
Design and analysis of genetical genomics studies 

and their potential applications in livestock research 

 

 

 

 

 

 

 

 

 

Alex C. Lam 

 

This thesis is presented for the degree of 

Doctor of Philosophy 

The University of Edinburgh 

2008 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429720585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

Abstract 

Quantitative Trait Loci (QTL) mapping has been widely used to identify 

genetic loci attributable to the variation observed in complex traits. In recent years, 

gene expression phenotypes have emerged as a new type of quantitative trait for 

which QTL can be mapped. Locating sequence variation that has an effect on gene 

expression (eQTL) is thought to be a promising way to elucidate the genetic 

architecture of quantitative traits. This thesis explores a number of methodological 

aspects of eQTL mapping (also known as “genetical genomics”) and considers some 

practical strategies for applying this approach to livestock populations. 

 

One of the exciting prospects of genetical genomics is that the combination of 

expression studies with fine mapping of functional trait loci can guide the 

reconstruction of gene networks. The thesis begins with an analysis in which 

correlations between gene expression and meat quality traits in pigs are investigated 

in relation to a pork meat quality QTL previously identified. The influence on power 

due to factors including sample size and records of matched subjects is discussed. An 

efficient experimental design for two-colour microarrays is then put forward, and it is 

shown to be an effective use of microarrays for mapping additive eQTL in outbred 

crosses under simulation. However, designs optimised for detecting both additive 

and dominance eQTL are found to be less effective. 

 

Data collected from livestock populations usually have a pedigreed structure. 

Many family-based association mapping methods are rather computationally 
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intensive, hence are time-consuming when analysing very large numbers of traits. 

The application of a novel family-based association method is demonstrated; it is 

shown to be fast, accurate and flexible for genetical genomics. Furthermore, the 

results show that multiple testing correction alone is not sufficient to control type I 

errors in genetical genomics and that careful data filtering is essential. While it is 

important to limit false positives, it is desirable not to miss many true signals. A 

multi-trait analysis based on grouping of functionally related genes is devised to 

detect some of the signals overlooked by a univariate analysis. Using an inbred rat 

dataset, 13 loci are identified with significant linkage to gene sets of various 

functions defined by Gene Ontology. Applying this method to livestock species is 

possible, but the current level of annotations is a limiting factor. Finally, the thesis 

concludes with some current opinions on the development of genetical genomics and 

its impact on livestock genetics research. 
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CHAPTER 1 

General introduction 

 The genetic basis of phenotypic variation can be broadly classified into two 

groups: monogenic and polygenic. Phenotypic variation with a monogenic 

background results from genetic variation at a single locus, and its inheritance 

follows a classical Mendelian pattern. On the other hand, the genetics of polygenic 

traits is often more complex; usually involves multiple genes, sometimes there are 

interactions between genes, and the environment can have an important role in the 

manifestation of the final outcome. Such traits are also commonly known as complex 

traits. Quantitative traits, that are traits with values which exhibit a continuous 

distribution, such as height and milk yield in dairy cattle, generally have a polygenic 

basis. With the development of genetic maps of polymorphic markers, it has become 

easier to conduct analysis to dissect the genetics of quantitative traits (Lander & 

Botstein 1989). Quantitative Trait Loci (QTL) mapping revealed that, in many cases, 

a small number of genetic loci contributed a large proportion of the phenotypic 

variance. QTL mapping has been widely used to identify loci that correlate with 

quantitative traits relevant to basic biology, inherited diseases and economically 

relevant traits in livestock and crop for many decades. To date, thousands of QTL 

have been mapped in various species. However, the rate of success of going from 

QTL to the characterisation of the loci at a molecular level has been disappointingly 

low (Flint et al. 2005).   

 The abundance of a gene transcript can be thought of as a proxy measure of 

gene expression, despite a number of post-transcriptional regulatory mechanisms 
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such as micro-Ribose Nucleic Acids (miRNA) and messenger RNA (mRNA) 

degradation that exist in the cell. It has been shown that in the fruit fly Drosophila 

melanogaster, there are a substantial number of genes for which the inter-individual 

variance in transcriptional abundance is significantly influenced by genotypes, 

amongst other factors like age and sex (Jin et al. 2001). This implies that the gene 

expression levels can be regarded as heritable quantitative traits. A later study using 

human lymphoblastoid cells observed familial aggregation of expression phenotype 

(Cheung et al. 2003), i.e. less variability in gene expression amongst individuals with 

greater relatedness. This supports further the view that there is a genetic contribution 

to the variation in the level of gene expression. 

 With the advance in high-throughput technology in genomics, expression 

profiling of many thousand of gene transcripts can be performed simultaneously 

using microarrays. As it has become clear that gene expression is a complex 

quantitative phenotype that is partly under genetic control, analogous to more 

“traditional” complex traits like blood pressure, QTL mapping methodologies 

naturally lend themselves to map the genetic loci which regulate transcription. 

Interestingly, studying the genetics of gene expression, sometimes known as 

“genetical genomics” (Jansen & Nap 2001), is thought to have enormous potential in 

dissecting the complex mechanisms underlying complex traits. The key factors that 

make gene expression and expression QTL (eQTL) potentially a very powerful way 

of studying the genetics of a biological system are: (a) both the phenotype and the 

QTL have a genomic location; (b) expression phenotypes are sometimes rich in 

functional details (e.g. gene annotation and expression pattern) that may be useful for 

candidate gene selection for related clinical or other functional complex phenotypes; 
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(c) using a genome scan to survey the transcriptomic variation permits the use of 

pleiotropic QTL and the correlation between expression phenotypes for inferring 

genetic pathways. These points will be elaborated further below. 

 In an eQTL experiment, the genome-wide gene expression for all individuals 

of a population sample is quantified using microarrays. In a population where there 

are segregating loci across the genome, the experiment can be thought of as a multi-

factorial perturbation to a biological system (Jansen 2003), where we examine the 

allelic effect on each of the expression phenotypes at each polymorphic locus. This 

can be seen as a much more efficient way to investigate gene functions in a complex 

biological system than using targeted single knock-out in model organisms such as 

mice. An illustration of a hypothetical eQTL experiment is shown in Figure 1.1. 
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Figure 1. 1 

A hypothetical genetical genomics experiment. (a) Design of experiment. An intercross between two 

inbred lines (A and B) of an organism gives rise to a population of hybrid progeny with a mosaic 

genome. (b) Genotyping and gene expression profiling. Genotypes of polymorphic markers indicate 

the inheritance pattern of a DNA segment. Genome-wide transcript abundance is assayed by 

microarrays. (c) An example of linkage to an expression phenotype. This example shows that the line 

A allele at locus X is associated with high expression level of gene Y. If there was no linkage at locus 

X, the expression level of gene Y should be more or less equally distributed amongst individuals with 

the line A allele and those with the line B allele. (d) eQTL scatter-plot. The result of a genome scan of 

gene expression phenotypes is often represented by a two-dimensional plot; the genomic location of 

the markers is shown on the x-axis, and the genomic location of the genes is shown on the y-axis. 

Significant linkage is indicated by a circle on the plot. See text for further details. 
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 The significance of the linkage can be tested with similar tests to those used 

for QTL mapping, such as the t-test, F-test or likelihood ratio test. As shown in 

Figure 1.1(d), both the eQTL and the linked expression phenotype are features on the 

genome can be mapped to the physical map. Therefore, eQTL can be classified into 

two types: if eQTL and gene co-localise, the eQTL is said to be a local eQTL; if 

eQTL and gene do not co-localise, the eQTL is said to be a distant eQTL (Rockman 

& Kruglyak 2006). Many local eQTL are likely to be cis-eQTL: the regulation of 

gene expression is due to a direct effect of a polymorphism in close proximity; for 

example, a single point mutation in the promoter region which affects the initiation 

of transcription. In the two-dimensional scatter-plot, Figure 1.1(d), the cis-eQTL are 

represented by those plotted along the diagonal line. eQTL which lie distant from the 

linked gene are likely to exert trans-acting regulation; for example, a non-

synonymous base substitution in a gene upstream of the linked gene in a signalling 

pathway. Therefore distant eQTL are often referred to as trans-eQTL. In Figure 

1.1(d), the eQTL at genomic location 4 is linked the multiple gene transcripts, 

highlighted by the vertical dotted line. In this case the eQTL is a cis-eQTL for one 

gene and a trans-eQTL for two other genes. Pleiotropic eQTL as such are potentially 

very interesting because they point to the possibility that the eQTL is a master 

regulator for a number of genes, or that the linked genes belong to the same genetic 

pathway. For instance, the two trans-linked genes are regulated by the gene under 

cis-acting regulation. The multi-factorial nature of eQTL experimentation allows 

many questions to be asked about a biological system and hypotheses to be generated 

for modelling the mechanisms underlying complex traits. 
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   One of the earliest applications of whole-genome eQTL mapping was done 

on yeast (Brem et al. 2002). Using a cross between a wild strain and a laboratory 

strain of Saccharomyces cerevisiae, linkage analysis identified 570 expression traits 

that were linked to one or more loci. A substantial proportion (185 expression traits) 

was linked to loci in close proximity to the gene itself. As the expected probability of 

a gene linked to a marker at the same location as itself due to chance is small (Brem 

et al. 2002), this indicates the direct cis-acting effects contribute significantly to the 

genetic control of gene expression variation between individuals. Eight trans-acting 

eQTL “hotspots” were identified, each modulating the expression of a group of 7 - 

94 genes of related function, further demonstrating that eQTL mapping is applicable 

to the study of gene functions and pathways. Transcription factors were thought to be 

the genetic machinery affected by the polymorphisms represented by the trans-eQTL 

hotspots, hence the large number of genes that fell under their regulation. Surprising, 

it was shown that trans-regulatory variation is not enriched in transcription factor 

coding genes (Yvert et al. 2003). 

 Genetical genomics studies have also been applied to several higher 

eukaryotic organisms, most notably in mice (Schadt et al. 2003; Bystrykh et al. 

2005; Chesler et al. 2005). Take the study on haematopoietic stem cell in mice 

(Bystrykh et al. 2005) as an example, eQTL mapping has led to identification of a 

number of cis-acting genes, carrying allelic polymorphism; some of which have 

critical roles in haematopoietic stem cell specific function. These genes are therefore 

good candidate for more in depth functional studies. Reconstruction of putative 

pathways has also been successfully carried out using the collection of co-regulated 

transcripts identified through the trans-acting hotspots together with the correlation 
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in their expression profiles with cis-regulated transcripts with known function. An 

alternative approach for pathway reconstruction integrates information from both 

eQTL and other complex trait QTL in order to systematically identify key genes of 

which the expression variation is due to the complex trait QTL, and these genes are 

responsible for driving the variation observed in the complex trait (Schadt et al. 

2005). Using a BXD F2 intercross of inbred mice, the QTL mapping for an obesity 

trait was combined with eQTL mapping to identify three novel susceptibility genes 

for obesity.   

  Examples of application of genetical genomics in model organisms 

(Mehrabian et al. 2005; Hubner et al. 2005; DeCook et al. 2006; Li et al. 2006) and 

in humans (Morley et al. 2004; Monks et al. 2004; Stranger et al. 2005) are plentiful 

in literature. On the other hand, this approach has not yet been widely adopted in 

livestock species. Kadarmideen and colleagues (2006) discussed the potential uses of 

eQTL in animal breeding. Since gene expression can be treated as “intermediate” 

phenotype of complex economically important traits, variation in transcript 

abundance of relevant genes is conceivably closer to the genetics than the trait 

specified in the breeding goal. Hence, there is scope for obtaining estimated breeding 

values (EBVs) for gene expression of animals and incorporating those EBVs directly 

in selection programme. Also, eQTL can potentially be incorporated in marker 

assisted selection programme in order to target more directly at the cause of the 

phenotypic variation. Furthermore, by understanding the basic biology underlying 

the trait of interest, animal breeders would have a firmer handle on how to devise a 

more robust breeding programme and minimise the chance to introduce undesirable 

features to the selected animals. However, some of the major limiting factors related 
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to the adoption of genetical genomics in farm animal genetics to date are the lack of 

completed genome sequence for some of the livestock species as well as funding. 

Even though the chicken (Hillier et al. 2004) and cattle genome assemblies are 

available and have aided international effort in single nucleotide polymorphism 

discovery (Wong et al. 2004; Van Tassell et al. 2008), commercial expression 

microarray manufacturers are only just beginning to produce arrays for livestock 

species. Also, the current high cost in conducting eQTL experiments limits the 

accessibility of this approach to some extent to the scientists working on humans or 

model organisms like mouse in academia or pharmaceuticals, whom in general enjoy 

greater research budget than scientists in animal health or animal breeding. 

Nevertheless, as livestock genome projects continue to advance and the experimental 

cost as well as the uncertainty of the value of genetical genomics diminishes to an 

acceptable level for the farm animal sector / industry, wider use of expression QTL 

in livestock genetics may begin to emerge. Indeed, a small scale genetical genomics 

study focused on a marked body weight QTL in chicken has been outlined in a recent 

publication (de Koning et al. 2007). 

  As noted above, there is currently a strong interest in utilising the power of 

expression QTL studies for dissecting the genetics of complex traits. However, as the 

technology is still at its infancy, much of the methodological aspects are still 

relatively unexplored. A growing number of studies have focused on statistical issues 

and pitfalls related to the nature of the data in terms of the high dimensionality and 

high correlation (Perez-Enciso et al. 2003; de Koning & Haley 2005; Carlborg et al. 

2005; Gibson & Weir 2005; Pastinen et al. 2006; Sladek & Hudson 2006). Several 

other studies are concerned with experimental designs applicable to genetical 
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genomics for increased efficiency (Jin et al. 2004; Piepho 2005; Fu & Jansen 2006; 

Rosa et al. 2006). Clearly, there are urgent needs to advance our understanding of 

this emerging research field. The objective of this thesis is to further explore a range 

of issues that are central to genetic analysis of gene expression. The following 

paragraphs outline the contents and study objectives for each of the subsequent 

chapters. 

 Chapter 2 details a candidate gene study combining gene expression data 

and phenotypic records related to pork meat quality in pig. The aim of the 

experiment is to identify expression phenotypes that are co-regulated by a meat 

quality QTL which has been previously characterised. Subsequently, possible roles 

of these genes related to the QTL and meat quality traits can be explored. The 

chapter concludes with a critical assessment of the experimental design and reviews 

the lessons learned from this study from a practical point of view. 

 Chapter 3 introduces the concept of microarray design and reviews current 

methods in gene expression profiling which attempt to make efficient use of 

experimental resources in studying the genetics of gene expression. A new 

experimental design in two-colour microarrays is put forward as the optimal design 

for linkage mapping of eQTL, particularly in outbred crosses. Its strengths and 

weaknesses are examined using simulation. 

 Chapter 4 showcases a new method called GRAMMAR (Aulchenko et al. 

2007a) that is amenable to family-based association studies by applying it to a human 

eQTL dataset with pedigree structure. GRAMMAR is not only capable of attaining 

similar statistical power as the linear mixed model which can be regarded as the gold 

standard in association mapping with pedigree data, but is also fast in its 
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computation; hence it can be shown that the method is adequate for analysing data 

with extremely high dimensionality such as an eQTL scan. The work also 

demonstrates the importance of careful data filtering and partitioning in enhancing 

statistical power and reducing the number of false positives. 

 Chapter 5 is devoted to a feasibility study of a holistic, pathway-based 

approach in mapping eQTL. This approach takes an alternative view to the univariate 

approach which focuses on solely the peak markers and their linked genes; instead it 

scans for evidence of pleiotropy to genes that belong to a common functional 

category defined by the KEGG database. Using a published eQTL dataset of a 

recombinant inbred lines panel of laboratory rats, the usefulness of the approach in 

revealing biologically meaningful eQTL with relatively small effects is assessed. 

Insight is provided into the properties of the methods for categorising genes into 

pathways or functional sets and the test statistics for evaluating the significance of 

the linkage evidence of the gene sets. 

 Chapter 6 is an extension of Chapter 5, in which the analysis is repeated 

using Gene Ontology instead of KEGG. The work confirms that more robust signals 

can be obtained when there is more extensive coverage over the genes on the 

microarray by the functional annotations. 

 Chapter 7 features a final summary and the concluding remarks of the 

research involved in producing this thesis, a few encouraging as well as cautionary 

notes on the interpretation of eQTL findings in complex trait research, and 

perspective on some future research directions regarding the use of gene expression 

data in livestock genetics. 
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CHAPTER 2 

Integration of eQTL and functional QTL for network 

inference 

 A large number of studies attempt to infer gene networks from gene 

expression data obtained from microarray experiments. Co-expressed genes can be 

grouped and some form of regulation between those genes is assumed. More 

recently, several studies have shown that by combining gene expression data with 

genetics mapping of quantitative phenotypes, gene networks can be inferred with 

higher accuracy and richer contents compared to using gene expression data alone. In 

this chapter, a review on the current approaches of gene network inference is first 

provided. Next, a small investigation using this approach on the genetic mechanism 

underlying a pork meat quality QTL is described. Finally, I present the results and a 

critical assessment of the study. 

2.1 Introduction 

2.1.1 Network reconstructions from gene expression 

 The functioning of a cell is orchestrated in a number of ways; one of them is 

through variation in the expression levels of genes. Levels of transcript abundance 

are often directly related to the levels of gene products, the quantity of which are 

crucial for the regulation of many cellular processes, such as signal transduction, 

transcription activation and repression. Therefore, the level of expression by one 

gene would often have a knock-on effect to the activity of one or more genes, and it 

is common to consider that genes interact with one another in a network or pathway. 
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Such networks, or cascades of gene-gene interactions, can result in changes in the 

physiological state of the cell, organ and the whole organism. Thus, understanding 

which genes interact and how they interact would help scientists to recognize the 

complexity of phenotypes, and what to target in order to manipulate the phenotypes, 

either by molecular biology or selective breeding, to humans’ advantage. 

 As microarray technology is capable of quantifying many thousands of genes 

simultaneously, it presents an opportunity for researchers to infer gene networks. The 

basic assumption underlying such analysis is that co-expression of genes hints at co-

regulation and a common genetic pathway. 

 Co-expression refers to genes of which the expression levels are highly 

correlated. David Bostein and colleagues (Eisen et al. 1998) at Stanford University 

were amongst the first to perform cluster analysis on gene expression profiles and 

they found that genes of known similar function tended to group together. In their 

study, clustering of genes in budding yeast is based on levels of expression across a 

time dimension. A strong tendency of genes sharing common roles in cellular 

processes occupying a cluster was observed. In a study on expression pattern in the 

nematode worm C. elegans (Kim et al. 2001),  a search for co-expressed genes was 

conducted when comparing wildtype versus mutant strains, as well as worms grown 

under different conditions. Forty-three clusters were identified, many of which are 

enriched for genes from particular tissues or organs and for genes with related 

biological roles. 

    Co-expression of genes provides the first clue as to which set of genes are 

likely to interact. Co-expression, however, does not reveal the organisation of the 

gene network; i.e. direct or indirect interaction between two genes, size of the effects, 
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and causality in the interaction. Various modelling methodologies have been 

developed to infer gene network through “reverse engineering” (D'haeseleer et al. 

2000). 

 To make distinction between direct and indirect interactions, the use of partial 

correlation coefficients was proposed (de la Fuente et al. 2004). A partial correlation 

coefficient quantifies the correlation between two variables when conditioning on 

one or several other variables. By calculating high order partial correlation, the 

structures of gene networks emerge as undirected dependency graphs in which pairs 

of genes are connected by undirected edges if there is direct dependence between 

them. Network reconstruction based on a reanalysis of the yeast eQTL dataset (Brem 

et al. 2002) using this method and putative networks were postulated (Bing & 

Hoeschele 2005). Voy et al. (2006) extended the use of correlation graphs from 

between-genes to between-cliques, groups of interconnected genes, to model 

relationships in expression between multiple genes. 

 Yet, the correlation-based graph methods described above do not model 

causality in the interactions, or the direction of the edges. An alternative approach 

known as probabilistic graphical models, which include Bayesian networks, was 

suggested as the state-of-the-art for modelling gene network from expression data 

(Friedman 2004). In a Bayesian network, the gene expression of a gene is treated as a 

random variable, and the expression level of a gene is directly influenced by its 

parents in the model. Bayesian methods can be used to find the model that fits the 

data with the highest likelihood. Networks inferred by probabilistic graphical models 

are directed acyclic graphs. These graphs model causality in the interactions, but 

have the major drawback that feedback loops are not allowed. To model feedback 
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mechanisms it might be necessary to use multiple network models, each representing 

a distinct time point where interactions are uni-directional.  

2.1.2 Integrative Genomics approach 

 Combining knowledge derived from genetic analysis in segregating 

populations with gene expression data has been shown to be a powerful way to infer 

gene networks (Schadt et al. 2005). The particular strengths of this approach over the 

methods above are in its ability to identify the “key-drivers”, or highly connected 

hubs, of the network as well as to detect causal associations. Genetic loci associated 

with both expression traits and physiological traits can be used as network priors to 

help refining models inferred from gene expression alone. In the presence of the co-

localization of both eQTL and physiological QTL (pleiotropy), those loci are good 

candidates for the genetic factors which influence the physiological trait via some 

regulatory mechanisms on gene expression. The linked expression phenotypes with 

significant correlation with the physiological trait are even more likely to be involved 

in the gene network underlying the physiological trait. The relationships of the QTL, 

the linked expression phenotypes and the physiological traits are inferred using a 

likelihood-based causality model selection (LCMS) test (Schadt et al. 2005). The 

models tested by LCMS are described in Figure 2.1. Using conditional likelihood, 

the most probable model that reflects the joint probability distribution for the QTL, 

expression trait and physiological trait can be selected 
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Figure 2. 1 

Basic models considered by LCMS where expression levels (R) and complex physiological trait (C) 

are under the control of a common QTL (L). The QTL is always the head node of all models because 

genotypes are not dependent on the expression levels or the complex trait. The causal model, denoted 

by M1, shows the QTL acting on the complex trait simply through the transcript abundance of one 

gene. The reactive model, M2, shows the variation of transcript abundance as a consequence of the 

physiological state; i.e. transcript abundance has no influence on the outcome of the complex trait. 

The independent model, M3, shows that the complex trait and the expression phenotype are under the 

same genetic control and are correlated, but they do not influence each other. A more complicated 

causal model is shown as M4, where the complex trait is regulated by multiple genes, including trans- 

regulation through secondary genes. This figure is adapted from Schadt et al. (2005). 
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 Genetic information can complement the model selection procedures in 

Bayesian network models (Zhu et al. 2004; Zhu et al. 2007). For examples, genes 

with expression levels under cis-regulation are assumed to be more upstream in a 

genetic regulatory pathway than trans-genes. Hence, cis-genes are fixed as the parent 

nodes, and models with trans-genes regulating cis-genes can be ruled out. Compared 

with the networks reconstructed from Bayesian network in the absence of genetic 

data, Zhu et al. (2007) showed that genetic information is most helpful in the top 

layer of the network, and the integrative genomics approach increases the accuracy 

of network reconstructions. 

2.2 Inferring the pathway underlying a pork meat 

quality QTL 

Inspired by the integrative genomic approach outlined in Schadt et al. (2005), 

an eQTL experiment was set up by the pig breeding company PIC and a consortium 

of academics and industrial partners to investigate the relationship between the 

natural variation in gene expression and pork meat quality. This section gives a brief 

introduction on the association of the calpastatin (CAST) gene with pork meat quality 

and outlines the proposed strategy to look for gene networks connecting the QTL in 

CAST and pork meat quality. 

2.2.1 Meat quality in pigs and calpastatin gene 

Eating quality of meat depends on many characteristics, such as leanness, pH, 

firmness, and biochemical compositions. It is clearly a complex concept that can be 

defined in many different ways and phenotyped in a variety of quantitative and 
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qualitative measures. Nevertheless, improving meat quality in one form or another is 

an important endeavour for commercial animal breeders, because the companies that 

supply stocks with more desirable meat quality can differentiate their products from 

their competitors and increase their market share. Thus, finding genes or genetic 

markers that associate with certain meat quality traits are helpful in making decisions 

in selective breeding programmes. A number of meat quality related QTL, for traits 

such as those relevant to growth performance, body composition, post-stress cortisol 

levels and glycogen content in skeletal muscle, were discovered (Ciobanu et al. 

2001; Bidanel et al. 2001; Milan et al. 2002). 

Meat tenderness has been linked to the post-mortem activity of calpastatin 

(CAST), a specific inhibitor of calpain proteases (Sensky et al. 1999; Parr et al. 

1999). Using an F2 intercross of Berkshire x Yorkshire pigs, Ciobanu et al. (2004) 

discovered QTL for cooking loss and juiciness in the CAST region. By sequencing, 

three missense mutations and five silent mutations in CAST were identified. These 

polymorphisms form haplotypes covering most of the coding region, and it was 

found that differences in some meat quality traits could be explained by the 

substitution effects of haplotypes and some of the nonsense mutations. Two of the 

coding mutations for CAST, Ser66Asn and Ser638Arg, are thought to disrupt the 

recognition sites for Protein Kinase A. It was discussed that the phosphorylation of  

CAST could affect its inhibitory efficiency and ultimately could have an effect on 

those meat quality traits (Ciobanu et al. 2004). 

Because of the evidence supporting CAST as an important gene in 

contributing a significant effect on pork meat quality, there were both scientific and 

economic values in discovering whether the QTL at the CAST region acts on the 
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meat quality traits through the expression levels of other genes, and if yes, the gene 

network involved. 

2.2.2 The proposed strategy 

The overall strategy resembles the strategy outlined by Schadt et al. (2005), 

with a more simplistic model selection step for pathway inference. Details on 

material and methods are given in the next section. The aim is, given that CAST is a 

meat quality QTL, to find expression traits that are associated with the same locus. 

The co-localization of QTL and eQTL will then enable the reconstruction of a 

putative gene network. The general workflow is shown in Figure 2.2. 
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Figure 2. 2 

The general workflow for the inference the gene network underlying the CAST QTL for meat quality 

in pigs. The most interesting type of networks would be those which follow the causal model: The 

QTL in Calpastatin alters expression level of genes which then drive the variation in meat quality 

traits. 
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2.3 Material and methods 

2.3.1 Subjects and meat quality phenotypes 

Five hundred pigs from 5 lines: Landrace, Large White, Duroc, Pietrain, and 

Meishan Synthetic, were used in the study. The polymorphism genotyped was the 

non-synonymous SNP resulting in the Ser638Arg mutation in CAST (Ciobanu et al. 

2004). The pigs were raised and slaughtered in 22 batches and 361 traits related to 

biochemical properties, performance, and meat quality were measured. Twenty-three 

pigs from each of the 5 lines, 115 in total, were used in microarray experiments. 

Subjects with missing CAST genotypes were excluded from the analysis. Thus, 407 

samples were available for the meat quality traits - marker association analysis, and 

94 samples were available for gene expression traits - marker association analysis. 

2.3.2 Expression profiling 

RNA was extracted from two muscles (Longissimus thoracis and 

Semimembranosus). On cDNA microarrays, a reference design without dye swap 

was employed whereby each sample was compared against a reference sample which 

was composed of all 115 samples pooled together. Each array contained 21,168 

probes, of which 19,014 were cDNA probes for the pig genome. Within arrays these 

cDNA probes were replicated 3, 6, or 12 times. Overall, they represent 6,192 non-

redundant cDNA clones, whose identities were anonymous. Array hybridisation was 

performed in three different laboratories. The scanning of arrays was completed in 

the PIC Cambridge Laboratory. 
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2.3.3 Microarray analysis 

Microarray data were processed and normalised using the R statistical 

programming language (R Development Core Team 2007) and the print-tip loess 

method in the Limma package (Smyth 2005). The average of normalised log ratios 

was taken for each cDNA probeset as the measure of expression level. 

2.3.4 Statistical analysis 

Marker association to phenotypic traits was assessed using the linear model: 

egenotypeGbatchBlineLtraitY ++++= )()()()( µ   

Association to gene expression traits was assessed in a similar way: 

egenotypeGlabprocessPbatchBlineLtraitY +++++= )()_()()()( µ   

 All nuisance terms and the CAST genotype term were fitted as fixed effect. 

The threshold of P(CAST) =  0.05 for both models were used in this first filtering step. 

For those phenotypic traits and the gene expression traits with significant marker 

association, a second filtering step was applied using the Pearson correlation test on 

pairwise combinations of the two types of traits. A more stringent threshold (P = 

0.01) was set for the Pearson correlation tests. Linear models were fitted in the 

statistical package R using the method lm(). 

2.3.5 Pathway inference 

 For the combinations of meat quality and gene expression traits that passed 

both filtering steps, a simple regression procedure was used to determine the best 

model, from the causal model, the reactive model, and the independent model 
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illustrated in Figure 2.1. The model selection procedure is described in Figure 2.3 

and in the text below. 
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Figure 2. 3 

Model selection procedure for pathway inference. The terms used in the regression models are meat 

quality trait (MQ), nuisance parameters (N), CAST genotype (QTL) and gene expression (GE). Gene 

expression traits are tested one at a time.  On the left hand side, the step 1 and step 2 regression 

models are shown. On the right hand side, the (+) and (-) signs indicates whether the term on that row 

is significant and not significant, respectively. 
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 The first model in Figure 2.3 fits the QTL ahead of the expression trait. The 

reactive model can be implicated by the observation that the addition of the 

expression trait does not explain significantly more of the phenotypic variance than 

the QTL already does. For those combinations with significant QTL as well as gene 

expression in the first model, the second model fits the gene expression ahead of the 

QTL. If adding QTL after gene expression does not explain more of the phenotypic 

variance, it would imply the causal model where the phenotypic variance is driven by 

the gene expression trait. On the other hand, if the QTL remains significant, it would 

imply the independent model where the phenotypic trait and the gene expression 

where both associated with the QTL and are correlated, but not directly connected. If 

more than one expression traits fit the causal model, a joint model with multiple gene 

expression traits would be fitted and a backward selection procedure is used to 

determine whether these expression traits are connected or act independently. The 

goodness of fit can be assessed by the Akaike’s Information Criterion (AIC). All 

linear models and model selection procedures were carried out in R.  

2.4 Results 

2.4.1 Marker association to meat quality traits 

 Out of the 361 phenotypic traits, the CAST genotype was significantly 

associated with 14 traits (nominal P < 0.05). Line and batch were significantly 

associated with substantially more traits, 258 and 280 respectively. Appendix 2.1 

contains a table listing the results for the 14 significant traits.  
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2.4.2 Marker association to expression traits  

 Out of 6192 cDNA probes, the CAST genotype was significantly associated 

with 143 of them (nominal P < 0.05). Incidentally, many more expression traits were 

significantly associated with the nuisance parameters; 862, 600, and 3605 expression 

traits were significantly associated with line, batch, and process lab, respectively. 

2.4.3 Correlation between significant meat quality traits and 

gene expression traits 

 Pearson correlation tests were performed between the 14 meat quality traits 

and the 143 expression traits (2002 tests) on all the records. Eleven traits out of 14 

showed a significant correlation with at least 1 gene expression trait. Four traits were 

discarded because the trait records overlap with less than 50% of subjects with gene 

expression profiled. The remaining 7 traits were found to be correlated with 1 to 7 

gene expression traits. Details on the significant correlations are listed in Appendix 

2.2. 

2.4.4 Pathway Inference 

 The meat quality traits were analysed with the correlated gene expression 

traits and CAST genotype jointly in the two-step regression approach described in 

figure 2.3. The P-values for the QTL and the gene expression trait are listed in the 

table in Appendix 2.3. In the first step, except for C241L, the CAST genotype was 

not linked any of the meat quality traits in the regression model. The integrative 

genomic approach relies on the co-localisation of the QTL and eQTL. Because the 

merged data set was smaller than the meat quality trait dataset and was no longer 



 38

supportive of CAST being the QTL for those traits, it was not possible carry out the 

inference through to the second step. 

 For the trait C241L, a trait for the level of a fatty acid found in the 

Longissimus thoracis, both the QTL and the gene expression terms were significant 

in the first regression model. In the second regression model where the gene 

expression trait P5251 was fitted ahead of the QTL, the QTL was no longer 

significant. This indicates that the variance explained by the CAST genotype could be 

instead accounted for by the expression variation of P5251. Hence, the results imply 

the “causal model”; i.e. CAST � P5251 � Fatty Acid level. P5251 represented the 

clone id “SSH5A B07” on the microarray. Unfortunately this clone has not been 

sequenced by the company PIC, so the identity of the gene represented by this clone 

is unknown. 

2.5 Discussion 

 One putative pathway has been suggested by the results. The true identity of 

gene expression trait P5251 is unknown because the clone has not been sequenced. 

Previous study on calpastatin discovered association of some of the alleles with 

cooking loss and juiciness (Ciobanu et al. 2004). Association with fatty acid level 

has not been previously implicated. Whether it is a novel discovery or a false positive 

can only be verified by separate experiments. However, this project has been 

terminated by PIC and the putative pathway is not pursued further in this thesis.  

 Considering the number of phenotypic traits and gene expression traits 

assayed, the outcome of this study is somewhat disappointing. An important factor to 

consider is the experimental design of the study. The gene expression experiment 
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was carried out by PIC as a bigger study with other research interests involved. As a 

result, many aspects in the experimental design were not favourable for the purpose 

of the current study. Hence, a critical assessment would be useful to highlight what 

could be learnt from this exercise. 

 Firstly, as a candidate gene approach, this study is based on previous findings 

in which the CAST marker is associated with meat quality. However, in the current 

dataset, the marker is significant for only a small number of meat quality traits. It 

should be noted that by using a 2-stage filtering method, the significant threshold 

used here for marker association is already very liberal as it does not correct for 

testing multiple traits. Even so, associations for cooking loss and juiciness by 

Ciobanu et al. could not be replicated. A possible explanation is that the original 

studies (Malek et al. 2001; Ciobanu et al. 2004) were based on a Berkshire x 

Yorkshire cross, whereas in this studies the genetic heterogeneity in five different 

lines of pig breeds could lead to substantial loss of power. In addition, it was 

observed in the results of marker association analysis that the line and batch effects 

were much more highly significant for many more traits compared to the genotype 

effect of CAST. This indicates that much of the variation in this dataset is simply due 

to breed and environmental differences. Also, the considerable number of missing 

records in the phenotype and the genotype data would have further reduced power 

(see the column “numObs” in Appendix 2.1).  

 Secondly, the number of microarrays was far fewer than the number of 

subjects there were phenotypic records for. In a joint analysis for pathway inference, 

combining the two sets of data led to the many phenotypic records being dropped. 

This led to dramatic loss of power in pathway inference because there was no 
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evidence in the reduced dataset to support the QTL. Without a significant QTL, the 

logic of the whole approach was violated because co-localisation of QTL is the 

“anchor” of the whole integrative genomic approach for pathway inference. This 

highlights that the number of animals profiled by microarrays has to match the 

number of animals phenotyped and genotyped for the integrative approach to be 

functional. 

Thirdly, the lack of gene annotations for the microarray probes made 

interpretation and verification of results more difficult. For example, I could not 

follow up whether the marker had any effect on the gene expression levels of 

calpastatin itself or any of the calpains. There were several reasons for the lack of 

annotations: (1) the probes were designed from a cDNA library in which the clones 

had not been annotated; (2) the sequencing project for this array were prematurely 

terminated by the industrial partner; (3) some of the clones cannot be mapped to 

known genes; and (4) some probes were known to be badly designed in which they 

hybridise to multiple genes (C. Sargent, personal communication). In many ways, the 

fact that the genomic resources in the public sector for farm animals are lagging 

behind those for model species makes the eQTL analysis in pigs from a 

bioinformatics prospective more challenging. It has been demonstrated 

(Kadarmideen & Janss 2007) that a joint approach based on studying model 

organisms and comparative genomics could be a viable work-around until genomic 

resources for pigs and other farm animal species become sufficiently advanced for 

direct eQTL mapping.  

 Besides focusing on the imperfections in the dataset, it would also be useful 

to reflect on the assumptions underlying the experiment and consider the outcome of 
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the study from a different angle. To infer the gene regulatory mechanism behind 

meat quality from gene expression data, three assumptions were made; (1) that there 

is a complex gene network underlying the way calpastatin affecting meat quality; (2) 

it is the change of gene expression levels that drives the variation in meat quality 

traits; (3) the associations to the gene expression and the physiological traits are 

constant over time. Could it be that calpastatin and calpains act on meat quality 

through a basic mechanism without any intermediates? Or perhaps the underlying 

network is driven by variation at other levels, such as proteins or metabolites, rather 

than gene expression? What if the pathways related to meat quality were dynamic 

over time? Wu & Lin (2006) discussed the importance of the time dimension in 

genetic analysis. Furthermore, the original association reported (Ciobanu et al. 2004) 

were not exclusively due to the Ser638Arg mutation. Would a multiple-marker or a 

haplotype association test be necessary to reveal true associations? All of these open 

questions point to the fact that no single approach will be applicable to resolve all the 

complexities in a biological system. Beyond the genetical genomic framework 

proposed by Jansen and Nap (2001), it is critical to use a wide range of approaches, 

including both forward and reverse genetics, in deciphering the mechanisms 

underlying complex traits. 

2.6 Conclusion 

The current study showed that a sub-optimal experimental design can have a 

very negative impact on using genetical genomics for pathway inference. Studying 

large number of a test cross or a single uniform population is better than a pool of 

individuals from many different populations. Good data quality, large sample size 
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and matching records are all essential for the integrative genomic approach. Despite 

the recent successes in reconstructing gene networks in model organisms, there are 

still significant challenges in transferring the methodology to livestock species. 

Nonetheless, continual progresses in genomic research on livestock species will 

gradually reduce the hurdles in interpreting the biological meaning of eQTL and lead 

to more testable ideas. 
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Appendix 2.1 

MeatQual Line Batch CAST numObs

BOHAM 9.29E-06 0.008423 0.015761 386

UADRENL2 0.001194 0.284061 0.040886 114

UNORADR2 0.000614 0.903293 0.024059 114

TBAL 0.032219 4.04E-26 0.044082 209

FFAS 0.002864 4.49E-06 0.021464 62

C180F 0.000565 3.92E-24 0.04165 189

C2033F 2.12E-15 6.86E-56 0.004776 189

C241L 0.291763 8.24E-11 0.017043 142

BMINOLTA 5.68E-06 8.21E-22 0.022695 407

AMINOL200 0.00038 0.180577 0.001021 213

BMINOL200 0.000638 1.82E-15 0.040821 213

SMCOHES_MEAN 0.011394 4.10E-09 0.005759 127

SMCOHES_MIN 0.01962 2.41E-08 0.020041 127

SMCOHES_MAX 0.136346 7.26E-05 0.018462 127  

Meat quality traits with significant association with the CAST genotype. The table shows the P-values 

of line, batch and the CAST genotype for each meat quality trait and the number of observations after 

excluding missing values. Description of the traits can be found in Appendix 2.4.  
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Appendix 2.2 

MQ GE numObs pval ci1 ci2

BOHAM P1091 115 0.002778 0.098366 0.437459

BOHAM P1188 115 0.004189 0.086204 0.427486

BOHAM P1887 115 0.009173 0.061607 0.407061

BOHAM P2535 115 0.009453 0.060625 0.406239

TBAL P1419 115 0.009945 0.058959 0.404841

C180F P1419 115 0.000627 0.13909 0.470254

C180F P1576 115 0.007486 -0.412547 -0.068173

C180F P4646 115 0.002619 0.100081 0.438858

C180F P4842 115 0.00464 0.083105 0.424932

C180F P4873 115 0.002456 0.10193 0.440365

C180F P5240 115 0.00084 0.131476 0.464191

C180F P5660 115 0.007032 0.070171 0.414212

C241L P5251 98 0.007824 -0.442163 -0.072612

BMINOLTA P83 115 0.00553 0.077707 0.42047

BMINOLTA P1645 115 0.003292 -0.433395 -0.093398

BMINOLTA P4693 115 0.004347 0.085084 0.426564

BMINOLTA P4729 115 0.000682 0.136914 0.468524

AMINOL200 P1041 115 0.003605 -0.431186 -0.090704

AMINOL200 P1321 115 0.00393 0.088124 0.429066

AMINOL200 P4804 115 0.002851 0.09762 0.436849

BMINOL200 P814 115 0.00856 -0.408946 -0.06386

BMINOL200 P1321 115 0.001224 0.121399 0.456119

BMINOL200 P1439 115 0.0066 -0.41588 -0.072176

BMINOL200 P1640 115 0.002095 0.106476 0.444062

BMINOL200 P1645 115 0.001242 -0.455789 -0.120989  

Meat quality traits and gene expression traits with significant correlation. The columns list the name 

of the meat quality trait, the identifiers for the gene expression traits, number of observations, the P-

values of the correlation, and the 95% confidence interval for the correlation coefficient. 
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Appendix 2.3 

Meat Qual Gene Exp QTL - 1 GE - 1 QTL - 2 GE - 2 num. obs.

BOHAM P1091 0.08887 0.01384 0.121503 0.009828 94

BOHAM P1188 0.08507 0.006079 0.03905 0.01431 94

BOHAM P1887 0.09283 0.03248 0.16526 0.01691 94

BOHAM P2535 0.083485 0.004306 0.01577 0.02792 94

TBAL P1419 0.5058 0.9973 0.8146 0.5198 94

C180F P1419 0.069824 0.445058 0.091859 0.281971 94

C180F P1576 0.058251 0.014292 0.275248 0.002759 94

C180F P4646 0.067237 0.187069 0.117529 0.089355 94

C180F P4842 0.061776 0.038512 0.158531 0.013207 94

C180F P4873 0.059338 0.019409 0.109664 0.009811 94

C180F P5240 0.06361 0.06468 0.205159 0.016648 94

C180F P5660 0.056914 0.009796 0.108939 0.004872 94

C241L P5251 0.01485 0.02632 0.129008 0.00246 79

BMINOLTA P83 0.09111 0.05638 0.37598 0.01141 94

BMINOLTA P1645 0.09601 0.17603 0.22589 0.08051 94

BMINOLTA P4693 0.09896 0.38073 0.1954 0.1414 94

BMINOLTA P4729 0.09234 0.07442 0.13935 0.04528 94

AMINOL200 P1041 0.09095 0.17677 0.11268 0.13241 94

AMINOL200 P1321 0.08348 0.03006 0.290532 0.007636 94

AMINOL200 P4804 0.077475 0.007562 0.344969 0.001631 94

BMINOL200 P814 0.73883 0.06146 0.4636 0.1073 94

BMINOL200 P1321 0.7399 0.0779 0.96183 0.05743 94

BMINOL200 P1439 0.7432 0.166 0.8786 0.1341 94

BMINOL200 P1640 0.729506 0.009232 0.40617 0.01711 94

BMINOL200 P1645 0.721253 0.001939 0.479935 0.00289 94  

Results of the 2-step regression model. The columns show the name of the meat quality trait, the 

identifiers for the gene expression traits, the P-values of the CAST genotype and gene expression for 

the first model, the P-values of the CAST genotype and gene expression for the second model, and the 

number of observations. In the first model, the QTL is significant (α = 0.05) only for the meat quality 

trait C241L. 
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Appendix 2.4 

MeatQual Description 

BOHAM Weight of bone in ham 

UADRENL2 
Adrenaline level in the urine collected after the transportation to the 
abattoir 

UNORADR2 
Noradrenaline level in the urine collected after the transportation to the 
abattoir 

TBAL TBA measured in Longissimus thoracis 

FFAS A trait on lipid fraction 

C180F Composition of a fatty acid 

C2033F Composition of a fatty acid 

C241L Composition of a fatty acid 

BMINOLTA Yellowness measured in the LT muscle at the last rib level  

AMINOL200 Redness measured in the LT muscle at the last rib level 

BMINOL200 
Yellowness measured in the LT muscle at the last rib level with a new 
machine 

SMCOHES_MEAN Mean Semimembranosus cohesiveness 

SMCOHES_MIN Minimum Semimembranosus cohesiveness 

SMCOHES_MAX Maximum Semimembranosus cohesiveness 

 
Description of traits shown in Appendix 2.1 
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CHAPTER 3 

Experimental design for genetical genomics 

 A candidate gene approach to map a large number of expression traits 

assayed by microarrays was presented in chapter 2. One of the main reasons for why 

the methodology to infer pathways did not work as well as we hoped was due to the 

small number of subjects with expression data. Unless a study samples a very large 

number of individuals, most except the largest QTL effect on the expression trait will 

be missed (Rockman & Kruglyak 2006). Often, small sample size in gene expression 

research is a direct result of the high cost of microarrays. To reduce the cost or make 

more efficient use of microarrays can potentially facilitate bigger experiments. 

Several different microarray designs are routinely used for analysing differential 

gene expression (Simon et al. 2003). However, these designs are not necessarily 

optimal for mapping eQTL. Since the rise of interest in genetical genomics, several 

articles proposed new microarray designs relevant to genetic analysis of gene 

expression (Jin et al. 2004; Piepho 2005; Fu & Jansen 2006; Bueno Filho et al. 

2006). Indeed, experimental design for genetical genomics is an active area of 

research. 

 In the current chapter, I present a review on the general technology behind 

microarrays, several generic microarray designs, and the more specific designs for 

genetical genomics. Then, I proceed to describe work on extending the “distant pair 

design” (Fu & Jansen 2006) for outbred test crosses that are populations typically 
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used in livestock genetics. The assessment of the effectiveness of this design is 

illustrated by a simulation study. 

3.1 Introduction 

3.1.1 Microarrays for gene expression profiling 

 The original use of microarrays is to quantify the transcript abundance in a 

collection of cells in a highly multiplex fashion. More recently there have been rapid 

developments on novel types of microarrays that are manufactured for other uses 

such as high-throughput genotyping and high resolution copy number variation 

detection (Fan et al. 2006). Here I introduce the basic technology underlying the 

gene expression arrays. On a microarray there are thousands of immobilised probes 

that represent genes in the genome. Fluorescent or biotin labelled targets (cDNA or 

cRNA converted from total RNA sample extracted from the cells) bind to the probes 

during a hybridisation reaction. The quantities of labelled targets can be estimated by 

measuring the signal intensity over the probes on the array. For gene expression 

microarrays there are two main platforms: one-colour and two-colour microarrays. 

3.1.1.1 One-colour platform 

 The most common one-colour microarray is the oligonucleotide array 

manufactured by the company Affymetrix, known as the GeneChip™ 

(www.affymetrix.com). On a silicon chip the oligonucleotide probes are 

lithographically synthesised in parallel. The oligonucleotide probes used are 

relatively short, 25-mer, and a given transcript is represented by a probe set of 

multiple probes (commonly 11 or 16 probes in a set). With a one-colour system, a 
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single sample is hybridised to a single array. Therefore, to assay n samples, n 

microarrays are required in the experiment. The expression level of a gene of a 

subject is quantified as the signal intensity of the relevant summarised probeset on 

the corresponding array.  

3.1.1.2 Two-colour platform 

 Two-colour microarrays are usually made up of  glass slides with cDNA 

probes that are 200 – 1200 bases long spotted by robotic printers, although two-

colour oligonucleotide arrays (with probes about 60 bases long) exist, such as the 

Agilent arrays (www.agilent.com). Two samples that are differentially labelled with 

the dyes CY5 (red) and CY3 (green) can be co-hybridised on a single array and 

intensities of each channel are captured by an array scanner. Although it is possible 

to simply treat each probe intensity of a dye on a single array as the expression level 

of a gene of a subject, this is not usually advisable because the higher inter-array 

variability that exist for two-colour platforms (Simon et al. 2003). How individual 

gene expression levels are quantified depends on the choice of microarray design. 

3.1.2 Generic microarray designs 

  Generally, microarray designs regarding sample allocation do not apply to 

one-colour platforms, except in “selective phenotyping” scenarios which will be 

described in later sections. However, for two-colour platforms where two samples 

are co-hybridised on a single array, there are several ways to pair up the samples in 

an experiment. Three generic designs, the common reference design, the loop design, 

and the block design, are popular designs for two-colour microarrays. 
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Figure 3. 1 

Three generic microarray designs for 4 samples. (a) The Common Reference Design. Each sample is 

compared with a common reference sample on the same array. Thus, the log intensity ratio of a probe 

on one array can be directly compared to that on another array. (b) The loop design. Each sample is 

labelled with CY5 in one array and CY3 in the next array, so all the samples are linked in a loop and 

measured in both channels. A complex ANOVA analysis is required to compare the expression values 

of all the samples. (c) The block design. This is a balanced block design with dye-balance built-in the 

design. In this example, sample 1 and 3 are biological replicates of one treatment group, and sample 2 

and 4 are biological replicate of another treatment group. Two arrays are sufficient to accommodate 4 

samples. 
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3.1.2.1 The common reference design 

 A reference sample is fluorescently labelled with one dye and mixed with 

another sample labelled with a different dye for co-hybridisation on every array in 

the common reference design. The intensity of a probe for the sample is measured 

relative to the intensity of the same probe of the reference sample on the array. The 

ratio of the two channels transformed in logarithmic scale (log-ratio) is then used as 

the expression value for the gene the probe designed for. The advantages of this 

design are that (a) it guards against variation in size and shape of corresponding spots 

on different arrays; (b) the log-ratio is a standardised value to the common reference 

sample and can be directly compared across arrays; (c) this design is robust to array 

failures and flexible enough to accommodate additional conditions to the experiment. 

On the other hand, the common reference design is not an efficient design, since half 

of the microarray resource goes into the reference sample which often has no 

biological relevance. For n microarrays, the common reference design can profile the 

expression of n samples. 

3.1.2.2 The loop design 

 No reference sample is required with the loop design (Kerr & Churchill 

2001); instead the first sample is co-hybridised with the second sample, and the 

second sample is used again in co-hybridisation with the third sample and so on until 

a loop is formed. While a sample is labelled with CY5 on one array, on the next array 

it is labelled with CY3, hence dye balance can be achieved and the effect of dye can 

be accounted for. The loop design therefore produces twice as much data for any one 

gene compared to the common reference design with the same number of arrays. 
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Furthermore, the estimated expression values have smaller standard errors in the loop 

design than in the common reference design and, hence, use of the loop design 

increases the precision in the comparison. However, contrasting two samples that are 

far apart in the loop involves modelling many indirect effects and reduces the margin 

on higher precision over the common reference design (Dobbin & Simon 2002). Also 

the loop design is not robust against bad quality arrays as a single sub-standard array 

can seriously affect the estimation of the levels of gene expression in all samples. 

Furthermore, the loop design does not improve on the number of subjects profiled 

using n microarrays compared to the common reference design. 

3.1.2.3 The block design 

 Often in differential expression analysis, subjects from two groups are being 

compared. In a block design, biologically independent samples, one form each group, 

are paired for co-hybridisation. If one half of the samples from one group are labelled 

with CY5 on half of the arrays and the other half with CY3 on the other half of the 

arrays, and vice versa for the other group, the design would be known as the 

“balanced block design” (Dobbin & Simon 2002). By balancing the sample 

assignment to the two dyes, the design attempts to minimise the bias due to dye-

specific hybridisation. The block design is the most efficient design as 2n samples 

are profiled using only n microarrays. Comparison of the two groups should be made 

within-arrays. Comparisons across arrays are subjected to noise resulting from the 

variation of spots and arrays, although it can be done using a suitable linear mixed 

model. Other drawbacks include (a) data from this design cannot be easily adapted in 

more complex experiments where different ways of contrasting different groups are 

desired; (b) it requires arbitrary pairing and is less effective than the common 
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reference design when there is large inter-sample variability (Dobbin & Simon 

2002). 

3.1.3 Microarray experimental designs for genetical genomics 

Generic microarray designs for two-colour platforms, particularly the 

common reference design, are very often chosen for their straight-forwardness in 

practical implementation. Although the majority of eQTL mapping experiments in 

the literature to date were carried out using one-colour platforms, there have been 

examples, (Schadt et al. 2003; Monks et al. 2004 and others), where the common 

reference design in two-colour platforms was utilised. One interesting question is 

whether different ways of utilising the microarray resource exist that are specifically 

optimised for genetical genomics studies. To answer this question, several groups 

have put forward experimental design strategies for genetical genomics; some of 

these strategies are even applicable to one-colour platforms. All of these strategies 

stem from one motivation: to achieve maximum statistical power using a given 

number of microarrays. However, the research focus for which these strategies are 

optimised can be wildly different. 

3.1.3.1 Selective phenotyping 

This strategy is a generic experimental design which can be applied to 

general QTL studies, but its benefit is particularly evident in eQTL studies because 

whole-genome expression profiling is usually far more expensive than traditional 

phenotyping of physiological traits. The fundamental idea of selective phenotyping is 

to select the best subset from a larger population for phenotyping, based on the 

genotypes. This assumes that within a population, such as an intercross, some 
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progeny are more informative than others. Phenotyping such as a subset of samples 

can give almost the same performance as phenotyping the full set of samples; hence 

it represents significant increase in the efficiency of resource utilisation. This is 

complementary to the idea of selective genotyping, first introduced by Darvasi & 

Soller (1992), where subjects at both extreme ends of the phenotypic distribution 

were selected for genotyping because, traditionally, genotyping had been more costly 

than phenotyping. For genetical genomics, selective phenotyping concerns the choice 

of subjects for transcript profiling. This general strategy is, therefore, applicable to 

both types of microarrays to map eQTL. 

Different implementations of selective phenotyping exist, and each of these 

methods has its distinct features. Jannink (2005) argued that the number of 

recombination breakpoints vary among progeny in any given sample of recombinant 

progeny. Having genotyped the whole population samples, the progeny with the 

highest number of recombination events will form the optimal set for phenotyping. 

This is because most of the power for resolving QTL locations lies with the samples 

for which the linkage disequilibrium extends over shorter distances. Here, the focus 

is to optimise the QTL position accuracy. 

An alternative view on selective phenotyping is to focus on the power of QTL 

detection. This can be done by selecting individuals with the highest genotypic 

dissimilarity (Jin et al. 2004). For a given number of subjects to be phenotyped, this 

method ensures that genotypic contrast is maximised over multiple loci; hence it 

maximises the power for distinguishing the effects of alternative genotypes at a 

locus. 
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More distinct from the two selective phenotyping strategies described above 

was presented by Nettleton & Wang (2006). Here, their selective strategy is specific 

for transcription profiling, and the goal of the optimisation is to maximise the power 

of detecting expression traits that are linked to a previously identified QTL for a 

traditional phenotype. Hence, the interest of the experiment is to identify pleiotropic 

QTL; loci that are both QTL for one or more traditional phenotypes and eQTL for 

one or more expression traits. This strategy not only assumes the genotypes for all 

markers are available for all individuals, but also the phenotypic values of the 

tradition quantitative trait. Given the location of the previously identified QTL, 

individuals with the maximum genotypic dissimilarity as well as the extreme (highest 

and lowest) phenotypic values are selected for transcriptional profiling. 

3.1.3.2 Optimal sample allocation 

 Contrasting to selective phenotyping, optimal sample allocation is an 

alternative class of microarray experimental design for genetical genomics which 

does not emphasize selecting a subset from a larger pool of subjects. Instead, it 

concentrates on the allocations of samples on two-colour microarrays; i.e. which two 

subjects to co-hybridise on the same array. Therefore, this class of strategies is 

specific for eQTL studies and the two-colour platforms of microarrays. 

 Piepho (2005) discussed the interesting subject of detecting heterosis in gene 

expression traits. The objective of an experiment to which his strategy applies is to 

detect over-dominance in gene expression traits rather than mapping locations of 

eQTL. When the test population consists of two parental inbred strains and the 

hybrid strain, the optimal allocation will favour parent-hybrid pairs, while parent-

parent pairs or hybrid-hybrid pairs will be selected against. 
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     Bueno Filho et al. (2006) presented various scenarios using examples 

based on marker-trait association to a single locus. They argued that for detecting 

additive effects, the optimal allocation would be to co-hybridise only the 

homozygous individuals, whereas co-hybridising homozygotes with heterozygotes 

would be the optimal allocation for detecting dominance effects. Various less 

structured designs were also presented for the detection epistatic interaction between 

two loci, and the estimation of heritability and treatment effects with pedigree 

samples. 

3.1.3.3 Distant pair design 

 The distant pair design (Fu & Jansen 2006) applies selective phenotyping and 

sample allocation based on genotypic dissimilarity for genome-wide eQTL mapping 

simultaneously. This design achieves optimality in detection power and efficiency by 

computing the best overall pairing configuration that maximises the number of 

genotypic contrast over the whole genome for a given number of arrays. The 

algorithm behind distant pair design is called simulated annealing (Kirkpatrick et al. 

1983) which effectively carries out a computer search over a vast number of possible 

configurations. The implementation outlined in their article is applicable to 

recombinant inbred lines (RILs); they are inbred strains with a fine mosaic genome 

of homozygous loci derived from the founder lines. Hence, only additive eQTL can 

be found with the experimental setup. The optimal design for detecting additive 

effect using analysis of variance is the design which minimises the variance of the 

estimated additive effect. This turns out to be one that maximises genotypic 

dissimilarity within-array and maintains a balance on genotype-to-dye assignment; 

i.e. a genotype group is assigned to CY5 dye in approximately as many arrays as to 
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CY3 dye. Over a genome, it was shown that the distant pair design created more 

genotypic contrast than it would have by the generic balance block design; the power 

of additive eQTL detection is superior to the loop and the common reference design; 

and it uses the full capacity that a two-colour microarray system can offer, which is 

to profile 2n samples with n number of microarrays. 

3.1.4 Distant pair design for outbred crosses 

The distant pair design was shown to be the optimal design for genetical 

genomics in RILs. To date, with the exception of humans, almost all genetical 

genomics studies have been carried out in model organisms. However, if the 

mapping of eQTL was to be applied to livestock species or other non-model species, 

it would be worthwhile to investigate how the distant pair design might perform in 

those populations. For researchers studying genetics of outbred species, mapping 

resources like inbred strains or RILs are often not feasible. By contrast, F2 

intercrosses between two genetically divergent outbred populations are much more 

readily available. A major complication arising in outbred crosses is due to the fact 

that there are common sets of alleles segregating in both of the founder populations. 

Hence, it is often the case that marker genotypes in the F2 generation would not be 

fully informative for the origins of lineage at any given locus. This uncertainty 

obscures how one can define genotypic dissimilarity for the purpose of pair 

assignment in distant pair design. In addition, F2 intercrosses (whether inbred or 

outbred lines) present extra complexity over RILs: the researcher has the option of 

discovering additive as well as dominance effects. This option can lead to difficulties 

in defining the optimal pair assignment because a pairing configuration that is 

optimised for detecting additive effects might be very poor for detecting dominance 
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effects. Moreover, there is also the issue regarding large genome sizes. It is expected 

that when genome size increases, finding distant pairs will become more and more 

difficult. Fu and Jansen (2006) have shown that in RILs a small advantage is 

achievable with large genomes. However, whether this advantage is also present in 

an F2 design remains uncertain. This question is directly relevant to researchers who 

are interested in studying the genetics of gene expression in livestock species which 

typically has a large genome. Therefore, the usefulness of the distant pair design for 

genetical genomic studies in outbred F2 crosses warrants investigation. 

3.2 Methods 

3.2.1 QTL analysis 

The method for mapping QTL follows the least squares approach (Haley et 

al. 1994). Briefly, the line origins at fixed intervals (e.g. 1 cM) along the genome for 

the individuals in the F2 generation are expressed as lineage probabilities, conditional 

on the marker genotype. This can be done by considering all possible line origin 

combinations based on the parental and grandparental genotypes, and has been 

implemented in the online software “QTL Express” (Seaton et al. 2002). Assuming 

that founder lines are fixed for alternative QTL alleles, the lineage probabilities can 

be used to predict the putative QTL genotypes. Phenotypic values are then regressed 

onto genetic coefficients calculated for a putative QTL at a fixed position. The 

genetic coefficients for additive and dominance effects are derived from the 

conditional probabilities: the additive coefficient (denoted xa) is the difference of the 

probabilities for the homozygous line origins, and the dominance coefficient 

(denoted xd) is the sum of the probabilities for the heterozygous line origins. An F 
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ratio test statistic can be used to test the null model (without QTL fitted) against the 

full model (with QTL fitted) and determine the significance of the presence of QTL. 

For full details on the derivation of line origin probabilities and regression-based 

QTL mapping, see (Haley et al. 1994). 

In the context of a pair design in two-colour microarrays, the gene expression 

phenotypes can be expressed either in ratios or in signals of the separate channels. In 

this article ratios over signals are chosen as the phenotypes because the use of ratios 

can minimise the risk of bias as a result of spot or array effects (Wit & McClure 

2004). Fu & Jansen (2006) has argued that there is negligible difference in the final 

results between ratios and signals, provided that the distributional assumptions for 

the array and spot effects used in the signal based analysis are correct. The log-ratio 

of the red channel intensity to the green channel intensity of a probe is equivalent to 

the difference of the two signal intensities in logarithmic scale. To utilise such 

phenotypes in the Haley-Knott least squares framework, the linear regression model 

can be written as: 

idiaii edxaxy +∆+∆+=∆ µ   (1) 

where ∆yi is the difference by subtracting the log signal of the green channel from 

that of the red channel for the ith microarray (i = 1, …, n); µ  is the overall mean; ∆xai 

is the difference of the additive coefficients by subtracting xa of the individual 

assigned to the green channel from xa of the individual assigned to the red channel 

for the ith microarray; ∆xdi is the coefficient difference for dominance xd; a and d are 

the additive and dominance parameters respectively; and ei is the residual error. In 

matrix form, the expression can be simplified as eXbY += , where b = (µ , a, d)
t
.  
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3.2.2 Finding optimal pairs 

The optimal design is defined as the configuration with the minimum for the sum of 

the variances for the estimated b term, or b̂ ,  in the matrix form of the model above. 

Following the A-optimality criterion (Wit & McClure 2004), this is equivalent to 

minimising the trace of (X’X)
-1

.  For the regression model in (1), the matrix X 

consists of a column of 1’s for the mean µ , a column of �xa coefficients for the 

additive parameter, and if dominance is included in the model, a third column of �xd 

coefficients. To reach the optimal pairing design over all positions in the genome, I 

search for the minimum of S, or the sum over all marker loci the trace of (X’X)
-1

. 

Genetic coefficients at marker loci only are used for optimisation in order to keep the 

computation tractable. 

The simulated annealing technique (Kirkpatrick et al. 1983) was used to find 

the optimal pairing configuration. The procedure was very similar to that used in the 

original distant pair design (Fu & Jansen 2006). The search was iterative and at any 

particular iteration step compared the current design with a slightly modified version: 

samples of two randomly chosen pairs (a, b) and (c, d) in the current design were 

randomly re-paired in the new design. The new design was accepted if it was better 

(has a lower value of S) than the current design. It is useful to occasionally accept 

worse designs with a certain probability to be able to move away from “locally 

optimal” designs. This probability was (Sold/Snew)
1/T

, where T was a tuning parameter 

that was slowly decreased towards zero during the iterative process. This iterative 

process was terminated when T became very small, around 1x10
-40

 and 1x10
-50

. The 

implementation of finding optimal pairs was accomplished using the R statistical 

computer program (R Development Core Team 2007). 
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3.2.3 Power assessment via simulations 

Three different genome sizes were studied: 100 cM, 1000 cM and 2000 cM; 

and for each genome size 100 replicates of F2 intercrosses were simulated. Firstly, F1 

individuals were generated by randomly mating 20 F0 sires from founder line one to 

80 F0 dams from founder line two (four dams per sire), each having 5 offspring. 

Then, another 400 offspring were generated in the F2 generation by randomly mating 

20 F1 sires to 80 F1 dams (5 progenies per mating). Marker data were simulated for 

all samples, with 11 evenly spaced markers per chromosome of 100 cM in length. 

Four alleles were simulated for every marker segregating at equal frequencies in both 

founder lines, with marker genotypes in Hardy-Weinberg equilibrium. A single bi-

allelic QTL that is fixed for alternative alleles in the founder lines was simulated on 

the first chromosome at 46 cM. For this QTL, I simulated two alternative settings: (a) 

an additive QTL without dominance where the homozygous genotypic value a = 0.5 

and the heterozygous genotypic value d = 0; (b) a QTL with complete dominance 

where a = 0.5 and d = 0.5. Polygenic background effects were modelled as ten 

unlinked bi-allelic loci, each with an additive effect of 0.25 and segregating at a 

frequency of 0.5 in both founder lines, as described in Alfonso & Haley (1998). To 

mimic the non-genetic factors affecting the gene expression phenotype and technical 

errors of microarrays, I added an environmental component sampled from a normal 

distribution with a variance of 0.5 to the simulated phenotype. The narrow-sense 

heritability (h
2
) is 0.47 for the trait and 0.20 for the main QTL on the first 

chromosome. 

To assess the performance of the optimal pair design under the least squares 

framework, I scanned in 1 cM steps for the most significant p-values obtained in the 



 62

marker interval which contains the QTL (between 40 and 50 cM on the first 

chromosome) under four scenarios. These four scenarios are summarised in Table 

3.1 and are described as follows: first, all 400 F2 subjects and their individual 

phenotypic measurements were analysed. Conceptually this is equivalent to the 

common reference design that includes all F2 individuals. Second, 200 F2 subjects 

were randomly selected, together with their individual phenotypic measurements. 

This scenario also represents the common reference design, but a smaller budget 

limits the profiling of gene expression to fewer individuals than in the first scenario. 

Due to the random sampling nature of this scenario, for each simulated population 

replicate I repeated the random sampling 100 times, and scanned for the most 

significant p-value in the QTL-containing interval as above. Then the median p-value 

was selected to represent the performance under this scenario for the given 

population replicate. Third, I randomly paired up all 400 F2 subjects and analysed the 

data with regression model (1). Under this scenario, I also repeated the process 100 

times per simulated population replicate and proceeded to obtain the p-value in the 

same way as in the second scenario. Last, I paired up all 400 F2 subjects using the 

optimal pair design. I abbreviate these four scenarios above as “all.data”, “half.data”, 

“ran.pair” and “opt.pair”, respectively, for reference in the rest of this article. For 

both “additive only” and “additive and dominance” QTL settings, the data were 

analysed under those four scenarios. 
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 abbreviation of 

the scenarios 

description no. of F2 

subjects 

profiled 

no. of slides 

required 

1 all.data individual phenotypic 

values are available for all 

subjects 

400 400 

2 half.data Same as all.data except that 

50% of the subjects are 

selected 

200 200 

3 ran.pair pairs are assigned randomly 400 200 

4 opt.pair pairs are assigned according 

to the outcome of simulated 

annealing 

400 200 

 

Table 3. 1 

Summary of the four scenarios investigated in the power study 



 64

3.2.4 Alternative marker allele frequencies and population sizes 

 In the simulations above the marker allele frequencies are equal over all four 

alleles in both founder lines. This represents a suboptimal scenario in which the 

marker genotypes in the F2 generation are expected to have limited information for 

the line origins. For the genome size of 2000 cM, I also simulated the “best-case 

scenario” in which each founder line has two unique alleles; i.e. two out of the four 

alleles are segregating within each founder line, with no common alleles shared by 

both lines. Such an intercross is equivalent to an F2 cross between two inbred lines. 

These two sets of marker allele frequencies would enable us to determine a below 

average range and the upper bound for the performance of the optimal pair design. In 

addition, I performed further simulations in which I fixed the number of microarrays 

being used to 400, and evaluated an F2 population size of 1000. I compared the 

performance of the optimal pair design and the common reference design when 

expression profiling of every individual in the sample population is not possible. 

3.3 Results 

3.3.1 Additive effect 

The power for detecting additive QTL under the four scenarios was 

investigated. For the results of “opt.pair” presented in this section, I minimised the 

variance of the additive effect in the regression model by simulated annealing. Figure 

3.2 shows the minus log-transformed p-values (sorted in ascending order) for the 

four scenarios. The scenario with the highest proportion of the largest minus log-

transformed p-values can be considered as the most powerful design. For a single 
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chromosome (Figure 3.2a), the most significant p-values can be found under the 

“all.data” scenario. But for the “opt.pair” scenario, under which only 200 

microarrays would be required, the power to detect the QTL is remarkably close to 

that under the “all.data” scenario. Under the “half.data” and “ran.pair” scenarios, 

likewise, only 200 microarrays would be required, but the power is much reduced 

compared to both “all.data” and “opt.pair”. Incidentally, the performance of 

“half.data” and “ran.pair” are almost identical, hence most of the data points for 

these two designs are overlapping on Figure 3.2. 
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(a) 

   
(b) 

  
Figure 3. 2 

Performance for detecting additive QTL effect under various scenarios. (a) genome size of 100 cM, a 

single chromosome; (b) genome size of 2000 cM, twenty chromosomes. Horizontal dotted line shows 
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the significant level of P = 1x10
-5

. The simulations are sorted in ascending order of the -log10P on the 

x-axis. 
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Table 3.2 summarises the performance under the four scenarios by the mean -

log10P and shows the effect of genome size on the power for detecting QTL. The 

mean -log10P across different genome sizes under the “all.data”, “half.data” and 

“ran.pair” scenarios show little deviation. However, the mean -log10P under the 

“opt.pair” scenario follows a notable downward trend when the genome size 

increased. At the genome size of 2000 cM (Figure 3.2b) “all.data” performs best out 

of the four scenarios. But more importantly, “opt.pair” scenario is the most powerful 

out of the designs that require 200 microarrays. 
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Genome 

size 

no. of 

chr all.data half.data ran.pair opt.pair 

100 cM 1 11.9 (2.9) 6.4 (1.5) 6.3 (1.5) 11.0 (2.7) 

1000 cM 10 12.3 (2.6) 6.6 (1.3) 6.6 (1.4) 9.2 (2.4) 

2000 cM 20 12.1 (2.9) 6.5 (1.5) 6.4 (1.5) 8.3 (2.4) 

2000 cM * 20 12.9 (2.9) 6.9 (1.5) 6.8 (1.5) 8.9 (2.4) 

 

Table 3. 2 

Summary of P-values (mean, and standard deviation on -log10 scale) at the main QTL position for 

additive QTL detection under the four scenarios, where only an additive effect was simulated. 

Standard deviations are shown in bracket. 

* inbred line cross 
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I analysed the simulations of F2 cross with fully informative markers for the 

genome size of 2000 cM and found that the power increased slightly under all four 

scenarios (Table 3.2). The increase in power is expected because line origins can be 

inferred with certainty. It is important to note that the difference in the power 

between the suboptimal and the best-case scenario for the marker allele frequencies 

is small. This indicates that the power assessment using equal marker allele 

frequencies in the simulations is robust and representative of real outbred F2 

intercrosses, of which the marker allele frequencies in the founder lines are in 

between those two extremes.   

3.3.2 Additive and dominance effects 

For the dominant QTL, two levels of analysis were carried out: (a) QTL 

detection by comparing the full model (additive + dominance) to the null model; and 

(b) detection of dominance effect by comparing the full model to the reduced model 

(additive only). In the simulated annealing step of optimal pairing, the dominance 

coefficients were included as the third column in the matrix X in the linear model 

(see the methods section). 

With a single chromosome (100 cM) genome, the power to detect QTL under 

the “opt.pair” scenario is clearly lower (Figure 3.3a, left panel) than “all.data”. It can 

be seen in Table 3.3 that the mean -log10P under “all.data” is approximately 50% 

greater than that under “opt.pair”. But “opt.pair” is still more powerful than both 

“half.data” and “ran.pair”. By contrast, the results (in Figure 3.3a, right panel) show 

that the “opt.pair” and “all.data” are similarly powerful for detecting dominance 

effects and superior to both “half.data” and “ran.pair” in a small genome similar to 

the one simulated here. 
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(a) 

 
 

(b) 

 

 
Figure 3. 3 

Performance for detecting QTL (on left panels) and dominance effects (on right panels) under various 

scenarios. (A) genome size of 100 cM, a single chromosome; (B) genome size of 2000 cM, twenty 

chromosomes. Horizontal dotted line shows the significant level of P = 1x10
-5

. The simulations are 

sorted in ascending order of the -log10P on the x-axis. 
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genome 

size no. of chr all.data half.data ran.pair opt.pair 

100 cM 1 15.2 (3.2) 7.8 (1.6) 7.8 (1.7) 10.5 (2.6) 

1000 cM 10 15.5 (3.3) 8.0 (1.7) 7.9 (1.7) 9.6 (2.3) 

2000 cM 20 15.4 (3.7) 7.9 (1.8) 7.9 (1.8) 8.9 (2.5) 

 

Table 3. 3 
Summary of P-values (mean, and standard deviation in -log10 scale) at the main QTL position for 

QTL detection (additive + dominance model Vs the null model) under the four scenarios, where both 

additive and dominance effects were simulated. Standard deviations are shown in bracket. 
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Table 3.3 and Table 3.4 show that genome sizes again have little effect on 

power under “all.data”, “half.data” and “ran.pair”. However, the increase in genome 

size affects optimal pairing more severely here than when no dominance effect has 

been simulated. At the genome size of 2000 cM, “opt.pair” is only marginally more 

powerful in detecting the QTL than “half.data” and “ran.pair” (Figure 3.3b, left 

panel). The power for detecting dominance effect is more drastically affected and 

“opt.pair” performs similarly to “half.data” and “ran.pair” (Figure 3.3b, right panel). 

Therefore, in the presence of dominance effects, the advantage in the performance of 

the optimal pair design in detecting QTL is reduced. Including dominance in the 

optimisation has a negative impact on the optimal pair design, especially for large 

genome sizes, when QTL detection is the primary objective. 
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genome 

size no. of chr all.data half.data ran.pair opt.pair 

100 cM 1 5.8 (2.4) 3.3 (1.2) 3.2 (1.2) 5.4 (2.1) 

1000 cM 10 5.7 (1.7) 3.1 (0.9) 3.1 (0.9) 3.8 (1.5) 

2000 cM 20 5.8 (2.4) 3.2 (1.2) 3.2 (1.2) 3.7 (1.9) 

 

Table 3. 4 

Summary of P-values (mean, and standard deviation on -log10 scale) at the main QTL position for 

dominance detection (additive + dominance model Vs additive model) under the four scenarios, where 

both additive and dominance effects were simulated. Standard deviations are shown in bracket. 
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3.3.3 Fixed number of microarrays with a large F2 sample size 

In previous simulations, I observed that “all.data”, which required 400 

microarrays, was more powerful in detecting additive QTL effect than using 200 

microarrays under the “opt.pair” scenario. Here, I studied the power of these two 

designs conditioned on a total of 400 microarrays. With F2 sample size of 1000, 

neither design can profile all the individuals with 400 microarrays. Under the optimal 

pair design, 400 pairs were deliberately selected to give the minimum variance for 

the estimated additive genetic parameter. On the other hand, only 400 individuals 

(randomly selected from 1000 individuals) could be profiled using the common 

reference design. Given equal number of microarrays being used, the results in 

Figure 3.4 show that the optimal pair design outperforms the common reference 

design. 
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Figure 3. 4 

Comparison of the performance for QTL detection under common reference design and optimal pair 

design when the number of arrays is fixed as 400, and genome size of 2000 cM with the F2 sample 

size of 1000. Horizontal dotted line shows the significant level of P = 1x10
-5

. The simulations are 

sorted in ascending order of the -log10P on the x-axis. 
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3.4 Discussion 

The distant pair design enables the mapping of eQTL in an efficient and 

effective manner using recombinant inbred lines. For researchers studying genetics 

of many outbred species, however, the creation of recombinant inbred lines is 

impractical. Here I explore whether eQTL studies of natural species would benefit 

from the same design principles used in “distant pairing”. It is shown that the optimal 

pair design, an extension of the distant pair design for outbred lines crosses, can 

indeed improve the efficiency of the use of microarrays and increase the statistical 

power for detecting eQTL, even for studying organisms with large genome sizes. 

Under the linear regression framework, the greatest power is achieved by 

having the regression coefficients in equal proportions near the top and bottom 

extremes. For the regression model proposed for the optimal pair design in this 

article, this would be achieved by pairing up individuals who have large genetic 

coefficients with opposite signs. However, in a line cross such as the F2, it is 

inevitable that not every pair would result in a regression coefficient that is near one 

extreme or the other. Furthermore, when the number of independent loci increases 

(increase in chromosome length and number of chromosomes), the optimal pair 

assignment for one locus will usually not be optimal for the other loci. The optimal 

pair assignment over the whole genome is therefore sub-optimal in the perspective of 

a single locus; i.e. fewer regression coefficients around the extremes. One can 

therefore expect the performance of distant pairing to degrade to the same level as 

random pairing eventually as the genome size continues to increase. 



 78

3.4.1 Clear benefits in detecting additive effects  

It is shown that when there are few loci to consider, such as in a small 

genome, the power of detecting additive effects with the optimal pair design is 

similar to using a common reference design that consumes twice the number of 

microarrays. With near-optimal pairing for individual loci (achievable when there are 

small number of effectively independent loci), the efficiency of the optimal pair 

design is very attractive. Moreover, the common reference design with only half the 

sample size (i.e. the same number of microarrays) performs significantly worse. This 

highlights the problem of small sample size leading to reduction in power in complex 

trait analysis. 

As expected, the performance of the optimal pair design drops when the 

genome size increases. Nevertheless, it is very promising that in a large genome the 

optimal pair design still notably outperforms designs which use the same number of 

microarray slides. Furthermore, as shown by the excellent performance in smaller 

genomes, it is evident that the optimal pair design would be beneficial for a focused 

study of one or more candidate regions within a large genome. The power can be 

maximised for genomic regions for which the researchers have the most interest, 

while the power in the rest of the genome would be at least as good as the random 

pair design. In addition, the results show that with the number of microarrays used 

being equal, the optimal pair design always gives the highest statistical power of the 

approaches compared. Therefore, for outbred species that possess large genomes, the 

optimal pair design can provide both efficient use of microarray resource and good 

power for the detection of eQTL with additive effect. 
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3.4.2 Complications due to dominance effects 

How does dominance affect the performance of this design? Here, the 

optimal pair design which optimises for both the additive and dominance effects 

simultaneously is evaluated; the conclusion is that by including the dominance 

parameter, the design becomes less optimised for detecting the main (additive) effect. 

Although over a small genome, the optimal pair design can offer a moderate power 

advantage for detecting QTL and dominance effects over no optimisation, the 

performance is affected severely in as much that the power for detecting both the 

main and the dominance effect degrade to almost the same levels as random pairing 

with a large genome. The results agree with other studies (Piepho 2005; Bueno Filho 

et al. 2006) that finding a design that is optimal for detecting both additive and 

dominance effects cannot be achieved. They have shown that optimising for 

detecting dominance effects would decrease power for detecting additive effects. 

Therefore, when one has to make a choice between additive and dominance effects 

for optimisation, the question relates directly to the goal of the experiment. If the 

goal is to scan across the whole genome for linked loci to gene expression 

phenotypes, I argue that one could consider focusing on the additive parameter alone 

for the optimisation. After all, the ultimate interest is to detect QTL. In most cases 

QTL are expected to have an additive component, even in cases where dominance is 

present. Optimising for dominance effects should be considered only if there is 

strong a priori evidence for over-dominance in the QTL of interest in a candidate 

gene study. 
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3.4.3 Final remarks 

It is shown that the extension of the distant pair design, the optimal pair 

design, can be applied efficiently to outbred line crosses for genetical genomic 

studies. Having stated that, one has to acknowledge that in experimental design for 

genetical genomics, there is no “one-size fit all” solution. The most powerful and 

efficient design will depend on the population structure, marker density, chosen 

method of analysis, numbers of treatments, and parameter of interest. In human or 

other natural populations, the Haseman-Elston method (Haseman & Elston 1972) can 

be applied to sib-pair analysis. In which case, the most effective use of microarray 

resources to conduct an eQTL linkage analysis would be to profile the expression of 

a pair of sibs on the same array. It is because the trait squared differences between 

two sibs are the dependent variable used in this method; these quantities are obtained 

most accurately when sibs are paired up on the same array. 

It is also worth considering the implication of the use of high density Single 

Nucleotide Polymorphism (SNP) genotyping have on the optimal pair design 

described in this article. High density SNP genotyping is most widely used in 

association studies in natural human populations rather than in line crosses of 

animals discussed above. As linkage disequilibrium spans relatively short distances 

in human populations, the effective number of independent loci is much higher than 

what I have modelled in the line cross simulations. This effect is equivalent to 

increasing the genome size and is likely to have a negative impact on the 

performance of the optimal pair design than what can be expected in outbred line 

crosses. Eventually, the distant pairing strategy might become almost equivalent to a 

pairing strategy based on relationships, in which less related individuals should be 
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paired for each hybridisation (Rosa et al. 2006; Bueno Filho et al. 2006). 

Theoretically, the optimal pair design should always be preferred; since the variance 

of the estimate of the parameter is minimised, its performance should be at least as 

good as the common reference design. However, other factors, such as technical 

simplicity and flexibility in the choice of statistical methods, might shift the balance 

in favouring the common reference design when the performance advantage in using 

the optimal pair design becomes less marked. Therefore, it is imperative to consider 

each experiment and the question of interest on a case-by-case basis. Nevertheless, 

the results suggest that the efficient design principles outlined by Fu and Jansen 

(2006) can be applied to a wider context than RILs. With larger eQTL experiments 

becoming more affordable, one can expect to discover more loci with moderate to 

small effects. Such attainment will ultimately lead to greater advances to our 

understanding of the molecular basis of complex traits. 

3.5 Conclusion 

To better our understanding of the genetic architecture of gene expression 

phenotypes, there is much needed urgency in performing large experiments and 

avoiding low-powered studies with small sample sizes. Experimental design should 

be an integral part of the whole study; with the research goal well defined and an 

appropriate design formulated, there is hope to achieve the maximum efficiency and 

effectiveness from the resources available. Until commercial one-colour microarray 

platforms become commonly available at low costs for livestock species, two-colour 

microarray platforms will remain the only realistic options for animal scientists 

inspired by the genetical genomics revolution. The microarray experimental design 
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strategy presented above encourages and enables them to use the maximum sample 

size they can afford. 
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CHAPTER 4 

Genome-wide association of gene expression 

 Chapter 2 outlined a candidate gene eQTL mapping experiment where the 

main research focus was to identify genes for which the expression levels were 

associated with a single locus. The real power of genetical genomics, however, lies 

in the ability to elucidate the genetic basis of global gene expression across a large 

number of loci in the whole genome. In genome-wide studies of gene expression, it 

is necessary to consider the challenges related to dealing with extremely large 

datasets, because the scanning for association to thousands of gene expression traits 

over thousands of genetic markers results in millions of tests. In this chapter, I will 

attempt to provide an insight into addressing some of the important issues: (a) using 

the appropriate method for the data available; (b) conducting the analysis in a 

computational efficient manner; and (c) accounting for multiple testing to control the 

level of false positive adequately. To illustrate these practical issues inherent to 

genetical genomics, an analysis was performed on a real eQTL dataset: the 

expression of human lymphoblastoid cell lines that has been previously published 

(Morley et al. 2004). 

4.1 Introduction 

4.1.1 Family-based association 

 Association mapping has recently become a commonly used method in 

detecting quantitative trait loci (QTL). This approach is also known as linkage 

disequilibrium (LD) mapping, which has the simple assumption that a proportion of 
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the variation in phenotypic values among subjects can be traced to a single allele at 

one locus (Lynch & Walsh 1998). Since the causal mutation first occurred on an 

ancestral chromosome, through generations this haplotype gradually reduced in size 

due to recombinations. Using a dense genetic marker map, it may be possible to 

capture the population-level disequilibrium to the causal mutation in present-day 

chromosomes. Risch & Merikangas (1996) argued that association mapping should 

be more powerful than linkage studies. This is true especially for detecting high-

frequency polymorphisms, where the inheritance pattern is sometimes impossible to 

resolve for linkage analysis because a common allele can often enter a family 

through multiple founders (Kruglyak 2008). Figure 4.1 illustrates the general idea of 

population-based association mapping. 



 85

 

Ancestral 

Chromosome

Present-day 

Chromosomes

Recombinations through many 

generations gradually break down 

the LD around the mutation

 

Figure 4. 1 
The causal mutation (red triangle) of a quantitative trait arose on the ancestral chromosome, with the 

chromosomal stretches that are derived from the ancestral chromosome carrying the mutation shown 

in light blue. The dark blue chromosomal stretches were DNA introduced to the mutation-carrying 

chromosomes by recombinations. In order to detect the causal mutation, it is necessary to use a dense 

genetic marker map so that the small stretch of chromosome in LD with the mutation is covered by 

genetic markers. This figure is adapted from Kruglyak (2008).    



 86

In general, population-based designs in QTL mapping are easier to analyse 

because standard statistical tests such as linear regression and analysis of variance 

(ANOVA) can be directly applied to test the relationship between trait and marker 

genotype (Balding 2006). Nonetheless, collection of unrelated subjects might not 

always be simple. For example, in livestock populations bred by breeding 

companies, subjects are usually related and data are collected across generations. In 

other cases, it would be in fact desirable to recruit families for a good experimental 

design, such as in studies of childhood diseases (Laird & Lange 2006). A family-

based design has another attractiveness: most family-based approaches are robust 

against population admixture (Fulker et al. 1999; Laird & Lange 2006), as oppose to 

population-based studies, which can be strongly affected by hidden substructure 

within the samples (Marchini et al. 2004). 

For family-based QTL association analysis, a range of methods and software 

that utilise information about transmission of alleles, such as the orthogonal test for 

within-family variation (quantitative trait transmission disequilibrium test, QTDT) 

(Abecasis et al. 2000) and the family-based association test (FBAT) (Laird & Lange 

2006) have been developed. By utilising the within-family component of the 

association alone, these methods are robust in the presence of population 

stratification. At the same time, study populations are under minimal risk of 

stratification when the subjects have been carefully selected to remove any genetic 

“outliers” from the rest. For those populations, the measured genotype approach 

(Boerwinkle et al. 1986) exploits both the variation between- and within-family, and 

may serve as a powerful tool for QTL analysis. In this approach, a genetic 
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polymorphism under study is included as a fixed effect or covariate in a mixed model 

that includes a polygenic component as a random effect. 

Although the measure genotype approach can be viewed as the most powerful 

family-based association method in the absence of population stratification, it is 

time-consuming and is therefore impractical for genome-wide analysis, particularly 

for analysing multiple quantitative traits such as global gene expression, due to the 

need to solve a large number of relatively complex mixed model equations. A fast 

and simple implementation of the measured genotype approach has recently been 

proposed (genome-wide rapid association using mixed model and regression, 

GRAMMAR) (Aulchenko et al. 2007a). GRAMMAR first obtains residuals adjusted 

for family effects and other covariates using a mixed model without fitting the 

marker fixed effect. Subsequently, the association between the residuals and genetic 

polymorphisms can be analysed using rapid least-squares regression. Aulchenko et 

al. (2007a) showed that GRAMMAR can yield very similar results to the measured 

genotype method and the power of GRAMMAR compares favourably to QTDT and 

FBAT. Moreover, the speed advantage means that GRAMMAR could be a very 

attractive tool for analysing genetical genomics data. In this chapter, I applied 

GRAMMAR to re-analyse an eQTL dataset in human lymphoblastoid cell lines 

(Morley et al. 2004) to demonstrate its suitability for genetical genomics when data 

are collected from families. 

4.1.2 Controlling false discovery 

 The wealth of data generated by large scale genomic studies presents great 

opportunities to advance our understanding in the mechanisms and interactions of 

biological molecules which lead to the manifestation of a biological system. At the 
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same time, it also presents a unique set of challenges related to identification of true 

positives in the context of a large number of statistical comparisons. With individual 

tests, the likelihood of rejecting a truly null hypothesis is controlled by the type I 

error rate (e.g. α = 0.05). However, with multiple independent tests, the likelihood of 

erroneously rejecting at least one null hypothesis increases dramatically. For 

example, when 100 independent tests are performed at α = 0.05, there is a >99% 

chance of rejecting at least one null hypothesis when they are truly null. In genetical 

genomics, the number of tests is typically over a million. Therefore, it is essential to 

deploy appropriate strategies to limit the number of false positives to an acceptable 

level. 

The Bonferroni correction is a simple procedure to adjust the significant 

threshold according the number of tests conducted. If K tests are performed, each of 

the K p-values is multiplied by K to obtain the Bonferroni adjusted p-values (Simon 

et al. 2003). One can be 95% confident that all of the positives identified are true 

when the significant threshold is set to be the Bonferroni adjusted p-value of 0.05. 

There are two main problems with this method: (1) the Bonferroni adjusted p-value 

of 0.05, when K is large, corresponds to an extremely small unadjusted p-value. The 

p-values from parametric tests are usually inaccurate in this low range unless the data 

follow perfectly the normal distribution or the sample size is very large (Simon et al. 

2003). (2) The Bonferroni correction is too conservative for many analyses in 

genetics and genomics because the tests are rarely independent; for example, some 

correlation often exist between the genotypes of neighbouring markers, or between 

the expression levels of two or more genes. 
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Permutation approach is an alternative multiple testing correction method 

which is robust to departure from parametric assumptions (Churchill & Doerge 

1994). To apply in genetic analysis, the idea of this approach is to generate an 

empirical null distribution by shuffling up the marker genotypes for individual units 

while retaining their phenotypic values unchanged, and this is repeated over a large 

number of iterations. Hence, the result of any hypothesis tests from the permuted 

data is purely due to chance. Ranking the unadjusted p-value alongside the p-values 

generated from the randomised datasets provides the empirical p-values for the given 

dataset. Permutation approach is a statistically sound method for estimating the 

threshold values. However, it can be computationally intensive to run a large number 

of iterations, depending on the population structure. Furthermore, careful 

consideration of the design factors is very important, especially in cases where 

individual units are not exchangeable in a simple manner due to relatedness between 

subjects (Churchill & Doerge 2008). 

False Discovery Rate (FDR) (Storey & Tibshirani 2003) has been proposed 

as a method which offers a sensible balance in genome-wide studies in keeping the 

number of false positive low while not being as overly stringent as the Bonferroni 

approach. Unlike the false positive rate which quantifies the rate that a truly null 

result is called significant (indicated by p-value), FDR measures the rate at which 

significant features are truly null. As proposed by Storey & Tibshirani, the 

significance of each feature in terms of the FDR can be quantified by their q-value. 

The q-values directly provide a meaningful measure of confidence among the test 

results called significant. Technically, the q-value for a feature is defined as the 

minimum FDR that can be attained when calling that feature significant, when all p-
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value thresholds have been considered. For a given threshold t, where 0 < t ≤ 1, the 

FDR is estimated as follows: 

}{#
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 , where m is the total number of features, }{# tpt ≤ is 

the number of p-values below the threshold t, and 0π̂ is the estimated proportion of 

features that are truly null. The quantity of 0π̂  is estimated from the distribution of 

the p-values. q-value provides a way to monitor the proportion of false positives 

amongst all positives. It has been shown that the methodology is less conservative 

than other false positive control strategies for genome-wide studies and does not lead 

to substantial loss of power (Storey & Tibshirani 2003). 

Apart from applying multiple-testing correction to the results, data quality 

control is also a crucial step towards reducing the number of false positives. In this 

chapter, I will demonstrate the importance in careful data filtering, and how q-value 

can be applied to control type I error in genetical genomics. 

4.2 Methods 

4.2.1 Data description and pre-processing 

The dataset originated from the study by Morley et al. (Morley et al. 2004). 

RNA was extracted from lymphoblastoid cells from each individual of 14 CEPH 

Utah families (3 generations, ~8 offspring per sibship, ~14 subjects per family). The 

expression levels of ~8,500 transcripts were obtained using the Affymetrix Human 

Focus arrays. Genotypes of 2,882 SNPs of all subjects were obtained from The SNP 

Consortium (http://snp.cshl.org/linkage_maps/). 
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All microarray CEL files were pre-processed by “GCRMA” from the 

Bioconductor project (www.bioconductor.org) version 1.8.0. From the 2882 SNPs 

provided, 2,695 were selected as these were polymorphic amongst the individuals 

genotyped. 

4.2.2 Filtering on variability of the probesets 

Genes that are not expressed are not relevant to this study. Signal levels for 

non-expressed genes are typically above zero due to the background signals and 

other intrinsic systematic noises. Nonetheless, such genes can be detected on the 

basis that the background variation tends to be much less than real biological 

variation across samples. The interquartile range (IQR) was adopted as a measure of 

variability and used IQR of 0.1 as the threshold for this dataset. 

4.2.3 GRAMMAR procedures 

 The full mixed model for detecting marker association can be written as:  

eZuXbWay +++=   (1) 

In expression (1), y is the expression trait values, a, b, u and e are vectors of 

marker effect, other fixed effects (sex and generation), additive polygenic effect 

(random) and random residuals respectively. W, X, and Z are incidence matrices 

related to marker, fixed and polygenic effects respectively. 

The fast and robust method proposed by Aulchenko et al. (2007a) is 

composed of 2 steps; the first step accounts for the familial dependence among 

family members and covariates of nuisance effects, and the second step tests the 

single SNP effect on the remaining variation by analysis of variance (ANOVA). 
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Step 1:  For the expression values of each probeset I fitted the following 

mixed model without the marker effect: 

  eZuXby ++=   (2) 

The models were fitted using ASReml 

(http://www.vsni.co.uk/products/asreml/) version 1.0. Narrow-sense heritability (h
2
) 

was estimated for each expression trait using the -P option in ASReml.  

Step 2: Using the residuals from step 1 as the new quantitative traits, the 

marker genotype effect of each SNP on each trait was tested by ANOVA. I used the 

lm() and anova() functions in R (www.r-project.org) version 2.3.1. FDR was 

calculated using the approach proposed by Storey and Tibshirani as implemented in 

the R package “QVALUE”(Storey & Tibshirani 2003). 

4.2.4 Detection of cis-eQTL 

eQTLs which associate with transcripts within 1 Mb of themselves are 

considered as cis-acting. Besides conducting the analysis at genome-wide level, I 

isolated a subset of 8462 probable cis-acting candidates (expression trait – SNP 

pairs), which comprised 2066 SNPs and 2797 expression traits, for mapping cis-

acting eQTL separately. This was a much smaller search space and FDR was applied 

separately to obtain a new, group-wise significance threshold. 

4.2.5 Comparison of GRAMMAR to the full mixed model 

10,000 expression trait - SNP combinations were sampled for comparing the 

performance of the two-step GRAMMAR approach and the full mixed model. Tests 

using the full mixed model described above were conducted using ASReml. 
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4.3 Results and Discussion 

4.3.1 Equivalence of GRAMMAR and the full mixed model 

method 

The GRAMMAR method produced very similar P values of the marker effect 

to the full mixed model (Figure 4.2). For the present dataset, I estimated a 6 fold 

increase in speed with the GRAMMAR approach compared to the full mixed model 

approach using ASReml with the computing resources available. 



 94

 

 

Figure 4. 2 

Comparison of the GRAMMAR (2-step) method to the Measured Genotype (full mixed model) 

approach. The transformed p-values of the genotype effect of 10,000 randomly selected tests from the 

two methods are shown in this plot. It can be seen from this plots that the two methods produce very 

similar results. 
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In fact, because step 1 of the GRAMMAR approach removes the polygenic 

component in the pedigree dataset, there is now the flexibility to evaluate multiple 

genetic models in an efficient and simple manner in step 2. This includes the 

possibility of estimating pairwise epistatic interaction between SNPs, although such 

analysis would require a more powerful (e.g. larger) study. More recently, a library 

in R called GenABEL (Aulchenko et al. 2007b) has been released which greatly 

speed up the execution of fitting a large number of linear models. This increases the 

speed advantage of GRAMMAR over measured genotype and other family-based 

association method such as QTDT (as shown by Lam et al., accepted) to an even 

greater extent. In addition, it implies that running permutations to establish genome-

wise and experiment-wise threshold with large number of permutation is feasible 

within a reasonable time period. 

4.3.2 Reduction in the number of tests by filtering on 

expression variability 

Figure 4.3 shows that there is a large cluster of expression traits that has very 

low variability, and figure 4.4 shows a large cluster of expression traits with low log 

intensity (0 – 4). I used IQR of 0.1 as a cut-off because expression traits below this 

threshold had low variability as well as low expression level. As a result, the number 

of probesets was dramatically reduced from 8739 to 4627 (47%). 
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Figure 4. 3 

Frequency distribution of the inter-quartile range (IQR) of log(intensity) of the transcripts. The red 

dashed line indicates the IQR of 0.1 in log(intensity). 
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Figure 4. 4 

Frequency distribution of the expression level of the transcripts, measured by the 75% quantile of the 

expression level over all subjects. All transcripts with low variability (below 0.1 IQR) have expression 

level below by the blue line (the log intensity of 3.3). Therefore, those transcripts with very low 

variability are also extremely lowly expressed / not expressed at all. 
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 The effect of removing non-expressed genes was roughly mirrored by the 

heritability distribution. By definition, heritability is a measure of the degree of 

genetic control of a trait and thus major eQTL detected for traits of low or zero 

heritability are unlikely to be real. It was reassuring that most expression traits 

filtered out were of low heritability (Figure 4.5). By removing expression traits that 

have no biological relevance to the study, this filter substantially reduced multiple-

testing and so potentially increased the power to detect real eQTL. 
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Figure 4. 5 

Heritability of expression traits. IQR filtering removed mostly the expression traits with low 

heritability. 
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4.3.3 Numerous spurious associations in the initial analysis 

Using the GRAMMAR method, I detected 2282 associations at 20% FDR (P 

cut-off = 3.65x10
-5

). I observed that many significant hits were associated with the 

same SNPs. Although this phenomenon could be interpreted as some loci being the 

master regulator for a large number of transcripts, there is evidence that these 

putative trans-acting hotspots are likely to be artefacts. Table 4.1 shows the 

relationship between the number of significant associations and the sample size in 

the minor genotype class of a SNP. The SNPs with the most associations (with over 

100 transcripts) were those with only 1 or 2 individuals in the minor genotype class. 

Conversely, I did not find SNPs with higher minor genotype count associated with 

multiple transcripts to the same extent. As ANOVA compared the phenotypic means 

of the genotype classes, outliers in the expression traits could have a big effect on the 

phenotypic mean, especially for SNPs which have genotype classes with a very small 

number of individuals. Figure 4.6 illustrates an example of such artefacts. 
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Minor genotype 
count 

No. of 
SNPs 

No. of 
hits 

Max. no. of hits by 
a single SNP 

Avg. no. of hits 
per SNP 

1 103 1054 200 10.23 
2 55 333 147 6.05 
3 - 6 166 508 48 3.06 
7 - 10 56 107 12 1.91 
11 - 15 52 85 9 1.63 

16 - 20 42 56 4 1.33 
21 - 30 45 65 5 1.44 
> 30 51 74 6 1.45 
 

Table 4. 1 

Relationship between the minor genotype count and number of significant associations without the 

filtering of SNPs on genotype counts 
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Figure 4. 6 

Scatterplot of the expression trait residuals of probeset 208835_s_at after step 1. The x-axis shows the 

three genotype classes of the SNP rs2188509. The y-axis shows the GRAMMAR-adjusted phenotype 

of this probeset. Spurious p-value of 2.6x10
-5

 is caused by an outlier in genotype class 4/4. 
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4.3.4 Reduction of spurious associations by filtering on 

genotype counts 

Subsequently, I employed a screening strategy on the SNP data by excluding 

any genotype classes with 4 or fewer individuals. 423 SNPs were found to possess at 

least one such genotype class. When the ANOVA tests were repeated, only 61 

associations were detected at 20% FDR (P cut-off = 9.78x10
-7

). This finding suggests 

that the vast majority of associations previously detected were due to small sample 

size in SNP genotype classes, and therefore, unreliable. Note that the p-value 

threshold for the same FDR was much lower after having avoided the detection of 

many putative artefacts. FDR estimation is strongly influenced by the distribution of 

the p-values. If a large number of spurious effects are present due to violation of the 

underlying assumptions of the test statistic, excessive detection of false positives will 

not be prevented by the use of FDR. 

This strategy to screen SNPs on the genotype counts is superior to the 

commonly used filter based on minor allele frequency (typical thresholds used are 3, 

5 or 10%). The latter approach is not sensitive to detect SNPs with a small genotype 

class because rare homozygous genotypes can be observed with minor alleles of 

moderate frequency under Hardy-Weinberg equilibrium, given the sample size of the 

current study. 

It is also important to note that I only masked out genotype classes with small 

number of individuals rather than omitting all the data for such SNPs. This has the 

advantage that the information from the remaining genotype classes could still be 

used for the tests. For example, having masked out the rare 4/4 (3 individuals) 
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genotype class from SNP rs1491846, its association with probeset 204133_at was 

detected at P = 1.13x10
-7

. Hence, this screening method is not only effective in 

excluding spurious effects, but also preserves genuine effects in the presence of rare 

genotype classes. 

4.3.5 Detection of cis-acting loci 

Out of the 61 eQTLs detected, 3 eQTLs are within 1Mb of their transcripts 

(cis-acting eQTL). Detecting so few cis-acting eQTLs is perhaps not a surprise 

because the SNP density in this dataset is very low for whole-genome association 

mapping in humans where it was estimated that ~500,000 SNPs would be required 

(Kruglyak 2008). Much of the genome would not be in strong linkage disequilibrium 

with the SNPs used in the genome scan. Effectively, only a small proportion of the 

genome has been screened. On the other hand, the tests for cis-acting eQTL are a tiny 

proportion of the total number of tests performed genome-wide. Therefore, they are 

heavily penalised by multiple-testing in the analysis above. Subsequently, I restricted 

the testing to only the SNPs and transcripts that were less than 1Mb away from each 

other. This gave rise to 8462 cis-acting “candidates” (0.07% of all tests). At 20% 

FDR (P cut-off = 3.54x10
-4

), this analysis led to detection of an additional 12 cis-

acting eQTLs (15 in total). Without laboratory-based validation, it is difficult to 

conclude whether partitioning the data in this way can increase power of detecting 

real cis-acting eQTL. Nonetheless, this strategy can be considered as a practical way 

for improving the chance of detecting real cis- effects. Because of the technical, 

statistical limitations and uncertainties in studying trans-regulation as described by 

Pastinen et al. (2006), one may wish to dedicate more resources to studying cis-

acting eQTL over trans-acting eQTL. This strategy increases the detection of cis- 
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signals and provides more “prioritised” candidate loci. In the present study, the 

number of candidates generated is still practically feasible to be followed up in 

laboratories. 

4.4 Conclusion 

The two-step approach presented here (GRAMMAR) is simple, fast and 

efficient for family-based association studies in a mixed model framework. The 

speed advantage makes this implementation an attractive method for analysing 

genome-wide association with large number of quantitative phenotypes. Filtering on 

variability of the probesets dramatically reduces the number of irrelevant expression 

traits and multiple-testing. The method used here for masking rare genotype classes 

substantially decreases the number of spurious detection due to phenotypic outliers. 

Finally, limiting the search to SNPs and transcripts that are in close proximity 

appears to be a practical approach to avoid the excessive penalty imposed by 

multiple-testing on cis-acting eQTL and to increase the chance of detecting real 

signals for cis-regulation. 
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CHAPTER 5 

A gene set approach for eQTL mapping 

 This chapter presents an alternative mapping strategy to the eQTL mapping 

methods used in the previous chapters and by many published studies. The approach 

is motivated by the idea of gene set testing that has been widely used in microarray 

analysis for differential expression detection. By assigning genes into groups with 

common biological functions, based on knowledge derived from bioinformatics 

resources, the evidence of linkage for a group as a whole can be assessed. Testing 

gene sets may provide the advantage of increased sensitivity to eQTL of small effects 

which are sometimes difficult to detect when genes are tested one at a time, because 

of the strong multiple testing correction imposed on the univariate statistics. Section 

5.1 hypothesizes how gene set testing might be useful for finding linkage to 

pathways and provides a review on the existing methods in gene set testing. Section 

5.2 describes the BXH/HXB rat eQTL dataset (Hubner et al. 2005). This published 

dataset was used here to investigate the feasibility of applying the gene set approach 

to map eQTL. Section 5.3 provides technical details on the methods used to define 

gene sets and the statistical tests considered. Finally, section 5.4 presents the results 

and a discussion of the usefulness and pitfalls of the proposed approach in mapping 

eQTL. 
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5.1 Introduction 

5.1.1 What is gene set testing 

 Gene set testing is a statistical framework for analysing gene expression data 

using predefined categories. It was originally developed to aid functional 

interpretation of differential expression (DE) analysis using microarrays (Beissbarth 

& Speed 2004). The aim is to identify any “unusual phenomena” relating to 

particular categories or sets of genes. For assessing the significance of genes that 

have been grouped into functional categories in a DE analysis, in the classical 

statistical sense, one null hypothesis can be defined as: “the extent of DE is the same 

across all gene sets”. That is, the selection of DE genes is not expected to introduce a 

bias for or against any functional categories. When this null hypothesis is rejected, 

one might postulate that it signifies important functional roles for the genes in the 

significant gene set which are related to the difference between the treatment groups. 

In general, there are two scenarios in DE analysis where gene set testing can be 

particularly beneficial. 

   The first scenario is when there is a long list of DE genes. With limited 

resources, it is often the case that only the most significant genes would receive 

adequate attention in further in-depth investigation. Testing of gene sets could 

highlight some of the functional groups with interesting biological functions on the 

list, even when members of the gene sets are not amongst the top few on the list. 

 The second scenario is related to the multiple testing issues in microarray 

analysis. After correction for multiple testing, there might be a very short list of DE 

genes in experiments with low statistical power. True DE genes with moderate 
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significance are likely to be missed. Although relaxing the threshold would extend 

the DE gene list and recover some of the real DE genes, it would also inflate the false 

positive rate. Testing of gene sets provides a post-hoc analysis to distinguish 

potential true DE genes with moderate significance and non-DE genes with a similar 

level of significance. While this approach can be thought of as “data-dredging”, gene 

set testing as a whole is regarded as a desirable data-driven hypothesis generating 

tool (Allison et al. 2006). 

 Although gene set testing has almost exclusively been applied to DE analysis, 

it should also be amenable to other genetics studies. For example, it has been applied 

recently to improve the ability of genome-wide association studies (GWAS) to detect 

disease mechanisms by considering groups of variants that belong to the same 

biological pathway (Wang et al. 2007). The authors extended the gene set approach 

from DE genes to SNPs that match to genes by their physical locations. With this 

approach, in addition to the top 20 or so SNPs detected by GWAS, groups of markers 

that are less significant yet potentially interesting due to links to interacting genes are 

also highlighted as candidates in the post-GWAS analysis. Here, I propose to 

incorporate gene sets into genetical genomics by grouping the gene expression traits.   

For an eQTL that links to a gene, that gene might be involved in a gene 

network which drives certain cellular process. The most common way of analysing 

eQTL, however, is on a gene-by-gene basis, and only those eQTL that exceed the 

very stringent threshold, as a result of multiple testing, are considered as true linkage. 

Because many quantitative traits are expected to have a complex genetic architecture 

with pathways involving multiple interacting genes, studying the top ranking eQTL 

only, mostly cis-linkage, is unlikely to present us with sufficient information to 



 109

understand the transcriptional regulatory network involved. In a highly connected 

network many components (genes) may have moderate effect sizes to which the 

signals are too weak to be detected. Figure 5.1 illustrates in a hypothetical pathway 

how one may fail to detect genuine linkage signals. 
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Figure 5. 1 

A hypothetical pathway. The blue circles denote genes and the black arrows denote the direction of 

regulation. A cis-eQTL on a chromosome regulates the expression of gene 1. Gene 3 is co-regulated 

by gene 1 and gene 2. Gene 4 is co-regulated by gene 3 and 5, which together regulates gene 6. The 

graphs in the lower half of the figure show the linkage profile. The red horizontal lines denote the 

univariate linkage significance threshold. Linkage is only detected for the expression level of gene 1. 

Trans-acting regulation actually exists for gene 3, 4 and 6, but the linkage signals are too weak due to 

the influence of other genes and that the regulation due to the eQTL is indirect.    
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In the hypothetical example in Figure 5.1, the eQTL are indirectly linked to 

three genes (3, 4 and 6) in the pathway. As the linkage evidence for these trans-genes 

is not very strong, these linkage signals could be rejected as not significant. If we 

accept that the hypothetical network depicted here is a reasonable model, then a 

logical next question would be “how can one capture these genuine signals with 

relatively moderate effect sizes?” Relaxing the significance threshold could prevent 

some of these genuine signals being rejected, but doing this may risk much noise 

being wrongly accepted as significant linkages. However, if one looked within gene 

sets and found many genes with moderate linkage signals, then potentially the 

pathways represented by the significant gene sets are genuinely linked to the locus. 

Hence, by incorporate gene set testing with genetical genomics, one can potentially 

offset the risk in lowering the significant threshold in order to capture pleiotropic 

eQTL with weak effects. 

5.1.2 A review on gene set testing methodologies 

There are various implementations of gene set testing, but all have more or 

less the same underlying principle. First, gene sets are created by grouping all genes 

that are annotated to the same annotation term according to functional genomics 

ontological resource like Gene Ontology (GO) (Ashburner et al. 2000) or gene 

pathway resources such as Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

(Kanehisa & Goto 2000). Then statistical tests can be used to compare the 

distribution of the test statistics of genes in a set to a null distribution. Gene set 

testing in effect shifts the level of analysis of the microarray experiment from single 

genes to sets of related genes. As previously accumulated biological knowledge is 
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used to create the gene sets, this approach makes a more biology-driven analysis of 

microarray data. 

Numerous methods (Beissbarth & Speed 2004; Al-Shahrour et al. 2004; 

Boyle et al. 2004; Lee et al. 2005; Alexa et al. 2006; Falcon & Gentleman 2007) 

make use of a test for independence in a 2 x 2 contingency table with minor 

variations. This class of methods starts by dividing all the genes into two groups, 

“significant” and “not significant”, according to the univariate test statistic. Here, the 

test statistic at the individual gene level is referred to as local statistic. Tests are then 

carried out to assess whether a gene set is over-represented in the “significant” 

group. Statistical tests such as Fisher’s Exact Test and Hypergeometric Test (Siegel 

1956) are typically used. The test statistic for gene set is referred to as global 

statistic. Figure 5.2 illustrates the general idea of over-representation of a gene set. 
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Figure 5. 2 

(a) The dark blue box represents all the genes available for testing. Using a cut-off for the local 

statistic, for instance: P-value <= 0.001, a subset of the genes are called significant. This subset is 

represented by the light blue box. (b)  Let’s suppose a subset of all the genes belong to a pathway / 

category, represented by the red box. If genes with small P-values are evenly distributed across 

pathways / categories, the genes represented by the red box should be present in the light blue box 

with roughly the same proportion as in the dark blue box. (c) If the pathway / category is particularly 

important, many of its members will have small P-values for their local statistics.  Then, the genes 

from this pathway (red box) will be present in the light blue box in a greater proportion than originally 

in the dark blue box. There is an “enrichment” of genes from the gene set amongst the significant 

genes. 
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The previous approach requires a strict cut-off on the local statistic to divide 

the genes into the “significant” and “not significant” groups, which ignores the 

continuity of the available evidence. An alternative class of methods address this 

shortcoming by taking into account the quantitative nature of the local statistics. 

Ranks of the genes belonging to a gene set are compared to ranks of the complement 

set. Rank-based non-parametric tests such as the Wilcoxon rank sum and the 

Kolmogorov-Smirnov tests (Siegel 1956) are robust methods to compare two 

distributions, and there are implementations of these non-parametric approaches in 

DE analysis (Barry et al. 2005; Subramanian et al. 2005). Using ranks has the 

potential benefit of being more sensitive in detecting modest but coordinated 

directional trends by genes in a gene set. This general idea of the approach is 

illustrated by Figure 5.3. 
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(a)

(b)

 

Figure 5. 3 

Circles in red represent members of a gene set, and the circles in blue are genes outside the set. The 

genes are ranked by the local statistic. In (a), the genes in red are from the same distribution as the 

genes in blue. (b) Even though the local statistics of the red genes do not rank amongst the highest, 

collectively they rank higher than the blue genes. The genes in red and those in blue probably do not 

belong to the same distribution. 
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To assess the significance of the gene set test, the test statistic is compared to 

the empirical null distribution generated by permutations. One way is to permute the 

membership of the gene sets. In this case, x number of genes are randomly selected 

to make up a gene set of size x in each round of permutation. This would generate an 

empirical distribution where the global statistics are not related to the membership of 

the gene sets, but to the sizes of the gene sets. This permutation strategy is referred to 

as “gene sampling” because gene is the unit of sampling under this strategy (Goeman 

& Buhlmann 2007). An alternative strategy is to permute at the subject level to 

obtain local statistics. Subsequently these permuted local statistics are used to 

generate the empirical distribution of the global statistics. In this case, each round of 

permutation involves using a new set of local statistics generated by the 

randomisation of subjects. This permutation strategy is referred to as “subject 

sampling” because the biological subject is the unit of sampling here. As the 

expression levels of genes within a gene set tend to be more correlated than genes at 

random, subject sampling retains the structure of gene sets and generates an 

empirical distribution that better reflects the correlations of genes within a set. Gene 

sampling, on the other hand, is easier to implement and can be performed much more 

rapidly. However, it has been argued that the use of gene sampling should be 

strongly discouraged (Goeman & Buhlmann 2007). The gene sampling approach 

uses a sample size equal to the number of genes involved in gene set testing instead 

of the number of biological replicates that is typical in the classical statistical setup. 

A replication of the experiment under the gene sampling model would therefore 

involve taking a new sample of genes from the same subjects, which does not make 

biological sense. Hence it is argued that the P-value produced by gene sampling does 
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not measure the strength of the evidence based on the biological experiment 

performed and could be wrongly interpreted as an inflation in power, which is highly 

misleading. Concerns over the problems of gene sampling permutation strategy were 

also echoed by Allison et al. (2006). 

5.2 The BXH/HXB rat dataset 

In this chapter, I present a novel use of gene set testing in the context of 

genetical genomics. The applicability of gene set testing to genetical genomics is 

demonstrated through a reanalysis of a published eQTL dataset. This section 

provides a description of the dataset. 

  The rat has been a model for studying common human diseases for many 

decades. The spontaneously hypertensive rat (SHR) strain is a widely studied model 

of human hypertension. Brown Norway (BN) is another strain of rat that has been 

intensively used for medical research, and is the strain on which the rat reference 

genome sequence is based. Crossing these two inbred rat strains in a series of sib 

mating (F60) generates the BXH/HXB panel of recombinant inbred lines (RILs). 

Animals in RILs have negligible within-line but considerable between-line variation 

in their genomes which are a fine mosaic of the two founder genomes (Lynch & 

Walsh 1998). Thirty lines are available in the BXH/HXB panel. 

Hubner et al. (2005) constructed a linkage map of 1,011 autosomal markers 

for all chromosomes. Messenger RNA was extracted from fat and kidney tissues 

from four independent rats from each line; gene expression profiling was performed 

on each mRNA sample using Affymetrix GeneChip™ Rat230a. Robust multichip 

average, or RMA, algorithm (Irizarry et al. 2003) was used to obtain the summarised 
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gene expression values. The arithmetic mean was taken over the biological replicates 

from the same line for all probesets. 

Hubner et al. (2005) performed linkage analysis on the individual gene 

expression levels and identified 509 and 761 linkages in fat and kidney, respectively. 

A large proportion of the most significant eQTL were cis-eQTL. 

5.3 Methods 

A number of steps were carried out to apply gene set testing in the framework 

of genetical genomics. The general workflow is shown in Figure 5.4.  
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Figure 5. 4 

General workflow of the analysis. The steps in light blue are related to microarray data processing. 

The steps in purple are related to gene set testing. 
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5.3.1 Genotype and microarray data 

The raw dataset from the Hubner et al. study consists of genotype data and 

gene expression data, courtesy of Prof. Tim Aitman and Dr. Enrico Petretto. 

Genotypes of 1,011 markers, distinguishing the SHR or the BN line origins at marker 

loci for the 30 BXH/HXB RILs were available, along with the linkage map. There 

were 258 Affymetrix CEL files, of which 130 files were gene expression data from 

fat tissue, and 128 from kidney. For the purpose of studying the methodological 

aspects of gene set testing in genetical genomics, only the fat tissue dataset is 

analysed. Gene expression data were processed in the same way as in the original 

research article (Hubner et al. 2005), where the CEL files of the two tissues were 

processed separately using RMA, and the average gene expression values were taken 

from the biological replicates. At this stage, there were 15,923 expression traits for 

the 30 RILs and the 2 progenitor strains.  

5.3.2 Filtering based on expression and variability 

As discussed in Chapter 4, it is generally a good practice to remove genes that 

are not expressed in the tissue of interest from downstream analyses. The variability, 

in terms of standard deviation, and the strength of expression signal, in terms of 

maximum intensity across samples, was inspected in the two tissues. After visual 

inspection of the expression data distribution, the variability at the first quartile and 

the expression signal at the first quartile were set as thresholds. Probesets with 

variability and expression below both cut-offs were regarded as non-expressed 

probesets. The two thresholds were 5.88 in log intensity for the maximum variability 

and 0.10 in log intensity for standard deviation. Together with the control probesets, 
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non-expressed probesets were discarded, leaving 13,309 probesets for downstream 

analyses. 

5.3.3 Linkage analysis 

Linkage analysis was carried out for each of the remaining expression 

phenotypes using Haley-Knott regression (Haley & Knott 1992). The progenitor 

strains were excluded. R/QTL (Broman et al. 2003) was used to generate the line 

origin probabilities along the genome in 1 cM intervals. Likelihood Ratio Test (LRT) 

was carried out to evaluate the model with a single additive QTL versus the model 

with no QTL along the grid. The LRT statistics were retained as local statistics for 

gene test testing. 

5.3.4 Filtering based on KEGG 

For the study described in this chapter, gene sets were defined according to 

the pathway grouping in the KEGG database. Thus, probesets which did not 

represent genes present in the KEGG database were redundant. Mapping of probesets 

to the EntrezGene database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene) and 

subsequently to the KEGG database was retrieved using the annotation package 

“rae230a.db” in Bioconductor (http://www.bioconductor.org/). Where multiple 

probesets mapped to the same EntrezGene entry, the probeset with the highest LRT 

statistic at the given locus would be chosen for gene set testing. Starting with 13,309 

probesets, 11,356 mapped to an EntrezGene entry. After the duplicates were 

removed the number of non-redundant EntrezGene entries was 9,296. Amongst the 

genes annotated in KEGG, there were 2,486 entries in EntrezGene, from 187 

pathways, that mapped to probesets on the rae230a GeneChip™. After merging the 
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two sets of genes by the EntrezGene IDs, gene sets with fewer than 5 members 

present on the microarray were removed. At the end of these series of filtering steps, 

2,185 genes from 152 KEGG pathways entered the gene set analyses. This 

represented 23.5% (2,185 out of 9,296) of the known genes that were probed and 

expressed in the tissue samples. 

5.3.5 Gene set testing 

Global test statistics for gene sets were obtained using a one-tailed Fisher’s 

Exact Test and a one-tailed Wilcoxon Test. Both tests were applied along the 

genome in 1 cM intervals (the same spacing as in the linkage analysis). At every 

position, the LRT statistics were treated at the local statistics. For each gene set, the 

local statistics were classified into two groups: members of the gene set and non-

members of the gene set. 

For the Fisher’s Exact Test, the genes were divided into the “significant” and 

“not significant” groups based on the local statistics. The point-wise P-value of 0.001 

was used as the cut-off, which was equivalent to LRT statistic of 10.8 with 1 degree 

of freedom in the χ
2
 distribution. This arbitrary cut-off was chosen because it was 

reasonably liberal to include eQTL with small effect size, and yet quite stringent so it 

should not count too many true negatives as positives.  For each gene set associated 

with a KEGG pathway and its complementary non-associated gene set, the number 

of members in the “significant” and the “not significant” sets were calculated. For 

each cM along the genome, the global test statistics for each of the pathways were 

obtained using the “fisher.test” function in R. 

For the Wilcoxon Test, the ranking of the local statistics of each KEGG 

pathway gene set was compared to its complementary non-associated gene set. For 
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each cM along the genome, the global test statistics for each of the pathways were 

obtained using the “wilcox.exact” function of the “exactRankTests” package in R. 

The significance of the global test statistics were derived using 1000 

permutations. “Subject-sampling” strategies were performed, where the linkage 

analysis was repeated with the RILs shuffled. The local statistics from the 1000 

genome scans were stored. Gene set tests were performed on these 1000 sets of local 

statistics to derive the null distribution of the global statistics. Large data storage and 

parallel grid computing were provided by the university high performance computing 

services (http://www.is.ed.ac.uk/ecdf/). 

5.4 Results and discussion 

5.4.1 Fisher’s Exact Test 

Gene set testing was carried out along the genome. Using the genome-wise 

threshold of 0.05, Fisher’s Exact Test identified 8 gene sets showing over-

representation in the group of genes with LRT statistics greater than 10.8 in 8 regions 

in the fat tissue (Table 5.1). 
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KEGG 

ID 

Chr cM Minimum 

genome-

wise  

P-value 

Gene 

set 

size 

No. of genes 

with  

significant 

local statistic * 

KEGG pathway name 

05020 1 143 0.013 12 3 (23) Parkinson's disease 

04360 3 210-

211 

0.015 70 5 (8) Axon guidance 

00630 5 71-

72 

0.030 7 3 (8) Glyoxylate and 

dicarboxylate 

metabolism 

03022 12 18 0.043 15 2 (3) Basal transcription 

factors 

00260 19 35-

36 

0.041 24 3 (10) Glycine, serine and 

threonine metabolism 

04514 20 1-6 0.007 81 9 (14)  Cell adhesion 

molecules (CAMs) 

04612 20 1-5 0.003 46 10 (14) Antigen processing 

and presentation 

04940 20 2-5 0.003 34 9 (14) Type I diabetes 

mellitus 
 

Table 5. 1 
Regions in the genome with significant enrichment signal from Fisher’s Exact Tests (genome-wise 

threshold P <= 0.05). * The column shows the number of genes in the gene set with LRT statistic 

above 10.8. In bracket is the total number of genes with LRT statistic above 10.8 at the position with 

the maximum global statistic.  
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Three KEGG pathways (04514, 04612, and 04940) mapped to the same 

region on chromosome 20. These three signals were also amongst the most highly 

significant amongst the eight peaks identified. There was considerable overlap in the 

gene membership for these gene sets:  17 genes are common to all three pathways; 

and 5 genes are common to two pathways. Almost all of the genes with the LRT 

statistic above 10.8 were genes common to all three pathways. Indeed, the three 

pathways have similarities in their functions, being related to the immune system. 

The LRT statistics for some of the significant genes from these three 

pathways were well above 10.8. For example, the LRT statistics for the affymetrix 

probesets “1369110_x_at”, “1377334_at” and “1371213_at” are all greater than 37.0 

at the 5 cM position on chromosome 20 (point-wise P < 1.2 x 10
-9

). These probesets 

are probes for some of the RT-1 genes, also located on the proximal arm of rat 

chromosome 20, in close proximity of the eQTL. However, the RT-1 class genes are 

orthologous to the Major Histocompatibility Complex (MHC) class genes in human 

and mouse. Strain specific sequence variants have been known to be a major source 

of cis-acting eQTL artefacts (Alberts et al. 2005). Since the probes were designed 

from sequences of BN strain, and the MHC class genes are highly polymorphic, 

many of the probes are likely to hybridise preferentially to BN transcripts. Therefore, 

cautious interpretation of these enrichment signals on chromosome 20 would be 

essential as they are likely to be false positives due to sequence variation on the short 

oligonucleotide probes. 

For the other five signals, the number of genes with local statistic above the 

threshold of 10.8 ranges from 2 to 5. Those signals with only 3 or fewer significant 

genes are not treated as real signal of gene set enrichment because the P-value of 
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these signals can be dramatically affected by even the smallest changes in gene set 

assignment. Clearly, judging the results solely by the P-value of the global statistic 

can lead to wrong interpretations. The signal for pathway 04360 contains 5 

significant genes. The significant genes on this KEGG pathway are Fyn, Rock2, 

Cxcl12, Cdc42, and Nrp1. These genes are highlighted in the pathway diagram in red 

in Figure 5.5. 
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Figure 5. 5 

The KEGG pathway for Axon Guidance. The boxes highlighted in red represent the significant genes 

at the locus of the Fisher’s Exact Test signal. The genes Fyn, Cdc42 and Rock2 feature twice on 

different branches in this pathway diagram. 



 128

Those genes with significant linkage are located on several branches on the 

pathway. Therefore, there is some departure from the model illustrated in Figure 5.1. 

But interestingly, two of the branches contain two genes (Fyn phosphorylates a 

complex containing Nrp1, and Rock2 and Cdc42 both interact, directly and 

indirectly, with Ephexin) which may indicate that the linkage to the expression levels 

of these genes could be a “knock-on” effect by the linkage to their neighbours on the 

pathway. However, with the exception of Nrp1, these genes are also involved in 

many other signalling pathways outside the context of axon guidance. Hence, based 

on the current information, it is not straight-forward to make any strong inference on 

the reliability of this pathway signal. 

5.4.2 Wilcoxon Test 

The Wilcoxon Test was also carried out along the genome to provide an 

alternative flavour to gene set testing for genetical genomics. Using the genome-wise 

threshold of P = 0.05, 9 gene sets over 10 regions with local statistics that rank 

significantly higher than the rest were identified in fat tissue (table 5.2). 
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KEGG 

ID 

Chr cM Minimum 

genome-

wise  

P-value 

Gene 

set 

size 

KEGG Pathway name 

00561 1 32-33 0.043 24 Glycerolipid metabolism 

05220 8 15-18 0.027 58 Chronic myeloid leukemia 

05217 9 133 0.002 25 Basal cell carcinoma 

04060 10 64-73 0.008 92 Cytokine-cytokine receptor 

interaction 

00272 10 144-

155 

0.002 10 Cysteine metabolism 

04010 11 1-2 0.002 168 MAPK signalling pathway 

04010 11 14-16 0.018 168 MAPK signalling pathway 

00510 12 21-30 0.005 26 N-Glycan biosynthesis 

00030 14 55 0.026 14 Pentose phosphate pathway 

04140 20 73-74 0.047 14 Regulation of autophagy 
 

Table 5. 2 

Regions in the genome with significant enrichment signal from Wilcoxon Tests (genome-wise 

threshold P <= 0.05). 
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None of the signals picked up by the Fisher’s Exact Test were reproduced by 

the Wilcoxon Test. The extent of the upward shift detected by the Wilcoxon Test can 

be examined by plotting the ranks of the local statistics from the gene sets (Figure 

5.6). 
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Figure 5. 6 

Rank plots for the 10 signals detected by the Wilcoxon test. The ranks of the genes in a KEGG 

pathway gene set (x-axis) are plotted against the cumulative proportion of genes in the set (y-axis). 
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From Figure 5.6 it can be seen that the Wilcoxon test was able to detect loci 

where a large proportion of the gene set occupied high ranking. The pattern is 

particularly striking with small gene sets; for example, approximately 80% of the 

genes in the gene set 00030 are with local statistic ranked within the top 500. 

Although it might be tempting to interpret the Wilcoxon test signals as enrichment of 

genes of a pathway linked to the eQTL, on a closer look of the results, it can be noted 

that the local statistics at the Wilcoxon test signals are not very large. The local 

statistics of the 10 Wilcoxon test signals are shown as a box-and-whiskers plot in 

Figure 5.7. From this plot it can be seen that the vast majority of the local statistics 

underlying all of the signals are below the point-wise 5% significance level. 
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Figure 5. 7 

Box-and-whiskers plot showing the LRT statistics of the genes within the gene sets at the significant 

loci listed in table 5.2. 04010 a represents the hit at 1 cM, and b represents the hit at the 15 cM on 

chromosome 14. As a guide, the LRT statistic for the point-wise P-value of 0.05 is 3.84. The thin 

sides of the box indicate the lower quartile and the upper quartile, with the thick line within the box as 

median. The “whiskers” show the largest / smallest observation that falls within a distance of 1.5 

times the box size from the nearest quartile. Data-points beyond are shown as individual circles. 
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5.4.3 Discussion 

Gene set testing was performed on a genome-wide scale. The Fisher’s Exact 

Test and the Wilcoxon Test detected 8 and 10 significant signals respectively. 

However, on closer inspection, many of the signals appeared unconvincing, despite 

the small P-values of the global statistics obtained.  

A number of the signals returned by the Fisher’s Exact Test contain gene sets 

with very few significant genes. As the test focuses on the proportion of genes that is 

part of a gene set, it is important to keep in mind that extreme P-values can be the 

consequence of small margins in the 2 x 2 contingency table. The most striking result 

was the signal for pathway 03022; gene set enrichment was implicated when merely 

2 significant genes were members of the pathway. This example showed that the 

Fisher’s Exact Test is very sensitive to the number of significant genes at a locus; 

signals from loci with very few linked genes are not reliable. 

Even when the statistics of signals seem more convincing, it is essential to 

interpret the results carefully. It has been illustrated that looking at the results from a 

biological angle is extremely crucial. The signals on chromosome 20 seemed 

exciting at first sight, until it was realised that the genes involved are highly 

polymorphic and the linkage signals were most likely false positives due to sequence 

variation on the probe. Locating the significant genes on the 04360 KEGG pathway 

diagram (Figure 5.5) also revealed that the linkages were not to genes on the same 

branch of the pathway. However, four genes were found on two distinct branches and 

the pattern hypothesised in Figure 5.1 could be masked by the fact that some genes 

were missing from this analysis. Hence, they should not be dismissed as false 

positive without further consideration. Nevertheless, the branches in the pathways 
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have quite distinct functions and there would have been no enrichment if those 

branches were classified as separate pathways in KEGG. Therefore, it is important to 

bear in mind that there is always a certain level of subjectivity introduced by the 

database curators. Thus, the validity of any signals should be cautiously examined. 

Many of the Wilcoxon Test signals are also somewhat dubious. Although the 

Wilcoxon Test correctly detected loci where the local statistics of certain gene sets 

ranked higher than the rest, the linkage evidence for most individual genes at those 

signals are weak. Similar to the Fisher’s Exact Test, the Wilcoxon test is also 

sensitive to a fairly flat distribution of low local statistic at the locus (i.e. the locus is 

linked to very few or none of the gene expression traits). Because high rank does not 

equate to strong linkage evidence, when there is very little evidence of linkage to any 

genes at a locus, the ranks are meaningless. Consider the signal of pathway 05217 

(Figure 5.7), none of the genes were significant, even by ignoring multiple testing. 

Although the use of a cut-off in Fisher’s Exact Test can be criticised for its lack of 

regard to the continuity of the local statistics, it has the advantage of allowing the 

user to define what the minimum acceptable level for linkage is. On the other hand, 

there is no concept of the size of the likelihood ratio statistic in the Wilcoxon Test. If 

the Wilcoxon Test was conditioned on having even just one or more genes with the 

local statistic of 10.8 (the cut off used in the Fisher’s Exact Test), then all but two 

signals would have been rejected. 

Why do these problems arise with gene set testing in genetical genomics? 

There are several factors that are likely to be important. Firstly, in genetical 

genomics, the genotypic effects on the variation of gene expression are tested on a 

large number of loci. As seen in other published studies, most eQTL are linked to a 
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small number of genes, except at trans-eQTL hotspots. Therefore, there are many 

loci with few, if any, significant local statistics. Extreme global statistics resulting 

from these loci can be very misleading. Secondly, only a small fraction of genes on 

the microarray is mapped to KEGG. The microarray dataset contains probesets that 

map to 9,296 expressed genes, but only 2,185 genes were used in gene set testing. As 

over 75% of the genes were not considered by the tests, many eQTL were also 

dropped from the analysis. Omitting a large number of genes is likely to affect the 

distribution of the local statistics which could have an effect on the global statistic. 

Thirdly, many KEGG pathways contain a number of smaller branches. Even when 

there is signal for enrichment, it is not certain that the genes with a significant local 

statistic reside on the same branch of the pathway. One potential problem is that the 

coverage for some pathways is poor on the array, which may explain the failure in 

detecting linkage to the other genes on the same branch.  

Overall, the current study identified only one putative gene set enrichment 

signal which might be interesting. Yet it is difficult to determine its biological 

significance. All other signals are likely to be technical artefacts. The small sample 

size of the current dataset could be attributed to the failure to detect any concrete 

pathway eQTL signals. Using only 30 RILs, the study might lack the statistical 

power to find the linkage for the genes downstream of gene pathways. An alternative 

view is that using only the pathway information from KEGG is too limited. As 

mentioned above, the annotation of a pathway from one particular database can be 

very subjective. Curators from different databases may have very different opinion 

on how inclusive a particular pathway should be, and there can be substantial 

difference between the same pathways from different databases. Using multiple 
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pathway resources together may overcome the difficulty in conflicting gene set 

definition. However, resolving conflicts may also become more difficult using 

multiple resources if there was a lack of consensus. In addition, the increase in 

multiple testing is difficult to account for, especially when some gene sets have 

substantial overlap of genes. Moreover, the permutation step can become more 

computational intensive. 

5.5 Conclusions 

In principle, gene set testing should provide extra information on the genetic 

regulation of pathways. In practice, however, there are still a lot of technical issues to 

be overcome before it can be widely adopted. Assessing the significance of the gene 

sets simply by the P-values of both the Fisher’s Exact Test and the Wilcoxon Test 

can be misleading. Further research will be needed to find more suitable methods for 

testing gene sets with eQTL data. The definition of gene sets, the extent of coverage 

of the pathways and biological knowledge of the genes involved are all important 

factors to consider while interpreting the results. 

In the next chapter, I present a similar analysis in which the gene sets are 

defined using Gene Ontology terms. I investigate whether gene set testing would 

produce a more useable set of results when more genes are included in the analysis. 
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CHAPTER 6 

Gene set testing using Gene Ontology 

 In Chapter 5 the performance of gene set testing for mapping eQTL was 

explored, based on the gene set categorisation using the KEGG pathway database 

(Kanehisa & Goto 2000). A major limiting factor appeared to be that too many genes 

on the Affymetrix GeneChip™ used in this rat example dataset were not included by 

KEGG. In this chapter, the Fisher’s Exact Test analysis was repeated with Gene 

Ontology (GO) (Ashburner et al. 2000) to define the gene sets. With the gene 

coverage greater than that of KEGG, it is hoped that some information missed in the 

univariate analysis can be recovered by jointly considering groups of genes sharing 

common GO terms. 

6.1 Methods 

 The expression data, the likelihood ratio test statistics (local statistics), and 

the 1000 sets of local statistics from the null distribution generated by permutations 

used in Chapter 5 were re-used here. The methodology in this chapter deviated from 

the last only in the definition of gene sets. 

6.1.1 Mapping of probesets to GO 

 Unlike in KEGG where the entries are self-contained in a flat topology, Gene 

Ontology terms are organised in a hierarchical structure. These terms describe the 

functional roles for a group of genes. Each term inherits from one or more parent 

terms describing the functions in a less specialised way. Naturally, each term can 

also have one or more child terms to which the functional descriptions are more 
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specific, and the child GO term inherits a subset of genes from its parents. All GO 

terms descend from one of the three terms at the top of the hierarchy: Biological 

Process, Molecular Function and Cellular Component. Genes belonging to the same 

GO term do not necessarily interact. The description of the GO term applies to all the 

genes that are members of the term.  

 To define gene sets, all probesets were first mapped to the EntrezGene 

database and subsequently to GO terms at all levels using the annotation package 

“rae230a.db” in Bioconductor (http://www.bioconductor.org/). GO terms with very 

general descriptions are unlikely to be useful for making biological interpretation of 

their enrichment signals because they tend to encapsulate genes with very diverse 

functionality. On the other hand, positive signals of GO terms with very specialized 

descriptions may not be robust because these terms tend to have only very few genes. 

Therefore, only the gene sets with number of genes between 10 and 100 represented 

on the microarray were retained. After this step, 5893 genes (63.4% of all known 

genes found to be expressed in the dataset) from 1676 GO terms entered the gene set 

analyses. 

6.1.2 Gene set testing 

 Global test statistics for gene sets were obtained using a one-tailed Fisher’s 

Exact Test along the genome in 1 cM intervals as outlined before in Chapter 5. The 

Wilcoxon Test was dropped for this analysis. For the Fisher’s Exact Test the point-

wise P-value of 0.001 (LRT statistic of 10.8) was used the threshold to divide the 

local statistics into a “significant” group and a “not significant” group. As before, the 

“fisher.test” function in R was used to test whether there were over-representations 

of gene sets amongst the “significant” group. 
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 Gene set testing was applied to the 1000 sets of local statistics generated from 

linkage analysis on the permuted subjects. As before, global statistics were generated 

at each cM interval for every gene set. The maximum global statistics for each gene 

set from every cycle of permutation were collated to derive the null distribution of 

the global statistics. The global statistics from the un-shuffled dataset were ranked 

against the null distribution to obtain the genome-wise P-value. 

 The genome-wise threshold of P < 0.05 was used to assess the significance of 

gene set enrichment at every locus. Signals with fewer than 4 genes exceeding the 

local statistic threshold of 10.8 were filtered out because those signals were deemed 

unconvincing in Chapter 5. 

 An alternative local statistic cut-off (point-wise P-value of 0.005, equivalent 

to the LRT statistic of 7.8) was used in a repeated analysis. The point of the repeated 

analysis was not to discover new signals, but to gain an appreciation of how the 

detected signals could be affected using a different cut-off. 

6.2 Results 

 Using the genome-wise threshold of 0.05 for the global statistic, Fisher’s 

Exact Test identified 40 gene sets showing over-representation in the group of genes 

with point-wise P-values < 0.001. Clusters of gene sets were identified as significant 

for GO terms that were immediately connected; i.e. parent and/or child of significant 

GO terms were also found to be significant. In those cases the over-representation 

was conferred by identical genes. The gene set from the most specialised GO 

description in the cluster was selected to represent the functionality of the significant 

genes. For example: the GO term representing “neural tube closure” was selected, 
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whereas the GO terms representing “morphogenesis of epithelium”, “morphogenesis 

of embryonic epithelium”, “embryonic epithelial tube formation” and “neural tube 

development” were discarded. After this pruning exercise, signals for 15 gene sets 

remained and they are listed in Table 6.1. 



 143

 

GO Term Chr cM Minimum 

genome-

wise P-

value 

Gene 

set size 

No. of 

genes with 

significant 

local 

statistic * 

GO Term 

description 

Ont

o-

logy 

# 

0004702 1 58 - 

60 

0.002 36 4 (14) receptor 

signaling 

protein 

serine/threonin

e kinase 

activity 

MF 

0015370 2 202 0.03 29 5 (71) solute:sodium 

symporter 

activity 

MF 

0001843 2 206 - 

208 

0.003 10 4 (48) neural tube 

closure 

BP 

0033014 5 75 - 

76 

0.009 10 4 (46) tetrapyrrole 

biosynthetic 

process 

BP 

0016042 5 113 - 

114 

0.006 60 4 (21) lipid catabolic 

process 

BP 

0001772 5 145 0.041 14 6 (44) immunological 

synapse 

CC 

0030145 7 27 - 

29 

0.022 56 5 (43) manganese ion 

binding 

MF 

0005681 14 40 0.046 56 8 (74) spliceosome CC 

0043292 15 6 0.044 59 29 (102) contractile 

fiber 

CC 

0005884 15 11 0.019 24 5 (67) actin filament CC 

0016712 17 1 - 3 0.008 28 13 (458) oxidoreductase 

activity 

MF 

0005249 17 1 - 2 0.025 61 19 (436) voltage-gated 

potassium 

channel 

activity 

MF 

0005179 17 2 - 4 0.028 74 22 (389) hormone 

activity 

MF 

0019882 20 1 - 6 0.004 40 10 (17) antigen 

processing and 

presentation 

BP 

0042611 20 1 - 5 0.002 24 9 (17) MHC protein 

complex 

CC 

 

Table 6. 1 
Regions in the genome with significant enrichment signal from Fisher’s Exact Tests (genome-wide 

threshold P <= 0.05). * The column shows, at the position with the maximum global statistic, the 

number of genes in the gene set with LRT statistic above 10.8 (P-value less than 0.001). The total 

number of genes with significant LRT statistic at the position is quoted in bracket. 
#
 The ontology 

which the GO term stems from. MF = molecular function; BP = biological process; CC = cellular 

component 
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Similar to the results for KEGG, the gene sets related to immunity again showed up 

as significant on chromosome 20 (GO: 0019882 and GO: 0042611) and the RT-1 

class genes were again responsible for these cis- signals. As discussed in Chapter 5, 

these signals should be interpreted with extreme caution because of the sequence 

variation issues on the probed sequences. Other signals were discovered on 

chromosome 1, 2, 5, 7, 14, 15 and 17 linked to GO terms for all three types of gene 

ontology: molecular function, biological process and cellular component. 

 It should be noted that the P-values were generated empirically. Take the 

signals for GO: 0005681 and GO: 0043292 as an example, the nominal P-values are 

actually vastly different (3.6 x 10
-7

 and 4.3 x 10
-37

, respectively). However, if the 

expression of genes from a set were highly correlated, the global statistic would tend 

to be large more often simply by chance. This is because when the local statistic of 

one gene is falsely declared as significant, the other correlated genes in the same set 

will also likely be falsely declared as significant. The “subject sampling” 

permutations adjusted for this correlations and produced P-values that would truly 

reflect the significance of the global statistic. The empirical genome-wise P-values 

for these two sets are 0.046 and 0.044, respectively. 

Signals of three gene sets were related to ion transport activity. The genes in 

GO:0015370 are known to be involved in sodium transport. All five significant genes 

responsible for this signal on chromosome 2 were genes of the solute carrier family: 

Slc6a20, Slc5a5, Slc6a17, Slc13a3 and Slc20a1. The members of the second gene 

set, GO:0030145, are known to be involved in manganese ion transport. The 

significant genes from this gene set, Acvr1c, Tesk1, Galnt1, Bmpr1a and Nudt4 

contributed to this signal on chromosome 7. According to gene annotations in the 
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EntrezGene database, these genes play important roles in the serine / threonine 

kinase signalling. Interestingly, an enrichment signal for the serine / threonine kinase 

signalling pathway was detected on chromosome 1. Potassium ion transport is the 

third ion transport related gene set identified as significant; the signal for 

GO:0004702 was found on chromosome 17, with 19 genes exceeding the local 

statistic threshold of 10.8. Most of those genes are members of the potassium channel 

KCN gene family. Some of the most significant genes include Hcn4, Kcnv1 and 

Kcnma1, with point-wise P-value of 2.9 x 10
-5

, 5.9 x 10
-6

 and 4.7 x 10
-6

, 

respectively. 

The chromosome 17 locus where enrichment of linkage for the potassium ion 

transport genes was detected appeared to be a linkage hotspot: the local statistic for 

around 400 genes exceeded the point-wise threshold of 10.8 between the 1 cM to the 

4 cM positions. The enrichment of oxidoreductase activity genes (GO:0016712) 

mapped to this region; the signal spanned 1 -3 cM on chromosome 17, with the peak 

at 1 cM. From this gene set, the local statistics for 13 genes were significant; all of 

them are members of the cytochrome P450 gene family, such as Cyp4a8, Cyp2d2 

and Cyp4b1. The enrichment of hormone activity (GO:0005179) also mapped to this 

region (2 - 4 cM with the peak at 4 cM), containing genes encoded for various 

hormones.  

Another outstanding signal was on chromosome 5 for the GO term related to 

muscle fibre. Twenty-nine genes from GO: 0043292 (contractile fibre) were linked 

to position 6 cM on chromosome 5, including genes encoding for various subunits of 

skeletal muscle components like actinin, troponin, myosin and tropomyosin. 

GO:0005884 (actin filament) was also found to be enriched 5 cM further 
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downstream. However, 4 out of the 5 genes that were significant were part of the 29 

significant genes at the upstream signal. Given the overlap in the significant genes 

and the close proximity of the two signals, it was not clear whether the signal for 

actin filament was independent to the signal for the contractile fibre. 

For the Fisher’s Exact Test, the local statistics were dichotomised using an 

arbitrary cut-off of P = 0.001 and subsequently treated as categorical data. An 

interesting question is to what extent the signals are affected by the choice of the 

local statistic threshold. Gene set analysis with GO was repeated with a threshold of 

P < 0.005. Out of the 15 gene set eQTL detected using P < 0.001, 6 remained 

significant using the more relaxed threshold for local statistic (shown in Table 6.2). 
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GO Term Chr cM Minimum 

genome-

wise P-

value 

Gene 

set size 

No. of 

genes with 

significant 

local 

statistic * 

GO Term 

description 

0001843 2 206 0.047 10 5 (209) neural tube 

closure 

0006754 ** 5 75 0.007 29 10 (178) ATP 

biosynthetic 

process 

0005681 14 41 0.033 56 15 (229) spliceosome 

0005179 17 2-5 0.019 74 38 (823) hormone activity 

0019882 20 1 - 7 0.007 40 10 (22) antigen 

processing and 

presentation 

0042611 20 1 - 7 0.004 24 9 (22) MHC protein 

complex 

 

Table 6. 2 

Six remaining enrichment signals from Table 6.2 after lowering the local statistic threshold. * The 

column shows, at the position with the maximum global statistic, the number of genes in the gene set 

with LRT statistic above 7.8 (P-value less than 0.005). The total number of genes with significant 

LRT statistic at the position is quoted in bracket. ** The significant genes in GO:0006754 are 

different to those in GO:0033014 in table 6.1. 
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Many of the gene set signals disappeared with the change of threshold for 

dichotomisation, including those with genes encoding for ion transporters and 

signalling. The signals for categories related to neural tube development, 

spliceosome and hormone activity remained. At position 75 cM of chromosome 2, 

the signal for tetrapyrrole biosynthetic process was replaced by ATP biosynthetic 

process. 

6.3 Discussion 

 In eQTL mapping, the power of the univariate approach, where linkage for a 

single gene is evaluated one at a time, is heavily penalised by the correction for 

multiple testing. Evaluating multiple genes offers a post-hoc method to combine 

knowledge in biology with statistic to explore the data set beyond the breadth of 

eQTL detection that is capable on a purely statistical basis. The analysis with Gene 

Ontology partly addressed the major obstacle that was faced in chapter 5; 

substantially more genes probed by the microarray were annotated in GO than in 

KEGG. Although common pathways are not implicated by sharing of GO terms, 

finding pleiotropy for a number of genes from the same gene family can be 

interesting; for example, it can be treated as a first clue for inferring the mechanisms 

underlying gene co-regulation. 

 The SHR rat strain was developed as a model for studying hypertension and 

metabolic diseases. In the BXH/HXB RIL panel, I identified 13 loci linked to gene 

set enrichment for various functions; the most interesting ones are related to ions 

transport activity, lipid metabolism, oxidoreductase activity and hormone activity. 

While the balance of potassium and sodium ions has been linked to hypertension 
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(Khaw & Barrett-Connor 1988), the other gene sets contain genes with important 

roles in metabolism and energy balance. Variants with small contributions to the 

expression levels in those genes could help to drive the physiological defects in 

metabolism in hypertensive rats (Aitman et al. 1997). There are also a number of 

enrichment signals for gene sets with less obvious relevance to the hypertension and 

metabolic diseases. Nonetheless, these signals are constituted of at least 4 (and for 

some signals many more) functionally related genes, all with very small point-wise 

P-values in the region between 10
-3

 and 10
-6

. Hence, these signals are far more 

convincing than those identified with the KEGG database in chapter 5, either by the 

Fisher’s Exact Test or the Wilcoxon Test. 

 In this study, I also investigated the effect of altering the local statistic cut-off 

in the Fisher’s Exact Test. I chose to relax the cut-off from P < 0.001 to P < 0.005 

(local statistic from 10.8 to 7.8). I did not increase the stringency of the cut-off 

because the objective of gene set testing was to detect weak linkage effects. 

Furthermore, I noted from chapter 5 that the Fisher’s Exact Test did not work well 

when there were very few significant genes. By relaxing the cut-off, an increase in 

the number of significant genes was observed.  One could expect new signals to arise 

for gene sets with enrichment of local statistics between 7.8 and 10.8. Although 

signals for those putative eQTL of weak effects might be interesting, I focused on 

how many of the original signals remained. Signals would remain only if there was 

an enrichment of genes with local statistic above 7.8 as well as above 10.8. 

 Many of the original signals disappeared after the lowering of the cut-off. 

One reason of why those signals were no longer detectable with the lower cut-off 

could be due to the increase in the amount of false positives in the “significant” 
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group. In the 2 x 2 table, this would most likely increase the number in the cell for 

the genes called significant and not in the gene set; hence the signal for gene set 

enrichment would get diluted. This would be particularly true for gene set with local 

statistics that could be neatly divided by the cut-off of 10.8; i.e. there was a clear 

separation of two groups of local statistics (high and low). On the other hand, 

relaxing the cut-off can strengthen the significance of other signals if the enrichment 

of high local statistics stretches over either side of the original cut-off, as shown for 

the spliceosome and hormone activity gene sets. The results suggest that the choice 

of cut-off can have a dramatic effect on Fisher’s Exact Test, and there is no definitive 

way to decide what the appropriate cut-off should be. The results also indicate that 

there may be optimal cut-offs for different gene sets. Clearly, this arbitrary is not 

very satisfactory when testing a large number of gene sets. In addition, it was 

discussed in chapter 5 that the dichotomisation in Fisher’s Exact Test does not use all 

the information available in the local statistics. In theory, methods for detecting gene 

set enrichment which do not rely on a rigid cut-off should be preferred. However, 

more research is required to address the problems with the rank-based methods in 

eQTL mapping as discussed in chapter 5. 

 It should be noted that the empirical genome-wise threshold was derived on a 

per gene set basis. In other words, multiple testing was accounted for by testing each 

gene set over the entire genome, but not for the number of gene sets being tested. 

The matter was complicated by the fact that gene sets overlapped with one another to 

a large extent, hence the tests were not independent. Also, computational difficulties 

restricted the number of permutation here to 1,000 rounds, which meant the smallest 

empirical P-value possible for the global statistic was 0.001. To use methods such as 
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Bonferroni or false discovery rate to correct for testing multiple gene sets, there 

would not be any significant signal at all. However, as this approach was employed 

for data exploration, I argue that interpretation should not be entirely based on P-

values. It is demonstrated that gene set testing can be useful in highlighting a 

substantial number of genes which belong to common functional categories with a 

fair level of linkage evidence. It should be noted that this approach was never meant 

to prove that the highlighted genes were genuinely linked; instead, it was intended to 

help the researchers in prioritising their research efforts after they completed their 

investigation with the top marker / genes. In this study, even with only a modest 

number of permutations, it was sufficient to narrow the focus from over a thousand 

GO terms down to just over a handful. From this point onward, further work should 

proceed with a stronger emphasis from a biological point of view, combined with 

other evidence gathered from external sources, to assess the validity of these signals. 

 Finally, this analysis demonstrated the value of gene annotations in a well 

managed bioinformatics database. Information in a format that can be data-mined 

using computational tools is vital to genetics and genomics research. Regarding this 

aspect, the resources in humans and model organisms are in a much more advanced 

position compared to livestock species. It is true that comparative genomics allows 

mapping of orthologous genes from a farm animal species to humans or model 

organisms and subsequently tapping into the resources in those organisms. However, 

even in humans and model orgainisms, a substantial amount of annotations was 

inferred via in-silico methods such as matching of sequence motifs. As a result, 

misclassifications can occur. Mapping annotations across different species increases 

the risk of further propagating the erroneous annotations. Efforts are underway to 
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create bioinformatics resources that are specific for livestock species; for example, 

gene ontology links to EST sequences in cattle and swine had been established in the 

past (Harhay & Keele 2003) and more development of manual GO annotation for 

livestock species, particularly in chicken, is taking shape (McCarthy et al. 2007). As 

the efforts in consolidating livestock genomic resources are gathering pace, it should 

alleviate some of the challenges in conducting eQTL experiment and the post-

analysis in livestock species in the foreseeable future. 

6.4 Conclusion 

  With a wide coverage of genes, gene set testing can be fruitful for 

identifying putative eQTL with moderate effects. The choice of cut-offs for the 

Fisher’s Exact Test can affect the results and various cut-offs over a small range may 

be appropriate for different gene sets, depending on the distribution of the local 

statistics within gene sets. Nevertheless, as a general data exploratory tool, this 

approach enables a significant reduction in the search space to a manageable size in 

order for manual data-mining to be carried out by bench biologists. 
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CHAPTER 7 

General discussion and perspective 

 This chapter features a summary of the key contributions of this thesis. It also 

provides an outlook on how genetical genomics may continue to develop, and 

reviews the potential pitfalls that constitute some of the major obstacles in the field 

other than those already mentioned in earlier chapters. Finally, a perspective on the 

way genetical genomics may impact on aspects of livestock genetics is given. 

7.1 Summary 

 Investigations on various facets of genetical genomics were presented in 

chapter 2 - 6. The “take home messages” from these investigations include: 

 

Good experimental design and strict data quality control are absolutely vital for 

making sense of the final results. 

One important conclusion drawn from chapter 2 and 3 is that we should 

spend substantial efforts in planning prior to conducting an experiment in genetical 

genomics. Similar to mapping genetic loci for other complex traits, large sample size 

is required to attain adequate statistical power in eQTL studies. The general rule of 

thumb is “the greater the sample size the better”. However, I have shown that by 

devoting efforts to directing the resources most relevant to the question of research 

interest, an efficient experimental design can make the most from a fixed research 

budget to maximise sample size and power. Again, power is an important issue when 

eQTL are combined with functional QTL in an integrated analysis. An experiment 



 154

has to be well designed so that the subjects genotyped match those phenotyped and 

match those expression-profiled; noise from systematic sources such as batch and 

sample-handling must be minimised; and the potential confounding effect, e.g. using 

multiple breeds, should be considered before samples are selected. Equally important 

as having a good experimental design is to have rigorous quality control while data 

are generated and managed. As many researchers in bioinformatics would quote: 

“garbage in, garbage out”; the quality of all the data including the mapping 

annotations needs to be of a dependable standard for the full potential of genetical 

genomics to be realised. 

 

Multiple testing continues to be problematic for assessing the significance of 

eQTL. 

 The multiplicity of eQTL analysis poses considerable challenges; one has to 

account not only for the multiple loci in a genome-wide search but also for massive 

number of traits, some of them correlated. I have shown in chapter 4 that by using 

false discovery rate (FDR) (Storey & Tibshirani 2003) and by reducing the 

dimension of the dataset (filtering out irrelevant expression traits / extreme 

genotypes), one can better control the level of false positive discovery and suffer to a 

lesser extent the loss of power due to test multiplicity. However, the correlation 

between transcripts is still likely to introduce some bias in estimating FDR. The jury 

is still out on how to properly account for multiple testing in genetical genomics. 

Stranger et al. (2005) argued that given each expression trait has its own properties 

of variance and inheritance, it would seem unlikely that genome- and experimental- 

wise thresholds provide the optimal means for assessing significance. Furthermore, I 
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made the suggestion that cis-eQTL is subjected to a lesser burden of multiple testing 

than trans-eQTL. This view has been echoed by a recent review by Gilad et al. 

(2008). Therefore, partitioning proximal and distal loci for separate analyses should 

lead to an increase in power. As with any microarray experiments, the golden rule is 

to always conduct proper validation of the positive findings (Allison et al. 2006). 

Therefore, a pragmatic approach would be to apply a multiple testing correction 

method that is not overly conservative (e.g., FDR instead of Bonferroni) in the first 

place and subsequently validate the biological relevance of the positives 

experimentally. Very recently, a version of FDR which is weighted by expression 

correlation has been proposed for eQTL mapping (Chen et al. 2008a). The method is 

still to be evaluated independently. However, it is unlikely to be the final answer to 

multiple testing in the context of eQTL, because there are other factors that will 

influence detection; for example, heritability of the expression trait and the LD 

pattern of the genome.  

 

Gene set testing extracts more information from the data than univariate 

statistics. Advances in genomics will enhance the value of this approach. 

 As a complementary approach to tackle multiple testing in genetical 

genomics, it is shown in chapter 5 and 6 that gene set testing is useful in highlighting 

co-regulation of functionally related genes. Other researchers have recently begun to 

apply gene set testing to eQTL analysis. For example, Emilsson et al. (2008) 

identified significant GO enrichment of eQTL genes for inflammatory response and 

macrophage activations in a cross between two inbred strain of mice, although it is 

not clear in that case whether potential sequence variation artefacts had been 
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accounted for. I have shown that gene set testing is a practical method to enable the 

use of anti-conservative thresholds and yet guard against an unmanageable inflation 

in false positives. For example, it was possible to highlight the possible links 

between ion transport activities and metabolic abnormalities in the SHR strain of rats 

using GO enrichment analysis. A recent study also demonstrated the use of a similar 

approach in identifying a locus associated with the arachidonic acid metabolic 

pathway in a rat model for cardiac diseases (Monti et al. 2008). At the same time, it 

is important to note that the results are strongly influenced by the choice of gene set 

definition and test statistic. Furthermore, users should be aware that the annotations 

in KEGG or GO can vary in their quality: merely 20% of the rat genes annotated by 

GO are supported by experimental evidence; the rest are either inferred from 

electronic annotation or from unknown sources (Rhee et al. 2008). More research 

will be needed to identify the optimal statistics for testing gene sets, and further 

development in pathway biology and functional genomics is necessary to ensure 

improvement in the robustness of this method. 

7.2 genetical genomics: future directions and pitfalls 

 The application of genetical genomics to understand complex traits such as 

human diseases has rapidly gathered pace. Some of the most recent published work 

reported the use of considerably larger sample size, denser marker map and greater 

coverage of the transcriptome than studies published merely few years ago. For 

example, Göring et al. (2007) sampled the lymphocyte transcriptional profiles from 

1,240 participants in the San Antonio Family heart Study; Dixon et al. (2007) 

genotyped > 400,000 SNPs and assayed the expression of > 54,000 transcripts from 
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400 children. Stranger et al. (2007) has not only study the effect of SNPs on gene 

expression, but also the effect of structural variations in the genome, including copy 

number variants (CNVs), on global expression phenotypes. With the decline in cost 

and increase in throughput for many genomic technologies, it is anticipated that 

bigger studies with even larger sample size and more comprehensive coverage of the 

genome will become the “bottom line” for genetical genomics: there will be no place 

for small and under-powered studies. At the same time, large scale collections of 

matched phenotypic records, such as clinical traits, are crucial to support the effort in 

mapping eQTL to enable the reconstruction of molecular networks that cause disease 

(Emilsson et al. 2008; Chen et al. 2008b) and other complex traits of interest. We 

will also need more novel statistical and computational methods to be developed to 

disentangle the complexity in the data, and ultimately produce detailed networks to 

be tested on the bench. 

 As gene expression represents only one level of regulation in a biological 

system, the future of genetical genomics will also encompass other -omics 

technologies. A study in the plant Arabidopsis thaliana first demonstrated the 

genetics mapping of variation in metabolomics (Keurentjes et al. 2006). At present, 

there are still issues with considerable technical uncertainty and high cost for QTL 

mapping in the context of proteomics and metabolomics to be commonplace. Once 

those issues are overcome in the future, such QTL studies, in conjunction with 

genetical genomics, will enable researchers to ask a number of questions: what is the 

genetic mechanism underlying variation in gene products and metabolites? How does 

the variation in protein expression relate to gene expression? How do protein and 

metabolic networks drive complex phenotypes? Do proteomic data present a more 
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accurate picture than networks derived from gene expression data? The genetic 

mapping of -omics variation at multiple biological regulatory levels, collectively 

known as “systems genetics” (Threadgill 2006), can potentially revolutionise the 

approach which geneticists will use to uncover the intricate molecular mechanisms 

underlying a biological system. 

 Although we look forward to an exciting future ahead in the field of genetical 

genomics, it is important not to lose sight on some of the technical pitfalls associated 

with eQTL mapping. As discussed in this thesis and elsewhere (for example: Alberts 

et al. 2005; Alberts et al. 2007), batch and sequence variation effects can introduce 

serious confounding results unless they are detected and correctly accounted for. 

Tissue specificity is another important factor which requires particular caution: 

regulatory networks has been shown to be highly tissue-specific (Hovatta et al. 

2007). The fine tissue-specificity may invalidate some of the eQTL identified from 

experiments with RNA extracted from whole or large regions of organs. Even if a 

specific tissue is used in a study, there is risk of erroneous eQTL due to 

contamination by cells from neighbouring tissues. 

 A study on how replicable eQTL are (Peirce et al. 2006) found that replicable 

eQTL were disproportionately cis-acting, and few trans-acting eQTL were 

successfully confirmed. Their results suggest that while genetical genomics is 

effective for identifying cis-acting loci which are candidates for major effect QTL, 

indirect genetic regulation represented by trans-acting loci is difficult to detect. It 

may be that trans- effects are generally weak and are of lesser statistical significance, 

and for those reasons these effects are more sensitive to the technical noise of the 

experiment. In addition, environmental effects (Gibson 2008) can also significantly 
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contribute to variation in gene expression; eQTL could appear or disappear, or 

exhibit opposite direction in its allelic association depending on external stimuli. 

This phenomenon is known as plasticity. Plasticity (Li et al. 2006), as well as sex 

specificity (Wang et al. 2006), in eQTL have been shown empirically to be 

significant. Ultimately, all of these pitfalls relate back to the necessity of a good 

experimental design. To produce results that are scientifically sound, researchers 

need to conduct eQTL mapping using samples of appropriate tissue, age, sex, and 

exposure to external environmental factors that are relevant to the function trait of 

interest. However, knowing and accessing the right type of cells at the right time 

from the right environment is usually not a trivial task (Weiss 2008). 

7.3 The use of eQTL in livestock genetics 

 Typical livestock populations have a number of desirable properties which 

make them particularly suitable for eQTL discovery using a genetical genomics 

approach (Haley & de Koning 2006). Livestock species generally have large family 

sizes and extensive phenotypic records are routinely collected on a large number of 

animals by the breeding industry for estimating breeding values. Indeed, some of the 

breeding companies, such as PIC, have an enormous collection of tissue samples and 

extensive phenotypic records for farm animals with known lineage over large 

numbers of generations. Environmental conditions in genetic nucleus farms used for 

artificial selection are also well controlled to allow a fair comparison between 

subjects. Furthermore, many QTL with known effect size exist in livestock 

populations and the knowledge is out in the public domain. Therefore, the integrative 
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approach combining functional QTL and expression QTL could be achieved by 

profiling the gene expression of matched subjects.    

 However, genetical genomics has not been taken up by the livestock breeding 

industry. In Chapter 1, I described the potential use of gene expression QTL for 

designing breeding programmes in what can be referred to as expression-based 

marker assisted selection (Kadarmideen et al. 2006). Despite the scope of eQTL has 

in animal breeding, the cost of microarray seems still too high for this approach to be 

practical. A pure quantitative approach known as genome-wide selection 

(Meuwissen et al. 2001) looks likely to become more routinely used by the industry 

to design breeding programmes. This approach uses genotypes of a large number of 

SNPs throughout the genome, without regard to QTL locations and functions, to 

predict breeding values. Arguably, studying gene functions is currently too expensive 

when considering the small profit margins on which breeding companies currently 

operate. 

 On the contrary, genetical genomics may have wider applications in the 

animal and human health industry. Understanding the molecular basis of health traits 

and resistance to pathogens could be useful for disease prevention and discovery of 

new treatments for animal diseases. In crop science, there are already examples of 

using genome-wide eQTL mapping as a new tool to find candidate genes related to 

complex traits, such as resistance to wheat gem rust pathogens in barley (Druka et al. 

2008). There is no reason why genetical genomics cannot be applied in similar ways 

in studying disease susceptibility traits in livestock species. The stakes in combating 

animal diseases are particularly high in the current era of emerging diseases. 

Diseases such as avian influenza (Yamada et al. 2008) and foot and mouth disease 
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(Haydon et al. 2004) are having tremendous impact on the social and economic 

aspect of today’s society. At the same time, farm animals are increasingly being used 

as human disease models because they are closer related to humans than rodents are 

(for example: Rogers et al. 2008). Rising interests in sustainable agriculture (for 

example: http://www.sabre-eu.eu/) also ensure that there is a place for functional 

genomics in applied agricultural research. For these reasons, I maintain the view that 

genetical genomics will be a valuable tool in livestock genetics. 
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