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Insert the lay summary text here - the space will expand as you type.  

HIV can be transmitted through sexual contact (heterosexual or homosexual), through sharing needles and 
during childbirth. 100,000 people are infected in the UK and around 45% of these are men who have sex with 
men (MSM), 45% are heterosexuals and ~5-10% are people who inject drugs. 
HIV displays huge genetic diversity: numerous subtypes exist and the virus is distinct in between even 
transmission-recipient pairs. If viruses sampled from different individuals are highly genetically similar, those 
individuals may have infected each other or be associated with the same transmission chain. In the UK, many 
HIV genetic sequences are available because these are generated as standard practice during medical 
treatment. The relationships between all UK viruses can be reconstructed in the form of large trees of l ife, or 
phylogenies, to assess the probability of transmission events at the national level. These trees contain 
thousands of sequences, but within them, “clusters”, or groups of related sequences, are of particular interest 
because they contain sequences associated with the same transmission chain. 
In Chapter 3, I develop software tools that identify clusters within large phylogenies automatically and describe 
them in terms of risk group. In Chapter 4, the tools are used to analyse and compare the UK and Swiss HIV 
epidemics. Switzerland generates HIV sequences from Swiss patients in the same way as is done in the UK 
and the two countries have the two largest HIV sequence databases in the world. I found clustering patterns in 
the two countries to be broadly similar, although the UK epidemic comprised more men who self-identified as 
heterosexuals yet clustered with MSM, suggesting that they are more likely to have been infected through sex 
with men. 
In Chapter 4, I analysed the transmission patterns of HIV subtypes that have entered the UK only recently. 
Subtype B predominated until the 1990s, but non-B subtypes now circulate and account for 60% of new 
diagnoses each year. In contrast in the rest of Europe, subtype B still represents >80% of infections. These 
non-B subtypes infect mostly heterosexuals. I found that these clusters were more likely to be smaller than 
subtype B clusters among MSM; and between 2007 and 2010, the non-B clusters were less likely to grow. 
However, a small proportion of non-B clusters comprised MSM and these clusters were more likely to grow. It 
thus appears that crossover of non-B subtypes into MSM has caused expansion of those subtypes within the 
UK. 
In Chapter 5, I use simulations of HIV epidemics to evaluate how well identified clusters match true transmission 
chains. 
Together with other evidence, this thesis demonstrates that the UK HIV epidemic continues to be driven by 
transmission among MSM. New subtypes historically associated with heterosexual transmission now circulate 
among MSM, most likely due to MSM also having sex with women. 
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ABSTRACT  

HIV in the UK in the 1980s was concentrated within men who have sex with men 

(MSM) and people who inject drugs (PWID) but heterosexual sex is now the most 

frequently reported risk behaviour. As these risk groups are associated with different 

virus populations, this is reflected in the subtype diversification of the UK epidemic, 

which was historically dominated by subtype B. 

I have made use of a national database of HIV sequences collected during routine 

clinical care, which also contains data on age, sex, route of exposure & ethnicity. The 

2014 release of the UK HIV Drug Resistance Database contained data from over 

60,000 patients. 

In this thesis, I first describe the development of novel tools that rapidly and 

automatically identify HIV clusters within phylogenetic trees containing tens of 

thousands of sequences because they represent transmission chains within the larger 

infected population.  

I use these tools to compare the HIV subtype B epidemics in the UK and Switzerland, 

which had both been described separately but using different approaches. Working 

with Swiss colleagues, I was able to analyse the epidemics in exactly the same way 

without having to share sensitive data. I found clustering in the UK to be much higher 

at relaxed thresholds than in Switzerland (34% vs 16%) indicating that the UK 

database is more likely to capture transmission chains. Down sampling revealed that 

this pattern is driven by the larger size of the UK epidemic. At tighter cluster 

thresholds, the epidemics were very similar. 

I next use these tools to analyse the spread of emerging subtypes A1, C, D and G in 

the UK. I found both risk group and cluster size to be predictive of cluster growth, 

which I tested using simulations and a GLM. Growth of MSM and crossover clusters 

was significantly higher than expected for subtypes A1 and C, indicating that crossover 

from heterosexuals to MSM has contributed to their expansion within the UK. 



 

vi 

Numbers were small for subtypes D and G but the proportion of new diagnoses linking 

to MSM and crossover clusters was similar to A1 and C, suggesting that the same 

pattern may be emerging for D and G. 

I conclude by evaluating the accuracy of a method previously described by our group 

to generate transmission networks from HIV sequences. The interpretation of 

clustering patterns from phylogenetic trees is difficult because of the absence of a 

standardised statistical framework. In contrast, a body of work exists that relates 

disease transmission to networks. Using large simulated datasets, I developed 

algorithms which eliminate improbable links. I then reconstructed improved UK 

transmission networks for subtypes A1, B and C and compare network metrics (such 

as the degree distribution) between risk groups. 

Together with other evidence, this thesis demonstrates that the UK HIV epidemic 

continues to be driven by transmission among MSM. The UK epidemic is no longer 

compartmentalised and the crossing over of subtypes across risk groups has been 

facilitated by MSM also having sex with women.  
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1 TRANSMISSION AND 

EVOLUTION OF HIV 

1.1 The HIV Epidemic 

1.1.1 Global distribution of HIV  

The Human Immunodeficiency Virus (HIV) is the causative agent of Acquired 

Immunodeficiency Syndrome (AIDS). AIDS was first recognized in 1981, when 

previously healthy young men were diagnosed with unusual infections that suggested 

their immune systems were malfunctioning [1]. The AIDS-causing virus was isolated 

first in France in 1983 [2] then later that year in the United States of America (USA) 

[3], establishing a definite link between the virus and AIDS. The appellation “HIV” 

was internationally adopted in 1986 [4]. 

The immune system of people living with HIV progressively fails until they are no 

longer able to fight off other infections and die from AIDS. The number of people 

living with HIV continues to rise. In 2013, 35 million people were infected, 2.1 million 

people became newly infected and 1.5 million died from AIDS [5]. The World Health 

Organization (WHO) considers HIV a global pandemic but infections are unequally 
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distributed across the globe. Sub-Saharan Africa is the most severely affected region, 

with 67% of infections, or 24.7 million people living with HIV. HIV is a leading cause 

of death in a number of countries, leaving millions of children orphaned. AIDS patients 

are unable to work and require significant medical care. As such HIV is a major social 

and economic burden. In addition, HIV is a highly stigmatised condition due to its 

associations with homosexuality, drug use and race. Thirty years into the epidemic, 

HIV has no cure or vaccine and continues to be a major global heath priority.  

1.1.2 HIV in the UK 

In the UK in 2013, an estimated 107,000 people were living with HIV, a quarter of 

whom were unaware of their infection [6]. At the beginning of the HIV epidemic in 

the 1980s, HIV was concentrated within men who have sex with men (MSM) and 

people who inject drugs (PWID). Harm reduction and needle exchange programs have 

decreased HIV incidence in PWID substantially since then. Since 1999, heterosexual 

sex has become increasingly frequently reported as the risk behaviour for HIV 

acquisition. Currently, MSM and heterosexuals account for around 45% each of 

prevalent cases and PWIDs for 5% [6]. 

1.1.3 Origin of HIV 

HIV arose by zoonotic transfer of simian immunodeficiency virus (SIV) from non-

human primates. A number of cross-species transmission events have led to HIV’s 

current genetic diversity [7, 8]. HIV-1, discovered first, is closely related to SIV in 

chimpanzees (SIVcpz) [9]. HIV-2 was isolated from West African patients with AIDS 

in 1986. HIV-2 is related to HIV-1 but has distinct antigenic components and evolved 

from SIV in sooty mangabeys (SIVsm) [9] (Figure 1.1). HIV has been classified 

according to genetic similarities: HIV-1 contains four groups, M, N, O and P, while 

HIV-2 separates into eight, A to H [10]. HIV-1 group M is the pandemic-causing 

strain, and it comprises a further 11 major subtypes (A1, A2, B, C, D, F1, F2, G, H, J, 

K) as well as an increasing number of circulating and unique recombinant forms (CRF, 

URF) [11]. The HIV-1 groups M, N, O and P are each individually closer to SIV 
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isolates than they are to each other and so appear to have originated from distinct cross-

species events [8] (Figure 1.1).  

 

Figure 1.1: Primate lentivirus phylogenetic relationships based on the pol region. 

Scale in nucleotide substitutions per site. By Thomas Splettstoesser and based on 

Kuiken et al. [12], via Wikimedia Commons.  

Thirty nine species of non-human primates possess a strain of SIV [13]; however the 

virus does not normally cause serious illness in its natural host (for exceptions, see [14, 

15]). This resistance to disease has been shown to arise in part due to a down-regulation 

of immune activation in naturally SIV-infected cercopithecoid monkeys [16] and 

points to a long-term adaptive co-evolution, in contrast to the recent emergence and 

high pathogenicity of HIV in humans and rhesus macaques. Modern methods of 

analysing ancient samples support the hypothesis that HIV-1 group M was introduced 

into human populations around 1900 [17] in Kinshasa in the Democratic Republic of 

Congo [18, 19], the country displaying the highest genetic diversity of HIV. It is likely 

that transmission occurred through the practice of primate bushmeat hunting, through 
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exposure to infected blood due to animal bites or during butchering [8]. The oral polio 

vaccine theory suggested that HIV was the result of vaccination trials conducted in the 

Belgian Congo in the late 1950s; but this theory has been discredited. No HIV virus 

nor chimpanzee DNA were found in remnant batches of the vaccine [20], and 

molecular clock analyses (see section 2.2.2.2) place the common ancestor to 

circulating HIV strains before the 1950s [21, 22]. 

1.2 Molecular virology of HIV 

1.2.1 HIV life cycle and disease progression 

Two aspects of HIV biology make it a particularly challenging disease. Firstly, HIV 

directly attacks the host’s immune system. HIV infects CD4+ T cells responsible for 

regulating immune responses, progressively compromising the host’s ability to fight 

off infection. Secondly, infected hosts do not show any symptoms for 8 to 12 years 

without treatment but are still able to transmit the virus during this period of clinical 

latency.  

HIV is classified as a member of the lentiviral genus in the Retroviridae family. 

Lentiviruses contain single-stranded positive-sense RNA genomes. The HIV particle 

is spherical and 120nm in diameter and each particle contains two copies of its full 

genome. The genome is ~10,000bp and consists of three main genes, gag, pol, and env 

and six accessory genes: tat, rev, nef, vif, vpr and vpu, encoding a total of 19 proteins. 

The major target cells of HIV are CD4+ T cells vital to the human immune system, 

but macrophages and dendritic cells can also be infected. Entry into the cell is 

dependent on binding to the CD4+ receptor and a co-receptor (one of the chemokine 

receptors CCR5 or CXCR4). After the viral capsid has entered the cell, the viral 

enzyme reverse transcriptase (RT) converts viral RNA in to double-stranded DNA 

(dsDNA). The viral protein integrase then integrates the dsDNA into the host cellular 

DNA, often within active transcription units [23]. Viral genes become highly 

expressed and infected cells produce and release numerous viral particles, triggering 

cytotoxic defences. Alternatively, the integrated virus can enter viral latency and lie 

dormant within the host DNA, expressed at low levels or not at all. Latent virus can 
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persist indefinitely in memory T-cells and this latent reservoir is a major barrier to 

curing HIV [24].  

 

 

Figure 1.2: HIV course of infection. CD4+ counts and HIV copies in an untreated 

patient. By Jurema Oliveira, and based on Figure 1 in Pantaleo et al. [25]. Via 

Wikimedia Commons, GNU Free Documentation License.  

HIV disease progression to AIDS is divided into three stages (Figure 1.2). During the 

first 2-4 weeks (acute infection) the virus replicates rapidly, occasionally causing 

generic symptoms of immune activation such as a fever, headache and sore throat. 

Extremely high viral loads (107 viral RNA copies/mL blood) are associated with high 

infectiousness during this stage of infection [26]. CD4+ counts falls and are never 

recovered. Initiation of host adaptive immune responses causes patients to enter the 

latent period of HIV infection. During the next 8-12 years the patient does not show 

any overt symptoms. At the start of latency the infection is controlled by the host 

immune system, but immunity fails over time in the absence of treatment. Viral loads 

increase gradually, correlating with the decline of CD4+ T cells in the peripheral blood 

and a progressive failure of the immune system. When CD4+ cell counts drop below 

a critical level, around 200 cells/mm3, cell-mediated immune responses cannot 
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function. The AIDS stage has been reached and patients are no longer able to fight off 

opportunistic infections. Patients usually die within a year of developing AIDS [27]. 

Antiretroviral therapy (ART) prevents the virus from multiplying and destroying the 

host’s immune system so that patients never progress to AIDS (see section 1.2.3). 

1.2.2 Viral replication and molecular evolution  

Many mutations happen during reverse transcription. The enzyme that synthesises 

complementary DNA from viral RNA, RT, is extremely error-prone and has no 

proofreading ability. One error is made every 1,000-10,000 bases causing 5 to 10 

nucleotide substitutions per new HIV genome synthesized [28]. In addition HIV has 

an extremely high replication rate: in the absence of treatment 1010 virions are 

produced daily by infected individuals [29]. On top of this, two genomic copies are 

packaged into HIV virions and these can produce recombinants. During reverse 

transcription, both copies are used to produce double stranded DNA through a process 

of template switching [30]. Recombination occurs at a minimum rate of 2.8 crossovers 

per genome per cycle [31]. Occasionally, virions become coinfected with divergent 

strains leading to intra and inter-subtype (section 1.4.2) recombinant viruses [32, 33]. 

HIV thus displays high genetic variability both within a host and at the level of the 

population. High within-host variation allows selection of HIV variants able to evade 

human immune responses and resist HIV drugs. The extreme genetic diversity of 

circulating isolates contributes to the difficulties in producing a vaccine.  

HIV undergoes a major bottleneck at transmission; in 60-80% of infections, a single 

founder virus is transmitted [18, 34-36]. Intra-patient genetic diversity then increases 

over the course of infection [37] as a consequence of both genetic drift and immune 

selection. Selection acts on the genetically diverse quasispecies as whole, allowing the 

viral population to rapidly adapt to its host. Viral escape mutants that reduce 

recognition and destruction by the immune system are strongly selected [38-40]. 

Neutralising antibodies drive the diversification of HIV envelope in early infection 

[41]. The most important genetic determinant of disease progression identified so far 

is the Human Leukocyte Antigen (HLA) [42, 43]. Some HLA alleles that confer a 
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notable protective effect against HIV disease, such as B57, are called ‘super-

controller’ alleles [44]. Additionally, non-immune related selection is driven by ART 

which results in drug-resistant viruses (see section 1.2.4). 

1.2.3 HIV treatment 

Azidothymidine (AZT) was the first HIV drug approved by the US government in 

1987. Since then, around 30 more drugs have been approved. Many stages of the viral 

life cycle cannot be targeted because they utilise host machinery and drugs targeting 

host machinery are harmful to the host. Existing drugs each target different aspects of 

the viral life cycle and are sorted into five classes based on their target. Nucleotide 

Reverse Transcriptase Inhibitors (NRTIs) and Non-Nucleotide Reverse Transcriptase 

Inhibitors (NNRTIs) both block the viral RT (see section 1.2.2). Protease Inhibitors 

(PIs) prevent the protease enzyme from cleaving newly synthesised proteins to make 

them functional. Integrase inhibitors block double-stranded viral DNA from 

integrating into the host genome. Fusion inhibitors prevent the virus from docking and 

entering into new cells. All drugs are used in combinations of 3 drugs from 2 or more 

classes and can fully suppress replication of wild type virus below detectable levels. 

Prescribing drugs in combination (Highly Active Anti-Retroviral Treatment or 

HAART) has changed HIV to a chronic disease: viral loads are lowered, optimally to 

undetectable levels, and CD4+ cell count increases. It has been shown that with 

optimal therapy the life expectancy of an infected individual lies within the normal 

range [45]. At present, these drugs prevent disease but do not cure HIV as they are not 

able to remove integrated latent provirus (section 1.2.1). 

1.2.4 Drug Resistance 

Incompletely suppressed virus can lead to mutations arising in targeted enzymes that 

allow the virus to develop resistance to treatment. The opportunity to develop 

resistance is reduced as HIV replication is more efficiently blocked and as HAART 

significantly decreases replication, drug resistant mutations (DRM) are far less likely 

to emerge and be selected for. However, viral rebound, for example as a consequence 

of incomplete adherence to drug regimens, can favour the emergence of DRM.  
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Widespread use of ART has led to the development of DRM in circulating strains. 

Drug resistant strains can be transmitted (transmitted drug resistance or TDR) and can 

considerably reduce the efficacy of first line therapies. Resistance exists to all available 

classes of drugs but mutations are most common in the pol region of HIV because 

drugs that have been available the longest target protease (PR) and RT. Because of 

increasing prevalence of TDR [46, 47], genotyping (sequencing of the pol region) is 

recommended for all newly diagnosed individuals and is routinely performed in a 

number of countries [48-50]. The identification of specific DRM allows for tailoring 

of drug regimens. In the UK the virus is genotyped to detect drug resistance mutations 

before the initiation of therapy and in the case of immune failure, so that drug regimens 

can be tailored (see section 2.1.2). 

1.3 HIV transmission and prevention 

HIV is transmitted mainly through sexual intercourse. HIV can also be transmitted 

through contact with infected blood and from mother to child (MTCT). In sub-Saharan 

Africa, heterosexual sex is the dominant route of transmission while in Europe it is sex 

between men. In Asia, the use of contaminated needles has emerged as a driver of the 

epidemic. In the USA, both sex between men and needle sharing are major risk factors. 

Accurate estimates of per act transmission are essential for designing HIV 

interventions and for mathematically modelling the HIV epidemic (see section 1.5).  

1.3.1 Sexual transmission of HIV 

During intercourse, the receptive partner is at higher risk for HIV than the insertive 

partner. The risk per (unprotected) sexual act in developed countries has been 

calculated in meta-analyses as highest for receptive anal intercourse: 1.38% (95 CI 

1.02-1.86%), 0.11% for insertive anal intercourse, 0.08% for receptive vaginal 

intercourse and 0.04% for insertive vaginal intercourse [51]. 

Original estimates for transmission were derived from longitudinal analyses of 

heterosexual sero-discordant couples in Uganda [52] and extrapolated to MSM and 

high resources settings. Since then a number of studies have been conducted in 

heterosexuals and MSM in the developed world (reviewed in [51]) and in low resource 
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settings (reviewed in [53]), in the pre and post-HAART eras. In low resource settings, 

calculated estimates 2-8 times higher [53]. 

MSM have a higher risk of contracting HIV than heterosexuals because of increased 

risk during anal intercourse, the higher prevalence of HIV among MSM, sexual role 

versatility and possibly increased risk-taking behaviour in this group [54]. 

Condoms prevent sexual HIV transmission [55] and have been available since the 

beginning of the epidemic but lack of compliance have limited their ability to curb the 

epidemic. The risk of sexual transmission of HIV is increased in the presence of other 

sexually transmitted infections (STI) [56]. Genital ulcer disease, for example, 

increases HIV transmission risk fivefold [53]. Thus, STI treatment is an effective 

prevention strategy [56]. Additionally, circumcision reduces the risk of heterosexual 

HIV acquisition in men [26] and voluntary medical male circumcision programmes 

have been initiated in 14 eastern and southern African countries. 

HIV transmission risk is highly dependent on viral load [57]. In turn, viral load is 

dependent on a number of factors, including infection stage (see section 1.2.1) [58]. 

High viral loads during the first few weeks of infection may lead to a large proportion 

of transmissions originating from recently infected patients [26]. ART (see section 

1.2.3) suppresses viral loads and thus decreases HIV transmission [59, 60]. Treatment 

and viral load monitoring are thus key prevention strategies, coining the expression 

“treatment as prevention”. Moreover, clinical trials have demonstrated that HIV 

acquisition can be decreased by the prophylactic use of antiretrovirals [27]. The use of 

pre-exposure prophylaxis (PrEP) is currently supported by guidelines in the USA but 

not in the UK. HIV testing is considered an important component of HIV prevention, 

particularly in the context of such high numbers of undiagnosed cases. It is possible 

that increased transmission from patients with recent infections is in part due to 

transmitters not being aware of their HIV positive status. HIV testing enables patients 

to make informed decisions about safer sex and HIV treatment, thus reducing their 

likelihood of transmitting the virus. 
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1.3.2 Transmission of HIV through needle sharing 

Exchange of blood through sharing needles among PWID is a major route of HIV 

transmission. Globally, 10% of new infections occur through PWID, although if sub-

Saharan Africa is excluded, this surges to 30% [61]. PWID, their partners and children 

account for one third of AIDS cases in the USA [62]. Infectivity per act for needle 

sharing is 0.63% (95% CI 0.41%-0.92%) [51], and with PWID engaging in hundreds 

of injections every year, lifetime risk is very high. The estimate was calculated for 

subtype B among PWID cohort in Thailand and is considered to the most relevant to 

the current US epidemic.  

The transmission of HIV through injection drug use can be completely prevented by 

the provision of clean needles. The size of the HIV epidemic among PWID in different 

countries is a direct consequence of that country’s policy towards harm reduction and 

legislation surrounding drug use. Needle exchange programmes have drastically 

reduced the incidence of HIV in countries where they exist, including the UK.  

1.3.3 Iatrogenic transmission of HIV 

Iatrogenic transmission is the transmission of infectious agents in a medical setting. 

The estimated risk of HIV transmission is highest for blood transfusions; in a 

retrospective analysis, 90% of HIV+ blood recipients became infected [51]. Early in 

the epidemic, 14,000 people became HIV positive through infected blood in Europe 

and the USA [63], primarily haemophiliacs [64]. Testing of donor blood has practically 

eliminated this route of infection in countries where it is implemented. In Africa 6% 

of infections are estimated to be the result of blood transfusions [65]. 

The re-use of injection equipment in hospitals is estimated by the WHO to contribute 

1.6% of new infections in Africa [65] but this number is disputed, with one research 

group claiming that up to half of infections are linked to medical exposure [66]. Risk 

per exposure is estimated at 0.23% (95% CI 0-0.46%) [51]. 



Chapter 1: Transmission and evolution of HIV 

 

Manon Ragonnet-Cronin - October 2015   33 

 

1.3.4 Mother to child transmission (MTCT) of HIV  

MTCT can occur at three stages: during pregnancy, during delivery or through 

breastfeeding. In the absence of treatment, the total risk across these stages ranges from 

15% to 45% and has been estimated at 22.6% in developed country settings [67]. In 

1996, a placebo-controlled trial with AZT reduced MTCT to 7.6 % [67]. Access to 

antenatal combination ART reduced MTCT to 0.46% in the UK in 2010-2011 [68]. 

MTCT approached 0 when the mother’s viral loads were controlled. This year, Cuba 

became to first country to have eliminated MTCT of HIV. Globally, only 57% of 

pregnant women living with HIV received ART in 2011 and MTCT accounts for 10% 

of new infections annually (http://apps.who.int/gho/data/node.main.627). 

1.4 Phylogenetic analysis of HIV 

1.4.1 Rationale 

The accumulation of HIV mutations occurs on a time scale similar to that of the 

ecological processes to which it is subject, for example spatial dynamics, changes in 

virus population size (due to epidemic spread and transmission bottlenecks) and host 

immune pressure. HIV phylogenies reconstructed from viruses sampled over time can 

be used to infer the evolutionary and transmission history of the pathogen [69-71]. 

HIV phylogenetics was initially used to confirm transmission pairs in contact 

investigations, the first of which established the transmission of HIV from a dentist in 

Florida to a number of his patients in 1992 [72]. More recently, viral linkage has been 

used in clinical trials that evaluate whether treating the infected partner decreases their 

risk of transmitting HIV to their HIV-negative partner [73]. In the event of the partner 

of a treated patient becoming infected, phylogenetic analysis is used to test whether 

the infection may have come from outside the partnership. Erroneously attributing the 

transmission to the treated partner would underestimate the efficacy of the 

intervention.  

In addition to phylogenies informing us on the relationships between samples, methods 

have been developed that incorporate sample dates to estimate the timing of events in 

the tree (the molecular clock, see Methods) [74]. The purpose of the molecular clock 
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is to correlate genetic distance with calendar time. Demographic reconstructions can 

also be enhanced by the inclusion of geographic parameters into analyses [75]. 

Therefore sequentially sampled viral isolates can reveal past population dynamics, 

such as dates of introduction of the virus into different populations, population size 

(incidence) through time and space, dispersal and epidemic growth rate and doubling 

time [76]. Together, phylogenetic and phylogeographic analyses have been used to 

elucidate the origin of HIV, reconstruct its spread around the world and to resolve 

ongoing transmission patterns within countries and smaller areas. 

1.4.2 Subtype diversification and global spread 

Subtypes are defined based on the high genetic distances found between them: 25-

35%, as compared to 5-20% found within a subtype [77]. Diversification into subtypes 

is the result of a number of random founder effects of HIV-1 group M outwards from 

Kinshasa [19, 22, 78]. The present HIV subtype distribution is geographically 

heterogeneous. Globally, subtype C is most prevalent and accounts for nearly 50% of 

infections [11]. In Southern Africa and in India, >90% of infections are subtype C [11]. 

Phylogenetic and phylogeographic analyses place the origin of subtype C around 1960 

in the Democratic Republic of Congo [79] and then indicate spread eastwards and 

southwards in Africa. Subtype C was introduced into India around 1971 [80] and, as 

in sub-Saharan Africa, is transmitted mainly heterosexually.  

B is the most dispersed subtype and was the first discovered. B predominates in Europe 

and North America but is responsible for only 12% of infections globally [11]. 

Bayesian phylogenetic analysis testing strongly supports that subtype B was exported 

from Africa to Haiti around 1966 and then to USA around 1969 [81]. Before the end 

of the 1960s, subtype B was also circulating in South America [82], but was not 

introduced into Eastern Europe until the 1980s [83]. Comparative demographic 

analyses of subtypes B and C suggest the B epidemic initially exploded in the West 

among PWID and MSM (growing twice as fast as it had in Africa) but then stabilised 

in the 1990s, whereas the subtype C epidemic in sub-Saharan Africa still appears to be 

growing exponentially [84]. In Eastern Europe, where a high proportion of HIV 
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transmission is through PWID [61], the subtype B epidemic also seems to be growing 

exponentially [83]. 

Subtype A accounts for another 12% of infections [11] and is most common in East 

Africa (where it co-circulates with subtype D) and in Eastern Europe where over 70% 

of infections are subtype A [83]. The subtype A epidemic in Eastern Europe began in 

Ukraine in the mid-1990s among PWID and rapidly spread to other Eastern European 

countries and Russia [85]. The absence of a selection during blood to blood infection 

(due to the absence of a mucosal immune barrier), combined with the rapidity of the 

spread through the region, led to subtype A displaying particularly low genetic 

diversity.  Subtype AE, the first recombinant discovered in Thailand in the 1980s [86], 

dominates the southeast Asian epidemic [11]. 

The dates of viral introductions based on sequence analysis into different parts of the 

worlds are consistent with our overall understanding of HIV spread across the world. 

HIV epidemic growth patterns arise as a consequence of the underlying characteristics 

of the transmission networks. The most notable difference is that in sub-Saharan 

Africa, a large proportion of HIV transmission occurs through heterosexual sex and 

from mother to child, while in the rest of the world MSM and PWID are most affected. 

Within smaller populations and geographical areas other epidemiological factors are 

likely to affect the rate of spread, including times of introduction into different risk 

populations, sexual and drug behaviours, as well as laws, health policies and education 

relating to HIV. Only rarely have subtype-specific patterns that could play a role in the 

dynamics of these distinct epidemics (such as the increased transmissibility [87] and 

disease progression [88] of subtype D) been observed. 

HIV was introduced into the UK MSM population around 1980 [89], probably from 

the USA [90], and separately into UK PWID around 1983 [91, 92] Until the early 

1990s the UK epidemic was dominated by the transmission of subtype B among MSM 

and PWID. In the 1990s, cases among heterosexuals became more common [93] and 

these were often linked to immigration [90]. The prevalence of non-B subtypes has 

increased over time (Figure 1.3). 48% of HIV diagnoses between 2002 and 2010 were 

among heterosexuals [93]. The predominant viral subtype was B (39.9%), followed by 
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C (34.3%), A (5%), recombinants (12%), D (2.4%), G (2.7%) and AE (2%). The 

genetic diversity of the UK epidemic is a reflection of immigration in to the UK: 

subtype C comes from sub-Saharan Africa and India and subtype A comes from East 

Africa and Eastern Europe. However, non-B subtypes are increasingly being acquired 

within the UK [94, 95] (Chapter 5). For some time the UK epidemic was 

compartmentalised by subtype and risk group, with B predominantly circulating 

among MSM and non-B virus among heterosexuals. Yet recently a small but 

significant proportion of non-B infections are being acquired through sex between men 

[93] (Chapter 5). 

1.4.3 Findings from local epidemics 

 

 

Figure 1.3: HIV diagnoses by subtype and by year in the UK HIV Drug 

Resistance Database. Generated from the database.  

Local and national epidemics can be monitored through phylogenetic analysis to help 

guide intervention strategies and make predictions about the future of the epidemic 

[96]. In addition, molecular epidemiology has been applauded for providing an 

alternative source of information on epidemics in parallel to that revealed through 

collected epidemiological data, , and can do so when epidemiological data are lacking. 
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For example, phylogenetic analyses can reveal whether imported strains are spreading 

locally [97] (in which case local and foreign sequences are intermingled in the tree). 

Linkages between national epidemics have been established within Europe [98] and 

globally [99]. Within Switzerland, phylogenetic analysis established that only 25% of 

non-B infections were found to arise within Swiss-specific subtrees, indicating a 

growing role for immigration in the Swiss HIV epidemic [97]. In France, a 

phylogenetic analysis of sequences sampled from recently acquired infections 

concluded that at least 20% of non-B subtype infections had been acquired in France 

[100]. In Chapter 5, I investigate the spread of non-B subtypes within the UK using 

phylogenetic analysis. 

Another question that has been addressed using phylogenetics is the contribution of 

recent infections towards onward transmission. Because recently infected patients 

have high viral loads and often do not know their status, it has been suggested that they 

are responsible for a disproportionate number of onward transmissions. Accordingly, 

their viruses have shown a stronger tendency to cluster in phylogenies than those from 

chronic infections [101, 102], meaning that they are found close together in trees, 

separated by small genetic distances. (Cluster definitions and methods are explained 

in detail in section 3.2.) However, clustering of recent infections does not necessarily 

mean that onward transmission occurred during early infection [103]. In fact a large 

proportion of clustered recent infections will be recipients sampled soon after they 

themselves became infected [104]. Clustering of recent infections will also be more 

likely because sequences will not yet have diverged [104]. 

The extent of overlap between risk groups and the role of bridging populations in 

driving the epidemic remains an open question. In Switzerland, phylogenetic analysis 

has demonstrated a lack of overlap between MSM and heterosexual/PWID HIV 

epidemics. The heterosexual subtype B epidemic appears to have been continually 

reseeded by PWID and not to be self-sustaining [105]. In the UK, between 1 and 11% 

of self-identified heterosexual men appear to have become infected with subtype B 

through sex with men [106], providing a potential bridge between the MSM and 
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heterosexual subtype B epidemics. In Chapter 5, we examine the extent of non-B 

subtype bridging in the other direction, form heterosexuals to MSM.  

The higher the sample fraction, the more detailed analyses can be. In the UK, tens of 

thousands of sequences are available through the UK HIV RDB: sample coverage 

approaches 60%. Phylogenetic analysis has revealed six large transmission chains 

among MSM, reflecting independent introductions into the UK. The epidemic 

displayed exponential growth in the 1980s, then stabilised in the 1990s but continues 

to be highly clustered [107]. Within large MSM clusters, the internal architecture has 

been further resolved indicating that the epidemic has unfolded in bursts with 25% of 

transmissions occurring within 6 months of infection [108]. Heterosexuals in the UK 

displayed far less clustering and much slower epidemic dynamics: only 2% of 

transmissions occurred within 6 months of infection [109].  

The Swiss HIV Cohort Study similarly contains HIV sequences from >60% of the 

HIV-infected population. The UK and Switzerland have led the way in the field of 

molecular epidemiology and phylodynamics. The two countries’ epidemics are 

compared in Chapter 4. 

1.4.4 From phylogeny to transmission network 

Recently, there has been huge interest in using HIV phylogenies to gain information 

about the HIV transmission network and sexual contact network. Networks have been 

developed extensively in mathematical models to study the spread of infectious 

diseases and benefit from a rigorous statistical framework (see section 1.5). 

Meanwhile, sequences provide what mathematical models are often lacking: data. 

1.5 Network modeling of epidemics 

1.5.1 Classical modeling approaches 

Mathematical models can be used to understand and predict the spread of diseases 

using sets of equations relating the variables in the system. Models are intended to be 

a simplification of the real world, but capture the essential features of the system, for 

example the number of infected individuals over time. Additionally, models offer a 
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setting in which to test the effect of interventions, for example they can be used to 

estimate the reduction in the total number of infected individuals expected by using a 

vaccine with a particular efficacy. 

Classical epidemiological models divide the population into classes (or 

compartments), such as “susceptible” and “infected” and represent the flow of 

individuals between compartments using equations. One of the simplest models, the 

SIR (susceptible/ infected/ recovered) model, can be represented as: 

 

 

 

 

Where S represents the proportion of susceptible individuals at time t, I the proportion 

of infected individuals and R the proportion of recovered (or removed) individuals. 

Individuals move from compartment S to compartment I according to the transmission 

rate of the disease and the contact rate between infecteds and susceptibles 

(amalgamated into β) and the relative numbers of susceptibles and infecteds. 

Individuals then recover at a rate γ. Thus:  

 𝑑𝑆

𝑑𝑡 
=  − 𝛽𝑆𝐼  

(1) 

 𝑑𝐼

𝑑𝑡 
=  𝛽𝑆𝐼 − 𝛾𝐼 

(2) 

 𝑑𝑅

𝑑𝑡 
=  𝛾𝐼  

(3) 

An example of the movement of a population through the compartments for set rates 

of β and γ is shown in Figure 1.4.  

From looking at equation (2), it is clear that if people are infected slowly and recover 

rapidly (𝛽𝑆𝐼 < 𝛾𝐼), there will not be anyone in the infected compartment and the 

disease will never take off. The relative rate of exit from the infected compartment as 

S I R

γ β 
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compared to that of entry into the compartment (the relative recovery rate or γ/β) must 

be small enough for the disease to spread. The inverse of the relative recovery rate is 

the reproductive ratio R0.  

 
𝑹𝟎 =

𝜷

𝜸
 

(4) 

R0 is defined as the number of secondary cases arising from an infection in a 

completely susceptible population. An infection will only take off in a population if 

R0>1. 

 

 

Figure 1.4: Infection dynamics of an SIR model. This figure was plotted assuming 

β=1 and γ=0.25 for a population of 100 with a single individual initially infected.  

Compartmental models often assume random mixing, which means that all susceptible 

individuals are equally likely to come in contact with infected individuals. As random 

mixing is a poor assumption in the case of sexually transmitted infections such as HIV 

[110], some models incorporate high and low risk groups which interact more or less. 

Compartmental models in fact be extended to include numerous compartments, for 



Chapter 1: Transmission and evolution of HIV 

 

Manon Ragonnet-Cronin - October 2015   41 

 

example disease stages (acute, chromic, AIDS) or age group, so this allows for some 

differences in transmissibility and behaviour between groups. However, the higher the 

number of compartments the more parameters are required. The error in each 

introduces uncertainty into the model. 

The first mathematical models of HIV were used to predict the number of future HIV 

and AIDS cases. Blower et al. conducted an analysis of the HIV epidemic in New 

York City [111]. In order to make their model realistic, they included three risk groups 

(MSM, PWID and heterosexuals) and two sexes, with interaction terms within and 

between each risk group. However, the model contained over 30 parameters, and due 

to the uncertainty in the parameters the predicted number of infections over time had 

very wide confidence intervals. Williams and Anderson also tried to predict HIV cases 

for England and Wales [112]. As well as risk group, they included categories for levels 

of sexual and drug-related activity. Again, so many parameter combinations fit past 

trends that they could not make reliable predictions, although they emphasised the 

importance of bridging populations to future trends.  

Compartmental models are used extensively, and usefully, to test and predict the 

impact of different intervention strategies. However, they suffer from three major 

limitations. Firstly, as mentioned above, they assume random mixing despite the pool 

of partners realistically being much smaller than the population as a whole. Secondly, 

compartmental models cannot take into account differences at the individual level, 

despite heterogeneity in number of partners being central to the spread of STIs such as 

HIV (see section 1.5.5). While additional compartments can be added, the large 

number of parameters required introduce uncertainty. Thirdly, the simplest 

compartmental models are deterministic so that the output of the model is fully 

determined based on the initial conditions and the parameter values. A deterministic 

model does not take into account randomness and will produce the same output if it is 

run with the same starting parameters.  

These limitations can be addressed by models which make explicit the contact 

structure in a population by using a network and model the spread of disease on that 

network. 
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1.5.2 Contact network models 

Contact network models capture the diversity in host behaviours and interactions by 

modeling each individual in the population as a discrete object with its own 

parameters. As well as variation in the number of partners, other features of the 

network, for example assortativity (the tendency of individuals sharing characteristics 

to partner) or heterogeneity in transmission rates can easily be incorporated. Network 

models usually still have an underlying SIR model, but progress through disease stages 

for each individual can be determined by that individual’s characteristics. Whilst 

transmission and contact rates in compartmental models were amalgamated into one 

parameter β, they can now be decoupled. In some networks (heterosexual networks 

where partnerships are assumed to form randomly given the heterogeneity in contact 

number), it remains possible to directly calculate R0 [113]: 

 
R0 =

τ̅

τc
 

(5) 

Where 𝜏̅ is the average likelihood of transmission and 𝜏𝑐 is the inverse of the contact 

rate or level of connectivity of the network. The higher the contact rate, the lower the 

transmission probability required in order for an infection to take off. Hence we refer 

to 𝜏𝑐 as the epidemic threshold (see section 1.5.5). 

Incorporating stochasticity is more straightforward in network models as these contain 

inherent randomness. As such, models with the same starting parameters can have 

different outcomes. Finally, network models do not require large population sizes. 

Recently developed dynamic network models even allow for the structure of the 

contact network to change over time. 

One remaining problem however, is how to specify the underlying contact network of 

a population.  

1.5.3 Network theory 

In a network, each individual is represented by a node, and if they are linked, they 

share an “edge” that connects them. For some diseases, the definition of a contact is 

ambiguous; however for STIs, an edge indicates partnership, with sexual contacts 
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occurring as events along that edge. Edges can be directed (for example, showing the 

transmission of an infection from one individual to the next) or undirected (showing 

that the two individuals interact with each other). In a directed network, edges might 

be represented by arrows while, in an undirected network, nodes would be linked by a 

symmetrical line. Importantly, in the context of epidemiology, an infection can only 

be transmitted between an infected and a susceptible node that are linked on the 

network. 

Network theory has been developed independently in two fields: social sciences and 

physics, yielding a wealth of metrics which can be used to describe network structure 

and be useful for modeling disease transmission. Some metrics are measured at the 

network level. The number of edges connected to each node is referred to as its degree. 

If the degree of every node in a network is estimated, the degree distribution of the 

network as a whole can be plotted, showing the frequency of nodes with each number 

of connections. For example in Figure 1.5, node 2 has degree 3 and all other nodes 

have degree 1. The degree distribution is an important characteristic of a network 

because it provides information of the process that has led to the formation of the 

network. The distance between nodes is the number of edges between them on the 

shortest path, and the diameter of the network is the longest of all its pairwise distances. 

The diameter of the network in Figure 1.5 is 3. The clustering coefficient measures the 

tendency of nodes in a graph to cluster together, and can be estimated for a single node 

(local clustering) or for the network as a whole (global clustering). 

On one hand, data has been collected to construct real networks. However, determining 

the mixing behaviours between every individual in a population is time consuming and 

expensive and impossible for large populations. In the case of an STI like HIV, 

information on sexual contacts may not be readily volunteered (particularly in view of 

the criminalisation of HIV transmission), and there may be issues of recall. In parallel, 

algorithms have been developed to simulate networks. The simplest network that can 

be generated is random. In a random network such as those generated by the Erdõs-

Rényi model (Figure 1.6A), the probability of any node being connected to another is 

constant and independent [114]. In a network of n nodes, with a probability p for each 
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edge, the expected degree of each node will be (𝑛 − 1)𝑝 and the degree distribution 

of the network will be binomial. The diameter in a random network is proportional to 

the number of nodes, and clustering is low. 

 

 

1.5.4 Small world networks 

Empirical observations suggested early on that many real networks, such as social 

networks, were not random. In a random network your friends would be no more likely 

to know each other than two individuals taken from the population at random. The 

small-world phenomenon was first illustrated by Stanley Milgram’s experiment, in 

which he gave people packages which had to end up with a target final recipient [115]. 

The average number of steps between the initial recipient and the final recipient was 

much smaller than expected: around 6, hence the phrase “six degrees of separation”. 

In social networks, the distance between two nodes is shorter than expected in a 

random network, degree is highly variable and clustering is high [116]. Watts and 

Strogatz developed the first small world network model by rewiring a lattice at random 

[116]. Networks generated through the Watts-Strogatz model have shorter path lengths 

and exhibit higher clustering than random networks (Figure 1.6B.). They demonstrated 

that their model was a good fit to the neural network of C.elegans, the power grid of 

the western USA, and collaborations between film actors, the latter being a proxy for 

social networks. Similar patterns have been observed in many other types of self-

organising systems such as protein interaction networks and the World Wide Web.  

1 2 5 

3 

4 

Figure 1.5: Example of an undirected 

sexual contact network. 
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In small world networks, instead of the distance between nodes growing proportionally 

to the number of nodes in the network, it grows proportionally to the logarithm of the 

number of nodes. Empirical analyses have demonstrated that the nodes in real 

networks frequently follow a power law distribution [117]. The probability 𝑃(𝑘) of a 

node having k connections can be expressed as: 

 𝑷(𝑘) ~ 𝑘−𝛼 (6) 

The scaling exponent α is a measure of the variance of the network and is the slope of 

the line when the distribution is plotted on a log log scale. If the degree distribution of 

a network follows a power law, the network is called scale-free.  

1.5.5 Network Modeling of Epidemics 

Disease spreads more easily on small world networks than on random networks. The 

behavioural heterogeneity underlying the power law distribution in sexual contact 

networks is thought to be central to the spread of STIs and may indeed be the reason 

STIs persist. In parallel, however, heterogeneity in sexual activity decreases the 

magnitude of the HIV epidemic so that some people are very unlikely to ever become 

infected [118]. 

Small-world networks offer obvious possibilities in terms of interventions. They are 

resilient to random failure but vulnerable if hubs are destroyed [119, 120]. Random 

interventions may have no impact as they are more likely to hit nodes that are not 

highly connected. In contrast, removal of hubs will disconnect parts of network and 

disassemble its structure. The power law exponent indicates to what extent targeted 

interventions are necessary.  

As the variance of the degree distribution increases, the inverse of the contact rate from 

𝜏𝑐 from Equation (5) decreases [121] and 𝑅0 increases. If the exponent of the power 

law distribution lies in the range 2 < α < 3, the variance of the network degree 

distribution is theoretically infinite [113]. The level of connectivity τc from equation 

(5) tends towards 0 and there is theoretically no epidemic threshold [110, 122]. Even 

a pathogen with very low transmissibility will persist. In this case, only if highly 

connected nodes are targeted will it be possible to halt the epidemic [120]. 
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Figure 1.6: Networks generated under Erdõs-Rényi (A) and Watts-Strogatz (B) 

models (downloaded from Wikipedia under the creative commons licence).  

While all studies of sexual contact networks agree that networks are highly 

heterogeneous in terms of number of contacts [118, 123-129], it is disputed whether 

variance is infinite. Liljeros et al. searched for the best fit distribution to sexual 

partnerships based on a Swedish survey of sexual behaviour [128]. They fitted a linear 

curve to the tail of the double-logged plot of the distribution. The exponent of the 

power law can be extracted from the slope of the line, and they found it to be between 

2 and 3 for men and women. They concluded that the observed pattern is symptomatic 

of a preferential attachment scenario in which the most highly connected nodes tend 

to accumulate contacts over time (“the rich get richer”). Schneeberger et al. fitted 

power laws using maximum likelihood to the tail of the cumulative degree plots of 

British, USA and Zimbabwean sexual surveys [129]. In all cases they found the power 

law to be a good fit and the exponents to be between 2 and 3 in most cases. They note 

the particularly wide variance in the degree distribution of British MSM. 

However, these papers have been criticised for their statistical methods [123, 124, 

126]. The methods focus on the tail of the distribution to produce an estimate, but there 

is little information in the tail (because there are few data points) so fitting can be 

unreliable. In addition, uncertainty increases with increasing degree (18 is more likely 

to be rounded than a smaller number) which biases estimates of the exponent. Both 

A B 
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Handcock and Jones [124, 126] and Hamilton et al. [123] insist that fitting degree 

distributions without an underlying model for the formation of partnerships is 

insufficient.  

For example, if all individuals in a population acquire partners at a fixed, homogeneous 

rate, the degree distribution is expected to follow a Poisson distribution. If the 

homogeneity assumption is relaxed, but people still acquire partners at a constant rate, 

this will overdisperse the data and the degree distribution will follow a Poisson 

lognormal or a Negative Binomial distribution. Importantly, both these distributions 

always have finite variance, although they do allow for long tails. The Yule [130] and 

Waring [131] distributions both result from preferential attachment models. They 

incorporate a probability proportional to k that a new link is made to a person of degree 

k, as well as a constant probability that a new link is made to a person of degree 0 

(previously sexually inactive). In addition, the Waring incorporates a rate for non-

preferential attachments, so that a partnership may form at random between two 

people, regardless of degree [124, 131]. The Yule and the Waring are power-laws that 

have infinite variance for 2 < α < 3. 

Handcock and Jones fitted the Swedish data and sexual networks from Uganda and the 

USA to the distributions listed above through maximum likelihood [124-126]. They 

found that the Negative Binomial offered the best fit to most networks [124]. When 

they fitted a Yule distribution to the data (which still provides a better fit than the 

power law fitted by Liljeros et al.) the exponents were always >3, indicating the 

existence of an epidemic threshold.  

Beyond fitting models, Hamilton et al. note that the degree distribution exponents of 

five USA sexual contact networks do not predict the epidemic behaviour that is 

observed [123]. They found only very small differences in fits between the models 

tests, underlining our inability to differentiate between them. They suggest that a single 

stochastic process is insufficient to explain the degree distributions or that the degree 

distribution is inadequate in representing the behaviour of the network.  
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1.5.6 Calibrating models 

These studies underline the need for a better understanding of both the contact network 

and the disease transmission network. Creating a network representing a population 

requires knowledge of all the individuals in the population and their interactions. This 

is time-consuming and expensive, if not impossible, for anything but a small 

population [132]. At least, in the case of sexual networks, defining what constitutes a 

contact is straightforward, whereas this is much more difficult in the case of networks 

for modelling the transmission of airborne diseases [133].  

Numbers of sexual partnerships are collected through surveys, for example the 

National Survey of Sexual Attitudes and Lifestyles in the UK (NATSAL) [134], and 

these can be used to estimate degree distributions (see section 1.5.5). One limitation 

of studies of sexual behaviours is that participants may be unwilling to share 

information. Collecting social network information rather than sexual contact network 

may yield better responses, for example through rapid questionnaires [135], or venue-

based data collection [136]. Although ego-centrically collected, these data can be used 

to inform network models [137]. 

Any kind of random data collection, however, risks missing high degree nodes which 

are so central to capturing the variation in sexual contacts across the population. One 

solution to increase their likelihood of being sampled is to sample people with STIs 

[129]. Contact tracing, the act of obtaining a list of sexual contacts from patients 

diagnosed with an STI, has long been carried out both for testing and treatment. If any 

of those traced are infected, their contacts can also be identified. Contact tracing yields 

data on infected and uninfected partners which can be used to create contact 

transmission networks embedded within contact networks [138]. However, in the case 

of HIV, because of the delay between infection and diagnosis, people frequently 

incorrectly identify who infected them [139]. Instead, sequence data collected may 

provide additional insights into transmission network structure [140] and contact 

network structure [141] (Chapter 1). 
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2 MATERIALS AND METHODS 

2.1 Data 

2.1.1 Availability of HIV sequences 

ART targets the protease and reverse transcriptase of HIV, selecting for drug resistant 

mutations (DRM) within the pol region that encodes them. HIV treatment is 

compromised by the presence of DRM (see section 1.2.4).  

This has led to the accumulation of HIV pol sequences in databases. Early 

phylogenetic studies used gag and env sequences [72, 142, 143] while HIV pol was 

criticised for being too genetically conserved to accurately reconstruct HIV 

transmission. Hue et al. confirmed in 2004 that pol contains sufficient genetic diversity 

for the phylogenetic reconstruction of transmission events [144]. This region of the 

HIV genome is now extensively used in phylogenetic studies to address questions 

regarding HIV transmission dynamics. The pol region can also be used to classify the 

subtype of the infection. 
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2.1.2 The UK HIV Drug Resistance Database (UK HIV RDB) 

Following recommendations from the British HIV Association [49], clinics sequence 

the HIV pol region of patients before they begin therapy and in the event of virologic 

failure (viral loads >1000 copies/ml). Since 2001, pol sequences generated for clinical 

purposes in the UK have been deposited in a centralised database: the UK HIV Drug 

Resistance Database (http://www.hivrdb.org). The purpose of the UK HIV RDB is to 

monitor the spread of drug resistance and serve as a research resource.  

The UK epidemic is one of the most densely sampled HIV epidemics and the UK HIV 

RDB is the largest such database in the world. In 2011, the UK HIV DRB was 

estimated to contain sequences for approximately two-thirds of the subtype B MSM 

patients who were treated for HIV in the UK [140], and this proportion has increased 

since then. Sequences are available for around 50% of the infected population and 

>80% of patients diagnosed since 2005 (David Dunn, personal communication). 

Data are provided by clinics to the UK HIV RDB in a pseudo-anonymised form with 

a phonetic version of the patient’s name (soundex code), date of birth, date of 

diagnosis, sex and genetic sequence. Epidemiological data contributed by Public 

Health England included year of birth, age, gender, self-identified ethnicity (White, 

Black-African, Black-Caribbean, Black-other, Indian/ Pakistani/ Bangladeshi, other 

Asian/ Oriental, other-mixed, unknown), country of birth and self-reported most likely 

route of infection (PWID, heterosexual sex (HET), MSM, mother to child, blood 

product, or unknown). The epidemiological and subtype breakdown of the latest 

release is shown in Table 2.1. 

Although the collection and management of data by the UK HIV RDB are rigorous, 

there is always a risk that data collected are incorrect. Epidemiological data collected 

are self-reported. It is also possible that a single patient moving between clinics could 

be recorded as two separate patients. In order to avoid duplication of records, if the 

soundex code and date of birth of multiple patients match, genetic distances between 

sequences are calculated. Where the distance falls below 3.5%, database entries are 

examined further. If soundex codes and dates of birth match, dates of diagnosis are 

within a month of each other and genetic distance is <3.5%, the sequences are assumed 

http://www.hivrdb.org/
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to be from the same patient and are linked with the same patient identifier in the 

database. 

Table 2.1 Epidemiological characteristics of 63163 unique patients in 2014 the 

UK HIV RDB.  

   A1 B C Other Total 

 MSM 170 22296 662 2364 25492 

Risk group HET 1721 3421 11930 7912 24984 

 IDU 92 879 128 303 1402 

 Other/unknown 529 5053 3144 2559 11285 

 Male 883 25842 4995 5832 37192 

Sex Female 1195 2051 8215 5183 16644 

 NA 434 4115 2654 2123 9327 

 White 495 22868 1729 3539 28631 

 Black-African 1354 561 10221 5831 17967 

Ethnicity Black-Caribbean 49 1222 273 282 1826 

 Indian/Pakistani/ 

Bangladeshi 

44 350 235 130 759 

 Other/unknown 570 6648 3406 3356 13980 

Total  2512 31649 15864 13138 63163 

Notes: The three major subtypes in the UK, and those that will be analysed in this 

thesis, are A1, B and C. Risk groups are men who have sex with men (MSM), 

heterosexuals (HET) and people who inject drugs (PWID). 

Data are then fully anonymised and delinked so that results from analysing the 

database cannot be used to identify source partners, mainly because of the 

criminalisation of HIV transmission [145]. In order to further decrease the possibility 

of including multiple sequences from a single patient, identical sequences are 

discarded prior to analysis.  

Deductive disclosure is the inference of an individual’s identity based on a set of 

anonymised characteristics that together make that individual the only one to fit the 

description. For example there may only be one female of black Caribbean ethnicity 

in Dunfermline, born in May 1972, diagnosed with HIV in 2010. Data in the UK HIV 
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RDB are amalgamated to prevent deductive disclosure. The UK is divided into only 

14 identified regions and data are aggregated from all centres within each region.  

Originally, sequencing was performed before the initiation of ART, and many 

sequences in the database originated from patients in chronic infection who had been 

infected for a long time. Sequencing is increasingly performed at diagnosis for better 

estimation of TDR rates. As we will see in Chapter 1, the timing of sampling and 

sequencing will influence the likelihood of a sequence clustering (see section 3.2). 

Samples sequenced closer in time to each other are more likely to cluster, as are and 

samples sequenced closer to infection. 

Three different versions of the UK HIV RDB were used in this thesis, as described in 

Table 2.2. For patients with more than one sequence in the database the earliest 

sequence was used, usually obtained before the initiation of ART. 

Table 2.2: Versions of the UK HIV RDB used in this thesis 

Year of 
release 

Sequences 
up to 

Number of 
unique patients 

Number of 
sequences 

Used in 
chapters 

2009 2007 34469 26356 3 

2012 2010 43002 55556 5 

2014 2012 63163 106402 4, 6 

2.1.3 The LANL database 

HIV is the most widely sequenced organism. In addition to Genbank, HIV sequences 

made publicly available are curated by the Los Alamos National Laboratory in the 

LANL database. The LANL database (accessed 02/06/2015) contains 198428 pol 

sequences (minimum length 500bp) from 154 countries. The use of background 

sequences improves the reliability of inferences made through phylogenetic analysis. 

Because of the huge number of sequences in the UK HIV RDB and in LANL, we did 

not use all LANL sequences available. Instead, we downloaded all pol sequences 

(HXB2 nucleotide positions 2253-3459) available for subtypes A1, B, C, D and G 

(analysed in this thesis), of minimum length 500 bp. and excluding UK sequences, to 

create custom background sequence libraries. We then use the blast algorithm (Basic 
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Local Alignment Search Tool), as implemented in Viroblast [146] and Geneious [147], 

to return the ten closest LANL matches to each UK HIV RDB sequence. In many 

cases, the ten sequences returned for multiple UK sequences will be identical, thus the 

overall number of LANL matches included in the trees is far smaller than the overall 

number of LANL sequences available. While it would be possible to select the ten next 

sequences in cases where the first ten matches have already been included, this is not 

done because sequences more distantly related are unlikely to fall within clusters, and 

it is preferable not to increase the size of datasets for tree reconstruction any further.  

2.1.4 The Swiss HIV Cohort Study (SHCS) 

Switzerland is the only other country with an equivalent database and such high 

coverage of their epidemic (http://www.shcs.ch/). The SHCS was established in 1988 

as a prospective observational study. Socio-demographic and behavioural data (year 

of birth, sex, last negative HIV test, most likely transmission route, confections) of 

new patients are collected. Patient data are updated with CD4+ counts, treatment and 

viral failure events. Since 2002, genotypic drug resistance test have been linked to the 

database, with many stored samples sequences retrospectively. Currently the database 

contains over >12000 sequences [148]. 

In Chapter 4, I performed a comparison of the Swiss and UK epidemics. I did not 

directly access the Swiss data, but rather developed a pipeline which we both submitted 

our data to. 

2.2 Methods 

2.2.1 Sequence manipulations 

2.2.1.1 Sequencing and alignment 

Sequencing for the UK HIV RDB is performed by 19 laboratories across the UK (see 

Appendix 1) using different sequencing algorithms. The majority of sequences (>90%) 

cover the entire protease gene and up to 900 bases of reverse transcriptase. Sequences 

generated using the Trugene assay [149] are missing the first 9 bases of PR, the last 

3 bases of PR and the first 120 bases of RT. 

http://www.shcs.ch/
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Sequences submitted to the UK HIV RDB are aligned using the Stanford HIVdb 

program [150], with manual checks for poor quality, and are released as alignments.  

2.2.1.2 Subtype assignment 

Aligned sequences were submitted to Subtype Classification Using Evolutionary 

Algorithms (SCUEAL) locally for subtyping [151]. SCUEAL uses a model-based 

phylogenetic method to assign viral subtype and leaves smaller numbers of sequences 

unclassified than other subtyping programs [151]. The UK HIV RDB subtypes 

sequences in parallel using REGA [152]. For pure subtypes (including all those 

analysed in the present thesis), subtype assignments across methods vary very little. 

SCUEAL-assigned subtypes were used in this thesis.   

2.2.1.3 Sequence formats and editing 

For each UK HIV RDB release analysed, a fasta file of aligned sequences and a csv 

file (containing epidemiological data) were provided to me by the UK HIV RDB. 

Alignments were checked manually in BioEdit [153] and Geneious. The fasta file and 

csv were processed in R [154], for example to edit sequence names, or select sets of 

sequences based on subtype or date of diagnosis. R was used to discard sequences 

which were missing either the entire PR or the entire RT. 

Because drug selective pressure can cause convergent evolution in unrelated viruses, 

drug resistant sites are removed before phylogenetic analysis. The list of DRM has 

been standardised by the WHO [155] to facilitate comparisons between regional, 

national and international statistics and adjust for non-drug related polymorphic DRM 

[156, 157]. The 2011 updated drug resistance list [158] was used throughout this thesis, 

and sites were removed in R (Appendix 3). 

2.2.2 Phylogenetic analysis 

Phylogenetic trees are reconstructed based on the differences found between 

sequences. However, the number of possible trees increases super-exponentially with 

the number of sequences, rendering an exhaustive search impossible for large number 

of sequences. The most statistically robust methods, and those employed in this thesis, 

are maximum likelihood (ML) and Bayesian inference. 
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2.2.2.1 Maximum likelihood 

The ML method is based on a model of evolution. The ML method is character-based, 

using all the information contained in the sequences, and is statistically robust and 

well-founded [159]. The approach calculates the probability of the observed data (the 

sequence alignment), given the proposed model (tree topology, branch lengths and the 

parameters of the evolutionary model). For each site in the alignment, the probability 

of the observed nucleotides is calculated as the sum of probabilities of every possible 

reconstruction of ancestral states, given the substitution model. As sites in the sequence 

alignment are considered to evolve independently, the probability of the observed 

sequences is the product of the probabilities for each site. Under ML, the best tree is 

the one with maximizes the likelihood, or the probability of observing the data. 

Overall, this method produces accurate results [160] but can be computationally 

intensive. Uncertainty is not incorporated into the final tree, but support values can be 

assigned to nodes in ML trees through bootstrapping (see section 2.2.5.1) and the fit 

of alternative trees can be compared based on their likelihoods [161]. 

Two phylogenetic tree reconstruction programs are used in this thesis: RaxML [162] 

and FastTree [163]. RaxML conducts a more thorough heuristic search for the best 

tree, but FastTree is faster. FastTree is used in Chapter 3 as part of the pipeline that 

was applied to the UK and Swiss datasets. They perform similarly in terms of HIV 

cluster reconstruction (see Appendix 2). 

Both programs produce phylogenetic trees in Newick format. Newick tree format is a 

way of representing phylogenetic structure, branch lengths and bootstrap support 

values using parentheses and commas. Newick format is the minimal definition for a 

tree and branch lengths and bootstrap support values are optional. Other formats, 

Nexus being the most common, can store blocks of additional information associated 

with branches, nodes and tips, for example clock rates (see below) or colours for 

visualisation.  
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2.2.2.2 The molecular clock 

2.2.2.2.1 The strict molecular clock 

The molecular clock is a technique used in molecular evolution to date events on 

phylogenetic trees. Emil Zuckerkandl observed in 1962 that the number of differences 

in haemoglobin amino acid sequences sampled across species was proportional to the 

duration of time since the species diverged [164]. The suggestion that mutations 

accumulate in sequences linearly with time constitutes the molecular clock hypothesis: 

 
𝒓𝑎𝑡𝑒 =

𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

2 × 𝑡𝑖𝑚𝑒
 

(2) 

In the case of species divergence, the clock is calibrated using fossil records to infer 

rate of evolution. In the case of viruses, which evolve much faster, sequentially 

sampled isolates have been used to calculate evolutionary rate [74]. Application of the 

molecular clock uses time-stamped sequences to date events in the evolutionary 

history of the virus which can be very useful to test different hypotheses, for example 

those concerning the origin of HIV [21]. While the strict molecular clock is 

consistently rejected for HIV sequences [83, 84, 165-169], dating is possible 

nonetheless using relaxed clock models [170]. 

2.2.2.2.2 The relaxed molecular clock 

According to the strict molecular clock, the rate of molecular evolution is constant and 

branch lengths are directly proportional to time. The relaxed clock models rates of 

evolution on one hand and the speciation process on the other so that the molecular 

clock can vary across the phylogenetic tree [171]. Earlier relaxed clock models were 

based on autocorrelated models of rate change, so that the rate of evolution of each 

branch was assumed to be inherited from the rate of the parental branch. Uncorrelated 

clocks depend only upon the mean clock rate associated with the whole tree and vary 

according to an underlying distribution, for example lognormal or exponential [172]. 

2.2.2.2.3 Least squares dating 

Large phylogenetic trees (containing thousands of sequences) can be time-resolved 

using least-squares dating (LSD). LSD simultaneously estimates the substitution rate 
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and dates of ancestral nodes in phylogenies with dated tips using least squares data 

fitting approaches [173]. LSD is significantly faster than BEAST (see below), running 

in linear time for rooted trees, and (nearly) quadratic time when the root must be 

estimated. LSD requires a topology and dates of tips as input. The topology of the tree 

is not changed (other than re-rooting if requested by the user). 

2.2.2.3 Bayesian evolutionary analysis by sampling trees (BEAST) 

The Bayesian approach searches for the distribution of trees that is most probable 

given the sequence alignment under a particular model of evolution. The Bayesian 

approach makes use of likelihood and incorporates prior knowledge which enables the 

user to convey any expectations or uncertainty about some of the model parameters 

before looking at the data. Most importantly, Bayesian analysis generates multiple 

trees, consistent with our uncertainty about the final tree topology. The most popular 

program for Bayesian phylodynamic analysis is BEAST [76]. 

BEAST incorporates relaxed molecular clock models which model rates of evolution 

and time in parallel based on prior distributions [171]. Use of a clock allows for events 

on the phylogenetic tree to be dated. The posterior distribution of parameters is 

sampled through Bayesian Markov chain Monte Carlo (MCMC) chains. 

2.2.2.4 Cluster identification 

The rationale behind different cluster identification methods is explained in section 

3.2. In Chapter 3, I discuss the Cluster Picker, developed by Samantha Lycett, which 

takes as input a phylogeny and a set of sequences and picks clusters based on user-

selected genetic distance and bootstrap cut-offs. We compare the Cluster Picker to 

PhyloPart, which identifies clusters in large trees if the median of their genetic 

distances is below a user-input t-percentile threshold of the whole-tree distance 

distribution [174]. 

The Cluster Picker is used throughout the thesis using genetic distance cut-offs of 1.5% 

and 4.5% an bootstrap cut-offs from 70% to 99%. The Cluster Picker code was 

modified for Chapter 4 to recognise ambiguous nucleotide bases as matches as 
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determined by the International Union of Pure and Applied Chemistry (IUPAC) 

notation. 

2.2.3 Epidemic simulation 

2.2.3.1 The Discrete Spatial PhyloSimulator (DSPS) 

The DSPS is a JAVA-encoded individual based model that runs in continuous time 

developed by Samantha Lycett [175]. The purpose of the DSPS is to simulate realistic 

epidemics along complex and variable contact networks. The program takes as input 

the parameters of the model (including network structure) and outputs a list of timed 

transmission events (transmitter/ recipient). 

Within the DSPS, separate demes contain hosts that share the same parameters. Demes 

are connected to each other to form contact networks. The DSPS allows three different 

disease progression models: SI, SIR and SEIR (where are exposed but not infectious 

for a duration of time).  

Throughout the simulation, a series of events (infection, recovery, migration) is created 

by assessing the current state of the population (for example the number of susceptible 

and infected individuals) and generating a weighted distribution of the likelihood of 

each type of event within each deme. The next event is chosen based on its probability 

and a random number to introduce stochasticity into the simulation.  

The DSPS outputs a population log containing the state (S, E, I or R) of each individual 

in the population at each time point, an event log showing infections and death events, 

a transmission tree and a pruned transmission tree containing only sampled 

individuals. 

2.2.3.2 HIV-specific DSPS (DSPS-HIV) 

To make the DSPS appropriate for the simulation of HIV epidemics, a number of 

modifications have been made to the base code by Emma Hodcroft [176]. 

Because of the long term duration of HIV epidemics, demographic parameters (birth 

and death) have been added. Options exist for the population size to increase through 

time (growth) or to stay stable. The network structure of the full network (including 
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all nodes that will die and be born) is set out before the start of the simulation in this 

case, rather than the network structure being updated, but links are inactivated unless 

hosts are alive. In the simulations used in this thesis, demes were set to represent 

households, each containing one male and one female.  

The DSPS-HIV has been developed to attach gender and orientation to each individual 

which determine the possible connections within the network. In this thesis, the 

networks were fully heterosexual with heterosexual couples existing together within 

households and a single deme containing female sex workers. 

Transmission probability is high during acute stage and drops thereafter. 

2.2.3.3 Sampling and sequence simulation 

Realistic sampling schemes were executed in R by Emma Hodcroft. For any specified 

time period, hosts that are both alive and infected were sampled randomly with the 

desired sample proportion. 

Matthew Hall’s “Virus Tree Simulator” was then used by Emma Hodcroft to simulate 

viral phylogenies based on the infection and sample times of individuals, taking into 

account within host viral evolution. Sequences were simulated along the resulting 

phylogenies using piBUSS [177] according to an HKY substitution model with 

different parameters allowed for the 1st/2nd and 3rd codon positions. Ancestral 

sequences for use in piBUSS were generated in BEAST from a collection of full-length 

subtype C samples by Gonzalo Yebra from southern Africa (South Africa, Botswana, 

Malawi and Zambia) obtained from LANL. 

2.2.4 Network analysis 

2.2.4.1 Network formats 

All analysis of networks was done in R using two packages: network [178] and igraph 

[179]. The two packages contain many of the same and some different functions. Both 

accept as input networks in edge list format, whereby each line in the file represents 

an edge and displays the name of the nodes linked by that edge. Each line can in 

addition contain a numerical variable describing that edge (edge weight) which can be 
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used to represent the strength of the tie for example. Alongside this, the user can input 

a data frame containing information on each of the nodes (for example age, sex and 

risk group). 

2.2.4.2 Network reconstruction 

2.2.4.2.1 Clusters as networks 

Networks in Chapter 4 were reconstructed from phylogenetically identified clusters in 

order to generate degree distributions instead of cluster size distributions. In this case, 

all individuals linked in a cluster would be linked to all other individuals in that cluster 

in the final network. An R script was written to convert each list of clustered sequences 

(output from the Cluster Picker) into an edge list (Appendix 3). 

2.2.4.2.2 Time-based reconstruction  

The method developed by the Leigh Brown group to convert phylogenies into 

networks does so based on the time to most recent common ancestor (tMRCA) for 

each pair of sequences [140]. Nodes are linked together in the network if their tMRCA 

is smaller than or equal to a user-selected cut-off. The networks returned from this 

method can be considered multifurcating trees with no time in which nodes are labelled 

by host (as well as epidemiological information and date of diagnosis). The eventual 

aim of the method is to produce transmission networks that resemble transmission 

chains, in which nodes represent hosts and links represent timed transmission events. 

The advantages of this method are discussed in section 3.2. R code was obtained from 

Samantha Lycett in order to perform this task, and was modified to return the tMRCA 

and pairwise genetic distance for each pair of nodes in addition to whether they were 

linked or not. This information was used to inform thinning algorithms implemented 

in Chapter 6 to eliminate unlikely links within reconstructed networks. 

2.2.5 Statistical analyses 

2.2.5.1 Bootstrapping 

Bootstrapping is a statistical resampling technique used to generate a distribution from 

a single sample of data (because no additional data is available) [180]. The original 
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data are resampled with replacement, each time re-estimating the variable of interest 

to test its accuracy. 

Within a sample (for example the sample of diagnosed HIV patients) it is impossible 

to know the sample statistics for the full population. By resampling sampled data, it is 

possible to make inferences about the true population statistics. This technique is used 

throughout the thesis. Bootstrapping allows us to determine whether our observed data 

diverges significantly from an effect that could be observed by chance. 

In the case of phylogenetic analysis, bootstrapping is commonly used to assess the 

support of bifurcations within phylogenetic tree [181]. The tree is initially constructed 

with the true data. Sites in the sequence alignment and then resampled with 

replacement to produce bootstrap replicates of the alignment in which some sites will 

be present more than once and others will not be present at all. The phylogeny is 

constructed for each bootstrap replicate. Support to nodes in the original tree are given 

based on the proportion of bootstrap replicates which identified the same bifurcation 

as in the original tree [181]. 

2.2.5.2 Fisher’s test/ chi-squared test 

Fisher’s exact test and the Chi squares test are both statistical significance tests used 

in the analysis of contingency tables. In both cases, these tests presume a categorical 

distribution of a variable and compare the observed distribution to the expected. 

Within large samples, a chi-squared test can be used instead of Fisher’s test because 

the sampling distribution approximates the theoretical chi-squared distribution. 

2.2.5.3 Comparing distributions 

The Kolmogorov-Smirnov (KS) test is a very general non-parametric method for 

comparing distributions [182]. A distance is calculated between the cumulative 

distributions of the two compared samples under the null hypothesis that the two 

samples are drawn from the same distribution (the KS statistic). It is sensitive to 

differences in both location and shape between the two distributions, and has the huge 

advantage of being broadly applicable to any sets of data without knowing much about 

their distribution beforehand. However, in the case of comparing network degree 
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distributions, as we do in Chapter 6, the KS test is too sensitive to differences in size 

between networks. In addition, it does not provide any measure of the distance between 

two networks. 

The recently developed Degree Distribution Quantification and Comparison (DDQC) 

[183] algorithm to compares network degree distributions and corrects for differences 

in population size. The range of node degrees of each distribution is divided into eight 

regions based on its minimum, maximum, mean and standard deviation. The 

probability of the degree of any node being contained within each interval is 

calculated. A vector of eight feature values is then extracted from each degree 

distribution and the distance between two networks is the sum of the absolute 

differences for each of the eight features extracted. JAVA code was obtained from the 

authors of this publication. 

2.2.5.4 Fitting distributions 

A more general method to compare distributions is to fit them to a theoretical 

distribution and compare the parameters of that model distribution. In the case of real-

world network degree distributions, power laws are frequently a good fit and the 

exponent of the power law can be compared. As explained in the introduction (section 

1.5.5), the exponent of those power laws is meaningful in terms of intervention 

strategies. 

In addition, the tendency of a network to fit to some degree distributions is indicative 

of the process that led to the formation of that network. In the case of sexual contact 

networks, the process of partnership formation will have an impact on the degree 

distribution [123] (see section 1.5.5).  

The R package degreenet [126] provides function to fit and simulate from the Waring, 

Pareto and Negative Binomial distributions. 

2.2.5.5 Receiver Operating Characteristic (ROC) analysis 

Receiver Operating Characteristic (ROC) analysis is a method for testing a binary 

classifier. The discrimination threshold of the classifier (a continuous variable) is 

varied, and each time, the agreement between the classifier and the true state is 
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measured. The number of cases correctly classified as positive (true positives or TP) 

and negative (true negative or TN) and those incorrectly classified as positive (false 

positive or FP) and negative (false negative or FN) are counted. 

Based on these numbers, the sensitivity, specificity and precision of the classifier at 

that threshold can be calculated: 

𝑺𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (7) 

 

𝑺𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)  (8) 

 

𝑷𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  (9) 

 

The sensitivity is a measure of how well the classifier is at capturing positives, 

specificity measures how well negatives are excluded and precision tell us what 

proportion of the positives elected by the classifier were in fact positive. Depending 

on the aim of the classifier, sensitivity, specificity or precision can be optimised. For 

example, in the case of an HIV test, a high sensitivity test which captures all positives 

at the expense of specificity might be preferred in a first instance. Some positives will 

in fact be negative but this would become apparent in a second round of testing with a 

high specificity test. 

 

  Classifier 

  Positive Negative 

 

True state 

Positive True Positive False Negative 

Negative False Positive True Negative 

Figure 2.1: Agreement between classifier and true state during ROC analysis 
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ROC curves plot the sensitivity of the classifier against the inverse of its specificity 

for all thresholds, in order to estimate the overall performance of the classifier as the 

area under the curve (AUC). A reliable classifier has high sensitivity and high 

specificity and so the ROC curve increases very rapidly to yield an AUC close to 1. 

In Chapter 7, I use ROC analysis to select a threshold for reconstructed tMRCA of two 

sequences that best classifies whether those sequences are connected through a direct 

transmission event. 
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3 AUTOMATED ANALYSIS OF 

PHYLOGENETIC CLUSTERS 

3.1 Abstract 

As sequence data sets used for the investigation of pathogen transmission patterns 

increase in size, automated tools and standardized methods for cluster analysis have 

become necessary. The Cluster Picker identifies monophyletic clades meeting user-

input criteria for bootstrap support and maximum genetic distance within large 

phylogenetic trees. A second tool, the Cluster Matcher, automates the process of 

linking genetic data to epidemiological or clinical data, and matches clusters between 

runs of the Cluster Picker. I explore the effect of different bootstrap and genetic 

distance thresholds on clusters identified in a data set of publicly available HIV 

sequences, and compare these results to those of a previously published tool for cluster 

identification. To demonstrate their utility, I then use the Cluster Picker and Cluster 

Matcher together to investigate how clusters in the data set changed over time. I find 

that clusters containing sequences from more than one UK location at the first time 

point (multiple origin) were significantly more likely to grow than those representing 

only a single location. The Cluster Picker and Cluster Matcher can rapidly process 
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phylogenetic trees containing tens of thousands of sequences. Together these tools will 

facilitate comparisons of pathogen transmission dynamics between studies and 

countries. 

3.2 Introduction: clustering methods 

If all individuals within a transmission chain were sampled, it should in theory be 

possible to reconstruct the true sequence of transmission events from their genetic 

sequences [160]. However genetic diversity within the donor combined with a 

bottleneck at transmission [184], a delay between infection of the recipient and 

sampling and molecular evolution within patients mean that even with full coverage 

of a transmission chain, the evolution history may not be fully compatible with the 

transmission history [185]. In addition, directionality would not be resolved unless 

additional information (such as time since infection) were available. Thus 

phylogenetics does not reconstruct the true transmission chain but nevertheless enables 

inferences to be made about the epidemic that are useful to public health [186]. The 

aim of phylogenetic clustering analyses is to identify groupings within a phylogenetic 

tree that are epidemiologically meaningful. 

Sequences within the tree that are more related to each other than to the rest of the tree 

are more likely to be epidemiologically linked. Closely linked infections reflect short 

durations of time between transmissions and thus clusters represent the leading edge 

of the epidemic. They are relevant for identifying transmission correlates or designing 

and evaluating prevention strategies. High levels of clustering in an incompletely 

sampled population indicates an explosive epidemic pattern and rapid transmission.  

Cluster definition varies widely in the literature, based on genetic distance, time to 

most recent common ancestor and support for the bifurcation (the separation of the 

cluster from the rest of the tree indicated by bootstrap or posterior probability; Figure 

3.1). The specific cut-offs will also vary from gene region to gene region because of 

the different rates of substitution across the HIV genome, but as this thesis uses only 

pol, I will focus on pol here.  
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At its simplest, it has been suggested that patients should be considered linked if their 

sequences cluster as closely as two sequences isolated from the same patient [144]. In 

practice, this has meant a cluster supported by a bootstrap equal or greater to 99% and 

a genetic distance lower or equal to 0.015 nucleotide substitutions per site (or 1.5%). 

This definition is used by the San Diego Primary Infection Cohort [187], where 

patients are diagnosed early in infection, theoretically before mutations have 

accumulated within patient. All samples have been collected within the same city. 

Sequences phylogenetically linked at such tight thresholds are highly likely to 

represent direct transmission events.  

However, a large proportion of the UK HIV RDB is made up of patients who were 

either diagnosed late in infection or who were sequenced a long time after diagnosis 

(see section 2.1.2). In both cases, we expect direct transmission partners not to group 

so closely in the tree, as their sequences will have diverged since the transmission 

event. In addition, because sampling is incomplete, we may prefer to capture patients 

who whilst not directly linked themselves are nonetheless part of the same 

transmission chain (separated by 1 or 2 transmissions). If many sequences were 

contained within such a cluster, this cluster would be important for understanding 

transmission dynamics, even if some transmission links were missing.  

 

 

Figure 3.1: Diagram of a cluster of sequences in a phylogenetic tree defined by 

high confidence in the grouping (bootstrap) and low within cluster genetic 

distance. Sequences within a cluster are most likely epidemiologically related.  
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Two sequences taken from the population are on average 10% different within a 

subtype [188], but only 5% within a cohort of recently infected patients in San Diego 

[187]. Plotting the distribution of pairwise genetic distances among all UK sampled 

HIV sequences reveals two major peaks and one minor peak [108]. The two major 

peaks represent inter and intra-subtype genetic distances. The smallest peak represents 

comparisons between significantly more closely related sequences and is situated 

around 4.8%. Based on these findings, analyses of the UK HIV RDB have used genetic 

distance cut-offs of 1.5% to define infections that are likely to be direct links (strict 

definition) and 4.5% to capture transmission chains (relaxed definition). Those two 

cut-offs are used throughout this thesis. Bootstrap cut-offs are less important, as they 

are heavily influenced by the background of sequences in the tree. In this Chapter, I 

test a number of bootstrap cut-offs as sensitivity analyses to evaluate the robustness of 

the conclusions. 

Evidently, clusters complying to a strict cluster definition are more likely to reflect 

true linkages (high specificity) but strict definitions risk missing true linkages (low 

sensitivity); while more relaxed definitions will incorrectly group sequences into 

clusters (low specificity) but are more likely to capture all true linkages (high 

sensitivity). In Chapter 6, I evaluate the sensitivity and specificity of cluster definitions 

on simulated data for the first time.  

A combination of genetic distance and bootstrap is standard, but other cluster 

definitions have been developed and used by other groups. The Swiss HIV Cohort 

Study classifies as clusters monophyletic groups of at least ten sequences, of which 

≥80% are Swiss [105]. This definition is appropriate for the data because the number 

of Swiss sequences is so small compared to the number of background sequences used 

(despite coverage being so high in Switzerland). They are interested in Swiss-based 

transmission and by enforcing a minimum size, clusters with ≥80% Swiss sequences 

are very unlikely to have occurred by chance. Prosperi et al. developed an algorithm 

which bases the cluster cut-off on the distance contained within the tree as a whole 

[174]. The user selects a t-percentile threshold and sequences are grouped into clusters 

if the median of their genetic distances falls below the t-percentile threshold of the full 
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distribution. One huge advantage of this algorithm is that it has been implemented as 

a user-friendly program (PhyloPart) that processes large trees containing 100,000s of 

sequences. Indeed another problem with cluster identification methods until this point 

was that no automated software could deal with the number of sequences available. In 

this Chapter, I discuss a program developed with colleagues to process 100,000s of 

sequences based on the more widely used genetic distance and bootstrap cut-offs. 

It is noteworthy that all the definitions delineated above require clusters to be 

monophyletic. There are instances where this prerequisite will lead to 

epidemiologically linked infections not clustering. For example if sampling coverage 

of a large population were 100%, all sequences should realistically be linked to at least 

one other but the mean genetic distance would probably exceed 4.5% (and so the full 

tree would not be classed as a cluster). As an alternative, Wertheim et al.’s single 

linkage approach links sequences to each based solely on their pairwise genetic 

distance, without the need for a tree at all [99]. Another linkage method developed by 

the Leigh Brown group takes advantage of both the distances between sequences and 

the information in the tree, by linking sequences together based on their tMRCA in 

time resolved phylogenies [140]. As well as circumventing enforced monophyly, both 

the Wertheim and Leigh Brown methods allow for the connections between sequences 

to be visualised in a network. The Leigh Brown method is developed further in Chapter 

6.With sequence data sets used for the reconstruction of phylogenies now containing 

tens of thousands of sequences, identifying clusters manually is infeasible. Using in-

house pipe lines for detecting clusters is possible, but in order to compare results 

between studies, freely available software tools would be advantageous. Based on the 

support and genetic distance criteria commonly used, the Cluster Picker (CP) tool 

identifies clusters in phylogenetic trees. The Cluster Matcher (CM) describes 

identified clusters epidemiologically as well matches clusters between phylogenetic 

trees. I use the tools to examine subtype B cluster dynamics in the UK and compare 

CP performance to that of other available software.  
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3.3 Methods 

The Cluster Picker (CP) and the Cluster Matcher (CM). The CP and CM were 

developed in Java 1.6 and are platform-independent. Both programs were released 

publicly as freely available software with accompanying tutorials, manuals and test 

files. Source code is available on Google code (http://code.google.com/p/cluster-

picker-and-cluster-matcher/) under GNU GPLv3. 

3.3.1 The Cluster Picker (S.J. Lycett) 

3.3.1.1 Objective 

The CP is a JAVA program that identifies clusters of sequences in a phylogenetic tree 

based on support for the node (bootstrap or posterior probability) and the maximum 

pairwise genetic distance within the cluster.  

3.3.1.2 Input 

The CP takes as input a set of aligned sequences in fasta format and a Newick tree 

built from those same sequences, with support values on the nodes. The user inputs 

the desired node support threshold and maximum genetic distance for clusters, as well 

as an initial support threshold for splitting the tree prior to analysis.  

3.3.1.3 Algorithm 

The CP utilizes a depth-first algorithm to explore the tree: starting at the root and 

working its way along each branch before backtracking when a leaf is reached. In order 

to minimize the number of pairwise distances computed (thus reducing running time), 

the tree is initially split. The user inputs an initial node support threshold, and starting 

from the root, the tree is divided into subtrees supported at this threshold. Further 

analyses will take place only within these subtrees; therefore, the initial support 

threshold must necessarily be smaller than or equal to the cluster support threshold. 

Starting from the root of the subtree, the CP proceeds to the first node exceeding the 

bootstrap support threshold. All sequences within the group are identified and their 

pairwise genetic distances are calculated. If the largest of these is smaller than or equal 

to the user-input maximum genetic distance threshold, the group of sequences is 

http://code.google.com/p/cluster-picker-and-cluster-matcher/
http://code.google.com/p/cluster-picker-and-cluster-matcher/
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identified as a cluster. If the maximum pairwise distance is larger than the threshold, 

the cluster is rejected and the algorithm proceeds to the next supported node and 

repeats the same analysis. When a leaf is reached, the CP backtracks to the last node 

whose children have not been fully analysed. When the algorithm has analysed the 

entire tree, a list of clusters matching the user-input criteria is generated. Note that 

because the algorithm proceeds from the root towards the tips, nested clusters are not 

identified and do not appear in the final list. For pseudocode, see Appendix 6. 

3.3.1.4 Output 

The CP outputs a log file listing for each cluster: cluster number, cluster size, 

maximum genetic distance within the cluster, support value and tip names. Also output 

are a fasta file in which sequence names are preceded by their cluster number and two 

trees, one in newick format and one in FigTree format 

(http://tree.bio.ed.ac.uk/software/figtree/). In both trees sequence names are preceded 

by cluster name, and in the FigTree file, sequence names are coloured by cluster.  

3.3.2 The Cluster Matcher (E. Hodcroft) 

3.3.2.1 Objective 

The CM is a JAVA program which links sequences in clusters to epidemiological data. 

An automated tool for performing this task is necessary because of the size of the 

datasets analysed.  

3.3.2.2 Input 

The CM takes as input the newick files output by the CP and corresponding annotation 

files. The annotation file allows the user to select clusters based on those annotations. 

For example, if the annotation file contains risk group data, the CM could output only 

clusters containing at least 50% of sequences from MSM. The user can also choose to 

output clusters based on whether they contain a specified minimum number of 

sequences.  
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3.3.2.3 Algorithm 

Traversing from root-to-tip, the CM first identifies all clusters present in each dataset, 

linking every sequence in a cluster to any epidemiological information provided. For 

each cluster, information is retrieved including its size, number of matching sequences, 

and the distribution of epidemiological traits attached to its sequences. This allows the 

clusters to be easily filtered when the user specifies cluster selection criteria, and is 

used to generate summary information for each cluster.  

3.3.2.4 Output 

The CM outputs a FigTree file for each cluster, as well as a log file detailing settings 

and summarizing results. The FigTree file contains two trees: the full tree with the 

cluster of interest highlighted and a zoom into each of those clusters, allowing for the 

visualization of single clusters within large phylogenies. In addition, the CM generates 

a spreadsheet containing the composition for each cluster identified by the CP; for 

example, the number of individual from each risk group, of each sex. 

3.4 Analysis  

3.4.1 Data 

Publicly available HIV pol sequences from the UK HIV RDB (see Methods 2.1.2) 

were used to evaluate the CP and CM (Genbank IDs: EU236439 – EU236538 [3], 

GQ462027 - GQ462532 [18], JN100661 – JN101948 [23]). Sequences were subtyped 

in SCUEAL (see Methods 2.2.1.2), and drug resistance sites were stripped (Methods 

2.2.1.3). In parallel, all unique subtype B pol sequences were downloaded from LANL 

(section 2.1.3) to perform a speed comparison between the CP and PhyloPart. 

3.4.2 Effect of cluster thresholds on cluster distribution 

Using the CP, I evaluated the effect of different cluster thresholds for genetic distance 

and cluster support on cluster identification among the UK subtype B sequences 

downloaded. One hundred replicate alignments were generated and a maximum 

likelihood tree with bootstraps was reconstructed in FastTree v2.1.4 [163] with a 

subtype C reference sequence (GenBank accession number: AY772699). I varied 
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genetic distance threshold between 1.5% and 7.5% and bootstrap between 70% and 

99%, each time outputting the clusters. From the list of clusters I generated cluster 

distributions (the number of clusters of each size). 

3.4.3 Automated analysis of cluster dynamics 

Using both the CP and the CM I reconstructed cluster dynamics over time, analysing 

409 non-B UK sequences as well as the 1381 subtype B sequences. Sequences were 

linked to sampling date and location information in the UK HIV RDB. An initial 

phylogenetic tree was constructed containing 1212 sequences of all subtypes collected 

up to 2005. Clusters supported by a bootstrap ≥90% and maximum genetic distance 

≤4.5% were identified. The CM was used to sort clusters in 2005 based on whether 

they contained sequences from a single sample location (“single” origin) or more 

(“multiple” origin). A second tree was built from the entire dataset of 1790 sequences 

and clusters matched between the early and late trees. Cluster growth was then 

calculated for each cluster as the number of new sequences per initial sequence [26]. 

Patterns of change of single origin versus multiple origin clusters were compared (see 

Appendix 3) [30]. 

3.4.4 Comparison with PhyloPart 

The CP was compared to PhyloPart, a recently released software tool for the 

identification of clusters [19]. PhyloPart generates the pairwise distance distribution 

for a tree and identifies a group of sequences as a cluster if the median of their genetic 

distances is below a user-input t-percentile threshold of the whole-tree distance 

distribution. The rooted subtype B tree containing 1381 sequences was analysed in 

PhyloPart, varying the t-percentile threshold for cluster identification from 1% to 30%. 

I compared cluster distributions to those produced by the CP.  

In order to evaluate the performance of the two tools, I ran them both on 18 data sets 

sized 1000 to 18,000. 18,436 subtype B sequences were downloaded from the LANL 

database and a random sample of 18,000 sequences was selected to construct a 

maximum likelihood bootstrapped tree in FastTree. Then, sets of 1000 tips were 

dropped sequentially from the tree to generate trees with variable number of tips (see 
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Appendix 3). As PhyloPart does not print time to completion, it was launched from 

within a python script with an additional function to calculate running time. 

3.5 Results 

3.5.1 Clusters are robust to changes in genetic distance thresholds 

Of 1831 downloaded sequences, 1381 unique subtype B sequences were used to 

examine the effect of cluster definition on cluster distribution using the CP. Although 

the phylogenetic tree contained a reference subtype C sequence, this outgroup was 

removed prior to analysis with the CP using the APE package v.3.0-8 in R [154, 189]. 

Initially, I fixed the bootstrap threshold in the CP at 90% and varied within-cluster 

maximum genetic distance between 1.5% and 7.5%. Between 4.5% and 7.5%, I found 

that for the most part, the same clusters were identified (Figure 3.2A). Within this 

range, the number of clusters stabilized around 128 (ranging from 126 to 131), with 

2/3 containing only two sequences. At a genetic distance of 1.5%, only 63 clusters 

were identified. The proportion of sequences in clusters and average cluster size both 

increased as the genetic distance threshold was increased (Figure 3.3A). At a 

maximum genetic distance of 4.5%, 25% of sequences clustered, identical to the 

proportion found after a time-resolved analysis of the same sequences [108]. Beyond 

4.5%, the ratio of these two measures became constant, indicating that as the genetic 

distance cut-off was relaxed sequences were being added equally to all clusters.  

The effect of varying the cluster bootstrap threshold was different; fixing the genetic 

distance at 4.5%, the proportion of sequences in clusters decreased gradually as 

bootstrap thresholds were increased from 70% to 99% (Figure 3.2B and Figure 3.3B). 

3.5.2 Automated analysis of cluster dynamics 

The cluster dynamics of 1381 subtype B and 409 non-B sequences between 2005 and 

2007 were analysed. These included 63 A subtypes, 219 C and 127 other non-B. In the 

phylogenetic tree constructed from sequences collected up to 2005, 148 clusters 

containing 431 sequences (35.6%) were identified. One hundred and eight of these 

clusters were pairs, with the largest containing seventeen sequences. A second tree was 
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built from the entire dataset of 1790 sequences and clusters were matched between the 

early and late trees so that cluster changes could be described. In support of the initial 

cluster definition, the genetic distance of the new clusters increased above 4.5% only 

in two clusters despite the addition of 578 sequences, while bootstrap dropped below 

0.90 only for six clusters. 

 

Figure 3.2: Cluster distributions. 1381 subtype B UK sequences from NCBI were 

processed (A) through the Cluster Picker, with bootstrap support threshold fixed 

at 90% and maximum genetic distance threshold varied between 1.5% and 7.5%, 

(B) through the Cluster Picker with maximum genetic distance threshold fixed at 
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4.5% and bootstrap support threshold varied between 70% and 99%, and (C) 

through PhyloPart, with the t-percentile threshold varied between 1% and 30%.  

 

Figure 3.3: Clustering patterns. 1381 subtype B UK sequences from NCBI were 

processed (A) through the Cluster Picker, with bootstrap support threshold fixed 

at 90% and maximum genetic distance threshold varied between 1.5% and 7.5%, 

(B) through the Cluster Picker with maximum genetic distance threshold fixed at 

4.5% and bootstrap support threshold varied between 70% and 99%, and (C) 

through PhyloPart, with the t-percentile threshold varied between 1% and 
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30%.distribution for varying bootstrap thresholds. For each threshold, we 

plotted the percentage of total sequences in clusters (grey line) and average 

cluster size (dashed line).  

Sample location information was used to sort clusters in 2005 based on whether they 

contained sequences from a single sample location (“single” origin) or more 

(“multiple” origin). The UK HIV RDB categorizes geographical origin into 17 areas, 

all of which were represented in this dataset. A large proportion of sequences originate 

from the London area (one centre). Of 148 clusters, 63 were thus classified as multiple 

origin and 85 as single origin. Mean cluster growth differed significantly between 

single and multiple origin clusters (0.155 vs. 0. 302, respectively, Kruskal-Wallis test: 

p=0.0016). 

3.5.3 Comparison with PhyloPart 

The subtype B tree was analysed in PhyloPart, varying the t-percentile threshold for 

cluster identification from 1% to 30%. Upon examination of the output, it appeared 

that this range reflected median genetic distances within clusters from 4.5% to 9% in 

the data. Once again, cluster distribution was not very much affected by the cut-off 

(Figure 3.2C), but the proportion of sequences in clusters and average cluster size 

increased as cluster definition was relaxed (Figure 3.3C). As a t-percentile threshold 

of 0.01 and 0.05 corresponded to genetic distance cut-offs of 4.5%, and 6.5%, 

respectively, the CP and PhyloPart output were compared in more depth at each of 

these two matched thresholds. Each time, the number of clusters and the cluster 

distributions were near identical (KS test, p=0.9998 and p=1 for 4.5% and 6.5% 

respectively). However, as expected, individual cluster sizes were significantly 

reduced when maximum within cluster genetic distance was used instead of median 

(Figure 3.5; one-sample sign test, p=6.1*10-5 and p=0.03 for genetic distances of 4.5% 

and 6.5%, respectively). At 4.5%, the CP and PhyloPart agreed on the cluster 

membership status of 94.5% of sequences and at 6.5% of 97.2% of sequences.  

We ran both programs on datasets up to 18,000 sequences to compare performance. 

Both programs were able to process trees with up to 17,000 sequences in less than an 
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hour on a desktop (Table 3.1), although PhyloPart did not terminate on the largest 

dataset (n=18,000 sequences). The CP completed on average three times faster than 

PhyloPart. 

 

Figure 3.4: Dynamics of a single cluster 2005-2007. In this example, the cluster 

identified in 2007 no longer matches the initial cluster definition as bootstrap 

support has dropped from 93% to 89%. Sequences A to G are those already in 

the cluster in 2005, starred sequences (H to K) have been added to the cluster in 

the intervening years.  

3.6 Discussion 

The tools that presented here can be used to investigate the dynamics of pathogen 

transmission. The CP is able to rapidly identify clusters in an automated way in large 

datasets, based on criteria demonstrated previously to accurately delineate 

epidemiologically relevant clusters [144]. Because in many cases cluster studies seek 

to combine genetic with epidemiological or clinical data (such as risk group or stage 

of infection), we have also made available the CM, which links clusters between runs 

and to epidemiological data. In contrast to other tools available for the analysis of trait-

annotated phylogenies [190, 191], the CM does not require any assumptions to be 

made about the heritability of the traits examined. As an example, I used the tools 
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together to investigate the dynamics of single vs. multiple origin HIV clusters in the 

UK. 

 

Figure 3.5: Average cluster size according to clustering method. At thresholds of 

4.5% and 6.5%, PhyloPart (in grey, median GD) and the Cluster Picker (dashed, 

maximum GD) identified nearly exactly the same number of clusters (numbers 

above the columns) but PhyloPart clusters were on average larger. GD genetic 

distance.  

There was remarkable consistency in the clusters identified at maximum genetic 

distances between 4.5% and 7.5%, as has been previously observed [108]. We 

conclude that these clusters represent well-delineated epidemiological units in the UK 

HIV epidemic. In contrast, when the maximum genetic distance threshold was 

decreased to 1.5%, only half of the clusters were identified. These clusters defined by 

such a short distance will reflect recent transmissions and frequent samplings [192]. In 

contrast, the UK HIV RDB contains mostly sequences from chronically infected 

patients, many of whom were first sequenced long after infection, and so in order to 

identify relevant clusters, a threshold of 4.5%, as we have used before [108, 109], is 
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more appropriate. The effect of the bootstrap threshold was less evident, and so I 

conclude that genetic distance is the key parameter for epidemiologically relevant 

clustering. I stress however that the present analysis alone is not sufficient to yield a 

reusable definition of cluster threshold parameters, as the data set of publicly available 

sequences was too small for extensive testing.  

Table 3.1: Time to completion (in seconds) of the Cluster Picker and PhyloPart 

for data sets of increasing sizes 

Number of 
sequences 

Cluster Picker 

(s) 

PhyloPart 

(s) 

1000 13.098 8.913 

2000 36.137 44.151 

3000 68.772 112.729 

4000 115.618 672.085 

5000 173.584 1447.047 

6000 244.290 1713.749 

7000 328.651 2190.336 

8000 419.369 1081.785 

9000 526.070 1043.838 

10000 658.607 2321.955 

11000 769.469 2343.197 

12000 911.086 3061.134 

13000 1059.509 2851.417 

14000 1228.151 2078.609 

15000 1383.366 2625.491 

16000 1581.351 2797.329 

17000 1775.639 3047.713 

18000 1990.372 NA 

Notes: Both programs were run on a Windows desktop computer with an Intel Core i5-2400 

3.10GHz with 4 processors, reserving 1.5G of heap space. PhyloPart did not complete on the 

desktop computer with n=18,000 sequences as heap space could not be increased. Settings 

were left as default in the Cluster Picker and set at t=0.05 in PhyloPart. For 10,000 sequences, 

program specific RAM usage was 265,000K for PhyloPart and 100,000K for the CP. 

Computational complexity for this data set approximates O (n2). 
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The CP uses maximum within cluster genetic distance, while PhyloPart, another 

recently released sequence clustering tool, uses the median. In previous studies, the 

Leigh Brown group has identified clusters in trees based on mean within cluster 

distance [109, 140]. However, it was decided to use maximum genetic distance in the 

CP for three reasons. First, maximum genetic distance (as well as median genetic 

distance) is less affected by the number of sequences within a cluster (which can be 

the result of more or less intensive population sampling and contact tracing). When 

the mean is used, the distance is normalized by the total number of sequences in the 

cluster, potentially leading to clusters in which most of the sequences are very close 

together but one sequence is only distantly related to the group. In agreement with this 

prediction, in a longitudinal analysis the genetic distance threshold did not have to be 

increased in 2007 to capture most 2005 clusters despite the additional of a large 

number of sequences. Second, maximum genetic distance is a metric more comparable 

to the time depth used to identify clusters in BEAST [140]. Third, maximum genetic 

distance is faster to compute, improving program efficiency. Another difference 

between the programs is that distances are calculated de-novo from the sequences in 

the CP, while in PhyloPart, the patristic distances are used. The use of patristic 

distances is probably preferable (because distances but the CP calculates distances 

from sequences to do automatically do what was previously done manually by our 

group. In this way its results are consistent with previously established thresholds  and 

results [108]. Cluster definition in PhyloPart is a function of the whole tree: a subtree 

is classified as a cluster if its median genetic distance is smaller than a percentage of 

the whole tree. However, the user-specified genetic distance threshold in the CP allows 

external information to be incorporated into the definition, such as the average 

observed distance within transmission pairs if that is available. This strategy was 

chosen because it is the most widely used definition; in fact, previous studies have 

demonstrated epidemiologically related viral sequences had less than 4.8% nucleotide 

substitutions between them [108]. Similarly, because studies vary in the bootstraps 

they use for support of clusters, we left this as a flexible option for the user to choose. 

For data sets containing up to 17,000 sequences, both PhyloPart and CP yield results 

on a desktop in reasonable time. Theoretically, PhyloPart will slow down in large 
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datasets, as it calculates all pairwise distances then stores them, so they can be accessed 

each time they are needed. This is an advantage for smaller datasets and speeds up 

processing, but for large trees, the time to generate matrices of all pairwise distances 

increases as a polynomial function of the number of sequences n (n (n-1)/2 

computations). The CP calculates pairwise genetic distances within a potential cluster 

as required even if those distances were already calculated when the parent node was 

tested (and rejected). Nevertheless, the CP was not slower than PhyloPart on small 

datasets and in fact completed on average three times more rapidly. On large trees, it 

becomes faster to calculate subsets of pairwise genetic distances only within potential 

clusters, even if this must be repeated several times. Another alternative, not explored 

here, is the single-linkage approach proposed by Wertheim et al. [99], which does not 

require a phylogenetic tree and calculates pairwise distances only once. The absence 

of a requirement for building a tree means that the single-linkage method will perform 

much more rapidly than either Cluster Picker or PhyloPart on large datasets. With 

expanding sizes of HIV-1 data sets and other fast evolving pathogens, there is 

increasing need for new and faster algorithms. 

Our longitudinal cluster analysis demonstrated differences in cluster growth between 

clusters that were confined to single UK locations in 2005, and those that already 

contained sequences from several locations across the UK. If confirmed, these results 

suggest that targeting interventions on individuals within multiple origin clusters to 

prevent onward transmission would yield disproportionate results. Such real-time 

analyses are made possible by the CP and CM. As the purpose of this Chapter was to 

demonstrate the functionality of the CP and CM, a simple example was used. We hope 

that others will use the tools in more elaborate ways to truly provide insight into the 

dynamics of HIV transmission, as well as other infectious diseases. Concerning cluster 

dynamics, we note that new sequences added to clusters do not necessarily reflect new 

infections: they could reflect new diagnoses within the time frame, and one potential 

explanation of the observed cluster growth may indeed be referral-based testing. 

The automation of cluster picking and matching with epidemiological information is 

a necessary advance as pathogen sequence databases have become too large to analyse 
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manually. The pol region of HIV is routinely sequenced for clinical purposes, and 

several European countries have created central repositories for the sequences. These 

data, combined with the tools we have made available, offer opportunities for the real-

time surveillance of the HIV epidemic. I hope that by providing strategies for cluster 

identification and description, these user-friendly tools will facilitate comparisons of 

epidemics between studies and countries. In Chapter 1, I use these tools and automated 

pipeline to compare the UK and Swiss epidemics, without the two countries having to 

share data.
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4 A DIRECT COMPARISON OF 

TWO DENSELY SAMPLED 

HIV EPIDEMICS: THE UK 

AND SWITZERLAND 

4.1 Abstract 

The UK and Swiss HIV epidemics have both historically been driven by transmission 

of subtype B among MSM. The Swiss population is 1/8 the size of the UK and HIV 

prevalence in Switzerland is nearly double. Both epidemics are densely sampled, by 

the UK HIV RDB and the Swiss HIV Cohort Study respectively. Previous independent 

analyses have suggested dramatically different epidemic dynamics.  

Coordinated analyses using a common bioinformatics pipeline to compare HIV 

transmission patterns were performed. Sequence clusters were identified in maximum 

likelihood phylogenetic trees of subtype A1, B and C pol sequences against a 

background of global sequences at a range of bootstrap (70%-95%) and genetic 
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distance (1.5% and 4.5%) thresholds. Degree distributions were generated for each 

risk group and I compared distributions between countries using KS tests, DDQC and 

bootstrapping. Univariate and multivariate logistic regression was used to predict 

cluster membership based on country, sampling date, risk group, ethnicity and sex.  

Over 8000 subtype B sequences from Switzerland and >30000 from the UK were 

analysed. A genetic distance of 1.5% yielded mainly pairs in both. After adjusting for 

sample dates, the Swiss epidemic was more clustered at 1.5%, but degree distributions 

did not differ significantly between the two countries. At 4.5%, the UK was more 

clustered and the degree distributions for MSM, heterosexuals and the population as 

whole differed significantly by the KS test. Only the heterosexual distributions varied 

based on the DDQC test, and dropping high degree heterosexuals clustered exclusively 

with MSM eliminated this difference. Because the KS test is sensitive to variation in 

scale between networks compared, I tested whether the differences were due to 

different epidemic sizes by jackknifing the UK epidemic and showed the underlying 

degree distributions were the same.  

Despite differences in risk group composition, Swiss and UK clustering patterns are 

similar. Differences observed are largely explainable by the distinct sizes of two 

epidemics. The underlying epidemic dynamics driving new infections are thus likely 

to be similar.  

4.2 Introduction: The UK and Swiss epidemics 

The UK and Swiss epidemics share a similar history. HIV was introduced into UK 

MSM around 1980 [89], probably from the USA [90]. Until the early 1990s the UK 

epidemic was dominated by the transmission of subtype B among MSM and PWID 

(see Introduction 1.1.2 and 1.4.2). In the 1990s, cases among heterosexuals became 

more common [93] and these were often linked to immigration [90]. Between 2002 

and 2010, 48% of HIV diagnoses were among heterosexuals [93]. Since the 1990s, 

non-B subtypes have been increasing within the UK [94, 95]. For some time the UK 

epidemic was compartmentalised by subtype and risk group, with B circulating among 

MSM and non-B among heterosexuals. Yet recently a small but significant proportion 
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of non-B subtypes have been acquired through sex between men [93] (see Chapter 5). 

100,000 people are estimated to be living with HIV in the UK (0.15% prevalence), a 

quarter of whom are unaware of their infection [6]. HAART became available to UK 

residents in 1996 and universally available (regardless of citizenship or immigration 

status) in 2012. HIV positive people on successful treatment in the UK have a normal 

life expectancy [45].  

Switzerland was the European country with the highest HIV prevalence at the 

beginning of the HIV epidemic in the 1980s [193]. Initially HIV was spread through 

MSM and PWID [194] with heterosexual transmission only starting to play a role after 

the mid-1980s. The number of new diagnoses steadily declined in the nineties, mainly 

owing to the introduction of needle exchange programs in PWID, heightened 

awareness, wide scale HIV testing, and the introduction of HAART. The number of 

new HIV diagnoses in Switzerland has fluctuated since 2000 with no clear time trends. 

The epidemic is currently thought to be fuelled through MSM transmission with fewer 

heterosexuals and almost no PWID cases [97, 105] (less than 3 per year in the last 5 

years [195]).  

The two countries also have two of the largest and most extensive HIV sequence 

databases in the world: the UK HIV RDB (see Methods 2.1.2) and the Swiss HIV 

Cohort Study (SHCS; http://www.shcs.ch/; see Methods 2.1.4), which contain pol 

sequences from at least 60% of diagnosed patients within each country. In the early 

2000s, less than half of diagnoses entered the databases, while since 2008, this has 

reached 80-90%. Based on estimates of total numbers of infected people (including 

undiagnosed), the databases currently contain around 50% of sequences from all alive 

infected individuals within each country. These databases have allowed Switzerland 

and the UK to lead the way in the field of population-level HIV research, including 

HIV phylogenetics. 

One important focus of phylogenetic analyses is on clusters: groups of sequences 

within the tree that are more related to each other than to the rest of the tree (see section 

3.2). Clustered sequences are likely to be represent epidemiologically linked infections 

with short durations of time between transmissions and thus clusters represent the 

http://www.shcs.ch/
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leading edge of the epidemic. High levels of clustering indicate rapid transmission and 

that transmission partners are being captured.  

However, these analyses have suggested these two countries’ epidemics have different 

structures (see section 1.4.3 for details), including different proportions of sequences 

in clusters. In the UK, 24%, 40% and 22% of patients infected with HIV-1 subtypes B 

[108], A1 and C [109] respectively, have been found in clusters whereas the 

corresponding numbers for Switzerland are 55%, 21% and 16% [97, 105]. Clearly 

these different results arise, at least in part, due to the different cluster definitions (see 

section 3.2) used by the two teams: the Swiss cohort defines a cluster as a group of 

≥10 sequences supported by a bootstrap-value >80% [105], while the UK looks at 

clusters containing at least three sequences with a within cluster genetic distance 

≤4.5% and supported by bootstraps ≥90% [108]. Another reason for the disparity 

between the two countries could be differences in sampling procedures. However it is 

also possible that the contact and transmission processes between Switzerland and the 

UK differ because of the difference in size between the two countries and their 

geography. 

Access to the data from these national cohorts is subject to restrictions. Even though it 

is possible to submit proposals to carry out analyses, one limitation is that national data 

must not leave the country. UK data must be analysed in the UK and Swiss data must 

be analysed in Switzerland. Because analyses have been conducted according to in-

house bioinformatics pipelines, the differences between the two epidemics have never 

been elucidated. Here, I present an analysis of the two epidemics conducted using a 

bioinformatics pipeline applied in parallel in the two countries. In brief, phylogenies 

were reconstructed in each country independently (using the same LANL background 

sequences) and processed using the CP and CM. I wrote python and R scripts to merge 

and modify the files output by the CP and CM (see Appendix 3). The final output was 

a spreadsheet containing a cluster on each line with details on number of sequences 

(national and LANL), risk group, ethnic group and gender composition. These files 

were exchanged and data from both countries were analysed independently in each 

country. I generated degree distributions and compared those across countries 
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(including KS tests, DDQC and bootstrapping), while Mohaned Shilaih constructed 

the linear regression model. I wrote the manuscript and created all the figures. 

4.3 Methods 

4.3.1 Data 

4.3.1.1 Switzerland (CH) 

9232 HIV pol sequences were retrieved from the Swiss HIV Cohort Study resistance 

database (SHCS RDB, 2014).The SHCS RDB aggregates all HIV resistance tests 

performed across Switzerland by all laboratories involved in HIV resistance testing in 

Switzerland. SmartGene is responsible for sequences and meta-data storage and 

management (http://www.smartgene.com). The RDB is part of the SHCS, which is an 

ongoing national clinical cohort of HIV patients of age 16 and above with biannual 

follow up (http://www.shcs.ch). The sequences were assigned subtypes using the 

REGA algorithm [152, 196]: subtype B (8390 sequences, ~91%), A1 (435 sequences, 

~5%), and C (419 sequences, ~5%). The earliest available sequence for each individual 

was used in the present analysis.  

4.3.1.2 UK 

63,065 HIV pol sequences were obtained from the UK HIV RDB 2014 download (see 

Methods 2.1.2). Subtypes B (31,649 sequences, 48.6%), C (15,864, 24.4%), and A1 

(2512, 4.0%) were analysed here. 

4.3.1.3 Background sequences 

LANL background sequences were selected as described previously (see Methods 

2.1.3). For this step, UK sequences were removed from LANL alignments before the 

UK Viroblast run, and Swiss LANL sequences were removed before the Swiss run. 

4.3.2 Tree Building and Cluster Picking 
Duplicate sequences were removed from all datasets. Maximum likelihood 

phylogenetic trees were constructed for each country and subtype separately (six trees 

in total) using FastTree version 2.0 [163] with 100 bootstrap replicates. A range of 

http://www.shcs.ch/
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cluster definitions were used. Clusters were picked if they were supported by bootstrap 

thresholds of 70%, 80%, 90% and 95% and maximum genetic distance (GD) of 1.5% 

or 4.5% (8 thresholds total) [197]. In addition, clusters in the Swiss tree were selected 

to contain at least 80% SHCS sequences, and clusters in the UK trees at least 80% UK 

sequences. In a separate analysis, the 80% criterion was removed (i.e. all clusters with 

least one UK or Swiss sequence were examined) to investigate mixing between 

national and foreign sequences. The automated pipeline included analysis with the CP 

and CM as well as processing through python and R scripts (see Appendix 3). The CP 

was modified to recognise IUPAC nucleotide ambiguity codes as matches, increasing 

clustering by around 15% in both datasets. From this output file, I generated degree 

distributions (the number of links for each node). As output files contained the risk 

group composition for each cluster, it was possible to break down the degree 

distribution by risk group. Statistical frameworks exist to formally compare degree 

distributions but not cluster size distributions. In addition degree distributions can be 

bootstrapped to test the robustness of conclusions. Bootstrapping was performed to 

simulate the effect of the sampling process. Nodes were sampled with replacement 

from the network with information on their cluster membership. Nodes sampled with 

the same cluster membership were linked together in each bootstrapped network, so 

that clusters sometimes increased in size, sometimes decreased in size or otherwise 

disappeared, and degree distribution was re-estimated each time. Jack-knife 

resampling where the number of nodes sampled was smaller than the full network size 

was also performed. 

4.3.3 Statistical analysis 

The number of sequences clustering at different thresholds between the two epidemics 

was compared using Fisher’s exact test with Bonferroni correction for the number of 

tests. Degree distributions were compared using KS tests [182] and the DDQC 

algorithm [183] (see Methods 2.2.5.4). The DDCQ corrects for differences in 

population size when comparing degree distributions while the KS test does not.  

The UK subtype B dataset as a whole was 3.75 times larger than the Swiss dataset 

(Table 4.1). The UK MSM dataset was 5.7 times larger and the UK HET dataset was 
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1.3 times larger. To investigate the effect of this difference in size (the pool of possible 

infectors), the UK degree distribution was jack-knife sampled to match the size of the 

Swiss epidemic. One hundred jack-knife replicates were generated, and in each 

replicate the degree distribution was re-estimated based on the links present in the 

sample.  

Mohaned Shilaih used a logistic regression model to characterise the factors 

influencing clustering in the two countries. The model was applied with cluster 

membership as the outcome variable and with the country of origin (UK or 

Switzerland) as the main exposure variable. Sampling dates, risk group, sex, and 

ethnicity were adjusted for. 

All statistical analyses were conducted in R [154]. 

Table 4.1: Baseline demographics of the two datasets 

  UK CH 

  A1 B C A1 B C 

Sex Female 1442 

(57.5%) 

2327 
(7.4%) 

3869 
(62.2%) 

269 
(62%) 

1812 
(22%) 

237 
(57%) 

 MSM 170 
(6.8%) 

22157 
(70.4%) 

660 
(4.2%) 

21 

(5%) 

3914 
(47%) 

25  

(6%) 

 

Risk 

HET 1718 
(68.5%) 

3399 
(10.8%) 

11893 
(75.2%) 

366 
(84%) 

2626 
(31%) 

357 
(85%) 

 PWID 92  

(3.7%) 

873 
(2.8%) 

128 
(0.8%) 

12  

(3%) 

1553 
(19%) 

9 

(2%) 

 Other/ NA 527  

(21%) 

5021 
(16%) 

3134 
(19.8%) 

36 

(8%) 

287 

 (3%) 

28 

 (7%) 

Ethnicity White 494 
(19.7%) 

22724 
(72.3%) 

1724 
(10.9%) 

194 
(45%) 

7333 
(87%) 

118 
(28%) 

Total  2507 31450 15815 435 8390 419 
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4.4 Results  

4.4.1 Comparison of the two HIV+ populations (Baseline demographics) 

In the final analyses, the Swiss datasets contained 1374 subtype A1 sequences (435 

Swiss, 939 LANL), 15043 B (8390 Swiss, 6653 LANL) and 1571 C (419 Swiss, 1152 

LANL). The UK datasets comprised 4421 A1 (2507 UK, 1914 LANL), 38863 B 

(31450 UK, 7413 LANL) and 22027 C (15815 UK, 6212 LANL). The Swiss epidemic 

comprised more PWID, fewer self-identified heterosexuals and more patients of White 

ethnicity (Table 4.1). These differences were in part a result of the different subtype 

composition across the two countries, but even within subtype B there were notable 

differences (Table 4.1). The subsequent analysis mainly focused on subtype B.  

 

Figure 4.1: Proportion of UK (pink) and Swiss (blue) sequences in clusters. At 

different genetic distance (1.5% and 4.5%) and bootstrap (70%, 80%, 90%, 95%) 

thresholds. CH Switzerland. 

In the UK, a partial pol sequence was available for at least 30% of HIV diagnoses from 

2003 and for over 80% of diagnoses from 2007 onwards. In the SHCS, >60% of the 

HIV+ population has an HIV sequence available. Sequence dates go back to 1995 

owing to retrospective sequencing of samples from the SHCS Bio-bank. Accordingly, 

sequences are available for 79% of patients in the SHCS diagnosed with HIV after 

1995. In both Switzerland and the UK individuals for whom a sequence and 

epidemiological data were available broadly matched the characteristics of the HIV 
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diagnosed population as a whole, in terms of risk group, sex, ethnicity and age 

distribution [148, 198].  

Table 4.2: Proportion of sequences clustering at different cluster thresholds for 

the UK and Switzerland (CH) subtypes A1, B and C. 

 Subtype Bootstrap Genetic 
Distance 

Proportion 
clustered 

(CH) 

Proportion 
clustered 

(UK) 

p.Bonferroni 

A1 0.7 0.015 0.17 0.13 0.53 

A1 0.8 0.015 0.16 0.12 0.55 

A1 0.9 0.015 0.14 0.11 1 

A1 0.95 0.015 0.12 0.1 1 

A1 0.7 0.045 0.24 0.37 <0.0001 

A1 0.8 0.045 0.22 0.33 <0.0001 

A1 0.9 0.045 0.18 0.3 <0.0001 

A1 0.95 0.045 0.17 0.27 <0.0001 

B 0.7 0.015 0.22 0.26 <0.0001 

B 0.8 0.015 0.19 0.24 <0.0001 

B 0.9 0.015 0.15 0.19 <0.0001 

B 0.95 0.015 0.12 0.16 <0.0001 

B 0.7 0.045 0.29 0.6 <0.0001 

B 0.8 0.045 0.26 0.53 <0.0001 

B 0.9 0.045 0.2 0.46 <0.0001 

B 0.95 0.045 0.16 0.36 <0.0001 

C 0.7 0.015 0.14 0.14 1 

C 0.8 0.015 0.13 0.13 1 

C 0.9 0.015 0.12 0.11 1 

C 0.95 0.015 0.11 0.09 1 

C 0.7 0.045 0.2 0.42 <0.0001 

C 0.8 0.045 0.19 0.37 <0.0001 

C 0.9 0.045 0.16 0.29 <0.0001 

C 0.95 0.045 0.15 0.22 <0.001 

Note: p-values shown are from Fisher’s exact test, Bonferroni- corrected for multiple 

comparisons. 
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4.4.2 Difference in clustering 

A larger proportion of subtype B sequences were clustered in the UK than in 

Switzerland and this difference was statistically significant at all thresholds in the 

uncorrected analysis (Table 4.2, Figure 4.1). Concordantly, the UK was more clustered 

in the univariate analysis (Table 4.3) with odds for being in a cluster 4 times higher at 

4.5%. At a threshold of 4.5%, subtypes C and A1 were also more clustered in the UK, 

but there was no significant difference at 1.5%. The proportion of sequences clustering 

was much higher in the UK than in Switzerland at 4.5% (averaged across bootstrap 

thresholds) for subtypes B (49% vs 23%) and C (32% vs 17%). 

Because of the difference in sampling time distributions and demographics between 

the two subtype-B datasets, we considered the logistic regression adjusting for those 

variables. More recent samples were much more likely to cluster than older samples 

(Table 4.4) and when the model was adjusted for sample date, the Swiss epidemic was 

more clustered than the UK epidemic at 1.5% (and all bootstrap cut-offs). At 4.5%, 

clustering remained higher for the UK than for Switzerland but the strength of the 

association was halved compared with the univariate model.  

Table 4.3: Unadjusted logistic regression predicting cluster membership for the 

UK and Switzerland (Subtype B). 

Bootstrap  Genetic 
Distance 

Covariates OR 2.5% 97.5% 

0.7 0.015 UK 1.316 1.243 1.394 

0.8 0.015 UK 1.335 1.258 1.418 

0.9 0.015 UK 1.396 1.308 1.492 

0.95 0.015 UK 1.444 1.345 1.551 

0.7 0.045 UK 5.001 4.745 5.272 

0.8 0.045 UK 4.119 3.904 4.347 

0.9 0.045 UK 3.942 3.722 4.176 

0.95 0.045 UK 3.176 2.986 3.381 

OR: odds-ratio 
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Table 4.4: Logistic regression predicting cluster membership in the UK and 

Switzerland, corrected for sample year (Subtype B). 

Bootstrap Genetic Distance Covariates OR 2.5% 97.5% 

0.7 0.015 UK 0.66 0.617 0.705 

  Sample year 1.138 1.131 1.145 

0.8 0.015 UK 0.665 0.621 0.713 

  Sample year 1.142 1.134 1.149 

0.9 0.015 UK 0.694 0.645 0.749 

  Sample year 1.146 1.138 1.154 

0.95 0.015 UK 0.706 0.651 0.765 

  Sample year 1.153 1.144 1.162 

0.7 0.045 UK 2.692 2.538 2.856 

  Sample year 1.134 1.128 1.14 

0.8 0.045 UK 2.12 1.996 2.252 

  Sample year 1.145 1.139 1.151 

0.9 0.045 UK 1.968 1.846 2.099 

  Sample year 1.156 1.15 1.163 

0.95 0.045 UK 1.551 1.448 1.662 

  Sample year 1.161 1.154 1.168 

OR: odds-ratio 

4.4.3 Degree distributions 

Degree distributions for each country and risk group were generated based on cluster 

size distributions and compositions. For example a cluster containing 3 heterosexuals 

is equivalent to 3 heterosexuals each with degree 2. Degree distributions for the 

populations as a whole and for each risk group were then compared between the two 

countries using the KS and DDQC tests. Based on the KS test, there was no difference 

between the two countries at 1.5%. At 4.5%, distributions differed significantly for 
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HET, MSM and the population taken as a whole but not for PWID (Table 4.5). The 

difference appeared to be driven by the longer tail of the UK distributions (Figure 4.2), 

indicating the existence of larger clusters in the UK.  

Table 4.5: Results of the KS test for comparing degree distributions between the 

UK and Switzerland (Bonferroni-corrected). 

Bootstrap  Genetic 
Distance 

Risk 
group 

p.Bonferroni 

0.9 0.045 all 0 

0.9 0.045 MSM 0 

0.9 0.045 HET <0.0001 

0.9 0.045 PWID 1 

 Note: p values are shown only for bootstrap=0.9 but significance was consistent 

across bootstraps. 

 

Figure 4.2: Degree distributions of the UK (pink) and Swiss (blue) subtype B 

epidemics CH Switzerland, MSM men who have sex with men, HET 

heterosexuals. Cluster definition was: genetic distance = 4.5% and bootstrap = 

90%. Note that the proportion of individuals of each degree is shown rather than 

the absolute number of individuals of each degree. The number of clustered 

individuals was much larger in the UK than in Switzerland.  

Because the KS test is sensitive to differences in scale between networks, we then 

applied the DDQC. The DDQC measures the distance between networks based on 

features extracted from their degree distribution. This metric has been devised 

deliberately to be robust to differences in scale between networks. However, it does 
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not indicate whether distances calculated are significant or not. In order to generate a 

null distribution for the DDQC, the UK and Swiss degree distributions were compared 

to themselves through bootstrapping. The UK and Swiss degree distributions were 

each bootstrapped 100 times (see Methods) and the DDQC distance calculated 

between the true data and each bootstrap replicate (Figure 4.3). Between country 

DDQC values were considered significant if they exceeded the 95% percentile of the 

within country DDQC values (one-sided test). The DDQC distance was higher than 

expected only for HET (95th percentile DDQC=0.97, observed HET DDQC=1.22). 

 

Figure 4.3: DDQC distances within and between countries. CH Switzerland, 

MSM men who have sex with men, HET heterosexuals. Cluster definition was: 

genetic distance =4.5% and bootstrap=90%. In order to generate null 

distributions of the expected values for the DDQC, we bootstrapped the Swiss 

and UK distributions and calculated DDQC values comparing the original 

datasets to their bootstrap samples (in blue and pink). The top of the coloured 

bars represent the mean distance of within country comparisons and the whiskers 

represent the 95% percentiles. The DDQC distance was then calculated between 

the UK and Swiss degree distributions (black triangles). The distance between 

countries was considered significant if it exceeded the 95% percentile from the 
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simulated values, which was the case only for HET at 4.5% (indicated by *). 

When we removed heterosexuals who were likely to have been infected through 

sex with men from the UK degree distributions, the DDQC distance between the 

UK and Swiss HET degree distribution fell within the simulated null distribution 

(orange triangle).  

We hypothesised that the difference highlighted by the KS test at 4.5% might be the 

result of a difference in scale between the two epidemics. Although HIV prevalence is 

lower overall in the UK, the UK population (and the HIV+ population) is much larger 

than that of Switzerland and so the pool of partners available within the population is 

bigger. Thus the UK subtype B dataset (n=31450) used here was 3.75 times larger than 

the Swiss dataset (n=8390), the UK MSM dataset was 5.7 times larger and the UK 

heterosexual dataset was 1.3 times larger (Table 4.1). To examine the effect of 

epidemic size on clustering and degree distribution, we down-sampled the UK subtype 

B datasets to match the size of the Swiss datasets. In parallel, the Swiss dataset was 

bootstrap sampled with replacement. This was repeated 100 times for the population 

as a whole and for MSM and HET. In each replicate, we re-estimated the degree 

distribution based on the links remaining in the sample. When these equal-sized 

resampled datasets were compared, the UK and Swiss degree distributions overlapped 

for the population as a whole and for the MSM population, but not for HET (Figure 

4).  

In the true and the jackknife sampled UK HET population, individuals with high 

degree (>20) were present, who were not observed in the Swiss data (Figure 4.4). The 

largest exclusively heterosexual risk group in the UK comprised 27 individuals 

(bootstrap=0.9, GD=4.5%), all HETs with higher degree were in clusters that were 

dominated by MSM. When we dropped HETs with degree >26 from the UK HET 

distribution, the DDQC distance between the two networks was below the 95% 

percentile of the within country DDQC values (DDQC = 0.17, Figure 4.3).  
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4.4.4 Cross border transmission 

We investigated intermingling between national and foreign sequences by removing 

the 80% national criterion. We used a tight genetic distance threshold (1.5%, 70% 

bootstrap) to be more likely to capture close transmission partners. At this threshold, 

Swiss sequences clustered with 162 non-Swiss sequences and UK sequences clustered 

with 353 non-UK sequences. For Switzerland, Western European countries provided 

over 75% of the links. For the UK, 50% of close links were with other European 

countries and 20% originated from other Anglophone countries: Australia, Canada and 

the USA (Figure 4.5). 

 

Figure 4.4: Jack-knife and bootstrap sampled degree distributions of the UK 

(pink) and Swiss (blue) epidemics. UK subtype B degree distributions for men 

who have sex with men (MSM), heterosexuals (HET) and the population as whole 

(all) were jack-knife sampled 100 times to match the size of the Swiss epidemics 

(in light pink). The Swiss epidemic was bootstrapped 100 times to its full size (in 

light blue). Degree distributions are shown on a double-logged scale. Samples 

overlapped for MSM and the dataset as a whole, but not for HET. Where Swiss 

replicates cannot be seen they are covered by the UK replicates.  

4.5 Discussion 

The aim of this study was to compare clustering patterns between the two most densely 

sampled HIV epidemics, the UK and Switzerland, while adhering to data governance 

procedures. Because a statistical framework for comparing cluster distributions is 

lacking, we generated degree distributions based on cluster sizes and composition and 
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compared them through formal statistical tests: the KS test, the DDQC and 

bootstrapping. Based on the KS test, there were differences between the UK and Swiss 

subtype B degree distributions at 4.5%. However, downsampling the UK dataset to the 

size of the Swiss dataset rectified this difference in all risk groups except for 

heterosexuals. In parallel, only heterosexuals showed a significant difference based on 

the DDQC test, which corrects for network size.  

 

Figure 4.5: Origin of close linkages for Switzerland (left) and the UK (right). 

Swiss sequences clustered closely (1.5% genetic distance, 70% bootstrap) with 

162 non-Swiss sequences and UK sequences clustered with 353.  

The degree distribution of UK heterosexuals had a long tail representing male 

heterosexuals clustered exclusively with MSM. Previous analyses of the UK HIV 

RDB have demonstrated that a proportion of self-reported male heterosexuals are 

likely to have been infected through sex with men [106] and it is likely to be the case 

for the heterosexuals identified here. This result highlights the limitations of our 

approach in which self-reported heterosexuals are identified as heterosexuals even 

though they cluster only with MSM. Another way of classifying patients could be to 

do so based on the characteristics of the other individuals they cluster with [199]. In 

this example, these self-reported heterosexuals would instead be classified as MSM. 

When those high degree heterosexuals were removed from the UK HET dataset, the 

UK and Swiss degree distributions no longer differed. Male heterosexuals who have 

sex with men are likely to also have sex with women and provide a bridge between 
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MSM and heterosexual epidemics. This is a likely route for the spread of non-B 

subtypes among MSM in the UK (Chapter 1). More detailed analyses of the Swiss 

epidemic have found little overlap between the MSM and HET epidemics [105]; 

however, the Swiss heterosexual with the highest degree was similarly part of a 

HET/MSM cluster comprising 36 individuals, while the largest exclusively 

heterosexual cluster contained only 9. In fact, 47% of UK and 38% of Swiss 

heterosexuals were in HET/MSM clusters.  

A more obvious difference was that 23% of Swiss heterosexuals clustered with PWID, 

as opposed to 12% of UK heterosexuals. However, PWID degree distributions showed 

no difference between countries, although this could be due to sample size. More 

importantly, the stemming of the heterosexual epidemic through PWID in Switzerland 

is likely to be an old process [105] while the potential bridging between HET and 

MSM in the UK is likely to be ongoing [106] (Chapter 1). 

All our findings were consistent across bootstrap thresholds, and so bootstrap cut-off 

is not as useful in delineating clusters as genetic distance. At 1.5%, we found no 

difference between the degree distributions of the Swiss and UK epidemics. At such a 

tight threshold, mostly pairs and recently infected patients are likely to be captured and 

these groupings are similar across the two countries. At 1.5%, the UK epidemic 

initially appeared more highly clustered than the Swiss epidemic, but when sample 

date was taken into account, the Swiss epidemic became more clustered than the UK 

epidemic, indicating that close partners were more likely to be captured by the SHCS. 

The time between a new diagnosis and that patient’s sequence being included in the 

database is shorter in the SCHS, and it is possible that Swiss coverage is slightly 

higher.  

At 4.5%, the UK was more clustered and so the UK HIV RDB is more likely to capture 

larger transmission chains. However, the downsampled UK epidemic degree 

distributions overlapped with the Swiss degree distributions. While this does not 

change the fact that the proportion of individuals in clusters in the UK is higher, it 

means that the difference is seemingly due to its greater epidemic size rather than 

because of differences in the contact or transmission processes between the two 
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countries. The UK HIV epidemic is not particular insular but because the UK HIV 

RDB is so large the impact of foreign sequences in phylogenies is less dramatic. Both 

countries are integrated into global unsampled epidemics, and this study underlines the 

importance of HIV public health interventions at the European and global scales.  

Transmission between European countries has been analysed in more depth elsewhere 

[98]. In agreement with that analysis, we found Spain to be a major mixing partner for 

both Switzerland and the UK. Germany and the Czech Republic were also identified 

as important. In their phylogeographic analysis, Paraskevis et al. noted significant 

migration of HIV from the UK to Germany [98] and this may be what we are capturing 

here. We did not conduct a phylogeographic analysis to determine the direction of 

these transmission events, but our use of a tight genetic distance threshold increases 

the likelihood that links captured are direct. We also found increased linkage between 

the UK and other Anglophone countries. In Switzerland strong segregation has been 

observed between German and French-speaking regions [105] and this language-

dependency of HIV transmission warrants investigation at the global scale.  

Both countries have noted the subtype diversification of their respective epidemics 

[93, 200], yet the difference in size between the UK and Swiss subtype A1 and C 

datasets (18,000 vs 900, respectively) meant that a detailed analysis was not 

worthwhile. In Switzerland the most recent analysis concluded that fewer than 25% of 

non-B infections were acquired in the country [97] whereas in the UK over 50% of 

infections in individuals born abroad are thought to have occurred in the UK [95]. 

Local non-B non-heterosexual transmission appears far more extensive in the UK 

(Chapter 5). 

Although degree distributions are a blunt tool for elucidating the dynamics of an 

epidemic [123], they allowed us to apply statistically robust methods (which are not 

affected by our degree distribution definition) to compare the two epidemics without 

the need for exchanging sensitive data. The data being bootstrapped are not fully 

independent because a) sequences are sampled from clusters and cluster membership 

of sequences depends on other sequences in the cluster and b) sequences in the tree are 

all related to each other through the phylogeny. However, the aim of bootstrapping 
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and jackknifing tests was to determine whether sampling and population size might 

explain the differences in degree distributions observed between the two countries. 

The non-independence of the data would cause bootstrap and jackknife samples to 

look more similar to each other and to the original data, meaning that the difference 

between the UK and Swiss degree distributions would not be minimised. Thus the 

finding that the difference was no longer significant after jackknife sampling and this 

finding should not be affected by the non-independence of the data. A second issue, 

the distributions of sample dates differing between the two cohorts, arose because of 

extensive retrospective sequencing by the SHCS of patients diagnosed early on in the 

epidemic and for whom samples had been stored. The SHCS bias towards older 

samples explains in part the lower clustering observed in Switzerland. However, 

clustering remained significantly higher in the UK at 4.5% after sample date was 

adjusted for. While our aim was that the analysis conducted be as similar as possible 

across the two countries, subtypes were assigned using REGA in Switzerland and 

SCUEAL in the UK. The impact of this should be limited as the analysis focused on 

pure subtypes and mostly on subtype B. Next, our analysis is limited by the fact that 

we were unable to directly use each other’s data and analysed only meta-data generated 

from each other’s cluster analyses. We were not able to build trees containing 

sequences from both the SHCS and the UK HIV RDB, but the epidemics are likely to 

be highly intertwined. This can be concluded from the cross-border analysis as the UK 

was an important mixing partner for Swiss sequences. The reverse was not seen (i.e. 

Switzerland appearing as a major mixing partner for the UK), likely to be due to the 

ratio of LANL UK sequences available to SHCS sequences in comparison to the ratio 

of Swiss LANL sequences to UK HIV RDB sequences. A future study might be 

facilitated by the same person conducting both sets of analyses. This would allow them 

to get a better feel for each set of data, even if data were not amalgamated. Finally, 

international linkages are biased in favour of countries that have deposited sequences 

in public databases. We suggest the apparently important contribution of the Czech 

Republic to both epidemics may arise from recent submission of large numbers of 

sequences from that country.  
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In conclusion, by using a highly coordinated approach we showed that apparent major 

differences in clustering patterns between the UK and Switzerland subtype B 

epidemics can be explained by differences in size. This is the first study leveraging the 

vast amounts of data available in more than one national HIV database. We have 

shown how to make use of such data without breaching data governance procedures. 

Current transmission of subtype B in the UK and Switzerland is likely to be driven by 

similar underlying factors. 
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5 TRANSMISSION OF NON-B 

HIV SUBTYPES IS DRIVEN 

BY LARGE NON-

HETEROSEXUAL CLUSTERS 

5.1 Abstract 

In the UK HIV subtypes continue to be characterised by risk group composition. MSM 

represent over 85% of subtype B infections, while over 85% of non-B subtype 

infections occur among self-identified heterosexuals. However, between 2002 and 

2010 the proportion of non-B diagnoses among MSM increased from 5.4% to 17%, 

which may indicate that the transmission dynamics of non-B subtypes are changing. 

Over 14,000 subtype A1, C, D and G sequences from the UK HIV RDB were analysed. 

Transmission clusters were defined by a maximum genetic distance of 4.5% and 90% 

bootstrap support, and I investigated relative patterns of growth by risk group between 

2007 and 2009.  
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Of 1148 clusters of these 4 subtypes which contained at least two sequences in 2007, 

>75% were pairs and >90% were heterosexual. Most clusters (71.4%) did not grow 

during the study period, and pairs were significantly less likely to grow than larger 

clusters (75.5%, p<0.0001). In comparison with simulated trees for the same time 

period, cluster growth was lower than expected for small clusters, and higher than 

expected for clusters larger than 6. Growth was higher than expected for clusters 

comprising sequences from MSM and PWID and lower than expected for all other risk 

groups. The number of new diagnoses in clusters containing both heterosexuals and 

MSM was much higher than expected for subtype C. Both risk group (p<0.0001) and 

original cluster size (p<0.0001) were predictive of cluster growth in a generalized 

linear model. 

These results show that despite the increase in non-B subtypes historically associated 

with heterosexual transmission, MSM and PWID continue to be most at risk of 

ongoing transmission. Crossover of subtype C from heterosexuals to MSM has led to 

the expansion of this subtype within the UK.  

5.2 Introduction: non-B subtype transmission in the UK 

The global HIV-1 epidemic is characterised by extremely high genetic diversity: nine 

subtypes (A-D, F-H, J and K) circulate along with numerous recombinant forms. 

While globally subtype C predominates, accounting for 50% of infections [11], non-B 

subtypes were rare in the USA and Europe until recently. In the UK from the 1980s to 

around 1995, the epidemic was dominated by the transmission of subtype B among 

MSM [107]. Subtype B remains individually the most prevalent subtype in Europe 

(>80% of infections) [201] and in the UK (~40% of diagnoses) [93]. However, non-B 

subtypes increased in prevalence in the UK from <25% of diagnoses in the early 1990s 

[202] to 60% in 2010 [93] (Figure 1.3). Rises have been seen in other European 

countries [97, 203, 204]. In the USA, only 3% of samples sent to the national 

laboratory between 2004 and 2010 were non-B subtypes, but the portion increased 

from 0% to 4% during that period [205]. 
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Generalised HIV epidemics (HIV prevalence > 1% in the general population [206]) 

are characterised by non-B subtypes transmitted among heterosexuals [201, 207]. The 

increase in non-B subtypes in Western countries between 1990 and 2003 corresponds 

to the rise in new HIV diagnoses among heterosexuals born abroad. However, the 

number of new HIV diagnoses among heterosexuals born abroad decreased from 4426 

in 2005 to 2,688 in 2013 due to changing patterns of migration [6]. In 2010, 

heterosexually acquired infections represented around half of all UK diagnoses [6] and 

85% were classed as non-B subtypes [93]. This association between subtype and risk 

group has led to the frequent use of subtype as a proxy for transmission route in 

phylogenetic analyses of HIV [108, 109]. However, by 2007, the prevalence of non-B 

subtype HIV infections among UK-born MSM was 5.4% [208] and by 2010, this 

proportion had risen to 17% (415 infections) [93].  

Several studies have set out to measure the relative contribution of migration and 

domestic HIV transmission to the increase in non-B subtype prevalence. In the UK, 

significant clustering of subtypes A1 and C has been observed [109] including among 

MSM [209] indicating some local transmission. However, clustering alone doesn’t 

reveal the proportion of non-B subtype infections being acquired within the country. 

In Switzerland, von Wyl et al. (2011) estimated the proportion of new infections 

arising within Swiss-specific non-B subtype clusters (subtrees including ≥80% Swiss 

sequences) to be fewer than 25% [97]. Brand et al. (2014) examined clustering of 

sequences sampled from recently acquired infections (based on the results of the BED 

enzyme immunoassay [210]) concluding that at least 20% of non-B subtype infections 

had been acquired in France. The authors noted that while most non-B subtype 

diagnoses in France are made among heterosexuals, MSM were involved in the 

majority of clusters (defined as >90% bootstrap and <1.5% average genetic distance) 

[100].  

In the UK, Aggarwal et al. investigated medical record and laboratory diagnostics for 

a small cohort to determine for each patient whether they had been infected before or 

after arrival into the UK [94] but such an intensive approach is infeasible at the national 

level. Rice et al. explored the origin of infections among heterosexuals born abroad by 
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calculating their estimated year of infection based on a detailed analysis of CD4+ 

decline [95]. In combination with their date of entry in the country, this was used to 

determine whether each patient was more likely to have been infected before or after 

arrival into the UK. These authors estimated that 73% of HIV+ heterosexuals born 

abroad diagnosed in 2002 were infected outside the UK , but by 2011 over 50% had 

acquired HIV within the UK [95]. This analysis was performed at the national level; 

however, it does not discriminate the sub-epidemics associated with different 

subtypes, and neither Aggarwal [94] nor Rice [95] can distinguish infections acquired 

through travel following domicile in the UK. 

In order to analyse the recent transmission dynamics among non-B HIV subtypes in 

the UK, I used tools recently developed by our group (Chapter 0) [197] which facilitate 

the analysis of large pathogen sequence datasets and link them to epidemiological data. 

I applied these approaches to the analysis of sequences from the UK HIV RDB. As in 

previous work international databases were used to eliminate clustering that does not 

reflect UK-based transmission [109]. Taking this approach I have quantified the 

transmission dynamics of non-B subtypes across risk groups in the UK. 

5.3 Methods 

5.3.1 Data 

43,002 partial HIV pol sequences were obtained from the UK HIV RDB 2010 

download (see section 2.1.2). Subtypes C (10872, 25.3%), A1 (2083, 4.9%), G (965, 

2.2%) and D (815, 1.9%) were the most common after subtype B and are analysed 

here.  

5.3.2 HIV cluster dynamics 

5.3.2.1 Cluster identification 

The CP and CM (Chapter 0) [197] were used to analyse transmission dynamics. 

Phylogenetic trees were built in RaxML [162] for each subtype separately against a 

background of global sequences from LANL (see section 2.1.3). In all four trees, 

clusters were picked for analysis if they contained at least 2 sequences, 80% or more 
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of sequences were from the UK, bootstrap support exceeded 90% and maximum 

pairwise genetic distance was below 4.5% [108].  

5.3.2.2 Cluster dynamics 

Clusters were sorted into risk groups based on the self-identified risk group 

information associated with each sequence in the cluster. Proportions were calculated 

based on all sequences in a cluster, including those for which risk group was 

unavailable. I used the following hierarchical rules to classify clusters: 

- If >25% of the sequences in a cluster came from PWID, the cluster was classified 

as PWID; 

- If both HET and MSM each accounted for >10% of sequences, the cluster was 

classified as “crossover”; 

- If MSM accounted for >50% of sequences the cluster was classified as MSM, and; 

- If HET accounted for >50% of sequences, the cluster was classed as HET. 

- Otherwise, the cluster was classified as unknown (not available, NA). 

Two other sets of rules tested the extremes of this risk group classification. According 

to the majority risk group definition, the risk group of the cluster was that of the 

majority of the sequences in the cluster. If two risk groups each accounted for 50% of 

sequences, both risk groups were used and growth was divided proportionally between 

them (or attributed to the crossover risk group in the case of HET-MSM clusters). 

According to the minority cluster definition, the risk group of any sequence in the 

cluster entered the risk group classification and growth rate was split between risk 

groups as for the majority definition. In both cases, clusters containing 50% or more 

sequences with unknown risk group were classified as NA. For clusters that contained 

at least one UK sequence collected up to December 2007, I counted the number of UK 

sequences in the cluster collected prior to December 2007 (old sequences) and the 

number of UK sequences added to the cluster after 2007 (new sequences). Cluster 

growth was calculated as the number of “new” sequences divided by the number of 

“old” sequences, and expressed as a percentage increment based on initial cluster size 

[211]. Cluster growth between clusters of different starting sizes and of different risk 

groups were compared using the Kruskal-Wallis test. 
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5.3.3 Simulations 

Expected distributions for cluster growth were simulated according to a model in 

which all tips in the tree are equally likely to transmit. The distribution of bootstrap 

support values and branch lengths were obtained from the full trees (excluding global 

background sequences), following which sequences collected after 2007 were 

stripped. Removed sequences were then added to a random branch in the tree to 

simulate new infections. The probability of any branch being selected was proportional 

to its length. The branch length and bootstrap support for the new bifurcation were 

drawn at random from the branch length and bootstrap distributions of the full tree 

containing all sequences up to end of 2009 (see Appendix 3). For pseudocode, see 

Appendix 6. Sequences were simulated along the resulting phylogenies under a GTR 

substitution model with nucleotide frequencies from the original data using SeqGen 

[212], ensuring that mean genetic distance among simulated sequences was equivalent 

to that of the true sequences. This was repeated 1000 times for each tree. Clusters 

(≥90% bootstrap and ≤4.5% genetic distance) were picked in the simulated trees, and 

cluster growth calculated as in the original trees, in order to generate expected cluster 

growth distributions for each subtype. Cluster growth was compared between clusters 

of different starting sizes and different risk groups.  

In parallel, we conducted a permutation test, permuting the risk groups across the tips 

of the trees. Each time risk group was re-estimated according to the rules in section 

5.3.2.2, and we compared cluster growth according to risk group. 

5.3.4 Generalised linear model 

A generalised linear model (GLM) was constructed to express the number of new 

sequences as a variable dependent on the number of old sequences, risk group and 

subtype. The distribution of the dependent variable was tested against Poisson, 

negative binomial and gamma distributions to verify that a GLM would be appropriate. 

The distribution of the number of new sequences was adequately fitted by a negative 

binomial distribution (Χ2 test, p=0.1) with no other model offering a better fit, and so 

the Negative Binomial GLM available in R [154] was used. 
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5.4 Results 

 

Figure 5.1: Risk group classification of clusters (2009). 2327 clusters (304 A1, 

1785 C, 113 D, 125 G) contained at least two sequences: 1630 clusters were pairs 

and 681 comprised more than two sequences. MSM men who have sex with men, 

HET heterosexual, PWID people who inject drugs, NA not available.  

I investigated the dynamics of transmission clusters of non-B subtype HIV sequences 

between January 2007 and December 2009 to determine the drivers of new diagnoses 

during this time period. After exclusion of any duplicates, the 2010 UK HIV RDB 

subtype A1 dataset contained 2083 sequences, of which 630 were collected after 

December 2006 and the subtype C dataset contained 10830 sequences, including 4852 

collected after 2006. Of 815 subtype D sequences, 279 were collected after 2006; and 

of 965 subtype G sequences, 472 were collected after 2006. Thus while the UK HIV 

RDB subtype A1 and D datasets grew by ~50% during the study period, the subtype 

C and G datasets grew by over 80%. To these were added over 7000 non-UK 

sequences selected by Viroblast to distinguish between UK and non-UK transmission. 
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Phylogenetic trees were reconstructed separately for the four subtypes and clusters 

were identified. 

A total of 2327 clusters (304 A1, 1827 C, 112 D and 125 G) meeting the above criteria 

were identified in the four trees. 101 clusters were excluded because they comprised 

<80% UK sequences, of which only 26 contained more than one UK sequence. 5999 

UK sequences (41%) clustered with at least one other UK sequence used in the 

phylogenetic analysis. Over half of linked sequences were linked to only one other 

(“pairs”; 3260 of 5999 sequences and 1630 of 2327 clusters). Of 2327 clusters, 969 

(42%) could not be assigned a risk group. Of the clusters that could be classified, the 

great majority were HET (1231/1358; 91%). A further 31 clusters were classed as 

MSM (2.3%), 23 as PWID (1.7%) and 73 as crossover clusters containing sequences 

from MSM and HET (5.4%; Figure 5.1).  

 

Figure 5.2: Risk group composition of each cluster. Clusters were sorted by 

proportion of heterosexuals (HET), men who have sex with men (MSM) and 

people who inject drugs (PWID). Sequences which did not have risk group 

information are not shown and clusters which were not assigned a risk group are 

not shown. 

Risk group cluster classifications were mostly “clean” (Figure 5.2) with 82.4% of 

clusters containing a single risk group. Only four clusters out of 2327 contained a mix 
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of heterosexuals, MSM and PWID. Crossover clusters were clear mixes of MSM and 

heterosexual sequences. 

5.4.1 Cluster growth depends on initial cluster size 

Of the 1148 clusters that existed (pairs or larger clusters) in January 2007, only a 

minority changed during the study period (328/1148, 28.6%; Table 5.1). This effect 

was more pronounced in subtypes A1, D and G where fewer than 20% of clusters 

changed, compared to 33.5% in C (Table 5.1, Fisher’s exact test p<0.0001). Pairs were 

significantly less likely to grow than larger clusters (p<0.0001). Among pairs only 

215/879 (24.5%) changed during the study period. Overall, of 6233 new non-B 

subtype sequences added to the database after January 2007, 1457 (23.4%) linked to 

sequences already in the database before that date. This proportion was higher among 

subtypes A1 (24.6%) and C (25.0%) than among D (11.1%) and G (12.7%; p<0.0001). 

Table 5.1: Proportion of clusters showing growth between 2007 and 2009. 

Subtype  Total Growth 

A1, C, D, G all clusters* 1148 328 (28.6%) 

A1, C, D, G Pairs 879 (76.6%)# 215 (24.5%) 

A1 all clusters* 190 37 (19.5%) 

A1 Pairs 147 (77.4%)# 24 (16.3%) 

C all clusters* 792 265 (33.5%) 

C Pairs 614 (77.5%)# 175 (28.5%) 

D all clusters* 87 12 (13.8%) 

D Pairs 63 (72.4%)# 8 (12.7%) 

G all clusters* 79 14 (17.7%) 

G Pairs 55 (69.6%)# 832 (14.5%) 

Notes: *containing at least one sequence collected before December 2006; # pairs 

as a percentage of all clusters 

For clusters containing at least one sequence collected prior to January 2007, 

growth was calculated as the number of sequences collected after this date divided 

by the number of sequences already clustered. In the UK data, growth varied 
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significantly between clusters of different starting sizes (Kruskal-Wallis test, df=4, 

p<0.0001). 

 

Figure 5.3: Cluster growth according to initial cluster size (2007). For each cluster 

in 2009 containing at least one sequence collected before 2007, cluster growth was 

calculated as the number of new sequences over the number of old sequences (in 

pink). In parallel, expected cluster growth was simulated according to initial 

cluster size (in blue, 1000 simulations, mean and distribution shown).  

Cluster growth increasing with cluster size in 2007 for subtypes A1 and C (Figure 5.3, 

in pink), and this trend was significant only for subtype C (r=0.95, p<0.05). Single 



Chapter 5: Transmission of non-B HIV subtypes is driven by large non-heterosexual clusters 

 

Manon Ragonnet-Cronin - October 2015   115 

 

sequences collected prior to 2007 that formed clusters after 2007 (670 in total) were 

not included.  

A simulation-based approach was adopted to test whether observed cluster growth 

differed significantly from that expected if sequences were added to trees at random. 

If all individuals in a population are equally likely to transmit, the probability of a new 

infection linking to any specific infection from the original population is equal to one 

over the total size of the population. Although the entire population is not sampled, the 

full genetic diversity of the population is captured by the tree and a new infection 

unlinked to those previously sampled will fall on a branch distant to the tree’s terminal 

nodes. The longer the length of a single branch, the more likely it is that individuals 

have been missed along that branch and that a newly identified infection could occur 

along that branch. The probability of a new infection being linked to any given cluster 

is proportional to the size of that cluster.  

Table 5.2: Cluster growth by cluster size (2007), mean observed and expected. 

Subtype Initial cluster 
size (2007) 

Number of 
clusters 

Observed 
growth 

Expected 
growth (2.5% 

quantile) 

Expected 
growth (97.5% 

quantile) 

A1 2 147 0.094 0.097 0.196 

C 7+ 8 0.990 0.000 0.857 

D 2 63 0.071 0.075 0.256 

G 2 55 0.100 0.145 0.439 

Notes: Clusters are only shown if their observed growth did not fall within the 95% 

expected growth quantiles (p<0.05). Subtype C clusters sized 7 and above 

exceeded their expected growth while subtype A, D and G clusters sized 2 grew 

less than expected. 

Sequences collected after January 2007 were stripped from the tree and added back 

with the probability of attachment based on the length of each branch and on the 

genetic distance and bootstrap distributions from the original tree (see Methods 5.3.3). 

In each simulated tree, clusters were picked as described previously and average 

cluster growth was calculated for clusters of each starting size and each risk group.  
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In the simulated data, average expected growth values were normally distributed 

(Figure 5.3, in blue). For clusters of each size, I evaluated whether the observed value 

of cluster growth fell within the 95% quantile estimates of the simulations (Table 5.2). 

For subtypes A1, D and G, growth of pairs was below the 2.5% quantile (p<0.05) of 

growth in the simulations. In 2007, there were a small number (8/792) of larger clusters 

(≥ 7) in subtype C, and none in the other subtypes. For this group, growth was higher 

than the 97.5% quantile (p<0.05) of simulated clusters. All other values for cluster 

growth fell within the 95% quantiles of the simulations.  

Table 5.3: Mean observed cluster growth and expected growth by risk group. 

Subtype Risk group Number of 
clusters* 

Observed 
growth 

Expected growth 
(2.5% quantile) 

Expected growth 
(97.5% quantile) 

A1 MSM# 9 0.421 0 0.417 

A1 PWID# 2 0.833 0 0.750 

C MSM# 10 0.640 0.050 0.550 

C PWID# 5 1.015 0 0.875 

C crossover# 36 0.550 0.073 0.500 

D NA 31 0.075 0.358 1 

G non-HET 6 0.056 0.130 0.462 

Notes: *containing at least two sequences collected before January 2007. Clusters 

are only shown if their observed growth did not fall within the 95% expected growth 

quantiles (p<0.05). Clusters which grew more than expected are indicated by #. 

MSM men who have sex with men; PWID people who inject drugs; NA not available; 

non-HET non-heterosexual. 

5.4.2 Cluster growth is higher for non-heterosexual risk groups 

Analysis by risk group was performed on clusters containing at least 2 sequences in 

2007 (n=1148). Growth differed significantly between risk groups when all subtypes 

were analysed together (Kruskal-Wallis, p<0.005, df=4). Although MSM (mean 

growth=0.54), PWID (mean growth=0.64) and crossover (mean growth=0.44) clusters 

grew significantly more than HET clusters (mean growth=0.18), this was also 

observed in the simulated data (p<0.0001, df=4) due to the differing initial cluster size 

between risk groups (p<0.0001, df=4). For subtypes A and C, cluster growth was 
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higher in the observed data than in the simulations for PWID, MSM and crossover 

clusters (Table 5.3, Figure 5.4), indicating initial cluster size was not responsible on 

its own. 

In the permutation test (Figure 5.5), growth followed the same patterns as in the 

simulation except for subtype A1 and C clusters where crossover clusters where 

growth was higher than in the observed data. This can be explained by the fact that the 

majority of MSM clusters became crossover clusters after the permutations because of 

the over-representation of heterosexuals among the new tips,  

Changing the rules of cluster risk group classification changed the risk group of only 

11/1148 clusters for the minority definition and 43/1148 clusters for the majority 

definition (of which 29 were crossover clusters which became either HET or MSM). 

Differences in growth rates between risk groups were unchanged other than crossover 

growth rate dropping in the majority definition because most crossovers clusters were 

relabelled as either MSM or HET (Figure 5.6). 

5.4.3 Cluster size and risk group act independently on cluster growth 

To determine whether the effect of cluster size remained significant when risk group 

was accounted for, I constructed a generalized linear model (GLM) expressing the 

number of new sequences as a variable dependent on the number of old sequences, 

risk group and subtype. Risk group and number of old sequences were added to the 

model sequentially, with risk group highly predictive (p<0.0001) and the addition of 

cluster size significantly improving the fit of the model (ANOVA likelihood ratio test, 

p<0.0001). The difference in effect between subtypes was highly significant 

(p<0.0001). There was no significant interaction between risk group and cluster size 

(p=0.108). In terms of effect, the model explained 24.75% of the variance in growth: 

risk group accounted for 12.31%, initial cluster size for 9.32% and subtype for 3.12%. 

Cluster growth was higher for crossover (p<0.0001), PWID (p<0.05) and MSM 

(p<0.01) clusters, for subtype C clusters (p<0.01) and increased with initial cluster size 

(p<0.0001). 
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Figure 5.4: Cluster growth according to risk group (simulation). Observed cluster 

growth is shown in pink and mean expected growth and distributions from 1000 

simulations are shown in blue. For subtypes D and G, numbers of non-

heterosexual clusters were small and so these were amalgamated for analysis. 

MSM men who have sex with men; HET heterosexual; PWID people who inject 

drugs; NA not available; non-HET non-heterosexual.  

Because the data contained a large number of clusters which did not increase in size at 

all (dependent variable=0), I also ran a zero-inflated model which estimated 

coefficients separately for growth and non-growth (pscl library in R [213]). Initial 

cluster size was included as an offset because we expect larger clusters to grow more.  
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Figure 5.5: Cluster growth according to risk group (permutation). Observed 

cluster growth is shown in pink and mean expected growth and distributions 

from 100 permutations are shown in blue. For subtypes D and G, numbers of 

non-heterosexual clusters were small and so these were amalgamated for analysis. 

MSM men who have sex with men; HET heterosexual; PWID people who inject 

drugs; NA not available; non-HET non-heterosexual.  

None of the zero-inflation model coefficients (risk group and subtype) were significant 

(all p>0.6). The effect of risk group and subtype followed the same trend as in the 

original glm, but the effects were not all significant. Heterosexual clusters grew 

significantly less than crossover clusters (p <0.05) and subtype C clusters grew more 
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than other subtypes (p <0.01), but the effect of PWID, MSM and subtypes D and G 

were not significant. 

 

Figure 5.6: Growth rate according to risk group under three definitions. Two risk 

group classification procedures (minority and majority definition) were tested in 

addition to the classification used in the paper. Cluster growth rates are 

according to risk group did not change significantly as shown by the overlap in 

standard error bars, except for among crossover clusters as most of these 

disappeared based on the majority definition. MSM: men who have sex with men, 

HET: heterosexual, PWID: people who inject drugs; NA not available.  

5.4.4 C is increasingly acquired in the UK while D and G are imported.  

An increase in the ratio of clustering to non-clustering sequences in the database over 

time would indicate a rise in the proportion of local transmissions. When all subtypes 

were analysed together, this ratio did increase (Figure 5.7) but the change was not 

significant (Cochran-Armitage test across years [214, 215], p=0.5). Broken down by 

subtype, the subtype C clustering ratio rose from 0.69 to 0.75 (p=0.01), indicating an 

increasing proportion of infections acquired within the UK over time. In contrast, the 

clustering ratio decreased for D (from 0.41 to 0.33; p<0.01) and G (from 0.46 to 0.33; 

p<0.0001), signifying that most new sequences were unlinked to those already in the 

UK and are more likely to be the result of migration. However, overall numbers were 
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small, with only 279 subtype D and 965 subtype G diagnoses after 2006. The change 

was not significant for A1 (p=0.7).  

For all clusters in 2009 containing at least one sequence in 2007, I counted the number 

of new sequences clustering in crossover and MSM clusters (Table 5.4). When I 

looked at the proportion of new diagnoses linking to crossover and MSM clusters (2-

3% of new diagnoses) as opposed to HET clusters, proportions were not different 

across subtypes (Fisher’s exact test, p=0.38), although numbers were small for 

subtypes D and G, with only 90 new diagnoses linking to subtype D and G clusters.  

 

Figure 5.7: Change in clustering ratio between 2007 and 2009. The ratio of 

clustered to non-clustered sequences increased for subtype C (p=0.01), decreased 

for D (p<0.01) and G (p<0.0001) and did not change for A1 (p=0.7) or when all 

clusters were analysed together (p=0.5).  

5.5 Discussion 

The interpretation of cluster distributions and cluster change has proved difficult in the 

past because of the lack of a meaningful statistical framework to compare observed 

and null distributions. Here, I developed a novel approach to generate null patterns of 

cluster growth with which to compare observed growth. Sequences were added to the 

tree according to the branch length and bootstrap distributions of the observed 
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phylogenetic tree, but on branches chosen at random. This simulation method has the 

added benefit of not requiring all the infections to be sampled because the full genetic 

diversity of the population is still captured by the phylogenetic tree.  

Table 5.4: Number of sequences added to clusters between 2007 and 2009 

Initial 
cluster size 

crossover HET PWID MSM NA Grand 
Total 

A1 7 (1.11%) 76 
(12.1%) 

7 
(1.11%) 

14 
(2.22%) 

51 
(8.1%) 

155 
(24.6%) 

1 2 41 2 2 44 91 

2+ 5 35 5 12 7 64 

C 81 
(1.67%) 

620 
(12.78%) 

38 
(0.78%) 

40 
(0.82%) 

432 
(8.9%) 

1211 
(24.96%) 

1 15 362 5 7 320 709 

2+ 66 258 33 33 112 502 

D 2 (0.72%) 14 
(5.02%) 

1 
(0.36%) 

1 
(0.36%) 

13 
(4.66%) 

31 
(11.11%) 

1 0 8 1 1 7 17 

2+ 2 6 0 0 6 14 

G 9 (1.91%) 30 
(6.36%) 

3 
(0.64%) 

0 (0%) 18 
(3.81%) 

60 
(12.71%) 

1 9 14 2 0 15 40 

2+ 0 16 1 0 3 20 

All 
subtypes 

26 
(1.59%) 

740 
(11.87%) 

49 
(0.79%) 

55 
(0.88%) 

514 
(8.25%) 

1457 
(23.38%) 

1 26 425 10 10 386 857 

2+ 73 315 39 45 128 600 

Notes: According to risk group (crossover; HET heterosexual, PWID people who 

inject drugs, MSM men who have sex with men, NA not available) and cluster size in 

2007 (single sequence = 1, or cluster ≥ 2). Percentages are calculated as the 

number of sequences joining clusters of each risk group out of the total number of 

new sequences for each subtype (A1 = 630, C=4852, D=279, G=472). 

At least 25% of non-B subtype infections diagnosed between 2007 and 2009 were 

linked to previously diagnosed infections and are likely to have been acquired within 

the UK. Among pre-existing clusters, cluster size and non-heterosexual risk group 
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each independently predicted higher cluster growth. The main conclusion of this 

analysis is that crossover to non-heterosexual risk groups has resulted in increased UK-

based transmission of subtype C in particular, as has been observed in France [100]. 

However, the majority of clusters did not grow and there were important differences 

between the subtypes analysed. 

Subtypes C, A1, D and G have established generalised heterosexual epidemics in sub-

Saharan Africa [216] and are the most common subtypes in the UK after subtype B, 

where they also circulate predominantly among heterosexuals [109]. Around half of 

diagnoses in the UK every year are now non-B subtypes, with subtype C alone 

accounting for one third and A1, D and G on the rise [93]. This distinguishes the UK 

from the rest of Europe, where subtype B still accounts for >80% of infections [201]. 

Subtype AE was excluded because although similar in frequency to D (~2%), subtype 

AE shows a different pattern of spread as it is found equally in MSM and 

heterosexuals. 

The most striking patterns observed here were the differences in cluster growth 

between risk groups. The overwhelming majority of clusters in this study were 

heterosexual, as would be expected. However, clusters classified as MSM or PWID 

were significantly more likely to link to new infections despite their numbers being 

small. Despite the success of needle exchange programs in the UK and the overall low 

incidence of HIV among PWID [217], these results confirm how rapidly HIV can 

spread in PWID and raise questions about the effectiveness of harm reduction efforts 

in these particular groups. I observed a number of crossover clusters containing 

sequences from both heterosexuals and MSM, which were also more likely to grow. 

In particular for subtype C, the number of newly clustering sequences in crossover 

clusters vastly exceeded that expected based on the simulations. Although the 

dynamics of D and G remain dominated by imports, similar patterns seem to be 

emerging. Sexual linkage between risk groups leads to the introduction of new 

subtypes. Crossover of subtype B from MSM into heterosexuals has been 

demonstrated in the UK [106], where Black-African men who clustered exclusively 

with MSM were more likely to self-identify as heterosexuals compared to other 
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ethnicities. It is likely that this same pattern is acting as a driver for spread of non-B 

subtypes among MSM. In order to reduce the spread of non-B subtypes among MSM, 

it would be important to encourage self-identified heterosexual men to disclose 

whether they are having sex with men (through publicity campaigns or during 

consultations) and if so educate them on HIV transmission. MSM could also be 

informed as to the increased prevalence of HIV among Black-African MSM who also 

have sex with women.  In contrast, the epidemic growth of non-B subtypes among 

heterosexuals in the UK appears limited, in agreement with models suggesting that the 

prevalence of HIV among heterosexuals in the Netherlands was hardly affected by 

immigration [218].  

It is important to note that most pre-existing clusters did not link to any new infections 

(>70%). Subtype A1, D and G pairs grew less than expected, with 85% not changing 

at all. The tendency of larger clusters to act as a driving force for epidemic growth has 

not been formally tested previously and is consistent with the hypothesis of preferential 

attachment [140], whereby already highly connected individuals tend to make 

proportionally more contacts over time. This was emphasised by the GLM analysis 

which showed that cluster size remained significant in the model even when risk group 

was taken into account.  

Public Health England data indicate that the UK epidemic is growing, with 6000 new 

cases diagnosed every year [6], half of which are non-B subtypes [93]. These new 

diagnoses could be imports, new infections or new diagnoses of old infections. If they 

were all imports, none of their sequences would attach to pre-existing clusters. If they 

were new diagnoses but actually old infections, they could attach to pre-existing 

clusters without reflecting new infections within that cluster. Clusters would “grow” 

by the definition implemented in the present analysis, but the epidemic would be 

unchanging. It would be possible to detect a difference between this latter scenario and 

one of true growth (new infections linked to old clusters) by looking at the distribution 

of branch lengths of new diagnoses. New infections are likely to be connected by short 

branch lengths to existing clusters while old infections will be more distantly related 

(due to the greater opportunity for within host evolution). In time-resolved trees, new 
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infections would also be more likely to converge close to the tips of clusters while old 

infections would converge deeper into the cluster. We are currently performing time-

resolved analyses of these data. 

The relative frequencies of A1, C, D and G in the UK reflect their respective global 

prevalence [11], but I observed significant differences in their patterns of growth. Even 

though, proportionally, the UK subtype G epidemic grew as much as subtype C (over 

80% during the study period), the majority of those subtype G infections did not link 

to previous UK infections. The ratio of clustering to non-clustering sequences for D 

and G decreased, so D and G appear not to be being transmitted as much as C within 

the UK. Meanwhile, subtype C cluster growth was much higher than expected. Several 

large, non-heterosexual clusters displayed cluster growth more similar to subtype B 

[108], and numerous crossing over events were observed. In parallel, I found that D 

and G have for the most part not crossed over into non-heterosexual risk groups. As 

such, I conclude that the spread of non-B subtypes appears to exhibit threshold 

behaviour, whereby rapid growth follows transmission into non-heterosexuals or 

groups of high-risk heterosexuals.  

The figure of 25% is an underestimate of the proportion of non-B strains acquired 

within the UK. Only clusters that contained at least one sequence collected prior to 

2007 were analysed because there is a better chance that subsequent infections will 

have been acquired in the UK. However some infections acquired within the UK will 

be missed, because of undiagnosed patients and because of the choice of clustering 

threshold. In the latter case, evolution in one or both patients can cause sequences to 

diverge such that either genetic distance will exceed the cut-off or bootstrap support 

will be too low [219]. It is difficult to compare these results to the published estimate 

of 50% heterosexuals born abroad having acquired their infection in the UK [95], 

because I am looking at subtype acquired rather than country of birth, and risk groups 

other than heterosexuals are included. However, non-UK born individuals are more 

likely to be infected with non-B subtypes [207] and MSM are more likely than 

heterosexuals to have acquired their infection in the UK [6] so a higher proportion of 

non-B subtype infections acquired in the UK would be expected. Lower rates of 
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diagnosis among heterosexuals (31% undiagnosed compared to 16% among MSM [6]) 

may play a part in explaining this result. Sequences from MSM are more likely to be 

captured by the UK HIV RDB. Nevertheless, as the UK HIV RDB is generated through 

population surveillance, not from a cohort, over time it will accumulate HIV positive 

patients from participating centres as they transition from undiagnosed into care, and 

linkages will increase. 

There are limitations to the analysis. Importantly, the number of diagnoses in 

heterosexuals born abroad varies in parallel to patterns of migration from HIV endemic 

countries into the UK and both have recently decreased. Therefore the rise in non-

heterosexual non-B subtype diagnoses could be interpreted as a relative rise and not 

an absolute one. However these cluster analyses focus on infections that link to 

previous diagnoses and cluster growth rates will not be impacted by changing patterns 

of migration. It is true that that the increase in the clustering ratio observed for subtype 

C could have occurred a result of decreased immigration. However, as this pattern was 

unique to subtype C and is concordant with the extensive spread of subtype C among 

MSM, these results nonetheless point toward subtype C being increasingly acquired 

within the UK. 

The cut-off of January 2007 was selected to equalise the number of sequences 

available on either side. In time-resolved trees of the UK non-B epidemic, the 

distribution of branch lengths is known to be continuous indicating that sequences 

were added to clusters linearly with time [109] and so no particular cut-off would be 

expected to affect these findings. Similarly, although a bias could be introduced by the 

risk group classification of clusters, the density plots indicated that the majority of 

clusters comprised a single risk group and the sensitivity analysis demonstrated the 

robustness of the main conclusions. 

Finally, simulations of tree growth are simplifications of the epidemiological process. 

Formal methods linking phylogenetic reconstructions and epidemiological models 

remain difficult to apply to large datasets. However, the use of simulations as a null 

model to compare data to has provided a formal test. Non-heterosexual cluster growth 

rates diverge dramatically from a null model in which all individuals in the population 
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are equally likely to transmit. In addition, modelling cluster growth based on the 

phylogenetic tree instead of using an epidemiological model has the advantage of 

implicitly accounting for new infections from unsampled sources without having to 

predetermine the population sampling coverage. 

Overall, I found multiple subgroups within the UK non-B epidemic. The majority of 

clusters did not grow and those that did were more likely to already be larger and to 

contain non-heterosexuals. There were differences between the subtypes analysed, 

with subtype C infections increasingly acquired within the UK while the dynamics of 

subtypes D and G were dominated by imports. One possible explanation for the 

difference in observed cluster growth rates could be that infections in heterosexuals 

occur in sequential chains of transmissions [109] while among MSM, infections occur 

in rapid bursts [108] within a more densely connected contact network. In Chapter 1, 

I investigate differences in transmission network structure between risk groups. 

I conclude that crossover into non-heterosexual risk groups has led to rapid non-B 

expansion within the UK recently. This study underlines the importance of continuing 

efforts to prevent HIV transmission among all risk groups despite the UK epidemic 

changing from being MSM and subtype B dominated to being more diverse in terms 

of risk group and subtypes.  
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6 CHARACTERISING UK HIV 

TRANSMISSION NETWORKS 

BY RISK GROUP 

6.1 Introduction: degree distributions of networks and targeting 

interventions 

The assumption of random mixing frequently made by standard epidemic theory is 

violated in the case of sexually transmitted infections (STIs) such as HIV. HIV can 

only be transmitted to a number of close contacts which is much smaller than the total 

population size. In addition, the number of sexual partnerships is far from being 

normally distributed. Instead, most individuals have few sexual contacts while a small 

number have many [220]. This heterogeneity in number of contacts is observed in 

many real life networks (neuronal networks, power grids, social networks [116]) and 

is thought to be central to the propagation of STIs including HIV. Without taking into 

account the variation in number of sexual partnerships in models, it is difficult to 

recreate observed HIV incidence [221]. 
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The degree distribution of sexual partnerships of a population varying in number of 

contacts has a heavy tail and frequently follows a power law [128]. The variance of 

the degree distribution is determined by the exponent of that power law. Importantly, 

for certain values of the exponent, the variance of the distribution becomes infinite and 

the epidemic threshold disappears [110] which means that untargeted interventions 

will not stop the epidemic (see section 1.5.5). Although this theoretical result only 

holds true in infinite populations, the exponent of the power law can give us an 

indication of the extent to which interventions should targeted. Appropriate 

characterisation of the degree distribution can be used to assess whether a network 

adheres to a particular probability model [127], providing information on the process 

that led to its formation. 

Studies of sexual networks have found contradicting results. Some studies have found 

power law distributions with infinite variance to fit Swedish [128], British, US and 

Zimbabwean sexual contact networks [129], but reanalysis of these same data have 

shown otherwise [123, 124, 126]. Importantly, some of the best fit models make HIV 

predictions which are inconsistent with the observed epidemic patterns [123], 

underlining our lack of understanding of the contact networks themselves and their 

effect on the spread of disease.  

In reality, it is very difficult to obtain reliable contact network information (see section 

1.5.6). It is impractical and expensive for large populations and requires personal 

information which in the case of sexual contacts (and in view of the criminalisation of 

HIV transmission see reference [145] and section 7.4), participants may not readily 

volunteer. In the case of HIV, the time lapse between infection and diagnosis also leads 

to problems of recall, and patients often do not know who infected them [139]. 

Recent years have seen the development of a new method for reconstructing HIV 

transmission networks: inference from viral sequences [140] (see section 2.2.4.2). 

Sequencing HIV for detecting drug resistance has led to the accumulation of 100,000s 

of sequences in databases globally, and so data are readily available (see section 2.1.1). 

In addition, networks reconstructed from sequences have the advantage of including 

only contacts that are relevant for understanding HIV transmission. 
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In their 2011 analysis, Leigh Brown et al. found that the Waring distribution offered 

the best fit to UK subtype B transmission networks constructed from viral sequences 

[140]. Waring is a power law distribution that results from a preferential attachment 

model.  

In this chapter, I further analyse the UK degree distributions by subtype (subtypes A1, 

B and C) and risk group (heterosexuals, MSM and PWID) and by sex. This distinction 

is important because previous studies have found different distributions to fit male 

versus female sexual contact networks [123, 124, 126, 129] as well as heterosexual 

versus MSM networks [129]. The network reconstruction method from viral sequences 

has not been extensively validated until now, so in this chapter its performance is 

evaluated against simulated epidemics. In addition, the method is known to reconstruct 

far more links between nodes than the number of transmission events so I develop and 

evaluate thinning algorithms which lead to a better estimation of the true transmission 

network.  

6.2 Methods 

6.2.1 HIV Epidemic Simulation 

An HIV epidemic was simulated for 57 years using the HIV-specific individual-based 

DSPS [175]. In the underlying SIR model the R category represented AIDS and death 

(individuals are removed from the pool of infectors). Birth and (AIDS-unrelated) death 

were set at 0.1 and 0.01, respectively, and progression to AIDS (removal) was set at 

0.8. The growth of the population was set to “stable” to ensure only two individuals 

would populate each deme at any given time point. 

The population simulated was fully heterosexual (Figure 6.1). The majority of demes 

represented households containing a heterosexual couple. One deme contained a 

cohort of sex workers. The average number of sexual contacts was set at 100 per year 

and households were classed as either low risk or high risk. For high risk individuals, 

50% of contacts were within the household, 30% were with other high risk individuals 

and 20% were with low risk individuals. For low risk individuals, 80% of contacts 

were within the household, 15% were with high risk individuals and 5% were with 
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other low risk individuals. The sex worker deme contained 600 female hosts, each with 

600 contacts per year on average. All sex worker contacts are with males and so the 

sex workers cannot infect each other. The simulation was initiated with the infection 

of a single sex worker to maximise the likelihood of the epidemic starting. 

 

Figure 6.1: Contact network used in the DSPS HIV epidemic simulation © Emma 

Hodcroft [176] 

True phylogenies were generated using the VirusTreeSimulator (see Methods 2.2.3.3). 

Full genome sequences were simulated along the true phylogenies using piBUSS [177] 

according to a General Time Reversible model. Rate of evolution was partitioned by 

gene (gag/ pol: 2.5.10-3 substitutions per site per year, env: 5.10-3).  

This model was developed by Emma Hodcroft as part of the PANGEA_HIV modelling 

initiative (http://www.pangea-hiv.org/). 

6.2.2 Network reconstruction in simulated data 

6.2.2.1 Reconstruction of time-resolved phylogenies 

Full genome HIV sequences were simulated but this analysis focused on the pol region 

for consistency with previous work and comparison with currently available patient 

data. Phylogenetic trees were reconstructed independently for each of the three sets of 
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sampled sequences (100% coverage, 60% and 20%) in RaxML with 100 bootstrap 

replicates [162]. Trees were transformed into time-scaled trees using Least Squares 

Dating (http://www.atgc-montpellier.fr/LSD) [173]. LSD runs rapidly on datasets 

containing tens of thousands of sequences (see Methods 2.2.2.2). 

6.2.2.2 Receiver Operating Characteristic (ROC) analysis (see Methods 2.2.5.5) 

True times to most recent common ancestors (tMRCA) for each pair of viruses were 

retrieved from the true phylogeny as well as information on whether the host of those 

viruses were connected by a direct transmission link. In parallel, reconstructed 

tMRCAs were retrieved from the time-scaled phylogenies. The method for 

reconstructing networks from time-scaled phylogenies has been described previously 

[140] (and see Methods 2.2.4.2). Networks were reconstructed at time depths of 1-10 

years. In brief, for each cut-off x, two nodes were linked to each other in the network 

if their tMRCA was below x. The objective was then to use ROC analysis to measure 

our ability to correctly infer whether two sequences were linked or not. 

6.2.2.3 True positives (TP) 

Ideally, the true reconstructed network should capture only the true sequence of 

transmission, which in a network containing 4662 nodes, would mean 4661 links only. 

However, our method of establishing linkage is based on tMRCA so if two sequences 

share a common ancestor within the prescribed amount of time, our method will link 

them whether or not that link is direct. Therefore, I conducted two sets of analyses 

with two different sets of true positives: 1) comparing the links reconstructed to the 

true direct links (this is the true transmission network) and 2) comparing the links 

reconstructed to those expected based on the true tMRCAs of each pair of sequences. 

6.2.2.4 True negatives (TN) 

Our network is dominated by a large number of negative instances: of >10 million 

possible links in the network, only 4661 are true transmission links (and >10 million 

are incorrect). This huge number of true negatives (negatives that will be identified 

correctly as negatives in the reconstruction) will make our method look better than it 

is (high specificity). As such, I decided to include in our count only links between pairs 
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of nodes that had a tMRCA below 15 years. This reduced the total number of links 

(including all TP, TN, false positives (FP) and false negatives (FN)) to 40657 in the 

dataset of 4662 sequences. 

6.2.2.5 Network thinning 

As stated above, the current network reconstruction method links nodes in the network 

based solely on tMRCA. The number of links in reconstructed networks by far exceeds 

the true number of transmission links. In many cases, cliques (Figure 6.2A, where all 

nodes in a cluster are linked to each other) and cycles (Figure 6.2B, where groups of 

nodes are connected through a closed walk) remain, both of which reflect the incorrect 

assignment of links between nodes. Consequently, I implemented thinning algorithms 

which selectively dropped links within cliques and cycles based on pairwise genetic 

distance and tMRCA (see Appendix 3). In brief, all cliques are identified within the 

network [222] and in each clique, the largest edge is eliminated if its length (genetic 

distance or tMRCA) is greater than the smallest edge length in the clique. Because 

cliques are not independent from each other, all cliques in the network are then re-

estimated before targeting the next edge for deletion. Once all cliques have been 

eliminated, all cycles are identified within the network and processed in the same way 

based on the distance of edges. For a more detailed explanation see Appendix 4. For 

pseudocode, see Appendix 6. I then tested whether thinning improved the precision of 

our reconstructions (in terms of identifying direct links only). 

B. 

Figure 6.2: Network cliques (A.) and cycles (B.) 

A. 
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6.2.2.6 Degree distribution 

As well as the ability to reconstruct the true transmission network, I was interested in 

the ability of our method to correctly estimate the degree distribution of the network. 

The R [154] package degreenet [126] was used to fit degree distributions (and 

confidence intervals for best fit parameters) to the Pareto distribution, the Negative 

Binomial (NB) distribution, the Yule distribution and the Waring distribution. The 

discrete Pareto is a power law distribution. The other distributions tested are indicative 

of specific processes of network formation. The NB assumes that individuals in the 

population acquire partners at a fixed but heterogeneous rate. The Yule [130] and 

Waring [131] distributions both result from preferential attachment models. They 

incorporate a probability proportional to k that a new link is made to a person of degree 

k, as well as a constant probability that a new link is made to a person of degree 0 

(previously sexually inactive). In addition, the Waring incorporates a rate for non-

preferential attachments, so that a partnership may form at random between two 

people, regardless of degree [124, 131]. Importantly, the NB always has finite 

variance, while the Yule and the Waring have infinite variance when their exponent 

value is between 2 and 3. Infinite variance of a degree distribution indicates that 

interventions targeted towards the network’s high degree nodes will be necessary (see 

section 1.5.5).  

6.2.3 True data 

In addition to the simulated data, real HIV pol sequences were obtained from the UK 

HIV RDB (2014 download; Methods 2.1.2). In order to distinguish between UK and 

non-UK transmission clusters, trees were reconstructed with a background of 

sequences from LANL, as described previously (Methods 2.1.3). 2507 UK subtype 

A1, 31450 subtype B and 15815 subtype C sequences were analysed along with 1414 

subtype A1, 7413 subtype B and 6212 subtype C LANL sequences. 
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6.2.3.1 Phylogenetic analysis 

For each of the three subtypes, phylogenetic trees were reconstructed in RaxML with 

100 bootstrap replicates. Clusters were picked if they were supported by a bootstrap 

≥90% and had a maximum genetic distance ≤4.5% [108].  

For time resolved analysis, clusters were pooled for analysis in BEAST [76] because 

of the size of the datasets. Clusters from the ML tree were sorted into pools of up to 

300 sequences so that all sequences from the same cluster were analysed together 

[140]. In the final reconstructed networks (see below), we ensured that no sequences 

from different clusters has been linked together based on the tMRCAs estimated in 

BEAST. In a subset of data, I compared the constant, exponential, lognormal, Bayesian 

skyline plot and Bayesian skyride models. The best model was selected as the skyride 

by means of its Bayes Factor, as estimated through path sampling. Chains were run for 

100,000,000 generations and sampled every 1000 with an SRD06 genetic model and 

uncorrelated lognormal clock. Chains were run in duplicate, checked for convergence 

in Tracer and combined. Maximum clade credibility trees were generated in Tree 

Annotator.  

6.2.3.2 From phylogeny to network 

In the maximum clade credibility trees, networks were generated as above by linking 

nodes if their estimated tMRCA was below 5 years. Networks for subtypes A1, B and 

C were amalgamated for analysis. Thinning was performed as explained above based 

on pairwise tMRCA and genetic distances within cliques and cycles. Nodes were 

linked to epidemiological information available (sex and risk group) and degree 

distributions were generated for the network as whole and for each sex, each risk group 

and each subtype. Degree distributions were fitted using degreenet [126].  

6.3 Results from simulated data 

6.3.1 Epidemic dynamics 

Sampling was set to begin in year 43 of the simulation (by which time the epidemic 

had stabilised) to last until the end of the simulation (year 57; Figure 6.3). Based on 
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the timed series of transmission events (or transmission tree), the true phylogeny of all 

viruses in hosts alive and infected during the sampling period (4662 in total) was 

generated. The dataset was down sampled to 60% (2798 nodes) and 20% (933 nodes).  

 

 

Figure 6.3: Simulation epidemic dynamics 

6.3.2 The true and reconstructed tMRCAs are highly correlated 

Trees were reconstructed at all three sampling depths independently. These trees were 

then processed using LSD (see Methods 2.2.2.2) in order to convert branch lengths 

into calendar time. For each pair of nodes, I then extracted the tMRCA from these 

reconstructed phylogenies, and in parallel extracted their true tMRCA from the 

transmission trees. The true tMRCA and reconstructed tMRCA were highly correlated 

(r-=0.96, p<0.0001), with reconstructed tMRCAs estimates slightly above true values 

(Figure 6.4). The correlation stayed significant and did not drop at lower sampling 

depths. Based on the true transmission network, I was able to distinguish between pairs 

of nodes that had directly transmitted to each other (direct links) and those who hadn’t. 

The correlation and its significance were not affected by whether direct links only were 

analysed as opposed to all links. 
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6.3.3 Sensitivity and specificity of the network reconstruction method 

are high 

 

Figure 6.4: Correlation between true tMRCA and reconstructed tMRCA (r=0.96 

and p<0.0001 for all sampling depths). Correlation coefficients were estimated 

between the true tMRCA and the tMRCA for each pair of sequences in 

reconstructed trees with 100% sampling, 60% sampling and 20% sampling; and 

between true tMRCAs of all sequence pairs in the tree (all links) and only those 

pairs linked by direct transmission (direct links).  

For a cut-off of 5 years, for example, two sequences would be considered linked (true 

state = positive) if their true tMRCA ≤ 5 years (Figure 6.5). If their tMRCA> 5 years, 

the sequences would be unlinked (true state = negative). The true state of the edge is 

thus categorical. The predictor variable (reconstructed tMRCA), meanwhile, is 

continuous. ROC analysis tests all the different cut-offs for the predictor variable, and 

each time calculates the number of TP, FP, TN and FN (Figure 6.5). Based on these 

numbers, the sensitivity and specificity are calculated (Methods 2.2.5.5). ROC curves 

plot sensitivity against 1- specificity for every cut-off (Appendix 5, left hand column). 

Both measures can also be plotted against the cut-off used (Appendix 5, right hand 

column) in order to identify the cut-off which maximises sensitivity and specificity 

(best cut-off). 
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  Reconstruction (all cut-offs tested) 

  Linked Unlinked 

 

True state (e.g. at  

5 years) 

Linked (true 

TMRCA ≤ 5 years) 

True Positive False Negative 

Unlinked (true 

TMRCA > 5 years) 

False Positive True Negative 

Figure 6.5: ROC analysis: comparing the reconstructed and true state of edges. 

 

 

Figure 6.6: Best cut-offs for each network year based on sampling proportion 

(100%, 60%, and 20%) and whether links were direct or indirect. 

The area under the curve (AUC) of ROC curves measures how well the method as a 

whole is doing at predicting the true state of each edge. For a perfect predictor, the 

AUC would be equal to 1. In the analyses, the AUC never fell below 0.9, in any of the 

sample fractions or whether I looked at all links or at direct links only. The 

performance of the classifier as a whole decreased as network years increased, but 

AUC stayed above 98% up to 5 years at all thresholds and whether all links were 
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classed as true, or direct links only. When classifying only direct links as true, the AUC 

decreased, as did the best cut-off (Appendix 5). 

Table 6.1: Accuracy of reconstruction of (direct and time-based) links at three 

sampling depths. True links are nodes with a true tMRCA ≤ 5 years and a 

reconstructed tMRCA of 5.38 was used for all 

Sampling  positives TP FP TN FN sensitivity specificity precision 

100% All Links 3260 1031 36173 19
3 

0.94 0.97 0.76 

100% Direct 
Links 

1473 2818 36292 74 0.95 0.93 0.34 

60% All Links 1117 406 12944 72 0.94 0.97 0.73 

60% Direct 
Links 

493 1030 12983 33 0.94 0.93 0.32 

20% All Links 136 47 1631 9 0.94 0.97 0.74 

20% Direct 
Links 

68 115 1636 4 0.94 0.93 0.37 

For a true network depth of 5 years, the best selected cut-off remained stable (5.26-

5.71, mean=5.45) at all sampling depths (100%, 60%, 20%) and whether I classified 

all links as true or only direct links (Figure 6.6). The best cut-off for identifying direct 

links ranged from 5.26 to 5.55 (mean = 5.38). Networks were analysed at a true depth 

of 5 years in all subsequent analyses with a reconstructed tMRCA of 5.38 years. 

At a network depth of 5 years and using a cut-off 5.38 years, the sensitivity and 

specificity were above 90% (Table 6.1). When all links with a tMRCA ≤ 5 years were 

considered positive, precision however was ~74%, meaning that of the reconstructed 

links, ¾ were correct. When only direct links with a tMRCA ≤ 5 years were considered 

positives, precision was only ~34%, meaning that only 1/3 of reconstructed links were 

in fact true links. Of note, precision did not drop at lower sampling depth as compared 

to 100% sampling coverage. 
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Table 6.2: Accuracy of reconstruction of direct links after thinning at three 

sampling depths. Thinning was performed by dropping links within cliques and 

cycles based on genetic distance and tMRCA. True links are nodes with a true 

tMRCA ≤ 5 years and a reconstructed tMRCA of 5.38 was used for all. 

Sampling  positives thinning TP FP TN FN sensitivity specificity precision 

100% direct Distance, 
no 

cliques 

1249 925 38185 298 0.81 0.98 0.57 

100% direct Distance, 
no 

cliques, 
no cycles 

1246 830 38280 301 0.81 0.98 0.6 

100% direct tMRCA, 
no 

cliques 

1237 990 38120 310 0.8 0.97 0.56 

100% direct tMRCA, 
no 

cliques, 
no cycles 

1231 845 38265 316 0.8 0.98 0.59 

60% direct Distance, 
no 

cliques 

447 489 13524 79 0.85 0.97 0.48 

60% direct Distance, 
no 

cliques, 
no cycles 

446 465 13548 80 0.85 0.97 0.49 

60% direct tMRCA, 
no 

cliques 

450 507 13506 76 0.86 0.96 0.47 

60% direct tMRCA, 
no 

cliques, 
no cycles 

449 462 13551 77 0.85 0.97 0.49 

20% direct Distance, 
no 

cliques 

64 82 1669 8 0.89 0.95 0.44 

20% direct Distance, 
no 

cliques, 
no cycles 

64 82 1669 8 0.89 0.95 0.44 

20% direct tMRCA, 
no 

cliques 

65 82 1669 7 0.9 0.95 0.44 

20% direct tMRCA, 
no 

cliques, 
no cycles 

65 81 1670 7 0.9 0.95 0.45 
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6.3.4 Thinning improves precision with little cost to sensitivity and 

specificity 

The aim of the thinning algorithms was to eliminate FP links to improve the precision 

of the network reconstruction method as the number of FP called was so high. In this 

case the reconstructed links were counted only against the true direct links in the 

network. Thinning improved the precision of the reconstruction method, but with some 

costs to its sensitivity (Table 6.2). At high sample fractions, precision improved the 

most, but at low sample fraction thinning had the smallest impact on sensitivity. 

Removing links from cliques and cycles was slightly better than cliques only. There 

was no difference between distance-based thinning and tMRCA-based thinning. 

Overall, around 10% of TP links and 52% of FP links were removed by thinning 

(Figure 6.7). 

 

Figure 6.7 Change in the number of true positives (TP) and false positives (FP) 

after thinning (tMRCA-based with both cliques and cycles thinned).  

Thinning removed 37/183 links at 20% sampling (20%), 612/1523 links at 60% (40%) 

and 2215/4291 links at 100% (52%). We compared the thinning algorithm to an 

approach where the same proportion of links were dropped at random from the 

network, (Figure 6.8). We repeated the random thinning 100 times at each sampling 

depth and each time measured the sensitivity, specificity and precision in the networks 

50

500

5000

before after

TP (20%)

FP (20%)

TP (60%)

FP (60%)

TP (100%)
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generated. Precision was significantly higher in the networks with targeted thinning, 

as was sensitivity at 60% and 100% sampling depth.   

 

Figure 6.8: Sensitivity, specificity and precision in randomly thinned networks 

compared to targeted thinning. Coloured distributions show results from 100 

replicates, black triangles represent the results for targeted thinning.  

6.3.5 Degree distributions 

At 100%, mean degree in the thinned networks was closer to that in the true network 

than mean degree in the unthinned network, but the difference was not significant 

(overlapping error bars, Figure 6.10). Maximum degree was much higher in the 

unthinned 100% network than in the true data (23 vs 14). 

The true transmission network was best fit by a Waring distribution with an exponent 

α=28.91. I reconstructed the degree distribution for networks at all three sampling 

depths, unthinned and with four kinds of thinning (distance-thinning with no cliques, 

distance-based thinning with no cliques or cycles, tMRCA-thinning with no cliques, 
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tMRCA-based thinning with no cliques or cycles; Figure 6.9). Each time I evaluated 

whether the best fit distribution matched that of the true transmission network. Waring 

was the best fit distribution at 100% sampling and 60% sampling for the unthinned 

networks and for the distance-based thinned networks (Figure 6.11). The tMRCA-

thinned distributions were best fit by NB distributions. The 20% sampled unthinned 

network and tMRCA-thinned networks were best fit by the NB and the distance-

thinned networks were best fit by a Yule distribution. In all cases, the exponent α was 

above 3. The 95% confidence intervals for α overlapped with the 95% confidence 

intervals in the true network in all reconstructions except for the unthinned networks 

at 100% and 60% (Figure 6.11). In all networks analysed α was within the range of 

finite variance, as was the case in the true transmission network. 

 

 

Figure 6.9: Degree distributions of the true network and the unthinned and 

thinned reconstructed networks (distance-based, no clique, no cycle).  



Chapter 6: Characterising UK HIV transmission networks by risk group 

 

Manon Ragonnet-Cronin - October 2015   145 

 

 

Figure 6.10: Mean and maximum degree in the simulated networks. 

 

 

Figure 6.11: Exponent α (Waring distribution) in the true transmission network 

and according to sampling proportion and thinning method. Triangles represent 

datasets where Waring was selected as the best fit. Bars represent 95% 

confidence intervals and were estimated through bootstrapping. 

6.4 Degree distributions of the UK HIV epidemic 

Network membership for sequences from the UK HIV RDB was established in two 

stages. Initially, clusters were picked in a ML tree based on genetic distance (≤4.5%) 
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and bootstrap support (≥90%) for the cluster. All clusters containing at least two UK 

HIV RDB sequences were selected for analysis in BEAST (Table 6.3). Maximum 

clade credibility trees generated from BEAST runs were processed using an R script 

(see Appendix 3) to return the tMRCA and genetic distance for pairs of sequences with 

tMRCA ≤5 years. The returned tables are network edge lists where each line contains 

the names of the two linked nodes as well as their genetic distance and tMRCA. 

Networks for all subtypes and pools were combined for analysis. The breakdown by 

subtype, risk group and sex for the population as whole is shown in Methods 2.1.2. 

The breakdown for sequences which stayed linked to at least one other in the final 

network is shown in Table 6.4. 30% of subtype B sequences remained linked to at least 

one other compared to only 10.5% of subtype A1 sequences and 12.3% of subtype C 

sequences (Table 6.3). 

Networks were thinned, as described previously. For unthinned and thinned networks, 

degree distributions were generated for each subtype, risk group and sex, totalling nine 

categories: females (F), males (M), MSM, PWID, heterosexuals (HET), heterosexual 

females (HET F), heterosexual males (HET M), subtype B, and subtypes A1 and C.  

Table 6.3: Number of sequences and clusters analysed at each stage 

 A1 B C 

Total number of  

sequences 

4421 (2507 UK, 
1414 LANL) 

38863 (31450 
UK, 7413 LANL) 

22027 (15815 
UK, 6212 LANL) 

Clustered sequences  

(% of total)* 

993 (22.5%) 16544 (42.6%) 4827 (21.9%) 

Number of clusters 315 3519 1731 

Sequences linked at 5 
years 

(% of total)* 

462 (10.5%) 11750 (30.2%) 2712 (12.3%) 

Number of clusters 191 3547 1184 

*these numbers include LANL sequences 

In the unthinned network, Waring was the best fit distribution for all categories of 

nodes other than HET F and subtype A1 and C nodes. Subtype B nodes were best fit 

by a Waring distribution with 2 < α < 3, as shown previously [140] (Table 6.5, Figure 



Chapter 6: Characterising UK HIV transmission networks by risk group 

 

Manon Ragonnet-Cronin - October 2015   147 

 

6.12). This effect was particularly driven by PWID (α=2.73), while for MSM, α was 

slightly above 3. However, in the thinned networks, only subtype B nodes, PWID and 

MSM were still best fit by the Waring, and in all cases α exceeded 3 (Table 6.5, Figure 

6.12).  

Table 6.4 Sex and risk group of patients whose sequences linked to at least one 

another in a network with a cut-off of 5 years.  

  A1 B C 

Sex F 168 (41.5%) 589 (5.2%) 1124 (42%) 

 M 164 (40.5%) 9165 (80.9%) 976 (36.5%) 

 NA 73 (18%) 1572 (13.9%) 574 (21.5%) 

Risk group HET 242 (59.8%) 1083 (9.6%) 1759 (65.8%) 

 PWID 19 (4.7%) 186 (1.6%) 38 (1.4%) 

 MSM 58 (14.3%) 8153 (72%) 241 (9%) 

 Other/NA 86 (21.2%) 1904 (16.8%) 636 (23.8%) 

Total* 14925 405 11326 2674 

*These numbers represent only UK HIV RDB sequences. Females (F), males (M), 

men who have sex with men (MSM), people who inject drugs (PWID), heterosexuals 

(HET). 

6.5 Discussion 

The aim of this study was to evaluate and improve the performance of the published 

network reconstruction method [140]. Because the method infers far more links than 

those which could have existed in the true transmission network. I tested thinning 

algorithms which eliminate links based on pairwise tMRCAs and genetic distance. I 

then reconstructed thinned UK HIV networks to estimate whether their variance was 

finite, given the implications of degree variance on intervention strategies (see section 

1.5.5).  

As before, the unthinned subtype B network was best fit a by a Waring distribution 

with 2 < α < 3, indicating infinite variance [140]. Broken down by risk group, α for 

PWID alone remained <3, while for MSM it was actually slightly above 3. 

Heterosexuals were also best fit by a Waring but α was well above 3. When 
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heterosexual men and women were split up, Waring was the best fit for heterosexual 

men, but the NB was selected as the best model for women. Distinct distributions of 

sexual partnerships are commonly found for heterosexual men and women [123, 129]. 

In the UK HIV RDB, one possible explanation is that a proportion of heterosexuals 

may be misclassified MSM [106] (Chapters 1 and 5). After thinning, the mean and 

maximum degree for every category of nodes decreased but the change in means was 

not significant. For females, heterosexuals and heterosexual males who previously had 

been best fit by a Waring distribution, the NB was the best fit in the thinned networks. 

For subtype B, males, PWID and MSM, Waring was still the best fit but in all cases α 

exceeded 3, indicating finite variance. Nonetheless, α remained lowest for PWID. 

While α may not lie in the range indicating the necessity of targeted interventions, the 

value for α among PWID still indicates high variance, so targeted interventions may 

be more efficient. This is an impressive finding given the overall small number of 

PWIDs in the dataset: 243 only, as compared to 8452 MSM. Taken together, these 

findings are consistent with our understanding of the difference in epidemic dynamics 

between risk groups in the UK [108, 109], and with the results presented in Chapter 5.  

 

Figure 6.12: Exponent α (Waring distribution) in the thinned and unthinned UK 

networks. Triangles represent datasets where Waring was selected as the best fit. 

Bars represent 95% confidence intervals (estimated through bootstrapping). The 

pink band indicates the range of α signifying infinite variance. Results for thinned 

networks are from distance-based no clique, no cycle networks. Subtypes A1 and 

C (A1/C), subtype B (B), heterosexual females (HET F), heterosexual males (HET 

M), people who inject drugs (PWID), men who have sex with men (MSM). 
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Table 6.5: Best fit degree distribution for each category of nodes 

 Best fit degree distribution and Waring distribution 
parameter α (95% confidence intervals) 

Node type Unthinned network Thinned network 

Subtypes A1/C NB NB 

Subtype B Waring: 2.93 (2.93-3.16) Waring: 6.47 (6.3-7.4) 

F Waring: 9.65 (8.4-17.3) NB 

M Waring: 3.29 (3.28-3.5) Waring: 10.51 (10.1- 13.4) 

HET Waring: 10.21 (9.34-16.1) NB 

HET F NB NB 

HET M Waring: 7.45 (6.42-11.76) NB 

PWID Waring: 2.73 (2.7-4.1) Waring: 5.02 (4.7-14.9) 

MSM Waring: 3.09 (3.03-3.3) Waring: 7.10 (6.8-8.1) 

Note: Results for thinned networks are from distance-based no clique, no cycle 

networks. Females (F), males (M), men who have sex with men (MSM), people who 

inject drugs (PWID), heterosexuals (HET). 

In the simulated data, the unthinned networks contained numerous very high degree 

nodes (Figure 6.9), leading to an incorrectly estimated very low α. Thinning networks 

eliminated 50% of FP links, improved our recovery of mean and maximum degree, 

and generated values for α closer to its true value. However, there were high numbers 

of FP links in the thinned networks (precision never exceeded 60% even at 100% 

sampling), and 10% of true positive links were lost through thinning. Therefore while 

some kind of thinning appears necessary, the exact thinning algorithms developed here 

may not be best suited to the problem.  

I am currently examining how systematic misclassifications of links are. For example, 

as time between infection and sampling increases, direct transmission links will 

become more difficult to identify because of within patient evolution, but it would be 

possible for an algorithm to take additional information into account before deciding 

whether to link two nodes or not. Some predictors (such as the time between infection 

and sampling) will never be available in true epidemics, but others like the date of 

ART initiation or whether or not patients were sampled in early infection (inferred 
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through CD4+ counts, viral load, genetic diversity or RITA result), can help determine 

the likelihood or direction of a link.  

 

Figure 6.13: Resolution of the transmission chain from a phylogenetic cluster. 

The phylogeny is compatible with both transmission diagrams, but the 

transmission diagrams entail different interventions. 

The aim of thinning is to better resolve the true chains of transmission. Reconstruction 

of exact HIV transmission chains through phylogenetic analysis has remained elusive. 

For large clusters of closely related infections, it is not possible to determine the 

sequence of transmission events (Figure 6.13). In terms of interventions, the two 

scenarios represented would engender dramatically different responses. In the first 

case, an intervention would need to focus on individuals with many contacts. In the 

second case, meeting places or patterns should be targeted. Here, I wished to improve 

the estimation of the degree distribution of the true transmission network, because 

degree distribution is indicative of the intervention strategies suited to the population 

as whole. Other metrics that may be important in understanding the HIV spread include 

network clustering coefficients (see section 1.5.3) and assortativity (the tendency of 

linked nodes to share characteristics). It will be important to evaluate how thinning 

affects our estimates of those metrics.  
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Another aim of thinning is to identify high degree nodes that should be targeted with 

interventions (for example early initiation of treatment). In the same vein, numerous 

studies have focused on identifying correlates of transmission by identifying clustering 

on the tree of factors such as the presence or absence of co-infections, including STIs, 

stage of infection, and drug treatment and compliance [59]. In those types of analyses, 

all clustered sequences are treated as high transmitters, despite the fact that many of 

them will be recipients who have not necessarily transmitted the virus onwards. 

Because a person can only be infected once, if they are linked to many other nodes in 

a transmission network, all but one are onward transmissions. Therefore, 

characteristics associated with high degree nodes will be more pertinent to high 

transmitters than those associated with clustered individuals. We are currently in the 

process of testing whether we are able to correctly identify high transmitters in the 

simulated data. In parallel, we have been epidemiologically characterising high degree 

nodes in the UK data.  

One criticism of methods that reconstruct networks from phylogenies is that the 

phylogeny contains all the information and that some links are artefactually created 

based on tMRCA that would not be possible based on the phylogeny. However, this 

assumes that the phylogeny is correctly resolved. It is likely not possible to know the 

direction of transmission very well from phylogenies based on sequences alone. There 

are too many uncertainties due to sequence similarity, as demonstrated by the low 

observed bootstrap support values within clusters. (Full length sequences may 

however improve the resolution of branching order within clusters, see section 7.8.3). 

Networks which incorporate this uncertainty can be annotated with additional 

information (such as RITA result, date of initiation of ART etc.) to eliminate 

improbable links. Novel methods which improve the resolution of the chain of 

transmission directly from the phylogeny (section 7.7) will likely perform better than 

the methods presented here; however at this point they cannot be run on datasets as 

large as this one. In parallel, approximations such as the one presented here as still 

useful, especially on such large datasets.   
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Another limitation of the network reconstruction method is that it appears not to 

perform well at low sampling densities. In the simulated epidemic sampled at 20% the 

Waring distribution was not selected as the best fit, and α varied dramatically between 

the thinned and unthinned networks. In the UK, sampling is around 60% so this will 

not be an issue, but it will limit the applicability of these methods (in their present 

form) to low sampled epidemics, such as those of sub-Saharan Africa [223]. It is 

possible that the method is not limited directly by sampling proportion but by sample 

size, and in order to test that, I will analyse low sampling proportions (5-20%) from 

much larger simulated epidemics (50-100,000 nodes). At low sampling densities, exact 

transmission links will not be captured, however by using more relaxed tMRCA 

thresholds for linkages, it may be possible to generate degree distributions which 

approximate the degree distribution of the true transmission network. Another 

important next step will be to test how well we are able to estimate α in epidemics 

simulated with 2 < α < 3. 

In this chapter, I used LSD to reconstruct tMRCA in the simulated sequences and 

BEAST in the UK HIV RDB data. The LSD tMRCA reconstruction performed 

extremely well in the simulated data (Figure 6.4) but this underlines a problem with 

the simulated sequences: they were simulated under a GTR model and phylogenies 

were reconstructed under a GTR model, leading to over-fitting. BEAST may not have 

improved the tMRCA reconstruction any further. However in the true HIV data, within 

patient and between patient evolution combined with selection and heterogeneity in 

time between transmissions mean that a Bayesian genealogical framework will 

improve reconstructions [224]. With any simulation, there is a risk of over-fitting to 

that simulation rather than to true data. For that reason, I did not use the 5.38 year cut-

off selected in the simulations in the true as it is unlikely to be any more informative 

that using a 5 year cut-off. In the future, I will evaluate the performance of selected 

thresholds in an independently simulated epidemic.  

In conclusion, the network reconstruction performs well in simulated data at high 

sampling densities (>60%) consistent with UK coverage, but many non-existent links 

are inferred. Thinning improves the precision of the reconstruction. The best fit degree 
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distributions in thinned networks vary by risk group, with heterosexuals displaying 

much less variation in onward transmissions than MSM and PWID. Among MSM and 

PWID, the Waring distribution was selected as the best fit but parameters remained 

within those indicating finite variance. Nonetheless, α was very low among PWID 

suggesting that interventions targeted towards high degree nodes may be more 

efficient to curve HIV spread in this group.  
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7 DISCUSSION 

7.1 Summary of findings 

In this thesis, I have presented automated tools for the analysis of large sequence 

databases and used them to compare what are currently the two most densely sampled 

national epidemics, the UK and Switzerland. This analysis revealed similarities 

between the two countries’ epidemics despite clear variation in risk group composition 

and distinct proportions of sequences in clusters [97, 105, 108, 109]. I conclude that 

the current underlying subtype B transmission dynamics in the UK and Switzerland 

are likely to be similar, including the integration of both countries’ epidemics into the 

European and global epidemics. For this analysis, I focused on subtype B because 

numbers of non-B subtypes were so low in Switzerland. In contrast, non-B subtypes 

now represent >50% of diagnoses in the UK [93]. In Chapter 5, I examined the 

transmission of non-B subtypes within the UK. An increasing proportion of non-B 

subtypes have previously been shown to have been acquired within the UK [95]. I 

found that spread was most rapid when non-B subtypes have been introduced into high 

risk groups (MSM and PWID). This pattern is consistent with observations in France 

[100] and appears to be to be emerging in Switzerland [97]. Two initially distinct 
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epidemics, the MSM subtype B, and heterosexual non-B have become connected. Men 

self-reporting as heterosexuals who have been infected through sex with men are likely 

to drive the crossing over of subtypes between risk groups [106] (Chapters 4 and 5). 

In Chapter 6, I estimated the degree distribution for different risk groups in the UK. 

Differences in fit were in agreement with findings from previous chapters. 

Importantly, the best fit of the Waring distribution for MSM and PWID networks 

underlines the importance of identifying the most highly connected individuals within 

these groups. 

7.2 HIV in the UK 

Recent years have seen a surge in the number of HIV infections acquired through 

heterosexual sex, heterosexuals accounted 45% of diagnoses in 2012 [198]. However, 

as immigration from sub-Saharan Africa has declined, so have diagnoses among 

heterosexuals [6]. I found that for the most part, onward transmission from this group 

is very limited (Chapter 5). Heterosexual transmission network structure is consistent 

with a small number of transmissions per person, indicating that random interventions 

can be successful in curbing the heterosexual epidemic. The UK epidemic continues 

to be concentrated within high risk groups. However, heterosexuals, especially men, 

tend to be diagnosed much later, underlining the need for better testing and increased 

awareness in this group. Another issue highlighted in this thesis is the possible 

importance of male heterosexuals being infected through sex with men [106] (Chapters 

4 and 5). Sexual questionnaires should be rephrased to recognise such men to 

accurately estimate their risk factors. These men may play a role in bridging previously 

disconnected epidemics, and future network analysis will focus on further 

characterising such nodes. Previous work has already shown that they are more likely 

to be black African [106]. Similar overlap has been observed in Switzerland [97] and 

in the USA [225] although to a lesser extent, and bridging may be even more extensive 

in countries where homosexuality is illegal or more stigmatised than in the UK. MSM 

are much less likely to openly identify as MSM and are likely to also have female 

sexual partners [226, 227].  
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Another finding of Hué et al. was the high proportion (42%) of heterosexual clusters 

containing only women [106]. Female only transmission clusters are likely to represent 

a bias against sampling heterosexual men, because heterosexual men tend to present 

later. This issue of “missing men” is widespread in databases from the USA (Joel 

Wertheim, personal communication) and African countries, where proportionately 

more women are recruited to many HIV studies (Marcia Kalish, personal 

communication). Methods to estimate the likelihood of unsampled transmitters within 

clusters are not yet applicable to datasets of the size of the UK HIV RDB [228]. 

However, representation in the database has increased over time and if this 

interpretation is correct, analyses should start to capture these “missing men” 

retrospectively. Future work will include reconstructing UK HIV RDB clusters 

through time to investigate whether men appear in clusters (or in their genetic 

neighbourhood) over time.  

In Chapter 5, I found evidence of recent rapid transmission of HIV among PWID 

despite excellent harm reduction in this group in the UK. This result has instigated a 

reanalysis of PWID sequence data at the national level to quantify transmission 

dynamics within this group as such an analysis has never been carried out in the UK. 

In parallel, the Leigh Brown group is collaborating with local health authorities (who 

have additional data associated with each sequence) affected to elucidate the cause of 

these recent outbreaks. One possibility is that some PWID infections could have taken 

place in prisons, where clean needles are not provided. Another is that infections may 

be among Eastern Europeans not accessing health services. 

This analysis underlines that the UK HIV epidemic continues to be led by MSM, but 

that even within this group there is high variability in the number of onward 

transmissions. A recent modelling study found undiagnosed and asymptomatic high 

sexual activity aged below 35 years to be the key group sustaining the HIV epidemic 

[229]. The Leigh Brown group are working on characterising highly connected nodes 

in these networks. If nodes they are connected to represent individuals diagnosed 

before them, this will confirm that they were transmitting before being diagnosed. 

Together, these results highlight the importance of better testing among MSM and 
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suggest there may be a place for PreP in the UK as well. The next few years will 

demonstrate whether deployment of PreP in the USA has succeeded in reducing HIV 

incidence. It will be particularly interesting to estimate the effects of PreP at the 

population level, i.e. how many MSM not taking PreP have been protected by those 

that do. Uninfected MSM sharing the characteristics of highly connected nodes would 

be the prime targets for PreP. 

7.3 Integration of molecular epidemiology into public health 

Taken together, these results demonstrate the insights offered by integrating molecular 

epidemiology into public health. Some studies have gone even further. In San Diego, 

phylogenetic analysis was combined with contact tracing, hugely increasing the 

proportion of sequences clustering [187]. Such a deliberate (and non-anonymised) 

quest for transmission partners can offer clear opportunities for selecting individuals 

for interventions, for example if they are part of large active transmission clusters, or 

have only recently become infected (and are highly infectious). The San Diego group 

then reconstructed networks through time from HIV sequences and estimated a 

network connectivity metric for each individual [230]. They found that network 

connectivity was more predictive of increase in degree (or the number of onward 

transmissions) than any epidemiological or clinical factors associated with each node. 

In a follow up study they demonstrated that targeting highly connected nodes with an 

early intervention (for example early initiation of ART) outperformed any baseline 

demographics in reducing further transmissions [231]. Similarly in Beijing, targeting 

nodes based on network connectivity worked better than based on CD4+ counts or 

viral loads [232]. In Chapter 6, I discussed the possibility of identifying node 

characteristics associated with high degree. These characteristics could then be used 

either to select HIV negative individuals with those characteristics for prevention 

(PreP or behavioural) or to select HIV positive individuals for interventions (early 

initiation of ART or behavioural). In contrast, the interventions delineated above 

require reconstruction of an individual’s (non-anonymised) network at diagnosis to 

determine connectivity. 
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Information on partners in addition to sequence data would make it possible to 

determine whether transmission occurred between individuals. The collection of 

behaviour data, such as testing frequency, last negative HIV test, change of behaviour 

after diagnosis, date of ART initiation and PreP usage, could further bound the timings 

of transmission events. 

7.4 Risk to privacy and stigma 

In view of the criminalisation of HIV transmission [145], the use of non-anonymised 

sequences combined with contact tracing raises concerns over the legal repercussions 

to source partners that are identified. As coverage in the UK HIV RDB increases, direct 

transmission links are found more and more frequently. As additional information is 

incorporated into models (such as dates of ART initiation or recency of infection) it 

will become possible to identify direction of transmission. The use of additional 

information can greatly improve the accuracy of reconstructions, and can enable the 

detailed identification of correlates of transmission [59]. Yet it is also possible that 

specifically identifying detailed correlates of transmission could increase the 

stigmatisation of individuals subsequently considered high-risk (both infected and 

uninfected).  

Nonetheless, one can envisage a public health model which makes use of advances in 

molecular epidemiology methods without compromising the rights of the individual 

[233]. For example, public health providers could submit the sequence from a new 

diagnosis (potentially alongside those obtained through contact tracing) anonymously 

to a third party who would reconstruct phylogenies and networks with a background 

of fully anonymised sequences to estimate the connectivity of that individual. New 

diagnoses could be added to the database through a separate procedure. 

As discussed in section 2.1.2, the database is anonymised and aggregated so as to 

prevent deductive disclosure. To some extent, genetic sequences are a form of 

identifiable information as they are distinct for each patient sampled. The UK HIV 

RDB comprises sequences from upwards of 60% of the HIV positive population, and 

releasing sequences into public databases could enable others to fish through those 
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databases to find sequences linked to their own. The Swiss and UK HIV databases 

have addressed this concern by making available only 10% of sequences analysed with 

each publication [105, 140]. 

7.5 Clustering methods 

As explained in Chapter 3, the aim of clustering is to identify subtrees that are 

epidemiologically meaningful. When trees are large, this may be done for 

computational reasons, in order to reduce a large dataset into smaller ones. For 

example in Chapter 6, I preselected sequences within the large phylogenies through 

clustering before analysis in BEAST, which is computationally demanding. 

Elucidating the behaviour of clusters may the aim of the analysis in itself, because 

clusters represent sites of active or recent transmission. As such, the characteristics of 

clustered individuals are important in terms of focusing interventions. Clusters 

frequently stratify into risk groups [105], with some overlap between risk groups, 

revealing the structure of the population and the importance of crossing over between 

risk groups. For example the Swiss heterosexual epidemic was driven by PWID [105] 

early in the epidemic, and this continues to be the case in Eastern European countries 

such as Latvia (Denise Kuhnert, unpublished results). Currently both the Swiss and 

UK epidemics are more likely to be driven by crossing over from MSM into 

heterosexuals (Chapters 4 and 5).  

However, clustering approaches have severe limitations. Firstly, a lot of information 

is lost from the tree. Results from the clusters, even though they represent active 

transmission, are not necessary generalizable to the whole of the study region’s 

epidemic. Secondly, clustering methods rely on relatively dense sampling, or at least 

sampling biased towards related infections. If sampled infections are distantly related 

to each other, they are highly unlikely to be part of the same transmission chain and 

clustering is meaningless. This means that clustering analyses may not be very useful 

analysing low sampled epidemics in low-resource settings (see section 7.8.1). Thirdly, 

the choice of clustering thresholds is problematic. In my analysis (Chapter 3), clusters 

identified were overall consistent at a range of genetic distance thresholds (4.5% to 
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7.5%), indicating that clusters represented delineated epidemiological units. However 

there was still some change even when distance threshold was changed only a little, 

and there is a huge difference between clusters identified at 1.5% and at 4.5% [192]. 

Standard practise is to perform sensitivity analyses to evaluate the robustness of 

epidemiological conclusions at a range of clustering thresholds. Furthermore, 

clustering thresholds meaningful in one epidemic cannot necessarily be extended to 

another. A (quite relaxed) cut-off of 4.5% was found to delineate clusters in the UK 

epidemic [108], but this is in part because such a high proportion of sequences are 

from chronically infected individuals. Appropriate thresholds are affected by sampling 

fraction, the evolutionary rate within the population, the time between infection and 

sampling. Nearly all clustering analyses have been performed on pol, and cut-offs 

developed for pol are not suited to analyses of other parts of the genome.  

Finally, clustering does not reveal the true genealogical relationships between 

sequences (see section 7.7) and do not fit into traditional epidemiological modelling 

(see section 7.6). 

7.6 Network methods 

The main advantage of reconstructing networks as well as (or instead of) phylogenies 

is that networks fit within a body of work on epidemiological modelling, allowing for 

testing of hypotheses within a rigorous statistical framework. In this thesis, I focused 

on estimating the degree distribution from the transmission network because of its 

impact on the success of different kinds of interventions. Previous analyses of sexual 

contact network data are limited by the fact that they are likely to miss high degree 

individuals. One suggestion to increase the likelihood of sampling high degree nodes 

has been to sample people with STIs [129]. The present method includes data only 

from HIV positive individuals, and so is much more likely to capture high degree 

nodes and to better estimate the behaviour of the tail of the distribution.  

However, all individuals captured are infected and so transmission networks are being 

reconstructed rather than contact networks. While on one hand, there may be 

advantages to capturing only contacts that have led to transmissions, existing 
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frameworks have been developed based on the sexual contact network and it is at 

present unclear how the two can be reconciled. The transmission network is a result of 

the pathogen’s behaviour on the contact network and depends on many factors 

including its period of infectivity and how knowledge of a person’s infection status 

will affect their behaviour [234]. Therefore while contact networks can be used to 

model the transmission of a number of diseases, transmission networks inferred from 

pathogen phylogenies will tell us only about the pathogen under study. As sequence 

databases for other infectious agents grow, it will be possible to compare and contrast 

networks reconstructed from different pathogens.  

 

Figure 7.1: Number of distinct clusters in the network increasing as nodes are 

removed either at random (in grey, 5 replicates) or according to four different 

centrality measures.  

Information on the contacts that didn’t lead to transmission can be equally important 

for understanding disease dynamics [133]. The HIV-DSPS offers clear opportunities 

to reconcile transmission and sexual contact networks. One next step would be to build 

sexual contact networks using data from NATSAL, simulate HIV transmission and 

evolution along those networks and compare simulated phylogenies and transmission 

networks to those reconstructed from the UK HIV RDB. Another question is whether 
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transmission networks inferred from sequence data can be used to better calibrate 

sexual contact networks. Social network data, such as Twitter and Facebook, also offer 

new opportunities for constructing social and sexual network data, sometimes in 

parallel with subjects’ sexual and drug using behaviours.  

 

Figure 7.2: Size of the largest cluster in the network (giant component) decreasing 

as nodes are removed either at random (in grey, 5 replicates) or according to four 

different centrality measures. 

As explained above, representing relationships between sequences in a network 

enables the isolation of individual nodes within clusters for characterisation; for 

example high degree nodes and bridging nodes. Many additional metrics are available 

to describe networks which were not investigated in this thesis. For example centrality 

measures quantify how important a node is in keeping a network connected. In Chapter 

6, I found that targeted interventions may not be necessary in the UK, however 

preliminary analyses have shown that removing nodes based on centrality measures 

breaks up the network much more rapidly than doing so at random (Figure 7.1 and 

Figure 7.2). As targeted interventions are much more difficult to carry out, further 
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modelling should quantify optimal proportions of targeted and random interventions 

to maximise impact. Currently, nodes targeted in these networks represent only already 

infected individuals (who could be targeted with early initiation of ART) but models 

will eventually include uninfected individuals who could be targeted with PreP. 

7.7 Resolving the true chain of transmission 

The clustering and network methods developed in this thesis are limited by the fact 

that they do not resolve the true transmission chain and cannot detect the direction of 

the transmission. Novel methods have been developed to estimate the direction of 

transmission events on phylogenies. Overall these methods work by assuming that 

each internal node represents a transmission event and the branch before that, the virus 

in its ancestral host. Assuming complete sampling, the probability of each node in the 

phylogeny being the ancestral host/transmitter can be calculated to estimate the 

direction of each transmission event. Ancestral states can be reconstructed moving 

back through the tree from the tips to root.  

These methods require highly sampled networks (close to 100%) with little to no 

introduction of new strains. As such, datasets available usually represent outbreaks of 

diseases among farm animals, such as foot and mouth [235-237]. Despite the very high 

coverage of the UK HIV RDB, and even for subtype B which is dominated by within 

UK transmission, imports are high and the UK epidemic is well integrated in to the 

global epidemic, so sampling fraction of the full epidemic is likely to be low. 

Nonetheless, Volz and Frost estimated for pairs of nodes in HIV phylogenies the 

probability of either being the transmitter [228]. While they were able to infer direction 

as well as calculate the probability of the transmitter missing from the phylogeny, 

inferences required detailed information on incidence, prevalence, sampling fraction 

and stage of infection. 

As well as requiring high coverage, these methods are highly computationally 

intensive. Cottam et al. exhaustively mapped all possible transmission histories onto 

phylogenies for the 2001 UK foot and mouth disease outbreak, calculating for every 

node in their phylogeny the probability that it represented each host, but this would 
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not be possible for larger phylogenies or over multiple trees [237]. However, Morelli 

et al. implemented MCMC to sample from the probability distribution of transmission 

trees without having to examine every single one [236], as well as to iterate over 

multiple trees.  

In order to improve transmission history reconstruction even further, some models now 

incorporate within host diversity and evolution, as well as estimate the number of 

unsampled cases [238]. Indeed availability of multiple sequences from patients can 

reveal direction of transmission and provide detail on the timing of transmission [239]. 

Expressing mutation rate as a rate per generation can facilitate counting of unsampled 

cases [240].  

While lower sampling decreases the likelihood that transmission pairs will be sampled, 

algorithms developed to reconstruct transmission histories provide statistical 

frameworks for testing epidemiological scenarios on trees. Importantly, while results 

on direction of transmission between pairs are not generalizable, investigating wider 

epidemiological enquiries may be useful in understanding numerous epidemics. For 

example, rates of transmission between risk groups can be estimated [228, 235]. 

7.8 Remaining issues and opportunities 

7.8.1 Applicability to low-resource settings 

One important final question is whether the methods developed in this thesis can be 

useful in less densely sampled epidemics, in particular those of sub-Saharan Africa, 

where the burden of infections is greatest [223]. The network reconstruction method 

in Chapter 6 performed poorly at 20% sampling – and 20% sampling by far exceeds 

the sampling fraction currently available in sub-Saharan Africa. It remains to be tested 

whether low sample number, rather than low sample fraction is the issue and whether 

it is possible to reconstruct the properties of the true transmission networks when only 

small numbers of transmission partners are captured. It is possible that these methods 

will have to be better integrated with phylodynamic methods which use more 

information from the tree as a whole rather than focusing solely on related transmission 
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partners. Developing phylogenetic and network methods for sub-Saharan Africa is one 

of the objectives of the PANGEA-HIV Consortium [241]. 

7.8.2 Recombination 

An underlying assumption of phylogenetics is that a single tree can describe the 

evolutionary history of all the sequences. However this assumption is violated for HIV, 

as recombination occurs frequently in the HIV lifecycle (section 1.2.2). 

Recombination will cause errors in our estimation of phylogenetic relationships and 

divergence times. Common practice is to look for recombination among sequences 

before analysis and exclude recombinants. In this thesis, I did not analyse any inter-

subtype recombinants but did not eliminate intra-subtype recombinants. While 

extensive recombination will take place even within subtypes, Lemey et al. argue that 

this does not invalidate transmission trees inferred from HIV phylogenies as sequences 

analysed for transmission are sufficiently closely related to ensure phylogeny 

reliability [242]. In our case, analysis focused only on transmission clusters in which 

recombination is unlikely to have taken pace. 

Recombination is likely to become more of a problem when analysing the epidemics 

of countries with high subtype diversity and frequent co-infection, such as Uganda, 

one of the counties involved in PANGEA (section 7.8.1). Even in the UK, the 

proportion of recombination has inarguably been increasing [93] and the recombinant 

epidemic cannot be ignored altogether.  

One solution is to reconstruct the ancestry of sequences through networks in which 

sequences can have multiple ancestors [29]. To date this type of analysis has been 

carried out manually, but our group is currently automating the process by integrating 

repetitive fast single-linkage network construction [99] with a sliding-window 

approach to scan the entire genome across the whole population. 

7.8.3 Novel sequencing methods: deep sequencing and full genome 

sequencing 

For some pathogens, reconstructing transmission through phylogenetic analysis has 

only become possible because of full genome and deep sequencing. This is the case 
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for example for tuberculosis, because variability is so low between isolates [243]. HIV 

mutates so fast that pol alone is sufficient for reconstruction transmission trees [144]; 

however  full genome and deep sequences will improve the precision of 

reconstructions.  

Availability of multiple sequences from patients makes it possible to infer direction of 

transmission [239] based on tree structure, as will sequences obtained from deep 

sequencing. Estimates of timing of transmission will also be improved [238]. Deep 

sequencing will also disentangle co-infection. Full genome sequences improve the 

resolution of phylogenies and will make it easier to reconstruct the order of infections 

within clusters. In simulates data, HIV phylogenies reconstructed from full genome 

sequences more closely resemble true viral phylogenies (Gonzalo Yebra, personal 

communication).  

Models will have to be adapted to analyse multiple sequences per patient by 

accounting for within host genetic diversity (see section 7.7) [238]. Phylogenies will 

then have to be interpreted differently: nodes will no longer represent solely 

transmission evets but also divergence within hosts. Full genome availability will also 

make it necessary to develop methods that account for recombination as longer 

sequences are much more likely to have undergone recombination. It has been 

suggested that expanding sequencing may lead to subtypes disappearing altogether 

[29]. 

7.9 Conclusion 

Phylogenetic analysis can enhance traditional epidemiology by providing insights into 

HIV transmission patterns. The UK HIV RDB is an incredible resource for 

understanding the UK epidemic and the quality of the data collected is improving all 

the time. Better data will enable increasingly detailed analyses but come at a risk for 

the privacy of the individual. Researchers should be aware of these risks and in parallel 

have a responsibility to fight against the criminalisation of HIV transmission. While 

the methods developed in this thesis are useful to tailoring prevention programs in the 

UK, more efforts are need to develop standardised phylogenetic epidemiology 
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methods that can be applied as public health tools to prevent new infections in sub-

Saharan Africa.  
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APPENDIX 1: CENTRES CONTRIBUTING DATA TO UK HIV 

RDB 

 

 Addenbrooke’s Hospital, Cambridge (Jane Greatorex) 

 Chelsea and Westminster Hospital, London (Adrian Wildfire) 

 Guy’s and St. Thomas’ NHS Foundation Trust, London (Siobhan O’Shea, Jane 

Mullen) 

 PHE Birmingham Public Health Laboratory (Erasmus Smit) 

 PHE London (Tamyo Mbisa) 

 Imperial College Health NHS Trust, London (Alison Cox) 

 King's College Hospital, London (Richard Tandy) 

 Leeds Teaching Hospitals NHS Trust (Tony Hale, Tracy Fawcett) 

 Liverpool Specialist Virology Centre, Royal Liverpool University Hospital 

(Mark Hopkins, Lynne Ashton) 

 Manchester Specialist Virology Centre, Central Manchester Foundation 

Trust (Peter Tilston) 

 Royal Free Hospital, London (Claire Booth, Ana Garcia-Diaz) 

 Royal Infirmary of Edinburgh (Jill Shepherd) 

 Royal Victoria Infirmary, Newcastle (Matthias Schmid, Brendan Payne) 

 South Tees Hospitals NHS Trust, Middlesbrough (David Chadwick) 

 St George's Hospital, London (Phillip Hay, Phillip Rice, Mary Paynter) 

 St Bartholomew’s and The London NHS Trust (Duncan Clark, David Bibby) 

 St Mary's Hospital, London (Steve Kaye) 

 University College London Hospitals (Stuart Kirk) 

 West of Scotland Specialist Virology Centre, Gartnavel General Hospital, 

Glasgow (Alasdair MacLean, Celia Aitken, Rory Gunson) 
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APPENDIX 2: FAST TREE VS RAXML CLUSTERS 

Subtype C sequences from the 2010 UK HIV RDB release (see section 2.1.2) were 

analysed, totaling 10830 sequences. Trees were reconstructed in parallel using  

FastTree [163] and RaxML [162] each with 100 bootstraps. Bootstrap distributions 

were mostly overlapping, with RaxML showing a slight tendency towards assigning 

higher bootstraps (Figure 8.1). Clusters were picked in the resulting phylogenies using 

the Cluster Picker [197] at 90% bootstrap and 4.5% genetic distance. 1805 clusters 

were identified in the RaxML tree and 1565 in the FastTree phylogeny. 1547 clusters 

(84%) were identical across the two methods (Figure 8.2). 

 

Figure 8.1: Bootstrap distributions from RaxML and FastTree phylogenies 

 

Figure 8.2: Overlap between RaxML and FastTree clusters 
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APPENDIX 3: CODE AVAILABLE ON CD-ROM 

 

Chapter Language Code details 

2 R Remove drug resistant sites in alignments based on 

International AIDS Society List 

3 R Sort clusters into single origin and multiple origin, do stats, drop 

tips from trees (all in one script) 

4 Python Launch Cluster Picker in a loop 

 Python Process and merge CPCM output 

 R Process and merge CPCM output 

 R Cluster spreadsheets into degree distributions 

 R Jackknifing degree distributions 

5 R Simulations tree growth/cluster growth 

 R GLM 

6 R Get tMRCA from tree 

 R Thinning algorithms 

 R Fit degree distributions to networks 
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APPENDIX 4: THINNING ALGORITHMS 

The thinning algorithm consists of two steps: thinning of cliques (fully connected 

clusters), then thinning of cycles (nodes connected through a closed path). Clique and 

cycle identification are both functions available in the sna package [222] in R. 

First all cliques in the unthinned network are identified and sorted by size. The clique 

with the most nodes is examined first. When more than one clique contains the same 

maximum number of nodes, all edge lengths (genetic distances or tMRCA) from all 

those cliques are examined. The algorithm starts with the clique with the highest single 

edge length (edgeMax), sorts the edges by length and eliminates the edgeMax edge if 

it is higher than the minimum length edge (edgeMin). The ratio between the two can 

be altered, so that the edgeMax edge will only be eliminated if it is x times larger than 

edgeMin, but in this thesis we eliminated the edgeMax edge if edgeMax>edgeMin (x 

=1). 

It is important to recognise that many cliques and cycles are not independent, and each 

time a link is removed, many other cliques in the list will be affected. Therefore, every 

time a link is removed, all cliques are identified again in the network as a whole before 

another link is selected for elimination.  

If edgeMax is not greater than edgeMin in a clique examined, that clique is skipped 

and the next clique of the same size is examined next. If there are no more cliques of 

that size, the algorithm proceeds to cliques of the next size down.  

Once all cliques (where edgeMax>edgeMin) have been eliminated (the smallest being 

triangles), the algorithm returns the clique-thinned network for cycle thinning.  

Cycle thinning proceeds in the same way, first identifying all cycles, looking at the 

cycle containing the most nodes first, identifying edgeMax within that cycle and 

eliminating the edge if edgeMax>edgeMin. 

The number of nodes in the network and the number of clusters are not affected by 

thinning. All nodes remain in the same clusters as in the unthinned network, but those 

clusters have fewer links after thinning.  
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APPENDIX 5: ROC CURVES 

100% - all links 

 

100% - direct links only 
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60% - all links 

 

60% - direct links only 
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20% - all links 

 

20% - direct links only 
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APPENDIX 6: PSEUDOCODE 

CLUSTER PICKER (CHAPTER 3) 

Initial set-up 

- SET initial threshold (IT), support threshold (ST), genetic threshold (GT) 

- READ sequences and tree  from files 

- CHECK there is a sequence for every tip (and vice versa) 

Recurse through tree and LIST all subtrees with support ≥IT 

For each subtree [ 

 Calculate all pairwise genetic distances (from sequences) 

 Get support from subtree root? node 

 If (max of pairwise distances ≤ GT) and (support ≤ ST) [ Subtree is marked 

as a cluster ] 

 else [ Get all children nodes and add these to the subtree list to be analysed as 

above ] 

] 

RANDOM ADD TIPS (CHAPTER 5) 

READ tree (tip names contain dates) 

Get a list of all branch lengths and store in ‘BranchLen’ 

Get a list of all bootstraps and store in ‘Bootstraps’ 

Count number of tips with tip date >2007 (nberTips). Drop all tips with tip date >2007 

For the length of nberTips [ 

 Select a branch on the tree (the likelihood of any branch being selected can 

be proportional to its length or just 1 over the total number of branches) 

 Select a position along that branch 

 Sample a bootstrap from Bootstraps and a branch length from branchLen 
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 Create a split in the tree at chosen location, supported by selected Bootstrap 

and add tip with selected branch length 

] 

THINNING (CHAPTER 6) 

 

 READ network (network contains node names and pairwise distances 

between each pair of nodes) 

 ‘x’ is set by the user as the multiplier for how much bigger the maximum edge 

distance has to be compared to the minimum edge distance before you delete 

that edge (thinning the clique). x=1 was used in this thesis.  

 

1. Clique thinning 

 Identify all cliques (nodes in a cluster all connected to each other) in network 

and store in ‘allCliq’ – they are all initially marked as ‘unthinned’ 

 This is an inbuilt function in the sna library in R 

 While ‘unthinned’ cliques remain in allCliq [ 

  Identify all cliques in network and store in ‘allCliq’  

  Sort cliques by size 

  Select the ‘unthinned’ clique with the largest number of nodes 

(If more than one clique has the same largest number of nodes, 

look at all pairwise distances within those cliques and select the 

one with the single largest pairwise distance) 

Sort pairwise distances of the clique. Identify the max (edgeMax) and 

min (edgeMin) 

If edgeMax < (x times edgeMin), mark clique as ‘thinned’ (it will not 

be inspected again) 
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  Else: eliminate the clique’s edgeMax and repeat loop 

 ] 

 

2. Cycle thinning 

Identify all cycles (nodes in a cluster linked up in a loop) in network and store 

in ‘allCycl’ – they are all initially marked as ‘unthinned’ 

  This is an inbuilt function in the sna library in R 

 While ‘unthinned’ cycles remain in allCycl [ 

  Identify all cycles in network and store in ‘allCycl’  

  Sort cycles by size 

  Select the ‘unthinned’ cycle with the largest number of nodes 

(If more than one cycle has the same largest number of nodes, 

look at all pairwise distances within those cycles and select the 

one with the single largest pairwise distance) 

Sort pairwise distances of the cycle. Identify the max (edgeMax) and 

min (edgeMin) 

If edgeMax < (x times edgeMin), mark cycle as ‘thinned’ (it will not be 

inspected again) 

  Else: eliminate the cycle’s edgeMax and repeat loop 

] 
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