
 

 

An infrastructure mechanism for dynamic  

ontology-based 

knowledge infrastructures 

 

 

Maciej Zurawski 

 

 

 

  

 

 

 

 

 

 

Doctor of Philosophy 

Centre for Intelligent Systems and Their Applications 

School of Informatics 

University of Edinburgh 

2009 

 

 



2 

 

 

 

 

 

  



3 

 

Table of Contents 

Thesis Abstract .................................................................................................................... 13 

Acknowledgements.............................................................................................................. 15 

Declaration .......................................................................................................................... 17 

Chapter 1 Introduction and Motivation ............................................................................ 19 

1.1 Can Technology Help Organizing and Communicating Our Knowledge? ............ 19 

1.2 Basic Notions ........................................................................................................ 20 

1.3 Knowledge Management as a Motivation ............................................................. 20 

1.3.1 The Benefits of Ontology-Based Knowledge Management.................................. 21 

1.3.2 Distributed Knowledge Management ................................................................... 21 

1.3.3 Two fundamental principles ................................................................................. 22 

1.4 Knowledge creation is a collaborative process ...................................................... 22 

1.5 Semantic Autonomy .............................................................................................. 23 

1.6 Where is there reliability in an open world? .......................................................... 24 

1.7 A semantic macro theory ....................................................................................... 25 

1.8 Why do we need knowledge infrastructures? ........................................................ 26 

1.9 How are semantic applications and knowledge infrastructures connected? ........... 27 

1.10 The contribution of this thesis. .............................................................................. 28 

1.11 Summary of the Scientific Rationale ..................................................................... 29 

Chapter 2 Background and related work .......................................................................... 31 

2.1 Background ........................................................................................................... 31 

2.1.1 Ontology evolution ............................................................................................... 31 

2.1.2 Ontology repair and its paradigm ......................................................................... 33 

2.1.2.1 A technical difference between logical inconsistency and incoherence ..... 35 

2.1.3 Sources of proposal generation: ontology induction or human insight ................. 36 

2.1.4 The Nature and Origin of Ontology Mappings ..................................................... 36 

2.1.4.1 Overview of ways to generate ontology mappings .................................... 36 

2.1.4.2 Inferring ontology mappings using logic-based approaches ...................... 37 



4 

 

2.1.4.3 C-OWL and its five mapping types ...........................................................38 

2.1.4.4 Why ontology mappings can be intensional...............................................38 

2.1.5 How important is the logical language and its expressivity? ................................39 

2.1.6 Theories of Context ..............................................................................................40 

2.1.6.1 Divide-and-Conquer vs. Compose-and-Conquer Context Models .............42 

2.1.6.2 Situations and Contexts .............................................................................43 

2.1.7 Distributed and contextual reasoning ....................................................................43 

2.1.7.1 Principles of Locality and Compatibility ...................................................45 

2.1.7.2 Local Model Semantics .............................................................................45 

2.1.7.3 Multi-Context Systems ..............................................................................46 

2.1.7.4 Distributed Reasoning Systems .................................................................47 

2.1.8 Requirements for modular ontologies formalisms ................................................49 

2.1.9 Para-consistent Logic and Model-theoretical Approaches for Computing an 

Inconsistency Degree ....................................................................................................50 

2.1.10 Belief revision and the AGM postulates .............................................................52 

2.1.10.1 How to compare the infrastructure mechanism with belief revision 

formalisms 52 

2.1.10.2 Introducing the AGM postulates ............................................................53 

2.1.11 Truth maintenance ..............................................................................................54 

2.1.12 Process modelling using a formal protocol .........................................................55 

2.1.13 The alternative: living in an unmanaged world ...................................................55 

2.1.14 A P2P information system relying on redundancy ..............................................58 

2.2 Related work .........................................................................................................59 

2.2.1 MAFRA - A framework for managing mappings .................................................60 

2.2.2 An infrastructure for reusing and evolving reused ontologies...............................60 

2.2.3 The NeOn Project and the NeOn Toolkit ..............................................................62 

2.2.4 Network Science and Simulated Knowledge ........................................................63 

2.2.5 Chapter summary..................................................................................................65 

Chapter 3 A logical formalism for simple ontologies and ontology mappings. ...............67 

3.1 Introduction to the underlying logical formalisation ..............................................67 



5 

 

3.1.1 The notion of context ........................................................................................... 67 

3.2 The epistemological assumptions – a motivation of the logical formalisation ....... 68 

3.3 Syntax of the languages ......................................................................................... 69 

3.3.1 Syntax of the ontology language .......................................................................... 69 

3.3.2 Syntax of the ontology mapping language ............................................................ 70 

3.4 Extended syntax of the languages.......................................................................... 70 

3.4.1 Extended syntax of the ontology language ........................................................... 70 

3.4.2 Extended syntax of the ontology mapping language ............................................ 71 

3.5 Defining compositional semantics ......................................................................... 72 

3.6 Definition of the formal semantics (model theory) ................................................ 76 

3.7 The relationship between our ontology language and OWL .................................. 79 

3.8 The relationship between our ontology mapping language and C-OWL ............... 80 

3.9 Chapter Summary .................................................................................................. 80 

Chapter 4 A computational framework for combining logical elements and reasoning 

about consistency and redundancy .................................................................................... 81 

4.1 Introduction ........................................................................................................... 81 

4.2 Motivation ............................................................................................................. 81 

4.3 Spheres of consistency .......................................................................................... 82 

4.3.1 Defining Spheres of consistency .......................................................................... 82 

4.3.2 Explaining and motivating the definition of spheres of consistency ..................... 83 

4.4 Providing Functionality of the Reasoning Layer ................................................... 85 

4.5 Formal computational notation .............................................................................. 85 

4.5.1 Definition of the computational notation and its connection to the formal 

semantics ....................................................................................................................... 85 

4.5.2 Restating the originally proposed types of mappings and relationships ................ 87 

4.6 Proof Methodology ............................................................................................... 89 

4.6.1 The general proof tasks ........................................................................................ 89 

Proof task 1. Calculating if a proposed change introduces a contradiction. ............... 90 

Proof task 2. Calculating if a proposed change is redundant. .................................... 90 



6 

 

Proof task 3. Calculating if a proposed change introduces a change that neither 

generates a contradiction or redundancy. ...................................................................91 

4.6.2 A proof task example ............................................................................................91 

4.7 Rewrite Rules for state operators ...........................................................................92 

4.8 Rewrite Rules for expressions with quantifiers......................................................94 

4.9 Representation and combination of Boolean functions ..........................................96 

4.10 Composing ontology mappings by using all kinds of rewrite rules .......................98 

4.11 Defining the effect of negation ............................................................................100 

4.12 A reasoning procedure .........................................................................................101 

4.12.1 The elementary steps used by the two reasoning procedures ............................101 

4.12.2 Comparison with first-order resolution .............................................................104 

4.12.3 The proof procedure for the first kind of proof .................................................104 

4.12.4 The proof procedure for the second kind of proof ............................................107 

4.12.5 The third case ...................................................................................................109 

4.13 Chapter summary ................................................................................................110 

Chapter 5 A description and formalisation of the protocol language of the 

infrastructure mechanism ................................................................................................111 

5.1 Introduction .........................................................................................................111 

5.2 Formal syntax of the protocol language ...............................................................111 

5.3 The reasoning layer .............................................................................................115 

5.4 The framework middle layer ...............................................................................117 

5.5 The framework top layer .....................................................................................122 

5.6 Computational Semantics of the Protocol ............................................................123 

5.6.1 A formalism for monitoring the execution of the protocol .................................123 

5.6.2 Defining different types of evaluation ................................................................124 

5.6.3 The computational semantics..............................................................................125 

5.7 Chapter Summary ................................................................................................127 

Chapter 6 A prototype implementation ...........................................................................129 

6.1 Configuration & Sphere set-up ............................................................................129 



7 

 

6.2 Infrastructure mechanism core ............................................................................ 130 

6.3 Sphere and ontology manager ............................................................................. 130 

6.4 The Reasoning Layer........................................................................................... 130 

6.5 Scenario-based knowledge simulator .................................................................. 130 

6.6 Performance Monitor .......................................................................................... 131 

6.7 Chapter Summary ................................................................................................ 131 

Chapter 7 .  Evaluation Scenarios, Results and Analysis ............................................... 133 

7.1 Overview of experimental setup .......................................................................... 133 

7.2 Specification of the experimental setting ............................................................. 135 

7.3 Scenario 1. Investigating variable bounded consistency. ..................................... 137 

7.3.1 Validation of the algorithm. ............................................................................... 138 

7.4 Scenario 2. Investigating the maintenance of pair-wise consistency using a two-

organization topology...................................................................................................... 142 

7.4.1 Scenario 2.1. Pair-wise consistency using a two-organization topology. ............ 142 

7.4.2 Scenario 2.2. Pair-wise consistency with an increased size difference between 

ontologies. ................................................................................................................... 147 

7.4.3 Scenario 2.3. Pair-wise consistency using wider ontologies. .............................. 152 

7.4.4 Scenario 3. Investigating the maintenance of pair-wise consistency using a three-

organization topology. ................................................................................................. 156 

7.4.5 Investigating if the infrastructure mechanisms satisfies the AGM postulates ..... 160 

7.4.5.1 A summary of the comparison ................................................................. 162 

7.5 Summary and general analysis of results ............................................................. 163 

Chapter 8 Proofs of infrastructure mechanism properties ............................................ 167 

8.1 Proof of Theorem 1 ............................................................................................. 169 

8.1.1 Combining States when Calculating  R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) .......... 169 

8.1.2 The distinction between ontology relations and mappings when calculating R(Ai, 

Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) ....................................................................................... 172 

8.1.2.1 Solution: Choose rich semantics (ontology mappings) and project to 

simpler when needed ............................................................................................... 172 



8 

 

8.1.2.2 A proof pattern used ................................................................................173 

8.2 Formal Investigation of Theorem 2 .....................................................................174 

8.2.1 Defining contradiction ........................................................................................174 

8.2.2 Proof Task 1. Calculating if a proposed change introduces a contradiction. .......175 

8.2.2.1 Investigating Soundness and Completeness .............................................177 

8.2.3 The case of bounded consistency ........................................................................178 

8.2.4 Proof task 2. Calculating if a proposed change introduces a redundancy............179 

8.2.4.1 Defining Redundancy and Self-contradiction rules..................................179 

8.2.4.2 The Proof Structure..................................................................................180 

8.2.5 Listing all rule instances .....................................................................................181 

8.2.6 Which proofs are possible? .................................................................................183 

8.2.7 Investigating Soundness and completeness ........................................................183 

8.2.8 Question of Completeness ..................................................................................184 

8.2.9 The case of bounded redundancy ........................................................................185 

8.2.10 Proof task 3. Calculating if a proposed change introduces a change that neither 

generates a contradiction or redundancy. .....................................................................186 

8.3 Termination .........................................................................................................186 

8.4 Theorem 3 ...........................................................................................................186 

8.4.1 The case of adding an ontology relationship. ......................................................187 

8.4.2 The case of adding an ontology mapping. ..........................................................189 

8.5 Chapter Summary ................................................................................................190 

Chapter 9 Conclusions and Future Work .......................................................................193 

9.1 Conclusions .........................................................................................................193 

9.2 Future Work ........................................................................................................194 

9.2.1 Support other logics for knowledge representation .............................................194 

9.2.2 Model API between infrastructure mechanism and semantic applications .........195 

9.2.3 Concurrency .......................................................................................................195 

9.2.4 Expansion and evolution of spheres to new contexts ..........................................196 

9.2.5 Supporting other kinds of consistency ................................................................196 



9 

 

9.2.6 Consistency and/or domain-dependent constraints ............................................. 196 

9.2.7 Instance support ................................................................................................. 197 

9.2.8 Supporting several infrastructure mechanisms and their integration .................. 197 

9.2.9 Application to Ontology-based Autonomic Computing Systems ....................... 198 

9.3 Chapter Summary ................................................................................................ 199 

References .......................................................................................................................... 201 

Appendix A ........................................................................................................................ 209 

A.1.1 Proof of four cases when R= Cor(Ai, Bj) ........................................................... 209 

A.1.2 Proof of four cases when R´= Cor(Bj, Ck) and  R COMPATIBLE(Ai, Bj) ........... 211 

A.1.3 The case when R= Cor(Ai, Bj) and R'=Compatible(Bj, Ck) ................................ 212 

A.1.4 The case when R=Compatible(Ai, Bj) and R'= Cor(Bj, Ck) ................................ 214 

A.1.5 The case when R=Is(Ai, Bj) and R'= Is(Bj, Ck) .................................................. 215 

A.1.6 The case of R=Is2(Ai, Bj) and R'= Is2(Bj, Ck) .................................................... 216 

A.1.7 The case of R=COMPATIBLE(Ai, Bj) and R'= IS(Bj, Ck) ..................................... 217 

A.1.8 The case when R= DISJOINT(Ai, Bj) and R'= IS2(Bj, Ck) ................................... 219 

A.1.9 The case of R= Is(Ai, Bj) and R'= DISJOINT(Bj, Ck) ........................................... 220 

A.1.10 The case of R= Is2(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) ................................. 220 

A.1.11 The two cases when R= DISJOINT(Ai, Bj) and  R'= Is (Bj, Ck) | DISJOINT (Bj, Ck)

 .................................................................................................................................... 221 

A.1.11.1 Case 1. R''COMPATIBLE (Ai, Ck) ............................................................. 221 

A.1.11.2 Case 2. R''=COMPATIBLE (Ai, Ck) ............................................................. 222 

A.1.12 The two cases when   R= Is2(Ai, Bj) | COMPATIBLE(Ai, Bj) and R'= DISJOINT(Bj, 

Ck) ............................................................................................................................... 223 

A.1.13. The case of R= DISJOINT(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) ...................... 223 

A.1.13.1 Case 1, R´´ DISJOINT (Ai, Ck) ................................................................. 223 

A.1.13.2 Case 2, R´´= DISJOINT (Ai, Ck) ................................................................. 224 

A.1.14 The case of R= IS(Ai, Bj) and R'= IS2(Bj, Ck) .................................................. 225 

A.1.14.1 Case 1, R´´ DISJOINT (Ai, Ck) ................................................................. 225 

A.1.14.2 Case 2, R´´= DISJOINT (Ai, Ck) ................................................................. 225 



10 

 

A.1.15 The case of R= IS2(Ai, Bj) and R'= IS(Bj, Ck) ...................................................226 

A.1.15.1 Case 1, R´´ DISJOINT (Ai, Ck)..................................................................226 

A.1.15.2 Case 2, R´´= DISJOINT (Ai, Ck) .................................................................227 

A.1.16 The case of R= IS(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) ...................................227 

A.1.16.1 Case 1, R´´ DISJOINT (Ai, Ck)..................................................................228 

A.1.16.2 Case 2, R´´= DISJOINT (Ai, Ck) .................................................................228 

A.1.17 The case of R= COMPATIBLE (Ai, Bj) and R'= IS2(Bj, Ck) ................................229 

A.1.18 The case of R= COMPATIBLE(Ai, Bj) and  R'= COMPATIBLE (Bj, Ck) ...............229 

A.1.18.1 Case 1, R´´ DISJOINT (Ai, Ck) .................................................................229 

A.1.18.2 Case 2, R´´= DISJOINT (Ai, Ck) .................................................................230 

A.1.19 Conclusion of this section ................................................................................230 

A.2 Proofs of the form: "If L⊨ Rel (Ai, Ck), then L does not entail other relations" ........231 

A.2.1 If L⊨ Disjoint (Ai, Ck), then L does not entail other relations. ...........................231 

A.2.1.1 The case of L⊨ Cor (Ai, Ck) ........................................................................231 

A.2.1.2 The case of L ⊨ Is (Ai, Ck) ..........................................................................232 

A.2.1.3 The case of L ⊨ Is2 (Ai, Ck) ........................................................................233 

A.2.1.3 The case of L ⊨ COMPATIBLE(Ai, Ck).........................................................233 

A.2.2 If L⊨ COMPATIBLE (Ai, Ck), then L does not entail other relations. ..................234 

A.2.2.1 The case of L ⊨ IS (Ai, Ck) .........................................................................234 

A.2.2.2 The case of L ⊨ IS2 (Ai, Ck) .......................................................................234 

A.2.2.3 The case of L ⊨ COR (Ai, Ck) .....................................................................235 

A.2.2.4 The case of L ⊨ DISJOINT (Ai, Ck) ..............................................................235 

A.2.3 If L⊨ IS (Ai, Ck) and L⊭COR(Ai, Ck) then L does not entail other relations. .....235 

A.2.3.1 The case of L ⊨ COMPATIBLE (Ai, Ck)........................................................236 

A.2.3.2 The case of L ⊨ IS2 (Ai, Ck) .......................................................................236 

A.2.3.3 The case of L ⊨ COR (Ai, Ck) .....................................................................236 

A.2.3.4 The case of L ⊨ DISJOINT (Ai, Ck) ..............................................................237 

A.2.4 If L⊨ IS2 (Ai, Ck) and and L⊭COR(Ai, Ck) then L does not entail other relations.

 ....................................................................................................................................237 

A.2.4.1 The case of L ⊨ COMPATIBLE (Ai, Ck)........................................................237 

A.2.4.2 The case of L ⊨ IS (Ai, Ck) .........................................................................238 

A.2.4.3 The case of L ⊨ COR (Ai, Ck) .....................................................................238 



11 

 

A.2.4.4 The case of L ⊨ DISJOINT (Ai, Ck) .............................................................. 238 

A.2.5 If L⊨ Cor(Ai, Ck) then L⊨ Is(Ai, Ck) and L⊨ Is2(Ai, Ck)  but L does not entail 

other relations. ............................................................................................................. 239 

A.2.5.1 The case of L ⊨ IS (Ai, Ck) ......................................................................... 239 

A.2.5.2 The case of L ⊨ IS2 (Ai, Ck) ....................................................................... 239 

A.2.5.3 The case of L ⊨ COMPATIBLE (Ai, Ck) ....................................................... 239 

A.2.5.4 The case of L ⊨ DISJOINT (Ai, Ck) .............................................................. 240 

A.3 Entailment between relations.................................................................................... 241 

A.3.1 Does Cor(Ai, Bj) ⊨ DISJOINT(Ai, Bj).................................................................. 241 

A.3.2 Does Is(Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? ........................................................... 242 

A.3.3 Does Is(Ai, Bj) ⊨ COR(Ai, Bj) hold? .................................................................. 242 

A.3.4 Does Is2(Ai, Bj) ⊨ COR(Ai, Bj) hold? ................................................................ 243 

A.3.5 Does DISJOINT(Ai, Bj) ⊨Cor(Ai, Bj) hold? ......................................................... 243 

A.3.6 Does COMPATIBLE(Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? ......................................... 244 

A.3.7 Does COMPATIBLE(Ai, Bj) ⊨Cor(Ai, Bj) hold? .................................................. 245 

A.3.8 Does COR(Ai, Bj) ⊨Is(Ai, Bj) hold? ................................................................... 245 

A.3.9 Does IS2(Ai, Bj) ⊨Is(Ai, Bj) hold? ..................................................................... 246 

A.3.10 Does IS(Ai, Bj) ⊨Is2(Ai, Bj) hold? ................................................................... 246 

A.3.11 Does COMPATIBLE(Ai, Bj) ⊨Is(Ai, Bj) hold? ................................................... 247 

A.3.12 Does DISJOINT(Ai, Bj) ⊨Is(Ai, Bj) hold? .......................................................... 247 

A.3.13 Does COR(Ai, Bj) ⊨Is2(Ai, Bj) hold? ............................................................... 248 

A.3.14  Does COMAPTIBLE(Ai, Bj) ⊨Is2(Ai, Bj) hold? ................................................ 248 

A.3.15 Does DISJOINT(Ai, Bj) ⊨Is2(Ai, Bj) hold? ........................................................ 249 

A.3.16 Does COR(Ai, Bj) ⊨Compatible(Ai, Bj) hold? .................................................. 249 

A.3.17 Does IS(Ai, Bj) ⊨Compatible(Ai, Bj) hold? ...................................................... 250 

A.3.18 Does IS2(Ai, Bj) ⊨Compatible(Ai, Bj) hold? .................................................... 250 

A.3.19 Does DISJOINT(Ai, Bj) ⊨Compatible(Ai, Bj) hold? .......................................... 250 

A.3.20 Does IS2(Ai, Bj) ⊨Disjoint(Ai, Bj) hold? ......................................................... 251 

 



12 

 

 

 

 

  

  



13 

 

Thesis Abstract 

Both semantic web applications and individuals are in need of knowledge infrastructures that 

can be used in dynamic and distributed environments where autonomous entities create 

knowledge and build their own view of a domain. The  

prevailing view today is that the process of ontology evolution is difficult to monitor  

and control, so few efforts have been made to support such a controlled process formally 

involving several ontologies. The new paradigm we propose is to use an infrastructure 

mechanism that processes ontology change proposals from autonomous entities while 

maintaining user-defined consistency between the ontologies of these entities. This makes so 

called semantic autonomy possible. A core invention of our approach is to formalise 

consistency constraints as so called spheres of consistency that define 1) knowledge regions 

within which consistency is maintained and 2) a variable degree of proof-bounded 

consistency within these regions. Our infrastructure formalism defines a protocol and its 

computational semantics, as well as a model theory and proof theory for the reasoning layer 

of the mechanism. The conclusion of this thesis is that this new paradigm is possible and 

beneficial, assuming that the knowledge representation is kept simple, the ontology evolution 

operations are kept simple and one proposal is processed at a time.  
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Chapter 1 Introduction and Motivation 

1.1 Can Technology Help Organizing and Communicating 

Our Knowledge? 

Communication holds society together. Often, the purpose is to communicate a form of 

knowledge in order to facilitate some activity. In the early phases of our human history, the 

content of that knowledge was kept in our memory and communicated using ordinary 

language, when it was needed. Later, when writing was invented, this communication could 

happen in written form, e.g. by sending a letter. In both oral and written communication, it is 

the responsibility of the speaker or writer to investigate what language the recipient 

understands and express the message in a way adapted to the recipient. Because there are 

many languages and sub-cultures, this process requires a substantial effort from the sender.  

 

When efficiency and productivity become important in society, a tendency developed to 

streamline this communication language in order to facilitate communication efficiency. 

However, when there is a lot of change in society, then this language must constantly adapt 

to changing circumstances. These are two conflicting requirements that have to be balanced. 

In the information society, computer systems and networks could be used to communicate 

written words. However, as before, even then this requires extensive amounts of effort both 

from the human sender and the human recipient. Ever increasing demands on efficiency and 

productivity has led to the knowledge society, where knowledge technologies are used to 

codify knowledge in a way that makes it computer understandable. Then the processing of 

communicating structured knowledge becomes more efficient. 

 

This approach requires, however, that every communicating group or entity maintains a 

formal model of how it sees the world
1
, because it will use that model for sending or 

interpreting formally codified knowledge. Because the world is a complex and constantly 

changing place, these models vary from group to group, and they also change. This poses a 

big challenge to the benefits of using knowledge technology. Two things are therefore 

                                                     

1
 The alternative is that all groups use the same model of the world, and if that model is hard-wired in 

their communication protocol it does not have to be represented explicitly, but it will then be very 

difficult to modify the world model. 
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needed. The first one is a macro theory of how semantics (both general concepts and 

instances of these) are used by various entities that constantly evolve their world models, at 

the same time as some pairs or groups of these entities still need to understand each other, 

perfectly or mostly. The second thing needed is a technical system that maintains this 

dynamic process where the knowledge language of entities evolves, but still maintains 

knowledge language coherence between the selected pairs or groups of entities that need to 

exchange knowledge for the purpose of co-ordinating their activities. In other words, the 

entities in these groups become semantically interoperable.  

This thesis aims at contributing to these two points. 

 

1.2 Basic Notions 

We have explained that human knowledge can become codified and we have introduced the 

notion of formal models about the world, used by a certain entity or group. These are called 

ontologies, and (Noy et al., 2001) defines an ontology as being a formal explicit description 

of concepts in a domain of discourse. This formal description will be assumed to use some 

form of logic. The smallest elements of an ontology are concepts and from a formal point of 

view they have a specific meaning (see chapter 3), but we will say something more about 

their social and pragmatic meaning. Often, knowledge is implicitly stored in documents 

written using ordinary language – but that granularity or lack of formality is not good enough 

for automated processing of knowledge (Staab et al. 2001). Therefore, in our paradigm we 

advocate that a system should instead store individual pieces of knowledge (using concepts 

from ontologies) because it can then process and compare these pieces of knowledge. 

 

1.3 Knowledge Management as a Motivation 

Knowledge Management (Kingston, 2000) is the study of how knowledge can be reused in 

organizations and how it can be provided in the right moment to the right person that e.g. is 

making a decision where this knowledge is needed. The knowledge organization (Bennet 

2003) is a vision of the organization of the future (as projected for 2020 A.D.) that is viewed 

as an intelligent complex adaptive system. It is envisioned as being dynamic and flexible, but 

it also needs some integrative forces that keep the knowledge system and the organization 

together.  Knowledge Management is the original motivation for our research but we later 

saw that the outcome potentially can be applied to other areas as well.  
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1.3.1 The Benefits of Ontology-Based Knowledge Management  

Unfortunately, it has been discovered (Everett 2002) that if a system consists of information 

or knowledge in the form of unprocessed text and the collection grows, redundancy can 

make the system unusable. They describe a system that stores documents in text format, but 

by formalizing them and using ontologies, then matching between the documents can be 

used and the redundancy can be eliminated. Ontologies are therefore useful for knowledge 

management and ontologies and less formalised documents can be combined in the same 

system (Reimer 1998). 

1.3.2 Distributed Knowledge Management 

Two of the reasons why the act of forcing an organization to use centralized ontologies fails 

(Bonifacio et al., 2002) are that users might see them as irrelevant (and not possible to 

understand deeply) or oppressive (i.e. the users disagree with the schemas). Distributed 

Knowledge Management (DKM) investigates how knowledge should be managed in a 

decentralised organization that has several divisions and that is not governed by central 

control.  

 

Ontologies could be useful in knowledge management, and in the case of DKM we argue 

that ontologies should be adapted to the local needs and business requirements of every 

division, because then the autonomy of that division is respected. Also, this helps to 

minimise the cognitive distance, i.e. the difference between an ontology used and the internal 

model somebody has of reality. It is then clear that for the purpose of this application, 

several ontologies should exist and be linked by ontology mappings instead of being merged 

into a single ontology. 

 

It has been argued (Bonifacio et al., 2002) that technological and social architectures must be 

consistent. Also, the organizational structure should be consistent with the technology used. 

In most KM software solutions a single big schema of concepts and objects is enforced on 

the people involved, whereas all contextual and subjective aspects or knowledge creation are 

eliminated. Therefore, the subjective and social aspects of knowledge creation and modelling 

are lost. There are two kinds of KM architectures: 

 

Centralised KM architectures - these focus on refining and validating knowledge in a way 

that will create a single official knowledge structure. This can involve using an Enterprise 

Knowledge Portal. In a study (Bonifacio et al., 2000) such systems were deserted by end-



22 

 

users. The two reasons for failure were: the schemas were perceived as irrelevant or as 

oppressive. However, in limited contexts, e.g. when there is a consensus about the business 

knowledge or there is an authority governing and controlling it, centralised KM architectures 

are used.  

 

Distributed KM architectures – these technologies support the autonomous creation and 

organization of knowledge locally produced by individuals and groups, but it also supports 

coordination processes. It decentralizes control to individuals or local groups. It supports the 

evolution of emergent semantics that appear bottom-up rather than top-down. 

 

There are situations where these two approaches can be combined (e.g. Desouza et al. 2004 

describes such a combined system). 

 

We will now mention two basic principles. 

1.3.3 Two fundamental principles 

These two philosophical principles were described informally by (Bonifacio et al., 2002) and 

they have influenced our computational formalism and technical solution:  

 

Principle of Autonomy – each community has a high degree of autonomy to manage its 

local knowledge. They should particularly have semantic autonomy, defined as "the 

possibility of choosing the most appropriate conceptualizations of what is locally known". 

 

Principle of Coordination – communities adopt mechanisms for meaning translation across 

different interpretative contexts, called semantic inter-operation.  

 

The question is if this notion of semantic autonomy can become more computational? 

Section 1.5 will explore this. 

1.4 Knowledge creation is a collaborative process 

We agree with other researchers (Froehner et al. 2004, Euzenat 1996) that modelling the 

social and collaborative process of how meaning is created is important. The social process 

supporting knowledge creation and communication among many autonomous actors has 

been rather neglected in the ontology community. E.g. in business-to-business integration 

(i.e. the formalised exchange of messages between enterprises using a certain exchange 
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format, see Bussler 2001) one needs to use systems that translate from the business 

transactions (e.g. orders) in one company to a system in another company and ontology 

mappings could be used for this. However, is it possible to fix the problem by creating a 

"standard" ontology that businesses are supposed to use? This solution is not viable as an 

ultimate one, because the business world is constantly changing and therefore even here one 

needs a process that has the freedom to evolve the semantics of the ontology, but in way that 

does not break down the communication with important parties. 

 

However, almost all communication formalisms assume that the language used for 

communicating is fixed. But there must also be a process that changes the language (the 

ontology) and coordinates these changes with the involved entities. This leads us to the 

generalised definition of semantic autonomy. 

 

1.5 Semantic Autonomy 

In sections §1.3.3 we saw a rather abstract and philosophical description of the notion 

semantic autonomy, but it has inspired us to find a more computational definition of it.  

In our work (Zurawski, 2004) we developed requirements on a distributed KM system for a 

decentralised organization. These requirements are related to the discussion above and can 

be grouped in the categories of 1) freedom of the organizations' divisions to evolve their 

The definition of Semantic autonomy requires these properties to 

hold: 

 

1. The local contexts have the freedom to propose a change in their 

local ontology (i.e. the ontology of the local context) or in the 

mappings from their ontology. All the possible request types, 

operation types and explicit change processes that manage them, 

are explicated and formalised.  

 

2. The system does “in some way” maintain full or bounded 

consistency as defined within every sphere of consistency.   

 

3. The ontological language is dynamic and open-ended (i.e. not 

confined by a pre-defined set) but there is a knowledge source 

that can provide knowledge in this language and about its 

evolution. 
 
 

Table 1. The generalised definition of semantic autonomy 
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ontologies, and 2) maintaining coherence of the organization's knowledge so that it becomes 

"well-behaved" when an outsider interacts with it. That motivation (and the earlier abstract 

definition) inspired this generalised definition of semantic autonomy (Zurawski et al., 2008), 

and we can see it in Table 1. 

  

"Contexts" can be formalised in many different ways but they are normally seen as passive 

logical constructions. In the definition above, "contexts" are therefore fundamentally 

different from the usual definition because in addition to that logical connotation they have 

inherited some "agent-like" behaviour: they can initiate action at the knowledge level. 

Therefore, we could have called them agents, but because that implies many other abilities as 

well, have chosen the descriptor "contexts". 

The definition uses the term "spheres of consistency" and we can at this stage understand this 

as regions of agreement about how several ontologies should be translated between each 

other, i.e. regions of semantic interoperability. This can be a conflict-free area of agreement 

(or it can also allow for "some" minor conflicts as we will see). These notions will later be 

fully formalised. The second point of this definition will be called "semantic reliability", 

because it is possible to define constraints that are maintained in order to facilitate 

interoperability and eliminate/reduce miscommunication in the system (more precisely, this 

can be seen as unsoundness that occurs in query-answering after ontology mappings have 

been used for translating knowledge).  

 

1.6 Where is there reliability in an open world? 

We have defined semantic reliability for an important reason. If there is a misunderstanding 

in the communication, i.e. an error in translation from one ontology to another one, then the 

users or applications relying on that translation might crash or in the optimistic case, try to 

circumvent this problem by re-trying the translation process. Semantic applications are 

applications that rely on and utilise ontologies. Translation of knowledge from one ontology 

to another one is done via mappings. In some domains, this process must be fully reliable, 

otherwise the users are forced to use some more old-fashioned methods for ensuring 

semantic reliability.  

 

An "open world" e.g. like the Web or Semantic Web (Heflin and Hendler, 2000) is 

characterised by many ontologies controlled by various autonomous entities and the 

ontological language that these ontologies can use is open-ended. One could try to create 
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reliability by mapping all local ontologies to a shared one (Stuckenschmidt et al. 2002) but 

that shared ontology becomes then difficult to maintain. One could also try to create 

reliability of some form by forcing the users to only use one type of software for managing 

ontologies (see e.g. Maedche, et al., 2003) but that goes against the spirit of an open 

environment because an open environment should support various forms of software or 

services. Also, it is difficult to obtain reliability from a piece of software if it does not have a 

formal specification of what it does. Today, (May 2009) there is no ontology management 

system for multiple ontologies linked with mappings that formally specifies its processes, 

computational semantics and semantics of its logic.  

 

We therefore need a formally specified technical system, that has semantic autonomy, about 

which we can prove certain properties. That will give us the best reliability while still 

facilitating an "open world" where various forms of software and services can implement the 

same specification, and where various ontologies are evolving. 

 

1.7 A semantic macro theory  

There are semantic theories that focus on the small scale, e.g. how to represent knowledge 

about an event using an ontology and how to reason within that ontology or how to evolve 

that ontology. In chapter 2 we mention some theories that investigate reasoning with several 

ontologies. There is also research about data integration and data federation. 

 

However, do we need any particular theories for modelling the dynamics at the large scale 

of ontology-based systems where change is initiated by many autonomous entities?  

For example (Parsia et al. 2006) has argued that we should consider how the meaning on the 

Semantic Web as a whole is created. They mention two different theories of meaning. The 

first one is that meaning is what is intended by the user, and the second one is that meaning 

is what is defined by ontological documents. In the second case, this could vary between 

only being dependent on a local document (e.g. containing an ontology), and between being 

dependent on all documents on the whole web. An intermediary solution is that the meaning 

is defined by a document and the relevant connected documents. 

 

When we consider this macroscopic semantic level, we feel that we have not yet observed a 

computational theory that models ontologies and their change, that models how change is 

initiated, that models which ontologies are connected with each other and how groups of 
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ontologies maintain coherence. We have therefore in this thesis developed an initial version 

of such a theory (see chapters 3, 4 and 5) and chapter 9 contains a vision for its future 

development, whereas chapter 2 illustrates which related theories we have investigated. 

Some of them have inspired us, whereas others represent opposing views of how to approach 

this problem, but we have presented them as well for the sake of comparison. 

Because this theory is computational, it can be implemented in software and chapter 6 

describes our implemented prototype. Because this technology is not an end in itself, but a 

facilitator for other applications that utilize ontologies, and also a host of ontologies, we 

have called it an infrastructure mechanism. 

 

1.8 Why do we need knowledge infrastructures? 

The infrastructure mechanism is the heart of a knowledge infrastructure.  

A knowledge infrastructure: 

 Is a system for the automated management and evolution of several ontologies and 

mappings between them. It could therefore facilitate and maintain semantic 

interoperability in certain knowledge areas. 

 Serves as the basis for semantic applications, and should provide some underlying 

reliability (as discussed in §1.6). 

 Has its core specified by an infrastructure mechanism. 

 Could contain other elements, such as a graphical interface (see e.g. §2.2.3), but that 

is not the focus of this thesis. 

 

Why are knowledge infrastructures needed?  

 Because semantic applications often assume the existence of an ontology or several 

ontologies and mappings that are already set up. 

 Because semantic applications should focus on their core activities rather than 

managing networked ontologies. However, they could send messages to a 

knowledge infrastructure containing a proposal to change an ontology or ontology 

mapping. 

 Ontologies are often not owned by a single application but used by several semantic 

applications. The Semantic Web vision presupposes this. 

 

In our published work (Zurawski 2006), we developed a framework and prototype of an 

infrastructure mechanism that maintains the autonomy of several entities proposing changes 
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to their ontologies, while still maintaining full consistency between them by means of 

following certain rule-based policies. However, in our later work (Zurawski, Smaill and 

Robertson 2008), we provided a summary of a generalised infrastructure mechanism (no 

longer only supporting full consistency of the whole system) and how it works in a simple 

scenario where the degree of consistency is changing. This thesis illustrates the full details of 

this infrastructure mechanism.  

 

1.9 How are semantic applications and knowledge 

infrastructures connected? 

Let us envision the following semantic application. An e-commerce shop sells various kinds 

of plants and it has two divisions, one is the customer facing one and one division is 

concerned with "product development", in this case buying and classifying new plants. The 

two divisions have their own ontologies
2
 (see Figure 1) because they need to have the 

flexibility to adapt to their own needs. The e-commerce shop could be negotiating with a 

customer (i.e. this negotiation is the core of this application) and the customer might ask "Do 

you have yellow sunflowers?". This enquiry is translated to formal logical terms (or it could 

have been done using formal terms to start with) and customer department will then discover 

                                                     

2
 The relation within ontologies Is() is of course not symmetric. In this simple illustration, the more 

general concepts are assumed to be higher up within an ontology. 

B Figure 1. The ontologies of the two divisions of a shop. 

O1 is the ontology of the customer department whereas 

O2 is the ontology of the product department. 
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that it does not have "yellow" as a concept in its ontology. After some work it finds out that 

it should become a type of "colour" in its ontology (i.e. the concept yellow is connected by 

subsumption to colour). Because that department needs to able to talk with customers, it 

sends a proposal request to the infrastructure mechanism that it wants to add the concept of 

"yellow" and that it should be a type of "colour". The infrastructure mechanism then 

investigates if this request can be accommodated or if it would create some form of disorder 

in the knowledge of the whole organization – in this case two connected ontologies. The 

infrastructure mechanisms sends back a verification that this change would not create any 

such problems. Some more internal processing leads to the insight that the concept "y1" in 

the product department actually means the same thing as "yellow" in the customer 

department. In other words, the product development had already considered this as a 

potential product feature, but it was not communicated to the customer department before. 

Therefore, a new request is sent to knowledge infrastructure by the semantic application, and 

this new request proposes that "yellow" should correspond to "y1" – i.e. an ontology 

mapping. The infrastructure mechanism processes that proposal, investigates the logical 

consequences of such change (which are unproblematic in this case) and asks both divisions 

if they would accept such change. This leads to the change being done.  

 

Now the semantic application can return to its "core activity" and continue the negotiation 

because it can actually understand the question asked by the customer. Perhaps it could 

answer "Yes, we have yellow sunflowers". It has now also adapted its knowledge 

representation to its own needs, i.e. the customer needs, and then this was followed by 

connecting this knowledge with the ontology of its other division.  

So we have now illustrated how semantic applications communicate with a knowledge 

infrastructure, and how they benefit from having access to a knowledge infrastructure.  

 

1.10 The contribution of this thesis. 

The contribution of this thesis is a theoretical formalisation of an infrastructure mechanism 

that explicitly models  

 

1) the distributed process of initiating change  

2) how a context proposes to evolve its ontology  

3) how mappings are proposed to evolve  
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4) a layered system that processes these proposal transactions by following explicit policies, 

and does automated reasoning (that calculates if a proposed change would introduce 

inconsistency or redundancy) 

5) two kinds of consistency constraints that the mechanism guarantees to satisfy.  

 

The consistency constraints are formalised using so called spheres of consistency that define  

 

1) knowledge regions within which consistency is maintained and  

2) a variable degree of proof-bounded inconsistency within these regions.  

 

Our infrastructure formalism defines a protocol and its computational semantics, as well as a 

model theory and proof theory for the reasoning layer of the mechanism.  

 

In our work we have investigated the formal properties of soundness and completeness of the 

reasoning and termination of the processing for our infrastructure mechanism. The second 

contribution of the thesis is that we have evaluated the infrastructure mechanism 

experimentally by doing simulations using an implemented prototype. 

 

The new paradigm we propose is to use an infrastructure mechanism that processes ontology 

change proposals from autonomous entities while maintaining user-defined consistency 

between the ontologies of these entities.  This enables semantic autonomy and decentralised 

control while at the same time maintaining interoperability between the ontologies of 

entities. 

 

1.11 Summary of the Scientific Rationale 

The scientific rationale of this work is to answer the questions: Is semantic autonomy 

possible and is it computationally feasible? Because these questions have been unanswered 

until now, we have focused on answering them using a theoretical and empirical 

investigation. One could perhaps expect it to be impossible to facilitate semantic autonomy, 

and be concerned that the reasoning effort accompanying every autonomous proposal to 

change, has a bad worst-case time-complexity (e.g. exponential). However, as we will see 

semantic autonomy is actually computationally feasible given certain assumptions. 
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Chapter 2 Background and related work 

2.1 Background 

In this chapter we will look at the general background of this field and at the more specific 

related work. We will notice that our research exists in the intersection of several research 

areas within informatics, and for this reason this chapter covers a lot of work. First, we will 

review ontology evolution, ontology repair and  mapping induction. Then we will look at 

theories of context, contextual reasoning, multi-context systems and distributed reasoning 

systems. Then we will explore alternative approaches are very different from ours. These 

include para-consistent logic and reasoning with inconsistent ontologies. We will then 

introduce the AGM postulates and look at other systems for managing ontologies. 

2.1.1 Ontology evolution 

The research by (Noy et al. 2004) gives one possible definition of ontology evolution and 

according to them it is "The ability to manage ontology changes and their effects by creating 

and maintaining different variants of the ontology" whereas other researchers (including the 

author) would agree that it is enough to maintain one variant of the ontology (i.e. the 

currently agreed ontology version). Noy et al. mention three reasons why ontologies change: 

 

 the domain changes  

 the conceptualization changes  

 the specification (i.e. the logical language used) changes 

 

The first is common because the reality modeled can change often. The second one means 

that the perspective from which the modelling is done changes. The third means that the 

logical formalism changes, so the ontology has to be ported from one logical formalism to 

another one. Our system supports the first two cases. They mention that there are some 

differences between ontologies and schemas, e.g. ontologies include semantics that define 

the meaning of instance data, ontologies are more often reused and more decentralised than 

schemas. 

There are composite operations, e.g. moving a concept is equivalent to deleting and re-

creating it. They mention traced evolution, and that occurs when we know what change is 

made to an ontology and we can consider its consequences on instances and other ontologies. 
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Untraced evolution is when we only see two versions of an ontology and we have to infer 

what changes that were made by identifying similarities and differences between the 

ontologies. Our system does traced evolution. They also present a long list of operations on 

classes and slots, e.g. "Create class C", because these represent ontology evolution 

operations of varying levels of complexity. 

 

It is possible to view ontology evolution from a business and user perspective. According to 

(Stojanovic et al. 2002) "Ontology evolution is the timely adaptation of an ontology to 

changed business requirements, to trends in ontology instances and patterns of usage of the 

ontology based application, as well as the consistent management/propagation of these 

changes to dependent elements", and we agree with this definition. From this perspective 

ontology changes are considered both as an organizational and technical process. Instead of 

direct manipulation of the ontologies, the indented change should be expressed. They 

advocate reversibility and that before one applies a change to the ontology, a list of all 

consequences for the ontology should be generated and presented. According to them 

(Stojanovic et al. 2002) there are four stages in the ontology evolution: 

 

1. Representing change 

2. Investigating semantics of change 

3. Implementation (making the actual change) 

4. Propagation (e.g. from one ontology to other) 

 

An interesting distinction that is made is that between top-down vs. bottom-up changes. 

Bottom-up changes are generated because of instances, i.e. the instances contradict 

ontological assumptions, and this could mean that the ontology is out of date. Bottom-up 

change can be proposed automatically by the system, e.g. their KAON API. The Karlsruhe 

Ontology and Semantic Web framework (KAON) is a platform they use for ontology 

evolution. 

 

One can differentiate between structural consistency which means that a certain logical 

language is used correctly, logical consistency and user-defined consistency (Haase et al. 

2005). An ontology is logically consistent if it is satisfiable and therefore has a model. An 

example of user-defined consistency is to disallow redundancy, and that can be done in our 

framework. According to an alternative approach to ontology evolution (Haase et al. 2005), 

the user changes the ontology but if it is then inconsistent (in any of the three ways 
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mentioned here) the ontology evolution system does an additional step and uses a resolution 

function to make an additional change operation such that it can change any inconsistent 

state into a consistent one. Our approach is different, because we process the intention to 

change an ontology instead of trying to repair inconsistent ontologies.   

 

According to their approach (Haase et al. 2005), when a conflict occurs in an ontology they 

present an algorithm to find the “maximal consistent subontology” and “minimal 

inconsistent subontology". An ontology is a minimal inconsistent subontology if it is 

inconsistent and if removing any of its axioms would make it consistent. In our formalism 

we have a related notion because when a proposed change would introduce a contradiction 

then one possibility is to find a minimal ontology subset that creates the problem and delete 

it (or propose to delete a single relation). 

 

It is possible to distinguish between changes in the syntax (i.e. some axioms change) or only 

semantic of ontologies (i.e. only the intrinsic meaning changes) as is done by (Haase et al. 

2005b). According to them there are four different ways to handle inconsistency in changing 

ontologies:  

 

1) Consistent Ontology Evolution  

2) Repairing inconsistencies  

3) Reasoning with inconsistent ontologies (by finding consistent subsets)   

4) Multi-version reasoning (where all the former versions of an ontology are saved) 

 

Our framework supports 1) and facilitates 3) by maintaining a specified acceptable level of 

inconsistency. We summarize this section by noting that none of the above-mentioned 

research actually presents formal process models that describe how the ontologies are 

allowed to change during different circumstances. However, some of them instead present 

software for ontology evolution and show their graphical user interface.  

 

2.1.2 Ontology repair and its paradigm 

Ontology evolution and ontology repair are related, but ontology evolution does not 

necessarily need to involve ontology repair. We can consider these as two different 

paradigms (see Figure 2). In the ontology repair paradigm the ontology moves to a "faulty" 

state – this is typically due to a new instance that has been created that contradicts other facts 
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or due to a faulty interaction, one where an agent could reach a goal due to some mismatch 

or miscommunication in the process. In this paradigm, changes to ontologies and instances 

just happen, there is no system that manages them as such. Instead there is a system for 

repairing the mismatches and problems (e.g. contradictions) that have occurred as a result of 

change. This is related to the discussion in §2.1.13 about "living in an unmanaged world" 

because ontology repair fits well with that paradigm and is useful there.  

 

One example of such a system is presented in the Ontology Refinement Systems (ORS) 

developed by (McNeill et al. 2005). In their system procedural ontologies are used, that e.g. 

describes how an agent can buy a flight ticket (and the pre- and post-conditions of this 

process). The fundamental assumption is that these ontologies appear in an unmanaged 

infrastructure, and therefore mismatches can exist between ontologies. Two ontologies could 

differ because they contain different axioms or predicates. Also, mismatches could occur 

because of different predicate arities, or different domains or ranges for predicates that 

otherwise have the same name. 

 

The authors use KIF (Knowledge Interchange Format) as the KR language for representing 

rich ontologies, and include rules for representing procedures. In this scenario there are 

agents that have to accomplish certain things, e.g. buy a flight ticket. E.g. there is a rule in 

Paradigm 2 

 

Figure 2. Two ontology evolution paradigms. 
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the KIF ontology that describes the preconditions and effects that the act of buying a ticket 

has. However, when the agent is asked to perform an action, sometimes the invocation does 

not really match the agent’s ontology – so the agent’s ontology must be refined. This is 

achieved by translating the KIF ontology to a more basic language, namely PDDL (Planning 

Domain Definition Language), and then by doing failure analysis of the plan and ontology 

mismatch, the systems tries to fix the ontology, in a way that removes the problem (see 

"Paradigm 1" in Figure 2).   

 

This is a contrast to our approach that adheres to very different paradigm (shown here as 

paradigm 2), namely that the system does always receive change proposals as such and 

investigates how these change proposals would affect the consistency of one or several 

ontologies. Therefore, in our approach the need for repairs is smaller, but in some situations 

conflicts can still occur, e.g. when new knowledge is correct but conflicts with existing 

knowledge. In this situation, some of the existing axioms might have to be removed. 

2.1.2.1 A technical difference between logical inconsistency and 

incoherence 

At this stage of the discussion we will mention a formal and technical difference between 

logical inconsistency and logical incoherence as it is defined by (Bell, et al., 2007). Chapter 

3 will clarify these things further, by presenting the full logical framework that we use. 

 

Anyway, they make these three definitions. 

 

Definition 1 (Unsatisfiable Concept). A concept name C in an ontology O, is unsatisfiable 

iff, for each interpretation I of O, CI =∅. 

 

Definition 2 (Incoherent Ontology). An ontology O is incoherent iff there exists an 

unsatisfiable concept name in O. 

 

Definition 3 (Inconsistent Ontology). An ontology O is inconsistent iff it has no model. 

 

These descriptions are done from description-logic perspective, particularly definitions 1 and 

2, whereas definition 3 corresponds more to classical logic. Our definition of inconsistency 

does correspond to definition 3 rather than definition 2. I.e. our infrastructure mechanism 

would accept certain situations that are logically consistent, but that wouldn't be viewed as 
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coherent according to definition 2, because these situations might require one or more 

concepts to have no instances (i.e. be unsatisfiable concepts according to the definition 

above). Chapter 3 will clarify this.  

 

2.1.3 Sources of proposal generation: ontology induction or 

human insight 

In our definition of semantic autonomy in Chapter 1 it is stated that "there is a knowledge 

source that can provide knowledge in this language and about its evolution." and this means 

more precisely that something will generate a stream of proposals of how to change and 

grow ontologies and the mappings between them, and by creating these proposals that source 

will express its knowledge of the domain that one or several ontologies are modelling. The 

obvious question is where this knowledge will come from. In our approach, we assume that 

it will either come from human users that share their domain knowledge by expressing it in 

the form of proposals, or by an automated process such as ontology induction. Ontology 

induction is a process that takes individual pieces of data or natural language text and from 

this hypothesizes what relations that exist and how they are related. However, because the 

process is inductive and often relies on natural language as a source, the knowledge elements 

it creates cannot typically be proved to be true, but can often be said to likely be true. The 

knowledge elements that such a process is generating one by one could be used as proposals 

that are sent individually to the infrastructure mechanism that we define in this thesis. 

Particularly, many proposals could be used for building the ontologies. Alternatively, 

humans could make these proposals, or it is also possible to combine these approaches. 

 

2.1.4 The Nature and Origin of Ontology Mappings 

2.1.4.1 Overview of ways to generate ontology mappings 

Ontology mappings are used for facilitating interoperability between ontologies, and they 

connect the meaning of a concept in one ontology with the meaning of a concept in another 

ontology. Mappings between two concepts are the most important ones. 

There is research that is focusing on inferring ontology mappings as its ultimate goal and 

(Kalfoglou, et al. 2003) provides a good overview. The basic underlying assumption of most 

approaches is that the ontologies are populated by instances. Then various forms of induction 

can be used to hypothesize about the mappings between a concept in one ontology and a 
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concept in another one. These methods can also utilize the structure of the ontologies, the 

linguistic cues provided the concepts names as such and try to find a common ground for 

instances, e.g. by analysing text documents where these instances could be found. Therefore, 

ontology mappings can be said to originate from hypotheses that are created on the basis of 

this data. The output of these systems is often a value between 0 and 1 that express the 

strength of mapping between two concepts, i.e. how related they are to each other. Some 

systems can, however, instead return the logical relationship between these two concepts. In 

general, the purpose of these systems is to map, align or merge ontologies (and sometimes 

even database schemas). We will mention more about two such interesting systems: 

CTXMATCH  and MAFRA (see Bouquet et al., 2003b and Maedche, et al. 2002 respectively). 

Another origin of ontology mappings is, again, human insight and knowledge. More 

precisely, it implies that a domain expert has knowledge of the domains of the two 

ontologies that are being mapped. As was the case with ontologies themselves, systems that 

generate ontology-mappings as output, could be integrated with our infrastructure 

mechanism and provide mapping proposals that are sent to it as input to be processed. 

However, let us now return to the discussion of systems that mechanically generate 

mappings. 

 

2.1.4.2 Inferring ontology mappings using logic-based approaches 

The purpose of CTXMATCH  (Bouquet et al., 2003b) is to infer mappings between a concept 

in one hierarchical classification and a concept in another hierarchical classification. It infers 

one of five mappings types and these are related to the mapping types of C-OWL (see 

below) and related to our five mapping types (see §3.3.2). CTXMATCH uses a lexical 

dictionary (WordNet) as background knowledge in addition to logical background 

knowledge, and maps words to formal concepts, and does automated reasoning using 

algorithms for solving this as a satisfiability problem (i.e. a SAT solver) in order to infer the 

relationship between two concepts. Because they rely on linguistic knowledge, that linguistic 

knowledge must be fully correct with regard to the hierarchies that are matched, in order for 

the system to guarantee correctness of the mappings proposed. Indeed, their algorithm 

focuses on applicability to various linguistic hierarchies, instead of an logical notion of 

correctness. However, if we disregard the linguistic background knowledge, then their 

system as well as ours does logical reasoning about mappings and ontologies, but in different 

ways and in our case this reasoning is an ingredient in the whole infrastructure framework.  
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Research by (Giunchiglia et al., 2003) analyzes the semantic matching problem in depth and 

identifies two main approaches. The first approach is element-level semantic matching (that 

can either use weak semantics or strong semantics). The second approach is structure-level 

semantic matching. The first approach includes techniques that for example look for 

similarities in label names (weak semantics) or lexical word-meaning (strong semantics), 

whereas the second approach translates the problem to formal logic and solves it using 

reasoning. In our system we only use structure-level semantic matching.  

 

2.1.4.3 C-OWL and its five mapping types 

In our approach we focus on managing ontologies that have a formal logical meaning, i.e. 

every relationship has a formal logic meaning rather than a numerical value expressing 

similarity or dissimilarity. It is therefore interesting to investigate if there is any research 

about formalising the meaning of such mappings and deciding which types are interesting in 

the first place. Our source of inspiration comes from C-OWL and the five mappings that are 

proposed there (Bouquet et al., 2003). The authors describe a context-sensitive version of 

OWL (the Web Ontology Language, see Antoniou, 2008), where ontologies are 

contextualised. They also mention the five bridge rules between different context spaces 

(they mean the following, where concept A belongs to ontology i and concept B belongs to 

ontology j: A is equivalent with B, A is subsumed by B, A subsumes B, A is disjoint with B, 

A is compatible with B):  

 

𝑖: 𝐴
  ≡   
   𝑗: 𝐵, 𝑖: 𝐴

  ⊑  
  𝑗: 𝐵, 𝑖: 𝐴

  ⊒   
   𝑗: 𝐵, 𝑖: 𝐴

   ⊥   
   𝑗: 𝐵, 𝑖: 𝐴

  ∗  
  𝑗: 𝐵 

 

They also adhere to the tradition that every piece of knowledge has to be annotated with its 

context, and we also follow this convention. In contrast to the mapping language that we are 

using, their bridge rules are unidirectional. 

2.1.4.4 Why ontology mappings can be intensional 

In a philosophical paper (Majkic, 2005) it is argued that ontology mappings should be 

intentional rather than extensional. According to Majkic, the incorrect way to define 

mappings between concepts in two different knowledge systems is to do it in an extensional 

way, because then all the extensions (i.e. instances) of an ontologies in one of them will then 

automatically be propagated to the other system (what one system knows will imply what the 

other system knows). The correct way is to define an intensional mapping that only says that 
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the meaning of the two concepts is the same (the instances of the mapping are not 

propagated). We haven't investigated the computational implication of this stance, because 

the current version of our infrastructure does not yet maintain instances, so we have not 

specified if instances would be propagated. However, the consistency that our infrastructure 

mechanism maintains is currently indeed at the ontology level and the mappings are 

intensional. It remains to be to investigated in the future how feasible it is to maintain 

consistency (using spheres of consistency) between various ontologies, mappings and 

instances that could be propagated over the mappings and ontologies. The author (Majkic, 

2005) believes that intensional mappings could e.g. be useful in P2P (peer-to-peer) systems, 

because then instances of certain concepts could rest with their ontologies in their nodes 

instead of automatically being propagated to other parts of the system. 

 

2.1.5 How important is the logical language and its expressivity? 

We now repeat some of the goals of the thesis and contrast these with the tradition prevailing 

in related research fields. One of the aims of this thesis is to investigate if and how semantic 

autonomy (as defined in §1.5) is possible. This means that a certain formal knowledge 

representation is used to define several ontologies that are autonomously evolving while 

being connected by mappings (and §1.5 shows that certain constraints must be maintained by 

such a system). The important properties are semantic autonomy (as defined in chapter 1), 

semantic reliability (it is possible to define constraints that are maintained in order to 

facilitate interoperability and eliminate/reduce miscommunication) and scalability (the 

infrastructure mechanism can be used to maintain extensive constellations of connected 

and/or huge ontologies). In this paradigm where semantic autonomy, semantic reliability and 

scalability are important, the issue of expressivity of the knowledge representation is not 

primary but it should be subordinated the other infrastructure properties that are seen as 

fundamental. The correct question is then, given that we want to have semantic autonomy, 

semantic reliability and scalability, what logic can we then choose that fits with these 

requirements? It might be a logic that is not very expressive, but that has other good 

properties considering these requirements. 

 

In chapter 3 we describe the particular logic we have chosen. The primary reason for 

choosing it is that it satisfies the requirements mentioned here (semantic autonomy, semantic 

reliability and scalability) and it e.g. has an explicit notion of state that is useful when 

performing ontology evolution. However, in the future we would like to see how this 
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framework can be used with other logics that satisfy the mentioned requirements (see also 

chapter 8 about future work). 

Description Logics (defined e.g. in Horrocks 1997) are a family of logics that are being 

advocated by the semantic web community (e.g. Horrocks 1997 & 2002). Description logics 

can be expressive, but the price they pay for expressivity is high time-complexity. In contrast 

to the logic that we use currently, description logics typically use tableaux decision 

procedures for doing reasoning (Horrocks 1997), whereas our reasoning mechanism is 

creating a proof search tree.  

  

2.1.6 Theories of Context  

There are many theories about contexts and attempts to classify and formalise what context 

is. We will focus on the proposals from within the informatics, logic and artificial 

intelligence communities rather than on proposals from the fields of linguistics, cognitive 

science etc. and the reason for this is that our system manages formal knowledge. 

One interesting approach for classifying contexts is from (Guha, R. et al., 2003). The authors 

describe different kinds of contexts and how contexts can be used in different ways. More 

precisely, they define four different context types: Projection Contexts, Approximation 

Contexts, Ambiguity Contexts and Mental State contexts. They discuss lifting relations that 

can lift facts from one context to others. 

 

 Projection contexts can be seen as specific situations or circumstances that are 

projections of more general situations or circumstances. This means that the specific 

contexts have some additional assumptions in comparison to the more general 

contexts. E.g. Cyc's
3
 microtheories can be seen as such. As an example 

WorkplaceContext in Cyc describes some assumptions that are valid when a person 

is at work (they mention the example that a person at work is clothed).  

 Approximation contexts are contexts that create an approximation or abstraction of 

a more general context that has more fine-grained information. In contrast to 

projection contexts, approximation contexts create knowledge bases that can be 

inconsistent with the more general context that is approximated. They mention an 

example of a database with basic prices and another database where the prices also 

                                                     

3
 Cyc is multi-contextual knowledge base described at http://www.cyc.com 
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include shipping costs, spare parts, inventory costs etc. The first database can then 

be seen as an approximation of the second one.  

 Ambiguity contexts preserve an ambiguity in the knowledge representation, but 

background knowledge can be used to resolve the ambiguity. One advantage of 

ambiguity contexts is that they facilitate briefer KR because not all underlying 

assumptions have to be made clear. E.g. they are used in natural language in 

discourse context. One examples is the use of indexicals in natural language, such as 

he, she, it.  

 Mental State Contexts describe either fictional contexts that contain fictional 

knowledge or are cognitive perspectives of reality. One example is "statements that 

are true in the fictional context corresponding to Sherlock Holmes stories". 

 

The reader can return to the following detailed comparison after having looked at chapters 

formalising our approach (chapters 3, 4, and 5). How is this related to our use of context 

when formalising or configuring a knowledge infrastructure? The closest classification from 

the list above is that of "mental state contexts" because we view contexts as being carriers of 

ontological knowledge that represent a viewpoint of reality and not of an exhaustive 

representation of reality. However, one could use our infrastructure mechanism to define sets 

of contexts that behave like projection or approximation contexts, by choosing the right set 

of mappings between one context and its projection or approximation context. In these cases, 

many of the mappings would probably be subsumption mappings. When simulating a 

projection context, a sphere of consistency could contain both the context and its projection 

context, considering they are supposed to be consistent. In the case of an approximation 

context, two different spheres of consistency could e.g. be used (these will be defined in 

§4.3). 
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2.1.6.1 Divide-and-Conquer vs. Compose-and-Conquer Context 

Models 

Another classification of contexts that is even more relevant to our approach is the one by 

(Bouquet, et al. 2001). This envisions two main kinds of context theories in AI: divide-and-

conquer and compose-and-conquer (see Figure 3).  

According to this classification, divide-and-conquer sees a context as a way of partitioning 

(and giving a more articulated internal structure to) a global theory of the world. Compose-

and-conquer sees a context as a local theory, namely a partial, approximate representation of 

the world, in a network of relations with other local theories. 

 

 

In compose-and-conquer context sensitivity:  

 There is no general representation language, because it is context dependent. 

 Denotation and truth are by definition contextual. 

 Reasoning is done locally in the various contexts. Potentially, contexts could even 

use different reasoning rules. 

 Relationships between contexts are not necessarily stated and used at a meta-level. 

 

Data Integration can be done using either divide-and-conquer or compose-and-conquer 

context sensitivity. In the first case, all data is mapped to a global schema whereas in the 
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Figure 3. On the left side we illustrate an example of a divide-and-conquer context model, 

whereas on the right side we illustrate a compose-and-conquer context model. In the left model, 

reality can be cut and divided into pieces, and e.g. the knowledge fragments A and B belong to 

a context and its super-context. In the right model, there is no global model nor global 

language, but only partial models having their own language. It is possible to create mappings 

between the different knowledge fragments that correspond to each other. These illustrations 

are inspired by similar ones in (Bouquet, et al. 2001).  
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second case one relates semantically heterogeneous knowledge bases with each other. Our 

approach was inspired by compose-and-conquer context sensitivity so that is its intended 

default use, but it can be used for simulating divide-and-conquer context sensitivity as well. 

 

2.1.6.2 Situations and Contexts 

The final review of context theories we will mention is (Giunchiglia, 1993). According to 

this approach, a context c is a subset of the complete state of an individual that is used for 

reasoning about a given goal. The paper discusses how situations are related to contexts. One 

possibility is that a situation should be described using several contexts, each being an 

approximate theory of the same situation. The second possibility is to associate contexts to 

situations, and model time evolution of the world. The third possibility is to make one 

context correspond to many situations. If we view situations as ordered states, then the 

formalism of our approach (see chapter 3) can be viewed as creating a grid that combines 

situations and contexts (e.g. the counter-models we present in 0 we have this grid-like 

structure). 

According to the author (Giunchiglia, 1993), reasoning inside a context (see formal 

definition below) could use different logics and/or different reasoning rules in every context. 

Therefore, every context could have its own reasoning engine. It is possible for a context to 

be an abstraction of another one. One possible definition of context the author above gives is 

that if Li is a first-order language, i is the set of inference rules associated with a set of facts 

Ai, then he defines context ci to be the triple ci=Li, Ai, i. They then describe bridge rules 

that connect facts in one context to facts in another context – these are inference rules.   

In our approach we do not completely change inference rules in different contexts, but if 

contexts are put into separate spheres of consistency, then different variations of the same 

kind of reasoning is possible, because the level of consistency could be set to different values 

in different spheres (see section 4.3). 

 

2.1.7 Distributed and contextual reasoning 

Let us first review some interesting work about contextual reasoning by (Benerecetti, et al., 

2000), because our system does reasoning using knowledge from several contexts. 
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In their model they view context as a box (see 

Figure 4). Inside the box there are some linguistic 

expressions about a domain, but outside the box 

there are some parameters with given values. The 

idea is that these contextual parameters and their 

values are used for fully determining the meaning 

of the expressions within the box. 

 

They list three different contextual reasoning 

methods: 

 

Localised reasoning – using knowledge from within a context when reasoning with that 

knowledge is enough. 

Push and pop – contextualising or decontextualising knowledge. Push adds a contextual 

parameter to a knowledge base, whereas pop removes one such parameter. E.g. if we have 

logical statement that we want to make situation or time-independent, we would use pop. 

Shifting – This occurs when we change the contextual parameters to new values, and 

therefore the knowledge represented has to be changed in order to account for this change. 

E.g. if the viewpoint is changed, the object or knowledge observed will look different. 

 

They list three context dimensions that correspond to the three reasoning methods above. 

Partiality. A representation only describes a subset of the state of affairs. 

Approximation. An representation that abstracts away some aspects of the state of affairs. 

Perspective. A representation that encodes spatio-temporal, logical and cognitive point of 

view on a state of affairs. 

 

The authors mention how these categories fit together. Localised reasoning can exploit a 

partial representation. Push and pop allows for varying the degree of approximation. Shifting 

can be used for changing perspective.  

 

Our current framework supports localised reasoning and takes into account perspective. 

However, it does not have specific support using multiple context dimensions, because 

currently we only support one context dimension explicitly. A system for supporting several 

context dimensions would be more complex, and one could then use push for entering 

Figure 4. Context as box. The 

parameters and their values represent 

contextual dimensions and their 

contents. (copied from (Benerecetti, et 

al., 2000)). 

 

    Sentence 1 

 

Sentence 2 

      .................. 

P1=V1 ... Pn=Vn .... 
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specific knowledge bases where all context dimensions have a value and pop for looking at 

the knowledge in a more general way. 

 

2.1.7.1 Principles of Locality and Compatibility  

The innovative paper by (Ghidini, et al., 2001) first describes two principles that should be 

used when formalizing context: 

  

Principle 1. Locality. Reasoning uses only a part of what is potentially available (e.g. what 

is known, the available inference procedures). The parts being used while reasoning is what 

they call context (of reasoning). 

 

Principle 2. Compatibility. There is compatibility among the reasoning performed in 

different contexts. 

 

These principles have inspired our definition of semantic autonomy (see chapter 1). 

 

2.1.7.2 Local Model Semantics 

In (Ghidini, et al., 2001) Local Model Semantics are defined in the following way.  

{Li}iI is a family of languages defined over a set of indexes I. Li  is a language used to 

describe what is true in a context. Let iM be the class of all models (interpretations) of Li. 

Every m iM is called a local model (of Li). Then they define what a compatibility sequence 

is and compatibility relation. These create constraints between the different local models. 

Then they create a model for {Li}iI  in such a way that inconsistent context structures are 

excluded. Then they define satisfiability and validity. Satisfiability is defined for a given 

context.  

Local Model Semantics show some similarity to our formal definitions in chapter 3. 

However, the main difference is that our logic contains both contexts and states, so the 

languages L are given a two-dimensional index of both context and state. 
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2.1.7.3 Multi-Context Systems 

Multi-Context Systems (Ghidini, et al., 2001)  are a proof-theoretic analogy to Local Model 

Semantics. Assume that I is a set of indexes. A Multi-context system (MC System) is a pair 

 

{ },i brMS T   

where  

 

 for each iI, Ti=Li, i, i is an axiomatic formal system where Li is the language, 

 i Li is the set of axioms, and i is the set of inference rules. 

 br is a set of inference rules with premises and conclusions in different languages. 

 

They make the interesting distinction between i called internal rules and br called bridge 

rules. Internal rules have premises and conclusions within the same language, whereas 

bridge rules have premises and conclusions in different languages. They use this notation for 

these two kinds of rules (here i and j are context identifiers): 

 

 1      :    ...    :

:

ni i
ir

i

 


               

1      :    ...    :

:

ni i
br

j

 


 

  

 

According to the authors, the principles of locality and compatibility are followed here, 

because both the language and inference rules can be local to a context, whereas the 

principle of compatibility is represented due to bridge rules that propagate reasoning across 

contexts. A complementary presentation of Multi-Context Systems can be found in 

(Bouquet, et. al, 1998).  

 

 

Here follows a discussion that requires the reader to know the formal description of our 

system given in chapters 3 and 4, so the reader can return to this discussion later. 

How is this related to our formalism? It could possibly be used for describing the reasoning 

in a simplified version of our system (we haven't include the state numbers here), e.g. by 

stating  
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: ( , )   ...    : ( , )

: ( , )

i i i i

i i

i COR A B i COR B C
ir

i COR A C
 

 

This rule means that the correspondence relationship is transitive when used inside an 

ontology. However, we see this relationship as something that is a logical consequence of the 

rewrite rules in sections 4.7-4.11. I.e. we see them as being primary, and they are applied in 

three phases, so it is not obvious one could express them using this formalism. Another 

challenge is that these rules are enabled by contexts only, whereas our reasoning rules also 

depend on states (see section 4.7). Finally, we allow for contexts that have ontologies 

connected by cyclic patterns of mappings. So it is important to specify the reasoning 

algorithm (see section 4.12.3) because it defines in which order reasoning rules should be 

applied, and make sure that loops are prevented (considering that we allow for cycles of 

mappings). However, in future work (see chapter 8) it is possible that one could try to 

simplify the logical language and perhaps use reasoning rules more similar to these ones, but 

then still specify the reasoning algorithm using them, because it will specify in which order 

and when they are to be applied. Nevertheless, §8.2 is using a related notation for describing 

the reasoning rules in an abstract way. 

 

2.1.7.4 Distributed Reasoning Systems 

DRAGO is distributed reasoning system (Serafini, et al. 2005) that supports reasoning with 

several OWL ontologies (not more expressive than SHIQ - this particular description logic is 

defined in Horrocks 1993) connected with bridge rules. This definition demonstrates which 

bridge rules that the system accepts. The authors call these bridge rules, onto-bridge rules 

and into-bridge rules as defined below. 

 

 

A bridge rule from i to j is an expression of the following two forms: 

 

1. 𝑖: 𝐴
     ⊒     
     𝑗: 𝐺, onto-bridge rule 

2. 𝑖: 𝐴
     ⊑     
     𝑗: 𝐺, into-bridge rule 

 

where  A, B and G, H are concepts DLi and DLj respectively. 
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In their work DLx refers to a description logic, and the DRAGO distributed reasoning system 

supports a collection of such logics that are connected by these bridge rules. They define a 

distributed tableau algorithm that creates a tableau for a regular description logic knowledge 

base, but when it reaches bridge rules, then the tableau reasoning does propagate into the 

connected knowledge bases. We like the idea that they extend standard reasoning with 

mapping propagation. The distributed T-Boxes have to be acyclic and be without 

individuals. 

 

How does this compare with out framework?  

 

 Mappings that are unidirectional and subjective, vs. bidirectional and objective. 

Firstly, their bridge rules are unidirectional and subjective in the sense that they 

belong to a single ontology and do not have an objective existence. This is more 

general than our choice of using bidirectional mappings, but considering our 

application we are not convinced that unidirectional subjective mappings are 

necessary from a practical point of view. In the definition of bridge rules above, the 

mappings only belong to ontology j. So ontology i could disagree about the 

existence of this mappings. It is true that they can be used for preventing 

inconsistencies to propagate, but we believe that using spheres of consistency for 

this purpose is more intuitive, because it is easier to visualize their impact on the 

ontologies stored compared to visualizing the consequences of overlapping 

mappings where reasoning can only propagate one way.   

 

 Should knowledge representation be separated from control over reasoning? In 

our approach one can then separate representing mappings from controlling how far 

reasoning propagates and consistency is managed, and we think that is a convenient 

solution. In the future we would like to support changing spheres of consistency 

while the knowledge stays constant (see chapter 8) and then representation of 

knowledge and the control over how reasoning is done will be de-linked. 

 

 Mapping types supported. In our system we can represent five different mapping 

types, whereas there are three in their system (equivalence is achieved by combining 

two bridge rules). Some of our mappings cannot be constructed from their mappings. 
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We should then say that their system supports more expressive ontologies than ours. Neither 

their reasoning system nor ours currently supports individuals. Finally, DRAGO is a 

reasoning system whereas the reasoning is only an element in an infrastructure mechanism, 

where modelling ontology evolution, control and change and decisions processes is equally 

important. 

 

In the work by (Zhao, et al. 2007) they assume a scenario with several ontologies (so called 

"autonomous ontologies") and that one ontology can use concepts from other ontologies by a 

semantic binding. Two different tableaux methods are presented: one uses “cautious 

reasoning” that uses reasoning within an ontology and its neighbouring ontologies and 

“brave reasoning” that transitively includes an ontology’s neighbouring ontologies and their 

neighbouring ontologies etc. The reasoning algorithm they use builds a tableau and does 

satisfiability checking – this can e.g. be used for checking the subsumption relation between 

two concepts. It seems that "cautious reasoning" is similar to using a sphere of consistency 

containing a single ontology and enforcing full consistency, whereas "brave reasoning" 

corresponds to using global consistency from the point of view of an ontology. We believe 

there are (infinitely) many configurations of spheres of consistency that could not be 

represented using their formalism, that seems to have a different goal. 

A similar comment can be made about this interesting work as above, namely that it is a 

reasoning system whereas the reasoning is only an element in the infrastructure mechanism, 

where modelling ontology evolution, control and change and decisions processes is equally 

important. Also, they have not included and integrated a notion of proof-bounded 

consistency in their framework.  

2.1.8 Requirements for modular ontologies formalisms 

The work by (Wang, et al., 2007) investigates semantic formalisms for modular ontologies. 

This investigation is done as a part of the NeOn project (see also §2.2.3). It does not at all 

investigate ontology evolution or process modelling in distributed systems. But they mention 

in general some properties that modular ontology systems should have: 

 

Networking 

 Encapsulation (support of using local theories) 

 Reusability/Inheritance (the ability to import one ontology to another) 

 Authorization (Controlling access to linked ontologies) 
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Dynamics 

 Networked Ontology Dynamics (propagating changes and updates) 

 

Distribution  

 Loose Coupling (interconnections are well controlled and conflicts easily detected) 

 Self-Containment (one can answer queries using the knowledge of one ontology) 

 

Reasoning  

 Complexity and Scalability  

 Reasoning support for Terminological and Assertional Knowledge 

 

Expressivity  

 

They compare five different description-logic based formalisms for modular ontologies – all 

of them have better expressivity than our current logical language but at the cost of 

exponential worst-case time complexity. The authors mention the interesting distinction 

between two different approaches: 1) linking/mapping between ontologies and 2) importing 

(parts of) ontologies into other ontologies. We use the first approach. 

Their research is focusing on other aspects than ours, and in this comparison the "networked 

ontology dynamics" had very poor support among the mentioned formalisms.  Their main 

focus is on expressivity of the mappings language.  

 

Our approach supports: encapsulation, networked ontology dynamics (but only a basic form 

due to few ontology operations currently), loose coupling, good time-complexity and 

scalability. Authorization is not the focus of our research. To summarise, we think that the 

emphasis of their comparison is to investigate expressivity and semantic meaning of 

formalisms for modular ontologies, whereas the ability to model dynamic aspects of change 

between several ontologies is not formalised at all (due to poor support of these features by 

the mentioned formalisms).   

 

2.1.9 Para-consistent Logic and Model-theoretical Approaches for 

Computing an Inconsistency Degree 

In the work by (Ma, et al. 2007) they develop a model-theoretical way of measuring how 

much inconsistency there is in an ontology. In this approach they define a four-valued logic 
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where first-order theories have four-valued models. The set of truth values in this four-

valued semantics is the following: 

 

 true, 

 false, 

 unknown (or undefined) and  

 both (or overdefined, contradictory). 

 

In contrast to normal first-order logic (that maps each n-ary predicate to n-ary relation on the 

domain) a four-valued interpretation assigns a pair-wise n-ary relation   𝑃+, 𝑃−    to each n-ary 

predicate P, where P+ explicitly denotes the set of n-ary vectors which have the relation P 

under interpretation ℑ and P- explicitly denotes the set of n-ary vectors which do not have the 

relation P under interpretation ℑ. Based on these definitions, they define the truth value 

assignment to atomic predicates, and e.g. an assignment is both true and false if its n-ary 

relation both belongs to P+ and P- . The reason why we refer to their work is that they define 

an inconsistency degree that is model-theoretic. So the definition they give is the following. 

 

Let  be a first-order theory and ℑ = (∆ℑ,∙ℑ) be a four-valued model of . The inconsistency 

degree of  w.r.t. to ℑ, denoted 𝐼𝑛𝑐ℑ(𝛤)  is a value in [0, 1] calculated in the following way: 

 

 

𝐼𝑛𝑐ℑ 𝛤 =
 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑇𝑕𝑒𝑜(ℑ, 𝛤) 

 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑕𝑒𝑜(ℑ, 𝛤) 
 

 

Their inconsistency degree is the ratio of the number of conflicting atomic sentences (i.e. 

classified as being both true and false – this value is called 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑇𝑕𝑒𝑜(ℑ, 𝛤) ) divided by 

the amount of all possible atomic sentences formed from atomic predicates and individuals 

available (that value is called 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑕𝑒𝑜(ℑ, 𝛤)). Later, they show a complex method and 

algorithm that reduces the amount of models that have to be investigated. However, even 

then their algorithm is only semi-decidable for first-order logic.  

 

In some of their other work (Ma, et al., 2007b) they describe the principles of how this 

method could be applied for calculating the inconsistency degree of an 𝒜ℒ𝒞 Description 

Logic, but no algorithm or evaluation is yet provided. However in (Ma, et al., 2007c) they 

describe an algorithm that in polynomial time translates from the four-valued logic 𝒜ℒ𝒞4 to 
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𝒜ℒ𝒞 so that a traditional reasoner can be used. One of their challenges is that there are three 

types of implications in four valued-logic compared to one in normal description logic. 

 

How do these approaches compare with our approach? Firstly, they focus purely on the 

reasoning or calculating a consistency degree, not on how to incrementally maintain a form 

of consistency and model change that maintains this consistency. Their consistency is model-

based in contrast to our that is proof-based. Secondly, their approach falls into the paradigm 

of "Living in an Unmanaged World" that we analyse in §2.1.13 and the some of the 

conclusions of that analysis also apply to this work, e.g. the process of resolving 

inconsistencies can be indeterministic. In the case of four-valued logic, there is a certain 

freedom how to choose the implications types (consider there are three different ones) and 

different choices give different reasoning results. We therefore believe that one should be 

aware of the effort needed for resolving such an indeterministic situation into the "correct" 

one that corresponds to the intuitions of the users. 

2.1.10 Belief revision and the AGM postulates 

Belief revision has its roots in philosophy and investigates how belief systems should be 

revised. These belief systems can e.g. be viewed as belief sets that include not only axioms 

but also implicit knowledge, so they are closed under logical consequence. Instead of 

looking at particular algorithms for doing these revisions the research area rather investigates 

and formalises properties of such procedures. The three belief changes types are: expansion, 

revision and contraction. Expansion adds a new sentence  to a belief system K together 

with the logical consequences of the addition. Revision adds a sentence  that is inconsistent 

with K in such a way that K can accommodate . 

 

2.1.10.1 How to compare the infrastructure mechanism with 

belief revision formalisms  

It is not straightforward to compare our infrastructure mechanism with belief revision. 

However, the first approach (called approach 1) is to present abstractly what processing the 

infrastructure mechanism does, considering a given system K (of mapped ontologies) and a 

proposal  as "inputs" and the resulting system K´ as "output". In this approach the ability of 

contexts to agree or disagree with a proposed change is included in this single operation step 

op (seen from an abstract point of view). We can therefore use these defined symbols and 

write  
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   K op = K´ 

 

This is the notation used by the belief revision community and op is normally one of the 

three following standard operators: expansion, revision or contraction. 

 

We want to emphasize a particular aspect of our system, namely that even if there is no 

conflict (i.e. inconsistency) between K and  then the infrastructure can still either accept or 

reject a proposals to add , because it has to be taken into account if a context or set of 

contexts accepts the change. We can express this particular case formally in this way: 

 

   K⊭ ⇒ (K op = K) ∨ (K op = K+) 

 

If we look at the definitions of expansion, revision and contraction we will learn that neither 

of these three operators actually satisfies the equation above, i.e. op can not be one of these 

three operators. So belief revision is a related theory, but does not provide a ready solution 

for our infrastructure mechanism. 

We will also mention a second way of comparing belief revision with our infrastructure 

mechanism and in this second comparison does not include the contexts' process of 

accepting or rejecting in the operator op. Instead, in this approach it is assumed that we are in 

the case where  is judged to be currently accepted (in other words: newly proposed 

knowledge is better than existing knowledge). We will call this approach 2. 

The next section will investigate if our infrastructure mechanism satisfies the AGM 

postulates, when using approach 1 vs. approach 2 as a comparison paradigm.  

2.1.10.2 Introducing the AGM postulates 

In the belief revision community the so called AGM postulates have an important role 

(Alchourrón, Gärdenfors, and Makinson 1985). Therefore, we will look at the AGM 

postulates for revision. It is assumed here that this belief system is using belief sets as 

described above.  

∔ is a function representing revision taking a belief set and a sentence as arguments and 

giving a belief set as a result. The belief system that results from revising K by sentence  

will be denoted K∔. The belief system that results from expanding K by sentence  will be 

denoted K+. 
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(K∔1) For any sentence  and any belief set K, K∔ is a belief set. 

(K∔2)  K∔ 

(K∔3) K∔  K+ 

(K∔4) if  ∉ K, then K+  K∔ 

(K∔5) K∔ = K if and only if ⊢  

(K∔6) if ⊢   , then K∔ = K∔ 

(K∔7) K∔ 𝜙 ∧ Ψ ⊆  K ∔ 𝜙 + Ψ 

(K∔8) if Ψ ∉  K ∔ 𝜙 , then  K ∔ 𝜙 +  Ψ ⊆ K ∔ 𝜙 ∧ Ψ 

 

(K∔2) says that input sentence  is accepted in K∔. (K∔5) says that K∔ should be 

consistent, unless  is logically impossible. (K∔6) says that logically identical sentences 

should lead to identical revisions.  (K∔7) says that revising K with 𝜙 ∧Ψ is a subset of 

revising K with  first and then with Ψ. 

 

In §7.4.5 we will present to which extent the infrastructure mechanism satisfies these 

postulates. 

 

2.1.11 Truth maintenance  

Truth maintenance is mentioned as a traditional paradigm that had its major impact in the 

past, and we will briefly mention the assumption-based truth maintenance system by de 

Kleer (de Kleer, 1986).  The important assumption of that system is that it keeps track of 

justifications of knowledge and therefore how different facts are dependent on each other. 

The knowledge models variable assignments and rules that propagate variable assignments 

to other variables. When a rule is added that creates a contradiction, the system finds 

consistent subsets that can be used to derive data.  

 

This is very different from our approach, because our system does not maintain a hierarchy 

of justifications of earlier knowledge. In order to simplify things, our system does not do 

this, because the added knowledge very seldom follows from existing knowledge. Indeed, if 

it does, then it creates redundancy, and some policies might forbid redundancy all together. 

However, the current logic does keep information about in which state a piece of knowledge 

was added, because that is a natural part of the logical formalism. In the future, when 

instances are supported, then also information about which instances are true for which 

predicates. Finally, in our approach we do not try to proactively partition facts into consistent 
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subsets when a contradiction occurs. Instead, we define in advance sets of ontological 

relations where a certain level of consistency has to be maintained.  This is different from the 

partitioning in truth maintenance where dependencies of justification are maintained.    

 

2.1.12 Process modelling using a formal protocol 

In chapter 5 we describe a protocol language that formalizes the computational behaviour of 

the knowledge infrastructure. Our language was inspired by LCC (see Robertson 2004), but 

then it has become rather different in some respects. LCC is a generic language for 

modelling interaction protocols for a Multi-Agent System and it uses explicit message 

passing as a means of communication between different agents. Our formalism does not use 

message passing, but instead it uses rules that connect the behaviour of the various entities, 

in our case contexts and infrastructure mechanism. It would be possible to re-write our rules 

to a protocol version that uses message passing, but for the purpose of this thesis, we were 

not convinced about the benefit of this. Of course, when the different entities are physically 

distributed some form of underlying communication is needed for sending information 

between them and one should then decide if this is done implicitly of the rule-interpreter or 

explicitly in the specification language. We have done it implicitly.  

 

2.1.13 The alternative: living in an unmanaged world 

In the excellent work by (Huang et al., 2005) the authors investigate a paradigm where 

inconsistencies of arbitrary depth or type are allowed to exist in a single ontology, but when 

a query is sent to such an ontology then a meaningful answer is extracted (this is formally 

defined). The main idea of their approach is to automatically choose a consistent sub-theory 

and use a traditional query-answering method for receiving an answer from that sub-theory. 

They give an interesting example of an inconsistency in which a brain is considered to be 

both a body part and a central nervous system, whereas body parts and nervous systems are 

considered to be disjoint. Here are some of their interesting definitions: 

 

Terminology: 

 is query 

 is an ontology 

⊨ is the traditional consequence relation 

 ≈  is the consequence of an inconsistency reasoner 
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Definitions (from Huang et al., 2005): 

 

Definition.  An inconsistency reasoner  ≈  is sound if  

  ≈   ⇒  ∃Σ ⊆ Σ (Σ ⊭⊥ ∧ Σ ⊨ ) 

 

According to this definition the inconsistency reasoner is sound if there is a consistent subset 

that would have returned an answer (using a regular reasoner) that is the same as the answer 

returned by the inconsistency reasoner.  

 

Definition. An answer given by an inconsistency reasoner is meaningful iff it is sound (as 

defined above) and consistent according to this definition:  

 

  ≈   ⇒   ≉   

They then describe two selection functions that decide which consistent subset to choose. 

The first one starts from nothing and gradually grows a consistent knowledge base by adding 

new axioms to the existing consistent subset. The other selection function starts with the 

whole ontology and gradually removes axioms until the result is consistent. Both these 

approaches are called linear extension approaches. One problem with both these approaches 

is that they are indeterministic and it is difficult to say if they have found the "right" 

consistent subset. They then define a method for the selection formulas to choose new 

axioms (that will be added to the consistent answer set) that are "relevant" to the query. The 

describe a procedure that uses backtracking when it has done incorrect choices and they call 

it over-determined processing (ODP). 

 

The authors give the following computational complexity result for ODP. The complexity of 

the over-determined processing is nk
C, where n is   ∑   and k is n -   𝑆   (S is the largest 

consistent subset in   ∑   and C is the complexity setting). Their experimental evaluation 

shows good results, but they conclude that the algorithm still cannot for certain choose the 

"right" consistent subset. 

 

Let us now compare this paradigm of not managing ontologies with our proposed paradigm 

of having an infrastructure that manages the ontologies. Firstly, the approach described here 

is for a single ontology and not explicitly for a network of connected ontologies. Secondly, 

even if we disregard the notion of consistency, their model does not formalise how change 
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happens (in ontologies and mappings connecting them). In our infrastructure mechanism, 

one can create a big sphere of consistency where pc=2 and then consistency checking is 

turned off, but when mappings are proposed to be added or deleted then the infrastructure 

still make sure the changes are wanted by the involved ontologies. In that situation, when 

some inconsistency is allowed, their approach is complementary and could be used for 

query-answering (that is not at all the focus of this thesis).  

 

Thirdly, we reach the fundamental issue in the comparison. In their approach change to an 

ontology is uncontrolled. The benefit is that it saves computational effort during those 

moments when the changes happen. The drawbacks are the following:  

 

 In a network of connected ontologies, there is no guarantee that the change is wanted 

(i.e. an issue orthogonal to consistency) because the social aspect of changing the 

knowledge are not modelled. 

 

 When a person by accident adds a piece of knowledge that contradicts a piece of 

knowledge added by another person, there is no alert about this. 

 

 If an infrastructure mechanisms keeps information about the consistency constraints 

it has satisfied so far, it can do less computations when somebody proposes to 

change its knowledge state (e.g. add knowledge) because it only has to incrementally 

investigate how this change affects the current "good" state, instead of having to 

investigate how any combination of knowledge elements could create a conflict that 

violates the assumed constraints. A "good" state can mean both full or proof-

bounded consistency.      

 

 During query-answering time it is very difficult to know which consistent subset that 

is the right one, because there is no mechanism that tracks when the system entered 

an inconsistent state. 

 

 Query-answering can require substantial computational effort (as quoted above).     

  



58 

 

2.1.14 A P2P information system relying on redundancy 

SWAP (Broekstra, et al. 2003) is a P2P system that supports distributed information sharing 

which consists of multiple peers that are connected with each other. In this system there are 

many pieces of knowledge annotated with meta-information, e.g.  peer id, location, and 

additionDate fields – so some of this information tells where the pieces of knowledge were 

created. It assumes that inconsistency and redundancy are very natural. It supports simple 

concept hierarchies that are extracted from underlying data (e.g. databases), but peers can 

also send information to other peers. Information is given a confidence rating and it uses 

RDFS (see Antoniou et al. 2008 for definition) for representing knowledge. If several peers 

send the same statement, then confidence ratings of that statement will increase.  According 

to the authors the knowledge in their system "does not represent truth but rather a collection 

of opinions supported by different sources of information". They assume that frequently 

occurring opinions are more likely to be true.  

 

We summarize here some of their assumptions: 

 

 Pieces of knowledge can be added to a peer by being extracted from underlying data 

or by being communicated from other peers.  

 The same or similar information should appear in the system many times. This 

redundancy occurs because peers could have replicas of information from other 

peers. 

 A piece of correct information will occur more frequently in the system (e.g. is more 

redundant) than incorrect information. 

 Inconsistency and redundancy of information are both desirable properties of the 

system, but the trust mechanism should help correct information to increase in 

confidence. 

 

It is interesting to mention this system because it is also concerned with representing 

knowledge in a distributed environment but follows a radically different paradigm compared 

to our proposed infrastructure mechanism. We believe that there is a need for distributed 

systems that have a more statistical approach to representing information
4
, but our 

                                                     

4
 One could consider commercial Internet search engines (e.g. Google) as examples of such systems. 

However, they typically don't use distributed knowledge representation, and typically manage indexes 

and links to text documents, not pieces of knowledge.  
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reservation is that the foundations of such a system and its evaluation should be made clear. 

Therefore, we are not sure if ontology evolution happens in the SWAP system and if 

ontology mappings are represented at all. If not, then it does not support semantic autonomy 

(see chapter 1) because knowledge is only physically distributed but the semantics do not 

really evolve (either at all or in a manner where it is still possible to map meaning between 

different parts of the system). Secondly, it seems that the system is trying to deal with these 

three deep problems at the same time: 

 

1. Disinformation – two pieces of knowledge are different because one is wrong (on 

purpose or by accident). 

2. Subjective Knowledge – two pieces of knowledge are different because they both 

express knowledge about subjective states of affairs, so they do not even talk about 

the same domain (i.e. the domains only belong to individual user and not to a shared 

reality). 

3. Cognitive Context – two pieces of knowledge are different because they use 

languages belonging to two different cognitive models of the same reality. 

 

We cannot see how the proposed system is able to deal with these problems and distinguish 

them from each other. E.g. when calculating confidence rating, then some form of majority 

vote could possibly work for 1) if various peers have similar information access. But if 1), 2) 

and 3) are present at the same time that method won't work at all. More generally, we haven't 

seen anyone proposing a solution for how to deal with all of these at once. 

Our proposed infrastructure mechanism deals with 3) and to some extent 1) (but in a non-

statistical way, i.e. every piece of knowledge is seen as being true or false and we assume 

that most proposals are true). And from the description above it should clear how our 

infrastructure mechanism differs from the described system here. Most importantly, they do 

not facilitate semantic autonomy in a way where one can guarantee inter-operability by 

guaranteeing consistency between some of the peers.  

 

2.2 Related work 

In this section we will review work that is more closely related to our work than the 

background section, because now we will investigate ontology management infrastructures, 

autonomic computing and network science. 
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2.2.1 MAFRA - A framework for managing mappings 

We will now explore a mapping framework called MAFRA – A Mapping FRAmerwork for 

distributed ontologies (Maedche, et al. 2002). This framework describes a system where 

mappings evolution is done between ontologies. The focus is on providing a rich and 

expressive mapping language. Their system has a module that calculates similarity between 

an entity in one ontology and an entity in another ontology. This similarity is then used as 

input for creating mappings (called bridges), based on certain heuristics. Sometimes, new 

mappings are created based on similarity, heuristics and existing mappings. The established 

mappings are used for translating instances from one ontology to another ontology, either in 

off-line or on-line mode. In off-line mode the transformation happens once, whereas it 

happens continually in on-line mode. They also have a cooperative consensus building 

feature for establishing consensus on semantic bridges, but formalization of it is provided. 

The system can use background knowledge when proposing new mappings. Mappings can 

be done not only between concepts but also relations, properties etc. There is support of 1: n 

and m : 1 mappings. Every mapping is linked to a transformation procedure for transforming 

instances. There is also a hierarchy between the mappings and a mapping can specialize 

another mapping. 

 

The main difference to our work is their lack of process modelling – instead they focus on 

providing rich semantics for a variety of mappings. It is not clear from the paper if the 

system can reason with these complex mappings, and what the effort of that reasoning is. 

However, our system could adopt some of their improvements, e.g. 1: n and m : 1 mappings, 

because then it can be used in more complex and realistic scenarios. But then the 

computational complexity of that has to be investigated. They write that MAFRA is 

implemented to work with KAON, so it seems that MAFRA becomes a particular piece of 

software. This is a contrast to our work where the infrastructure mechanism specification 

could be implemented in various pieces of software, due to its transparent specification. 

 

2.2.2 An infrastructure for reusing and evolving reused ontologies  

The work by (Maedche, et al. 2003, 2003b) describes an infrastructure based on KAON that 

manages multiple ontologies. The main assumption of the authors is that ontologies should 

be reused, i.e. replicated and inserted into other ontologies, and that this dependency 

information has to be maintained, in order to maintain a special form of consistency, that 

actually means perfect identity between the original ontology and its replicas. They claim 
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that ontology-based systems are a special case of software systems, and that because 

software-encapsulation and reuse is a good practice then also ontologies should be 

encapsulated and reused. We disagree with this approach, because these ontologies can 

consequently not be used for describing different points of view. On the contrary, all the 

ontologies that exist must be able to be combined in a conflict-free way, so they assumed a 

global knowledge model. But we still describe their approach. 

 

Their infrastructure includes a centralised ontology registry, a way of reusing “distributed” 

ontologies and a method for evolution of distributed ontologies. They describe that a certain 

ontology A can include a certain version of ontology B (it must be the whole ontology – not 

a part of it). When one has imported an ontology into another, a dependency is created. They 

distinguish between  

 

 Single Ontology Evolution – a single ontology evolves 

 Dependent Ontology Evolution – several ontologies located on the same physical 

node evolve 

 Distributed Ontology Evolution – several ontologies located on different physical 

nodes evolve 

 

These ontologies are linked by inclusion links and that means in this context that an ontology 

A is re-using the whole of ontology B. In the case of dependent ontology evolution, their 

system uses the "push" paradigm to immediately propagate changes. So if a concept changes 

in ontology B then that change is automatically propagated to ontology A. This means that 

they assume that there is a big value in making sure that all copies of an ontology that are 

included in other ontologies, must be kept exactly identical to the original. We do not 

understand why this is the case, and our infrastructure is based on different assumptions.    

 

In the third case above, their system creates "replicas" of the original ontologies. Replicated 

ontologies cannot be modified either – instead the source has to be modified. Because there 

are dependencies, changes have to be propagated immediately using the “push” strategy, 

when they occur in one physical node. However, they are propagated using "pull" strategy 

across different physical nodes. This means in practice that a physical node has to request 

up-to-date information and this then dependent ontologies send so called "deltas" between 

replicas and the original ontologies. They define an ontology meta-ontology (OMO) for 

describing information about the ontology. Their infrastructure provides a mechanism for 
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searching for other ontologies, and the matching is done using WordNet. For each concept a 

set of synsets is obtained.  

 

From our point of view, the problem with their approach is that they do not allow for 

semantic autonomy (as defined in chapter 1), and they assume that ontology replicas have to 

remain identical to the originals, so the other ontologies cannot fully express a different point 

of view. According to the authors, they currently cannot integrate semantically 

heterogeneous ontologies. 

Our framework mechanism currently does not support creating inclusion links that remain as 

dependencies between ontologies. However, we do not feel this is essential, but that it rather 

limits the semantic autonomy of the ontologies, because they cannot freely adapt the 

ontologies to their local needs – some of these adaptations will be automatically propagated 

to other ontologies even if they are not beneficial there. Using our formalism we rather the 

approach of making a copy of an ontology to another contexts and creating individual 

correspondence links between every element of the original ontology and the copied 

ontology. In this way, the freedom to change the ontologies is still great while coherence is 

maintained. 

 

2.2.3 The NeOn Project and the NeOn Toolkit 

NeOn is an ambitious applied project that aims to “advance the state of the art in using 

ontologies for large-scale semantic applications in the distributed organizations”. The NeOn 

toolkit is a piece of software (a so called "Ontology Engineering Environment") that makes it 

possible to develop networked ontologies (see Figure 5). Due to the size and complexity of 

the project, it also investigates some infrastructure components that we will not investigate at 

all, e.g. ontology visualization, authorization, complex-query answering, human factors in 

ontology design GUI and software tool design etc.  The NeOn Toolkit supports  

 

 Basic schema editing 

 Schema visualization and browsing 

 Import and export of F-logic, subsets of RDFS and OWL 

 

There are then commercial plug-ins that provide support for: rule support, mediation, 

database integration and queries. So it is a commercial project that makes the community 

dependent on their particular software.  
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The main difference between our infrastructure mechanism the NeOn Project is that it is 

delivering a piece of software (the NeOn Toolkit), and does not contain a precise 

formalisation like ours (see chapter 5) of its dynamic behaviour. It is therefore difficult to 

learn from their approach and use it for achieving semantic interoperability of the semantic 

web as a whole and its various semantic applications or for making other infrastructure 

components in the future (unless they become NeOn plug-ins). The NeOn Toolkit has a 

plug-in architecture, and we think this makes other solutions overly dependent on the NeOn 

Toolkit software instead of being more independent. It does not provide support for 

maintaining spheres of consistency as we have defined them.  

2.2.4 Network Science and Simulated Knowledge 

Considering the infrastructure mechanism creates a network of connected ontologies, we 

briefly note that similar issues are investigated in network science.  A particular approach  

that applies network science principles to knowledge simulation is explained in (Halladay et 

al., 2004) in a rather non-technical way. They argue that knowledge simulation is more 

graph-centric than knowledge representation and it does not have to be human-

Figure 5. The NeOn Toolkit software, where users can edit ontologies using a 

graphical user interface. 
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understandable. Simulated knowledge is the field of study that deals with storing and 

accessing knowledge using approaches with a reliance on network science principles. 

Network science is a field of study that observes and models network-related phenomena.  

 

They describe that a network of knowledge gives meaning to terms by means of connecting 

them to other terms. Therefore a "vivid meaning" is created by relationships' richness. 

However, humans do not need to be able to comprehend such a whole network, because they 

might not be able to grasp it, but they could be able to understand parts of it. They mention 

that the Internet as a whole is such an example. Also, it is mentioned that represented 

knowledge looks similar to natural language, but that is a danger, because e.g. knowledge 

elements should not be ambiguous whereas natural language is ambiguous. Indeed, that is 

why our simple ontologies consist of concepts that correspond to single meanings.  

 

In the new paradigm they propose, knowledge should be inter-connected in a network form 

and they write that the biggest challenge is then to decide how to connect, automatically, the 

relationships with the conceptual network. This view is rather similar to the Semantic Web 

vision. Simulated knowledge expects relationship connections to become complex beyond 

human comprehension. This is also true for the network of connected ontologies that our 

infrastructure mechanism is creating. They advocate that knowledge should be viewed as a 

network rather than logic, but we think these two aspects can be combined if the knowledge 

representation is kept simple. It is one of the reasons we have kept it simple.  

 

In network science sometimes it is not possible to actually replicate a real network and 

therefore one has to do simulations. The researcher Duncan Watts created networks by 

randomly connecting nodes and analysing the effect of these connections. Another 

researcher (László Barabási) then discovered that the amount of connections per node had a 

normal distribution, whereas in nature networks have a power-law distribution and are called 

scale-free networks. One explanation could be that older nodes have a greater opportunity to 

be the target of connections. They also mention that network science predict that a form of 

phase transition will occur network when the connectivity grows and various nodes can 

directly or indirectly via links influence other nodes. This is related to our experiments in 

§7.3 where we also observe a phase transition (by changing consistency level for a network, 

but not by changing connectivity level for a network). In our case the "influence" between 

the nodes actually corresponds to consistency that is more or less proof-bound. They write 

that "At the critical point, the set of nodes are no longer considered as independent nodes, 
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but instead, the set of nodes become a cohesive network". Our framework mechanism 

maintains a form of network cohesiveness by maintaining consistency, or more precisely it is 

a cohesiveness of the knowledge represented by the network.      

 

2.2.5 Chapter summary 

In this chapter we have explored several strands of background literature related research. 

First, we reviewed ontology evolution, ontology repair, mapping induction. Then we looked 

at theories of context, contextual reasoning, multi-context systems and distributed reasoning 

systems. Then we explored alternative approaches such as para-consistent logic and 

reasoning with inconsistent ontologies. We introduced the AGM postulates and looked at 

other systems for managing ontologies. The various strands of work are related to some 

aspect of our own approach, but none of the existing research includes a formalisation, 

implementation and evaluation of a system that has semantic autonomy (according to our 

definition in §1.5). 
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Chapter 3  A logical formalism for simple ontologies 

and ontology mappings. 

 

The purpose of this chapter is to define the syntax and meaning of relationships within 

ontologies and mappings between ontologies. An ontology mapping is a relationship 

between a concept in an ontology and a concept in another ontology. The simple ontologies 

we describe have an expressive power that partially overlaps with a small subset of OWL as 

will be explained. 

We will define the syntax of our ontology language and ontology mapping language and 

define their formal meaning.  

3.1 Introduction to the underlying logical formalisation 

We will define the syntax of our ontology language and ontology mapping language, but first 

we will briefly mention something about the underlying logical language that will be used to 

define the meaning of the syntax. 

One characteristic of our general logical formalism is that there are several domains (Di,m), 

and they have two indexes: one for describing the state and one for describing the local 

context. The reason for this is that our framework and system deals with a scenario where 

there are several contexts that have evolving ontologies – i.e. the state index formalises the 

notion of the system “moving forward” and changing. The properties and this discrete time 

will be formalised. We are using the notion of a concept P in an ontology j and that is 

denoted by the predicate Pj() in the formalism. The logical formalization of ontology 

relations and mappings (below) makes the use of quantifiers that quantify over elements in a 

domain, but we will focus on how these ontology relations and mappings interact with each 

other, instead of focusing at the interaction between actual instances and ontology 

relationships or mappings. 

 

3.1.1 The notion of context 

Informally, contexts model several cognitive points of view of a reality because every 

context hosts an ontology that represents a model of such a view. 
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From a logical point of view a “context” is something that adds an index to the logical 

language, domain and interpretation functions (i.e. these are multiplied), so every context 

will have its own truth valuation function. 

Also, it prohibits direct import of and access to concepts from other ontologies, because only 

ontology mappings can mediate such access.  

As a shortcut in this thesis, when we say ontology i, that actually refers to the ontology of 

context i. The variable i is then the context identifier, i.e. a given value of i  refers to a 

unique context. 

 

3.2 The epistemological assumptions – a motivation of the 

logical formalisation 

The epistemological assumptions are mentioned because they form a specification that will 

be satisfied by the logical formalism. They are motivated by this example of a distributed 

knowledge management system: an organization consists of several divisions and they 

conceptualise their knowledge in different ways (and therefore use different ontologies), and 

these different conceptualisations therefore represent different points of view. The divisions 

are not omniscient – instead they have knowledge about the things that are important to 

them. At the same time the divisions are parts of an organization that is a unified whole, so 

they describe the same reality. For example, if a customer interacts with different divisions 

of organization from outside, then they shouldn't contradict each other, because that would 

make the customer upset (this leads to the concept of "shared notion of what is true").  

This example motives these more generic epistemological assumptions. 

 

The epistemological assumptions are that 

 

 There is a shared notion of what is true (but it is not expressible directly and as we 

will see it is only potentially and not always permanently accessible). 

 There are several points of view that only express fragments of the shared notion, 

each in its own language. 

 Both the notion of what is true (in a given state in the domain model that is 

independent of the points of view but inexpressible directly) and what the points of 

view can see can change. 
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The first assumption implies that the logical domains of all local contexts (in a given state) 

are subsets of one bigger domain. This relates to our original motivation of building a 

distributed knowledge management system for an organization – the fact that the 

organization exists in reality and exists as an entity is an argument for declaring that there is 

an objective (but deep and underlying, i.e. not obvious at the surface level – the level of the 

concept names used in different ontologies) notion of what is true.  

However, the vocabulary is never allowed to utilize that big domain directly, so thinking 

again about the original motivation we can say that the unity of the organization is not 

expressed at the surface level (more concretely, the concepts the different divisions are 

using).  

Instead, the vocabulary is only connected to the localized domains (this is the second 

assumption) so from the application point of view one can say that only the divisions have 

their own languages, not the whole organization as such.  

The third assumption explains why in the logical formalization there is a domain model that 

has two indexes (for expressing both point of view and state). The interpretation from the 

application point of view is that the organization is changing and evolving, due to a stream of 

business needs. 

 

Finally, the state of an organization where the shared notion (of what is true) has partially 

broken down, could approximately correspond to the notion of bounded consistency defined 

in chapter 4 (that will only be represented using proof theory rather than model theory). 

 

3.3 Syntax of the languages 

3.3.1 Syntax of the ontology language 

 

We will confine ourselves in the presentation of sections 3.3 and 3.4 to an ontology language 

and ontology mapping language for which we will present efficient and complete reasoning 

(in another chapter). 

An ontology in context i can contain statements of any of these four types (where Ai and Bi 

are concepts that belong to the ontology of context i). 

 

1. COR(Ai, Bi) 

2. IS (Ai, Bi) 
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3. IS2 (Ai, Bi) 

4. DISJOINT (Ai, Bi) 

 

These statements are actually relationships between concepts, but can also be seen as 

constraints within ontologies. 

3.3.2 Syntax of the ontology mapping language 

A concept Ai in ontology i and a concept Bj in ontology j can be connected by any of these 

five mappings 

 

1. COR(Ai, Bj) 

2. IS (Ai, Bj) 

3. IS2 (Ai, Bj) 

4. COMPATIBLE (Ai, Bj) 

5. DISJOINT (Ai, Bj) 

 

These statements are actually mappings between concepts, but can also be seen as 

constraints between ontologies. 

3.4 Extended syntax of the languages 

We will now look at a more extended syntax for the ontology language and ontology 

mapping language, and this more fine-grained syntax will later be needed for defining the 

semantics of these languages.  

3.4.1 Extended syntax of the ontology language 

An ontology in context i can contain statements of any of these four types (where Ai and Bi 

are concepts that belong to the ontology of context i, and r is a state r>0). The state operators 

Nr and Gr are defined in section 3.5. 

 

Syntax Extended syntax 

COR(Ai, Bi) ( (( ( ) ( )) ( ( ) ( ))))

( (( ( ) ( )) ( ( ) ( ))))

i i i i i i i i i

i i i i i i i i i

x A x B x A x B x

x A x B x A x B x

     

    rG

rN

 

 

IS (Ai, Bi) ( ( ( ) ( )))i i i i ix A x B x   rN ( ( ( ) ( )))i i i i ix A x B x  rG
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IS2 (Ai, Bi) ( ( ( ) ( )))i i i i ix A x B x  rN ( ( ( ) ( )))i i i i ix A x B x rG
 

 

DISJOINT (Ai, Bi) ( (( ( ) ( )))) ( (( ( ) ( ))))i i i i i i i i i ix A x B x x A x B x      rGrN  

 

The intuitions (that will be formalised in later sections) behind these definitions are the 

following. COR(Ai, Bi) means that in the current and all future states all things are either both 

Ai and Bi, or neither Ai nor Bi. IS (Ai, Bi) means that in the current and all future states if 

anything is Ai then it is also Bi. IS2 (Ai, Bi) means that in the current and all future states if 

anything is Bi then it is also Ai. DISJOINT (Ai, Bi) means that in the current and all future 

states there is nothing that is both Ai and Bi.    

 

3.4.2 Extended syntax of the ontology mapping language 

A concept Ai in ontology i and a concept Bj in ontology j can be connected by any of these 

five mappings, where r is a state, xi is an instance in ontology i, yj is an instance in ontology 

j. The state operators Nr and Gr are defined in section 3.5. and Rel(xi, yj) in section 3.6. 

 

 

Syntax Extended syntax 

COR(Ai, Bi) ( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

i j i j i i j j

i j i j i i j j

x y x y A x B y

x y x y A x B y

   

  r

rN

G
 

 

IS (Ai, Bi) ( , (Rel( , ) ( ( ) ( ))))i j i j i i j jx y x y A x B y    rN
 

( , (Rel( , ) ( ( ) ( ))))i j i j i i j jx y x y A x B y   rG
 

 

IS2 (Ai, Bi) ( , (Rel( , ) ( ( ) ( ))))i j i j i i j jx y x y A x B y   rN
 

( , (Rel( , ) ( ( ) ( ))))i j i j i i j jx y x y A x B y  rG
 

 

COMPATIBLE (Ai, Bj) 

 

( , (Rel( , ) ( ) ( )))i j i j i i j jx y x y A x B y  rF  

DISJOINT (Ai, Bj) 

 

( , (Rel( , ) ( ( ) ( ))))i j i j i i j jx y x y A x B y   rN
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( , (Rel( , ) ( ( ) ( ))))i j i j i i j jx y x y A x B y  rG
 

 

The intuitions behind these definitions are analogous to the earlier ones, with a subtle 

difference that we compare predicates from two ontologies. Also, here we have COMPATIBLE 

(Ai, Bj) that means that there is a state in the future when something that is Ai (in the 

language of ontology i ) is also Bj (in the language of ontology j).  

3.5 Defining compositional semantics 

In order to define the meaning and truth evaluation of the statements above (ontology 

relationships and ontology mappings) we have to define how these compound statements can 

be de-composed into elementary ones. Typically, we will want to define how the expression  

 

, [ ]i mV exp
 

 

is evaluated, where Vi,m is a truth valuation function (where i is a context identifier and m a 

state number) that returns either 0 (false) or 1 (true) and where exp is one of the statements 

defined in sections 3.4 and 3.5, i.e. either an ontological relationship or ontology mapping.  

This truth valuation can also occur in a form with only one index (m) and then the valuation 

is done solely from the point of view of state m (and independent of context). Also, it can be 

done from the point of view of one context (i) and independent of state, or from the point of 

view of a combined context (i, j) and independent of state. The truth valuation can also occur 

in a form with no index at all, and then the valuation is done independently of state and 

context (that is equivalent to saying it is done individually in all pairs of states and contexts). 
 

All these cases will be described in later sections. 

 

The notation below will help us to describe how the original expression exp goes through the 

different stages of decomposition into its elementary constituents.  

 

A formula without quantifiers that could contain conjunctions, disjunctions or implications 

connecting formulas (we assume that it then is automatically translated into disjunctive 

normal form) from several different contexts (but all defined in a state m) will be denoted as  

<SI, m>: exp 

 

where SI is the set of the indexes of all the contexts that appear in exp (notice that this exp is 

different from the exp above, because the earlier one could contain quantifiers but not this 
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one. The exp below is yet different, because it is even more restricted.). Another case is 

when the formula completely belongs to a single context. The combination of state m and 

local context i can be written as <i, m> and 

 

<i, m>: exp 

 

means that all constants and predicates in the expression exp belong to Li,m  (a propositional 

language defined in section 3.6) and are interpreted in state m and local context i. This also 

covers the case when i is a combined context (j, k) , and then exp belongs to Lj,m×Lk,m. 

 

There is a set of discrete states T, and a relationship L(sx, sy) that means that a state sy 

succeeds a state sx (but it does not mean that sy is the immediate successor of sx). L() is 

transitive, antisymmetric and irreflexive. An additional constraint is the following one and 

this means that the states are totally ordered: 

, ( )x y x y x y y xs T s T s s s s s s       
 

Notice that this relation L is different from the propositional language L above. 

 

We then introduce some symbols and they are used as quantifiers over many states, when 

expressing ontology mappings (i.e. they are a type of practical abbreviations).  

If the expression exp in 
IS ,z >: exp does not have the state parameter z explicitly 

mentioned, i.e. only the context identifier of the concepts is mentioned, then we assume that 

the concepts are implicitly defined in state z that becomes a parameter.  Here, we define the 

truth value of expressions with state operators, from a point of view of context i. 

 

[ ( )] 1i rV i,z >: exp G    iff ,( )( ( , ) [ ] 1)i s z=s's S L r s V exp
    

                                         

[ ( )] 1i rV i,z >: exp F  iff ,( )( ( 1, ) [ ] 1)i s z=s's S L r s V exp
                             (1) 

[ ( )] 1i rV i,z >: exp N  iff  , [ ] 1i r z=rV exp   

 

We use the notation z=s'exp to mean that in the expression exp we have substituted all 

occurrences of z with s’. The intuitive description of these state operators is the following. Gr 

means that something is true in all states after r. Fr means that something is true in at least 

one future state after r. Nr means that something is true in state r. 
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When the state operators are applied to an expression that contains predicates from two 

different contexts i  and j then their meaning is the following. Here, (i, j) is a combined 

context viewpoint from which the truth valuation is done.  

 

( , )[ ( { , } )] 1i j rV i j ,z >: exp G    iff ( , ),( )( ( , ) [ ] 1)i j s z=s's S L r s V exp
      

( , )[ ( { , } )] 1i j rV i j ,z >: exp F  iff ( , ),( )( ( 1, ) [ ] 1)i j s z=s's S L r s V exp
        (2) 

( , )[ ( { , } )] 1i j rV i j ,z >: exp N  iff  ( , ), [ ] 1i j r z=rV exp   

 

Why have we defined the state operators like this? Our inspiration is (Gamut 1991, page 33) 

and our definitions of Gr and Fr are similar to theirs, except 1) that they do not include the 

notion of context in the normal definition of these operators, and 2) instead of including the 

state variable r inside the operators they make valuation of the operators state-dependent, 

e.g. the valuation of G would then say that it is true in all states after the one from which the 

valuation is done. The reason we chose another definition is because it corresponds better to 

our application where ontology relationships and mappings are created in certain states and 

then remain, unless they are deleted. So the fact that that a certain ontology relationship or 

mapping is created in a certain state is independent of state.  

 

Here follows a definition that takes care of the case where a quantifier precedes the 

statement. The reason we need these definitions is for defining ontology mappings – they 

always contain one of these operators. Four different cases are presented. 

 

[ , : ] 1m i IV v S m exp   
  

assuming 
Ii S iff                                                  (3) 

For every ,i md D , if , ( )i m iI v d  then [ , : ( )] 1m I iV S m exp v  
 

Otherwise, [ , : ] 0m i IV v S m exp   
 

 

[ , : ] 1m i j IV v v S m exp   
 
assuming ,   Ii j S i j    iff                                             (4) 

For every pair ,i md D , ,j md D  if , ( )i m iI v d and , ( )j m jI v d   then 

[ , : ( , )] 1m I i jV S m exp v v  
 

Otherwise, [ , : ] 0m i j IV v v m S exp     

 

[ , : ] 1m i IV v S m exp   
  

assuming 
Ii S iff                                                                    (5) 
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There is at least one ,i md D  and , ( )i m iI v d  such that [ , : ( )] 1m I iV S m exp v  
 

Otherwise, [ , : ] 0m i IV v S m exp   
 

 

[ , : ] 1m i j IV v v S m exp   
 
assuming ,   Ii j S i j    iff                                             (6) 

There is at least a pair ,i md D , ,j md D  and , ( )i m iI v d and , ( )j m jI v d  such that 

[ , : ( , )] 1m I i jV S m exp v v  
 

Otherwise, [ , : ] 0m i j IV v v S m exp     

 

We shall now present a recursive definition of the truth value of a compound expression that 

is a conjunction or disjunction of formulas from several different contexts. At this stage all 

the state operators, implications and quantifiers have been removed from the expression that 

we evaluate (using the rules above). Here, the truth valuation is made from a state m and then 

it evaluates all sub-expressions inside their individual contexts. 

 

,[ , : ] ( [ , : ], [ , : ])m I i m m IV S m exp Max V i m exp V S m exp      
               

                    (7)
 

where 
Ii S  and

 
/ { }I IS S i    

 

So it means that we use recursion to evaluate the sub-expression that belongs to a context i 

and then evaluate the remaining part of the expression (i.e. formulas that do not belong to 

context i) 

 

Another special case is the equivalence (assuming i j ):                                                            

1 2[ , : , : ] 1mV i m exp j m exp     iff    (8) 

, 1 , 2[ , : ] [ , : ]i m j mV i m exp V j m exp    
 

 

The final special case is the implication (assuming i j ):                                                            

( , ), 1 2[ ( , ), : ( )] 1i j mV i j m exp exp    iff    (9) 

( , ), 1 2[ ( , ), : ( )] 1i j mV i j m exp exp    
 

 

If we now behold the statements from section 3.4 and  procedures from section 3.5, then we 

see that if we apply the decomposition rules in this section, all state operators, quantifiers 
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and implications will be removed. We will now summarize the decomposition procedure that 

takes statements from section 3.4.1 (ontology relationships)  and 3.4.2 (ontology mappings) 

as the starting point. Procedures (1) and (2) remove all state operators, procedures (3), (4), 

(5) and (6) remove all quantifiers, and finally (8) and (9) remove equivalence and 

implication symbols.
 

 

3.6 Definition of the formal semantics (model theory)  

By using the rules from section 3.5 we have now decomposed the truth valuation of 

compound statements from section  3.4 into truth valuation of expressions vexp (these 

expressions have a simple structure that is described below) with the following limited 

language: 

 

, :Ivexp m S exp   

 

where 

 

 

 

 

We will therefore present the definitions that are needed to evaluate the meaning and truth 

value of all possible expressions vexp. 

 

Li,m is the language used in state m and context i and it is specified by a set of unary 

predicates 
1

iP , 
2

iP ... 
n

iP and a set of constants a1,a2..., am 

 

( )P a  and ( )P a are well-formed formulas in F. 

If F1 and F2 are well-formed formulas then 
1 2F F

 
and 

1 2F F
 
are also well-formed 

formulas F. 

 

A model M for a set of languages Li,m (m=0, 1, … corresponding to the states s0, s1, …, and 

i=0, 1, … corresponding to local contexts c0, c1, …) consists of a set of domains Di,m (that are 

non-empty sets, and m=0, 1, … and i=0, 1, …) and a set of interpretation functions Ii,m (m=0, 

1, … and i=0, 1, …) which are defined on the set of instances and predicate names in the 

 i j, : ( ) <(i,j),m>:Rel b ,di ivexp vexp vexp vexp vexp vexp i m A x     
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vocabulary of Li,m and adhere to the following rules below. We first define how to evaluate 

variables.  

 

g is an assignment that assigns an individual to each variable. It is defined in this way: 

 

 𝑡 𝑀,𝑔=  Ii,m(t) if t is a constant in Li,m. 

 g(t) if t is a variable 

 

If x is an constant in Li,m then Ii,m(xi)Di,m 

If P is an n-ary predicate name in Li,m, then Ii,m(Pi)⊆ Di,m
n
. 

 

The truth value of any possible formula is defined in this way (we implicitly assume that the 

truth valuation function Vi,m uses the model M): 

 

If ( )P t  is an atomic sentence in Li,m (i.e. the language of local context ci in state sm), then  

 , [ ( )] 1i mV P t  iff  𝑡 𝑀,𝑔 ∈ 𝐷𝑖 ,𝑚  and   𝑡 𝑀,𝑔  , ( )i mI P  and 

, [ ( )] 0i mV P t  iff   𝑡 𝑀,𝑔 ∈ 𝐷𝑖,𝑚  and   𝑡 𝑀,𝑔  , ( )i mI P . 

, [ ( )] 1i mV P t   iff , [ ( )] 0i mV P t   

, [ ( )] 0i mV P t   iff , [ ( )] 1i mV P t  . 

Given a well-formed formula (as defined above) having the form P Q in the state sm and 

local context ci, its truth value (using the assignment g and model M) is 

, [ ] 1i mV P Q   iff , [ ] 1i mV P  and , [ ] 1i mV Q   

, [ ] 0i mV P Q   otherwise 

Given a valid formula (as defined above) having the form P Q in state sm and local context 

ci, its truth value value (using the assignment g and model M) is 

, [ ] 1i mV P Q   iff , [ ] 1i mV P  or , [ ] 1i mV Q   

, [ ] 0i mV P Q  otherwise 

If ( )P t  belongs to Li,m then  

the truth value of , [ ( )]j mV P t is undefined iff j≠i. 

 

We then introduce the Rel() operator where 
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 ( , ), i j , ,I (Rel , )i j m i m j mx y D D   

 

and its truth valuation (from a combined context (i,j)) 

  ( , ), i j[Rel , ] 1i j mV x y       

If  𝑥𝑖 𝑀,𝑔 ∈ 𝐷𝑖,𝑚 ∧  𝑥𝑖 𝑀,𝑔 =e1 and 

  𝑦
𝑗
 
𝑀,𝑔

∈ 𝐷𝑗 ,𝑚 ∧  𝑦
𝑗
 
𝑀,𝑔

=e2 and e1=e2 

Otherwise,  ( , ), i j[Rel , ] 0i j mV x y 
 

 

The intuition behind this definition is that xi  and yj refer to the same entity in reality. 

This definition makes sense if we consider that the domains D1,s, D2,s, …, actually overlap 

sometimes. We assume that there is a domain D that contains all the local domains D i,m (i 

traverses all local contexts, and m traverses all existing states).  

 

Also, because the domains D1,s, D2,s, …, actually can overlap, we can view them as subsets 

of a domain Ds – i.e. what is true in a given state s independently of what the local contexts 

can see is true. However, we never use the domain Ds to create a centralised knowledge 

representation as such (due to epistemological assumptions discussed in section 3.2). 

 

This special case is also true: 

 Rel b ,di i true  if  b=d 

Because every instance corresponds to itself. 

 

As the next step we have to define the truth value of compound expressions that contain 

formulas from different ontologies. 
 

 

We now add the following constraints to our logical formalism, where means exclusive 

or. 

, 1 , , 1 ,( 0 (I ( 1, : ) I ( , : )) )i m i i m i i i m i i mm m m i b m i b b L b L               

, 1 , 1, ,( 0 (I ( 1, : ) I ( , : )) )i m i i m i i m i i m im m m i P m i P P L P L               

 

The meaning of the two statements is that a constant that has a certain name retains the same 

meaning in the next state unless it is deleted in the latter states or did not exist in the former 
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state and that a predicate (that corresponds to a concept) retains both its existence and 

meaning in the next state, unless it is deleted in the latter state or did not exist in the former 

state.   

 

The mappings as such have a logical objective existence, although they map between 

different local (subjective) models. It would have been possible to investigate if the 

mappings as well should only have local existence, e.g. only exist within the local contexts 

(see for example [9]), but this would have made the formalism more complex. Instead, we 

want to focus on the dynamic aspects of the system and it is therefore more important that a 

certain local context is responsible for having proposed that a certain mapping is created 

(and this is not visible in the model semantics as such). The contexts therefore exhibit agent-

like behaviour, because they have a form of autonomy, but this autonomy to change 

knowledge is not visible in the model semantics (but the formalism in chapter 5 will 

illustrate it). 

 

 

3.7 The relationship between our ontology language and 

OWL 

Because OWL is an accepted standard (albeit not the only one) for expressing ontologies on 

the web we mention how a small subset of OWL axioms could be mapped to our loic and 

vice versa. 

 

 

OWL Axiom Our language OWL Axiom Our language 

𝐶 ≐ 𝐷 COR(Cj, Dj) 𝐶 ⊒ 𝐷 IS2 (Cj, Dj) 

𝐶 ⊑ 𝐷 IS (Cj, Dj)  𝐶 ⊑ D  DISJOINT (Cj, Dj) 

 

The first of these relationships is equivalence between two concepts, the second means “is 

subsumed by”, the next “subsumes” and the last one expresses disjointness. 

If we assume that a certain relationship was created in a certain state, then we can translate 

axioms written in OWL to our own notation, using the table above. C and D denote concept 

names in OWL. So if OWL axioms that form an ontology are imported in state r then that 

ontology is re-created in our logical language in state r. 
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3.8 The relationship between our ontology mapping 

language and C-OWL 

Let us now look at the ontology mappings, and compare them to the mapping language C-

OWL. These are five possible ontology mappings in our logic between a concept A in 

ontology i and a concept B in ontology j: 

 

 COR(Ai, Bj)   

 IS (Ai, Bj)    

 IS2 (Ai, Bj ) 

 DISJOINT (Ai, Bj)     

 COMPATIBLE (Ai, Bj) 

 

For example COR() describes that in all future states two concepts from two different 

ontologies will have the same meaning, whereas IS() expresses subsumption across 

ontologies (that will persist in future states). COMPATIBLE() is a logically “weak” relation 

between two concepts. 

Our mappings approximately correspond to (but C-OWL does not have a temporal notion of 

state, and our logic does not have directionality) and could be created by importing the 

following 5 C-OWL bridge rules (Bouquet et al 2003): 

 

𝑖: 𝐴
  ≡   
   𝑗:𝐵,    𝑖: 𝐴

  ⊑  
  𝑗: 𝐵,    𝑖: 𝐴

  ⊒   
   𝑗: 𝐵,    𝑖: 𝐴

   ⊥   
   𝑗: 𝐵,    𝑖: 𝐴

  ∗  
  𝑗:𝐵 

 

The rightmost C-OWL bridge rule here corresponds to our relationship COMPATIBLE(). 

 

3.9 Chapter Summary 

In this chapter we have defined the formal logic of ontology relations and mappings. The 

main features of this logical formalism are a domain model indexed both by context and 

state, i.e. using a two-dimensional index. This means that truth is defined for a given context 

and state. We have also defined state operators that can be used for creating expressions that 

hold in many states, and they can express things such as "in a future state" or "in all future 

states". The definitions of ontology relations and mappings use such state operators.  
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Chapter 4   A computational framework for combining 

logical elements and reasoning about consistency 

and redundancy 

4.1 Introduction 

In Chapter 3 we described a formal theory that defines the formal meaning of ontology 

mappings and ontologies themselves. That theory becomes useful if we can do computations 

with it and reason about ontologies and mappings. We firstly describe the motivation behind 

these computations and we then show how to map the semantic meaning of ontologies and 

mappings to computational elements that can be 

processed by algorithms with good computational 

complexity (that will be quantified).  When we write 

"mapping/relationship" then we refer to the 

computational element to which both ontology 

mappings and relationships within ontologies are 

mapped. "Ontology mapping" is a phrase used in the 

ontology community that we will use here as well, 

despite the fact that ontology mappings are not 

mappings in the mathematical sense, but rather 

relations. 

4.2 Motivation 

In order to be able to evolve a set of ontologies (currently, these interconnected ontologies 

evolve one at a time) and mappings and at the same time maintain consistency between them 

where it is needed, we formalize the ontologies 

and the mappings between them. We mention a 

very simple example problem that we will try to 

solve using the proposed formalization and proof 

methods.  

 

Here follows a simple example that is illustrated 

in Figure 6. We have two ontologies O1 and O2, 

c1:O1 
c2:O2 

M12 

pc=1 

Figure 7. An illustration of the sphere 

of consistency encapsulating both 

ontologies (O1 and O2) and the set of 

mappings (M12) connecting them.  

Figure 6. Two example ontologies 

(connected by mappings) we will 

reason about. 

COMP. 

IS 

IS 

O1 

colour 

blue 

l_blue 

O2 

ccode 

bright 
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and the first ontology contains the concepts of the set {colour, blue, l_blue} and the second 

one the concepts of the set {ccode, bright}. We also have the following subsumption 

hierarchies within the ontologies: Is(blue1, colour1), Is(l_blue1, blue1), Is(bright2, ccode2). 

Then we define these mappings between the two ontologies: COMPATIBLE(blue1, ccode2), 

Is(l_blue1, bright2), Is(bright2, colour1). The reason for adding the COMPATIBLE(...) relation 

above is that we have been informed that there is an overlap in the meaning of the concepts 

that it maps. We want to investigate if changes in this system (and systems like this) alter 

consistency. When we say that "the system is consistent" in this situation we actually imply 

that both ontologies and their mappings taken together are consistent. We will represent this 

by defining a so called sphere of consistency that includes both ontologies and the set of 

mappings between them. This is illustrated in Figure 7 and we assume in this example that 

we want to maintain perfect consistency – as we will see, that is formalised by setting a 

consistency parameter pc to 1. Now we would like to know if this system, given these 

circumstances, is consistent with the mappings COMPATIBLE(blue1, bright2) or 

DISJOINT(blue1, ccode). We therefore have to investigate two separate cases, and the answer 

can be either yes or no, in each case. 

Real scenarios will assume more and larger ontologies and more mappings. 

 

4.3 Spheres of consistency 

4.3.1 Defining Spheres of consistency 

In a large knowledge infrastructure that has many ontologies it is sometimes infeasible for 

the reasoning to spread across the whole infrastructure, so it sometimes should be bound to 

knowledge regions that consist of ontologies and mappings between them (e.g. Zhao et al. 

2007 also assumes this). Additionally, as we have motivated in (Zurawski et al. 2008), 

sometimes, we could be interested in only looking for contradictions that require less 

computations to find (i.e. they are more "obvious" as will be defined later) – this corresponds 

to contradictions that have smaller proofs. Further motivation of proof-bounded consistency 

is to be found at the end of §4.3.2. 

 

Therefore, we now define spheres of consistency, in the following way: 

 

Given a set of contexts {c1, c2, c3, … } 

where every context ci has an ontology Oi 



83 

 

and given a set of mapping sets {m12, m13, m23, … } 

where every mij is the set of all mappings connecting contexts i and j where i<j, 

a sphere of consistency is defined as 

 

                                                 
({ , ,...},{ , ,...}, , )Cons c c m m p pc ri j ij ik               

(1) 

                                       

where {ci…} and {mij…} are defined as above and pc is a continuous consistency parameter 

that can vary between  

 

pc=1 which means full consistency, and  

pc=2 which means that inconsistencies of all depths are fully allowed 

 

When 1<pc<2 then the sphere of consistency defines a proof-bounded consistency, where 

there is no proof of contradiction where the proof search tree has a smaller depth than d (that 

must be an integer), and pc and d are related through the following formula: 

                                                 

2
2

1

d
p
c tot

s


 

                                                      (2)

 

                                               

 

where tots is the total number of relationships in all the ontologies and mapping sets that are 

included in the sphere of consistency. In an analogous way we define 1 2pr  that 

measures the amount of bounded redundancy within a sphere of consistency where there is 

no proof of redundancy where the proof search tree has a smaller depth than d', and pr and d' 

are related through this formula: 

                                                  

2
2

1

d
p
r tot

s

 
 

                                                       (3) 

 

                                                

 

4.3.2 Explaining and motivating the definition of spheres of 

consistency 

The reasoning layer detects if a proposal would cause a contradiction or redundancy within 

some specified spheres of consistency. If consistency has to be maintained within a 

reasoning space that has ontologies and/or mappings (that in total contain tots relationships) 

then in the worst case the depth of the reasoning proof search tree will be  d=tots+1 because 
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 C1 

 C2 

 C3 

 C4 

COR(C1,C2) 

     COMPATIBLE(C2,C4) 

      DISJOINT(C1,C3) 

COR(C3,C4) 

Figure 8. An example of 

contradiction between concepts 

C1 and C4. 

if there is no contradiction smaller than d=tots+1, complete consistency can be guaranteed
5
. 

The reason for this is that the search space is limited and this particular reasoning algorithm 

uses a search method that systematically will explore this search space, without unnecessary
6
 

loops (because both Algorithm A and B have loop-prevention mechanisms, as described in 

§4.12.3 and §4.12.4) . If we use d=tots+1 in formula (2) then pc=1, i.e. full consistency, but 

d=2 will give the result pc=2, i.e. all inconsistencies are possible. The smallest contradiction 

that our reasoning recognizes has size 2 [e.g. Figure 8 shows a system of mappings that 

correspond to a contradiction proof-tree
7
 of depth 4] and if contradictions of that size are 

accepted then all operations that would introduce contradictions are accepted. 

 

The reason why we have chosen to define consistency 

in terms of the depth of the proof search tree is that we 

can make sure that the system holds this property 

incrementally when it moves to the next state. Before 

the whole system S starts to evolve the user has to 

define all spheres of consistency, their regions (i.e. the 

sets in formula (1)) and their individual degrees pc and 

pr. Then there must be some expectation of the size the 

system will reach, and using that expectation (as tots) 

the reasoning layer will then calculate d in every sphere using formula (2) but solving for d. 

Then a proposed change that would introduce a contradiction of length d or smaller would be 

discovered by the reasoning mechanism that always investigates all possible contradictions 

(that the proposed change would create) starting with the small ones.    

Finally, one should note that an inconsistency that has a proof tree that is more shallow, is a 

more serious one because it is very direct (e.g. when the size is 2), whereas if it requires a 

more extensive proof then there are more choices for how to resolve it and a smaller 

proportion of the relationships have to be removed. One could also claim that in 

organizational policies the “obvious” contradictions first have to removed, whereas the more 

subtle ones are discovered later. Also, in the agent-related theory of “bounded-rationality” 

                                                     

5
 This is very much dependent on the logic used, so this worst-case depth is only true because of the 

particular logic that we use. For other logics, the worst-case depth could be exponential in tots or even 

infinite. 

6
 I.e. traversing a loop more than once. 

7
 A proof-tree for this case would start with the negation of one of the relations, e.g. Compatible(C2, 

C4) and the children of that node would be created by traversing the other relations. 
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(see Simon 1991) agents are required only to be able to achieve tasks that require a limited 

amount of reasoning – and that is true for smaller contradictions. 

 

4.4 Providing Functionality of the Reasoning Layer  

The reasoning methods described here provide the functionality of the reasoning layer. To 

summarize, this is the vocabulary of the reasoning layer: 

 

 

Expression Meaning 

F: C_CONTRA(sp, ont_op) returns true if ont_op would have introduced a 

contradiction in sphere sp of degree dc that is higher 

than the defined degree pc in that sphere. 

F: IS_INFERABLE(sp, ont_op) returns true if ont_op would have introduced a 

redundancy in sphere sp of degree dr that is higher 

than the defined degree pr in that sphere. 

F: IS_NEW(sp, ont_op) returns true if neither F: C_CONTRA(sp, ont_op) or 

F: IS_INFERABLE(sp, ont_op) are true. 

 

We will describe the algorithms that provide this functionality.  

 

The current list of operations that evolve ontologies or mappings between them is the 

following (where c, c' and d are concept names and j and k are ontology identifiers): 

 

ont_op = add_mapping(m, cj, c'k)  add_ontorel(m, cj, dj)  

 delete_mapping(m, cj, c'k)   delete_ontorel(m, cj, dj)   

 

4.5 Formal computational notation 

4.5.1 Definition of the computational notation and its connection 

to the formal semantics 

We will firstly define the formal computational notation and then we show how algorithms 

will use it for reasoning, such as the one mentioned. This means that we will have a 

procedure for combining any two arbitrary relationships/mappings (from our language) using 
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composition into a new relationship/mapping (that also can be another expression or 

nothing), so we define a partial composition operator. If the process of reasoning and 

deciding if a new relationships/mapping is consistent with a set of existing ones or creates 

redundancy with respect to them only requires this sub-procedure that can combine any two 

adjacent
8
  relationships/mappings into a new one, then there is a procedure for whole task (of 

verifying consistency) itself. The fact that a new proposed relationship/mapping is consistent 

with respect to existing ones, means that it does not generate a contradiction when combined 

with these existing entities. 

 

Call every relationship/mapping between two concepts within one ontology or mapping 

between two concepts in different ontologies, mi, where i is its unique identifier. 

 

A relationship mi that holds between the concept C1 in ontology j and the concept C2 in the 

ontology k, can always be expressed using the following general form (consisting of two 

different types of definitions): 

 

1 2 1 2( , ) ( ( ( , )))i j k j km C C op f C C  or  

1 2 1 2 1 2( , ) ( ( ( , ))) ( ( ( , )))i j k j k j km C C op f C C op f C C      

 

 , , ,  , ,a b cop N F G a b c S  (the set of states) 

 

   
   

1 2

1 2

1 2

( ) ( ), ( ) ,  and Re ( , )

if      ( ), ( ) ( ( )), ( ( ))

if i=j         ( ), ( ) ( ), ( )

i j

i j i j

i i

f f f R l x y

i j f f x y R f x y R f

f f x f x f

  

 

 

 

     

  

  

   

 1 2 1 2 1 2 1 2 1 2( , ) , , ,f e e e e e e e e e e        
 

 

Rel(xi,yi) was defined in section 3.6. Here, op is a state operator, ( )  one of two quantifier 

operators and 
1 2( , )f e e a Boolean function with two variables (this particular notation will 

be described later in this section and translated to standard first order logic). 

These expressions only restate the formal expressions from §3.4 by subdividing the formal 

expressions in three parts and describing every part by a more minimal description, that can 

                                                     

8
This means that they have at least one variable in common. 
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be traced back to the formal expression if needed (by using the definitions above) – an 

example of this is to be found in section 4.5.2. 

So the first part consists of a state operator symbol that is mapped to state operators defined 

before. The second part consists of a quantifier operator and it refers to one of two 

expressions that begin with quantifiers (in the case of mappings between two concepts from 

different ontologies) or two other but similar expressions that begin with quantifiers (in the 

case of relationships between two concepts in one ontology). This means that we map two 

kinds of formal expressions to the same computational notation. If we want to map the 

computational notation of these quantifiers (i.e. 
1 or 

2 ) back to the formal notation we 

have to look at the two variables ( 1 jC and 
2kC ). If j=k then 

1 and 
2 are mapped to the 

second formal expression, whereas if j k then they are mapped to the first formal 

expression. This is natural if one considers the definition of R in section 3.6 and that 

 

 
( ( )) Rel( , ) ( )

( ( )) Rel( , ) ( )

i j i j i

i j i j i

x y R R x y i j x

x y R R x y i j x

 

 

      

      
 

  

The third part of the expression above is a Boolean function in DNF-form that has two 

variables and can contain four elements (none, some or all of them). These elements are 

actually connected using disjunction, so e.g.  1 2 1 2 1 2( , ) ,f e e e e e e    using this 

notation corresponds to 
1 2 1 2 1 2( , ) ( ) ( )f e e e e e e    using conventional notation. Two 

other examples are 
1 2( , ) {}f e e false   and 

 1 2 1 2 1 2 1 2 1 2( , ) , , ,f e e e e e e e e e e true        . So these last two 

examples cover the extreme cases.  

A technical detail is that every time we encounter the second type of relationship/mapping 

(i.e. 1 2 1 2 1 2( , ) ( ( ( , ))) ( ( ( , )))i j k j k j km C C op f C C op f C C     , we split it into two 

separate mappings that will be processed separately.  

4.5.2 Restating the originally proposed types of mappings and 

relationships 

The computational notation above allows the creation of a huge variety of mappings 

(between ontologies) or relationships (within ontologies). Currently we will however stick to 

the five originally proposed mapping types and four relationship types and restate them in 
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this new concise language. If we use the definitions from §4.5 then we will see that both the 

four ontology relationships from §3.4.1 and five ontology mapping types from §3.4.2 can be 

mapped to the following shared computational notation. In the following notation, r is a 

state, e1 is the name of the logical predicate that corresponds to the concept C1j and e2 is the 

name of the logical predicate that corresponds to the concept C2k. I.e. e1=C1j(x) and 

e2=C2j(y). 

 

1. CORRESPONDENCE [COR.] (C1j, C2k) 

1 1 2 1 2 1 1 2 1 2{ , } { , }r rN e e e e G e e e e         

2. IS (C1j, C2k) 

1 1 2 1 2 1 2 1 1 2 1 2 1 2{ , , } { , , }r rN e e e e e e G e e e e e e           

 

3. IS2 (C1j, C2k) 

1 1 2 1 2 1 2 1 1 2 1 2 1 2{ , , } { , , }r rN e e e e e e G e e e e e e         

 

4. DISJOINT (C1j, C2k) 

1 1 2 1 2 1 2 1 1 2 1 2 1 2{ , , } { , , }r rN e e e e e e G e e e e e e           

 

5. COMPATIBLE (C1j, C2k) 

2 1 2{ }rF e e   

 

As we will see in the applications of this formalism, r is instantiated to the value of the state 

when these relationships/mappings are created. 

We now show an example where we take a simple mapping between two concepts, unfold 

the computational notation and actually write explicitly what it means formally. This will not 

be repeated, because the full-length formalization is very long and impractical to use 

explicitly, when we want to combine mappings.   

 

If we return to the example in §4.2, then we know that Is(l_blue1, bright2) and using the 

computational notation it can be briefly described as below. In this example we will assume 

that the mapping was created in state 7 (i.e. r=7). We will remind the reader that the index i 

refers to things that belong to ontology Oi whereas index j refers to ontology Oj and that s´ is 

a state variable that is used to refer to a range of states (possibly infinitely many). The 
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variable z is an implicit variable that decides in which state the predicates inside the 

valuation functions are defined and evaluated. 

 

Is(l_blue1, bright2)  (definition for Is() from above) 

 

1 1 2 1 2 1 2 1 1 2 1 2 1 2{ , , } { , , }r rN e e e e e e G e e e e e e            
 

 

7 1 1 1 2 2 1 1 2 2 1 1 2 2

7 1 1 1 2 2 1 1 2 2 1 1 2 2

{ _ ( ) ( ) , _ ( ) ( ) , _ ( ) ( ) }

{ _ ( ) ( ) , _ ( ) ( ) , _ ( ) ( ) }

N L blue x Bright y L blue x Bright y L blue x Bright y

G L blue x Bright y L blue x Bright y L blue x Bright y





     

     

 

 

(1,2),7 1 1 1 2 2 1 1 2 2

1 1 2 2

(1,2), 1 1 1 2 2

1 1 2 2 1 1

[ (( _ ( ) ( )) ( _ ( ) ( ))

( _ ( ) ( ))) ] 1

( )( (7, ) [ (( _ ( ) ( ))

( _ ( ) ( )) ( _ ( )

z=7

s

V L blue x Bright y L blue x Bright y

L blue x Bright y

s S L s V L blue x Bright y

L blue x Bright y L blue x Bri





    

   

     

     2 2( ))) ] 1)z=s'ght y  

 

 

(1,2), 1 2 1 2 1 1 2 2

1 1 2 2 1 1 2 2

( )( (6, ) [ (Rel( , ) (( _ ( ) ( ))

( _ ( ) ( )) ( _ ( ) ( ))))) ] 1)

s

z=s'

s S L s V x y x y L blue x Bright y

L blue x Bright y L blue x Bright y


       

       

4.6 Proof Methodology 

We will described the proof task that has to be carried out in order to deliver the 

functionality (described in §4.4) that is required by the statements F: C_CONTRA(sp, ont_op),   

F: IS_INFERABLE(sp, ont_op) and  F: IS_NEW(sp, ont_op), where sp is the sphere of 

consistency where the reasoning is done. This means that all the elements (both ontologies 

and ontology mappings) from that sphere of consistency are included in the reasoning 

process in their computational form.  

4.6.1 The general proof tasks 

There is a sphere of consistency sp (these were defined in §4.3) and it contains a set of 

ontologies O={O1, O2, O3, …} and a set of concepts C={C11, C12, C22 …, Cnm}. Every 

concept Cax belongs to a single ontology Ox. 
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Then, every possible case that needs to be proved has the following form, where m1…mn is 

the set of existing relationships/mappings (in computational form) and mn+1 is the new 

proposed mapping. 

 

M is the following set: 

 

1( , )ax bym C C and ,  ax x by yC O C O   

2( , )ax bym C C and ,  ax x by yC O C O   

. 

. 

( , )n ax bym C C and ,  ax x by yC O C O   

 

M' is then the following element:
 

 

1( , )n ax bym C C and ,  ax x by yC O C O   

 

Proof task 1. Calculating if a proposed change introduces a 

contradiction. 

The proof task of F: C_CONTRA(sp, ont_op) is then to test mechanically if performing the 

ontology operation ont_op on the set M in the sphere of consistency sp will result in a 

contradiction of degree dc that is higher than the defined degree pc in that sphere. The answer 

will be true or false. As a special case, if pc=1, then the algorithm will answer if any 

contradiction would be generated by the operation ont_op. 

 

Proof task 2. Calculating if a proposed change is redundant. 

The proof task of F: IS_INFERABLE(sp, ont_op) is then to test mechanically if performing the 

ontology operation ont_op on the set M in the sphere of consistency sp will result in adding a 

redundant relation that has a proof that causes a redundancy degree dr in that sphere that is 

higher than the defined degree pr in that sphere. Typically, "change" means adding a relation 

to the set M.  The answer will be true or false. As a special case, if pr=1, then the algorithm 

will answer if the added relation has a proof of any length that causes a redundancy. A 
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redundancy is introducing a piece of knowledge (here: relationships/mapping) M' that could 

already by inferred from M by applying the rules of inference described in this chapter
9
. 

 

Proof task 3. Calculating if a proposed change introduces a change 

that neither generates a contradiction or redundancy. 

The proof task of F: IS_NEW(sp, ont_op) is then to test mechanically if performing the 

ontology operation ont_op on the set M in the sphere of consistency sp will result in that a 

change that neither generates a contradiction or redundancy (of degree dc that is higher than 

the defined degree pc in that sphere). The answer will be true or false.  

Given a sphere of consistency sp and ontology operation ont_op, then if F: C_CONTRA(sp, 

ont_op) returns false and F: IS_INFERABLE(sp, ont_op) returns false, then F: IS_NEW(sp, 

ont_op) will return true. 

 

4.6.2 A proof task example 

In the aforementioned example (from §4.2) we have to investigate whether these two sets of 

ontology relationships (belonging to ontology O1 and O2 respectively)  

 

O1  

Is(blue1, colour1) 

 Is(l_blue1, blue1) 

 

 O2 

 Is(bright2, ccode2) 

 

and this set of mappings 

 

 COMPATIBLE(blue1, ccode2)  

 Is(l_blue1, bright2)  

 Is(bright2, colour1) 

 

                                                     

9
 Please notice that this proof task (and the algorithm proposed later) doesn't calculate if an added 

relation makes some of the existing relations redundant. That should be done in future work. 
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is consistent with adding  

 

 COMPATIBLE (blue1, bright2) 

 

I.e. that F: C_CONTRA (sp, add_mapping(COMPATIBLE (blue1, bright2), c1, c2)) is false, where sp 

is the set with all the three ontology relationships and three ontology mappings above. c1 is 

then the context proposing to add the mapping from its ontology to that of context c2. 

  

And then we have to test if the same set of six mappings is consistent with 

 

 DISJOINT(blue1, ccode2) 

 

I.e. that F: C_CONTRA (sp, add_mapping(DISJOINT(blue1, ccode2), c1, c2)) is false, where sp is the 

set with all the three ontology relationships and three ontology mappings above. 

Moreover, let us assume that the set of mappings was created during the states 1 to 6, 

whereas the proposed mapping (i.e. Compatible in the first test, and Disjoint in the second 

test) would belong to state 7. 

In order to be able to reason about what happens when two or more mappings are combined 

(that is a step in the reasoning process), we have to take a look at rewrite rules. The rewrite 

rules will apply to the three parts of every relationship/mapping (as described in §4.5). It is 

therefore natural that there will be three kinds of mechanical processes, because they process 

one part each, and these processes (e.g. rewrite rules) will be described in sections 4.7, 4.8 

and 4.9 Section 4.10 describes how to combine their results. 

 

4.7 Rewrite Rules for state operators 

We will now describe the steps of the mechanical procedure that we have outlined in §4.5.1. 

where two relations are composed. The first part of that procedure is to compose states. 

Therefore, the first set of rewrite rules focus on the state operators. A comment about 

notation: In this thesis we use the arrow  for two different purposes. Firstly, it is used 

when describing mechanical rewrite rules (as we do below). Secondly, it is used for showing 

derivation steps in proofs using first order logic. The context should make it clear which 

meaning it has. 

 

We will now use the following notation: 
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 , where  , , , , ,  , ,a b cN G F a b c S   ,  

 

This means that the two symbols on the left of the   are rewritten to the symbol on the 

right side, and this corresponds to composing these symbols (we see an illustration of this at 

the end of §4.10, and if e.g. the first symbol operates on the arguments e1 and e2, the second 

on the arguments e2 and e3, then the resulting symbol operates on e1 and e3).  

The N, G and F symbols have been defined before. The operator means that none of the 

operators , ,a bN G F  can be inferred to hold there.  

Now we can easily describe how the operators are combined in the nine possible standard 

cases: 

 

 if  or  if  

 if  or  if 

a b a

a b a

a b

N N N a b a b

N G a b N a b

N F







  

  



 

max( , )

 if  or  if   

 if  or  if 

a b b

a b a b

a b b

G N b a N b a

G G G

G F F b a b a





  



  

 

 if  or  if  

a b

a b a

a b

F N

F G F a b a b

F F









  



 

 

The non-standard cases are these: 

,  ,  ,  

,  ,  ,  

a a a

a a a

N G F

N G F

     

       

  

   
 

 

Note that the order in which the operators are combined does not matter, i.e. if   

and  , , , ,a b cN G F    then .  It seems that the operator acts like a “zero” 

element because everything it operates on only results in a  .  

 

We should note that when two operators are combined (in an arbitrary order) they result in 

only one operator, i.e. every time a rewrite rule is applied, the length of the total expression 

is reduced by one. This means that for any finite sequence 
1 2... n    where 
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 , ,i a b cN G F   we can apply the rewrite rules in a systematic way (for example by 

always applying them on the first two operators in the sequence) and this process will 

terminate in n-1 steps resulting in only one remaining operator (Na, Gb , Fc or  ).  

 

Therefore, we have defined a procedure that solves the sub problem of simplifying 

sequences of state operators to a single operator. 

 

As an example, imagine that one persistent mapping (that uses the G operator) is defined in 

state 3, and another such mapping is defined in state 7. Then if we want to combine both 

these mappings, such a new mappings is persistent from state 7, because 

3 7 max(3,7) 7G G G G  . 

 

4.8 Rewrite Rules for expressions with quantifiers 

We will now describe the second step of the mechanical composition procedure that we have 

outlined in §4.5.1.  Let us therefore investigate how expressions using the two quantifier 

operators are composed (as we precisely defined "quantifier operators" in section §4.5.1, not 

quantifiers in general) into one. The short notation is defined in the following way: 

 

 , where  1 2, , ,     

 

Now we can write the rewrite rules for all four possible cases: 

 

1 1 1 1 2 2 2 1 2 2 2,  ,  ,                

 

We should remember that this notation hides the fact that these  :s actually are not identical 

copies because they could operate on different variables or different Boolean functions – this 

will be clear later in this section. 

The  operator means that neither 
1 or 

2 can be inferred. 

 

Let us look for example at this particular rewrite rule: 

1 1 1    
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This mechanical application of the rewrite rule corresponds to this reasoning step:  

 

   
 

1 1 1 1

1 1

1 1

1 1

( ( , )) ( ( , ))

(Rel , ( ( , ))) (Rel , ( ( , )))

(Rel , ( ( , ) ( , )))

( ( , ))

i j j k

i j i j i j j k j k j k

i k i k i j j k

i k

x y y z

x y x y x y y z y z y z

x z x z x y y z

x z

   

 

 

 

 

    

   


           

(4)        

        

 

 

(where 1 1   ∘ 1 ) 

So instead of doing this reasoning every time this situation occurs, we instead use the 

mechanical rewrite rules. 

 

Above we described the mechanical application of the rewrite rules. The formal meaning of 

these is the following: 

 

( ( , )) ( ( , )) ( ( , ))i j j k i kx y y z x z       

 

Where 1 2{ ( ), ( )}    ,  1 2{ ( ), ( )}     , 1 2{ ( ), ( )}     ,  is a Boolean 

function with the arguments ( , )i jx y and   a function with the arguments ( , )j ky z whereas 

has the arguments ( , )i jx z . 

 

E.g., the meaning of 
1 (if it appears as the first symbol in the composition, i.e.  ) is 

1( ( , )) ( ( , ) ( , )))i j i j i j i jx y x y R x y x y   
 

 

E.g., the meaning of 
2 (if it appears as the second symbol in the composition, i.e.  ) is 

2( ( , )) , ( ( , ) ( ( , ))j k j k j k j ky z y z R y z y z      

 

Again, we should note that when two operators are combined (in an arbitrary order) they 

result in only one operator, i.e. every time a rewrite rule is applied, the length of the total 

expression is reduced by one. This means that for any finite sequence 
1 2... n    where 

 1 2,i     we can apply the rewrite rules in a systematic way (for example by always 
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applying them on the first two operators in the sequence) and this process will terminate in 

n-1 steps resulting in only one remaining operator (
1 2,  or 

 ). Therefore, we have 

defined a procedure that solves the sub-problem of simplifying sequences of state operators 

to a single operator. 

 

As an example, imagine that we have the two following mappings: 

COR[lemon1,yellow_fruit2] and COR[yellow_fruit2, sour_fruit3] and want to combine them in 

a state where they both exist. We call this the fruit example. Let us only look at the 

expressions within the state operators for both these mappings expressed in computation 

form in section 4.5.2 (i.e. we disregard the state operator expressions) and how these two 

will be combined. This will give us a sub-expression that matches one of the rules, and looks 

like this: 

  

1 1 1    

 

and this mechanical application of the rewrite rule corresponds to equation 4 in this section.

                 

 

  

The composition 1 1   ∘ 1  (in equation 4) actually combines Boolean function (as 

exemplified in §4.5.2 for the COR.-mappings, i.e. the one used in the fruit example, and as 

will be defined in general in §4.9), so now we will investigate how these Boolean functions 

are described and combined (and this example will continue). 

4.9 Representation and combination of Boolean functions 

We will now describe the third step of the mechanical procedure that we have outlined in 

§4.5.1.  We look now at functions that take two Boolean variables and constrain which of the 

four possible combinations of truth assignments that are allowed.  

 

Let us now again describe the general form of the Boolean function (that we described in 

§4.5.1 but in a somewhat different form): 

 

1 2 1 2 1 1 2 2 1 2 3 1 2 4( , ) ( ) ( ) ( ) ( )f e e e e t e e t e e t e e t                

where t1, t2, t3 and t4 are the Boolean parameters that decide how the function look like. 

Every parameter is either true or false, so a particular instantiation of the parameters will 
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generate one of the 16 possible Boolean functions. Therefore, a tuple containing these 

parameters can be used to uniquely identify the corresponding Boolean function.  

 

The use cases we want to cover will satisfy this convolution: 

1 2 2 3 1 3( , ) ( , ) ( , )f e e f e e f e e   

 

The Boolean function use disjunctive normal form (2-DNF) here. 

Assuming that there is a second Boolean function of this form 

 

2 3 2 3 1 2 3 2 2 3 3 2 3 4( , ) ( ) ( ) ( ) ( )f e e e e t e e t e e t e e t                   

 

we can combine the functions in the following way and create a new Boolean function 

1 3( , )g e e : 

 

1 3 1 2 2 3

1 3 1 1 3 2 1 3 3 1 3 4

( , ) ( , ) ( , )

( ) ( ) ( ) ( )

g e e f e e f e e

e e s e e s e e s e e s

  

            
                            

(5)

                                 

 

 

All the parameters si are calculated like this: 

 

1 1 1 2 3

2 1 2 2 4

( ) ( )

( ) ( )

s t t t t

s t t t t

    

    
 

3 3 1 4 3

4 3 2 4 4

( ) ( )

( ) ( )

s t t t t

s t t t t

    

    
 

 

Now we can continue the fruit example where we want to combine 

COR[lemon1,yellow_fruit2] and COR[yellow_fruit2, sour3], and look at the calculation of a 

sub expression. The latest was the following, and now we know what the Boolean functions 

1 =f1 and 
1 =f2 actually are. 

 

From (4) in section 4.8 we know that: 
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1 2 1 2 1 1 2 2 3 2 3 2 2 3

1 2 1 2 1 1 2 2

1 1 2 2

2 3 2 3 2 2 3 3

(Rel( , ) ( ( , ))) (Rel( , ) ( ( , )))

(Rel( , ) (( ( ) _ ( ))

( ( ) _ ( ))))

(Rel( , ) (( _ ( ) _ ( ))

(

x y x y f x y y z y z f y z

x y x y lemon x yellow fruit y

lemon x yellow fruit y

y z y z yellow fruit y sour fruit z

    

   

  

   

 2 2 3 3

1 3 1 3 3 1 3

_ ( ) _ ( ))))

(Rel( , ) ( , ))

yellow fruit y sour fruit z

x z x z f x z

 

  

 

1 3 1 3 1 1 3 3

1 1 3 3

(Rel( , ) ( ( ) _ ( ))

( ( ) _ ( )))

x z x z lemon x sour fruit z

lemon x sour fruit z

   

 
 

 

We have managed to combine both the expressions with quantification over states and the 

Boolean function, and in the next section this example will be finalised. 

 

4.10  Composing ontology mappings by using all kinds of 

rewrite rules 

Because we have defined the rewrite rules for states operators and for quantifier operators, 

and the combination rules for Boolean functions, we can now combine all these and use 

them for combining two ontology mappings (we refer to the notation defined in §4.5): 

 

𝑚𝑖 ∘ 𝑚𝑖+1 = 

1 2 1 2 3

1 2 2 3

1 3

( , ) ( , )

( ( ( , ))) ( ( ( , )))

( ( ( , )))

i j k i k l

j k k l

j l

m C C m C C

op f C C op f C C

op f C C

 



 

   

  

 

 

This is actually a form of composition of functions in the mathematical sense. 

The algorithmic aspect of this procedure will be clearer using this notation: 
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1 2 1 2 3

1

1 2 2 3

2

1 2 2 3

3

1 2 2 3

1 3

( , ) ( , )

( ( ( , ))) ( ( ( , )))

( ( ( , )) ( ( , )))

( ( ( , ) ( , )))

( ( ( , )))

i j k i k l

j k k l

j k k l

j k k l

j l

m C C m C C

op f C C op f C C

op f C C f C C

op f C C f C C

op f C C

 

 





 

   

   

   

  

 

 

The first transformation (1) is the application of “rewrite rules for state operators” in a way 

that combines two state operators into one. This procedure is described in section 4.7. The 

second transformation (2) is the application of “rewrite rules for expressions with 

quantifiers” in a way that combines two operators into one. This procedure is described in 

section 4.8. The third transformation (3) is the application of “combination of Boolean 

functions” in a way two combines to such functions into one. This procedure is described in 

section 4.9. 

 

To finish our fruit example we now have: 

(here 
1 1 1 2 2 2 3 3 3( ),  _ ( ),  _ ( )e Lemon x e Yellow fruit x e Sour fruit x   , i.e. these are the 

predicates that correspond to the concept names) 

 

21 2 3

1 1 2 1 2 1 1 2 1 2

1

1 2 3 2 3 1 2 3 2 3

2

1 1 1 1

COR[lemon ,yellow_fruit ] and COR[yellow_fruit , sour_fruit ]

( { , } { , })

( { , } { , })

{...} {...}

r r

r r

r r

N e e e e G e e e e

N e e e e G e e e e

N G

 

 

   



       

       

 

 

 

1 1 2 1 2 2 3 2 3

3

1 1 2 1 2 2 3 2 3

1 1 3 1 3 1 1 3 1 3

1 1 1 3 3 1 1 3 3

1

{(( ) ( )) (( ) ( ))}

{(( ) ( )) (( ) ( ))}

{ , } { , }

{ lemon ( ) sour_fruit ( ) , lemon ( ) sour_fruit ( ) }

{

r

r

r r

r

r

N e e e e e e e e

G e e e e e e e e

N e e e e G e e e e

N x z x z

G





 





         

         

       

   

1 1 3 3 1 1 3 3

1 3

lemon ( ) sour_fruit ( ) , lemon ( ) sour_fruit ( ) }

COR[lemon ,sour_fruit ]

x z x z   
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Since we now can combine arbitrary adjacent ontology mappings, then let us now investigate 

a little bit more how we can reason about whether a new proposed mapping is consistent 

with a set of existing ones. 

 

4.11 Defining the effect of negation 

In the proof procedures that we will describe we will try to refute the negation of a 

statement.  

We therefore must define what happens when we negate a relationship/mapping (and its 

computational constituents) and therefore we should define how the negation symbol affects 

any relationship/mapping. Firstly, we define how it affects the state operators. 

 

The following rewrite rules will not explicitly be used later, but we use to infer the negation 

of various relations (see the end of this section): 

 

( )N exp                   

( ) ( )

( ) ( ) ( )

G exp F exp

F exp N exp G exp

  

    
 

 

 

Secondly, we define how the rewrite rules work for the quantifier operators. We infer this 

from the definitions. 

1 1( ( , )) ( ( , ) ( ( , )))i j i j i j i jx y x y R x y x y     

 

1 1 1 1 2 1

2 1 1 1

( ( , )) , ( ( , ) ( ( , )) , ( ( , ) ( ( , ))) ( ( , ))

( ( , )) , ( ( , ) ( ( , ))) , ( ( , ) ( ( , ))

                              , (

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j

i j

x y x y R x y x y x y R x y x y x y

x y x y R x y x y x y R x y x y

x y

     

   

         

        

 1 1 1( , ) ( ( , )) ( ( , ))i j i j i jR x y x y x y     

 

 

Therefore, the rewrite rules are the following. 

 

1 1 2 1

2 1 1 1

( ( , )) ( ( , ))

( ( , )) ( ( , ))

i j i j

i j i j

x y x y

x y x y

   

   

  

  
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Finally, we define negation for Boolean functions. We describe the effects of negation for 

the case of Boolean function with two variables. 

 

1 2

1 2 1 1 2 2 1 2 3 1 2 4

1 2 1 1 2 2 1 2 3 1 2 4

1 2

( , )

(( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

...

( , )

f e e

e e t e e t e e t e e t

e e t e e t e e t e e t

f e e



              

             





 

 

The negation first creates a CNF-form very quickly and then the expression has to be 

translated back to DNF-form.  

To conclude this section, we can now mechanically negate any of the proposed 

relationships/mapping by negating its three constituents (the state operator, the quantifier 

operator and the Boolean function).  

 

E.g. now we can calculate: 

1 1 2 1 2 1 2

2 1 2

( , )

(...) ( (( ) ( ) ( )))

( )

i jIs A B

N G e e e e e e

F e e





 

         

 

 

COMPATIBLE (Ai, Bj) 

 

4.12  A reasoning procedure 

4.12.1 The elementary steps used by the two reasoning 

procedures 

We will describe the proof procedures here, whereas a more theoretical analysis of them will 

be provided in §8.2. Our approach is to use a reasoning method that creates a proof search 

tree by using breath-first search. The root of the tree (it is visualised in the following figures 

as being at the top) contains the negation of the newly proposed mapping, every arc 

corresponds to an applicable rule and every node is the result of applying that rule to the 

expression above (see Figure 9). 

The leaves are the nodes yet without children of the proof search tree during the reasoning 

procedure. 



102 

 

The reasoning procedure makes sure that no leaf 

can subsume another one leaf or node (i.e. so 

that unnecessary repetitions of proofs are 

removed).  

In this work the rule is an existing mapping that 

has at least one common concept with the 

expression above. For example assume that 

21COR[lemon ,yellow_fruit ]  is the expression 

that the reasoning starts from, and that one of 

the “rules” is

2 3 COR[yellow_fruit , sour_fruit ] . Then it 

can actually be applied because the expression and the rule have (at least) one concept in 

common, namely the concept yellow_fruit2. Then this rule annotates the arc, and the child 

node will be the result of an application of the rule to the expression above, i.e. 

1 3COR[lemon ,sour_fruit ] . In this example we are applying the rules forward, but they can 

also be applied backwards (see section 4.12.3). 

At the leaves of a proof search tree, we would like to see expressions like COR[xi, xi] (that is 

always true) or DISJOINT[xi, xi] (that is always false), because they terminate the search for 

a proof (depending on if we are looking for a tautology or self-contradiction, we will see that 

this is different for the two algorithms that we defined, Algorithm A and Algorithm B). 

When a new ontology mapping is proposed, there are two different kinds of proofs that can 

be made: such ones that apply the rules forward and such that apply them backwards. 

 

  

21COR[lemon ,yellow_fruit ]  

Rule:

2 3 COR[yellow_fruit , sour_fruit ]  

1

3

 COR[lemon , 

sour_fruit ]

 

Figure 9. If the rule is applied forward, 

the parent node is combined with the 

rule and the child node contains the 

result. 

        COMP(blue1, ccode2) 

 
Is(blue1,  

colour1) 

 

 
Is(l_blue1,  

blue1) 

 

 

 

Is(bright2, 

ccode2) 

 

Comp(blue1, 

ccode2) 

 

 

 

  
                   Node true  

Because this requires a tautology: 

Cor(blue1, blue1) 

(i.e. originally proposed mapping 

false) 

 

 

Comp(l_blue1, bright2) 

 

  

 

Figure 10. The purpose of this proof search tree is to find a proof for the refutation of 

Disjoint(blue1, ccode2), i.e. Comp(blue1, ccode2), and a refutation is found, because there is a 

node that we can prove is true.  
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Algorithm A 

“Would adding G have introduced a contradiction in sphere sp of degree dc 

that is higher than the defined degree pc in that sphere?” 

      (tot is the estimated maximal size that sp can reach, pc is level of consistency  

      within the sphere of consistency sp) 

 

Algorithm_A (G, sp, dr, pr, tot) { 
 

  If G=COR(m1, m2) then  

      return Algorithm_A (IS(m1, m2), sp, dr, pr, tot)) or  

                  Algorithm_A (IS2(m1, m2), sp, dr, pr, tot)) 

  l0 (l is the current tree depth) 

  d (2-pc)(tot-1)+2 

  Root of the tree  Negation of G 

  if exists esp and contradiction(e, G)  

       then return true 

 

  do loop {  

    ll+1 

    if l>=d  

         then return false 

    At level l in the proof search tree:  

        for every node M1 at that level  

        do Construct the list of allowed rules for M1 (i.e. adjacent rels.)  

                 and call them r1, r2, …, rn 

            for i1 to n  

                 do construct a list P of elements e (that are allowed mappings) that  

                       satisfy the constraint: e  ri =>M1 

                       Remove all elements from P subsumed by existing search tree nodes                   

                       if P is empty  

                            then, close this branch with a   and continue loop 

                       else if any element e in P is self-evidently true  

                            then return true 

                        else Choose the most general element e, and  

                           let it become a new node at level l+1   

     if all branches for all nodes at this level are    

          then returns false  

  } 

}     

Figure 11. Algorithm A. 
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M1 

R1 

M2 

2 1 1M R M   

Figure 12. The general pattern, for how 

a mapping at one node, a rule and 

mapping at another node, are related. 

4.12.2 Comparison with first-order 

resolution 

The standard first-order resolution procedure as 

defined by (Brachman, 2004, page 58) is similar 

to our procedure but the differences are  

 

1. Our language is much less expressive. 

2. They generate a resolution derivation 

where two clauses are combined into a 

new clause using binary resolution, and 

graphically they visualize this that the clauses are two nodes and their result (using 

binary resolution) is placed in their child node.  

3. Every clause in their propositional resolution derivation is in CNF form, whereas in 

our case every clause is in the form specified in section §4.5.1.   

4. They describe how the two quantifiers is standard FOL are eliminated, but in our case 

our procedure has to combine state symbols (described in section §4.7) and 

quantifier operators that quantify over various contexts (described in section §4.8) – 

so both these are "non-standard" operations.  

5. Their procedure terminates when the empty clause is encountered in contrast to in our 

case the termination is due to encountering a tautology or knowledge that is trivially 

true (Algorithm A) or trivially false (Algorithm B). 

4.12.3 The proof procedure for the first kind of proof 

Let us first take a look at the first proof procedure, and it is characterized by applying the 

rules “backwards” (see Figure 12). This is done by applying the combination procedure from 

section 4.10, but backwards, because we already have M1 and R1 but M2 has to be generated. 

It is clear that this process is underspecified and would be nondeterministic if it we left it in 

this manner. Therefore, the algorithm has to choose the most general M2 that satisfies 

2 1 1M R M  in the case when several cases M2 satisfy this equation.  

 

It seems appropriate to first try to use breadth-first search, because the branching degree is 

rather limited. Algorithm A describes how this problem is solved. The reason why one of the 

lines reads "If l>=d then return false" is that by then the algorithm has verified there are no 

proofs of size d-1, i.e. because we had decided that  that we are not interested in 

contradiction proofs that can only be found if more computations would have been done.  
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Now we will try to solve the second case in the first example mentioned (see Figure 6) by 

allowing Algorithm A to create a proof search tree, i.e. testing if DISJOINT(blue1, ccode2) is 

consistent with the existing mappings. In the top node we put the negation of the newly 

proposed mapping, i.e. COMP(blue1, ccode2). The information in the nodes/leaves arises 

when the algorithm traverses the knowledge in Figure 6. 

If we look at Figure 10 we see that the tree has four different branches on the first level. It is 

interesting to know that if would have evaluated the result for all six branches then some of 

them would actually lead to  (i.e. there is no M2 that satisfies M2  R1 M1) and that 

means we wouldn’t have continued exploring these branches. Moreover, if the result of one 

branch subsumes the result of another, it is enough to continue investigating the more 

specific mapping. In our example, the depth of the proof is two, and that corresponds to 

closed sequence of mappings (a “loop”) consisting of two mappings. In general, if there is a 

shortest closed mapping sequence (“a loop”) of length n, then the proof depth will be the 

same.   

 

Let us now investigate how the 

algorithm works for this particular 

case when the negation of a newly 

proposed mapping G can inferred 

from a minimal set of existing 

mappings Rn, Rn-1,…,R1. We 

investigate the case when the level of 

consistency within a sphere of 

consistency is not bound, pc=1. This 

is illustrated in Figure 13. The 

existing mappings are used as rules. If 

we go back to the definition of the 

rule application procedure we see that

1 1 2

1 1 2 3 2 2 3

1
1..

 (because F )

.

.

i
i n

F R F

F R R F R F

F R G


 

    

 

    

 

G  Rn 

Rn-1 

R1 

F1 

F2 

Fn-1 

Fn 

exp   exp   exp   

Figure 13. The newly proposed mappings is called G 

and Rn, Rn-1,..., R1 are the mappings that are used as 

rules in this proof tree, where F1 is true. 
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M1 

R1 

M2 

1 1 2M R M   

Figure 15. The rules are applied in a 

different way this time. 

Algorithm B 

"Would adding G have introduced a redundancy in sphere sp of 

degree dr that is higher than the defined degree pr in that sphere?" 

(tot is the estimated maximal size that sp can reach, pr is the level of 

redundancy within this sphere of consistency sp ) 

 

INPUTS: G, sp, dr, pr, tot 

 

l0 (l is the current tree depth) 

d(2-pr)(tot-1)+2 

Root of the tree  negation of the newly proposed mapping G 

 

do loop {  

  ll+1 

  if l>=d  

       then return false  

  At level l in the search tree:  

  For every node M1 at that level 

      if M1 already existed at any lower level in the tree 

          then close branch with  and continue (node) loop  

      Construct the list of allowed rules for M1, (i.e. adjacent rels.) 

      and call them r1, r2, …, rn 

      for i i=1 to n  

          do let M1  ri =>e 

               if e=   

                  close branch and continue loop 

               else  

                 if e is self-contradictory or contradicted by existing mapping  

              then return true 

                 else  
                     let e become a new node at level l+1      

  if all branches for all nodes at this level are    

      then returns false 

} 

Figure 14. Algorithm B. 
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From the point of the view of the algorithm, it is doing breadth-first search and creating a 

proof search tree. If all paths except one end with an  or any expression that still will be 

processed (this is called exp in Figure 13), then that single path stops at an expression F1 that 

we can prove is true (because it is a tautology or follows from one of the existing mappings). 

Then, from a logical point of view, we have a set of mappings whose conjunction implies the 

negation of a proposed mapping, i.e.  

 

1..
i

i n
R G


  

 

The formal properties of Algorithm (soundness and completeness) will be investigated in 0). 

Also, if there are several different proofs (i.e. sets of existing mappings) then it will find the 

shortest proof (i.e. smallest set). Again, this only holds for pc=1. 

   

4.12.4 The proof procedure for the second kind of proof 

Let us now take a look at the second proof procedure, and it is characterized by applying the 

rules “forwards” (see Figure 15). Algorithm B describes how this problem is solved. The 

reason why one of the lines reads "If l>=d then return false" is that by then the algorithm has 

verified that the relation that is being proposed to be added isn't redundant and having a 

proof of redundancy of size d-1, i.e. because we had decided that we are not interested in 

redundancy proofs that can only be found if more computations would have been done. 

Now we will try to solve the first case in the first problem (investigating if COMP(blue1, 

bright2)) can be inferred from the existing mappings (i.e. being redundant if it is added), but 

we will investigate what a refutation proof looks like where the rules as applied forward. 

Then we simply take the proposed mapping and negate it (the negation is in fact 

DISJOINT(blue1, bright2)) and we are 

Disjoint(blue1, bright2) 

 
Is(blue1, colour1) 

 

 
Is(l_blue1,  

blue1) 

 Comp(blue1, 

ccode2) 

 

Is(bright2, 

ccode2) 

 

Is(l_blue1, 

bright2) 

 

Is(bright2, 

colour1) 

 

 

Disjoint(l_blue1, 

bright2) 

 

 

  

 

  

 

Figure 16. Purpose of this proof search tree is to find a refutation proof for Comp(blue1, 

bright2), and some of the values of the nodes and edges are shown. This proof search tree will 

eventually terminate because all leaves will at some point have epsilons. 
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allowed to apply the same kind of rules as before. If we reach a node that we know is false, 

then the proposed mapping is consistent with the existing ones (because we have refused the 

refutation) and it was in fact already known, i.e. we have proved it is true. Let us now 

investigate what happens when we try to find a proof for the refutation of COMP(blue1, 

bright2). 

 

The beginning of the creation of this proof search tree is illustrated in Figure 16, and in this 

case the process will never find a leaf that can be proven to be false, so the algorithm will 

terminate when all leaves contain epsilon expressions and the answer of the algorithm is "no" 

– i.e. COMP(blue1, bright2) cannot be inferred from existing ontologies or mappings within 

this sphere of consistency. 

 

Let us now investigate how this particular case when a newly proposed mapping G can be 

inferred from a minimal set of existing mappings Rn, Rn-1,…,R1 or is contradicting a set of 

existing mappings (there is a third case that will be investigated in the next section). This is 

illustrated in Figure 17. The existing mappings are used as rules. If we go back to the 

definition of the rule application procedure we see that: 

 

1 1

1
1..

(because F )n 1 1 

.

.

n n

n n n

i
i n

R Fn n

G R F

G R R F

G R F

 



  

  

   

  
    

 

From the point of the view of the 

algorithm, it is doing breadth-first 

search and creating a proof search 

tree. If all paths except one end with 

an expression (or are in the process 

of being investigated - denoted as 

"exp" in Figure 17), then these paths 

terminate (or would still have been 

investigated) and that single path stops 

at an expression F1 that we can prove 

G  Rn 

Rn-1 

R1 

F1 

F2 

Fn-1 

Fn 

exp   exp   exp   

Figure 17. The newly proposed mapping is called G 

and is negated, and Rn, Rn-1,…,R1 are the mappings 

that are used as rules in this proof search tree, where 

F1 has to be false. 
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is a contradiction (because it is a negated tautology or contradicts one of the existing 

mappings). Then, from a logical point of view, we have the following (when F1 is false and 

the arrow symbolizes a sequence of logical consequences):  

 

1..

1..

1..

1..

( )

i
i n

i
i n

i
i n

i
i n

G R false

G R

G R

R G









   

   

 









 

 

The formal properties of this procedure will be investigated in chapter 8).  

 

The final case we will investigate is when both algorithms A and B answer no. We must first 

investigate if both algorithms could have answered yes. If that happens, then that is an 

example of unsoundness, and when pc=1 then that can never happen (assuming the 

soundness of algorithms A and B). Also, we will see that the rules in chapter 5 will 

investigate first run algorithm A (checking for inconsistency) and if it returns true, then 

algorithm B won't run in the same sphere of consistency (in the policy that we will describe).  

 

4.12.5 The third case 

Finally we have to look at the third case, which requires most computations. In that case a 

proposed new relationship/mapping neither contradicts the existing mappings nor already 

can be inferred from them. We want to build a system that works in all three cases. The first 

obvious way to achieve this is, given a new proposed mapping, to first run it in algorithm A, 

and then in algorithm B. If algorithm A returns “yes”, then the proposed mapping is 

inconsistent with the current mappings, and if it returns “no” we have to run algorithm B. If 

algorithm B returns “yes” then the mapping is valid and could already be inferred, and if it 

returns “no” then the mapping is consistent with the existing ones, but is not already known. 

This sequence of reasoning will be interleaved with communication with the relevant 

contexts as will be described in chapter 5 – e.g. if in a situation it is enough to know if a 

proposed change does introduce contradiction, then it might be not necessary to run 

Algorithm B. 
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A consequence for the third case is that neither the first or second proof search tree will 

terminate because it encounters a node that is true or false, but they will terminate because 

the proofs will reach  symbols in all open branches, so the search space has been 

completely explored. If Algorithm A and Algorithm B are sound, then this last procedure is 

also sound.  

 

4.13  Chapter summary 

In this chapter we have defined the reasoning that the reasoning layer performs. We firstly 

show how to compose two ontology relations or mappings into one, because this is the basic 

reasoning step. We then present the basic reasoning tasks: to decide if a proposed change 

introduces a contradiction, redundancy or neither. We then present Algorithm A that solves 

the first reasoning task and Algorithm B that solves the second task. The third task is solved 

by running both algorithms.  

everything thing 

colour 

green blue 

plant 

flower tree 

orchid 

sunflow

er 
conifer_tree 

ccode 
plant 

without 
bark (PBA) 

g8 
b 

y1 
”Aerides” 

 
”Argophyllus” 
 

plant with 

bark (PBB) 

pine 
tree 

O1 
O2 

A 
B 

B 

Cor. (A, 

B) Is (A, 

B) 

A 

L E G E N D  

Figure 18. Here we see two ontologies and some mappings between them. We want to 

evolve the state of theses ontologies by creating a new concept yellow1 and these two 

mappings: Is(yellow1, colour1) and Is(yellow1, ccode2), but we first we have to see if this 

change maintains introduces contradictions. 

 

yellow 
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Chapter 5  A description and formalisation of the 

protocol language of the infrastructure mechanism 

 

5.1 Introduction 

We will describe an infrastructure mechanism that has semantic 

autonomy as we have defined it (see Table 1 in §1.5). 

The solution is a framework consisting of five layers (see Figure 

19). The two bottom layers represent the epistemological and 

logical assumptions (described in Chapter 3) whereas the three 

top layers constitute the executable system itself. We will now 

describe the whole framework and the protocol language.  

Because we are interested in automating the process of 

proposing and reconciling ontological changes we therefore 

define a rule-based process language that will formalise how 

proposals to evolve ontologies and mappings can be expressed 

and how they are managed. 

 

The reason why it makes sense to conceptualise this system in layers, is that e.g. the 

reasoning layer could be exchanged to a different one that is using a logic that is more 

expressive or has other beneficial formal properties. Even in this situation, the formal 

language for accessing the reasoning layer could stay the same. Another possibility is to 

change the framework middle layer, so that proposals to evolve ontologies or mappings 

would be processed in a different way. E.g. if one would require a more elaborate form of 

negotiation about the changes, then this could be accommodated by changing the framework 

middle layer. 

 

5.2 Formal syntax of the protocol language  

We first define all the syntactic categories of the protocol language of the whole (executable) 

framework (i.e. the tree top layers, because e.g. the logical formalization is using model 

theory rather than computational semantics). We need all these categories/types to formalise 

things that "happen" i.e. the proposal of change and how it is processed and how the 

Figure 19. The framework 

and its layers. The two 

bottom layers are the 

assumptions whereas the 

three higher layers are the 

executable system. 

EPISTEMOLOGICAL 

ASSUMPTIONS 

LOGICAL FORMALIZATION 

REASONING LAYER 

THE FRAMEWORK MIDDLE 

LAYER 

THE FRAMEWORK TOP LAYER 

FRAMEWORK 

AYERS 
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reasoning is invoked. We can categorise these types into sections such as 

negotiation/execution, logic/ontologies, contexts, spheres of consistency.  

 

The syntactic categories (types) are: 

 

Types related to the infrastructure mechanism as a whole 

i in InfraMech The set of infrastructure mechanisms. 

 

Types related to negotiation and procedural execution 

ns in Nstate  This is the set of negotiation states and such a state is only  

  increased every time the protocol is processed one step. 

 

D in Dec This is a set of declarations of procedures that have a head and 

body and can be executed. 

 

ent in Ent This is the set of autonomous entities that exist that can be 

involved in initiating actions or processing initiated actions. 

 

CT in TopCom This is the set of the top commands, i.e. the only ones that can 

be executed first. The proposal commands belong to this type. 

 

CF in FraCom This is the set of special framework commands that can change 

ontologies, so it contains F: DO(op), i.e. the actual 

performance of the operation op. 

 

CM in Com  This is the set of general other commands, such as making a 

   choice between two alternatives.  

 

CFM in TopOrFCom This set is the union of FraCom and Com 

 

Types related to logic and ontologies 

os in Ostate  This is the set of ontology states and a state only changes when 

  the ontology is changed. 

 



113 

 

op in OntOp This is the set of ontology operations as defined in §5.3 that 

change ontologies. 

 

spec_op in SpecOntOp This is the set containing a special ontology operation as 

defined in §5.3. 

   

cv in conVar  This is the set of concepts in the ontologies of all contexts. 

 

ce in KnoSet  This is the set of sets of ontology relationships and mappings. 

 

be in BExp  This is the set of Boolean expressions. 

 

bv in Bval This is the set of Boolean values 

 

G in GlobVar  This is the set of globally defined Boolean predicates  

 

BP in FunVar  This is the set of Boolean predicates. 

 

m in Mappings This is the set of the five ontology mappings described in 

§3.3.2. 

 

r in Ontorel This is the set of relationships within an ontology described in  

§3.3.1. 

 

Types related to contexts 

ci  in Context This is the set of all contexts as they are defined in chapter 3 

and used in a computational way in chapter 4. 

 

contexp in ContExp This is the set of context expressions (when evaluated they give 

contexts as a result). 

 

conv in ConVal This is a set of sets of contexts. 
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Types related to Spheres of Consistency 

 spe in SpExp  This is the set of expressions that return spheres of consistency 

   as their output.  

 

spv in SpFun  This is a set of sets of spheres of consistency. 

 

sp in Sp  This is the set of spheres of consistency. 

 

Other Types 

S in var  This is the union of spv and the set of sets of integers. 

 

FN in Fun This is the set of functions.  

 

message in Strings This is the set of strings. 

 

 

This protocol has been inspired by (Robertson 2004) but our formalism does not use 

message-passing, except when MCHOICE communicates something to contexts that then have 

to make a decision. Robertson's language LCC can be used for formalising the behaviour of 

multi-agent systems, but we chose a language that is more adapted to the needs of 

formalising a knowledge infrastructure mechanism. 

 

We will below sometimes refer to S, and that is the whole system that consists of n different 

local contexts ci (i=1…n) that all have an ontology, and the mappings between them.  

 

Here follows definitions of the abstract syntax of all the layers in the whole framework. 

 

The definitions are:

::

:: , ,   

::   

:: :            

:: add_mapping( , , )  add_ontorel(r, c ) delete_mapping( , , )  delete_ontorel(r, c )  

_ :: ( ,  

i

j k j j k j

i D

D CT CM CT CM D CF CM D

ent c F

be ent BP G be be be be True False

op m c c m c c

spec op RC x ce





    



     



 )

:: ( )G Newconcept cv
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_  _  _

_

:: ( ,  ) ( ,  ) ( ,  ) ( ) ( )

:: ( ,  _ )

:: ( )

:: ( , )  ( ) 

:: : ( )

:: : ( )

i j i

i

C CONTRA IS INFERABLE IS NEW CONFIRM REFUSE

CREASON

CONTEXTS OF

PROPOSE

DO

BP spe op spe op spe op op op

FN sp ont op

contexp spe

spe Spheres c c Spheres c x

CT c op

CF F op

CM













1 2 1 2

       

:: : ( , , , ) : ( _ )

: ( )  or    

::    

:: [ / ] [ / ] ... [ / ]  where S={ , ,..., }

:: [

k kx S

x S

MCHOICE DO

REQUEST

F contexp message CFM CFM F spec op

F CT be CM be CM be CFM

CFM CF CM CFM CFM

be be v x be v x be v x v v v

be be v







      

  

   




 1 2 1 2

1 2 1 2

/ ] [ / ] ... [ / ]  where S={ , ,..., }

:: [ / ]  [ / ] ... [ / ]  where S={ , ,..., }

k k

k kx S

x be v x be v x v v v

CM CM v x CM v x CM v x v v v


  

  
 

The informal descriptions of the meaning of syntax of the various layers and the actual 

protocol of our infrastructure mechanism will be presented in §5.3 (the reasoning layer), §5.4 

(the framework middle layer) and §5.5 (the framework top layer). Section 5.6 will provide 

the formal computational semantics. We now just define the following symbols (some will 

be used in §5.6): 

 

  is a sequential composition of commands. 

 

( , )Or bv bv  is the result of applying the Boolean function OR on the Boolean values bv and 

bv . 

 

( , )And bv bv  is the result of applying the Boolean function AND on the Boolean values bv

and bv . 

 

 

5.3 The reasoning layer  

Here, we repeat the functionality of the reasoning layer, because these expressions can be 

used as predicates by the protocol defined in §5.2. 

 



116 

 

The vocabulary of the reasoning layer contains the following predicates: 

Predicates and parameters Meaning 

F: C_CONTRA(sp, op) returns true if op would have introduced a contradiction in 

sphere sp of degree dc that is higher than the defined degree 

pc in that sphere. 

F: IS_INFERABLE(sp, op) returns true if op would have introduced a redundancy in 

sphere sp of degree dr that is higher than the defined degree 

pr in that sphere. 

F: IS_NEW(sp, op) returns true if neither F: c_contra(sp, op) or F: 

is_inferable(sp, op) are true. 

F: CREASON(sp, op) returns a subset of sp that creates a contradiction if op is 

performed. 

 

The first 3 statements return either true or false, the fourth returns a subset. In the case when 

C_CONTRA(S, op) is true, CREASON(S, op) returns one of the contradiction reasons, i.e. 

one of the minimal subsets in the whole system S that show that S with the op performed 

creates a contradiction.  

 

We also repeat the definition of the predicate Spheres(...). 

 

Function Return values 

Spheres(ci, cj) All spheres of consistency that contain both contexts i 

and j. 

Spheres(ci) All spheres of consistency that contain context i. 

 

The current list of operations that evolve ontologies or mappings between them is the 

following (and the second mentions a special ontology operation): 

 

ont_op = add_mapping(m, cj, ck)  add_ontorel(m, cj, dj)  

 delete_mapping(m, cj, ck)   delete_ontorel(m, cj, dj)   

spec_ont_op= RC(sp, P)   [where P  knowledge inside (sp)] 

 

RC() is an operation that takes all the knowledge (ontology relations and mappings) in 

sphere sp and removes the inconsistent subset P. If there are several alternative such 
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inconsistent subsets, several of them might have to be removed in order to make the whole 

sphere sp consistent, i.e. the operation RC() would have to be repeated. 

 

5.4 The framework middle layer  

This vocabulary will be used for defining this layer (and also some of the functionality of the 

reasoning layer): 

 

Predicates and parameters  Meaning 

ci : CONFIRM (op) ci accepts that op should be performed 

ci : REFUSE (op) ci rejects the performance of op  

F: DO (op) The framework mechanism performs op 

F:MCHOICE(contexp, message, 

{cj, ck, …}, CFM1, CFM2) 

The framework mechanism chooses between the 

operations CFM1 and CFM2 on behalf of several 

contexts. 

contexts_of(sp) A conjunction of all contexts included in the spheres sp. 

 

The first rule at this level is the following. 

 

( )

( ) ( )

F: MCHOICE( , message, CFM ,  CFM )

c : CONFIRM(CFM ) {1,2}

{1,2} c : REFUSE(CFM ) c : CONFIRM(CFM ) ( )

x

x x

1 2

x i ic val contexp

x i x ic val contexp c val contexp

contexp

i CFM or

i DO 



 



 
    

  


    

 


 

                                                      (6) 

 

              

MCHOICE() is a procedure where a decision is made if a certain command (CFM1) should 

be performed or another one (CFM2). The entities involved in this decision procedure are 

one or more contexts. They are returned by the expression contexp.  The formalization of the 

rule (above) says that if all involved local contexts choose one of the ontology operations, 

then that becomes their joint choice, and if there is some disagreement then the joint choice 

is to do nothing. We assume here that for any CFMi appearing as a parameter in 

MCHOICE(), either CONFRIM(CFMi) is true or REFUSE(CFMi) is true, but this model 

does not include the decision procedure for how that choice is made. It is made by the 
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contexts in contexp as a response to the contents of message and the contents of CFM1 and 

CFM2.  

The DO() statement is important and can only be performed by the framework mechanism 

itself when it actually performs an ontology operation.  It is actually the DO() statement 

that moves the whole system S to the next state – simply because it changes S. Before 

then, the system only does hypothetical reasoning (“what would happen if an operation op1 

were performed?”). 

 

We will now investigate what happens when a local context initiates a proposal to add a 

mapping to another local context.  

 

Case 1. Proposing to add an ontology mapping.  

 

j j k

j k( , )

j k

c :  PROPOSE(add_mapping(m, c , c ))

 ( F:C_CONTRA(x, add_mapping(m, c , c )))

(F: MCHOICE(contexts_of( ( , )),

"contradicted:"+F: CREASON(x, add_mapping(m, c , c )),

 ( ),

    

x spheres c cj k

j kspheres c c

DO 







 j k( , )

j k

F:C_CONTRA(x, add_mapping(m, c , c ))

(RC(x,CREASON(x, add_mapping(m, c , c )))))

x spheres c cj k

or

DO
















 
 

                                   (7) 

j k( , )

j k j k

( F: IS_INFERABLE(x, add_mapping(m, c , c )))

F: MCHOICE({c , c }, "already_known", ( ),  (add_mapping(m, c , c )))

x spheres c cj k or

DO DO




 


 
 


  

j k( , )

j k j k

( F: IS_NEW(x, add_mapping(m, c , c )))

F: MCHOICE({c , c }, "new", ( ),  (add_mapping(m, c , c )))

x spheres c cj k

DO DO




 


 
 


 

 

This statement in the beginning of the rule above means: a local context cj is proposing to 

add a mapping from its ontology to another local context ck (see Figure 50 in §8.4.2 for a 

graphical visualization of this rule that facilitates its understanding). This rule uses some 

statements from the reasoning layer. Only one of the three sub-rules (inside this big rule) can 

actually be activated. Intuitively, this formalization (7) then says that if the proposed change 

would introduce a forbidden contradiction in any sphere containing both cj and ck, then one 

of the contradiction reasons is communicated to all of these affected spheres and all the 
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contexts inside spheres containing both cj and ck will decide together to either do nothing or 

that one of the reasons for the contradiction is removed in every sphere where a contradiction 

occurs (but without adding the proposed mapping within the same step). Notice that all local 

contexts that have ontologies in spheres where one of the contradictions resides, have to 

participate in making this decision (this situation is referred to as “All involved inside the 

sphere...” below).  The second and third sub-rule in (7) express that if the mapping can 

already be inferred or is new, the change is allowed but the two local contexts involved have 

to decide if they actually want to have it performed (this situation is referred to as “Pair” 

below). E.g. if, in Figure 18, we invent the concept yellow in O1 and then propose to add 

Is(yellow, colour) then it will be classified as IS_NEW by the process above, because this 

proposal neither creates a contradiction nor redundancy. 

Table 2. The table shows how decisions are made if ci: propose (ont_op) is proposed. 

ont_op= c_contra()  

is true 

is_inferable() 

is true 

is_new() 

is true 

add_mapping(m, cj, ck) All involved inside 

the sphere(s) of 

consistency 

Pair Pair 

delete_mapping(m, cj, ck) Contradiction 

cannot happen. 

Pair (i.e. mappings 

was already 

deleted) 

Pair  

(i.e. mapping existed) 

add_ontorel(r, cj) All involved inside 

the sphere(s) of 

consistency 

Individual  Individual 

 

delete_ontorel(r, cj) Contradiction 

cannot happen. 

Individual (i.e. 

relationship did 

not exist) 

Individual   

(i.e. rel. existed) 

 

Now we have investigated the case (case 1 above) when the proposal is to add a mapping 

between two ontologies, and the formalization showed what happens in the three cases. 

Table 2 above summarizes what this formalization would look like for the four cases when 

the proposal is to delete an ontology mapping, or add or delete an ontology relation. In all 

these cases formulas similar to (7) would be defined, but using the appropriate decision-

making entities – this is done below. The term “individual” in the table means that the local 

context that created the proposal can decide itself if it wants the logically allowed change to 

actually be performed. If the proposal is to delete a mapping or delete a relation within an 
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ontology this always logically allowed (because that is safe in this particular logic), so the 

individual local context or the pair of contexts decide whether to actually perform this act. 

This policy is allowing for individual ontologies that are not always singly connected.  

 

Case 2. Proposing to delete an ontology mapping.  

 

j j k

j k( , )

j k

c :  PROPOSE(delete_mapping(m, c , c ))

 ( F: IS_INFERABLE(x, delete_mapping(m, c , c )))

F: COMM("already_deleted", {c , c }) 

( )

x spheres c cj k

or

DO 









 

 

 


 

j k( , )

j k j k

( F: IS_NEW(x, delete_mapping(m, c , c )))

F: MCHOICE({c , c }, "still_exists", ( ),  (delete_mapping(m, c , c )))

x spheres c cj k

DO DO




 


 
 


 

 

The second case investigates when a context cj is proposing to delete a mapping from its 

ontology to another local context ck. In the particular logic we are investigating, deleting a 

mapping cannot create a contradiction (but that is not universally true). Therefore, to 

simplify things, in this case the protocol firstly investigates if the deletion is inferable (i.e. 

the mapping does not exist) and in that case the only option is to do nothing, because 

deleting something that does not exist is indistinguishable from doing nothing. Secondly, if 

deleting the mapping would actually change the system (i.e. it still existed), then the two 

involved contexts (cj and ck) decide to either do nothing or actually delete the mapping.     

 

Case 3. Proposing to add an ontology relationship.  

 

j j

j( )

j

j

( )

c :  PROPOSE(add_ontorel(r, c ))

( F:C_CONTRA(x, add_ontorel(r, c )))

(F: MCHOICE(contexts_of(spheres(c )),

"contradicted:"+F: CREASON(x, add_ontorel(r, c )),

, ( ),

    F:C_C

x spheres c j

x spheres c j

DO 









 j

j

ONTRA(x, add_ontorel(r, c ))

(RC(x,CREASON(x, add_ontorel(r, c )))))

or

DO










 



 

                                          (8) 
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j( )

j

j

( F: IS_INFERABLE(x, add_ontorel(r, c )))

F: MCHOICE(c , "already_known",

( ),  (add_ontorel(r, c )))

x spheres c j

or

DO DO








 

 


  

j( )

j

j

( F: IS_NEW(x, add_ontorel(r, c )))

F: MCHOICE(c , "new",

( ),  (add_ontorel(r, c )))

x spheres c j

DO DO








 

 


 

 

This rule above takes care of the case when a context cj proposes to add an ontology 

relationship r within itself. If that creates a contradiction in any of the spheres of consistency 

that cj belongs to, then this is communicated to all of them including some contradicted 

knowledge within that sphere. Then, in the case of a contradiction all contexts in the spheres 

of consistency that contain cj decide either to do nothing or that in every sphere that contain 

cj and where a contradiction is made, one of the contradiction reasons is removed. In the case 

that the proposed ontology relationship is inferable this is communicated to all contexts in 

that sphere. However, the context cj decides itself if it wants to do nothing or add the 

proposed ontology relationship. So this is the essence of a contextual ontology: decisions 

about changing it are made locally as long as this does not create any problems in the wider 

system, in contrast to ontology mappings that are governed by shared authority. If the 

proposed ontology relationship is new then that is communicated to all contexts within a 

sphere, but again, it is the context cj itself that decides if it want to do nothing or actually add 

the proposed ontology relationship – because this change of knowledge wouldn't create any 

problems the final decision to do it or not is localised. 

 

Case 4. Proposing to delete an ontology relationship.  

j j

j( )

j

c :  PROPOSE(delete_ontorel(r, c ))

 ( F: IS_INFERABLE(x, delete_ontorel(r, c ))

F: COMM("already_deleted", c ) 

( )

x spheres c j

or

DO 









 

 

 


 

j( )

j j

( F: IS_NEW(x, delete_ontorel(r, c ))

F: MCHOICE(c , "still_exists", ( ),  delete_ontorel(r, c ))

x spheres c j

DO 




 


 
 


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This final rule declaration describes that when a context proposes to delete a relationship in 

its ontology, then if that is already inferable then that is communicated to it and it can 

nothing do. But if the relationships actually exist and can be deleted then that context decides 

itself if it want to delete the relationship.  

 

5.5 The framework top layer  

We now formalize the top layer. This layer’s vocabulary is: 

 

Expression Meaning 

ci: PROPOSE (op) , where  

{1,.., }i n
   

context ci proposes operation op 

NEWCONCEPT(dj)  that is true iff concept dj was created in the previous 

state 

F: REQUEST(ci : PROPOSE (op)) The framework requests context ci to propose 

operation op 

 

The top layer governs the general system because all action is initiated there. 

Firstly, any local context can initiate the synchronization processes of the whole framework 

by activating the propose statement above assuming the framework mechanism is in waiting 

mode (and does not process another proposal then, e.g. is in “busy mode”). So this is the 

formal sense in which the local contexts can exercise their semantic autonomy. After this 

statement is invoked, the framework mechanism invokes the corresponding procedural rules 

of the other layers. The top layer contains this rule: 

 

       
j

F: DO (add_ontorel(m, c , ))

NEWCONCEPT(d )

F: REQUEST(c : PROPOSE(add_mapping(m, d , )))

where k {1,...,n}  k j

j j

j j k

d

c





  

                            (9) 

 

This means that if an ontology relation m has actually been created within the ontology of a 

local context j and it connects a new concept dj (to an existing concept cj)  then that local 

context is requested to “try” to generate proposals that would map this new concept to the 

other local contexts. It means that it has to ask the knowledge source to generate knowledge 
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that fits that pattern, and sometimes that will actually result in this knowledge being 

generated. The rules are acting here as performative statements in a multi-agent system.  

 

5.6 Computational Semantics of the Protocol 

Here are the computational semantics of the definitions from §5.2. The type definitions use 

the class names that were defined at the beginning of §5.2. 

 

5.6.1 A formalism for monitoring the execution of the protocol 

Internally, the negotiation state ns contains different variables and their values. Also, it has a 

set of variables statei (i=1..n) corresponding to all n occurrences of a command com   

FraCom (as defined in §5.2) that actually occurs in a concrete protocol. It holds that statei=0 

for i=1...n before execution starts and this will change to statei=1 once the corresponding 

command com actually has been executed.  So if there are x instances of commands of the 

type FraCom in an actual protocol, then there will be a set of variables state1, state2 ... statex 

corresponding to these instances. So these instances will be executed in some order. 

Therefore, this state variable says something about where a command instance is in its 

execution lifecycle. Concretely, then every instance of com is of the form : ( )DOF op  

where the op contains free variables. Initially, before execution starts, this holds: 

 

ns⊢ statei=0  for every i=1..n  (corresponding to all n occurrences of a command com   

FraCom) 

 

Secondly, we define these two special constraint predicates: 

 

Execute_in(com, ns)  

Executed_in(com, ns)  

 

And their meaning is the following (where i is the unique identifier of com): 

 

Execute_in(com, ns) is defined to mean that statei is set to 1 (i corresponds to the i:th 

occurrence of com). 

Executed_in(com, ns) is defined as:  ns⊢ statei=1 
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Executed_in(com, ns) returns true iff statei=1, otherwise is returns false. 

Informally, this will be used to keep track of if com has been executed or not, and the 

computational semantic below will set statei  to 1, only if the i:th com has been executed. 

 

We then define  

 

contains(Cexp, com)  

 

to mean that the command Cexp also executes the command com, i.e. includes that in its 

execution. 

 

5.6.2  Defining different types of evaluation 

 

In order to evaluate Boolean expressions into Boolean values we will use the evaluation 

arrow 
B .  

The type definition for 
B is 

DecBExpNStateOState↦ BVal 

 

The Boolean values T and F that will be used here, correspond true and false used in other 

chapters (and also to V[BExp]=1 and V[BExp]=0 used in chapter 3). 

In order to evaluate commands and how they transform a state into another state we will 

need the evaluation arrow 
C . 

 

The type definition for 
C is 

Dec  TopOrFComNStateOState↦ NStateOState 

 

 

In order to evaluate a sphere expression and receive a set of spheres we need the evaluation 

arrow 
S . 

 

The type definition for 
S is 

Dec  SpExp NStateOState ↦SpFun 
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In order to evaluate a context expression and receive a set of contexts we need the evaluation 

arrow  . 

 

The type definition for  is 

Dec  ContExp NStateOState ↦ContVal 

 

 

5.6.3 The computational semantics 

 

The computation semantics for 
B are the following: 

 

 

 

 

______________ 

D ⊢ ( , , ) BT ns os T  

 

 

______________ 

D ⊢ ( , , ) BF ns os F  

 

 

D ⊢ ( , , ) Bbe ns os bv

 
D ⊢ ( , , ) Bbe ns os bv   

__________________________ 

D ⊢ (   , , ) ( , )Bbe be ns os Or bv bv    

 

 

 

 

 

D ⊢ ( , , ) Bbe ns os bv

 
D ⊢ ( , , ) Bbe ns os bv   

___________________________ 

D ⊢ (   , , ) ( , )Bbe be ns os And bv bv  
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We defined the semantics for  : 

 

______________ 

D ⊢ ( , , )contexp ns os conv  

 

 

The computation semantics for 
C are the following: 

 

D ⊢ ( , , ) ( , )CCT ns idle os ns os 

 
D ⊢ ( , , ) ( , )CCM ns os ns os   

___________________________ 

D ⊢ ( , )CCT ns os  and if contains(CT, com) that com   FraCom then Execute_in(com, 

ns )  

whenever  occurs in DCT CM  

 

We see that the pre-requisite for this execution is that the negotiations state is a special 

named state called idle because this rule is used for processing new proposals (and they can 

only be processed one at a time). 

 

If contains(CF, com) that com   FraCom and Executed_in(com, ns)  

D ⊢ ( , , ) ( , )CCF ns os ns os

 
D ⊢ ( , , ) ( , )CCM ns os ns os   

___________________________ 

D ⊢ ( , )CCF ns os  

whenever  occurs in DCF CM  

 

D ⊢ ( , , ) ( , )CCM ns os ns os   

D ⊢ ( , , ) ( , )CCM ns os ns os    

____________________________ 

D ⊢ (   , , ) ( , )CCM CM ns os ns os     
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D ⊢ ( , , ) Bbe ns os T  

D ⊢ ( , , ) ( , )CCFM ns os ns os   

____________________________ 

D ⊢ ( ) ( , )Cbe CFM ns os    

 

 

 

D ⊢ ( , , ) Bbe ns os T   

D ⊢ ( , , ) ( , )CCM ns os ns os   

__________________________________ 

D ⊢ (  or  , , ) ( , )Cbe CM be CM ns os ns os        

 

 

 

D ⊢ ( , , ) Bbe ns os F 
 

D ⊢ ( , , ) Bbe ns os T   

D ⊢ ( , , ) ( , )CCM ns os ns os   

_________________________________ 

D ⊢ (  or  , , ) ( , )Cbe CM be CM ns os ns os        

 

 

D ⊢ ( : ( ), , ) ( , )CDOF op ns os ns idle os   

 

os´ is a new ontology state where one of the four ontology operations have been performed 

on ontology in its state os, as defined in chapter 4. The negotiation state now changes to a 

state that has a special name, idle¸ because it can again accept new proposals. 

 

5.7 Chapter Summary 

The purpose of this chapter is to define the behaviour of the infrastructure mechanism and 

how the autonomous initiatives made by contexts are processed by this mechanism. Firstly, 

we different types or syntactic categories used in this formalism, and these are types related 

to negotiation and procedural execution, logic and ontologies, contexts, spheres of 

consistency. We then describe the rules of the reasoning layer, framework middle layer and 
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framework top layer. Finally, we show the computational semantic for interpreting and 

executing these rules.  
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Chapter 6 A prototype implementation 

In this chapter we will briefly describe a prototype implementation of the infrastructure 

mechanism. The prototype is implemented as a Java application in Java SE 5.0. The 

prototype system consists of these main parts (see Figure 20). We describe first the prototype 

of the infrastructure mechanism and its main parts: 

 

6.1 Configuration & Sphere set-up 

Before the infrastructure can process proposals it has first to be set up and configured. More 

precisely, these are the parameters that are decided at this stage: 

 

 How many contexts and ontologies will there be? 

Currently, every context hosts one ontology.  

 Which of the ontologies can grow and which of the ontologies can be connected by 

ontology mappings?   

 Which spheres of consistency are defined, which ontology and mapping sets will 

they contain and what level of consistency will they maintain (i.e. the consistency 

parameter pc[1,2]). 

 

After these things are set up, then this configuration is (currently) kept constant during the 

execution (see 0 for future work about relaxing this assumption).  

 

Sphere 

and 

ontology 

manager 

Configuration & 

Sphere Set-up 

Reasoning Layer 

Scenario-based 

knowledge 

simulator 

Infrastructure 

mechanism core 

Performance 

monitor 

Figure 20. A very abstract illustration of the infrastructure mechanism prototype (to the 

right) and its interaction with the scenario-based knowledge simulator (to the left). 
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6.2 Infrastructure mechanism core 

This is the implementation of the rules described in Chapter 5, but with certain 

simplifications as described in §7.2. Incoming proposals are the events that drive the 

infrastructure mechanism and currently these proposals only come from the scenario-based 

knowledge simulator (see §6.5). In the future, it could have an open interface so that it could 

receive proposals that are "sent" to it from other applications (considering that this is the 

ultimate use of a knowledge infrastructure, as described in chapter 1). It is then processed 

according to the policy rules and it uses the sphere and ontology manager and the reasoning 

layer. 

6.3 Sphere and ontology manager  

This component manages all the created spheres and the ontologies of all the contexts. 

6.4 The Reasoning Layer 

The reasoning layer constitutes a big part of the implemented prototype. It implements the 

reasoning data structures and algorithms as they are described in Chapter 4. Often, it uses 

Hash-tables for storing big knowledge structures.  

 

We will now mention the two modules that are developed only for the purpose of evaluating 

the infrastructure mechanism. 

6.5 Scenario-based knowledge simulator 

This module is not at a part of the infrastructure specification, but it is created for the 

scientific purpose of evaluating it. We first give a single integer as input and this describes 

which of the different scenarios we want to run (several different ones are described in 

Chapter 7). This means that every scenario contains a configuration that is used for 

generating connected ontologies. We will see that this knowledge simulation process uses a 

certain element of randomness in order to explore what happens in different situations where 

the semantic meaning is different.  

 

Every individual scenario is defined by the following parameters: 

 

 How many contexts and ontologies that exist. 

 Which of the ontologies that are allowed to evolve and which of the pairs of ontologies 

that will develop ontology mappings (i.e. not all ontologies are connected). 
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 What the ratio is between small and big ontologies. We assume that ontologies are of 

two different sizes (e.g. that big ones are ten times larger than small ones). The 

knowledge simulator maintains this ratio simply by using the appropriate probabilities 

for which an ontology is proposed to grow by its contexts. 

 A set of probabilities that define how probable it is that a certain context will randomly 

generate a proposal to evolve its ontology, or that it will propose to add a mapping 

between its ontology and another ontology. 

 The parameters that will set up a set of spheres of consistency, i.e. the contexts they 

contain, the mapping sets and level of consistency. 

 The amount of experiments that are done within a scenario. An experiment is defined as 

a session during which the whole system grows until it reaches it maximum size. 

 The maximum total size to which the system grows (during every experiment). 

 

6.6 Performance Monitor    

The performance monitor measures the processing effort every time the infrastructure 

mechanism is processing a proposal. It measures these three parameters: 

 

 The time it took the infrastructure mechanism to process the proposal  

 The maximum memory used by the infrastructure mechanism to process the 

proposal  

 The total size of the proof search trees that were created when the infrastructure 

mechanism processed the proposal 

 

It also saves input parameters such as the size of the system when the proposal was received 

and sometimes other information, e.g. the degree of consistency.  

Normally, for a given scenario at least 400 experiments are generated by the Scenario-based 

knowledge simulator, and the performance monitor collects the data generated during the 

course of every experiment. The results are then statistically analysed and examples of 

scenarios are presented in Chapter 7. 

 

6.7 Chapter Summary 

In this chapter we have summarized the implemented prototype of the infrastructure 

mechanism. For the purpose of evaluation, it interacts with a scenario-based knowledge 
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simulator that configures sets of ontologies that the infrastructure mechanism then has to 

manage. The effort in terms of time and memory use for processing every transaction is then 

measured.  
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Chapter 7 .  Evaluation Scenarios, Results and 

Analysis 

7.1 Overview of experimental setup 

We now present several scenarios where we evaluate our prototype system – more precisely 

its scalability in different circumstances. The purpose of this chapter is to investigate and 

measure how the computational effort (particularly time complexity) changes with the 

problem size (i.e. the total amount of mappings and ontology relationships within a sphere), 

for certain infrastructure configurations. We describe below the advantage of choosing a 

general infrastructure configuration and then investigating the median of 400 different 

choices of knowledge contents (particularly the types of mappings that connect ontologies), 

rather than investigating only a few ontologies. In this chapter we will evaluate what happens 

with the computational effort of an infrastructure mechanism when the spheres of 

consistency use proof-bounded reasoning of various degrees, when the size difference 

between small and large ontologies increases, when ontologies get wider (i.e. their branching 

factor increases) and when the whole constellation of how ontologies are connected with 

each other and spheres of consistency are set up, changes.    

 

The reason why we have not evaluated the system on "real" data is that such data is very 

difficult to acquire and might not yet exist in reality – it would need to show how several 

inter-related ontologies and their mappings evolve over time. And this data log would also 

need to contain change proposals that were unsuccessful because they violate some assumed 

constraints – these would also need to be captured in detail. We are not aware of such 

datasets in the ontology community. However, if an infrastructure mechanism that we 

propose in this thesis actually was fully developed and utilised, then it would be easier to 

acquire and analyse such data.  

 

In order to avoid this problem, the scenarios are performed using simulated ontologies, but 

we have tried to make sure they have a structure that is analogous to that of real ontologies. 

For example, when our simulations generate and gradually evolve ontologies, they assume 

that the ontologies grow like recursive trees that have a certain branching factor.  Also, in 

these scenarios (particularly 2 and 3) we present certain configurations of ontologies, 

mapping sets and spheres of consistency that are reminiscent of interesting situations that 

could occur in reality. More precisely, these situations could occur when several 
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organizations that use ontology-based knowledge infrastructures would like to connect them 

and exchange formalised knowledge in a "safe" way with each other, i.e. making sure that 

semantic contradictions would not occur during the communication between a division in 

one organization and a division in another organization that both act as "interfaces" and 

exchange knowledge with each other. In a formal way, this will mean that these two 

interface ontologies are connected with mappings and that they are within at least one sphere 

of consistency that requires full consistency (in the default case). In these experiments we 

have also assumed that the "interface" ontologies (the ones used to exchange knowledge with 

other organizations) are smaller than the "core" organizational ontologies (the ones that are 

only connected to other core ontologies but not other organizations), and we think this is a 

realistic assumption, because there is normally only a small overlap in the interests of two 

organizations so only a subset of all existing knowledge should be enough for such 

communication. We evaluate what happens when this ratio between "core" and "interface" 

ontologies increases. 

 

The experimental evaluation presented here uses our prototype described in chapter 6 and it 

also utilizes the part of the prototype that generates problems with a certain configuration. 

These are the parameters that we vary between the different scenarios: 

 

 The pairs of ontologies that have active connections between each other that will 

give rise to a growing amount of mappings that connect them. 

 The particular spheres of consistency chosen, and their degree of consistency. 

 The ratio between the size of "core" ontologies and the "interface" ontologies  

 The recursive branching factor of all ontologies. The higher this factor is, the wider 

the ontologies are. 

 

The first scenario investigates the effects of varying the amount bounded consistency, by 

varying the consistency parameter pc defined in §4.3.1 from maintaining perfect consistency 

to a state where all inconsistencies are allowed. The second scenario set investigates the 

benefits of full but pair-wise consistency compared to global consistency, in a situation 

where two organizations connect their ontologies with each other. Then we investigate what 

happens if the size difference between "core" and "interface" ontologies increases, and what 

happens if the ontologies that have to managed are wider. The third scenario investigates a 

three-organization topology where the interface ontologies of the three organizations have to 
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be able to communicate with each other and therefore have to belong to the same sphere of 

consistency. 

 

 

7.2 Specification of the experimental setting 

We use a prototype implementation as specified and described in chapters 4, 5 and 6 with a 

slightly modified
10

 version of Algorithm A. However, the evaluation uses the following 

version of the rules, where the system does not try to remove subsets of existing ontologies 

when there is a contradiction, but instead it rejects the proposal. We did this simplification, 

but we will see several interesting phenomena nevertheless (a phase transition is one of 

them).  

 

Case 1b. Proposing to add an ontology mapping.  

 

j j k

j k( , )

c :  PROPOSE(add_mapping(m, c , c ))

 ( F:C_CONTRA(x, add_mapping(m, c , c )))

( )

x spheres c cj k or

DO 









 
 

                                    (10) 

j k( , )

j k j k

( F: IS_INFERABLE(x, add_mapping(m, c , c )))

F: MCHOICE({c , c }, "already_known", ( ),  (add_mapping(m, c , c )))
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DO DO




 


 
 


  

j k( , )

j k j k

( F: IS_NEW(x, add_mapping(m, c , c )))

F: MCHOICE({c , c }, "new", ( ),  (add_mapping(m, c , c )))

x spheres c cj k

DO DO




 


 
 


 

 

 

Case 3. Proposing to add an ontology relationship.  

 

                                                     

10
 In the experiments we used a variant of Algorithm A that in some cases doesn't find a contradiction 

(e.g. if the proposal is a COR relation and there is rare combination of existing COMP and DISJOINT 

mappings) but it has exactly the same worst-time complexity as Algorithm A, so even if we would run 

the experiments using Algorithm A (that we believe is complete) we think the results would be very 

similar.  
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c :  PROPOSE(add_ontorel(r, c ))
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( F: IS_INFERABLE(x, add_ontorel(r, c )))

F: MCHOICE(c , "already_known",

( ),  (add_ontorel(r, c )))
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
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j
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( F: IS_NEW(x, add_ontorel(r, c )))

F: MCHOICE(c , "new",

( ),  (add_ontorel(r, c )))

x spheres c j

DO DO








 

 


 

 

The ontology operations that can occur in scenarios 1, 2 and 3 are the following ones: 

 Add ontology mapping (between two concepts of different ontologies). 

 Add ontology subsumption relation (between two concepts within an ontology). 

 

As we have described in chapter 2, in a real application either human expert insight and 

knowledge or ontology or mapping induction would be used as the "source" that provides the 

proposals. Because it has been infeasible to get hold of real data, we simulated the autonomy 

of the various contexts by having them make proposals that have a randomised semantic 

meaning instead of a meaning describing a real domain. In practice this means that a context 

proposes to add a mapping to the ontology of another context, then the mapping type is 

randomly chosen to be one of 

the five possible. Such a 

proposal is then processed by 

the infrastructure mechanism. In 

our scenarios we evolve the 

ontologies and mappings until 

the whole system has a certain 

size. The graphs will typically 

show the amount of proposals 

made along the x-axis and we 

should keep in mind that a 

Pc=Vc 

 Pc=1 

C1 M12 

Pc=1 

C2 

Figure 21. The contexts that have ontologies that 1) are 

internally consistent, 2) connected by a set of mappings 

M12 and where the whole system has a consistency of 

degree Vc. 
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fraction of these proposals are accepted (about 85-95%). For all scenarios, we generate a 

system of several networked ontologies (where the meaning of the mappings has been 

randomly generated) at least 400 times, and the graphs presented illustrate the average 

results and the statistical variation. We believe that this is an advantage of simulation, 

because we have then measured the behaviour of the system during hundreds of different 

possible knowledge settings, i.e. the semantic meaning of every such setting is different, and 

we can see both the average behaviour and the amount of variation.  

7.3 Scenario 1. Investigating variable bounded consistency. 

We now present an experimental evaluation where our implementation (as described in 

chapter 6) tests the core part of the framework (as described in §7.2 above). We assume two 

contexts c1 and c2 with one ontology each (see Figure 21). The ontologies of contexts c1 and 

c2 can evolve individually and mappings can evolve that connect these ontologies. We define 

spheres of consistency as illustrated in Figure 21, and we see that the largest sphere has a 

variable consistency we shall call vc. So the three defined spheres are 

 

Cons({c1},{}, 1),   

Cons({c2},{}, 1),  

Cons({c1, c2},{m12}, vc). 

 

We now think of an application scenario where the contexts represent divisions within an 

organization, and all the “proposals” express organizational needs to adapt to a changing 

business environment. In this evaluation we assume that both contexts evolve ontologies 

having tree-like structures with a recursive branching factor 3, but it is randomized how 

quickly they grow. The expected size of the ontology of context c1 and c2 is the same, 

because the probability that any of them will grow is the same. These things can happen: 

 

ci : PROPOSE (Is (Cnew,i, Cold, i)) A proposal to change(grow)  the ontology i where 

the concept Cnew is invented and added as a sub-

concept of Cold 

 

ci : PROPOSE (add_mapping(m, ci, 

ck))   

A proposal to add a mapping m from ontology  i to 

k. One of the 5 mapping types is randomly chosen.  
 

In other words, either one of the ontologies decides to grow or it proposes a random mapping 

from a recently created concept. During this simulation the system grows while obeying the 
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rules and the sphere of consistency constraints. We have evaluated this implementation 

looking at the scalability and more precisely the incremental effort of the system to respond 

to a proposal and do the required reasoning. The total system size is 2000 in the experiment 

so e.g. d=2001 if vc=1 but  d=13 if vc=1.994 (we solve equation 2 in section 4.3.1 for d). Our 

results are seen in Figure 22 and the time measured is the reasoning time that is needed when 

processing a proposal. The slope is defined as the constant k of the linear functions that are 

the best for the various line-like graphs in the top of Figure 22. Figure 24 and Figure 25 

show the effort measured as proof search tree size and the memory use. These figures show 

the reasoning effort of the system to process proposals for adding the ontology mappings 

while maintaining all the above-mentioned constraints – so some proposals are rejected but 

others accepted. Every marked data point is the average for 100 consecutive proposals (x-

values) for 420 different runs of the system (for every fixed vc). We see that the difference 

between vc=1 and vc=1.994 is small (vc is defined in Figure 21), because the proofs of 

contradiction that occurs in an application domain having this structure have a depth that is 

small compared to the overall system size (but they could be very wide). One could therefore 

re-normalize parameter pc (here vc=pc) depending on the application. However, in Figure 22 

we observe a phase transition between two states with different behaviour: to the left of the 

transition the system has a stable linear time- and memory-complexity but to the right of it 

the system is close to being constant, in fact in that region it is approaching constant time- 

and memory-complexity.  

 

7.3.1 Validation of the algorithm.  

We have implemented a module that uses a slow brute-force method for measuring the 

smallest inconsistency in a set of ontologies and mappings – for any pair of variables it 

investigates if it can prove and disprove that any of the five mappings hold. We have 

generated 170 times a system of size 100 and validated that the measured inconsistency is 

never higher than the promised one (see below for more details about this validation). 

In fact, often it is much lower (especially in a small system) because we have measured that 

the probability of a single proposal (in a system growing to the size of 2000) creating a 

contradiction is less than 0.6% for pc=1 (it does decrease when pc increases). But because of 

the potential risk that a contradiction could occur, reasoning about the existence of a 

contradiction still must be done.  

The infrastructure relies constantly on the fact that it has managed to maintain the defined 

form of consistency in its previous state, and only does the incremental work needed to make 
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sure these constraints are still satisfied. In this validation, however, we did not make these 

assumptions at all but did an exhaustive search of all inconsistencies and listed them. We 

think the time complexity of this brute-force method was O(n
3
) and memory complexity 

O(n) for measuring the size of the minimal inconsistency for this simple logic 
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Figure 22. The figure on the top show the incremental time effort to process a single proposal for 

a system where already x number of proposals have been processed and that has the degree of 

consistency Vc. The diagram on the bottom left side shows the slope (i.e. all the k:s in lines that 

would be the best linear fit y=kx+m for the several line-like graphs above) of the top diagram 

lines, whereas the right diagram shows the analogous slopes for memory use. 
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certain proposal will be classified as contradictory, or that it will create redundancy 
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classified as "new", i.e. they neither create contradiction nor redundancy. This 

graph is dependent on: the logic used, the reasoning rules and the semantics of the 

examples investigated. However, for a variety of such meta settings one can expect 

these lines to converge towards zero when pc->2. 
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released). 
 

Figure 24. Given a certain degree consistency measure Vc and given a certain average proposal 

to process, this graph shows the average reasoning effort to process it, measured by the proof 

search tree size. 
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7.4 Scenario 2. Investigating the maintenance of pair-wise 

consistency using a two-organization topology. 

7.4.1 Scenario 2.1. Pair-wise consistency using a two-organization 

topology. 

 

The motivation for this scenario is that we have two organizations that have two ontologies 

each. Organization 1 has ontologies o1 and o2, whereas organization 2 has ontologies o3 and 

o4. 

Ontologies o2 and o4 are seen as core ontologies whereas ontologies o1 and o3 are seen to be 

interface ontologies. The interface ontologies facilitate knowledge exchange between the two 

organizations that is delivered by the mappings between the two ontologies and the sphere of 

Figure 27. Global consistency is maintained between all the divisions of the two organizations. 

Case 1 

C2 C4 

C1 C3 

Ont. Size = 

x 

Ont. Size = 10x Ont. Size = 10x 

Figure 26. There is full consistency within every individual ontology, and within all ontologies 

and mappings of all organizations (i.e. C1 and C2 + mappings, and C3 and C4 + mappings) and 

between the two interface ontologies (C1 and C3 + mappings). 

Case 2 

C2 C4 

C1 C3 

Ont. Size = x 

Ont. Size = 10x Ont. Size = 10x 
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consistency that these two ontologies and their mapping set belong to (see Figure 27 and 

Figure 26). During the simulation contexts can either propose to evolve their ontologies, or 

to propose mappings to the ontologies of contexts to which they have an active relation (this 

is exemplified in Scenario 1). We now describe this scenario formally. 

 

There are four contexts: c1, c2, c3 and c4 and they all have an ontology each. 

 The set of active relations between the contexts is: 

{(c1, c2), (c2, c1), (c1, c3), (c3, c1), (c3, c4), (c4, c3)} 

 

In Case 1 these are the spheres of consistency: 

Cons({c1, c2, c3, c4},{m12, m13, m34}, 1). 

 

 

Figure 28. The time for the system to process a proposal in case 1 vs. case 2, compared with how 

many proposals that already have been processed (which is related to total system size). 

 

 In Case 2 these are the spheres of consistency: 

Cons({c1},{}, 1),   

Cons({c2},{}, 1),  

Cons({c3},{}, 1),   

Cons({c4},{}, 1),  

Cons({c1, c2},{m12}, 1). 
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Figure 29. The y-axis here represents the total size of all proof search trees generated (i.e. 

one tree per sphere investigated) when a single proposal is processed. The x-axis is the 

same as before. The error bars show the 25% and 75% percentiles for the two cases. The 

high error bars belong to case 1. 
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Figure 30. The y-axis shows the maximum memory used during the processing of a 

single proposal. If several spheres of consistency are investigated, then the one using 

most memory will be shown. The error bars show the 25% and 75% percentiles for the 

two cases. The high error bars belong to case 1. 
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Cons({c1, c3},{m13}, 1). 

Cons({c3, c4},{m34}, 1). 

 

The evolution of ontologies and mappings is based on proposals that are generated randomly 

with certain probabilities. However, these probabilities are chosen in such way that if the 

statistically expected size of ontology 1 and 3 is x, then the statistically expected size of 

ontology 2 and 4 is 10x. All the four ontologies (o1, o2, o3 and o4) have the branching factor 

3. 

 

We have measured the scalability of the system and investigated the computational effort to 

process an evolution proposal (see Figure 28, Figure 29 and Figure 30). This effort is 

measured in a three-fold way: the time it takes to process the proposal, the total sum of the 

sizes of proof search trees that are built during the process and the maximum memory used 

to process the proposal. As regards the second and third measure, we should consider that 

when the reasoning looks into several spheres of consistency, then it does reasoning 

separately in all of them so the effort is split into chunks. In the case of global consistency, 

one big proof search tree is built and memory is allocated for that single larger effort.  

 

It makes sense to measure the incremental effort of the infrastructure mechanism to process a 

proposal, because then it remains in a "stable" state where all the consistency constraints are 

satisfied and it waits for the next proposal. The reason for doing this scalability investigation 

is to see if the infrastructure mechanism could mange a big set of ontologies when it is 

configured in a certain way. We learn from Figure 28 that the incremental efforts grows 

linearly in both cases, but that the processing time is more than 6 times (6.4 exactly) smaller 

in case 2 compared with case 1. The proposals included in these statistics are when contexts 

1 and 3 (that host interface ontologies) make proposals to each other to add mappings 

between their ontologies.  

  

The x-axis shows the amount of proposals accepted or rejected, and for every run of the 

generated scenario (the average of 400 runs is presented in the graphs) the simulations stops 

when the total system size is 2000. That end point will be at the x-axis between the proposal 

value 2000 and 2800 and varies between every run.  
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7.4.2 Scenario 2.2. Pair-wise consistency with an increased size 

difference between ontologies. 

In this scenario we again have two organizations having two ontologies each (see Figure 31 

and Figure 32). We can envision that organization 1 has ontologies 1 and 2 and the mappings 

between them, whereas organization 2 has ontologies 3 and 4. As before, contexts c2 and c4 

host the core ontologies, whereas c1 and c3 have the interface ontologies. During the 

simulation contexts can either propose to evolve their ontologies, or to propose mappings to 

the ontologies of contexts to which they have an active relation (this was exemplified in 

Scenario 1). 

 

The formal model is as follows. 

There are four contexts: c1, c2, c3 and c4 and they all have an ontology each. 

 The set of active relations between the contexts is:  

{(c1, c2), (c2, c1), (c1, c3), (c3, c1), (c3, c4), (c4, c3)} 

 

In Case 1b these are these spheres of consistency: 

Cons({c1, c2, c3, c4},{m12, m13, m34}, 1). 

 

In Case 2b these are these spheres of consistency: 

 

Cons({c1},{}, 1),   

Cons({c2},{}, 1),  

Cons({c3},{}, 1),   

Cons({c4},{}, 1),  

Cons({c1, c2},{m12}, 1). 

Cons({c1, c3},{m13}, 1). 

Cons({c3, c4},{m34}, 1). 

 

 

The evolution of ontologies and mappings is based on proposals that are generated randomly 

with certain probabilities. However, these probabilities are chosen in such way that if the 

statistically expected size of ontology 1 and 3 is x, then the statistically expected size of 

ontology 2 and 4 is 20x. This means that compared to scenario 2.1 the size ratio between the 

core and interface ontologies is now larger. The reason why this is interesting is that it gives 

us a sensitivity analysis where we can measure if the increased size difference between the 
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small and large ontologies benefits more from more confined spheres of consistency 

compared to the case where the size difference is smaller. All the four ontologies (o1, o2, o3 

and o4) have the branching factor 3. The graphs evaluate the computational effort of the 

infrastructure mechanism to process proposals that context 1 makes that would map its 

ontology to the ontology of context 3. We see the results in Figure 33, Figure 34 and Figure 

35. 

 

We learn from Figure 33 that the effort to process a proposal grows linearly in both case 1b 

and 2b, but that the growth of these linear functions is 9 times higher for case 1b, i.e. when 

global consistency is maintained. If we compare with scenario 2.1 and its case 1, where this 

ratio was around 6, we learn that if the size difference between the large core ontologies and 

smaller interface ontologies grows, the system will benefit even more from using pair-wise 

consistency. We also learn from Figure 33 that case 1b has a much higher variability than 

Figure 31. Global consistency is maintained between all the divisions of the two organizations. 

Case 1b 

C2 C4 

C1 C3 

 Ont. Size = x 

Ont. Size = 20x Ont. Size = 20x  

Figure 32. There is full consistency within every individual ontology, and within all 

ontologies and mappings of all organizations (i.e. C1 and C2 + mappings, and C3 and C4 + 

mappings) and between the two interface ontologies (C1 and C3 + mappings). 

Case 2b 

C2 C4 

C1 C3 

 Ont. Size = x 

Ont. Size = 20x Ont. Size = 20x 
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case 2b, so using the infrastructure for managing pair-wise consistency makes the system 

behaviour more predictable. Figure 34 illustrates these ideas as well, but it shows the 

computation effort in the form of the total size of proof search trees, instead of time. Finally, 

Figure 35 illustrates the memory that is allocated for the case 1b vs. 2b. These could be 

hypothesized to grow linearly (or at least to be bounded by a linear function) while this 

linear function grows twice as fast for case 1b compared with case 2b, i.e. this should 

converge towards memory use in case 1b being double the memory use in case 2b. So that is 

yet an advantage of managed pair-wise consistency. However, the variability of the memory 

use is very high. We believe this is due to the fact that Java has been used and it has a virtual 

machine that makes decisions about memory allocation and garbage collection, and also 

because the implementation always creates hash-tables with the ontological knowledge, for 

fast access. 
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Figure 33. The time for the system to process a proposal in case 1b vs. case 2b, compared with 

how many proposals that already have been processed (which is related to total system size). 
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Figure 34. The y-axis here represents the total size of all proof search trees generated (i.e. 

one tree per sphere investigated) when a single proposal is processed. The x-axis is the same 

as before. The error bars show the 25% and 75% percentiles for the two cases. The high 

error bars belong to case 1b. 
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Figure 35. The y-axis shows the maximum memory used during the processing of a single 

proposal. If several spheres of consistency are investigated, then the one using most memory 

will influence the result. The error bars show the 25% and 75% percentiles for the two cases. 

The high error bars belong to case 1b. 
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7.4.3 Scenario 2.3. Pair-wise consistency using wider ontologies. 

In this scenario we again have two organizations having two ontologies each (Figure 36 and 

Figure 37). As before, contexts c2 and c4 have the core ontologies, whereas c1 and c3 have the 

interface ontologies. During the simulation contexts can either propose to evolve their 

ontologies, or to propose mappings to the ontologies of contexts to which they have an active 

relation (this exemplified in Scenario 1). 

 

There are four contexts: c1, c2, c3 and c4 and they all have an ontology each. 

 The set of active relations between the contexts is:  

{(c1, c2), (c2, c1), (c1, c3), (c3, c1), (c3, c4), (c4, c3)} 

C2 C4 

C1 C3 

Ont. Size = x 
branching 
factor=4 

Ont. Size = 10x 
branching factor=4 

Ont. Size = 10x 
branching factor=4 
 

Case 2c 

Figure 37. There is full consistency within every individual ontology, and within all ontologies 

and mappings of all organizations (i.e. C1 and C2 + mappings, and C3 and C4 + mappings) and 

between the two interface ontologies (C1 and C3 + mappings). 

Figure 36. Global consistency is maintained between all the (ontologies of ) the divisions of the 

two organizations. 
 

Case 1c 

C2 C4 

C1 C3 

Ont. Size = x 

branching 

factor=4 

 

Ont. Size = 10x 
branching factor=4 
 

Ont. Size = 10x 
branching factor=4 
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In Case 1 these are the spheres of consistency: 

 

Cons({c1, c2, c3, c4},{m12, m13, m34}, 1).  

 

In Case 2 these are the spheres of consistency: 

Cons({c1},{}, 1),   

Cons({c2},{}, 1),  

Cons({c3},{}, 1),   

    

 Cons({c4},{}, 1), 

Cons({c1, c2},{m12}, 1). 

Cons({c1, c3},{m13}, 1). 

Cons({c3, c4},{m34}, 1). 

 

The evolution of ontologies and mappings is based on proposals that are generated randomly  

with certain probabilities.  However, these probabilities are chosen in such way that if the 

statistically expected size of ontology 1 and 3 is x, then the statistically expected size of 

ontology 2 and 4 is 10x.  
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Figure 38. The time for the system to process a proposal in case 1c vs. case 2c, compared with 

how many proposals that already have been processed (which is related to total system size). 
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Figure 40. The y-axis shows the maximum memory used during the processing of a single 

proposal. If several spheres of consistency are investigated, then the one using most memory 

will influence the result. The error bars show the 25% and 75% percentiles for the two cases. 

The high error bars belong to case 1c. 
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Figure 39. The y-axis here represents the total size of all proof search trees generated (i.e. one 

tree per sphere investigated) when a single proposal is processed. The x-axis is the same as 

before. The error bars show the 25% and 75% percentiles for the two cases. The high error 

bars belong to case 1c. 
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All the four ontologies (o1, o2, o3 and o4) have the branching factor 4.    When the ontologies 

are wider this could affect the reasoning effort because it implies that ontology viewed as a 

graph has higher connectivity compared with scenarios 2.1 and 2.2. 

We learn from Figure 38 that the incremental effort to process a proposal grows linearly in 

both case 1c and 2c, but that the growth of these linear functions is 5.2 times higher for case 

1c, i.e. when global consistency is maintained. If we compare with scenario 2.1 and its case 1 

and case 2, we recall that it was 6.4, i.e. it was greater. So it seems that that the higher 

connectivity (caused by wider ontologies) reduced the difference somewhat. However, the 

ratio that measures the effort considering total proof search size in Figure 39 is 6.6 (vs. 5.9 in 

scenario 2.1).  

The measured time effort is still more important, so it seems that wider ontologies reduce the 

benefit somewhat of pair-wise consistency, but more experiments are needed to say 

something more firm about this. From a network science point of view (see chapter 2), wider 

ontologies implies higher connectivity of the "knowledge network" that is created, i.e. the 

network of connected ontologies.  

Also, as before, we see that if global consistency is used the variability of the system 

performance is much greater compared to automatically managed pair-wise consistency.   

C4 C6 C3 C5 

Ont. Size = x 

 

Ont. Size = 10x 

 

Ont. Size = 10x 

C1 

C2 

Ont. Size = 
10x 

Ont. Size = x 

Case 3 

Figure 41. Global consistency is maintained between the ontologies of all the divisions of 

the three organizations. 
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7.4.4 Scenario 3. Investigating the maintenance of pair-wise 

consistency using a three-organization topology. 

 

The third scenario will investigate a three-organization topology, where every organization is 

considered to have two divisions, that will be represented by two contexts having an 

ontology each, i.e. one per division (see Figure 41 and Figure 42). For every such pair of 

ontologies, one ontology is considered to be a core ontology whereas the other one is a 

interface ontology, i.e. it is used to exchange knowledge with other interface ontologies. 

Ontologies o2, o4 and o6 are considered to be core ontologies in this scenario, whereas 

ontologies o1, o3 and o5 are considered to be interface ontologies because a sphere of 

consistency maintains full consistency between them (for the purpose of their 

communication that could utilize these ontologies and the mappings between them). This 

scenario is different from the previous ones in a particular way: the sphere of consistency 

connecting interface ontologies now contains three ontologies that are connected by 

mappings. In contrast to before, this creates more constraints due to the "loop" created by the 

C4 C6 C3 C5 

C2 

C1 

Ont. Size = x 

 

Ont. Size = 10x 

 
Ont. Size = 10x 

Ont. Size = 
10x 

Ont. Size = x 

Case 4 

Figure 42. There is full consistency within every individual ontology, and within all 

ontologies and mappings of all organizations (i.e. C1 and C2 + mappings, and C3 and C4 + 

mappings, C5 and C6 + mappings) and between the three interface ontologies (C1 + C3 + C5 + 

mappings). 
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mappings. E.g. if the context of ontology 1 proposes to add a mapping to ontology 3, then 

the reasoning in that sphere will investigate if the proposal is consistent with the existing 

mappings between ontology 1 and ontology 3, but it will also investigate if any 

contradictions are created by going via the ontology of context 5 and the mappings that lead 

via ontology 5. From an application point of view, the ontologies 1, 3 and 5 and the 

mappings between them are representing a form of consensus that could be used by semantic 

applications (e.g. negotiations about products and prices) where these tree ontologies would 

be involved (and therefore, also the organizations that they are a part of).  

 

This configuration can be described formally in this way. 

There are six contexts: c1, c2, c3, c4, c5 and c6 and they all have an ontology each. 

 The set of active relations between the contexts is:  

{(c1, c2), (c2, c1), (c1, c3), (c3, c1), (c3, c4), (c4, c3), (c5, c6), (c6, c5), (c3, c5), (c5, c3), (c1, c5), (c5, 

c1)} 

 

In Case 1 these are the spheres of consistency: 

Cons({c1, c2, c3, c4, c5, c6},{m12, m13, m34}, 1). 

 

In Case 2 these are the spheres of consistency: 

Cons({c1},{}, 1),   

Cons({c2},{}, 1),  

Cons({c3},{}, 1),   

Cons({c4},{}, 1),  

Cons({c5},{}, 1),  

Cons({c6},{}, 1), 

Cons({c1, c2},{m12}, 1). 

Cons({c3, c4},{m34}, 1). 

Cons({c5, c6},{m56}, 1). 

Cons({c1, c3, c5},{m13, m35, m15}, 1). 
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Figure 44. The y-axis here represents the total size of all proof search trees generated (i.e. one 

tree per sphere investigated) when a single proposal is processed. The x-axis is the same as 

before. The error bars show the 25% and 75% percentiles for the two cases. The high error bars 

belong to case 3. 
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Figure 43. The time for the system to process a proposal in case 3 vs. case 4, compared with 

how many proposals that already have been processed (which is related to total system size). 

The error bars show the 25% and 75% percentiles for the two cases. 
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Figure 45. The y-axis shows the maximum memory used during the processing of a single 

proposal. If several spheres of consistency are investigated, then the one using most memory will 

influence the result. The error bars show the 25% and 75% percentiles for the two cases. The 

high error bars belong to case 1c. 

 

The evolution of ontologies and mappings is based on proposals that are generated randomly 

with certain probabilities. However, these probabilities are chosen in such way that if the 

statistically expected size of ontologies 1, 3 and 5 are x, then the statistically expected size of  

ontologies 2, 4 and 6 are 10x. All the six ontologies have the branching factor 3. During the 

simulation, contexts can either propose to evolve their ontologies, or to propose mappings to 

the ontologies of contexts to which they have an active relation (this is exemplified in 

Scenario 1). 

 

We learn from Figure 43 that the incremental effort to process a proposal grows linearly in 

both case 3 and 4, but that the growth of these linear functions is 7.8 times higher for case 3, 

i.e. when global consistency is maintained. If we compare with scenario 2.1 and its case 1 

and case 2, we recall that it was 6.4, i.e. it has increased. However, the ratio that measures 

the effort considering total proof search size in Figure 44 is 4.75 (vs. 5.9 in scenario 2.1). 

Because the time measure is more important, we interpret this as an indication that in the 

three-organization topology the difference between maintaining full consistency and 
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managed pair-wise consistency, is increased compared with the two-organization topology. 

The difference in memory use between these two topologies, is however small. Let us now 

discuss the consequences of these evaluations of various experimental scenarios. 

 

7.4.5 Investigating if the infrastructure mechanisms satisfies the 

AGM postulates 

This section has focused on an empirical evaluation, but we will now also do a theoretical 

evaluation of the infrastructure mechanism. In section 2.1.10.2 we introduced the AGM 

postulates, and we will now repeat the introduction but also show to which extent our 

infrastructure mechanism satisfies these postulates.   

Firstly, we will recapitulate. ∔ is a function representing revision taking a belief set and a 

sentence as arguments and giving a belief set as a result. The belief system that results from 

revising K by sentence  will be denoted K∔. The belief system that results from 

expanding K by sentence  will be denoted K+. 

 

(K∔1) For any sentence  and any belief set K, K∔ is a belief set. 

(K∔2)  K∔ 

(K∔3) K∔  K+ 

(K∔4) if  ∉ K, then K+  K∔ 

(K∔5) K∔ = K if and only if ⊢  

(K∔6) if ⊢   , then K∔ = K∔ 

(K∔7) K∔ 𝜙 ∧ Ψ ⊆  K ∔ 𝜙 + Ψ 

(K∔8) if Ψ ∉  K ∔ 𝜙 , then  K ∔ 𝜙 +  Ψ ⊆ K ∔ 𝜙 ∧ Ψ 

 

(K∔2) says that input sentence  is accepted in K∔. (K∔5) says that K∔ should be 

consistent, unless  is logically impossible. (K∔6) says that logically identical sentences 

should lead to identical revisions.  (K∔7) says that revising K with 𝜙 ∧Ψ is a subset of 

revising K with  first and then with Ψ. 

 

We now compare these postulates with the behaviour of our system as described in chapter 

5. We will assume that revising K with  corresponds to sending a proposal to our 

infrastructure mechanism that  should be added, when the existing knowledge of the whole 

system is K (e.g. we assume there is one sphere of consistency and it contains K and we 
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simplify the discussion by assuming that the system maintains full consistency within that 

sphere of consistency). Our infrastructure mechanisms satisfies (K∔1) because the result of 

the processing is a new connected network of ontologies (note also that processing a 

proposal takes finite time - see §8.3). This is true for approach 1 and 2. 

 

(K∔2) above assumes that  is a good piece of knowledge that should be added to K (using 

their language, " is accepted"). Our formalism has very different assumptions, because it 

first investigates if  is consistent or inconsistent and then also asks the involved contexts if 

the change is desirable in the first place. i.e. we do not assume a-priori that the new 

knowledge is better than existing one, or is desirable at all. Even if it is consistent with K, it 

can still be decided to be rejected (i.e. we consider approach 1). But if we assume that  is 

desirable by the contexts (i.e. considering approach 2), then our formalisms satisfies (K∔2). 

In the current prototype, however, we decided to not focus on belief revision due to its 

complexity, so in the current prototype if  is consistent with K and  is desirable by the 

contexts, then (K∔2) holds.  

 

The formalisation of our infrastructure mechanisms satisfies (K∔3) no matter what happens. 

E.g. if  is deemed to be undesirable by the involved contexts, then K∔=K, and even then 

the equation (K∔3) holds. For the same reason, we infer that (K∔4) does not hold, because if 

 is not desirable by the contexts then (K∔4) leads to K+  K which is not true generally. 

Indeed, if the policy is that redundancy is forbidden then even if K and  is desirable by 

the contexts, (K∔4) still does not hold because we again get K+  K. However, if contexts 

accept all proposal that do not cause conflict (i.e. approach 2) then (K∔4)  holds.  

 

If we assume that we maintain full consistency then (K∔5) does not hold because the system 

is guaranteed to never lead to inconsistency. However, if the sphere of consistency is using 

bounded reasoning and the proposed  creates a contradiction that is not worse than what is 

permitted and  is desirable by the involved by contexts, then (K∔5) holds. In the current 

logic, it is not possible to have a single piece of knowledge that is a self-contradiction (but 

one piece of knowledge can contradict another one). 

 

(K∔6) is an interesting postulate and we think that it illustrates one of the differences 

between belief revision and the infrastructure formalism. If we consider comparison 

approach 1 (as define above), then there could be a situation in principle where contexts 
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agree to add a piece of knowledge  because it corresponds to their intuition and 

conceptualization (i.e. the cognitive distance is small) whereas an equivalent piece of 

knowledge  could express in a way that is impractical, unnatural or unintuitive and 

therefore it could be rationally rejected on these pragmatic grounds. Then (K∔6) does not 

hold. However, using approach 2 and disregarding this decision procedure of the contexts, 

then (K∔6) does hold, because the reasoning as such is only concerned by the meaning of 

these pieces of knowledge whereas in approach 1 it is the "human" input in the decision 

process, that on rational ground can and should be concerned with the form of the knowledge 

added, that would break (K∔6).  

 

For a similar reason, it is clear that (K∔7) does not hold in approach 1. E.g. the contexts 

could prefer to accept   as a single piece of knowledge instead of accepting  and  

separately because 1)  could actually correspond to their cognitive model whereas  and 

 separately would only do so imperfectly, or 2) because the contexts want a knowledge 

representation of minimal length, so they would rather accept a single piece of knowledge 

rather than two pieces of knowledge representing the same meaning. Using approach 2 for 

comparison will however accept (K∔7).  Finally, (K∔8) does not hold considering approach 

1, for similar reasons as mentioned (but this time the contexts could have a preference for 

many pieces of knowledge). But if we use approach 2, then (K∔8) holds. Let us now 

summarize our results. 

 

7.4.5.1 A summary of the comparison  

Here is a summary of our investigation: 

 

AGM Postulate Does the knowledge infrastructure formalism  

satisfy the given postulate? 

 Considering Approach 1 Considering Approach 2 

(K∔1). Yes Yes 

(K∔2). No Yes 

(K∔3). Yes Yes 

(K∔4). No Yes 

(K∔5). No (assuming pc=1) No (assuming pc=1) 

(K∔6). No Yes 
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(K∔7). No Yes 

(K∔8). No Yes 

 

We believe that approach 1 is a more fair comparison because it takes into account the 

"pragmatics" of evolving knowledge where contexts express their opinions about a change. 

But we have also presented approach 2. 

 

7.5 Summary and general analysis of results  

The general conclusions of the experimental evaluations are the following: 

 

 If the inconsistency parameter pc is moved sufficiently close to 2 (pc=2 means that 

inconsistencies of all depths are fully allowed) then the incremental reasoning effort 

(e.g. the reasoning effort need to process a single proposal compared to the size of 

the knowledge in that sphere) converges towards constant time complexity. This 

means that even when the size of the system grows this effort stays more or less the 

same. The cost one has to pay for this is that there is a certain probability of 

introducing inconsistencies in that sphere, but one knows that their size is above a 

certain threshold.  This implies that queries about this knowledge set (in their 

simplest form, e.g. asking if a certain ontology relationships or mappings holds or 

not) will have a certain probability of being unsound.  

 

 If we compare a scenario with several connected ontologies where full consistency is 

maintained vs. pair-wise consistency, then the variability of the time effort is much 

higher for the case where full consistency is maintained compared with the case 

when pair-wise consistency is maintained. 

 

 When using the infrastructure mechanism with this particular simple logic (see 

chapter 3), the difference between maintaining full and pair-wise consistency does 

not lead to different computational time complexity, but the constant of the time 

complexity does change.     

 

 It is sometimes useful to think in terms of interface ontologies, at the edge of an 

organization ontology network structure and used for communicating with other 

organizations. Core ontologies are then internal ontologies of an organization and 
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are typically larger. A particularly interesting configuration of the infrastructure is to 

define pair-wise consistency in such a way that small interface ontologies are 

shielded from big core ontologies when doing reasoning, by defining spheres of 

consistency that separates them, so that the core ontology of one organization has no 

direct contact with the ontologies of other organizations. However, by means of 

chains of ontology mappings and overlapping spheres of consistency, all ontologies 

are indirectly somehow connected.    

The evaluation demonstrates that when the size difference increases between the 

large core ontologies and smaller interface ontologies, the system will benefit even 

more from using pair-wise consistency. 

 

 It seems that the benefit of using proof-bounded consistency instead of full 

consistency is greater for a three-organization ontological topology compared to a 

two-organizational topology, so far as processing time effort is concerned. We note 

that the difference between these topologies is that the three organization topology 

has more ontologies and more complex structure than the two-organization topology. 

 

 For the logic used, the probability that either a forbidden contradiction (in the sense 

of "worse than allowed") or forbidden redundancy (defined in the corresponding 

way) should be detected or exist does converge towards zero when the inconsistency 

parameter pc converges towards 2. This might also be true for other logics. But this 

was expected from the definitions (i.e. the endpoint of this convergence could be 

predicated but not the shape of the convergence curve).  

 

Some general reflections: 

 

 If a more expressive logic were used (e.g. a form of Description Logic that has 

exponential worst-time complexity), the computational benefit of using pair-wise 

consistency instead of global consistency would most likely be bigger, because there 

is more benefit to bounding a higher time complexity and more expressive logics 

have worse time complexity. This is clear for the case when full consistency is used 

within all spheres of consistency (i.e. no proof-bounded consistency). However, it is 

more challenging to find an algorithm that would maintain incremental and proof-

bounded consistency for description logics in general. 
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 The current prototype is actually very slow, in so far that it is using a lot of time to 

set up data structures etc. If the implementation is improved that time can be 

reduced. 

 

To summarise, in this chapter we have investigated how the infrastructure mechanisms 

performs in several different scenarios that were created by simulations. We have learnt that 

it makes it feasible to automatically maintain consistency between several interconnected 

ontologies, and that it does make the process more scalable. 
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Chapter 8 Proofs of infrastructure mechanism 

properties 

In this chapter we show three theorems about the properties of the infrastructure mechanism, 

and give their full or partial proofs. The first three are related to the logical reasoning 

whereas the last one is concerned with the process model. 

 

We first look at Table 3 below and it investigates all cases of composing two relations in the 

form of R ∘ R´= R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) where R and R' are either ontology 

mappings or ontology relations (and the concepts Ai, Bj and Ck are not negated).  

 

Table 3. The result of calculating R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck). It is implicitly assumed 

that R(Ai, Bj) is created in state s and R'(Bj, Ck) is created in state s', whereas R''(Ai, Ck) is 

created in state s''=max(s, s'). 

              R= 

  R'= 

COR(Ai, Bj) IS (Ai, Bj) IS2 (Ai, Bj) COMPATIBLE  

(Ai, Bj) 

DISJOINT (Ai, Bj) 

 

COR (Bj, Ck) COR (Ai, Ck) IS (Ai, Ck) IS2 (Ai, Ck) COMPATIBLE 

 (Ai, Ck) 

DISJOINT  

(Ai, Ck) 

IS (Bj, Ck) IS (Ai, Ck) IS (Ai, Ck)  COMPATIBLE 

 (Ai, Ck) 

 

IS2 (Bj, Ck) IS2 (Ai, Ck)  IS2 (Ai, Ck)  DISJOINT  

(Ai, Ck) 

COMPATIBLE 

(Bj, Ck) 

COMPATIBLE 

 (Ai, Ck) 

 COMPATIBLE 

 (Ai, Ck) 

  

DISJOINT  

(Bj, Ck) 

DISJOINT  

(Ai, Ck) 

DISJOINT  

(Ai, Ck) 

   

 

We have calculated the entries in Table 3 by using the mechanical rewrite rules in Chapter 4. 

E.g. in section 4.10 we show that COR ∘ COR = COR and this corresponds to one of the 

entries in the table above.  

 

We now look at the theorems. 

 

Theorem 1.  This theorem states that:  

Suppose 

R= Cor (Ai, Bj)| Is (Ai, Bj)| Is2 (Ai, Bj) | DISJOINT (Ai, Bj) | COMPATIBLE (Ai, Bj) 
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R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) 

R''= Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck) 

 

and  

S= Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck)| COMPATIBLE (Ai, Ck) 

 

Then the following two are equivalent: 

 R(Ai, Bj)  R'(Bj, Ck) ⊨ R''(Ai, Ck) and there is no S(Ai, Ck) (where S(Ai, Ck)  

R''(Ai, Ck)) such that S(Ai, Ck) ⊨R''(Ai, Ck)) 

 (R(Ai, Bj)  R'(Bj, Ck) ⇒R''(Ai, Ck)) 

 

I.e. every relation (as defined in §3.4) that semantically follows from the semantic 

conjunction of two relations (and there is no more general relation that is true), this relation 

is derivable as shown in Table 3, and every relation that is derivable
11

 as shown in Table 3 

(being a conjunction of two other relations) is also semantically true (i.e. the most general 

relation that is true). 

 

Theorem 2. The algorithms used for reasoning provide decision procedures for the 

following proof tasks: 

 

 Proof task 1. Calculating if a proposed change introduces a contradiction. 

 Proof task 2. Calculating if a proposed change is redundant. 

 Proof task 3. Calculating if a proposed change introduces a change that neither 

generates a contradiction or redundancy. 

 

The "change" can either be adding an ontology relation or ontology mapping. 

 

Theorem 3. The process execution of the described in Chapter 5 will always terminate, 

when it is activated by the any of the two proposals below assuming that contexts are 

responsive during the process. When it terminates it will either remove knowledge 

contradicted by these proposals, or accept and perform them, or reject them:  

 ci : PROPOSE (add_ontorel(m, cj, dj)) 

                                                     

11
 The rewrite rules and the reasoning algorithms in sections §4.7 to §4.12 are used in the mechanical 

derivation. 
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 ci : PROPOSE (add_mapping(m, ci, ck))   

 

in finite time, in accordance to the criteria in theorem 2 and maintain the defined consistency 

constraints. It will only reject the proposals if there is a violation of the consistency 

constraints. 

 

8.1 Proof of Theorem 1  

Theorem 1 includes both soundness and completeness (this corresponds to the backward and 

forward direction of the equivalence in theorem 1). We will prove the soundness but only 

outline the completeness proof (due to the complexity of showing all its details). 

 

In §4.10 we have defined the rules for calculating the outcome of this combination: 

 

R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) 

 

where R, R' and R'' are either relations between concepts in an ontology or mappings 

between concepts in two different ontologies, and where A is a concept in ontology i, B is a 

concept in ontology j, and C is a concept in ontology k.  Let us assume that R is created in 

state s, and R´ is created in state s´ whereas R'' is created in state s´´. If both relationships are 

within the same ontology then i=j=k. If R is a relation within an ontology and R' a mapping 

between two ontologies then R'' is a mapping between two ontologies and i=jk. So we will 

now focus on the mechanical computation of the equation above (according to the algorithms 

in chapter 4) and verify that it adheres to the semantics defined in chapter 3. The first thing 

we will do is to list the exhaustive list of all possibilities that R, R' and R'' can have given our 

focus on a limited language as defined in §3.4.  All these combinations are shown in Table 3. 

 

A comment about notation: In this chapter (and Appendix A) we use variable z´ instead of z 

to denote the state of an expression, because variable z is sometimes used as an instance 

variable. 

8.1.1 Combining States when Calculating  

R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) 
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In the analysis of all the cases in Table 3 we will not focus so much on which state the 

relations are created. The reason for this is that this follows a regular pattern that is very 

similar for all the cases. 

 

Given that R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) 

If R(Ai, Bj) is created in state s and R'(Bj, Ck) is created s' then R''(Ai, Ck) is created in state 

max(s, s'). This is easy to see for these cases: 

R= Cor (Ai, Bj)| Is (Ai, Bj)| Is2 (Ai, Bj) | DISJOINT (Ai, Bj) 

R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) 

 

The reason is that all of these relations use a syntax of the form  

(exp( ( ), ( )) (exp( ( ), ( ))s i i j j s i i j jN A x B y G A x B y  

 

Let's assume s'>s. 

When two such relations are combined we get a combination like this: 

( (exp( ( ), ( ))) (exp( ( ), ( ))))

( (exp ( ( ), ( ))) (exp ( ( ), ( ))))

(exp( ( ), ( ))) (exp ( ( ), ( )))

(exp( ( ), ( ))) (exp ( ( ), ( )))

(e

s i i j j s i i j j

s j j k k s j j k k

s i i j j s j j k k

s i i j j s j j k k

s

N A x B y G A x B y

N B y C z G B y C z

N A x B y N B y C z

N A x B y G B y C z

G

 





 

 



 

 

xp( ( ), ( ))) (exp ( ( ), ( )))

(exp( ( ), ( ))) (exp ( ( ), ( )))

(exp( ( ), ( ))) (exp ( ( ), ( )))

(exp( ( ), ( ))) (exp ( ( ), ( )))

( )( ( ,

i i j j s j j k k

s i i j j s j j k k

s i i j j s j j k k

s i i j j s j j k k

A x B y N B y C z

G A x B y G B y C z

G A x B y N B y C z

G A x B y G B y C z

st S L s









 





 





  ,

,

,

,

) [exp( ( ), ( )) | ] 1)

[exp ( ( ), ( )) | ]) 1

( )( ( , ) [exp( ( ), ( )) | ] 1)

( )( ( , ) [exp ( ( ), ( )) | ] 1)

i st i i j j z st

i s j j k k z st

i st i i j j z st

i st j j k k z st

st V A x B y

V B y C z

st S L s st V A x B y

st S L s st V B y C z



  



  

  

  

    

      


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,

,

[exp( ( ), ( )) exp ( ( ), ( )) | ] 1)

( )( ( , ) [exp( ( ), ( )) exp ( ( ), ( )) | ] 1)

(exp( ( ), ( ) exp ( ( ), ( ))) (exp( ( ), ( )) ex

i s i i j j j j k k z st

i st i i j j j j k k z st

s i i j j j j k k s i i j j

V A x B y B y C z

st S L s st V A x B y B y C z

N A x B y B y C z G A x B y

  

  

 

  

       



   p ( ( ), ( )))

(exp ( ( ), ( ))) (exp ( ( ), ( )))

j j k k

s i i k k s i i k k

B y C z

N A x C z G A x C z 





 

 

This calculation has several times used the fact that s´>s, otherwise this conclusion would 

not have been possible to reach. This is equivalent to saying that the resulting relation R''(Ai, 

Ck) will belong to state max(s,s´). 

 

Let us now review again the equation  

R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) 

and assume again that R(Ai, Bj) is created in state s and R'(Bj, Ck) is created s'. 

However, now 

R= Cor(Ai, Bj) | Is(Ai, Bj)  | Is2(Ai, Bj) | DISJOINT(Ai, Bj) 

R'= COMPATIBLE(Bj, Ck)  

 

( , ),

( , ),

( , ),

(exp( ( ), ( ))) (exp( ( ), ( )))

(exp ( ( ), ( )))

[exp( ( ), ( )) | ]) 1

( )( ( , ) [exp( ( ), ( )) | ] 1)

( )( ( , ) [exp (

s i i j j s i i j j

s j j k k

i j s i i j j z s

i j st i i j j z st

i j st j

N A x B y G A x B y

F B y C x

V A x B y

st S L s st V A x B y

st S L s st V B









 





 

    

     

( , ),

( , ),

( , ),

( ), ( )) | ] 1)

( )( ( 1, ) [exp( ( ), ( )) | ] 1)

( )( ( , ) [exp ( ( ), ( )) | ] 1)

(assume 1)

( )( ( , ) [exp( ( ),

j k k z st

i j st i i j j z st

i j st j j k k z st

i j st i i j

y C x

st S L s st V A x B y

st S L s st V B y C x

s s

st S L s st V A x B

 



  







     

      

  

    

( , ),

( )) exp ( ( ), ( )) | ] 1)

( )( ( , ) [exp ( ( ), ( )) | ] 1)

j j j k k z st

i j st i i k k z st

y B y C x

st S L s st V A x C x

 

  

 



      

 

So in this situation we are given some kind of answer (later sections will show what answer). 

If however, 1s s   then we construct a counter-model where exp' holds in a state before 

all the states where s holds, i.e. there will be no state where exp and exp' hold at the same 

time (what we call exp´´). This means combining the relations when 1s s   will lead to  
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R(Ai, Bj)  R'(Bj, Ck)    

 

If we swap the order of R and R' (i.e. R= COMPATIBLE(Ai, Bj)) and if it is 1s s    

then again R(Ai, Bj)  R'(Bj, Ck)    

 

So we will keep the following in mind: 

When R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) 

and R= COMPATIBLE and is created in state s' whereas R' is created in state s, or  

R´= COMPATIBLE and is created in state s' whereas R is created in state s, 

then if 1s s    then R''= . 

 

8.1.2 The distinction between ontology relations and mappings 

when calculating R(Ai, Bj)  R'(Bj, Ck) ⇒ R''(Ai, Ck) 

This is again something we want to investigate now for all cases in Table 3 instead of 

repeating this over and over again for all cases that occur. 

 

The relations in Table 3 refer to ontology mappings if ij, or to ontology relations if i=j. 

 

If we combine two ontology mappings R(Ai, Bj)  R'(Bj, Ck)   R''(Ai, Ck) we will get a 

new ontology mapping if ik. If we combine two ontology relations R(Ai, Bi)  R'(Bi, Ci) 

  R''(Ai, Ci) we get a new ontology relation. If we combine an ontology mappings and an 

ontology relation we get a new ontology mapping: R(Ai, Bj)  R'(Bj, Cj) R''(Ai, Cj). 

Therefore, by following these rules we always now if the end-result is a mapping or ontology 

relationship. 

 

8.1.2.1 Solution: Choose rich semantics (ontology mappings) and 

project to simpler when needed 

The question remains if we have to repeat all proof for all these cases, considering that a 

relation R(Ai, Bj) has a somewhat different extended syntax and semantics, if i=j and it is an 

ontology relationship compared to if ij and it is an ontology mapping. The answer is that it 

is enough to investigate the case when both R(Ai, Bj) and R'(Bj, Ck) are ontology mappings, 

because they then used the "richest" semantics, in the following way.  
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In those cases we simply transform all ontology mappings into corresponding ontology 

relations and the instance variables  xi,  yj and zk are mapped into xi,  yi and zi in ontology i. 

What is a counter-model in the original theory (using several ontologies) will still be a 

counter-model when it is translated together with the theory into a single ontology in this 

way. 

8.1.2.2 A proof pattern used  

This proof pattern will be used a few times, so we show it now. 

 

Assume that ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))A x B y B y C z A x C z      

It then holds that  

( ( , ) ( ( ), ( ))) ( ( , ) ( ( ), ( )))

( ( , ) ( ( ( ), ( )))

xy R x y A x B y yz R y z B y C z

xz R x z A x C z

   



  

 

 

The proof is as follows. 

( ( , ) ( ( ), ( ))) ( ( , ) ( ( ), ( )))

( ( , ) ( ( ), ( )) ( , ) ( ( ), ( )))

xy R x y A x B y yz R y z B y C z

xyz R x y A x B y R y z B y C z

   



   



 

(( ( , ) ( ( ), ( ))) ( ( , ) ( ( ), ( ))))

(( ( , ) ( , )) ( ( , ) ( ( ), ( )))

( ( ( ), ( )) ( , )) ( ( ( ), ( )) ( ( ), ( ))))

xyz R x y A x B y R y z B y C z

xyz R x y R y z R x y B y C z

A x B y R y z A x B y B y C z

     



      

    



 

(( ( , ) ( , )) ( , ) ( , )

( ( ( ), ( )) ( ( ), ( ))))

( ( , ) ( , ) ( ( ( ), ( )) ( ( ), ( ))))

xyz R x y R y z R x y R y z

A x B y B y C z

xyz R x y R y z A x B y B y C z

    

  



     


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( ( ( , ) ( , )) ( ( ( ), ( )) ( ( ), ( ))))

(transitivity of R(x,y) )

( ( ( , )) ( ( ( ), ( )) ( ( ), ( ))))

( ( , ) ( ( ( ), ( )) ( ( ), ( )))

( ( , ) ( ( ( ), ( )))

xyz R x y R y z A x B y B y C z

xyz R x z A x B y B y C z

xyz R x z A x B y B y C z

xz R x z A x C z

     



    



   



  

 

 

Notice that ( ( ), ( ))A x B y and ( ( ), ( ))B y C z  are Boolean functions and ( ( ), ( ))A x C z  

is their conjunction without the predicate ( )B y . 

 

All the proof details of theorem 1 are carried out in Appendix A, so the reader is advised to 

read Appendix A at this stage (the conclusions reached in this chapter so far will be used in 

Appendix A). 

 

8.2 Formal Investigation of Theorem 2 

We will first prove the soundness and outline the 

completeness proof of the procedure for the first 

proof task that is "Calculating if a proposed change 

introduces a contradiction". 

Before we can do this we will briefly define 

contradiction between relations and a different use 

of the conjunction. 

8.2.1 Defining contradiction 

In §4.11 we defined how negation is applied in a 

mechanical way as a part of the derivation 

procedure, and we see that DISJOINT (Ai, Ck) = 

COMPATIBLE (Ai, Ck) and vice versa. 

 

Contradiction can occur this way, where  

R = IS(Ai, Bj) | IS2(Ai, Bj) | COMPATIBLE(Ai, Bj) | 

DISJOINT(Ai, Bj)  (as we see in Algorithm A, the case of COR is subdivided in the two cases 

of IS and IS2). 

Figure 46. Three rules used: 

conjunction, variable permutation 

and reaching contradiction. 

R(Ai, Bj)        R´(Bj,  Ck) 

R´´(Ai, Ck) 

R(Ai, Bj)         

R´( Bj ,Ai) 

R(Ai, Bj)        R(Ai, Bj) 

Contradiction 



175 

 

 

⊢R(Ai, Bj)            ⊢R(Ai, Bj)         

_______________________________ 

⊢contradiction     

 

I.e. this is an application of the third rule in Figure 46.   

E.g. if R= DISJOINT (Ai, Ck) then this rules becomes: 

 

⊢DISJOINT (Ai, Ck)               ⊢COMPATIBLE (Ai, Ck) 

_______________________________________ 

contradiction. 

 

This rule is symmetric, so COMPATIBLE (Ai, Ck) could equally well occur on the left side. 

 

However, as part of future research (see §9.2.7) it would be advisable to add support for 

discovering contradictions that occur when instances are added after ontology relations and 

mappings have been defined.  

8.2.2 Proof Task 1. Calculating if a proposed change introduces a 

contradiction. 

We are restricting the semantics to only use the relations R defined in §3.4 and the proof 

patterns described in §4.6.  

The "proof structure" below 

investigate the structure of all 

possible proofs that could be created, 

but we will first look at the rules that 

actually are used by the reasoning 

algorithms. Figure 46 shows the three 

operations used by the reasoning 

algorithms: conjunction (), 

permutation of variables and 

detection of contradiction (that also 

can include using negation ()). 

§8.2.1 has defined how 

G  Rn 

Rn-1 

R1 

F1 

F2 

Fn-1 

Fn 

exp 

 

exp 

 

exp 

 

Figure 47. The newly proposed mappings is called G 

and Rn, Rn-1,..., R1 are the mappings that are used as 

rules in this proof search tree, where F1 is true. 
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contradictions can occur. We will not discuss variable permutation any further, because it is 

a technical detail – it is enough to say that it is included in the other operations, so when the 

reasoning system is looking for relations matching the reasoning rules it also does use 

variable permutation if needed. We will now investigate which proofs that are possible in 

general. 

 

Proof structure 

Let us assume that there is a set of existing relations R1, R2, ..., Rn and that an new relation G 

has been added that creates a contradiction. G creates a contradiction iff there is a finite 

sequence where these four rules are used on the existing relations in a way that ends with 

contradiction (rule 3) 

 

Rule 1. 

⊢R(Ai, Bj)     ⊢R´(Bj,  Ck) 

_______________________________ 

⊢R''(Ai, Ck)     

(where R'' is calculated using Table 3 or taken from the second part of §8.2.5) 

 

Rule 2. 

 ⊢ R(Ai, Bj)     

____________ 

 ⊢ R'(Bj, Ai)     

(where R' is the antisymmetric relation to R) 

 

Rule 3. 

⊢R(Ai, Bj)        ⊢ G(Ai, Bj) 

_______________________________ 

⊢contradiction     

(only if the rule matches the case in §8.2.1, i.e. G=R) 

 

Rule 4. 

⊢IS(Ai, Bj)          ⊢IS2(Ai, Bj) 

_______________________________ 

⊢COR(Ai, Bj)     
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Notice that Algorithm A uses these rules in a backward fashion, because it starts with rule 3 

and tries to find a matching relation that would generate the contradiction it is looking for.  

 

8.2.2.1 Investigating Soundness and Completeness 

Let us now investigate soundness and completeness for this particular case when the 

negation of a newly proposed mapping G can inferred from a minimal set of existing 

mappings Rn, Rn-1,..., R1. The algorithm is described in §0 and called Algorithm A. We 

investigate the case when the level of consistency within a sphere of consistency is not 

bound, i.e. pc=1. This is illustrated in Figure 47. The existing relations are used as rules. If 

we go back to the definition of the rule application procedure we see that 

1 1 2

1 1 2 3 2 2 3

1
1..

 (because F )

.

.

i
i n

F R F

F R R F R F

F R G


 

    

 

    

 

From the point of the view of the algorithm, it is doing breadth-first search and creating a 

proof search tree. It is using rule 1 and (implicitly) rule 2 from Figure 46 and rule 3 to end a 

proof. If all paths except one end with an  or any expression that still will be processed (this 

is called exp in Figure 47), then that single path stops at an expression F1 that we can prove 

is true (because it is a tautology or follows from one of the existing mappings). Then, from a 

logical point of view, we have a set of mappings whose conjunction implies the negation of a 

proposed mapping:  

 

1..
i

i n
R G


  

 

There is, however, a discrepancy between the three rules that Algorithm A is actually using 

(see Figure 46 and the four rules listed above. The essence of that discrepancy is rule 4 that 

says that IS(Ai, Bj)  IS2(Ai, Bj) ⇒ COR(Ai, Bj). In reality, this rules is never needed for the 

following reason: One contradiction that can occur is COMPATIBLE(Ai, Bj) and DISJOINT(Ai, 

Bj) or a big set of relations that can be reduced to these two using composition. Let us now 

use a graph-like metaphor and recall the contents of Table 3. If such a proof search tree has 
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to be propagated over these two relations: IS(Ai, Bj)  IS2(Ai, Bj) in order to make a proof, 

then it is enough if it propagates over one of these relations. E.g. COR  DISJOINT ⇒ 

DISJOINT, but also IS  DISJOINT ⇒ DISJOINT, and COR  COMPATIBLE ⇒ COMPATIBLE, but 

also IS2  COMPATIBLE ⇒ COMPATIBLE. In the case that DISJOINT or COMPATIBLE are 

composed with COR, we again can find either IS or IS2 that gives the same result. For other 

contradictions of the type R and R a similar argument can be made, because for every  

R   COR ⇒ R, it is true that R   IS ⇒ R or R   IS2 ⇒ R. Therefore, because we use this 

particular logic with these particular reasoning rules, completeness does not need rule 4 from 

§8.2.2 above. 

 

The procedure is therefore sound, because we know that every derivation step (e.g. using 

conjunction) is sound (see Theorem 1) and could also prove soundness for the steps outlined 

in §8.2.5 by using the same method as we have used in Appendix A. We also believe it is 

complete because if there is a proof it will find it because it uses breath first search and 

section 8.3 explains why the procedure will terminate. However, we do not provide a full 

proof for completeness. Also, if there are several different proofs (i.e. sets of existing 

mappings) then it will find the shortest proof (i.e. smallest set or relations). 

8.2.3 The case of bounded consistency 

In algorithm A, there is a line saying " Let d=(2-pc)(tot-1)+2". This uses the consistency 

parameter pc and an estimate of the maximum size of the amount of elements (ontology 

relations or mappings) within that sphere of consistency. Based on these inputs it calculates 

the absolute minimum depth that a contradiction can have, because the short contradictions 

that are more obvious are seen as more dangerous than those that are more subtle because 

they require a longer proof. 

 

Later Algorithm A says "If l>=d then return false" where l is the depth of the proof search 

tree. Then the algorithm has verified there are no proofs of size d-1, i.e. because we had 

decided that that we are not interested in proofs of size d or larger.  

 

This is the whole procedure. The user selects a consistency parameter pc and estimate of the 

total maximum size tot. From this, the absolute length d is calculated and guarantees that 

once size tot has been reach, that consistency parameter pc will hold then. On the way to that 

to the estimated maximum size pc will also hold, but pactual<pc then because the d is fixed 

(future versions of such system could find ways of modifying d during run-time). 
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Therefore, if a proposal is given to algorithm A, if it 

finds a proof of contradiction shallower than d, it 

will notify the user and the proposed change will not 

be done. If it, however, does not find a proof of 

contradiction shallower than depth d, it will not 

continue searching and there might potentially be a 

contradiction of depth d or larger that remains in the 

sphere of consistency. However, next time it does 

process a proposal to add a relation, it will search for 

contradictions within depth d around (i.e. in the 

network vicinity) that proposal, so if that change 

would contribute to making a contradiction of size 

less than d, it will find it.  

We have therefore shown how Algorithm A 

maintains the desired level of consistency pc. 

8.2.4 Proof task 2. Calculating if a 

proposed change introduces a 

redundancy. 

The algorithmic task of solving this process is 

similar to proof task 1. So the description will be 

somewhat briefer. Figure 48 shows the operations used by the algorithm (this time called 

Algorithm B), conjunction (), permutation of variables and detection of redundancy (that 

also can include using negation () or be inferred from a self-contradiction). The following 

section defines when the redundancy rule is triggered.  

8.2.4.1 Defining Redundancy and Self-contradiction rules 

Firstly, Rule 3 below fires iff rule 3 in § 8.2.2 would have fired, but in this case this proves 

that G is redundant. It is explained below why this is the case, but the main reason is that the 

forward reasoning includes G in the very start.  

 

Secondly, Rule 3b will fire iff S(Ai, Ai) is one of the following self-contradictions: 

IS(Ai, Ai), IS2(Ai, Ai), COR(Ai, Ai), COMPATIBLE(Ai, Ai), DISJOINT(Ai, Ai) 

 

R(Ai, Bj)        R´(Bj,  Ck) 

R´´(Ai, Ck) 

R(Ai, Bj)         

R´( Bj ,Ai) 

R(Ai, Bj)        R(Ai, Bj) 

Redundancy 

Figure 48. Four rules possible: 

conjunction, variable permutation 

and reaching redundancy (two ways). 

S(Ai, Ai)       (S=self-contrad.)  

Redundancy 
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8.2.4.2 The Proof Structure 

Above we have defined which relations that contradict each other, and self-contradiction. 

We will see that the main difference is that we apply the rules in a forward direction here, 

compared to the backward direction used in proof task 1.  

 

Proof structure 

Let us assume that there is a set of existing relations  

R1, R2, ..., Rn and a new relation G. It creates a redundancy iff there is a proof of redundancy 

by applying a sequence of these rules to these assumptions.  

 

Rule 1. 

⊢R(Ai, Bj)           ⊢R´(Bj,  Ck) 

_______________________________ 

⊢R''(Ai, Ck)     

(where R'' is calculated using Table 3 or taken from the second part of §8.2.5. Notice that R 

could also be G(Ai, Bj) ) 

 

Rule 2. 

 ⊢ R(Ai, Bj)     

____________ 

 ⊢ R'(Bj, Ai)     

(where R' is the symmetric relation to R) 

 

Rule 3. 

If  ⊢R(Ai, Bj)            ⊢R(Ai, Bj)         

_______________________________ 

⊢redundancy     

 

Rule 3b 

If  ⊢S(Ai, Ai)            

_______________________________ 

⊢redundancy     

 

(Where S(Ai, Ai) is a self-contradiction as defined in §8.2.4.1) 
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Rule 4. 

⊢IS(Ai, Bj)          ⊢IS2(Ai, Bj) 

_______________________________ 

⊢COR(Ai, Bj)     

 

Notice that Algorithm B uses these rules in a forward fashion always starting with Rule 1 

containing G(Ai, Bj) as one of the two relations. It is because of this starting point that an 

encountered contradiction actually proves that G is redundant.  

 

8.2.5 Listing all rule instances 

We will first list all instances of rule 3 in section 8.2.4, and they are: 

 

If  ⊢R(Ai, Bj)            ⊢R(Ai, Bj)         

_______________________________ 

⊢redundancy     

 

(where R = COR(Ai, Bj) | IS(Ai, Bj) | IS2(Ai, Bj) | COMPATIBLE(Ai, Bj) | DISJOINT(Ai, Bj) ) 

 

If  ⊢ COR(Ai, Bj)            ⊢ IS(Ai, Bj)         

_______________________________ 

⊢redundancy     

 

If  ⊢ COR(Ai, Bj)            ⊢ IS2 (Ai, Bj)         

_______________________________ 

⊢redundancy     

 

If  ⊢ COMPATIBLE (Ai, Bj)           ⊢ IS(Ai, Bj)         

_______________________________ 

⊢redundancy     
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If  ⊢ COMPATIBLE (Ai, Bj)           ⊢ IS2(Ai, Bj)         

_______________________________ 

⊢redundancy     

 

 

If  ⊢ COMPATIBLE (Ai, Bj)           ⊢ DISJOINT(Ai, Bj)         

_______________________________ 

⊢redundancy     

 

The reader is reminded that the conclusion "redundancy" refers to the original proposal G 

(i.e. "G is redundant"), because all these rules just show the last step in a reasoning chain and 

are actually contradictions as such. 

 

Table 3 indeed shows the main cases for rule 1, but during reasoning about redundancy these 

rules instances have also to be taken into account: 

 

⊢R(Ai, Bj)           ⊢ COR(Bj,  Ck) 

_______________________________ 

⊢R(Ai, Ck)     

 

(where R = COR(Ai, Bj) | IS(Ai, Bj) | IS2(Ai, Bj) | COMPATIBLE(Ai, Bj) | DISJOINT(Ai, Bj) 

 

⊢IS(Ai, Bj)           ⊢ IS2(Bj,  Ck) 

_______________________________ 

⊢ COMP(Ai, Ck)     

 

⊢IS2(Ai, Bj)           ⊢ DISJOINT(Bj,  Ck) 

_______________________________ 

⊢ COMP(Ai, Ck)     

 

We show soundness and completeness for the rules in Table 3 (see the beginning of 0 and 

Appendix A), and using a similar method one can easily prove soundness for these few rules 

above as well.  
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8.2.6 Which proofs are possible? 

The proofs possible are similar to the ones in Figure 46 but rules are now used in a forward 

direction instead (see Figure 49). So e.g. now proofs like this are possible: 

G  R1  R2  R3 

 

8.2.7 Investigating Soundness and completeness 

Let us now investigate soundness and completeness for this particular case when the newly 

proposed mapping G can be inferred from a minimal set of existing relations 

Rn, Rn-1,…,R1.  

 

We refer to Algorithm B described 

in §4.12.3. 

Let us now investigate soundness 

and completeness for this particular 

case when a newly proposed 

mapping G can be inferred from a 

minimal set of existing mappings Rn, 

Rn-1,…,R1 or is contradicting a set of 

existing mappings (there is a third 

case that will be investigated in the 

next section). This is illustrated in 

Figure 49 . The existing mappings 

are used as rules. If we go back to 

the definition of the rule application 

procedure we see that: 

 

1 1

1
1..

(because F )n 1 1 

.

.
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G R F
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G R F

 



  

  

   

  

    

 

G  Rn 

Rn-1 

R1 

F1 

F2 

Fn-1 

Fn 

exp   exp   exp   

Figure 49. The newly proposed mapping is called 

G and is negated, and Rn, Rn-1,…,R1 are the 

mappings that are used as rules in this proof 

search tree, where F1 has to be false. 
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From the point of the view of the algorithm, it is doing breadth-first search and creating a 

proof search tree. Termination is clear from the analysis in §8.3. If all paths except one end 

with an expression (or are in the process of being investigated - denoted as "exp" in Figure 

49), then these paths terminate (or would still have been investigated) and that single path 

stops at an expression F1 that we can prove is false (because it is a negated tautology or 

contradicts one of the existing mappings). Then, from a logical point of view, we have the 

following (when F1 is false):  

 

1..

1..

1..

( )

i
i n

i
i n

i
i n

G R false

G R

G R







   

   







 

There the procedure is therefore sound, and in Theorem 1 we showed that every derivation 

step is sound.  

8.2.8 Question of Completeness 

The procedure would have been complete if all proofs had the structure outlined above, 

because if there is a proof it will find it. Also, if there are several different proofs (i.e. sets of 

existing mappings) then it will find the shortest proof (i.e. smallest set). However, if one uses 

a special construction of the following form the proof procedure won't find them: 

 

⊢IS(Ai, Bj)    and     ⊢IS2(Ai, Bj) 

_______________________________ 

⊢COR(Ai, Bj)     

 

Although this is semantically true, the mechanical procedure does not use this rule. If this 

construct is avoided there is still completeness (we believe, but don't provide a formal proof), 

but if it is used, then the system won't be able to detect some redundancies. Also, we provide 

an algorithm B' that can cover more cases than algorithm B, because it adds this rule at the 

top level, i.e. it works if the proposal as such is COR(). We think that Algorithm B' could be 

logically complete but that should be investigated formally in the future (see the similar 

argument that was made about Algorithm A and why it doesn't need the rule IS ° IS2=COR, 

since proposals containing COR are subdivided into two proposals containing IS and IS2). 
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8.2.9 The case of bounded redundancy 

Algorithm B' makes sure that the relation we propose to add to a sphere of consistency isn't 

redundant (in the case of pr=1) or hasn't a redundancy proof shorter than allowed (in the case 

of pr>1). However, it doesn't verify that some existing relation hasn't been made redundant, 

so as a part of future work one should investigate if the algorithm B' (on page 184) can be 

extended so that all types of redundancies would be found (i.e. that either the proposal is 

redundant or some existing piece of knowledge is made redundant). 

 

Algorithm B' 

"Would adding G have introduced a redundancy in sphere sp of degree dr that 

is higher than the defined degree pr in that sphere?" 

(tot is the estimated maximal size that sp can reach, pr is the level of redundancy 

within this sphere of consistency sp ) 

 

Algorithm_B' (G, sp, dr, pr, tot) { 

 

  If G=COR(m1, m2) then return Algorithm_B' (IS(m1, m2), sp, dr, pr, tot) and 

  Algorithm_B' (IS2(m1, m2), sp, dr, pr, tot)  

  l0 (l is the current tree depth) 

  d(2-pr)(tot-1)+2 

  Root of the tree  negation of the newly proposed mapping G 

 

  do loop {  

    ll+1 

    if l>=d  

         then return false  

    At level l in the search tree:  

    For every node M1 at that level 

      if M1 already existed at any lower level in the tree 

          then close branch with  and continue (node) loop  

      Construct the list of allowed rules for M1, (i.e. adjacent rels.) 

      and call them r1, r2, …, rn 

      for i i=1 to n  

          do let M1  ri =>e 

               if e=   

                  close branch and continue loop 

              else  

                 if e is self-contradictory or contradicted by existing mapping  

              then the algorithm returns true 

                 else  
                     let e become a new node at level l+1      

  if all branches for all nodes at this level are    

      then the algorithm returns false 

  } 

} 
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8.2.10 Proof task 3. Calculating if a proposed change introduces a 

change that neither generates a contradiction or 

redundancy. 

This is actually only a combination of the two earlier algorithms: algorithm A (from proof 

task 1) and algorithm B (from proof task 2). If algorithm A answers yes or algorithm B 

answers yes, then the answer for this proof task will be no. But if both algorithm A and B 

answer no (i.e. a proposed change neither creates a contradiction nor is redundant), then this 

proof task is given the answer yes – the relation is new. 

 

8.3  Termination 

We now clarify why the algorithms for the three proof tasks in chapter 4.6.1. (see above) will 

terminate for any valid input. 

For the case of "Proof Task 1. Calculating if a proposed change introduces a contradiction." 

The algorithm does breadth-first search and has looping prevention. Because the maximum 

depth of this proof search tree is the amount of relations in the sphere of consistency where 

the reasoning is done, the reasoning is bounded depth-wise.  

How can we be sure that the branching factor is limited? We know this because the 

maximum amount of remaining knowledge elements (ontology relations or mappings within 

a sphere of consistency) is the upper found on how many branches there can be. 

Because the ontologies are connected with mappings, the relations can form loops. How can 

we then be sure that the reasoning terminates? We can be sure of this, because there is a 

loop-prevention mechanism in the reasoning algorithm that will not add knowledge to the 

proof search tree that already exists there. 

For the case of finding redundancy the same arguments apply, because the branching factor 

and depth are both limited.  

 

8.4 Theorem 3 

At this stage we already know that the reasoning terminates, but we just want to be sure that 

the processing of proposals terminates. 

 

Theorem 3 states that: 
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Theorem 3. The process execution of the described in Chapter 5 will always terminate, 

when it is activated by the any of the two proposals below assuming that contexts are 

responsive during the process. When it terminates it will either remove knowledge 

contradicted by these proposals, or accept and perform them, or reject them:  

 ci : PROPOSE (add_ontorel(m, cj, dj)) 

 ci : PROPOSE (add_mapping(m, ci, ck))   

 

in finite time, in accordance to the criteria in theorem 2 and maintain the defined consistency 

constraints. It will only reject the proposals if there is a violation of the consistency 

constraints. 

 

A comment: "The consistency constraints" refers to maintaining the correct amount of 

consistency and doesn't refer to redundancy. The current algorithm can make sure that a 

proposed relation isn't redundant (but this version doesn't guarantee absence of redundancy 

in general).  

8.4.1 The case of adding an ontology relationship. 

We now focus on the protocol description and the execution of the different processes.  

We first focus on the case of adding an ontology relationship. Therefore, we must recall rule 

7 and rule 8 in §5.4. Then we simply graphically visualise the different states and how the 

execution of them could progress (see Figure 50). The root of this tree starts with the 

proposal by context cj to add a mapping. In all situations where there is an "OR" only one of 

the paths are executed, and the link described as "LOOP" can be repeated many times – but a 

finite amount of times. By looking at the structure and nodes of this tree marked as bold we 

see that no matter what happens, then either 

 

 Existing contradicted knowledge will be removed in several spheres of consistency 

(and the proposed ontology relationship will not be added). 

 Nothing is done 

 The proposed ontology relationship is added 

 

In the last case this activates a request to add an ontology mapping, that could then activate 

the next process model (see §8.4.2), but because we will see that even that second model 

terminates in finite, even the process of adding of an ontology relationship terminates in 

finite time. 
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The children of the root all do some form of reasoning, but according to Theorem 3 that will 

happen in finite time. The grandchildren of the root send information to the contexts that 

then have to respond, so we have here assumed that they actually will respond in finite time. 

 

Finally, the case when an ontology relation is added, can only happen if there is redundancy 

that is not dangerous (as described in §8.2.6) or the ontology relation is neither redundant nor 

creates a contradiction. So by following this process model, the infrastructure mechanism 

Figure 50. A visualisation of rule 8 in §5.4 and rule 9 in §5.5 where every box corresponds to a 

process state. The dotted line connects to the root of figure 49. 

F: DO (add_ontorel(m, c , ))j jd

 

jNEWCONCEPT(d )

  

F: REQUEST(c : PROPOSE

(add_mapping(m, d , )))

j

j kc

  

j jc :  PROPOSE(add_ontorel(r, c ))
 
 

( )
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( F:C_CONTRA

(x, add_ontorel(r, c )))
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

 

( )

j

F:C_CONTRA

(x, add_ontorel(r, c ))
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
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j
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DO  

( )DO 

 
j(add_ontorel(r, c ))DO

 

OR 

OR OR   OR 

OR  

   LOOP 
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will maintain the promised consistency constraint (again, see the comment at the end of 

§8.4).  

8.4.2 The case of adding an ontology mapping. 

In this case a context cj is proposing to add a mapping from its ontology to an ontology of 

context ck. As before, the children of root node do reasoning in finite time and the 

grandchildren of the root node need to receive responses from one or several contexts and it 

is assumed they will do so in finite time. As before, these are the three things that can 

happen: 

 Existing contradicted knowledge will be removed in several spheres of consistency 

(and the proposed ontology relationship will not be added). 

 Nothing is done 

 The proposed ontology relationship is added 

Figure 51. A visualisation of rule 7 in §5.4 where every box corresponds to a process state. 
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We see that no matter which path is taken, the processing will happen in finite time. 

Finally, the action to add a mappings is only performed when the proposed mappings neither 

is redundant or crates a contradiction, or is redundant within the permitted limits (i.e. it has a 

long enough proof). It will therefore maintain the defined consistency constraints (but see the 

comment at the end of §8.4). 

 

8.5 Chapter Summary 

In this chapter we first mentioned theorem 1 that states that the way we compose two 

ontology relations or mappings into one, i.e. R ° R' = R'', using our mechanical procedure 

described in chapter 4, is sound and complete with regard to the semantics in chapter 3. We 

have shown most of the soundness proof by simply investigate all major cases (see Appendix 

A) and mentioned that the same proof procedure can be used for the few remaining ones. We 

have outlined some of the completeness proof, but haven't presented a full completeness 

proof. 

 

By proving theorem 2 we show that our algorithm provides decision procedures for 

calculating if a proposed change introduces a redundancy or if a proposed change is 

redundant. Here, we show soundness, but don't provide full completeness proofs. We believe 

that algorithms A and B' are complete, but illustrate why algorithm B is incomplete. 

 

Finally, theorem 3 shows that the infrastructure mechanism as such, that includes both the 

process model and the reasoning, terminates in finite time and why it will maintain the 

configured consistency constraints. We should note that it manages the amount consistency 

in a sphere of consistency, but as regards redundancy it currently can only make sure that a 

new proposal isn't redundant (without being able to check if a redundancy was created 

somewhere else). 
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Chapter 9 Conclusions and Future Work 

9.1 Conclusions 

We have defined an infrastructure mechanism that explicitly models  

 

1) the distributed process of initiating change  

2) how a context proposes to evolve its ontology  

3) how mappings are proposed to evolve  

4) a layered system that processes these proposal transactions by following explicit policies, 

and does automated reasoning (that calculates if a proposed change would introduce 

inconsistency or redundancy) 

5) two kinds of consistency constraints that the mechanism guarantees to satisfy.  

 

The consistency constraints are formalised using so called spheres of consistency that define  

 

1) knowledge regions within which consistency is maintained and  

2) a variable degree of proof-bounded consistency verification within these regions.  

 

Our infrastructure formalism defines a protocol and its computational semantics, as well as a 

model theory and proof theory for the reasoning layer of the mechanism.  

 

In our work we have investigated the formal properties of soundness and completeness (for 

maintaining consistency) of the reasoning and termination of the processing for our 

infrastructure mechanism. Then we have evaluated the infrastructure mechanism 

experimentally by doing simulations using an implemented prototype. Our experiments show 

for example that if we bound the reasoning enough a phase transition can occur in this kind 

of system, beyond which constant-time and constant-memory complexity is approached. We 

also evaluated the usefulness of pair-wise consistency where pairs of contexts are connected 

by mappings and a minimal sphere of consistency (being the first approach). This is 

compared to the second approach, where global consistency is enforced. The evaluation 

shows that the first approach reduces both the amount of and the variability of the 

computational effort needed for processing a transaction, compared to the second approach. 

The benefit of the first approach over the second one increases when: the size difference 

increases between large core ontologies and smaller interface ontologies, and when a more 

complex topology of connected ontologies is used. 
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The new paradigm we propose is to use an infrastructure mechanism that processes ontology 

change proposals from autonomous entities while maintaining user-defined consistency 

between the ontologies of these entities.  This enables semantic autonomy and decentralised 

control while at the same time maintaining semantic interoperability between the ontologies 

of the entities. The conclusion of this thesis is that this new paradigm is possible and 

beneficial, assuming that the knowledge representation is kept simple, the ontology evolution 

operations are kept simple and one proposal is processed at a time. Future research should 

investigate if and how these results can be extended to more expressive logics, more 

complex ontology evolution operations, fully concurrent processing of change proposals and 

several instances of co-operating knowledge infrastructure mechanisms. 

 

9.2 Future Work 

Despite that the publication date was a few years ago, the publication by (Maedche et al., 

2003) mentions an interesting future goal, that still has not been achieved in 2009. They 

describe three different parameters of an information system: information vs. activity (e.g. a 

web service), centralised vs. ad-hoc (i.e. P2P), and implicit vs. explicit semantic descriptions. 

Using these parameters they describe a vision of an "ultimate" information processing 

system that they call "P2P-based semantic web services". Such system uses formal 

semantics, manages services (web services) but is decentralised using P2P.  

Our infrastructure mechanism does not manage semantics of web services, but otherwise our 

vision of the future is similar in so far that systems must support concurrent processing, 

several infrastructure mechanisms (without any of them being the "main" one) and still 

maintain semantic meaning in a precise way and mappings between different semantics.   

It is not obvious that such a system can be built, but we nevertheless now present a list of 

improvements and generalisations of the current infrastructure mechanism that should be 

attempted in the future.  

 

9.2.1 Support other logics for knowledge representation 

In this infrastructure mechanism we have used a simple logic for the ontologies and 

somewhat more complex logic for the ontology mappings. In the future, it would be 

interesting to investigate if the system could use some other logics for ontologies, e.g. a 

modest subset of OWL. One would then have to define incremental bounded consistency for 
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that logic, which might not be easy. However, if it is possible then it would be interesting to 

investigate if proof-bounded consistency would improve the worst-case time-complexity. 

Also, in the future one should extend Algorithm B so that it is able to identify if any 

redundancy has been introduced by a new relation, if this is computationally feasible. 

 

9.2.2 Model API between infrastructure mechanism and semantic 

applications 

As was motivated in chapter 1, the purpose of a knowledge infrastructure is to be used by 

semantic applications that utilize the ontologies. The PROPOSE() statement could be a part of 

an API that semantic applications can call when they need to change on ontology or 

mapping, and the infrastructure would, after receiving and processing it, either perform the 

proposed change using DO() or do nothing, but it should then send a message back to the 

semantic application notifying it of the change it has done. As was motivated in chapter 1, 

then the semantic application does not have to focus on evolving ontologies or maintaining 

consistency and interoperability because that work has been delegated to the infrastructure 

mechanism that performs it as a service on behalf of one or (more likely) several semantic 

applications.  

 

When designing a protocol that is the core of the infrastructure mechanism, one should then 

distinguish between the statements that are a part of the API and that can be seen and called 

from outside and the statements that are only used inside the infrastructure mechanism. So 

future work should focus on this distinction and on adding more statements to the API that 

can be accessed from outside. E.g. statements for creating and removing instances, or 

statements for notifying that an ontological concept is used by a semantic application (e.g. it 

contains stored knowledge that uses the concept). These statements could be inspired by the 

locking mechanism in databases where there are several read and write statements that have 

different levels of exclusivity.  

9.2.3 Concurrency 

Currently, the infrastructure processes a single proposal at a time, whereas future research 

should investigate if the infrastructure mechanism could process several proposals 

concurrently because they are created concurrently.  
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9.2.4 Expansion and evolution of spheres to new contexts 

Currently, the spheres of consistency are defined to contain certain ontologies and mapping 

sets and these evolve, so the knowledge contents of the sphere change. However, in the 

future it should also be investigated what happens if completely new ontologies are added to 

an existing sphere of consistency and new sets of mappings. In that situation the knowledge 

wouldn't evolve but the sphere of consistency would evolve and change the territory that it is 

encompassing. That is an interesting functionality because then the infrastructure mechanism 

can be used on a small scale first and e.g. only support two ontologies but then gradually 

expend to include more and more ontologies and their mappings, so that its organizing 

ability would gradually include more and more ontologies. 

 

9.2.5 Supporting other kinds of consistency 

In §2.1.2.1 we described the difference between logical inconsistency and logical 

"incoherence" as it is defined by some researchers. If that form of incoherence is to be 

disallowed then a certain change is needed in the reasoning layer. The modified reasoning 

layer would investigate if a certain combination of relationships requires some concept 

models to be empty – i.e. there can't be any instances of these concepts. That modified 

reasoner would disallow such situations that required empty models, because if an instance is 

created of such a concept then that it leads to a conventional inconsistency. Therefore, that 

reasoner would only accept changes (without classifying them as creating an inconsistency) 

that do not lead to any concept having an empty model. 

9.2.6 Consistency and/or domain-dependent constraints 

Logical inconsistency is only one form of inconsistency. In some application, e.g. healthcare 

informatics, then it might make sense to focus even more on so called domain-dependent 

consistency or user-defined consistency. These inconsistency models define certain 

constraints that cannot be violated. E.g. they could model that a patient that has a certain 

illness cannot be prescribed a certain medication (due to an interaction). More concretely, 

this could mean that a patient that is taking blood-thinning medication cannot undergo 

surgery at the same time. So if a patient undergoes a certain medical procedure that is a type 

of surgery, and at the same time is taking a drug that is a type of a blood-thinning substance, 

then the system will alert that a conflict has been created. 
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In the area of computer configuration, one could instead envision a computer that is 

configured in a certain way cannot be fitted with an extra component (due to a technical 

conflict). More concretely, a computer does have a certain size and therefore can fit a certain 

number of external components, so if a buyer selects a computer of a small size and a 

component (possibly provided by a different provider) that is of a large size, then the system 

could alert about this conflict that was created. In both these cases, the inconsistencies are 

not logical but domain-dependent and user-defined.  

9.2.7 Instance support 

There is disagreement between researchers if instances should be seen as part of the 

ontologies or be seen as something separate. In this thesis we have focused on changes at the 

conceptual level, and due to limited time, we have not included processes that manage 

instances, e.g. that add or delete instances. If instance support is added, then the reasoning 

system would have to propagate the influence an instance through the ontological 

relationships and see if that leads to conflicts with other instances. Also, currently the system 

maintains logical consistency, and in some cases this would require certain concepts to have 

empty models. If an instance is created for such a concept, then that would also lead to a 

contradiction.   

9.2.8 Supporting several infrastructure mechanisms and their 

integration 

During our evaluation (see Chapter 7) we have investigated a single infrastructure 

mechanism. If we look closely at some of the evaluation scenarios we will see that they 

model two or three organizations having several ontologies each. To simplify things, we 

assumed during the evaluation that all these organizations and their divisions (that 

correspond to a context and ontology) are being managed by a single infrastructure 

mechanism, that accepts a proposal at a time. In the future, these assumptions should be 

relaxed and every organization could then run its own infrastructure mechanism instance, 

and the infrastructure mechanisms must then support a new functionality of being able to 

negotiate with each other about ontologies that are connected with mappings but that belong 

to two different infrastructure mechanism. This case becomes more complicated, because the 

infrastructure mechanisms must then also be able to support distributed reasoning that starts 

in infrastructure mechanism and might continue in the reasoner of another infrastructure 

mechanism.  
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Such a generalised setting is more complex, but it would have very interesting applications 

because it would get a step closer to a general purpose technology for maintaining 

interoperability between evolving ontologies. The reason for this is that the infrastructure 

mechanism is characterised by a formal specification that could be implemented by different 

software vendors or even service providers. This approach is more realistic, because it 

supports pluralism at the software/server level (and does not require that a single software 

provider has monopoly on "the perfect" software for providing interoperability) while still 

maintaining a clear structure at the process and semantic level – i.e. it still would clearly 

define the process for maintaining consistency and interoperability. Notice that even if a 

single infrastructure mechanism is used, different types of software could be used to interact 

with it using an API.      

9.2.9 Application to Ontology-based Autonomic Computing 

Systems 

In the outstanding research by (Stojanovic et al. 2004) they describe an ontology-based 

autonomic computing system that is developed for the purpose of automating system 

management. The focus is to develop better "correlation engines" and investigate if they 

benefit from using ontologies. Correlation Engines are defined as "autonomic core 

components that perform continuous automated analysis of enterprise-wide, normalized, 

real-time event data based on user-defined configurable rules". There is some similarity 

between this definition and our infrastructure mechanism definition. Autonomic computing 

systems monitor and gather data they need to react upon, according to their management 

tasks and targets. These systems are driven by events. Our infrastructure mechanism does 

therefore specify an autonomic computing system.  

 

Their system is using a reference model for correlation engines and it has three layers: 

 

1. A resource layer 

2. An event layer 

3. A rule layer 

 

The resource layer is using an object-oriented data model where a certain resource can be an 

instance of a more general resource concept. Events are special messages that indicate a 

change of state of a resource, e.g. component failure. There are two kinds of rules: 

correlation rules and action rules. Correlation rules can e.g. detect a form of system failure or 
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suspicious network behaviour that occurs over longer time. Action rules trigger automatic 

remedy actions or gather additional monitoring data.  

 

They mention how their eAutomation engine is improved so that it uses an ontology and a 

set of rules, instead of relying on hidden and hard-coded knowledge. It focuses on 

availability management of IT resources. E.g. its resource model has an attribute that 

describe in which state a resource is and which is the desirable state of the resource. There 

are two kinds of relationships between the resources, e.g. the first is a start/stop relationship 

that describe dependencies between resources. The eAutomation engine combines 

correlation and action rules into three types of rules: Correlation like "WHEN condition, 

THEN action", relationship correlation rules (e.g. that a resource can start after another has 

started), and request propagation rules (e.g. that there is a start request for a resource A, then 

it is propagated to components with which A has a startAfter relationship.  

 

They mention the following advantages of ontology-based correlation engines: reusability, 

extensibility (e.g. the set of attributes can be extended), applicability (use ontologies to help 

with search of particular services), verification, integration, evolution, visualization, open 

standards. Also there are runtime benefits: justification, ranking and gap analysis. 

 

Of all the related research we have investigated we think this piece of research is the most 

impressive considering the theory and applicability presented. It is similar to our research 

because we both describe ontology-based autonomic computing systems. However, their 

system is a particular application focusing on IT availability management and not a 

specification of infrastructure mechanism for facilitating evolution of ontologies and 

maintaining their inter-operability. Perhaps in the future, our infrastructure mechanism could 

be a part of an ontology-based autonomic computing system.    

 

9.3 Chapter Summary 

In this chapter we have stated our contribution that includes formalising semantic autonomy 

and showing that it is possible given certain assumptions. We then have listen future work 

that could be done and it includes: using other logics, modelling the API between 

infrastructure mechanism and other applications, domain-dependent constraints and 

integrating several infrastructure mechanisms.   
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Appendix A 

The purpose of this chapter is investigate all cases needed to prove theorem 1 in chapter 8. 

A.1.1 Proof of four cases when R= Cor(Ai, Bj) 

Proof for the four cases when R= Cor(Ai, Bj) and R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, 

Ck) | DISJOINT (Bj, Ck). 

  

Let us assume that R= Cor(Ai, Bj), and   

R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck)  

 

We then have  
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where 

( ( ), ( ))j j j jB x C y  is one of four different Boolean functions. 

 

We then have  
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By looking at this derivation we learn that R is the same relationship as Rwith the 

exception that Roperates on the arguments ( ( ), ( ))j j k kB y C z whereas Roperates on the 

arguments ( ( ), ( ))i i k kA x C z . This holds if we assume that R operates on the variables

( ( ), ( ))i i j jA x B y . 

 

Therefore, if R= Cor(Ai, Bj), and  

R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck)  

then  

R''= Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) 

 

So we have verified the correctness of these four cases, and now only the completeness 

remains.  

 

For two of these cases (when R'= Is (Bj, Ck) | Is2 (Bj, Ck)) we have to prove that we couldn't 

have inferred anything more general, i.e. that it is not possible to infer that R''= Cor (Ai, Ck) 

for both of these cases. We do this by showing a counter-example. 

 

Let R= Cor(Ai, Bj) and R'= Is (Bj, Ck) | Is2 (Bj, Ck). We assume that R''= Cor (Ai, Ck) | Cor 

(Ai, Ck).  

We have to investigate if 
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R  R´  R´´ 

 

This statement is not true, because here is an example of a model where it is not satisfied (if 

we consider the semantics of these statements as defined in chapter 3): 

L1,1={A1,a1}  L2,1={B2,b2}  L3,1={C3,c3} 

D1,1={a1}  D2,1={b2}  D3,1={c3} 

I(A1(a1))=false I(B2(b2))=false I(C3(c3))=true 

     

I(1,2)(Rel)={(a1, b2)}       I(1,3)(Rel)={(a1, c3)}   I(2,3) )(Rel)={(b2, c3)}        

 

Therefore, if  

R= Cor(Ai, Bj), and   

R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck)  

and R  R´  R´´ 

then the assumption that R''= Cor (Ai, Ck) | Cor (Ai, Ck) is false. 

 

 

A.1.2 Proof of four cases when R´= Cor(Bj, Ck) and  

R COMPATIBLE(Ai, Bj) 

Proof for the four cases when R= Cor(Ai, Bj) | Is(Ai, Bj) | Is2(Ai, Bj) | DISJOINT(Ai, Bj) 

and R'= Cor(Bj, Ck). 

 

Let us assume that R= Cor(Ai, Bj) | Is(Ai, Bj) | Is2(Ai, Bj) | DISJOINT(Ai, Bj)  

and R'= Cor(Bj, Ck). 

 

We then have  
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where 
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( ( ), ( ))j j j jB x C y  is one of four different Boolean functions. 

 

We then have 

( , (Rel( , ) ( ( ), ( ))))

( , (Rel( , ) ( ( ), ( ))))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ), (

s i j i j i i j j

s i j i j i i j j

s j k j k j j k k

s j k j k j j k k

s i j i j j j i

R R

x y x y A x B y

x y x y A x B y

y z y z B y C z

y z y z B y C z

x y x y B y A x





 

  

  

   

  



 

N

G

N

G

N ))))

( , (Rel( , ) ( ( ), ( ))))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

i

s i j i j j j i i

s j k j k k k j j

s j k j k k k j j

x y x y B y A x

y z y z C z B y

y z y z C z B y







   

   

  



G

N

G

 

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ), ( ))))

( , (Rel( , ) ( ( ), ( ))))

[substitution of variable names]

(

s k j j k k k j j

s k j j k k k j j

s j i i j j j i i

s j i i j j j i i

s j

z y y z C z B y

z y y z C z B y

y x x y B y A x

y x x y B y A x

y





   

  

  

   





N

G

N

G

N , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ), ( ))))

( , (Rel( , ) ( ( ), ( ))))

i i j i i j j

s j i i j i i j j

s k j j k j j k k

s k j j k j j k k

x x y A x B y

y x x y A x B y

z y y z B y C z

z y y z B y C z





  

   

  

 

G

N

G

 

By using the symmetry of equivalence and the Boolean functions, we have now reached the 

same expression as the start of the corresponding calculation in §A.1.1 Proof of four cases 

when R= Cor(Ai, Bj). 

Therefore, also here 

R''= Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) 

and nothing more general can be inferred. 

A.1.3 The case when R= Cor(Ai, Bj) and R'=Compatible(Bj, Ck) 

Let us assume that R= Cor(Ai, Bj), and   
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R'= COMPATIBLE (Bj, Ck)  

 

We then have  

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

s i j i j i i j j

s i j i j i i j j

R x y x y A x B y

x y x y A x B y

    

  

N

       G
 

and 

( , (Rel( , ) ( ) ( )))s j k j k j j k kR y z y z B y C z
     F

 
 

( , ),

( , ),

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ) ( )))

[ , (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , ) [

s i j i j i i j j

s i j i j i i j j

s j k j k j j k k

i j s i j i j i i j j z =s

i j st

R R

x y x y A x B y

x y x y A x B y

y z y z B y C z

V x y x y A x B y

st S L s st V x





 

   

   

   

    

   

N

G

F

( , ),

( , ),

, (Rel( , ) ( ( ) ( ))) ] 1)

( )( ( 1), ) [ , (Rel( , ) ( ) ( )) ]

( )( ( 1, ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

( )( (

i j i j i i j j z =st

i j st j k j k j j k k z =st

i j st i j i j i i j j z =st

y x y A x B y

st S L s st V y z y z B y C z

st S L s st V x y x y A x B y

st S L s



  



   

         

        

   ( , ),

( , ),

1), ) [ , (Rel( , ) ( ) ( )) ]

( )( ( 1), ) [ , (Rel( , ) ( ) ( )) ]

i j st j k j k j j k k z =st

i j st i k i k i i k k z =st

st V y z y z B y C z

st S L s st V x z x z A x C z

  

  

     

           

COMPATIBLE (Ai, Ck) 

=R'' 

 

However, recall also §8.1.1 where we show the constraints between s and s' that are required 

for this to hold. 

In §A.2.2 If L⊨ COMPATIBLE (Ai, Ck), then L does not entail other relations. We show that if 

R R' ⊨ COMPATIBLE (Ai, Ck) and only one relation holds between Ai and Ck then R R' 

does not entail any other relation. We have therefore verified that if  

R= Cor(Ai, Bj), and  R'= COMPATIBLE (Bj, Ck)  

then R R'   COMPATIBLE (Ai, Ck) 
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A.1.4 The case when R=Compatible(Ai, Bj) and R'= Cor(Bj, Ck) 

Let us assume that R= COMPATIBLE (Ai, Bj), and   

R'= COR(Bj, Ck)  

 

We then have  

( , (Rel( , ) ( ) ( )))i j i j i i j jR x y x y A x B y   r F

 

and 

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

s j k j k j j k k

s j k j k j j k k

R y z y z B y C z

y z y z B y C z

    

  

N

       G
 

 

( , ),

( , ),

( , (Rel( , ) ( ) ( )))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

( )( ( 1), ) [ , (Rel( , ) ( ) ( )) ]

[

s i j i j i i j j

s j k j k j j k k

s j k j k j j k k

i j st i j i j i i j j z =st

i j s

R R

x y x y A x B y

y z y z B y C z

y z y z B y C z

st S L s st V x y x y A x B y

V









 

   

   

   

       

F

N

G

( , ),

( , ),

, (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

( )( ( 1), ) [ , (Rel( , ) ( ) ( )) ]

( )( ( 1

j k j k j j k k z =s

i j st j k j k j j k k z =st

i j st i j i j i i j j z =st

y z y z B y C z

st S L s st V y z y z B y C z

st S L s st V x y x y A x B y

st S L s

 

  



    

        



      

    ( , ),

( , ),

, ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

(assuming )

( )( ( 1), ) [ , (Rel( , ) ( ) ( )) ]

i j st j k j k j j k k z =st

i j st i k i k i i k k z =st

st V y z y z B y C z

s s

st S L s st V x z x z A x C z

  



     

 

      

 

Again, recall the comments about this case from §8.1.1. 

In §A.2.2 If L⊨ COMPATIBLE (Ai, Ck), then L does not entail other relations.  

We have therefore verified that if  

R= COMPATIBLE (Ai, Bj), and  R'= COR(Bj, Ck)  

then R R' COMPATIBLE (Ai, Ck) 
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A.1.5 The case when R=Is(Ai, Bj) and R'= Is(Bj, Ck) 

Let us assume that R=IS(Ai, Bj) and  R'=IS(Bj, Ck)  

 

We then have  

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

s i j i j i i j j

s i j i j i i j j

R x y x y A x B y

x y x y A x B y

     

   

N

       G
 

and 

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

s j k j k j j k k

s j k j k j j k k

R y z y z B y C z

y z y z B y C z





      

   

N

       G
 

 

( , ),

( , ),

( , ),

[ , (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

[ , (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , )

i j s i j i j i i j j z =s

i j st i j i j i i j j z =st

i j s j k j k j j k k z =s

R R

V x y x y A x B y

st S L s st V x y x y A x B y

V y z y z B y C z

st S L s st





  





     

        

     

    ( , ),

( , ),

( , ),

[ , (Rel( , ) ( ( ) ( ))) ] 1)

[ , (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

i j st j k j k j j k k z =st

i j s i k i k i i k k z =s

i j st i k i k i i k k z =st

V y z y z B y C z

V x z x z A x C z

st S L s st V x z x z A x C z

  

  

  

     



     

         

 

= IS(Ai, Ck) 

 

We have to investigate if R R   COR(Ai, Ck) 

Therefore, given that R=IS(Ai, Bj) and  R'=IS(Bj, Ck), assume that R R   COR(Ai, Ck) 
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( , ),

( , ),

( , ),

( , )

[ , (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

[ , (Rel( , ) ( ( ) ( ))) ] 1

(

i k

i j s i k i k i i k k z=s

i j st i k i k i i k k z=st

i j s i k i k i i k k z=s

R R COR A C

V x z x z A x C z

st S L s st V x z x z A x C z

V x z x z A x C z

st



 

 

 



     

          

    

 ( , ),

( , ),

)( ( , ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

[ , ( ( ) ( )) ( ( ) ( )) ]

i j st i k i k i i k k z=st

i j s i k i i k k i i k k z=s

S L s st V x z x z A x C z

V x z A x C z A x C z

 

 

      



    

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={C2,c2} 

D1,1={a1}  D2,1={c2} 

I1,1(A1(a1))=false I2,1(C2(c2))=true 

   

I(1,2),1(Rel)={(a1, c2)}       

 

Because we show in §A.2.3 If L⊨ IS (Ai, Ck) and L⊭COR(Ai, Ck) then L does not entail other 

relations. that "If L⊨ IS (Ai, Ck) and L⊭COR(Ai, Ck) then L does not imply other relations" 

we have now proved that: 

 

If R=IS(Ai, Bj) and  R'=IS(Bj, Ck) then 

R  R'  IS(Ai, Ck) and  

R  R' does not imply other relations. 

A.1.6 The case of R=Is2(Ai, Bj) and R'= Is2(Bj, Ck) 

Firstly, we show that Is(Ai, Bj)=Is2(Bj, Ai) 

 

Is(Ai, Bj)= 

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

s i j i j i i j j

s i j i j i i j j

x y x y A x B y

x y x y A x B y

    

   



N

 G  
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( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

s i j i j j j i i

s i j i j j j i i

x y x y B y A x

x y x y B y A x

   

  

N

 G
 

=Is2(Bj, Ai) 

 

Now assume that R= Is2(Ai, Bj) and R'=Is2(Bj, Ck), then 

R  R'= Is2(Ai, Bj) Is2(Bj, Ck) = Is(Bj, Ai)  Is(Ck, Bj) = Is(Ck, Bj)  Is(Bj, Ai)  Is(Ck, Ai) 

= Is2(Ai, Ck) 

 

Does R  R'  Cor(Ai, Ck)? 

Assume so, then: 

R  R'  Cor(Ai, Ck) 

Is2(Ai, Bj) Is2(Bj, Ck) Cor(Ai, Ck) 

Is(Ck, Ai) Cor(Ai, Ck) 

Is(Ck, Ai)   Cor(Ck, Ai) 

 

We have shown above that this is not true, therefore it was false to assume that  

R  R'  Cor(Ai, Ck). 

 

We show in §A.2.4 If L⊨ IS2 (Ai, Ck) and and L⊭COR(Ai, Ck) then L does not entail other 

relations. Therefore: 

 

If R=IS2(Ai, Bj) and  R'=IS2(Bj, Ck) then 

R  R'  IS2(Ai, Ck) and  

R  R' does not imply other relations. 

A.1.7 The case of R=COMPATIBLE(Ai, Bj) and R'= IS(Bj, Ck) 

Assume that R=COMPATIBLE(Ai, Bj) and R'= IS(Bj, Ck) 

We then have 
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( , (Rel( , ) ( ) ( )))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

s i j i j i i j j

s j k j k j j k k

s j k j k j j k k

R R

x y x y A x B y

y z y z B y C z

y z y z B y C z









   

    

   



F

N

G

 

( , ),

( , ),

( , ),

( )( ( 1), ) [ , (Rel( , ) ( ) ( )) ]

[ , (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

i j st i j i j i i j j z =st

i j s j k j k j j k k z =s

i j st j k j k j j k k z =st

st S L s st V x y x y A x B y

V y z y z B y C z

st S L s st V y z y z B y C z



  

  

       

     

         



 

( , ),

( , ),

( , ),

( )( ( 1), ) [ , (Rel( , ) ( ) ( )) ]

( )( ( 1, ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

(assuming s s )

( )( ( 1), ) [ , (Rel

i j st i j i j i i j j z =st

i j st j k j k j j k k z =st

i j st i k

st S L s st V x y x y A x B y

st S L s st V y z y z B y C z

st S L s st V x z



  

       

          

 

     ( , ) ( ) ( )) ]i k i i k k z =stx z A x C z  

 

= COMPATIBLE(Ai, Bj) 

 

Notice that if s<s´ then we have 

( , ),

( , ),

( )( ( 1), ) [ , (Rel( , ) ( ) ( )) ]

( )( ( 1, ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

i j st i j i j i i j j z =st

i j st j k j k j j k k z =st

st S L s st V x y x y A x B y

st S L s st V y z y z B y C z



  

       

          
 

 

we could construct the following counter-model: 

L1,3={A1,a1}  L2,3={B2,b2}  L3,3={C3,c3} 

D1,3={a1}  D2,3={b2}  D3,3={c3} 

I1,3(A1(a1))=true I2,3(B1(b1))=false I3,3(C3(c3))=true 

     

I(1,3),3(Rel)={(a1, c2)}       I(1,2),3(Rel)={(a1, b2)}       I(2,3),3(Rel)={(b2, c3)} 

 

In §A.2.2 If L⊨ COMPATIBLE (Ai, Ck), then L does not entail other relations.we show that if 

R R' COMPATIBLE (Ai, Ck) and only one relation holds between Ai and Ck then R  R' 

does not imply any other relation. 
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A.1.8 The case when R= DISJOINT(Ai, Bj) and R'= IS2(Bj, Ck) 

Assume that R= DISJOINT(Ai, Bj) and R'= IS2(Bj, Ck). 

 

We then have  

( , (Rel( , ) ( ( ( ) ( ))))

( , (Rel( , ) ( ( ( ) ( ))))

s i j i j i i j j

s i j i j i i j j

R x y x y A x B y

x y x y A x B y

     

   

N

       G
 

and 

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

s j k j k j j k k

s j k j k j j j j

R y z y z B y C z

y z y z B y C z





     

  

N

        G
 

 

We then have  

( , ),

( , (Rel( , ) ( ( ( ) ( ))))

( , (Rel( , ) ( ( ( ) ( ))))

( , (Rel( , ) ( ) ( ))))

( , (Rel( , ) ( ) ( ))))

[ , (Rel( , ) ( ( (

s i j i j i i j j

s i j i j i i j j

s j k j k j j k k

s j k j k j j k k

i j s i j i j i

R R

x y x y A x B y

x y x y A x B y

y z y z B y C z

y z y z B y C z

V x y x y A





 

    

    

   

  



  

N

G

N

G

( , ),

( , ),

( , ),

) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( ( ( ) ( ))) ] 1)

[ , (Rel( , ) ( ) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( )

i j j z =s

i j st i j i j i i j j z =st

i j s j k j k j j k k z =s

i j st j k j k j j

x B y

st S L s st V x y x y A x B y
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st S L s st V y z y z B y




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

  

        

    

       

( , ),
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( ))) ] 1)

(we use the fact that: ( ) ( ) ( ))

[ , (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

k k z =st

i j s i j i j i i k k z =s

i j st i j i j i i k k z =st

C z

a b b c a c

V x z x z A x C z

st S L s st V x z x z A x C z

 

  

  

 



      

     

         

 

=R'' 

= DISJOINT(Ai, Ck) 
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Because we learn from §A.2.1 If L⊨ Disjoint (Ai, Ck), then L does not entail other 

relations.A.2.1 If L⊨ Disjoint (Ai, Ck), then L does not entail other relations., we can 

conclude that  

If R= DISJOINT(Ai, Bj) and R'= IS2(Bj, Ck) 

then R  R' DISJOINT(Ai, Ck) 

and R  R' does not imply any other relation. 

 

A.1.9 The case of R= Is(Ai, Bj) and R'= DISJOINT(Bj, Ck) 

We know that R= Is(Ai, Bj) and R'= DISJOINT(Bj, Ck) 

Then we have that 

R  R' = Is(Ai, Bj)  DISJOINT(Bj, Ck) = Is2(Bj, Ai)  DISJOINT(Ck, Bj) = 

DISJOINT(Ck, Bj)  Is2(Bj, Ai) =(*)= DISJOINT(Ck, Ai) = DISJOINT(Ai, Ck) 

 

We re-use the result from §A.1.8 The case when R= DISJOINT(Ai, Bj) and R'= IS2(Bj, Ck)in 

this calculation (in the place marked(*)).  

 

Because we learn from §A.2.1 If L⊨ Disjoint (Ai, Ck), then L does not entail other 

relations.that iA.2.1 If L⊨ Disjoint (Ai, Ck), then L does not entail other relations. we can 

conclude that  

If R= IS(Ai, Bj) and R'= DISJOINT (Bj, Ck) 

then R  R'   DISJOINT(Ai, Ck) 

and R  R' does not imply any other relation. 

 

A.1.10 The case of R= Is2(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) 

By looking at the definition, we see that COMPATIBLE(Ai, Ck) = COMPATIBLE(Ck, Ai) 

 

Assuming that R= Is2(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) we have 

R R'= Is2(Ai, Bj)  COMPATIBLE(Bj, Ck) = Is(Bj, Ai) COMPATIBLE(Ck, Bj) = 

COMPATIBLE(Ck, Bj)  Is(Bj, Ai)   COMPATIBLE(Ck, Ai) = COMPATIBLE(Ai, Ck) 
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In §A.2.2 If L⊨ COMPATIBLE (Ai, Ck), then L does not entail other relations.we show that if 

R R' COMPATIBLE (Ai, Ck) and only one relation holds between Ai and Ck then R R' 

does not imply any other relation. 

 

A.1.11 The two cases when R= DISJOINT(Ai, Bj) and  

R'= Is (Bj, Ck) | DISJOINT (Bj, Ck) 

We now face the challenge to show that the three cases when R= DISJOINT(Ai, Bj) and R'= Is 

(Bj, Ck) | DISJOINT (Bj, Ck) lead to R R'   , i.e. it does not imply any of the other 

relations. 

  

A.1.11.1 Case 1. R''COMPATIBLE (Ai, Ck) 

We show this by proof of contradiction. 

It is given that R= DISJOINT(Ai, Bj)  and  R'= Is (Bj, Ck) | DISJOINT (Bj, Ck), and  

R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | DISJOINT (Ai, Ck)   

(we investigate later R''= COMPATIBLE (Ai, Ck) ) 

 

We assume then that for every r'R', it is the case that R  r'   r'' where r''R''. 

This will expressed as: 

R  R'  R''   

 

This is not true because of this counter-model (for any choice of r'R' and r''R''): 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=false I2,1(B2(b2))=false I3,1(C3(c3))=true 

L1,2={A1,a1}   L2,2={B2,b2}   L3,2={C3,c3}  

D1,2={a1}  D2,2={b2}  D3,2={c3}   

I1,2(A1(a1))=true I2,2(B2(b2))=false I3,2(C3(c3))=false 

L1,3={A1,a1}   L2,3={B2,b2}   L3,3={C3,c3}  

D1,3={a1}  D2,3={b2}  D3,3={c3}   

I1,3(A1(a1))=true I2,3(B2(b2))=false I3,3(C3(c3))=true 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}       
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I(1,2),2(Rel)={(a1, b2)}       I(2,3),2(Rel)={(b2, c3)}       I(1,3),3(Rel)={(a1, c3)}       

I(1,2),3(Rel)={(a1, b2)}       I(2,3),3(Rel)={(b2, c3)}       I(1,3),3(Rel)={(a1, c3)}       

 

A.1.11.2 Case 2. R''=COMPATIBLE (Ai, Ck) 

Now it just remains to investigate the case  

R= DISJOINT(Ai, Bj)  and   

R'= Is (Bj, Ck) | DISJOINT (Bj, Ck), and  

R''= COMPATIBLE (Ai, Ck)   

 

We assume then that for every r'R', it is the case that R  r'   R''  

This will expressed as: 

R  R'  R''   

 

This is not true because of this counter-model: 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=false I2,1(B2(b2))=false I3,1(C3(c3))=false 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}      

 

So our initial assumption was false. 

 

We have therefore proven that  

If R= DISJOINT(Ai, Bj) and  

R'= Is (Bj, Ck) |  DISJOINT (Bj, Ck) then 

R  R'   , i.e. it does not imply any of the other relations. 
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A.1.12 The two cases when   

R= Is2(Ai, Bj) | COMPATIBLE(Ai, Bj) and 

R'= DISJOINT(Bj, Ck) 

We now face the challenge to show that the three cases when R= Is2(Ai, Bj) | 

COMPATIBLE(Ai, Bj) and R'= DISJOINT(Bj, Ck) lead to R  R'   , i.e. it does not imply any 

of the other relations. 

  

R  R' = (Is2(Ai, Bj) | COMPATIBLE(Ai, Bj))  DISJOINT(Bj, Ck) = 

Is2(Ai, Bj)  DISJOINT(Bj, Ck) | COMPATIBLE(Ai, Bj)  DISJOINT(Bj, Ck) = 

Is(Bj, Ai)  DISJOINT(Ck, Bj) | COMPATIBLE(Bj, Ai)  DISJOINT(Ck, Bj) = 

DISJOINT(Ck, Bj)  Is(Bj, Ai) | DISJOINT(Ck, Bj) |COMPATIBLE(Bj, Ai)    

 

The reason for this is that these three cases have already been investigated in §A.1.11 The 

two cases when R= DISJOINT(Ai, Bj) and  

R'= Is (Bj, Ck) | DISJOINT (Bj, Ck). Also, in A.1.17 we motivate the (obvious) fact that if 

R(A,B)    then R(B,A)  if R is one of the five relations. 

A.1.13. The case of R= DISJOINT(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) 

We want to prove that  

If R= DISJOINT(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) then 

R  R' , i.e. it does not imply any of the other relations. 

 

We show this by proof of contradiction. 

It is given that R= DISJOINT(Ai, Bj)  and  R'= COMPATIBLE(Bj, Ck)  

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | DISJOINT (Ai, Ck) | COMPATIBLE(Ai, Ck) 

 

A.1.13.1 Case 1, R´´ DISJOINT (Ai, Ck) 

R= DISJOINT(Ai, Bj)  and  R'= COMPATIBLE(Bj, Ck)  

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | COMPATIBLE(Ai, Ck) 

 

We assume then that for every r'R', it is the case that R  r'   r'' where r''R''. 

This will expressed as: 

R  R'  R''   
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DISJOINT(Ai, Bj)  COMPATIBLE(Bj, Ck)   R''   

 

This is not true because of this counter-model (for any choice of r''R''): 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=true I2,1(B2(b2))=false I3,1(C3(c3))=false 

L1,2={A1,a1}   L2,2={B2,b2}   L3,2={C3,c3}  

D1,2={a1}  D2,2={b2}  D3,2={c3}   

I1,2(A1(a1))=false I2,2(B2(b2))=true I3,2(C3(c3))=true 

L1,3={A1,a1}   L2,3={B2,b2}   L3,3={C3,c3}  

D1,3={a1}  D2,3={b2}  D3,3={c3}   

I1,3(A1(a1))=false I2,3(B2(b2))=true I3,3(C3(c3))=false 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}       

I(1,2),2(Rel)={(a1, b2)}       I(2,3),2(Rel)={(b2, c3)}       I(1,3),3(Rel)={(a1, c3)}       

I(1,2),3(Rel)={(a1, b2)}       I(2,3),3(Rel)={(b2, c3)}       I(1,3),3(Rel)={(a1, c3)}       

 

A.1.13.2 Case 2, R´´= DISJOINT (Ai, Ck) 

R= DISJOINT(Ai, Bj)  and  R'= COMPATIBLE(Bj, Ck) and R''= DISJOINT(Bj, Ck) 

We assume that R  R'  R''   

 

This is not true because of this counter-model: 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=true I2,1(B2(b2))=false I3,1(C3(c3))=true 

L1,2={A1,a1}   L2,2={B2,b2}   L3,2={C3,c3}  

D1,2={a1}  D2,2={b2}  D3,2={c3}   

I1,2(A1(a1))=false I2,2(B2(b2))=true I3,2(C3(c3))=true 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}       

I(1,2),2(Rel)={(a1, b2)}       I(2,3),2(Rel)={(b2, c3)}       I(1,3),3(Rel)={(a1, c3)}       

 

We have therefore proved that 

If R= DISJOINT(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) then 
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R  R'   , i.e. it does not imply any of the other relations. 

A.1.14 The case of R= IS(Ai, Bj) and R'= IS2(Bj, Ck) 

We now need to show that the three cases when  

R= IS(Ai, Bj)  and R'= IS2(Bj, Ck) lead to R R' , i.e. it does not imply any of the other 

relations. 

 

We show this by a proof of contradiction. 

Assume that R  R'   R'' 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | DISJOINT (Ai, Ck) | COMPATIBLE(Bj, Ck) 

This is investigated by splitting this into two cases. 

A.1.14.1 Case 1, R´´ DISJOINT (Ai, Ck) 

R= IS(Ai, Bj)  and R'= IS2(Bj, Ck) 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | COMPATIBLE(Ai, Ck) 

Assume that R  R'   R'' 

 

This is not true because of this counter-model (for any choice of r''R''): 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=true I2,1(B2(b2))=true I3,1(C3(c3))=false 

L1,2={A1,a1}   L2,2={B2,b2}   L3,2={C3,c3}  

D1,2={a1}  D2,2={b2}  D3,2={c3}   

I1,2(A1(a1))=false I2,2(B2(b2))=false I3,2(C3(c3))=false 

L1,3={A1,a1}   L2,3={B2,b2}   L3,3={C3,c3}  

D1,3={a1}  D2,3={b2}  D3,3={c3}   

I1,3(A1(a1))=false I2,3(B2(b2))=true I3,3(C3(c3))=true 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}       

I(1,2),2(Rel)={(a1, b2)}       I(2,3),2(Rel)={(b2, c3)}       I(1,3),2(Rel)={(a1, c3)}       

I(1,2),3(Rel)={(a1, b2)}       I(2,3),3(Rel)={(b2, c3)}       I(1,3),3(Rel)={(a1, c3)}       

 

A.1.14.2 Case 2, R´´= DISJOINT (Ai, Ck) 

R= IS(Ai, Bj)  and R'= IS2(Bj, Ck) and R''= DISJOINT(Ai, Ck)  
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Assume that R  R'   R'' 

 

This is not true because of this counter-model: 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=true I2,1(B2(b2))=true I3,1(C3(c3))=true 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}      

 

We have therefore proven that if 

R= IS(Ai, Bj)  and R'= IS2(Bj, Ck) then  

R R'   , i.e. it does not imply any of the other relations. 

 

A.1.15 The case of R= IS2(Ai, Bj) and R'= IS(Bj, Ck) 

We now need to show that the three cases when  

R= IS2(Ai, Bj)  and R'= IS(Bj, Ck) lead to R R' , i.e. it does not imply any of the other 

relations. 

 

We show this by a proof of contradiction. 

Assume that R  R'   R'' 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | DISJOINT (Ai, Ck) | COMPATIBLE(Ai, Ck) 

This is investigated by splitting this into two cases. 

A.1.15.1 Case 1, R´´ DISJOINT (Ai, Ck) 

R= IS2(Ai, Bj)  and R'= IS(Bj, Ck) 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | COMPATIBLE(Ai, Ck) 

Assume that R  R'   R'' 

 

This is not true because of this counter-model (for any choice of r''R''): 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=false I2,1(B2(b2))=false I3,1(C3(c3))=false 

L1,2={A1,a1}   L2,2={B2,b2}   L3,2={C3,c3}  

D1,2={a1}  D2,2={b2}  D3,2={c3}   
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I1,2(A1(a1))=true I2,2(B2(b2))=false I3,2(C3(c3))=false 

L1,3={A1,a1}   L2,3={B2,b2}   L3,3={C3,c3}  

D1,3={a1}  D2,3={b2}  D3,3={c3}   

I1,3(A1(a1))=false I2,3(B2(b2))=false I3,3(C3(c3))=true 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}       

I(1,2),2(Rel)={(a1, b2)}       I(2,3),2(Rel)={(b2, c3)}       I(1,3),2(Rel)={(a1, c3)}       

I(1,2),3(Rel)={(a1, b2)}       I(2,3),3(Rel)={(b2, c3)}       I(1,3),3(Rel)={(a1, c3)}       

 

A.1.15.2 Case 2, R´´= DISJOINT (Ai, Ck) 

R= IS2(Ai, Bj)  and R'= IS(Bj, Ck) and R''= DISJOINT(Ai, Ck)  

Assume that R  R'   R'' 

 

This is not true because of this counter-model: 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=true I2,1(B2(b2))=true I3,1(C3(c3))=true 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}      

 

We have therefore proven that if 

R= IS2(Ai, Bj)  and R'= IS(Bj, Ck) then  

R R' , i.e. it does not imply any of the other relations. 

A.1.16 The case of R= IS(Ai, Bj) and R'= COMPATIBLE(Bj, Ck) 

We now need to show that the three cases when  

R= IS(Ai, Bj)  and R'= COMPATIBLE(Bj, Ck) lead to R R'   , i.e. it does not imply any of 

the other relations. 

 

We show this by a proof of contradiction. 

Assume that R  R'   R'' 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | DISJOINT (Ai, Ck) | COMPATIBLE(Ai, Ck) 

This is investigated by splitting this into two cases. 
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A.1.16.1 Case 1, R´´ DISJOINT (Ai, Ck) 

R= IS(Ai, Bj)  and R'= COMPATIBLE(Bj, Ck) 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | COMPATIBLE(Ai, Ck) 

Assume that R  R'   R'' 

 

This is not true because of this counter-model (for any choice of r''R''): 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=false I2,1(B2(b2))=true I3,1(C3(c3))=true 

L1,2={A1,a1}   L2,2={B2,b2}   L3,2={C3,c3}  

D1,2={a1}  D2,2={b2}  D3,2={c3}   

I1,2(A1(a1))=false I2,2(B2(b2))=false I3,2(C3(c3))=true 

L1,3={A1,a1}   L2,3={B2,b2}   L3,3={C3,c3}  

D1,3={a1}  D2,3={b2}  D3,3={c3}   

I1,3(A1(a1))=true I2,3(B2(b2))=true I3,3(C3(c3))=false 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}       

I(1,2),2(Rel)={(a1, b2)}       I(2,3),2(Rel)={(b2, c3)}       I(1,3),2(Rel)={(a1, c3)}       

I(1,2),3(Rel)={(a1, b2)}       I(2,3),3(Rel)={(b2, c3)}       I(1,3),3(Rel)={(a1, c3)}       

 

A.1.16.2 Case 2, R´´= DISJOINT (Ai, Ck) 

R= IS(Ai, Bj)  and R'= COMPATIBLE(Bj, Ck) and R''= DISJOINT(Ai, Ck)  

Assume that R  R'   R'' 

 

This is not true because of this counter-model: 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=true I2,1(B2(b2))=true I3,1(C3(c3))=true 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}      

 

We have therefore proven that if 

R= IS(Ai, Bj)  and R'= COMPATIBLE(Bj, Ck) then  
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R R'   , i.e. it does not imply any of the other relations. 

 

A.1.17 The case of R= COMPATIBLE (Ai, Bj) and R'= IS2(Bj, Ck) 

We now need to show that when  

R= COMPATIBLE (Ai, Bj)  and R'= IS2(Bj, Ck) then R R'   , i.e. it does not imply any of 

the other relations. 

 

We show this by a proof of contradiction. 

Assume that R  R'   R'' 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | DISJOINT (Ai, Ck) | COMPATIBLE(Ai, Ck) 

R  R' = COMPATIBLE (Ai, Bj)   IS2(Bj, Ck) = COMPATIBLE (Bj, Ai)  IS(Ck, Bj)= 

IS(Ck, Bj)  COMPATIBLE (Bj, Ai) ↛  

COR(Ck, Ai) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | DISJOINT (Ck , Ai) | COMPATIBLE(Ck ,Aj) 

⇒ 

R'' ↛ COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | DISJOINT (Ai, Ck) | COMPATIBLE(Aj, Ck) 

⇒ 

R'' 

 

We have utilised the symmetry of several relations. 

 

A.1.18 The case of R= COMPATIBLE(Ai, Bj) and  

R'= COMPATIBLE (Bj, Ck) 

R= COMPATIBLE (Ai, Bj)  and R'= COMPATIBLE(Bj, Ck) 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | COMPATIBLE(Bj, Ck) | DISJOINT(Bj, Ck) 

Assume that R  R'   R'' 

 

We divide this investigation in two parts, and firstly assume that R´´ DISJOINT (Ai, Ck). 

A.1.18.1 Case 1, R´´ DISJOINT (Ai, Ck) 

Given that R= COMPATIBLE (Ai, Bj)  and R'= COMPATIBLE(Bj, Ck) 

and R''= COR(Ai, Ck) |  Is(Ai, Ck)  | Is2(Ai, Ck)  | COMPATIBLE(Ai, Ck) 
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Assume that R  R'   R'' 

 

This is not true because of this counter-model (for any choice of r''R''): 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=false I2,1(B2(b2))=true I3,1(C3(c3))=true 

L1,2={A1,a1}   L2,2={B2,b2}   L3,2={C3,c3}  

D1,2={a1}  D2,2={b2}  D3,2={c3}   

I1,2(A1(a1))=true I2,2(B2(b2))=true I3,2(C3(c3))=false 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}       

I(1,2),2(Rel)={(a1, b2)}       I(2,3),2(Rel)={(b2, c3)}       I(1,3),2(Rel)={(a1, c3)}       

 

A.1.18.2 Case 2, R´´= DISJOINT (Ai, Ck) 

R= COMPATIBLE (Ai, Bj)  and R'= COMPATIBLE(Bj, Ck) and R''= DISJOINT(Ai, Ck)  

Assume that R  R'   R'' 

 

This is not true because of this counter-model: 

L1,1={A1,a1}   L2,1={B2,b2}   L3,1={C3,c3}  

D1,1={a1}  D2,1={b2}  D3,1={c3}   

I1,1(A1(a1))=true I2,1(B2(b2))=true I3,1(C3(c3))=true 

 

I(1,2),1(Rel)={(a1, b2)}       I(2,3),1(Rel)={(b2, c3)}       I(1,3),1(Rel)={(a1, c3)}      

 

We have therefore proven that if 

R= COMPATIBLE (Ai, Bj)  and R'= COMPATIBLE(Bj, Ck) then  

R R'   , i.e. it does not imply any of the other relations. 

 

A.1.19 Conclusion of this section 

We have now investigated all 25 cases in Table 3 and show that our mechanical procedure is 

sound and complete with regard to the semantics, as regards calculating the cases in this 

table. 
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The following section contains certain proofs that are not interesting as such, but that have 

been utilized in proving theorem 1. 

 

A.2 Proofs of the form: "If L⊨ Rel (Ai, Ck), then L does not 

entail other relations" 

We will now prove the following: 

 

 If L⊨ Disjoint(Ai, Ck), then L does not entail other relations. 

 If L⊨ COMPATIBLE(Ai, Ck), then L does not entail other relations. 

 If L⊨ Is(Ai, Ck) and L⊭Cor(Ai, Ck) then L does not entail other relations. 

 If L⊨ Is2(Ai, Ck) and L⊭Cor(Ai, Ck) then L does not entail other relations. 

 If L⊨ Cor(Ai, Ck) then L⊨ Is(Ai, Ck) and L⊨ Is2(Ai, Ck)  but L does not entail other 

relations. 

 

A.2.1 If L⊨ Disjoint (Ai, Ck), then L does not entail other relations. 

We need to prove that if  

R(Ai, Bj)  R'(Bj, Ck) ⊨ DISJOINT (Ai, Ck) and 

R= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) and 

R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck)  

Then R(Ai, Bj)  R'(Bj, Ck) ⊭ Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | COMPATIBLE (Bj, Ck) 

 

A.2.1.1 The case of L⊨ Cor (Ai, Ck) 

L= R(Ai, Bj)  R'(Bj, Ck) and L is consistent. 

We known that L⊨ DISJOINT (Ai, Ck), and that only one relation holds between Ai and Bj, Bj 

and Ck, and Ai and Ck.  

Assume now that also L⊨ Cor (Ai, Ck) holds. 

 

We then have: 
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The question is a single relation L can entail both of these relations. I.e. formally, the 

question is then if  

Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck)   

DISJOINT (Ai, Ck)  Cor (Ai, Ck)   

 

Because Cor (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see §A.3.1), Is (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see 

§A.3.2), Is2 (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see §A.3.20), COMPATIBLE (Ai, Ck) ⊭ DISJOINT 

(Ai, Ck) (see §A.3.6) we conclude that the equation above is not true. Therefore if L⊨ 

DISJOINT (Ai, Ck) it cannot be the case that L ⊨ Cor (Ai, Ck). 

 

A.2.1.2 The case of L ⊨ Is (Ai, Ck) 

L= R(Ai, Bj)  R'(Bj, Ck) and L is consistent. 

We known that L⊨DISJOINT (Ai, Ck), and that only one relation holds between Ai and Bj, Bj 

and Ck,.  

 

Assume now that also L⊨ Is (Ai, Ck) holds. 

 

This leads to: 

   i k i k(DISJOINT A ,C IS A ,C )  

The question is then if  

Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck) ⊨  

DISJOINT (Ai, Ck)  Is (Ai, Ck)   
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Because Cor (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see §A.3.1), Is (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see 

§A.3.2), Is2 (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see §A.3.20), DISJOINT (Ai, Ck) ⊭ Is (Ai, Ck)  (see 

§A.3.12), COMPATIBLE (Ai, Ck) ⊭DISJOINT (Ai, Ck) (see §A.3.6) we conclude that the 

equation above is not true. Therefore if L⊨ DISJOINT (Ai, Ck) it cannot be the case that L ⊨ Is 

(Ai, Ck). 

 

A.2.1.3 The case of L ⊨ Is2 (Ai, Ck) 

If R''= Is2 (Bj, Ck) then the same method of reasoning will lead to: 

   i k i k(DISJOINT A ,C IS2 A ,C )  

I.e. these relations hold between Ai and Ck, whereas we assumed that only one relationship 

hold between Ai and Ck. The question is then if  

Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck) ⊨  

DISJOINT (Ai, Ck)  Is2 (Ai, Ck)   

 

Because Cor (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see §A.3.1), Is (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see 

§A.3.2), Is2 (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see §A.3.20), DISJOINT (Ai, Ck) ⊭ Is2 (Ai, Ck)  (see 

§A.3.15), COMPATIBLE (Ai, Ck) ⊭ DISJOINT (Ai, Ck) (see §A.3.6) we conclude that the 

equation above is not true. Therefore if L⊨ DISJOINT (Ai, Ck) it cannot be the case that L ⊨ 

Is2 (Ai, Ck). 

 

I.e. the conclusion is not true.  

A.2.1.3 The case of L ⊨ COMPATIBLE(Ai, Ck) 

If R''= Compatible (Bj, Ck) then the same method of reasoning will lead to: 

   i k i k(DISJOINT A ,C COMPATIBLE A ,C )  

This time, it is easy to show that it is impossible, because §A.3.6 and §A.3.19 prove that 

these two relations mutually contradict each other. 

 

To conclude this section we have proved the following. 

If R(Ai, Bj)  R'(Bj, Ck) ⊨ DISJOINT (Ai, Ck) and  

R= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) and 

R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck)  

Then R(Ai, Bj)  R'(Bj, Ck) ⊭Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | COMPATIBLE (Bj, Ck) 
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A.2.2 If L⊨ COMPATIBLE (Ai, Ck), then L does not entail other 

relations. 

We need to prove that if  

R(Ai, Bj)  R'(Bj, Ck) ⊨ COMPATIBLE (Ai, Ck) and 

R= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) and 

R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck)  

Then R(Ai, Bj)  R'(Bj, Ck) ⊭ Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) 

A.2.2.1 The case of L ⊨ IS (Ai, Ck) 

L= R(Ai, Bj)  R'(Bj, Ck) and L is consistent. 

We know that L⊨ COMPATIBLE (Ai, Ck), and that only one relation holds between Ai and Bj, 

Bj and Ck, and Ai and Ck.  

Assume now that also L⊨ Is (Ai, Ck) holds. 

 

This will lead to COMPATIBLE (Ai, Ck)  Is (Ai, Ck). 

We now see that two relations hold between Ai and Ck, whereas we assumed that only one 

relationship holds between Ai and Ck. The question is then if  

Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck) ⊨  

COMPATIBLE (Ai, Ck)  Is (Ai, Ck). 

Because Cor (Ai, Ck) ⊭ COMPATIBLE (Ai, Ck) (see §A.3.16), Is (Ai, Ck) ⊭ COMPATIBLE (Ai, 

Ck) (see §A.3.17), Is2 (Ai, Ck) ⊭ COMPATIBLE(Ai, Ck) (see §A.3.18), DISJOINT (Ai, Ck) ⊭ Is 

(Ai, Ck)  (see §A.3.12), COMPATIBLE (Ai, Ck) ⊭ IS (Ai, Ck) (see §A.3.11) we conclude that 

the equation above is not true.  

Therefore if L⊨ COMPATIBLE (Ai, Ck) it cannot be the case that L ⊨Is (Ai, Ck). 

A.2.2.2 The case of L ⊨ IS2 (Ai, Ck) 

If R''= Is2 (Bj, Ck) then the same method of reasoning will lead to: 

   i k i k(COMPATIBLE A ,C IS2 A ,C )  

I.e. these relations hold between Ai and Ck, whereas we assumed that only one relationship 

hold between Ai and Ck. The question is then if  

Cor (Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck) ⊨  

COMPATIBLE (Ai, Ck)  Is2 (Ai, Ck)   
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Because Cor(Ai, Ck) ⊭ COMPATIBLE (Ai, Ck) (see §A.3.16), Is(Ai, Ck) ⊭ COMPATIBLE (Ai, 

Ck) (see §A.3.17), Is2 (Ai, Ck) ⊭ COMPATIBLE(Ai, Ck) (see §A.3.18), DISJOINT (Ai, Ck) ⊭ 

Is2(Ai, Ck)  (see §A.3.15), COMPATIBLE (Ai, Ck) ⊭ IS2(Ai, Ck) (see §A.3.14) we conclude 

that the equation above is not true.  

Therefore if L⊨ COMPATIBLE (Ai, Ck) it cannot be the case that L ⊨ Is2(Ai, Ck). 

A.2.2.3 The case of L ⊨ COR (Ai, Ck) 

We showed earlier if L is a single relation then it is not possible that

   i k i kCOMPATIBLE A ,C COR A ,CL L    

and due to reasons of symmetry we reuse that conclusion.  

Therefore, if L⊨ COMPATIBLE (Ai, Ck) it cannot be the case that L ⊨ Cor(Ai, Ck). 

A.2.2.4 The case of L ⊨ DISJOINT (Ai, Ck) 

If 

L⊨ COMPATIBLE (Ai, Ck) and L⊨ DISJOINT (Ai, Ck) then 

   i k i k(COMPATIBLE A ,C DISJOINT A ,C )  

However, this is not possible because according to (§A.3.6 and §A.3.19) these relations 

always contradict each other. 

Therefore, if L⊨ COMPATIBLE (Ai, Ck) it cannot be the case that L⊨ DISJOINT (Ai, Ck). 

 

To conclude this section we have proved the following. 

If R(Ai, Bj)  R'(Bj, Ck) ⊨ COMPATIBLE (Ai, Ck) and 

R= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) and 

R'= Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck)  

Then R(Ai, Bj)  R'(Bj, Ck) ⊭Cor (Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) 

A.2.3 If L⊨ IS (Ai, Ck) and L⊭COR(Ai, Ck) then L does not entail other 

relations. 

We need to prove that if  

R(Ai, Bj)  R'(Bj, Ck) ⊨ IS(Ai, Ck) and 

R= COR(Ai, Bj) | Is (Ai, Bj) | Is2 (Ai, Bj) | DISJOINT (Ai, Bj) | COMPATIBLE (Ai, Bj) and 

R'= COR(Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) 

and (R= COR(Ai, Bj)  R'= COR(Bj, Ck)) 
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then R(Ai, Bj)  R'(Bj, Ck) ⊭ Cor (Bj, Ck) | COMPATIBLE (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, 

Ck) 

A.2.3.1 The case of L ⊨ COMPATIBLE (Ai, Ck) 

L= R(Ai, Bj)  R'(Bj, Ck) and L is consistent. 

We know that L⊨ COMPATIBLE (Ai, Ck), and that only one relation holds between Ai and Bj, 

Bj and Ck, and Ai and Ck.  

Assume now that also L⊨ Is (Ai, Ck) holds. 

 

Using the earlier proof pattern this will lead to IS (Ai, Ck)  COMPATIBLE (Ai, Ck). 

We now see that two relations hold between Ai and Ck, whereas we assumed that only one 

relationship holds between Ai and Ck. In §A.2.2.1 we have already shown that this is not 

possible (if we utilize the symmetry of ). 

 

Therefore if L⊨ IS (Ai, Ck) and L⊭ Cor(Ai, Ck) it cannot be the case that L ⊨ COMPATIBLE 

(Ai, Ck). 

A.2.3.2 The case of L ⊨ IS2 (Ai, Ck) 

If R''= Is2 (Ai, Ck) then the same method of reasoning will lead to: 

   i k i k(IS A ,C IS2 A ,C )  

I.e. these relations hold between Ai and Ck, whereas we assumed that only one relationship 

holds between Ai and Ck. The question is then if  

Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck) ⊨  

IS (Ai, Ck)  IS2 (Ai, Ck)   

 

Because IS(Ai, Ck) ⊭ IS2(Ai, Ck) (see §A.3.10), Is2(Ai, Ck) ⊭ IS(Ai, Ck) (see §A.3.9), 

DISJOINT(Ai, Ck) ⊭ IS(Ai, Ck) (see §A.3.12), COMPATIBLE (Ai, Ck) ⊭ Is(Ai, Ck)  (see 

§A.3.11), we conclude that the equation above is not true.  

Therefore if L⊨ IS (Ai, Ck) and L⊭ Cor(Ai, Ck) it cannot be the case that L ⊨ Is2(Ai, Ck). 

A.2.3.3 The case of L ⊨ COR (Ai, Ck) 

The reason why we excluded this case, is that it is possible for  

L⊨ IS(Ai, Ck) and L⊨ COR(Ai, Ck) to hold at the same time. 
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A.2.3.4 The case of L ⊨ DISJOINT (Ai, Ck) 

If R''= DISJOINT(Ai, Ck) then the same method of reasoning as described before will lead to: 

   i k i k(IS A ,C DISJOINT A ,C )  

I.e. these relations hold between Ai and Ck, and both must be inferred from a single relation. 

Due to reasons of symmetry of  we reuse the result from §A.2.1.2 that shows that this is not 

possible. 

 

Therefore if L⊨ IS (Ai, Ck) and L⊭ Cor(Ai, Ck) it cannot be the case that L ⊨ DISJOINT(Ai, 

Ck). 

 

To conclude this section, we have proved the following. 

R(Ai, Bj)  R'(Bj, Ck) ⊨ IS(Ai, Ck) and 

R= COR(Ai, Bj) | Is (Ai, Bj) | Is2 (Ai, Bj) | DISJOINT (Ai, Bj) | COMPATIBLE (Ai, Bj) and 

R'= COR(Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) 

and (R= COR(Ai, Bj)  R'= COR(Bj, Ck)) 

then R(Ai, Bj)  R'(Bj, Ck) ⊭ Cor (Ai, Ck) | COMPATIBLE (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, 

Ck) 

A.2.4 If L⊨ IS2 (Ai, Ck) and and L⊭COR(Ai, Ck) then L does not entail 

other relations. 

We need to prove that if  

R(Ai, Bj)  R'(Bj, Ck) ⊨ IS2(Ai, Ck) and 

R= COR(Ai, Bj) | Is (Ai, Bj) | Is2 (Ai, Bj) | DISJOINT (Ai, Bj) | COMPATIBLE (Ai, Bj) and 

R'= COR(Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) 

and (R= COR(Ai, Bj)  R'= COR(Bj, Ck)) 

then R(Ai, Bj)  R'(Bj, Ck) ⊭ Cor (Bj, Ck) | COMPATIBLE (Ai, Ck) | Is (Ai, Ck) | DISJOINT (Ai, 

Ck) 

A.2.4.1 The case of L ⊨ COMPATIBLE (Ai, Ck) 

L= R(Ai, Bj)  R'(Bj, Ck) and L is consistent, i.e. not logically false. 

We know that L⊨ COMPATIBLE (Ai, Ck), and that only one relation holds between Ai and Bj, 

Bj and Ck, and Ai and Ck.  

Assume now that also L⊨ Is2(Ai, Ck) holds. 
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This will lead to IS2(Ai, Ck)  COMPATIBLE (Ai, Ck). 

We now see that two relations hold between Ai and Ck, whereas we assumed that only one 

relationship holds between Ai and Ck. In §A.2.2.1 we have already shown that this is not 

possible (if we utilize the symmetry of ). 

 

Therefore if L⊨ IS2(Ai, Ck) and L⊭ Cor(Ai, Ck) it cannot be the case that L ⊨ COMPATIBLE 

(Ai, Ck). 

A.2.4.2 The case of L ⊨ IS (Ai, Ck) 

If R''= IS(Ai, Ck) then the same method of reasoning as described before will lead to: 

   i k i k(IS2 A ,C IS A ,C )  

I.e. these relations hold between Ai and Ck, whereas we assumed that only one relationship 

holds between Ai and Ck.  

Due to reasons of symmetry of  we reuse the result from §A.2.3.2 that shows that this is not 

possible. 

 

A.2.4.3 The case of L ⊨ COR (Ai, Ck) 

The reason why we excluded this case, is that it is possible for  

L⊨ IS2(Ai, Ck) and L⊨ COR(Ai, Ck) to hold at the same time. 

A.2.4.4 The case of L ⊨ DISJOINT (Ai, Ck) 

If R''= IS(Ai, Ck) then the same method of reasoning as described before will lead to: 

   i k i k(IS2 A ,C DISJOINT A ,C )  

I.e. these relations hold between Ai and Ck, whereas we assumed that only one relationship 

holds between Ai and Ck.  

Due to reasons of symmetry of  we reuse the result from §A.2.1.3. that shows that this is 

not possible. 

 

To conclude this section, we have proved that if 

R(Ai, Bj)  R'(Bj, Ck) ⊨ IS2(Ai, Ck) and 

R= COR(Ai, Bj) | Is (Ai, Bj) | Is2 (Ai, Bj) | DISJOINT (Ai, Bj) | COMPATIBLE (Ai, Bj) and 

R'= COR(Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) 

and (R= COR(Ai, Bj)  R'= COR(Bj, Ck)) 
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then R(Ai, Bj)  R'(Bj, Ck) ⊭ Cor (Ai, Ck) | COMPATIBLE (Ai, Ck) | Is (Ai, Ck) | DISJOINT (Ai, 

Ck) 

 

A.2.5 If L⊨ Cor(Ai, Ck) then L⊨ Is(Ai, Ck) and L⊨ Is2(Ai, Ck)  but L 

does not entail other relations. 

We need to prove that if  

R(Ai, Bj)  R'(Bj, Ck) ⊨ COR(Ai, Ck) and 

R= COR(Ai, Bj) | Is (Ai, Bj) | Is2 (Ai, Bj) | DISJOINT (Ai, Bj) | COMPATIBLE (Ai, Bj) and 

R'= COR(Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) 

then R(Ai, Bj)  R'(Bj, Ck) ⊨IS(Ai, Ck) and 

R(Ai, Bj)  R'(Bj, Ck) ⊨ IS2(Ai, Ck) 

But also then  

R(Ai, Bj)  R'(Bj, Ck) ⊭  COMPATIBLE (Ai, Ck) | DISJOINT (Ai, Ck) 

 

A.2.5.1 The case of L ⊨ IS (Ai, Ck) 

Given the assumptions above, we know that  

R(Ai, Bj)  R'(Bj, Ck) ⊨ IS(Ai, Ck) 

Because COR(Ai, Ck) ⊨ IS(Ai, Ck) according to §A.3.8. 

 

A.2.5.2 The case of L ⊨ IS2 (Ai, Ck) 

Given the assumptions in §A.2.5, we know that  

R(Ai, Bj)  R'(Bj, Ck) ⊨ IS2(Ai, Ck) 

Because COR(Ai, Ck) ⊨ IS2(Ai, Ck) according to §A.3.13. 

 

A.2.5.3 The case of L ⊨ COMPATIBLE (Ai, Ck) 

L= R(Ai, Bj)  R'(Bj, Ck) and L is consistent, i.e. not logically false. 

We know that L⊨ COR (Ai, Ck), and that only one relation holds between Ai and Bj, Bj and 

Ck, and Ai and Ck.  

Assume now that also L⊨ COMPATIBLE (Ai, Ck) holds. 
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This will lead to COR(Ai, Ck)  COMPATIBLE (Ai, Ck). 

 

I.e. these relations hold between Ai and Ck, whereas we assumed that only one relationship 

holds between Ai and Ck. The question is then if  

COR(Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck) ⊨  

COR(Ai, Ck)  COMPATIBLE (Ai, Ck)   

 

Because COR(Ai, Ck) ⊭COMPATIBLE(Ai, Ck) (see §A.3.16), Is(Ai, Ck) ⊭ COMPATIBLE (Ai, 

Ck) (see §A.3.17), IS2(Ai, Ck) ⊭ COMPATIBLE (Ai, Ck) (see §A.3.18), DISJOINT(Ai, Ck) ⊭ 

COMPATIBLE(Ai, Ck)  (see §A.3.19), and COMPATIBLE(Ai, Ck) ⊭ COR(Ai, Ck)  (see §A.3.7) 

we conclude that the equation above is not true.  

Therefore if L⊨COR(Ai, Ck) (and only one relation holds between Ai and Ck) it cannot be the 

case that L ⊨ COMPATIBLE(Ai, Ck). 

 

A.2.5.4 The case of L ⊨ DISJOINT (Ai, Ck) 

L= R(Ai, Bj)  R'(Bj, Ck) and L is consistent, i.e. not logically false. 

We know that L⊨ COR(Ai, Ck), and that only one relation holds between Ai and Bj, Bj and 

Ck, and Ai and Ck.  

Assume now that also L⊨ DISJOINT(Ai, Ck) holds. 

 

This will lead to COR(Ai, Ck)  DISJOINT (Ai, Ck). 

 

I.e. these relations hold between Ai and Ck, whereas we assumed that only one relationship 

holds between Ai and Ck. The question is then if  

COR(Ai, Ck) | Is (Ai, Ck) | Is2 (Ai, Ck) | DISJOINT (Ai, Ck) | COMPATIBLE (Ai, Ck) ⊨  

COR(Ai, Ck)  DISJOINT (Ai, Ck)   

 

Because COR(Ai, Ck) ⊭ DISJOINT(Ai, Ck) (see §A.3.1), Is(Ai, Ck) ⊭ DISJOINT(Ai, Ck)  (see 

§A.3.2), IS2(Ai, Ck) ⊭ DISJOINT(Ai, Ck) (see §A.3.20), DISJOINT(Ai, Ck) ⊭ COR(Ai, Ck)  (see 

§A.3.5), and COMPATIBLE(Ai, Ck) ⊭ DISJOINT(Ai, Ck)  (see §A.3.6) we conclude that the 

equation above is not true.  

Therefore if L⊨ COR(Ai, Ck) (and only one relation holds between Ai and Ck) it cannot be the 

case that L ⊨ DISJOINT(Ai, Ck). 
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To conclude this section, we have proved that if 

R(Ai, Bj)  R'(Bj, Ck) ⊨ COR(Ai, Ck) where 

R= COR(Ai, Bj) | Is (Ai, Bj) | Is2 (Ai, Bj) | DISJOINT (Ai, Bj) | COMPATIBLE (Ai, Bj) and 

R'= COR(Bj, Ck) | Is (Bj, Ck) | Is2 (Bj, Ck) | DISJOINT (Bj, Ck) | COMPATIBLE (Bj, Ck) 

then R(Ai, Bj)  R'(Bj, Ck) ⊨ IS(Ai, Ck) and 

R(Ai, Bj)  R'(Bj, Ck) ⊨ IS2(Ai, Ck) 

But also then  

R(Ai, Bj)  R'(Bj, Ck) ⊭  COMPATIBLE (Ai, Ck) | DISJOINT (Ai, Ck) 

 

A.3 Entailment between relations 

A.3.1 Does Cor(Ai, Bj) ⊨ DISJOINT(Ai, Bj) 

Does Cor(Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? 

The first case is when both sides are ontology mappings. 

 

In this situation the statement above is not true, because here is an example of a model where 

it is not satisfied (if we consider the semantics of these statements as defined in chapter 3): 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=true I2,1(B2(b2))=true 

   

I(1,2),1(Rel)={(a1, b2)}        

 

The second case is when both are relations within the same ontology. 

 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 

L1,1={A1,a1, B1,b1}  

D1,1={a1,b1}  

I1,1(A1(a1))=true I1,1(B1(b1))=true 

 

Therefore, Cor(Ai, Bj)⊨ DISJOINT(Ai, Bj) does not hold. 
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A.3.2 Does Is(Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? 

Does Is(Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=true I2,1(B2(b2))=true 

   

I(1,2),1(Rel)={(a1, b2)}       

 

The second case is when both are relations within the same ontology. 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 

L1,1={A1,a1, B1,b1}  

D1,1={a1,b1}  

I1,1(A1(a1))=true I1,1(B1(b1))=true 

 

Therefore, Is(Ai, Bj) ⊨ DISJOINT(Ai, Bj) does not hold. 

 

A.3.3 Does Is(Ai, Bj) ⊨ COR(Ai, Bj) hold? 

Does Is(Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2}  

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=true I2,1(B2(b2))=true 

  

I(1,2),1(Rel)={(a1, b2)}       

 

The second case is when both are relations within the same ontology. 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 
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L1,1={A1,a1, B1,b1}  

D1,1={a1,b1}  

I1,1(A1(a1))=true I1,1(B1(b1))=true 

 

Therefore, Is(Ai, Bj) ⊨ DISJOINT(Ai, Bj) does not hold. 

 

A.3.4 Does Is2(Ai, Bj) ⊨ COR(Ai, Bj) hold? 

Does Is2(Ai, Bj) ⊨ COR(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

 

I1,1(A1(a1))=true I2,1(B2(b2))=false I(1,2),1(Rel)={(a1, b2)}        

 

The second case is when both are relations within the same ontology. 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 

 

L1,1={A1,a1, B1,b1}  

D1,1={a1,b1}  

I1,1(A1(a1))=true I1,1(B1(b1))=false 

 

Therefore, Is2(Ai, Bj) ⊨ DISJOINT(Ai, Bj) does not hold. 

 

A.3.5 Does DISJOINT(Ai, Bj) ⊨Cor(Ai, Bj) hold? 

Does DISJOINT (Ai, Bj) ⊨ COR(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 
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I1,1(A1(a1))=false I2,1(B2(b2))=true I(1,2),1(Rel)={(a1, b2)}      

 

The second case is when both are relations within the same ontology. 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 

 

L1,1={A1,a1, B1,b1} D1,1={a1,b1}  

I1,1(A1(a1))=false I1,1(B1(b1))=true 

 

Therefore, DISJOINT (Ai, Bj) ⊨ COR(Ai, Bj)  does not hold. 

A.3.6 Does COMPATIBLE(Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? 

Does COMPATIBLE (Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? 

 

( , (Rel( , ) ( ) ( )))

( (Rel( , ) ( ( ) ( ))))

( (Rel( , ) ( ( ) ( ))))

s i j i j i i j j

s i j i j i i j j

s i j i j i i j j

x y x y A x B y

x y x y A x B y

x y x y A x B y





   

   

  



G

F

N
 

( , ),

( , ),

( , ),

( )( ( 1, ) [ , (Rel( , ) ( ) ( )) ] 1)

( [ (Rel( , ) ( ( ) ( ))) ] 1

( )( ( 1, ) [ (Rel( , ) ( ( ) ( ))) ] 1))

i j st i j i j i i j j z=st

i j s i j i j i i j j z=s

i j st i j i j i i j j z=st

st S L s st V x y x y A x B y

V x y x y A x B y

st S L s st V x y x y A x B y

 

 

        

    

         



 

( , ),

( , ),

( , ),

( )( ( 1, ) [ , (Rel( , ) ( ) ( )) ] 1)

( )( ( 1, ) [ (Rel( , ) ( ( ) ( ))) ] 1)

( )( ( 1, ) [ , (Rel( , ) ( )

i j st i j i j i i j j z=st

i j st i j i j i i j j z=st

i j st i j i j i i j

st S L s st V x y x y A x B y

st S L s st V x y x y A x B y

st S L s st V x y x y A x B

 

        

         



      

( , ),

( ))

(Rel( , ) ( ( ) ( ))) | ]

( )( ( 1, ) [ , (Rel( , ) ( ) ( ) ( ( ) ( )) | ])

j

i j i j i i j j z st

i j st i j i j i i j j i i j j z st

y

x y x y A x B y

st S L s st V x y x y A x B y A x B y







  



        

 

This is never true, because it is false in every model. 

 

Therefore, COMPATIBLE (Ai, Bj) ⊨ DISJOINT(Ai, Bj) does not hold, and moreover 

COMPATIBLE (Ai, Bj) always contradicts DISJOINT(Ai, Bj). 
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A.3.7 Does COMPATIBLE(Ai, Bj) ⊨Cor(Ai, Bj) hold? 

Does COMPATIBLE(Ai, Bj) ⊨ COR(Ai, Bj) hold? 

 

We only have to investigate the case when both relations are mappings. 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=true I2,1(B2(b2))=true 

L1,2={A1,a1}  L2,2={B2,b2} 

D1,2={a1}  D2,2={b2} 

I1,2(A1(a1))=true  I2,2(B2(b2))=false 

   

I(1,2),1(Rel)={(a1, b2)}       

I(1,2),2(Rel)={(a1, b2)}       

 

Therefore, COMPATIBLE(Ai, Bj) ⊨ COR(Ai, Bj) does not hold. 

A.3.8 Does COR(Ai, Bj) ⊨Is(Ai, Bj) hold? 

Does COR(Ai, Bj) ⊨ IS(Ai, Bj) hold? 

 

If we use the same reasoning pattern as the first reasoning patterns as earlier and assume 

both sides are ontology mappings we will eventually get  

( , ),( ), ( 1, ) [ , (( ( ) ( )) ( ( ) ( )))]i j st i j i i j j i i j jst S L s st V x y A x B y A x B y
            

This is a tautology that is always true, because it is true for all models. 

 

If we repeat the second reasoning pattern from §A.3.6, and assume that both relations are 

relations within an ontology (i.e. j=i), we will get: 

,( )( ( 1, ) [ (( ( ) ( ))

(( ( ) ( ))) ] 1)

i st i i i i i

i i i i z=st

st S L s st V x A x B x

A x B x





        

  
 

This is a tautology that is always true. 

 

Therefore, COR(Ai, Bj) ⊨ IS(Ai, Bj)  is always true. 
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A.3.9 Does IS2(Ai, Bj) ⊨Is(Ai, Bj) hold? 

Does IS2 (Ai, Bj) ⊨ IS(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=true I2,1(B2(b2))=false 

   

I(1,2),1(Rel)={(a1, b2)}       

 

The second case is when both are relations within the same ontology. 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 

 

L1,1={A1,a1, B1,b1} D1,1={a1,b1}  

I1,1(A1(a1))=true I1,1(B1(b1))=false 

 

Therefore, IS2(Ai, Bj) ⊨ IS(Ai, Bj)  does not hold. 

A.3.10 Does IS(Ai, Bj) ⊨Is2(Ai, Bj) hold? 

Does IS(Ai, Bj) ⊨IS2(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2}  

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=false I2,1(B2(b2))=true 

  

I(1,2),1(Rel)={(a1, b2)}       

 

The second case is when both are relations within the same ontology. 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 
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L1,1={A1,a1, B1,b1}  

D1,1={a1,b1}  

I1,1(A1(a1))=false I1,1(B1(b1))=true 

 

Therefore, IS(Ai, Bj) ⊨ IS2(Ai, Bj)  does not hold. 

 

A.3.11 Does COMPATIBLE(Ai, Bj) ⊨Is(Ai, Bj) hold? 

Does COMPATIBLE (Ai, Bj) ⊨ IS(Ai, Bj) hold? 

 

We only have to investigate the case when both relations are mappings. 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L1,2={A1,a1} 

D1,1={a1}  D1,2={a1} 

I1,1(A1(a1))=true I1,2(A1(a1))=true   

L2,1={B2,b2}  L2,2={B2,b2}  

D2,1={b2}  D2,2={b2}  

I2,1(B2(b2))=true I2,2(B2(b2))=false 

   

I(1,2),1(Rel)={(a1, b2)}    I(1,2),2(Rel)={(a1, b2)}    

       

Therefore, COMPATIBLE (Ai, Bj) ⊨ IS(Ai, Bj) does not hold. 

A.3.12 Does DISJOINT(Ai, Bj) ⊨Is(Ai, Bj) hold? 

Does DISJOINT(Ai, Bj) ⊨ IS(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=true I2,1(B2(b2))=false 

   

I(1,2),1(Rel)={(a1, b2)}       

 

The second case is when both are relations within the same ontology. 



248 

 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 

 

L1,1={A1,a1, B1,b1}  

D1,1={a1,b1}  

I1,1(A1(a1))=true I1,1(B1(b1))=false 

 

Therefore, DISJOINT(Ai, Bj) ⊨ IS(Ai, Bj)  does not hold. 

A.3.13 Does COR(Ai, Bj) ⊨Is2(Ai, Bj) hold? 

Does COR(Ai, Bj) ⊨ IS2(Ai, Bj) hold? 

 

If we use the same reasoning pattern as the first reasoning patterns in §A.3.6 and assume 

both sides are ontology mappings we will eventually get  

( , ),( ), ( 1, ) [ , (( ( ) ( )) ( ( ) ( )))]i j st i j i i j j i i j jst S L s st V x y A x B y A x B y
           

This is a tautology that is always true. 

 

If we repeat the second reasoning pattern, and assume that both relations are relations within 

an ontology (i.e. j=i), we will get: 

,( )( ( 1, ) [ (( ( ) ( ))

( ( ) ( ))) ] 1)

i st i i i i i

i i i i z=st

st S L s st V x A x B x

A x B x





        

 
 

This is a tautology that is always true. 

 

Therefore, COR(Ai, Bj) ⊨ IS2(Ai, Bj)  does always hold. 

 

A.3.14  Does COMAPTIBLE(Ai, Bj) ⊨Is2(Ai, Bj) hold? 

Does COMPATIBLE (Ai, Bj) ⊨ IS2(Ai, Bj) hold? 

 

It does not hold, because here follows a counter-model. 

 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=false I2,1(B2(b2))=true 
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L1,2={A1,a1}  L2,2={B2,b2} 

D1,2={a1}  D2,2={b2} 

I1,2(A1(a1))=true  I2,2(B2(b2))=true 

   

I(1,2),1(Rel)={(a1, b2)}       

I(1,2),2(Rel)={(a1, b2)}    

 

Therefore, COMPATIBLE (Ai, Bj) ⊨ IS2(Ai, Bj) does not hold. 

 

A.3.15 Does DISJOINT(Ai, Bj) ⊨Is2(Ai, Bj) hold? 

Does DISJOINT(Ai, Bj) ⊨ IS2(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1} D1,1={a1} I1,1(A1(a1))=false 

L2,1={B2,b2} D2,1={b2} I2,1(B2(b2))=true 

I(1,2),1(Rel)={(a1, b2)}       

 

The second case is when both are relations within the same ontology. 

Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 

 

L1,1={A1,a1, B1,b1} D1,1={a1,b1}  

I1,1(A1(a1))=false I1,1(B1(b1))=true 

 

Therefore, DISJOINT(Ai, Bj) ⊨ IS2(Ai, Bj)  does not hold. 

A.3.16 Does COR(Ai, Bj) ⊨Compatible(Ai, Bj) hold? 

Does COR (Ai, Bj) ⊨COMPATIBLE(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=false I2,1(B2(b2))=false 
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I(1,2),1(Rel)={(a1, b2)}       

 

Therefore, COR (Ai, Bj) ⊨ COMPATIBLE(Ai, Bj)  does not hold. 

 

A.3.17 Does IS(Ai, Bj) ⊨Compatible(Ai, Bj) hold? 

Does IS(Ai, Bj) ⊨ COMPATIBLE(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=false I2,1(B2(b2))=false 

   

I(1,2),1(Rel)={(a1, b2)}       

 

Therefore, IS(Ai, Bj) ⊨ COMPATIBLE(Ai, Bj) does not hold. 

 

A.3.18 Does IS2(Ai, Bj) ⊨Compatible(Ai, Bj) hold? 

Does IS2(Ai, Bj) ⊨ COMPATIBLE(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=false I2,1(B2(b2))=false 

   

I(1,2),1(Rel)={(a1, b2)}       

 

Therefore, IS2(Ai, Bj) ⊨ COMPATIBLE(Ai, Bj) does not hold. 

 

A.3.19 Does DISJOINT(Ai, Bj) ⊨Compatible(Ai, Bj) hold? 

Does DISJOINT(Ai, Bj) ⊨ COMPATIBLE(Ai, Bj) hold? 
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DISJOINT(Ai, Bj) ⊨ COMPATIBLE(Ai, Bj) 

 

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ( ) ( ))))

( , (Rel( , ) ( ) ( )))

s i j i j i i j j

s i j i j i i j j

s i j i j i i j j

x y x y A x B y

x y x y A x B y

x y x y A x B y

   

   

  



N

G

F
 

( , ),

( , ),

( , ),

[ , (Rel( , ) ( ( ) ( ))) ] 1

( )( ( , ) [ , (Rel( , ) ( ( ) ( ))) ] 1))

( )( ( 1, ) [ , (Rel( , ) ( ) ( )) ] 1)

i j s i j i j i i j j z =s

i j st i j i j i i j j z =st

i j st i j i j i i j j z =st

V x y x y A x B y

st S L s st V x y x y A x B y

st S L s st V x y x y A x B y





  

    

       

         



 ( , ),

( , ),

( , ),

( )( ( 1, ) [ , (Rel( , ) ( ( ) ( ))) ] 1)

( )( ( 1, ) [ , (Rel( , ) ( ) ( )) ] 1)

( )( ( 1, ) [ , (Rel( , ) (

i j st i j i j i i j j z =st

i j st i j i j i i j j z =st

i j st i j i j

st S L s st V x y x y A x B y

st S L s st V x y x y A x B y

st S L s st V x y x y A



  



       

         



        ( ) ( )))

, (Rel( , ) ( ) ( )) ]

i i j j

i j i j i i j j z =st

x B y

x y x y A x B y  

 

  

 

 

This never holds, because it is false in every model. 

Therefore, DISJOINT(Ai, Bj) ⊨ COMPATIBLE(Ai, Bj) does not hold, and moreover 

DISJOINT(Ai, Bj) always contradicts COMPATIBLE(Ai, Bj). 

 

A.3.20 Does IS2(Ai, Bj) ⊨Disjoint(Ai, Bj) hold? 

Does IS2(Ai, Bj) ⊨ DISJOINT(Ai, Bj) hold? 

 

This is not true, because here is a counter-model: 

L1,1={A1,a1}  L2,1={B2,b2} 

D1,1={a1}  D2,1={b2} 

I1,1(A1(a1))=true I2,1(B2(b2))=true 

   

I(1,2),1(Rel)={(a1, b2)}       

 

Does it hold inside a single ontology? 
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Again, in this situation the statement above is not true, because here is an example of a 

model where it is not satisfied (if we consider the semantics of these statements as defined in 

chapter 3): 

 

L1,1={A1,a1, B1,b1} D1,1={a1,b1}  

I1,1(A1(a1))=true I1,1(B1(b1))=true 

 

Therefore, IS2(Ai, Bj) ⊨ DISJOINT(Ai, Bj)  does not hold. 

 

 


