and the model 

assumed. The algorithm may, therefore, be viewed as the LS solution to the non stationary environ-

ment encountered within the GSM system. Hence, provided that the model assumed is accurate, the 

resulting channel estimate can be shown to provide the optimum linear solution to this particular 

estimation problem. 

Within this work three versions of the algorithm were described. The first algorithm, referred to as 

the minimum variance Kalman (MVK) estimator, requires full a priori knowledge of the channel 

and is, therefore, not implementable in practise. This algorithm incorporates within its structure the 

tap generation filter described within the GSM specifications and, therefore, represents the optimum 

estimator. The algorithm, which may be derived by applying Kalman filtering theory, was used 

principally to obtain performance bounds by which the performance of each of the other algorithms 

may be compared. The second algorithm presented was a suboptimal Kalman estimator (SKE) in 

which an approximate polynomial model of the time variation of the channel coefficients is incor-

porated into the algorithm structure. This technique leads to a family of algorithms based on 

differing orders of polynomial model. Within this work a first order model was predominantly used. 

The major advantage of this technique is that only partial a priori knowledge of the channel time 

variant characteristics is required, this being the number of channel coefficients and an estimate as 

to the maximum possible Doppler frequency. The SKE was further developed and an exponentially 

weighted version of the algorithm derived. Within this algorithm, which is analogous to the 

exponentially weighted RLS algorithm, modelling errors are reduced by effectively reducing the 

algorithm memory length and, thereby, ensuring that the polynomial model used is accurate over 

the reduced number of data samples. This algorithm is useful for highly time variant channels or 

continuous data systems. 

The asymptotic performance and convergence rate of the Model Based algorithm has also been 

investigated using both mathematical analysis and computer simulation. These, investigations have 

shown that the convergence rate of the suboptimal Kalman estimator is dependent upon the order of 

the polynomial model and may be expressed as [2N (Nord  +1)] iterations, where N is the number of 

coefficients to be estimated and Nord is the model order. Hence, for a first order model conver-

gence rate is twice that of the conventional RLS algorithm and, therefore, significantly better than 

that of the ROC algorithms. Under time invariant conditions the steady state performance of the 

algorithm was also shown to be dependent upon the model order, and may be expressed, 

I a 2  N (NOd +l)2(1—X) I 101og10 _ 
	(l+X) 	

dB, and is, therefore, four times that of the conventional RLS 

algorithm for a first order model, assuming similar exponential weighting factors. Within the time 

variant environment, however, analysis has shown that under conditions in which the performance 

of the conventional RLS algorithm is principally limited by lag error, the Model Based algorithm 

may yield significant performance advantage. However, under channel conditions in which the per-

formance of the RLS algorithm is limited principally by measurement error, the conventional RLS 

algorithm offers the more optimal performance. Hence as a general conclusion it can be stated that 
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the Model Based algorithm is best suited to low noise highly time variant conditions. In terms of 

computational complexity it was shown that the number of arithmetic operations of the SKE algo-

rithm is again dependent upon the model order and represents (Nod  +1)2  times the complexity of 

the conventional RLS algorithm. Superior algorithm time variant performance is, therefore, 

obtained at the cost of increased computational complexity. 

The performance of the SKE algorithm was also investigated under GSM specific transmission con-

ditions. It was found that, in general, within the GSM system additive noise levels are too high, and 

data block lengths too short, to enable significant performance improvement to be obtained over 

and above that achieved using conventional algorithms. 

In Chapter 6 the work of Chapters 4 and 5 was extended to the problem of adaptive equaliser 

coefficient update throughout unknown data transmission. This work was limited to the application 

of the conventional T-spaced linear and decision feedback equaliser. Two alternative techniques by 

which the equaliser coefficients may be adaptively updated were described, and the performances of 

several conventional and novel adaptive algorithms, when applied by each of these methods, inves-

tigated. The principal conclusion of this work is that under GSM conditions continuous equaliser 

coefficient update results in significant performance improvement over the case in which the 

equaliser coefficients are fixed. However, the performance advantage achievable is less significant 

than that found for the MLSE under similar conditions. 

Chapter 6 initially considered the case in which the equaliser coefficients are fixed throughout 

information transmission. This work indicated that at high Doppler frequencies the error rate perfor -

mance of both the LTE and the DFE is ultimately limited by the progressive suboptimality of the 

equaliser coefficients due to channel time variation. At more typical Doppler frequencies less error 

rate performance degradation due to channel time variation was observed, however, some perfor-

mance improvement was still found to be achievable. The performance of conventional adaptive 

algorithms when applied to the problem of continuous equaliser coefficient update was then investi-

gated and two techniques by which the algorithms may be applied were described. In the first, 

referred to as the "direct" approach, the equaliser coefficients are derived by applying an adaptive 

algorithm to the problem of inverse channel modelling; this being the conventional method by 

which adaptive equalisation is performed. In the second technique, referred to as the "indirect" 

approach, the equaliser coefficients are computed indirectly from a channel estimate which is itself 

continuously updated using the adaptive algorithm. In this instance, therefore, the algorithm is used 

in the system identification mode. Investigation into the performance of each of these techniques 

revealed that, for each of the algorithms under consideration, indirect equaliser coefficient update 

yields the more optimal steady state and transient performance, although both techniques result in 

performance advantage over the case in which the equaliser coefficients are fixed. The computa-

tional complexity of the indirect update technique was noted to be greater than that of the direct 

approach. 
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In addition to the comparison of the direct and indirect approach to equaliser coefficient update 

using conventional algorithms, similar investigations were performed for both the ROC and the 

SKE algorithm. These investigations show that under low noise and highly time variant channel 

conditions the equaliser performance may be improved by application of the "a priori" algorithms. 

However, under channel conditions in which the equaliser is limited by additive noise or by the 

spectral characteristics of the channel, little performance advantage over the conventional algorithm 

is achievable, this being true irrespective of the method by which the algorithm is applied. Again 

each of the algorithms performs more optimally when applied indirectly. 

From the results of Chapter 4, 5 and 6 it is possible to compare the performances of the LTE, DFE 

and MLSE. Comparison reveals that the performance of the MLSE is always at least as good as 

that of each of the conventional techniques and under the majority of channel conditions is 

significantly better . Moreover, since the performance of the MLSE is less sensitive to the spectral 

characteristics of the channel than is that of the LTE or the DEE, the MLSE is able to take greater 

advantage of the increased accuracy of the channel estimate provided by continuous update of the 

estimated coefficients. Consequently, the performance improvement achievable within the MLSE 

using these techniques is more significant than that achievable within the LTE or the DEE. 

73 Limitations of the Experimental Techniques Employed 

In order to achieve the primary objective of this work, which is the development of adaptive algo-

rithms suited to the highly time variant communication environment, a number of necessary simpli-

fying assumptions were made within the system model assumed. These simplifying assumptions 

give rise to several limitations with regard to the experimental results obtained, these are now 

briefly described. Firstly, the receiver is assumed to be both time and phase synchronised to the 

transmitter, consequently within this work no account is taken of timing recovery errors. Similarly 

it has been assumed that the additive noise sequence is white and that the transmitter and receiver 

filter introduce no 1ST to the transmitted signal. The design and implementation of the optimal 

WMF has, therefore, been avoided. Next, transmission is assumed to be corrupted only by additive 

noise and ISI, therefore, the degrading effect of co-channel interference has not been investigated. 

In addition, the effects of the non linear modulation scheme have been neglected since OQAM 

modulation is assumed. Finally, throughout this work a simplified symbol spaced channel model 

has been used. However, within the GSM recommendations more complex fractionally spaced 

channel models are defined. Therefore, in order that these investigations align more closely with 

other investigations into the radio link performance of the GSM system [32-36,117] these more 

realistic channel conditions should ideally be adopted. 

3. It should be noted, however, that the performance of both the LTE and the DFE may be improved using fractionally 
spaced structures. 
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7.4 Limitations of the work 

Within this work several novel adaptive algorithms have been derived, however, under GSM condi-

tions each is subject to similar limitations. The foremost among these are the following. Firstly, 

levels of additive noise found within the GSM system are generally too high to enable the novel 

algorithms to yield significant performance improvement over the conventional algorithms. This 

problem is compounded within the GSM system since the limited length of the data block reduces 

the ability of the a priori algorithms to gain further information as to the characteristics of the 

channel and thereby to converge to more optimal solutions than those achieved by the conventional 

algorithms. Secondly, each of the novel algorithms presented represent a significant increase in 

computational complexity as compared with the LMS or RLS algorithm. Within the GSM system 

this is a significant disadvantage since all signal processing within the receiver must ultimately be 

packaged within a hand held unit. Therefore, computationally complex processing must be minim-

ised wherever possible. 

7.5 Areas for Further Investigation 

To conclude this discussion, firstly, several possible areas of further development of the techniques 

described within this thesis are discussed, and finally, a number of alternative applications are sug-

gested. Within this work it was stated that the MVK estimator is optimal but not implementable in 

practise, since it requires full a priori knowledge of the channel conditions. Although this is true, it 

should be noted that, for the models assumed, the only additional information required is the aver-

age power within each multipath and the multipath Doppler frequency. It is feasible that this infor-

mation can be derived directly from the received signal and hence an algorithm could be produced 

which would jointly estimate these parameters in conjunction with the instantaneous channel 

coefficients. Alternatively algorithms similar to the ones proposed but incorporating other, may be 

simpler or more accurate, models of the channel time variability may be derived. 

The concept of multicycle equalisation may be extended in order to derive additional parameters 

from the received signal and thereby improve equaliser performance. It may also be possible to 

reduce the processing delay introduced by this technique by simultaneously processing data on the 

initial and final equalisation passes. This could be implemented using a finite delay between each 

pass and feeding back parameters as they are estimated from the initial equalisation phase to the 

final equaliser, this operation being analogous to the concept of decision aided IS! cancellation. 

The indirect technique for equaliser coefficient update also has great potential for further develop-

ment. The principal areas in which useful work may be undertaken are in the derivation of a com-

putationally efficient technique by which adaptive update may be performed, and a more rigorous 

mathematical analysis of the performance of the technique. 

The algorithms derived within this thesis potentially have a number of applications outside the 

GSM system, indeed, these algorithms may function more optimally under different transmission 
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conditions or within different data structures. The concept of introducing a model of the channel 

time variant characteristics into a channel estimation process is not necessarily limited to equalisa-

tion applications. For example, in order to optimally combine signals received from several mul-

tipaths within a "RAKE' receiver [8] it is necessary to have knowledge of the channel. Within code 

divisions multiple access (CDMA) systems, in which these types of receiver are often employed, 

this is normally performed using a correlation process. However, given a priori knowledge of the 

time variant characteristics of the channel, and previous channel estimates, it may be possible to 

improve upon this process using techniques similar to those described within this thesis. Finally, 

another even more diverse potential application for this type of algorithm is that of adaptive power 

control of the transmitted signals within mobile radio systems. This type of arrangement would be 

principally applicable to a cellular CDMA system in which power control is essential [136,137], 

however, since power control is employed within many other mobile radio systems application may 

also be found within these. 
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Abstract 
Maximum likelihood sequence estimation [MLSE] is 
widely postulated as being a suitable equalisation 
technique for use within the GSM European standard 
digital mobile radio system. It isproposed that MLSE 
is to be implemented by use of the Viterbi alorithrn 
[VA]. In order for the VA to perform MLSE it is 
necessary to supply the algorithm with an estimate of 
the impulse response of the transmission path. One way 
in which this may be achieved is to utilise an adaptive 
channel identifier which must be trained jperiodically 
throughout transmission. In proposed GSM Viterbi 
equalisers the channel estimate is made at the centre of 
the data block and then held constant throughout the 
entire message sequence. Due to the highly time variant 
nature of the medium, the impulse response of the 
channel may, however, be subject to significant 
variation within one block period, this results in 
estimation in error and consequently in equaliser 
performance degradation.In this paper, firstly, the 
way in which identification inaccuracies effect the 
performance of the VA are considered. Secondly, the 
use of adaptive algorithms, as a means of continuous 
estimate update throughout information transmission is 
investigated. Finally, the theoretical performance 
bounds of these techniques are derived, and validated 
by computer simulation. 

1. Introduction. 
In order to standardise future European mobile radio, in 
1991, the countries of Western Europe are 10 adopt a 
common digital cellular system; the system being referred to 
as the GSM system. GSM standards embrace all aspects of 
the application and therefore ensure complete system 
compatibility throughout Europe. 
The problems involved in communicating with moving 
vehicles are extremely severe. Not least of these problems is 
multipath transmission; this being caused by signal 
reflection from scatterers surrounding the mobile [1]. The 
problem is further compounded due to the time variant 
nature of the medium, this being due, largely, to the 
relative motion of the mobile to the base station. In such an 
environment channel equalisation is essential. Due to this 
time variability, the equaliser must also have the ability to 
self adapt to suit the changing channel conditions. 
Several equalisation schemes have been developed to suit 
this requirement [2], the one principally of concern within 
this paper being that of MLSE [3][4]. In this technique the 
VA is used to estimate the most likely transmitted sequence 
in the presence of intersymbol interference [1ST] and 
additive noise. The VA, however, requires knowledge of 
the transmission channel characteristics. These are 
unknown at the receiver, therefore an adaptive system is 
used to estimate the channel impulse response and thus 
provide the required information. 

To enable the adaptive system to perform this identification 
it must be provided, periodically, with a known training 
sequence. GSM specifications limit the usable training 
sequence to be 16 bits per data block. Any equaliser 
operating within such an environment must, therefore, have 
the ability to train rapidly. The choice of adaptive 
algorithm is largely constrained by this requirement. In 
practice this constraint precludes the use of gradient search 
type algorithms, as convergence rates are, generally, 
relatively low. An alternative to the gradient search 
technique is to utilise an algorithm based on the method of 
least squares [LS]. The most suitable of these being the 
recursive least squares [RLS] [5] or one of the 
computationally efficient developments of it. 
One of the principal sources of equalisation error, 
particularly apparent at high vehicle velocities, is channel 
estimation error caused by transmission path time variation. 
This problem is compounded by the stationary channel 
estimate used within the VA. In order to improve upon 
this, it is necessary for the channel estimate to be 
continuously updated throughout the entire data block. 
This can be achieved by utilising an adaptive algorithm in 
conjunction with an estimated data sequence; available in 
the form of tentative decisions fed back from the VA. The 
task of the channel identifier is therefore twofold: initial 
training, in which fast convergence is essential, and channel 
tracking, in which the steady state performance of the 
algorithm is of prime concern. 
In this paper, after brief introductions to the GSM data 
format, the system model and Viterbi equalisation in 
Sections 2, 3. and 4 respectively, methods by which the 
characteristics of the transmission path can be estimated are 
introduced in Section 5. In Section 6 adaptive algorithms 
are applied to the problem of channel tracking, and 
performance bounds are then derived. In Section 7 the 
performance of each system is compared by computer 
simulation, and finally, conclusions are drawn in Section 8. 

2. GSM Data Structure. 
The exact format of the data structure, defined within the 
GSM specifications, is complex utilising both frequency and 
time domain multiple access techniques. Considering only 
equalisation requirements, the structure may be simplified 
to that shown in Figure 1. Each individual mobile receives 
a data block of this form periodically, within one of eight 
separate time slots. The data block itself consists of two 
sequences of 58 bits containing the transmitted information, 
a training sequence of 26 bits situated in the centre of the 
block, and various tail and guard bits. The training 
sequence comprises a 16 bit pseudo random [PNJ sequence, 
this being used for equaliser adaptation. This sequence is 
preceded and followed by a block of five tail bits, these 
being used for equaliser initialisation. The information 
blocks are placed immediately before and after the training 
sequence. The channel estimator must, therefore, train in 
the centre of the block and equalise the received data from 
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the centrc to the extremes. The remaining guard and tail 
bits are used for separation and initialisation respectively. 

The Channel Model. 
Figure 2 depicts a simplified baseband model of the mobile 
radio communication system. In this, the channel is 
modelled as a time variant linear filter, the impulse 
response of which is given by. c(t), 

a(t)e'°"'(i —(,)) ± 	(,). 	( 1) 

This can be envisaged as a complex tap delay line; each tap 
representing one delayed multipath with time variant 
amplitude phase and arrival time. If all system components 
are assumed linear and time invariant then the block 
diagram can be rearranged using superposition to give the 
system of Figure 3. In this the complete transmission path is 
modelled as a single linear filter the impulse response of 
which is given by the convolution, 

	

Ii (, ) = J, (t )*c  (1 )*/i,  (1 ). 	 (2) 
h(t) is hereafter referred to as the channel impulse 
response [CIR]. 
The transmitted hascband data is represented by. x (i). and 
is convolved with It (i ) to obtain the received signal r (t ). 
In the above analysis modulation is assumed linear. Within 
the GSM standard, however, the modulation scheme 
specified is Gaussian filtered minimum shift keying 
IGMSKJ [6]. Due to the use of a premodulation Gaussian 
filter, this scheme is non linear. Within this paper, to avoid 
non linear system analysis, the data is considered to be 
modulated as an offset QAM signal [7], the characteristics 
of which are similar to GMSK modulation. The analytical 
and experimental results obtained, therefore, give good 
approximations to the GMSK instance. For the case of 
offset QAM the received signal r (:), is given by, 

7 	 7 
r(1) = 	a1 h(i — 2iT)+jl3h(t —2iT—T) + 'q(t). (3) 

1=0 	 1=0 
Where, cx (it ) and f3(ii) represent the I and 0 channel data 
respectively and are each chosen from the set {1,-1}. It 
should be noted that the overall bit rate is lIT, and that the 
data rate on the I and Q channels is 112T. 

MLSE using the Viterbi Algorithm. 
The MLSE receiver, shown in Figure 4, consists of three 
principal components: a whitened matched filter [WMF], 
the Viterhi processor and a channel estimator. The WMF is 
required to ensure that noise samples are uncorrelated; this 
being a fundamental requirement in order for the VA to 
Perform MLSE. The VA is the main data processing 
element and uses knowledge of the dR, available from the 
CIR estimator, and the received signal in order to 
determine the most likely transmitted sequence. 
The VA is a recursive algorithm which determines the 
transmitted data sequence, which maximises the probability 
p [y (n) x (n )]. Where, assuming that the additive noise 
sequence is white, y (n) is given by, 

= N—i 

x (n --i) + r (n ). 	(4) (it

In order to do this, within the VA. the log-likelihood of 
each possible channel input sequence is calculated and then 
compared. The sequence possessing the minimum log 
likelihood being the maximum likelihood sequence. As the 
additive noise sequence is white, the VA can be 
implemented as a simple distance measure, the likelihood 
function for each possib e sequence being givep by, 

L—I ( 	N—L 	
2I 

r.  = 	- 	IZ1I"' (k.1) 	 (5) 
k=0 	 1=0 	 ) 

Where. l', is the log likelihood of the mill sequence, Xk_I '  

being that part of the sequence contained within the 
memory of the channel, and L being the number of data 
samples. Error rate performance analysis of this structure 
has been performed [3], resulting in the following 
theoretical upper bound on performance. 

	

Pr(e) 	KQ[dmjn12]. 	 (6) 
Where, 

Q(x)(2)_ 1 fe (722)d y. 	 (7) 

and. 

	

F 	M 	 1 
K— 	 (8)k   

	

F.zI. 	k=O 	 J 
\Vherc E represents the "sequence error event' from time 
ki to kl+M. M being the length of the error sequence and 
c denoting the kill error sequence. w(€) is the number of 
decision errors entailed in each error event and .Z 
represents a subset of the set of sequence error events 
which, in the practical system, dominate. d ma represents 
the minimum distance separating the received sequence 
from the correct sequence of events and u 2  represents the 
noise variance. 
The term K is independent of SNR and, for any given 
system and data format, can be considered constant. Thus, 
once the system is defined, the probability of error is 
dependent, primarily, upon the minimum distance term, 
'min, and the effective noise variance. In the situation in 
which the CIR estimate is perfect, the effective noise 
variance is given simply by the variance of the additive 
noise. However, if the CIR is incorrect then the minimum 
mean squared error [MSE] at any step within the algorithm 
is given by, 

[N—i 
E [e 2 (n )] 	o,1 2 +E 	(h, (n )—h, (n ))x (it —i ))2  . (9) 

=0 

The effective noise apparent within the VA is, therefore, 
dependent not only upon the variance of the additive noise 
but also upon the MSE due to CIR estimate error. 

Initial CIR Estimation. 
The objective of each of the channel identification 
techniques to be presented within this section is to obtain, 
using the known training data, an optimum estimate of the 
dR. If the MSE definition of optimum is used, then the 
estimation problem can be expressed by the Wiener 
equation, which may be written, 

	

ipl =  &, _1y, 
	 (10) 

Where, 	= E[(it ) " ,K  (n)] and comprises an N by N 
clement 	utocorrelation matrix, and 0 = E1.i(it )y (it )l 
and comprises an N clement cross corre1tion vector. 
In order to perform optimal LS channel estimation it is 
therefore necessary to solve this N dimension equation. A 
variety of techniques, both recursive and non recursive, 
exist to do this. The simplest being block correlation [8]. 
In this the training sequence is correlated with the system 
output; thereby obtaining the system cross correlation 
function, which may he expressed, 

L. - I 
(11) q5(a)  

k=0 

where it represe,nts the number of data samples available 
for estimation; q is then equated to the CIR vector. If 
the training seiiencc is white, then the autocorrclation 
matrix, and therefore it's inverse, is equal to the identity. 
thus the technique performs exact LS estimation. 
A more sophisticated alternative is to utilise an adaptive 
algorithm, this is summerised. diagrammatically, in Figure 
5. Here, CIR estimation is achieved in a recursive manner, 
in which the estimate vector is updated at every symbol by 
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an adaptive algorithm. The algorithm uses the apparent 
error signal. e(n),  in conjunction with the known data 
sequence, x(iz), in order to minimise, iteratively, the MSE 
cost function. Various algorithms may he utilised to 
achieve the update of Lon), however in this application, 
due to the limited length of the training period, an 
identification technique based on the method of LS must be 
used. The one of concern within this paper being the RLS 
or Goddard Kalman algorithm [51. 
In order to assess the performance of each of the channel 
identification techniques, it is important to be aware of the 
optimum accuracy with which the exact LS estimator can 
identify the CIR coefficients. A useful measure of this 
accuracy is provided by the norm tap weight error [NTE]. 
The NTE represents the deviation of the estimated 
coefficient vector from the Wiener optimum, and is 
defined. 

	

II (h 	—Li ( ii) li NTE = 1Ologio -9L-.__112 	 (12) 

An expression for the optimum obtainable NTE. using LS 
estimation may be derived, for stationary channel 
conditions, by analysis of the MSE cost function, which is 
defined, 

	

(,' )= E[e2(n)], 	 (13) 
it may be shown [9] that the minimum MSE is given by, 

cr 2  
E[e2(n)] = Cr 	

N 
2 + 	' 	 ( 14) 

Therefore, the optimum accuracy obtainable using LS 
estimation is given by, 

N cr 2  
(n —1)11 2 = 	

( 15) 
11 

The above equation was derived for the infinite memory LS 
algorithm, it, therefore, represents the upper bound upon 
the performance of any LS identifier. In time variant 
situations it is often advantageous to truncate the algorithm 
memory, by application of an appropriate data window. 
To reflect this, in the finite memory case, the denominator 
of Equation 15 must he replaced by a term representing the 
effective number of data samples available for estimation. 
The exact form of this term is dependent upon the type of 
data window employed, and for the exponentially weighted 
RLS it can he shown that the equation becomes, 

Ncr 2 
(ii —' )) 2 = 	 ( 16) 

x i  
i'O 

where X represents the exponential weighting factor. The 
effect of windowing the data is. therefore, to impose an 
asymptotic limit upon the accuracy of the estimate. The 
window length is. in general, chosen to jointly minimise the 
error caused by this asymptotic behaviour and the error due 
to the time variation within the system. 
The results of the above analyses indicate that the optimum 
accuracy obtainable using LS identification is dependent 
upon the variance of the additive noise term, the number of 
coefficients within the channel estimate, the number of data 
samples available for estimation, and the effective window 
length. GSM specifications define both the the number of 
CIA coefficients and the number of training data samples, 
therefore, the LS estimate accuracy may be approximated 
by, 

	

—1)) 11 2 	0.2a,2 	 (17) 
'['his approximation being valid for all practical window 
lengths. 

6. CIR Time Variation Compensation. 
In conventional GSM VE the CIR estimate, once 

established • 	is 	then 	fixed 	throughout 	information 
transmission. Due to the time variant nature of the medium 
this results in additional estimation error. The total system 
MSE is therefore given by. 

N-i 2 
E [e 2 (n )] cr,1 2 + 0.2a2+ 	E [h1  (n) —I (ii  —d) } , (18) 

where, d represents the delay between the present symbol 
and the symbol at which the estimate was fixed. 
In order to derive an expression for the MSE due to the 
fixed CIR estimate, o,,, 2 , it is necessary to assume a model 
for channel time variability. In the GSM system the time 
variant behaviour of each multipath is modelled as filtered 
white Gaussian noise. Each filter is configured such that, 
E[i1()]=0 and Var.[lz (it )] = c (it ). The frequency 
response of the filter is given, for the classical Doppler 
spectrum [10], by, 

(1 — Cf if )2)112 forf e[—fd.fd]. 

S (I') = 0 elsewhere. 	 (19) 
Where f,,, = iA, i' being the vehicle velocity, in mis, and A 
is the wavelength, in m. 
The model may be expressed as an infinite sum of 
sinusoids, the amplitude envelope of which is given by 
Equation 19. For a single frequency the MSE due to 
sinusoidal time variation can he shown to be given by. 

E {e,,2(n ) 	2c 2sin 2 ( ! f7f1), 	(20) 

where, c is the average power of the sinusoid, fr represents 
the frequency of oscillation and f, is the sampling 
frequency, or symbol rate. This anal ysis can then be 
extended to the GSM model and expressed, for a single 
multipath. as. 

fd 

	

E re 2(11 )] 	4c 2f5 2 (f )sin 2() c/f, 	(21) 

and for the complete channel by, 

ff2 	4c12fS12(f )Sill  2(_) df. 	(22) 

The error attributable to the fixed CIR estimate may be 
reduced by continuous estimate update. This can be 
achieved by use of an adaptive algorithm used in 
conjunction with the tentative decisions fed back from from 
the yE. As initial channel identification is completed 
within the training period, algorithm convergence rate is of 
little importance, therefore either LS or gradient search 
algorithms may be used. In this paper two adaptive 
algorithms have been considered: the RLS algorithm and 
the least mean squares [LMSI algorithm[I1]. 
The tracking performance of the RLS algorithm has been 
analysed by several authors [5]. From these analyses it may 
be concluded that the total identification MSE can be 
decomposed into two parts: the error due to the stationary 
performance of the algorithm and the error due to the lag 
apparent between the actual dR. and the estimate 
obtained. It can be shown that the total MSE apparent 
within the estimate is given Lw. 

EI 	
2 r b (I —A) 	a 2 1, 

(u (n 	
cr 

)—Li(" ))2i 	 .(23) 
where, ç5,,, 2  is the variance of the source non stationarity. 
The second algorithm considered was the LMS algorithm. 
Similar analysis to that performed on the RLS algorithm 
has been carried out on the LMS algorithm [11], the 
equivalent expression for the total MSE being given by. 

E [(Ii (n) - Li (n ))2] = ti.N cr + p—N. 	(24) 
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Where l.L represents the step size for the update equation; 
this is chosen to give the fastest update rate at which the 
algorithm remains stable. Both Equations 23 and 24 were 
derived under the assumption that the transmitted data is 
known apriori, both therefore represent best case estimates. 
7. Computer Simulation Results. 
To enable validation of the theoretical expressions derived 
above, computer simulations of the GSM equalisation 
system were undertaken. The simulations concentrated on 
two aspects of system performance: the MSE obtained from 
CIR estimator, and complete system BER performance. In 

-each test the following channel conditions were simulated: a 
three path channel model, with average path amplitudes 
being given by H(z) = 0.407+0.815z 1 +0.407: 2 . In 
time variant simulations a Doppler frequency of 250H: was 
used and results were averaged over ensembles of 300 for 
MSE plots and 1000 for BER plots. 
The objective of CIR estimate MSE simulations was to 
define the accuracy obtainable from the adaptive system 
under given channel conditions. Figure 6 shows the way in 
which NTE varies throughout the information block in the 
case in which no CIR estimate update is employed. From 
this it is clear that the fixed estimate is a cause of 
significant additional estimation error and at SNRs of 
above 10dB this becomes the major component of total 
system error. 
Figure 7 highlights the CIR estimate improvement which 
may he obtained by continuous update throughout the 
transmission period. As can be seen both RLS and LMS 
techniques offer a significant performance advantage. In 
this simulation the performance of LMS algorithm appears 
to be superior to that of the RLS. This this is due to the 
relative magnitudes of Ii and X. and is predictable from 
Equations 23 and 24. The performance of the RLS 
algorithm may he improved by reduction of X. however in 
the practical system this may result in stability problems. 
The simulations of Figure 8 indicate the BER performance 
of the MLSE under the same conditions as shown in Figure 

It can be seen that the improvement in estimator 
accuracy due to continuous CIR update results in 
appreciably better BER performance. As expected the 
performance of the system using LMS update is superior to 
that of the system using RLS update. in the plots of both 
Figure 7 and 8 for the purpose of CIR estimate update 
correct data bits are used, therefore the estimator 
performance obtained is optimum. It actual decisions are 
used then performance degradation is to he expected. 

Conclusions. 
The performance of the MLSE used within the GSM 
system has been analysed. Theoretical expressions for 
expected CIR estimate error in the stationary and time 
variant situations have been derived. These errors have 
then been related to the performance of the system as a 
whole. The performance of several methods by which the 
continuous CIR estimate update throughout information 
transmission have been investigated. Each of these resulted 
in significant performance improvement over the fixed 
estimate technique. Under the conditions used for test the 
performance of the LMS estimator was superior to that of 
the RLS, this result was predicted by analysis. Finally 
computer simulations were performed in order to validate 
the theoretical analysis. In general, the simulation results 
reflect accurately the expressions obtained by theory. 
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Appendix B 
Channel Conditions 

For convenience the channel conditions denoted channels A to M and defined in tables, 3.3, 3.4, 

4.1, 6.1, 6.2, and 6.3 are listed within this appendix. 

Channel Type CIR (stationary) I MPDP (Time variant) Classification (stationary) 

A 1+0.5 z 1  Minimum Phase 

B 1+2.5 z 1  + Non Minimum Phase 

Table 3.3: Time invariant/time variant channel conditions used within computer simu-

lations 

Channel Type Impulse Response Classification 

C 1+2 z 1  + z 2  Non Minimum Phase 

D 1+2 z 1  +3 z 2  + 2 z 3  + z Non Minimum Phase 

Table 3.4: Time invariant channel Conditions used within computer simulations 

Channel Type MPDP (Ha  (z)) Doppler Frequency 

E 1 +z 1  +z 2  250Hz 

F 1 +z 1  +z 2  50Hz 

Table 4.1: Time Variant Channel Conditions used within Computer Simulations 
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Channel Type Initial CIR Final CIR Doppler Frequency Classification 

G 1 +0.6z 1  1 —0.2f1  250Hz MP 

H 1 +1.3z 1  1 +0.8z 1  25011z Variation from NMP to MP 

Table 6.1: Instantaneous Time Variant Channel Conditions used within Computer 

Simulations 

Channel Type Initial CIR Final CIR Doppler Frequency Classification 

J 1 +0.5z 1  1 —0.5z' 25011z MP 

K 1 +1.5z' 1 -i-0.5z' 25011z Variation from NMP to MP 

Table 6.2: Instantaneous Time Variant Channel Conditions used within Computer 

Simulations 

Channel Type MPDP Ha  (z) Doppler Frequency Classification 

L 1 +0.5z -1 1250Hz Predominantly 

M 1 +2.0z 1  1250Hz Variation from NMP to MP 

Table 63: Instantaneous Time Variant Channel Conditions used within Computer 

Simulations 
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Appendix C 
Software 

In order to obtain computer simulation results an extensive communications system software simu-

lation package has been produced as part of this work. The software comprises two distinct types. 

The first performs low level detailed mathematical manipulation and is arranged as several sets of 

library functions. The second performs the actual simulation of the radio system and, in general, 

comprises a sequence of function calls which when accessed in the appropriate order model radio 

transmission. Within this appendix each of these aspects is briefly described. 

The low level functions are subdivided into three library sets. The first performs functions such as 

complex number arithmetic, random number generation and Fourier transformation. These routines 

are taken from the commercially available software package "Numerical Recipes in C" and are 

described in detail in reference [121]. Since these routines are commercially available they are not 

included within the software disk attached at the back of the thesis, however, the routines are used 

within many of the higher level functions and are essential in order to run the simulations. 

The second library contains basic mathematical manipulation routines such as vector multiplication, 

vector shifting, matrix multiplication and matrix inversion. The source code for these functions 

appears on the disk in the directory "sp_tools". These functions enable the complex mathematical 

algorithms described within the thesis to be implemented in almost an identical manner to the way 

in which they are described mathematically. For example the RLS algorithm may be implemented 

within the software, assuming appropriate definition of each of the vectors and matrices, as follows, 

E =(D)_(X'*H) 

K=P*X*((LAM iX'*P*X)#) 

P = (P - K* X'* P)*LAM# 

H = H + (K*E') 

where the functions *, # and / denote vector, or matrix, multiplication, inversion and the conjugate 

transposition respectively. As can be seen by comparison with Equations 3.14 to 3.17 this is almost 

identical to the mathematical notation used therein. 

The third set of library functions, referred to as the "cornins_tools' library, perform all of the low 

level communication functions, such as filtering, modulation, channel filter design, equalisation, 

equaliser coefficient computation and the channel dynamic functions. For convenience the most 
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