
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Hippocampal Theta Sequences: From

Phenomenology to Circuit Mechanisms

Angus Chadwick

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2016



Abstract
The hippocampus is a brain structure involved in episodic memory and spatial cog-

nition. Neuronal activity within the hippocampus exhibits intricate temporal pattern-

ing, including oscillatory and sequential dynamics, which are believed to underlie these

cognitive processes. In individual cells, a temporal activity pattern called phase pre-

cession occurs which leads to the organisation of neuronal populations into sequences.

These sequences are hypothesised to form a substrate for episodic memory and the

representation of spatial trajectories during navigation.

In this thesis, I present a novel theory of the phenomenological properties of these

neuronal activity sequences. In particular, I propose that the sequential organisation of

population activity is governed by the independent phase precession of each cell. By

comparison of models in which cells are independent and models in which cells exhibit

coordinated activity against experimental data, I provide empirical evidence to support

this hypothesis. Further, I show how independent coding affords a vast capacity for the

generation of sequential activity patterns across distinct environments, allowing the

representation of episodes and spatial experiences across a large number of contexts.

This theory is then extended to account for grid cells, whose activity patterns form

a hexagonal lattice over external space. By analysing simple forms of phase coding in

populations of grid cells, I show how previously undocumented constraints on phase

coding in two dimensional environments are imposed by the symmetries of grid cell

firing fields. To overcome these constraints, I propose a more complex phenomenolog-

ical model which can account for phase precession in both place cells and grid cells in

two dimensional environments.

Using insights from this theory, I then propose a biophysical circuit mechanism

for hippocampal sequences. I show that this biophysical circuit model can account for

the proposed phenomenological coding properties and provide experimentally testable

predictions which can distinguish this model from existing models of phase preces-

sion. Finally, I outline a scheme by which this biophysical mechanism can implement

supervised learning using spike time dependent plasticity in order to learn associations

between events occurring on behavioural timescales.

The models presented in this thesis challenge previous theories of hippocampal

circuit function and suggest a much higher degree of flexibility and capacity for the

generation of sequences than previously believed. This flexibility may underlie our

ability to represent spatial experiences and store episodic memories across a seemingly

unlimited number of distinct contexts.
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Chapter 1

Background

1.1 Functions of the hippocampus

Episodic memory

The hippocampus is a brain area central to episodic, spatial and declarative mem-

ory. The importance of the hippocampus for episodic and declarative memory was

famously demonstrated in patient H.M., whose hippocampi (along with most of his

medial temporal lobes) were bilaterally removed in a surgical procedure for the treat-

ment of epilepsy (Penfield and Milner, 1958). Following this procedure, H.M. exhib-

ited severe anterograde amnesia, being unable to form new explicit memories. Despite

this deficit, he maintained relatively intact cognitive function in the majority of other

domains, including the ability to recall memories of events several years earlier and the

ability to form new implicit and procedural memories. These observations motivated

the hypothesis, now known as the Standard Model of Systems Consolidation (Squire

and Alvarez, 1995), that new memories are formed in the hippocampus but later mi-

grate to cortex, after which the hippocampus is no longer required for their retrieval.

Based on these insights, a highly influential theory of hippocampal function was

developed by David Marr (Marr, 1971). Marr proposed that the hippocampus indexes

the distributed pattern of cortical activity associated with a particular experience via

the activation of a unique subset of hippocampal neurons. According to this theory,

memory traces are formed rapidly in the hippocampus by the modification of synap-

tic efficacies between these cells during the experience. Once this memory trace has

been established within the hippocampus, these strengthened synaptic connections al-

low the pattern of hippocampal activity which indexes the experience to be reactivated

1



Chapter 1. Background 2

whenever a sufficiently large subset of that pattern is activated, in a process known

as pattern completion. Thus, a small part of the cortical activation pattern associated

with the original experience will be completed within the hippocampus. In turn, this

completed pattern of hippocampal activity will reinstate the full cortical activation pat-

tern, resulting in the re-experiencing of the event and thus retrieval of the memory.

Over time, this hippocampal memory trace is then transferred to cortex, at which time

it becomes hippocampus-independent (but see multiple trace theory for an alternative

hypothesis (Nadel et al., 2000)).

Cognitive map

Evidence for the involvement of the hippocampus in spatial cognition emerged later

from studies in rodents. The theoretical basis for this work lies in the pioneering be-

havioural studies of Edward Tolman, a psychologist who had been investigating the

ability of rodents to navigate flexibly in complex environments. Arguing against the

prominent stimulus-response theory of navigation in which navigational choices in a

maze are posited to arise from the sequential chaining of conditioned responses to sen-

sory stimuli (Hull, 1943), Tolman proposed the concept of a cognitive map. According

to Tolman, rodents maintain a cognitive map of their environment containing infor-

mation about the relative locations and attributes of objects, allowing them to flexibly

navigate towards a particular goal even if conditioned responses to sensory stimuli

have not been established (Tolman, 1948).

To test this hypothesis, Tolman performed experiments in which rats were placed

in one arm of a cross shaped maze and learned to take a right turn to a reward at the

end of the adjacent arm. After this paradigm had been learned, rats were then placed in

a different arm of the maze for the first time. Rather than engaging in the conditioned

right turn response as predicted by the stimulus-response theory, rats successfully took

the correct path towards the reward using the novel direct route. Despite such evidence,

however, the existence of cognitive maps of the form proposed by Tolman in rodents is

still debated (Amsel, 1993; Bennett, 1996), and the stimulus-response theory remains

a highly influential view of learning and behaviour (Toates, 1997; Holland, 2008).

While Tolman’s studies were purely behavioural, neurobiological evidence for the

cognitive map hypothesis was subsequently obtained by John O’Keefe and Jonathan

Dostrovsky. Recording from the hippocampus of freely moving rodents, they found

that individual neurons became active at particular locations in an environment (O’Keefe
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and Dostrovsky, 1971). When recording from an ensemble of hippocampal cells, dif-

ferent cells became active at different locations, such that the activity patterns formed

a map of the environment from which the animal’s location at each instant could be

inferred. The theoretical implications of this work were expounded in “The Hippocam-

pus as a Cognitive Map”, in which O’Keefe argued that these cells form the biological

substrate of Tolman’s cognitive map, which had previously only been conceived at a

behavioural and psychological level (O’Keefe and Nadel, 1978).

On a philosophical level, it was argued that these findings constitute a scientific

basis for Immanuel Kant’s theory of space, in which spatial representations are hy-

pothesised to exist prior to all sensory inputs, and this innate cognitive apparatus is

hypothesised to provide a fixed architecture within which sensory inputs are integrated

in order to construct an experience (O’Keefe and Nadel, 1978). In support of this view,

empirical evidence that spatial representations exist in the hippocampus upon first spa-

tial experience has since emerged (Wills et al., 2010). This Kantian view of space

runs in contrast to the Lockean view, in which spatial representations are proposed to

be learned from sensory inputs, or simply inherited from their structure, such as the

spatial patterning of light on the retina (O’Keefe and Nadel, 1978). In the context of

hippocampal function, the Kantian view suggests that fixed spatial representations ex-

ist and that, upon exposure to a novel environment, sensory inputs simply select from

a set of possible preconfigured modes of network dynamics. The Lockean view sug-

gests instead that no such preconfigured representations exist, and that arbitrary spatial

representations may be constructed de novo based on sensory experience.

General theories of hippocampal function

Today, the debate over the functional role of the hippocampus continues. A large body

of work demonstrates that neurons in the rodent hippocampus convey both spatial and

nonspatial information (Hampson et al., 1999; Allen et al., 2012; Cohen et al., 2013).

Recently, evidence has emerged which implicates the hippocampus in the representa-

tion of elapsed time (MacDonald et al., 2011; Mankin et al., 2012). Several proposals

to unify various aspects of the memory-related, spatial and temporal functions of the

hippocampus have been made, drawing upon similarities between these apparently

disparate functions at a more fundamental level.

In order to unify the spatial view of hippocampal function with the representation of

time, it has been proposed that these phenomena are manifestations of a more general
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mathematical computation, the Laplace transform, which the hippocampus performs

on its inputs in order to generate an integrated representation of spatiotemporal context

(Howard et al., 2014). In addition to this unification of the temporal and spatial pro-

cessing roles of the hippocampus, proposals have been made to unify the spatial and

memory-related functions. For example, memory may be viewed as navigation in men-

tal space, or mental time travel (Buzsáki and Moser, 2013). Alternatively, the structure

of physical space may share commonalities with the structure of a more abstract space

of overlapping memories, such that relational networks of memories organised in terms

of similarity or common features may be subserved by the same neural architectures

that encode the relational structure of objects in physical space, organised according

to relative location (Eichenbaum, 2004). As such, it has been proposed that the hip-

pocampus generates a “memory space” (Eichenbaum et al., 1999).

Several studies support a role for the hippocampus in the processing of relational

properties of objects, events and stimuli in various settings, both in rodents and higher

primates (Dusek and Eichenbaum, 1997; Kumaran and Maguire, 2005). For example,

the hippocampus is known to be essential for transitive inference (Heckers et al., 2004;

Zalesak and Heckers, 2009), a cognitive function in which the ordering of two stimuli

(for example, in terms of value) is inferred based on knowledge of their individual

orderings relative to a third stimulus (i.e., A > B, B > C, therefore A > C). Such

a transitivity property is fundamental to space, time, and therefore presumably also

the relational memory networks proposed by Eichenbaum and colleagues (which are

hypothesised to have an analogous structure to a spatial map). Hence, while the precise

function of the hippocampus remains unknown, the organisation of information into

abstract, structured spaces of interrelated elements appears to be a fundamental and

unifying feature of hippocampal processing.

1.2 Anatomy of the hippocampus

The hippocampus is a three-dimensional subcortical structure located within the me-

dial temporal lobe (Amaral and Witter, 1989). The hippocampus is divided into sev-

eral histologically and functionally distinct subregions, including four cornu Ammonis

subfields (CA1-CA4), the dentate gyrus and subiculum (Figure 1.1). The hippocampus

also borders on the entorhinal cortex, which is both a major source of input to and a

major recipient of output projections from the hippocampus. These subfields differ in

terms of their internal synaptic connectivity as well as their interconnectivity to other
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Figure 1.1: Anatomicalrganisation of the hippocampus, showing the entorhinal cortex

(EC), subiculum (Sub), dentate gyrus (DG) and subfields CA1 and CA3. Modified figure

from Ramon y Cajal (1911).

subfields and external brain areas (Anderson et al., 2007).

In a canonical view of hippocampal function, information enters the hippocampus

primarily via the entrorhinal cortex, which projects to regions CA3, CA1 and dentate

gyrus (Figure 1.1, inset). Dentate gyrus provides further inputs to CA3 which in turn

provides further inputs to CA1, which finally projects back to entrorhinal cortex (An-

derson et al., 2007). In addition to the canonical processing loop described above,

however, the hippocampus forms reciprocal loops with a multitude of other brain ar-

eas such as amygdala (Pitkänen et al., 2000), prefrontal cortex (Thierry et al., 2000),

striatum, ventral tegmental area (Floresco et al., 2001; Lisman and Grace, 2005; Luo

et al., 2011) and medial septum (Freund and Antal, 1988; Tóth et al., 1993). Further to

the division of the hippocampus into histologically distinct subfields, the hippocampus

extends spatially across an anatomically defined axis known variously as the dorsoven-

tral, septotemporal or longitudinal axis (Amaral and Witter, 1989).

Distinct subfields of the hippocampus have markedly different cellular and circuit

properties. In the CA3 region of the hippocampus, extensive recurrent collaterals be-

tween pyramidal cells are hypothesised to underlie associative memory dynamics such

as pattern completion (Le Duigou et al., 2014). In the CA1 region, however, there

is a dearth of excitatory synapses between pyramidal cells (Anderson et al., 2007).

These differences in anatomical structure are often taken to imply distinct functional

roles for each subregion in pattern completion and pattern separation for the storage

and retrieval of memories (Marr, 1971), and indeed differential coding properties and

dynamics are often observed (e.g., Leutgeb et al., 2004).
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1.3 Global activity states of the hippocampus

Activity within the hippocampus can be divided into two distinct states, each of which

is associated with a different behavioural state (Vanderwolf, 1969). During periods of

slow-wave sleep, rest, or immobility, the hippocampus generally enters a state known

as large irregular activity (LIA). Within this background state, extracellular record-

ings of the local field potential (LFP) exhibit occasional large amplitude deflections

termed sharp waves, followed by high frequency oscillations termed ripples (around

200 Hz, Buzsáki et al. (1992)). These events are known as sharp wave ripples (SWR).

During rapid eye movement (REM) sleep, locomotion, and other active behaviours,

the hippocampus enters the theta state (Buzsáki, 2002). This state is characterised by

prominent oscillations in the 8-12 Hz range of the LFP, with faster gamma oscilla-

tions nested within each theta cycle (Bragin et al., 1995; Lisman and Jensen, 2013).

In addition to theta and LIA states, a small irregular activity state has been proposed,

which occurs during small movements and is associated with a reduced amplitude and

frequency of irregular activity (Vanderwolf, 1969).

Local field potentials are believed to reflect the collective synchronisation of neu-

ronal populations at the mesoscopic scale (Buzsáki et al., 2012). Accordingly, activity

at the single neuron and neuronal circuit levels exhibit distinct dynamics in SWR events

and theta states (Klausberger et al., 2003). During theta states, hippocampal neurons

are rhythmically active at theta frequency, with subtype- and subregion-specific modu-

lation depths and phase preferences (Mizuseki et al., 2009). Similarly, neurons are gen-

erally phase-locked to ripple oscillations during SWR events (Csicsvari et al., 2000; Le

Van Quyen et al., 2008). During theta states neuronal activity is relatively sparse and

asynchronous, whereas during SWR events activity is highly synchronous (Mizuseki

and Buzsaki, 2014).

Theta oscillations and SWR events arise through distinct mechanisms. It is gen-

erally believed that SWR events emerge due to a combination of neocortical inputs

(Sirota et al., 2003) and intrinsic hippocampal dynamics, including synchronous dis-

charge from pyramidal cells in CA3 (Buzsáki et al., 1992) and recurrent inhibitory

circuits in CA1 which generate a high frequency ripple oscillation (Schlingloff et al.,

2014). The mechanisms of theta oscillations are manifold (Buzsáki, 2002), including

intrinsic biophysical rhythmicity at the cellular level (Leung and Yu, 1998), rhythmic-

ity at the level of large-scale neuronal circuits (Stark et al., 2013) and external drive at

theta frequency (Bland and Bland, 1986; Stewart and Fox, 1990).
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A major generator of hippocampal theta oscillations is the medial septum. In

particular, the medial septum is known to send GABAergic projections which target

hippocampal interneurons and entrain theta frequency oscillations (Freund and Antal,

1988). In addition to these septohippocampal projections, hippocamposeptal projec-

tions form a reciprocal processing loop (Tóth et al., 1993), which has been suggested

to be a requirement for theta rhythmogenesis (Wang, 2002). Medial septal theta ac-

tivity has been shown to lead hippocampal theta oscillations, consistent with its role

as a generator rather than inheritor of theta activity (Hangya et al., 2009). Surgical

or pharmacological lesions of the medial septum abolish hippocampal theta oscilla-

tions in vivo (Petsche et al., 1962; Brandon et al., 2011; Wang et al., 2015). However,

theta oscillations can emerge in vitro in an intact hippocampal preparation, despite the

absence of septal inputs (Goutagny et al., 2009).

These distinct states of hippocampal activity form the basis of a widely influen-

tial view of hippocampal function, termed the two-stage model of memory formation

(Buzsaki, 1989). According to this model, experiences are first stored via synaptic

plasticity during theta oscillations, while the animal actively explores an environment.

During subsequent SWR events as an animal sleeps or rests, experiences are further

consolidated into long term memories through interactions between cortex and hip-

pocampus in order to establish stable and permanent cortical representations of expe-

rienced events, which may eventually become hippocampus-independent.

1.4 Spatial coding during theta states

Phase precession

During navigation, pyramidal cells in the rodent hippocampus fire action potentials

in a limited region of space called their place field (O’Keefe and Dostrovsky, 1971).

However, the firing patterns generated by these cells as the animal travels through the

place field are also modulated by the theta rhythm. Place cells tend to fire in bursts of

spikes within the place field, with a single burst occurring within each cycle of the theta

rhythm. In a seminal study, O’Keefe and colleagues asked whether these bursts occur

at a fixed phase of the theta cycle, or whether the phase of spiking shifts depending

on some spatial or behavioural factors. By plotting the phase at which spikes occur

against the location of the animal when the spike occurred, they found that the spikes

shift systematically in phase against the LFP theta rhythm as the animal crosses the
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place field (Figure 1.2), a phenomenon they termed phase precession (O’Keefe and

Recce, 1993).

While place cells generally show an increase and then decrease in firing rate and the

animal crosses the place field, the firing phase precesses continuously, starting around

the peak of the LFP at place field entry and shifting through around 180 - 360 degrees

of extracellular theta before place field exit (Schmidt et al., 2009). By breaking the

symmetry of the rate code, phase precession provides information about the location of

the animal which cannot be extracted from firing rate alone, such as whether the animal

has just entered or is about to exit the place field. These observations have therefore

been interpreted as evidence for a temporal coding scheme in individual place cells,

which both enhances and disambiguates the spatial information contained within the

firing rate code. Indeed, it was later shown directly that phase precession increases

the spatial information contained within the firing pattern of a place cell (Jensen and

Lisman, 2000).

Importantly, spike phase within the place field correlates best with the animal’s lo-

cation, rather than other variables such as the time since the animal entered the place

field (Huxter et al., 2003) (Figure 1.2d, e). This occurs despite the fact that the animal

may travel through the place field at different speeds on different laps, suggesting that

the dynamics of phase precession are configured so as to maintain a stable relation-

ship between spike phase and spatial location across variable behavioural conditions.

Later studies confirmed this hypothesis directly, demonstrating that the intrinsic theta

frequency of cells in CA1 vary with the running speed of the animal, allowing spike

phase to precess more slowly or rapidly in order to maintain a robust phase-position

relationship in the face of changing running speeds (Geisler et al., 2007). For these

reasons, phase precession is widely viewed as a canonical example of temporal coding

within the nervous system, not least because it occurs far from sensory inputs against

a temporal reference frame which is internally constructed rather than inherited from

external events.
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Figure 1.2: Phase precession in place cells. (a) An animal runs from left to right along

a linear track. (b) An individual place cell fires in a particular region of the track (the

place field). (c) When plotting the spikes on a single lap through the place field against

the simultaneously recorded LFP theta oscillation, spikes are seen to shift backwards

in phase as the animal crosses the place field. (d) When plotting the pooled set of spike

phases over all laps against the position of the animal at the time of the spike, a strong

correlation is observed. (e) When plotting the pooled set of spike phases against the

time since the animal entered the place field, a weaker correlation is observed. Figure

taken from Huxter et al. (2003).
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Theta sequences

While the interpretation of phase precession as a single cell temporal coding scheme

continues to be viewed by many as attractive, evidence for an alternative interpretation

emerged early on from the study of timing relationships between pairs of cells dis-

playing phase precession. Specifically, it was observed that pairs of phase precessing

place cells with overlapping place fields tend to be active in a particular temporal or-

der during theta cycles, and that this ordering reflects the ordering of their place fields

in physical space (Skaggs et al., 1996). Moreover, it was found that the temporal lag

between place cells within theta cycles reflects the distance between their place field

centres in physical space.

Thus, phase precession was shown to compress the pairwise ordering of place cells

along a behavioural route into a faster ordering within theta cycles, generating a nested

representation at behavioural and theta timescales of the ordering at which places were

visited. It was therefore proposed that the function of phase precession may be to

bridge the gap in timescales between behavioural events and the faster timescales at

which neuronal processes such as synaptic plasticity and synaptic integration occur,

facilitating the storage and neuronal decoding of extended behavioural events (Skaggs

et al., 1996). Such an interpretation suggests that the functional role of phase preces-

sion pertains to the dynamics of neuronal populations rather than individual cells.

As technologies for monitoring the activity of large scale neuronal ensembles dur-

ing behaviour have progressed, further evidence has emerged regarding the coordina-

tion of neuronal activity during theta cycles. By recording from groups of place cells

coactive within theta cycles, the results of Skaggs and colleagues regarding the theta-

ordering of place cell pairs were extended to multi-neuron spike patterns within theta

cycles (Dragoi and Buzsáki, 2006; Foster and Wilson, 2007). As expected from the re-

sults of Skaggs and colleagues, it was found that groups of place cells fire in sequence

within theta cycles, and that the ordering of place cells within a theta sequence reflects

the ordering of their place fields on a linear track. However, an unexpected finding of

these studies was that the timing relationships present in multi-neuron spike sequences

appeared to be more precise and well-organised than would be expected based on the

phase precession of each individual cell alone, suggesting some form of additional

coordination within the circuit.

Following the discovery of these theta sequences, a shift in the interpretation of

phase precession as a spatial coding scheme began to emerge. Whereas studies of
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single unit phase precession had assumed that the spike phase provides a temporal

code through which the animal’s precise location within the place field can be deduced,

studies of theta sequences began to view place cell population activity as representing

spatial trajectories within theta cycles. Specifically, these studies viewed each place

cell as representing only a single location regardless of spike phase, which is generally

not the current location of the animal, allowing different cells within a theta cycle to

represent locations ahead or behind the animal. Such a view constitutes a fundamental

shift in perspective of the information conveyed by the spiking of place cells within

theta cycles - in the first view, a population of phase precessing place cells active

within a theta cycle would simply represent the animal’s instantaneous location at high

resolution (Jensen and Lisman, 2000), while in the second view the population of place

cells represents an extended trajectory spanning around one metre of physical space

(e.g., Gupta et al., 2012).

By decoding the spatial trajectories represented by place cell populations within

theta cycles according to the second view, subsequent studies attempted to probe the

spatial representations active at theta timescales. By pooling data from many laps

across a linear track, Maurer and colleagues were amongst the first to demonstrate

that such spatial representations are not fixed, but may vary depending on behavioural

conditions (Maurer et al., 2011). They found that the running speed of the animal mod-

ulates the length of trajectory generated within a population of place cells, with greater

running speeds generating longer spatial trajectories. Shortly thereafter, Gupta and col-

leagues performed the first single cycle analysis of theta sequences. Using Bayesian

decoding algorithms, they found that theta sequences appear to represent salient seg-

ments of the environment, such as the region of space between two landmarks, and that

decoded trajectories can shift to represent locations further ahead or behind the animal

as the animal approached or departed from a landmark (Gupta et al., 2012).

These discoveries gave rise a fundamental shift in thinking regarding the circuit op-

erations underlying phase precession and theta sequences. Rather than viewing phase

precession as a cellular coding scheme which generates population sequences, the se-

quential organisation of neuronal activity began to be viewed as fundamental to hip-

pocampal function (Lisman and Redish, 2009; Wikenheiser and Redish, 2015). In

this view, phase precession is an epiphenomenon reflecting a limited sampling of a

network-wide pattern of sequentially organised ensemble activity, which arises due to

an intrinsic functional organisation of the circuit. More recently, it has been suggested

that not only phase precession, but also place fields themselves may emerge from this
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sequential organisation of hippocampal activity dynamics (Aghajan et al., 2015; Wang

et al., 2015).

1.5 Spatial coding during sharp wave-ripples

Following the discovery of sequential activity patterns representing spatial trajectories

during theta cycles, the nature of the activity patterns occurring within high frequency

oscillations during sharp wave-ripples was investigated. By analysing the population

spiking activity patterns during sharp wave-ripple events, it was demonstrated that

neurons fire in sequence during ripples (Lee and Wilson, 2002). These sequences re-

play experienced events in either forwards or reversed order (Foster and Wilson, 2006;

Diba and Buzsáki, 2007). This phenomenon is observed both during slow wave sleep

(Diba and Buzsáki, 2007) and during awake immobility (Foster and Wilson, 2006).

Decoding of these sequences during awake immobility demonstrated that, unlike theta

sequences, SWR sequences represent trajectories through locations distant from the

animal (Davidson et al., 2009) and even in entirely different environments (Karlsson

and Frank, 2009).

The content of SWR sequences often reflects recent experiences. Such SWR se-

quences are therefore thought to consolidate experienced events by repetitively replay-

ing experienced episodes in order to establish stable cortical representations for long

term memory. However, SWR sequences have also been implicated in the planning

of routes through space, leading to a hypothesised role in decision making (Johnson

and Redish, 2007; Singer et al., 2013). The functional role of SWR activity for learn-

ing in a decision making task has been causally established by selectively disrupting

SWRs as an animal learns the structure of a novel task (Jadhav et al., 2012) or during

post-training consolidation (Girardeau et al., 2009).

In addition to replaying experienced events and constructing trajectories in decision

making tasks, SWR sequences have been observed to show a third spatial correlate

called preplay. By analysing the sequential structure of SWR activity during slow

wave sleep in naive animals who had never before been exposed to a linear track, and

subsequently comparing these sequences to the activity maps generated for de novo

runs on linear tracks, Dragoi and colleagues demonstrated that SWR sequences can

predict the structure of spatial maps in subsequent experience (Dragoi and Tonegawa,

2011, 2013b). These findings were interpreted as evidence for an innate, preconfigured

organisation of hippocampal place maps out of which novel spatial experiences are
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constructed, in contrast to the alternative possibility of a truly de novo experience

created on a “blank slate” or tabula rasa. In line with O’Keefe’s earlier proposal, the

observation that novel spatial representations utilise existing network dynamics was

seen to support the Kantian view of space (Dragoi and Tonegawa, 2014).

1.6 Coding across the dorsoventral axis

The observations and theories discussed above are largely a product of experimental

investigations into the dorsal region of the CA1 subfield of the hippocampus, where

the majority of large-scale recordings of neuronal ensembles are carried out. However,

the hippocampus is a spatially extended structure, and its properties vary according to

anatomical location. Across the dorsoventral axis of the CA1 region of the hippocam-

pus, a systematic shift in coding properties occurs. On the one hand, the size of place

fields increases from dorsal to ventral locations from < 1 metre at the dorsal pole to

∼ 10 metres at the ventral pole (Kjelstrup et al., 2008). In line with this change in place

field size, there is a commensurate change in phase precession slope. At the same time,

the information carried by place cells varies across this axis, with highly spatial repre-

sentations occurring at the dorsal pole and more complex, conjunctive representations

combining spatial and emotional variables such as fear and anxiety occurring at the

ventral pole (Kjelstrup et al., 2002; Bannerman et al., 2003).

In addition to changes in spatial representations across the dorsoventral axis, there

is a gradient in theta dynamics. Measurements of LFP and single unit activity at dif-

ferent dorsoventral locations show a gradient in LFP theta phase (Lubenov and Siapas,

2009; Patel et al., 2012). From the dorsal pole to the ventral pole, theta phase shifts

monotonically through around 180 degrees (Patel et al., 2012). Rather than acting as

a coherent, global unit, the hippocampus therefore generates theta waves which travel

along the dorsoventral axis. As local neuronal populations lock to their local theta

rhythm rather than a global rhythm (Patel et al., 2012), neuronal spiking activity also

travels along this axis during theta cycles. The functions and mechanisms of this trav-

elling wave, and how these relate to gradients in place field size, precession frequency

and spatial information, are largely unclear.
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1.7 Mechanisms of phase precession and theta sequences

Understanding the cellular and circuit mechanisms of theta dynamics in the hippocam-

pus has been a major challenge and the focus of considerable research effort. Several

theories of the mechanisms underlying phase precession and sequences have been pro-

posed. O’Keefe and colleagues originally proposed a simple mechanism which they

termed the oscillatory interference model in order to simultaneously explain the place

field of the cell and the precession of spiking activity across this place field (O’Keefe

and Recce, 1993). The oscillatory interference model proposes that place cells receive

two oscillatory inputs at nearby frequencies. When two such oscillations are summed,

the resulting signal generates “beat frequencies”, which consist of an oscillation at a

frequency midway between that of the two individual oscillators, with a periodic am-

plitude modulation at a much slower frequency than the individual oscillators. O’Keefe

proposed that place cells receive one input at LFP theta frequency and one input at a

slightly higher frequency, causing the cell to oscillate at a frequency higher than the

LFP theta (and hence precess in phase). The slower modulatory beat frequency then

generates the place field. To avoid periodically repeating place fields, O’Keefe pro-

posed that an additional mechanism is in place to silence the place cell outside of the

place field. By varying the frequency of the faster oscillator with the running speed of

the animal, it is then possible to vary the precession frequency of the cell in order to

maintain a fixed relationship between spike phase and the animal’s location. Hence,

a fundamental prerequisite for the oscillatory interference model is the existence of

velocity-controlled oscillators which provide inputs to hippocampal place cells.

Following the discovery that phase precession compresses behavioural sequences

into faster sequences within theta cycles, a circuit mechanism was proposed based

directly the sequential ordering of place cell activity (Tsodyks et al., 1996). In this

model, asymmetric synaptic connectivity between place cells generates a sequence

of spiking activity which propagates synaptically through a population of place cells.

Due to the presence of feedback inhibition and an oscillatory theta drive to the network,

these sequences of excitation are eventually overcome by inhibition towards the end

of the theta cycle, causing them to collapse before a new sequence begins at the start

of the next cycle. Due to the presence of a place field drive to specific subpopulations

of cells depending on the location of the animal, sequences begin with place cells

representing locations behind the animal and sweep forward to locations ahead of the

animal before collapsing and reinitiating again behind the animal. Phase precession
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in each place cell emerges as a consequence of these network-level activity dynamics.

As such a model relies on excitatory synaptic connectivity between place cells, it is

not consistent with the architecture of CA1, but can account for phase precession in

upstream CA3 which could then be inherited in CA1 through phase precessing synaptic

inputs. The possibility of inheritance of phase precession has since been analysed in

detail (Jaramillo et al., 2014).

Based on observations of an experience dependent, asymmetric expansion of place

fields during learning of a novel environment, an alternative explanation of single cell

phase precession has been proposed (Mehta et al., 2002). Specifically, it was hypothe-

sised that place cells receive an oscillatory theta input as well as an asymmetric ramp-

like input over the place field. As the animal crosses the place field, the increasing

amplitude of the ramp input causes spikes to occur at an earlier phase of the oscilla-

tory input, generating precession through up to 180 degrees. While this model cannot

account for 360 degrees of phase precession, it was argued that phase precession is

generally bimodal in experimental data, displaying relatively robust phase precession

through the first 180 degrees before becoming noisier and less selective towards the

end of the place field.

While Mehta and colleagues proposed an asymmetric firing rate field in order to

explain phase precession, a mechanism using symmetric firing rate fields combined

with spike train adaptation has also been proposed in order to generate a monotonic

shift in firing phase across the place field. Harris and colleagues suggested that the

phase precession dynamics of place cells might not be dependent on the location of

the animal in the place field per se, but may instead depend on the firing rate dynamics

of the cell regardless of the spatial context (Harris et al., 2002). They proposed that

spike train adaptation occurs in place cells, so that changes in dynamics over the place

field can break the firing rate symmetry in order to continue to precess over the second

half of the firing rate field. However, the close relationship between firing rate and

phase observed by Harris and colleagues was called into question by another study

which found that firing rate varies independently of firing phase in order to encode the

running speed of the animal (Huxter et al., 2003).

Based on experimental observations showing that the inputs to CA1 arriving from

CA3 and the medial entorhinal cortex occur at different phases of the theta cycle

(Mizuseki et al., 2009), a model was proposed based on the interference of oscilla-

tors at the same frequency but with different phases and amplitudes (Chance, 2012). In

this model, it is assumed that the temporal profile of inputs to CA1 arriving from CA3
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and entorhinal cortex take the form of a Gaussian envelope modulated by the theta

oscillation. However, the two inputs have a phase offset in their theta component and a

temporal (or equivalently spatial) offset in their Gaussian envelopes. By correctly con-

figuring these offsets, the summation of these two inputs generates phase precession

across the place field of the CA1 cell.

Most recently, the model of Tsodyks et al. (1996) has been modified to include

synaptic facilitation and depression (Wang et al., 2015). In this model, sequences

are again generated by asymmetric excitatory synaptic connections, but the slow rate

coded firing fields can emerge due to the intrinsic synaptic dynamics of the circuit,

without spatially structured external drive to the network. In particular, short term

synaptic modification leaves a synaptic footprint within the network, such that after

the collapse of a theta sequence, the new theta sequence will naturally reinitiate at the

correct location and the slow firing rate fields can stably propagate forward through

the network. In this model, external input can calibrate and stabilise rate coded firing

fields in order to anchor them to sensory cues and spatial locations, but these firing field

activity patterns will nevertheless persist in the network when these external drives are

removed.

Despite this abundance of models for phase precession and theta sequences, how-

ever, the cellular and circuit mechanisms remain obscure. While many features of

phase precession can be explained in isolation within a given model, several features

of phase precession have proven difficult to explain in combination and by any one

particular model - for example, the change in precession frequency with running speed

and ability to generate phase precession along arbitrary two-dimensional trajectories

(Geisler et al., 2007; Huxter et al., 2008). Moreover, the relationship between phase

precession, theta sequences and firing rate fields remains unknown. Whether sequences

arise through the compression of place field activity generated by phase precession

across a place field (Skaggs et al., 1996), or whether phase precession and place fields

emerge through the anchoring of intrinsically organised sequential activity to land-

marks and other sensory cues (Wang et al., 2015; Aghajan et al., 2015) remains to be

determined.

1.8 Functions and mechanisms of grid cells

While it was the discovery of place cells which prompted O’Keefe’s original cognitive

map hypothesis, namely that the dynamics of place cell ensembles generates a spatial
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Figure 1.3: Spatial coding in grid cells. (a) Spiking activity of a single grid cell as an

animal explores a square arena. The animal’s trajectory over a long period of time is

shown as a grey line, and the locations where spikes occurred are illustrated with black

dots. (b) Illustration of spatial scale, orientation and phase of grid cells. (c) Discrete

changes in grid scale along the dorsoventral axis of the medial entorhinal cortex. (d) A

schematic of the modular organisation of grid cell representation over the dorsoventral

axis. Figure taken from Moser et al. (2014).

map based on which an animal can localise itself in space and calculate routes towards

desired objects and locations, later discoveries revealed the existence of various other

cell types whose activity provides spatial information, suggesting a broader neural sys-

tem which comprises the cognitive map. Perhaps most strikingly, the discovery of grid

cells in the medial entorhinal cortex revealed the existence of a cell type with highly

precise, metric-like firing rate properties which appear well suited perform to spatial

calculations such as path-integration (Hafting et al., 2005). The defining property of

grid cells is an activity map which tessellates physical space with triangular firing rate

fields, the so-called grid (Figure 1.3a). When measuring from a population of grid

cells, individual cells exhibit a variety of grid orientations, spatial scales and spatial

phases (Figure 1.3b). However, these properties do not vary randomly amongst grid

cells, but are instead organised into discrete modules (Figure 1.3c, d), which share a

common spatial scale and orientation but a full spectrum of spatial phases (Stensola
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et al., 2012).

Due the highly organised and geometrical properties of grid cells, they have been

suggested to be an ideal candidate for path integration (McNaughton et al., 2006).

An apparent drawback to the use of grid cells for spatial coding, however, is their

periodicity. The firing rate of an individual grid cell is highly non-unique, due to the

translational symmetry of its activity map over space. However, detailed mathematical

analysis has shown that the modular organisation of grid cells into subsets at different

spatial scales allows a highly informative population code in which location can be

extracted with exponential resolution in the number of grid cells, outperforming place

cells considerably (Sreenivasan and Fiete, 2011; Mathis et al., 2012).

Similarly to place cells, grid cells also show phase precession (Hafting et al., 2008).

Moreover, phase precession in grid cells persists even in the absence of hippocampal

inputs. Firing phase precesses over each individual grid firing field, much like phase

precession across a place field. As an animal travels through multiple successive grid

fields, precession over each field appears to be independent of the previous and subse-

quent fields, suggesting that a grid cell’s intrinsic theta activity may be reset between

fields (Reifenstein et al., 2012).

In order to explain the firing fields and phase precession of grid cells, the oscil-

latory interference model has been extended to account for grid cells (Burgess et al.,

2007). On a linear track, the oscillatory interference model already accounts for these

properties, due the natural oscillatory nature of the interference pattern which gener-

ates slow amplitude oscillations (which had previously been removed to account for

the unimodal firing fields of place cells). In open environments, however, the tessel-

lated firing rate fields of grid cells require a more complex interference of oscillators.

To account for two dimensional grid cell activity, the oscillatory interference model

was therefore extended to include six (or more) velocity controlled oscillators which

integrate self-motion over different symmetry axes of the triangular grid map (Burgess,

2008). Support for the oscillatory interference model comes from experimental data

showing a disruption of grid cell firing fields following manipulations which reduce

the power of theta oscillations in the network (Koenig et al., 2011). However, evidence

from bats challenges these findings by demonstrating a robust grid cell maps in the

absence of theta oscillations (Yartsev et al., 2011).

A second hypothesised mechanism postulates that grid cell activity patterns form

through attractor dynamics in networks of grid cells. In networks with geometrically

organised synaptic weights, self-sustaining bump-like network activity profiles can be
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achieved. These networks can be organised such that multiple equally spaced bumps

occur, which tessellate the network with a grid-like activity pattern (Fuhs and Touret-

zky, 2006). Alternatively, if the network has a closed topology with periodic boundary

conditions, a single activity bump can emerge which generates a grid cell firing rate

map in physical space (Guanella et al., 2007; Pastoll et al., 2013). External current

inputs to the network can move the activity bump(s) through the network at a speed

which depends on the current amplitude. Hence, by including input currents which

vary with the running speed of the animal, an attractor network can perform path inte-

gration to keep track of the animal’s location in space (Burak and Fiete, 2009). Such

attractor models can also be extended to incorporate phase precession (Navratilova

et al., 2012), and can also coexist with oscillatory interference mechanisms (Bush and

Burgess, 2014).

In addition to the discovery of grid cells, several other spatially selective cell types

have been discovered. Head direction cells, which fire selectively for certain head

directions of the animal, appear to act as an integrator of angular velocity in order

to maintain an internal compass (Taube, 2007). In rodent medial entorhinal cortex,

conjunctive cells maintain a joint grid and head direction representation (Sargolini

et al., 2006). These conjunctive representations are contingent on theta oscillations

within the circuit, such that disruption of theta oscillations abolishes the grid com-

ponent while leaving the head direction component intact (Brandon et al., 2011). In

addition to place, grid, head direction and conjunctive cells, a further cell type termed

border cells generates an activity pattern which correlates with the animal’s distance

from an environmental boundary (Solstad et al., 2008). In combination, the variety

of spatially selective cell types in the hippocampus, entorhinal cortex and adjacent

structures appears well suited to perform the spatial computations needed to navigate

flexibly within complex environments.

1.9 Place field remapping

So far, we have focussed on how the hippocampus represents an animal’s location

within a single environment. However, when an animal is exposed to multiple dis-

tinct environments, or when manipulations of a familiar environment are made, or

even under changes in cognitive or behavioural conditions within a fixed environment,

the nature of these representations can change dramatically. The process by which

hippocampal place field representations change across these conditions is known as
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remapping (Colgin et al., 2008).

When an animal is moved from a familiar environment in which a stable place field

representation has emerged into a novel environment, a phenomenon known as global

remapping occurs. Global remapping is a change in relative spatial locations at which

place fields are expressed in a population of cells (Wilson and McNaughton, 1993).

Additionally, global remapping selects a different (but partially overlapping) subset of

pyramidal cells which are active in the novel environment, with CA3 generally dis-

playing a low degree of overlap between spatial representations and CA1 displaying

a higher degree of overlap which varies depending on the similarity between spatial

contexts (Leutgeb et al., 2004). Through this remapping procedure, multiple stable

spatial representations can be established in order to encode events occurring in dif-

ferent environments (Alme et al., 2014). Remapping between environments appears to

be statistically random, with no discernible relationship between the place field map in

each environment (e.g., O’Keefe and Conway, 1978; Wilson and McNaughton, 1993).

One explanation for ability to store multiple statistically independent spatial repre-

sentations within a network of place cells is the multiple charts model (Samsonovich

and McNaughton, 1997). This model proposes that maps are stored within the synaptic

connections between place cells, which generate activity bumps via attractor mecha-

nisms. The synaptic connectivity patterns associated with each map are superimposed

onto the same network. However, as maps are statistically independent, the connec-

tions associated with one map would appear as unstructured noise in the spatial frame

of the second, and hence interference between multiple stored maps is minimal, allow-

ing the network to switch between stable maps depending on the structure of external

inputs.

In addition to this global form of remapping, subtler forms of activity changes can

occur when smaller changes are made within an environment, or as other cognitive

variables vary within the same environment. This form of remapping is known as rate

remapping (Wood et al., 2000; Dupret et al., 2010; Allen et al., 2012). Rate remap-

ping occurs when the firing rate of a place cell changes within the place field, without

changes in the place field map. Hence, rate remapping allows additional information

to be multiplexed onto spatial representations. Examples of rate and global remapping

are shown in Figure 1.4.

In grid cells, remapping is more stereotyped than in place cells. Individual grid

cells generally remap by a combination of rotation, scaling, shear and translation of

their grid maps (Fyhn et al., 2007). These remappings are coherent between all grid
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Figure 1.4: Examples of rate remapping and global remapping. Left: Rate remapping

when rats were exposed to arenas with different colours but identical spatial configu-

rations. Right: Global remapping when rats were tested in identical arenas in different

locations. Figure taken from Colgin et al. (2008)

cells within a module, but may vary randomly between distinct modules (Stensola

et al., 2012). Remapping in grid cells predicts whether downstream place cells will ex-

hibit global or rate remapping. Place cell rate remapping is associated with stable grid

representations, whereas global remapping is associated with remapping of upstream

grid cell maps (Fyhn et al., 2007).

Place field remapping is thought to allow multiple memories to be storied with-

out interference by establishing maximally decorrelated place field representations of

different environments and contexts (Colgin et al., 2008). However, the relationship

between phase precession, theta sequences and place field remapping has received lit-

tle attention. How sequential activity patterns can be maintained in multiple spatial

maps, and whether interference between sequential dynamics associated with different

spatial representations might occur, is not yet clear.
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1.10 Thesis overview

This thesis provides an investigation into the phenomenological, mechanistic and func-

tional properties of population activity in the rodent hippocampus during theta oscilla-

tions. In Chapter 2, we develop phenomenological models of the activity of place cell

populations in the CA1 region of the hippocampus during navigation. We go on to test

these models against experimental data, before investigating the relationship between

theta sequences and place field remapping in each model. In Chapter 3, we extend

these models to account for the properties of grid cells during theta oscillations. We

demonstrate that the translational symmetry of grid cell activity maps imposes con-

straints on theta dynamics which require more complex phenomenological models. In

Chapter 4, we propose a biophysical mechanism for phase precession consistent with

the architecture of the CA1 circuit. We show that this model can account for many fea-

tures of phase precession which have proven challenging for previous models. Finally,

we propose a functional role for this mechanism in the performance of supervised

learning during behaviour.
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Phenomenological Models of CA1

Theta Sequences

2.1 Introduction

Cognitive processes are thought to involve the organisation of neuronal activity into

phase sequences, reflecting sequential activation of different cell assemblies (Hebb,

1949; Harris, 2005; Buzsáki, 2010; Wallace and Kerr, 2010; Palm et al., 2014). During

navigation, populations of place cells in the CA1 region of the hippocampus generate

phase sequences structured around the theta rhythm (e.g., Skaggs et al., 1996; Dragoi

and Buzsáki, 2006; Foster and Wilson, 2007). As an animal moves through the firing

field of a single CA1 neuron, there is an advance in the phase of its action potentials rel-

ative to the extracellular theta cycle (O’Keefe and Recce, 1993). Thus, populations of

CA1 neurons active at a particular phase of theta encode the animal’s recent, current, or

future positions (Figure 2.1A, B). One explanation for these observations is that synap-

tic output from an active cell assembly ensures its other members are synchronously

activated and in addition drives subsequent activation of different assemblies to gener-

ate a phase sequence (Figure 2.1C) (Harris, 2005). We refer to this as the coordinated

assembly hypothesis. An alternative possibility is that independent single cell coding

is sufficient to account for population activity. According to this hypothesis, currently

active assemblies do not determine the identity of future assemblies (Figure 2.1D). We

refer to this as the independent coding hypothesis.

Since these coding schemes lead to different views on the nature of the information

transferred from hippocampus to neocortex and on the role of CA1 during theta states,

it is important to distinguish between them. While considerable experimental evidence

23
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has been suggested to support the coordinated assembly hypothesis (e.g., Harris et al.,

2003; Dragoi and Buzsáki, 2006; Foster and Wilson, 2007; Maurer et al., 2011; Gupta

et al., 2012), the extent to which complex sequences of activity in large neuronal pop-

ulations can be accounted for by independent coding is not clear. To address this we

developed phenomenological models of independent and coordinated place cell activ-

ity during navigation. In the independent coding model, the spiking activity of each

cell is generated by rate coding across its place field and phase precession against a

fixed theta rhythm. We show that in this model phase coding generates a travelling

wave which propagates through the population to form spike sequences. This wave

is constrained by a slower moving modulatory envelope which generates spatially lo-

calised place fields. In the coordinated assembly model, the spikes generated by each

cell are also influenced by the activity of other cells in the population. As a result, pop-

ulation spike patterns are further entrained by population interactions which counter

the effects of single cell spike time variability and increase the robustness of theta

sequences.

The independent coding hypothesis predicts that a population of independent cells

will be sufficient to explain the spatiotemporal dynamics of cell assemblies in CA1. In

contrast, the coordinated assembly hypothesis predicts that groups of cells show addi-

tional coordination beyond that imposed by a fixed firing rate and phase code (Harris

et al., 2003; Harris, 2005). We show that the independent coding model is sufficient

to replicate experimental data previously interpreted as evidence for the coordinated

assembly hypothesis (Harris et al., 2003; Dragoi and Buzsáki, 2006; Foster and Wil-

son, 2007; Maurer et al., 2011; Gupta et al., 2012), despite the absence of coordination

within or between assemblies. Moreover, novel analyses of experimental data support

the hypothesis that place cells in CA1 code independently. Independent coding leads

to new and experimentally testable predictions for membrane potential oscillations and

place field remapping that distinguish circuit mechanisms underlying theta sequences.

In addition we show that, despite the apparent advantage of coordinated coding in gen-

erating robust sequential activity patterns, it suffers from an inability to maintain these

patterns in a novel environment. Thus, a key advantage of sequence generation through

independent coding is to allow flexible global remapping of population activity while

maintaining the ability to generate coherent theta sequences in multiple environments.
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Figure 2.1: Phase sequences in a place cell population.
(A) During navigation, place cells are sequentially activated along a route. (B) Within

each theta cycle, this slow behavioural sequence of place cell activations is played

out on a compressed timescale as a theta sequence. Theta sequences involve both

rate and phase modulation of individual cells, but it remains unclear whether additional

coordination between cells is present. (C) Internal coordination may bind CA1 cells

into assemblies, and sequential assemblies may be chained together synaptically. This

would require specific inter- and intra-assembly patterns of synaptic connectivity within

the network. (D) Alternatively, according to the independent coding hypothesis, each

cell is governed by theta phase precession without additional coordination.

2.2 Single cell coding model

To test the independent coding hypothesis, we developed a phenomenological model

which generates activity patterns for place cell populations during navigation. While

a phenomenological model of CA1 phase precession has previously been developed

(Geisler et al., 2010), several features of this model limit its utility for investigation

of coordination across neuronal populations. First, the previous model addresses only

the temporal dynamics of single unit activity and population average activity, without

addressing the spatiotemporal patterns of spiking activity within the population, the

nature of which is a central question in the present study. Second, the previous model

assumes coordination between cells in the form of fixed temporal delays and is for-

mulated for a fixed running speed. In contrast, we wish to understand in detail the

temporal relationships between cells arising in populations with no direct coordination

and how these temporal relationships might depend on factors such as running speed.

To this end, we now develop a model of a single cell with a given place field and phase
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code and proceed to derive the patterns of population activity under the independent

coding hypothesis.

List of parameters and variables used within this thesis.

Parameter
/Variable

Description

xc Location of firing field centre.

x Physical location of the animal in space.

φ(x) Encoded phase - the phase of the local field potential theta oscillation at

which a cell will preferentially fire given the animal’s location x.

φ0 The encoded fire at place field entry.

∆φ The total phase precessed over the place field.

R The radius of the place field, quantified via phase precession.

σ The spatial width of the place field, quantified via firing rate tuning

curves.

v The animal’s running speed.

xs The animal’s location at time t = 0.

fθ The frequency of the local field potential theta oscillation.

θ(t) The instantaneous phase of the local field potential theta oscillation.

θs The phase of location field potential theta at time t = 0.

t0 The time of place field entry.

x0 Location of place field entry (start of place field).

fφ Rate of phase precession (in cycles of LFP theta per second).

rx(x) Average firing rate when animal is at location x.

A Maximum (averaged) firing rate, at centre of place field.

rφ(φ(x),θ(t)) The phasic tuning curve, which modulates instantaneous firing rate as a

function of theta phase and location.

k Phase locking, a measure of the depth of modulation of a cell by the

theta rhythm.

r(t) Instantaneous firing rate of a cell.

Nspikes The average number of spikes fired by a cell on a single pass through

its place field.

c The compression factor of the population.

D The sequence path length of the population.
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ψ(xc, t) The total phase of a cell with place field centre xc, i.e., the phase of its

ongoing intrinsic cellular theta oscillations.

ω The angular frequency of the cell, i.e., the frequency of ongoing intrin-

sic cellular theta oscillations.

κ The wavenumber of the population travelling wave, measured in radians

per metre.

ψs The initial phase offset of the population travelling wave.

vp The propagation speed of the population travelling wave.

wi j The total interaction weight from cell j to cell i in the coordinated cod-

ing model.

wE The magnitude of the excitatory component of the interaction weight.

` The interaction length of the excitatory component of interactions.

wI The magnitude of the inhibitory component of the interaction weight.

Analysis of linear phase coding

Here, we provide a simple mathematical description of the phase and frequency of a

place cell firing relative to the LFP theta rhythm as a function of the animal’s location,

running speed and the place field size. The properties of the cell’s firing rate are dis-

cussed in the following section. A table containing a list of mathematical variables and

parameters used throughout this thesis is provided below.

Consider a place field with centre xc on a linear track. We define the encoded phase

φ(x) which assigns a firing phase to each location x inside the place field. The encoded

phase φ(x) is defined so that the cell fires spikes which precess linearly in phase against

the LFP theta rhythm over the place field (Figure 2.2A, bottom panel). The parameters

describing the encoded phase are the firing phase at place field entry φ0, the total phase

precessed ∆φ, and the distance over which this phase is precessed 2R. The encoded

phase is given by:

φ(x) = φ0−∆φ
x− xc +R

2R
(2.1)

so that the phase of spiking relative to the LFP theta rhythm at place field entry xc−R

is φ0 and at place field exit xc +R is φ0−∆φ as required. The parameter R therefore

determines the spatial range of phase precession, whereas the width of the firing rate

field σ is considered separately in the following section.
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By considering locomotion along a linear track, we can then analyse how φ varies

over time. If the rat moves at a constant running speed v, starting from a position xs

at time t = 0, and the LFP theta phase advances with a constant frequency fθ with an

initial phase offset θs, then:

x(t) = xs + vt (2.2)

θ(t) = θs +2π fθt (2.3)

φ(t) = φ0−2π fφ(t− t0) (2.4)

where t0 = (x0− xs)/v is the time that the rat reaches location x0 = xc−R, the start of

the place field. Combined with Equation (2.1), this gives the rate of phase precession

fφ =
∆φ

2π

v
2R

(2.5)

and provides a complete description of the firing phase of a cell for arbitrary place field

locations, running speeds, LFP phase offsets and initial locations on a linear track.
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Figure 2.2: Single cell coding model.
(A) Firing rate and phase at different locations within a cell’s place field are determined

by a Gaussian tuning curve rx and linearly precessing encoded phase φ respectively.

(B) The dependence of single cell activity on the LFP theta phase θ is modelled by a

second tuning curve rφ which depends on the angle between the LFP theta phase θ

and encoded phase φ at the animal’s location. The phase locking parameter k controls

the precision of the phase code. (C) The combined dependence of single cell activity

on location and LFP theta phase. (D) Temporal evolution of the rate and phase tuning

curves for a single cell as a rat passes through the place field at constant speed. (E)

The total firing rate corresponding to (D), and spiking activity on 1000 identical runs.
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Analysis of dual rate and phase coding

Given the above description of the animal’s movement through space together with

evolution of the LFP theta oscillation and the resultant change in firing phase in a given

cell, we proceeded to model the firing rate in order to arrive at a unified description of

the coding properties of an individual place cell during locomotion on a linear track.

We modelled the firing rate field for each neuron using a Gaussian tuning curve:

rx(x) = Aexp
(
−(x− xc)

2

2σ2

)
(2.6)

where rx describes firing rate when the animal is at location x within a place field with

centre xc, width σ and maximum rate A (Figure 2.2A, top panel). Simultaneously, we

modelled the firing phase using a circular Gaussian:

rφ(φ(x),θ(t)) = exp(k cos(φ(x)−θ(t))) (2.7)

where rφ describes the firing probability of the neuron at each theta phase at a given lo-

cation (Figure 2.2B). The phase locking parameter k determines the precision at which

the encoded phase is represented in the spike output (Figure 2.2B). The instantaneous

firing rate of the cell is given by the product of these two components r = rxrφ. The

phase locking can be set so that the cell exhibits only rate coding (at k = 0, where

r = rx), only phase coding (as k→ ∞, where all spikes occur at exactly the encoded

phase φ(x)) or anywhere in between (Figure 2.2C).

For a constant running speed (Equations (2.2, 2.3, 2.4)), the firing rate for a cell

during place field crossing is:

r(t) = rx(x(t))rφ(φ(x(t))−θ(t)) (2.8)

= Aexp
(
−(xs + vt− xc)

2

2σ2

)
exp
(
k cos(2π( fθ + fφ)t−φ0 +θs−2π fφt0)

)
(2.9)

Figure 2.2E shows the firing rate distribution for different values of k. Note that the

phase precessed across the firing rate field depends on the relative values of R and σ.

Hence, to model ranges of phase precession other than 2π, we are free to fix ∆φ = 2π

and vary R.

To generate spikes we can use an inhomogeneous Poisson process with an instan-

taneous rate given by Equation (2.9). In experiments, the number of spikes fired by a

place cell is uncorrelated with the running speed of the animal, and is around 10−20

spikes per pass (Huxter et al., 2003). Hence, using Equation 2.9, the amplitude A can

be set such that
∫

∞

−∞
r(t)dt = Nspikes, which normalises the average number of spikes
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fired per pass through the place field to Nspikes (Figure 2.3). A good approximation to

this integral can be obtained by setting rφ to be a constant in order to average out its

oscillatory component: 〈
rφ

〉
=

1
T

∫ T

0
rφ(t)dt = I0 (k) (2.10)

where I0 (k) is the modified Bessel function of order zero and T is the period of rφ(t).

Hence, the firing rate of the cell is modulated by running speed as:

A(v)≈
Nspikes

I0 (k)
v√

2πσ2
(2.11)

This approximation is accurate when the number of oscillatory cycles within the place

field is high. For very high running speeds (or small place fields), this approximation

will be less accurate.

Figure 2.3: Effect of normalisation factor (Nspikes).
Firing rate vs time for runs with v = 50cm/s, k = 0.7 and 3 different values of Nspikes.

If the phase φ(x) at each location in the place field is fixed, the full rate and phase

coding properties of a cell are encompassed by three independent parameters - the

width of the spatial tuning curve σ, the degree of phase locking k and the average

number of spikes per pass Nspikes. Phase precession (Figure 2.2C) and firing rate mod-

ulation as a function of time in this model (Figure 2.2E) closely resemble experimental

observations, including the single lap firing rate and theta modulation (e.g., Mizuseki

and Buzsaki, 2014) as well as the pooled place field and phase precession structure

(e.g., Skaggs et al., 1996). However, as discussed below, experimental data can show

properties not accounted for by this simple model, such as asymmetries in place fields

and phase precession slopes.
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Place cells often show variations in firing rate in response to nonspatial factors

relevant to a particular task (e.g., Wood et al., 2000; Griffin et al., 2007; Fyhn et al.,

2007; Allen et al., 2012). In our model, such multiplexing of additional rate coded

information can be achieved by varying the number of spikes per pass Nspikes without

interfering with the other parameters φ(x), σ and k (Figure 2.3).

While we have modelled firing fields using simple, symmetric Gaussian functions

and precession using simple linear functions of phase versus position, it is worth noting

that experimental recordings often show more complex relationships of firing rate and

phase as a function of position. For example, firing fields are often asymmetric (Mehta

et al., 2002) and firing phase often varies nonlinearly as a function of location (Skaggs

et al., 1996; Mehta et al., 2002). Due to the simplicity of our model, we are able to

investigate analytically the properties of spike sequences generated within theta cycles

and their spatial coding properties. However, the implications of place field asymme-

tries and phase precession nonlinearities for theta sequences and the spatial information

contained within them is also of interest, and could be investigated through relatively

straightforward extensions of the model presented within this chapter.

Single cell coding with trial to trial variability

For completeness, we note here that some studies suggest a more complex single cell

coding scheme than that outlined above. In particular, phase precession in single trials

may reflect a greater degree of coordination against the theta rhythm than that sug-

gested from the pooled data (Schmidt et al., 2009). The key differences observed in

single trials compared to surrogate trials sampled from the pooled data were a higher

phase-position correlation and slope and a lower phase range and spatial range. The

single cell model we developed above can be extended to incorporate such properties

by replacing the fixed phase precession parameters with random variables which vary

from trial to trial. For example, a single trial phase offset φ0 sampled from a nor-

mal distribution with a variability of σφ0 = π/2, together with a fixed phase range of

∆φ = π on each trial gives a pooled phase range of 2π as well as a lower pooled phase

position-correlation, in line with experimental observations.

If, on each trial, each cell samples its parameters from these distributions inde-

pendently of other cells, the population code will be independent. If instead this trial

to trial variability is shared across the population a coordinated population code will

result. For simplicity, we will not consider these trial to trial properties of phase pre-
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cession in the following analyses.

Sequence properties for independent coding in the high phase lock-

ing limit

Figure 2.4: Definitions of compression factor and sequence path length.
Shown are the sequence path length D, which is defined as the largest distance be-

tween place field centres for any two cells active in a single theta cycle, the time ∆t0 to

travel between place field centres of a pair of cells and the time interval ∆tspike between

spikes fired in a theta cycle by this cell pair. The compression factor is the ratio of these

two timescales. (The cell pair illustrated is the first and last cell on the track above: only

three place fields are shown for clarity, the rest are omitted.)

Based on the above description of coding in a single place cell, we can already

derive some interesting properties of population theta sequences in special cases. In

particular, when the phase locking k is very high, the above stochastic model achieves

its deterministic limit in which exact analytical expressions for certain properties of

theoretical and experimental interest can be found.

Here, we derive analytical expressions for two key quantities which are often mea-

sured in experiments: the compression factor and the sequence path length. These

expressions are strictly only valid in the limit that phase locking is strong, but are use-
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ful for understanding how behavioural variables such as running speed can influence

sequence properties. Moreover, as solutions for the k = 0 case are trivial, it is possible

to compare the cases of pure rate coding vs strong phase coding in order gain intuition

into how intermediate dual rate and phase coding schemes might behave depending on

the value of k. In this section, we assume that the activity of each cell is governed by

Equation (2.9), i.e. that the activity of each cell depends only on the animal’s location

in the place field and the LFP theta phase, and not explicitly on the activity of other

cells in the population.

The compression factor measures the ratio between the sequence compressed timescale

and the behavioural timescale along a trajectory. Given any two cells active within the

same theta cycle, the compression factor is defined as:

c =
∆t0

∆tspike
(2.12)

where ∆t0 is the time it takes the animal to travel between the place field centres of

the two cells and ∆tspike is the time lag between the spikes of the two cells within the

theta cycle (Figure 2.4). Note that some studies invert this definition of c (e.g., Geisler

et al., 2010). These two timescales are generally measured in experiments as peaks

in the cross-correlogram of the cell pair following filtering at behavioural and theta

timescales.

In the limit of high phase locking (k→ ∞), the spikes occur exactly at the peaks of

the phasic tuning curve, i.e.:

θ(tspike)−φ(tspike)≡ 0 mod 2π (2.13)

Figure 2.5 provides a graphical illustration of the spike sequence in this limit. Using

Equations (2.3) and (2.4) in this limit:

tspike =
(φ0−θs)/(2π)+ fφt0 +n

fθ + fφ

(2.14)

where n is an integer introduced to account for the resetting of phases φ(t) and θ(t) each

cycle under the modulo arithmetic. If we further assume that each cell precesses over

a range of phases of one cycle or less 0≤ φ < 2π, then the integer n is simply an index

labelling the LFP theta cycle, since φ is never reset. Hence, when calculating ∆tspike for

a cell pair, we can assume n is the same for each spike, since we are considering only

spike sequences contained within a single theta cycle. Assuming the cells also share

the same phase precession parameters φ0 and fφ, we find ∆tspike = ∆t0 fφ/( fθ + fφ), so
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that the compression factor is:

c = 1+
fθ

fφ

= 1+ fθ

2π

∆φ

2R
v

(2.15)

The sequence path length D measures the distance swept out by a sequence during a

theta cycle (Figure 2.4). We define this as the difference between the maximum and

minimum place field locations of cells active in a single theta cycle D = max(∆xc) =

max(xc)−min(xc). Again, we take the limit k→ ∞ where spike times are given by

Equation (2.13). The distance between place field centres is ∆xc = v∆t0 = cv∆tspike,

and the sequence path length D is the largest distance ∆xc for cells with spikes within

the time window of one theta cycle, ∆tspike ≤ 1/ fθ:

D =
v
fθ

c =
2π

∆φ
2R+

v
fθ

(2.16)

Figure 2.5: Sequences in the high phase locking limit (k→ ∞).
Black lines show LFP theta phase θ(t), coloured lines show single cell encoded phase

φ(t). Spikes occur when the encoded phase equals the LFP phase. (A) Single cell

coding. (B) A sequence generated through independent phase coding in three cells.

(C) Running speed v determines the slope of phase precession fφ in single place cells,

which in turn affects sequence properties. Here, three separate runs through the same

place field at different speeds are shown for comparison.
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2.3 Independent phase coding generates travelling waves

Given the single cell model and assuming an independent population code, we next

investigated the spatially distributed patterns of spiking activity generated in a CA1

population more generally. To map the spatiotemporal dynamics of the population

activity onto the physical space navigated by the animal, we analysed the distributions

of the rate components rx and phase components rφ of activity in cell populations sorted

according to the location xc of each place field. In order to make the step from the

single cell coding model described above to the population coding model we present

in this section, it is necessary to invoke the independent coding hypothesis. If cells do

not code independently of each other then further information is needed to develop an

account of population activity, which we discuss subsequently.

Derivation of travelling wave dynamics for independent coding

We now investigate the behaviour of a place cell population under the assumption that

each cell is governed independently by the above single cell coding model. Note that,

in Equation (2.9), we have eliminated the rat’s location x in favour of time t, since we

have assumed a constant running speed. In this way, we would like to understand the

firing rate in the population both as a function of time t, and place field centre xc during

locomotion on a linear track. In Equation (2.9), the remaining t0 can be expressed in

terms of xc as t0 = (xc−R− xs)/v. We then define the total phase of each cell as

ψ = φ−θ, which gives :

ψ(xc, t) = 2π( fθ + fφ)t−2π
fφ

v
(xc− xs)+

∆φ

2
−φ0 +θs (2.17)

We can set the initial position of the rat as xs = 0 for simplification. Inspecting the

structure of this population phase, we see it has the form ψ(xc, t) = ωt−κxc+ψs. This

is the form of a travelling wave of angular frequency ω = 2π f , wavenumber κ = 2π/λ

and phase offset ψs. The frequency and wavelength of the travelling wave are:

f (v) = fθ + fφ(v) (2.18)

λ =
v
fφ

=
2π

∆φ
2R (2.19)

so that the frequency increases with running speed, but the wavelength stays constant.

Hence, the propagation speed of the wave is:

vp = f λ = ( fθ + fφ)
v
fφ

= cv (2.20)
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where c is the compression factor. The compression factor is equivalent to the ratio

of the rat’s actual velocity and the velocity of the representation within a theta cy-

cle. While the compression factor has been quantified in previous experimental work

(Skaggs et al., 1996; Dragoi and Buzsáki, 2006; Geisler et al., 2007; Maurer et al.,

2011), the relationship to the travelling wave model developed here was not previously

identified.

The propagation speed shows a constant relationship to the running speed of the

rat:

vp = v+
2π

∆φ
2R fθ (2.21)

At this point, we also see that (assuming ∆φ = 2π, which are free to choose by varying

R) the sequence path length in Equation (2.16) is just the distance travelled by this

wave in a theta cycle, since D = vp/ fθ. Putting everything together, the population

firing rate is given by:

r(xc, t) = Aexp
(
−(xc− vt)2

2σ2

)
exp
(

k cos
(

2π f
cv

(cvt− xc)+ψs

))
(2.22)

which is an equivalent form of Equation (2.9) and was used to produce Figure 2.6.

Hence, our model naturally generates population activity at two different timescales:

the slow behavioural timescale at which the rat navigates through space and a fast theta

timescale at which trajectories are compressed into theta sequences. While the rat

moves through the environment, the spatial tuning curves rx(x) generate a slow mov-

ing ‘bump’ of activity which, by definition, is comoving with the animal (Figure 2.6A

top, black). Simultaneously, the phasic component rφ(φ(x),θ(t)) instantiates a travel-

ling wave (Figure 2.6A top, red). Due to the precession of φ(t), the wave propagates

forward through the network at a speed faster than the bump, resulting in sequential

activation of cells along a trajectory on a compressed timescale. The slower bump of

activity acts as an envelope for the travelling wave, limiting its spatial extent to one

place field (Figure 2.6A bottom). The continuous forward movement of the travelling

wave is translated into discrete, repeating theta sequences via a shifting phase relation-

ship to the slow moving component (Figure 2.6B-D). From the above analysis we find

an alternative expression for the compression factor derived earlier c = vp/v, i.e. the

compression factor is the ratio of the propagation speed of the travelling wave to the

speed of the envelope.

Finally, it is useful to inspect the phase offset ψs of the travelling wave. In partic-

ular, if we assume a full cycle of phase precession ∆φ = 2π starting at φ0 = 2π, with

initial position xs = 0, we see from Equation (2.17) that the population phase offset
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is ψs = θs−π. The maximum population activity occurs at the trough of LFP theta,

where zero LFP phase is defined as the peak. Hence, there is a half cycle phase shift be-

tween the population waveform and the LFP waveform (although experimentally this

effect depends on the recording depth, since the LFP phase varies with depth (Buzsáki,

2002)).

Figure 2.6: Spatiotemporal dynamics of CA1 populations governed by indepen-
dent coding.
(A) Top: Population dynamics during a single theta cycle on a linear track after ordering

cells according to their place field centre xc in physical space. The two components of

the population activity are shown - the slow moving envelope (black) and the fast mov-

ing travelling wave (red), which give rise to rate coding and phase coding respectively

(cf. Figure 2.2). Bottom: Resulting firing rates across the population. When the trav-

elling wave and envelope are aligned, the population activity is highest (middle panel).

The dashed line shows the location of the rat at each instant. (B) Firing rate in the

population over seven consecutive theta cycles. The fast and slow slopes are shown

(solid and dashed lines respectively), corresponding to the speeds of the travelling wave

and envelope as shown in part (A). The top panel shows the LFP theta oscillations and

emergent population theta oscillations, which are generated by the changing popula-

tion activity as the travelling wave shifts in phase relative to the slower envelope. (C, D)

The spiking activity for a population of 180 cells. All panels used v = 50 cm/s, so that

vp = 350 cm/s and c = 7.
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Analysis of population theta rhythm

Here, we show how a slower LFP theta rhythm arises within the population, despite the

higher frequency of individual cells. In particular, we see from the above analysis that

the frequency of a single cell is higher than the LFP theta since f = fθ + fφ. However,

if we change variables to view the travelling wave in coordinates comoving with the

envelope, the fast population activity is decoupled from the slow movement of the

animal, allowing the population theta frequency to be analysed.

To see this, we make the change of coordinates X = xc−vt, after which ψ(X = 0, t)

measures the phase of the travelling wave relative to the slow moving envelope, since

X = 0 is the centre of the envelope. In these coordinates, the population phase is:

ψ(X , t) = θ(t)−2π
X
λ

(2.23)

Equation (2.23) shows that θ(t) = ψ(X = 0, t), and therefore that the LFP theta phase

is equal to the phase difference between the travelling wave and envelope. To further

illustrate this point, we note that the LFP theta frequency is equal to the time taken for

the fast wave to overtake the slow envelope, i.e. from Equation (2.21):

fθ =
vp− v

λ
(2.24)

so that the LFP theta frequency is simply the frequency of the interference pattern

of the two components. Thus, the shifting phase relationship between the slow and

fast components of population activity generates global theta oscillations at exactly the

LFP frequency that cells were defined to precess against (Figure 2.6B top panel). Our

single cell model can therefore be recast in terms of the dynamics of a propagating

wavepacket comprising two components, with network theta resulting from their inter-

action. While we define single cells to precess against a reference theta rhythm (i.e.,

the LFP), we now see that this same reference oscillation emerges from the population,

despite the higher frequencies of individual cells.

This prediction of global theta oscillations emerging in networks of faster oscillat-

ing place cells is consistent with a previous phenomenological model which assumed

a fixed running speed and fixed, experimentally determined temporal delays between

cells (Geisler et al., 2010). However, in contrast to previous models, our model based

on experimentally observed single-cell coding properties allows an analysis in which

only place field configurations and navigational trajectories are required to fully pre-

dict at any running speed both the global theta oscillation and the detailed population
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dynamics. Experimental data show that the frequency of LFP theta oscillations is rel-

atively insensitive to the running speed of the animal, showing a mild increase with

running speed compared to a larger single unit increase (Geisler et al., 2007). Simi-

larly, in our model the change in compression factor with running speed ensures that

the network maintains a fixed population theta frequency while running speed and sin-

gle unit frequency vary. In predicting a compression factor which changes with running

speed, independent coding equivalently predicts temporal delays which are dependent

on running speed. Conversely, our analysis shows that models incorporating fixed tem-

poral delays between cells (e.g., Diba and Buzsáki, 2008; Geisler et al., 2010) cannot

maintain an invariant relationship between spike phase and location without producing

a population theta oscillation whose frequency decreases rapidly with running speed,

in conflict with experimental observations (Geisler et al., 2007).

Linear phase coding in open environments

To complete our phenomenological model of phase coding in independent coding pop-

ulations, we now consider the population activity for arbitrary trajectories x(t) in two

dimensions.

The most natural extension is to modulate the direction of the travelling wave with

heading direction, via a wavevector κκκ(t) = κv(t)/v(t). It is necessary to align the

wavevector with heading direction to account for data showing phase precession in

two dimensions regardless of the direction of travel through a place field (Huxter et al.,

2008). The previous results can then be extended using the phase:

ψ(xc, t) =
∫ t

0
ω(t ′)dt ′−κκκ(t) ·xc +ψ(xc,0)

= 2π fθt +
∆φ

2π

π

R

(∫ t

0
v(t ′)dt ′− v(t) ·xc

v(t)

)
+ψs (2.25)

where we introduced an integral to account for variations in frequency due to changes

in running speed along the trajectory and expanded out expressions for frequency and

wavenumber. In this case, the phase offset ψ(xc,0) is the same for all neurons, since

the phase gradient is enforced by the dot product term. In line with a recent report

(Jeewajee et al., 2014), the relative firing phases of each cell depend on the current

direction of motion rather than past trajectory in this model.
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2.4 Assembly coordination stabilises sequential acti-

vation patterns

In order to compare activity patterns predicted by independent coding schemes with

those predicted when interactions between cell assemblies are present, we developed

a second model in which the spiking activity of each place cell influences the spiking

activity of peer cells within the population. While single-cell rate and phase tuning

curves in this coordinated assembly model are identical to those in the independent

coding model, a peer weight function also modulates the probability of a spike oc-

curring in each cell depending on the spikes of its peers (Figure 2.7A). In this model,

asymmetric excitation stabilises the temporal relationship between sequentially acti-

vated assemblies, while feedback inhibition between place cells normalises firing rates

(cf. Tsodyks et al., 1996; Wang et al., 2015). The resulting sequences are consider-

ably more robust than those generated by independent coding with the same single cell

properties (Figure 2.71B-C). Assembly interactions also amplify theta oscillations in

the network (Figure 2.7D) (Stark et al., 2013). Hence, assembly coordination provides

a potential mechanism for stabilising the sequential activity patterns generated by noisy

neurons, as interactions entrain cells in the population into coherent activation patterns

within each theta cycle. The precise formulation of the coordinated coding model is

described below.

Model of coordinated assembly dynamics

While the previous sections assumed that cells are are independent of each other once

their mutual dependence on the animal’s location and the LFP theta rhythm are ac-

counted for, we now model the case in which cells have additional interdependencies

arising from interactions within the local CA1 population. Therefore, we introduce a

weight function through which the spiking activity of any given cell will influence the

probability of another cell to spike:

wi j =
wE

`
e−(x

i
c−x j

c)/`Θ
(
xi

c− x j
c
)
−wI (2.26)

where wE is the magnitude of the excitatory weights, ` is the peer interaction length,

Θ is the Heaviside step function, wI is the magnitude of the inhibitory weights and xi
c,

x j
c are the place field centres of cells i and j. This weight function is comprised of two

components - an excitatory feedforward interaction with an interaction length `, and a

global inhibitory interaction.
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Figure 2.7: CA1 population activity governed by coordinated assemblies.
(A) The simulated place cells interact via a combination of asymmetric excitation and

feedback inhibition. The weights plotted here govern how the spikes emitted by a given

cell will influence the spiking activity of its peers depending on their relative place field

locations. (B) Population firing rate on a single run along a linear track (180 cells with

v = 50 cm/s and k = 0.5). The firing rate in each cell is a product of the animal’s

location, the LFP theta phase and the influence of recent peer spiking activity. (C) The

spiking activity, generated using an inhomogeneous Poisson process. (D) Comparison

of the global population firing rate for an independent coding population (black) and a

coordinated population (red), with identical single cell properties. Interactions between

cells amplify theta oscillations and introduce a shift in firing phase.

To incorporate the dynamics of peer interactions into our existing single cell model,

we follow a similar approach to that used by Harris et al. (2003) when estimating peer

interactions from data. Specifically, peer spike trains are smoothed in time:

si(t) =
1√

2πτ2 ∑
ti j<t

e−(ti j−t)
2
/2τ2

(2.27)

where the smoothing kernel width τ determines the peer interaction timescale - i.e., the

timescale at which spiking activity from one cell will influence the activity of another

cell (cf., the peer prediction timescale defined by Harris et al. (2003)). Here, si is the

smoothed spike train of cell i and ti j is the jth spike of cell i, where the sum is over j

only. Note that the above sum is causal, i.e. only previous spikes will influence present

and future activity. The influence of a set of peer spike trains on a particular cell i is
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then determined by the peer factor Pi(t):

Pi(t) = g

(
∑

j
s j(t)wi j

)
(2.28)

which is the weighted sum of the smoothed peer spike trains, followed by a nonlinear

transformation g:

g(x) =

x+1 if x≥ 0

exp(x) if x < 0
(2.29)

We note that, apart from some minor adjustments, Equations (2.27-2.29) are essentially

an inversion of the peer prediction method of Harris et al. (2003) such that, with our

particular choice of weights, we can generate data for an interacting population rather

than estimate these interactions from that data.

The firing rate of each cell is simply modelled as the product of the activity gener-

ated by phase and rate coding alone with the additional peer factor Pi(t). To simplify

notation, we let Pi(t) = P(xc, t) where xc is the place field centre of cell i. The total

firing rate of the cell is then:

r(xc, t) = Aexp

(
−(xc− vt)2

2σ2

)
exp(k cos(κxc−ωt +ψs))P(xc, t) (2.30)

While alternative forms of assembly coordination might also be considered, we choose

the present model for two key reasons. First, this model is simple, containing relatively

few adjustable parameters while capturing the essential features of sequence genera-

tion via assembly coordination. Second, as we will show below, the coordination be-

tween cells under this model is sufficient to evaluate statistical tests of independence,

allowing a systematic framework with which to interpret the results of such tests on

experimental data. Nevertheless, it should be noted that the results obtained for coordi-

nated coding simulations are specific to the model outlined here, and that other forms

of coordination may behave differently.

2.5 Independent coding accounts for apparent peer de-

pendence of CA1 activity

We next investigated the extent to which models for population activity based on in-

dependent coding and coordinated assemblies can account for observations previously

suggested to imply coordination within and between assemblies (Harris et al., 2003;
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Dragoi and Buzsáki, 2006; Foster and Wilson, 2007; Maurer et al., 2011; Gupta et al.,

2012). We show below that, although these observations at first appear to imply as-

sembly coordination, they can be accounted for by the independent coding model. We

go on to establish the power of several tests to distinguish spike patterns generated by

independent and coordinated coding models. By applying these tests to experimental

data, we provide further evidence that CA1 population activity is generated through

independent coding.

Prediction analysis of Harris et al., 2003

We first assessed whether independent coding accounts for membership of cell assem-

blies. A useful measure of the coding properties of place cell populations is to test

how accurately single-unit activity can be predicted from different variables. If, after

accounting for all known single-cell coding properties, predictions of the activity of

individual place cells can be further improved by information about firing by their peer

cells, it is likely that such cells are interacting through cell assemblies (Harris, 2005).

Initial analysis of CA1 place cell firing suggested this is the case, with coordination be-

tween cells at the gamma timescale being implicated (Harris et al., 2003). Because this

improved predictability directly implies interactions between CA1 neurons, it would

constitute strong evidence against the independent coding hypothesis. However, in ac-

counting for single-cell phase coding properties, the prediction analysis of Harris et al.

(2003) assumed that firing phase is independent of movement direction in an open en-

vironment. In contrast, more recent experimental data show that in open environments

firing phase always precesses from late to early phases of theta, so that firing phase

at a specific location depends on the direction of travel (Huxter et al., 2008; Climer

et al., 2013; Jeewajee et al., 2014). Therefore, to test if the apparent peer dependence

of place cell activity is in fact consistent with independent coding, the directionality of

phase fields must be accounted for.

To address this we first considered whether the assumption of a non-directional

phase field would lead to an erroneous conclusion of coordinated coding when analysing

spike patterns generated by the independent coding model. To do this, we used the

above extension of the travelling wave model to two dimensional environments. We

constructed phase fields from simulated spiking data following the approach of Har-

ris et al. (2003), in which firing phase is averaged over all running directions, and

separately constructed directional phase fields consistent with recent experimental ob-
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servations (Huxter et al., 2008; Climer et al., 2013; Jeewajee et al., 2014). We then

calculated the predictability of neuronal firing patterns generated by the independent

coding model using each of these phase fields. For simplicity, we considered the prob-

lem in one dimension, treating separately passes from right to left, left to right and the

combined data in order to generate the directional and nondirectional phase fields (Fig-

ure 2.8A&B respectively). We did not model shifts in place field centres for different

running directions (e.g., Battaglia et al., 2004; Huxter et al., 2008) and assumed that

the place cells did not engage in multiple reference frames (Jackson and Redish, 2007;

Fenton et al., 2010).

For the independent coding model, we find that peer prediction provides a higher

level of information about a neuron’s firing than predictions based on place and nondi-

rectional phase fields, despite the absence of intra-assembly coordination in our simu-

lated data (Figure 2.8C, green and purple). However, prediction based on place fields

and directional phase fields outperforms both of these metrics (Figure 2.8C, red).

Therefore, previous evidence for intra-assembly coordination can be explained by a

failure to account for the phase dependence of CA1 firing. Instead, our analysis in-

dicates that independent phase precession of CA1 neurons is sufficient to account for

observations concerning membership of CA1 assemblies. We also find that nondi-

rectional phase fields (Figure 2.8B), as assumed by (Harris et al., 2003), yield little

improvement in predictability of a neuron’s firing compared with predictions based on

the place field alone, and for high phase locking are detrimental (Figure 2.8C, blue

vs black). While Harris et al. (2003) found that nondirectional phase fields generally

do improve prediction, this discrepancy may arise from more complex details of ex-

perimental data in open exploration, for example a nonuniform distribution of running

directions through the place field, which would cause the information in nondirectional

phase fields to increase.

Because peers share a relationship to a common theta activity and implement sim-

ilar rules for generation of firing, a cell’s activity in the independent coding model can

nevertheless be predicted from that of its peers in the absence of information about

location or theta phase (Figure 2.8C, green). The quality of this prediction is depen-

dent on the timescale at which peer activity is included in the analysis, so that the

optimal timescale for peer prediction provides a measure of the temporal resolution

of assembly formation. In experimental data the optimal timescale for peer prediction

is approximately 20 ms, which corresponds to the gamma rhythm and the membrane

time constant of CA1 neurons (Harris et al., 2003). We find that in the independent
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coding model the optimal peer prediction timescale depends strongly on phase locking

(Figure 2.8D). Even though the model does not incorporate gamma oscillations or neu-

ronal membrane properties, high values of phase locking also show a striking peak in

peer predictability around the 20 ms range (Figure 2.8D). We show below that for run-

ning speeds in the range 35−75 cm/s phase locking is likely to lie within the range at

which the observed 20 ms prediction timescale dominates. Thus, the 20 ms timescales

found both here and experimentally are explainable as a signature of the common, in-

dependent phase locking of place cells to the theta rhythm, rather than transient gamma

coordination or intrinsic properties of CA1 neurons.
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Figure 2.8: Peer prediction analysis for an independent population code.
(A) Combined place and phase fields constructed from simulated data using only runs

with a single direction. (B) Place/phase field constructed from a combination of both

running directions, as used by Harris et al. (2003). (C) Predictability analysis, using

various combinations of place, phase and peer activity. When using the nondirectional

phase field of Harris et al. (2003), an additional peer predictability emerges (black vs

green and purple). However, this additional predictability is seen to be erroneous if

the directional phase field is used to predict activity (red). (D) Dependence of peer

predictability on the peer prediction timescale and phase locking of individual cells, for

an independent population code. The heat map shows the predictability of a cell’s

activity from peer activity (cf. part C, green line). The optimal peer prediction timescale

depends on the amount of phase locking. The 20 ms characteristic timescale of peer

correlations reflects independent phase precession of single cells rather than transient

gamma synchronisation of cell assemblies.
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Modified prediction analysis

While the above analysis demonstrates that independent coding is consistent with pre-

vious experimental results, it does not exclude the presence of coordinated assemblies.

In particular, it is not clear whether, when applied to experimental data, including in-

formation about peer activity would continue to improve prediction compared to place

and directional phase fields alone. We therefore applied the prediction analysis based

on directional phase fields to experimental datasets recorded from CA1 place cells

(Mizuseki et al., 2014). To provide benchmarks for the interpretation of experimental

results, we also analysed simulated datasets generated with either independent coding

or coordinated assemblies. We simulated datasets with the same number of sessions

and recorded cells per session as the experimental dataset in order to obtain measures of

peer prediction performance expected under each hypothesis (see Methods). In simu-

lations of independent cells, we found that information about peer activity continues to

improve predictability compared to prediction from place and directional phase fields

alone. The source of this predictability was found to be the common modulation of fir-

ing rate in each cell with the running speed of the animal, which is a further single-cell

coding feature not previously accounted for in prediction analyses (McNaughton et al.,

1984; Czurko, 1999; Huxter et al., 2003; Ahmed and Mehta, 2012). We therefore in-

cluded in our analysis an additional prediction factor, termed the velocity modulation

factor (see Methods).

After accounting for rate fields, directional phase fields and velocity modulation

factors, inclusion of peer information increased the predictability of 84% of place cells

simulated through coordinated coding, but only 38% of cells simulated through inde-

pendent coding (see Table 1 for a summary of all prediction metrics). On average,

information decreased by 0.047 bits/s for each cell simulated by independent coding

and increased by 0.24 bits/s for coordinated coding when peer information was added

(Wilcoxon signed rank test, p = 3.9× 10−17 and p = 9× 10−83 respectively, Figure

2.9). Thus, this new prediction analysis which accounts for directional phase fields and

velocity modulation can effectively distinguish between independent and coordinated

coding.

When we applied this prediction analysis to experimental data, prediction perfor-

mance improved for 75.7% (± 5.7%, SEM, n = 10 sessions) of experimentally ob-

served place cells when phase fields were included and 77.8% (± 3.7%) of place cells

when velocity modulation factors were included. In contrast, prediction performance
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Table 1: Performance of prediction metrics on experimental and simulated data.
The percentage of cells for which prediction performance increased with the addition of

each metric. Percentages refer to the number of cells for which information increased

when the specified metric was included in addition to those listed in rows above. Note

that for velocity, phase and peer prediction, only those cells for which prediction perfor-

mance improved with information about location were considered. Simulations demon-

strate that, after taking into account place fields, velocity modulation factors and phase

fields, information about peer activity improves prediction for the majority of cells when

coordination is present, but not when cells are independent. Experimental data are

consistent with independent coding.

improved for only 32% (± 11%) of the experimentally observed place cells when

peer information was included after accounting for single-cell coding properties (Fig-

ure 2.10 shows the results for individual experimental sessions). On average, addi-

tion of peer information decreased the predictability of each cell by 0.049 bits/s (±
0.013, SEM, n = 270 cells, Wilcoxon signed rank test, p = 1.4×10−6), in agreement

with independent coding simulations and in contrast to coordinated coding simula-

tions. Hence, after fully accounting for the directional properties of phase fields and

the dependence of firing rate on running speed, peer prediction analysis supports inde-

pendent coding as the basis of experimentally observed place cells in CA1. Therefore,

based on comparison of simulated with experimental datasets, coordinated assemblies

appear unlikely to account for the observed activity in CA1.
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Figure 2.9: Change in information after addition of peer activity to prediction met-
rics.
Distributions of information gain/loss in individual cells after including peer activity in

addition to all other prediction metrics. For independent coding and experimental data,

peer prediction causes a decrease in information on average (p = 3.9× 10−17 and

p = 1.4× 10−6 respectively). For coordinated coding, peer prediction causes an in-

crease in information on average (p = 9× 10−83). The decrease in information ob-

served for independent coding simulations when peer activity is included occurs due

to overfitting on a dataset of finite size. Due to statistical fluctuations in the data, peer

weights are generally estimated as non-zero. Both the peer weights and the change

in information when peers are included would be expected to approach zero as the

amount of data increases for independent coding simulations, but not for coordinated

coding simulations.
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Figure 2.10: Results of prediction analysis on individual sessions.
Top: Number of cells for which prediction improved with peers after place fields, ve-

locity modulation factors and directional phase fields had been fitted, shown for each

session/running direction in the experimental dataset. Middle: The results when the

same analysis were applied to data simulated with independent coding (twice as many

sessions were simulated for comparison). Bottom: The results when data were simu-

lated with coordinated assemblies.
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2.6 Independent coding accounts for phase sequences

While the above analysis demonstrates that intra-assembly interactions are not required

to account for membership of CA1 assemblies, several studies support a role for inter-

assembly coordination in the generation of theta sequences (Dragoi and Buzsáki, 2006;

Foster and Wilson, 2007; Maurer et al., 2011; Gupta et al., 2012). We therefore inves-

tigated whether the independent coding or coordinated assembly model would better

account for the results of these studies.

Changes with running speed

We focus initially on the path length encoded by spike sequences, which we define

as the length of trajectory represented by the sequence of spikes within a single theta

cycle. Experimental data show that this path length varies with running speed (Maurer

et al., 2011; Gupta et al., 2012), but it is not clear whether this phenomenon is a fea-

ture of independent coding or instead results from coordination between assemblies.

Our analytical solutions to the sequence path length for strong phase coding, where

k→ ∞ predict a linear increase in sequence path length with running speed, but with a

lower gradient than that found experimentally (Maurer et al., 2011). Hence, indepen-

dent coding with strong phase locking does not quantitatively explain the changes in

sequence properties with running speed.

We reasoned that independent coding might still explain observed sequence path

lengths if a more realistic tradeoff between rate and phase coding is taken into ac-

count. To test this, we varied phase locking k and decoded the path length following

the method of Maurer et al. (2011), which decodes the location represented by the pop-

ulation at each time bin in a theta cycle to estimate the encoded trajectory. We found

that a good match to the data of Maurer et al. (2011) can be obtained by assuming that

the degree of phase locking increases with running speed (Figure 2.11A). This is due

to the dependence of the decoded path length on the strength of phase locking (Figure

2.12A).

Maurer et al. (2011) found that the compression factor c, which measures the com-

pression of an encoded trajectory into a single theta cycle, also depends on running

speed. To test whether independent coding might account for this observation, we in-

vestigated the behaviour of the fast and slow slopes of population activity (as shown in

Figure 2.6B), representing assembly propagation at theta timescales and behavioural

timescales respectively (i.e., vp and v). In the analysis of Maurer et al. (2011), the
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compression factor was estimated as the ratio of these two quantities. Following again

the methods used by Maurer et al. (2011) to decode the fast and slow slopes from spik-

ing data, we found that the dependence of the decoded fast slope on running speed

in our simulated data matches experimental data provided that phase locking is again

made dependent on running speed (Figure 2.11B, Figure 2.12B). However, the slower

behavioural timescale dynamics did not match those reported by Maurer et al. (2011).

Our decoded values for the slow slope closely matched the true value based on the rat’s

running speed. In contrast, the values reported by Maurer et al. (2011) are considerably

lower (Figure 2.11C) which, if correct, would suggest that the population consistently

moved more slowly than the rat, even moving backwards while the animal remained

still. Because of this discrepancy we could not reproduce the compression factor re-

ported by Maurer et al. (2011). Nevertheless, the independent coding model accurately

reproduces the theta timescale activity reported by Maurer et al. (2011).

The above analysis has two important implications. First, both the decoded se-

quence path length and theta-compressed propagation speed in the independent cod-

ing model match experimental data provided the degree of theta modulation of spike

output increases linearly with running speed. This dependence of phase locking on

running speed is consistent with the observed increase in LFP theta amplitude (Mc-

Farland et al., 1975; Maurer et al., 2005; Patel et al., 2012), and is a novel prediction

made by our model. Second, since the temporal delays between cells are determined

by the propagation speed vp, the close match of this quantity to experimental data con-

firms the dependence of temporal delays on running speed predicted by our model, and

argues against models based on fixed delays (Diba and Buzsáki, 2008; Geisler et al.,

2010).
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Figure 2.11: Decoded sequence path lengths and population activity propagation
speeds.
This figure shows the results of analytical and numerical analyses of the changes in

theta sequence properties with running speed in the independent coding model, and

a comparison to the reported data of Maurer et al., 2011. (A) With constant phase

locking, the decoded path length increases linearly with running speed, but to account

for experimental data a dependence of phase locking on running speed is required. The

shaded regions show lower and upper bounds (k = 0 and k = ∞). (B) Dependence of

decoded fast slope on running speed (cf. our Figure 2.6B; Maurer et al. (2011) Figure

3). Again, a match to the data requires a velocity dependent phase locking. (C) The

decoded slow slope matches the analytical value, where the population travels at the

running speed v. Bounds show LFP theta frequencies below 4 Hz (upper bound) and

above 12 Hz (lower bound) at each given running speed.



Chapter 2. Phenomenological Models of CA1 Theta Sequences 55

Figure 2.12: Dependence of decoded sequence path lengths, fast slopes and slow
slopes on phase locking.
(A) The decoded path length depends on the phase locking of individual cells. For zero

phase locking, the decoded path length is the distance travelled by the rat in a theta

cycle. This is because the decoded location in each time bin is simply the location of

the rat. As phase locking is increased the path length increases asymptotically towards

our analytical result, which is the distance travelled by the rat plus one full place field.

This effect arises due to the gradual separation of cells representing different locations

into separate theta phases, as seen explicitly in Figure 2.6C&D. Phases within a single

theta cycle represent past, present and future locations along the track. Dashed lines

show the phase locking values plotted in Figures 2 and 3. (B) Dependence of decoded

fast slope on phase locking. While the analytical result for vp is independent of phase

locking, the decoded value shown here is consistent with the intuitive notion that the

sequence path length D is equal to the distance travelled by the fast moving wave in a

theta cycle. (C) The decoded slow slope does not depend on phase locking, which is

expected given the separation of timescales involved.
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Sequence disruption by spike shuffling

Further experimental support for the notion of inter-assembly coordination has come

from an analysis suggesting that single cell phase precession is less precise than ob-

served theta sequences (Foster and Wilson, 2007). This conclusion relies on a shuffling

procedure which preserves the statistics of single cell phase precession yet reduces

intra-sequence correlations. However, performing the same shuffling analysis on data

generated by our independent coding model also reduced sequence correlations (t-test,

p < 10−46) (Figure 2.13). The effect arises because the shuffling procedure does not

preserve the temporal structure of single cell phase precession, despite preserving the

phasic structure (Figure 2.13A, B). Hence, the phase-position correlations are unaf-

fected, while the time-position correlations and hence sequence correlations are dis-

rupted (Figure 2.13C, D). Thus, inter-assembly coordination is not required to account

for these findings.

Nevertheless, although these results are reproducible by the independent coding

model, it remains possible that coordinated assemblies underlie the observed theta se-

quences. In particular, it is unclear whether this shuffling procedure could be modified

to obtain a test for assembly coordination with greater statistical specificity and if so,

whether it would reveal assembly coordination within experimental datasets. To ad-

dress these questions, we analysed experimental data along with data generated by

independent coding and coordinated assembly models, using a modified version of

this shuffling procedure (see Methods). Briefly, this modified shuffling procedure im-

proves upon the previous version by using a circular-linear correlation between spike

phase and location, avoiding the conversion between phases and times which intro-

duced errors in the original approach. We found that the new shuffling procedure suc-

cessfully detected assembly coordination with a statistical power of 81% (calculated

for datasets containing the same number of sessions, cells and sequences as our experi-

mental dataset). When applied to experimental data from CA1, the shuffling test failed

to detect any significant effect of shuffling (t-test, p=0.28, 2436 events), as in most

(74%) of the simulated independent coding datasets (Figure 2.13E, F). This failure

to detect evidence of assembly coordination gives further support to the independent

coding hypothesis.
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Figure 2.13: Results of shuffling analysis.
(A)-(D) show the analysis of Foster and Wilson (2007), (E)-(F) show a corrected anal-

ysis. (A) Spike phases were initially calculated by interpolation between theta peaks,

shown as dotted lines. (B) After shuffling the phases of spikes, a new spike time is

calculated by interpolation between the nearest two theta troughs (dotted lines) to the

original spike, which often generates erroneous spike times. The shuffled spike in this

case acquires a small phase jitter, but a large temporal jitter. (C)-(D) show the results of

this shuffling analysis applied to simulated independent coding data. (C) The unshuf-

fled sequence correlations between cell rank order and spike times. The red line shows

the mean correlation. (D) Shuffled sequence correlations remained greater than zero,

but were significantly reduced relative to the unshuffled case as in experimental data

(Foster and Wilson, 2007). (E) Results of a corrected shuffling procedure applied to

simulated independent coding datasets and an experimental dataset (height magnified

for comparison). Displayed are the average changes in sequence correlations caused

by shuffling for each simulated dataset. In 74% of simulated datasets, there was no

significant difference between the original and shuffled distributions. (F) Results of

the corrected shuffling procedure when applied to datasets simulated with coordinated

assemblies. In 81% of simulated coordinated coding datasets, shuffling significantly

changed the distribution of sequence correlations. The experimental dataset was not

significantly affected by shuffling (p=0.28, t-test, 2436 putative sequences).
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Dependent and independent cell pairs

In additional support for the coordinated assembly hypothesis, Dragoi and Buzsáki

(2006) performed an analysis suggesting that, during continuous locomotion around a

rectangular track, some cell pairs show a lap by lap covariation of firing rates (termed

the dependent pairs). These cell pairs were found to spike with a more reliable tem-

poral lag within theta cycles than cell pairs whose firing rates are independent, which

was interpreted as evidence for direct interactions between dependent neurons. To test

whether these results are instead consistent with independent coding, we applied the

analysis of lap by lap firing rate covariations to data from simulations of the indepen-

dent coding model. We found a similar fraction of apparently dependent cell pairs to

that reported by Dragoi and Buzsáki (2006), despite the absence of any true depen-

dencies between cells in the model (see Methods). Hence, this analysis artificially

separates homogeneous populations of place cells into apparently dependent and inde-

pendent cell pairs. Moreover, these dependent and independent cell groups displayed

different spatial distributions of place fields, with dependent cell pairs generally occur-

ring closer together on the track (Wilcoxon rank sum test, p = 1.8×10−16). By sepa-

rating a homogeneous population of cells into dependent and independent groups, the

analysis therefore introduces a sampling bias, leading to dependent cell pairs having

different properties. While we were unable to reproduce the analysis of the temporal

lags in each group due to a lack of information provided within the original study (see

Methods), the emergence of dependent cell pairs with measurably different properties

in independent coding simulations nevertheless demonstrates that these results are not

indicative of interactions between neurons.

Lookahead and lookbehind sequences

Finally, precise coordination of theta sequences has been suggested on the basis that

theta sequence properties vary according to environmental features such as landmarks

and behavioural factors such as acceleration, with sequences sometimes representing

locations further ahead or behind the animal (Gupta et al., 2012). To establish whether

independent coding could also account for these results, we generated data from our

model and applied the sequence identification and decoding analysis reported by Gupta

et al. (2012). We found that, even for simulated data based on pure rate coding with

no theta modulation (k = 0), large numbers of significant sequences were detected

at high running speeds (Figure 2.14A). Therefore, to test the performance of the full
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sequence detection and Bayesian decoding protocol used by Gupta et al. (2012), we

analysed two simulated datasets - one with a realistic value of phase locking (k = 0.5,

Figure 2.14B-D, solid lines) and another with zero phase locking (i.e., no theta related

activity, Figure 2.14B-D, dashed lines). In both cases, applying the reported Bayesian

decoding analysis yielded similar decoded path lengths to those found experimentally

(Figure 2.14C, D). Importantly, there was an inverse relationship between the ahead

and behind lengths decoded from the simulated data, which reproduces the apparent

shift in sequences ahead or behind the animal observed in experimental data (cf. Gupta

et al. (2012), Figure 4c). This effect was dependent on the density of recorded place

fields on the track and the threshold for the minimum number of cells in a theta cycle

required for sequence selection (Figure 2.15). As these results were obtained both in

the case with realistic phase coding and in the case with only rate coding (and therefore

no theta sequences), the properties of the decoded trajectories are not related to theta

activity within the population. Hence, these data do not constrain models of theta

activity in CA1.
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Figure 2.14: Analysis of individual sequence statistics.
(A) The fraction of theta cycles which are classified as “significant sequences” accord-

ing to the Gupta et al. (2012) analysis, as a function of running speed and phase locking

(for simulated data generated under the independent coding model). Large fractions of

significant sequences are generated even without phase coding or theta sequences

within the population (i.e. at k = 0). The black line shows the fraction reported experi-

mentally. (B) The distribution of significant sequences over running speed and decoded

path length for simulated data with phase locking k = 0.5, as calculated by Gupta et al.

(2012) (cf. their Fig 1c). (C) The relationship between decoded path length and de-

coded ahead and behind lengths for significant sequences, calculated for a dataset

with no theta activity (k = 0) and a dataset with realistic theta activity (k = 0.5). (D) The

relationship between the ahead length of the sequence and the behind length of the

sequence for these two datasets. Note that the properties of the decoded trajectories

do not depend on the theta activity in the data. This replicates the experimental data

(cf. Fig 4a-c in Gupta et al. (2012)), showing that similar trajectories are decoded by

this algorithm regardless of the presence of theta sequences.
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Figure 2.15: Dependence of decoded trajectories on the number of cells in a se-
quence.
(A)-(C) Distributions of the number of cells which spike in a theta cycle, for simulations

of the independent coding model with different densities of place fields on the track (i.e.,

different numbers of place fields on a track of fixed length). (A) shows the cell density

used to reproduce the results of Gupta et al. (2012). (B) and (C) show simulations with

higher place field densities in which more active cells are recorded in each theta cycle

on average. (D)-(F) Relationship between decoded ahead and behind length, calcu-

lated as in Gupta et al. (2012), shown for simulations with different place field densities

and for different thresholds of the minimum number of cells required for a sequence

to be included for analysis. (D) Simulations with 12 cells on the track and a threshold

of 3 cells generate results similar to Gupta et al. (2012). (E)-(F) The density of place

fields on the track and the threshold for sequence selection affect the decoded trajec-

tories, with higher values for either resulting in a smaller change in behind length as a

function of ahead length. (G)-(H) Spearman’s rank correlation between ahead length

and behind length for different place field densities plotted as a function of the threshold

for the minimum number active of cells. Although the magnitude of the effect shown in

(D)-(F) is diminished as these quantities increase, the correlation between ahead and

behind length stays constant. Moreover, this correlation remains significant despite the

decreasing effect size. Only when the number of selected sequences becomes too low

to maintain a reliable measure does the effect become insignificant.
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Interim summary

In total, our analysis demonstrates that a travelling wave model based on independent

phase coding for CA1 theta states is consistent with existing experimental data. Thus,

neither intra- nor inter-assembly interactions are required to explain spike sequences

observed in CA1 during theta states. Our analyses of experimental data along with

simulations from each hypothesis render it unlikely that assembly coordination sig-

nificantly shapes the structure of theta sequences or CA1 cell assemblies. Below, we

investigate some functional consequences of the independent coding and coordinated

assembly hypotheses and show that, despite the advantage of assembly coordination

in generating robust sequential activity patterns, it suffers from severe limitations in

remapping and storage of multiple spatial maps. Independent coding offers a solution

to this problem, allowing flexible generation of sequential activity over multiple spatial

representations.

2.7 Linear phase coding constrains global remapping

What are the advantages of independent coding compared to sequence generation

through interactions between cell assemblies? When an animal is moved between en-

vironments, the relative locations at which place cells in CA1 fire seem to remap inde-

pendently of one another (e.g., O’Keefe and Conway, 1978; Wilson and McNaughton,

1993). This global remapping of spatial representations poses a challenge for gener-

ation of theta sequences through coordinated assemblies as synaptic interactions that

promote formation of sequences in one environment would be expected to interfere

with sequences in a second environment. Indeed, in the coordinated assembly model,

simulations of remapping reduced single cell phase precession to below the level of

independent cells (i.e., of an identical simulation with interactions between cells re-

moved). Remapping in the coordinated coding model also substantially reduced firing

rate and population oscillations (Figure 2.16). This decrease in firing rate following

remapping contradicts experimental data showing an increase in firing rate in novel

environments (Karlsson and Frank, 2008). It is not immediately clear whether the

independent coding model faces similar constraints on sequence generation across dif-

ferent spatial representations. We therefore addressed the feasibility of maintaining

theta sequences following remapping given the assumptions that underpin our inde-

pendent coding model.
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We first consider the possibility that following remapping the phase lags between

cell pairs remain fixed - that is, while two cells may be assigned new firing rate fields,

their relative spike timing within a theta cycle does not change. This scenario would

occur if the phase lags associated with phase precession were generated by intrinsic

network architectures (e.g., Diba and Buzsáki, 2008; Geisler et al., 2010; Dragoi and

Tonegawa, 2011, 2013b) or upstream pacemaker inputs. For fixed phase lags, place

cells display linear phase coding, whereby a cell continues to precess in phase out-

side of its rate coded firing field at a constant rate (Figure 2.17A). In this scenario, the

phase lag between two neurons depends linearly on the distance between their place

field centres, while cells separated by multiples of a place field width share the same

phase (Figure 2.17A). Each cell pair therefore has a fixed phase lag in all environments

and all cells can in principle be mapped onto a single chart describing their phase or-

dering (Figure 2.17A). If this mechanism for determining phase ordering is hardwired,

then following arbitrary global remapping, cells with nearby place field locations will

in most cases no longer share similar phases (Figure 2.17B). As a result, theta se-

quences and the global population theta will in general be abolished (Figure 2.17B).

However, there exist a limited set of remappings which in this scenario do not disrupt

the sequential structure of the population (e.g., Figure 2.17C). On a linear track, these

remappings are: translation of all place fields by a fixed amount, scaling of all place

fields by a fixed amount and permuting the place field locations of any cell pair with

zero phase lag.

When considering global remapping in an open environment similar constraints

apply. Because the phase lag between any two cells depends on running direction

(e.g., Huxter et al., 2008), the population phase ordering must always be aligned with

the direction of movement (Figure 2.17D). Hence, in open environments, the notion

of a phase chart must be extended to include a fixed phase ordering for each running

direction. Given such a fixed phase chart, a set of remappings known as affine transfor-

mations preserve the correct theta dynamics (see Appendix A). Such remappings con-

sist of combinations of linear transformations (scaling, shear, rotation and reflection)

and translations (Figure 2.17E). Remappings based on permutation of place field lo-

cations of synchronous cells, which are permissible in one dimensional environments,

are no longer tenable in the two dimensional case due to constraints over each running

direction.

Since place cell ensembles support statistically complete (i.e. non-affine) remap-

pings (e.g., O’Keefe and Conway, 1978) while maintaining phase precession, CA1
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network dynamics are not consistent with the model outlined above. Moreover, this

analysis demonstrates that previous models based on fixed temporal delays between

cells (e.g., Diba and Buzsáki, 2008; Geisler et al., 2010) cannot maintain theta se-

quences following global remapping. Nevertheless, it remains possible that CA1 theta

dynamics are based on fixed phase charts, provided that multiple such phase charts

are available to the network, similar to the multiple attractor charts which have been

suggested to support remapping of firing rate (Samsonovich and McNaughton, 1997).

In this case, each complete remapping recruits a different phase chart, fixing a new

set of phase lags in the population. The number of possible global remappings that

maintain theta sequences is then determined by the number of available phase charts.

Such a possibility is consistent with recent suggestions of fixed sequential architectures

(Dragoi and Tonegawa, 2011, 2013b) and has not been ruled out in CA1. It is also of

interest that affine transformations are consistent with the observed remapping proper-

ties in grid modules (Fyhn et al., 2007), suggesting that a single phase chart might be

associated with each grid module.
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Figure 2.16: Remapping with coordinated assemblies.
(A) Comparison of single cell phase precession generated by coordinated assemblies

(before and after remapping) and independent coding. For this simulation, single cell

phase and rate fields were assumed to be perfectly remapped, so that any changes

are purely due to assembly interactions. Note that, while assembly interactions improve

phase coding in single cells in the initial environment, after remapping these same

interactions disrupt phase precession and cause a lower (circular-linear) correlation

between spike phase and animal location than that generated by independent cells. (B)

Population firing rate on a single trial along a linear track. While assembly interactions

initially entrain and amplify theta oscillations in the population compared to independent

cells, after remapping these interactions disrupt theta activity and cause a lower overall

activity level.
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Figure 2.17: Properties of CA1 populations governed by linear phase coding.
(A) On a linear track, cells which precess linearly in phase maintain fixed theta phase

lags. This is illustrated as a phase ordering (coloured bar), which describes the rel-

ative phase of each cell (arrows and numbers show locations of place fields at each

phase). Each cell has a constant, running speed dependent frequency and a fixed

phase offset to each other cell. (B) A complete global remapping with phase lags be-

tween cells held fixed. Theta sequences and population oscillations are abolished. (C)

In a constrained place field remapping, theta sequences are preserved. (D) In open en-

vironments, phase lags depend on running direction. The set of population phase lag

configurations needed to generate sequences in each direction is called a phase chart.

(E) If a population has a fixed phase chart, the possible remappings are restricted to

affine transformations.
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2.8 Sigmoidal phase coding enables flexible global remap-

ping

The above analysis demonstrates that both coordination of assemblies and indepen-

dent, linear phase coding pose severe restrictions on global remapping which appear

at odds with experimental observations. We asked if it is possible to overcome these

constraints so that phase sequences can be flexibly generated across multiple environ-

ments. We reasoned that experimental data on phase precession only imply that phase

precesses within a cell’s firing field and need not constrain a cell’s phase outside of

its firing field. In particular, place cells show intrinsic theta frequency membrane po-

tential oscillations (MPOs) even when the animal is outside of their firing rate field,

so that the cell is not spiking (e.g., Harvey et al., 2009). This implies that a place cell

has a well defined intrinsic theta phase which extends across the environment, even

when the cell is not spiking. We therefore implemented a version of the independent

coding model in which firing phase has a sigmoidal relationship with location (Figure

2.18A-B, solid line), such that phase precesses within the firing field but not outside

of the field. In this case, each cell’s intrinsic frequency increases as the animal enters

the spatial firing field and drops back to LFP frequency when the animal exits the fir-

ing field (Figure 2.18C, solid line). This is in contrast to the linear phase model and

previous work with fixed delays (Geisler et al., 2010) in which each cell’s intrinsic fre-

quency is always faster than the population oscillation, both inside and outside of the

place field (Figure 2.18C, dashed line). In a given environment, spike phase precession

and sequence generation in a population of cells with sigmoidal phase coding (Figure

2.18D-F) are similar to models in which cells have linear phase coding. However, in

addition, sigmoidal phase coding enables theta sequences to be generated after any

arbitrary global remapping (Figure 2.18G). This flexible global remapping is in con-

trast to the scrambling of theta sequences following global remapping when cells have

linear phase coding (Figure 2.18G). Thus, independent sigmoidal coding is able to ac-

count for CA1 population activity before and after global remapping. Mathematical

details of the sigmoidal phase coding model are given below.
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Figure 2.18: Properties of CA1 populations governed by sigmoidal phase coding.
(A-C) Firing rate and intracellular phase and frequency in the linear (dashed lines) and

sigmoidal models (solid lines) during the crossing of a place field. In the sigmoidal

model, phase precession is initiated inside the place field by an elevation of intracellular

frequency from baseline. (D-F) Firing rate and intracellular phase and frequency for a

place cell population on a linear track. In the sigmoidal model, an intracellular theta

phase lag between cell pairs develops as the animal moves through their place fields.

Outside their place fields, cell pairs are synchronised. (G) Global remapping in the

linear and sigmoidal models. The sigmoidal model allows arbitrary remapping without

disrupting population sequences.

Analysis of sigmoidal phase coding

Here we propose a model for a cell’s intrinsic theta phase which matches the above

travelling wave model for cells in the population that are spiking, but which differs

outside the place field where the cell is silent. Since the above models were based on

considerations of data from spiking neurons, the extension of a linear phase gradient

outside of the place field is not guaranteed, and several studies support a sigmoidal

phase gradient (Chance, 2012; Diba and Buzsáki, 2008).

To model a sigmoidal phase gradient, we assume that the frequency of a place cell

depends only on the distance of the animal from the centre of the place field xc (Figure

2.18C):

f (xc, t) = fθ +∆ f exp
(
−(xc− vt)2

2σ2

)
(2.31)

where ∆ f is the increase in frequency at the centre of the place field. We can then

calculate the phase as a function of time, as the rat moves through the field at constant
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velocity v:

ψ(xc, t) = 2π

∫ t

0
f (xc,τ)dτ+ψ(xc,0)

= 2π fθt− π3/2
√

2∆ f σ

v

(
erf
(

xc− vt√
2σ

)
− erf

(
xc√
2σ

))
+ψ(xc,0) (2.32)

If each cell precesses from 2π to 0, we can set lim
t→−∞

[2π fθt +θs−ψ(xc, t)] = 2π and

lim
t→+∞

[2π fθt +θs−ψ(xc, t)] = 0 to find ψ(xc,0), so that:

ψ(xc, t) = 2π fθt−πerf
(

xc− vt√
2σ

)
+θs−π (2.33)

which also gives ∆ f = v/(
√

2πσ). This model reduces the number of parameters by

explaining the rate of phase precession fφ (Equation (2.5)) purely in terms of the place

field width σ, eliminating the second scale parameter R from the model and allowing

experimental predictions based on fewer alterable parameters.

For the sigmoidal model, the extension to navigation in two dimensions is straight-

forward. The frequency of the cell is simply a function of the distance to the centre of

the place field, and hence the phase is given by:

ψ(xc, t) = 2π fθt +

√
2π

σ

∫ t

0
|v(t ′)|exp

(
−(x(t ′)−xc)

2

2σ2

)
dt ′+ψ(xc,0) (2.34)

where we used Equation (2.31) and the expression for ∆ f .

Experimental predictions for linear vs sigmoidal phase coding

Linear and sigmoidal models of phase coding lead to distinct experimentally testable

predictions. Recordings of the membrane potential of CA1 neurons in behaving ani-

mals show that although spikes precess against the LFP, they always occur around the

peak of a cell’s intrinsic membrane potential oscillation (MPO) (Harvey et al., 2009).

Therefore the intrinsic phase φ of each cell in our model (Figure 2.2D, E) can be inter-

preted as MPO phase. While data concerning the MPO phase outside of the firing field

are limited, such data would likely distinguish generation of theta sequences based on

a linear and sigmoidal phase coding. If CA1 implements linear phase coding, then the

MPO of each cell should precess linearly in time against LFP theta at a fixed (veloc-

ity dependent) frequency, both when the animal is inside the place field and when the

animal is at locations where the cell is silent (Figure 2.18A-C, dashed line). Alterna-

tively, sigmoidal phase coding predicts that precession of the MPO against the LFP
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occurs only inside the firing rate field (Figure 2.18A, B solid line) and that the MPO

drops back to the LFP frequency outside of the place field (Figure 2.18C solid line)

as reported by Harvey et al. (2009). A further prediction of sigmoidal coding is that,

in contrast to models based on fixed delays (Diba and Buzsáki, 2008; Geisler et al.,

2010), the phase lag between any two cells changes when the animal moves through

their place fields. Outside their place fields the cells are synchronised with each other

and with the LFP, whereas a dynamically shifting phase lag develops as the animal

crosses the place fields. Finally, phase precession under the sigmoidal model behaves

differently to the linear model in open environments. In the linear model, the phase

chart fixes a different population phase ordering for each running direction, so that

spike phase depends on the location of the animal and the instantaneous direction of

movement. In the sigmoidal model, however, each cell has a location dependent fre-

quency, so that the spike phase depends on the complete trajectory through the place

field and no explicit directional information is required. Rather, the directional prop-

erty of the sequence arises purely through a location dependent oscillation frequency in

each cell combined with the trajectory of the animal through each place field. In sum-

mary, our analysis demonstrates how evaluation of theta sequences following global

remapping and of theta phase within and outside of a cell’s firing field will be critical

for distinguishing models of CA1 assemblies and theta generation.

2.9 Discussion

Our analysis demonstrates how complex and highly structured population sequences

can be generated without coordination between neurons. In contrast to previous sug-

gestions (Harris et al., 2003; Dragoi and Buzsáki, 2006; Foster and Wilson, 2007;

Maurer et al., 2011; Gupta et al., 2012), we find that the theta-scale population activity

observed in CA1 is consistent with phase precession in independent cells, without in-

teractions within or between cell assemblies. We demonstrate that independent coding

enables flexible remapping of CA1 population activity while maintaining the ability

to generate theta sequences. These properties are consistent with maximisation of the

capacity of CA1 for representation of distinct spatial experiences.

The independent coding hypothesis leads to a novel view of the CA1 population

as a fast moving travelling wave with a slower modulatory envelope. This model im-

plements an invariant phase code via a change in the frequency and temporal delay

between cells with running speed. Amplitude modulation of the envelope provides a
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mechanism for multiplexing spatial with nonspatial information, such as task specific

memory items (Wood et al., 2000) and sensory inputs (Rennó-Costa et al., 2010). The

independence of each neuron naturally explains the robustness of phase precession

against intrahippocampal perturbations (Zugaro et al., 2005), an observation which

is difficult to reconcile with models based on assembly interactions. Depending on

the exact nature of the single cell phase code, independent phase coding can enable

theta sequences to be maintained with arbitrary global remapping. This flexibility may

maximise the number and diversity of spatial representations that CA1 can provide to

downstream structures, offering a strong functional advantage over mechanisms based

on interactions between cell assemblies.

Independent phase coding leads to new and experimentally testable predictions that

distinguish mechanisms of CA1 function during theta states. First, an absence of co-

ordination within or between assemblies has the advantage that neural interactions do

not interfere with sequence generation after global remapping. Rather, for independent

coding models the constraints on sequence generation following remapping arise from

the nature of the phase code. With linear phase coding the set of sequences available to

the network is fixed, resulting in a limited set of place field configurations with a par-

ticular mathematical structure (Figure 2.17). Interestingly, the remappings observed

in grid modules (Fyhn et al., 2007), but not CA1, are consistent with those predicted

for networks with a single fixed set of theta phase lags called a phase chart. Specifi-

cally, grid modules appear to remap via combinations of rotation, scaling, translation

and shear as predicted by the linear model (Fyhn et al., 2007). These findings, to-

gether with the fact that the temporal delays between cells depend on running speed,

argue against previous models based on fixed delays within CA1 populations (Diba and

Buzsáki, 2008; Geisler et al., 2010). Nevertheless, more complex scenarios with mul-

tiple phase charts could explain CA1 population activity during theta oscillations and

“preplay”, which suggests a limited remapping capacity for CA1 (Dragoi and Tone-

gawa, 2011, 2013b). Alternatively, sigmoidal phase coding massively increases the

flexibility for global remapping as cells can remap arbitrarily while maintaining co-

herent theta sequences within each spatial representation (Figure 2.18). Second, linear

and sigmoidal phase coding predict distinct MPO dynamics. With linear phase coding

the temporal frequency of each MPO is independent of the animal’s location. With sig-

moidal phase coding, the MPO frequency increases inside the place field, so that phase

precession occurs inside but not outside the place field. In this case, only the spiking

assembly behaves as a travelling wave, whereas the MPOs of cells with place fields
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distant from the animal are phase locked to the LFP. Sigmoidal phase precession could

emerge due to inputs from upstream structures (Chance, 2012) or be generated intrin-

sically in CA1 place cells (Leung, 2011). Finally, in contrast to linear phase coding

populations, sigmoidal phase coding populations do not require additional information

from head direction or velocity cells to generate directed theta sequences in open en-

vironments. Instead, sigmoidal theta sequences are determined solely by the recent

trajectory of the rat through the set of place fields together with a location dependent

oscillation frequency, consistent with recent observations of reversed theta sequences

during backwards travel (Cei et al., 2014; Maurer et al., 2014). In summary therefore,

these two models may be distinguished experimentally on the basis of observations

of the number of non-affine remappings in CA1, the intracellular frequency and delay

between place cells as a function of location and of the dependence of firing phase on

the trajectory through a place field in open environments.

While theta sequences of CA1 activity are most commonly observed during spatial

navigation, similar activity patterns associated with short term memory have been ob-

served during wheel running (Pastalkova et al., 2008). In this situation each cell’s

activity depends on the phase of the LFP theta rhythm and on the temporal loca-

tion within an “episode field” rather than a place field. Our model can be applied

equally well to these internally generated sequences if the rate coded episode field is

assumed to have a similar temporal structure to a place field. An entirely different

class of sequences, however, is observed during non-theta states such as sharp wave

ripples (SWR) (Buzsáki et al., 1992; Diba and Buzsáki, 2007). In contrast to theta

sequences, SWR sequences are generally observed during states of immobility and are

believed to arise from synchronous discharge in CA3 (Buzsaki et al., 1983). Because

SWR sequences only occur at a single timscale and are therefore generated without

co-occurrence of longer time-scale firing fields or theta oscillations, they cannot be

accounted for by the independent coding schemes that we investigate here, in which

rate and phase information determine the activity of each cell. Instead, the nature

of cell assemblies in CA1 may be highly state dependent, operating in at least two

modes. During theta states, sequences are generated by independently precessing neu-

rons, whereas during SWRs sequences may result from interactions between consec-

utively activated cell assemblies. In particular, theta oscillations have been shown to

decorrelate network activity, while more synchronous states in which cell assemblies

may exist are observed during sharp wave ripple events (Mizuseki and Buzsaki, 2014)

Can independent coding account for manipulations that modify place cell dynam-
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ics? Administration of cannabinoids disrupts phase precession by CA1 neurons and

impairs spatial memory, but does not appear to affect the rate coded place firing fields

of CA1 neurons (Robbe and Buzsáki, 2009). This dissociation between rate and phase

coding can be accounted for in our model by assuming that rate fields are maintained

while phase fields are disrupted (Figure 2.2A) or the degree of phase locking (k) is

substantially reduced (Figure 2.2B). In contrast, increased in-field firing of place cells

following optogenetic inactivation of hippocampal interneurons (Royer et al., 2012)

can be accounted for in our model by increased Nspikes, while altered phase of place

cell firing following inactivation of parvalbumin interneurons can be accounted for in

our model by modifying the phase fields (Figure 2.2A) of the place cells. Important

future tests of the independent coding model will include comparison of its predictions

of sequence activity, remapping and intracellular dynamics to experimental measures

made during these kinds of manipulations.

Our independent coding model offers a comprehensive account of population activ-

ity in CA1 during theta states and makes new predictions for coordination of network

dynamics and remapping at the population level, but it does not aim to distinguish

cellular mechanisms for phase precession. Nevertheless, by demonstrating that ex-

isting observations of population sequences can be explained by independent coding

our model argues against mechanisms for phase precession that rely on synaptic co-

ordination at theta time scales (e.g., Tsodyks et al., 1996; Maurer and McNaughton,

2007; Lisman and Redish, 2009). In contrast, our model does not distinguish be-

tween specific single cell mechanisms for phase precession such as dual oscillators

(Lengyel et al., 2003; Burgess et al., 2007), depolarising ramps (Mehta et al., 2002),

intrinsic membrane currents (Leung, 2011) or dual inputs from CA3 and entorhinal

cortex (Chance, 2012). Our model is also consistent with inheritance of phase pre-

cession in CA1 from upstream circuits in CA3 and entorhinal cortex (Jaramillo et al.,

2014). However, it argues against the possibility that CA1 inherits coordinated se-

quences from CA3 (Jaramillo et al., 2014). It is possible that CA3 nevertheless gen-

erates sequences by synaptic coordination. Because CA3 neurons are connected by

dense recurrent collaterals (Miles and Wong, 1986; Le Duigou et al., 2014), there

are likely to be substantial correlations in their output to CA1, which could induce

deviations from the independent population code outlined here. However, feedback

inhibition motifs such as those found in CA1 may counteract such correlations (Renart

et al., 2010; Tetzlaff et al., 2012; Bernacchia and Wang, 2013; Sippy and Yuste, 2013;

King et al., 2013). Hence, the local inhibitory circuitry in CA1 may actively remove
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correlations present in its input in order to generate an independent population code

(Ecker et al., 2010).

A major advantage of independently precessing cell populations is that they pro-

vide a highly readable, robust and information rich code for working and episodic

memory in downstream neocortex. In particular, a downstream decoder with access to

an independent population code need only extract the stereotyped correlational patterns

associated with travelling waves under a given place field mapping, allowing it to flex-

ibly decode activity across a large number of spatial representations. Decoding in the

presence of additional correlations would likely lead to a loss of information (Zohary

et al., 1994). While this loss can to some extent be limited by including knowledge of

these additional correlations (Nirenberg and Latham, 2003; Eyherabide and Samengo,

2013), this likely requires a high level of specificity and therefore a lack of flexibility

in the decoder. The flexibility afforded by an independent population code may there-

fore provide an optimal format for the representation and storage of the vast number

of spatial experiences and associations required to inform decision making and guide

behaviour.

2.10 Methods

Simulations of CA1 population activity

In the independent coding model, we simulated data from a population of place cells

with place field centres xc and width σ which precess linearly through a phase range

of ∆φ over a distance 2R on a linear track using Equation (2.22). The initial phase ψs

was either taken as 0, or a uniform random variable ψs ∈ [0,2π) set at the beginning

of each run. In all simulations, parameters were set as: 2R = 37.5 cm (Maurer et al.,

2006a), ∆φ = 2π, σ = 9 cm, fθ = 8 Hz (Buzsáki, 2002), Nspikes = 15 (Huxter et al.,

2003). Finite numbers of place cells were simulated with place field centres xc which

were either uniformly distributed along a linear track with equal spacing or randomly

sampled from a uniform distribution over the track. All cells were therefore identical

up to a shift in place field centre xc. Simulations were performed using Matlab 2010b

and 2013b.

Simulations of population activity generated through coordinated assemblies used

Equations (2.26-2.30), with the single cell properties simulated as for the independent

coding model. The peer interaction timescale was set to τ = 25 ms (Harris et al.,
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2003), and the interaction length for asymmetric excitation was set to `= 10 cm with

an excitatory amplitude of wE = 1/4. The amplitude of the inhibitory weights was

varied until the same number of spikes were generated as in the independent coding

simulation (for the parameters used in these simulations, the inhibitory amplitude was

wI = 1/18).

Experimental datasets

We used data recorded from CA1 during navigation along a linear track. For details of

experimental data see Mizuseki et al. (2014). For the analysis performed in this study,

simultaneous recordings of a large number of coactive cells in CA1 is required, which

restricted the number of suitable datasets. In particular, we used datasets ec016.233,

ec016.234, ec016.269, ec014.468, ec014.639.

Prediction analyses (Section 2.5)

To replicate the results of Harris et al. (2003), we simulated constant speed movement

along a linear track, with lap-by-lap running speeds drawn from a normal distribution

with mean 35 cm/s and standard deviation of 15 cm/s. We simulated motion in each

direction, using the same set of place fields in each case. We estimated the preferred

firing phase at each location from the simulated data using the methods stated in Harris

et al. (2003), using either single-direction data or data consisting of runs in both direc-

tions to generate nondirectional or directional phase fields. The prediction analysis was

performed according to the methods given in Harris et al. (2003). Specifically, models

of place fields and phase fields are fitted via maximum likelihood on a training dataset.

These models are then used to predict the firing probability at each point in time given

the animal’s location and the LFP theta phase on a test dataset, under the assumption

of Poisson firing with instantaneous rate determined by the fitted model. Finally, the

predictability (or information) is quantified as the difference in the log likelihood of the

full model versus a null model with a constant firing rate. By calculating this measure

with a logarithm of base 2, we arrive at a measure of information in bits, and by divid-

ing by the recording time of the test dataset we arrive at a measure in bits per second.

The separation of the data into training in test datasets is a form of cross-validation,

which guards against overfitting.

For these initial simulations (Figure 2.8), we used the simulated value of phase

locking rather than estimating it from the data. To display the peer prediction perfor-
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mance shown in Figure 2.8C, the optimal prediction timescale for each phase locking

value was chosen. This was done separately for the peer only case and the peer plus

phase field case.

We then performed additional, more detailed simulations to test the performance

of simulated and experimental data when using the new directional phase fields. We

separated datasets according to the running direction along a linear track, analysing

each direction individually. In addition to fitting the place field, phase field and peer

factor used by Harris et al. (2003), we also fitted a velocity modulation factor given by:

A(v) =
∑t ntw(|v− vt |)

∑t r0 (xt)dtw(|v− vt |)
(2.35)

which estimates the changes in firing rate of a cell according to running speed. In the

above equation, the notation follows that of Harris et al. (2003) (their Supplementary

Information), i.e., w is a Gaussian smoothing kernel of width 3.5 cm/s, nt is the number

of spikes fired by the cell in time bin t, r0 is the estimated firing rate field at location x,

xt is the animal’s location in time bin t and vt is its velocity. Our simulations showed

that, using the methods of Harris et al. (2003), the phase locking parameter k was un-

derestimated outside of the place field centre. Misestimation of phase field parameters

introduces false peer predictability in simulated datasets. We therefore replaced their

location-dependent estimation with a fixed value equal to the phase locking estimated

in regions where the place field is over 2/3 its maximum value. We also found that the

5 cm spatial smoothing kernel used by Harris et al. (2003) resulted in a high level of

spurious peer prediction in simulations based on independent coding, since it extended

the boundaries of place fields, allowing non-overlapping peer cells to compensate via

inhibitory weights. A smaller kernel of 3.5 cm reduced the rate of false positive for

peer prediction and was therefore used instead. We simulated 300 cells in each session

of which we randomly sampled 15 for analysis in order to match the number of place

cells typically recorded experimentally. 28 laps were simulated for each session and

10 sessions were simulated in total (representing the 2 running directions over the 5

experimental sessions we analysed). Peer prediction was performed at a timescale of

25 ms (the optimal timescale in Harris et al. (2003)).

Changes in sequence properties with running speed (Section 2.6)

To compare the sequence path length in spiking data generated from the independent

coding model to experimental data, we followed the decoding methods outlined in
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Maurer et al. (2011). Briefly, this involves constructing trial averaged time by space

population activity matrices in order to decode the location represented by the popula-

tion in each time bin over an average theta cycle. The decoded path length is measured

as the largest distance between decoded locations within the theta cycle. To test the

influence of phase locking in this analysis, k was varied incrementally from 0 to 6 and

the sequence path length for the resulting data was calculated in each case. We used

the same spatial and temporal bins (0.7 cm and 20◦ of LFP θ) as the original study.

To calculate the fast and slow slopes, we generated the contour density plots de-

scribed by Maurer et al. (2011) using the same parameters as the sequence path length

analysis. We simulated 100 trials for each running speed. We then divided these 100

trials into 10 subsets of 10 and applied the contour analysis to each subset. We fitted

the fast slope to the 95% contour of the central theta peak, and measured the slow

slope as the line joining the maximum of the top and bottom peaks of the central 3.

We averaged over the results from each subset to obtain the final value. The analytical

value for the fast slope in the limit of high phase locking is FS = vp/(360 fθ), where

the denominator arises due to the normalisation to cm/deg in the analysis of Maurer

et al. (2011). Similarly for zero phase locking, FS = v/(360 fθ). The analytical value

for the slow slope is independent of phase locking, SS = v/(360 fθ). Upper and lower

bounds for the slow slope were therefore fitted assuming the reported running speed is

accurate, and that the LFP theta frequency is in the range 4Hz < fθ < 12Hz.

Shuffling analyses (Section 2.6)

To reproduce the results of Foster and Wilson (2007), we generated data from 1000

theta cycles, each with a running speed drawn from the same distribution as for the

prediction analysis. Following the protocol outlined by Foster and Wilson (2007), we

found the set of all spike phases for each cell when the rat was at each position and

analysed events defined as 40 ms windows around firing rate peaks. Spike phases were

calculated by interpolation between LFP theta peaks. For the shuffling analysis, each

spike in an event was replaced by another spike taken from the same cell while the

animal was at the same location. The new spike time was then calculated from its

phase by interpolation between the closest two LFP theta troughs of the original spike,

as reported in the original study. 100 such shuffles were performed for each event, and

the correlation between cell rank order and spike times was calculated in each case.

For the corrected shuffling procedure, we followed the methods of Foster and Wil-
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son (2007) but with the following adjustments: The correlations between spike times

and place field rank order within an event calculated in the original study were replaced

with circular-linear correlations between spike phase and place field peaks in order to

remove issues arising from conversion between spike time and spike phase (Kempter

et al., 2012); a minimum running speed of 20 cm/s and a maximum running speed

of 100 cm/s were imposed; the LFP phase was measured using a Hilbert transform

rather than a linear interpolation between theta peaks; spikes that occurred more than

50 cm away from the place field peak were discarded from the analysis. The circular-

linear correlation requires a mild restriction of the range of possible regression slopes

between the circular and linear variables, which in this case describes the distance

travelled by a theta sequence within a theta cycle (Kempter et al., 2012). We set this

range as 25−80 cm/cycle, i.e. around the size of a place field. For simulations using

this shuffling procedure, we simulated 300 cells in each session on a linear track and

randomly sampled 15 of these for further analysis. We again simulated 10 sessions

with 28 laps each, for which the number of detected events was similar to that of the

experimental dataset. We generated a large number of such datasets in order to obtain

a distribution of shuffling test results to compare against the experimental dataset.

Dependent and independent cells (Section 2.6)

To reproduce the results of Dragoi and Buzsáki (2006), we simulated population ac-

tivity on a linear track. To recreate the experimental conditions of Dragoi and Buzsáki

(2006), we set the track length as 250 cm and simulated 8 sessions (i.e., 4 animals by 2

running directions), each with 25 place cells. As the original experiment consisted of

continuous locomotion around a rectangular track, we wrapped the boundaries of the

linear track and simulated continuous sessions rather than single laps. Place fields were

randomly distributed over the track following a uniform distribution. Running speed

on each lap was drawn from the same distribution as the prediction and shuffling anal-

yses. Phase locking was set to 0.5. We calculated the dependent and independent cell

pairs following the methods of Dragoi and Buzsáki (2006), which uses temporal bins

of 2 s to calculate firing rate correlations and a shuffling procedure to find significantly

correlated cells.

Dragoi and Buzsáki (2006) did not state the number of dependent and independent

cell pairs obtained from their analysis. Therefore, to compare the results of our sim-

ulations to their experimental data, we estimated the number of points in their cross-



Chapter 2. Phenomenological Models of CA1 Theta Sequences 79

correlogram lag plot for dependent and independent cell pairs (their Figure 3B) and

compared the result to the same measure in our simulations. CCG plots were calcu-

lated using the methods described in Dragoi and Buzsáki (2006). Using this method,

we found that 33% of cell pairs were dependent compared to an estimated 30-35% in

Dragoi and Buzsáki (2006).

To calculate the reliability of temporal lags between dependent and independent

pairs, Dragoi and Buzsáki (2006) took the central cloud of the CCG-lag vs place field

distance scatter plot (their Figure 2A) and calculated the correlation between these two

variables. However, the method for isolating the central cloud from the surrounding

clusters was not disclosed. Without this information, we were unable to reproduce this

analysis.

To test for differences between place field separations of dependent and indepen-

dent cell pairs, we again considered only cell pairs whose CCG lags passed the inclu-

sion criteria (as described in Dragoi and Buzsáki (2006)). We compared the vectors of

cell pair separations for each group.

Decoding individual sequences (Section 2.6)

To reproduce the results of Gupta et al. (2012), we used the significant sequence testing

protocol and Bayesian decoding algorithm described therein, with spatial binning set as

3.5 cm, as in the original study. Briefly, the significant sequence testing analysis tests if

population activity within a theta cycle has significant sequential structure, whereas the

Bayesian decoding algorithm generates a time by space probability distribution which

is used to decode the ahead and behind lengths represented by the theta sequence. For

Figure 2.14A, we varied phase locking and running speed independently and generated

spiking data for each pair of values. In the simulations used to generate Figure 2.14,

we assumed that the number of spikes fired per theta cycle does not vary with running

speed, as such a dependence introduces an additional change of the decoded sequence

path length with running speed. In order to best match the fraction of theta cycles

with 3 or more cells active reported by Gupta et al. (2012), each simulated theta cycle

contained 12 place cells with place fields randomly distributed over a region of space

94.5 cm ahead or behind the rat. We then applied the significant sequence detection

methods for each resulting data set to obtain the fraction of significant sequences in

each case. For Figure 2.14B, we used k = 0.5 and generated 1000000 theta cycles,

each with a running speed drawn from a normal distribution with mean 30 cm/s and
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standard deviation 10 cm/s. Running speeds less than 10 cm/s were discarded and the

remaining theta cycles were tested for significant sequential structure. For Figure 2.14

C&D, we applied the Bayesian decoding algorithm to these significant sequences in

order to calculate the path length, ahead length and behind length. In addition, we

applied the same analysis to another dataset simulated with k = 0.

Remapping simulations (Sections 2.7-2.8)

To simulate remapping in the coordinated assembly model, we simulated spiking ac-

tivity for a population of 300 cells on a linear track with weights given by Equation

(2.26). To simulate the remapped population, we left this set of weights intact but

randomly reassigned the place and phase fields of each cell, such that phase coding

and rate coding were perfectly remapped but peer interactions were preserved between

environments.

To simulate remapping in the linear phase coding model, we assumed that phase

lags were preserved between environments. The remapped population was simulated

by randomly permuting the place field centres of cells while leaving the phase fields of

each cell intact.

To simulate remapping in the sigmoidal phase coding model, we assumed that the

field of elevated frequency is locked to the place field before and after remapping.

Hence, place fields were randomly permuted and the single cell frequency was defined

to increase within the new place field.



Chapter 3

Phase Coding in Grid Cell Modules

3.1 Introduction

In this section we extend the phenomenological models of Chapter 2 to entorhinal

grid cells. In particular, while the results of the last section suggest that linear phase

coding, in which a fixed phase chart underlies the ordering of cells at theta timescales,

is inconsistent with CA1 global remapping, we found it to be fully consistent with

the forms of remapping observed in grid cell modules (Fyhn et al., 2007). However,

the spatial symmetries of grid cell firing fields complicate the simple picture analysed

for place cells in the previous chapter, and it is therefore not clear that the dynamics

of linear phase coding under fixed phase charts and the corresponding constraints for

firing field remapping discussed in the previous chapter apply to grid cell modules.

In this chapter, we show that the spatial symmetries of grid cell activity patterns

impose strong constraints on linear phase coding which create problems for generat-

ing self-consistent phase coding in two-dimensional environments. By analysing the

properties of sigmoidal phase coding in grid cells, we go on to show that the basic

form of sigmoidal phase coding outlined in Chapter 2 faces similar problems with

two-dimensional phase coding in grid cells. To overcome these problems, we intro-

duce a more biophysically grounded form of sigmoidal phase coding which includes

an active synchronisation term in order to reset the intracellular theta phase between

firing fields. This model can account for phase precession in open environments in

both grid cells and place cells and provides the basis for a mechanistic model of phase

precession which we discuss in Chapter 4.

81
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3.2 Grid cell firing rate model

Figure 3.1: Firing rate of a single grid cell over space, or equivalently a snapshot of the

firing rate of a grid module, with orientation φx = 30◦

To describe the firing rate of a grid cell as a function of the animal’s location, we

constructed a model based on the combined activity of three plane waves at different

orientations. Specifically, the firing rate rx of a grid cell as a function of the animal’s

location x can be modelled as a product of von Mises functions:

rx(x,xc)=Aexp(kx cos(κκκ111 · (x−xc)))exp(kx cos(κκκ222 · (x−xc)))exp(kx cos(κκκ333 · (x−xc)))

(3.1)

where κκκiii are two-dimensional wavevectors for these three plane waves which deter-

mine the orientation and scale of the grid map, xc is the location of any grid field

centre, which sets the spatial phase of the cell and kx sets the grid field size relative

to their separation (Figure 3.1). In particular, a large value of kx will lead to narrow,

highly peaked grid fields.

This model describes the firing rate of a grid cell in terms of three plane waves

at different angles, which integrate the animal’s motion along three directions. For

isotropic grid maps (i.e., without shear or squeezing), the wavevectors are separated



Chapter 3. Phase Coding in Grid Cell Modules 83

by exactly 60◦:

κκκ111 =
2π

D
(cos(φx),sin(φx)) (3.2)

κκκ222 =
2π

D
(cos(φx +π/3),sin(φx +π/3)) (3.3)

κκκ333 =
2π

D
(cos(φx +2π/3),sin(φx +2π/3)) (3.4)

where φx is the orientation of the grid and D determines the grid scale. Specifically,

if we define d to be the shortest distance between grid field peaks, then d = (2/
√

3)D

(compare Figure 3.1 to Figure 3.2, top panel). Note also that these vectors form an

overcomplete, non-orthogonal basis as κκκ333 = κκκ222−κκκ111.

This firing rate exhibits translational symmetry. For the isotropic case described in

Equations (3.2)-(3.4), the firing rate function is invariant under spatial translations ∆∆∆

of the form:

xc→ xc +∆∆∆, ∆∆∆ =
2
3

D((i− j)κ̂κκ111 +(i+2 j)κ̂κκ222) i, j ∈ Z (3.5)

where κ̂κκiii = κκκiii/|κκκiii| are the wavevectors after normalisation to unit length. This set of

translations ∆∆∆ corresponds to the set of vectors between a given grid field peak and all

other grid field peaks. In addition to these translations of xc, the firing rate is invariant

under the same set of transformations of the animal’s location x.

3.3 Desiderata for phase coding in grid cells

Certain properties are generally assumed to be necessary for phase coding in grid

cells, either explicitly or implicitly. In phenomenological models of grid cells in one-

dimensional environments, firing fields are typically modelled as a simple sinusoid (or

a similar periodic function), and the firing phase is assumed to precess over 2π at a

constant rate between successive grid field peaks, so that the firing phase returns to the

same value whenever the animal arrives at a location for which the grid cell has the

same spatial phase (e.g., Thurley et al., 2013; Jaramillo et al., 2014). This requires that

the precession frequency of a grid cell is proportional to the distance between grid field

peaks and inversely proportional to running speed, fφ = d/v. A similar property which

is generally assumed tacitly rather than explicitly in models of grid cells is that, at any

point in time, two grid cells with the same spatial phase, orientation and grid spacing

(i.e., two identical grid cells) should have the same intrinsic theta phase.
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In the more general two-dimensional case, these properties can be formally ex-

pressed as translational symmetries in both time and space. In particular, they are spe-

cific cases of a more general assumption that the theta phase in grid cell populations

should respect the same translational symmetries as the firing rate. The first prop-

erty states that the time-translation symmetry inherent in the firing rate as an animal

travels along a straight path between grid fields is also respected by the firing phase.

Specifically, given a trajectory x(t) = vt +x0, if rx(x(t +T ),xc) = rx(x(t),xc)∀t, then

φ(t + T,xc) = φ(t,xc)∀t. Here, T is a temporal shift which leaves the firing rate in-

variant. In the simple one-dimensional case described in the above paragraph, the only

possible values are T = nd/v for integer n. However, the general two-dimensional case

can be more complex, depending on the running direction of the animal.

The second property described above states that the spatial translation symmetry

present in the firing rate distribution over a grid cell module is also respected by the in-

trinsic theta phase distribution over the grid cell module at any instant in time. Specif-

ically, if rx(x(t),xc +∆∆∆) = rx(x(t),xc)∀xc, then φ(t,xc +∆∆∆) = φ(t,xc)∀xc. Here, ∆∆∆ is

the spatial translation which leaves the population firing rate map invariant. In the sim-

ple one-dimensional case this translation can only take on values ∆∆∆ = nd, but in the

two-dimensional case ∆∆∆ can take on any of the values described by the symmetry of

Equation (3.5).

We now consider these issues more systematically, first considering the general

case of linear phase coding in grid cells in two dimensions and then comparing to the

case of sigmoidal phase coding in two dimensions. We show below that these seem-

ingly innocuous assumptions lead to strong and previously unappreciated restrictions

on grid cell theta phase coding in open environments which call into question the va-

lidity of the assumptions underlying previously proposed models in one dimension.

3.4 Linear phase precession model

We now consider the simplest possible extension of the linear travelling wave model

to grid cells. We consider phase coding in a single module of grid cells consisting of

a single orientation φx and grid spacing d but a range of grid phases determined by

the firing field vertices xc. This model of phase precession in grid modules consists of

two basic assumptions: firstly, phase precession in each grid cell is linear, so that the

cells have a frequency which is constant across space and over time, depending only

on velocity and grid scale; secondly, cells with the same spatial (grid) phase have the
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same intrinsic theta phase at any instant in time (i.e., the spatial translation symmetry is

respected). We show below that this simple model faces problems in generating phase

coding across different directions in two dimensions.

Under the assumption of linear theta phase coding, the MPO phase of the cell is:

ψ(xc, t) = ωt−κκκψψψ ·xc +ψ0 (3.6)

where κκκψψψ = (κψ,x,κψ,y) is a wavevector which describes both the wavelength and di-

rection of motion of travelling waves through the population.

Under the spatial symmetry assumption, if two cells have the same spatial phase

x(1)c ∼ x(2)c on the grid, they have the same theta phase:

ψ(x(1)c , t)≡ ψ(x(2)c , t) mod 2π (3.7)

so that:

ψ(x(1)c , t)−ψ(x(2)c , t) = κκκψψψ · (x
(1)
c −x(2)c ) = 2πn (3.8)

for some integer n.

To understand how this constraint affects the travelling wave dynamics, we can

consider a single grid tile defined by the region D = {(x,y)|0≤ x≤ d,0≤ y≤
√

3
2 d}.

All points of a single grid tile can be assigned a unique spatial phase (x,y) apart from

the boundaries, where each point is identified with a point on the opposite side (see

Figure 3.2). Hence, Equation (3.8) places constraints on the theta phase on the grid tile

boundaries. Given a cell location on the grid xc = (x,y) ∈D , the boundary conditions

are:

ψ((0,y), t)≡ ψ((d,y), t) mod 2π (3.9)

ψ((x,0), t)≡ ψ((x+d/2,
√

3/2d), t) mod 2π 0≤ x≤ d/2 (3.10)

ψ((x,0), t)≡ ψ((x−d/2,
√

3/2d), t) mod 2π d/2≤ x≤ d (3.11)

Applying the first constraint gives κψ,x = 2πn/d, the second gives κψ,y = 2π(2m−
n)/(
√

3d) while the third constraint is redundant. Hence, the only possible wavevec-

tors for linear travelling wave dynamics on a grid lattice are κκκψψψ = 2π(n,(2m−n)/
√

3)/d

for integers m,n.

These wavevectors can be decomposed into the vector basis of the firing rate map

κκκiii by setting κκκψψψ = ακκκ111+βκκκ222 for α,β ∈R. Noting that our choice of tiling D assumes

a grid orientation of φx = 30◦, this can be solved to find α = n, β = m− n. Hence,

defining i = n and j = m−n, the wavevectors consistent with the translational symme-

try of grid cell firing rate maps are seen to be given by arbitrary discrete combinations
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of the grid vectors, κκκψψψ = iκκκ111+ jκκκ222. For a given mode (i, j), the wavelength is therefore

λi, j = 2π/|κκκψψψ|=
√

3d/(2
√

i2 + j2 + i j).

This result discretises both the direction and wavelength of travelling waves, which

has important implications. For example, the model of phase precession in place cells

described in Chapter 2 predicts that travelling waves propagate in the direction of

movement of the animal, whereas this is not physically possible for all running di-

rections in the grid cell model. Secondly, it predicts that both the wavelength of the

travelling wave and the rate at which phase precesses as the animal travels through the

firing field depend on the running direction of the animal. We now analyse these prop-

erties in more detail, and show that the resulting dynamics are incapable of producing

a robust two-dimensional phase code at high directional resolution.

We first analyse the changes in wavelength with direction of wave propagation in

the model, depending on the mode (i, j). The simplest case is given by i= j = 0, where

the phase over the grid is constant, so that all cells are synchronous and the wavelength

is undefined. The two longest wavelength modes which exhibit phase precession are:

λ−1,0 = λ0,−1 = λ−1,1 = λ1,−1 = λ1,0 = λ0,1 =

√
3

2
d (3.12)

λ−2,1 = λ1,−2 = λ−1,−1 = λ−1,2 = λ2,−1 = λ1,1 =
d
2

(3.13)

while all other modes have increasingly shorter wavelengths. These two sets of wavevec-

tors with the longest and second longest wavelength allow the network to represent

12 equally spaced running directions, with a resolution of 30◦ (Figure 3.3). While a

higher directional resolution can be achieved by including higher order modes, these

involve shorter wavelengths and require that the wavelength switches between these

discrete modes at increasingly fine grained changes in direction. Figure 3.4 shows

how the wavelength varies across different modes, showing that rapid fluctuations in

wavelength are required to account for small changes in direction.

We next analyse the phase precession frequency over these modes. To do this, it

is necessary to invoke the assumption that theta phase respects the time translation

symmetry of the grid map (as discussed above). In particular, if the animal moves

in a direction along which there exists a translational symmetry ∆∆∆, each cell should

precess through an integer number of cycles over the time T = |∆∆∆|/v. Assuming that

the animal moves in the direction of the travelling wave κκκψψψ, we can then calculate the

frequencies which satisfy this time translation symmetry as fφ = n/T . For the two

longest wavelength modes described above, the wavelength is equal to λ = |∆∆∆|/2 (see
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Figure 3.3), so that the possible frequencies are given by:

f−1,0 = f0,−1 = f−1,1 = f1,−1 = f1,0 = f0,1 = fθ +n1
1√
3

v
d

(3.14)

f−2,1 = f1,−2 = f−1,−1 = f−1,2 = f2,−1 = f1,1 = fθ +n2
v
d

(3.15)

where ni are arbitrary integers. Hence, linear phase coding requires that wavelength,

direction and frequency are all discretised in grid cell modules.
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Figure 3.2: Boundary conditions using a rectangular tessellation of the grid pattern.

Figure taken from Guanella et al. (2007)
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Figure 3.3: Top: Possible wavevectors in a grid network. Shown are the set with

the longest wavelength (black) and the set with second longest wavelength (white) for

phase codes which satisfy the spatial translation symmetry of grid cells. In each case

the wavelength is half the distance between successive grid peaks, but this distance

depends on direction. Travelling waves with more fine grained directions are possible,

but generate increasingly shorter wavelengths. Bottom: Two example travelling wave

configurations picked from the previous figure. Each self-similar point on the grid has

the same phase. The wavelength of the two configurations differ by a factor of 1/
√

3.
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Figure 3.4: Wavelength (normalised by grid scale) plotted against the travelling wave

direction for the 500 longest wavelength modes.
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Relation to previous models

It is of note that, while the dynamics described in this section appear unnatural, the

basic assumptions which enforce these dynamics are present in several existing mod-

els. For example, Jaramillo et al. (2014) considered phase coding on a linear track,

and suggested a constant intracellular frequency of f = fθ+v/d based on the assump-

tion that intracellular theta precesses by one cycle between successive grid peaks. Our

analysis shows that, although these assumptions capture the simple one-dimensional

trajectory they analysed, they do not generalise to arbitrary two-dimensional trajecto-

ries. When analysing phase precession in open environments, Jeewajee and colleagues

reported that theta phase in two dimensions correlates best with “distance to the field

peak projected onto the animal’s current running direction” (Jeewajee et al., 2014),

which is mathematically identical to the phase described by the linear travelling wave

model described here. The analysis of this section shows that the code suggested by

Jeewajee and colleagues cannot be present for arbitrary directions of movement with-

out violating the spatial symmetries of grid cell activity maps. Hence, our analysis

reveals previously unappreciated complexities in existing models of phase precession

in grid cells.

In summary, we find that the linear phase coding in fixed phase charts we derived

for place cells in the previous chapter imply a finite directional resolution for phase

coding in grid cells and a dependence of precession frequency on running direction.

Although it is possible that grid cells maintain fixed phase charts as we suggested in

Chapter 2, this would imply a very limited directional resolution based on a set of

discrete network modes. These strong constraints in linear models which are imposed

by translational symmetry requirements call into question their biological plausibility,

motivating the development of more complex, nonlinear models.

3.5 Rate-coupled frequency model

Due to the finite resolution of directional phase precession using linear phase coding

and the dependence of oscillation frequency on direction of movement, we next asked

whether a nonlinear phase precession model such as sigmoidal phase coding could

provide more natural dynamics while generating the desired translational symmetries.

In the sigmoidal model of place cells, we assumed that the intrinsic theta oscillation

frequency of a cell covaries with its firing rate. Given that the frequency dynamics
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depend only on the firing rate in this model, the spatial translation symmetry inherent

in grid module firing rate activity will clearly be present in the theta phase at any instant

in time. However, it is not clear whether this frequency can be integrated correctly

along different running directions in order to generate the relevant time-translation

symmetries in firing phase.

To test this, we extended the sigmoidal model of phase coding in place cells to the

case of grid cell firing fields. For analytical tractability, we take the firing rate as a

function of location to be:

rx(x,xc) = r0

[
1
3
(cos(κκκ111 · (x−xc))+ cos(κκκ222 · (x−xc))+ cos(κκκ333 · (x−xc)))+

1
2

]
(3.16)

where the additional 1/2 ensures the rate is non-negative.

To understand how a grid cell’s theta phase varies along a trajectory through space,

we then set the intrinsic theta frequency proportional to the spike rate and solve for the

phase:

fφ = 2π∆ f rx/r0 =⇒ φ(t,xc) = 2π∆ f
∫ t

t0
rx(x(τ),xc)/r0dτ+φ(t0,xc) (3.17)

Using that x = v(t− t0)+x0, we find:

φ(t,xc) = (3.18)

2π∆ f

[
1
2
(t− t0)+

1
3

3

∑
i=1

1
κκκiii ·v

(sin(κκκiii · (v(t− t0)+x0−xc))− sin(κκκiii · (x0−xc)))

]
+φ(t0,xc)

(3.19)

where the above equation holds if v ·κκκiii 6= 0. The result for the special case v ·κκκiii = 0 is

given in Appendix B.

Given a constant running speed in a straight line, we require that the intracellular

theta phase precesses through some multiple of 2π whenever the animal returns to the

same spatial phase. For straight runs directly between grid field peaks along a direc-

tion κκκiii, this requires that the frequency increases by a factor of ∆ f = (2/
√

3)kv/d

for some integer k (proof given in Appendix B). Given this value of rate coupled

frequency modulation, we then ask whether movement can be correctly integrated

over a different running direction. For directions exactly between two grid vectors

(v = |v|
(
κκκiii +κκκ jjj

)
/|κκκiii +κκκ jjj|, see Figure 3.3 top panel), precession over a multiple of

2π between two grid field peaks requires a precession frequency of ∆ f = (6/5)k∗v/d

for some integer k∗ (see Appendix B). As no suitably small choices of k,k∗ can satisfy
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these phase precession constraints in both directions analysed here, these firing rate

coupled frequency dynamics alone cannot account for phase precession in different di-

rections. Therefore, the sigmoidal model requires an additional directional dependence

of precession frequency as in the linear model.

3.6 Rate-coupled frequency model plus synchronisa-

tion to baseline

Phenomenological account

Above we showed that both linear phase coding and sigmoidal phase coding based

on rate-coupled theta frequencies have difficulties generating a phase code for grid

cells along arbitrary two-dimensional trajectories. However, in the sigmoidal model,

key biophysical factors were missing. In particular, grid cells are embedded in a net-

work with theta-rhythmic dynamics, and therefore receive synaptic inputs which would

likely provide an additional synchronising drive, pulling the grid cell into phase align-

ment with the global theta oscillation outside of the firing rate field. To account for

this, we introduce a dynamical model for the rate of change in phase by adding a syn-

chronising term in addition to the rate-coupled frequency dynamics described above:

dφ(t)
dt

= Brx (x(t))−Asin(φ(t)) (3.20)

where φ(t) is the phase of the cell relative to the LFP. The first term represents the

rate-coupled frequency of the cell described in the previous section. The second term

represents a synchronising influence of medial septum/interneuron input which pulls

the phase of the grid cell towards that of the global theta rhythm. Outside of the firing

rate field, where rx = 0, the synchronising term will pull the phase towards φ = 0, so

that upon entry to the next firing rate field the phase will be correctly aligned. Specif-

ically, if the animal is outside of the firing rate field, we can set rx = 0, in which case

a stable locking phase of φ = 0 emerges. Provided that the strength of synchronisation

A is sufficiently weak, so that Brx � A within the firing field, phase precession will

be relatively unperturbed by the synchronising influence and will occur independently

each time the animal crosses an individual grid field (Reifenstein et al., 2012).

Provided that the change in frequency over the firing field is correctly tuned, phase

will precess through the correct amount over the firing field. Equation (3.20) clearly

shares the spatial translation symmetries of grid cell firing rates at any given point in
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time. Moreover, provided that phase is reset between firing fields by the synchroni-

sation term, the time-translation symmetries will also be satisfied. We analyse these

dynamics in more detail below.

Semi-biophysical account

While the Equation (3.20) provides a phenomenologically viable model of phase pre-

cession in grid cells, the mechanisms underlying the rate-coupled theta frequency os-

cillations and the synchronisation dynamics are not fully clear. Moreover, the tuning of

parameters required in order to ensure the correct precession frequency within the fir-

ing field as well as sufficient synchronisation between firing fields merit further inves-

tigation. Based on the above phenomenological equation, we now introduce a simple

biophysical description with equivalent dynamics.

Specifically, we consider a neuronal oscillator with phase ψ whose baseline fre-

quency ω(I) is determined by the amplitude of a depolarising current I through its f-I

curve (note that we do not make any explicit assumptions about the form of this f-I

curve here). Additionally, the oscillator is driven by a pacemaker input which we treat

as a weak perturbation to this oscillator (Figure 3.5A), which allows a reduced descrip-

tion in which only phase is considered (e.g., Ermentrout et al., 1986). To achieve this

reduced phase description, we introduce an approximation based on the infinitesimal

phase response curve of the oscillator z(ψ). The dynamics of an oscillator with fre-

quency ω driven weakly by an external perturbation Q(t) can then be approximated

by:
dψ

dt
= ω(I)+ z(ψ)Q(t) (3.21)

where amplitude variations have been neglected. To model the case of an oscillator

driven by a weak pacemaker we consider a perturbation of the form Q(t)=Q0 cos(θ(t)).

Equation (3.21) can then be expressed as:

dφ

dt
= ∆ω− z(θ−φ)Q0 cos(θ(t)) (3.22)

where φ = θ−ψ and ∆ω = ωθ−ωψ. If z is also sinusoidal, the above equation can

be further approximated by averaging out fast fluctuations on sub-theta timescales. To

see this, we define the theta-average of a variable as:

〈X〉
θ
=

1
2π

∫ 2π

0
Xdθ (3.23)
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Averaging out fluctuations on a sub-theta cycle timescale then gives:〈
dφ

dt

〉
θ

= ∆ω−Q0 〈z(θ−φ)cos(θ)〉
θ

(3.24)

which for sinusoidal phase response curves of the form z(φ) = z0 + z1 sin(φ) is:〈
dφ

dt

〉
θ

= ∆ω−Q0 〈cos(θ)(z0 + z1 sin(θ−φ))〉
θ

(3.25)

= ∆ω−Q0z1 〈cos(θ)sin(θ−φ)〉
θ

(3.26)

= ∆ω− 1
2

Q0z1 〈sin(2θ−φ)+ sin(φ)〉
θ

(3.27)

≈ ∆ω(I)− 1
2

Q0z1 sin(φ) (3.28)

where in the last line it was assumed that φ does not change over a single theta cycle.

This recovers an equivalent form of Equation (3.20) and provides an explicit set of bio-

physical parameters to describe the frequency modulation and synchronisation terms.

In particular, the strength of synchronisation is given by A = 1
2Q0z1 and therefore de-

pends on the amplitude of pacemaker drive and the sinusoidal component of the phase

response curve.

Equation (3.20), or equivalently Equation (3.28), generates two distinct dynamical

states depending on the relative values of A and ∆ω (i.e., depending on the amplitude

of pacemaker input and excitatory input to the oscillator). The first is stable phase

locking and the second is phase precession. Phase locking occurs when A > |∆ω|,
with a stable locking phase of φlock = arcsin

(
∆ω

A

)
(Figure 3.5B). Phase precession

occurs when A < |∆ω|, where there are no stable phases and the oscillator precesses

continuously, but nonlinearly, in phase against the pacemaker input (Figure 3.5C).

The general solution to Equation (3.28) is given by:

φ(t) = 2arctan

A−
√

(∆ω)2−A2 tan
(

1
2

√
(∆ω)2−A2(c− t)

)
∆ω

 (3.29)

where c is a constant determined by the initial conditions (Adler, 1946). This equation

is valid for both the phase locking and phase precession regimes. In the case of phase

precession, where (∆ω)2−A2 > 0, this gives the following precession frequency:

f =
√
(∆ω)2−A2/2π (3.30)

Assuming that the phase precession frequency scales with running speed and field size

as f = v/(2R), where R is the radius of the firing rate field (see Chapter 2), we obtain
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a constraint on the detuning and synchronization factor:

(∆ω(I))2 = A2 +(πv/R)2 (3.31)

which quantifies how the strength of synchronisation and changes in intrinsic fre-

quency should be tuned in order to precess at the correct rate within the firing rate

field.

For the stable phase locking case, where (∆ω)2−A2 < 0, the expression for pre-

cession frequency yields complex values. To recover the steady state locking dynamics

shown in Figure 3.5B, note that for complex arguments the tan function in Equation

(3.29) becomes a tanh, and in the limit t → ∞ this tanh term tends to 1 so that the

system reaches a steady state independent of the initial condition c. The rate at which

the decay to steady state occurs will therefore vary with
√
(∆ω)2−A2. As discussed

above, this rate must be fast enough to reset the intrinsic theta phase of the cell between

firing fields in order to produce robust phase coding in two-dimensional environments

which obeys the time translation symmetries of grid cell firing rates.

Figure 3.5: (A) A reduced model of a neuronal oscillator driven by depolarizing current

and weak pacemaker drive. (B) Phase locking as a function of input current in the

reduced model, assuming a linear f-I curve. (C) Precession frequency as a function of

input current.
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3.7 Discussion

The analysis of this chapter demonstrates that linear travelling wave models of phase

precession and simple sigmoidal models of phase precession face difficulties account-

ing for grid cell phase precession in open environments. To overcome these problems,

we have proposed a model based on a firing rate-dependent theta oscillation frequency

combined with a synchronising drive which resets intracellular theta phase between fir-

ing fields. In order to provide a biophysical grounding for this model, we put forward

an analysis based on a neuronal oscillator with an intrinsic, ongoing theta oscillation

whose frequency can be modulated via an f-I curve, and is driven by an external theta

pacemaker which provides the synchronising influence. In this model, phase preces-

sion is initiated independently each time the animal enters a firing field (Reifenstein

et al., 2012). Hence, the dynamics of phase precession across a single grid field in

entorhinal cortex are identical to those across a place field in CA1 in such a model.

Our model makes several experimentally testable predictions. In particular, the in-

teraction between synchronising drives and rate dependent oscillation frequencies in

individual cells can be used to predict the membrane and spike phases for arbitrary

two-dimensional trajectories with arbitrary speed profiles. The study of phase pre-

cession along two dimensional trajectories has been the focus of several experimental

studies in both place cells (Huxter et al., 2008) and grid cells (Jeewajee et al., 2014;

Reifenstein et al., 2014). While the phenomology of two-dimensional phase precession

has been compared to predictions from various oscillator-interference models (Jeewa-

jee et al., 2014; Reifenstein et al., 2014), our model provides an alternative framework

from which to make principled predictions for phase precession in open environments.

Additionally, our model predicts that the intracellular theta frequency of grid cells

varies over space, so that grid cells oscillate at the same frequency as the LFP between

grid fields and reach their highest theta oscillation frequency at the centre of a grid

field, where the spike rate is highest.

While the external pacemaker input to the circuit has an empirically established ori-

gin in the medial septum, which targets interneurons across the entorhino-hippocampal

complex (Freund and Antal, 1988), the biophysical basis for the intrinsic cellular os-

cillation is less clear. While many cell types in the hippocampus and entorhinal cortex

exhibit intrinsic rhythmicity due to the presence of specialised ion channels such as

the hyperpolarisation activated cation channel (Leung and Yu, 1998; Hu et al., 2002;

Buzsáki, 2002), there is little evidence for an intrinsically generated theta oscillation
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in principal cells which persists outside of the firing rate field and whose frequency

may be modulated by external inputs as the animal crosses a firing rate field. While

subthreshold theta oscillations exist outside of the place field (Harvey et al., 2009;

Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013), these likely result from

a combination of theta rhythmic synaptic input and intrinsic resonances. Interneurons,

however, generally spike tonically at theta frequency regardless of the animal’s loca-

tion (Freund and Buzsáki, 1996). As tonic spiking frequencies in neurons can easily

be modulated by changing the amplitude of external drive, these cells appear a more

natural candidate for the dynamics described here. Moreover, interneurons in CA1 are

known to precess in phase at specific locations in an environment, and this preces-

sion shows strong functional coupling to individual place cells (Maurer et al., 2006b;

Geisler et al., 2007).

In Chapter 4, we propose a mechanistic theory of phase precession based on the

rate-coupled frequency dynamics with synchronising drive discussed in this chapter.

We show how these dynamics can be achieved in interneurons, generating phase pre-

cession in pyramidal cells via their reciprocal synaptic coupling. As the phase preces-

sion dynamics we investigate occur independently whenever the animal enters a firing

rate field, we focus our analysis on place cells in the CA1 region of the hippocampus in

the next chapter. Nevertheless, the results we present for place cells can be considered

as equivalent to passes through a single grid field.



Chapter 4

Biophysical Models of Theta

Sequences

4.1 Introduction

Place cell populations in the rodent hippocampus generate nested sequential represen-

tations of ongoing behavioural events (Skaggs et al., 1996). Event sequences are repre-

sented in real-time as slow sequences of firing rate activations, while at the same time

a faster, time-compressed representation of these sequences occurs within each cycle

of the network theta rhythm (Dragoi and Buzsáki, 2006; Foster and Wilson, 2007).

Such sequences are hypothesised to form a substrate for episodic and spatial memory

(Pastalkova et al., 2008), but the underlying circuit mechanisms remain unclear.

In contrast to earlier studies, we showed in Chapter 2 that interactions between

place cells are not necessary to explain theta sequences. Instead, the organisation of

theta sequences can be accounted for by the independent phase precession of each cell.

However, the biophysical mechanisms underlying such a coding scheme within the

CA1 circuitry are still lacking.

Biophysical explanations for phase precession face a number of challenges. First,

precession frequency depends on the running speed of the animal (Geisler et al., 2007).

To account for this, models often introduce external velocity-controlled oscillator in-

puts to place cells which impose this change in precession frequency (e.g., Burgess

et al., 2007; Jaramillo et al., 2014), so that this phenomenon is included by hand rather

than generated de novo. Second, phase precession occurs along arbitrary two dimen-

sional trajectories (Huxter et al., 2008; Climer et al., 2013; Jeewajee et al., 2014). This

poses a challenge for models which incorporate fixed spatial asymmetries in order

99
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to account for the change in firing phase over the place field (Tsodyks et al., 1996;

Mehta et al., 2002; Chance, 2012; Leung, 2011; Wang et al., 2015), as this can gener-

ate phase precession only along a single direction. Finally, phase precession and theta

sequences are generated over a large number of distinct spatial maps. This is espe-

cially challenging for models in which synaptic coordination underlies the generation

of theta sequences (Tsodyks et al., 1996; Geisler et al., 2010; Lisman and Redish, 2009;

Wikenheiser and Redish, 2015; Wang et al., 2015), as after remapping the sequences

will be disrupted (see Chapter 2).

Here, we present a mechanistic model of CA1 networks in which phase precession

is generated by the interactions between individual place cells and interneurons driven

by pacemaker inputs. This model accounts for phase precession in open environments,

at different running speeds and for the phase precession of interneurons, while allow-

ing sequences to be generated in multiple distinct spatial maps. In contrast to previous

hypotheses which viewed phase precession in interneurons as an epiphenomenon in-

herited from synaptic inputs from phase precessing place cell assemblies (Maurer et al.,

2006b; Geisler et al., 2007), interneuron phase precession in this model is crucial for

the coordination of spike timing in place cells and the generation of theta sequences.

Due to the transient functional coupling between place cells and interneurons, phase

precession occurs dynamically whenever a place cell is driven by external inputs, and

slow input sequences are automatically compressed into theta sequences. Phase pre-

cession and theta sequences are generated de novo within the network, without the

need for inputs with velocity modulated oscillation frequencies. Hence, while many

existing models posit that firing rate fields are an emergent property arising from more

fundamental phasic or sequential processes (Burgess et al., 2007; Wang et al., 2015),

or suggest that theta sequences reflect active and internally constructed representations

of spatial trajectories (Gupta et al., 2012; Wikenheiser and Redish, 2015), our model

instead suggests that slow firing rate input sequences to CA1 are fundamental to the

emergence of faster sequential activity patterns during theta states.

In contrast to existing models of phase precession, our model suggests that CA1

can function as a flexible compressor of its inputs in order to maintain a representation

of temporal order occurring on a behavioural timescale within a faster timescale suit-

able for synaptic processing in downstream brain areas. We therefore suggest that the

same mechanism which generates sequences encoding spatial trajectories can function

as a general purpose circuit for encoding temporally extended sequences of events. Fi-

nally, we show how such a compression of ongoing experience into theta cycles can
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allow supervised learning in classical conditioning task using spike time dependent

plasticity. Thus, CA1 may compress ongoing experiences during theta states into fast

neural activity patterns suitable for learning and decision making.

4.2 Phase precession emerges in coupled interneuron-

pyramidal cell pairs.

Figure 4.1: (A) A minimal CA1 circuit model. An interneuron (red) is driven by a pace-

maker theta oscillation from the medial septum. This interneuron synapses reciprocally

onto a pyramidal cell (blue). The pyramidal cell is driven by slower external inputs oc-

curring over behavioural timescales. (B) - (E) A simulation of this network as the animal

crosses the place field of the pyramidal cell. (B) Interneuron spiking activity (red lines)

and pyramidal cell spikes (blue lines) and membrane potential (blue trace). (C) A sam-

ple of the interneuron spike train when the pyramidal cell is inactive (i.e., outside of

the place field), with the pacemaker rhythm overlaid for reference. In this case, the in-

terneuron locks to the pacemaker input. (D) A sample of the interneuron and pyramidal

cell spike trains inside the place field. In this case, the interneuron precesses in phase

against the pacemaker input and the pyramidal cell fires in bursts which also precess

in phase. (E) The membrane frequency in the theta band and the spike phases of the

interneuron (red) and pyramidal cell (blue) corresponding to the data shown in parts

(A)-(D). Phases are replicated over two cycles for clarity.

Given that septal GABAergic projections target interneurons in CA1 (Freund and

Antal, 1988), which in turn coordinate the spiking activity of local CA1 pyramidal

cells (Royer et al., 2012), we reasoned that phase precession could emerge within the

dynamics of interneurons interacting with pyramidal cells and driven by pacemaker
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inputs (Figure 4.1A). To investigate the emergence of phase precession in coupled

pyramidal cell-interneuron pairs, we constructed a minimal network model based on

the known architecture of the CA1 circuit. We first simulated a single interneuron

and pyramidal cell, with reciprocal synaptic interactions as shown in Figure 4.1A. The

interneuron receives a constant depolarising current which generates tonic spiking as

well as a small amount of noise to simulate realistic physiological conditions. In ad-

dition, it receives an 8 Hz oscillatory pacemaker current which is sufficient to fully

entrain spiking activity when the pyramidal cell is inactive (Figure 4.1B-C). In this

case, output from the interneuron drives rhythmic subthreshold theta frequency oscil-

lations in the pyramidal cell (Figure 4.1B). When the pyramidal cell is driven by an

external ramp-like input that is strong enough to induce spikes, the resulting synaptic

drive to the interneuron advances its spike phase and initiates phase precession in the

coupled pair of cells (Figure 4.1D), as evidenced by an increase in each cell’s oscil-

lation frequency in the theta band (Figure 4.1E, top panels) and a shift in spike phase

of around 360 degrees between place field entry and exit (Figure 4.1E, bottom pan-

els). Hence, the basic architecture of the CA1 circuit driven by pacemaker inputs is

sufficient to generate phase precession in place cells and interneurons whenever place

cells are driven to spike by slow depolarising drives. While in the present model in-

terneurons fire only one spike per theta cycle, hippocampal interneurons often fire in

gamma bursts during theta oscillations, such that multiple spikes occur within a sin-

gle theta cycle (Varga et al., 2012; Lapray et al., 2012; Katona et al., 2014). We do

not address these dynamics, which may involve more complex cellular and synaptic

properties than those considered here.

The emergence of these phase locking and precession dynamics can be understood

in terms of the model we developed in Chapter 3 (see Figure 3.5). In particular, the in-

terneuron can be understood as a neuronal oscillator with f-I curve and phase response

curve, driven by a depolarising current and weak pacemaker input. Phase locking oc-

curs for weak drives (or strong pacemaker inputs) and phase precession occurs for

strong drives (or weak pacemaker inputs). Therefore, a change in input current to the

interneuron, such as when the animal crosses the place field of the afferent place cell,

causes a shift in dynamics from phase locking to phase precession. The phase lock-

ing of the cell is robust to fluctuations in input current within a given range, as shown

by the wide range of states which exhibit phase locking in Figure 3.5B. Hence, this

reduced model explains the dynamics observed in the network simulation of Figure

4.1. Specifically, the interneuron remains in a stable phase locking regime while the
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pyramidal cell is inactive, but is pushed into the phase precession regime whenever

the pyramidal cell provides sufficient synaptic input. Phase precessing synaptic inputs

from the interneuron coordinate the spike timing of the place cell and confer phase pre-

cession, but phase precession in the interneuron is relatively insensitive to the timing

of place cell inputs, requiring only an overall increase in excitatory input. We note that

this mechanism shares some similarities to a previous model designed to account for

phase precession in CA3 pyramidal cells (Bose and Recce, 2001).

4.3 Velocity-controlled oscillator dynamics emerge de-

spite fixed pacemaker frequencies

We next investigated whether the model can account for the dependence of precession

frequency on the running speed of the animal (Geisler et al., 2007). In a previous

phenomenological model, we included such a running speed dependent oscillation fre-

quency but did not propose a biophysical mechanism (see Chapter 2). Existing models

of phase precession often include input currents with velocity-controlled oscillation

frequencies in order to generate such dynamics (Burgess et al., 2007; Jaramillo et al.,

2014). In contrast, phase precession in our reduced model depends on the interplay

between pacemaker amplitudes and excitatory drives, so that the precession frequency

can be flexibly modulated by varying the relative values of these two variables while

keeping input frequencies constant. Specifically, the reduced model predicts that an in-

terneuron receiving an excitatory drive which increases with running speed will show

an increase in precession frequency with running speed (Figure 3.5). This change in in-

put current could arise through greater inputs from place cells or through a specialised

velocity modulated current. Equally, a change in the amplitude of the pacemaker input

with running speed would generate a change in precession frequency in the reduced

model.

Recent experiments show that interneurons in CA1 receive a velocity dependent de-

polarising current from glutamatergic circuits in the medial septum (Fuhrmann et al.,

2015). Additionally, the dependence of both the LFP theta amplitude in CA1 (McFar-

land et al., 1975; Maurer et al., 2005; Patel et al., 2012) and the activity of inhibitory

circuitry in the medial septum on running speed (King et al., 1998) suggests that there

is likely an increase in the amplitude of pacemaker drive to CA1 with running speed.

Based on the predictions of the reduced model of interneuron dynamics, we reasoned
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that these phenomena might be sufficient to generate velocity-controlled oscillator dy-

namics in CA1 circuits.

We tested this hypothesis using the model of Figure 4.1. Our simulations confirm

that the rate of phase precession in both the interneuron and place cell, when coupled

reciprocally, can be flexibly modulated through changes in pacemaker amplitude and

background current to interneurons (Figure 4.2A). We found that a linear increase in

pacemaker amplitude with running speed, combined with a linear increase in depolaris-

ing current to interneurons with running speed, is sufficient generate an approximately

linear increase in precession frequency (Figure 4.2B). Hence, in contrast to existing

models, phase precession with a running speed dependent oscillation frequency is gen-

erated de novo in the local circuitry with inputs at a fixed theta frequency in the present

model.

Figure 4.2: (A) Phase precession at a slow and fast running speed, where the pace-

maker amplitude and depolarising current to interneurons are varied. (B) Phase preces-

sion as a function of running speed. Individual dots illustrate the estimated precessing

frequency in the centre of the place field on a single lap. Line and error bars show mean

and standard deviation.
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4.4 Dorsoventral travelling waves emerge despite co-

herent pacemaker drives

The phase of population activity varies systematically across the dorsoventral axis of

the hippocampus, spanning a range of 180 degrees (Patel et al., 2012). We asked

whether the present model can account for these observations. In the reduced interneu-

ron model, there is a range of precisely 180 degrees of possible locking phases to

pacemaker input, depending on the strength of the excitatory current (figure 3.5B),

while all other spike phases are unstable. This suggests that a gradient in excitatory

inputs to interneurons (or alternatively a gradient in input resistance or some intrin-

sic membrane current) along the dorsoventral axis might be sufficient to generate the

observed phase gradient, despite a coherent pacemaker input. To test this hypothesis

in a more biophysically detailed setting, we simulated integrate and fire interneurons

driven by the same pacemaker inputs but different levels of depolarising input currents.

Figure 4.3A shows three examples of these simulations. In each case, the interneu-

ron is attracted towards a particular stable locking phase of the pacemaker input, but

the precise locking phase depends on the strength of depolarising current. In Figure

4.3B we systematically analysed how this locking phase depends on the strength of

depolarising current, finding a relationship remarkably similar to that predicted by the

reduced model, including a range of 180 degrees of locking phases. Hence, in addition

to explaining the change in precession frequency with running speed and place field

size, the interplay between excitatory currents and pacemaker inputs can explain the

phase gradient across the dorsoventral axis of the hippocampus.

We next tested whether the model can account for phase precession at different

dorsoventral locations. Kjelstrup and colleagues found a gradient in place field sizes

along this axis ranging from less than 1 meter to approximately 10 meters, and a con-

comitant gradient in the slope of phase precession (Kjelstrup et al., 2008). We simu-

lated a place cell/interneuron cell pair at the ventral and dorsal pole of CA1, with place

field sizes approximately 10 meters and 0.3 meters respectively and interneuron lock-

ing phases separated by approximately 180 degrees (Figure 4.3C, D). As in the running

speed simulations, it was necessary to alter the amplitude of pacemaker amplitude as

well as the depolarising current to the interneuron in order to modulate the slope of

phase precession in the interneuron. Unlike the running speed simulations, however,

it was also necessary to reduce the excitatory synaptic strength of the ventral place

cell in order to ensure that the interneuron precessed sufficiently slowly over the large
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place field. Given a dorsoventral gradient in these biophysical parameters, however,

we found the gradient in both phase precession and theta phase along the dorsoventral

axis could be accounted for in the model. Moreover, the reduced pacemaker amplitude

at the ventral pole is consistent with observations of reduced theta power at ventral

locations (Patel et al., 2012).

Figure 4.3: Theta dynamics across the dorsoventral axis. (A) Interneuron spike phases

for three simulations with different depolarising currents. (B) Interneuron locking phase

vs depolarising current (cf. Figure 3.5B). (C) Phase precession in a ventral place

cell/interneuron pair (place field size 10 meters). (D) Phase precession in a dorsal

place cell/interneuron pair (place field size 0.3 meters). Note the change in both locking

phase and precession slope from dorsal to ventral.
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4.5 Robust phase precession is generated along two-

dimensional trajectories

Finally, we tested whether the model can account for the properties of phase precession

in open environments. In open environments, spikes always precess from late to early

phases of theta, regardless of running direction (Huxter et al., 2008; Climer et al.,

2013; Jeewajee et al., 2014). Assuming the animal passes in a straight line through

the centre of a place field at a constant speed, these dynamics arise naturally from

the depolarising current envelope in the present model, and no additional directional

inputs such as head direction cells are required. Similarly, our model is consistent

with sequences observed during backwards travel, in which theta sequences reflect the

ordering at which locations are visited rather than head direction (Cei et al., 2014;

Maurer et al., 2014).

A more complex feature of phase precession in open environments is observed on

passes through the edge of the place field, in which case the firing phase generally

precesses through around 180 degrees before shifting backwards in phase rather than

continuing to precess (supplementary figure S2b in Huxter et al. (2008)). To our knowl-

edge, this phenomenon has not been explained by existing models of phase precession.

In the present model, similar dynamics occur when the interneuron is not driven suffi-

ciently to pass through to the next cycle and is instead attracted back towards the initial

phase (Figure 4.4A). These dynamics are similar to those of a pendulum, which will

swing through a complete revolution if driven strongly enough, but will fall backwards

if not driven over the vertical point.

Given that weak inputs can be insufficient to generate phase precession in the

model, we next investigated the robustness of phase precession depending on the

strength of current drive to the place cell. In particular, how robust is the circuit to

variations in the amplitude of the slow envelope input, and what are the consequences

of excessively weak or strong inputs? We found that strong and sustained inputs to

place cells can result in precession over multiple theta cycles (Figure 4.4B). However,

the pacemaker drive to the interneuron confers some robustness against this effect, as

the interneuron can only precess through a discrete number of theta cycles and requires

a considerable additional input to precess through two cycles of theta rather than one.

Figure 4.5A shows how the number of theta cycles precessed by the interneuron varies

with the amplitude of slow envelope. Over a broad range of input currents (or more

directly, a range of pyramidal cell spike counts as in Figure 4.5B-C), the interneuron
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will continue to precess through exactly one cycle over the place field. These dynam-

ics also place limits on rate remapping within place cells, through which additional

task-relevant information is encoded in the firing rate of a place cell within the place

field (Allen et al., 2012). We found robust phase precession through one cycle in the

interneuron provided the place cell fires between 10 and 25 spikes in the place field.

Thus, phase precession is sufficiently robust as to allow considerable rate remapping,

but phase precession will be disrupted for excessively large changes in firing rate.

In summary, the model outlined here provides a robust mechanism for phase pre-

cession consistent with the circuitry in CA1. The model accounts for the key features

of phase precession observed in CA1, including the dependence on running speed,

place field size and dorsoventral location, phase precession along two dimensional tra-

jectories, the coupling of phase precession between place cells and interneurons and

the phase gradient along the dorsoventral axis. In the following sections we investigate

the ability of the model to account for large scale network activity during theta states,

including the capacity to generate sequential activity across multiple spatial maps.
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Figure 4.4: (A) Failure to precess through one full cycle. In this case, the external inputs

were not strong enough to drive the interneuron past the threshold to be pulled into the

next theta cycle, and instead it is pulled back towards the phase it started at. This is also

seen in an initial increase followed by a decrease in frequency as the cell precesses

before processing in phase against the pacemaker. (B) Precession through two full

cycles. In this simulation, the amplitude of the slow envelope current was increased.

This results in an increased firing rate of the pyramidal cell and hence an increased

excitatory input to the interneuron. As a result, the interneuron received enough drive

to pass through two cycles of pacemaker input.
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Figure 4.5: (A) The probability of an interneuron precessing through one, two, or three

cycles of pacemaker theta phase as a function of the amplitude of the depolarising en-

velope current onto the place cell. (B) The number of spikes fired by the place cell (with

standard deviation shown as error bars) as a function of the amplitude of depolarising

envelope current. (C) The probability of the interneuron precession through one, two,

or three cycles of pacemaker theta phase as a function of the number of spikes fired by

the place cell.
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4.6 Functional coupling of a single interneuron to mul-

tiple pyramidal cells.

While the network in Figure 4.1 generates phase precession in an isolated place cell and

interneuron, CA1 place cells are embedded into much larger networks with far fewer

interneurons than pyramidal cells (Freund and Buzsáki, 1996). It is estimated that only

7-11% of CA1 cells are GABAergic interneurons (Woodson et al., 1989; Aika et al.,

1994; Bezaire and Soltesz, 2013). The large disparity in the number of place cells and

interneurons demands that a single interneuron in the model must couple to multiple

pyramidal cells and generate phase precession in each one.

To test if this is possible, we simulated a single interneuron which couples synap-

tically to two pyramidal cells. Figure 4.6 demonstrates that, if each pyramidal cell

receives a depolarising drive at a different time, an interneuron can be selectively re-

cruited for phase precession by multiple pyramidal cells. A consequence of such a

mechanism is that the interneuron shows multiple phase precession fields, and that

each place cell which couples to that interneuron to generate phase precession shows

subthreshold phase precession fields whenever the interneuron precesses. Thus, a key

signature of this mechanism is the presence of transient increases in the membrane

potential oscillation frequency outside the firing field of a place cell (Figure 4.6B).

While a single interneuron can functionally couple to multiple place cells to gen-

erate phase precession when their firing fields are well separated, it is unclear if these

dynamics are possible when firing fields overlap. In such a case the net synaptic in-

put to the interneuron may be too strong, such that the precession frequency increases

and multiple cycles are precessed (as in Figure 4.4B). Even if the interneuron pre-

cesses through just one cycle, synaptic outputs from the interneuron may synchronise

all place cells which receive strong inputs from that interneuron. If so, partial overlap

between place fields of cells coupled to the same interneuron may disrupt the relation-

ship between spike lags and place field separation required for sequence compression

(Skaggs et al., 1996), causing place cells with separated place field centres to spike in

synchrony. In the following section, we investigate the ability of a large scale network

to generate theta sequences under different place field maps and the influence of place

field organization on sequence compression.
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Figure 4.6: (A) Circuit diagram showing two pyramidal cells connected to the same

interneuron, receiving slow envelope currents at different points in time. (B) Simula-

tion of this circuit showing the intrinsic theta frequency, spike phases and membrane

potentials.

4.7 Theta sequences are disrupted in unconstrained place

field maps

We wished to investigate the extent to which the minimal CA1 circuit described in Fig-

ure 4.1, when extended to a large scale network, can account for the activity patterns

of CA1 populations during theta oscillations. Of particular interest is the relationship

between single-cell phase precession and network level sequential activity patterns.

While phase precession in individual place cells is generally sufficient to generate pop-

ulation theta sequences (Skaggs et al., 1996), recent evidence suggests that this is not

always the case (Feng et al., 2015). Moreover, our previous model demonstrated that,

for some forms of phase coding, the emergence of theta sequences from phase preces-

sion may be dependent on the spatial organization of place fields (see Chapter 2). In

principle, independent coding mechanisms such as the present model can have a higher
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representational capacity than mechanisms based on coordinated coding (see Chapter

2), but the extent to which this capacity is compromised by the constraints imposed by

circuit connectivity within the present model is unclear. We therefore proceeded to in-

vestigate the ability of large scale networks to perform sequence compression on slow

place field inputs and the conditions under which single-cell phase precession gives

rise to network level sequence compression within the present model.

To address these questions, we quantified the performance of the network in sim-

ulations while varying the properties of the spatial maps (i.e., the organisation of the

slow envelope inputs to pyramidal cells). In our model of a CA1 network, each pyra-

midal cell coupled to only one interneuron, and all connections were bidirectional (see

Methods). Hence, each interneuron coupled to multiple pyramidal cells. We view this

network as a simplified description of the interactions underlying phase precession,

with other circuit interactions removed. We hypothesised that place field overlap be-

tween pyramidal cells coupled to the same interneuron would be disruptive to theta

sequences, such that the degree of sequential organization of spiking activity within

theta cycles would depend with the amount of overlap.

To test this, we simulated network activity in two distinct scenarios. In the first

scenario, place cells which functionally couple to the same interneuron are optimally

arranged in order to maximise their place field separation on the linear track. In the

second case, place fields are randomly mapped to the track. In both cases, we varied the

number of place cells per interneuron which are active on a linear track of fixed length

(i.e., the density of the place code). For the case of random place field mapping, this

results in a continuous increase in the probability of place field overlap between place

cells coupled to the same interneuron. For the case in which place fields are optimally

mapped onto the track, such place field overlap occurs when the density of the code

crosses a fixed threshold (Figure 4.7A). Consistent with our hypothesis, Figure 4.7C

shows that the network can successfully compress slow input sequences into fast theta

sequences for sparse place field maps with low overlap, but that such sequences do not

emerge in dense maps with high overlap.

To understand how place field mapping influences the ability of the network to

perform sequence compression, we introduced two distinct metrics which measure the

extent to which spiking within theta cycles faithfully recapitulates the slow sequence

of envelope inputs, which we call the single-cycle sequence metric and the popula-

tion phase precession metric (see Methods for details). For the single-cycle sequence

metric, we calculated the correlation between spike time and place field centre for all
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spikes generated in the place cell population within a single theta cycle, a direct mea-

sure of sequence compression at the single-sequence level (Figure 4.7B, red line). The

population phase precession metric was calculated by pooling the spikes of all place

cells over a full lap and quantifying the correlation between spike phase and the dis-

tance of the animal from the place field centre of that cell at the time of that spike

(Figure 4.7B, blue line). This measure returns a strong correlation if each individual

place cell exhibits a robust correlation between spike phase and location and in addi-

tion this relationship is coherent amongst different cells in the population, i.e. if all

place cells show a similar relationship between spike phase and location. By requiring

that phase precession amongst different cells is coherent, this metric therefore serves

as an averaged measure of sequence compression over a dataset.

Applying these measures to simulations with different place field densities, we

found that the strength of both single-cycle sequences and population phase precession

decreases with increasing place field density on the track, indicating that the ability of

the network to compress slow sequences of inputs into fast theta sequences is disrupted.

This trend occurs for optimal place field mappings and for random place field mappings

(Figure 4.7B, solid vs dashed lines). Random place field mappings, however, show

a continuous degradation of network performance with increasing place field density,

whereas optimal place field mappings maintain high performance over a range of place

field densities before beginning to degrade as place field overlap finally emerges, con-

sistent with the hypothesis that place field overlap of pyramidal cells coupled to the

same interneuron disrupts sequence compression (see Figure 4.7A). Therefore, both

the number of active place cells in an environment and the spatial organization of their

place fields influence the quality of sequence compression. In general, network perfor-

mance is high when the spatial maps are sparse, but high levels of performance can be

maintained with more dense spatial maps provided that the place fields of cells coupled

to the same interneuron are well separated.
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Figure 4.7: (A) Top: Examples of optimal maps given two different place field densities.

A set of place cells attached to the same interneuron are mapped onto a linear track.

In an optimal map, their place field centres are organised such that their overlap is min-

imised. For a certain number of place cells per interneuron (here, four) overlap occurs

even for an optimal map. Bottom: Example of random maps. The location of each

place field on the track is drawn from a uniform probability distribution. In this case, a

larger number of place cells per interneuron causes an increase in the probability that

place fields will overlap. (B) Network performance vs number of active place cells per

interneuron. As more place cells become active (or the number of interneurons is de-

creased), the compression of inputs into theta sequences is degraded. This is caused

by a drop in the coherence of phase precession in the population, despite a relatively

constant phase-position correlation in individual place cells. Note that while the pop-

ulation phase precession metric approaches zero, the single-cycle metric approaches

a non-zero value reflecting the slow movement of activity through the population on

a behavioural timescale. (C) Example network simulations at low and high mapping

densities.
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Theta sequences are contingent on independent phase precession

It is possible that the observed changes in sequence compression in neuronal popula-

tions are caused by changes in the quality of phase precession in individual place cells.

Alternatively, they may result from changes in the timing relationships between groups

of place cells (i.e., a decoherence of phase precession in neuronal populations). To test

this, we next we quantified the fidelity of single-cell phase precession by calculating

the correlation between spike phase and location for individual cells on single laps.

This measure differs from the population measure in that it doesn’t require phase pre-

cession amongst different place cells to be coherent at the population level and hence

is not in itself sufficient for sequence compression to emerge. We found that this mea-

sure of single-unit phase precession remained stable with increasing place field overlap

despite the disruption of both single-cycle sequences and population phase precession

(Figure 4.7B, black line). Hence, while individual cells continue to precess in phase,

the theta lag between cells no longer encodes the distance between their place field

centres. This is a consequence of place field overlap between place cells associated

with the same interneuron, which causes them to enter synchrony so that the phase

lags required for sequence compression cannot be formed. Phase precession therefore

leads to robust theta sequences only when pyramidal cells precess independently of one

another, whereas interactions via shared interneurons lead to disruption of sequences.

Recent experimental evidence suggests that the formation of theta sequences in a

novel environment develops rapidly after first exposure. On the first lap of a linear track

place cells exhibit phase precession, in that their frequency is higher than the network

theta and their phase shifts continuously from place field entry to exit. Nevertheless,

the phase lags between cells are uncoordinated and do not generate population theta

sequences, which instead emerge rapidly with further experience (Feng et al., 2015).

These observations are consistent with our model, assuming that the initial place field

mapping includes interference between phase precessing cells which is then rapidly

removed by some decorrelating mechanism with subsequent experience.

Our model suggests two potential mechanisms which could perform this task. First,

plasticity between place cells and interneurons could modify the synaptic weights such

that place cells with overlapping place fields no longer couple strongly to the same in-

terneurons (Figure 4.8A). Second, the slow envelope inputs to place cells could rapidly

reorganise in order to minimise the overlap of place fields of cells coupled to the same

interneurons (Figure 4.8B). If a plasticity mechanism were in place, synaptic changes
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which allow sequential activity in a new environment would cause disruption in pre-

viously stored maps. If place field reorganisation were to underlie the formation of

coherent theta sequences, multiple stable maps might be formed without disruption or

interference between different representations. Experimental evidence suggests that

place field activity is indeed reorganised upon exposure to a novel environment, in-

cluding a sparsification of the CA1 place code and and a decrease in the number of

active place cells (Frank et al., 2004; Karlsson and Frank, 2008). Further, reorganisa-

tion of CA1 sequence activity in a novel environment is initially contingent on NMDA

receptor-dependent plasticity in upstream CA3, suggesting that it is the external inputs

to CA1 place cells which is reorganised rather than the interactions between CA1 place

cells (Dragoi and Tonegawa, 2013a). Whether such a reorganisation is consistent with

the removal of unwanted place field overlap is yet to be determined.

Figure 4.8: Putative mechanisms for removing disruption from network theta se-

quences. (A) In one possible mechanism, synaptic weights between pyramidal cells

and interneurons are altered so that pyramidal cell pairs with overlapping place fields

no longer functionally couple to the same interneuron. (B) In a second mechanism, the

place fields themselves undergo changes to remove overlap for place cells coupled to

the same interneuron.
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4.8 Theta sequence generation requires sparse place

field maps

We next investigated the consequences of the assumption that place field mapping

is organised in order to minimise network interference. What constraints does this

assumption impose on spatial mapping? To answer this question, we developed a

simplified model of spatial mapping. In this model, place cells can map to different

locations on a linear track, under the constraint that place cells which functionally

couple to the same interneuron cannot map to locations within a certain distance of

each other, which we termed the exclusion zone. For a given number of place cells and

interneurons, track length and place field size, how many spatial maps are possible?

What fraction of place cells can be active on the track without violating the constraint?

We were able to arrive at concrete answers to these questions in the context of the

simplified model of spatial mapping (see Appendix C). The maximum fraction of

pyramidal cells, F , which can express place fields in a given map is:

F <
NI

NP

L
D

(4.1)

where NI , NP are the number of interneurons and pyramidal cells respectively, L is the

length of the track and D is the exclusion zone (approximately the size of a place field).

The above inequality gives a bound on the coding density of the spatial representation.

In particular, it shows that spatial maps generated by this network must be sparse and

that the required sparsity depends on the ratio of pyramidal cells to interneurons and

the size of the place fields. As this is an upper bound for the fraction of active cells,

there is a range of sparsities which are feasible in an operating network (as evidenced

in the optimal mapping simulations of Figure 4.7B, where the network performance

remains fixed with increasing place cell numbers before place field overlap occurs and

performance deteriorates). If the network is close to this upper bound, there will be

a high density of subthreshold phase precession fields in place cells and interneurons

will precess in phase over most of the environment. If instead the network is operating

well below this upper bound, so that the representation is sparser than the minimum

requirement, there will be only occasional interneuron and subthreshold phase preces-

sion fields. While subthreshold phase precession fields have not yet been investigated,

the density of reported interneuron phase precession fields can be high (see Figure 2 of

Maurer et al. (2006b)).
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4.9 Theta sequences can be generated in a large num-

ber of spatial maps

We next asked whether the non-overlap constraint places limits on the capacity of the

network for the representation of distinct environments and contexts. Our previous

phenomenological model showed that it is possible for a place cell population to show

coherent sequential activity patterns within a given spatial map, yet generate incoherent

activity patterns within other maps (see Chapter 2). We therefore asked whether the

network can perform sequence compression across multiple distinct spatial maps and

whether there are any limitations on capacity imposed by the network connectivity.

We quantified the capacity of the network under the non-overlap constraint in three

different ways (see Methods). First, we quantified the number of spatial maps available

to the network within our simplified model of spatial mapping. To do this, we assume

that place cells encode with a given spatial acuity, such that place field locations can

be distinguished with a particular spatial resolution xres which is limited by biological

noise and variability, and count the number of place field configurations which are

distinguishable at this resolution and obey the non-overlap constraint. Second, we

quantified the number of possible cell assemblies, i.e. the number of possible sets of

coactive place cells which do not generate theta disruption. Each cell assembly might

be considered as representing a particular location or context. Finally, we considered

the capacity in terms of the number of sequences which can be generated. We consider

a sequence to be an ordered set of cell assemblies. A sequence might represent a

trajectory through space, or an episode consisting of a sequence of events encoded by

individual cell assemblies. We assumed that no two cells in a single sequence can

couple to the same interneuron. We note here that, as we have defined a cell assembly

as a set of coactive neurons, it does not imply synaptic coordination and may arise

from independent coding mechanisms as discussed in Chapter 2.

We find that the number of distinct spatial maps, cell assemblies and sequences

which can be generated by the network are each considerably larger than the number

that an animal could encounter within its lifetime. For example, assuming a population

of 10000 pyramidal cells of which 20 % are active in each map, 1000 interneurons, an

exclusion zone between place fields of 1 meter, a linear track of length 5 meters with

and with a spatial resolution of only 10 cm (a conservative estimate), the number of

spatial maps in which coherent theta sequences are generated is greater than 105000.

For the same population of cells, assuming each cell assembly consists of 100 pyra-
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midal cells, there over 10500 possible cell assemblies, and assuming a phase sequence

consists of 7 cell assemblies (Lisman et al., 1995) there are over 101500 possible se-

quences. Hence, despite the constraints imposed by the coupling between groups of

pyramidal cells and interneurons, the capacity of the network to encode distinct envi-

ronments, contexts and episodes can be considered to be unlimited from an ethological

perspective.

In summary, we find that overlap between the place fields of pyramidal cells which

functionally couple to the same interneuron can disrupt sequence compression in the

network. The level of disruption increases with the number of active place cells per

interneuron. For random place field mappings, maintaining coherent sequence com-

pression requires that place field maps are very sparse. By introducing mechanisms

to organise place field maps in order to avoid interference, coherent sequence com-

pression can be maintained with relatively large numbers of active place cells. While

such mechanisms reduce the number of spatial maps available to the network, we find

that even under these constraints, there is a practically unlimited capacity for encoding

distinct spatial maps, cell assemblies and theta sequences in the network.

4.10 Flexible compression of arbitrary input sequences

allows learning through STDP

In the model outlined here, slow input sequences of slow current envelopes are com-

pressed into fast, repeating sequences of spiking activity. This runs in contrast to the

alternative hypothesis that such sequences are generated by internally coordinated en-

semble interactions, which have been hypothesised to generate both phase precession

and firing fields as a result of a fundamental sequential organization of network dy-

namics (Lisman and Redish, 2009; Wikenheiser and Redish, 2015; Wang et al., 2015).

What possible functional advantages could arise from the passive compression of slow

current inputs, as opposed to the ensemble coordination hypothesis? In this section, we

show how the compression of slow input sequences can be used in conjunction with

spike time dependent plasticity (STDP) to learn associations in a classical conditioning

paradigm.

A longstanding hypothesis for the function of sequence compression is the induc-

tion of synaptic plasticity (Skaggs et al., 1996). In particular, STDP can allow causal

relationships to be learned by strengthening synapses between cells firing in a partic-
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ular (Bi and Poo, 1998). However, the timescale of neuronal activity correlations on

which STDP acts is on the order of tens of milliseconds, which is at least an order

of magnitude shorter than the timescales of causal relationships typically encountered

in behavioural contexts. The model proposed here offers a solution to this disparity

in timescales. As an animal explores an environment, the ongoing sequence of be-

havioural events is compressed into theta sequences representing several seconds of

recent and upcoming experiences (Figure 4.9A, B). Because behavioural events ex-

tending up to several seconds into the past are represented in an orderly fashion along

the descending phase of the theta cycle and events occurring up to several seconds into

the future are ordered along the ascending phase, sequence compression using theta

oscillations generates an absolute temporal reference frame in neural time for past,

present and future events in real time on which STDP can act (Figure 4.9C).

To illustrate this, we consider the case in which a population of CA1 pyramidal

cells performing sequence compression on its inputs projects to a downstream neuron

which encodes some particular outcome or event of behavioural relevance, termed the

unconditioned stimulus (Figure 4.9B). This outcome may be a reward, punishment or

any other event which the animal might need to remember. When the unconditioned

stimulus occurs, the downstream cell signals that event by firing action potentials. Fig-

ure 4.9C shows that, if these action potentials lock to the trough of the theta rhythm, a

standard STDP rule will cause the set of CA1 pyramidal cells representing experiences

which occurred recently before the unconditioned stimulus on a behavioural timescale

to undergo an increase in synaptic strength onto the downstream cell. This circuit

therefore performs supervised learning, forming an association between the condi-

tioned and unconditioned stimuli (here, the conditioned stimulus can be thought of

as the context or location recently before the onset of the unconditioned stimulus, rep-

resented via the slow envelope inputs to the CA1 network).

How sequence compression and STDP interact in this context can be understood

in the following way. Given a standard plasticity rule of the form:

∆w(∆τ) =

A+e−∆τ/τ+ ∆τ > 0

−A−e∆τ/τ− ∆τ < 0
(4.2)

where ∆τ is the spike lag between pre- and post-synaptic cells, the above mechanism

transforms the rule to behavioural times via the following effective plasticity rule:

∆w(∆t) =

A+e−∆t/(cτ+) ∆t > 0

−A−e∆t/(cτ−) ∆t < 0
(4.3)
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where ∆t is the behavioural time from the present moment (i.e., past events have ∆t < 0

and future events have ∆t > 0) and c is the compression factor of the CA1 network (see

Chapter 2).

If the downstream cell were to lock to a theta phase other than the trough, this

would introduce a temporal shift to behavioural time lags at which potentiation and

depression of synapses occurs. For example, a downstream neuron which fires at the

peak of the theta oscillation will cause a decrease in synaptic strength from neurons

representing past events and an increase in synaptic strength from CA1 pyramidal cells

representing the future events (Figure 4.9D). As cells in the ventral striatum are known

to precess in phase when ramping up to a reward (van der Meer and Redish, 2011),

such a mechanism might serve important functions. In particular, since the reward cell

fires nearer to the peak of theta when the animal is further from the reward, this would

cause CA1 cell assemblies representing locations ahead of the animal to be associated

with the reward when the reward is still far away, and locations behind the animal

to be associated with the reward once the reward has been achieved. Thus, sequence

compression with theta oscillations allows events occurring further in the past or future

to be flexibly and selectively associated with a particular outcome by varying the spike

phase of the downstream cell.
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Figure 4.9: A proposed function of sequence compression for supervised learning. (A)

The animal explores an environment, activating different cell in CA1 in a particular tem-

poral order on a behavioural timescale. (B) A population of CA1 place cells performs

sequence compression on the slow Gaussian envelope inputs. These cells project onto

a downstream neuron which signals some event of interest (the unconditioned stimu-

lus). When this event occurs, this cell fires tonically at the trough of the theta cycle.

Synapses from CA1 place cells to the event cell are modifiable via STDP. (C) During

each cycle of the theta rhythm, CA1 cell assemblies representing past, present and

future events in behavioural time are activated sequentially. At the trough of the theta

cycle, place cells representing the animal’s current location are active, whereas dur-

ing the descending and ascending phases cells representing past and future locations

respectively are active. If the downstream cell signalling the unconditioned stimulus

fires an action potential at the trough of the theta cycle, STDP between pre- and post-

synaptic spikes establishes an association between cells representing recently visited

locations and the event. (D) If instead the downstream cell encoding spikes at the peak

of the theta rhythm, an association between cells representing upcoming locations and

this cell is formed, whereas cells representing recently visited locations and this cell

have their synapses weakened (i.e., the temporal associations are reversed relative to

those in (C)).
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4.11 Discussion

We show that a minimal model based on the known CA1 network architecture can pro-

duce phase precession and theta sequences. The network can flexibly generate phase

precession with running speed dependent oscillation frequencies, along arbitrary two

dimensional trajectories and across a large number of distinct spatial maps. Phase

precession is generated de novo within the network, without the need for external in-

puts with velocity-controlled oscillation frequencies or temporally patterned inputs to

place cells. Instead, the phase precession of interneurons, previously assumed to be

an epiphenomenon resulting from synaptic inputs from phase precessing place cell as-

semblies, acts to coordinate pyramidal cells and transfer phase precession to place cell

assemblies. Our model can account for phase precession along the dorsoventral axis

of the hippocampus, including a gradient in place field size, precession slope and theta

phase (Kjelstrup et al., 2008 Lubenov and Siapas, 2009; Patel et al., 2012).

The network automatically compresses slow sequences of current inputs occurring

on timescales of seconds into fast sequences of spiking activity within each cycle of the

network theta rhythm. The ability of the network to perform such sequence compres-

sion, however, depends on the mapping of inputs into the network and the details of the

coupling between pyramidal cells and interneurons. Specifically, a single phase pre-

cessing interneuron will synchronise all pyramidal cells which receive strong synaptic

inputs from that interneuron. Hence, if pyramidal cells are to form asynchronous se-

quential activity patterns within theta cycles, the external inputs to the network must be

such that pyramidal cells which couple strongly to the same interneuron receive tem-

porally segregated inputs at behavioural timescales. We considered two ways in which

this could be achieved. In the first case, the mapping of inputs to the network is random,

but the sparsity of inputs is sufficiently high that the probability of unwanted overlap is

low, and the ability of the network to perform sequence compression is maintained. In

the second case, inputs are rapidly reorganised so as to minimise the temporal overlap

of inputs to pyramidal cells sharing a common interneuron. This allows network per-

formance to remain high with increasing numbers of active pyramidal cells, and can

explain recent observations that theta sequences are absent on the first lap of a novel

track, but emerge rapidly with subsequent exposure (Feng et al., 2015). Our model

provides a very different interpretation of the results of Feng and colleagues, however.

While Feng and colleagues proposed that sequences emerge due to an increase in the

synaptic coordination within the CA1 network, our model suggests that sequences in
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fact emerge due to a decrease in synaptic coordination between pyramidal cells active

within a theta cycle, such that disruptive synchrony is removed in order to generate an

independent population code.

We previously presented a phenomenological model which accounts for the sta-

tistical properties of CA1 population activity during navigation (see Chapter 2). The

present model extends these results by providing a mechanistic basis for independent

theta phase coding. In particular, the previous model suggested that the membrane

potential oscillations of place cells should lock to the LFP theta rhythm when the an-

imal is outside of their place fields, and display a transient elevation of membrane

potential oscillation frequency inside their firing field. This allows remapping without

disrupting theta activity provided that this elevation of membrane potential frequency

is always locked to the firing rate field. The present model suggests that this increase in

frequency is generated via coupling between place cells and interneurons. As a conse-

quence an increase in membrane potential oscillation frequency occurs whenever the

place cell is activated by a slow depolarising current, which explains how the theta

frequency elevation coincides with the firing rate field. Nevertheless, while our previ-

ous model suggested that such a mechanism would allow arbitrary remapping of place

field locations, the mechanism we propose here imposes some additional restrictions.

These restrictions arise because the increase in membrane potential frequency is com-

mon to all pyramidal cells coupled to the same interneuron, which was not a feature of

the previous phenomenological model. As in the phenomenological model, place cells

in the mechanistic model precess in phase independently of each other provided that

the place fields of cells coupled to the same interneuron do not overlap. If these place

fields do overlap, the cells enter into a highly synchronous state and theta sequences

are disrupted. It is possible that such disruptive synchronisation exists in CA1 net-

works between a small number of cells, although the failure to observe this in existing

datasets suggests that it is rare (see Chapter 2).

In our model, phase precession is generated de novo by the dynamics on the lo-

cal circuitry and allows running speed dependence and directional phase precession

in open environments without the need for specialised velocity-controlled input os-

cillation frequencies or head direction cells. Our model therefore offers significant

advantages over existing proposals. O’Keefe and colleagues originally proposed a

mechanism based on the interference of oscillations at different frequencies (O’Keefe

and Recce, 1993), which has subsequently been developed and extended to grid cells

(Burgess et al., 2007). While such models can account for phase precession across run-
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ning speeds and in open environments, the velocity dependence is included by hand

in these models. Other models include asymmetric excitatory synaptic connectivity

(Tsodyks et al., 1996; Wang et al., 2015), spike train adaptation (Harris et al., 2002),

asymmetric place fields (Mehta et al., 2002), interference between inputs from entorhi-

nal cortex and CA3 (Chance, 2012) and inheritance from phase precessing synaptic in-

puts (Jaramillo et al., 2014). Several of these models have difficulties generating phase

precession and theta sequences in open environments (Tsodyks et al., 1996; Mehta

et al., 2002; Chance, 2012; Wang et al., 2015), inheritance models do not address the

de novo origin of phase precession (Jaramillo et al., 2014), and it is not clear whether

models based on spike train adaptation can account for velocity dependencies (Har-

ris et al., 2002). Hence, a major advance of our model is to account for all of these

phenomena within a biophysical framework consistent with CA1.

The model outlined here makes several testable predictions. First, we predict the

existence of subthreshold phase precession fields in silent or inactive pyramidal cells.

These are most easily observed as transient increases in subthreshold oscillation fre-

quency in the theta band. Second, we predict that pyramidal cells which precess in

tandem with a particular interneuron have non-overlapping place fields, and will enter

a highly synchronous state if not. Third, we predict that a continuous current injection

to a pyramidal cell during theta activity should be sufficient to generate phase preces-

sion. Fourth, we predict that phase precession in place cells should be accompanied by

the presence of strong, phase precessing inhibitory synaptic inputs. Fifth, entrainment

of septal GABAergic inputs should set the basal theta frequency, but precession of

CA1 interneurons and place cells against this basal theta should remain intact. Finally,

phase precessing interneurons should show reciprocal synaptic connections onto pyra-

midal cells, and the interneuron to pyramidal cell synapse should be sufficiently strong

to synchronise theta activity. Finally, inactivation of phase precessing interneurons

should block pyramidal cell phase precession.

Several other brain areas exhibit theta phase precession. These circuits display a

variety of different coding properties and circuit connectivities. In CA3, pyramidal

cells are connected via dense recurrent collaterals, which have been hypothesised to

form a substrate for associative memory. In layer II of the entorhinal cortex, principal

cells are connected indirectly via inhibitory interneurons (Couey et al., 2013; Pastoll

et al., 2013), and show periodically repeating firing fields which tessellate an environ-

ment and may form a substrate for path integration. Do these differences in coding

properties and circuit wiring imply a different mechanism for phase precession from
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the one outlined here for CA1? It is possible that, despite the presence of recurrent

excitation in CA3, phase precession is nevertheless generated via coupling between

pyramidal cells and interneurons. In this case, excitatory synapses may simply modu-

late the theta-scale dynamics generated by excitatory-inhibitory coupling, or they may

primarily subserve slower timescale dynamics via attractor mechanisms. Grid cell cir-

cuitry is similar to that outlined here for CA1, in that stellate cells are connected with

local interneurons without direct recurrent connectivity. Hence, the mechanism out-

lined here could account for phase precession over each individual firing field in grid

cells. However, the periodic firing fields of each grid cell cover a large fraction of

the environment, so that firing field overlap between any two grid cells is on average

greater than that for place cells. Hence, if phase precession in grid cells is subserved by

the mechanism described here, the capacity for remapping should be vastly restricted

in comparison to place cells due to the higher coding density (see Figure 4.7B). In-

deed, grid cells generally remap via simple affine transformations such as rotation,

translation and shear. Future work should investigate whether the mechanism outlined

here can be implemented in attractor networks, either with recurrent excitation as in

CA3, or with patterned excitatory and inhibitory connectivity as in models of grid cell

modules. In this case, the slowly varying inputs to excitatory neurons would arise pri-

marily from internally generated attractor dynamics rather than external inputs as we

have considered in this study.

We find that the network considered has a vast capacity for the compression of

sequences of events on behavioural timescales into theta sequences. The number of

episodes which could be represented by the network is practically unlimited in com-

parison to the number of events which are encountered by an animal within its lifetime.

The storage of such events into long term memory, however, is not addressed by this

model. We suggest that the network considered here provides a flexible format for

the representation of experienced events in real time, but that the capacity to store ex-

perienced events into long term memories is likely to be far more limited. During a

cognitive task, the hippocampus may provide a time-compressed running narrative of

recent and upcoming events in a suitable format for decoding in downstream brain ar-

eas such as the prefrontal cortex. This compression serves a dual purpose. First, the

sequence compressed representation contains information about the temporal order at

which place cells were activated in a format suitable for neural decoding in the perfor-

mance of cognitive functions, which may explain the importance of the hippocampus

for processing of temporal order (Kesner et al., 2002; Devito and Eichenbaum, 2011;
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Davachi and DuBrow, 2015). Second, sequence compression orders neuronal activ-

ity into a temporal reference frame in which separate phases represent past, present

or future behavioural events. Within such a reference frame, STDP can form associa-

tions between ongoing experiences in the recent past or future with an outcome such

as reward or punishment. This allows the contingencies between specific behaviours

and their outcomes to be learned. Crucially, such a mechanism requires that ongo-

ing experiences are compressed and aligned into a common temporal reference frame

at timescales relevant for STDP. This compression is not a feature of many models

of phase precession, in which it is often assumed that the sequential organisation of

CA1 activity is generated via synaptic coordination of cell assemblies, and that firing

fields emerge as an epiphenomenon from these more fundamental sequential processes

(Wikenheiser and Redish, 2015; Wang et al., 2015).

We hypothesise that, during theta oscillations, CA1 provides a time-compressed

ongoing narrative of behavioural sequences. During theta states, which typically emerge

during active behaviour, associations are formed between ongoing behavioural events

and specific outcomes such as reward or punishment. During sharp wave ripple states,

which typically occur during immobility, the network can then explore its state space in

order to test outcomes of different behavioural choices based on these stored associa-

tions. Importantly, place cell activity is relatively sparse and asynchronous during theta

states (Mizuseki and Buzsaki, 2014), so that downstream cells might be driven only

at subthreshold levels by place cell ensembles, allowing supervised learning between

these inputs and the conditioned stimulus as shown in Figure 4.9. During sharp wave

ripples, however, activity is highly synchronous, and may drive these downstream cells

to spike if strong associations have formed during theta states. This allows a form of

mental exploration in which possible behavioural sequences can be simulated and the

likely outcomes determined based on associations learned during theta states. Hence,

we hypothesise that a major function of CA1 during theta states is to compress ongoing

events into neuronal sequences in order to store associations in synaptic projections to

downstream brain areas, which are then utilised during sharp wave ripple states for

mental exploration, planning and decision making.
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4.12 Methods

Numerical simulations

Simulations were performed using the Brian simulator (Goodman and Brette, 2009).

Neuron Model

We modelled the network using leaky integrate and fire neurons with conductance

based synapses. For example, excitatory neurons were modelled by the following

equation:

dVm(t)
dt

=−(Vm(t)−E0)/τm−
NI

∑
j=1

gI, j(t)(Vm(t)−EI)/Cm + IExt/Cm +σnη(t)/τm

(4.4)

where Vm is the membrane potential, E0 is the resting potential, τm is the membrane

time constant, gI, j is the conductance of the synapse from presynaptic interneuron

j, EI is the inhibitory reversal potential, IExt is an external current input, σn is the

noise amplitude and η is a normally distributed random variable. When the membrane

potential Vm reaches the threshold Vθ, a spike occurs and the membrane potential is

reset to Vr. Inhibitory cells were modelled using the same equation, but with excitatory

rather inhibitory synaptic conductances.

The synaptic conductances were governed according to:

dgI, j(t)
dt

=−gI, j/τI +∑
i

w jδ
(

t− t( j)
i

)
(4.5)

where t( j)
i is ith spike of cell j and w j the synaptic weight. Excitatory synapses were

modelled in the same way.

External Inputs

For interneurons, the external current was of the form:

II
Ext = II

0− Iθ cos(ωθt) (4.6)

where Iθ is the amplitude of the pacemaker current. To simulate a trajectory through a

place field, the external current injected to the place cell was of the form:

IE
Ext(t) = IE exp

(
−|x(t)−xc|2

2σ2

)
(4.7)
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where x(t) = x0 +vt is the trajectory of the animal through the place field. For simu-

lations through the edge of the place field the trajectory was a straight line offset from

the place field centre xc by 14 cm, otherwise the trajectory passed through the centre.

Synaptic Connectivity (Section 4.7)

Synaptic weights from pyramidal cell i to interneuron j were defined as:

wE
i j =Ci jwE (4.8)

where Ci j is a connectivity matrix with binary entries Ci j ∈ {0,1}. The connectivity

matrix satisfies the following conditions: ∑ j Ci j = 1 for all i and ∑iCi j = Np/NI for

all j. This ensures that each pyramidal cell connects to exactly one interneuron and

that each interneuron receives connections from the same number of pyramidal cells.

Similarly, synaptic weights from interneuron j to pyramidal cell i were defined as:

wI
ji = (Ci j)

T wI (4.9)

where the inhibitory connectivity matrix is simply the transpose of the excitatory con-

nectivity matrix. This ensures that interneurons project to the same pyramidal cells

from which they receive connections. Synaptic weights between neurons of the same

type were set to zero.

Synaptic weights were tuned using constraints from the literature. We first tuned

the inhibitory synaptic weight such that they drove approximately 10 mV amplitude

subthreshold theta oscillations in the pyramidal cell (Harvey et al., 2009). Excitatory

synapses were then tuned in order to generate phase precession over 360 degrees in

the coupled pair of cells when pyramidal cells fired realistic numbers of spike on a

pass through the place field (approximately 10-15 spikes, Huxter et al., 2003). Specific

parameter values used in simulations are provided below.

Model Parameters

The following parameters were fixed, independent of running speed:

τI
m = 40 ms, τE

m = 20 ms, Vθ =−50 mV, Vr =−70 mV, V0 =−65 mV, CI
m = 200 pF,

CE
m = 155 pF, τI = 10 ms, τE = 2 ms, EI =−70 mV, EE = 0 mV, fθ = 8 Hz, wE = 0.5

nS, wI = 25 nS, dt = 0.1 ms, σ = 40 cm, σI
n = 0.15 mV.
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Running Speed Dependence (Section 4.3)

We varied several parameters to model the changes with running speed. Firstly, the

injected current to the place cell depends on running speed according to Equation (4.7),

where the width of the Gaussian in time varies with running speed. In addition to

the temporal duration of current injection (as determined by the trajectory x(t)), the

amplitude of current input IE
0 was varied with running speed. In addition, the noise

to the place cell was varied with running speed. The amplitude and noise term were

varied so that the width of the place field (measured as the distance from first to last

spike on a single lap) and the number of spikes fired during a pass through a place

field were constant across running speeds. Increasing noise tends to spread out the

place field, whereas increasing the input current amplitude tends to increase both the

number of spikes fired and the width.

The inputs to the interneuron were also running speed dependent. Specifically,

the pacemaker amplitude IMS and the baseline current II
0 were varied with running

speed. By lowering the pacemaker input, the range of inputs currents over which phase

locking occurs is reduced, but the nonlinear transition from phase locking to phase

precession is less severe. This effectively allows a wider range of currents over which

slow phase precession can be achieved and increases the stability of phase precession

within this range. For these reasons, we reduced the pacemaker amplitude at lower

running speeds and also reduced the baseline current so as to allow a slow precession

frequency.

The depolarising current input to the interneuron was set as:

II
0 = (79.3+0.03v) pA (4.10)

The septal pacemaker input was:

Iθ = 0.065v pA (4.11)

The amplitude of current injection to the place cell was:

IE = (110+0.5v) pA (4.12)

The noise to the place cell was varied with running speed as:

σ
E
n = (1.75−0.025v) mV (4.13)

In each of the above equations v is measured in cm/s.
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Dorsoventral Changes (Section 4.4)

To model changes in theta dynamics along the dorsoventral axis, we simultaneously

varied the place field width σ, excitatory synaptic weight wE , depolarising current to

interneurons IE
0 and the pacemaker drive Iθ. For Figure 4.3A, B, only IE

0 was varied

and all other parameters were as above. For Figure 4.3C, D, we chose two parameter

sets representing the dorsal and ventral poles. For the dorsal pole, the parameters

were: σ = 40 cm; II
0 = 80.7 pA; Iθ = 2.6 pA; wE = 0.5 nS. For the ventral pole, the

parameters were: σ = 800 cm; II
0 = 79.49 pA; Iθ = 0.2 pA; wE = 0.108 nS.

Calculation of Precession Frequency

To estimate the theta frequency of the simulated neurons, the membrane potential was

bandpass filtered at 6.25− 10 Hz and the instantaneous phase was calculated via a

Hilbert transform. The phase was unwrapped then and smoothed using a moving av-

erage of width 250 ms and the gradient was calculated at each time point to obtain the

instantaneous frequency.

To determine the precession frequency at different running speeds, we calculated

the average membrane frequency within a radius of 15 cm around the place field centre

on each pass through the place field. To remove artefactual frequency estimates arising

due to the bursting dynamics within theta cycles, we excluded individual runs based

on the variability of the instantaneous place cell frequency within this 15 cm radius.

Specifically, we excluded runs on which the standard deviation was greater than 1.75

times the mean standard deviation over all runs at that speed. This excludes cases in

which the estimated frequency fluctuated rapidly on a short timescale.

Analysis of Phase Precession Statistics (Section 4.7)

To estimate the strength of phase precession in each pyramidal cell, we calculated the

Pearson correlation between the vector of spike phases Φ and the vector of the animal’s

location X at the time of each spike on a single lap. The phase offset was chosen in

order to minimise this correlation, i.e. to obtain the most negative possible correlation

between spike phase and the animal’s location (Foster and Wilson, 2007; Feng et al.,

2015). Specifically, given the vectors X and Φ, we calculated the correlation ρ(X ,Φ+

φ̃), where φ̃ = argmin(ρ(X ,Φ+φ)).

To obtain the measure of population phase precession, we pooled the spikes of all



Chapter 4. Biophysical Models of Theta Sequences 133

pyramidal cells on a single lap. We again calculated the correlation between the vector

of pooled spike phases Φpop and the vector whose entries are given by the distance

of the animal from the place field centre of the corresponding cell in the pooled spike

phase vector at the time of that spike Xpop. As for the single cell case, the phase offset

was chosen in order to minimise this correlation by calculating ρ(Xpop,Φpop + φ̃pop),

where φ̃pop = argmin(ρ(Xpop,Φpop +φpop)).

To measure the strength of sequential activity in the population, we analysed the

data on a cycle-by-cycle basis. For each cycle, the Pearson correlation between the

vector of spike times in the population and the vector whose entries are given by the

place field centre corresponding to each spike in this first vector was calculated. Theta

windows for this method had a temporal width equal to the period of the pacemaker

input to the network. The offset of theta windows was given by the phase offset φ̃pop

which maximised the population phase precession measure. This allows for the pos-

sibility of an offset between the simulated CA1 network theta activity and the septal

input oscillation.

Place Field Mapping (Section 4.7)

For network simulations, the number of simulated pyramidal cells was held constant

(Np = 1000) and the number of interneurons was varied. This choice was made to

avoid changes in correlation values introduced by changes in sample size. The number

of interneurons was always chosen to be a divisor of the number of pyramidal cells

so that there was an equal number of place cells for each interneuron. Each simulated

place cell was given exactly one place field. For random place field mapping, place

field locations were generated by a uniform distribution over a linear track. For optimal

place field mapping, place field locations were defined so that the place cells associated

with a single interneuron were equally spaced along the track and so that the entire

population of place cells uniformly covered the track.
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Conclusions

5.1 Summary of results

In this thesis, I have developed a detailed account of the phenomenological proper-

ties and biophysical mechanisms of population activity during theta oscillations in the

rodent hippocampus. In Chapter 2, I developed a phenomenological model based on

the assumption that place cells code independently of each other during theta oscilla-

tions, and compared this to an alternative model in which cells encode via coordinated

synaptic interactions within the local circuitry in order to produce theta sequences. By

comparison of these models to experimental data, I found empirical support for the in-

dependent coding hypothesis, and showed how previous evidence presented in support

of coordination during theta oscillations is consistent with independent coding.

Through a detailed analysis of the properties of independent coding models and

coordinated coding models under place field remapping, I uncovered an important

functional benefit of independent coding. In coordinated coding models, interactions

between cells can disrupt sequential activity patterns after place fields are remapped.

In independent coding models, however, it is possible for place fields to be remapped

without interference between spatial representations in different environments. Specif-

ically, I found that this ability to remap flexibly is possible provided that individual

cells exhibit sigmoidal phase coding, wherein their intrinsic theta frequency increases

as the animal crosses the place field. For linear phase coding, in which the oscilla-

tion frequency of each cell remains fixed over space, I found that remapping generally

disrupts theta sequences.

In Chapter 3, I investigated the phenomenological properties of phase coding in

grid cells during theta oscillations. By extending the linear and sigmoidal models of

134
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place cells developed in Chapter 2 to grid cells, I showed that the translational symme-

tries of their firing rate fields impose additional constraints on the phenomenological

properties of theta phase coding in two-dimensions. To overcome these constraints, I

developed a more complex model in which grid cell firing phase depends on a combi-

nation of a location-dependent intracellular theta frequency and a synchronising pace-

maker drive. I showed how this model can generate a robust theta phase code for grid

cells in two-dimensions which satisfies the symmetry properties of grid cell activity.

In Chapter 4, I proposed a detailed biophysical mechanism based on the dynam-

ics outlined for grid cells in Chapter 3. Specifically, I showed that phase precession

emerges in coupled interneuron-pyramidal cell pairs driven by pacemaker inputs. I

showed that this model can account for many challenging features of phase precession,

including the dependence on running speed, dorsoventral location and phase preces-

sion in two-dimensional environments. I then investigated the ability of the proposed

mechanism to account for large scale network activity during theta oscillations. I found

that the network has a vast capacity for the generation of theta sequences in different

spatial maps, but also identified important constraints on the sparseness and organisa-

tion of place field maps under which robust theta sequences can be generated. Finally,

I proposed a mechanism by which this network can use spike time dependent plasticity

in order to learn associations between events occurring during behaviour.

5.2 Implications for hippocampal function

The models of CA1 presented in this thesis imply a vast capacity of the CA1 network

for the encoding of trajectories and episodic memories in different environments and

contexts. These results are in contradistinction to a growing body of work which sug-

gests that the hippocampus exhibits a repertoire of intrinsically organised sequential

activity patterns, and hence a limited range of representational patterns (Lisman and

Grace, 2005; Dragoi and Tonegawa, 2011, 2013b; Wikenheiser and Redish, 2015).

Specifically, the results of this thesis suggest that the hippocampus compresses arbi-

trary sequences of inputs in real-time into faster sequential representations. In this

view, theta sequences represent a passive representation of ongoing events at neural

timescale, as opposed to active, internally constructed representations which are an-

chored by and aligned to sensory inputs (Lisman and Grace, 2005; Dragoi and Tone-

gawa, 2011, 2013b; Aghajan et al., 2015; Wikenheiser and Redish, 2015; Wang et al.,

2015). Hence, while O’Keefe and Dragoi have proposed that the activity of place cell
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ensembles embodies the Kantian notion of an innate, internally constructed spatial rep-

resentation through which sensory experience is embedded and interpreted (O’Keefe

and Nadel, 1978; Wills et al., 2010; Dragoi and Tonegawa, 2014), the models pro-

posed in this thesis are more akin to the Lockean “tabula rasa” or blank slate, in which

arbitrary novel spatial representations can be constructed from sensory inputs.

The results presented here are consistent with the two-stage model of memory for-

mation (Buzsaki, 1989), in which episodes are represented in real time during theta

oscillations before being consolidated later during sharp wave-ripple states. Our re-

sults provide an account of the phenomenology and mechanisms of the first stage in

this model. Specifically, the generation of sequential representations of arbitrary se-

quences of events may be achieved through the independent phase precession of each

cell and used to establish associations during these episodes according to the super-

vised learning mechanism presented in Chapter 4. However, the phenomenology and

mechanisms of the second stage, which occur during sharp wave-ripples, were not

addressed.

The results herein are also consistent with Marr’s proposal that the hippocampus

has the capacity to index arbitrary cortical input patterns (Marr, 1971). However, the

proposed mechanisms extend this concept to the indexing of arbitrary sequences of

inputs via theta compression. Finally, as the model presented here allows the compres-

sion of arbitrary sequences of inputs to the hippocampus, the proposed mechanism

offers a unified account of the involvement of the hippocampus in encoding spatial

trajectories (Dragoi and Buzsáki, 2006; Foster and Wilson, 2007), sequences of sen-

sory stimuli (MacDonald et al., 2013), and memory episodes (Pastalkova et al., 2008)

during theta oscillations. As such, this work makes contributions towards a unified

understanding of hippocampal function.

5.3 Future work

Several important questions have been raised in this thesis that warrant further inves-

tigation. In Chapter 2, I suggested that CA3 may generate sequences with temporally

coordinated activity patterns within theta cycles, in contrast to the independent popu-

lation code in CA1. I further suggested that CA1 may actively decorrelate these inputs

in order to orthogonalise the information contained within the population during theta

cycles. It will therefore be important to test whether CA3 does indeed exhibit coor-

dinated spatiotemporal activity patterns, and if so, to investigate the mechanisms by
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which CA1 may remove these correlations.

In Chapter 3, we found that linear phase coding in grid modules requires strong

constraints for two-dimensional phase precession which appear unbiophysical, due to

the discrete changes in precession frequency with direction of movement. Neverthe-

less, these dynamics are possible, and may be tested by analysing the theta frequency of

cells for different running directions. By testing whether precession frequency varies

with running direction for grid cells, it will therefore be possible to validate the model,

or alternatively to rule out linear phase coding entirely.

The biophysical model of Chapter 4 makes several salient experimental predic-

tions. For example, it predicts the existence of subthreshold phase precession fields

in the membrane potential oscillations of place cells. Moreover, it predicts that phase

precession in pyramidal cells is contingent on the precession of synaptically coupled

phase precessing interneurons, and that current injection to a place cell outside of its

place field should initiate phase precession. These predictions are within the grasp of

current experimental techniques. By testing these predictions empirically, it should be

possible to find clear evidence for or against the proposed mechanism.

Finally, the model of Chapter 4 leaves open several theoretical questions. For ex-

ample, can the same mechanism persist in CA3, where recurrent excitation may inter-

fere with the proposed dynamics? Can the mechanism coexist with attractor dynamics,

such that the slow depolarising inputs to cells come from within the network rather than

external inputs? In grid cell modules, the density of firing rate fields is much higher

than in place cell populations. What are the implications for grid cell remapping under

the biophysical mechanism proposed in this thesis, given the constraints imposed by

firing field overlap? Perhaps most importantly, what possible mechanisms or learning

rules could allow place field mapping under the proposed mechanism without intro-

ducing interference between competing pyramidal cells?



Appendix A

Remapping with Fixed Phase

Sequences

In this appendix the structure present in a population of place cells with a linear phase

code in two dimensions is described, not considering any rate coding. We then investi-

gate the constraints when remapping between different place field configurations in an

open environment, assuming the original set of phase lags between cells in the popu-

lation is fixed. We then present a set of transformations which obey these constraints,

allowing a prediction of the set of possible remappings in a network with a fixed set of

theta phase lags.

Definition of a Phase Chart

In the linear travelling wave model, the MPO phase ψ(xc, t) in each cell can be sepa-

rated into a temporal component ωt and a spatial component θP = κκκ · xc which sets a

fixed phase lag between any two cells in the population (see Equation (2.25)). Since

the temporal component is the same for each cell, we can disregard the temporal dy-

namics and focus only on the spatial component θP when analysing the properties of

networks with fixed phase lags.

During each theta cycle, a phase sequence is swept out. Only those cells within

the rate coded area around the rat fire an action potential during a phase sequence, but

every single place cell can be assigned an MPO phase, whether or not it fires. In the

linear travelling wave model the relative phase between two cells ∆θP depends only on

the direction the rat is moving (determined by κκκ) and the relative place field locations

(determined by xc for each cell).
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If the rat is running in the direction κκκ, the set of cells with a phase θP have place

fields xc given by:

C(θP,κκκ) =
{

xc ∈ R2| xc ·κκκ≡ θP mod 2π
}

(A.1)

Equation (A.1) shows that, in the linear travelling wave model, the set of cells

with the same phase corresponds to periodic parallel lines extending across the whole

environment (Figure A.1). Each C(θP,κκκ) is a cell assembly active at phase θP in the

sequence ordered along the direction κκκ. A phase sequence consists of the set of cell

assemblies C(θP,κκκ) with phases θP ∈ [0,2π) for a particular κκκ. In turn, a phase chart

is the full set of phase sequences consisting of one κκκ for each running direction.

In this description, we have treated the set of cells as a two dimensional continuous

sheet, so that we can assign a place field to each point in a two dimensional environ-

ment. This is an idealized case, but a finite sampling of cells from this idealized case

would not affect any of the arguments here. Moreover, since we are neglecting rate

coding in this analysis, the definition of a phase sequence describes the sequence of

MPO phases of all cells in the population, rather than the sequence of spikes which are

localized to the vicinity of the animal.
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Figure A.1: Equal phase contours in the linear travelling wave model.
The set of cells with a given phase θP maps onto parallel lines in the environment with

spacing equal to the size of a place field and orientation aligned with the current running

direction (shown by arrows). The phase lag between any two cells is fixed according to

a linear population phase gradient κκκ along the direction of movement. The grey circle

illustrates the spiking population, but the phase lags between cells are independent of

this rate code.
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Constraints Under Remapping with a Fixed Phase Chart

We now assume that this phase chart remains fixed under remapping, so that the set

of phase lags remains, even though the cells can be assigned new place fields. This

situation might arise if the phase differences between cells in the population is fixed

anatomically, for example by upstream pacemakers. If xc is the location of a place

field before a remapping f , we denote the remapped place field as x′c = f (xc). Here,

we set constraints on the possible remappings which ensure that the new place fields

still display spatially ordered sequences under the same phase chart.

Constraint 1
After remapping, the new phase sequences should still sweep out paths in the en-

vironment, i.e. they should map out parallel lines which are ordered along a direction

of movement, and each should represent a unique such direction as before.

For the remapped assemblies within a phase sequence to map out straight lines as

in the original place field configuration, we require that:

f (C(θP,κκκ)) =C(θ′P,κκκ
′′′) =

{
x′c ∈ R2| x′c ·κκκ′ ≡ θ

′
P mod 2π

}
, (A.2)

for some new direction κκκ′′′.

Constraint 2
Since the phase lags are preserved, we require that:

∆θ
′
P = ∆θP (A.3)

for each pair of assemblies within each phase sequence.

In words, these constraints are 1) parallel lines of place fields are mapped to parallel

lines and 2) phase differences among these parallel lines are preserved.

Affine Transformations Allow Remapping within a Fixed

Phase Chart

Affine transformations have the property that sets of parallel lines remain parallel (con-

straint 1). They also preserve the ratios of distances along straight lines, meaning that

constraint 2 is automatically satisfied, although with a possible spatial scaling.
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We can demonstrate mathematically that the affine transformation:

xc→Mxc +a, M ∈ GL2, a ∈ R2 (A.4)

satisfies the above constraints (GL2 is the group of all invertible 2× 2 matrices,

called the general linear group), as shown below:

Given xc ·κκκ≡ θp mod 2π and x′c = Mxc +a (A.5)

Let κκκ
′′′ =
(
M−1)T

κκκ, and θ
′
P = θP +a ·

((
M−1)T

κκκ

)
(A.6)

Then x′c ·κκκ′
′′ = xc ·κκκ+a ·

((
M−1)T

κκκ

)
(A.7)

=⇒ x′c ·κκκ′
′′ ≡ θ

′
P mod 2π, (A.8)

so that subsets with a given wave vector κκκ and phase θP are transformed to a new

wave vector κκκ′′′ and phase offset θ′P. The transformation M can include scaling - in or-

der to preserve phase precession, such a scaling would require a commensurate scaling

of place field size in the direction of κκκ′′′. Clearly, the transformation preserves phase

differences along each direction.



Appendix B

Derivation of Grid Cell Precession

Frequencies in the Sigmoidal Model

Here, we calculate the phase precessed along different running directions in the rate-

coupled frequency model. First, for runs when v = |v|κ̂κκ111 (we choose the first grid

vector for concreteness), we use Equation (3.18) and calculate the phase precessed

between successive firing fields:

φ(t +
√

3d/v,xc)−φ(t,xc) = 2π∆ f

{√
3

2
d
v

(B.1)

+
1
3

3

∑
i=1

1
κκκiii ·v

[
sin
(

κκκi ·
(

v
(

t +
√

3
d
v
− t0

)
+x0−xc

))
− sin(κκκi · ((t− t0)+x0−xc))

]}
(B.2)

We note that κκκ111 ·v = 4πv/(
√

3d), so that the first summand vanishes since the two

sin terms differ by exactly two cycles.

To calculate the second and third summands, we note that κκκ222 ·v= 2πcos(π/3)v/d =

πv/d and κκκ333 ·v = 2πcos(2π/3)v/d =−πv/d, due to the 60 degree angle between suc-

cessive grid vectors. From this it is easily seen that the second and third summands

also vanish, as in each case the two sin terms differ by exactly one cycle.

Having demonstrated that the sum in Equation (B.1) vanishes, the total phase pre-

cessed is seen to be ∆φ =
√

3π∆ f d/v. By requiring that ∆φ = 2πk for some integer k,

the result stated in the main text of Chapter 3 is obtained.

Next, we calculate the phase precessed along a trajectory exactly between two grid

vectors, v = |v|(κκκ222 +κκκ333)/|κκκ222 +κκκ333|= v(κ̂κκ222 + κ̂κκ333)/
√

3. In this case, κκκ111 ·v = 0, so that

Equation (3.18) is not valid. Instead, the integral is given by:
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φ(t,xc) =2π∆ f
[(

1
2
+

1
3

cos(κκκ111 · (x0−xc))

)
(t− t0) (B.3)

+
1
3

3

∑
i=2

1
κκκiii ·v

(sin(κκκiii · (v(t− t0)+x0−xc))− sin(κκκiii · (x0−xc)))

]
+φ(t0,xc)

(B.4)

We can then calculate the phase precessed along a trajectory directly between grid

peaks along such a direction ∆φ= φ(t+d/v,xc)−φ(t,xc) by setting the initial location

x0 = xc to obtain:

∆φ = 2π∆ f
d
v

5
6

(B.5)

By setting the total phase precessed ∆φ = 2kπ as before, we obtain the required

frequency for this run as ∆ f = (6/5)kv/d.



Appendix C

Remapping Capacity in the

Biophysical Model

Here we quantify the capacity of the network under the assumption that pyramidal

cells which couple to the same interneuron cannot have overlapping place fields. We

use three distinct measures of the network capacity: the number of spatial maps at a

given spatial acuity; the number of cell assemblies; the number of phase sequences.

Number of Distinct Spatial Maps

To determine the number of spatial maps available in the network, we considered a

simplified model in which each place cell can map to a set of discrete locations on a

linear track of length L. Specifically, the track is divided into equal bins of size xres =

L/Nbins, where Nbins is the number of bins and xres determines the spatial resolution

of the place map. To avoid finite size effects, we assume periodic boundaries (i.e., a

circular track). The number of place fields to be mapped onto the track depends on

both the number of place cells Np and the average number of place fields per place

cell F (which can be greater or less than one). Given a number of interneurons NI , the

population of Np place cells is divided into NI equal subsets, so that each interneuron is

associated with the same number of place cells. We assume that there is an exclusion

zone of size D which sets the minimum distance for which place cells associated with

the same interneuron can be mapped, so that Nd = D/xres is the minimum separation

in terms of the number of bins. In general, multiple cells may map to the same bin, or

no cells may map onto a given bin, provided that the non-overlap constraint is obeyed.

We can then consider the number of ways in which FNp place fields can be mapped
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onto the track without violating this constraint. We can calculate this number by count-

ing the number of possible choices for each for each place field i, where 1≤ i≤ FNp.

For the first place field i = 1, there are NpNbins possible choices, since we can choose

from Np place cells and Nbins spatial locations. For the next choice i = 2, there are

NpNbins−NdNp/NI choices, due to the exclusion zone about the first cell, which ex-

cludes Np/NI cells from being mapped onto Nd of the possible bins. In general, there

are NpNbins− (i−1)NdNp/NI for the ith choice. Hence, the total number of combina-

tions is:

N =
FNp

∏
i=1

(
NpNbins− (i−1)

Np

NI
Nd

)
(C.1)

which can be simplified by noting that Nd = NbinsD/L so that:

N = (NpNbins)
FNp

FNp

∏
i=1

(
1− (i−1)

D
LNI

)
(C.2)

The above analysis gives the number of ordered choices of place cells and spatial

bins, but overcounts the number of distinct maps by allowing the same map to be

obtained through multiple choice sequences. This can be corrected by a factor of

(FNp)! to obtain the number of distinct maps:

Nmaps =
(NpNbins)

FNp

(FNp)!

FNp

∏
i=1

(
1− (i−1)

D
LNI

)
(C.3)

Taking the logarithm and applying Stirling’s approximation gives:

logNmaps ≈ FNp (1+ logL− logxres− logF)+
FNp

∑
i=1

log
(

1− (i−1)
D

LNI

)
(C.4)

In general D
LNI
� 1, so that an approximation of log(1− x) ≈ −x can be made.

However, FNp can be sufficiently large that for higher terms in the sum this approxi-

mation begins to break down.

One special case of the above result is of particular interest. Setting NI = Np,

we retrieve the case in which overlap between place fields of cell pairs with a shared

interneuron is not a constraint, but maintain the constraint on overlap between multiple

place fields of the same place cell. By comparison of the number of maps in the

independent case Nind
maps to the number of maps in the general case, we can see how

the proposed mechanism constrains remapping in comparison to a fully independent

population code:
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logNind
maps− logNmaps =

FNp

∑
i=1

log
(

1− (i−1)D/LNp

1− (i−1)D/LNI

)
(C.5)

=
FNp

∑
i=1

log
(

Np

NI

1/Np− (i−1)D/L
1/NI− (i−1)D/L

)
(C.6)

≈
FNp

∑
i=1

(logNp− logNI) (C.7)

= FNp(logNp− logNI) (C.8)

where NI is the number of interneurons in the constrained map.

Number of Cell Assemblies

We define a cell assembly to be a set of coactive cells. We now calculate the number

of cell assemblies which contain n place cells under the non-overlap constraint. To

construct a cell assembly satisfying the constraint, it is sufficient to simply select n

distinct interneurons and then select a place cell associated with each interneuron. The

number of possible cell assemblies NCA is therefore:

NCA =

(
NI

n

)(
NP

NI

)n

; n≤ NI (C.9)

As before, we can simplify this using Stirling’s approximation:

log(NCA)≈ NI logNI− (NI−n) log(NI−n)+n(logNp− logNI− logn) (C.10)

Number of Phase Sequences

A phase sequence is defined as an ordered set of cell assemblies (Hebb, 1949). We

assume that a phase sequence is a discrete sequence of m cell assemblies, and that no

two cells in a phase sequence can couple to the same interneuron. A phase sequence

can then be constructed by repeatedly constructing cell assemblies as above, where the

available interneurons for each subsequent cell assembly is given by those not already

selected in previous assemblies within the sequence. The number of phase sequences

NPS is then:
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NPS =
m

∏
i=1

(
NI− (i−1)n

n

)(
NP

NI

)n

; n≤ NI

m
(C.11)

which can be approximated as:

logNPS≈
m

∑
i=1

[(NI− (i−1)n) log(NI− (i−1)n)− (NI− in) log(NI− in)+n(logNp− logNI− logn)]

(C.12)
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erated cell assembly sequences in the rat hippocampus. Science (New York, N.Y.),

321(5894):1322–1327.

Pastoll, H., Solanka, L., van Rossum, M. C. W., and Nolan, M. F. (2013). Feedback In-

hibition Enables Theta-Nested Gamma Oscillations and Grid Firing Fields. Neuron,

77(1):141–154.
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