
Correctness Proofs of Compilers and

Debuggers: an Approach Based on Structural

Operational Semantics

Fabio Q. B. da Silva

Doctor of Philosophy

University of Edinburgh

1992

Abstract

In this thesis we study the use of semantics-based formal methods in the specific-

ation and proof of correctness of compilers and debuggers. We use a Structural

Operational Semantics as the basis for the specification of compilers and pro-

pose a notion of correctness based on an observational equivalence relation. We

define program evaluation and a notion of evaluation step based on a Structural

Operational Semantics and use these definitions as the basis for the specification

of debuggers. Debugger correctness is then defined by an equivalence relation

between a specification and an implementation of the debugger based on the

bisimulation concept.

The main results of this thesis are: a definition of a variant of Structural

Operational Semantics, called Relational Semantics, which is the underlying

formalism of this thesis; the definition of a notion of Observational Equival-

ence between Relational Semantics Specifications; a formulation of the problem

of compiler correctness using Observational Equivalence; an evaluation model

for programming languages and a definition of an evaluation step; an abstract

definition of Interpreter-debuggers; a specification notation for the formal spe-

cification of debuggers, called DSL; a notion of equivalence between debuggers

using bisimulation; a study on Compiler-debuggers and the problems involved in

their definition.

These results form a theory for the formal specification and proofs of cor-

rectness of compilers and debuggers. Our starting point is that the use of this

theory helps in building better compilers and debuggers. It is our goal to provide

theoretical foundations and tools to show that our methods are achievable.

Acknowledgements

I would like to thank first of all my supervisor, Kevin Mitchell, for his help,

encouragement, and precise hints in the development of this thesis. I would also

like to thank my second supervisor Don Sannella for leading me through the

paths of algebraic specification. His suggestions and guidance greatly influenced

the results of Chapters 3 and 4.

The Department of Computer Science at Edinburgh provided me with a con-

genial work environment and I would like to thank all the people I got to know

there during my stay. Special thanks to Kees and Hans for being such good

office-mates, and to Eleanor for general help.

Silvio Meira influenced my decision to study in Edinburgh, and I thank him

for this.

Matthew Morley, Ed Kazmierczak, Kees Goossens, and Dave Berry proof-read

several parts of this thesis. My thanks go to them. Any remainning misteaks

(including this one) are entirely my responsibility.

Thanks to Dave Berry, Dave Matthews, Mads Tofte, Tim Griffin, and Ben-

jamim Pierce for good discussions on programming language semantics. Thanks

also to Oliver Schoett for clarifying some aspects of his thesis to me. Although I

never met Laurent Hascoët in person, our "electronic discussions" about TYPOL

and CENTAUR were of great help. My thanks also go to him.

Thanks to my parents, Maria Aparecida and Saulo da Silva, and to my sisters,

Luciana and Daniela, for their continuous support, and to all friends and relatives

in Brazil for their letters. Special thanks go to André Villas Boas and Jair

Lopes. Thanks also to everybody in Edinburgh who kindly distract me from

work: Roberto, Jamie, Natalie, Fotini, Mauro, Seraphin, Eliane, Zé Carlos, Pirko,

and Mario.

Finally, I would like to thank my wife Claudia whose support and patience

played a major part in making this thesis possible.

This work was supported by a Brazilian government scholarship, CNPq pro-

cess number 20.0459/88.0/CC.

Declaration

This thesis has been composed by myself. The work reported herein has not been

presented for any university degree before, and, unless otherwise stated, is my

own.

Fabio Q. B. da Silva

To my grandparents:

Dalila José Olga Francisco

Table of Contents

List of Definitions 	 ix

List of Examples 	 x

List of Figures 	 xi

List of Theorems 	 xii

Glossary)Cii

1 Introduction 	 1

1.1 The Design of Compilers and Debuggers1

1.2 The Approach of this Thesis10

1.3 	Outline of the Thesis31

2 	The Semantics Formalism: Relational Semantics 35

2.1 Introduction 36

2.2 Set Theoretical Preliminaries 40

2.3 Relational Specifications 41

2.4 Declarative Semantics of Relational Specifications 50

2.5 Summary and Conclusions 58

3 Equivalence of Relational Specifications 	 60

3.1 	Introduction61

3.2 Algebraic Preliminaries65

vi

vu

3.3 Observational Equivalence: the Generic Case 	 66

3.4 Observational Equivalence of Relational Specifications76

3.5 A Proof of Equivalence82

3.6 Summary and Conclusions91

4 Compiler Correctness 92

4.1 Introduction 93

4.2 Definitional Preliminaries 98

4.3 Evaluation by Compilation 100

4.4 A Proof of Compiler Correctness 109

4.5 Summary and Conclusions 117

5 Evaluation of Programs Based on Relational Semantics 	119

5.1 	Introduction120

5.2 Definitional Preliminaries123

5.3 Computational Semantics of Relational Specifications124

5.4 Program Evaluation and Evaluation Step134

5.5 Summary and Conclusions151

6 Formal Specification of Debuggers 153

6.1 Introduction 154

6.2 Definitional Preliminaries 156

6.3 Interpreter-Debuggers 156

6.4 Aspects of the Specification of Debuggers 162

6.4.1 	The Granularity of the Debugging Steps 165

6.4.2 	Unique Reference to Sub-programs 168

6.5 A Notation for Specifying Debuggers 174

6.6 The Specification of an Interpreter-Debugger 188

6.7 Summary and Conclusions 193

7 Debugger Correctness 	 195

vm

7.1 Introduction 	 196

7.2 Observational Equivalence between Debuggers199

7.3 Compiler-debuggers207

7.3.1 Aspects of the Specification of Compiler-debuggers . . . 	209

7.3.2 The Specification of a Compiler-debugger226

7.4 A Proof of Debugger Correctness230

7.5 Summary and Conclusions247

8 Concluding Remarks 	 248

8.1 	Summary248

8.2 Improvements and Extensions to the Theory251

8.3 An Implementation of the Framework257

8.4 	Conclusions259

Bibliography
	 261

A The Semantics of DSL
	

276

A. 1 Introduction 	 276

A.2 The Syntax 	 277

A.3 The Dynamic Semantics 	 278

A.4 Summary and Conclusions 	 286

List of Definitions
2.1 Relational Specification Syntax 	 . 	44

2.2 Relational Specification52

2.3 Declarative Semantics53

2.4 Finite Length Proof57

2.5 Proof Tree57

3.1 Observational Equivalence67

3.2 Strong Correspondence70

3.3 Model Correspondence72

3.4 Equivalence of Relational Specifications82

5.1 Computational Semantics 126

5.2 Data-driven Specification 137

5.3 Program Evaluation 138

5.4 Deterministic Specification 145

5.5 Evaluation Step 146

5.6 Dynamically-deterministic Specification 149

6.1 Evaluation History 157

6.2 Interpreter-Debugger 160

6.3 Step Predicate 167

6.4 Path Tree and Syntax Path 170

7.1 Debugger-schema 200

7.2 Debugger Bisimulation 202

7.3 Termination-explicit Debugger 204

7.4 Break-point Predicate 212

7.5 Debugging Machine 212

lx

List of Examples

2.1 Relational Specification Syntax Exp 47

2.2 Relational Specification Exp 54

3.1 Relational Specification Sub 77

3.2 Relational Specification SEnv 80

Relational Specification Env. 	 103

4.1 Relational Specification Cam
	

104

4.2 Relational Specification Trans 	 106

4.3 Relational Specification Comp. 	 108

7.1 Debugging Machine DCAM213

7.2 215

7.3 Relational Specification DComp 221

x

List of Figures

1.1 A Semantics of Sum 	 13

1.2 An Alternative Semantics for Sum 14

1.3 Two Semantics for Pair 15

1.4 A Semantics for M-Sum 18

4.1 The Morris Diagram94

4.2 Evaluation by Compilation101

5.1 Inclusions of Classes of Relational Specifications135

5.2 (More) Inclusions of Classes of Relational Specifications150

6.1 	Parsing Tree169

6.2 Schematic Representation of a Debugging History182

6.3 Unfinished Evaluation of a Sum Expression187

A.1 The Syntax of Sequence Patterns277

A.2 The Semantic Objects of the Dynamic Semantics278

A.3 The Matching of Interval Patterns280

xi

List of Theorems

Proposition 2.1 Principle of Rule Induction 	 41

Proposition 2.2 57

Proposition 2.3 58

Fact 3.1 68

Fact 3.2 68

Proposition 3.1 Strong Correspondence 71

Theorem 3.1 Model Correspondence 73

Fact3.3 82

Lemma 5.1 129

Theorem 5.1 Soundness of the Computational Semantics 130

Theorem 5.2 Operational Interpretation 139

Proposition 5.1 141

Lemma 5.2 142

Lemma 5.3 142

Lemma 5.4 142

Theorem 5.3 Completeness of the Computational Semantics 142

Theorem 5.4 Monogemcity 146

Proposition 7.1 203

Theorem 7.1 Coherence 205

xii

Glossary

The following tables summarise the notation used in this thesis. The page num-

bers refer to the page where the notation is first defined or used.

Set Theory

Constructor Description Page

0 empty set; same as { } 40

Al Natural Numbers 40

[nt] {1,...,n}CAI 40

.F(A) finite power set of A 44

{aA:4(a)} setofaAsuchthat(a) 41

[A -+ B] function space from A to B 40
fin [A -' B] finite mappings from A to B 278

A U B union of sets 40

A fl B intersection of sets 40

A + B union of disjoint sets 40

A\B difference of sets 124

xiv

Set Theory (continued)

Page

A x B cartesian product 40

dom R domain of (binary) relation 52

ran R range or image of (binary) relation 123

R' converse of relation; {(y, x) : (x, y) E R} 75

R o Q composion of relations 75

R/A restriction of R to A; {(x, y) E R: x e Al 141

{a} 61 indexed set or family; {a}, when I understood 40

(a1 ,. .. , a) finite sequence of length n 40

() empty sequence; same as & 40

A* set of all finite sequences (words) over A 40

A A*\{e} 42

Iwl lengthofw 167

ww sequence concatenation 182

157

fs4(a1 ,...,a,)) a1 157

cur((a1 ,...,a)) an 157

rem((a1 ,...,a)) (a1 ,...,a,_1) 157

Ba, X ... X Ban 40

Be {O} 40

(b1 ,..., b,) n-tuple, i.e., (b1 ,. .., b) E 40

xv

Single Entities

Entity Set Entity Name Type of Entity Page

S S sort 42

F ci function name 42

II 7r relation name 42

S w sequence of sorts 42

X x,... meta-variable 42

Tx(Y2) t, t',... E-terms with meta-variables in X 42

F(1) 1,1',... a-formula with meta-variables in X 43

P(Q) p, p',... program formula with meta-variables in X 99

T(E) i, 1',... ground E-terms 42

F(Q) 7,j',... ground a-formula 43

,',... ground program formula 99

Relational Inductive Definition 44

Compound Entities

Entity Set Entity Name Type of Entity Entity Page

, EOBS, algebraic signature (5, F) 42

Sig oBS,••• first order signature (S, F, II) 42

, 	 oBs,••• directed signature (5, F, H, ir) 99

Alg() A,B.... partial 	-a1gebra 51

Mod(f) M, N,... first order a-model 53

C,S,R.... Relational Specification (1,0,A) 52

Spec(floBs) C, 8, R..... Relational Specification (1, qS, A, 1oBs) 77

Deb(YD L , EoBs) D, 9... Debugger-schema (E, A, A, 	DoBs) 200

xvi

Substitutions

Constructor 	 Description 	 Page

V(t) 	 meta-variables of t 	 43

0 	 substitution 	 43

to 	 instance of t by 0; same as I(t, 0) 	 43

00' 	 composition of substitutions 	 44

Inductive Definitions

Constructor 	 Description 	 Page

(P, c) 	 inductive rule 	 40

0 	 inductive system 	 40

I(q) 	 inductively defined set 	 41

inductive system derived by A 	 52

Universal Algebra Constructors

Page

evaluation function of terms on algebra A 	 51

evaluation function of formulae on algebra A 	 52

simplification function on algebra A 	 123

p signature morphism 65

J' algebraic signature inclusion 66

ci E Il' signature inclusion 65

A/E the reduct of A by E 66

M/ci the reduct ofMbyci 65

xvii

Transition Systems

Set Element Description Page

r st,... states 124

—4 transition relation 124
* transitive-reflexive closure of —s 124

transitive closure of —+ 124

T st,... terminal states 124

(r, --4) transition system 124

(1', -~ , T) terminal transition system 124

(I', L, —*) labelled transition system 156

Computational Semantics

Set Element Name Element 	Description Page

Cs (rcs7 Cs
, T 8) 	Computational Semantics 126

rcs st,... [0 : c] 	evaluation state 126

EH h, dh... (st1,. 	. , st,) 	evaluation history 157

Transition Relations

Relation 	Type 	 Description 	 Page

x rcs 	computational semantics 	 126

EH x EH 	evaluation history transition 	157

Equivalence Relations

Relation 	Type of Relation Page

—SOBS 	
Observational Equivalence 67

<aoBS 	 Strong Correspondence 70

CIOBS 	 Model Correspondence 72

Equivalence of Relational Specifications 82

Debugger Bisimulation 202

One talks about mathematical discoveries. I shall try again and again

to show that what is called a mathematical discovery had much better

be called a mathematical invention.

In some cases to which I point, you will perhaps be inclined to say,

"Yes, they had better be called inventions. "; in other cases you may

perhaps be inclined to say, "Well, it is difficult to say whether in this

case something has been discovered or invented.

Ludwig Wittgeustein [Dia76, page 221

Chapter 1

Introduction

This thesis examines two related issues in the implementation of programming

languages: the specification and correctness proofs of compilers, and the specific-

ation and correctness proofs of debuggers. While this thesis focuses on the latter

problem we use, for both problems, a Structural Operational Semantics of the

programming language as the reference point for correctness.

In the following section we motivate the use of semantics-based methods in

the design of compilers and debuggers. In Section 1.2, we give an overview of our

approach to this problem. Section 1.3 briefly reviews the approachs to compiler

correctness and semantics-based debugging that we find in the literature, and

presents an outline of this thesis.

1.1 The Design of Compilers and Debuggers

The research on compiler design dates back to the early sixties. Since then, a

vast literature has emerged describing techniques and tools for compiler writ-

ing (e.g. [Gri71,T585,A5U86,PP92J). The problem of compiler correctness has

also been widely studied in the past [MP67,Mor73,Mos79,TWW81,Po181,CM86,

Des86,Joy89,Sim9O]. Therefore, we have a common understanding of what the

problems of compiler specification and correctness involve: we must give a defini-

tion of a compiler and prove that the code it generates for each program executes

1

Chapter 1. Introduction 	 2

consistently with the semantics of the programming language.

Since there exists some freedom in defining what is meant by "consistent

execution of the compiled code", it is in this aspect that the works in the literature

differ most. This thesis extends and improves previous work on this subject by

presenting a notion of compiler correctness in which the execution of the code

of a program must be observationally equivalent (in the algebraic specification

sense) to the semantics of the program as defined by a Structural Operational

Semantics.

In contrast with compilers, debuggers have received little attention from a the-

oretical point of view. Therefore, it is not commonly agreed what the problems

involved in the design of debuggers are, nor what debugger correctness means.

However, debugging is an important phase in the development of programs ac-

counting for a large percentage of the cost of this development [Jon77,Sho83].

For instance, in the telecommunication industry this cost may account for over

50 percent of the total development cost of a program [Sev87}; similar figures

have been reported from other areas.

Therefore, an important problem in software technology is to define methods

and tools to reduce the time spent on the debugging phase [Lew82]. This reduc-

tion can be achieved either by producing programs that have fewer errors with

respect to their specification (no errors in the ideal case), or by improving the

quality of the tools and methods used in debugging, or by a combined solution.

The problem of developing programs that are correct with respect to their

specification is the subject of a wide area of research on formal specification and

formal program development. We do not treat this problem in this thesis; the

interested reader is directed to [GM86] for an overview of various approaches to

formal program development and to [BKL91] for a survey on Algebraic Spe-

cification.

Although the research on formal specification experienced great advances in

the last decade, it has not reached a state in which practical programs are de-

Chapter 1. Introduction 	 S 	 3

veloped entirely free of errors. Therefore debuggers are still necessary in the

process of program development, and to improve the techniques and tools used

in their design is an important problem to be addressed. We approach this prob-

lem by proposing the use of semantics-based formal methods in the design of

debuggers. Our objective is to define a theory to address formal specification,

implementation, and correctness proofs of such tools.

In the rest of this section we will study the process of debugger design and

identify aspects in this process that can be improved by using semantics-based

methods. Before we start looking into debugger design we should agree on what

a debugger is and what distinguishes it from other programming tools. First,

we are interested in automated debuggers rather than in manual debugging tech-

niques like desk checking and memory dump analysis. As an initial proposal, we

characterise debuggers as follows:

A debugger is a tool that produces information about the intermediate

states of the evaluation of programs under the user's request.

This characterisation emphasises that we are interested in dynamic information

about a program rather than in a static analysis of its behaviour as in [Sev87]. We

will refine and make this characterisation more precise throughout this chapter.

Let us now analyse some questions that naturally arise from the above charac-

terisation of debuggers:

. How are programs evaluated?

. What information about the evaluation may be requested?

. Is the process of requesting/obtaining information interactive?

The answers to these questions vary in the literature and define classes of de-

buggers. Programs may be interpreted, in which case the debugger is called an

interpreter-debugger [vdLW85,SY087]. Alternatively, programs may be compiled

Chapter 1. Introduction 	 4

into machine code that is then executed on the machine, in which case the debug-

ger is known as a compiler-debugger. Finally, programs may be evaluated by a

combination of interpretation and compilation, usually known as mixed-execution

or selective interpretation [CH87].

The minimal information about the evaluation that is normally available is

the value of the program data at intermediate states of the program evaluation.

More sophisticated debuggers provide procedure and function trace-backs, and

information about the control flow of the program. Symbolic- de buggers are de-

buggers in which this information is requested and presented at the level of

the programming language structures. Finally, interactive-debuggers are those

in which the process of requesting/obtaining information is interactive [Ze184,

vdLW85,SY087], in contrast with post-mortem debuggers in which the user can-

not interact with the debugging process, and the information is delivered after

program termination [Lau79}.

Most proposals in the literature which set out to improve the quality of de-

bugger focus on two main aspects: the user interface and the information that

the user can access through the debugger. The recent advances in hardware tech-

nology and the wide availability of graphical workstations has made possible the

design of debuggers with sophisticated graphic interfaces [Bov87,Moh88]. The

increasing computational power and storage capabilities of recent computers al-

lows debuggers to store complete histories of the evaluation of the program, so

that it is possible to access information about an arbitrary point in the history

of the evaluation [Moh88}.

The above mentioned works and other related approaches in the literature

(e.g. [vdLW85,Bov87]) have produced some improvements on the process of de-

bugger design. However, this process still remains ad hoc and informal which

often leads to debuggers that either have a counter-intuitive behaviour, or are

incorrect, or both. Let us illustrate these problems so that we can understand

how the use of semantics-based methods can assist in their solution.

Chapter 1. Introduction
	

5

Hereafter, we focus our interest on interactive-debuggers, for this is the most

used kind of debugger and also because they provide the most interesting and

challenging problems. In general, an interactive-debugger provides debugging

commands that give the user the ability to step through the intermediate states

in the evaluation of a program; to stop at desired break points; and to request

information about the current, and possibly, previous states in the evaluation.

This characterisation of interactive-debuggers raises an important question:

what is the meaning of "to step through the states in the evaluation of a pro-

gram"? Answering this question involves the definition of a notion of an evalu-

ation step, which is a central problem in the design of debuggers.

The importance of the definition of an evaluation step is brought to light in

the example below in which we wish to emphasise how a counter-intuitive notion

of evaluation step may lead to counter-intuitive behaviour of the debugger. In

this case, the debugger is less effective in assisting the programmer to locate

errors, and solutions to this problem are therefore necessary.

Suppose we have two versions of simple C [KR78] program in which the only

difference is how the text of the program is written. The two versions of the

program are shown below; we call the one on the left p1. c and the other p2. C:

mainQ{

mt i;

i = 0; while (1) {i++;};

}

From our knowledge of the programming language, we develop an intuition about

the evaluation steps of the above programs. According to this intuition, the first

step in both evaluation is to assign 0 to the variable i. Then, the condition (1)

of the while statement is tested. Since its value is different from 0, the next

step evaluates the statement i++, which increments the value of i by 1. Since

the value of (1) will always be different from 0, the evaluation never leaves the

mainO{

mt i;

i = 0;

while (1) {i++;};

}

Chapter 1. Introduction 	 6

while statement, and at each step the statement i++ is evaluated, incrementing

i by 1.

The above description of the evaluation of p1. c and p2. c is what we call our

intuitive notion of an evaluation step. When using a debugger, we expect to be

able to observe the evaluation according to this intuitive notion. The following

example shows a debugger, commonly used in practical applications, that does

not behave as we expect.

Let us debug the programs p1. c and p2. c using DBX [Mic] to observe the

values of the variable i. We first compile the programs generating debugging

code, and then load DBX with this code. A debugging session for the program

pl.c is shown below:

Reading symbolic information...

Read 34 symbols

(dbx) stop at 3

(2) stop at "pl.c":3

(dbx) run

Running: p1

stopped in main at line 3 in file "pl.c"

3 	i = 0; while (1) {j++;};

(dbx) display i

i = 0

(dbx) step

(dbx)

After the step command the execution enters an infinite loop and we cannot see

the value of the variable i inside the while statement. A debugging session for

the program p2. c, in which the first three debugging commands are as in the

above session, is as follows:

Chapter 1. Introduction
	

VA

Reading symbolic information...

Read 35 symbols

(dbx) stop at 3

(2) stop at "p2.c":3

(dbx) run

Running: p2

stopped in main at line 3 in file "p2.c"

3 	i0;

(dbx) display i

i=O

(dbx) step

stopped in main at line 4 in file "p2.c"

4 	while (1) {j++;};

i=O

(dbx) step

stopped in main at line 4 in file "p2.c"

4 	while (1) {j++;};

i = 2

(dbx)

Let us analyse two aspects of the above examples: the behaviour of the debugging

command step in both debugging sessions; and the values output by DBX for

the variable i during the evaluation of p2. c.

We start by analysing the step command. According to our intuition about

the evaluation steps of p1. c and p2. c, we expect both programs to have identical

evaluation steps, as we discussed on page 5. Therefore, we also expect the step

command to have identical behaviours in both debugging sessions. Nevertheless,

the behaviours of step do not agree with our intuition because DBX's notion of

step is based on the lines of the program rather than on the sequence of primitive

operations involved in the evaluation of the program.

Chapter 1. Introduction
	

Fz

We argue it is essential that a debugger behaves according to our intuition

about how programs are evaluated. A debugger that behaves intuitively is easier

to learn and may be more effective in assisting the programmer to locate errors.

Therefore, an important problem in debugger design is to build debuggers with

intuitive behaviours.

The particular problem we illustrated using the step command of DBX is an

instance of a general problem. Let us characterise this problem to understand how

semantic based methods may assist in its solution. On the one hand, as discussed

above, we develop an intuitive notion of an evaluation step and consequently of

how programs are evaluated. These intuitive notions form our mental model of

the programming language [BOM81,Nor82] which is built mainly from the ob-

servations we make of program evaluations, and from the documentation we are

given on the programming language, e.g, the definition of the programming lan-

guage. On the other hand, a debugger also has a model of the programming

language, which defines its notion of evaluation step and how programs are eva!-

uated; we use the term evaluation model to refer to the debugger's model of the

programming language. Problems therefore arise whenever our mental model

and the debugger's evaluation model are different.

An obvious solution to this problem is to define debuggers whose evaluation

model behaves close to our mental model. A first aspect in which semantics-based

methods may help the design of debuggers is in the definition of an intuitive

evaluation model. Some formalisms used to define semantic aspects of program-

ming languages have an explicit operational meaning, e.g., definitional interpret-

ers [Lan64] and Structural Operational Semantics [P1o81]. Other formalisms can

naturally be given an operational interpretation, e.g., Natural Semantics [Kah88].

This operational meaning may be used to define evaluation models paramet-

nc on a formal semantics of the programming languages; when instantiated with

a particular semantics such an abstract evaluation model yields an actual eval-

uation model that may be used to evaluate programs. For instance, this is the

approach taken by Berry in his Animator Generator [Ber9la].

Chapter 1. Introduction 	 9

Our starting point is that, using a suitable semantics formalism and a particu-

• lar intuitive semantics of the programming language, we can define an evaluation

• model that has an intuitive notion of an evaluation step. Our main contention is

that the use of such an evaluation model helps in the definition of debuggers that

have intuitive behaviour. It is our first objective to choose a suitable semantic

formalism and then to define an evaluation model based on this formalism.
Let us now analyse the values output by DBX for the variable i in the debug-

ging session for program p2. c (page 6). In that debugging session, the value of

i is shown as incrementing by two at each step. However, we intuitively expect

it to be incrementing by just one. Since there is no formal specification of DBX,

there are two possible interpretations for this behaviour. First, this is the beha-

viour intended by the debugger designer, in which case the behaviour of DBX is

again counter-intuitive. Second, this behaviour is not intentional, in which case

it is an error in DBX's implementation.

The second possibility is the most likely and is clearly the most harmful

because if we use a debugger to locate errors in the program it is imperative

that the debugger is correct. Another important aspect in debugger design is to

produce correct debuggers.

Another aspect in which semantics-based methods may assist in the debugger

design is in the formal specificationof the behaviours of the debuggers. The ability

to build formal specifications is the first essential step towards correct debuggers.

Furthermore, a formal specification is an improvement on an informal one because

it offers an unambiguous common reference for the users, the designers, and the

implementors of the debugger, with the following advantages:

• A common reference between user and designer means that the behaviour

of the debugger that the user learns is exactly what was specified by the

designer.

• A common reference between the designer and the implementor means that

the implementor may implement a debugger that has the behaviour spe-

cified by the designer in the formal specification. Moreover, because the

Chapter 1. Introduction
	

10

specification is formal we can develop a notion of correctness between spe-

cification and implementation such that we can prove that the implemented

debugger has the same behaviour as its specification.

. As a consequence of the two previous points, a common reference between

the implementor and the user means that the latter uses a concrete debug-

ger that behaves exactly like the specification.

Our second objective is to define a theory for the specification of debuggers based

on a formal semantics of the programming language. In this semantics-based

approach, an evaluation model of the programming language is used as the basis

of the debugger specification. Since this evaluation model will be defined to

behave as close as possible to our intuition about the programming language,

we argue that our approach will assist in formalising debuggers with intuitive

behaviours.

Our third and final objective is to define a notion of equivalence between

the behaviours of a specification and an implementation of a debugger. The

definition of an evaluation model, the methods and tools for semantics-based

specification of debuggers, and the notion of equivalence between specification

and implementation of debuggers form an integrated theory of debugger design.

Our thesis is that the use of this theory helps in designing debuggers that more

effectively assist the programmer because they are easier to learn, more intuitive

to understand, and correct with respect to their formal specification. It is our

goal to provide theoretical foundations and tools to show that our methods are

achievable.

1.2 The Approach of this Thesis

In this section we give an overview of the main results of this thesis. The objective

is to show how a theory of debugger design can be defined. The design of a

debugger involves three separate phases. First, the specification, in which the

Chapter 1. Introduction 	 11

behaviour of the debugger is defined. Second, the implementation, i.e., another

specification of the debugger given at a lower level of abstraction, and closer

to an actual machine implementation. Third, the proof of correctness of the

implementation with respect to the specification. The following discussions show

how each phase is addressed in this thesis.

Choosing the Semantic Formalism

Our ability to construct formal specifications of debuggers depends on the exist-

ence of a formal notion of program evaluation and of evaluation step; we propose

to use a formal semantics in the definition of programming languages and from

such a semantics to derive these formal notions. The success of this proposal

depends on the choice of a suitable semantic formalism, for on the one hand it

is difficult to derive a notion of program evaluation from some formalisms (e.g.,

axiomatic semantics [Hoa691). On the other hand, some formalisms are difficult

to reason about because of the complexity of their underlying mathematics (e.g.

denotational semantics [Sto89]). Using such a formalism could make it difficult

to reason about debuggers.

However, some semantic formalisms have a simple underlying mathematics

and a natural and explicit operational meaning that can be used in the defin-

ition of program evaluation. The generic name operational semantics is often

used to refer to such a formalism. In fact, operational semantics is a class of

formalisms that includes a diversity of styles of formal semantics: for instance,

definitional interpreters (e.g., Landin's SECD machine [Lan64], or Milner's SMC

machine [Mil761), Plotkin's Structural Operational Semantics [P1o81], and Kahn's

Natural Semantics [Kah88].

Structural Operational Semantics is a representative example of what we call

the transitional style of operational semantics, in which the semantics of the

programming language is defined by a transition system whose steps describe the

evaluation of the programs. On the other hand, Natural Semantics is an example

of what we call the relational style in which the semantics of a programming

Chapter 1. Introduction
	

12

language is defined by a mathematical relation between programs and results.

The main difference between formalisms in the transitional and the relational

styles that is relevant for our work at this stage is in the notion of an evaluation

step. On the one hand, such a notion is an explicit component of formalisms in

the transitional style. On the other hand, for formalisms in the relational style a

notion of evaluation step must be defined as a component outside the formalism.

This seems to imply that because our goal is a definition of an evaluation step for

the debuggers, we should use a semantic formalism in the transitional style. This

avoids the task of defining an explicit notion of evaluation step that is necessary

if the chosen formalism is in the relational style of operational semantics.

Nevertheless, simple comparisons between concrete semantics written in Struc-

tural Operational Semantics and in a relational style, revealed that the latter

provides semantics that are more concise and easier to reason about ([Ber9la,

pages 48-501, where what we call a Structural Operational Semantics is called a

transition semantics). The use of evaluation contexts proposed in [WF91] helps in

making Structural Operational Semantics more concise. However, this approach

does not solve a limitation of the formalism: certain language constructors can

only be defined by a Structural Operational Semantics provided the language has

a rich enough set of constructors. For instance, a while statement can only be

defined provided the language has some kind of conditional statement.

We propose to use the relational style of operational semantics for the defin-

ition of semantic aspects of programming languages in this work. Therefore,

we shall need to give an explicit definition of evaluation step to be used by the

debuggers, as will be discussed later on.

Let us illustrate the semantic formalism that we shall use in the rest of this

work, which we will call Relational Semantics. For this, suppose we have a

simple language Sum of constant and sum expressions, defined by the following

BNF rules:

Chapter 1. Introduction 	 13

num(n) = n

e1 =n1 	e2 =n2
e1 + e2='.plus(ni,n2)

Figure 1: A Semantics of Sum

exp ::= num(nat) I exp + exp

nat ::= 0 1 1

and a function plus: nat x nat -+ nat that takes two nat numbers as arguments

and returns a nat number that is the sum of its arguments. It is convenient to

emphasise that "+" is the language constructor whereas plus denotes the math-

ematical sum operation. Moreover, num is a coercion operator that constructs

an exp expression from a nat number. The role of coercion operators will be cla-

rified in Chapter 2. A Relational Semantics for the expressions in this language

may be given by the set of inference rules in Figure 1.

The rules in Figure 1 define how to evaluate a Sum expression to a nat number:

the first rule states that a constant expression num(n) evaluates to the nat

number n; the second rule states that lithe expression e1 evaluates to a number

n1 and the expression e2 evaluates to a number n2 then the sum expression

e1 + e2 evaluates to the result of the function call plus(n1 , n2). This informal

interpretation is what we call an operational interpretation of the rules; such an

interpretation will be essential in the definition of an intuitive notion of evaluation

step based on the Relational Semantics formalism, as will be discussed later on.

The rules in Figure 1 can also be interpreted as an inductive definition of the

binary relation = between exp and nat, which we denote by =>: exp x nat. We

formalise this interpretation in Chapter 2, whereas the operational interpretation

is defined in Chapter 5.

Chapter 1. Introduction
	

14

num(n) = n

e1 =,v' 	(v',e2)—*v

e1 + e2 = v

e2 = v' 	(v', e1) - v

e1 + e2 =' V

e=v'

(v, e) - plus(v, v')

Figure 2: An Alternative Semantics for Sum

Equivalence between Definitions of Programming Languages

The same semantic aspect of a programming language may be defined by differ-

ent semantic specifications. For instance, we could define the semantics of the

language Sum by another set of rules as in Figure 2.

An important question is whether the set of rules in Figure 2 and Figure 1

define equivalent semantics for Sum, for if they do so we may use either of the

two sets of rules to determine the result of a Sum expression. To answer this

question we must first define what we mean by equivalent semantics. Using the

operational interpretation of the two sets of rules, a suitable notion of equivalence

for the above examples may be as follows:

For all expressions e in Sum, e evaluates to a number n in the set of

rules of Figure 1 if and only if e evaluates to n in the set of rules of

Figure 2.

Given that the function plus is commutative, a simple inspection of the two sets

of rules tells us that they are equivalent in the above sense.

However, there are examples of pairs of semantics that we intuitively regard

Chapter 1. Introduction

Direct

num(n) C-' num(n)

Pi -+ pi 	P2 C-'P
cons(p1,p2) c— cons(p,p)

p - cons(p1,p2)

first(p) c Pi

p c cons(p1,p2)

second(p) c P2

15

Reverse

nurn(n) nurn(n)

Pi '* pi 	 PC-' P
cons(p1 ,p2) c— cons(p,p)

p 	cons(p 1 ,p2)

first(p) '—' P2

p '—* cons(p 1 ,p2)

second(p) Pi

Figure 3: Two Semantics for Pair

as being equivalent, but are not equivalent under the above informal notion. This

suggests that we should look for a more general notion of equivalence. Let us

show an example that illustrates this problem.

Consider a language Pair of pairs of numbers, defined by the following BNF

rules:

pair ::= num(nat) I cons(pair, pair) I flrst(pair) J second(pair)

where nat was defined in the BNF rules of the language Sum (page 12). The

sets of rules in Figure 3 define two semantics for Pair. The set called Direct

defines the intuitive semantics in which a pair expression is evaluated to another

pair expression by removing all first and second constructors. The set called

Reverse gives a semantics in which a pair expression is also evaluated to another

pair expression without first and second constructors, but the pair expressions

of the form cons(pair, pair) are constructed in reverse order.

According to the notion of equivalence discussed above, Direct and Reverse

do not define equivalent semantics for the language Pair. For instance, the pair

expression cons(num(1), nuni(2)) evaluates to cons(num(1), num(2)) in Dir-

Chapter 1. Introduction 	 16

ect and to cons(nuin(2), num(1)) in Reverse. However, the pair expression

first(cons(num(1), nuin(2))) evaluates to num(1) in both cases. Thus, if we

are only interested in results of the form num(n) then the difference between

Direct and Reverse becomes irrelevant, in which case we would like to consider

the two sets of rules as equivalent semantics of Pair. Therefore, we need a more

flexible notion of equivalence in which only a subset of the pair expressions are

required to evaluate to the same result under the two sets of rules, namely those

expressions that evaluate to some result of the form num(n).

Instances of the above problem arises naturally in the semantics of practical

programming languages. For instance, in languages with abstract data types,

we may not be interested in the details of the representation of abstract data

type values. In functional languages, we are often not interested in the details of

the representation of function values. Therefore, semantics that choose different

representation for such values can still be considered equivalent if we use a suitable

notion of equivalence.

The idea of regarding only a subset of the results of expressions as being relev-

ant, or observable, is known in the area of algebraic specification as observational

or behavioural equivalence between algebras. However, a similar notion already

appears implicitly in the simulation method introduced by Milner [Mil71]. This

idea applied to algebras first appears as the concept of the "semantics" of an

algebra in [GGM76].

In Chapter 3 we formalise a notion of equivalence that has the intuitive mean-

ing discussed above; this particular notion of equivalence is based on observational

equivalence as defined in [ST87]. Also in Chapter 3, we extend the definition of

strong correspondence relations given in [Sch87,Sch9O] to the formalism of Re-

lational Semantics to obtain a practical proof method for proofs of equivalence

between semantics. We then use an example to illustrate the use of this proof

method.

Chapter 1. Introduction 	 17

Compiler Correctness

In order to motivate the following discussion about the compiler correctness prob-

lem let us consider a simple stack machine M-Sum which has a stack on which

we can push nat numbers, an accumulator that is used for arithmetic operations,

and three instructions that mampulate the contents of the stack and the accu-

mulator: push that pushes the value of the accumulator on the top of the stack;

add that adds the top element of the stack to the accumulator, leaving the result

in the accumulator; and load that loads a nat number into the accumulator. The

syntax of the machine language is given by the following BNF rules:

stack ::= empty I nat. stack

inst ::= push I add I load(nat)

A program in this machine is a sequence of instructions, for instance,

(load(1), push, load(2), add)

The semantics of this machine may also be defined using a Relational Semantics.

In this definition, a machine state is a pair (S, n) where S is a stack and n is the

accumulator. The rules in Figure 4 define how machine instructions operate on a

machine state to produce the new values of the stack and accumulator. In those

rules, the concatenation of two sequences of instructions 4 and 2'2 is denoted by

i1 @i2 .

For instance the M-Sum program (load(1), push, load(2), add) evaluating

on a state (empty, 0) produces the state (empty, 3). This machine may be

used as the target machine of a compiler for the language Sum. The object-

ive is to translate expressions into machine programs that evaluate to the same

result. For instance, the expression 1 + 2 could be translated into the program

(load(1), push, load(2), add).

In Chapter 4 we treat the problem of defining compilers in Relational Se-

mantics and how to establish their correctness with respect to a semantics of the

programming language. For the correctness we apply the notion of Observational

Chapter 1. Introduction
	

18

(S,n)I-(push)--.*(n'S,n)

(n1 . S, n2) F (add) -* (S, plus(n 1 , n2))

(S, n) F (load(n')) - (S, n')

, 1!II 	II' (S, n) F i1 - (S', n') 	(S', n') F i2 - 	, , n)
(S, n) F i1 ©i2 -* (S", n")

Figure 4: A Semantics for M-Sum

Equivalence between Relational Semantics that is defined in Chapter 3; this is an

important practical application of the notion of equivalence between Relational

Semantics.

For instance, a compiler for Sum using M-Sum as the target machine could

be defined by the following set of rules that describes how Sum expressions are

translated into sequence of M_Sum instructions:

num(n) -'-'+ (load(n))

e1 -'-c1 	e2 -'-+c2

e1 + e2 -'--* c1 ©(push)©c2©(add)

A definition of the semantics of Sum using this compiler may be given by the

following rule, which defines how an expression e is evaluated into a mat number:

e -'-* c 	(empty, 0) F c -+ (empty, n)

e = n

The above rule has the following operational interpretation: if a Sum expression

e compiles to a M-Sum machine program c and this program, runing on the state

(empty, 0), produces a state (empty, n) then the result of the evaluation of e

Chapter 1. Introduction 	 19

is n. We use the term Evaluation by Compilation to refer to a semantics of a

programming language given via its translation into some target machine code.

In our approach, the compiler defined by the relation -'.- is considered correct

if the above definition of the relation = is equivalent to the definition of = of

Figure 1.

Compiler correctness has been widely studied in the past (e.g. in [MP67,

Mor73,Mos79,TWW8 1 ,Po18 1 ,CM86,Des86, Sim9O]). Our approach strengthens

and improves these previous approaches in two main aspects. First, it gives

a more general, yet intuitively sufficient, criterion for correctness. Second, we

define a proof method that can be used in practical proofs of correctness.

Program Evaluation and a Notion of Evaluation Step

We discussed above that a Relational Semantics of a programming language may

be used to evaluate programs in the language, but we have not yet seen how

this may be done. Let num(1) + num(2) be a Sum expression that we want to

evaluate using the semantics of Figure 1. By viewing the rules as an inductive

definition of the relation between exp expressions and nat numbers, we can

build a proof tree [DF87] for the formula num(1) + num(2) = n, where n is a

meta-variable. The process of constructing such a tree finds an instantiation for

n that is the result of the evaluation of num(1) + num(2).

We are not interested in the details of how to build proof trees. However, let

us show the complete proof tree for num(1) + num(2) =* n as an illustration:

num(1) = 1 	num(2) = 2
num(1) + num(2) = 3

where plus(l, 2) = 3. The root of this tree is an instance of the rule that defines

"+" in Figure 1, and the leaves are instances of the rule for num in the same

figure.

Proof tree construction is a possible method for evaluating programs using

a Relational Semantics of the programming language. An implementation of an

Chapter 1. Introduction 	 20

algorithm for constructing proof trees that is parametric on a set of rules provides

an abstract evaluation model that may be used to generate concrete evaluation

models, or interpreters, for programming languages based on their semantics.

This idea was first used in the CENTAUR system [C1K89] , and has also been

used in other more recent works [Chi89,Ber9la].

In principle, we could use such an evaluation model as the evaluation model of

the programming language to be used by debuggers, as discussed in Section 1.1.

Then, the only remaining problem would be to define a notion of evaluation

step based on this evaluation model. In [Ber9laJ, Berry defines such a notion of

evaluation step as a function between partial proof trees (proof trees in which

some sub-trees are not constructed); this function characterises a depth-first left-

to-right traversal of a proof tree.

However, Berry's definition of evaluation step involves various complex defin-

itions that make it difficult to understand and reason about, so cluttering the

intuitive understanding of the notion of step. This complexity is necessary in

that case because of the requirements of Berry's "theory of program animation".

Debuggers in our framework do not have such requirements; thus we should seek

a simpler notion of evaluation step that is intuitive and easier to reason about.

We propose an evaluation model for programming languages inspired by the

SOS semantics of [And9l]. This evaluation model is parametric on a Relational

Semantics and is defined by a transition system whose states, called evaluation

states, contain the current state of the evaluation of the program (i.e., the result

of evaluated sub-programs) and the sub-programs or goals that still need to be

evaluated. A transition step of this system uses the rules of the semantics to

decompose a current goal into sub-goals to update the current state and advance

the evaluation. For instance, suppose that num(1) + num(2) is the expression

to be evaluated; an initial state of the transition system is as follows:

[num(i) + num(2) = n]

In this evaluation state num(1) + nuxn(2) 	n is the goal. A transition step

Chapter 1. Introduction
	

21

from this state advances the evaluation as follows:

[nuni(1) + nuin(2) = ii] 	In = plus(n1 , n2) : num(1) = n1 , num(2) = n2]

where 	denotes a transition of the system, and n = plus(n1 , n2) indicates that

the meta-variable n is substituted by the term plus(n1 , n2) in the current state.

A substitution of terms for meta-variables is an explicit part of every state of

the transition system. We omit the irrelevant parts of the substitutions from the

states to simplify the presentation of the examples.

In the above transition, the resulting state indicates that the next goal is to

evaluate num(1) producing a result n1 , then to evaluate num(2) producing a

result n2 , and finally to compute the sum plus(n1 , n2). This transition is defined

using the rule for "+" expression of Figure 1 to expand the goal num(1) +

num(2) = n into the sub-goals niim(1) = nj and num(2) = n2 , each of which

corresponds to a premiss of the rule. The next step in the evaluation is as follows:

In = plus(n1 , n2) : num(1) = n1 ,num(2) = n 2 1
In = plus(l, n2), n1 = 1 : num(2) = n2]

which is defined using the rule for the definition of num(n) expressions of Fig-

ure 1. After this transition the resulting state indicates that num(1) has been

evaluated to 1 and num(2) = n2 is the current goal. Finally, we can apply a

transition step to obtain the final state of the evaluation and the result of the

sum:

In = plus(l, n2), n1 = 1: num(2) = n2]

In = plus(1,2),n1 = 1,n2 = 2:

where e indicates that there are no more sub-goals and the evaluation terminated

successfully. The substitution in the final state gives the result of the evaluation,

in this case n = plus(l, 2) = 3.

In Chapter 5 we formalise the transition system discussed above, which we

call the Computational Semantics of the Relational Semantics formalism. This

transition system is used as the evaluation model for programming languages; the

Chapter 1. Introduction 	 22

notion of evaluation step used by the debugger is given by the transition relation

of this transition system. We give some evidence that this notion of evaluation

step is indeed intuitive. Therefore, this transition system and the formalisation of

Relational Semantics form the basic components of a theory of debugger design.

This transition system defines an evaluation model for a wide class of pro-

gramming languages, including non-deterministic languages. Moreover, it defines

a deterministic evaluation model for deterministic languages that may be imple-

mented to yield an evaluation model generator for such languages. This provides

a prototyping facility for programming languages similar to that provided by the

CENTAUR system [C1K89] and the Animator Generator [Ber9laJ. The ad-

vantages of our transition system over other methods in the literature is that it

has an explicit, intuitive notion of an evaluation step.

Formal Specification of Debuggers

The next problem we shall address is how to construct formal specifications

of debuggers using the evaluation model discussed above. Let us motivate the

following discussion by considering the problems involved in specifying a debugger

for the language Sum. The first step in this specification is the definition of the

debugging language, i.e., the language in which we write debugging commands.

The following BNF rules define a simple debugging language, called Pico:

deb ::= step I trace on I trace off

Recall that using the evaluation model described above we can evaluate Sum ex-

pressions step by step. Therefore, a possible interpretation for the above debug-

ging language is as follows: step causes the evaluation of the current expression

to advance by one transition step of the evaluation model; trace on switches on

tracing mode; trace off switches off tracing mode. When tracing mode is on a

step command outputs the result of the last sub-expression evaluated and the

sub-expression that is about to be evaluated. Our goal is to discuss how this

Chapter 1. Introduction 	 23

informal interpretation may be formally defined, leading to a specification of the

debugger.

There are at least two ways in which to formalise the definition of a particular

debugger: in an ad hoc fashion, or by first defining a formal notion of an abstract

debugger, and then giving a definition of the concrete debugger that conforms

with this abstract notion. The advantages of the second method are that we have

an abstract notion of debuggers that can be formally reasoned about, as well as

a formal definition of the concrete debugger that is also amenable to formal

reasoning. For instance, the definition of equivalence between the behaviour of

two arbitrary debuggers, discussed later on, depends on such an abstraction.

To achieve an abstract notion of debuggers we need a more elaborated char-

acterisation of debuggers than that given on page 3:

A debugger is a tool that receives debugging commands from the user,

applies those commands to its current debugging state, and outputs

the information about the evaluation of the program requested by the

command as its result. In this process the debugger may advance the

current state of the evaluation, which is a component of its current

debugging state.

In Chapter 6 we formalise the above characterisation leading to an abstract

formal notion of debuggers. We also discuss various aspects of the design of con-

crete debuggers that conform to this notion. In this abstract notion a debugger

is a monogenic labelled transition system whose states are the debugging states

and the labels of the transition relation are the debugging commands and their

results. An evaluation state of a program, according to the evaluation model of

the programming language, is a component of each debugging state.

This view of a debugger as a labelled transition system is implicit in the event-

action model of debugging proposed by some authors in the literature [BH83,

GB85,LL891. Our work improves on those ideas by the use of formal semantics

Chapter 1. Introduction 	 24

in the definition of the programming language, an evaluation model of the pro-

gramming language in the evaluation of programs, and by developing an abstract

definition of debuggers that is amenable to formal reasoning at the level of an

arbitrary debugger.

A possible definition of the states of the debugger Pico is a pair of the form

(h, tr) where: h is a sequence of evaluation states the evaluation model of the

Sum language and tr is a boolean variable used as the tracing mode flag. II we

want to debug the Sum expression nuxn(1) + num(2), we load the debugger with

this expression, which causes the debugger to build an initial debugging state of

the form:

(([nuni(1) + num(2) = ni), false)

and start the debugging session. A debugging session is an interactive process in

which we input debugging commands and the debugger outputs the results; in

this process we have no access to the debugging states. If we issue a command

trace on, the resulting debugging state is:

(([num(1)+num(2) = n]),true)

If we issue a step command on this state, the resulting debugging state becomes:

(([num(1)+num(2) = n],[num(1) => n1,num(2) = n2]),true)

with output: no previous result.

current expression: num(1)

The evaluation state [num(1) = n, num(2) = n2] is obtained from the previous

state [num(1) + num(2) = n] using . Here we omitted the substitution of

plus(n1 , n2) for n to simplify the presentation. If we issue another step command

on the above debugging state, the state changes as follows:

(([nuin(1)+num(2) = n],[num(1) = n1 ,num(2) = n2],[num(2) = n2]),true)

with output: previous result: nj = 1

current expression: num(2)

Chapter 1. Introduction 	 25

The debugging session continues until the expression is fully evaluated or we

abort the evaluation.

The debugger Pico changes only the st part of a debugging state (st, tr) by

using the evaluation model 20. For this reason we say that debuggers in our

framework are semantic-driven or based on formal semantics. This characteristic

will be formalised in this thesis as a requirement every debugger must fulfill.

Therefore, there is a repertoire of debugging commands in existing debuggers

that are disallowed in our framework, e.g., changing the value of programming

language variables. If such commands are allowed, a debugger could generate

evaluation states that are not reachable from the initial evaluation state of a

program using . In this case, we could not regard such a debugger as being

based on formal semantics.

Once we have developed an abstract characterisation of debuggers, the next

problem is to study how we may formally specify concrete debuggers that conform

to this characterisation. This problem is studied in Chapter 6 in two stages: we

study some aspects of the specification of debuggers and then define a notation

to assist in the specification of concrete debuggers. The design aspects studied

are generic and the proposed solutions to the problems may be applied to any

concrete debugger that uses the evaluation model defined in this thesis in the

evaluation of programs.

The specification notation, called DSL, is defined with the objective of making

the specification of concrete debuggers simpler and less ad hoc. This is achieved

because DSL provides a high-level abstraction of the objects of the evaluation

model, and also a powerful set of constructs to express debugging commands.

DSL is a specification notation in the sense that definitions written in the lan-

guage are abstract and concise.

Our major goal in the definition of DSL is to achieve an expressive language in

which a useful set of debugging commands, found in most practical debuggers can

be specified. We present some examples that show that DSL is indeed expressive.

Chapter 1. Introduction 	 26

Nevertheless, the theory of debugger design does not depend on this particular

design language; other languages may be defined and used with the theory to

suit the needs of particular debuggers.

The notion of an abstract debugger and the DSL notation form a basic frame-

work for the specification of concrete debuggers. This framework is based on

the notion of program evaluation and evaluation step discussed above; thus the

framework is formal with respect to the semantics of the programming language.

Our goal is to show that this framework helps to define debuggers with intuitive

behaviours; definitions that can be used as a documentation for the user and

guides for implementors.

Implementation and Correctness of Debuggers

In the debugger Pico, programs are interpreted using the evaluation model .

This definition of Pico can be viewed as a prototype of the debugger which is

simple to specify and understand. Prototypes are useful for testing the function-

ality of the specified debuggers but they seldom have the performance required

in practical applications. Therefore, there is the need for implementations of the

debuggers that meet such practical requirements in performance. In this thesis

an implementation is another specification of the debugger given at a lower level

of abstraction which is often more efficient than the original specification.

As discussed in Section 1.1, the main purpose of formal specifications of de-

buggers is to serve as a common unambiguous reference for the users, the design-

ers, and the implementors. It is therefore necessary that the implementation of

a debugger behave as defined by its specification. The main problem discussed

below is how to establish the conditions for an implementation to be correct with

respect to a specification of a debugger.

To illustrate the problems involved in implementing debuggers, and their cor-

rectness, let us first define another debugger, called M_Pico, that has the same

debugging language as the debugger Pico. The debugger M..Pico uses the corn-

Chapter 1. Introduction 	 27

pilation of Sum expressions into M_Sum code to evaluate expressions. Therefore,

the debugging commands of M...Pico work on the machine states instead of on

the states of the evaluation model for Sum.

Let us consider a modified definition of the machine states in which we add

the code that is executing as a component; we write this new state as:

(S,Acc) I- c

where (5, Acc) is the state of the machine as defined on page 17, and c is a

M_Sum program. An M_Pico debugging state is a pair [m.st, tr] where mst is a

machine state as above and tr is a tracing mode flag. In M...Pico step advances

the evaluation by one machine step, which corresponds to the evaluation of one

machine instruction. The command trace on and trace off work as in Pico,

with the difference that here the result of the last sub-expression is the value

loaded into the accumulator by the previous instruction and the current sub-

expression is the instruction that is about to be evaluated.

If we want to debug the Sum expression num(1) + num(2) we load M..Pico

with the expression; the debugger calls the compiler that translates the expression

into its corresponding M_Sum code. Finally, the debugger creates the initial

debugging state:

((empty, 0) I- (load(1), push, load(2), add), false)

and starts the debugging session. We can switch on tracing mode by issuing a

trace on command, such that the next debugging state is:

((empty, 0) F- (load(1), push, load(2), add), true)

If we issue a step command on this state the resulting debugging state is:

((empty, 1) F- (push, load(2), add), true)

with output: previous result: Acc = 1

current instruction: push

Chapter 1. Introduction 	 28

Another step command produces the debugging state and the output below:

((1 empty, 1) F- (load(2), add), true)

with output: no previous result.

current instruction: load(2)

Here, since push does not load a value into the accumulator, we do not have a

previous result. This process continues until the evaluation of the code finishes

or we abort the debugging session.

Although MPico can be used to debug Sum expressions we could hardly

regard it as a correct implementation of Pico in the sense of having the same be-

haviour. The two major reasons for the different behaviours of the two debuggers

are:

• There are more steps in the evaluation of the expression according to

M_Pico than there are using Pico; we need to issue four step commands in

M_Pico to entirely evaluate the above expression, whereas it is only neces-

sary to issue three step commands in Pico.

• M_Pico shows machine registers and instructions as the information about

the evaluation whereas Pico shows source language expressions and results.

The possibility that differences arise between an implementation of a debugger

and its specification should be ruled out by a notion of correctness between

implementation and specification. If we consider that an implementation of a

debugger is also defined as a labelled transition system then we may informally

characterise a notion of correctness as an equivalence between debuggers, as

follows:

Two debuggers are equivalent if there exists a one-to-one correspond-

ence between the states of the debuggers such that whenever the two

debuggers are at corresponding states each debugging command pro-

duces equal results and the debuggers move to corresponding states.

Chapter 1. Introduction
	

29

Requiring a one-to-one correspondence between the debugging states rules

out the first difference, and requiring that outputs from the same command at

corresponding states must be equal makes sure that the implementation will not

show machine registers and instructions if the specification does not do so. This

notion is sufficient as far as the two aspects discussed above are concerned, but

requiring equality between results may be too strong.

Suppose that we define two debuggers for the language Pair of Figure 3 with

the same debugging language as Pico: the debugger called D evaluates pair ex-

pressions using the Direct semantics; the debugger R evaluates pair expressions

using Reverse. It is not difficult to check that the states of the evaluation in both

semantics are in a one-to-one correspondence. However, suppose that at some

state in the evaluation of a pair expression the result of the last sub-expression

evaluated is a pair of the form cons(pair, pair) then, since Reverse implements

such a pair in reversed order the two debuggers will not be considered equivalent

according to the above definition.

As in the problem of equivalence between definitions of programming lan-

guages, if we are not interested in the representation of pair results of the form

cons(pair, pair) then we would like to regard the two debuggers as being equival-

ent. Therefore, we need a notion of equivalence between debuggers that compares

the result of debugging commands up to observational equivalence.

In Chapter 7 we define such a notion of equivalence between debuggers, in-

spired by the bisimularity concept of [Par8l] and strong congruence of [Mil891.

We extend such ideas so that labels of transitions are only compared up to ob-

servational equivalence. Therefore, equivalence between programming language

definitions - in particular, compiler correctness - and equivalence between debug-

gers are strongly related. This relationship is formally stated in various results

in Chapter 7.

These definitions constitute the last components of the theory of design of

debuggers. Therefore, in this theory, debuggers may be formally specified using

-

the DSL language and implementations of debuggers may be formally defined and

Chapter 1. Introduction 	 30

proved correct with respect to their specifications. The examples throughout the

thesis have the objective of demonstrating that, using the theory,

• It is practical to formally define debuggers that have intuitive behaviour.

• It is practical to prove the correctness of debugger implementations.

Compiler-Debuggers

Another important problem treated in this thesis is the study of Compiler-

debuggers and the problems related with their design. We use the name Compiler-

debugger for debuggers in which programs are compiled into machine code and

debugging is performed on the execution of the code on the machine. In such a

debugger, the debugging commands must be defined on the machine states in-

stead of on a state of the evaluation model of the language; MPico is an example

of a Compiler-debugger.

In Chapter 7 we characterise Compiler-debuggers and study various aspects

of their design. In this study we clarify the main aspects in which a Compiler-

debugger differs from a specification based on the evaluation model of the pro-

gramming language, and investigate mechanisms that may be used to resolve

these differences. The objective is to define Compiler-debuggers that are cor-

rect with respect to a specification of the debugger. The study of the design of

Compiler-debuggers clarifies two aspects that were already discussed above:

• Since we expect the evaluation of the machine code of a program to in-

volve more steps than its interpretation under the evaluation model, how

can we establish a one-to-one correspondence between those two notions of

evaluation step?

• How do we recover the information about the evaluation that is needed by

the debugging commands from a machine state and output the results in a

source language form?

Chapter 1. Introduction
	

31

We treat these problems at the level of an abstract Compiler-debugger so

that the proposed solutions may be used with any such a debugger. We also

consider other aspects of Compiler-debuggers, e.g., optimiser-debuggers [Hen82,

ZJ911, and show that these aspects may have a formalisation in the theory defined

in this thesis.

1.3 Outline of the Thesis

In this section we outline the contents of the following chapters, and briefly list

various approaches in the literature related to the problems addressed in this

thesis. In the introductory section of each chapter we study these approaches in

more detail.

In Chapter 2 we define the syntactical and meta-semantical aspects of the

formalism of Relational Semantics. For the syntactical aspects we define an

abstract notation in which semantics may be written, characterising a Relational

Semantics Specification. The meta-semantical aspect involves the definition of

the semantics of this notation, which we call the Declarative Semantics of the

formalism.

In Section 2.1 we compare our approach to Relation Semantics with defini-

tional interpreters [Lan64,Mil76], Structural Operational Semantics [P1o81], Nat-

ural Semantics [Kah881, and Inductive Semantics [Ast89,Ast9l].

In Chapter 3 we define a notion of Observational Equivalence of Relational

Semantics Specification, and extend the proof method of strong correspondence

presented in [Sch87] to a proof method for Observational Equivalence between

Relational Semantics Specifications, which we call Model Correspondence. We

also present an example of a proof of equivalence using this method.

In Section 3.1 we study two approaches to equivalence between algebras:

Hoare's notion of representation relation [Hoa721 and observational equivalence

(e.g. [Rei81,ST87,N088,Sch90]). We discuss the limitations of representation re-

lation and motivate the use of observational equivalence as a notion of equivalence

Chapter 1. Introduction 	 32

between Relational Semantics of programming languages.

In Chapter 4 we study the problem of compiler correctness in the framework

of Relational Semantics. We first characterise Evaluation by Compilation as a

Relational Specification in which programs are evaluated by the compilation into

machine code and the execution of the code on the machine. Then, the notion of

Observational Equivalence between Relational Semantics specifications is used as

the notion of compiler correctness. We give an example of a compiler correctness

proof using the method developed in Chapter 3.

In Section 4.1 we show how the problem of compiler correctness evolved from

the early works of McCarthy and Painter [MP67] and Burstall and Landin [BL69]

to the algebraic approaches of Morris [Mor73] and the ADJ group [TWW81]. We

then discuss the combined use of Natural Semantics and Morris' notion of com-

piler correctness in the work of Despeyroux [Des86]. Other related approaches are

also discussed, e.g., [Mos79,Po18 1 ,CM86,Joy89,Sim9O]. Since these approaches

use some form of representation relation in the sense of [Hoa72] they suffer from

similar limitations. We discuss how Observational Equivalence improves on those

approaches.

In Chapter 5 we define how to evaluate programs using a Relational Semantics

Specification of the programming language; this leads to the definition of the

Computational Semantics of the Relational Semantics formalism. We prove the

Computational Semantics is correct with respect to the Declarative Semantics

defined in Chapter 2. Therefore, program evaluation is consistent with the Re-

lational Semantics of the programming language. This notion of program evalu-

ation gives rise to a natural notion of an evaluation step when the Computational

Semantics is used with deterministic languages. We give some evidence that this

notion of evaluation step is intuitive.

In Section 5.1 we compare our definition of program evaluation based on a

Relational Semantics to the CENTAUR system [C1K89] and Berry's Animator

Generator [Ber9la]. The emphasis of this comparison is on the suitability of

these approaches to the definition of an intuitive notion of evaluation step.

Chapter 1. Introduction
	

33

In Chapter 6 we treat the problem of formally specifying debuggers. We start

by giving an abstract definition of debuggers that uses the notion of evaluation

step defined in Chapter 5. This definition characterises the class of Interpreter-

debuggers. Then we study various aspects of the design of concrete debuggers.

Finally, we define a notation to assist in the specification of debuggers, called

DSL. We give an example of a debugger specified using DSL.

In Section 6.1 we discuss the features for the specification of debuggers that

are found in the CENTAUR and the Animator Generator. We also discuss ap-

proaches to semantic based debugging that use denotational semantics as the

underlying formalism: the PSG system [BS86] and Monitor Semantics [KHC91].

In Chapter 7 we study the problems involved in the implementation of de-

buggers and how to establish a notion of correctness of the implementation with

respect to a specification of the debugger. We define a notion of equivalence

between debuggers inspired by the notion of bisimularity [Par8l] and strong con-

gruence between transition systems [Mil89]. We also treat the problem of the

formal specification of Compiler-debuggers by studying various problems involved

in the specification of such a debugger. We demonstrate that those problems have

a formalisation in our framework. Finally, we give an example of the definition of

a Compiler-debugger and a proof of equivalence between this Compiler-debugger

and a specification of it constructed in Chapter 6.

In Section 7.1 we compare our definition of equivalence between debuggers

with the bisimulation technique of Park [Par8l].

In Chapter 8 we summarise the conclusions of this thesis and give directions

for future work.

Finally, in Appendix A we give the complete definition of the syntax and

semantics of DSL.

Conventions

Definitions, lemmas, theorems, corollaries, and examples are numbered consec-

utively throughout each chapter. Example 2 of Chapter 3 will be referred to as

Chapter 1. Introduction 	 34

Example 2 within Chapter 3 and as Example 3.2 elsewhere. Rules of Relational

Semantics that appear in the examples are numbered consecutively throughout

each example. Rule 5 of Example 2 of Chapter 3 will be referred to as Rule 5

within Example 2, as Rule 2(5) elsewhere within Chapter 3, and as Rule 3.2(5)

elsewhere. The same convention for rules applies to other numbered items in

examples, and parts of definitions, lemmas, and theorems.

When a new term is defined it is written in slanted font. Terms defined in

this thesis start with a capital letter to distinguish from other usage of the same

terms in the literature. For instance, Relational Semantics refers to the definition

of the formalism that is given in this thesis. Other notational conventions are

always defined before their first use. The glossary contains a summary of the

notational conventions and the main symbols used in the thesis.

Chapter 2

The Semantics Formalism:

Relational Semantics

In this chapter we define the semantic formalism that will be used in the rest

of this thesis to define semantic aspects of programming languages. The choice

of formalism is primarily guided by the main objective of this thesis: to define

a theory of debugger design. An essential component of this theory is a formal

notion of program evaluation and evaluation step; thus a requirement on the

semantic formalism is that it must have a natural operational interpretation

from which these two notions can be derived.

The term Operational Semantics has been used to refer to a semantic formal-

ism in which a programming language is defined by a description of how programs

are evaluated. However, Operational Semantics is not a single formalism but a

class of styles of formalisms. Relational semantics is such a style in which the

semantics of a programming language is defined by a relation between programs

and their results. This style has an operational interpretation that makes it suit-

able for use in a theory of debugger design. Relational Semantics also provides

concise and abstract definitions of semantics, and for these reasons is the form-

alism that will be used in this thesis.

The ways in which a relation between programs and results is defined varies

35

Chapter 2. The Semantics Formalism: Relational Semantics 	 36

among the approaches to relational semantics that we find in the literature. We

will discuss some of these approaches in Section 2.1. In the rest of this chapter we

shall develop an entirely formal definition of a particular approach to relational

semantics, which we call Relational Semantics.

This formalisation is accomplished by the definition of the syntactic and meta-

semantic aspects of the formalism. For the syntactic aspects we define the concept

of a Relational Specification Syntax in Section 2.3. In Section 2.4 we define the

meaning of a Relational Specification Syntax by the definition of its Declarative

Semantics.

2.1 Introduction

Operational Semantics is the generic name used to refer to semantic formalisms

in which programming languages are defined by a description of how programs

should be evaluated into their results. In fact, Operational Semantics is a class of

formalisms which includes a variety of styles of formal semantics. All formalisms

in the Operational Semantics class can be given an operational interpretation

which makes them suitable candidates to be used in a theory of debugger design.

The choice of a particular formalism is then guided by two main factors: the

expressiveness and level of abstractness provided by the formalism, and how

intuitive is the notion of evaluation step that may be derived from it.

Definitional Interpreters are the earliest approach to formal Operational Se-

mantics. In this formalism a language is defined by an explicit description of

how programs are evaluated by an abstract machine such as Lanclin's SECD ma-

chine [Lan64] or Milner's SMC machine [Mil76]. The main drawbacks of such a

description are: the components of the machine state, e.g., memory and stack,

must be explicitly manipulated; the semantic operations related to the evaluation

of the program are interleaved with operations that mimic the use of a program

counter of concrete machines. These problems obscure the understanding of se-

Chapter 2. The Semantics Formalism: Relational Semantics 	 37

mantic description and give a counter-intuitive notion of evaluation step.

In Plotkin's Structural Operational Semantics [Plo8l] a programming lan-

guage is defined by a transition system whose transition relation describes how

to transform a program by steps into its result. Such a transition relation is

defined by an inductive definition in a form of inductive rules guided by the (ab-

stract) syntax of the programs, hence the name Structural. This formalism has

a clear and simple notion of an evaluation step given by the transition relation

itself. However, there is evidence that concrete semantics in this formalism are

larger and more difficult to be reasoned about than in other formalisms [Ber9la,

pages 48-501.

Kahn's Natural Semantics [Kah87,Kah88] aims for a more abstract account

of Structural Operational Semantics by focusing on its logical aspects. A Nat-

ural Semantics of a programming language is defined by a deduction system in

the form of a sequent calculus [Gen691. Deduction systems are written and inter-

preted as sets of natural deduction rules [Pra65], whose premisses and conclusions

are sequents. Reasoning about a semantics involves proving that a sequent is a

logical consequence of the rules of the semantics. Sequents are composed of two

parts: an antecedent, which is in general an environment in which values of pro-

gram variables are stored, and a consequent, which is a predicate about programs,

in general a relation between programs and results. Because the consequents

usually define a relation between program and results, Natural Semantics is in-

cluded in what we call the relational style of Operational Semantics; in contrast,

Definitional Interpreters and Structural Operational Semantics are called the

transitional style.

Astesiano's Inductive Semantics [Ast89,Ast9l] is essentially the same form-

alism as Structural Operational Semantics. The goal of Astesiano's work is to

provide a broader interpretation of Structural Operational Semantics by relating

it to Denotational Semantics.

The relational style of operational semantics, or simply relational semantics,

Chapter 2. The Semantics Formalism: Relational Semantics 	 38

has been successfully used in the definition of real languages [HMT89]. Con-

crete semantics in this formalism are often highly abstract, and it is possible

to define a notion of evaluation of programs using such a formalism [Ber9la].

Therefore, relational semantics is the style of formalism we use in this thesis.

The objective of this chapter is to give a formal definition of the syntactical and

meta-semantical aspects of an approach to relational semantics, which we call

Relational Semantics.

The formalisation of the syntactical aspects of Relational Semantics defines

the concept of a Relational Specification Syntax in which concrete Relational

Semantics can be expressed. This definition allows syntactic manipulations to be

defined over an abstract specification as well as over concrete ones. For instance,

in [dS90] we presented an algorithm that performs a syntactical transformation

on an abstract Relational Specification Syntax; such transformations require the

syntactical aspects of a Relational Semantics to be fully formalised.

The formalisation of the meta-semantics of Relational Semantics allows meta-

reasoning about an abstract Relational Semantics, as well as reasoning about

concrete ones. For instance, the proof that the transformation algorithm presen-

ted in [dS90] transforms the syntax of a Relational Specification preserving its

meta-semantics requires this level of meta-reasoning, and is possible only if all

aspects of the meta-semantics are formalised.

In the approaches to relational semantics in the literature, it is possible to

reason about a particular concrete relational semantics, but this reasoning often

does not generalise to the level of an arbitrary semantics. Moreover, in some ap-

proaches even reasoning about concrete semantics may be difficult because of the

lack of a precise definition of the meta-semantics of the formalism. For instance,

the meta-semantics of Kahn's Natural Semantics is formalised by its translation

into a concrete meta-language called TYPOL [Des88] and by the compilation

of TYPOL into Mu-Prolog [Nai83b]. This meta-semantics is difficult to reason

about; moreover it suffers from some of the idiosyncrasies of the underlying Pro-

log semantics. For instance, the absence of an occurs check in Mu-Prolog allows

Chapter 2. The Semantics Formalism: Relational Semantics 	 39

infinite objects to be created in a concrete Natural Semantics. Although the use

of such objects gives concise definitions, e.g., in the definition of recursive func-

tions, they require more complex proof methods to reason about the semantics.

Our goal in this chapter is to achieve a formalisation of Relational Semantics

which allows syntactic manipulations and meta-reasoning over a concrete as well

as an abstract Relational Specification. In Section 1.2 we illustrated the form-

alism that will be defined in this chapter. In that presentation we described an

operational interpretation for inductive rules of the form:

num(n) = n

e1 n1 	e2 =n2

e1 + e2 ='p1us(n1 ,n2)

This operational interpretation shows how to evaluate an expression to a

nat number through the intermediate evaluation of its subexpressions. Another

interpretation for the above rules is as an inductive definition of the relation =

between expressions and natural numbers. We shall formalise this interpretation

in the rest of this chapter. In this formalisation the (abstract) syntax of inductive

rules is defined, leading to a notion of Relational Specification Syntax, and the

interpretation of the rules as inductive definitions of sets of relations is defined to

be the meta-semantics of the formalism, which we call the Declarative Semantics.

In Chapter 5, the above mentioned operational interpretation of the inductive

rules is used in the definition of a Computational Semantics of the Relational

Semantics formalism. This Computational Semantics defines how programs are

evaluated using a Relational Specification of the programming language. We

then prove the consistency of the Computational Semantics with respect to the

Declarative Semantics. The Computational Semantics is the basis of the theory

of debugger design that will be defined in Chapters 6 and 7.

Chapter 2. The Semantics Formalism: Relational Semantics 	 40

2.2 Set Theoretical Preliminaries

The set theory of this thesis is the axiomatic set theory of Zermelo-Fraenkel,

whose formalisation can be found for example in [Hal74,Kun8O]. We assume

that the reader is familiar with the basic concepts of set theory. The glossary

summarises the basic set theoretical notation used in this thesis. In this section we

present some abbreviations and terminology that are not defined in the glossary.

Let A and B be sets, the notation A + B denotes the union of two disjoint

sets, i.e., A + B = A U B for A fl B = 11. This notation is used when A and B

are disjoint to help the reader. If g is a function from A into B, i.e., g E [A - B],

we write g: A -* B.

A family is a function whose domain is called its index set. A family a with

index set I, called an I-indexed or I-sorted family, is denoted by {a}1i, or {a2 }

when I is understood; a 1 stands for a(i). If the range of a family is a subset of a

set A, the family is called a family of elements of A.

Let B be an I-indexed family of sets, i.e., for each i E I, B1 is a set. Whenever,

the range of B is pairwise disjoint we will write b E B as an abbreviation for b E B1

for some i E I.

A finite sequence is a family a whose index set is a set [+], for some n E M.

We often use a1 ... an as an abbreviation for a finite sequence (a 1 ,..., a,1).

IfS is a set (of sorts), w E S' is a word (s1 ,. .. , s,), and A is an S-sorted family

of sets then Aw = A 81 x ... x A. An n-tuple is an element of A", denoted by

(a1 ,. . ., an). In this case, K is defined to be {O}.

The next definitions introduce the basic concepts of the theory of inductive

definitions; these definitions can be found in [Acz77].

Let U be a set. An inductive rule is a pair (P, c), where P C U is called the

set of premisses, and c E U is called the conclusion of the rule. An inductive

system is a set of inductive rules, usually denoted by 0. An inductive system is

a way of defining subsets of a given set U. If 0 is an inductive system, and A is

Chapter 2. The Semantics Formalism: Relational Semantics 	 41

some subset of U, we define A to be 4)-closed if each rule in 4) whose premisses

are in A also has its conclusion in A. More precisely, A C U is 4)-closed if for

each (P, c) E 4), P C A implies c E A. If 4) is an inductive system, then the set

inductively defined by 4), written I(0), is the least (with respect to set inclusion)

4)-closed set.

Let S be a set (of sorts) and {U8 } 3s be an S-sorted set. An S-sorted inductive

rule is a pair ({8},Es, c8s), where P. C U8 is a set (with elements of sort s) and

c5, E U8 1 is an object (of sort s'), for s, s' E S. The definitions of 4)-closed set and

1(0) extend trivially to sets of S-sorted inductive rules. Inductive rules are the

special case of S-sorted rules where S is a singleton. Hereafter, we use the term

"rules" for "S-sorted inductive rules", for some set S.

Associated with an inductively defined set there is an important proof method

that can be used to prove properties about the set 1(4)). The next proposition

states the Principle of Rule Induction, or 4)-induction in Aczel's terminology.

Proposition 1 (Principle of Rule Induction) If 4' is a total predicate over

1(4)), such that whenever (P,c) E 4) and 4'(x) holds for all x E P implies 4'(c)

holds, then 4'(a) holds for every a E 1(4)).

Proof Clearly, {a E 1(4)): 4'(a) holds} is 4)-closed, and therefore contains 1(4)).

i

The principle of rule induction extends trivially to an S-sorted inductively defined

set.

2.3 Relational Specifications

In this section we define the syntactical aspects of the formalism of Relational

Semantics, by defining the syntactical aspects of a Relational Specification. This

gives a formal and abstract notation in which the semantics of programming

Chapter 2. The Semantics Formalism: Relational Semantics 	 42

languages may be expressed. This abstract notation may have a concrete real-

isation either for machine manipulation, or for making the concrete semantics

more readable or easier to write, or both. We introduce such a concrete notation

at the end of this section with the objective of making the examples throughout

this thesis more readable.

The basic syntactical objects of a Relational Specification are type names

(called sorts), terms, formulae, and inductive rules. Those objects are defined

using the standard concept of first order signature; the particular definition used

in this thesis is that of [GB90]. All algebraic concepts used hereafter are stand-

ard definitions in Universal Algebra which can be found for instance in [Coh65,

TWW78,Grä79,Wec921.

A (many sorted) algebraic signature is a pair (S, F) where S is a set (of sorts

or type names) and F is a S 8 x S-sorted family of sets (of function names). We

denote an algebraic signature (S, F) by E. A (many sorted) first order signature

(or simpiy a signature) is a triple (5, F, H), where (5, F) is an algebraic signature

and H is a S+sorted family of sets (of relation names); we denote a first order

signature by Q. The class of all first order signatures is denoted by Sig.

As a notational convention, whenever a u E F81 	, we write u: s1 x.. . x s -+

s; if n = 0 we write u : s. Whenever a relation name ii E H31 	we write

ir: s1 x ... x s,,. In either case, we assume that the sorts s1 .. . s, E 58 and s E S

whenever S is understood in the context.

Every algebraic signature E defines a set of well formed terms that can be

constructed from free meta-variables and the function names in F (called the

s-terms). Let X be a S-sorted family of meta-variables. For each sort s E 5, the

set Tx() s of terms of sort s (with meta-vanables in X) is the least set (with

respect to set inclusion) defined as follows:

For all x E X 3 , x e T(E) 8

For all u E F81• , 3 , n > 0:

if t2 E Tx() 3 , for i E [n+], then 01(t1 ,.. ., t,,) E T()3

Chapter 2. The Semantics Formalism: Relational Semantics 	 43

The notation V(t) denotes the set of meta-variables of a term t. Terms without

meta-variables are called ground terms; the set of ground terms of sort s is

denoted by T() 3 . A term in some T() 5 is usually written i to ernphasise

that it is a ground term. The set Tx(J) (respectively T()) denotes the family

{ T(E) 8 }3s (respectively { T() 3 },$).

Every first order signature n = (S, F, H) defines a set of well formed atomic

formulae that can be constructed from free meta-variables, and E-terms. It is

convenient, for the definitions below, to impose a restriction that for all w, vi e S

such that w vi, fl n,, = { }. This does not restrict the theory; however,

its relaxation would make the presentation more complex.

For each relation name ir E H 91 , the set Fx(I of well formed atomic

formulae with relation name ir, or ir-formulae, is defined by:

Fx(cZ),,. = {(t1 ,... , t,) : ti E Tx(E),}

Hereafter, we use the term well formed formula, or simply formula, to refer

to a well formed atomic formula. Formulae without meta-variables are called

ground formulae; the set of ground ir-formulae is denoted by F(1),r . We Will

use 7r(t1 ,... , t) as an alternative notation for a ir-formula to emphasise that

(t1 ,..., t) in an element in Fx(I),r , for some ir E H; in which case we write

• , t) E F(l) omitting the index ir from Fx(),r .

We shall often need to simultaneously substitute all occurrencies of a meta-

variable in a term or formula by a term, therefore we need the concept of a

(simultaneous) substitution. A substitution is an S-sorted family of total func-

tions 0 = {O} such that 0 : X 5 -+ Tx() s . Then, the instance of t by 0 is

obtained using the function I: T() 5 X (X 5 Tx(>)s) .' Tx() 5 recursively

defined as follows:

1. lIt = x, for x E X 5 , then I(t,O) = 05 (x).

2.Ift=o(ti ,...,t,),i7:s1 x ... xs—sEF,

then I(t,O) = a(I(t1 ,O),... ,I(t0,O)).

Chapter 2. The Semantics Formalism: Relational Semantics 	 44

We use tO as an abbreviation for I(t, 0). The composition of two substitutions 0

and 0' is denoted by 00'. A substitution is a ground instantiation for t E Tx(E) 3

if tO E T(E),; in which case tO is a ground instance of t. The above definitions

extend trivially to formulae.

The last syntactical object of a Relational Specification is an inductive rule. A

Relational Inductive Rule (or simpiy a Relational Rule) is a pair ({PrejEfl, ce,1.,)

where Pre, E F(F(c),1.) is a finite set of ir-formulae (called the premisses) and

ce, E Fx (1),1.I, for some ir' E H, is a ir'-formula (called the conclusion). The

definition of substitution and other related concepts extend trivially to Relational

Rules.

A set of Relational Rules is an inductive definition, here called a Relational

Inductive Definition, usually denoted by 4. An inductive definition is a finitary

way of representing a (possibly infinite) inductive system (defined in Section 2.2).

One possible way of deriving the inductive system represented by a Relational

Inductive Definition is by generating all possible ground instantiations of each

Relational Rule in the definition. The Declarative Semantics of Relational Spe-

cifications, defined in Section 2.4, describes an alternative way to perform this

derivation using evaluation of terms in a E-algebra.

Finally, we define the concept of a Relational Specification Syntax, which

characterises the syntactical aspects of a Relational Specification.

Definition 1 (Relational Specification Syntax) A Relational Specification

Syntax is a pair (1, 0), where 0 is a Relational Inductive Definition over the first

order signature ft 	 0

In the examples throughout this thesis it will often be necessary to name com-

pound objects like signatures and Relational Specification Syntaxes. For this

we adopt the following convention: whenever S is the name given to a Rela-

tional Specification Syntax (1, 4), we write (1i, 0
S) to make it explicit that çS

and q5S are objects of S. In this case we assume that f2 s = (SS,F,HS) and

Chapter 2. The Semantics Formalism: Relational Semantics 	 45

ES = (S8 , F8). This convention applies to every other compound object defined

in later chapters.

The above definitions provide a formal characterisation of the syntactic as-

pects of the Relational Semantics formalism. With this characterisation it is pos-

sible to write Relational Specifications in the abstract notation of terms, formulae

and Relational Inductive Definitions. In this sense, the theory of Relational Se-

mantics is independent of any particular concrete syntax used to write Relational

Specifications.

Other works, like TYPOL [Des88], and Berry's Language Specification Lan-

guage [Ber9la], formalise the concept of a semantic specification by a concrete

specification language. We prefer the abstract definition because it keeps the

theory isolated from idiosyncrasies of the particular concrete language, and gives

more freedom in the choice of a concrete language to suit the needs of particular

applications of the theory.

In the examples throughout this thesis we use a concrete notation to write

Relational Specifications with the objective of making them more concise and

readable. The next paragraphs define this concrete notation. None of the the-

oretical results of the rest of this work depend on this concrete notation; all the

theory is developed in terms of the abstract notation developed above. Moreover,

it is always possible to unambiguously convert from a Relational Specification

written in this concrete notation to one that fits the definition of a Relational

Specification Syntax.

The choice of concrete syntax for a Relational Specification Syntax is inspired

by the correspondence between context free grammars (CFG) and initial many

sorted algebras, as discussed in [GTWW77, page 75]. This correspondence allows

a many sorted initial algebra to be unambiguously derived from a CFG. Inform-

ally, let G be a CFG with a set of non-terminals 5, a set of terminals F disjoint

from S, and production rules P C S x (S + F)*. Then a suitable transformation

on the right hand side of the productions of G defines an x S-sorted set E of

Chapter 2. The Semantics Formalism: Relational Semantics 	 46

function constants. The initial s-algebra T() has a carrier for every sort s E S

which is the set of parse trees derived from a non-terminal s in P.

It is important to notice that the CFG is defining the abstract syntax of the

language rather than its concrete syntax. It is in this sense that this approach

to define a -a1gebra factors out parsing problems so that the CFG may be

ambiguous yet the algebra is well defined.

For instance, consider the grammar of the language Sum of previous examples,

that is given below:

exp ::= num(nat) I exp + exp

nat ::= 0 1 1

The non terminals of the grammar define the set of sorts S = {exp, nat}, and the

right hand side of the productions define the operation constants num: nat -*

exp, +: exp x exp - exp, 0 : -* nat, 1 : -* nat, and so on.

Since, in the concrete notation, we write a ir-formula with the explicit rela-

tion name ir, e.g., ir(t1 ,.. ., t,), it is no longer necessary to consider the set of

premisses of a Relational Rule as a 11-sorted family of sets in the concrete nota-

tion. This makes it simpler to write the concrete syntax for Relational Rules

in the traditional Natural Deduction style of rules, such that a Relational Rule

(Pre, ce), where Pre is the set
. . , f,}, is normally written:

fl ... fn
ce

The apparent ordering on the premisses of the rules, suggested by the format of

the above rule, has no meaning in the theory; thus, the set of premisses of any

Relational Rule is still considered as just a set of formulae.

To define the set of meta-variables that is used to build terms and formulae

in a Relational Specification Syntax we adopt the following convention. Let S be

a set of sorts and s E 5, we say the component X, of X is generated by some

meta-vanable v to mean that X8 contains v and all variations of v using index

and superscripts.

The next example shows a complete Relational Specification Syntax written

Chapter 2. The Semantics Formalism: Relational Semantics 	 47

in the concrete notation described above. In this example, we shall see how

relation names are declared.

Example 1 This example defines a complete Relational Specification Syntax,

called Exp = (Q', for a simple arithmetic expression language with local

declarations of variables, also called Exp. The objectives of this example are to

illustrate the use of the concrete notation described above, and to define some

notational conventions that will be used in later examples. The sets S E' P and

FEZI) are defined by the following BNF rules:

exp ::= id(var) I num(nat) I exp + exp I let var = exp in exp

var ::= x I Y I
nat ::= plus(nat, nat) I 0

The set XE of meta-variables used to construct E'-terms and l'-formulae is

as defined follows:

XE is generated by e
eXP

X is generated by id var

X at is generated by n

We will use the set XE in the examples throughout this thesis and new compon-

ents will be added to XE as required.

The rules below define the semantics of Exp by an inductive definition of two

relations: =' between expressions and natural numbers, and -' that describes

how to substitute the free occurrences of a variable in an expression by its value.

This semantics is called a substitution-model semantics of Exp. In later examples

we shall see how to define Exp by an environment-model semantics, and also prove

that both semantics are equivalent in a sense to be defined.

In the rules below, the relation names in H' are declared in the boxes, such

that I exp =s nat I declares =SE 11 'xnat and emphasises that = s-formu1ae are exp

written in infix mode. The above BNF rules defined the abstract syntax of Exp.

We should then use this abstract syntax to write terms in the rules. However, we

Chapter 2. The Semantics Formalism: Relational Semantics 	 48

will use concrete syntax in the examples whenever it does not cause ambiguities

to improve readability.

Evaluation of Expressions 	 exp =s nat

num(n) =s

e1 	n1 	e2 	n2
e1 + e2 s plus(n1 , n2)

e1 	n1 	(711, id, e2) -* e 	e 	n2

let id = e1 in e2 =:S fl2

Substitution 	 I (nat, var, exp) —4s exp

(n,id,nurn(n')) —4s nurn(n') 	
(4)

	

(n, id, id(id)) -*s num(n) 	
(5)

cond(id 0 id')

	

(n, id, id(id')) —+s id(id') 	 ()

	

(n, id, e1) -+ e 	(n, id, e2) —'s e 	
(7)

(n, id, e1 + e2) -+ e + e

(n, id, e1) -4

(n,id,letid=eiine2)—*sletid=eine2 	
(8)

cond(id 54 id') 	(n, id, e1) -* 4 	(n, id, e2) - e 	(9
(n,id,letid=e1 ine2)— s letid=eine

Comments

1. The sets of terminal symbols and productions of the CFG used in the above

definition are infinite. Infinite grammars are a convenient device to define

languages as already pointed out in [GTWW77,vW691.

Chapter 2. The Semantics Formalism: Relational Semantics 	 49

2. The premisses of the kind cond(id $ id') are called "side conditions" in

most approaches to relational semantics. The treatment of such premisses

is discussed in detail below.

Some "Syntactic Sugar"

To simplify the examples we shall adopt the following convention: we omit the

unary operators that are only used for sort conversion. An example of such an

operator is the operator num, that is only used to convert nat into exp. Therefore,

we shall write the definitions of S E P and FE2) as follows:

exp ::= var I nat J exp + exp I let var = exp in exp

var ::= x I Y I
nat ::= plus(nat, nat) I 0 1 1 I

and the Relational Rules will be changed accordingly, for instance:

n 	n

(n, id, id) _*S fl

In the first rule it should be obvious from the definition of X E that n is a meta-

variable of sort nat. In Section 8.2 we discuss the use of order-sorted signatures

and algebras as a formalisation of the above "syntactical Sugar". However, we

prefer to develop our theory in the simpler framework of many sorted algebras,

and leave the use of order-sorted algebras to be studied in future research. This

discussion finishes Example 2.1 0

The Syntactical Treatment of Side Conditions

The premiss cond(id 	id') in Rules 1(6) and 1(9) is usually called a side-

condition. In most approaches in the literature side-conditions are treated in a

Chapter 2. The Semantics Formalism: Relational Semantics 	 50

theory outside the semantics formalism. In this section we discuss the syntactical

treatment that we give to side-conditions.

The unary relation cond has sort MetaBool, i.e., cond: MetaBool. Moreover,

the following Relational rule defines this relation:

cond(MetaTrue)
	 (0)

where MetaTrue is a nullary function name of sort MetaBool, i.e. MetaTrue:

MetaBool. Hereafter, we assume that the Relational Rule 0, the constants Meta-

True and MetaFalse, and the function names of the form o : w -+ MetaBool,

for some w E S, are implicit components of any Relational Specification Syntax.

For instance the following BNF rule is assumed to be part of the semantics

for Exp given in Example 1:

MetaBool ::= var var I MetaTrue I MetaFalse

Therefore, we treat side conditions as normal premisses in this work as far as

the syntactical aspects are concerned; in the next section we shall explain the

meta-semantics of such treatment.

As another "syntactic sugar" we omit the relation name cond whenever this

does not cause ambiguity. For instance, Rule 1(6) is written:

id 54 id'

(n, id, id') —is id'
1(6)

2.4 Declarative Semantics of Relational Specifica-

tions

This section presents the concept of the Declarative Semantics of a Relational

Specification, that is, we define the meta-semantics of a Relational Specifica-

tion Syntax. While the definitions of the last section formally characterise the

Chapter 2. The Semantics Formalism: Relational Semantics 	 51

syntactic aspects of the Relational Semantics formalism, allowing us to write con-

crete Relational Specifications, the Declarative Semantics of this section defines

a precise mathematical meaning for those syntactic objects.

We may informally understand the definitions of this section as follows. Sup-

pose we have written a Relational Specification Syntax (, 4)), and now want

to know which relations it defines. To answer this question we first choose an

arbitrary s-algebra, where the meaning of the Relational Specification will be

given with respect to this algebra. Then, we derive an inductive system from

the Relational Inductive Definition 4). Intuitively, this derivation is done by con-

structing all possible ground instantiations of each rule in 4), and then evaluating

the terms in these ground instantiations according to the chosen -a1gebra.

A Relational Specification defines exactly the family of relations inductively

defined by its derived inductive system. Therefore, a Declarative Semantics of a

Relational Specification is a first order model that satisfies exactly the tuples that

belong to the relations (inductively) defined by the specification. These notions

are formalised below.

Throughout this section we fix an arbitrary Relational Specification Syntax

(, 4)), where Q = (5) F, II), and an S-sorted set X of meta-variables.

The definition of the Declarative Semantics of a Relational Specification re-

quire the definition of term evaluation according to a -a1gebra. Towards the

definition of this concept we present the standard concept of a partial -a1gebra.

If E = (5, F) is an algebraic signature, a partial s-algebra A consists of an S-

sorted family of sets {A 3 } such that A 3 is the carrier of sort s, and a partial

function crA
E EAW -' A3] for each symbol 01 E F,8 , called the interpretation of

o in A. The class of all s-algebras is denoted by Alg(Y).

We now define evaluation of s-terms with meta-variables in {A 3 }; this is the

standard definition of evaluation of terms over partial algebras [Grä79]. The

evaluation of a s-term in A is a S-sorted partial function 4) = {b} such that

,03 : TA()S - A. is defined as follows:

Chapter 2. The Semantics Formalism: Relational Semantics 	 52

if t = a, and a E A 5 , for some s e S, then 05 (t) = a.

and (&51 (t1),. . .) &.(t)) E dom oA, then i,L 5 (t) = O.A (,&81 (t1) ,. . . , t'sjtn)).

We write ' for 	whenever the sort s is understood from the context. The

evaluation of cl-formulae in A is a natural extension of & to a H-sorted function

I1 = {1Is 1.},
1
 such that IF,, : FA(cl) n A", for ir E H,,,, w = s1 ... s,,, and

n > 0, is defined as follows:

If (t1 ,. ... t,) E FA(IZ), r , t E TA(E) S , for i E [nt], and t1 E dom ?,b,

then W.((t 1 ,...,t)) =

Hereafter, cbA (respectively A) is used to make explicit that 0 (respectively 1)

is the evaluation function of !-terms (respectively cl-formula) with respect to a

s-algebra A.

The next step towards the definition of the Declarative Semantics is to use

term evaluation in the derivation of an inductive system from a Relational Induct-

ive Definition. The inductive system derived from a Relational Inductive Defini-

tion 0 by a s-algebra A is the set of H-sorted rules OA obtained as follows. For

all ground instantiation ({P}, e1) of each Relational Rule ({Pre,j, ce,,.$) E 0,

({Pn},rEn,c,rl) E OA is defined by:

P,,. = {'P,,(f) : f e Pre7, and f E dom W,,}

= 'P,,. (,.$), 	for 	e dom J!,ri

The set of relations inductively defined by a Relational Inductive Definition çb,

with respect to a s-algebra A, is the H-sorted family of relations J(5A).

We achieve the definition of a Relational Specification by adding a -a1gebra

to a Relational Specification Syntax.

Definition 2 (Relational Specification) A Relational Specification is a triple

(cl, 0, A), where (Il, 0) is a Relational Specification Syntax, Il = (5, F, H), and

A is a J-algebra. 	 0

Chapter 2. The Semantics Formalism: Relational Semantics 	 53

The definition of the Declarative Semantics of a Relational Specification uses

the notion of a first order model for an cl-signature, or an cl-model, whose defin-

ition is given below. A first order cl-model M consists of a s-algebra A and a

relation 7M c A" for each ir E H,1,; 7r M is the interpretation of ir in M. Mod(cl)

is the class of all cl-models.

Finally, with the above definition of cl-models, we have all necessary elements

to define the Declarative Semantics of a Relational specification. Intuitively, it

is an cl-model in which the interpretation of the relations is defined by the rules

of the Relational Specification.

Definition 3 (Declarative Semantics) The Declarative Semantics of a Re-

lational specification (cl, 0, A), where cl = (S, F, H), is the cl-model M with

E-algebra A such that for each ir e H, ¶M = 1(A) 	 0

Once we have defined a Relational Semantics of a programming language

we are interested to know whether a given formulae is valid in this semantics.

Since formulae can be interpreted as a relation between programs and results, an

answer to this question tells us whether a program evaluates to some result. The

ability to answer such a question is achieved by the definition of the concept of

satisfaction of formulae by an cl-model.

Let A be a E-algebra, M be an cl-model with s-algebra A, and f E FA(Il),,

for some ir E H. The cl-model M satisfies f, written M = f, if and only if

f e dom qjA and 'I'(f) E irM Therefore, f E F(cl),,, is valid in (cl, 0 , A) if and

only if M J= f.

Now we want to extend the concept of satisfaction to formulae with meta-

variables over an arbitrary S-sorted set X. Suppose that f e F(cl),, for some

ir E H. Intuitively, we want to interpret the validity of fin M as the validity of the

existential closure of f, i.e., the logic formula 3x,, . . . , Zn .!, where x1 ,. . . , x1, are

all the meta-variables in f. This departs from the standard logical interpretation

of satisfaction, in which the universal closure of f is taken into account. However,

it is in agreement with the logic programming view in which f is considered as a

Chapter 2. The Semantics Formalism: Relational Semantics 	 54

query for a satisfying substitution in the model M. We are interested in the logic

programming approach since it characterises program evaluation as we discuss in

Chapter 5.

Therefore, we say that M satisfies f E Fx(I),, if and only if there exists a

ground instantiation 0 such that M = fO. In the case when such a 0 exists

it is called a satisfying substitution for f in M. In Chapter 5 we shall define

a procedure that finds a satisfying substitution whenever one exists. Based on

that algorithm we define program evaluation and evaluation step, which form the

basis of the theory of debugger design of Chapters 6 and 7.

The next example defines an algebra for the Relational Specification Syntax

defined in Example 1; thus it also defines a Relational Specification for Exp

together with its Declarative Semantics.

Example 2 Let (f ExP ExP) be the Relational Specification Syntax defined in

Example 1. We now define the 	"-a1gebra AEr1 to be used in the Relational

specification 	EzP AEZI). To improve the readability, we use A for AE2) in

the rest of this example. The carriers of A are defined as follows:

A ezp = T(E')ezp

Avor = T(>J')var

Anat {O,1,...}

The algebra A interprets plus as the standard sum operation on the natural

numbers and 0 as the intuitive inequality between identifiers, and for each op E

{id, num, +, let, 0, 1,... , x, y, . .. } the interpretation opA is defined as a follows.

Forop:si ... sn _+ sandt2 EA s., ie[n+] , opA(ti,..., t) =op(ti,..., t) . This

is the standard term algebra interpretation for the function names.

Comments

It is convenient to notice that A is a total algebra; this fact will be used in later

examples.

Chapter 2. The Semantics Formalism: Relational Semantics 	 55

The following examples illustrate the evaluation of terms in A, and show the

effect of term evaluation in the derivation of the inductive system from çb " using

A. In these examples, we use the "desugared" version of the syntax of Exp to

make the examples clearer. In A the evaluation of a term +(num(1), nuin(2)) E

T() 2)) ezp is defined by:

A(+(fl (1) fl (2))) =

+A (numA (1 A) , numA (2A)) =

+(num(1), num(2))

The evaluation of the term plus(l, 2) E T(Y 1')flat is defined by:

,A(plus(l 2)) = plusA(lA 2A) = plusA(l 2) = 3

In general, algebras used in Relational Specification will have this characteristic:

compound values, programs, and other complex operators receive the term al-

gebra interpretation described above; this constitutes the syntactic algebra of the

specification. On the other hand, basic operators like plus are assigned an actual

interpretation, which is usually well defined and understood; this constitutes the

semantic algebra of the specification.

Using A in the derivation of an inductive system from Ez1, one rule of the

derived system will have the form:

num(1) =:S 1 	num(2) 	2

num(1)+num(2)=s 3

which makes the two formulae:

num(1)-f-num(2) ='s 3

num(1) +num(2) =?S plus(1,2)

valid in (çEZP ,Exi A). This finishes the Example 2.2. 	 Cl

The Semantic Treatment of Side Conditions

As discussed in Section 2.3, side-conditions are syntactically treated as normal

premisses in Relational Rules. Let us discuss their meta-semantic interpretation.

Chapter 2. The Semantics Formalism: Relational Semantics 	 56

Initially, let us assume that the interpretation of MetaTrue and MetaFalse

is the term algebra interpretation in any E-algebra used in a Relational Specific-

ation. Moreover, any u : w - MetaBool in F is interpreted in the semantic

algebra. For instance, in Example 2 the interpretation of 0 in AEXI7 is the in-

tuitive inequality on identifiers. Therefore, the inductive rule below is obtained

from the rule 1(6) and belongs to the inductive system derived from the inductive

definition ':

cond(MetaTrue)

(1,x,y) —ps y

because in that derivation the term x y evaluates to MetaTrue. Considering

that the rule (0) defined in page 49 is part of Exp, the premiss of the above rule

is valid in Exp, and the conclusion is therefore valid.

Therefore, side-conditions are also treated as normal premisses at the meta-

semantic level. The uniformity achieved by treating side conditions as normal

premisses makes the definition of program evaluation and evaluation steps sim-

pler; thus, it helps in the definition of an intuitive notion of evaluation step. For

the purposes of this thesis the above treatment of side conditions is an advantage

over other approaches in which side-conditions have special treatment.

Finite Length Proofs and Proof Trees

We briefly define the standard concepts of finite length proofs and proof trees

for an inductive system. Those concepts provide alternative characterisations

of inductively defined sets; thus giving an alternative characterisation for the

Declarative Semantics of the Relational Specification. This alternative charac-

terisations are important devices for proving properties of inductively defined

sets, thus they may also be used to prove properties of Relational Specifications.

The set inductively defined by a finitary inductive system can be alternatively

characterised by finite length proofs of objects [Acz77]. A finitary rule is an

inductive rule whose set of premisses is finite. A finitary inductive system is a

set of finitary rules.

Chapter 2. The Semantics Formalism: Relational Semantics 	 57

Definition 4 (Finite Length Proof) Given a finitary inductive system 4, a

sequence (b0 ,..., b) is a finite length proof, or a 4-proof, of an object b if:

b = b, and

fora11m<nthereisasetBC{b,i<m}suchthat(B,b)Eq5

The next proposition shows that the set defined by an inductive system 0 is

the set of objects that have finite q5-proofs in the inductive system. The proof is

omitted here and can be found in [Acz771.

Proposition 2 For every finitary set of rules 0:

I(q$) = {aa has a 0-proof}

The notion of proof trees is widely known in logic programming [C1a79], and is

usually taken as an alternative declarative semantics for definite clause programs

as in [DM85]. A particular definition of proof trees is used below as an alternative

characterisation of inductively defined sets. Proof trees are usually used to show

that an object belongs to an inductively defined set. The proposition below

formally justifies this use of proof trees.

Definition 5 (Proof Tree) Let 4 be a finitary set of rules. A proof tree for an

object a, called a 0-tree and denoted PT(a), is an object:

PT(b1) ... PT(b)

b

where: there exists a rule ({b 1 , ..., b,}, b) E 0, such that a = b and PT(b1) is a

0-treeofb1 ,for0 <i<n. 	 D

In a proof tree of a in the above definition, b is called the root of the tree.

Chapter 2. The Semantics Formalism: Relational Semantics 	 58

Proposition 3 For every finitary set of rules 4):

1(0) = {ala has a 4)-tree}

Proof (Sketch) It is easier to show first that:

{ala has a 4)-tree} = { ala has a 4)-proof}

This argument is trivial. For each 4)-tree for an object a we can obtain a 4)-proof

for a by linearising the tree by some traversal of it. Conversely, for each 4)-proof

of a we can build a 4)-tree by putting together the rules that were used in the

4)-proof. This proposition then follows from Proposition 2. 0

2.5 Summary and Conclusions

This chapter defined the semantics formalism that will be used throughout this

thesis. This definition was carried out in two stages. We first defined the syntactic

aspects of the formalism by defining the concept of a Relational Specification

Syntax. We then defined the meta-semantic aspects of the formalism by defining

the concept of a Relational Specification and its Declarative Semantics.

The most important difference between Relational Semantics as defined in

this chapter and other related works is the precise, yet abstract, definition of a

Relational Specification. This definition allows formal reasoning to be done over

an abstract Relational Specification. This level of reasoning is essential for the

later developments in this thesis.

Although other works have a precise definition of a semantic specification, for

instance TYPOL [Des881, and Berry's Language Specification Language [Ber9la],

these definitions are given by concrete specification languages with the main pur-

pose of machine manipulation of the semantics. This may have an adverse effect

on the formalism; thus we favour the abstract approach defined in this chapter.

Moreover, based on our abstract approach it is possible to define concrete se-

mantics specification languages with the purpose of machine manipulation.

Chapter 2. The Semantics Formalism: Relational Semantics 	 59

The class of programming languages that may be described by Relational

Specification is large, including non-deterministic languages. The programming

languages discussed in texts on Operational Semantics (e.g., [P1o81,Hen90a]) have

straightforward definitions as Relational Specifications. Furthermore, the entire

Standard ML semantics [HMT89], including the static semantics, fits in the defin-

itions of this chapter.

A Relational Specification has some similarities to the notion of many-sorted

definite clause programs (DCP) [DM85]. Moreover, a many-sorted Herbrand

Model (see [L1o87] for the one sorted case) extended with term evaluation could

be considered as an alternative cliaracterisation of the Declarative Semantics

of Relational Specifications. This relationship with logic programming is not

entirely surprising since Relational Specifications and DCP's are both used to

define relations. It would be interesting to study of this relationship in more

detail to see how results from one theory could be applied to the other.

We shall see in Chapter 5 that the operational semantics of DCP is also similar

to the Computational Semantics of Relational Specifications. In that chapter we

discuss the problems that arise when term evaluation is used in the definition of

the Declarative Semantics, and compare the problems to approaches that set out

to extend DCP's with external functions.

Chapter 3

Equivalence of Relational

Specifications

In Chapter 2 we described how to define the semantic aspects of programming

languages by Relational Specifications. Such semantic aspects may have various

definitions, given by different Relational Specifications. One reason why different

definitions are desirable is that they may define the programming language at

different levels of abstraction: a definition may be highly abstract and concise,

and therefore suitable for reasoning about the language or it may serve as a

reference for the users to learn the language. Another definition may be more

concrete and closer to an actual implementation of the language on the machine,

and therefore suitable as a guide for the implementors of the language.

Furthermore, different definitions may be given at the same abstraction level

to increase our confidence in the definition of the language. For similar reasons,

the same semantic aspect of a language may be given in different styles of se-

mantics, for instance in operational and denotational styles. This problem has

been addressed in the literature (e.g., [Sto8l,BF90]), but it is outside the scope

of this thesis.

Whatever the reason we provide different definitions of the same semantic

aspects of a programming language, it is necessary for the definitions to be equi-

60

Chapter 3. Equivalence of Relational Specifications 	 61

vaient in some sense, so that we may use them interchangeably. For instance, in

the case we provide an abstract definition as a reference for the user and a more

concrete definition as a guide to the implementor, the equivalence between the

definitions guarantees that the user learns the language which is implemented.

In this chapter we define a notion of equivalence between Relational Specific-

ations. We start by defining a relation of Observational Equivalence between first

order models in Section 3.3. Then, using this relation, we define an equivalence

relation between Relational Specifications in Section 3.4. We also define a proof

method that may be used in practical proofs of equivalence, and give a complete

example of the use of this proof method in Section 3.5.

3.1 Introduction

In this section we shall discuss some of the problems involved in the definition

of a notion of equivalence between Relational Specifications. We also discuss

the particular solution we adopt and compare it with other approaches in the

literature.

To illustrate the following discussion, let us formalise the semantics of the

language Pair, described in Section 1.2. The following BNF rules define the sets

SPa*r and F Pair of the signature f'0:

pair ::= num(nat) I cons(pair, pair) I first(pair) I second(pair)

nat ::= 0 1 1 I

The sets of rules in Figure 1.3 (page 15) define two inductive definitions of the

relation c_p: pair x pair, i.e., 	 Let 	jr = (S", Pair and Pair pair,pair

be the E Pair...algebra that gives the term algebra interpretation to all function
Pair 	Pair names in F . Using A 	we obtain two Relational Specifications of Pair.

Direct = (fPair Direct, A)

Reverse = (çPair Reverse, A")

Chapter 3. Equivalence of Relational Specifications 	 62

Although the algebras in the two Relational Specifications are the same, the

Declarative Semantics D of Direct and R of Reverse give different interpretation

for the relation i.e., + D zh R As outside observers, we can observe this

difference by testing the satisfaction of (ground) formulae in both specifications.

For instance, the following observations reveal that Dc_:

D = cons(num(1),num(2)) -* cons(num(1),nu.m(2)), but

R does not satisfy the same formula

In this sense, the satisfaction of formulae offers the observations we are allowed

to make on a Relational Specification. We then consider two semantics to be

equivalent if they have the same behaviour with respect to the satisfaction of all

possible observations. For the semantics Direct and Reverse, since the formulae

in F(cZl'aw) are the all the observations we can make on the two semantics, this

notion of equivalence requires that for all f e D = f if and only if

RI=f.

Clearly, the flexibility of this notion of equivalence depends on the definition

of the observations that can be made. So far, we are considering the entire set of

ground formulae of a Relational Specification as the observations. However, in

many practical applications we are not interested in all details of a specification,

e.g., internal representation of values in abstract data types, function values in

functional languages, and so on. Therefore, it is natural to make such details non

observable by using a smaller set of formulae as the observations. The practical

effect of this on the number of possible observations is that more specifications

will become equivalent.

For example, suppose that we are only interested to observe the subset of

F(c2t0tr) of formulae of the form pr -4 nuxn(n) for some pair expression pr and

nat number n. In this case, the following holds

DI=pr —*nuin(n) ifandonlyif R=prc,num (n)

Therefore, if we restrict the observations we can make on Direct and Reverse to

the set of formulae of the form p -* num(n), the specifications can be considered

Chapter 3. Equivalence of Relational Specifications 	 63

equivalent. In this case, we say that Direct and Reverse are obseruationally

equivalent with respect to the formulae of the form pr -+ num(n).

There are various approaches to the correctness problem in the theory of

Algebraic Specification that formalise the above intuitive notion of equivalence.

We will discuss two of those approaches: Hoare's notion of representation relation

and observational equivalence. The objective is to compare our solution with

existing ones.

The notion of representation of a -a1gebra by another, due to bare [Hoa721,

requires the existence of a mapping, called an abstraction function, from the car-

riers of the representation algebra to the carriers of the algebra represented, such

that each operation in the algebra is compatible with this mapping. This map-

ping needs only to be defined for a subset of the carrier set of the representation

algebra, which is usually characterised by a predicate called the representation

invariant.

For Reverse to be considered a representation of Direct in this sense, it would

be necessary the existence of a mapping h from a subset of APr into APr
w pa 	 paw

such that for all pair expressions pr, the relation - is compatible with h in the

following sense:

If 3pr1 such that D = pr -* pr1

then 1pr2 such that R = pr -* pr2 and pr2 = h(pr1),

and conversely.

Clearly, there exists an h such that Reverse is a representation of Direct under the

above notion: just take h to be the identity on pair values of the form num(n) and

the recursive reversal of each pair value of the form cons(pr1 , pr2). Therefore,

representation relation would be a suitable notion of correctness between the

above Relational Specifications, although it is not an equivalence relation since

it is not symmetric.

Behavioural or observational equivalence has also been used in the field of

Chapter 3. Equivalence of Relational Specifications 	 64

algebraic specification as a formal criterion for one algebra to be a correct repres-

entation of another. However, the idea of regarding behaviour, rather than the

representation of data, as the relevant aspect of algebras already appears impli-

citly in the simulation method introduced by Milner [Mil71]. This idea applied to

algebras first appears as the concept of the semantics of an algebra in [GGM76].

More recently, the notion of observational equivalence has been given many form-

alisations in the literature, for instance [Rei81 , ST87,N088,Sch9O].

In particular, the notion of observational equivalence of [ST87] can natur-

ally be applied to Relational Specifications. Under this notion two algebras are

equivalent if they satisfy the same set of observable formulae. Continuing with

the example above, suppose we consider as observable the formulae of the form

pr c* num(n), for all pair expressions pr. Let us call OBS the set of all such

formulae.

Using the notion of observational equivalence of [ST87], the specifications

Direct and Reverse are observationally equivalent with respect to the formulae

OBSifforall f E OBS:

D = f if and only if R = f

Therefore, Direct and Reverse are observationally equivalent under this notion,

because, as discussed above, they give the same result for formulae of the form

pr —+ nuin(n).

In this work we shall use observational equivalence as the notion of equi-

valence between Relational Specifications. This choice is motivated by several

reasons. Initially, in [Sch87, page 255] Schoett proved that observational equi-

valence is more general than a representation relation in the sense that there

exist algebras that are equivalent under observational equivalence but such that

there is no representation relation from the representation algebra to the one

represented. In Chapter 4 we shall see an example of practical interest in which

two Relational Specifications, which we intuitively expect to be equivalent, are

not related under any representation relation but are observationally equivalent.

Chapter 3. Equivalence of Relational Specifications 	 65

Therefore, a notion of equivalence more general then representation relations is

necessary for certain practical applications.

Furthermore, there exists a proof method for observational equivalence based

on the notion of correspondence relations [Sch87] that may also be applied to

equivalence of Relational Specifications. This method yields practical proofs of

equivalence, as will be demonstrated in Section 3.5.

Finally, the particular notion of observational equivalence of [5T87] may be

naturally applied to Relational Specification, yielding a simple theory of equi-

valence; this is the main reason why this particular approach to observational

equivalence is chosen in this thesis.

The theory developed in this chapter is applied in Chapter 4 to the problem of

compiler correctness. We demonstrate in Section 4.1 how the use of Observational

Equivalence improves and extends previous approaches to compiler correctness.

This application provides an important motivation for the definitions and theor-

ems in this chapter.

3.2 Algebraic Preliminaries

In this section we define some concepts related to first order signatures and

models. Let Q = (5, F, H) and IZ' = (5', F', II'), signature morphism p from Q to

' is a triple (PS,PF'PH) such that for each s ES, 01 E F, and irE H, p5 (s) E 5',

PF(0) E F', and pn(lr) E H'; and, whenever u : s1 x ... x s - s E F and

si x ...x Sn E H then:

PF(0') : ps(si) x ... x p5(s) - p5(s)

p11(70 : p5 (sl) x ... x ps(s)

If p is a signature morphism from f to IZ' we write p : Q - W. If p is an

inclusion mapping of sets, i.e., each Ps, PF, and PH is an inclusion mapping on 5,

F, and H respectively, then ci is a sub-signature of ci', written ci E ci'. If ci E ci'
and ci 0 ci', we write ci E Q. Let ci ci', and M E Mod(ci'), the reduct of M

Chapter 3. Equivalence of Relational Specifications 	 66

by ci, written M/ci, is an cl-model that assigns the same interpretation as M to

the symbols of Q.

Let E = (S, F), ' = (S', F'), and A E Alg('). The above definitions ex-

tend trivially to algebraic signatures. Therefore, E E >' denotes the algebraic

signature inclusion, and A/E denotes the reduct of A by E. Furthermore, if

N E Mod(fl) then N/E denotes the E-algebra part of the model N.

3.3 Observational Equivalence: the Generic Case

In this section we define a notion of observational equivalence between first order

models. The particular definition of observational equivalence presented here is

that of [ST871 extended to the case of first order models.

Although observational equivalence is a suitable equivalence between models,

direct proofs that two models are observationally equivalent may be difficult in

practice. Therefore, we also define a notion of Model Correspondence between first

order models inspired by Schoett's concept of strong correspondence [Sch87], and

use Model Correspondence as a proof method for observational equivalence. The

main theoretical result of this chapter proves that two models are observationally

equivalent if and only if there exists a Model Correspondence relation between

them.

Intuitively, two models over a signature are observationally equivalent if it

is not possible to distinguish between them by only testing the satisfaction of

observable formulae in the models. This notion requires the definition of how

observations are made, i.e., a definition of observable sentences. In the framework

of first order theories, a natural choice for observations would be logical formulae,

formed by atomic formulae and logical connectives. As noted in [ST87], the logic

used defines the possible observations, whereas the kind of observations we want

to perform dictates the choice of the logic.

In this work, we are interested in observing the semantics of programs accord-

Chapter 3. Equivalence of Relational Specifications 	 67

ing to some Relational Specification. As discussed in Section 3.1, for an arbitrary

Relational Specification (1, 0, A) the set of ground formula F(1) defines all the

observations we can make. We then suggested that, in practice, we are only inter-

ested in a subset of F(l) as our observations. This subset can be characterised

by a sub-signature of IZ, called an observation signature, which we will denote

by QOBS. Therefore, the set F(clOBS) defines the observations we can make for a

given observation signature.

The above discussion leads to the definition of Observational Equivalence

between first order Q-models with respect to an observation signature. In the

rest of this chapter let Q E Sig with algebraic signature E, ROBS E 92 be an

observation signature of 9 such that QOBS = (SoBs FOBS, HoBs) and let E0

E denote the algebraic signature (SoBS FoBs) of OBS• In order to simplify the

presentation we will denote by M and N two models in Mod(fl) with E-algebras

A and B respectively i.e., M/E = A and N/E = B.

Definition 1 (Observational Equivalence) The l-models M and N are oh-

servationaLly equivalent with respect to f2OBS, writtenM
OBS

N, if and only if

both requirements are satisfied:

For all s E 5OBS and t E T(Eos) 3 :

tEdom 	if and only if tdom

For all ir E 11OBS and f E F(1os),1.:

fEdom'IJ ifandonlyiffEdomW ir

and if both sides of the above equivalence are true then

iIi(f) E 7rM if and only if W(f) e
	

EM

Two important facts about the relation of Observational Equivalence are stated

below.

Chapter 3. Equivalence of Relational Specifications 	 68

Fact 1 For any signature f and ROBS 	 E Mod(Z) x Mod(IZ) is an

equivalence relation on Mod(fZ), i.e., 	
OBS is transitive, reflexive, and symmetric.

U

Fact 2 For any signature 91, and observation signatures nOBS, ROBS

ROBS 	1OBS then 	
OBS OBS

U

Among the propertiesof -ROBS stated above, symmetry requires some corn-

ments. In the field of algebraic specification of programs there are various notions

of representation between algebras that do not have this property. These include

the relations of behavioural inclusion [Sch87, page 2161 and simulation [Nip861.

Those relations express the intuition that a program may be a partial imple-

mentation of its specification. For instance, a program may be undefined in more

arguments than its specification, and yet be considered a suitable implementa-

tion.

In practice, these partial implementation notions account for limitations of

actual implementations, for instance, finite memory space, finite size of num-

bers, and so forth. For the case of non-deterministic programs, if a program is

related to its specification by a simulation in the sense of [Nip86], the program

may be less non-deterministic than its specification. The intuition is that in a

real implementation we would have to choose which deterministic behaviour to

implement.

However, the problem of equivalence between Relational Specifications of pro-

gramming languages differs from the problem of correctness in algebraic spe-

cilication in this aspect. To illustrate this difference let us consider the non-

deterministic choice operator + of CCS LM11891. The non-deterministic beha-

viour that + introduces in the language is an essential part of CCS's semantics,

and must be preserved across alternative definitions of the language. Therefore,

a definition of CCS that makes this operator into a deterministic choice oper-

ator should not be considered correct since it does not preserve this essential

Chapter 3. Equivalence of Relational Specifications 	 69

non-determinism.

On the other hand, there is another kind of non-deterministic behaviour in the

concrete definitions of some programming languages that we call non-essential.

For instance, in the semantics of Standard ML [HMT891 memory locations are

arbitrarily chosen, introducing non-determinism in the language with respect to

the memory that results after the evaluation of an expression. However, this

non-determinism does not introduce any new feature to the language for it can-

not be exploited by the user in any interesting way. Therefore, a definition of

Standard ML semantics that chooses memory locations deterministically should

be considered a correct alternative definition.

This problem is solved in our framework by "hiding" the choice of memory

location such that the difference between the original definition of the semantics

and an alternative definition with deterministic choice cannot be observed. In

general, we should make the essential characteristics of the language, like the non-

determinism of the + operator of CCS, always observable, while non-essential

features like the non-deterministic choice of memory location should not be ob-

servable for correctness purposes.

Let us now discuss the problem of giving concrete proofs of Observational

Equivalence between two models. These proofs are essential in establishing the

equivalence of Relational Specifications as shall be seen in the next section.

However, proofs of observation equivalence can be difficult to be established.

To understand this difficulty, suppose we try a proof by structural induction on

the terms in the observable sentences. In general, in such a proof we will have

to reason about non-observable sentences in order to apply the inductive hypo-

thesis. However, the original theorem does not mention non-observable sentences,

making it impossible to apply the inductive hypothesis directly.

In [Hen90b] Context Induction is proposed as a proof method for behavioural

abstractions. A possible drawback of this proof method is that it requires one

to identify all contexts in which a visible object may occur, which may involve

Chapter 3. Equivalence of Relational Specifications 	 70

some non-trivial reasoning. Furthermore, proofs of context induction are, in

general, large even for simple examples. However, a more detailed study is still

required to assess the applicability of context induction in proofs of Observational

Equivalence as defined in this thesis.

In [Sch87,Sch9O], Schoett defines a notion of correspondence relation for many

sorted partial algebras, which is a practical proof method to show that two al-

gebras are observationally equivalent. In the rest of this section we will use the

concept of correspondence to define a proof method for Observational Equival-

ence that we call Model Correspondence.

We first adapt Schoett's notion of strong correspondence [Sch87, page 240] to

the case in which observation signatures are used instead of a set of visible sorts.

Observation signatures are more natural to be used in our framework than a set

of visible sorts, since observations in our approach are the satisfaction of formulae

rather than the evaluation of terms to yield a visible result, as in [Sch87].

Recall from page 67 that, for some 92 E Sig with algebraic signature E,

and A,B E Alg(>).

Definition 2 (Strong Correspondence)

A strong EOBS-correspondence' between A/s oBS and B/E OBS is an SOBS-sorted

relation G = {G8}1EsoBs1 where G3 ç A8 x B 3 for all s E SOBS, such that all

o E FOBS are compatible with G in the following sense:

Forallcr:sl x ... xsm -3SEFOBS ,m>0:

whenever (a2 , b2) E G3., for i E [m+],

then (a1 ,. . . , a) e dom o if and only if (b1,... , b) e dom rB

and if both sides of the above equivalence are true then

(

A 	 B o (a1 , . . . , am),
0, (ba , • . . , bm)) E G3

The fact that G is a strong SOBS-correspondence between A/ 08 and B/soBs

is denoted by G: A/soBs 	Eons B/EOBS.

1 We use the term strong correspondence to keep the consistency with the terminology used

in [Sch87], even though we do not present a notion of (weak) correspondence in this thesis.

Chapter 3. Equivalence of Relational Specifications 	 71

The above definition says that a relation is a strong correspondence between two

algebras A/J oBs and B/E OBS when every observable function yields a result for

some argument in A/E 0BS if and only if it yields a related result for every related

argument in B/E 0Bs .

The following proposition states that every strong correspondence contains

all the pairs of values that result from the evaluation, in each algebra, of every

observable term. The proposition is important for the proof of Theorem 1 and

also for the proofs of equivalence throughout this thesis.

Proposition 1 (Strong Correspondence)

If G is a strong soBs-correspondence between A/> oBs and B/os then for all

s e SOBS and t E T(OBS) 3 :

tEdom 	ifandonlyif tEdom
	

(1)

and if both sides of the above equivalence are true then (&(t), (t)) E G.

Proof The proof is by structural induction on t.

A 	B 	A B Base Case t = o, for a: SE FOBS. In this case, (b9 (ci),'b3 (o)) = (a ,a)

and because G is a soBs-correspondence between A/E OBS and B/soBs , then

(

A a ,o. B
)€G8.

Inductive Step t = a(t1 ,.. ., t,), for a: S X ... X s, -' S E SOBS and n> 0.

From the definition of evaluation we have:

If t1 E dom 	, and ((t1),. . . , b(t,,)) E dom orA

=a(j then ,A(t) 	A A (t1) . .
S 	 ' Si Sn

II tEdom, and ((t1),...,1(t))Edom a B

then ,B(t) 	B B = u (b5 (t1),. . .

From the inductive hypothesis,

tEdomb if and onlyif tEdom, 	 (2)

B and if both sides of the above equivalence are true then ((t2), b(t1)) E G5.
Si

Chapter 3. Equivalence of Relational Specifications 	 72

Now we have two cases to analyse:

If both sides of the equivalence (2) are false for some i G [nt], then both

sides of the equivalence (1) are false, and the proposition holds.

If both sides of the equivalence (2) are true for all i E [nt), then

(&(t1), 1(t1)) E G 5 . Since G is a strong soBs-correspondence then:

(t1),. .. , 	(ta)) e dom o if and only if ('ç1 (t1),. . . , 	 (t,)) e dom 7B
Sn

and when both sides of this equivalence are true then (&(t), &(t)) e G3 .

This finishes the proof of Proposition 1.

The following definition extends the notion of strong correspondence to first order

models by defining a pair of relations between models, which we call a Model

Correspondence. Recall from page 3.3 that, for some Q E Sig, ROBS E Il, and

M, N E Mod(f) are models with algebra A and B respectively.

Definition 3 (Model Correspondence)

A clOBS -Model Correspondence between M and N is a pair of relations (G, H)

such that:

G is a strong soBs-correspondence between A/s oBs and B/o8s.

H = {Hj is a loBs-sorted family of relations such that for all relation

nameslr:slx ... xsn EHoBs ,H,r CAW xBW ,wherew=sl ... sn ,wlth

the following restrictions, for n> 0 and for all i E [n+]:

Whenever ((a 1 ,... ,a), (b 1 ,. . . ,b,)) E H,1. then (a2 ,bj E Gsi

For all t1 E T(>J08s) 3 ., if t. E dom 	and t E dom çbB then

((b(t1), . . . ,1(t)), (ç1'(t1),. . . , 1(t))) E H.
Sn

Chapter 3. Equivalence of Relational Specifications 	 73

and ii is compatible with H,r in the following sense:

whenever ((a1 ,...,a),(b1 ,...,b))EH,1.

then (a1 ,. .., a,) E
M if and only if (b1 ,..., b) E

The fact that (G, H) is a o5s-Model Correspondence between M and N is de-

noted by (G,H) : M 	N 	 D

A Model correspondence is a natural extension of strong correspondence to first

order models. Recall that a strong correspondence G is a relation between the

carriers of observable sorts in a E-algebra, with the requirement that each ob-

servable function a is compatible with G. The component H of a Model Corres-

pondence extends the role of G to the relations of a first order model. Therefore,

H is a relation between the relations in a model with the requirement that each

observable ir must be compatible with H.

Definition 3(2.i) says that H is consistent with G in the sense that every

related tuple in H is built of related values in G. Definition 3(2.11) requires that

every pair of tuples built from the evaluation of the same observable terms must

be in H. This requirement guarantees H is not empty whenever T(E OBS), and

consequently F(IloBs), are not empty.

The following theorem shows that the notion of Model Correspondence is an

alternative characterisation of Observational Equivalence. Therefore, the former

can be used as a proof method for Observational Equivalence between first order

models. The example of Section 3.5 shows that this method yields practical

proofs of equivalence between Relational Specifications.

Theorem 1 (Model Correspondence) The models M and N are observation-

ally equivalent with respect to QOBS if and only if there exists a goBs-Model

Correspondence between M and N, i.e.:

M OBS
N if and only if there exists (G, H), (G, H) : M +* 	N

Chapter 3. Equivalence of Relational Specifications 	 74

Proof This is based on the proof of Theorem 4.2.3 of [Sch87, pages 223-2251,

and is given in two parts as follows.

Soundness We need to prove that if there exists a pair of relations (G, H)

such that (G, H) : M ThOBS N then M
OBS

N. Since G is a strong OBs

correspondence between A/S OBS and B/soBs then Proposition 1 apffies. There-

fore, Definition 1(1) is trivially satisfied. It remains to prove that Definition 1(2)

is satisfied. From Proposition 1 it follows that for all ir: S1 X ... s, E 110B5 and

7r(t1 ,..., tn) E F(OBS),r ,

B
tEdom 	ifandonlyif 	t1 Edom

Si

Therefore,

7r(t1 ,.. ., t,) e dom IF if and only if ir(t1,.. . , t,) e dom

Whenever both sides of the above equivalence are true it follows that for all

i E [nt], t1 dom and t1 dom From the fact that H satisfies the
Si

requirement of Definition 3(2.ii) we obtain that:

((/,
Si
A(t1) 	.. ,(t)),(t(t 1),... ,1(t)) E H,,.

Since for all ir E 11oBs, ir is compatible with H,, then:

(OP t1) 1(t)) E irM if and only if ((t1),...,(t)) Eir
N

(

Sn

Therefore, from the definition of formula evaluation (Section 2.4, page 51):

	

I'(ir(t1 ,...,t))EirM if and only if 	ti,E7rN

Therefore, Definition 1(2) is satisfied and we conclude thatM
0OBS N. Since

this proof is done for an arbitrary pair (G, H), it implies that the existence of

any os-Mode1 Correspondence between M and N impliesM
00BS

N.

Completeness We need to prove that M
0OBS N implies that there exists a

pair of relations (G, H), such that (G, H) : M E 'aoBS N. For this proof we will

Chapter 3. Equivalence of Relational Specifications 	 75

show first that G defined as G. = (1)' o 	for each s E SOBS is a strong

EOBS-correspondence between A/E oBs and B/EOBs .

Let (a1 ,b) e G, for n > 0 and all i E [n+]. Then, choose t E dom OA fl

dom in T(oBs) 3 , such that '1(t) = a, t) = b1 , and t = o(t1,..., tn)
Si

belongs to T(oBs), for some s e S0 . From Definition 1(1) we have that:

t E dom 	if and only if t e dom

and if both sides of this equivalence are true then we can write:

,(s(t,))) =
Sn

(&(t),'b(t)) E (1')' o'b' = G,

Which proves G is a strong EOBS-correspondence between A/E 0BS and B/EOBs .

We will show that H defined as H,. = (1)' o 	for all ir E 11OBS satisfies the

requirements of Definition 3(2). From this definition of H, r it follows that for all

t,) E F(c OBS),,., if t2 e dom 	and t1 E dom 	for every i E [nt],

then:

(t1), 	ti& (tn)), (,/,B (t1), . 	, 1'(t))) E H,,.
Si 	 Sn

The requirements of Definition 3(2.1) follows trivially from the definition of H,,.

and Proposition 1. Definition 3(2.ii) is trivially satisfies by the definition of

H,,.. Now, we must show that each ir E 11OBS is compatible with H,,.. For all

ir: s1 x... x Sn E 11oBS, whenever ((a 1 , . . . , a,), (b 17 . .. , b,)) E H,,., for all i E [+],

Si e SOBS take t1 E dom OA fl dom OB in T(oBs) such that .,&A(t) = ai and
Si

= b. It is clear that ir(t1 ,. .., tn) E F(IoBs),,.. Now, from the fact that
Si

M 	N, it follows that:

7r(t1 ,. ., t,) E dom Xp if and only if ir(t1 ,. .., t) e dom pB

and if both sides of the above equivalence are true then

e 7rM if and only if I(ir(ti,...,tn)) E

It is obvious that ir(t1,.. . , tn) E dom 'Ii and ir(t1 ,.•, tn) E dom 'J!. Therefore,

from the definition of evaluation of formulae (Section 2.4, page 51):

(&(t1) (t)) e irM if and only ii (i(t1),...,bB(t))

Chapter 3. Equivalence of Relational Specifications 	 76

Finally, we conclude that:

(a1 ,... , a,) E ir
M if and only if (b 1 , . . . , b,) e 7r N

This proves that ir is compatible with H,., for all ir e HOBS, and therefore that

(G, H) is a 1OBS-Mode1 Correspondence between M and N. This finishes the proof

of Theorem 1. 0

Model Correspondences offers a suitable proof method for Observational Equi-

valence between first order models in a similar way as strong correspondences

provide a proof method for observational equivalence between algebras. As dis-

cussed above, proofs of Observational Equivalence can be difficult because the

requirements of Definition 1 do not involve non observable objects. However,

these objects often occur in intermediate steps of inductive proofs making it im-

possible to apply the inductive hypothesis directly. Model Correspondences solve

this problem since Definition 3(2.1) allows non observable objects to be related

in H. In Section 3.5, we illustrate the use of Model Correspondences.

3.4 Observational Equivalence of Relational Spe-

cifications

In this section we apply the results of Section 3.3 to the equivalence of Relational

Specifications. The objective is the definition of a relation of Observational Equi-

valence between Relational Specifications. For this definition we have a choice

between a relation parametric on an observation signature, like the -ROBS rela-

tion, or to include an observation signature as a component of the Relational

Specification and then define the equivalence relation on the class of Relational

Specifications with the same observation signature.

Both choices lead to essentially the same notion of equivalence. The first

choice is more flexible in the sense that it directly allows two Relational Specific-

ations to be compared using different observation signatures; the second choice

Chapter 3. Equivalence of Relational Specifications 	 77

provides simpler and more concise definitions. Furthermore, we can indirectly

achieve the flexibility of the first approach in the second approach by considering

different classes of specifications, one for each observation signature. Therefore,

we choose the second approach for its simplicity.

We extend a Relational Specification (Definition 2.2) with an observation sig-

nature such that whenever (ci, q, A) is a Relational Specification and tIOBS

ci is an observation signature of ci, we write the Relational Specification as

(ci, 4, A, ci). The class of Relational Specifications with observation signa-

ture ciOBS is denoted by Spec(ciOBS). Notice that in general the specifications in

Spec(I1OBS) have different signatures. The notion of Observational Equivalence

between Relational Specifications will account for this.

We now define a relation of Observational Equivalence on Spec(ciOBS). To

motivate this definition let us consider two Relational Specifications of a simple

functional language without recursion, which we call Fun. The following example

shows a substitution-model semantics for Fun, which is just an extension to the

Relational Specification Ezp defined in examples 2.1 and 2.2.

Example 1 This example presents a complete definition of a Relational Spe-

cification Sub = (ci5'', ,Sub A s', ci $) that defines a semantic of Fun. Here,

we have called the observation signature Q SPun instead of ci because it will be

used in the Relational Specification of the next example as well. The components

SIb 	 Sub 	g-,Sub and F of 	are defined by the following BNF rules:

exp 	::= var I nat I exp + exp let var = exp in exp

fn var exp I exp(exp)

var 	::= xIyI...
nat 	::= plus(nat, nat) I 0 1 1

funval ::= fn var. exp

val 	::= nat I funval

where an object of sort funval is function value, i.e., the value that results from

the evaluation of an expression of the form fn var. exp. The meta-variables

Chapter 3. Equivalence of Relational Specifications 	 78

used to construct terms and formulae are those in XE, defined in Example 2.1,

to which we add the component X 1 generated by v and n. The set of rules va

Sub defines three relations. The relations ==>s and 	S have the same intuitive

meaning as in Example 2.1, extended to the new language constructs.

The definition of the relation makes sure that only expressions without

free-variables, i.e., closed expressions, are evaluated using the relation =. The

evaluation of expressions with free variables may produce incorrect results due to

the capture of the free variables in the substitution. This restriction is achieved

by using the function FV that, when applied to an expression, returns the set of

its free variables. The definition of FV can be given by a simple set of Relational

Rules. However, its meaning is standard and we therefore omit its definition from

this presentation.

Rule (1) defines the relation = using the relation =. Rules (2)-(4) and

(7)-(12) were defined in Example 2.1 and are also presented here to make this

example self-contained.

Evaluation of Expressions 	 exp = val

	

FV(e)={} 	e=,5v 	
11

e=,v

	

Evaluation of Closed Expressions 	 I exp 	val

	

n 	n

e1 	n1 	e2

e1 + e2 	plus(ni , n2)

e1 = 	v1 	(v1 , id, e2) 	e 	e =:.S V2

let id = e1 in e2

(5)
fri id. e =::,.s fn id. e

Chapter 3. Equivalence of Relational Specifications 	 79

	

e1 ==>s fn id. e - e2 's v2 	(v2 , id, e) - e 	e'=t>s v 	
(6

ei (e2)=sv

Substitution
	

(val, var, exp) —4s exp

(7)
(v,id,n)—* s n

(v, id) id) —4 s

id 54 id'

(v, id, id') -*S id'

(v, id, e1) -4 e 	(v) id, e2) 	e

(v,id,e i +e2)—*s e+e

(v, id, e 1) ___*s e

v,id,let id = e1 in e2)—*g let id = e in e2

id :A id' 	(v, id, e 1) — ps e 	(v, id, e2) -i. e

(v, id, let id' = e1 in e2) —pg let id' = el in e

(v) id,fn id. e) *s fn id. e

id:A id' 	(v,id,e) —4s el

(v) id,fnid' . e) —ps fnid' . e'

(v, id, e1) -+ e 	(v, id, e2) —'s e2 	
(15)

(v, id, e 1 (e2)) —ps e(e)

The E Sub aJgebra ASUb is a simple extension to AEZII of Example 2.2 in which

A
Sub

= T(' 	ASUb = ASUb + A 	and the new language constructs
funval)junval, 	vol 	nat 	fj&nva1

and new values of sort funval are assigned the term algebra interpretation.

Finally, the observation signature 1' is defined as follows. The set OBS OBS

has only the relation , and the sets GOBS
SFun and F7 are defined by the following

BNF rules:

Chapter 3. Equivalence of Relational Specifications 	 80

	

exp 	::= var I nat I exp + exp I let var = exp in exp

fri var. exp I exp(exp)

	

var 	::= xIyI•

	

nat 	0 1

funval ::=

	

val 	::= nat

This finishes the complete definition of Sub and Example 3.1. 	 0

We now define another Relational Specification for Fun. This definition uses

an environment-model semantics in which the variables of expression and their

values are kept in an environment, and looked up when needed. For the purpose

of establishing their equivalence, an important difference between this semantics

and Sub is in the representation of function values.

Example 2 In this example we present an environment-model semantics for Fun

by defining a Relational Specification SEnv = (1", oSEnv ASEnV çSFun) In OBS

this specification, the values of the free variables of an expression are kept in an

environment. Moreover, function values are represented as triples of the form

(E, id, e), where E is an environment, id is the formal parameter, and e is the

body of the function. This representation for function values is normally called

a closure in the literature (e.g., in [FH88, page 2001).

The following BNF rules define the components 5SEnv and FSEnV of çSEnv

	

funval 	(env,var,exp)

val 	::= nat I funval

env 	 var i-* val• env

where exp, var, nat were defined in Example 1. We first extend XE with X env

generated by E. The Relational Rules below define 0 SEnv . Rule (1) defines the

relation = in terms of the relation - H - 	-. Since in Sub only the evaluation

of closed expressions is defined, in SEnv the evaluation of expressions starts with

Chapter 3. Equivalence of Relational Specifications 	 81

an empty environment EE, as defined by rule (1). Rules (2) to (7) define the

evaluation of expressions in an arbitrary environment E. Rules (8) and (9) define

the result of looking up the value of a variable in the environment.

Evaluation of Expressions 	 exp = val

	

I- e = V 	
(1

e = v

Evaluation on an Environment 	 eriv I- exp => val

	

EF- n=n 	
(2)

(E,id) ---- * L v

E F-id = v

EFe1 v1 	EF-e2=v2 	
() EFe1 +e2 =plus(v1 ,v2)

EFe1 v1 	idF-v1•EFe2='v2 	
() E I- let id = e1 in e2 = V2

EFfn id. e=(E,id,e) 	
(6)

EFe1 ='(E',id,e') 	EFe.±iv2 	idF-*v2 •E'Fe',v'

EFe1(e2)v' 	 (

Variable Lookup
	

(env, var) 	L vail

	

(id i—* v. E, id) 	'L V

	 (8)

idzid' 	(J?jd'i*r -- 	/ 	L 	
(9)

	

(id' '—p v' E, id) 	L V

,-, 	ç SEnv 	 SEnv ihe 	-algebra A 	is a simple extension to AE1 of Example 2.2 in which

- p SEnv 	ASEnV - 	+ SEnv and the new language con- funval - L
()frnval, Va! - not 	funvaI

structs and new values of sort funval are assigned the term algebra interpretation.

Chapter 3. Equivalence of Relational Specifications 	 82

The observation signature 17 was already defined in Example 1. This OB

finishes Example 3.2. 	 U

We now have two Relational Specifications for the programming language Fun:

Sub and SEnv. Moreover, these Relational Specifications belong to the same

class Spec(fZ 0); thus the next question we want to answer is whether Sub and

SEnv are equivalent. To answer this question we first have to define a notion of

equivalence between Relational Specifications in terms of the relation

Definition 4 (Equivalence of Relational Specifications) Two Relational

Specifications S = (ce, OS A5, goBs) and 1?. = (1, , A, 1oBs) with Declar-

ative Semantics Ms and M respectively, are observationaily equivalent, written

S R., if and only if:

itS!r 	- 	 irl
/
Ic
At li / OBS 1OBS

lvi 	OBS U

This definition says that S and R. are equivalent if the reduct of their Declarative

Semantics by observation signature are observationally equivalent.

Fact 3 The relation C Spec(I oBs) x Spec(IZOBS) is an equivalence relation on

Spec(c1OBS), for any observation signature ROBS 	 0

Therefore, to establish whether Sub SEnv we must establish whether:

Sub 0SFun 	MSEnV
/

SFun
M

/" 	
flSFun OBS OBS 	 OBS

where MSU6 and MS are the Declarative Semantics of Sub and SEnv respect-

ively. The proof of this equivalence is done in the next section.

3.5 A Proof of Equivalence

In this section we prove that Sub and SEnv are observationally equivalent using

the notion of Model Correspondence of Definition 3. The initial proposition we

want to prove is stated below.

Chapter 3. Equivalence of Relational Specifications 	 83

Proposition 2 The Relational Specifications Sub and SEnv are observationally

equivalent, i.e., Sub SEnv. 	 0

According to Definition 4 the proof of the above proposition requires a proof

that M/l7 and M/1Z' are observationally equivalent with respect to OBS

Therefore, we will define a pair of relations (G, H) and prove this pair is
OBS

an l '-Model Correspondence between the two models. Then, Proposition 2
OBS

follows from Theorem 1.

An important advantage of using Model Correspondence as a proof method,

rather than an ad hoc approach, is that this proof method structures the proofs

of equivalence. This structure occurs in other proofs in this thesis, for instance,

in the compiler correctness proof in Section 4.4. This suggests that this structure

can be exploited, for instance, by defining semi-automatic tools to assist in the

equivalence proofs. For. this reason, we will present this proof in some detail so

that the presentation of following proofs will be simplified.

To simplify the presentation let us abbreviate M/1 	by MS, MS/1 OBS OBS

by MSE, A/J' by AS, and AV/ 	by ASE.OBS

For the definition of the relation G we need to define how to close an expression

with respect to an environment, i.e., how to substitute every occurrence of every

free variable in an expression by its value in the environment. This closure

operation is defined by the recursive function close: exp x eriv - exp, as follows:

close(e,E E) = e

close(n, E) = n

close(id, id' i- n E) = if id j4 id' then close(id, E)

else n

close(id, id' i-' (E, id", e) . E) = if id 0 id' then close(id, E)

else fri id" . close(e,remove(id",Il))

close(ei + e2 , E) = close(e1 , E) + close(e2 , E)

close(fn id . e, E) = fri id. close(e,remove(id,E))

Chapter 3. Equivalence of Relational Specifications 	 84

close(e1 (e2), E) = close(e1 , E)(close(e2 , E))

close(let id = e1 in e2 ,E) = let id = close(e1 ,E) in close(e2 , remove(id, E))

Here, remove(id, E) is an operation that returns an environment that is the same

as E except that all binds id '— v were removed. It is easy to verify that close is

a total function. Furthermore, the algebras AS and ASE are total. These facts

will simplify the following definitions and the subsequent proofs.

Definition 5 (The Relation G) Let us define a S$-sorted relation G such

that each G 3 C AS 5 x ASE,, s E S7, is defined as follows:

For s E {exp, var, nat}, G. is defined as the identity relation on AS 5 x ASE8 .

= {(fn id. e', (E, id, e)) : e' = close(e, remove(id, E))}

Gva i = Gfrjnva l + G 0

The component Gfr 0, relates function values, which are non observable accord-

ing to 	This component is essential in the proof of Lemma 3.
OBS

Definition 6 (The Relation H) The relation name = is the only relation in

H7. Therefore, we define H (ASE 2 , x ASvaj) X (ASE exp x ASEva1) to be

the least relation (with respect to set inclusion) such that:

For all e E TY"' and v E T 9 "

	

OBS 	 OBS)val

	

AS 	AS 	ASE 	ASE

	

((I exp (e), 1'01(v)), ('ezp (e), & 	(v) 	E val 	/

For all (e, e) e Ge and (v, v') e Gvai if (e, v) E =s
MS
 and (e, v') E

MSE

then ((e, v), (e, v')) E

FW-

Definition 6(2) includes the (non observable) function values in H. This is

necessary for the proof of the following proposition.

Chapter 3. Equivalence of Relational Specifications 	 85

Proposition 3 The pair of relations (G,H) is an cl7-Model Correspondence

between MS and MSE, i.e., (G, H) : MS 	MSE 	 0

To simplify the following presentation, whenever e e A and v E A, we will

use e = v for (e, v) e =MS, if it is not ambiguous to do so. The same convention

applies to the other relations in Sub and to every relation in SEnv.

The proof of Proposition 3 requires the proof of the requirements of Defini-

tions 3(1) and 3(2). It is trivial to prove that Definition 3(1) is satisfied since AS

and ASE give the same interpretation for all function names in FZ. Therefore,

we will assume hereafter that G : AS ESF ASE.
OBS

The proof of the requirements in Definition 3(2) becomes easier if we prove the

following lemmas first. The proof of the Lemma 3 uses Lemmas 1 and 2 stated

below, whose proofs are simpler than the proof of Lemma 3 and are carried out

in a similar way. Therefore, we omit the proofs of these Lemmas 1 and 2 from

this presentation.

Lemma 1 For all E E ASEnV (id, id) Gvar, (e, e) E G e2,,,, and (v1 , v) E G va i: env

If there exists v E ASEVaI such that idE I- e = t4, there exists

V2 E AS vai such that (v1 , id, close(e, remove(id, E))) 	e' and e' 	v2

and (v2 ,v) e G 0j.

If there exists v2 E AS 0, such that FV(v1) = { },

(v1,id)close(e,remove(id,E))) - e', and e' = v2 , there exists v E

ASEva1 such that id i-+ . E F- e = v and (v2 , v) E Gvai.

j

The next lemma relates the environment lookup in SEnv with the close function

defined above.

Lemma 2 For all E E 	(id, id) E 	and (e, e) E Gez,,: env

Chapter 3. Equivalence of Relational Specifications

If there exists v' E ASEva1 , such that (E, id) __*L V I ,

there exists v E AS 01 , such that close(id, E) =s v and (v, v') E Gva i

If there exists v E AS vai , such that close(id, E) = v,

there exists v' E ASEvaj , such that (E, id) 	3 L v' and (v, v') E G 01

U

The following lemma relates the evaluation of expressions in Sub and Env.

Lemma 3 For all E E ASEUV (e, e) E G 2 : env

If there exists v' E ASE 0, such that E F- e =>

there exists v E AS vai such that close(e, E) 	v and (v, v') E G 0 ,

If there exists v E AS,,0, such that FV(close(e, E)) = { },

and close(e, E) =' v, there exists v' E ASEv01 such that

E F- e = v' and (v, V ') E G,,0,

Proof We prove 3(1) and 3(2) separately.

1(1) Recall that Proposition 2.3 states that E F- e = v' if and only if there

exists a proof tree for the formula E F- e = v in M; the same is valid for the

other relations. Therefore, we will prove the following statement:

If] v' and 	
PT' 	

then] v and
E F- e = v'

PT

close(e, E) = v
and (V, V) E G 0,

where PT' and PT represent proof trees of the formulae below the line. This

proof is by induction on the height of PT'. We present one case for each rule of

the definition of - F- - = - (Example 2) used to construct the proof tree.

Rule 2(2) In this case e = n and v = 72ASE• Since close(n, E) = n and

n s AS the proof trees are as follows:

E F- 	flASE 	 close(ri, E) ==>s flAS

Chapter 3. Equivalence of Relational Specifications 	 87

Since n = ASE for all n E TIEm) 	then (A5 , BASE) E Gnat and therefore
' OBS not'

(HAS flASE) E Gvai.

Rule 2(3) In this case e = id. If there exist v' and a proof tree for E F- id =

this proof tree must be of the following form:

PT'
(E, id) 	L V

E F -id = v'

From Lemma 2(1) we have that there exists v and a proof tree PT such that:

PT

close(id,E) =s v

and (v, v') E G0i.

Rule 2(4) In this case e = e1 + e2 . If there exists v' and a proof tree for

E F- e1 + e2 = V I this proof tree must be of the following form:

	

PT 	 PI
EF-e2 =v,

E F- e1 + e2 = plus(z4, v)

•where v' = plus(v, v). From the definition of close we have that close(e1 +

e2 , E) = close(e1 , E) + close(e2 , E). From the inductive hypothesis there exist v1 ,

v2 , PT1 , and PT2 such that:

PT 	 PT
close(e1 , E) = V1 	close(e2 , 1) = z

close(e1 + e2 , E) =t>s plus(v1 , v2)

and (v1 ,vi), (V2, v) E 	From the fact that G : AS X JSFU. ASE, we have
OBS

that (plAs(v V2),P1USASE(V1, V))

Rule 2(5) In this case e = let id = e1 in e2. If there is a V and a proof tree

for E F- let id = e1 in e2 = v, this proof tree must be of the following form:

PI

	

EF-e1 =>v 	id-*v•EI-e 2 =v

E F- let id = e1 in e2 =

Chapter 3. Equivalence of Relational Specifications 	 88

From the definition of close we have that close(let id = e1 in e2 , E) is equal to

let id = close(ei , E) in close(e2 , remove(id, E)). From the inductive hypothesis

there exist v1 and PT1 such that (v1 , v) E Gvai, and from Lemma 1(1) there exist

v2 , PT2 , and PT3 such that:

PT
	

P?n
close(e1 ,E) ts V1 	(v1,id,close(e2,remove(id,E))) - e

let id = close(e1 , E) in close(e2 , remove(id , E)) = v2

and (v2 ,v) E Gvai.

P743

e ='s V2

Rule 2(6) In this case e = fn id. e'. If there exists v' and a proof tree for the

formula E I- fn id. e' = v' this proof tree must be of the following form:

E I- fn id. e' = (E, id, e')

where v'=(E, id, e'). Since close(fn id. e', E) = fri id . close(e' ,remove(id, E)),

then:

close(fn id. e',E) g fn id. close(e', remove(id, E))

From the definition of Gfr flO,, (fn id . close(e', remove(id, E)), (E, id, e')) E Gvai.

Rule 2(7) In this case e = e1 (e2). If there exists v' and a proof tree for the

formula E I- e1 (e2) = v' this proof tree must be of the following form:

PT 	 PT 	 PT
1 	I 	I

EFe1 .(E',id',e') 	EFe2 v 	id i-v2 -E Fe =

E F- e1 (e2) 	V

From the definition of close we have close(e1 (e2), E) = close(e1 , E)(close(e2 , E)).

If there exists a proof tree for close(e1 (e2), E) v it must be of the following

form:

PT1 	 PT 	 PT3 	PT4
close(e1 , E) 	fri id. e close(e2 , E) =*-S V2 (V2 id, e) - e" e =>s v

close(e1 (e2), E)

From the inductive hypothesis the proof trees PT 1 and PT2 exist. Furthermore:

• (fri id. e, (E', id', e')) E 	and from the definition of G nvai, we have

that close(e', remove(id' , E')) = e and id = id'.

Chapter 3. Equivalence of Relational Specifications 	 89

• (v2 , v) E Gvai.

Then applying Lemma 1(1) to the formulae id' 	E' F- e' = V I ,

(v2 , id, ci ose(e' , remove(id, E'))) —'s e", and e" 	v, we obtain (v, v') E G 01.

This completes the proof of Lemma 3(1).

3(2) (sketch): We must prove that:

If 3 v, FV(ciose(e, E)) = { } and
PP

3 v' and
E F- = V 1

and (v, V) E G 0,

e

This proof is by rule induction on the definition of = of Example 1. The proof

is analogous to the proof Lemma 3(1).

This finishes the proof of Lemma 3. 	 0

Using Lemma 3 we can give proof for Proposition 3.

Proof (of Proposition 3) We already argued that the proof of the requirement

of Definition 3(1) is trivial, and therefore G : AS - xzsF.. ASE. It remains to
OBS

prove the requirements of Definition 3(2) are satisfied.

This proof is clearer if we first restate Lemma 3 for the case when E = EE-

Lemma 3(1) then becomes: for all (e, e) E G e2 ,,

1. if there exists VI
E ASE 01 such that 6E F- e =

VI

then there exists V E ASvaj such that ciose(e) EE) 	v and (V, v') E G 0,

Notice that applying rule (1) of Example 2 to the proof tree for the formula

EE I- e = v' we obtain e => V1 in SEnt'. It is easy to check that FV(e) = 11.
Furthermore, ciose(e, EE) = e and by applying rule (1) of Example 1 we obtain

the following statement for Lemma 3(1): for all (e, e) E

1. 	if there exists v' E ASE va1 such that (e, V') E=M

then there exists V E AS,,al such that (e, V) E=.MS 	and (V, V ') e

PT'

close(e, E) 	V
then

Chapter 3. Equivalence of Relational Specifications 	 90

Using a similar argument we can rewrite Lemma 3(2) as follows: for all (e, e) E

G ezp,

2. if there exists v E AS,,01 such that FV(e) = { } and (e, v) E=MS

then there exists v' E ASE, such that (e, v') E =MSE and (v, v') E Gvai

Let us prove first that Definition 3(2.i) is satisfied. Any pair ((e, v), (e', v')) can

only be in H because of either Definition 6(1) or Definition 6(2). Suppose it is

because of Definition 6(1), then from Proposition 1 it follows that (e', e)

and (v, v') E Gvai. Suppose now that it is because of Definition 6(2). It is

then clear that e = e' and (e, e') E G e ,. It follows then from Lemma 3 that

(v, v') e G 01. We then conclude that Definition 3(2.i) is satisfied

Definition 3(2.ii) follows trivially from Definition 6(1). II remains to show

that = is compatible with H. in the sense of Definition 3(2). Therefore, we

must prove the following statement:

whenever ((e, v), (e, v')) E H. then:

(e, v) e MS if and only if (e, v') E MSE

Let us prove the left to right implication first. Suppose that (e, v) e =5M5 and

let us analyse the possible values for v.

II v = n since (v, v') E Gvai then v = v'. In this case it follows from

Lemma 3 that there exists v" such that (e, v") E=MSE and (v, v") E Gvai.

Since v = n then v = v", therefore v' = v".

If v = fri id. e, then ((e, v), (e, v')) is in H. because of Definition 6(2)

since there is no visible term of sort funval. In this case, ((e, v), (e, v')) e

H. only if (e, v) E=MS and (e, v') EMSE, and the statement holds.

The proof of the right to left implication follows similarly. Therefore, we have

proved that the requirements of Definitions 3(1) and 3(2) are satisfied, concluding

that (G, H) : MS 4*flSFun MSE. From Theorem 1 it follows that MS flSF.rn
OBS 	 OBS

Chapter 3. Equivalence of Relational Specifications 	 91

MSE, which according to Definition 4 establishes that Sub SEnv. This finishes

the proof of equivalence between Sub and SEnv. 	 0

3.6 Summary and Conclusions

In this chapter we defined an equivalence relation between Relational Specifica-

tions and used this equivalence as a correctness criterion between two Relational

Specifications. This equivalence relation is based on an observational equivalence

in the algebraic specification sense. Moreover, the particular notion of observa-

tional equivalence used in this section is that of [ST87}.

This definition provides a general criterion for correctness; the equivalence

relation between specifications is (obviously) transitive, which is a desirable prop-

erty of a correctness criterion. Moreover, this equivalence comes equipped with

a proof method based on correspondence relations. We extended the definition

of strong correspondence of [Sch87, page 241] to a relation between first order

models we called Model Correspondence.

In our approach to correctness, non-deterministic programming languages are

accounted for. In [Nip86] Nipkow proposes a notion of simulation of an algebra

by another which also accounts for non-deterministic languages Our solution dif-

fers from Nipkow's simulation relation in that OBS' and therefore , are sym-

metric relations. The symmetry between alternative definitions of a language's

semantics expresses that essential features of the language (in the sense of Sec-

tion 3.3, page 69) must be preserved across alternative definitions. On the other

hand, non-essential characteristics may be made non-observable for correctness

purposes.

An important application of the definitions of this chapter is in the problem

of compiler correctness. This problem will be studied in Chapter 4 where we

show that the use of Observational Equivalence extends and improves previous

approaches to this problem.

Chapter 4

Compiler Correctness

In this chapter we study the problem of compiler correctness in the framework of

Relational Semantics. This problem consists in establishing whether a compiler

for a programming language generates "correct machine code" for programs in

the language. The key aspect of this problem is to define a natural and formal

meaning for "correct machine code".

We propose a solution to this problem by applying the concept of Obser-

vational Equivalence of Relational Specifications developed in Chapter 3. The

initial aspect of this solution is the characterisation of the process that we call

Evaluation by Compilation, or simply Compilation. In a Compilation, the se-

mantics of a program is defined in three stages: the program is compiled into

machine code which is loaded and executed on the machine; if this execution is

successful then the result of the evaluation is unloaded from the machine and

given as the result of the program.

Once we charactense a Compilation we show how it may be defined by a

Relational Specification. The last aspect of our approach to compiler correctness

is to use Observational Equivalence as the equivalence between a (standard)

semantics and a Compilation of the programming language. This equivalence

defines a criterion for compiler correctness and we shall argue why this is a

suitable criterion.

92

Chapter 4. Compiler Correctness
	

93

The compiler correctness problem has received a great deal of attention in

the literature. In Section 4.1 we summarise the main approaches to this problem

and compare their solutions to the approach we propose in this chapter. In

Section 4.3 we give an abstract characterisation of the Compilation process in

terms of signatures and first order models; then we use an example to show

how a concrete Compilation may be defined by a Relational Specification. In

Section 4.4 we prove that the Compilation defined in Section 4.3 and a Relational

Specification derived from SEnv (see Example 3.2) are observationally equivalent.

4.1 Introduction

In [MP67], McCarthy and Painter presented one of the earliest approaches to

compiler correctness. This work consists of a proof of correctness of an algorithm

for compiling arithmetic expressions into an abstract machine. In [BL69], Burstaji

and Landin introduced the use of algebraic methods in the compiler correctness

problem. The use of an algebraic approach introduced structure on the objects

involved in the correctness problem: programming language semantics, machine

semantics, and the definition of the compiler.

The algebraic approach was further developed in [Mor73], where compiler

correctness is characterised as the commutativity of the diagram in Figure 1

(page 94), known as the Morris Diagram. In that diagram, the nodes are algebras

and the arrows are homomorphisms. The ir arrow denotes the semantics of the

programming language, while the 1a arrow denotes the semantics of the machine

language.

In the Morris Diagram, the algebra k is the initial term algebra T(E) for

a signature E which defines the programming language. Therefore, 'y and ir

are unique homomorphisms by initiality. The proof method is also based on

initiality, for if IL and 6 are also homomorphisms then the commutativity of the

Morris Diagram follows by uniqueness. Therefore, a proof of compiler correctness

consists of proving that the arrows of the diagram are homomorphisms.

Chapter 4. Compiler Correctness

L
compiler

M 	U
decoding

Figure 1: The Morris Diagram

One limitation of Morris' approach is that the correctness criterion requires

the existence of a homomorphism 6 from the algebra of the machine values into

the algebra of the programming language values. To understand why this is a

limitation let us consider a practical example. In the language Fun of Example 3.2

the expression fn x • x + 1 evaluates to the function value (EE, x, x + 1), and

fri y . y + 1 evaluates to (EE, y, y+l). It is conceivable that in a machine im-

plementation these two expressions evaluate to the same machine value that

"represents" all a-conversions of a function value like (EE, x, x + 1). In this case

there is no homomorphism 6 that makes the Morris Diagram commute.

The approach initiated by Morris inspired several investigations which set

out to extend and improve the ideas presented in [Mor73}. We now discuss

some of these investigations. In [TWW81], the ADJ group proposes the use

of a homomorphism € : M - f (of encoding) to replace the homomorphism

6 L - in the Morris Diagram. A motivation for using c is to overcome the

limitations of the original diagram for cases like the function values discussed

above.

However, the use of an encoding arrow in the correctness diagram is problem-

atic in various ways. First, the commutativity of the diagram with c : M - U is

not a sufficient criterion for correctness. For instance, in the case where T and

are one-point algebras and 'y, p, and c are the unique homomorphism to these

algebras, the diagram commutes trivially, as mentioned in [TWW81].

Another reason why € does not give a sufficient correctness criterion is illus-

trated by a simple example. Suppose 'y compiles every program 1 in L into the

Chapter 4. Compiler Correctness 	 95

(fixed) code sequence . in T. Therefore, since p. is a function, every program

has the (fixed) meaning p.(1) in U. Furthermore, for every . in j suppose that c

maps ir(I) into (the fixed) /L(I). The diagram then commutes trivially, although

we intuitively would not regard this compiler as being correct.

The degenerate case of one-point algebras seems irrelevant in practice since

we expect the machine language T never to be one-point. However, the second

problem discussed above suggests that errors in the compiler arrow can be

hidden by a suitable choice of the encoding arrow c. Therefore, the use of the

encoding arrow in the Morris Diagram is not adequate for compiler correctness.

Furthermore, the use of an encoding arrow suffers from a pragmatic problem.

In practice, we use a compiler to translate a program into machine code; we then

execute the code on the machine and, if a result is produce by the execution,

we expect to obtain its source level representation as the result of the program

evaluation. In other words, we are interested in the results as they are represented

in the algebra M.

However, the existence of an encoding c that makes the correctness diagram

commute is not sufficient to guarantee we can (uniquely) convert from the ma-

chine representation of a result to its source language representation. In fact, a

diagram with an encoding arrow only guarantees that there exists at least one

result in M that corresponds to the result in U obtained from the execution of

the program's code. We argue this is not sufficient from a pragmatic point of

view.

A major limitation of the aforementioned algebraic approaches is that the al-

gebraic semantics used to define the semantics of programming languages is func-

tional. Therefore, these approaches do not directly deal with non-deterministic

languages. In the approach initiated by Despeyroux [Des86] and followed by

Simpson [Sim90], the nodes of the Morris Diagram become term algebras and

the arrows become inductively defined relations between these algebras. There-

fore, these approaches model non-deterministic languages naturally. The correct-

ness diagrams used in [Des86,Sim9O] use the encoding arrow c. Therefore, both

Chapter 4. Compiler Correctness 	 96

approaches suffer from the problems discussed above.

Some authors divide the compiler correctness problem into compiler specific-

ation correctness and compiler implementation correctness [Po181,CM86]. The

former refers to the correctness of a compiler specification with respect to the

programming language semantics. This category includes all above cited works.

Compiler implementation correctness refers to the correctness of a compiler im-

plementation with respect to its specification.

Various aspects distinguish specification and implementation of compilers in

this context. For instance, a specification is usually defined in terms of abstract

syntax of the program while the implementation may involve lexical analysis,

parsing, and so forth. Furthermore, a specification does not need to be execut-

able, and even when it is executable, it is too inefficient to be used in practical

applications. On the other hand, an implementation is necessarily executable

and often robust for real applications.

This distinction was first addressed in [Po181]. In [CM86] Chirica and Martin

show how to apply the ideas of the Morris Diagram to prove correctness of a

compiler implementation. Although we believe that compiler implementation

correctness is an important problem, it is not addressed in this thesis.

Summarising the above discussion, we have seen that most approaches to

the compiler correctness problem are based on the ideas proposed in [Mor73,

TWW811. However, the original Morris Diagram (see Figure 1) is too restrictive

for some practical applications. Furthermore, the use of an encoding arrow €

replacing the decoding arrow S cannot be considered a sufficient criterion for

compiler correctness. A natural question at this point is whether there is a

suitable generalisation of the Morris Diagram which is an (intuitively) sufficient

criterion and yet is general enough to address cases such the function value.

Clearly, to require the encoding arrow c to be injective gives a sufficient cor-

rectness criterion in the sense that it does not suffer from the problems addressed

above. However, this restriction means that any two distinct program phrases

Chapter 4. Compiler Correctness 	 97

with distinct semantics must have distinct target semantics. The example of the

function values presented above shows that this restriction is too strong in some

practical cases.

A less restrictive solution would be to use Hoare's idea of a representation

relation [Hoa72] between the algebras j and U. Another solution would be

to compare the algebras M and L under observational equivalence [Rei8l,ST87,

N088,Sch90]. The advantages of using observational equivalence over representa-

tion relation were discussed in Chapter 3. Moreover, in [Sch87, page 255] Schoett

gives a proof that observational equivalence is more general than representation

relation.

In Chapter 3, we successfully applied Observational Equivalence to the prob-

lem of equivalence between Relational Specifications. If we consider the problem

of compiler correctness as an instance of equivalence between Relational Spe-

cifications we have a criterion for compiler correctness based on Observational

Equivalence. It is our objective in this chapter to show how the problem of com-

piler correctness can be formulated in the framework developed in Chapter 3.

The use of Observational Equivalence as the criterion for compiler correctness

is an improvement on previous approaches for two clear reasons. First, it is more

general than previous approaches to the problem while it is still an (intuitively)

sufficient criterion for correctness. Second, it is based on a formal definition which

can reasoned about at the meta-level. This level of reasoning is important since

it is now possible to state and prove properties about the correctness criterion,

for instance, those stated in Facts 3.1, 3.2, and 3.3.

It is generally agreed that a major contribution of the ideas in [Mor73,

TWW81,Pol81,CM86,Des86,Sim90] is that they present methodologies to struc-

ture the compiler and other semantic objects involved in the compiler correct-

ness problem. However, this structure does not directly extend to the proofs

of correctness which remains an ad hoc process. Various approaches have pro-

posed ways of structuring the correctness proofs by using semi-automatic theorem

Chapter 4. Compiler Correctness
	

98

provers [MW72,Coh78,Joy89,Sim90].

Another advantage of formulating the compiler correctness problem in the

framework of Chapter 3 is that we can use Model Correspondence as a proof

method. As stressed in Chapter 3, Model Correspondence is an improvement

over ad hoc approaches because, besides being consistent with respect to Obser-

vational Equivalence, it introduces structure into the proofs of equivalence. This

structure may suggest ways in which proofs can be semi-automated, contributing

to the use of this framework in practical applications.

Summarising, our approach to compiler correctness affirms the ideas proposed

in previous approaches and improves these ideas in various aspects. First, it gives

a more general and yet (intuitively) sufficient criterion for correctness. Second,

it provides a proof method which is consistent with respect to the correctness

criterion. Finally, this proof method suggests a methodology to structure the

proofs of correctness which complements previous advice on how to structure

the other objects involved in the compiler correctness problem. It is the main

objective of this chapter to illustrate these improvements.

4.2 Definitional Preliminaries

The definitions in this, and subsequent chapters, use the concept of directed

first order signatures in the Relational Specifications. In such a signature the

sorts and function names are as in a (standard) first order signature and the

relation names have an input/output direction assigned to them. Intuitively, the

inputs of a relation characterise the programs in the programming language and

the outputs characterise their results. Furthermore, a directed signature has a

distinguished relation symbol, called the initial relation of the signature, which

defines the meaning of programs by relating programs to their results.

In this chapter we need to distinguish between programs and results so that we

can characterise compilers from source language programs into target language

programs. In Chapter 5, we will motivate the need for directed relations in the

Chapter 4. Compiler Correctness
	

99

definition of program evaluation.

A directed first order signature (or simply a directed signature) is a quadruple

(S, F, H, ir) such that (S, F) is an algebraic signature, H is a S x S*sorted family

of sets, and ir E H is a relation name called the initial relation of the signature.

A directed signature (S, F, H, ir) is a sub-signature of (S', F', II', ir') if (S, F, II) E

(S
,
 , FI ,II) and ir = irI . Hereafter, the signature of any Relational Specification is

a directed signature.

A relation name ir E 111 WXW1. for some w E S+, and w' E S, is called a

directed relation name and is written ir : w w'. If w = s1 .. . Sn and w' =

Sn+1 ... Sm, for n > 0, m > n, and t2 E T(E) 31 , for i E [m+], then t,, is an

abbreviation for t1 ,.. ., t, and t is an abbreviation for t. The formula

ir(t1 , ...) t,, 	t,,) in F(cl) is then abbreviated by ir(t, t1).

As usual, we will treat w and w' as single sorts and t and t,,1 as single

terms whenever it does not introduce ambiguities. Therefore, t,,, E T(E) is an

abbreviation for t E T(E) 3 for i E [nt]. The application of a S-sorted function

to t 1, or t is interpreted as the componentwise application; the same applies for

substitutions or other S-sorted operations. In a formula ir(t, tm ,), ti,, is called

the input, and t is called the output.

The following terminology is used if ir E 	is the initial relation of a

directed signature. A program formula is a formula ir(j, 	where [j e T(E)

and t E Tx(s). The (ground) term j is called the program and, whenever

t,,, is ground, it is called the result of the program formula. Notice that this

definition of the term "program" is different from its common usage. A program

in our terminology contains an actual program together with the context in which

this program evaluates.

We denote the set of program formulae in a first order signature Q by Px(1);

thus P(1) denotes the set of ground program formulae. Clearly, Px(1) C F(1

whenever X 0 11, and P(l) = F(cl),..

For example, we can define a directed signature Il = (5, F, II, - F- - = -)
SEnv 	 SEnv based on the signature l 	, defined m Example 3.2, as follows: S = S

Chapter 4. Compiler Correctness 	 100

F = FSEnV, 	exp -' val, and - I- - 	- : env x exp -+ val. A program

in 92 is a pair containing a ground environment and a ground Fun expression,

e.g., (EE, num(1) + num(2)). A program formula in PxE(1) is, for instance, a

formula EE F- nuxn(1) + num(2) = v, for some v E X vai. Hereafter, whenever it

is necessary to refer to Q we will use fZFn' = (SEI, F Env , 11Env , , - F- - =). The

directed signature Q Env will be used in Section 4.4 in the example of a compiler

correctness proof.

4.3 Evaluation by Compilation

In this section we study compiler correctness in the context of the theory of

Observational Equivalence developed in Chapter 3. The generality of the frame-

work developed in Chapter 3 makes it simple to formulate the compiler correct-

ness problem as an instance of equivalence between Relational Specifications.

However, the compiler correctness problem possesses particular aspects which

require specific treatment by a correctness theory. In this sense, compiler cor-

rectness is not just an instance of equivalence between Relational Specifications

but has extra requirements that account for these particular aspects. It is our

objective in this section to characterise these extra-requirements.

Our approach to structuring the compiler correctness problem is inspired by

the early algebraic approaches [Mor73,TWW81]. However, our interpretation of

the Morris Diagram (Figure 1, page 94) is similar to the approaches in [Des86,

Sim9O] in which the nodes of the diagram are term algebras and the arrows are

inductively defined relations between the carriers of these algebras. We illustrate

our interpretation of compiler correctness using the diagrams in Figure 2.

In Figure 2, the nodes L, 1, T, /, and M' are term algebras, the double

arrows are directed relations and the single arrow is a partial function. Both dia-

grams describe first order models of some directed signature Q. The left diagram

describes an cl-model]iM in which the programming language is defined by a

directed relation ir : ii between programs and results. The right diagram

Chapter 4. Compiler Correctness
	

101

L

compiler

programming ianuaej 7r 	 = OBS 	 A machine language

sj unloading

M'

Figure 2: Evaluation by Compilation

describes what we call an Evaluation by Compilation, or simply a Compilation,

which is an cl-model LTUM in which the semantics of a program is defined by

the composition of the compiler 7 : L -i , the machine language semantics

f, and the unloading of results 8 :

The conditions for compiler correctness are also expressed by the diagrams in

Figure 2. Let 1108s cl be an observation signature. The Compilation LTUM'

is correct with respect to]M and coBs if and only if is a (partial) function

and LM ain OBS LTUJVJ'. Whenever the cl-models LM and LTUM are defined

by Relational Specifications in Spec(cloBs), say S and C respectively, the second

requirement becomes S C.

In the above sense, compiler correctness should be actually called Compilation

correctness. In fact, the question of what it means for a compiler to be correct

with respect to the semantics of the programming language is vacuous if asked

in isolation of the other components of the Compilation. Nevertheless, we prefer

to keep the more traditional terminology and use "compiler correctness" in this

presentation.

Compiler correctness is not just an instance of Observational Equivalence

Chapter 4. Compiler Correctness 	 102

between Relational Specifications because we require the compiler 7 to be a

partial function instead of an arbitrary directed relation. In the rest of this

section we will use examples to illustrate the above ideas. However, before we

move on to the examples, let us discuss the motivations for requiring the compiler

to be a (partial) function.

This requirement is motivated by the behaviour we expect from the Compil-

ation process when the language is non-deterministic. Whenever a programming

language is non-deterministic, ir will be a relation in which any program in L

may be related to more than one result in M. In a Compilation, we have the

freedom to simulate this non-determinism in either of the three stages, provided

the overall non-deterministic behaviour is equivalent to that of ir.

However, this freedom is misleading if we consider this problem from a prag-

matic point of view. In practice, whenever we need all possible results of the

evaluation of a (non-deterministic) program we expect to be able to compile the

program once and for all and then run the generated code as many times as

necessary. However, if the non-determinism of the Compilation is produced by a

non-deterministic compiler while the machine evaluation of the generated code is

deterministic, we will have to recompile the program before each re-evaluation.

This is clearly not what we expect in practice. The compiler correctness condi-

tion makes sure that we obtain the behaviour we expect from a non-deterministic

Compilation by requiring 7 to be a (partial) function.

Let us now use an example to illustrate how to define Compilations using

Relational Specifications. This and following examples have some similarities

with the work of Despeyroux [Des86]. Throughout the rest of this chapter we

discuss the main similarities and differences between Despeyroux's work and our

approach to the definition of Compilations and to compiler correctness proofs.

In agreement with previous approaches, we advocate that the starting point in

the design of a Compilation is the formal semantics of the programming language.

Therefore, we start by defining a Relational Specification derived from SEnv (see

Chapter 4. Compiler Correctness
	

103

Example 3.2) for the language Fun of previous examples.

First, let çEnv be the directed signature defined in Section 4.2. Let us now

define a Relational Specification Env = (f FJnv Env 	QFun by making q?' OBS

and AEnV to be the same as q5 	and A5 " respectively. Let QFn be the OBS

directed signature that has - I- - 	- as the initial relation, 11OBS has only the

symbol - I- - = J, and S Pun and F Fun are defined by the following BNF rules:

exp 	::= var I nat I exp + exp I let var = exp in exp

fn var. exp I exp(exp)

env 	::= CE

var 	::= xIyI..-

nat 	::= 0 	1

funval

vat 	::= nat

The observable terms according to these BNF rules are the expressions of sort

exp, the empty environment, variables, and values of sort nat of the form 0,

1, and so forth. The sort funval is observable, but there is no constructor for

building observable terms of this sort. Hereafter, let denote the Declarative

Semantics of Env. Notice that the Declarative Semantics M SEnv of SEnv is equal

Env toM

Once we have the programming language semantics, the next stage is to define

the Compilation process. In practice, this stage starts with the definition of the

machine language semantics. The next example defines the semantics of the

Categorical Abstract Machine (CAM) [CCM841 by a Relation Specification.

The definition of the CAM in the following example is the first difference

between our approach and Despeyroux's approach in [Des86]. Despeyroux defines

the CAM by a relation that describes the entire evaluation of a sequence of ma-

chine instructions into a final result. We define a transition relation that describes

the evaluation of a single machine instruction and then use the transitive-reflexive

closure of this relation to evaluate sequences of instructions.

Chapter 4. Compiler Correctness
	

104

We chose this approach to define the CAM because this style of defining an

abstract machine will be used in the characterisation of Compiler-debuggers in

Chapter 7. Furthermore, the definition of the CAM given below will also be used

in various examples in Chapter 7.

Example 1 In this example we present a complete definition of a subset of the

CAM that is sufficient for the Compilation of Fun programs. This definition

is given by a Relational Specification Cam = (]5Corn Acorn, cig). The

grammar below defines the sets S c" and F Cam of fI Corn

state 	::= (stack,code)

stack ::= E5 I val• stack

code 	::= EC I inst• code

val 	::= nat 	funval I (val, vat) I ()
nat 	::= plus(nat, nat) 0 1 1

funval ::= [val, code]

inst 	::= quote(nat) I push car cdr I cons

I swap I cur(code) app I add

where es denotes the empty stack, E denotes the empty sequence of machine

instructions, and () denotes an empty pair. A stack is a sequence of machine

values and a code is a sequence of machine instructions. We denote the concat-

enation of two code sequences c and c' as c©c'. The val component of a function

value holds a machine environment, which is an encoding of a source language

environment obtained using de Bruijn's method [dB72]. We extend XE with the

following components:

XE generated by st 	XE 	generated by S state 0 	 stack

• 	generated by c 	XE 	generated by op code 	 inst

CAM
We present the rules that define the directed relation —: state 	state. This re-

lation defines the evaluation of a single CAM instruction. The transitive-reflexive

Chapter 4. Compiler Correctness 	 105

closure of 	written 	defines the evaluation of arbitrary sequences of in-

structions. The definition of -p by a set of Relational Rules is straightforward

and is omitted in this presentation.

The Transition Relation 	 state CAM
 state

CAM 	
(1)

(v.S,quote(n)c) -f (n.S,c)

CAM 	
(2)

(v . S,push. c) -+ (v v S,c)

((v1,v2).S,car.c) CAM
-p (v.S,c) 	

(3)

CAM 	
(4)

((v1 ,v2).S,cdr.c) -* (v2 •S,0

CAM 	
(5)

(v1 . V2. S,cons• c) -* ((v2 ,v1). S,c)

CAM 	 (6)
(v1 .v2 .S,swap.c) -p (v•v.S,c)

CAM 	 (7)
(v S, cur(c'). c) -i ([v, c'] S, c)

(([v,c],v') S,app. c) CAM
- ((v,v') .S,c©c') 	

(8)

CAM 	 (9)
(v1 . v2 . S,add c) -p (plus(v2 ,v1). S,c)

m am 	 CAM
The directed signature izm is defined by (S , Fc , Hm, 	where —:

statex state. For all s E 5Cam
Acam= T(Ecam 	t that 	= { o 1,..

.}.),
excep 	

fbi

Moreover, the 	m a1gebra Acam mterprets plus as the standard sum operation

on the natural numbers and all other function names are given the term algebra

interpretation.

Chapter 4. Compiler Correctness
	

106

Cam The observational signature cg of Cam is just the signature Il 	. There-

fore, every object in this Relational Specification is observable. This finishes

Example 4.1. 	 D

Once the machine language semantics is defined, the next step in the definition

of a Compilation process is to define the compiler.

Example 2 In this example we define a compiler for Fun into CAM code by

presenting a Relational Specification Trans = (1 Trans
,

Trans Trans
, A goBs). The

signature ç1ThU is the union of çCam with the relation names defined in the

Relational Rules below and the algebraic signature defined by the following BNF

rules:

sfunval 	::= (env, var, exp)

sval 	::= nat 	sfunval

env 	::= EE I var '—* sval 	env

comp_env 	::= 6 CE I (comp_env,var)

where exp and var are defined in Example 3.1. In the grammar above sval and

sfunval are the same as val and funval of Example 3.2. The sort names must be

changed to distinguish them from val and funval of the signature çm•

The compiler generates code for pairs of the form (E, e) where E is an en-

vironment and e is a Fun expression. In fact, the compiler constructs a machine

state of the form (S, c) where c is the code generated for e with respect to the

environment E and S is a compiled version dl E, called the machine environment.

Such an environment is a pair in which values are accessed using a sequence of

car and cdr instructions. This sequence is a form of de Bruijn encoding of vari-

ables [dB72]. In the rest of this section, we will write a sequence of CAM code

Opi ... O7 Ej using the usual sequence notation (op1 , .. . , op,), to improve

readability.

We extend XE with the component XE 	generated by CE. The rules comp_env
Corny 	 .

below define the compiler -: env x exp -' state; this defimtion uses three

	

Chapter 4. Compiler Correctness
	

107

auxiliary relations. The relation — FE: env i- comp..env x val compiles an envir-

onment into a compilation-environment and a machine environment, i.e., a pair of

values as described above. The compilation-environment is necessary in the gen-

eration of lookup code of variables. The relation — LC: comp_env x var code
Corny

generates lookup code for vanables, and - F- - —4 _: eriv x exp code generates

code for expressions.

Environment-Compiler 	 env 'E (comp_env, val)

	

6E 	3 E (ECE, 0)
	 (1)

	

E 	E (CE, v)

	

id '—p n - E 	E ((CE, id), (v, n))

E' 	E (CE', v') 	(CE', id') F- e'' c 	E 	E (CE, v)

id i-p (E', id', e') . E 	((CE, id), (v, [v', c]))

Lookup Code
	

I (comp_eriv,var) 4LC code

((CE, id), id) 	LC (cdr) 	
(4)

id' i4 id 	(CE, id) 	LC c

((CE, id'), id) 	LC (car)©c

The Code Generator

CE I- n
COM
 ' (quote(n))

Comp comp_env F- exp —4 code

(CE, id) 	LC c

CE F- idc

	

CEF-e1 c1 	CEF-e2 c2

CE F- e1 + e2 	(push)©c 1 ©(swap)Cc2©(add)

CEF-e1 c1 	(CE,id)F-e2 c2

	

CE F- let id = e1 in e2 	(push)©c1©(cons)©c2

Chapter 4. Compiler Correctness
	

108

(CE, id) I- e 	c
(10)

CE I- fn id. e 	(cur(c))

	

CEFe1 c1 	CEFe2c2 	
(

CE I- e1(e2)
Corny —i (push)©c1 ©(swap)©c©(cons,app)

The Compiler 	 (env, exp)' state

	

E—* E (CE,v) 	CEHec
(12)

(E, e) -' (v Es, c)

The algebra A 	is the trivial term algebra on all function names. The obser-

0 2 ans vational signature ULOBS is just the signature ci '°. This finishes Example 4.2.

0

There are still two remaining stages in the definition of a Compilation. First

we must define the unload relation and then to compose the compiler, machine

semantics, and unload relation to obtain the semantics Fun expressions.

Example 3 This example defines the remaining components of a Compilation

for Fun programs by presenting a Relational Specification

Comp = (çComP Comp
A

 Comp 11Fun

OBS)

The BNF rules which define the sets S Comp and F Comp of ci Comp are the same as in

Example 2. The rules below define the unloading relation -pu: state val and

the evaluation of Fun expressions given by the relation - F- _: env x exp -4 val.

The entire set of rules q5Com is the union of the rules below and the rules defined

in Examples 1 and 2.

Unloading of Results 	 state — , vail

(v. S,ec) _'u V
	 (1)

Chapter 4. Compiler Correctness
	

109

The Compilation 	 I env I- exp =t. val

(E,e)
c1 st 	st2!*(S, ec) 	(S,ec) __u

EHev 	 (2)

In rule (1), E C indicates we only unload results from successful states. Rule (2) is

what we call a Compilation rule; it defines the evaluation of e in E by compiling

e into code for the CAM, executing this code by using the transitive-reflexive

CAM closure of -*, and unloadmg the result from the final CAM state.

The s-algebra AC0mP agrees with the algebras defined in Examples 1 and 2

on all function names. The observation signature 	is the same as for the OBS

Relational Specification Env defined above. Hereafter, let 	denote the

Declarative Semantics of Comp.

This finishes Example 4.3. 	 t

In Examples 1, 2, and 3 we illustrated how to structure the design of a Corn-

pilation in Relational Specification. We started by defining the abstract machine

which gives the target language for the compiler. We then defined the compiler

and the unloading relation, and composed them using a Compilation rule. We

believe this is a pattern which frequently occurs in the design of compilers in

practice.

There are other possibilities in the definition of a Compilation of Fun into

CAM. For instance, it is straightforward to define a Compilation that uses the

definition of the CAM given in [Des86].

4.4 A Proof of Compiler Correctness

In Section 4.3 we presented a criterion for compiler correctness and then used an

example to illustrate how to design a Compilation in Relational Semantics. We

now have two definitions of the language Fun given by the Relational Specifica-

tions Env and Comp. In this section we will prove the correctness of Comp with

respect to Env.

Chapter 4. Compiler Correctness
	

110

In the framework of Chapter 3, this "correctness" would mean establishing

whether Env Comp. However, Cornp defines a Compilation and we are inter-

ested in a compiler correctness proof of Comp with respect to Env. Therefore, we
Comp

must prove two conditions. First, we must show that the rules for —4 defined

in Example 2 define a (partial) function. Then, we prove that Env Comp.

Our motivation in this sections is to emphasise that there are more require-

ments in a compiler correctness proof than in a proof of equivalence between

Relational Specifications. Furthermore, we want illustrate the use of Model Cor-

respondence in compiler correctness proofs.

Following the same conventions used in Section 3.5, whenever E e AV,
env

e e AV, and v E AV we write E I- e = v for (E, e, v) E (.. F- - 	
)ME.

 whenval ezp

it does not introduce ambiguities; the same convention applies to other relations

in Env and for every relation in Cornp.

The first step in the compiler correctness proof of Comp with respect to Env
y

is to establish whether
C—orn4

 defines a function. This is stated in the followmg

proposition.

Proposition 1 For all E E AC0m) and e E ACOmP if there exist st st' E AC0m

	

env 	 ezp 	 state

such that (E, e) 	l' st and (E, e) 	l' st' then st = stI
.

Proof (Sketch) The definition of 	l' in rule 2(12) is given in terms of the

relations 	*E and - F- - C-
orny

-. This proof follows easily by mduction on the

height of the proof trees for the relation - I- - -l' -. We omit the details of the

proof from this presentation. 	 0

The next stage in the compiler correctness proof is to establish the equivalence

between Env and Comp.

Proposition 2 The Relational Specifications Env and Comp are observationally

equivalent, i.e., Env Comp. 	 0

Chapter 4. Compiler Correctness 	 111

Hereafter, we drop the superscript Fun from the signature 	whenever it does OBS

not introduce ambiguities. The proof of Proposition 2 follows the structure of

the proof of Proposition 3.3 that established the Observational Equivalence of

Sub and SEnv. For this proof we must establish whether:

çEnvj-, 	- 	Compj-,
/'OBS SOBS iv' 	/OBS

For this proof we define a pair of relations (G, H) and prove that this pair

is an ROBS-Model Correspondence between MB0t/fo8s and MComP/fOBS. To

simplify the presentation of the proof let ME denote ME1/1oBs, MC denote

ComP/f05, AE denote AEnh)/oBs, and AC denote ACOmI/EOBS. Clearly, the

algebras AE and AC are total algebras. This fact will simplify the presentation

of the following proofs.

Definition 1 (The Relation G) Let us define a SOBS-sorted relation G such

that each G. ç AE 5 x AC3 , s E 5OBs is defined as follows

For s E {exp, env, var, nat}, G3 is the identity relation on AE 3 x AC 9 .

Gfunval = {((E,id,e), [S,c]) : E __*E (CE,S) and (CE,id) Fe 	c}

Gvai = 	+ G 0 	 .

Definition 2 (The Relation H) The relation name - I- - = - is the only rela-

tion in 110BS• Therefore, we define H__ as the smallest (with respect to set

inclusion) such that:

For all E E T(EOBS) env , e E T(EoBs) 2,,, and v E T(EoBs) O, then:

((?/AE(E) AE
	AE 	(pAC(E) AC 	AC

	

i/' 	(e,'ç1(v)), 	env 	,'ezp(e),t1.' 	(v)val 'val' 	1 env 	' ezpV /

For all (E, E) E Genv , (e, e) E 	and (v, v ') E G 01,

	

if (E, e, v) E - F - 	
ME and (E, e, v') E - F - 	MC then:

((E, e, v), (E, e, v')) E H_._ 	 11

Chapter 4. Compiler Correctness
	

112

We now have to prove Proposition 3, and the proof of Proposition 2 then follows

from Theorem 3.1.

Proposition 3 The pair (G, H) of Definitions 1 and 2 is an c105 -Model Corres-

pondence between ME and MC, i.e., (G, H) : ME 4_*OBS MC. 	 0

The proof of this proposition is easier if we prove the following lemmas first. The

first lemma relates the evaluation of variables in Env and Comp. The proof of

this lemma is simpler than the proof of Lemma 2 and carried out in the same

way. Therefore, we omit the proof of Lemma 1 from this presentation.

Lemma 1 For all (E, E) E Genv, (id, id) E Gvar , S' E 	and c' E A code :

If there exists v e AE 01 such that (E, id) __*L v

then there exists v', v" E AC,,01 , CE E AC comp _env , C E A code

such that E 	E (CE, v"), CE I- id 	c,

ii ,,, 	iCAM 	, 	 , , (v • , , c©c)-. (v . S , c) and (v, v') E G 01

and conversely
	

I

The next lemma relates the evaluation of arbitrary expressions in Env and Comp.

The reader familiar with the proof of correctness given in [Des86] will notice that

Lemma 2 is similar to the central correctness theorem of that proof. In this

sense, our proof of correctness in this example is similar to the proof in [Des86].

However, one of the main advantages of using Model Correspondence is that this

proof method is formally consistent with respect to Observational Equivalence.

Lemma 2 For all (E, E) E G env , (e, e) E G,z p 7 S' E AC 3j0Ck , and c' E A code :

If there exists v E AE,, 0, such that E I- e = v

then there exists v', ii" E AC aj , CE E AC comp _env , C E Acode

suchthat E—'E(CE,v"), CEFeJ'c,
ii r.l 	,CAM* , 	,

(V .,,c©c)— (v .S,c), and (v,v')eG,.,

And conversely

Chapter 4. Compiler Correctness
	

113

Proof We prove 2(1) and 2(2) separately.

2(1) This proof is by induction on the height of the proof tree for E I- e =

in Env.

Rule 3.2(2) In this case e = n, and the proof tree in Env is as follows:

E I- fl 	AE

In Comp we have the following proof trees:

E 	E (CE, v") 	CE I- n 	' (quote(n))

and the following single CAM transition:

If 	I 	 iCAM 	AC 	II (v .5,(quote(n,))©c) -+ (n •S,c)

Therefore, n = AC and it is trivial to conclude that (RAE AC) E Gvai.

Rule 3.2(3) The proof of this case follows immediately from Lemma 1.

Rule 3.2(4) The proof of this case is simpler than for the other cases and we

omit it here.

Rule 3.2(5) The proof of this case is similar to the case of rule 3.2(7). It is

therefore omited.

Rule 3.2(6) In this case e = Lu id . e', and the proof tree for this expression is

as follows:

E I- fri id. e' =. (E, id, e')

In Comp the corresponding proof trees are as follows:

PT
(CE,id) I- e' -' c

E 	E (CE, v") 	CE I- Lu id. e' 	' (cur(c))

Chapter 4. Compiler Correctness 	 114

and we have the following single CAM transition:

if 	I 	 I CAM 	ii 	 i I
(v •S,(cur(c))©c) -p ([v ,c

] •S,c)

It follows from the definition of Gfrjnval that ((E, id, e'), [v", c]) E G 01.

Rule 3.2(7) In this case e = e1 (e2). If there exists v and a proof tree for

E I- e1 (e2) = v in Env this proof tree must be of the following form:

PT1 	 PT2 	 PT3
EHe1='(E',id,e') 	EF&v2 	idi-*v2 •E'E-e'=,v

E I- e1 (e2) = v

Therefore, in Comp we must have the following proof trees:

PT 	

1

P742

CEFe1 c1 	CEFe2 c2

E I E (CE, '')
	

CE I- e1
(
e2)

Corn
 (push) © c1 ©(swap) © c© (cons,app)

and the following CAM transition sequence:

(v" S', (push)©c1©(swap)©c2@(cons,app)@c')
CAM

II 	II 	I 	 ICAM*
(v v •S,c1 ©(swap)©c2©(cons,app)©c)—' 	 (1)

(v. v" S 1 , (swap)©c2©(cons,app)©c')

II 	I 	I 	 ICAM*
(v . v1 . S , c2©(cons,app)©c

)-~ 	
(2)

I 	I 	I 	 ICAM
(v2 . v1 . S , (cons,app©c)

III II 	I 	, 	 , CAM
(([v ,c],v2).S,(app)©c)—'

	

III I 	I II 	I CAM
((v) v2).S,c ©c)-----4 	 (3)

(vi' 5') c')

And the existence of the above transition sequence is justified as follows. From the

inductive hypothesis applied to PT1 , PT, and (1) we have ((E', id, e'),v) E

III 	II 	 I 	 ',-, I 	III'

	

I 	 II

	

Therefore, v1 = [v , c I where E 	(E , V) and (CE', id) I- e 	c

From the inductive hypothesis applied to PT2 , PT, and (2) we obtain that

(v2 ,v) e Gv a . Moreover, id u—' V2 E' 3 E ((CE', id), (v l", v)); thus we can

apply the inductive hypothesis on PT3 and (3) and obtain that (v, v') E G 01.

This finishes the proof of 2(1).

Chapter 4. Compiler Correctness 	 115

2(2) (Sketch): This proof is analogous to the proof of part 2(1), and follows

by induction on the length of the CAM evaluation of the code sequence of the

expressions.

This finishes the proof of Lemma 2.

Proof (of Proposition 3) We must prove that (G, H) obeys the requirements of

Definitions 3.3(1) and 3.3(2). Since AE and AC give the same interpretation for

each symbol in SOBS the proof of Definition 3.3(1) is trivial. Therefore, we can

assume that G : AE <EQBS AC. It remains to prove Definition 3.3(2).

First, let us prove Definition 3.3(2.i) is satisfied. Any pair ((E, e, v), (E', e', v'))

can only be in H__ because of either Definition 2(1) or Definition 2(2). Suppose

it is because of Definition 2(1), then from Proposition 3.1 it follows that (E, E') e

Genv , (e, e') E and (v, v') E G vai. Suppose now that it is because of

Definition 2(2). It is then clear that E = E', e = e', (E, E') e Genv , and

(e, e') e and it follows from Lemma 2 that (v, v') E G vai. We then conclude

that Definition 3.3(2.i) is satisfied

Definition 3.3(2.ii) follows trivially from Definition 2(1). It remains to show

that - F- - - is compatible with H__ in the sense of Definition 3.3(2). i.e.,

we must prove the following statement:

whenever ((E, e, v), (E, e, v')) E H__ then:

(E, e, v) E - I- - 	ME 	and only if (E, e, v') E - I- - 	MC if

The proof, similarly to that of Proposition 3.3 presented in Section 3.5, follows by

analysing the possibilities of v and v'. We omit the details from this presentation.

Therefore, we have proved that (G, H) satisfies Definitions 3.3(1) and 3.3(2),

concluding that (G, H) : ME 	OsF.. MC. From Theorem 3.1 it follows that

ME
-OBS

MC and from Definition 3.4 we obtain that Env 	Comp. This

finishes the proof of equivalence between Eriv and Comp. 	 0

Chapter 4. Compiler Correctness
	

116

Comment

There is no representation relation from MC to ME because there is no ho-

momorphism from a subset of AC0m to AEnV that will make the diagram of
funval 	funval

Figure 1 commute. For instance, the machine closure [(), 31 is the result of

the evaluation of the Fun expression fri id. 3 on the empty environment for all

formal parameters id. Therefore, this is a practical example in which the use

of Observational Equivalence is more general than the use of representation re-

lations in compiler correctness. Furthermore, it is possible to find examples in

which there is no representation relation in either direction between two algebras,

as demonstrated in [Sch87, page 2551.

Let us now establish the equivalence between Comp and the Relational Spe-

cification Sub defined in Example 3.1. We will assume that the signatures of Sub

and SEnv were modified to be directed signatures in the obvious way. Further-

more, let the relation =: exp -+ val be the initial relation of those signatures.

The problem in establishing the equivalence between Sub and Comp is that Comp

does not define the relation . This relation is the initial relation in Sub and

belongs to its observation signature. A simple solution is to add the following

rule to the set Comp

EE I- e = v
e =:> v

This rule is the same as rule 3.2(1) and serves the purpose of defining the relation

= in terms of the relation - I- - = -. Then we build a Relational Specification

SComp = (fZSC0mP oscomp ,Ascomp , fl) where çSComp is equal to fZComP except OBS

that the initial relation is = instead of - F- - = -. The set of rules OscomP

is Comp with the above rule, and ASCOmP is the same as AC0m. Therefore,

SComp E Spec(
SFun
OBS).

Let MSC denote MSC0m/Q7 where MSC0m denotes the Declarative Se-

mantics of SComp. If SEnv is the specification of Example 3.2 we can state the

following proposition.

Chapter 4. Compiler Correctness 	 117

Proposition 4 The Relational Specifications SComp and SEnv are observation-

ally equivalence, i.e, SComp SEnv.

Proof (Sketch) Let G be the relation of Definition 1 and J be the relation

obtained from H of Definition 2 as follows:

((E, e, v), (E', e', v')) e H if and only if ((e, v), (e', v')) E J

Now, in both SComp and SEnv the relation = is defined by the following rule:

EE I- e = v

e 	v

Therefore, since (G, H) : ME 	i O F.. MC, it is easy to prove that (G, J)

MSE —*çsn MSC. Therefore, we conclude that SComp SEnv. 	0

Corollary 1 The Relational Specifications SComp and Sub are observationally

equivalent, i.e, SComp Sub.

Proof Immediate consequence of Propositions 3.2 and 4 and the transitivity of

the relation . 	 0

4.5 Summary and Conclusions

In this chapter we defined a notion of compiler correctness by applying the results

of Chapter 3. This notion was achieved by first characterising the process we call

a Compilation, in which a program is evaluated in three stages: translation into

machine code, execution of the code on the machine, and unloading of the results

from the machine state. The criterion for compiler correctness defined in this

chapter is based on Observational Equivalence, as defined in Chapter 3. This

criterion is more general than the previous approaches to the compiler correctness

problem. In this sense, we argue that the results of this chapter improve on

previous work.

Chapter 4. Compiler Correctness
	

118

Furthermore, our approach does not suffer from the problems found in other

approaches (e.g., in [TWW81,Des86,Sim9O]), where an encoding arrow € is used

to replace the arrow 8 of Figure 1 (page 94). Using this approach compilers that

we would intuitively regard as being incorrect can be proved correct by a suitable

choice of an encoding arrow, as discussed in Section 4.1.

Finally, we argue that the use of Model Correspondence in the proofs of

compiler correctness is also an improvement on previous approaches. We believe

that the structure introduced by Model Correspondence in the correctness proofs

can be exploited to make our methods to scale up to practical examples. A

possible investigation in this direction is to study the use of semi-automatic

theorem provers in the proofs of correctness. Semi-automatic proof by induction

- is being investigated, for instance, in the work of the DReaM group [Bun88,

BvHHS91]. Since the bulk of the proofs of compiler correctness using the Model

Correspondence are inductive proofs, we believe that such proofs are amenable to

semi-automatic treatment by theorem provers. Moreover, in [HP921 Hannan and

Pfenning showed a proof of correctness of a compiler, from a simple functional

programming language to CAM, using the LF Logical Framework [HHP87]. This

also reinforces our belief that such proofs can be semi-automated.

Chapter 5

Evaluation of Programs Based on

Relational Semantics

In this chapter we define program evaluation and a notion of evaluation step based

on a Relational Specification. Although semantics-based program evaluation has

been investigated as a problem on its own, our investigation is motivated and

guided towards the definition of an evaluation step to be used in debuggers. The

ability to evaluate a program through a step by step evaluation of its sub-programs

is essential for debugging programs. Therefore, a notion of an evaluation step is

the most basic and fundamental component in the specification of debuggers.

We first define the Computational Semantics of a Relational Specification,

by a (non-deterministic) procedure that searches for a satisfying substitution for

arbitrary formulae in the specification. We then define program evaluation as the

search for a satisfying substitution for a program formula. The Computational

Semantics is a terminal transition system inspired by the stack-of-stack (SOS)

operational semantics of logic programming defined in [And9l]. The transitions

of this system provide an operational interpretation for the Relational Rules which

complements the abstract interpretation given by the Declarative Semantics.

The first technical result in this chapter is a proof of the soundness of the

Computational Semantics with respect to the Declarative Semantics of Defini-

119

Chapter 5. Evaluation of Programs Based on Relational Semantics 	120

tion 2.3. This result is important since it guarantees that the notions of program

evaluation and evaluation step defined in this chapter are consistent with with

respect to the declarative interpretation of a Relational Specification.

Not all Relational Specifications have an operational interpretation that agrees

with our intuition about the programming language, and we use some examples

to illustrate this problem. We then define the class of Data-driven Relational

Specifications with the objective of characterising the specifications that have an

intuitive operational interpretation. The second major result of this chapter is

the proof of the completeness of the Computational Semantics of a Data-driven

Specification.

Although we argue that the operational interpretation of a Data-driven Spe-

cification is intuitive, the transition of its Computational Semantics is non-

deterministic and therefore unsuitable for debugging. We then characterise a

subclass of Data-driven Specifications which we call deterministic and prove the

Computational Semantics of a Deterministic Specification is monogenic. Finally,

we define a program evaluation step to be a transition of the this monogenic Com-

putational Semantics. The class of Deterministic Specification and this notion of

an evaluation step will be used in Chapter 6 in the specification of debuggers.

5.1 Introduction

In this section we discuss other approaches to program evaluation based on the

semantics of a programming language, and compare some aspects of those ap-

proaches to our own. Some authors have proposed program evaluation based on

a denotational semantics of the programming language, for instance in the PSG

system [BS861. However, we concentrate our presentation on the approaches that

use a semantic formalism closer to Relational Semantics.

CENTAUR [C1K89] is a system that, among other features, generates in-

terpreters from Natural Semantics specifications of programming languages. The

Chapter 5. Evaluation of Programs Based on Relational Semantics 	121

semantic specifications are written in the meta-language TYPOL [Des88], which

the system compiles into a Mu-PROLOG [Nai83b] program that may be ex-

ecuted. Running the TYPOL specification with a program as its input yields

program evaluation. One difference between TYPOL and our approach is that

there is no formal proof of the correctness of the compilation of TYPOL into

Mu-PROLOG with respect to some underlying mathematical meaning of Nat-

ural Semantics. Furthermore, the definition of a notion of evaluation step is not

taken into consideration in the CENTAUR approach to program evaluation. For

this reason, certain characteristics of the evaluation of TYPOL programs, like

backtracking and the use of control strategies of Mu-PROLOG [Nai83a,Nai85]

make the definition of an intuitive notion of evaluation step very difficult.

The Animator Generator [Ber9la] is a system that generates program animat-

ors from a Structural Operational Semantics of the programming language. Pro-

gram Animators may be used for several purposes, including debugging. Because

of the similarity between Relational Semantics and the formalism used in the An-

imator Generator, one would imagine that it would not be difficult to use the

Animator Generator's concept of "compilation step" in this thesis. However, an

animation step is unnecessarily complex for our needs and this extra-complexity

would make reasoning about debuggers more difficult.

Moreover, in Berry's approach there is no definition of a concept similar to

the Declarative Semantics. His definition of program evaluation is the meta-

semantics of the formalism used in the Animator Generator. Therefore, to use

the notion of program evaluation of the Animator Generator in the framework

of this thesis would not be as trivial as one first imagined.

The parallel between Relational Specifications and Definite Clause Programs

(DCP) that we made in Section 2.5 extends to the problem of program evaluation.

The Computational Semantics of a Relational Specification is the counterpart of

an operational semantics for DCP. The latter is usually defined by SLD-resolution

or some of its variants; other authors have proposed the use of proof tree construc-

Chapter 5. Evaluation of Programs Based on Relational Semantics 	122

tion in the definition of the operational semantics of DCP [DF87]. Furthermore,

the concept of a data-driven DCP defined in [DM85] is similar to the notion of

directed relations introduced in Section 4.2.

Therefore, it is not a complete surprise that some concepts defined in this

chapter for a Relational Specification have been addressed in the context of DCP.

Our approach differs from the logic programming approach in two major aspects.

First, we formalise the use of term evaluation in a Relational Specification. Al-

though recently some authors have proposed a theoretical account of term evalu-

ation in logic programming [Boy9la,Boy9lb], this problem has often been left as

an implementation issue. For instance, in PROLOG term evaluation is usually

performed using the "IS" predicate [CM87].

The second and major aspect that distinguishes our approach from approaches

related to logic programming is that our main objective is the definition of a

notion of evaluation step based on the Computational Semantics. In this sense,

SLD-resolution and proof tree construction do not provide a suitable notion of

Computational Semantics since they yield definitions of an evaluation step that

are difficult to reason about.

We present a Computational Semantics based on the SOS semantics of [And9l]

extended with term evaluation, and derive from this semantics a notion of evalu-

ation step that agrees with our intuition about the language. Furthermore, this

definition of evaluation step is simpler to present and easier to reason about than

the approaches based on proof tree construction or SLD-resolution.

Finally, the concept of directed relations is essential to our definition of an

evaluation step since it is used in the definition of a Data-driven Relational Spe-

cification. A more restricted form of directed relations was used in [Chi89] also

with the objective of defining semantic based program evaluation.

Chapter 5. Evaluation of Programs Based on Relational Semantics 	123

5.2 Definitional Preliminaries

As discussed before, this chapter defines a computational semantics for the Re-

lational specifications. This computational semantics computes substitutions for

meta-variables in formulae using unification, e.g., Robinson's algorithm [Rob65].

In this section we present some definitions related to substitution and unification

that will be used in the following sections.

Let (S, F, H, ir) be a directed signature, 0 be a substitution as defined in

Section 2.3 (page 43), and X be an S-sorted set of meta-variables.

A substitution 0 is variable pure if ran 0 c X. If t E T(E) then 0 is a

renaming for t if 0 is variable-pure and for each x E V(t), 0(x) 0 V(t). If 9 is a

renaming for t then tO is the variant of t by 0. If t, t' e T() 8 , then t and t'

unify if there exists a substitution 0 such that tO = t'O; in this case 0 is called the

unifier for t and t'. A substitution 0 is called the most general unifier (m.g.u.)

for t and t' if for each unifier 0' for t and t' there exists a substitution 9" such

that 0' = 90". Hereafter we assume that Unify is an algorithm that takes two

terms as arguments and returns their m.g.u. if the terms unify.

The definitions in this chapter use the concept of simplification of terms by

evaluation. For this definition, let A be a s-algebra and X be a S-sorted set

of meta-variables, such that A. fl X3 = { }, for each s e S. Intuitively, a

simplification of a term t E Tx(E) with respect to a s-algebra A is a term in

t E T(x)(E) in which the evaluation function OA is applied to all sub-terms of

t (including t) that can be evaluated, leaving the sub-terms with meta-variables

in X unaltered.

Let A be a s-algebra. The simplification of a J-term is a S-sorted partial

function x = {x}, such that x3 : T(x+A)(E) 8 -' T(x+A)() 3 is defined as follows:

ift=a,andaEA 3 ,then 3 (t)=a.

ift=x,andxEX5,then3(t)=x.

Chapter 5. Evaluation of Programs Based on Relational Semantics 	124

3. if t = o(t,. .. , t0), t e TA(E) 8 , and t E dom A then X8(t) =

4.ift=u(tl) ... ,tfl),ci:sl x ... xsfl —s,andtTA (E) B ,thenX,(t)=

x (t)).

From the above definition, it is easy to conclude that whenever X = 11, x is the

same as the evaluation function &. Simplification of E-terms extends naturally to

simplification of a-formulae. We also use x to denote simplification of formulae.

Hereafter we write X A for x to emphasise its dependency on the J-algebra A.

The following paragraphs introduce some standard concepts about transition

systems. A transition system is a pair (F, -p) where F is the set of states and

-pc F x F is the transition relation. For (st, st') E F x F, (st, st') E—' is written

st -p st'.

A terminal transition system is a triple (F, -*, T) where (F, -) is a transition

system and T C F is a set of terminal states that satisfy: for each st e T and all

st' e F, st 74 st'. We also use the term abstract machine to refer to a terminal

transition system.

We use -c to denote the transitive-reflexive closure of -p, and 	to denote

the transitive closure. Let st E F; st succeeds in (F, -*, T) if and only if there

exists a state st' E T such that st -* st'; st fails if and only if st does not succeed

and there exists st' E F\T such that st —'s st', and for all st" E F, st' 74 st"; st

terminates if st either succeeds or fails; and st diverges if st neither succeeds nor

fails. A transition system is monogenic if and only if for all st E F there exists

at most one st' E F such that st -+ st'.

5.3 Computational Semantics of Relational Spe-

cifications

In this section we define the Computational Semantics of a Relational Specifica-

tion. From a general perspective, this semantics defines an operational interpret-

Chapter 5. Evaluation of Programs Based on Relational Semantics 	125

ation of the Relational Specification which we may use to understand the pro-

gramming language in a concrete and evaluation-oriented way. In this sense, the

Computational Semantics provides an interpretation of the Relational Specifica-

tion that complements the more abstract interpretation given by the Declarative

Semantics defined in Chapter 2.

These two interpretations have different applications. On the one hand, it

is simpler to understand a Relational Specification of a programming language

by referring to its operational interpretation, as defined by the Computational

Semantics. On the other hand, it is easier to formally reason about the Relational

Specification by referring to its Declarative Semantics.

From the perspective of this thesis in particular, the Computational Semantics

is used in the definition of program evaluation and a notion of an evaluation step

based on a Relational Specification. Therefore, the Computational Semantics is

a fundamental component of the formal specification of debuggers, discussed in

Chapter 6.

The definition of a notion of evaluation step is the main motivation for the

definition of the Computational Semantics in this thesis. For this reason, the

Computational Semantics is defined as a transition system whose transition re-

lation is then interpreted as the steps of the program evaluation. This transition

system is inspired by the SOS semantics of logic programming defined in [And9l].

There exist other possibilities for a Computational Semantics different from

the SOS semantics, for instance proof tree construction [DF87] or some variant

of SLD-resolution [L1o87]. A particular definition of proof tree construction is

used in the Animator Generator for evaluation of programs based on Structural

Operational Semantics [Ber9la]. However, when compared to different notions of

evaluation step based on those approaches, the notion of evaluation step defined

in this chapter is simpler to define, more natural to understand, and easier to

reason about.

Let S = (1,q5,A,QoBs) be a Relational specification where f2 = (5, F)

Chapter 5. Evaluation of Programs Based on Relational Semantics 	126

and X be an S-sorted set of meta-variables, such that X 5 fl A5 = { } for each

S E S.

The basic objects of the Computational Semantics of the Relational Specific-

ation S are goal stacks and evaluation states. A goal stack is a sequence of

formulae in F(cl), and the empty goal stack is denoted by e. We use a with

indexes to stand for an arbitrary goal stack, and write the concatenation of goal

stacks a 1 and a2 as (a2 . 1ff E F(cl), we write I to stand for the goal stack

(f), such that a 1 (1) a2 is written a 1 f a2 . The context and the convention

on the names used to denote formulae and goal stacks will be enough to resolve

ambiguities.

An evaluation state (or simply a state) is either the constant [] (the failure

state), or a term [0 a], where a is a goal stack, and 0 is a substitution of

terms in T(x+A)(>) for meta-variables in X. Notice that a term in T(x+A)() has

sub-terms from the carriers of the E-algebra A.

Informally, the Computational Semantics of S is a non-deterministic terminal

transition system whose states contain the a-formulae for which we are trying

to find a satisfying substitution. At each state of this system one formula in the

goal stack is selected. If there exists a rule in 0 whose conclusion unifies with

this selected goal, then in the following state the selected goal is replaced by the

premisses of the rule, which become new goals. The substitutions resulting from

the unifications at each transition are kept in the state. If a successful state is

reached, i.e., a state with an empty goal stack, the substitution in this state is a

satisfying substitution for each formulae in the goal stack of predecessor states.

Moreover, if [0 : f] is the initial state for some 1-formula f, and [0 : e] is

a state after various transitions of the Computational Semantics, then 9 is a

satisfying substitution for f.

Definition 1 (Computational Semantics) The Computational Semantics of

a Relational Specification S = (1k, q5, A, lOBS) is a terminal transition system

CS = (['ce, , Tcs), where rcs is the set of evaluation states whose formulae are

Chapter 5. Evaluation of Programs Based on Relational Semantics 	127

in Fx(fZ), Ecs is the set of (terminal) states of the form [0 : Ej, and 	is the

transition relation defined by the following rewrite rules:

Goal Expansion

[0 :ci .f. a2]J [00':c 1 .f1fa2 J

where:

• ({f. . . , f,}, ce), n > 0, is a variant of a (non-deterministically chosen)

rule 7Z E 4), such that no meta-variable in the rule appears on the left

of the Cs arrow.

.

• 10 E dom A
x and 0' = Unzfy(x

A
 (10), ce),

Failure

[0:a1 .f.a2I2 [1

whenever Goal Expansion does not apply.

.

In the definition of the transition relation , the state on the left of the arrow is

called the current state. At the current state, the formula f is the selected goal

and 7Z E 4) is the selected rule. The Relational Rule ({f,. . . , f,}, ce) is a suitable

variant of R that does not contain any meta-variables already appearing in the

current state.

The renaming of meta-vanables is (deterministically) achieved by subscribing

the meta-variables of 1?. with a counter (initially 0) which indicates the num-

ber of transitions from an initial state to the current state at which 7Z is the

selected rule. This process of renaming the meta-variable is known in the liter-

ature as standardising the meta-variables apart [L1o87, page 411. Definition 6.2

in Chapter 6 and the results in Chapter 7 depend on a deterministic choice for

the fresh meta-variables.

Chapter 5. Evaluation of Programs Based on Relational Semantics 	128

Some points in the above definition need clarification. In contrast to the

SOS semantics of [And9l], there is no backtrack stack in the states of the above

transition system; instead, the rules are non-deterministically chosen. Therefore,

only one rule is selected at each transition of CS. Another possibility would be to

use the idea of a backtrack stack, i.e., a sequence of evaluation states, and change

the transition relation R to be a relation between backtrack stacks. With this

alteration, at each transition of the new R every rule in 4 whose conclusion

unifies with the selected goal is selected, and an evaluation state is added to

the current backtrack stack for each selected rule. Therefore, each possibility

for the search is "tried in parallel". However, for the Relational Specifications

that are suitable for debugging, both alternatives to define the Computational

Semantics are equivalent. We therefore preferred the version without backtrack

stack because it is simpler to present and easier to reason about.

In the Goal Expansion rule, the simplification function X A is used to evaluate

as many sub-terms of fO as possible. The objective is to mimic the use of term

evaluation in the derivation of the Declarative Semantics of a Relational Specific-

ation in Section 2.4 (page 52). Intuitively, the use of simplification makes terms

like 5 and plus(3, 2) unify.

The use of an explicit failure state in the transition system is unusual. However,

when debugging a program, using the Computational Semantics for its evalu-

ation, we do want to know that a failure state is reached and also to be able to

syntactically recognise this state. This necessity for the failure state shall become

clearer when we treat the specification of debuggers in Chapter 6.

The concepts and terminology defined in Section 5.2 for an arbitrary terminal

transition system also apply to the CS system; thus, a state st E I' succeeds in

CS if and only if st W [0 : s]; st fails if and only if st does not succeed and

st W []; and st diverges if it neither succeeds nor fails. We say that a formula

f E Fx() succeeds (fails, diverges) in CS if the initial state [0 : f] succeeds

(fails, diverges); in an initial state [0 : f] the formula f is called the query. If a

Chapter 5. Evaluation of Programs Based on Relational Semantics 	129

formula f succeeds in CS the finite transition sequence:

[0 : f][00 : al l 	. . . 	[0o01 . . . 	:

is called a CS-sequence of f with length n; the composition of substitutions

9001 . . . 0, with domain restricted to the variables of f is called an answer for

fin CS.

Hereafter, CS stands for the Computational Semantics of an arbitrary Rela-

tional Specification. Whenever we want to refer to the Computational Semantics

of a particular Relational Specification S we write CSS .

We shall prove the Computational Semantics of S is sound with respect to

the Declarative Semantics of S. This means that if an answer 0 is found for

f in CS then all ground instantiations of f0 are satisfiable in the Declarative

Semantics of S. The following lemma relates simplification and evaluation of

terms. Intuitively, it states that simplification followed by a substitution and an

evaluation is the same as the evaluation of the instantiated term. The lemma is

used in the proof of the Soundness Theorem.

Lemma 1 For all terms t E T(x+A)() 5 and substitutions 0 and 0', the following

holds:

xA(to)oI E dom ,A if and only if tOO' E dom /L

and if both sides of this equivalence are true then A (xA (tO)0) = 'A (tOO).

Proof (Sketch) This follows by simple structural induction on t. 0

Lemma 1 generalises trivially to the evaluation of formulae using 1P. Now we

are ready to prove the first main result about the Computational Semantics:

its soundness with respect to the Declarative Semantics defined in Section 2.4

(Definition 2.3).

Chapter 5. Evaluation of Programs Based on Relational Semantics 	130

Theorem 1 (Soundness of the Computational Semantics)

Let (12, 0, A, goBs) be a Relational Specification and CS be its Computational

Semantics. For all f E F(1), and ii E II:

if there exists a CS-sequence of f of the form [O : f] * [9 : e] then for all ground

instantiation 0 of fO, if f Oj E dom WA then 	(f9)

Proof This proof consists of building a i-tree for j,A(fg) using the CS-

sequence of f. The proof is by induction on the length of the CS-sequence. As it

is often the case in proofs by induction, we shall prove a stronger proposition of

which the desired theorem is a trivial corollary.

For all f E Fx(1l),., goal stacks a 1 and a2 , and substitution 9:

*
if there exists a transition sequence of the form [0 : a1 f a2] 	 [0' : E] then for

all ground instantiation 0 of f 0', if fO'O E dom WA then WA(fOFO) E

Base Case For a single transition of the form:

[0 : a1 f a2]9 [90 : El

a1 and a2 are empty and (11, ce) is a variant of the selected rule in the trans-

ition such that 0' = Unify (X A(f 9), ce). Therefore, every ground instantiation

of ceO' is a ground instantiation of (x(f0))0', such that ceOT = x'(f0)01 .

If xA(f0)0 E dom WA then from Lemma 1 we have f 00'# E dom WA and

W A (X A (fO)O bO) = WA(fOObO) thus 111A(0'O) = WA(fGOf) and

WA(ceOFO)

is a i-tree of W'(fO0'0). Therefore, from Proposition 2.3 WA(f 00) E RA which

proves the base case.

Inductive Step For a transition sequence of length rn> 1 of the form:

CS rn—i
[0 : a1 -f a2][001 : a1 	... f . a2](=) 	[0 : El

Chapter 5. Evaluation of Programs Based on Relational Semantics 	131

such that ({f, . . . ,f}, ce), n > 0, is a variant of the selected rule in the first

transition. By the inductive hypothesis for every ground instantiation 0 of f 0",

for i E [n], ,A(fgII)
 E

A therefore there is a i-tree T 1 with root

for each i E [n]. Moreover, 01 = Unify (xA(f 8), ce).

Therefore, every ground instantiation 0 of ceO" is a ground instantiation

of xA(fO)O4, such that ceO"# = xA(f8)8u. If x'(f8)8" e dom TA then

from Lemma 1 we have that IFA(xA(fO)OhbO) = A(f00II) thus 'l'(ceO") =

A
 (1 OO") and

T1 ...T
4JA(ce0II0)

isa1'' -tree for 'I' A (1 8911 O); thus 1p A(fg0II)

This finishes the proof of the stronger proposition. For 8 = 00 and a 1 and a2

equal to E this proposition is exactly the Soundness theorem. 	 0

In the rest of this section we shall discuss the completeness of the Compu-

tational Semantics of S with respect to its Declarative Semantics. Informally,

completeness means that if there exists a substitution 0 for a formula f such that

fO belongs to the Declarative Semantics, then f succeeds in CS with answer 0.

This notion of Completeness is often used as the completeness of SLD-resolution,

e.g., in [L1o87].

Because of the use of term evaluation in the Declarative Semantics, the

Computational Semantics is not complete in general. To illustrate this prob-

lem, let us consider the Relational Rule 2.1(2) of the Relational Specification

Exp = (ç EZP EZP AEXP) in Example 2.1 (page 48):

e1 	n1 	e2 	n2
2.1(2)

e1 + e2 	plus(n1 , n2)

The derivation of the inductive system from the Relational Inductive Definition

OE.p using AE is achieved by first obtaining all possible ground instantiations of

each rule in 4EZJ,, and then applying the evaluation of terms to the instantiated

Chapter 5. Evaluation of Programs Based on Relational Semantics 	132

rules to obtain the rules of the inductive system. Let us denote this inductive

system by q5
Erp

 . For instance, the following rule is a ground instance of the

Relational Rule 2.1(2):

num(1) 	1 	nuni(2) 	2

num(1)+num(2) =s plus(l,2)

Applying term evaluation to the above rule we obtain:

num(1) 's 1 	num(2) 	2

num(1) + nuin(2) ='s 3
(**)

where the term plus(l, 2) is evaluated to 3 and the other terms are evaluated to

themselves because of their term interpretation in AEZI. The rule (*) does not

belong to 0 AEZP
whereas the rule (**) does. Therefore, num(1)+num(2) =' 3 is Ezp

obviously valid in Exp because it belongs to the inductively defined set

However, the Computational Semantics CS E"P fails to find a satisfying substi

tution for this formula (in this case the identity substitution) because the term

3 in the formula does not unify with the term plus(v 1 , v2) in the conclusion of

the Relational Rule 2.1(2). In this sense, CSE is not complete with respect to

Declarative Semantics of Exp.

There are various solutions for this incompleteness problem in logic program-

ming. For instance, it is possible to use strategies in the Computational Se-

mantics to delay the unification until all meta-variables in terms like plus(v 1 , v2)

are instantiated. Some of these strategies are discussed in [Nai83a,Nai85]. Al-

ternatively, we can use other search strategies to define CS, for instance, S-SLD-

resolution [Boy9lb]. These general solutions are not suitable in the context of

this thesis because they would make the notion of evaluation step more difficult

to define and reason about.

The objective of the aforementioned solutions is to improve the completeness

of the resulting Computational Semantics for an arbitrary Relational Specific-

ation. However, as we will demonstrate in the next section, some Relational

Specifications are not suitable as the basis for the specification of debuggers.

Chapter 5. Evaluation of Programs Based on Relational Semantics 	133

Therefore, such Relational Specifications are excluded from the definition of an

evaluation step and from the investigations of Chapters 6 and 7.

Since our main goal in this chapter is to achieve a definition of an evaluation

step, we can approach the incompleteness problem from another direction. We

first characterise the subset of Relational Specifications that will be used to define

an evaluation step. Then, we establish the completeness of the Computational

Semantics of specifications in this subset.

Our approach departs from the logic programming approach in the sense that

we do not improve the completeness of the CS system, but characterise the class

of Relational Specification for which CS is complete. This is sufficient for our

objectives since this class contains the Relational Specifications we are interested

in as the basis for the specification of debuggers.

In our approach, an (indirect) solution to the incompleteness of the CSE2

system is to replace rule 2.1(2) by the following rule:

e1 	v1 	e2 	v2 	nuin(plus(v1 , v2))
=±s v 	2 1(2Y 1

Intuitively, this rule is semantically equivalent to rule 2.1(2) and Exp using this

rule fits in the class of specifications that are suitable as the basis of specifications

of debuggers. We conjecture that Exp with this new rule is complete under the

condition that, after a goal expansion using this rule, the premisses e1 = v1 and

e2 =s v2 are selected before num(plus(v 1 , v2)) v.

The reason for requiring the two leftmost premisses to be selected before the

rightmost one is to guarantee that when the the rightmost premiss is selected

in a state of CS E"P the instance of the term plus(v 1 , v2) at this state is ground;

thus, its simplification yields a nat number, and the premiss unifies with the

conclusion of the Relational Rule 2.1(1) that defines constant expressions. A

term of the form plus(v 1 , t) does not unify with the conclusion of that rule.

The generalisation of this discussion is studied in the next section.

Chapter 5. Evaluation of Programs Based on Relational Semantics 	134

5.4 Program Evaluation and Evaluation Step

In this section we define the notion of evaluation step that will be used in the

specification of debuggers in Chapter 6. It was mentioned above that the Com-

putational Semantics gives an operational interpretation for the Relational Spe-

cifications. For this interpretation to be suitable in a debugger it must agree with

our intuition about the programming language, as discussed in Chapter 1.

Initially, we describe what we think is a natural and intuitive operational in-

terpretation of a Relational Specification. Not all Relational Specifications have

such an intuitive operational interpretation, and we use some examples to illus-

trate this problem. We then characterise a Data-driven Relational Specification

with the objective of obtaining a class of specifications that has an intuitive

operational interpretation, and prove the completeness of the Computational Se-

mantics of an arbitrary specification in this class.

Although we argue the operational interpretation given by the Computational

Semantics of a Data-driven Specification is intuitive, the transitions of this Com-

putational Semantics are non-deterministic, and therefore unsuitable for debug-

ging. We then characterise a subclass of Data-driven Specifications which we call

deterministic and prove the Computational Semantics of a Deterministic Spe-

cification is monogenic. Finally, we define a program evaluation step to be a

transition of the this monogenic Computational Semantics.

The diagram in Figure 1 shows the inclusions of the subclasses of Relational

Specifications we define in this section.

Let us now describe an operational interpretation for Relational Rules which

we consider intuitive. To ifiustrate this notion we use the rule for sum expressions

defined in the previous section:

e1 	v1 	e2 =s V2 	num(plus(v1 , v2)) =S V 	 2 1(2)'
e1 +e2 = 5 v

An operational interpretation of the above rule says that the evaluation of an

expression e1 + e2 is composed of the steps of the evaluation of e1 , plus the steps

Chapter 5. Evaluation of Programs Based on Relational Semantics 	135

Relational Specification

Data-driven Specification

Deterministic Specification

Figure 1: Inclusions of Classes of Relational Specifications

of the evaluation of e2 (not necessarily in this order), plus the step necessary

to perform the sum operation. Let us now consider, as another example, the

rule 2.1(3) in Exp:

e1 = v1 	(v1) id, e2) 	e 	e 	
2.1(3)

let id = e1 in e2 	V2

The operational interpretation of this rule is as follows: the evaluation of the

expression let id = e1 in e2 is composed of the steps of the evaluation of e1

into v1 , followed by the steps of the substitution of the value v1 for every free

occurrence of id in e2 resulting in an expression e, followed by the steps of the

evaluation of e into the result v2 , which is the result of the original expression.

In the interpretation of the rule 2.1(3) there is an implicit order on the eval-

nation; for instance, we evaluate e1 before making the substitution of v1 for id

in e2 . This ordering is derived from an input/output dependency among the

premisses. For instance, the input of premiss (v 1 , id, e2) —'s e depends on the

output v1 of the premiss e1 = v1 . However, in the interpretation of rule 2.1(2)'

there is no such an ordering, since the premiss are independent. This suggests

we use a partial order on the premisses in our operational interpretation of the

rules.

The definition of Relational Specifications (Definition 2) allows inference rules

Chapter 5. Evaluation of Programs Based on Relational Semantics 	136

which do not have the operational interpretation discussed above. For instance,

the two rules below do not have the above operational interpretation.

id i-* T I . TE F- e :

TEI- fnid. e:r'—'r

num(n1) = s n2 	nuin(n2) =ts ni

nuin(n1) = nuin(n2)

The first rule defines type inference for functional abstractions. If we try to in-

terpret this rule as we did above for rules 2.1(2) and 2.1(3) we have problems in

"guessing" the value of the input meta-variable T 1 in the premiss. The second

rule defines equality between two nat numbers using the rules that define the

relation in Example 2.1. The operational interpretation of this rule is prob-

lematic because there is no intuitive criterion for choosing a premiss to start the

evaluation.

It may be possible to give another operational interpretation for the above

rules. However, this would make the notion of an evaluation step more difficult to

reason about, e.g., in the proof of debugger correctness in Chapter 7. Therefore,

we prefer to keep our basic framework simpler and suggest the investigation of

an alternative operational interpretation to account for the above rules as an

extension to this framework.

The definitions below characterise a Data-driven Relational Specification (or

simply a Data-driven Specification). The main characteristic of such a specific-

ation is that the premisses of Data-driven Relational Rules are ordered by a

partial order that reflects a dependency of the inputs of a premiss on the outputs

of other premisses, as illustrated above. The motivation for this definition is to

characterise the Relational Specification which have the operational interpreta-

tion discussed in the above examples.

The definition of a Data-driven Specification begins with the definition of

structural terms and structural formulae. Intuitively, the evaluation of a struc-

tural term does not change its syntactical structure, hence the name structural.

Chapter 5. Evaluation of Programs Based on Relational Semantics 	137

This property is essential in the proof of completeness of the Computational

Semantics of a Data-drive Specification.

A term t E Tx(>) 5 is structural with respect to a J-a1gebra A if and only if

either t E X8 , i.e., tis a meta-variable, or t = cr(t1 ,.. ., t,), or has the term algebra

interpretation in A, and each t1 , for i E [+], is a structural term. A formula

ir(t, tm ,) E F(ci),1. is structural if and only if each term in tn,, is structural.

A structural program formula is a structural formula whose inputs are ground

terms. Hereafter, P(cl) denotes the set of structural program formulae over ci

with meta-variables in X, unless indicated otherwise. For instance, the formula

n1lim(1)+num(2) = p1us(v, v2) is not a structural formula, whereas num(1)+

num(2) ='s v is structural.

Now, we define a (formulae) dependency relation on the set Fx(ci). Intuitively,

a formula f depends on another formula f' if there are meta-variables in the

input terms of f that also occurs in some output term of f'. Let f = ir(t, t)

and f' = ir'(t, t) be formulae in Fx(1l). The predecessor relation - on F(Q)

is defined as follows: f -< f' (read as f is a predecessor of f') if and only if

V(t1) fl V(t,j :A { }. The formula dependency relation on F(Q) is taken to

be the transitive and reflexive closure of —<.

Definition 2 (Data-driven Specification) A Relational Rule (Pre, ce) with

formulae in F(cl), and ce = ir(t, is Data-driven if all conditions below

hold:

The relation —< is anti-symmetric in Pre, i.e., the relation -< is a partial

order in Pre.

Each f E Pre is a structural formula.

For each ir'(t, ta,) E Pre, for all x E V(t) either x e V(t), or s E V(t1)

for some ir"(t, tb ,) e Pre\{ir'(t, t)}.

The conclusion ce is structural, and furthermore every term in t, is struc-

tural.

Chapter 5. Evaluation of Programs Based on Relational Semantics 	138

5. For ce as above and for all x E V(t1), either x E V(t) or x E V(t.1) for

some ir'(t, t) E Pre.

A Relational Specification (s), 0, A, goBs) is Data-driven if every Relational Rule

in 0 is Data-driven 	 D

Definition 2(2) rules out premisses of the form e = plus(n1, n2). An interpret-

ation of this premiss, in a context in which n1 and n2 are not instantiated, would

be as follows: if e evaluates to some number n then find two numbers n1 and n2

such that ri = plus(n1 , n2). This is clearly undesirable from an operational point

of view because it involves reversing the evaluation of a sum operation into the

values of its operands. Definition 2(4) guarantees that term evaluation does not

change the syntactical structure of the conclusion of the Data-driven rules. The

motivations are the same as for Definition 2(2), here applied also to the inputs of

the conclusion. Similar restrictions on the form of Natural Semantics rules were

defined in [AFZ88,AC90] to allow evaluation of TYPOL programs without using

unification.

The motivation for the restrictions introduced by items 2(1), 2(3), and 2(5)

is that they allow a formalisation of an operational interpretation of the rules

that agrees with the informal interpretation presented at the beginning of this

section. This operational interpretation defines a flow of evaluation that goes

from the inputs of the conclusion of a rule, through the premisses (in any total

order consistent with the relation), to the outputs of the conclusion. This

interpretation was informally introduced by Berry in [Ber9la, page 481, and is

formalised in our framework in Theorem 2.

We now formalise a notion of program evaluation.

Definition 3 (Program Evaluation) Let S=(ci, , A, loBs) be a Data-driven

Specification and P(Q) be the set of structural program formulae over 92. Pro-

gram evaluation is the search for a satisfying substitution for a query p E

using CS8 . 	 11

Chapter 5. Evaluation of Programs Based on Relational Semantics 	139

We now define the concepts of goal choice and expansion order for premisses

in the context of the CS system. A goal choice in the CS system is a (total)

function whose input is a goal stack and the output is a formulae called the

selected goal. In logic programming, the term "computation rule" is often used

for the term "goal choice", e.g., in [L1o87, pages 50,60]. An expansion order is a

total order on the set of premisses of a Data-driven Rule that defines the order in

which the premisses are added on the goal stack. In the definition of CS the goal

choice is non-deterministic; thus, the particular expansion order is not relevant.

However, the next definitions and theorems depend on the particular goal choice

and expansion order defined below.

The Standard Goal Choice is the goal choice that always chooses the left most

element of the goal stack. Any expansion rule that is consistent with the partial

order is called a s-expansion. The CS system of a Data-driven Specification

that uses Standard Goal Choice and s-expansion is complete with respect to the

Declarative Semantics of the Data-driven Specification.

We now prove two important theorems: the first formalises an operational in-

terpretation for Data-driven Specifications; the second proves the aforementioned

completeness result. Informally, the first theorem states that in a CS system of

• Data-driven Specification that uses standard goal choice and s-expansion, if

• program formula p has a CS-sequence with answer 0 then the instantiation of

the outputs of p by 0 are ground terms.

Theorem 2 (Operational Interpretation)

Let (Q, 0 , A, goBs) be a Data-driven Relational Specification and CS be its Com-

putational Semantics that uses Standard Goal Choice and s-expansion. For all

p E Px(1), if there exists a CS-sequence for p of the form [0 : p]°J[0 : e] then

p0 E P(1), i.e., 0 is a ground instantiation for p.

Proof This proof is by induction on the length of the CS-sequence of p.

Base Case For a single transition, the selected rule is of the form (11, ce). All

terms in the inputs of p are ground by the definition of P(). Therefore, every

Chapter 5. Evaluation of Programs Based on Relational Semantics 	140

term in ceO is ground because 0 = Unify(X A (pOo), ce) and every meta-variable of

the output of ce must occur in the input of Ce. Therefore, ceO E P(f), and since

ceO = p0 then p0 E P(1).

Inductive Step For a transition sequence of length m> 1 the rule selected

in the first transition must be of the form ({f1,. . . , f,j, ce) such that:

[Oof] R [OoOi : 11 Al

where fr,... , fn is in a total order consistent with . Now we prove by induction

on n > 1 that if [OO : f •..
f0]*[9 :

&] then j0 E P(f) for i E [nt]. We call

this induction the inner induction.

From the definition of Data-driven Rules, every meta-variable of the inputs

of 11 must occur also in the inputs of Ce; thus, 11 0001 E Now, we apply

the outer inductive hypothesis on the state [0 : f01 and obtain the following

transition:

[0 : f101] 	[0002 : c]

and f1 01 02 e P(Q). The substitution 01 agrees with 02 on the meta-variables of

fi in the following sense: for all x E V(f1), either 01 (x) = x or 01 (x) = 02 (x).

Therefore,

f11*[000102 : E]

is also a transition sequence in CS. Therefore, we can assemble the following

sequence:

[oO : Ii •... f]C=r[000102 : f2 ... f]

which, together with the fact that 11 01 02 E P(1), proves the base case for the

inner induction. From the definition of Data-driven Rules, every meta-variable

of the inputs of 12 must occur also either in the inputs of ce or in the outputs of

11; thus, 1201 02 E P(l). Therefore, we can apply the inner inductive hypothesis

and obtain:

[001 02 : 12 ...
fJC[9

: 1-1

Chapter 5. Evaluation of Programs Based on Relational Semantics 	141

Therefore, fO € P(1), for every i E E+]• Each meta-variable of the ce occurs

either in the inputs of Ce, in which case the instantiation by 9 is ground because

of the unification with p, or else it occurs in the output of some premiss, and

in this case its instantiation by 0 is ground by the proof of the inner induction.

Therefore, ceO E P(Q) and p0 E P(1l).

The next theorem states the completeness of the Computation Semantics

of a Data-driven Specification. This theorem uses the concept of a structural

substitution. A substitution 0 is structural if and only if every term in ran 0 is

structural. Informally, the Completeness Theorem states that if there is ground

structural substitution 0 which is a satisfying substitution for p E Px(fl) then

CS finds a satisfying substitution 0 for p such that I(p) = l(p0).

In the following proposition we show that a completeness theorem stated in

terms of an arbitrary ground substitution for p is no more general than The-

orem 3 which is stated in terms of a ground structural substitution. The propos-

ition states that any ground substitution can be replaced by a ground structural

substitution in the context of an evaluation function.

Proposition 1 If # is a ground substitution for t e T() and t# E dom pA

then there exists a ground structural substitution ' for t such that t' e dom A

and 1,A (t) =

Proof (Sketch) Let ir be the same as a except that for all x E dom /V(t),

(x) = bA((x)). Notice that (x) E dom 1pA otherwise &0 V dom 	Since all

non-structural terms in ran /V(t) were replaced by the result of their evaluation,

' is structural on ran /V(t). Furthermore, it is clear l,A(t) = ,A(tI) 	EJ

The proof of Theorem 3 uses the following lemmas about the evaluation of struc-

tural terms and structural formulae, which are stated without proof. The first

lemma is a trivial consequence of the fact that each function symbol in a struc-

tural term has the term algebra interpretation in A.

Chapter 5. Evaluation of Programs Based on Relational Semantics 	142

Lemma 2 For all ground structural terms ' E T() 8 ,

iftEdomJP'then(t)=t. 	 0

Using Lemma 2, it is trivial to prove the following lemma about simplification of

structural terms.

Lemma 3 For all structural term t E Tx(E) 5 and ground structural substitution

i
- - 	A 	A — 	A -
Ol tOE domX then (tO)= (t)O. 	 0

Using the fact that X A is the same as 0 A for ground terms and generalising the

above lemmas to program formulae, we obtain the following lemma.

Lemma 4 For all structural program formulae p E P(cz) and ground structural

substitution 0, if p0 E dorn W then WA(p) = xA (p). 	 0

We now state and prove the Completeness Theorem.

Theorem 3 (Completeness of the Computational Semantics)

Let (1k, 4, A, goBs) be a Data-driven Relational Specification and CS be its Com-

putational Semantics that uses Standard Goal Choice and s-expansion. For all

p E P(1), if there exists a ground structural substitution 0 for p such that

p0 E dom WA and WA(p) e irA then there exists a CS-sequence of p of the

following form [O : p]J [0 : &] such that 'I' (pO) = 'I' (pO).

Proof II p0 E dom WA and WA(pO) E irA then, from Proposition 2.3, there

is a i-tree of WA(p) whose root is an instance of the conclusion of a rule

1?. = ({fi,. . . ,f,}, ce), n > 0, in 0, by a ground structural substitution such

that:
PT(WA(f1 f)) . . . PT(WA(fJ))

WA(ce)

and because every Relational Rule in 0 is Data-driven, from Definition 2(4) every

term in ce is structural. From Lemma 2, generalised to the evaluation of formulae,

Chapter 5. Evaluation of Programs Based on Relational Semantics 	143

it follows that WA(ce) = ce'. The proof of Theorem 3 is by induction on the

height of the Atree and builds a CS-sequence for p using this q5Atree

Base Case If the q5Atree has height 1 the rule 7Z is of the form ({ }, ce) and

-' 	A - 	 A - 	A - 	
0
-

0
1-

i ceO = I' (p0). From Lemma 4, 'I' (p0) = x (p)0. Therefore, 	s a unifier for

ce and xA(P). Let 0 be the m.g.u. of ce and xA(P), therefore the single transition

[0 : p] R [0 : e] is a CS-sequence for p.

It remains to prove that j,A(0) = A()• Since 0 is the m.g.u. of ce

and x'(p) then there exists a substitution 0' such that = 00'; in particular,

WA(pO) = A(o01). Since the meta-variable in ce are fresh V does not change

A - 	- 	 -
p and we can write iJi (p0' 0) = ''A (pO); thus, W A (p0) = '' A (p00i), and since

from Theorem 2 p0 is ground we have WA(pOOI) = j,A(0) Therefore, Jrk(p) =

WA(pO) finishing the proof of the base case.

Inductive Step lithe i-tree has height h > 1, then the rule 1?. is of the

-' 	- 	 -
form 	. , f,j, ce), for n > 1, and ceO = 'I'A (p0). From Lemma 4, A (p0) =

xA(p). Therefore, iri is a unifier for ce and xA(p). Let 01 be the m.g.u. of ce

and xA(p), and therefore the following transition is a transition in CS:

[0 : 	: f ... In]

Now, we prove by induction on n > 1 that:

	

100 :f fn I 	[00 . . . On : e]

We call this induction the inner induction. For the base case of this proof, recall

that the premisses of 1?. are added to the goal stack in a total order consistent

with the relation. Since fl. is Data-driven all meta-variables in the inputs

of Ii appear in the inputs of Ce. Therefore, fj Oj E P(1). The substitution

01 agrees with Zr on the variables of f in the sense that for all x E V(f1), either

Oi (x) = x or 01 (x) = '(x). Therefore, fi01' = f' and the q5Atree for fi0i)

is PT(W 4 (f1 ')). Therefore, we can apply the inductive hypothesis of the outer

induction to obtain the following transition sequence:

	

[0 : f1011 	[02 : E]

Chapter 5. Evaluation of Programs Based on Relational Semantics 	144

which is a CS-sequence of f1 01 , with answer 02. Moreover, since 01 agrees with

the substitution 02 on the variables of f1 then [00 : f1] 	[0001 02 : &] is also a

transition sequence in CS. Therefore, we obtain the following transition sequence:

[0 : p}[0001 : f1
... 	

: f2 • -- f,j

It follows from Theorem 2 that 11 0001 02 E P() and from the inductive hypothesis

A 	 A 'I' (f000) = I' (f1 0); thus 02 agrees with 0 on the vanables of f. Therefore,

because each meta-variable in the inputs of f2 also occurs either in the inputs of

ce or in the outputs of f1 we have that 120001 02 E Therefore, we can apply

the inner inductive hypothesis and obtain the following transition:

[0001 02 : 12 . .. f]r[00 O1 ... 0 :

By appending this sequence to the previous one we obtain:

10 : p] 	[O0 . . . O : 6]

It remains to show that TA(00 . . . 0,) = jA() First, notice that each 0, for

i E [+], agrees with ir on the meta-variables of f; in particular they agree on

those meta-variables of f that occur in Ce. The substitution 01 also agrees with

on the meta-variables of the input terms of Ce. Because 7Z. is Data-driven, the

meta-variables in the outputs of ce are either in the output of some f1 or in the

inputs of Ce; thus 0001 . . . O agrees with ' on all meta-variables of Ce. Therefore,

the following holds:

Ce0001 . . . O = ceO

since jjA (Ce l) = Ir&(p) then I1 A(ceOo0i . . . 0,) = JA(p); because 01 is the

m.g.u. of ce and xA(p) we obtain I1A(Ce0o0l. .. 0,) = J(xA(p)0oo1 . . . 0,). Ap-

plying Lemma 4 we have that IQA(ce0o0i . . . 0,) = A(0001 . . 0) and therefore

O) =

This finishes the proof of the Completeness theorem. 	 11

Chapter 5. Evaluation of Programs Based on Relational Semantics 	145

The above theorem assures that the Computational Semantics of a Data-

driven Specification with Standard Goal Choice and s-expansion is complete for

program evaluation. Together with Theorem 2, this completeness means that if a

program formula ir(j, tm ,) has a CS-sequence with answer 0 then t 1,,9 is ground,

i.e., t , 9 is the result of the evaluation of the program j.

Let us now continue with the development of a notion of evaluation step. We

argue that the operational interpretation given by the Computational Semantics

of a Data-driven Specification is intuitive. Furthermore, it is sound and complete

with respect to the Declarative Semantics and can be used as the underlying

theory of a system for prototypmg of programming languages as the CENTAUR

system or the Animator Generator. However, the transition of this Computa-

tional Semantics is non-deterministic in general, and therefore unsuitable to be

used as the evaluation step in debugging.

The theory of debugger specification developed in Chapter 6 only addresses

debuggers for deterministic programming languages. Therefore, it is reasonable

to restrict the possible Relational Specifications to a class in which only de-

terministic programming languages can be expressed. We then prove that the

Computational Semantics of such a specification is monogenic; thus, this Com-

putational Semantics yields a deterministic notion of evaluation step which is

suitable for debugging.

Definition 4 (Deterministic Specification)

A Data-driven Specification (1, 0 , A, 1oBs) is deterministic if there is no pair of

rules (Pre, ce) and (Pre', ce') in 4 such that, if ce = ir(t, t) and ce' = ir(t, t',),

then t.1, and t' unify.

The following theorem states that the Computational Semantics of a Determ-

inistic Relational Specification is monogenic. Therefore, this system has three

desirable properties: it may be given a deterministic implementation; it yields

Chapter 5. Evaluation of Programs Based on Relational Semantics 	146

a deterministic and intuitive notion of evaluation step; and it is complete with

respect to the Declarative Semantics of the specification.

Theorem 4 (Monogenicity)

Let (il, 0 , A, goBs) be a Deterministic Relational Specification. The Computa-

tional Semantics of this specification that uses the Standard Goal Choice and

s-expansion of goals is monogenic.

Proof (Sketch) It is clearly monogenic because the standard goal choice and

the -<-expansions are deterministic, and there is at most one rule in 0 that can

be selected at each state of the Computational Semantics. 	 0

To define the concept of an evaluation step we must solve one last problem. The

above definitions and theorems were stated with respect to any -<-expansion, i.e.,

premisses are added to the goal stack on any total order consistent with -<. We

argue that any choice for this total order will give an intuitive notion of step.

However, in an application of the CS system, e.g., in the specification of a

debugger, it is necessary to use one particular total order. Therefore, we have to

make the choice of total order an explicit parameter of CS. Let <be a total order

consistent with -<, we write CS< to denote the CS system that uses Standard Goal

Choice and add the premisses on the goal stack according to <. We write <

for the transition relation of CS < .

We are now ready to define an evaluation step based on a Relational Specific-

ation.

Definition 5 (Evaluation Step) Let (1, qS, A, oBs) be a Deterministic Rela-

tional Specification and < a total order on F(f) consistent with -<. An eval-

uation step of a program formula p € Px(IZ) is a transition of the CS< system

during the evaluation of p. 0

Although the definition of an evaluation step is parametric on a definition of <,

we will fix a particular total order to be used in subsequent examples. Since the

Chapter 5. Evaluation of Programs Based on Relational Semantics 	147

left-to-right order in which the premisses are written in the Relational Rules of

all our examples is consistent with -<, we will use this order to add the premisses

on the goal stack. In the rest of this thesis, we use the term standard to refer to

a CS system with this total order and Standard Goal Choice.

Let us now introduce a notational simplification. Since Standard Goal Choice

treats the goal stack as a list of formula we will write goal stacks in the usual list

notation using the "::" as the list constructor and e as the empty list. Therefore,

in a goal stack f :: a, the formula f is the selected goal and a is the rest of the

stack.

Let us see how the transition relation of the standard CS behaves when corn-

pared to the intuitive notion of evaluation step discussed in the beginning of this

section. For this, we consider a hypothetical evaluation of an expression e1 + e2 in

CSE2, i.e., we consider the transitions of CSE for a query e1 + e2 n. In the

following examples we ignore the renaming of the meta-variables and elide some

formulae from the goal stack to simplify the presentation. The initial transition

of this evaluation uses rule 2.1(2)' (page 133), and is as follows:

[Oo : e1 + e2 = n] 	: e1 =t s n1 :: e 	:: num(plus(n1 , n2)) =>s v]

The current state after this transition indicates that the evaluation of e1 + e2 starts

with the evaluation of e1 . Using enough CS EI transitions until the evaluation of

e1 is completed we obtain the following sequence:

such that 00 . . . 02 (n1) is the result of the evaluation of e1 . The full evaluation

of the expression is represented by the following transition sequence:

[0001 02 03 : nuni(plus(n 1 , n2)) => v]= [00 . . . 0 : eJ

In this last state 00 . . . 0,(n) is the result of the evaluation of the expression

e1 + e2 We can interpret this CS'-sequence by saying that the evaluation of

Chapter 5. Evaluation of Programs Based on Relational Semantics 	148

e1 + e2 is composed of the steps of the evaluation of e1 , followed by the steps of the

evaluation of e2 , followed by the steps necessary to perform the sum operation.

Given the choice of total order on the premisses discussed above, the opera-

tional interpretation of the above transitions agrees with the informal interpret-

ation discussed in the beginning of this section.

The definition of an evaluation step in Definition 5, together with the defin-

ition of program evaluation in Definition 3, achieves the goals of this chapter.

However, the class of Deterministic Relational Specifications excludes many Re-

lational Specifications of deterministic programming languages whose Computa-

tional Semantics also yield a natural notion of step. For instance, suppose that we

add conditional expressions to the Exp language of Example 2.1 by the following

grammar rule:

exp ::= if exp then exp else exp

Two natural Relational Rules to define the semantics of the conditional expres-

sions could be given by:

e1 =s true 	e2 =s v
(CO if e 1 then e2 else e3 = v

e1 ==>s false 	e3 	v
(C2)

if e 1 then e2 else e3 =:>s v

These rules are not deterministic in the sense of Definition 4 since their conclu-

sions unify. However, there exists a natural operational interpretation for the

above rules: the evaluation of a conditional expression if e1 then e2 else e3

consists in first evaluating e1 and then checking its result; if it is true we use rule

(C 1), and evaluate e2 to obtain the result of the conditional expression; other-

wise, we use rule (CO, and evaluate e3 to obtain the result of the conditional.

This operational interpretation does not fit in our previous discussions because

it somehow suspends the choice between the rules until e1 is entirely evaluated

Nevertheless, there is at most one CS'-sequence for each conditional ex-

pression. The specification Exp extended with conditional expressions is still a

Chapter 5. Evaluation of Programs Based on Relational Semantics 	149

deterministic language, although we do not consider its Relational Specification

as being deterministic. These facts suggest that we could search for an alternative

set of Relational Rules with the following properties: it is semantically equivalent

to the above set; it has the above operational interpretation; and is deterministic

in the sense of Definition 4. The following rules have these properties:

e1 	v" 	branch(v", e2 , e3 , v') 	
(Ci)

if e 1 then e2 else e3 =s v'

e2 =s v

branch(true, e2 , e3 , v) 	 (

e3 =s v

branch(false, e2 , e3 , v) 	
((

where branch: val x exp x exp 4-* val is a fresh relation name. The operational

interpretation of the evaluation of conditional expressions using these rules agrees

with the interpretation we gave to the rules (C l) and (C 2): the rules (Ci) is the

only one that can be selected to start the evaluation of a conditional; then e1 is

evaluated using this rule and its result is used to select between (C) and (C).

Therefore, if we can define an automatic transformation from rules in the form

of the first set into rules in the form of the second set we would achieve two results.

First, we would prove that the use of non-deterministic rules like the first set of

conditional rules does not add any expressiveness to the Relational Specifications.

Second, that rules as the first set could be converted into Deterministic Rules

with the same operational interpretation.

The transformation illustrated above can be automatically performed. The

first step towards the definition of this transformation is to characterise a class of

semantics that contains the rules of the form of the first set of conditional rules.

This is done in the following definition.

Definition 6 (Dynamically-deterministic Specification)

A Data-driven Specification (il, 0, A, c20) is Dynamically-deterministic if and

only if for each pair of rules (Pre, ce) and (Pre', ce') in 0, such that ce = ir(t, t)

and Ce' = 7r(t1 ,, t1 ,,), then either:

Chapter 5. Evaluation of Programs Based on Relational Semantics 	150

Relational Specification

Data-driven Specification

Dynamically-deterministic Specification

Deterministic Specification

Figure 2: (More) Inclusions of Classes of Relational Specifications

• t, and t'1, do not unify, or

• ce = ce', and there exits ir'(t,t ,) e Pre and E Pre', such that

tu = t', t, and t, do not unify, and i(ir(t,ti)) =

where (f), for f E Pre (respectively Pre'), denotes the premisses of Pre (respect-

ively Pre') that are strictly smaller than I according to the (formulae) dependency

relation (page 137). 	 0

Figure 2 extends the diagram of Figure 1 with Dynamically-deterministic Spe-

cifications. We can relax the above definition by requiring ce and Ce' to be

a-convertible; the same for t and t, and each pair of corresponding formulae in

(ir(t, t1)) and(ir(t, t,)). The more general definition is presented in [dS90].

However, this generalisation does not add any expressiveness and makes the

definition more complex. Therefore, we favoured the simpler approach in this

presentation.

In any Dynamically-deterministic Specification, whenever two rules have con-

clusions whose inputs unify, then there exists an initial sequence (ordered by a

total order consistent with) of premisses in both rules equal, and there is a

pair of premisses in each rule whose inputs are equal and whose outputs do not

Chapter 5. Evaluation of Programs Based on Relational Semantics 	151

unify. This pair of premisses is called a distinction pair.

A distinction pair can be used to guide the transformation of the rules as

described by the above example. In that case e1 =' true and e1 =>s false is

the distinction pair; this pair is factorised from the two original rules into the

single rule (C). In [dS90] we presented an algorithm (called FAIR) that trans-

forms Dynamically-deterministic Specifications into Deterministic Specifications.

FAIR performs the transformation that was described in the above example. We

argue that the rules generated by factorisation have the intuitive operational

interpretation that we discussed for the original set of conditional rules.

Moreover, in Chapter 6 we will discuss mechanisms in which we can hide some

evaluation steps in a debugger. Using such a mechanism we could hide the steps

due to the evaluation of the branch premiss of rule (C'1), since this premiss does

not occur in the original set of rules. Consequently, we can use a Dynamically-

deterministic Specification in the definition of some language, and then transform

the specification into a Deterministic one for use in the specification of a debugger.

Crucially, the transformed specification has the same meta-semantics and the

same notion of evaluation step as the original.

The class of dynamically-deterministic rules is fairly large. The semantic

aspects of most sequential programming languages can be expressed in this class

of specifications. In particular, the dynamic semantics of Standard ML [HMT89]

can be expressed by a Dynamically-deterministic Specification. Therefore, the

theory of debugger design addresses this (large) class of Relational Specifications.

5.5 Summary and Conclusions

In this chapter we defined an operational interpretation of a Relational Spe-

cification by presenting its Computational Semantics. Theorem 1 established

the soundness of the Computational Semantics with respect to the Declarative

Semantics of Definition 2.3.

We then studied the problem of defining an intuitive notion of evaluation step

Chapter 5. Evaluation of Programs Based on Relational Semantics 	152

using the Computational Semantics. We demonstrated by examples that not all

Relational Specifications yield such a notion. We characterised the class of Data-

driven Relational Specifications and showed that specifications in this class yield

an intuitive notion of evaluation step. The Computational Semantics of any Data-

driven Specification can be given a formal operational interpretation, expressed

in Theorem 2. Furthermore, such a Computational Semantics is complete as

proved in Theorem 3.

The restrictions that led to the class of Data-driven Specifications are similar

to the restrictions imposed by Berry on a Structural Operational Semantics to

define a notion of evaluation step [Ber9la, pages 70,91]. This similarity suggests

that these restrictions are not ad hoc, but necessary whenever we want to define

a notion of evaluation step based on a Relational Semantics. An interesting prob-

lem for future research is to compare the notions of evaluation step of [Ber9la]

and of this thesis. This comparison could include a study of the approach to the

evaluation of data-driven DCP in [DM85].

Another interesting problem is to investigate whether there exists a larger

class of Relational Specifications whose Computational Semantics is complete. A

related problem would be to study whether the transformation of rule 2.1(2) into

rule 2.1(2)' given in page 133 can be done automatically. An affirmative answer

to this problem would implicitly enlarge the class of specifications with complete

Computational Semantics.

Chapter 6

Formal Specification of Debuggers

In this chapter we study the formal specifications of debuggers. We start by

presenting an abstract characterisation of a debugger using the notions of program

evaluation and evaluation step developed in Chapter 5. A debugger, according

to this characterisation, evaluates programs using the Computational Semantics

of a Deterministic Relational Specification.

We then study two common issues in the specification of most concrete debug-

gers: the granularity of the debugging step and the reference to unique program

positions. Since we presented an abstract definition of debuggers, we can address

these issues at the level of an arbitrary debugger. A clear advantage of this ap-

proach is that the solutions we propose for the design issues can be used in the

specification of any concrete debugger that conforms with our abstract definition.

Finally, we define a notation to assist in the specification of concrete de-

buggers. This notation expresses a useful set of debugging operations for any

programming language that can be given a Deterministic Relational Specifica-

tion. We illustrate the use of this notation in Section 6.6. An interesting problem

for future investigation is to provide an implementation for the specification nota-

tion. This would provide facilities for high level prototyping of debuggers.

153

Chapter 6. Formal Specification of Debuggers
	 154

6.1 Introduction

In this section we compare our approach to some other approaches to debugging

based on formal semantics that we find in the literature. The CENTAUR sys-

tem [C1K89] has some debugging facilities for the TYPOL language [Des88].

When a TYPOL specification of a programming language is being interpreted,

these facilities can be used as an (indirect) debugger for programs written in the

programming language.

TYPOL debuggers are LISP programs that interact with the Mu-PROLOG

program generated by the TYPOL compiler. In the original description of the

debugging facilities for TYPOL in [Des881, there is no mention of special features

in LISP to assist in the specification of debuggers. It is suggested by the authors

of [Des88] that it would be possible to use Esterel [BCG86] to specify the debug-

gers and then produce the LISP code using the Esterel compiler. However, Esterel

does not have specific features for the specification of debuggers in terms of the

programming language semantics; in this particular sense, we say that CENTAUR

-- does not provide high-level facilities for the specification of debuggers.

The PSG system [BS86] generates an interpreter, with debugging facilities,

from a denotational semantics of the programming language [BMS87]. The inter-

preter is generated by translating the denotational semantics into an executable

functional program. Before the evaluation of any sub-phrase of a program, the

interpreter calls a debugger coroutine; this receives debugging commands from

the user, updates the current state of the evaluation, checks for break-points,

and so on. An evaluation step in the debugger is a function call to the defini-

tion of the program phrase; thus, it cannot be changed unless the whole system

is redefined to incorporate another notion of step. Some debugging operations

are generated automatically; more sophisticated operations must be encoded to-

gether with the semantics of the programming language. The language used to

define these debugging operations is a simple functional language with no spe-

cial features for debugger specification; thus PSG offers little support for the

Chapter 6. Formal Specification of Debuggers
	

155

definition of advanced debugging operations.

Our approach to debugger specification allows the definition of debugging

steps of variable size, or granularity, based on the notion of evaluation step defined

in Chapter 5. Moreover, we shall define a specification notation with features

dedicated to the definition of debuggers at a high level of abstraction.

The Animator Generator [Ber9la] is a system that generates a programming

language animator from a Structural Operational Semantics. An animator is an

interpreter for the programming language with a sophisticated graphical interface

used to display the intermediate steps of the evaluation of the program. The an-

imation process is interactive, allowing the user to inspect the values of variables,

single step backwards and forwards, and so on. An animation step is a function

between partial proof trees of a program formula. Its definition is more complex

and difficult to reason about than our definition of an evaluation step, because

animation has other needs that are not important for the approach of this thesis,

e.g., displaying and highlighting of (parts of) the proof tree of the program. Al-

though it is possible to display different views of the program animation, the set

of debugging operations in an animator is fixed, that is, the Animator Generator

does not provide the means for specification of new debugging operations.

As mentioned above, our definition of evaluation step is simpler than an

animation step, being easier to reason about. This property will be essential

in proofs of debugger correctness, which are addressed in Chapter 7. Moreover,

our approach allows the specification of a wide range of debugging operations,

including the commands of the Animator Generator.

In [KHC91], Kishon et al. define Monitor Semantics as a system for the pro-

totyping of program monitors based on a continuation-passing denotational se-

mantics of the programming language. Monitor functions are specified as an-

notations to the original denotational semantics of the programming language.

There exists a proof that the inclusion of a monitor specification does not change

the semantics of the language. In [KHC91] there is no definition of a notion of

an evaluation step; thus it is not clear how to specify a single stepping operation,

Chapter 6. Formal Specification of Debuggers 	 156

and nor it is clear how such an operation would behave.

The major difference between our approach and the four approaches discussed

above is that while they aim at an implementation of a debugger generator we

aim at the definition of a theory of debugger specification. This theory is the

first, essential step towards a notion of debugger correctness, which is a major

goal of this thesis. The definitions in this chapter set up a suitable framework in

which we can study the problem of debugger correctness in Chapter 7.

6.2 Definitional Preliminaries

The following definitions are based on the definitions given in Section 4.2.

A labelled transition system is a triple (F, L, —') where F is a set of states,

L is a set of labels, and — F x L x F is the labelled transition relation. For

(st, 1, st') E F x L x F, the fact that (st, 1, st') E— is written st -+ st'.

The generalisation of transitive-reflexive closure to a labelled transition rela-

tion is defined as follows. Let sl E L* be a sequence of labels (li ,.. . , 4,) for n > 0.
() 	 81

If n = 0 then st -* st. If n > 0 then st -*' st' if and only if there exists a state
81'

li 	ii 	 I 	 I
stII such that st - st and stI —* st, where si I

 = (12,. . . , 4,).

6.3 Interpreter-Debuggers

Let S = (1k, , A, goBs) be a Deterministic Relational Specification of some pro-

gramming language and p E Px(1Z) be an arbitrary structural program formula

in S. In this section we present a definition of an abstract debugger for p that

evaluates the program formula using the Computational Semantics CS< of S for

a fixed but arbitrary total ordering < consistent with -<, as discussed in Sec-

tion 5.4 (page 146). This definition generalises trivially to a debugger for all

program formulae in Px(cl).

Let us recall some results and definitions from Chapter 5 related to the Corn-

Chapter 6. Formal Specification of Debuggers 	 157

putational Semantics of Deterministic Specifications. Initially, P (1) denotes

the set of structural program formulae; thus p E Px(1l) is a structural formula

whose input terms are ground. From Theorem 5.4, the Computational Semantics,

with Standard Goal Choice and -<-expansion, of any Deterministic Specification

is monogenic; thus, 	of CS< is a partial function, written 9 : rcs -

However, at the risk of some confusion, we still use the (infix) relational notation

Cs 	I
 i 	

Cs 	 I

st=<st nstead of a functional notation, e.g., =-<(st) = st.

The choice of the total order < is part of the design of a debugger in our

framework. The following definitions are parametric on an arbitrary total order

< consistent with . To improve the readability, we will drop the subscript <

from CS and hereafter. In the examples in this chapter and Chapter 7 we will

use the standard CS system defined in Section 5.4 (page 147).

The reader will notice that some of the following definitions are more gen-

eral than strictly necessary for the results we want in this thesis. In particular,

we give definitions that could be easily generalised to the case where R is an

actual relation. The main reason for this added generality is that it simplifies

extensions to the theory, for instance to address debuggers for non-deterministic

programming language, as discussed in Section 8.2.

We present the definition of an abstract debugger in two stages. We start

with a very simple definition of a debugger with limited debugging functionality,

and discuss its main problems and limitations. Motivated by this discussion,

we present another characterisation that describes a larger class of debuggers,

including most existing debuggers for deterministic programming languages. We

start by defining a notion of evaluation history of programs; an evaluation history

is sometimes called a computation in the literature.

Definition 1 (Evaluation History) The set of evaluation histories of p in CS,

written EH, is the subset of 1' inductively defined as follows: CS

Chapter 6. Formal Specification of Debuggers 	 158

([Os : p]) E EH

If (st 1 ,. . . , st,) E EH, and st,,

then (st1 ,. . ., st,, st, +1) E EH 	 0

Notice that, because = Cs is a function, there exists at most one evaluation his-

tory (st1 ,. . . , st) for a given n > 0. For each history (sti, . . . , st,) E EH,

st1 = ([Os : p]) is the initial state, st, is the current state. The terminology

and definitions given for finite sequence in Section 2.2 also apply to evaluation

histories. Moreover, if h = (st1 ,. . . , st,) then fst(h) = st1 , cur(h) = st,, and

rem(h) = (st1 ,. . . , st,_).

Now, we define an extension of R to a (unique) function 	EH - EH

consistent with R as follows: for all h E EH, if cur(h) 	st then h =M h o st.
CS

Clearly, if CS uses the function
E instead of 	all the results of Chapter 5

remain valid. We use the term "CS with arrow 	whenever we want to refer

to the Computational Semantics of S that uses =94 as the transition relation.

The transition system CS with arrow =F4 may be considered as a primitive

debugger that only provides a single stepping operation between (consecutive)

evaluation histories. This debugger is interactive only in the sense that the user

can issue a step command and the debugger answers by advancing the evaluation

history by one step, showing the new history to the user.

There are three major problems in considering CS as an abstract definition of

a debugger. First, the functionality of this debugger is too limited. Second, the

granularity of the steps is too small, i.e., little evaluation is really done at each

evaluation step; this means that to reach a given state in the program evaluation

we may need to issue many step commands. Third, an entire evaluation history

contains a large amount of information; in general, we expect to be able to select

only the parts of the evaluation history that we are interested in at each stage.

These problems suggest we must develop a more powerful notion of debuggers so

that we can address the three issues discussed above.

Chapter 6. Formal Specification of Debuggers
	

159

For this thesis, debuggers are interactive systems: the user inputs some debug-

ging command and the debugger outputs the result of the command. Commands

may be queries about the current program's evaluation state, or actions to either

advance or go back in the evaluation. Results may be the required information

about the evaluation, or the required action on the evaluation.

This view of a debugger may be formalised by characterising a debugger

as a labelled transition system whose states contain an evaluation history as a

component. The labels are pairs of a debugging command and its result, such

that a transition of the form ds ds' is interpreted as follows: in a debugging

state ds and receiving a command d the debugger changes the state to ds' and

outputs the result r.

We impose two restrictions on the transition systems that are allowed as de-

buggers in our approach. These restrictions have an intuitive motivation and

are necessary so that we can prove properties about an abstract debugger. The

first restriction ensures that debuggers are robust in the sense that all debugger

commands evaluate to some result at every debugging state. The second restric-

tion requires the existence of at least one debugging command that advances

the evaluation. This is the minimal functionality we expect from a debugger,

and it guarantees that whenever p succeeds in CS then there exists a sequence

of debugging commands that advances p from its initial evaluation state to the

successful state in Cs.

We believe that both restrictions arise naturally from a pragmatic point of

view. Furthermore, in Chapter 7 we will prove results about debuggers that give

a theoretical justification for the restrictions.

The above discussion leads to the definition of debuggers given below. A

debugger, according to that definition, evaluates programs consistently with the

CS system. Since the CS system is an interpreter of the programming language,

Definition 2 characterises a class of debuggers that we call Interpreter-debuggers.

For this definition, recall that S = (1k, 0, A, coBs) is a Deterministic Relational

Specification, Q = (S,F,H,ir), > denotes (S,F), and p E P(cl) is a program

Chapter 6. Formal Specification of Debuggers
	

160

formula in S.

Definition 2 (Interpreter-Debugger) An Interpreter-debugger for p based

on Sand CS with arrow =M is a triple (ED , 1, AD) where:

• ED = (SD,FD) and E c: ED. The sorts command and result are in SD,

T(E D) common d is the language of debugging commands, and T(E D),. 8jL is

the language of results of debugging commands.

AD/E = A, i.e., the E D-algebra of the debugger agrees with the E-algebra

of the Relational Specification S on the programming language objects.

A is a quintuple

([' 1 ,,g, T(E D) comman d X T(E D). zg ,4,I)

where (FD, T(E D) commafl d x T(ED),.esult, -)) is a monogenic labelled trans-

ition system such that:

rD is the set of debugging states and g : rD -' EH is a projection

function from rD into EH such that, for all ds E FD, g(ds) is the

evaluation history of p at ds.

- 	r'D X (T(E D) comman d x T(E D),. 8z) x 'D is a labelled trans-

ition relation such that the following robustness requirement holds:

for all dh E rD and d E T(E D) command there exists dh' E rD and

r E T(E D),. lj such that dh dh'.

- 1 E rD the initial debugging state, such that g(I) = ([Os : p]).

such that the following functionality requirement holds: for all ds E rD there

exists d E T(E D) commafld , r E T(E D),.. t , and ds' E "D such that ds 	ds' and

g(ds) W g(ds'), where W is the transitive closure of =M 	 El

Let us now analyse some aspects of the above definition. The transition relation

- must be total, i.e., it must be defined for all debugging commands on all

Chapter 6. Formal Specification of Debuggers 	 161

debugging states. This requirement ensures that Interpreter-debuggers are robust

as discussed above. It is always possible to add some failure states and results to

a debugger to make it fulfill this requirement. Therefore, this requirement does

not reduce the universe of debuggers that are addressed in this framework.

The functionality requirement ensures that every Interpreter-debugger is con-

sistent with respect to the CS system regarding the evaluation of programs. In

this sense, we can use any Interpreter-debugger as an alternative program eval-

uator. Furthermore, any correct evaluator with respect to the CS system can be

easily transformed into an Interpreter-debugger with minimal functionality.

Another important aspect of Definition 2 is that for every debugging state

ds E rD, g(ds) E EH. This implies that whenever

ds 	ds'

then either g(ds) : 	g(ds') or, in the case that d is a backward evaluation

command, g(ds') : 	g(ds). Therefore, because the function =M is consistent

with CS, every Interpreter-debugger evaluates programs according to CS and

uses the notion of evaluation step defined by the relation . This helps in the

i definition of debuggers that behave intuitively, since = CS is an ntuitive notion of

evaluation step, as discussed in Chapter 5.

The above fact has an important effect on the kinds of debuggers that are

characterised by Definition 2. Since g(ds) E EH for all ds e rD, only evalu-

ation states that are reachable from [O : p] using Cs are allowed in a debugging

state. This implies that the debugging commands can only change the evaluation

history component of a debuggm R. state consistently with . This is the main

reason Interpreter-debuggers are said to be based on a Relational Specification

or "semantically driven".

There are various debugging commands in existing debuggers that allow the

user to change the program data during debugging. In general, those commands

produce states that are not reachable from I, in which case the debugger is not

"semantically driven" and therefore excluded from our investigation.

Chapter 6. Formal Specification of Debuggers 	 162

6.4 Aspects of the Specification of Debuggers

In this section we study some issues related to the specification of Interpreter-

debuggers. We use an example to introduce these issues. First, we define a

semi-formal specification of a simple debugger. Then, we identify two problems

in this specification and propose solutions for them for an arbitrary Interpreter-

debugger. In the next section we shall see how this semi-formal specification can

be made entirely formal using the debugger specification notation.

We will define an Interpreter-debugger for the language Fun called Tiny. The

debugging language of Tiny is defined by the following BNF rule, which assume

the definitions of mat and var of previous examples:

command ::= reset I step nat I run until var = mat

show var I show pos I show res

We shall define Tiny based on the Relational Specification Env of Fun presented

in Section 4.4. For this definition we replace rule 3.2(4) of the definition of Env

by the following data-driven rule:

EF-e1 v1 	EHe2 =v2 	EFplus(v1 ,v2)=v

E I- e1 + e2 = v

Tiny evaluates programs suing the Computational Semantics CSEnV with arrow

=Eli

='E
Tiny will be defined for an arbitrary program formula p E PXE(I1

Env
).

The set of states r Tiny of Tiny is just the set EH of evaluation histories of p in

Ti nv 	 ny 	 i 	I' ny 	. CS E and g Ti is the dentity on 	. The mformal meanmg of the debugging

commands is as follows:

reset sets the debugging state to the initial evaluation history ([9 : pJ).

step n advances the evaluation history by n steps of the relation ia E' where n

is a natural number, or until the evaluation terminates. In the latter case

the command outputs the constant succeed if the evaluation is successful

or the constant fail otherwise. The result of step n when the evaluation

does not terminate in n steps is null.

Chapter 6. Formal Specification of Debuggers
	

163

run until id = n evaluates the expression from the current evaluation history

until a state in which id is bound to n, or until the evaluation terminates. In

the latter case the command outputs the constant succeed if the evaluation

is successful or the constant fail otherwise. The result of run until id = n

when id = n is null.

show id outputs the value of the variable id in the current environment if it is

defined, and fail otherwise.

show pos outputs the expression that is about to be evaluated in the current

debugging state.

show res outputs the result of the evaluation of p if applied to a successful state,

fail is applied to a failure state, and null otherwise.

The debugging results are the union of T(> Env
)val, T(E Env

)exp, and three con-

stant values. The value fail indicates a failure in the evaluation, succeed indic-

ates a successful evaluation, and null denotes the empty result.

It remains to define the transition relation 	Tiny of Tiny. The relation

is defined for each form of debugging command defined above for an arbitrary

pEPxE(f Env
).

d = reset 	For all dh E EH, dh -4 ([On : p]), for r = null

dr
d = step n For all dh E EH and natural number n, dh -) dli where:

. If cur(dh) = [0 : E] then dh = dh' and r = succeed.

. Otherwise, if cur(dh) = [] then dh = dli' and r = fail.

. Otherwise, if n = 0 then dh = dh and r = null.

• Otherwise, dli a dh" and dh" --4 dli' where d' = step n' for

nI = n - 1.

d = run until id = n 	For all dli E EH, natural number n, and variable id,
d,r 	i dh -p dli, where:

Chapter 6. Formal Specification of Debuggers 	 164

. If cur(dh) = [0 : eJ then dli = dh' and r = succeed.

• Otherwise, if cur(dh) = [] then dli = dli' and r = fail.

• Otherwise, if cur(dh) = [0: E I- e = v :: c] then:

- if the value of id in E0 is n then dh = dli' and r = null;

- otherwise, if the value of id in E0 is different from n or id is not

defined in EG then dh =ME dh" and dh" -- dli'

d = show id For all dh E EH and variable id, dh -4 dh, where: if cur(dh) =

[0 : e] then r = null; otherwise, if cur(dh) = [] then r = fail; otherwise, if

cur(dh) = [0: E I- e => v :: a] then r is the value of id in E0 or fail if id is

not defined in E0.

d = show pos 	For all dh E EH, dli - i dh, where: if cur(dh) = [0 :

then r = null; otherwise, if cur(dh) = [] then r = fail; otherwise, if

cur(dh)=[0:EF- e=tv:: a] then r=e.

d = show res 	For all dh E EH, dh -4 dh, where: if cur(dh) = [0: E] and

fst(dh) = [0 : E0 I- e, => v0 then r = v00; if cur(dh) = [] then r = fail;

otherwise r = null.

Comments about the Specification

It is easy to check that -* Tiny obeys the robustness requirement of Defin-

ition 2. The functionality requirement of Definition 2 is satisfied by the

step n command.

Single step command step 1 is equivalent to one step of the transition

this being the most detailed step that can be defined in this framework. By

using only step 1 and show pos commands we can see each step of the

evaluation. However, in practice it is desirable to have a less detailed single

step, so that we may skip details of the evaluation that we are not interested

in. We discuss this problem for an abstract debugger in Section 6.4.1, where

Chapter 6. Formal Specification of Debuggers
	

165

we change the definition of Tiny's step command to account for a coarser

debugging step.

The definition of the show pos command is very limited because there

may be various sub-expressions during the evaluation that are syntactically

identical; therefore, we need context information to identify uniquely which

sub-expression is about to be evaluated. This problem is studied in the

context of an abstract debugger in Section 6.4.2.

Some parts of the definition are not formalised, e.g., "of the form" and "the

value of id in E9". For a complete formal definition of the debugger those

parts must be formalised. As the complexity of the debuggers increase,

ad hoc definitions of each detail of the specification will become difficult

to carry out, leading to concrete specifications that are difficult to reason

about. In Section 6.5 we will see how these parts can be formalised using

a specification language.

In general, debugging commands will require evaluation in the algebra AD

of the debugger. For instance, suppose we allowed an arbitrary arithmetic

expression e in the run until id— e command. The definition of this com-

mand would have to evaluate e using &AD to obtain a natural number.

6.4.1 The Granularity of the Debugging Steps

In this section we study the problem of the granularity of the debugging step. For

this, we chose to characterise this problem for an abstract debugger. A debugger

according to Definition 2 evaluates programs using the CS system of a Relational

Specification. Therefore, the evaluation step used by the debugger is a transition

defined by the function
EU .

On the other hand, a debugger is a transition system whose states contain a

evaluation history as a component. A step of this transition system is what we

call a debugging step, whose granularity is informally characterised with respect

Chapter 6. Formal Specification of Debuggers 	 166

to the evaluation step: the debugging step is fine grained if some debugging

command advances the evaluation at a rate close to the evaluation step; it is

coarse grained if all debugging commands that advance the evaluation do so by

the equivalent of many evaluation steps.

In this sense, Tiny has fine grained debugging step because the single step

command advances the evaluation at exactly the rate of the evaluation step. In

fact, Tiny has the finest possible debugging step granularity that can be defined

in this framework.

A debugger does not necessarily need the finest granularity in the debugging

step, and not all debugging commands have to advance the evaluation at the

same rate. Sometimes it is useful and desirable to have coarser granularity in the

single step command, or even alternative single step commands with different

granularities. On the one hand, a useful definition of the granularity of the

debugging step should show every evaluation step that is of interest for debugging.

On the other hand, an efficient definition of the granularity should only show the

steps of interest. This avoids the need to step through parts of the evaluation

that are not relevant in a particular application.

It is obvious that a definition of the optimal granularity of the debugging step

is impossible, since it depends on the particular debugger and the applications

in which the debugger is used. Therefore, we need a generic mechanism to define

the granularity of the debugging steps, which leads to the definition of a step

predicate. Informally, a step predicate is a predicate on an evaluation history.

If SP is a step predicate and dh =M dh st for some evaluation history dh and

evaluation state st, then if SP(dh st) is true, the evaluation step is said to be

visible, and it is hidden otherwise.

Let us illustrate the use of step predicates before giving a formal definition.

Suppose that we are not interested in debugging the steps of Fun expressions

related to the evaluation of sum operations, i.e., when using Tiny we want to skip

over the evaluation of every expression of the form e1 + e2 and all sub-expressions

Chapter 6. Formal Specification of Debuggers 	 167

in e1 and e2 . Let nosum be a predicate on EH such that nosum(dh o st) holds if

and only if dhEdh st is not an evaluation step of a sum expression. Exactly

how nosum is defined is left unspecified for the moment. In Section 6.6 we will

give a definition of this predicate.

Now we change the definition of Tiny such that the commands only show

visible steps according to nosum. The only command that requires modifica-

tions is step n, since the command run until id = n uses step 1 to advance

the evaluation.

dr
d = step n For all dh E EH, and natural number n, dli —* A l , where:

• If cur(dh) = [0 : e] then dh = dh' and r = succeed.

• Otherwise, if cur(dh) = [] then dh = dh' and r = fail.

• Otherwise, if n = 0 then dh = dh' and r = null.

• Otherwise, dh a dh st and:

d',r
i - f nosum(dh, st) then dh o st — dh where d = step n where

= n - 1.

— else dh
d,r
-' dli'.

The definition below formaJises a step predicate for an abstract Relational Spe-

cification, so that this concept can be used in any debugger based on such a

specification.

Definition 3 (Step Predicate) Let S = (Il, 0 , A, 	be a Relational Spe-

cification with Computational Semantics CS = (['ce, , T), and EH be the set

of evaluation histories of p in S. A step predicate is a total predicate on EH.

If SP is a step predicate, for all dli E EH and st E rcs the step dli : 	dli <> st

is visible if SP(dh o st) holds; the step is hidden otherwise. If dli =E4 dh st

is visible then st is a visible state. If dh
EH*

 dh
I
 is a transition sequence in CS,

then I dhz, * dli' Isp denotes the number of visible steps in the sequence according

toSP. 	 11

Chapter 6. Formal Specification of Debuggers
	

168

Step predicates can be used in different ways in a debugger specification

and we discuss two of them below. First, a fixed set of step predicates can be

incorporated at the specification phase. This fixes which predicates will be used,

and (possibly) when they will be applied. Second, debuggers may have commands

that give the user the ability to construct step predicates at debugging time, and

apply these predicates whenever required. Both approaches are supported in the

framework of this thesis and the first one is illustrated in subsequent examples.

An important aspect of the granularity of the debugging steps will be dis-

cussed in detail in Chapter 7, when we study Compiler-debuggers. In that case

we have an (initial) specification of a debugger according to Definition 2, and an-

other specification given by a Compiler-debugger in which programs are executed

directly on a machine. For the Compiler-debugger to be correct with respect to

the initial specification it must map the machine execution of the program into

the visible evaluation steps of this specification. This mapping causes an un-

desirable overhead in the execution of the program. In general, this overhead

is greatest where the granularity of the debugging steps is finest; thus specific-

ations with a coarser granularity should allow for more efficient implementation

of Compiler-debuggers.

6.4.2 Unique Reference to Sub-programs

As we pointed out before, the definition of the command show pos of Tiny is

limited: its result, on a given evaluation history, does not reference a unique

point in the program. However, the ability to reference a unique sub-program is

important in debugging for setting break-points or trace-points for example.

One way of uniquely referencing a sub-program is by the path from the root

of the abstract syntax tree representing the program to the sub-program we want

to reference. For instance, let us consider a parse-tree representation of the term

+(+(5, 1), +(+(5, 1), 2)) that is shown in Figure 1. The path to the (underlined)

sub-term +(5, 1) is indicated on the tree by the double lines.

	

Chapter 6. Formal Specification of Debuggers
	

169

/\
5 	1 	+ 	2

Figure 1: Parsing Tree

Notice that the term +(5, 1) does not give a unique reference to a sub-

expression in this example. A possible representation for this path is a sequence

(0,2, 1), where we underlined the numbers to avoid confusion with the constant

expressions 1, 2, and so forth. In this representation, 0 denotes the root of the

parsing tree, 2 denotes a right branch, and ,. denotes a left branch. The sequence

represents the order in which the branches are taken to find the desired subtree.

This representation generalises easily to parsing trees with nodes with more than

2 branches.

If paths of expressions are available for the definition of Tiny, the command

show pos can be defined such that its result on any evaluation history is the

path of the current expression. Using a convenient user interface, this result

could be displayed to the user, e.g., as a highlight of the sub-expression.

However, paths are not an explicit component of an evaluation history; thus

in the rest of this section we will address the problem of how to make them

available for the debuggers. There are various approaches to this problem in our

framework. We can built the path from the evaluation history whenever the path

is required. Alternatively, we can build the path of the current sub-expression

incrementally and keep this information as a component of every debugging state

so that it is always readily available. Clearly there is a trade off between these two

solutions for the former is time consuming whereas the latter consumes storage

Chapter 6. Formal Specification of Debuggers
	

170

resources to keep the path.

Another solution is to make the path an explicit component of the debugging

history. This approach poses interesting problems, and we will develop it in more

detail here. We start by formalising the concept of syntax path, and the first

step in this direction is the definition of a path tree.

Definition 4 (Path Tree and Syntax Path) The path tree of a term t €

T() is the term T0 (t), where 2(t) is defined for each n > 0 as follows:

1.t=x,xEX, then 2(t)=n()

2. t = (t1 , . . . , t,j, m > 0, then 2(t) = n(T1 (t1),. . . ,

An abstract syntax path (or simply a path) is a sequence of nodes occurring in

the path from the root of T0 (t) to some sub-tree of T0 (t). 	 0

For instance, the path tree of the term +(+(5, 1), +(+(5, 1), 2)) is the term

Therefore, the path to the underlined sub-term

+(5, 1) is the sequence (, 2, 1), as discussed above. It remains to show how paths

can be included in the evaluation histories.

This problem can be considered from two points of view. First, we may con-

sider that the CS system is deficient because it does not provide the information

we need for debugging. If this view is taken, we must extend the CS system to

incorporate this information, in this case the path of a sub-program.

There are various ways in which this extension can be done. A simple solution,

that can be incorporated to the CS system, is illustrated by the following example.

Suppose that the formula &E F +(3, 6) v is the query we want to evaluate in

CSEnV. We first annotate each term of the expression +(3, 6) with its path, such

that the annotated term becomes +(3<, 6 (o,) (. Therefore, the original query

is changed into 6E +(3(, 6 (0 6 = V.

Then we change the unification algorithm Unify used by the CS system such

that it ignores the annotations when unifying expressions. With this new uni-

fication algorithm the (simplified) steps of the evaluation of the above query

Chapter 6. Formal Specification of Debuggers
	

171

become:

[EE F- +(3(o,, 6(o,2)(
Cs

V] .

[EE F3(o,vl ::eE H6(o, =v2 :: ...] CJ

[&E F 6(o , 	:: 6E plus(3, v2) = v]

[&E F- plus(3, 6) = v]

[success]

In this example, we applied the substitution to the formulae in the goal stack

and omitted the substitution from the states to simplify the presentation. Fur-

thermore, the successful state is represented by [success]. These simplifications

will be adopted in the examples hereafter. At each state of the above evaluation

history we have access to the path of the sub-term of +(3, 6) that is about to

be evaluated. Notice that this solution works even for function application in-

volving a closure, because the expression in the body of the closure would also

be annotated with its path.

A second approach the problem of including paths in the evaluation histories

is to consider that the Relational Specification used in the definition of the de-

bugger is deficient with respect to the information necessary for debugging. This

view assumes that the Relational Specification determines the possible debugging

functionality. In other words, two Relational Specifications that are equivalent

with respect to final results of program evaluation may allow the definition of

different debugging commands. The difference lies in that one specification may

have more debugging information available than the other, although they are

equivalent in the evaluation of programs.

In this approach, if we need to reference a unique point in the program, the

path of the program must be an explicit component of the Relational Specifica-

tion. For instance, we can add paths to Env as terms of sort path, and change

the definition of closures as follows:

closure ::= (env, var, exp,path)

With the above changes, the following set of rules for the language Fun manip-

Chapter 6. Formal Specification of Debuggers
	

172

ulate the path of the expressions explicitly. In these rules, pa is a meta-vanable

of sort path and Xath is generated by pa.

Evaluation with Paths 	 envl- exp,path=, val

El- n,pa = n

(E,id)-4 L v

E I- id,pa = v

EFe1 ,pao=-v1

E F- e,pa= v2 	E F-plus(v1 ,v2),() = v

E F- e1 + e2 ,pa = v

El-- e1 ,pa< 	v1 	idi-+ v1 •El- e2 ,pao= v2

E F- let id = e1 in e2 ,pa = v2

E F- fn id. e,pa = (E,id,e,pao)

El- e1 ,paolt (E',id,e',pa')

E F- e2 ,pao 	v2 	id i- 	E' F- e',pa' =

E I- e1 (e2),pa =:> v'

It is possible to prove that the above set of rules is equivalent to the rules of cbE1)

with respect to the final results of the evaluation of expressions. Furthermore,

the evaluation steps produced using the new set of rules are in one-to-one cor-

respondence with the evaluation steps using the original Moreover, using

this set of rules in the definition of Tiny makes the path of the current expres-

sion available in the evaluation history. For instance, if we evaluate the query

E I- +(3, 6), () => v using the above rules, we obtain the following evaluation

Chapter 6. Formal Specification of Debuggers
	

173

history:

[EE H+(3,6),() = v]

[&E F- 3,(,1)= v1 :: EEF6,(f,) = v2

[EE I- 6, => v2 :: EE F- plus(3, v2), 0 = v]

ICE H plus(3, 6), 0 = v]

[success]

At each state of the above evaluation history, the path of the current sub-

expression is available. In this sense, this solution is equivalent to that of an-

notating the expressions as discussed above. However, in this case we do not

change the CS system, since the paths are just normal terms in the Relational

Specification.

A possible argument against this approach is that it involves changing the

Relational Specification of the programming language to include components

that are not relevant to the definition of program evaluation. However, in this

thesis Relational Specifications are used to defined program debugging as well as

program evaluation; thus it seems reasonable to include debugging information

in the Relational Specifications.

We adopt this approach hereafter, that is, we keep the CS system unchanged

and extend the Relational Specifications with debugging information whenever

it is necessary. We favour this approach for several reasons. First, it is more

flexible than changing the CS system. Second, it keeps the basic framework

simple. Finally, it does not preclude other solutions, including extensions to the

CS system, as the one discussed above.

When presenting the specification language in the next section we shall dis-

cuss another reason to choose this approach instead of changing the CS system.

Hereafter, we assume that the above set of rules for Fun replaces the definition of

the relation - F- - - in the Relational Specification Env (page 80). Therefore,

paths are terms in Env of sort path. This new set of rules will be important in

the formalisation of Tiny in the next section.

Alternative treatments of the problem addressed in this section are given

Chapter 6. Formal Specification of Debuggers 	 174

in [Ber9lb,Ber92]. The former uses occurrences as defined in [Bou85] to desig-

nate unique sub-terms of a A-term. The approach in [Ber92] uses the idea of

origin functions. In both approaches the programming language is the simple

untyped A-calculus. It would be interesting to investigate the applicabifity of

these approaches to other languages, e.g., imperative language.

6.5 A Notation for Specifying Debuggers

In the previous sections we presented an abstract definition of debuggers and

studied some aspects of the specification of concrete debuggers according to that

abstract definition. We showed how a semi-formal specification of a simple debug-

ger may be directly defined in terms of the CS states, formulae, and substitutions.

This example demonstrated that giving a complete formal specification of a de-

bugger requires the formalisation of various details, for instance how to obtain the

value of a variable from an environment at the current evaluation state. The ad

hoc formalisation of such details is possible but may become difficult as the corn-

plexity of the debugging commands increase; moreover, it is tedious to formalise

the same concept every time we are using a new Relational Specification.

In this section we define a notation to assist in the specification of debuggers,

including the definition of visibility predicates. The main features of this spe-

cification notation, called DSL, is a powerful concept of sequence patterns, which

are used to describe evaluation histories. In the rest of this section we introduce

DSL using examples. In Section 6.6 we present a specification of Tiny written

in DSL, including the visibility predicate nosum discussed in Section 6.4.1. The

syntax and formal semantics of sequence patterns are defined in Appendix A.

The most important feature of DSL is the use of sequence patterns to spe-

cify evaluation histories. The concept of pattern matching on sequences is not

new, appearing fist in the language SNOBOL [FGP64], and in other program-

ming languages since then, e.g., SNOBOL4 [GPP68] and SL5 [G1177]. In these

Chapter 6. Formal Specification of Debuggers 	 175

languages, string patterns are used to describe strings of characters. In DSL,

sequence patterns generalise this idea to sequences of arbitrary objects. In this

thesis we will use DSL as a notation to describe evaluation histories; therefore

we will be interested in sequences of evaluation states.

DSL is a "sugared" version of the untyped A-calculus [Bar85] to which pat-

terns and pattern matching are added in the standard way, e.g., as described

in [FH88]. The use of the A-calculus with pattern matching as the mathemat-

ical underpinings of concrete functional languages, e.g., Hope [BMS80], Standard

ML [HMT89], and Haskell [HW90], is well known and so we assume some famili-

arity with this idea. However, the reader familiar with string pattern matching

in SNOBOL must be warned that the pattern matching in functional languages

is different from the SNOBOL paradigm. In SNOBOL, patterns are first class

objects that can be constructed dynamically; it is even possible to creat recurs-

ive patterns whose meaning is determined when the pattern matching is taking

place. In functional languages patterns are used only in function definition. It

is the functional language notion of patterns that will be described in the rest of

this section.

Values in DSL are divided into basic values and sequences of basic values. This

classification on the values imposes a classification of the patterns into basic pat-

terns and sequence patterns. Therefore, sequences in DSL are first order objects

in the sense that there is no sequences of sequences. First order sequences are

sufficient for the purposes of specifying debuggers since evaluation histories are

first order sequences of evaluation states. An interesting problem is to generalise

DSL to deal with higher order sequences.

DSL is parametric on a Relational Specification in the sense that the Specific-

ation provides the basic constructors of DSL values. To simplify this presentation

we will describe the particular instantiation of DSL with the Relational Specific-

ation Env. This instantiation will be called DSL Efl hereafter. Recall that, in the

set of rules of Section 6.4.2, the formulae in F(f were extended with a

Chapter 6. Formal Specification of Debuggers 	 176

term of sort path, such that E I- e 	v becomes E F- e, pa => v.

We choose to present DSL as an untyped language mainly because it simplifies

the presentation. Moreover, the typing of patterns does not pose new problems;

it is the dynamic aspects of the pattern matching that are novel to DSL.

Basic Values and Basic Patterns

The basic values of DSL EflV are the evaluation states of CSEnV. Therefore, basic

values are not atomic: they are composed of substitutions, goal stacks, formulae,

and terms. The function names in F0, the relation names in 11Env and the

meta-variables in XE are the basic constructors in DSL EflV . The following terms

and formulae are values in DSL EflV :

2+x

x i—+ 2

(i)

x 	2 6E F- 2 +x,(,1) = v

To make the constructors of the Relational Semantics different from other DSL EV

constructors we use the following convention: reserved words of the programming

language are written in bold type; mathematical symbols are used for the relation

and function names of the Relational Specification of the programming language;

meta-variables of the Relational Specification are written in italic font; DSL EflV

reserved words and identifiers are written in type writter font. Therefore, x, +

and 2 are programming language objects, whereas x, + and 2 are DSL EflV objects.

As an example, the following state in CSEThV is a basic value in DSLEflV :

[0:EF-e 1 ,pa1 =.(E',id,e,pa)::EHe,pa 2 =v::idF-+v.E'He,pa=.v'::...]

where ... is an informal notation to indicate that there are more formulae on

the right of the goal stack. We decompose a basic value into its sub-components

using pattern matching. Basic patterns are the same as constructor patterns.

Such patterns are commonly used in programming languages like Standard ML,

Chapter 6. Formal Specification of Debuggers 	 177

and are formally presented for example in [FH88]. For instance, matching the

pattern

[sub : 	- :: 	f2 :: 	t].]

on the above evaluation state binds the pattern variable sub to the substitution

O,f2totheformu1aEF,pa2 ='v,andt1toidi—*v.E'F-e,pa=v':: ... ;the

pattern "2' is a wildcard that matches any value. To obtain the instantiation of

the meta-variables, e.g., in the formula f 2, we must use the substitution that is

bound to sub. For instance, I(f 2, sub) is the instantiation of E I- e2 , pa2 = v by

0, where I is the instantiation function defined in Section 2.3.

It is necessary to use I whenever we want to obtain the instantiation of a

term or formula by a substitution. However, to improve the readability of the

following examples we will "apply" the substitution to a term or formula as an

abbreviation. For instance, we will use sub(f 2) as an abbreviation for I(f 2, sub),

whenever this does not cause ambiguities.

The constructor success matches an empty goal stack indicating a successful

evaluation; thus the pattern [_ : success] matches a success state of the form

[0 : e]. Furthermore, formulae can be decomposed into their terms also using

constructor patterns. The matching of the pattern

- F e, - = v

on the formula E I- e2 , Pa2 	v binds e to e2 and v to v. Then, applying sub to

e gives that actual instantiation of the meta-variable e2 in the above state, i.e.,

sub(e) = e20. Constructor patterns are also used to decompose a term into its

sub-terms.

Every DSL EflV value is denoted by an expression. Terms, formulae, and CSEnV

states are expressions that denote their corresponding values. Other forms of

expression are A-abstraction and function application. These are described in

the next section.

Chapter 6. Formal Specification of Debuggers
	

178

Functions

A function value is denoted by a X-abstraction that in the concrete DSL notation

has the following general form:

fn pat1 => el I ... I pat, => e,

for some n> 0. Since patterns can overlap, i.e., more than one pat, can match

a given value, it is important to impose that the patterns pat1 ,.. . , paç must be

tried in this order.

Function application is written e1 e2 , where e1 and e2 are expressions. Par-

enthesis may be used to resolve ambiguities. The bindings of variables in)-

abstractions are determined at declaration time, and functions are strict on all

their arguments. In other words, DSL is an "eager" functional language with

"static binding". The formal semantics of such a language is standard, and can

be found for instance in [FH88].

Let d denote a declaration of the form val pat = e. As a "syntactical sugar"

we use let expressions of the form let d in e' end, where e' is an expression.

The meaning of the evaluation of this let expression is defined by the application

(fn pat => e')(e).

Moreover, the expression let d1 in ... let d in e end, for some n> 0,

is written let d1 ;. .. ; d, in e end. We will use declarations as a way to give

names to values. These names will then be used in the specification of debuggers.

Moreover, a declaration of the form:

val f = fn pat1 => e1 I ... I pat => e

for some identifier f and n> 0, is written as a function declaration of the form:

fun f pat1 = e1 I ... I f pat 0 = e0

If f is applied to an argument that does not match any pat, then the result of

the application is undefined. In later examples we will introduce other forms of

expressions that are derived from the above expressions.

Chapter 6. Formal Specification of Debuggers
	

179

Furthermore, we add the integer numbers and boolean values true and false

to DSL EflV . The usual arithmetic operators on integer numbers +, -, *, div are

available as DSLEflV functions. The usual relational operators <, <,>, >, , and

<>are also available as DSL EflV functions that produce boolean results.

Evaluation History Values

The sequence values of DSL EflV that we are interested in for the specification

of debuggers are evaluation histories in EH. Although we can use constructors

to build evaluation histories as we do for the basic values, this use can make it

difficult to establish the requirements of Definition 2. Therefore, we provide two

pre-defined functions to (safely) build evaluation histories.

The pre-defined functions initial and next are defined with respect to an

arbitrary Relation Specification S = (, 0, A, oBs) where Q = (S, F, II, 7r), and

a S-sorted set of meta-variables X.

• initial(p) = 	: p]) 	if p E Px(1l).

• next(dh) = dh o st 	such that cur(dh) 29 st.

The use of pre-defined functions to create histories guarantees that the debugging

histories in DSLEflV are correct with respect to CSEnV. In this sense, correctness

means that we cannot construct a debugging history that is not reachable from

some initial evaluation history ([Os : p]) using the CSEnV system. This is im-

portant for two main reasons. First, since PXE (fZEnv) is the set of data-driven

program formulae of Env, according to Definition 5.2, next is complete in the

sense of Theorem 5.3. This helps in proving the requirements of Definition 2 for

specifications of concrete debuggers. Second, next gives the intuitive evaluation

step defined in Section 5.4, which helps in the specification of debuggers that

behave intuitively. The above discussion applies to an arbitrary Deterministic

Relational Specification.

We give some examples of the use of the predefined functions. To simplify

the presentation we write x i—* 2 for the environment x i— 2 . EE, omiting the EE

Chapter 6. Formal Specification of Debuggers
	

180

constant. For instance, the following expression:

initial(x i-* 2 I- x, (0) => v)

evaluates to the initial debugging history ([0 : x ' -p 2 F- x, (0) = v]), where

00 is the identity substitution on XE, and () is the abstract-syntax path of

the expression x. On the other hand, the value of initial(E F- x, (0) = v) is

undefined because E is a meta-variable and therefore E F- x, () = v is not a

program formula. As another example, the expression

next(next(initia].(x i-* 2 F-x,() = v)))

evaluates to the following history:

([es : x i- 2 F- x, () => v], [09 : (x -* 2, x) 	'L], [000102 : eJ)

such that 0001 02 (v) = 2.

Sequence Patterns

Using the pre-defined functions discussed above we can construct an evaluation

history from a program formula, and advance evaluation histories according to

the function z • However, we cannot extract states from a history or decompose

a history into its sub-histories. These operations are done by pattern matching a

sequence pattern on a debugging history value. Sequence patterns are the main

feature of DSL for the specification of debuggers.

The simplest sequence pattern decomposes a debugging history into its cur-

rent state and the rest of the history. For instance the following declaration:

val <h, st> = next(next(initia1(xF-+2I - x,(2)=v)))

binds the identifier h to the history

([0 : x '-+ 2 F- x, (Q) => v], [00: (x i-* 2,x) 	vi)

Chapter 6. Formal Specification of Debuggers 	 181

and St to the state [00 01 92 :

The generic form of the above pattern is a sequence of constructor patterns

separated by "," and enclosed in "<" and ">". The symbol "," should be in-

terpreted as a left associative constructor. Constructor patterns were discussed

above when we described the basic DSL EflV values. The pattern <> matches

the empty sequence. In the following examples, we will omit "<"and ">" from

sequence patterns of the form <pat> in which pat is a single constructor pattern.

Sometimes it is desirable to decompose a compound value using patterns and

at the same time to bind the entire compound value to a pattern variable. For

instance, in the declaration

val h' as <h, st> = next(next(initia1(xF-+2Hx,()=v)))

the variable h and St are bound as above, and h' is bound to the entire history

resulting from the function application.

The following functions show the use of sequence patterns to define the eval-

uation of an expression in an environment. In this and subsequent examples we

use tuples of expressions and their corresponding values with the usual mean-

ing. Furthermore, we add to DSL EflV the constructors defined by the following

signature declaration:

result ::= fail I succeed I null I val(val) I path(path)

such that a term generated by this signature is a DSL EfiV value.

fun complete(h as <h', [_ : success]>) = h

I complete(h as <h', [1>) = h

I complete(h) = complete(next(h))

fun evaluation(E,e) =

case complete (initial (E I- e, (0) => v)) of

<h', [sub : success]> = > val(sub(v))

<h', [J> => fail

Chapter 6. Formal Specification of Debuggers 	 182

a 	
lb 	I 	IdI 	

e

Figure 2: Schematic Representation of a Debugging History

The function complete advances the history h until either a success or a failure

state is found. In the declaration of evaluation v is a constructor in X, and
val

fail is a constant that indicates a failure in the evaluation. As an example, the

call evaluation(x -* 2, 2 + x) results in 4.

The patterns described so far are the most basic patterns of DSL EV . Given a

debugging history, we can write a pattern to extract any state from this history,

any formula from a goal stack, and so forth. However, these patterns cannot

express certain events that are important for debugging. For instance, we often

want to know the result of the most recently evaluated sub-expression of a certain

form. Certainly, we cannot directly express this event using the above patterns.

Without more sophisticated patterns we would have to resort to the use of re-

cursive functions to specify these kind of events, making the specifications more

difficult to understand and reason about.

The next patterns we shall describe offer more expressiveness in describing

events that occur in a debugging history. For the presentation of these patterns

let us consider the schematic representation of a debugging history that is shown

in Figure 2, where the entire history will be referred to as h. The current state

cur(h) is the right most state, and the sub-histories a, b, c, d, and e indicated in

the diagram are consecutive, i.e., h = abcde.

The sequence pattern t(a, b, c, d, e), where a, b, c, d, and e are sequence

patterns, is an interval pattern. Intuitively, t(a, b, c) d, e) describes the right-most

smallest interval delimited by sub-histories b and d such that each sub-matching

is successful. This pattern matches h if e is the smallest sub-history of h such

that d matches d, and once e and d are fixed then c is the smallest sub-history

Chapter 6. Formal Specification of Debuggers 	 183

such that b matches b, and once e, d and b are all fixed then a matches a, c

matches c, and e matches e. Hereafter, we use the term t-pattern for interval

pattern.

It is important to emphasise that the matching of d on d must be fixed before

we attempt to match b on b, and both these matchings must be fixed before

we attempt the remaining matchings. This ensures that the pattern matching is

deterministic and also avoids a (potentially) exponential number of attempts to

match the t-pattern.

The sequence pattern Na, b, C, d, e), where a, b, c, d, and e are sequence

patterns, is a balanced interval pattern. Consider the diagram of Figure 2. This

pattern matches h provided the same conditions for matching t(a, b, c) d, e) are

established and furthermore if in c there exist an equal number, say n > 0, of

sub-histories d2 and b2 such that d matches d and b matches b2 , for i E [nt].

This last condition together with the fact that e and c are the smallest sub-

histories of h for which the matchings are successful ensure that, if we consider

b as describing an open bracket and d describing a close bracket, the brackets in

the sequence b c d are balanced in the usual sense.

Intuitively, /3(a, b, C, d, e) describes the right-most smallest interval delimited

by b and d with the extra-condition that b'cd is balanced with respect to sub-

sequences that match b and d. Hereafter, we use the term 3-pattern for balanced

interval pattern.

The bindings resulting from the matching of an t-pattern t(a, b, c, d, e) are

the union of the bindings resulting from the matching of a, b, c, d, and e; same

for a /3-pattern. The same variable may occur more than once in a pattern,

i.e., patterns do not have to be linear. For the matching to be successful, each

occurrence of the same variable must match equal values. This assumes the

existence of an equality relation on all values of DSL EV . However, substitutions

are DSL EOV values. Since substitutions are functions, and since we do not expect

that the mathematical equality on functions to be checked automatically, we

Chapter 6. Formal Specification of Debuggers 	 184

will assume that two functions, and consequently two substitution, are always

different for the purposes of pattern matching. Therefore, any two debugging

histories and any two evaluation states are always different for the purposes of

pattern matching.

The sequence pattern ... is a wild card that matches any debugging history.

It is convenient to notice that since the matching of interval patterns start from

the sub-pattern d, a pattern of the form t(a, b, c, ..., e) makes d be the entire

sequence h. Therefore, this pattern only matches h if the sub-patterns a, b, c,

and e were each either ... or <>.

Interval patterns can be used to describe the successful evaluation of a pro-

gram formula starting from the initial state. For instance, consider the pattern

below:

E F- e, - = v],...,[sub : success],<>)

where [_ : E F- e, - = v] describes the initial state, [sub : success] de-

scribes a final successful state, and ... allows an arbitrary number ot states

between the initial and final ones. If there is a successful matching of this pat-

tern on a debugging history then sub(v) is the result of the evaluation of the

expression e on environment E.

A combination of t-patterns and /3-patterns can be used to describe the most

recent evaluation of an expression of a certain form. For instance, suppose we

want to describe the most recent evaluation of a sum expression e1 + e2 . Let

us start by defining a 3-pattern to describe a successful evaluation of a sum

expression:

j3(..., [_ : 	- F- el + e2, - => v : : 	gsl,..., [sub :

To simplify the presentation, let us use SUM to refer to the above pattern. No-
-

tice that since sub and gs are pattern variables, the sub-pattern [sub : gs]

matches the rightmost state in the history. Since gs must match equal values in

both sub-patterns, SUM describes the successful evaluation of a sum expression

Chapter 6. Formal Specification of Debuggers
	

185

such that the last state in this evaluation is the second rightmost state of the

history

To describe the most recent evaluation of a sum expression we have to make

the last state of this evaluation to be in an arbitrary position in the history.

In other words, we must "shift" the pattern SUM to the left of the history an

arbitrary number of states. This is achieved using the following i-pattern:

t(...,SUJvI,...,

In this pattern, [_: _] matches the rightmost state, and the pattern matching

then continues to the left until SUM matches successfully. Therefore, the above

i-pattern describes the most recent evaluation of a sum expression. When this

pattern is matched successfully on a debugging history, sub(v) is the result of

the evaluation of the sum expression sub(el + e2).

Since patterns of the form

for arbitrary b and d are likely to occur often in debugger specifications we intro-

duce the following derived form of balanced interval patterns as an alternative to

the above patterns:

t(b,d)

/3(b,d)

Therefore, in the derived forms the above patterns become:

- I- el + e2, - = v :: gs], [sub : gs])

t(SUM, [..:J)

Interval and balanced interval patterns express a large set of events in a debugging

history that are important for debugging. To show more examples of the use of

these patterns let SUM 1 denote the pattern

:_ F-el 1 + e21 ,_ =v: :gs1], [sub1 : gs1])

Chapter 6. Formal Specification of Debuggers 	 186

and SINGLE 2 denote the pattern [_: _], for all i e [nt] and some n > 0. The

following balanced interval pattern describes the second most recently evaluated

sum expression:

t(t(SUM 1 , SINGLE 1), SUM 2 , ..., SINGLE2, ...)

Using the same idea we could describe the nth most recently evaluated sum

expression, for any n > 0. However, it can be easily predicted that, even for n =

3, the pattern will become tedious to write and difficult to read and understand,

specially when we write the pattterns SUM 1 and SINGLE 2 explicitly. Therefore,

we introduce another derived form of balanced interval patterns which, for the

patterns SUM 1 and SINGLE 1 defined above, is written:

t(SUM 1 , SINGLE 1)

This pattern describes the n' most recent evaluation of a sum expression. In

general this derived form is written t'(b, d) for arbitrary b and d. Using the same

idea we introduce the derived interval pattern 3(b, d).

The sequence patterns described above provide almost all the expressiveness

that is required in the specification of debuggers. However, we cannot express the

largest n such that t(b, d) matches the debugging history. For this we introduce

the history pattern max d) that denotes the pattern t"(b, d) for the largest

n > 0 such that L Th (b, d) matches the debugging history. Similarly, 87nax d)

that denotes the pattern f3'(b, d) for the largest n> 0 such that /3"(b, d) matches

the debugging history

Therefore, using the patterns SUM 1 and SINGLE 1 defined above, the pattern

f3rnaz(SuM 1 SINGLE 1) describes the earliest evaluation of a sum expression with

no unfinished evaluation of a sum expression on its right.

The combined use of interval, balanced interval, 	and 13maz patterns is

powerful. For instance, we can write a single pattern that expresses the right-

most unfinished evaluation of a sum expression as follows:

t([_:J-e1 1 + e21 ,_=v1 : : gs1],Lm° (SUM2, SINGLE2))

Chapter 6. Formal Specification of Debuggers
	

187

st 	 dhmaz 	 dh 1

Figure 3: Unfinished evaluation of a Sum Expression

We can understand the meaning of the above pattern by looking at the dia-

gram of Figure 3. In that diagram, the sub-histories dh1 ,. . . , are the

successful evaluations of a sum expression, which are described by the pattern

rnaz (SUM 2 , SINGLE 2)

The state st is the first state on the left of dhmaz such that the pattern

[_ : - I- e1 1 + e21 , - = v1 :: gs 1]

matches st, and the evaluation of the sum expression described by the pattern

e1 1 + e21 is unfinished otherwise max would not denote the largest number of

matchings of the finished evaluations.

The patterns described in this section are all the patterns of the DSL, and

in general of DSL. We argue that those patterns can describe most of (if not all)

the events in an debugging history that are relevant for debugging purposes. In

the next section we shall see some examples of the use of these patterns in the

specification of a concrete debugger. This finishes the introduction to language

DSL, the complete syntax and semantics of which are defined in Appendix A.

It is possible to specify sequences, and in particular evaluation histories, using

arbitrary recursive functions, as discussed in [GH801. An important advantage

of using patterns is the possibility of defining equational theories. Reasoning

about the specified histories in such a theory can be simpler than reasoning

about arbitrary recursive functions. Consequently, such a theory would make

reasoning about the debuggers specified in DSL easier, e.g., in proofs of debugger

Chapter 6. Formal Specification of Debuggers 	 188

correctness. This problem is not addressed in this thesis, but constitute an

interesting extension to our investigation.

6.6 The Specification of an Interpreter-Debugger

In this section we give a complete specification of Tiny using DSLEflV . In this

example we illustrate that the specifications in 	and in general in DSL,

are indeed more abstract and concise than ad hoc formalisations of the debuggers.

We present the specification in two stages. First, we give a specification of

Tiny with the finest step granularity. Then, we formalise two step predicates,

including the predicate nosum of Section 6.4.1, and change Tiny to use the pre-

dicates to increase the granularity of the debugging steps.

The Definition of Some Auxiliary Functions

We start defining some auxiliary DSL BV functions. For these definitions we

use two derived forms of expressions, which are defined using abstraction and

application as follows:

case e of pat1 => e1 I .. . 1 pat0 > e

(fn pat1 => e1 I... I pat0 > e0) (e)

if e then e1 else e2 	case e of true => e1 I false =>

The following function specifies a stepping command.

fun step(h as <h', [_ : success]>, n) = (h, succeed)

I step(h as <h', []>, n) = (h, fail)

I step(h, n) = if n>O then step(next(h), n-i)

else (h, null)

The following function specifies the command run until id = n.

Chapter 6. Formal Specification of Debuggers
	

189

fun run_until(h as <h', [_ : success]>, x, n) = (h, succeed)

I run_until(h as <h', I]>, x, n) = (h, fail)

I run_until h as <h', [sub : E I- -, - = - : :_]>, x, n) =

case evaluation(sub(E), x) of

val(nl) =>

if n = ni then (h,null)

else run_until(step(h,1), x, n)

I - => run_until(step(h,1), x, n)

I run_until(h, x, n) = run_until(step(h,1), x, n)

where the call evaluation(sub(E), x) returns the value of x in sub(E), or fail

if x is not bound in sub M. It would be more natural to use the function next

instead of step in the definition of run_until. However, when we define the

step predicate nosum we will have to change the above functions to include this

predicate. Using step in the definition of run_until we factorise the alterations

to the function step. The following functions will be used in the specification of

the Tiny commands show id, show pos, and show res.

fun showid(<h, [sub : E I- _, _ 	_ : :_]>, y) = evaluation(sub(E), y)
I showid(<h, [sub : (E,_) 	_ : :_]>, y) = evaluation(sub(E), y)
I showid(<h, []>, _) = fail

fun showpos(<h, [sub : - F _, p = _ :: gs]>) = path(sub(p))

I showpos(<h, [I>) = fail

I showpos(_) = null

Chapter 6. Formal Specification of Debuggers
	

190

fun showres(t(<>,[_ :EI-e,_ =.v],...,[sub:success],<>)) = val(sub(v))

I showres(<h, []>) = fail

I showres(_) = null

The Specification of Tiny with Full Granularity

Now we define the debugger Tiny = (E Tiny
,
 Tiny Tiny

, A) for an arbitrary p e

PxE() based on Env and CSEnV. The algebraic signature E
Tiny is the union

of E,It, and the signature defined by the following BNF rules, which define the

debugging language and language of results:

command ::= reset I step mat I run until var =nat

show var I show pos

result 	::= fail I succeed I null I val(val) I path(path)

where nat, var, and val are defined in E. The algebra A Tiny agrees with AB

on the interpretation of the symbols of EEtW, i.e., A Tin/Env = AE, and gives

the term algebra interpretation for the symbols defined by the above grammar.

The next step is to define the debugging commands. Let Tiny be as follows:

m , Tiny
(EH, g

Tiny T(Tiny)command x 1 (-') resuit, 	Tiny,I)

where EH is the set of debugging histories of p in CSEnV, g Tiny is the identity on

EH, and the initial state ITiny is defined as follows:

jTiny - J initial(p) if p = E I- e,pa = v and FV(close(e,E)) = { }

1 11 	otherwise

Since the evaluation of expressions with free variables always fails, the definition

of 1Tiny guarantees that we only attempt to debug closed expressions. This is

reasonable since in a real debugger we expect such errors to be detected in a

static checking phase prior to the debugging phase.

	

Chapter 6. Formal Specification of Debuggers 	 191

Finally, we define the transition relation 	Tiny• For all dh E EH and d E

he transiticn: 	

d,r 	- i
dh 	'Tiny dh

is defined as follows:

d = reset r = null and dh' =

d = step n (dh', r) = step(dh, 	n)

d = run until id = n 	(dh', r) = run_until(dh, 	id, n)

d = show id r = showid(dh, id) and dli' = dh

d = show pos r = showpos(dh) and dli' = dh

d = show res r = showres(dh) and dh' = dli

Checking the Requirements of Definition 2

It is easy to check that Tiny complies with Definition 2. First, notice that

functions step, run_until, showid, showpos, and showres are total. It is then

easy to check that 4 Tiny obeys the robustness requirement of Definition 2.

The functionality requirement of Definition 2 is fulfilled by either the step n

command.

Specifications of Tiny using Step Predicates

Now we define the step predicate nostm that was informally discussed in Sec-

tion 6.4.1. Then we change the step function to use nosum to enlarge the gran-

ularity of the debugging steps of Tiny. The predicate nosum is formalised as a

DSL EflV function that returns a boolean value:

fun nosuin
z 	- (t([_:J-e1 1 + e2 1 ,_=v 1 : : gs1J,t

ma (uM 2,SINGLE2)))

= false

I nosuxn(_) = true

Chapter 6. Formal Specification of Debuggers 	 192

The pattern used in the first clause of the definition of the function nosuin was

discussed in Section 6.5 (page 187). Therefore, nosum(dh) holds if and only if the

result of nosuin(dh) is true. With this definition of nosum it is easy to change

step as follows:

fun step(h as <h', [_ : success]> , n) = (h, succeed)

I step(h as <h', [1>, n) = (h, fail)

I step(h, n) = if n>O then case next(h) of

hi => if nosum(hi,st)

then step(hl,n-i)

else step(hl,n)

else (h,null)

If this new definition of step overrides the definition of page 188, no more changes

are necessary in the specification of Tiny to include a coarser debugging step

granularity. Moreover, since run_until is defined using step, we only have to

include the nosum function in step.

The next example defines another step predicate. This time we want to hide

the states related to the lookup of a variable in an environment, and the state

related to the application of the plus function. The latter state has a formula

E I- e, () = v on the top of the goal stack, since this is the form of the third

premiss of the rule that defines "+" expressions in page 172. Therefore, the

pattern _ I- -, () = - will be used to describe the above formula. The function

nolookup, defined below, is used to define a step predicate nolookup with this

meaning.

fun nolookup(<_, [_ : (E,e) - EV :: _]>) = false

I nolookup(<_, [_ : - F- -, () => - : :_]>) = false

I nolookup(_, _) = true

Chapter 6. Formal Specification of Debuggers 	 193

Here the first clause describes the lookup of variables and the second describes

the application of plus as described above. Therefore, nolookup(dh) holds if

and only if the result of nolookup(dh, st) is true. To include the nolookup

function in the step command we just need to change the step function defined

above, replacing the calls to nosum by the corresponding calls to nolookup. In

the example of Section 7.4 we assume that the function step uses the nolookup

function.

This example illustrates the flexibility we achieve by using step predicates

in the definition of the granularity of the debugging steps. We can imagine a

debugger with a set of step predicates and a command that selects which one is

to be used during the evaluation. Therefore, the same debugging session can use

more than one step granularity, according to the needs of the user.

6.7 Summary and Conclusions

In this chapter we have studied the problem of how to give formal specifications

of debuggers. This problem was addressed in three stages. First, we developed

a formal definition of the class of Interpreter-debuggers. Second, we studied two

problems that are common to the design of most debuggers: the granularity of

debugging steps and the reference to sub-programs. Finally, we defined a notation

to assist in the specification of debuggers.

As far as we are aware, an abstract account of debuggers as presented in this

section is novel in the literature. DSL differs from the approach of the Anim-

ator Generator in that it allows the definition of various debugging commands,

whereas the Animator Generator only has a fixed set of commands. However, we

have not addressed problems related to user interface, which is a strong point of

the Animator Generator.

In the examples, we demonstrated that definitions of concrete debuggers using

DSL are abstract. We shall demonstrate in the Chapter 7 that these definitions

Chapter 6. Formal Specification of Debuggers
	

194

are suitable for formal reasoning. It remains to show how other debuggers for

other language paradigms can be specified. We believe that debuggers for object

oriented languages, logic programming languages, and imperative languages can

all be expressed in DSL.

Chapter 7

Debugger Correctness

In Chapter 6 we defined a class of debuggers that we called Interpreter-debuggers.

An instance of this class is a debugger that uses the CS system defined in

Chapter 5 as an interpreter. The specification of a concrete Interpreter-debugger

is given in terms of the objects of a Relational Specification of the programming

language, resulting in a definition that is easy to understand and reason about.

Another positive point of Interpreter-debuggers is that they use the notion of

evaluation step of Definition 5.5, which agrees with our intuitive notion of eval-

uation step. Therefore, we argue that Interpreter-debuggers are more likely to

behave according to our intuition than debuggers designed in an ad hoc fashion.

The main drawback of Interpreter-debuggers is that interpretation of pro-

grams using the CS interpreter is, in general, too inefficient to be used with large

and complex programs. However, those programs are the most likely to have

errors, and therefore to need debugging. Therefore, we are faced with the follow-

ing dichotomy: on the one hand, debuggers based on the CS system are easy to

specify, understand, and reason about; on the other hand, there exist a practical

need for more efficient evaluation techniques if we hope to use the debuggers with

large and complex programs.

A natural solution to this problem is to provide two definitions of a debug-

ger: an Interpreter-debugger to be used as the specification of the behaviours of

195

Chapter 7. Debugger Correctness 	 196

a debugger, and another definition in which the evaluation of programs is per-

formed more efficiently, to be used as the actual implementation of the debugger.

For this solution to be sound it is necessary to prove that the specification and

the implementation are equivalent, i.e., that the two debuggers have equivalent

behaviour.

The means to specify Interpreter-debuggers, according to Definition 6.2, were

already studied in Chapter 6. The main objective of this chapter is to define a

formal criterion for the equivalence between a two specifications of a debuggers,

that is, we shall study the problem of debugger correctness.

Furthermore, we also characterise the class of Compiler-debuggers. An in-

stance of this class is a debugger in which a program is compiled and its code runs

in a machine instead of being interpreted. We study aspects of the specifications

of such debuggers and present a proof of equivalence between an Interpreter-

debugger and a Compiler-debugger.

In Section 6.1 we discussed other approaches to formal semantics of debuggers.

None of those approaches treats the problem of debugger correctness, nor do they

consider Compiler-debuggers and their relationship with Interpreter-debuggers.

Therefore, the results of this chapter are novel to this thesis.

7.1 Introduction

In this chapter we shall define what it means for two debuggers to have equival-

ent behaviours; thus, it is essential that we understand what characterises the

behaviour of a debugger. According to Definition 6.2, an Interpreter-debugger is

characterised by a monogenic labelled transition system of the form:

(F, T(2) comman d x T(Y2) ru1, _)

The entire behaviour of such a debugger is defined by the transition relation

F X (T() c ,,,, mand x 	 x F. This transition has two components

that characterise different parts of the behaviour of a debugger. The state com-

Chapter 7. Debugger Correctness 	 197

ponent of the transition relation characterises how the programs are evaluated,

by describing how this evaluation changes the state at each transition. The label

component characterises the interaction between the evaluation and the external

world. The latter is the observable behaviour, in contrast with the internal beha-

viour characterised by the states.

It is the observable part of the behaviour that matters when we compare

two debuggers. We want to consider two debuggers as being equivalent if they

have equivalent observable behaviour. This leads to the notion of observational

equivalence between debuggers. In order to understand this notion of equivalence

let us take two debuggers V and E, and compare their observable behaviour.

Suppose that both debuggers are in the initial state, say e for V and I for

S. Let us experiment with the debuggers by issuing a debugging command d1 to

both of them. On input d1 the debugger V moves to a state ds1 and produces

a result r1 . Similarly, S moves to a state ds and produces a result i-i' , which is

written:
v (di,ri)

I 	ds

IE (di,r)

e ds1

and the observable behaviours of these transitions are equivalent if r1 =r. As

an initial proposal we will consider the relation = as the syntactical equality

between results. Later on in this section we will see how this condition can be

relaxed. Now, in the new current states we would like to repeat the experiment

with some other debugging command, say d2 . Again, for the debuggers to be

equivalent the new transitions must have the following form:

(d2 ,T2)
ds1 -+ ds2

, (d2,r) 	,
ds1 - ds2

and r2 = r. The two debuggers will be considered observationally equivalent

if they behave as described above for all possible experiments. This notion of

equivalence certainly agrees with the discussion of the beginning of this section:

two debuggers are equivalent if their observable behaviour are equivalent. Oh-

Chapter 7. Debugger Correctness 	 198

servational equivalence as discussed above has similarities with the notion of

bisimularity developed in [Par8l] and strong equivalence in [Mil891.

This notion of equivalence guarantees that we cannot distinguish between

equivalent debuggers by looking only to the results of the debugging commands;

thus, intuitively it is a sufficient criterion for equivalence. However, the require-

ment that the results of the debugging commands must be equal at each cor-

responding transition is too strong in general, for it does not allow different

representations of the results in each debugger.

A similar problem was encountered in Chapters 3 and 4 when we studied the

equivalence of Relational Specifications and compiler correctness. For instance,

in the compiler correctness case whenever a program evaluates to a value in the

(standard) Relational Specification and to another in a Compilation, we required

the two values to be equivalent with respect to an observation signature.

Now let us turn back to the problem of debugger equivalence. Results of

debugging commands will be, in most cases, the intermediate results of the eval-

uation of sub-programs. Therefore, it is natural to require the results of debug-

ging commands to be equivalent with respect to an observation signature. This

establishes a strong connection between Observational Equivalence of Relational

Specifications, including compiler correctness, and equivalence of debuggers, a

connection we believe to be natural since debuggers in our framework are based

on a Relational Specification. This connection is formalised in various results in

Section 7.2.

The above discussion leads to a notion of observational equivalence between

debuggers with respect to an observation signature. This equivalence allows non-

observable results of debugging commands to have different representations in

each debugger, while observable results must be (syntactically) equal.

Another major objective of this chapter is to extend the framework developed

in Chapter 6 to deal with Compiler-debuggers, i.e., debuggers in which programs

are compiled into code for some machine and the evaluation of the program is

Chapter 7. Debugger Correctness 	 199

performed by running this code on the machine. Intuitively, those debuggers are

likely to be the most relevant for practical applications and also to yield the most

difficult proofs of equivalence.

Our objective is to demonstrate that it is possible to formally define Compiler-

debuggers and to carry out proofs of equivalence involving such debuggers. A

Compiler-debugger that is proved equivalent to an Interpreter-debugger will have

the same observable behaviour as the Interpreter-debugger. We argued that

Interpreter-debuggers are more likely to have an intuitive behaviour than debug-

gers defined in ad hoc fashion. Therefore, the equivalence between an Interpreter-

debugger and a Compiler-debugger implies that the latter also has an intuitive

behaviour.

7.2 Observational Equivalence between Debuggers

Our initial objective is to formalise the notion of equivalence between debuggers

that was informally discussed in the previous section. For this definition we have

a similar flexibility as in the case of the equivalence between Relational Specific-

ations (see Section 3.4). We can define a relation parametric on an observation

signature. Alternatively, we can include an observation signature as a component

of the debugger and then define the equivalence relation on the class of debug-

gers with the same observation signature. In Section 3.4 we saw that adding the

observation signature to the Relational Specifications led to simpler definitions.

Therefore, we choose this approach also in the definition of equivalence between

debuggers.

Before we state the definition of equivalence between debuggers we must solve

the following problem: the only abstract characterisation of debuggers that we

have is that of Interpreter-debuggers of Definition 6.2. However, we require al-

ternative designs of debuggers because the evaluation of the programs by an

Interpreter-debugger is often too inefficient. Therefore, we need a more general

characterisation of debuggers in which the evaluation of programs is not required

Chapter 7. Debugger Correctness 	 200

to be that of an interpreter based on the CS system.

A solution to this problem is to define a meta-class of debuggers by abstracting

from how programs are evaluated. An instance of such a meta-class is a class

of debuggers, e.g., Interpreter-debuggers as in Definition 6.2. Such an instance

is obtained by supplying the meta-class with an evaluator for the programming

language, e.g., the CS system as in the case of Interpreter-debuggers. This leads

to the definition of Debugger-schema which is a generalisation of Interpreter-

debuggers obtained by replacing the CS system by a monogenic transition system,

which describes the evaluation of programs and its transition relation defines the

evaluation step used by the Debugger-schema.

In the rest of this section, let S = (, 4, A, goBs) be a Relational Spe-

cification with Declarative Semantics M, where Q = (S, F, H, ir), and ROBS =

(S OBS) FOBS, ROBS' ir). We will use E as a name for (S, F) and similarly EOBS as

a name for (SoBs FOBS). The following definitions will be given for an arbitrary

program formula p E P(1) for any set of meta-variables X. The generalisation

to the entire set of program formulae P(Q) is straightforward, and is presented

later in this section.

The definition of a Debugger-schema is given with respect to a monogemc
EV

transition system EV = (I'Ev -', 1Ev), the evaluator of p, where I E IFEV is the

initial state for p in EV. A particular definition of EV produces a particular

instance of a Debugger-schema. We will see below how to define ev so that the

instance of a Debugger-schema obtained is the class of Interpreter-debuggers.

Definition 1 (Debugger-schema) A Debugger-schema for p based on S and

EV is a quadruple (E D , i, AD, ED0Bs) where ED and AD are as in Definition 6.2

and:

• EDOBS = (SDOBS , FDOBS), where EDOBS 9 ED, is an observation signature

with the following constraints: EOBS E EDOBS, i.e., the algebraic observa-

tion signature of S is included in EDOBS; and result E SDOBS.

Chapter 7. Debugger Correctness 	 201

L& is a quintuple

(Fr ,g) T(E D) comman d X T(E D). l ,-4,I)

where: rD, g, T(ED) comman d, T(ED),.esult, and — are as in Definition 6.2

and 'D E IPD is the initial state, such that g(Ir) = 1EV•

such that the following functionality requirement holds: for all ds e 1FD there

exists d E T(ED) commofl d, r E T(E D),j , and ds' E D such that ds 	ds' and
EV+ 	 EV+

 i 	
EV

g(ds) —9 g(ds), where —+ s the transitive closure of -*. 	 D

Let ED L : ED be the sub-signature that defines the debugging language, i.e.,

T(ED L) command = T(ED) comman d. The class of Debugger-schemas for p with

observation signature ED05 and debugging language defined by ED L is denoted

by Deb(ED L , ED OBS).

As discussed before, the definition of a Debugger-schema characterises a meta-

class of debuggers, which can be instantiated into a class of debuggers such as

the Interpreter-debuggers. For this instantiation we need to give a definition of

the evaluator EV. For instance, let us define EV to be the quadruple

(EH, 	([Os :

where EH is the set of evaluation histories of p in S and =P4 is the function

on EH defined in Section 6.3 (page 160). A Debugger-schema for p with the

above EV characterises the class of Interpreter-debuggers for p based on S. A

concrete Interpreter-debugger is an instance of this class obtained by suplying

the remaining components of the Debugger-schema.

So far we have generalised our definition of debuggers in order to allow more ef-

ficient program evaluation than the interpretation used by Interpreter-debuggers.

We can now turn our attention to the problem of defining a notion of equivalence

between debuggers. As we discussed in Section 7.1, we will define an equivalence

Chapter 7. Debugger Correctness 	 202

relation on Deb(ED L , ED OBS) similar to the notion of bisimulation of [Par8l].

Our notion of Debugger Bisimulation differs from the (standard) notion ofbisim-

ulation in two aspects that will be discussed below.

Informally, a bisimulation is a relation between the states of two transition

systems that is preserved under the transition relation in the following sense:

whenever we start with two related states and make a transition with equivalent

labels we reach related states. In the (standard) notion of bisimulation the equi-

valence of labels is syntactical equality. In Debugger Bisimulation the commands

of a transition must be syntactically equal and the results are compared with

respect to an observation signature. That is, the results of corresponding trans-

itions are required to be syntactically equal only if they are observable according

to the observation signature.

Since the transition systems we are dealing with are Debugger-schemas the

following definition could be simplified. For instance, trace equivalence [Mil89,

page 2041 would also be suitable as an equivalence between debuggers. We chose

bisimulation because it allows our approach to be generalised to debuggers for

non-deterministic programming language without changing the notion of equi-

valence. We discuss such a generalisation in Section 8.2.

Finally, we are ready to formalise the notion. of observational equivalence

between Debugger-schemas with respect to an observation signature as an equi-

valence relation on Deb(ED L , EDOBS).

Definition 2 (Debugger Bisimulation) Let V = (ED, D AD, ED OBS) and

e = (E6 , A E , A 6 , EDOBS) be Debugger-schemas in DebP (ED L , EDOBS). The

Debugger-schemas V and E are observationally equivalent, written V £, if

and only if there exists a relation B E IP D x I' such that (1D j6) e B and for all

(d, ds6) E B and d E T(E ') ommand the following holds:

1. For all rD E T(E1').4 and d4, E rD, dsp 2d4 implies that there exist

r6 E T(E 6),., and ds' E 1 6 such that ds6 ds and both requirements

below hold:

Chapter 7. Debugger Correctness
	

203

(Bisimulation) (d4,, ds) E B

(Observational Equivalence of Results) If rv E T(>2D OBS) then rv = r.

2. And conversely, interchanging V and L.

A relation B as above is called a Debugger Bisimulation between V and E. 0

Proposition 1 The relation is an equivalence relation on Deb(EDL , DoBs).

Proof (Sketch) For reflexivity, just take B to be the identity relation on

then it is trivial to check that V V for B. For symmetry, suppose that V L

for a relation B. It is easy to check that L V for B'. For transitivity, suppose

that V 1 V 2 for B 1 and V 2 V 3 for B2 . It is also simple to prove that V 1 V 3

for the relation B 1 o B2 . 	 11

The results of the rest of this section depend on the generalisation of a Debugger-

schema for p to a Debugger-schema for the entire set P() of program formulae.

First, let LV = (I'Ev, EV , {IEvp}pEp(n)) be an evaluator for which is the

same as in page 200 except that the initial state is replace by a Px()sorted set

of initial states. A Debugger-schema for P(l) based on S and LV is the same

as in Definition 1 except that for

= (rD, g, T(D) comman d X T(>-D)resuu, 	, {'p}pEPx(I))

the initial state is replaced by a Px()sorted set of initial states such that for

all p E Px(), g(I) = 'EVp

The class of debugging-schemas for P() with observation signature EDOBS

and debugging language defined by ED L is denoted by Deb(l, EDL, ED 0BS). For

V E Deb(1, ED L , ED0BS), we denote by V the Debugger-schema for p E P(1)

that is the same as V except that {Ip}PEpX(n) is replaced by I,,.

The relation can be naturally extended to an equivalence relation 	on

Deb(1, ED L , EDOBS): for each V, L E Deb(11, ED L , ED0BS), V 	L if and only

Chapter 7. Debugger Correctness 	 204

if for all p E P(fl), V, 	Es,. Hereafter, we use 	for 	whenever P(Q)

is understood in the context. It is clear that if V E Deb(IZ, ED L , DoBs) then

V E Deb(ci', >DL , ED0ES) for all ci' ci for which P(cl') 0
{ }.

An important motivation to define an equivalence between debuggers at an

abstract level rather than to take an ad hoc approach is that we can prove prop-

erties about the abstract definition. In the rest of this section we will illustrate a

practical example of such a property: we will prove that the equivalence between

two Interpreter-debuggers implies the Observational Equivalence of their under-

lying Relational Specifications under certain conditions. We call this theorem

the Coherence Theorem.

Let us discuss the first of necessary condition to establish the Coherence The-

orem. Recall that the functionality requirement of Definition 6.2 (page 160) only

requires the existence of a command that advances the evaluation. However, this

requirement is not enough to guarantee the validity of the Coherence Theorem,

as we will emphasise during its proof.

Therefore, we need an extra functionality requirement that guarantees we

can use a debugging command to check whether a program terminated success-

fully. This requirement is formalised by the definition of a Termination-explicit

Interpreter-debugger (or simply a Termination-explicit debugger).

Definition 3 (Termination-explicit Debugger)

An Interpreter-debugger (JD, 1, Aj , DoBs) is Termination-explicit if there exits

a distinguished observable result succeed E 	 and for all ds e

there exits d E T(D) comman d and ds' E FJ) such that ds 	ds' and r =

succeed if and only if cur(g(ds)) = [0 : e], for some substitution 0. 	D

The minimal functionality of a Termination-explicit debugger guarantees we can

evaluate a program step-by-step, and check whether the evaluation terminated

successfully. From Theorems 5.1 and 5.3, this functionality is equivalent to be

able to ask whether there exists a satisfying substitution for a program formula.

Chapter 7. Debugger Correctness
	

205

This functionality is still weaker than the functionality provided by the CS

system since in the case of non-ground program formula, the CS system not

only answers whether there exists a satisfying substitution but also constructs

one. However, the minimal functionality of a Termination-explicit debugger is

sufficient for the proof of the Coherence Theorem since we will only have to reason

about ground program formulae.

Theorem 1 (Coherence) Let 5, 7?. e Spec(QOBS) with algebras As and A,

and Declarative Semantics MS and M respectively, where

ROBS = (SOBS, FoBs, "OBS) ir)

and ir is the only relation symbol in 11OBS• Let V S
V

1Z , 	e Deb(loBs , EDL, DOBS)

be two Termination-explicit debuggers based on S and 7?. respectively.

If A5/oB5 = AR/JOBS , then:

DIZ
	implies 	S_7?.

Proof (Sketch) From Definition 3.4 we must show that:

S V 	V 	implies 	M5/1oBs 00BS

Therefore, we have to prove that Definitions 3.1(1) and 3.1(2) are satisfied. Since

from the hypothesis A8 /EOBS = A/ 05, Definition 3.1(1) is trivially satisfied.

Let us now prove that Definition 3.1(2) is satisfied, which in the context of this

theorem is written:

For all p E P(1oBs):

p e dom T if and only if p E dom IF 	 (1)

and if both sides of the above equivalence are true then

M8 if and only if
1JJAR() 	

(2)

Eqinvalence (1) holds tnvially because AS />oBS = A /EoBs . If both sides of

equivalence (1) are false then we do not have anything further to prove. When

Chapter 7. Debugger Correctness 	 206

both sides are true we must prove that equivalence (2) is satisfied. Let us prove

the left to right implication of (2) first.

If As () 	M6 then, from the Completeness of the Computational Se-

mantics (Theorem 5.3), there exists a CSSsequence for p of the form:

	

[Oo:p]CJlZ[e:] 	n > 0

From the functionality requirement of Definition 6.2 there exists a command

that advances the evaluation by one transition of CSS. Therefore, there exists a

sequence of debugging interactions in V'9 of the form:

(d,r)"
vs I — ds5

such that cur(g(dss)) = [0 : E]. Since VS 	DR then there exits a relation

B Erl~s x 	that is a Debugger Bisimulation between V' 9 and DR. Therefore,

it is easy to prove that there exists a sequence of debugging interactions in DR

of the form:
(d r e)"

n I -p ds

such that (dss , ds) E B. From the definition of Termination-explicit debugger

(Definition 3) there exists a debugging command d' E T(EDL) command and ds E
D such that:

	

(d',r) 	I

ds5 —+ ds8

where r = succeed. Since V5 VR, there exists a transition in DR of the form:

	

(d,r') 	I
d —f dsR

and since succeed E T(D oBs),. jg , then from the Observational Equivalence re-

quirement of Definition 2(1) it follows that r' = succeed. Since DR is Termination-

explicit then cur(g(ds)) = [0' : J, for some 0'. Therefore, there exists a IZ

cSR sequence for p, and from Soundness of the Computational Semantics (The-

orem 5.1), it follows that 'P (p) E ir

The proof of the right to left implication in (2) follows similarly and is omitted.

This finishes the proof of the Coherence Theorem. 	 o

Chapter 7. Debugger Correctness
	

207

7.3 Compiler-debuggers

In this section we charactense the class of Compiler-debuggers and study aspects

that are specific to the design of debuggers in this class. Our objective is to

define a framework for the design of Compiler-debuggers along the lines of the

framework defined in Chapter 6 for Interpreter-debuggers. As far as we are aware

of, Compiler-debuggers have not been addressed in a formal and abstract way in

the literature. Therefore, the results in this section are important contributions

of this thesis.

It becomes simpler to understand what characterises a Compiler-debugger by

making a parallel with the notion of Compilation defined in Chapter 4. In a

Compilation programs are evaluated in a three stage process. First, a program

is compiled into machine code. Second, the code is loaded and executed on the

machine. Finally, the result is unloaded from the machine whenever a successful

evaluation is achieved.

In a Compiler-debugger programs are debugged in a process with similar

stages. Suppose that p is the program to be debugged. First, p is compiled into

code for some (abstract) machine and this code is loaded into the machine for

execution. The execution proceeds from an initial state until a halting point

is reached; at such a point the control returns to the debugger, and we use

the debugging commands to obtain information about the current state of the

evaluation. The execution can then be resumed either from the current state,

or from a previous state in the execution, until another halting point is reached;

again, the control returns to the debugger. This process repeats until either the

program reaches a final state in the execution (success or failure) or we find an

error and finish the debugging session.

A Compiler-debugger is an instance of a Debugger-schema obtained by using

an evaluator based on an abstract machine for SV. Furthermore, a compiler is

used to construct the initial state of EV. Therefore, the results of Section 7.2 are

applicable to Compiler-debuggers. Our objective in the rest of this section is to

Chapter 7. Debugger Correctness 	 208

show how to design Compiler-debuggers and prove them correct. In Section 7.3.1

we study various aspects that are specific to the design of Compiler-debuggers.

We illustrate these aspects by gradually building a compiler for the language

Fun, based on the compiler developed in Chapter 4. The code generated by this

compiler contains extra code that is used for debugging purposes.

In Section 7.3.2 we use the compiler developed in Section 7.3.1 in the spe-

cification of a Compiler-debugger for Fun programs. Finally, in Section 7.4 we

prove that this Compiler-debugger is equivalent to the Interpreter-debugger Tiny

defined in Section 6.6.

Recall that in Section 4.3 we argued that the starting point for compiler design

in our framework is a Relational Specification of the programming language.

Similarly, we now advocate that the starting point for the design of a Compiler-

debugger is the specification of an Interpreter-debugger. An Interpreter-debugger

will serve as a guide for the design as well as the reference point to establish the

correctness of the Compiler-debugger.

Therefore, the first step in the design of a Compiler-debugger is the specific-

ation of the Interpreter-debugger that will serve as our reference. In Section 6.6,

we defined the Interpreter-debugger Tiny for the language Fun. We now have

to add an observation signature to Ti'iy to specify the observable results of de-

bugging commands. The signature E Tiny is defined by the following BNF rules OBS

together with the definition of path terms presented in Section 6.4.2:

result 	::= fail I succeed J null I val(val) I path(path)

var 	::= xIyI...
nat 	::= 0111...
closure

vat 	::= nat

Therefore, as far as the results of Fun expressions are concerned, nat and path

results are visible, whereas closure results are not, since there are no observable

terms of sort closure.

Chapter 7. Debugger Correctness 	 209

Let Tiny = (ETY, A Tiny
A

 Tiny ,
 E 5') be the new definition of Tiny where OB

(y Tinv A Tiny AT) was defined in Section 6.6. For this definition of Tiny we

will use the definition of the step command that uses the step predicate nolookup

defined in Section 6.6.

7.3.1 Aspects of the Specffication of Compiler-debuggers

In this section we analyse two important differences between Compiler-debuggers

and Interpreter-debuggers which can cause problems in establishing the equival-

ence between a Compiler-debugger and an Interpreter-debugger. Our objective

in this section is to identify those problems and propose generic solutions for

them at the level of an abstract Compiler-debugger.

The first of these differences is the notion of evaluation step. While the

steps of an Interpreter-debugger are the evaluation steps of Definition 5.5, in the

Compiler-debugger the steps are those of the abstract machine on which the code

of the program is executed. The second difference is the information about the

evaluation that is available to the debuggers. An Interpreter-debugger has access

to potentially the entire evaluation history of a program, whereas a Compiler-

debugger has access to a single machine state, and to the information about the

evaluation that is encoded in this state.

We start by studying the problems that arise from the difference between the

two notions of evaluation step. The steps of the interpreter and the machine

steps may differ in two aspects that are relevant for debugging purposes: the

granularity of the steps, and the order of the evaluation of sub-programs.

The Granularity of the Debugging Step

We treat first the problems that arise from the difference between the granularity

of the steps. To illustrate these problems, let us consider the Fun expression

let x = 1 + 2 in x

Chapter 7. Debugger Correctness 	 210

and compare its evaluation in an empty environment using the CSEnV system

and the abstract machine CAM. The CAM code for the expression, denote by c,

according to the compiler of Example 4.3 is as follows:

push push. quote(1) swap . quote(2) add• cons cdr

Below we present the evaluation of the formula EE I- let x = 1 + 2 in x, (0) = v,

using CSEnV , in which we omit the substitutions and elided some goals to simplify

the presentation. In this evaluation, the hidden states according to nolookup are

presented in boxes and the hidden transitions are not numbered. The numbered

steps are the ones produced by the debugger Tiny.

kE I- let x = 1 +2 in x, () = v]
	

(1)

[EE I- 	= 	:: EE I-plus(v1 ,v2),() = v1,::
...] 	

(4)

[EE Fplus(v,v),O= v1 ::xF- V1&E Hx,(Q,)= v]

[x+3eE Hx,(,)=v] R 	 (5)

I [(xF-43 E ,x) - LV]I

[success]

The first hidden state refers to the evaluation of plus function, which is hidden

because it matches the pattern [_ : - F -, () = - : : j in the definition of

the visibility predicate nolookup. Now, we show the steps of the evaluation of the

code for the above expression, on the CAM.

Chapter 7. Debugger Correctness
	

211

(es ,push. push quote(1) swap• quote(2) . add•...) 	2

e,push.quote(1).swap.quote(2).addcons ...) 	c?

CAM
quote(1).s'wap.quote(2).add.coflS.cthe c)

es ,swap.quote(2).addcoflScdr.E c) 	2

CAM (Q.1.().e,quote(2).add.cons.cdr.e c)

CAM
(2.1.O.Es ,addconscdrE c) -' 	 (6)

CAM
(plus(1,2)().e s ,cons.cdr& c) -p 	 (7)

CAM
(((),3),cdrEc) -4 	 (8)

(3 6s' ec)

As we can easily check, there is no one-to-one correspondence between the

CSEnV steps and the machine steps. In particular, there are more machine steps

than there are steps of the interpreter, and we expect that this will often be

the case. Furthermore, the use of the step predicate to hide parts of the evalu-

ation increased the gap between the two sequence of steps. However, for some

sub-programs we may also expect that optimisations can reduce the number of

machine steps; thus, for these sub-programs the interpreter may have more steps

than the evaluation of the code on the machine.

Our next objective is to show how to modify the machine steps to estab-

lish a one-to-one correspondence between the steps of the two evaluation of the

programs. This correspondence is a necessary stage in the design of a Compiler-

debugger, whenever we intend this debugger to have the same observable be-

haviour of an Interpreter-debugger. We first discuss a solution for the example

given above, and then show how it can be generalise to an arbitrary abstract

machine.

A solution to the particular problem treated above is to skip the steps (4), (6),

and (7) of the CAM evaluation by hidding the underlined states. The remaining

Chapter 7. Debugger Correctness 	 212

five machine steps are on a one-to-one correspondence with the visible CSEnV

steps. Furthermore, there is an important invariant preserved by each pair of

corresponding states: the CAM state has at the top of the stack the machine

environment corresponding to the source language environment that is in the

top of the goal stack of the CSEnV state. This can be checked, for instance, by

comparing the two states below:

Ix ~-4 3EE 	 v] 	(((),3),cdr•Ec)

where the machine environment (Q,3) corresponds to the source language envir-

onment x '-* 3 e. This invariant will be important in the definition of debugging

commands over the machine states.

The generic solution we are looking for is a mechanism to hide machine steps.

We propose a mechanism similar to the concept of step predicates defined in

Section 6.4.1, in this case applied to the steps of an abstract machine. This

solution combines the notions of break-point predicate and debugging machine;

we first give the definition of a break-point predicate.

Definition 4 (Break-point Predicate) Let M = (EM, -, TM) be an ab-

stract machine. A break-point predicate in M is a total predicate on

Let st 'M st' and BP be a break-point predicate in M; st is visible if BP(st)

holds, and it is hidden otherwise. We denote by VSM (BP) the set:

TM U {st: BP(st)}

With the above definitions we are ready to define the concept of a Debugging

Machine.

Definition 5 (Debugging Machine) Let M = (EM, 	TM) be an abstract

machine and BP be a break-point predicate in M. A debugging machine based

on M with respect to BP is a terminal transition system (VS M (BP), VM , TM)

where the transition relation —*vMC-- is defined as follows:

Chapter 7. Debugger Correctness
	

213

st 	st' if and only if there exists st1 ,... , st, E rm, for n > 0, such that

st = St1j M st1 M 	M St 4M st,. 1 = st'

and st, st' E VS M (BP) and st1 ,. . . , st, VS M (BP). 	 0

Given a debugging machine DM, a Compilation can be defined such that the

execution of the code of a program in DM yields evaluation steps that match

the CS steps of the evaluation of the program. The next example constructs

a debugging machine based on the CAM of Example 4.1, with the objective of

illustrating the above ideas. Moreover, this machine will be used in the definition

of a complete Compiler-debugger in the next section.

Example 1 In this example we define a debugging machine based on an exten-

sion of the CAM of Example 4.1. We first present this extension.

We extend the CAM with the instructions brk, quoteid, quotep, and pop:

brk is a break-point instruction whose execution causes the machine to halt;

quoteid has an identifier as a parameter, and its execution loads the parameter

on the top of the stack; quotep has an abstract syntax path (as defined in

Section 6.4.2) as a parameter and its execution also loads the parameter on the

top of the stack; and the pop instruction discharges the element on the top of

the stack.

The instructions quoteid and quotep require the CAM values to be extended

with identifiers and abstract-syntax path. An abstract-syntax path is just a

sequence of natural numbers, and is a term of sort path in the Relational Rules.

The instructions quoteid, quotep, and pop can be simulated by sequences of

CAM instructions; thus the only instruction that is necessary is brk. However,

the use of quoteid, quotep, and pop makes the specification of the Compiler-

debugger simpler to understand, and also simplifies the proof of correctness.

Although the signature of the new CAM is based on the signature 	1m of

Example 4.1 we define QDCa, = (5DCam Flam 11DCam D>M) in fail to make this

Chapter 7. Debugger Correctness
	

214

example self contained. The sets SDCam 	DCam and F 	are defined by the following

rr

state ::= (stack, code)

stack ::= ES 	val 	stack

code ::= EC 	I inst• code

val nat 	funval I 	(val, val) 	I 	()
nat ::= plus(nat, nat) I 0 1 1

funval [val, code]

inst ::= quote(nat) I push 	car 	cdr I cons I swap

I cur(code) I app 	add 	quoteid(var) I brk

I quotep(path) I pop

The meta-variables used in the following rules are those in XE, to which we add

the set Xath generated by pa. The Relational Rules below extend the relation
CAM . 	 . 	 . -p with the defimtion of the new mstructions discussed above. These rules are

additions to the rules 4.1(1) to 4.1(9).

I 	CAM 	I
A Extension to the CAM 	 state -p state

CAM 	 (10)
(v.S,quoteid(id).c) -p (id.S,c)

	

. CAM 	 (11)
(S, quotep(pa). c1 -' (pa. S, c)

	

CAM 	 (12)
(v.S,popc) -p (S,c)

CAM (S,brk.c) -* (S,c)
(13)

Comment

In rule (11), the definition of the instruction quotep(pa) adds pa to the top of

the stack instead of replacing the top of the stack by pa. The reason is that the

Chapter 7. Debugger Correctness 	 215

path stored on the top of the stack will be only used for debugging purposes,

and will be discharged by a pop instruction such that the normal evaluation of

the program may continue on the original stack. If quotep(pa) replaced the top

element of the stack by pa than we would need an extra push instruction to save

the original top before each quotep when compiling Fun expressions; by defining

quotep as above we avoid this extra push instruction in the compilation.

CAM CAM
The transition -' defines the abstract machine CAM = ("CAM -p , TJ)

where rCAM = T(Y m) state . Now, let BP be a total predicate on rCAm defined

FDCa Ca as follows: for all s E T(! m) stack, 07) E
T(Cam)jnçj, and c E T(>! m) code :

BP((S, op. c)) is true if and only if op = brk

This defines a debugging machine DCAM = (I'DCAM
DCM T) where the set

of states rDCAM = VS(BP) and
DM is defined as in Definition 5. 	 D

The next example changes the code generate by the compiler of Example 4.2. The

objective is to establish a correspondence between the CSEnV steps and DCAM

steps of the evaluation of expressions. This correspondence is achieved by the

correct placement of brk instructions on the code of the expressions.

Example 2 This example defines a compiler for the language Fun into code for

the DCAM by a Relational Specification based on the compiler lJrans defined in
DComp

Example 4.2. This compiler is defined by a relation (comp_env, exp) - state,

which uses (comp_env, var) I LC code and env E (comp_env, val) of Trans

as auxiliary relations.

The signature for this compiler is the union of the signature of the compiler

of Example 4.2 and the signature Q1m defined in Example 1. Moreover, the

meta-variables used in the Relational Rules are those defined in XE.

The set of Relational Rides defines the code generation for expressions, in

which break-point instructions are inserted in order to establish a correspondence

between the machine steps and the CS'V steps. As in Example 4.2, we write a

Chapter 7. Debugger Correctness
	

216

sequence Opi • ... • op, 	using the usual sequence notation (opi,... ,op), and

denote the concatenation of two code sequences c and c' by c©c'.

DComp 	I
Code Generator 	 comp..env I- exp -p code

	

DComp 	
(1)

CE F- n -p (brk,quote(n))

(CE,id) 	'LC C
DComp 	

(2)
GEl- id -* (brk)@c

DComp
(CE,id)l-e -* c 	

() DComp
CE F- fn id. e -p (brk,cur(c))

DComp 	 DComp

	

CEI-e1 -* c1 	CEF-e2 -p c2
DComp 	

(4)
CE I- e1 + e2 —p (brk,push)©c1 ©(swap)©c2@(add)

DComp 	 DComp

	

CE F- e1 —p c1 	CEF-e2 -* C2

DComp 	
(5)

CE F- let id = e1 m e2 -* (brk,push)©c 1 ©(cons)c2

DComp 	 DComp

	

CEF-e1 -* c1 	CEF-e2 -* c2
DComp 	

(6)
CE I- e1 (e2) -* (brk,push)©c1 @(swap)@c2©(cons,app)

DComp
Compiler

Fenv, ezp) —p state

DComp

	

E—+E(CE,v) 	CEF- e - c
DComp

(E,e) —p (V.ES,C)

This finishes Example 2.

The above compiler generates the following DCAM code for let x = 1 + 2 in x

in the empty environment:

(7)

(brk,push,brk,push,brk,quote(1) ,swap,brk,quote(2) ,add,cons,brk,cdr)

We denote the above code by c'. If we execute this code on the DCAM machine,

starting at the state (()ES, c'), we obtain the following DCAM steps:

Chapter 7. Debugger Correctness
	

217

DC M
(().ES, brk• push. brk push brk• quote(1) ...) 	 (1)

(QE
DCAM s ,brk.puSh.brk.quote(1).swap...) == 	 (2)

(()...s 	 DCAM
5 ,brk.quote(l).swap.brk.quote(2)....) == 	(3)

(Q.1.Q.es,brk.quote(2).add.cons.brkcdr.ec) DM 	
(4)

(),3),brk.cdr.Ec)
D4 	

(5)

(3. E,6)

The above steps nnd states are in a one to one correspondence with the CSEnV

steps and states of page 210, after hiding from that history the states in the boxes.

Therefore, using the concept of a debugging machine we achieve the one-to-one

correspondence between the machine and interpreter evaluation steps.

The Evaluation Order of Sub-programs

Let us consider other problems related to the difference between the two notions of

evaluation step. The point we want to emphasise is that compilation techniques,

and in particular optimisation, may break any correspondence between the code

and the original program; thus the evaluation of the code will produce steps that

not only have different granularity, but in which the order of the evaluation of

the sub-programs may be different from the steps of the interpreter.

To illustrate this problem, let us consider the code for the sub-expression 1 + 2

in the expression let x = 1 + 2 in x:

(brk,quote(1) ,swap, brk,quote(2) ,add)

Cl 	 C2

In this code sequence, the sub-sequences c1 and c2 are the code of the sub-

expressions 1 and 2 respectively. This correspondence between the source pro-

gram and its machine code greatly helps in establishing a correspondence between

the steps of the interpretation of the program and the steps of the evaluation of

its code on the machine.

Chapter 7. Debugger Correctness
	

218

However, there are at least two ways of replacing this code sequence by an-

other sequence that performs the same computation, i.e, produces the constant

value 3 on the top of the machine stack, and whose evaluation steps do not cor-

respond to the CSEnV steps. The first equivalent sequence is the single instruction

quote(3); a reasonably simple optimiser should be able to perform this optim-

isation. Because the sum operation is commutative, another equivalent sequence

is the code in which the relative order between c1 and c2 is changed, resulting in

the following sequence:

(brk,quote(2) ,swap,brk,quote(1),add) 	 (*)

The final evaluation of each of the three sequences of code produces 3 on the top

of the stack. However, the evaluation steps resulting from the evaluations of the

two alternative sequences do not match the CSEnV steps.

A possible solution to reestablish the correspondence between the steps is to

define step predicates at the interpreter level that regard the evaluation of the

expression 1 + 2 as a single step, hiding its sub-evaluations. Then, the correct

placement of brk instructions in any of the above code sequences may also pro-

duce the machine steps in which the evaluation of 1 + 2 is considered as a single

step. Therefore, the correspondence between the steps is established again. For

instance, for the code sequence (*) the following placement of brk instructions

will yield a single DCAM step for the evaluation of the entire sequence:

(brk,quote(2),swap,quote(1),add)

The problem of debugging in the presence of optimised code is a difficult one

mainly because the optimisations may break the correspondence between the

code and the source program, as discussed above. This problem has been ad-

dressed by several authors in the literature [Hen82,ZJ91]. The basic objective of

those approaches is to obtain a debugger with "expected behaviour" even in the

presence of optimised code. Their main problem is that, due to the absence of a

formal definition of evaluation step, the notion of "expected behaviour" cannot

Chapter 7. Debugger Correctness 	 219

be precisely defined. Therefore, it is difficult to conclude whether their objectives

were achieved, since those objectives were not clearly defined.

In the framework of this thesis we do have a formal notion of evaluation

step that agrees with our intuition; thus, we have the means to give a precise

definition of "expected behaviour". This behaviour can be specified in a concrete

Interpreter-debugger, and step predicates can be used to refine this behaviour

with coarser or finer debugging steps as required by the user. Then, break-point

predicates can be used to make the behaviour of the Compiler-debugger to match

the behaviour of the Interpreter-debugger, so that we can prove that the actual

behaviour of the Compiler-debugger matches the expected behaviour defined by

the Interpreter-debugger.

We shall not discuss the problem of debugging optimised code in this thesis

any further. However, this is certainly an important problem to be formally

addressed, and the framework developed in this thesis can be used in this task.

The Access to Debugging Information

We now discuss a second difference between Interpreter-debuggers and Compiler-

debuggers that is essential for debugging purposes: the access to information

about the evaluation. An Interpreter-debugger has access to the entire evaluation

history of the program; a Compiler-debugger has access to only the contents of a

single machine state. Therefore, the information that is necessary for a Compiler-

debugger must be encoded in the states of the machine or else must be explicitly

built and manipulated by the debugger. The main conceptual difference between

the two kinds of information is that evaluation histories are automatically built

by the CS based interpreter, while in the Compiler-debugger the information

must be constructed, and manipulated explicitly.

To illustrate some problems that may occur when a debugger has to be de-

signed using only the information that is in the machine states, let us compare

a CSEnV state of the evaluation of the expression let x = 1 + 2 in x with the

corresponding DCAM state of the evaluation of the code of this expression. At

Chapter 7. Debugger Correctness 	 220

step (5), the two corresponding states are as follows, where the state on the left

is the CSEnV state, and the one on the right is the DCAM state:

[x3.EEFx,(,.)v] 	 (((),3)es,brk.cdrc)

As far as the evaluation is concerned, both states have equivalent information.

However, for debugging purposes the CS Env state has more information than the

DCAM state. For example, the identiller x and the path of the current expression

are missing in the machine state. Moreover, we cannot reconstruct these data

from the machine state as it stands

A possible solution, to this problem is to add to the normal code of the

above expression, some debugging-code that builds the required information on

the machine states. For instance, using quoteid instructions we can build an en-

vironment with the variables in it, and using the quotep instruction we can place

the path of the current expression on the top of the stack. These informations can

then be used by the debugger to evaluate the debugging commands. With a suit-

able debugging code we build the machine state ((a, (x, 3))•es, brk.cdr.e c)

to replace the state (((),3) es,brk• cdr CC).

Let us now consider another instance of the same problem. Let the two states

below be hypothetical states of the evaluation of some Fan expression: the first

is a CSEnV state; the second is its corresponding DCAM state:

[x '-p (CE, y, 1 + 2,pa) F- x,pa' = v]

(((),[Q,brk. quote(1) swap brk• quote(2) add . -Cl) . , brk• cdr .

This situation is rather different from the one we just discussed above: in this

case the closures in each environment do not have the same representation. If a

debugger is required to output the value of ifrom the above states, an Interpreter-

debugger using the CS state would output (CE, y,l + 2, pa) and a Compiler-

debugger using the DCAM state would output

[,brk. quote(1) . swap . brk . quote(2) add . CC]

Chapter 7. Debugger Correctness 	 221

A possible solution to this problem is also to include enough information in the

machine state so that we can reconstruct the CS Env closure from the states.

Another solution is to consider closures as being non observable, by choosing an

appropriate observation signature for the debugger. This second solution agrees

with the view that, in most cases, we are not interested in looking to the internal

details of the closures when debugging. The latter is the solution used in Tiny

since closures are non-observable according to

Therefore, we can solve the problem of access to information on the Compiler-

debugger in two ways. We can add the information needed by the debugger on

the machine state by generating debugging code that construct such information.

Or else, we can make the information non observable in the Interpreter-debugger,

such that we do not need to include debugging code. The choice for which solution

to adopt depends on the functionality we require from the debugger. However,

both solutions are supported by our framework.

The next example shows another compiler for Fun into DCAM code; the code

it generates builds and manipulates machine environments with identifier names,

and creates a pointer to the current source sub-expression on the top of the stack

of some states. The objective is to establish a correspondence between the CSEThV

and the DCAM states with respect to the (observable) source level information

of the state, as well as with respect to the visible evaluation steps.

Example 3 This example modifies the definition of the relation compenv I-
DComp

exp —+ code. The code the new relation generates for expressions builds and

manipulates environments with identifier names. For this, an environment be-

comes a pair whose first component is an environment and the second component

is a pair of an identifier and its value, e.g., (O,(x,3)), where () denotes the empty

environment.

There are three parts of the code generator where changes are required to

manipulate the new form of machine environment: the look up code must have

an extra cdr instruction to project the value out from the pair of identifier and

Chapter 7. Debugger Correctness
	

222

value; the code for let expression must add the identifier, as well as the value

of the first sub-expression, to the current environment; and the code for closures

must update the environment with the identifier of its formal parameter. For the

last change, we will need to prepend the following code sequence to the code of

each closure:

(push,car,swap,cdr,push,quoteid(id),

swap,cons,cons,quotep(pa) ,brk)

where id is the formal parameter of the function, and pa is the path of the

function's body. In rule (3) we refer to this code as adj(id, pa), and use it as a

parameterised macro.

To include the pointer to the current source expression we use the technique

developed in Chapter 6: during the compilation we build the abstract-syntax

path pa of each sub-expression that is being compiled; this path is compiled into

a quotep(pa) instruction whose execution loads the path pa on the stack. The

debugger can use this path to identify the source expression that is about to be

evaluated by, for instance, looking up which source expression the path refers to

on a table built during the compilation.

The signature for the new compiler remains the same as in Example 2. The

new rules for the code generator and the compiler are given below.

Debugging-Code Generator 	 compenv I- exp, path
DC-omp

 code

	

DComp 	
(1)

CEI- n,pa -* (pop,quote(n))

	

(CE,id) 	LC C

	

DComp 	
(2)

CE I- id,pa -i (pop)©c©(cdr)

DComp
(CE,id)F-e,pac.4 -* c 	

() DComp
CE F- fn id. e,pa - (pop,cur(adj(id,pao)©c))

	

Chapter 7. Debugger Correctness
	

223

	

DComp 	 DComp
CEF- e1 ,pacl —* c1 	CEF-e2 ,pao —* c2

DComp 	
(4)

CE I- e1 + e2 , pa. — (pop,push,quotep(pa o 1),brk)©c1 ©

(swap,quotep(pa o) ,brk) © c2 © (add)

	

DComp 	 DComp

	

CEl-e1 ,pao -p c1 	CEI-e2 ,pao ! -p c2

DComp
CE I- let id = e1 in e2 , pa —' (pop,push,quotep(pa o 2),brk)©c1 ©

(push,quoteid(id),swap,cons,cons,

quotep(pa .),brk)©c2

	

DComp 	 DComp

	

CE F- e1, pa <>.. -p Cl 	CE I- e2 , pa o ----* c2

DComp
CE F- e1 (e2), pa -p (pop,push,quotep(pa <>1),brk)©c 1 ©

(swap,quotep(pa c'),brk)©c2©(cons,app)

	

Compilation of Environments 	 eriv 	E (comp_env, val)

	

CE 	E (&CE, ())

	

E 	(CE, v)

id F-+ n - E __*E ((CE, id), (v, (id, n)))

DComp
E' 	(CE',v') 	(CE',id') F- e',pa —4 c 	E 	(CE,v)

(9)
id i–* (E', id', e',pa)• E 	*E ((CE, id), (v, (id, [v', adj(id',pa)©c])))

Comp
Compiler 	 I (env, exp) — state

	

E —*ECE,V 	CE F- e,pa — c

(E,e,pa) — i (pa.v.e5 ,(brk)©c)
DComp

	
DComp 	

(10)

Comments

(3) - (6) Each rule constructs the abstract-syntax path of the sub-expressions.

Chapter 7. Debugger Correctness 	 224

(7) The compiler now has a third input component pa that is the initial path of

the expression e.

The above rules finishes the new compiler of Fun into DCAM. Informally, we will

use DComp as a name for a Relational Semantics that has the above rules and

the relation
DC
-

om
p
p 	

i as the nitial relation. This finishes Example 3. 	 0

The code generated by the above compiler for the expression let x = 1 + 2 in x,

with initial path () and on the empty environment, is given below:

(pop,push,quotep((,)) ,brk,pop,

push,quotep((, 2, 1)),brk,pop,quote(1),swap,

quotep((, ,)) ,brk,pop,quote(2) ,plus,push,

quoteid(x),swap,cons,cons,quotep((L)),brk,pop,cdr,cdr)

We refer to this sequence by c". If we start the DCAM with state

((0) . () . em (brk)©c"©e c)

the current state after 5 steps is:

(2;, 3)) e, brk . pop cdr cdr• CC)

At this state (Q,) indicates that boxed sub-expression of let x = 1 + 2 in j is

the current expression since (Q) is the abstract syntax path of this expression.

The environment ((), (x, 3)) contains the identifier x as well as its value 3. If

closures are not observable, then the machine states resulting from the evaluation

of the code generated by the above compiler contains enough information for a

definition of a Compiler-debugger with the same observable behaviour as Tiny.

In the next section we show a design of a Compiler-debugger called CTiny that

uses the above compiler, and in Section 7.4 we prove the equivalence between

Tiny and CTiny.

The inclusion of brk and quotep instructions in the code of expressions

for debugging purposes is inspired by the techniques used in a concrete imple-

mentation of a compiler-debugger for the CHILL language presented in [CCP91].

Chapter 7. Debugger Correctness
	

225

Therefore, our techniques to generate debugging code are realistic. This also

suggests that our framework can express practical Compiler-debuggers.

Debugging Code and Performance

Let us now discuss the interaction between the two problems discussed above: the

different notions of evaluation step and the different access to information about

the evaluation between the Interpreter-debuggers and the Compiler-debuggers.

This interaction is studied informally, but we argue that the conclusions drawn

from this discussion apply to most debuggers in practice.

In order to be able to design a Compiler-debugger whose behaviour is equi-

valent to the behaviour of an Interpreter-debugger, we must undertake two tasks.

First, to establish a correspondence between the evaluation steps and states in

both debuggers. Second, to encode in each machine state the observable source

level information about the evaluation that is required by the debugger.

On the one hand, how much information needs to be encoded depends directly

on the observation signature of the debuggers: in general, the larger the signature

the more information is necessary. On the other hand, the states in which this

information must be present depends on the granularity of the evaluation steps:

the finer is the granularity the more often the information will be required; thus,

it will have to be present in more states.

To encode the source information in the machine states often requires machine

code to build and manipulate this information, which we call debugging-code. For

instance, the adj code sequence in the compiler of Example 3 is a sequence of

debugging-code. Since this code does not perform any computation related to the

actual evaluation of the program, it will cause an overhead on the evaluation of

the program. This overhead is directly proportional to how much information is

necessary to be encoded and inversely proportional to how often the debugging-

code has to be evaluated.

If we consider that a debugger is more expressive the finer is the granularity of

its steps and the more information about the evaluation it provides, we have the

Chapter 7. Debugger Correctness 	 226

following problem: the more expressive the debugger is the larger the overhead

on the evaluation of the program. This problem is part of the specification of any

Compiler-debugger in practice, although often it is not identified nor addressed

explicitly. Moreover, the literature does not present any formal approach to this

problem.

The framework we defined in this chapter for the specification of Compiler-

debuggers forms the basis for such an approach. Although we do not treat this

problem in depth, it is an interesting problem for future work.

Concluding Remarks

In this section we studied various aspects of Compiler-debuggers: the evaluation

step, the access to information about the evaluation, and the influence of debug-

ging code on the performance of the programs. Each of these aspects is part of the

specification of every Compiler-debugger in practice. However, the approaches

to debugger design in the literature in general do not treat these problems ex-

plicitly. When those problems are addressed, they are addressed in an ad hoc

fashion with solutions that in general cannot be applied to different debuggers.

In our approach, these problems are treated for an arbitrary Compiler-debugger.

In the next section, the aspects discussed in this section will be used in the

complete specification of a Compiler-debugger.

7.3.2 The Specification of a Compiler-debugger

In this section we design a debugger, called C Tiny, based on the compiler of Fun

into DCAM, defined in Example 3.

A Specification Notation for Compiler-debuggers

We will use the notation DSL defined in Section 6.5 in the specification of

Compiler-debuggers as well. In the specification of a Compiler-debugger we need

the ability to describe single evaluation states; thus the sequence patterns of DSL

Chapter 7. Debugger Correctness 	 227

are not necessary in such specifications. Therefore, we will only use the subset

of DSL that has the constructor patterns. In this sense, the subset of DSL used

in this section is just the untyped A-calculus with pattern matching.

Since DSL is parametric on a Relational Specification, we will use the in-

stantiation of DSLby DComp. For this instantiation we define the functions

corresponding to initial and next that were defined in Section 6.5. The func-

tion corresponding to initial is called M_initial, and in its definition recall
DComp

that -+ is a partial function.

	

M_initial(E F- e 	v) = st 	if there exists st E
p

such that (E, e) DCom
-~ st

M_initial(E I- e = v) = (ES,EC) otherwise

The function M_next is the corresponding to the function next. In the definition

	

of Mnext, recall that9 	is a partial function.

Mj.iext (st) = st 	if stDC st

Mnext (st) = (Es, E) if there is no st' such that st' 	st'

The function M_initial builds an initial DCAM state from an environment and

expression, by compiling them using the compiler of DComp. The function

Mnext advances the current state by one step of the DCAM machine. These

are the only pre-defined functions that produce states as results; in particular

Miiext is the only function that advances the evaluation; thus, only states that

are derivatives of an initial DCAM state can be reached using the pre-defined

functions. This simplifies the verification of the correctness condition of Defini-

tion 1 for a Compiler-debugger using the pre-defined functions.

Some Auxiliary Functions

The next functions are defined to be used in the specification of the debugging

commands of CTiny. In these definitions, the results of the functions are the

terms of sort result defined in the specification of Tiny in Section 6.6 (page 190).

Chapter 7. Debugger Correctness
	

228

The following function specifies a stepping command that advances the evaluation

by n DCAM steps, where n is an integer number.

fun M..step((vS,&c), n) = ((v.S,e c),succeed)

I Mstep((es,Ec), n) = ((e s ,ec),fail)

I M...step(st, n) = if n>O then M_step(M_next(st),n-1)

else (st,nul1)

The function lookup searches for the value of an identifier on a machine

environment.

fun Miookup((ME(x,v)), y) = if x = y then val(v)

else lookup(ME,y)

I MJookup), y) = null

The function M_run_until advances the evaluation until x has value i in

the current machine environment. In its definition, the pattern (pa . E • -, _)

matches a state that has a path pa on the top of the stack, and a machine

environment E on the second position of the stack.

fun M..run_until((v•S,Ec), x, n) = ((v•S,E c),succeed)

I M..zun_until((&g,ec), x, n) = ((es ,ec),fall)

I M.run..until (St as (pa . ME . ,), x, n) =

case lookup(ME, x) of val(nl) => if ni = n then (s, null)

else Mrun_until(Mnext(st), x, n)

I - => M.iun_until(Mnext(st), x, n)

The following functions will be used in the specification of the C Tiny commands

show id, show pos, and show res

Chapter 7. Debugger Correctness 	 229

fun M_showid((_ • ME -,), y) = Miookup(ME, y)

I M_showid((es , EC), y) = fail

I M_showid(_,_) = null

fun M_showpos((pa • -, _)) = path(pa)

I M_showpos((e 5 , EC)) = fail

I M_showpos(_) = null

fun M_showres((v • -, 	= val(v)

I M_showres((Es , EC)) = fail

I M_showres(_) = null

The Specification of CTiny

We define a Compiler-debugger for an arbitrary program formula p e PxE(c0mP).

DCAM We start by defining an evaluator for p. Let EV = (FDCAM, = IEV) 	be

the evaluator derived from the debugging machine DCAM of Example 1 where

'Ev = M_initial(p).

We now define the Compiler-debugger CTiny = (ECT, A CTiny ACT2 	Tiny
)' OBS

for p based on DComp and EV. The algebraic signature ETZI is the union of

>2DComp and the signature that defines the debugging language and language of

results. This signature is the same given for Tiny in Section 6.6 (page 190), ex-

cept that the function operations of sort val are defined in Em1) instead of in
y2 Env .

DComp The algebra A CTiny agrees with A 	on the mterpretation of the symbols

of EOComp and give the term algebra interpretation for debugging commands and

results. The observation signature E Tiny was defined on page 208. OBS

Chapter 7. Debugger Correctness
	 230

It remains to define the debugging commands. Let
1T27!, be the following

labelled terminal transition system:

CTiny T(CTflnI\ 	X T(E' 	 CTiny
(rDCAM, 9 	,) command)result, 	CTiny')

where the initial state I CTiny =
'EV' and g CTiny is the identity function on

DCAM• It remains to define the relation 	CTiny• For all st E rDCAM and

d E 	
CTiny

command the transition:

F

	

st d,r ' CTny — 	st

is defined as follows:

d = reset 	 r = null and stF = ICTiny

d=step n
	

(st', r) = M_step(st, n)

d = run until id = n (st', r) = M_run....until(st, id, n)

d = show id 	 r = M_showid(st, id) and st' = st

d = show pos 	r = M_showpos(st) and st' = st

d = show res 	r = M_showres(st) and st' = st

Checking the Requirements of Definition 1

It is easy to check that CTiny is a Debugger-schema for p based on DComp and

EV. First, notice that functions M_step, M..xun_until, M_showid, M_showpos, and

M_showres are total. Then it is easy to check that 'CTinY obeys the robustness

requirement of Definition 1. The functionality requirement of Definition 2 is

fuffilled by the step n command.

7.4 A Proof of Debugger Correctness

In this section we prove that the Compiler-debugger C Tiny is equivalent to the

Interpreter-debugger Tiny of Section 6.6, which we redefined in Section 7.3 to

include an observation signature. The main objectives of this example are to II-

lustrate the proof method of Debugger Bismiulation and demonstrate that proofs

Chapter 7. Debugger Correctness 	 231

of debugger correctness are feasible. Not all parts of the proof will be given in

full detail.

Proposition 2 The debuggers Tiny and CTiny are observationally equivalent,

i.e., Tiny CTiny. 	 U

The proof of this proposition is given for an arbitrary p E PxE(1Z). To carry

out this proof we define a relation B C DH x EV and prove that B is a Debugger

Bisimulation according to Definition 2.

We first prove some lemmas that will simplify the proof of Proposition 2. For

these lemmas we define a relation G on the carriers of observable sorts of the

algebras AT and ACTI.

Definition 6 (The Relation G) Let us define a S'-sorted relation G, such OBS

that for all s E r Tiny
OBS' G3 C A Tinyx ACTInY.

For s E {var, mat, path}, G5 is the identity relation on ATt?Y x
3 	 3

Gjunvai =

{([E, id, e, pa], [S, adj(id, pa)©c]) : E 	E (CE, S) and (CE, id) I- e, pa' c}

G 0, = Gjjnvai + Gnat

G,.esuit = G 01 + Gexp + Genv + Gvar + Gpath
	 U

Since the algebras A Tiny and ACTI give the same interpretations for terms in

T(ETI2Y) it is trivial to prove that G : ATI , AcTy We will assume
OBS 	 OBS

this fact in the following proofs.

In the rest of this section we use the following notational convention: whenever

E I- e, pa =:> v is a program formula in Px(1 E), VE and ce denote the. DCAM

environment and DCAM code such that E _*E (VE, CE) and CE I- e, pa => c.

Similarly, whenever (E, id) v belongs to VE and cd denote the

DCAM environment and DCAM code such that E _*E (VE, CE) and CE I-

id, () 	Cid.

Chapter 7. Debugger Correctness
	

232

The following lemma states the equivalence between environment manipula-

tion in Env and DComp. This lemma will be used in the proof of Lemma 2.

Lemma 1 (Environment Lemma)

For all E E T(') env , s € T1DComp\ 	e T(FY C0mP) COdC , (id) id) e Gvar , I stack,

v E X 1 , substitution 9, and goal stack a:

If there is a CS sequence such that [9 : (E, id) 	v :: aJ*[91 : a]

CAM* ,
then there is v ' e Aval

DCOmP such that (VE . S, Cid c) -) (v • S, c)

and (vO', v') E G vai.

And conversely.

Proof (Sketch) The proof of Lemma 1(1) is by structural induction on E. Since

we are assuming that there exists a CS sequence, then E 0 EE.

E = id' '-f V eE 1 	In this case, since there is a CS sequence, id' = id. Fur-

thermore, t'E = (VEt, (id,)) and Cd = cdr cdr. Then v9 ' = V in the first eval-

uation, and v ' = v' in the second evaluation. From the definition of the relation

env (val) comp_env) in Example 3, it is simple to check that (v,7) E

I E = id' '- V E' I If id = id', this case follows as above. If id 0 id', then

VE = (VEt, (id', 7)) and Cd = carS c' cdr. Then the result follows by applying

the inductive hypothesis on the following states:

[9" : (E', id) 	L v :: a] 	(VEt . S, c' c)

The proof of Lemma 1(2) follows similarly by structural induction on VE. 	0

The following lemma establishes a correspondence between the steps of the eval-

uation on the CSEfl system and on the DCAM. Therefore, it is essential in the

proof of the equivalence between the debuggers.

Chapter 7. Debugger Correctness
	

233

Intuitively, the lemma says that if CSEnV takes N visible steps to evaluate a

sub-program to its result, then, on the machine, the code of the sub-program

evaluates to its results in N - 1 DCAM step followed by M > 0 steps of the

(underlying) CAM. In Lemma 3, we shall see that the CAM steps that complete

the Nth DCAM step of the sub-program also adjust the stack in order to establish

a correspondence between the CSEnV state and the maclime state with respect to

the information about the evaluation.

Recall from section 6.4.1 that, for any debugging history dh and step predicate

SP, I dli Isp denotes the number of visible steps in dli according to SP. In the

next lemma we use I dli Inolookup denoting the number of visible steps of dli e

DH according to the step predicate nolookup defined in section 6.6. Moreover,

whenever st
k
st' is a debugging history, we abbreviate I st

k
st' nolookup by

c k
noloolcup

To improve the readability of the following proofs we will write a sequence

of machine code separated by "" even where we should use the concatenation

operator"@". The context and the names of the meta-variables will be sufficient

to resolve ambiguities.

Lemma 2 For all program formula E F- e, pa = v e PX(EflV), substitution 9,

and goal stack a the following holds:

1. II there is a CS sequence of length K > 0 of the form

[0: E F- e,pa = v :: a] ' [0' : a]

then there exist L, M > 0 such that

ML CAMM ,
(pa.vE•S,brk•c.c)'A -p (v.S,c)

(vO', v') e G,.e,, t , and 	Inolookup L + 1

2. And conversely.

Chapter 7. Debugger Correctness
	

234

Proof The proof of item 1 is by induction on the number N of visible steps of

the transition 	. The proof is done by case analysis on the expression e.

Base Case For N = 1, we have three cases to analyse:

e = n

	

	In this case the transition sequences are as follows:

[0: E F- n,pa = v :: a] ' [0' : a]

CAM 2 (pa.v.S,brk.pop.quote(n).c)—) (n.S,c)

In the above sequences vU = n and L = 0; thus the result holds.

In this case the CS transition sequence is as follows:

[0:EF-id,pa=tv::a]=',Cs' 	 (1)

[0" : (E, id) 	L V :: a]CJ 	 (2)

[0" : a] 	 (3)

Applying Lemma 1 in (2) we obtain the following sequence of machine transitions:
CAM 2

(pa. VE S, brk . pop. Cd c)— 	 (1)

CAM *
(VE S, C 2d c)— 	 (2)

(v'.S) c) 	 (3)

*

and from Lemma 1 (vU", v') e G01. Moreover, I R InoOOLp= 0 because the

lookup steps are hidden according to nolookup. Therefore, L = 0 and the result

holds.

e = fri id. e' 	In this case the transition sequences are as follows:

[0:EF-fnid. e',pa=v::a] '[0':a]

CAM2
(pa. VE - S,brk• pop cur(adj 	. c)— (EVE, adj Cell S, c)

and vU
I,, = (E, id, e', pa). From the definition of Gfunvd, (vU I,,

 , v I) E

Moreover, L = 0 and the result holds.

Chapter 7. Debugger Correctness 	 235

Inductive Step For N> 1 we have three cases to analyse:

e = e1 + e2 	In this case the transition sequences are as follows:

[0:EFe1 +e2,pa=v::a] ' 	 (1)

[O':EF-e1,pao1vi::EF,pav2:: ...] 	 (2)

[0" : E F e2,pa o = v2:: E F num(plus(v1 , v2)), () = v :: 	 (3)

[0" : c] 	 (4)

k
Where,

cs
Inolooicup= m, and 	InO1Oop= n. The total number of visible

steps of the above history is N = m+n+1, because the step (1) is visible and the

step of the evaluation of the formula E I- plus(v 1 , v2), () = v is hidden. Now,

we must show that the machine evaluation of the code Ce is done in N - 1 steps

of the DCAM.

(pa. yE S, brk pop . push quotep(pa o) . brk c, swap• . . .fA 4 ' (1)

(pa 1 	VE S, brk Cei swap. quotep(pa o a)..
)D4m1 	

+ 	(21)

CAM 2
(v VE S, swap . quotep(pa o 2) . brk Ce2 .. .)-4 	 (3)

DCAM 1 CAM*
(pa 	. v • S, brk• c 2 add•...) = 	 (41)

'i 	, 	 CAM 1 (v2 .v1 .,,add.c)-4 	 (5)

(v' . S, c) 	 (6)

Where, the transitions marked with f are the points where the inductive hy-

pothesis was applied. Therefore, (v1 0", t4) E Gvai, (v20",v) e Gvai, vO" =

plus(v10", v20 ...), and v ' = plus(t4, v). Since G is a strong correspondence and

plus is compatible with G, we have that (vO", v') E G 01. The sub-sequence from

the state (2) to the state (4) has (m - 1) + 1
DM

 steps. Therefore, the total

DCM stepsoftheabovesequenceisl+(m-1)+1+(n-1)=m+n=N-1.

Therefore, the result holds for this case.

e = let id = e1 in e2 	In this case the transition sequences are as follows:

Chapter 7. Debugger Correctness 	 236

[9:EH1etid=e1 ine,pa=tv::a] 	 (1)

[0': E I- e1 ,pao= v1 :: id i- v1 . E I- e2 , pa3± v2 	 (2)

[9":id-v1 .EF e2 , pao=v2 ::a] ' 	 (3)

[0": c] 	 (4)

'

Where, 	
- 	 Cs

= InoloOp m, and 	 - n. Therefore, N = m + n + 1. Now,

we must show that the machine evaluation of the code for e is done in N —1 steps

of the DCAM machine.

(pa. VE S, brk . pop . push quotep(pa) . brk• C 1 push.)D%4'
(1)

(pa o 2 VE VE S, brk• C 1 push quoteid(id)
... 	 r 	(2)

CAM4
(v VE S,push• quoteid(id) . swapS cons . . .)- 	 (3)

CAM 2
((id, z4). VE• S,cons quotep(pa) brk Ce2.. .)_4 	 (4)

(pao. (vE,(id,t4)) . S,brk c2..
)D4 	CAM* 	

(5)

(v2 .S,c) 	 (6)

where the transitions marked with f are the points where the inductive hypothesis

was applied. Therefore, (v10",v) E Gvai and (v29", v) E Gvai.

The sub-sequence from the state (2) to the state (5) in the above transition

sequence, has (rn - 1) + 1
DCM D steps. Therefore, the total CM steps of the

above sequence is 1 + (m - 1) + 1 + (ii - 1) = m + n = N - 1. Therefore, the

result holds for this case.

e = e1 (e2) 	In this case the transition sequences are as follows:

[9: E F- e1 (e2),pa 	v :: 	 (1)

[0': El- e1,pao1z (E,id,e',pa') :: E I- e,pa<2=, v2:: ...]r 	(2)

[9": E F- 	 t :: id 	El- e',pa' = v :: a] 	 (3)

(4)

[9" : a] 	 (5)

Chapter 7. Debugger Correctness 	 237

where I J3 Ino1oop= m cs
I 	I nolookup = 72, and 	 o. Therefore,

N = m + n+ o + 1. Now, we must show that the machine evaluation of the code

for e is done in N - 1 steps of the DCAM machine.

(pa. VE S, brk pop push quotep(pa o 1) brk Cej swap . . .)' A 	(1)

(pa o 1. VE - VE . S, brk Cei swap• quotep(pa 2)) Am' 2* 	(21)

CAM 2
([SEI, adj. Cell VE S,swap. quotep(pa) •brk. Ce2 • 	 (3)

DCAM 1 CAM*
(pa. VE - [SI,adj. Cell S,brk• Ce2 .cons.app• c) 	-i 	(41)

CAM 2
(v2 . [SEI, adj• Cell • 8, cons• app. c)— 	 (5)

CAM'°
((VEt, v2) S, adj . c• c)—. 	 (6)

(pa'. (vEl,(id,v2)). S,brk• Ce1
c)AM0l
	

(7f)

(v'.S,c)
	

(8)

where the transitions marked with f are the points where the inductive hypothesis

was applied. Therefore, ((E', id, e', pa', [VEt, adj• cat]) E Gfrnval, and (v20", v) E

Gvai, where the code adj is as follows:

(push,car,swap,cdr,push,quoteid(id),

swap,cons,cons,quotep(pa') ,brk)

The sub-sequence from the state (2) to the state (4) in the above transition

sequence, has (m - 1) + 1
DM steps, the sub-sequence from (4) to (7) has

DCM 	 DCM
(n - 1) + 1 	steps. Therefore, the total 	steps of the above sequence

isl+(m-1)+1+(n-1)+1+(o-1)=m+n+o=N-1. Therefore, the

result holds for this case.

The proof of item 2 of this lemma follows similarly by induction on the length of

the DCAM evaluation of the code of the expressions. This finishes the proof of

Lemma 1. 	 D

We now define a relation B between the states of Tiny and C Tiny.

Chapter 7. Debugger Correctness 	 238

Definition 7 (The Relation 8) Let B C DH x çEV be the relation inductively

defined as follows:

1.
(J TinY 1CTinil) e B.

2.11 (dh, st) E B then (step(dh,1),M_next(st)) E B. 	 0

In the next proofs we will use the following proposition. This proposition states

that for all program formulae in Env either its initial debugging state is the

failure state in Tiny and CTiny or the CSEnV evaluation of the formula and the

execution of its DCAM code never fail.

Proposition 3 For all program formula p = E I- e,pa = v E PxE(),

1Timy
= ([}) if and only if 1CTiny

= (O,EC) p 	 p

and whenever initial(p) = 	: p] and M_initial(p) = (VE, C e) then there is

no transitions of the form:

[O : p} W []

D*
(VE,C e)

CAM
 (ES,EC)

Proof (Sketch) For the above equivalence, if I"' = ([]) then from the definition

of I'"' on page 230 we have that FV(close(e, E)) { }. In this case it is easy to
DComp

check that the compiler - ils when generatmg code for any sub-expression

XE FV(close(e,E)). Therefore, jCTzny = (ee)

Otherwise, if JTI = (
ES, E) then the compiler failed. It is easy to check that

the compiler only fails in when generating code for some free-variable. Therefore,

FV(close(e, E)) { } and I,"' =

For the second part of the proposition, it is not difficult to prove that the

evaluation of a closed expression and the execution of its code never fail. 	11

Chapter 7. Debugger Correctness
	

239

The following lemma states if a pair (dh, st) belongs to B then dh and st

contain the same observable information about the evaluation that is used by the

debugging commands. A completely formal proof of this lemma would have to

consider the formalisation of the pattern matching defined in Appendix A. That

is, to show that a pattern matches a debugging history or a state, we would have

to use the rules of the semantic of the pattern matching of section A.3. However,

the patterns that are treated below are very simple and we shall informally verify

the pattern matching. However, it should be clear that the formalisation of the

debugging specification language is essential for a completely formal proof of

debugger correctness.

Lemma 3 For all pairs (dh, st) E B, one of the following statements hold:

<h, 11> matches dh if and only if (e ,E) matches st.

t(<>,[_: E I- e, pa = v],...,[sub : success], <>) matches dh if and

only if (v' . S, e y) matches st and if both sides of this equivalence are

true then (sub(v),v') E Gvaj.

<h, [E I- e, pa = v :: _]> matches dh if and only if (pa' . SE - -' ce _)

matches st and if both sides of this equivalence are true then ap = pa', E

is bound to E, SE is bound to VE, e is bound to e, and ce is bound to Ce .

Proof

The proof of Lemma 3(1) is an immediate consequence of Proposition 3. The

proof of Lemma 3(2) follows immediately from Lemma 2 for the case that c =

S = e, and c = e. For the proof of Lemma 3(3), it is easy to check from the

definition of B that for all (dh, st) E B there is a natural numbers N such that:

dli = step(ITfl!1 ,N) 	and 	st =

where MnextN (1CTInY) denotes the composition of N applications of the function

M..iiext. The right to left implication of Lemma 3(3) is proved by induction on

N.

Chapter 7. Debugger Correctness
	 240

Base Case N = 0.

= 1Tiny
= ([Oo: E F- e,pa = v])

M..next0 (1CTiflY) = 1CTiny = (pa. VE 6s Ce)

and the result holds trivially.

Inductive Step N > 0. For an arbitrary debugging history:

dli' o [0: E F- e,pa' = v :: a] = step(I Tiny
N)

we have to analyse the Relational Rule in çb" that was used in the expansion

of the current goal of this history. Such a rule exists otherwise N would be 0.

For each case we show that the corresponding DCAM state has the required

form, i.e., the machine pattern of Lemma 3(3) matches the DCAM state with

the required bidings.

Rule 3.2(4) For this rule we have to consider two cases. First, when e is the

operand on the left of e1 + e2 , and then when e is the operand on the right of

such expression.

e + e2 In this case we have:

step(I Tiny ,N-1)=dh"G[0:EF-e+e2,paPV.a] 	 (1)

step(IT2 , N) = dhI [0:EHe,pa1V:: ...) 	 (2)

Applying the inductive hypothesis on (1) we have the following:

N-i CTiny M..next (I) =(pa.v.S,brk.pop.push.quotep(pao1)brk....)

(1)

CTiny MnextN (I) = (pa i - VE VE S, brk Cei S...) 	
(2)

Therefore, the state M.iiextN
(1CTiny) has the required form, and this case holds.

In this case we have:

Tiny step(I 	,N - K — i) = dli" .o [0: E F- e1 + e,pa = v :: a] 	 (1)

Chapter 7. Debugger Correctness
	

241

(2)

step(IT ,N) = dli' < [0" : E I- e,pa <>2 	v::
.. .] 	

(3)

Applying the inductive hypothesis on (1) we have the following:

Mnext (N—K-1)(1CTinY) = (pa. VE - S, brk pop. push quotep(pa <>1)

= (pa<>1. VE VE S,brk• C 1 ...) 	 (2)

Applying Lemma 2 on (2) we have:

(paol. VE VE S,brk Cei .
)D MKl

CAM 2 (t4. VE - S, swap quotep(pa c4) brk. c 2 . . .)+ 	 (3)

(pa <>• VE• 	S, brk C 2 add....) = M_next N
(I

CTin i) 	 (4)

Therefore, M_next N (I CTiny) has the required form, and this case holds.

Rule 3.2(5) For this rule we also have to analyse two cases:

let id = e in e2 l This case is similar to the first case for rule 3.2(4).

let id = e1 in e In this case we have:

step (ITfl!I ,N _ K _1) =dh"o[O:EF-let id = e1 in e,pa=v::a] (1)

Tiny 	=

dh"o[O' : E I- e1 ,pa<> 2 = vi:: id i— v1 . E F- e2,pao => v2 :: a] 	(2)

Tiny 	= dliIII <>[0IF
 : id '—' 	E I- e,pao= V2 :: a] 	 (3)

Applying the inductive hypothesis on (1) we have:

M..next (N—K—i) (1CTinY) =

(pa. tIE . S,brk•pop. push.quotep(pao2).brk. Cei ...) 	 (1)

Mnext (N-K) (JCTinY) = (pao. VE VE - S,brk• Cei .push....) 	(2)

Applying Lemma 2 on (2) we obtain:

Chapter 7. Debugger Correctness 	 242

(3)

CAM 4
(v. VE - S, push. quoteid(id) swap. cons .. .)- 	 (4)

CAM2
((id,v)v E S,cons.quotep(pa)brk. Ce2 	 (5)

(pa.(vE,(id,v)) S,brk C12 	
=MextN(ICTu) 	 (6)

Therefore, M.iiextN(ICT) has the required form, and this case holds.

Rule 3.2(7) For this rule we have to analyse three cases:

e(e2) 	This case is similar to the first case for rule 3.2(4).

ei(e) I This case is similar to the second case for rule 3.2(4).

The third case is when the current goal comes from the third premiss of rule 3.2(7).

For this case we have:

, step(IT 	 I,,,
,N - K - L - 1) = ah o[O : E I- e1 (e),pa => v :: a] 	(1)

step(ITu,N - K - L) =

dh" G [0' : E I- e1 , pa 	. = (E', id, e, pa") :: E F- e2 , pa 	= v2:: ...] 	(2)

Tiny 	=

	

dh"[0" : E F- 	 v2 :: id i—* 	E F- e',pa" => v :: a] 	(3)

step(IT ,N) = dh' <(id '—* v2 . E F- e,pa" => v :: a] 	 (3)

Applying the inductive hypothesis on (2), we obtain:

M..iiext (N—x—L-1) (JCT$flY) =

(pa. VE S,brk pop .push.quotep(paoi).brk. C 1 	(1)

(N—K—L)
M.iiext 	

(JCTiflY) = (pa j. . tIE . VE S,brk. Cei swap....) 	(2)

Apilying Lemma 2 on (2) and (4) below, we obtain:

CAM 2
([SEI, adj. Ce l] . VE S,swap quotep(pao) •brk Ce2 .. .)4 	 (3)

DCAM 1 CAM+
(pa. VE [SS,adj Cell S,brk• C 2 .cons.app. c) = 	— 	(4)

CAM2
(v2. [SEI, adj. coil . S,cons . app. C)—I 	 (5)

Chapter 7. Debugger Correctness

CAM 1°
((VE , , v2). S, adj Cs c)—.-+

(' I pa (VES, (id, v2)). S,brk• c c) = MnextN(ICTY) 	 (7)

The state M..nextN(ICTY) is in the required form, and this case holds. This

finishes the proof of the left to right implication of Lemma 3(3). The proof of

the right to left implication follows similarly by analysing the compiler rule that

generated the sequence of code on the DCAM state. This finishes the proof of

Lemma 3. 0

The following lemma states that the environment lookup functions lookup of

Tiny and MJ.00kup of CTiny are equivalent. Its proof is an immediate con-

sequence of Lemma 1 and is omitted here.

Lemma 4 For all pairs E and VE, and for all id

(lookup (E, id),M...1ookup(v,id)) e G 01 	 0

We are now ready to prove Proposition 2. This proof uses Lemmas 2 and 3.

Proof (of Proposition 2)

For this proof we must show that B is a Debugger Bisimulation according to

Definition 2. First, (iTl , 1CTinY)
E B follows immediately from the definition of

B. Let us prove first that B obeys Definition 2(1). We must show that for all

(dh, st) e B and d E T(T)command

for all r E 	 and dh' E DII, dh 	dh' implies that there exist L.J

TI e T(EcTtI),., and st E rEV such that st
d

 !
r'
_*CTinY st' and the two require-

ments hold:

(dli', st') E B.

II r E T(E),.,wt then r = r OBS

243

(6)

Chapter 7. Debugger Correctness 	 244

The proof follows by case analysis on d. In this proof we will not consider the

cases where dh = ([]) and st =(Es,EC) since these cases follows trivially from

Lemma 3(1) and Proposition 3.

I d = reset I In this case dli' = 1TUI and r = null. Then st' = ICIny r' = null,

and the proposition holds.

d=step ui Inthiscase:

(dh',r) = step(dh,n)

(st', r') = M_step(st, n)

This proof is by induction on n.

Base Case n = 0. Ifi(<>, [_: E I- e, pa = v],..., [sub : success],<>)

matches dh, then dh' = dh and r = succeed. From Lemma 3(2) (v' • S, e)

matches st. Therefore, st' = st and r' = succeed and r = r'. When the pattern

t(<>,[_: E I- e, ap = v],...,[sub : success],<>)

does not match dh we have, from Lemma 3(2), that (v' . S, e) does not match

st. In this case, dh' = dh and r = null and st' = st and r' = null. Therefore,

r = r' and the proposition holds.

Inductive Step n> 0. II the pattern

E F- e, pa = v],...,[sub : success],<>)

matches dh, this case follows as in the base case. Otherwise, since we are

assuming that step(dh,n) terminates, then step(dh,1) must also terminate.

In this case, it is easy to check from the definition of step (page 123) that

step(dh, 1)next(dh) and:

step(dh,n) = step(step(dh,1),n-1)

M_step(st,n) = M_step(M..next(st) ,n —1)

Chapter 7. Debugger Correctness 	 245

Therefore, we can write:

(dh',r)= step (step (dh, 1) , n — 1)

(st', r') = M_step(M.iiext(st) ,n —1)

From the definition of B we have that (step (dh, 1), Mnext (st)) C B. Therefore,

we can apply the inductive hypothesis to obtain requirements 1 and 2. This

finishes the proof of this case.

I d = run until id = nI In this case:

(dh',r) = run_until(dh,id,n)

(st', r') = M_run_until(st,id,n)

Since we are assuming that the call run_until(dh, id, n) terminates, there ex-

ists a finite number N of recursive calls to the function run_until in the call

run_until(dh, id, n). The proof of this case is by induction on N.

Base Case N = 0. We have two cases to analyse:

t(<>, [_: E F e, pa = v], ..., [_: success] , <>) matches A. This case

follows as in the step n case.

t(<>, [_: E F- e, pa = v],..., [_: success],<>) does not match A.

In this case, <Ii, [E I- e, pa =:> v ::]> matches dh with E bound

to E and e bound to e. From Lemma 3(3), (pa' . SE • ..., ce • ...)

matches st with SE bound to yE and ce bound to c. Since this call termin-

ates with no further recursive call to run_until then lookup(E, id) = n.

From Lemma 4 MJ.00kup(SE,id) = n. Therefore, dh' = dh, st' = st,

r = r' = null, and the result holds

Inductive Step N > 0. We have two cases to analyse:

1. <h, [E F e, pa 	v :: _]> matches dh with E bound to E and e bound

to e. From Lemma 3(3), (pa' SE, ce ...) matches st with SE

Chapter 7. Debugger Correctness
	

246

bound to VE and ce bound to Ce . Since this call there is at least one fur-

ther recursive call to run_until then lookup(E, id) n. From Lemma 4

MJ.00kup(SE,id) 0 n. Therefore,

(dh') r) = run_until(step(dh,1) ,id,n)

(st', r') = M_run_until(M_next(st) ,id,n)

From the definition of 13 (step(dh, 1), M_next(st)) E B. Therefore, we can

apply the inductive hypothesis to obtain requirements 1 and 2.

2. In this case, the pattern <h, [E F- e, pa = v :: _J> does not match

A. This result follows trivially by applying the inductive hypothesis.

This finishes the proof of this case.

d = show id I The proof of this case is an immediate consequence of Lemmas 3

and 4.

d = show pos] The proof of this case is an immediate consequence of Lemma 3.

I d = show res 	For the proof of this case notice that, since Gvai is the iden-

tity on the observable terms then the Observational Equivalence requirement in

Definition 2(1) can be replaced by (r, r') E Gal. We have to analyse two cases.

First, if the pattern

E I- e, pa = vi,..., [_: success],<>)

matches dh, from Lemma 3(2) 	1 S, 6) matches st and (r, r') E Gvai.

Second, both patterns do not match dh and st respectively, and r = Sr' = null.

The proof of the requirements of Definition 2(2) follows similarly. This finishes

the proof of Proposition 2 and we conclude that Tiny C Tiny 	 0

Chapter 7. Debugger Correctness 	 247

7.5 Summary and Conclusions

In this chapter we developed a theory of debugger correctness and studied some

problems related to the design of Compiler-debuggers. We started by generalising

the notion of Interpreter-debugger to the notion of Debugger-schema, in which

the evaluation of programs does not have to be performed by interpretation using

the CS system. We then defined a relation of equivalence of Debugger-schemas

that expressed the conditions for debugger correctness, and proved a result which

relates the equivalence of Interpreter-debuggers and the Observational Equival-

ence of their underlying Relational Specifications.

We also characterise the concept of Compiler-debuggers and studied various

aspects of the specification of such debuggers: the granularity of debugging steps,

the access to information about the evaluation, the influences of optimised code

in debugging, and the overhead caused by debugging code. This chapter fin-

ished with a complete example of the specification of a Compiler-debugger called

C Tiny, and a proof of equivalence between Tiny and CTiny.

As far as we are aware of, debugger correctness has not yet been addressed

in the literature. The results of this chapter provide a general account of this

problem that addresses the correctness of a wide class of debuggers, not only

those under Definition 6.2. These are the main theoretical contributions of this

chapter.

We demonstrated that proofs of correctness of Compiler-debuggers can be

done. It remains to show practical applications of the theory. In order to make

the proofs scale up to real examples it will probably be necessary to define meth-

odologies and tools to assist in these proofs. Since the theory of debugger cor-

rectness is closely related to the theory of compiler correctness, tools developed

to assist in compiler correctness proofs can also be used in debugger correctness

proofs. We believe that the results developed in this chapter form the basis for

practical applications of debugger correctness.

Chapter 8

Concluding Remarks

This thesis has proposed a theory for the specification and correctness proofs

of compilers and a related theory for the specification and correctness proofs of

debuggers. In both theories, a Relational Semantics of the programming language

was used as the reference point for specification and correctness. It has also

demonstrated how to apply these theories to the specification and correctness

of concrete compilers and debuggers. This chapter summarises the key issues of

this thesis and proposes areas for further research.

8.1 Summary

In this section we summarise the main results of this thesis and discuss how they

extend and improve related approaches.

In Chapter 2 we defined Relational Semantics as the underlying semantic

formalism used throughout this thesis. This definition was carried out in two

stages. Section 2.3 defined the syntactic aspects of the formalism by defining the

concept of a Relational Specification Syntax. Section 2.4 defined the semantic

aspects of the formalism by defining the concept of a Relational Specification and

its Declarative Semantics.

In Chapter 3 we examined the problem of equivalence between Relational

248

Chapter 8. Concluding Remarks 	 249

Specifications. We applied the definition of observational equivalence presented

in [ST87] to first order models and from this we derived an Observational Equi-

valence relation betwen Relational Specifications. We then extended the notion

of strong correspondence in [Sch87,Sch90] to first order models by defining a rela-

tion we called Model Correspondence. Model Correspondence yields a practical

proof method for Observational Equivalence that can be used in proofs of equi-

valence of Relational Specifications. The main result of Chapter 3, expressed in

Theorem 3.1, is that Model Correspondence is consistent with respect to Obser-

vational Equivalence; thus, justifying the use of Model Correspondence in proofs

of equivalence.

In Chapter 4 we treated the problem of compiler correctness in the framework

of Relational Semantics. We addressed this problem in two stages. First, we gave

a characterisation of the process of Evaluation by Compilation. Second, we used

the theory of equivalence between Relational Specifications defined in Chapter 3

to provide a criterion for compiler correctness. This criterion is more general

than previous proposals in the literature, as discussed in Section 4.1. It provides

a natural generalisation of those proposals by using Observational Equivalence.

Furthermore, Model Correspondence can be used as a proof method for compiler

correctness proofs.

In Chapter 5 we defined the notions of program evaluation and evaluation

step that were used in the theory of debugger design of Chapters 6 and 7. These

notions were derived from the definition of the Computational Semantics of a

Relational Specification. Theorem 5.1 stated that the Computational Semantics

of a Relational Specification is sound with respect to the Declarative Semantics

of this specification.

We then discussed a notion of evaluation step that was argued to be agree with

our intuition. The Computational Semantics of a particular class of Relational

Specifications, called Data-driven Specifications, yields an operational interpret-

ation that agrees with that intuitive notion of evaluation step. We formalised this

Chapter 8. Concluding Remarks 	 250

operational interpretation in Theorem 5.2. The Computational Semantics of any

Data-driven Specification is complete with respect to the Declarative Semantics.

This completeness result was proved in Theorem 5.3.

In particular, if the Data-driven Specification is Deterministic, in the sense

of Definition 5.4, its Computational Semantics is monogenic, as proved in The-

orem 5.4. This makes the Computational Semantics of Deterministic Data-driven

Specification suitable for use in a system for the prototyping of programming lan-

guage implementations like the Centaur system [C1K89] and Berry's Animator

Generator [Ber9la]. The advantages of the Computational Semantics over those

systems is its clear, formal basis, and its correctness with respect to the formalism

of Relational Semantics.

In Chapter 6 we studied the problem of how to give formal specifications of

debuggers. This problem was addressed in three stages. We first characterised

the class of Interpreter-debuggers. Then, we studied two problems that are com-

mon to the design of most debuggers: the granularity of debugging steps and the

reference to sub-programs. Finally, we defined a notation, called DSL to assist

in the specification of debuggers. The definitions of Chapter 6, and the specific-

ation notation DSL, were illustrated in Section 6.6 by a full specification of an

Interpreter-debugger called Tiny.

In Chapter 7 we treated the problem of debugger correctness. We started by

generaiising the notion of Interpreter-debugger to the notion of Debugger-schema.

We then defined a Debugger Bisimuiation relation between Debugger-schemas in

Definition 7.2 that expresses the conditions for debugger correctness.

As part of the theory of debugger correctness, we studied the relationship

between equivalence of debuggers and equivalence of the underlying program

evaluation. An important result of this study is that the equivalence of two

Interpreter-debuggers implies the equivalence of their underlying Relational Spe-

cifications. This result was stated in Theorem 7.1.

Another problem addressed in Chapter 7 was the study of Compiler-debuggers.

Chapter 8. Concluding Remarks 	 251

We first gave a general charactensation of Compiler-debuggers, and then stud-

ied various aspects of the specification of such debuggers: the granularity of

debugging steps, the access to information about the evaluation, the influences

of optixnised code in debugging, and the overhead caused by debugging code.

Chapter 7 finished with a complete example of the specification of a Compiler-

debugger called C Tiny, and a proof of equivalence between Tiny and CTiny.

8.2 Improvements and Extensions to the Theory

In this section we discuss some improvements that can be made to the theoretical

parts of this thesis. Some of these aspects are further discussed in Section 8.3

from an implementation point of view.

Order-sorted Signatures and Algebras

The Relational Semantics formalism may be extended by using order-sorted al-

gebras and order-sorted first order models. An order-sorted algebra extends the

expressiveness of many-sorted algebras by adding a partial ordering relation on

the sorts of the algebra. Based on the definitions of [Wir89, page 351, an order-

sorted algebraic signature is a triple (S, E, 0) where S is a set of sorts, E is a

St x S-sorted family of sets of function names, and 0 is a set of subset declarations.

Then an order-sorted partial J-algebra A consists of an S-sorted family of sets

{A3 } such that A 8 is the carrier of sort s, and a partial function o E -p A3]

for each symbol o E E,, such that for any s, d E S, if s < s' E 0 then A3 c A3 1.

The above definitions generalise trivially to first order signatures and first

order models. Using order-sorted signatures the definition of the syntax of the

language Exp of Example 2.1 becomes:

Chapter 8. Concluding Remarks
	 252

exp 	::= exp + exp I let var = exp in exp

var 	::= xIyI...
nat 	::= plus(nat, nat) I 0 I 1

var < exp

nat < exp

This definition is simpler than that of Example 2.1 because the coercion con-

structors nuni and Id are no longer necessary. It would not be difficult to

redefine the concepts of Relational Specification and Declarative Semantics of

Chapter 2 to use order-sorted algebras. Once this is done it is necessary to check

its influence on the results of the other chapters.

We have not studied how order-sorted algebras influence the theory developed

in Chapters 3 and 4. Nevertheless we believe that the definition of strong corres-

pondence generalises to the case of order-sorted algebras. Furthermore, such a

generalisation would make our definition of strong correspondence closer to the

strong correspondence defined in [Sch871. The reason is that we would be able to

define observational equivalence with respect to a set of visible sorts. The results

that could be derived from this fact remain to be studied.

The results of Chapter 5 are not affected by changing the algebraic theory to

order-sorted algebras, nor are the definitions of Chapter 6. Theorem 7.3, depend

on the algebraic theory in use and it still remains to study how this result is

affected by changing to an order-sorted theory.

Conservative Extension and Semantic Transformations

Let S be a Relational Specification with signature (5, F, H, it). We define an

extension of S to be a Relational Specification 5' whose signature (5', NJ') H', it')

is larger than (5, F, H, it) in the following sense: S C S', whenever or e 	then
, 	 I 	,* 	 I cEE,,andwhenever1rEHthenirEH,,wherew €S andwCw. In

this sense 5' can define more relations, and the operations and relations in 5'

can have more components than the corresponding ones in S.

Chapter 8. Concluding Remarks
	

253

The problem now is to characterise a notion of conservative extension. Intuit-

ively, a conservative extension of a Relational Specification S = (1, 4, A, ZoBs),

is an extension S' = (cl', ', A', eons) of S that preserves satisfaction of the for-

mulae in F(1). Using the theory of equivalence of Relational Specification we

can define this notion precisely by saying that a conservative extension of S is

an extension 5' such that S S'.

However, to prove that an extension is conservative is as difficult as to prove

the equivalence of two arbitrary Relational Specifications. An interesting problem

for future research is to define transformations on Relational Specification that

produce conservative extensions. Once we prove that a transformation only pro-

duces conservative extensions we can use the transformed specifications whenever

necessary without a further proof of Observational Equivalence.

Transformations can extend the scope of theories and definitions that are

only applicable to a particular class of specifications. This is achieved by conser-

vatively transforming a specification that does not belong to a particular class

to another specification that does. This problem was discussed in Section 5.4

where the transformation defined by the FAIR algorithm of [dS90] was used to

extend the notion of evaluation step to the class of Dynamically-deterministic

Specifications.

Another important application of transformations, that is particular to this

thesis, is to extend Relational Specifications with debugging informations such as

paths, function call stacks, and so forth. We believe that the inclusion of paths

to a Relational Specification, as discussed in Section 6.4.2, can be automated.

Therefore, another interesting problem would be the definition of a calculus of

transformations for debugging purposes. This problem could be tackled by first

isolating a basic set of transformations and then defining how to compose, or

otherwise manipulate, those basic transformations to obtain more sophisticated

ones.

Chapter 8. Concluding Remarks 	 254

Debugging Concurrent and Non-deterministic Languages

The design of debuggers for concurrent and non-deterministic languages is more

complex than the design of debuggers for sequential and deterministic languages.

In the case of concurrent languages, this complexity is due to problems such as

the "probe effect", non-repeatability of the evaluation, and lack of a synchronised

global clock.

In a survey paper [MH89], McDowell and Heimbold listed four kinds of tech-

niques that have been used to address the problem of designing debuggers for

concurrent languages:

The application of conventional debugging methods and tools to concurrent

languages.

Event-based debugging, where the execution of a concurrent system is viewed

as a sequence (or several parallel sequences) of events. The debugging task

is then to collect and analyse such sequences.

Techniques for displaying the control flow and distributed data of concur-

rent systems.

Static analysis techniques based on data flow analysis, in which some errors

are detected without evaluating the programs.

A conclusion of that survey is that none of the above techniques give entirely

satisfactory accounts of concurrent debugging. Therefore, work still remains to

be done in integrating these techniques, or finding alternative ones, or both. We

believe that an important problem for further research is to provide a theory for

the specification and correctness proofs of debuggers for concurrent languages.

The framework of this thesis is a step towards such a theory.

In the following paragraphs we shall sketch an extension to the framework

defined in this thesis to address debuggers for non-deterministic languages. We

also discuss which of the above mentioned techniques would be addressed in such

an extension.

Chapter 8. Concluding Remarks
	

255

Part of our framework already addresses non-deterministic programming lan-

guages, namely the Relational Semantics formalism, the notion of equivalence of

Relational Specifications and Compiler Correctness, and the Computational Se-

mantics of Relational Specifications. On the other hand, the notion of evaluation

step is only defined for Deterministic Relational Specifications; thus only determ-

inistic languages are addressed by these definitions. The definition of Interpreter-

debuggers (Definition 6.2) uses this deterministic notion of evaluation step and

therefore only expresses debuggers for sequential languages.

From a theoretical point of view, it would not be difficult to change Defini-
Cs tion 6.2 such that it considers the evaluation relation = (and consequently the

relation) as a relation instead of a function. The theory of debugger correct-

ness developed in Chapter 7 does not preclude debuggers for non-deterministic

programming languages. Therefore, it should not be difficult to extend the the-

oretical aspects of this thesis to address debuggers for such languages. The quite

general definitions of Chapters 6 and 7 were presented with this extension in

mind.

Problems arise from the pragmatic point of view: prototyping and specifica-

tion of concrete debuggers will become non-trivial. The prototyping of debuggers

requires a machine implementation of the CS system. If non-deterministic Data-

driven Specifications are allowed we shall need to solve the problem of selection

of Relational Rules discussed in Section 5.4.

However, the most important problem that arises is the specification of de-

buggers for non-deterministic languages. A theory for design of such debuggers

must address the problem of non-repeatability of evaluation. Clearly, this prob-

lem is not addressed by the framework of this thesis even when extended to deal

with non-deterministic programming languages.

The general approach to this problem in the literature is to record the entire

evaluation history of a program, and to use this record to replay the evaluation

when necessary. The basic drawback of this solution is that the evaluation history

of real systems can grow unmanageably large. Various proposals have been made

Chapter 8. Concluding Remarks 	 256

trying to make this method applicable in practice.

We propose to extend the CS system to support replay of evaluations. The

basic solution we propose is to record the choices of Relational Rules at each

point when more than one rule could be used in the evaluation. We then use

this record to guide the replay of the evaluation, making the replayed evaluation

deterministic. We believe that a record of the choices of rules in an evaluation

is much smaller than the entire evaluation history and possibly of a manageable

size.

The changes in the theory to deal with non-deterministic evaluation step and

the extension of CS to support replay of evaluation are just the initial stages

towards a theory of debuggers design for non-deterministic languages. It is ne-

cessary to investigate other problems, for. instance whether it is necessary to

extend DSL with features specific to the design of such debuggers, and if this is

necessary, what features should be included in the specification notation.

Further Extensions

The use of negative premisses extend the expressiveness of inductive definitions

by allowing assertions of the form a A. In [Gro89,BG90] Groote et al. pro-

poses an extension to Structural Operational Semantics [Plo8l] with negative

premisses. An interesting investigation would be to extend Relational Semantics

with negative premisses, and the aforementioned works offers a starting point.

The Relational Semantics formalism does not offer any facilities for modu-

larisation of Relational Specifications. Such a facility is desirable when dealing

with semantics of real programming languages where the number of rules can

be large, e.g., the definition of Standard ML [HMT89]. Therefore, to include

some notion of modules in the formalism is an interesting problem for future

investigation. Once such a notion is defined, we foresee that the definition of

equivalence between Relational Specifications will have to be extended to cope

Chapter 8. Concluding Remarks 	 257

with the modular structure of the specifications. The work of Schoett [Sch87]

can be used as a starting point to investigate the required extensions.

The definition of Relational Specification can be generalised by replacing the

E-algebra A in (1, 0 , A) by a specification Sp of a class of s-algebra containing A.

This generalisation would allow any E-algebra that satisfies Sp to be used in the

Relational Specification. This generalisation involves to define first how to write

the specification Sp and then what it means for a E-aigebra to satisfy a specific-

ation. There are many alternatives for these definitions, as discussed in [ST88,

Wir89,BKL+911. We have not assessed the advantages and disadvantages of such

a generalisation, but it seems an interesting problem for future investigation.

8.3 An Implementation of the Framework

A natural problem to be addressed is to give a machine implementation of the

framework defined in this thesis. This framework is rich enough to give scope for

various levels of implementation. We incrementally describe how such levels can

be built starting with a simple system for prototyping of language implement-

ations, and finishing with an integrated environment for language development

that includes mechanised formal reasoning. In the presentation below, the Frame-

work refers to the hypothetical implementation that is being suggested.

Language Prototypmg System

The first component of the Framework is the implementation of a system to

evaluate programs based on a Relational Specification. This would involve two

main aspects. First, the syntax analysis of Relational Specifications according

to Definition 2.1. Second, the implementation of the CS system according to

Definition 5.1.

The resulting system would be similar to the prototyping facilities of systems

like Centaur [C1K891 and the AnimatorGenerator [Ber9la]. The Framework

Chapter 8. Concluding Remarks 	 258

would depart from those approaches in that the CS system has a formal proof of

correctness with respect to the underlying meaning of Relational Specifications

given by the Declarative Semantics. Therefore, the prototyping facility of the

Framework would also be correct with respect to this underlying meaning.

Meta-semantic Analysis and Transformations

A natural improvement on the prototyping facility described above is to include

a rneta-semantic checker that determines whether a Relational Specification is

Data-driven and Deterministic in the sense of Definitions 5.2 and 5.4 respect-

ively. Such a meta-semantic checker decides whether the evaluation of program

formulae in the Framework is complete in the sense of Theorem 5.3.

Moreover, there are other static analysis that can be performed on Relational

Specifications. For instance, checking whether a specification is Dynamically-

deterministic in the sense of Definition 5.6. It is possible to include in the

Framework a set of useful meta-semantic checkers which can be used to clas-

sify Relational Specifications.

Once we have the tools to automatically classify Relational Specification, an

extension to the Framework is the implementation of transformation algorithms

among classes of specifications. Such transformations are useful to extend the

applicability of other tools in the Framework that only work over a given class,

as discussed in Section 8.2.

In a series of papers, Hannan et al. described various transformations on

semantic specifications [HM90,Han9lb,Han91a]. It would also be interesting to

investigate which, if any, of these transformations can be automated, and include

their implementation in the Framework.

An Implementation of DSL

An implementation of the Framework as described above would possess useful

features for language prototyping but no special facilities for debugger design.

Chapter 8. Concluding Remarks 	 259

The next stage in developing the Framework is to implement the notation DSL.

This would add two features to the Framework: a powerful debugging language

that can be used to debug Relational Specifications, and the capability of spe-

cifying and prototyping Interpreter-debuggers and Compiler-debuggers.

A General Purpose Implementation of DSL

A related problem is to study an implementation of DSL as a general purpose

language for sequence manipulation. This implementation would extended the

ideas of SNOBOL [FGP64,GPP68I for the manipulation of strings to the manip-

ulation of arbitrary sequences. A first stage in the study of this problem is to

generaiise DSL sequence patterns to higher order sequences, so that we can ex-

press sequences of sequences. We believe it is possible to include DSL patterns in

an existing functional language such as Standard ML [HMT89]. The implications

of adding sequence patterns to ML would have to be studied.

8.4 Conclusions

In this thesis, we set out to examine the problems in the specification and the cor-

rectness proofs of compilers, and in the specification and the correctness proofs of

debuggers. We proposed a framework that addresses specification, prototyping,

implementation - in the sense of low level specification, and correctness proofs

of such tools using a particular characterisation of Structural Operational Se-

mantics as the underlying formalism. Although this framework was presented as

an integrated theory, it is in fact composed of the Theory and its Application.

The Theory addresses the problem of correctness independently of the se-

mantic formalism used in compiler specifications and specification language used

in debugger specifications. It is composed of the material developed in Sec-

tions 3.3, and 7.2. There are two main results of the Theory. First, the extension

of the notion of strong correspondence relation of [Sch87] to Model Correspond-

ence between first order models, which is expressed by Theorem 3.1. This exten-

Chapter 8. Concluding Remarks 	 260

sion provides a proof method for Observational Equivalence between first order

models. Second, the theory of debugger correctness of Section 7.2.

The Application part of this thesis addresses specification of programming

language semantics, specification of compilers, correctness proofs of compiler,

specification of Interpreter-debuggers and Compiler-debuggers, and correctness

proofs of debuggers. A Relational Semantics of the programming language is used

as a reference for compiler correctness and as a description of program evaluation

on which the specifications of debuggers are based.

Two important results related to the Application are the definition of an

Evaluation Model of programs based on Relational Semantics, and the definition

of a debugger specification notation, called DSL, which can be used in the spe-

cification of concrete debuggers. The Evaluation Model and DSL can have actual

implementations, yielding a prototyping system for programming languages, com-

pilers, and debuggers. These implementations are not addressed in this thesis.

The main contributions and advances of this thesis are related to debugger

correctness. We demonstrated that it is possible to give formal specifications

of debuggers based on a formal semantics of the programming language. In

practice, a given debugger may have more than one specification, tailored to

different purposes. Related to this topic we examined the problem of Compiler-

debuggers as an alternative specification of debuggers. We demonstrated that

it is possible to prove the equivalence of specifications of a debugger, and, in

particular, that it is possible to prove the correctness of Compiler-debuggers.

As far as we are aware of, the problems of specifying Compiler-debuggers,

and of debugger correctness, have not been addressed before in the literature.

Moreover, no other related work proposes a theory that addresses compiler and

debugger correctness uniformly. These are the main, novel results of this thesis.

We hope that these results will assist in the design of compilers and debuggers in

practice, and also provide the basis of further research on the specification and

correctness of other programming tools.

Bibliography

	

[AC90] 	I. Attali. and J. Chazarain. Functional evaluation of natural Se-

mantics specifications. In Proceedings International Conference

WAGA on Attribute Grammar and their Applications. Lecture Notes

in Computer Science 461, pages 157-176. Springer-Verlag, Septem-

her 1990.

	

[Acz77] 	Peter Aczel. An introduction to inductive definitions. In J. Barwise,

editor, Handbook of Mathematical Logic, chapter C.7, pages 739-782.

North-Holland Publishing Company, 1977.

	

[AFZ88] 	I. Attali and P. Franchi-Zannettacci. Unification-free execution of

TYPOL programs by semantic attribute evaluation. In Proceedings

Fifth International Conference on Logic Programming, Seattle. MIT

Press, August 1988.

	

[And9l] 	James H. Andrews. Logic Programming: Operational Semantics and

Proof Theory. PhD thesis, LFCS, Department of Computer Science,

University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, July 1991.

	

[Ast89] 	E. Astesiano. Inductive semantics. In Lecture Notes of the State of

the Art Seminar on Formal Description of Programming Concepts,

Petropolis, Brazil. IFIP TC2 WG 2.2 7 1989.

	

[Ast9l] 	E. Astesiano. Inductive and operational semantics. In E. J. Neuhold

and M. Paul, editors, Formal Description of Programming Concepts.

Springer Verlag, 1991. To appear.

261

Bibliography 	 262

[ASU86] 	Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-

ciples, techniques, and tools. Addison-Wesley Publishing Company,

1986.

[Bar85} 	H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics,

volume 103 of Studies in Logic and the Foundations of Mathematics.

North-Holland, revised edition, 1985.

[BCG86] 	G. Berry, Ph. Couronne, and G. Gonthier. Synchronous program-

ming of reactive systems: an introduction to ESTEREL. In Proceed-

ings of the First France-Japan Symposium on Artificial Intelligence

and Computer Science, Tokyo. North-Holland, 1986. Also available

as INRIA Research Report 647.

[Ber9la] 	D. Berry. Generating Program Animators from Programming Lan-

guage Semantics. PhD thesis, LFCS, Department of Computer Sci-

ence, University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, June

1991.

[Ber9lb] 	Yves Bertot. Occurrences in debugger specifications. In Proceedings

of the SIGPLAN'gl Conference on Programming Language Design

and Implementation, Toronto, Ontario, Canada, pages 327-337.

ACM Press, June 1991.

[Ber92] 	Yves Bertot. Origin functions in X-ca1culus and term rewriting sys-

tems. In Proceedings 17th Colloquium on Trees in Algebra and Pro-

gramming, Rennes, France, pages 49-65. Springer-Verlag, February

1992. Lecture Notes in Computer Science 581.

[BF90] 	Clement A. Baker-Finch. The (algebraic) congruence of two pro-

gramming language semantics. Science of Computer Programming,

14(1):81-96, June 1990.

[BG90] 	R. N. Bol and J. F. Groote. The meaning of negative premisses

in transition system specifications. Technical Report CS-R9054,

Bibliography 	 263

Centre for Mathematics and Computer Science (CWI), Computer

Science/Department of Software Technology, P.O. Box 4079, 1009

AB Amsterdam, The Netherlands, October 1990.

[BH83} 	B. Bruegge and P. Hibbard. Generalized path expressions: a

high level debugging mechanism. In Proceedings of the ACM SIG-

SOFT/SIGPLAN Software Engineering Symposium on High-Level

Debugging, pages 34-44, August 1983. ACM Software Engineering

Notes 8(4); ACM SIGPLAN Notices 18(8).

[BKL91] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and D. Sannella,

editors. Algebraic System Specification and Development, volume

501 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[BL69] 	R. M. Burstall and P. J. Landin. Programs and their proofs: an

algebraic approach. Machine Intelligence, 4:17-43, 1969.

[BMS80] 	R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: an

experimentai applicative language. Technical Report CSR-62-80,

Department of Computer Science, University of Edinburgh, Edin-

burgh, EH9 3JZ, Scotland, 1980.

[BMS87] 	R. Bahike, B. Moritz, and G. Snelting. A generator for language-

specific debugging systems. In Proceedings of the SIGPLAN '87

Symposium on Interpreters and Interpretative Techniques, SIG -

PLAN Notices 22(7), pages 92-101, July 1987.

[BOM811 B. Du Boulay, T. O'Shea, and J. Monk. The black box inside

the glass box: presenting concepts to novices. IJMMS, 14:237-249,

1981.

[Bou85] 	G. Boudol. Computational semantics of term rewriting systems. In

M. Nivat and J. Reynolds, editors, Algebraic Methods in Semantics.

Cambridge University Press, 1985.

Bibliography 	 264

[Bov871 	J. D. Bovey. A debugger for a graphical workstation. Software-

practice and Experience, 17(9):647-662, September 1987.

[Boy9laJ 	Johan Boye. Operational completeness of logic programs with 1 ex-

ternal procedures. Master's thesis, The University of Linköping,

S-581 83, Lmköping, Sweden, January 1991. Reg nr: LiTH-IDA-

Ex-9104.

[Boy9lb] 	Johan Boye. S-SLD-resolution: An operational semantics for lo-

gic programming with external procedures. Research Report LiTH-

IDA-R-91-18, The University of Linköping, Department of Com-

puter and Information Science, S-581 83, Linköping, Sweden, June

1991. Also in Proceedings 3rd International Symposium on Pro-

gramming Language Implementation and Logic Programming, Pas-

sau, Germany, August 26-28, 1991.

[BS86] 	R. Bahlke and G. Snelting. The PSG system: From formal lan-

guage definitions to interactive programming environments. ACM

Transaction on Programming Languages and Systems, 8(4):547-576,

October 1986.

[Bun88] 	A. Bundy. The use of explicit plan to guide inductive proofs. In

R. Lusk and R. Overbeek, editors, 9th Conference on Automated

Deduction, pages 111-120. Springer Verlag, 1988. Longer version

available from Edinburgh as DAI Reasearch Paper No. 349.

[BvHHS91] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments

with proof plans for induction. Journal of Automated Reasoning,

7:303-324, 1991.

[CCM84] 	G. Cousineau, P-L. Curien, and M. Mauny. The Categorical Ab-

stract Machine. In Proceedings International Symposium on Se-

mantics of Data Types, Sophia-Antipolis, France, pages 50-64.

Springer-Verlag, 1984. Lecture Notes in Computer Science, 173.

Bibliography, 	 265

[CCP91] 	B. A. Cruz, G. L. M. Chaves, and A. Palina. The CPqD-Telebrás

CHILL symbolic debugger. In Proceedings 5th CHILL Conference,

Rio de Janeiro, Brazil. North-Holland, 1991.

[CH87] 	Benjamin B. Chase and Robert T. Hood. Selective interpretation

as a technique for debugging computationally intensive programs.

In Proceedings of the SIGPLAN '87 Symposium on Interpreters and

Interpretative Techniques, SIGPLAN Notices (7), pages 113-124,

July 1987.

[Chi89] 	C. Chin. A support tool for operational semantics. Undergr&luate

Project Report, LFCS, Department of Computer Science, University

of Edinburgh, Edinburgh, E119 3JZ, May 1989.

[C1K89] 	Dominique Clement, Janet Incerpi, and Gilles Kahn. CENTAUR:

Towards a "software tool box" for programming environments.

In .Proceedings International Workshop on Environments, Chinon,

France. Springer-Verlag, September 1989. Lecture Notes in Com-

puter Science 467.

[C1a79] 	K. L. Clark. Predicate logic as a computational formalism. Research

monograph 79/59 TOC, Department of Computing, Imperial Col-

lege, England, December 1979.

L. M. Chirica and D. F. Martin. Toward compiler implementation

correctness proofs. ACM Transactions on Programming Languages

and Systems, 8(2):185-214, April 1986.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-

Verlag, third edition, 1987.

[Coh65] 	Paul M. Cohn. Universal Algebra. New York Harper and Row, 1965.

[Coh78} 	Avra Cohn. High level proof in LCF. Internal Report CSR-35-78,

Department of Computer Science, University of Edinburgh, Novem-

ber 1978.

Bibliography 	 266

[dB72] 	N. G. de Bruijn. Lambda-calculus notion with nameless dummies.

Indag Math., pages 381-392, 1972.

[Des86] 	J. Despeyroux. Proof of translation in Natural Semantics. In Pro-

ceedings of the First Symposium on Logic in Computer Science,

pages 193-205. IEEE Computer Society Press, 1986.

[Des88] 	T. Despeyroux. TYPOL: a formalism to implement Natural Se-

mantics. Technical Report 94, INRIA, Sophia-Antipolis, France,

March 1988.

[DF87] 	Pierre Deransart and Gerard Ferrand. An operational formal defin-

ition of PROLOG. In Proceedings of the Symposium on Logic Pro-

gramming, San Francisco, California, pages 162-172. IEEE Press,

August 1987.

[Dia76] 	Cora Diamond, editor. Wittgenstein's Lectures on the Foundations

of Mathematics, Cambridge 1939. The University of Chicago Press,

1976.

[DM85] 	Pierre Deransart and Jan Maiuszynski. Relating logic programs

and attribute grammars. Journal of Logic Programming, 2:119-155,

1985.

[dS90] 	Fabio Q. B. da Silva. Towards a formal framework for the eval-

uation of operational semantics specifications. Technical Report

ECS-LFCS-90-126, LFCS, Department of Computer Science, Uni-

versity of Edinburgh, Edinburgh, EH9 3JZ, Scotland, November

1990. Available from Lorraine Edgar (lme@dcs . ed . ac . uk) or in

writing to the Department of Computer Science.

[FGP64] 	D. J. Farber, R. E. Griswold, and I. P. Polonsky. SNOBOL, a string

manipulation language. Journal of the ACM, 11:21-30, January

1964.

Bibliography 	 267

[FH88] 	Anthony J. Field and Peter G. Harrison. Functional Programming.

International Computer Science Series. Addison-Wesley Publishing

Company, 1988.

[GB85] 	M. E. Garcia and W. J. Berman. An approach to concurrent systems

debugging. In Proceedings Fifth International Conference Distrib-

uted Computing Systems, Denver, CO, pages 507-514, May 1985.

[GB901 	J. A. Goguen and R. M. Burstall. Institutions: abstract model

theory for specification and programming Technical Report ECS-

LFCS-90-106, LFCS, Department of Computer Science, University

of Edinburgh, January 1990.

[Gen69] 	G. Gentzen. The Collected Papers of Gerard Gentzen. North-

Holland, Amsterdam, 1969. E. Szabo (ed.).

[GGM76] V. Giarratana, F. Gimona, and U. Montanari. Observability con-

cepts in abstract data type specification. In Proceedings 5th Sym-

posium on Mathematical Foundations of Computer Science, Gdansk.

Springer-Verlag, 1976. Lecture Notes in Computer Science, 45.

[GH77] 	R. E. Griswold,, and D. R. Hanson. An overview of SL5. SIGPLAN

Notices, 12(5):40-50, April 1977.

[GH80] 	R. E. Griswold and D. R. Hanson. An alternative to the use of

patterns in string processing. ACM Transactions on Programming

Languages and Systems, 2(2):153-172, April 1980.'

[GM86] 	Narain Gehani and Andrew McGettrick, editors. Software Specific-

ation Techniques. International Computer Science Series. Addision-

Wesiley Publishing Company, 1986.

[GPP68] 	R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL4 Pro-

gramming Language. Englewood Cliffs (N.J.), Prentice Hall, 1968.

Bibliography 	 268

[Grä79] 	G. Grätzer. Universal Algebra. Springer-Verlag, second edition,

1979.

[Gri7l] 	David Gries. Compiler Construction for Digital Computers. Wiley

International Editions. John Wiley and Sons, 1971.

[Gro89] 	J. F. Groote. Transition system specifications with negative

premisses. Technical Report CS-R8950, Centre for Mathematics

and Computer Science (CWI), Computer Science/Department of

Software Technology, P.O. Box 4079, 1009 AB Amsterdam, The

Netherlands, December 1989.

[GTWW77] J. A. Gognen, J. W. Thatcher, E. G. Wagner, and J. B. Wright.

Initial algebra semantics and continuous algebras. Journal of the

Association for Computing Machinery, 24(1):68-95, January 1977.

[Ha174] 	Paul R. Halmos. Naive Set Theory. Undergraduate Texts in Math-

ematics. Springer-Verlag, second edition, 1974.

[Han9la} 	John Hannan. Making abstract machines less abstract. In Proceed-

ing 5th ACM Conference on Functional Programming and Computer

Architecture, pages 618-635. Springer-Verlag, 1991. Lecture Notes

in Computer Science, 523.

[Han9lb] 	John Hannan. Staging transformations for abstract machines. In

J. Hughes, editor, Proceedings of the ACM SIGPLAN Symposium

on Partial Evaluation and Semantic Based Program Manipulation.

ACM Press, 1991.

[Hen82] 	John Hennessy. Symbolic debugging of optimized code. ACM

Transaction on Programming Languages and Systems, 4(3):324-344,

July 1982.

[Hen90aJ 	Matthew Hennessy. The Semantics of Programming Languages:

an elementary introdcution using structural operational semantics.

John Wiley and Sons Ltd., 1990.

Bibliography 	 269

[Hen90b] 	Roll Hennicker. Context induction: a proof principle for behavi-

oural abstraction. In A. Miola, editor, Proceedings International

Symposium on Design and Implementation of Symbolic Computa-

tion Systems, pages 101-110. Springer-Verlag, April 1990. Lecture

Notes in Computer Science, 429.

[HHP87] 	R. Harper, F. Honsell, and G. Plotkin. A framework for defining

logics. Journal of the ACM, to appear, 1987. A preliminary version

appeared in Symposium on Logic in Computer Science, pages 194-

204, June 1987.

[HM90] 	John Hannan and Dale Miller. From operational semantics to ab-

stract machines: preliminary results. In ACM Conference on LISP

and Functional Programming, pages 323-332, July 1990.

[HMT89] 	Robert Harper, Robin Milner, and Mads Tofte. The definition

of Standard ML (version 3). Technical Report ECS-LFCS-89-81,

LFCS, Department of Computer Science, University of Edinburgh,

Edinburgh, E119 3JZ, Scotland, May 1989.

[Hoa69] 	C. A. R. Hoare. An axiomatic basis for 1computer programming.

Communications of the ACM, 12:576-580, 1969.

[Hoa72] 	C. A. R. Hoare. Proof of correctness of data representation. Acta

Informatica, 1:271-281, 1972.

[HP92] 	John Hannan and Frank Pfenning. Compiler verification in LF.

In Andre Scedrov, editor, Proceedings of the Seventh Annual IEEE

Symposium on Logic in Computer Science, pages 407-418. IEEE

Computer Society Press, 1992.

[HW90] 	P. Hudak and P. Wadler. Report on the programming language

haskell - a non-strict purely function language. Technical Report

YALEU/DCS/RR-777, Yale University, April 1990.

Bibliography
	 270

[Jon77} 	C. Jones. Program quality and programmer productivity. Technical

Report IBM TR 02.764, IBM, Santa Teresa Laboratory, San Jose,

CA, 1977.

[Joy89] 	Jeffrey J. Joyce. A verified compiler for a verified microprocessor.

Technical Report 167, Computer Laboratory, University of Cam-

bridge, New Museums Site, Pembroke Street, Cambridge, C132 3QG,

England, March 1989.

[Kah871 	G. Kahn. Natural Semantics. Gipe project second annual review

report, INRIA, Sophia-Antipolis, France, January 1987.

[Kah88] 	G. Kahn. Natural Semantics. In K. Fuchi and M. Nivat, edit-

ors, Programming of Future Generation Computers, pages 237-258.

North-Holland Publishing Company, 1988.

[KHC91] 	Amir Kishon, Paul Hudak, and Charles Consel. Monitoring Se-

mantics: a formal framework for specifying, implementing and reas-

oning about execution monitors. In Proceedings ACM SIGPLAN'91

Conference on Programming Language Design and Implementation,

Toronto, Ontario, Canada, pages 338-352, June, 26-28 1991.

[KR78] 	B. W. Kernighan and D. M. Ritchie. The C Programming Language.

Prentice-Hall, Englewood Cliffs, N. J., 1978.

[Kun80] 	Kenneth Kunen. Set Theory: an introduction to independence

proofs, volume 102 of Studies in Logic and the Foundations of Math-

ematics. North Holland Publishing Company, 1980.

[Lan64] 	P. J. Landin. The mechanical evaluation of expressions. Computer

Journal, 6:308-320, 1964.

[Lau79] 	Søren Lausen. Debugging techniques. Software-practice and exper-

ience, 9:51-63, 1979.

Bibliography 	 . 	 271

[Lew82] 	T. G. Lewis. Software Engineering: Analysis and Verification. Re-

ston Publishing Company Inc., 1982.

[LL89] 	Beatrice Lazzerini and Lanfranco Lopriore. Abstraction mechan-

ism for event control in program debugging. IEEE Th-ansactions on

Software Engineering, 15(7):890-901, July 1989.

[L1o87] 	J. W. Lloyd. Foundations of Logic Programming. Springer Series

Symbolic Computation - Artificial Intelligence. Springer-Verlag,

second edition, 1987.

[MH89} 	Charles E. McDowell and David P. Helmbold. Debugging concur-

rent programs. ACM Computing Surveys, 21(4):593-622, December

1989.

[Mic] 	Sun Microsystems. Dbx - source level debugger. Manual pages, Sun

Release 4.1.

[Mil71] 	Robin Mimer. An algebraic definition of simulation between pro-

grams. In Second International Joint Conference on Artificial In-

telligence, pages 481-489, London, 1971. The British Computer So-

ciety.

[Mil76] 	Robin Milner. Program semantics and mechanised proof. In Found-

ations of Computer Science II, pages 3-44. Math. Centre Amster-

dam Tracts 82, 1976.

[Mil89] 	Robin Milner. Communication and Concurrency. International

Series in Computer Science. Prentice Hall, 1989.

[Moh88] 	Thomas G. Moher. PROVIDE: a process visualization and debug-

ging environment. IEEE Transactions on Software Engineering,

14(6):849-857, June 1988.

Bibliography
	

272

[Mor73] 	F. Lockwood Morris. Advice on structuring compilers and proving

them correct. In Proceedings SIGACT/SIGPLAN Symposium on

Principles of Programming Languages, October 1973.

[Mos79] 	P. D. Mosses. A construtive approach to compiler correctness. Tech-

nical report, Aarhus University, 1979.

[MP67] 	J. McCarthy and J. Painter. Correctness of a compiler for arith-

metic expressions. In J. Schwartz, editor, Proceedings Symposium

on Applied Mathematics, pages 33-41. American Mathematical So-

ciety, 1967.

[MW72] 	Robin Milner and R. Weyhauch. Proving compiler correctness in a

mechanised logic. In B. Meltzer and D. Mitchie, editors, Machine

Intelligence, chapter 3, pages 51-70. Edinburgh University Press,

1972.

[Nai83a] 	Lee Naish. Automatic generation of control for logic programs.

Technical Report 83/6, Department of Computer Science, Mel-

bourne University, 1983.

[Nai83b] 	Lee Naish. Mu-prolog 3.0 reference manual. Technical report, De-

partment of Computer Science, Melbourne University, July 1983.

[Na185] 	Lee Naish. Negation and Control in Prolog, volume 238 of Lecture

Notes in Computer Science. Springer Verlag, 1985.

[Nip86] 	Tobias Nipkow. Non-deterministic data types: Models and imple-

mentations. Acta Informnatica, 22:629-661, 1986.

[N088] 	P. Nivela and F. Orejas. Initial behaviour semantics for algebraic

specifications. In Recent Trends in Data Type Specification, Selec-

ted Papers from the 5th Workshop on Specification of Abstract Data

Types, Gullane, Scotland, pages 184-207. Springer-Verlag, 1988.

Lecture Notes in Computer Science, 332.

Bibliography 	 273

[Nor82] 	D. A. Norman. Some observations on mental models. In A. Stevens,

editor, Mental Models, pages 7-19. Erlbaum, 1982.

[Par8l] 	D. M. R. Park. Concurrency and automata on infinite sequences. In

Theoretical Computer Science, 5th Cl-Conference, Karisuhe, pages

167-183. Springer-Verlag, March 1981. Lecture Notes in Computer

Science 104.

[P1o81] 	G. Plotkin. A structural approach to operational semantics. Tech-

nical Report DAIMI FN-19, Aarhus University, Aarhus, Denmark,

September 1981.

[Po181] 	Wolfgang H. Polak. Compiler Specification and Verification, volume

124 of Lecture Notes in Computer Science. Springer Verlag, 1981.

[PP92] 	Thomas Pittman and James Peters. The Art of Compiler Design:

Theory and Practice. Prentice-Hail, Inc., 1992.

[Pra65] 	D. Prawitz. Natural Deduction, a proof-theoretical study. Almqvist

& Wiksell, Stockholm, 1965.

[Rei8l] 	H. Reichel. Behavioural equivalence: a unifying concept for ini-

tial and final specification methods. In Proceedings 3rd Hungarian

Computer Science Conference, pages 27-39, 1981.

[Rob65} 	J. A. Robinson. A machine-oriented logic based on resolution prin-

ciple. Journal of the ACM, pages 23-41, January 1965.

[Sch87] 	Oliver Schoett. Data Abstraction and the Correctness of Modular

Programming. PhD thesis, LFCS, Department of Computer Science,

University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, February

1987.

[Sch90] 	Oliver Schoett. Behavioural correctness of data representation. Sci-

ence of Computer Programming, 14:43-57, 1990.

Bibliography 	 274

[Sev87] 	Rudolph E. Seviora. Knowledge-based program debugging systems.

IEEE Software, 4(3):20-32, 1987 1987.

[Sho83] 	M. L. Shooman. Software Engineering. New York: McGraw-Hill,

1983.

[Sim90] 	Todd Simpson. Correctness of a compiler specification for the SECD

machine. Research Report 90/410/34, Department of Computer

Science, University of Calgary, 2500 University Drive N.W., Calgary,

Alberta, Canada, T2N 1N4, October 1990.

D. Sannella and A. Tarleck. On observational equivalence and a!-

gebraic specification. Journal of Computer and System Sciences,

34:150-178, 1987.

D. Sannella and A. Tarlecki. Specification in an arbitrary insti-

tution. Information and Computation, 76(2/3): 165-210, Febru-

ary/March 1988.

[Sto8l] 	Joseph E. Stoy. The congruence of two programming language se-

mantics. Theoretical Computer Science, 13:151-174, 1981.

[Sto89] 	Joseph E. Stoy. Denotational Semantics: the Scott-Strachey ap-

proach to programming language theory. The MIT Press series in

Computer Science. The MIT Press, 1989.

[SY087] 	S. K. Skedzielewski, R. K. Yates, and R. R. Oldehoeft. DI: an

interactive debugging interpreter for applicative languages. In Pro-

ceedings of the SIGPLAN '87 Symposium on Interpreters and Inter-

pretative Techniques, SIGPLAN Notices 22(7), pages 102-112, July

1987.

[TS85] 	Jean-Paul Tremblay and Paul G. Sorenson. The Theory and Prac-

tice of Compiler Writing. Computer Science Series. McGraw-Hill

International Editions, 1985.

Bibliography 	 275

[TWW78] James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. Notes

on algebraic fundamentals for theoretical computer science. In Pro-

ceedings FAICS '78, May 1978.

[TWW81] JamesW. Thatcher, Eric G. Wagner, and Jesse B. Wright. More

on advice on structuring compilers and proving them correct. The-

orectical Computer Science, 15:223-249, 1981.

[vdLW85] Frits van der Linden and Ian Wilson. An interactive debugging

environment. IEEE Micro, 5(4):18-31, August 1985.

[vW69] 	A. van Wijngaarden. Report on the algorithmic language ALGOL

68. Numer. Math., 14:19-218, 1969.

[Wec92] 	W. Wechler. Universal Algebra for Computer Scientists, volume 25

of EATCS Monographs on Theoretical Computer Science. Springer-

Verlag, 1992.

[WF91] 	Andrew K. Wright and Matthias Felleisen. A syntactic approach to

type soundness. Technical Report Rice COMP TR91-160, Depart-

ment of Computer Science, Rice University, P.O. Box 1892, Houston,

TX 77251-1892, April 1991.

[Wir89] 	Martin Wirsing. Algebraic specification. Technical Report MIP -

8914, Universität Passau, Fakultät für Mathematik und Informatik,

Universität Passau, Postfach 2540, D-8390, Germany, 1989.

[Ze184] 	Polle Trescott Zellweger. Interactive source-level debugging of op-

timized programs. Technical Report CSL-84-5,[P84-00047], Xerox

PARC, Palo Alto, California, May 1984.

[ZJ91} 	Lawrence W. Zurawski and Ralph E. Johnson. Debugging optimized

code with expected behaviour. University of Illinois at Urbana-

Champaign., August 1991.

Appendix A

The Semantics of DSL

A.1 Introduction

In this appendix we present the formal semantics of DSL in Relational Semantics.

This semantics defines the pattern matching of sequence patterns on sequences

of basic values. Basic values, and consequently basic patterns, are not defined

since their definitions depend on the application in which DSL is used.

In this thesis, DSL is used in the specification of debuggers based on a Re-

lational Specification. In this application, the basic values and basic patterns

of DSL are defined by the Relational Specification. As described in Section 6.5,

these basic values are constructor values and the basic patterns are constructor

patterns whose semantics are standard and can be found, for instance, in [FH88,

HMT89].

This appendix is organised as follows:

Section A.2 defines the syntax of DSL.

Section A.3 defines the dynamic semantics of the pattern matching.

276

	

Appendix A. The Semantics of DSL
	

277

atpat
	 wildcard

id
	

variable

baspatseq ::= [baspatseq,] baspat
	

basic pattern sequence

spat 	::= ... 	 wildcard

< [baspatseq] > 	 sequence of basic patterns

t(spat1 , spat2 , spat 3 , spat 4 , spat5) interval

/3(spat1 , spat2 , spat3 , spat4 , spat5) balanced interval

id as spat 	 layered

Figure 1: The Syntax of Sequence Patterns

A.2 The Syntax

Reserved Words

These are the reserved used in sequence patterns of DSL.

as 	() 9 	 ... 	- 	< 	>

Identifiers

A DSL identifier is any sequence of letters, digits, and "" (underbars) starting

with a letter. The class of DSL identifiers is called Identifier and is ranged over

by the meta-variable id.

The Grammar

Figure 1 presents the BNF rules that define sequence patterns. The grammar

for baspat is not defined since it depends on the application of DSL. When DSL is

used for specification of debuggers based on a Relational Specification the basic

patterns are constructor patterns, whose syntax is defined by the signature of

the specification. In grammar rules, square brackets [] enclose optional phrases.

Appendix A. The Semantics of DSL
	

278

v E Val=BasVal+BasValt basic value

by E BasVal basic value

w E BasVal* sequence of basic values

E E Env = [id 	Vat] dynamic environment

ES E EStack environment stack

FAIL matching failure

Figure 2: The Semantic Objects of the Dynamic Semantics

A.3 The Dynamic Semantics

The dynamic semantics defines how to match a pattern to a value. We first

define the semantic objects involved. As for the syntax, the basic values are not

define. We assume the existence of a semantic class BasVal of basic values.

When DSL is used for specification of debuggers, basic values are the states of

the Computational Semantics of the Relational Specification under consideration.

Therefore, basic values are built from substitutions, goal stacks, formulae, and

terms. For an arbitrary Relational Specification S with Computational Semantics

CS = ('cs, , T), BasVal =]PCs. In this case, sequence values are debugging

histories in DH.

Semantic Objects

The semantic objects of the dynamic semantics are shown in Figure 2. FAIL

is a semantic object used in the Relational Rules to indicate an unsuccessful

matching; it is not a semantic value. Environment stacks are defined as follows:

ES ::= E 	 empty stack

ES • E 	environment stack

Appendix A. The Semantics of DSL 	 279

Semantic Operations on Environments and Sequences

If E and E' are enviroment the environment E @ E', called E modified by E', is

the environment with domain dom E U dom E' such that:

(E E')(id) = { E'(id) if id E
dom E'

E(id) otherwise

We extend environment modification to account for matching failure as follows:

E @ FAIL = FAIL. We also use the operations on finite sequences " o " suffix

cons, "" concatenation, and "-" difference.

Relational Rules

The Relational Rules below define the Dynamic Semantics of sequence patterns.

To simplify the presentation we made some concessions with respect to the defin-

ition of Relational Rules in Chapter 2:

The relation name - I- - = - is overloaded for all syntactical classes.

Phrases within square brackets [} are optional and for them the following

convention holds: in each instance of every Relational Rule the optional

phrases must be either all present or all absent.

Similarly, a phrase enclosed by [[]]is a second optional phrase. As for the

first optional phrases, in each instance of every rule the second optional

phrases must be all present or all absent.

We allow y/FAIL to range over Y U {FAIL}, where Y is one of the above

defined semantic classes and y ranges over Y.

Comments explaining the semantic rules are given after each subset of the

rules. The reader is referred to the schematic representation of a sequence in

Figure 3 to understand how the matching of interval and balanced interval pat-

terns is defined.

Appendix A. The Semantics of DSL
	

280

I 	 W1 	 4

I 	I 	I 	i 	I 	I 	I I 	 I 	 I 	 I 	
I I 	 I 	 I 	 U 	 I 	 I 	 I 	 I 	 I

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I

P2: -4 	; 	W4 	 I I 	 I 	 I I 	 I

P
51

I '

I 	 I 	 I 	 I 	
I 	 I 	 I 	 I

	

P3 	IW10:W111W121
I 	 I 	 I 	 I

Figure 3: The Matching of Interval Patterns

Atomic Patterns 	 v I- atpat = E'/FAIL

E,vI-=-{}

iddomE

E,vF- id{idi—* v}

idEdomE 	E(id)=v
(3)

E,v}- id={}

idEdomE 	E(id)v

E,vI- idFAIL
	 (4)

Comments

(l)—(4) These rules define the matching of an atomic pattern atpat on a value v.

The matching is defined on an environment E which keeps the bindings of

identifiers to values that resulted from previous matchings. If the match-

ing is successful, the result is an environment E' with the new binding, if

applicable. If the matching fails the result is FAIL.

(2) A finite mapping is denoted by {id1 " v1 ,.. . , i4 i- v}, n> 0

(3)—(4) Identifiers can occur more than once in a pattern. These rules ensure the

same identifier matches syntactically equal values.

Appendix A. The Semantics of DSL
	

281

Sequence of Basic Patterns
	

E, w F- baspatseq = (E', w')/FAIL

E, () F [baspatseq,]baspat = FAIL 	
(5)

E, v I- baspat => FAIL

E, [[w]]v F- [baspatseq,baspat = FAIL 	
(6)

E,vFbaspat=E' 	
7

E, [wo]v F baspat = (E', (v))

E, v F- baspat = E' 	E 	w F- baspatseq = (E", w')/FAIL 	
8

w v F baspatseq, baspat = (E' E", w' v)/FAIL 	(

Comment

(5)—(8) These rules define the matching of a sequence of basic patterns baspatseq

on a sequence of basic values w. If the matching is successful the results

are the new environment and the suftx of vi that matched baspatseq. The

sub-sequence resulting from this matching is used in rule (13).

Sequence Patterns 	 I E, vi F spat = (E', (vi1, w2,

vi F 	= ({ }, (0, vi, ())) 	
(9)

	

E,()F<>=({},((),Q,Q)) 	
(10)

E, w o v F <> => FAIL 	
(11)

W C v F baspatseq = FAIL

E, vi F <baspatseq> 	(E', (vi1, w2, w3))/FAIL

E,WOV F <baspatseq> =(E',(w1 ,vi2 ,w3 Gv))/FAIL

E, vi F baspatseq 	(E', w')/FAIIL

E, w F <baspatseq> = (E', vi - w', w', ()))/FAIL 	
(13)

Appendix A. The Semantics of DSL
	

282

Comments

(9)-(13) These rules define the simple sequence patterns ... and <[baspatseq]>.

The results of a succesful pattern matching are the environment and a

triple (w1 , w2 , w3) of consecutive sub-sequences of w, which is interpreted

as follows: n is the sub-sequence of w that matched the pattern, w1 is the

sub-sequence on the left of w2 , and w3 is the sub-sequence on the right of

w2 , such that w = w1 ww3 . The three sub-sequences are necessary in the

definition of the interval patterns.

(12) If the first attempt to match the spat fails, then the matching is moved to

one element to the left on the original sequence.

Interval Patterns

In the following rules we use p (with indexes) ranging over spat in order to simplify

the presentation.

E,wI-p4 =FAIL

E, w I- t(p1) p2 ,p3 ,p4 ,p5) = FAIL

w I- P4 = (E1 , (w1 , w, w3))

E 	I- P2 FAIL

E,w I- 01 ,p2 ,p3 ,p4 ,p5) => FAIL

E, w I- p 	(E1 , (w1 , , w3))

E E1 , w1 F P2 = (E2 , (w4 , w5 , w6))

E®E1 E2 ,w3 F p5 =FAIL

E,w I- t(p1 ,p2 ,p3 ,p4,p5) => FAIL

Appendix A. The Semantics of DSL 	 283

w F p4 = (E1 , (w1 , w2 , w3))

E E1 , w1 F P2 = (E2 , (w4 , w5 , w6))

EE1 @ E2 ,w3 F p5 = (E3 ,(w7 ,w8 ,w9))

EE1 E2 E3 ,w6 Fp3 =FAIL

E,w F 6(p1 ,p2 ,p3 ,p4,p5) 	FAIL 	
(17)

E, w F P4 = (E1 , (w1 , w, w3))

E E1 , w1 F P2 = (E2 , (w4 , w5 , w6))

EE1 E2 ,w3 F D5 = (E3 ,(w7 ,w8 ,w9))

EE1 E2 eE3 ,w6 Fp3 =(E4 ,(w10 ,w11 ,w12))

E E1 E2 	E, w4 F Pi = (E5 , (w13 , w14 , w15))/FAIL

E,w F 01 ,p2 ,p3 ,p4 ,p5) =

(E1 	 E5 , (w13 , 	 w9)/FAIL

(18)

Comments

(14)—(18) These rules define the interval patterns. This definition guarantees

that the pattern matching is deterministic because it forces the patterns to

be tried in a fixed order. In the rules, this order is given by the input/output

relation on the premisses, as defined in Section 5.4 by the relation -<

The pattern matching must start from the pattern P4• If the matching of

p4 fails then the whole matching fails.

Once the matching of p4 is fixed and results in (w1 , w2 , w) then P2 is tried

on w1 . If the matching of P2 fails the whole matching fails. Notice that

when this happens there is no attempt to try the matching of p4 again.

(18) This rules describes the successful matching. Once the matching of P2 and

p4 are fixed, the order in which the other patterns are tried is not import-

ant, since w3 , w4 , and w6 are fixed. The environment resulting from the

Appendix A. The Semantics of DSL
	

284

matching is the union of the evaluation resulting from each sub-matching.

The resulting triple of sub-sequences is better understood by referring to

Figure 3.

Balanced Interval Patterns

w F- p4 => FAIL
(19)

E,w F-/3(p1 ,p2,p3 ,p4,p5) =:> FAIL

w I- P4 = (E1 , (w1 , w2 , w3))

E, E• E1 , w1 1 B P2, P4 =:> FAIL

E, w 1- /3(pl,p2,p3,p4,P5) = FAIL 	
(20)

w F- P4 =>- (E1 , (w1 , w2 , w3))

B, e . B1, to1 F-B P2, P4 = (B2 , (to4, to5, to6))

EE1 E2,w3 F- p5 =FML

E,w F-/3(p1 ,p2 ,p3 ,p4,p5) = FAIL 	
(21)

E, w I- p4 	(E1 , (to1, w2, to3))

E,e.E1 ,w1 1BP2,P4 = (E2 ,(w4 , to5, to6))

EE1 E2 ,w3 F-p5 = (E3 ,(w7 ,w8 ,w9))

E®E1 eE2 eE3 ,w6 F- p3 =-FAIL

to F- 13(P1,P2,P3,P4,P5) = FAIL

E, to F- p4 = (B1 , (vi1 , w2 , to3))

B, e . E1 , to1 F-B P2, P4 => (E2 , (to4, to5, to6))

EE1 E2 ,w3 F-p5 = (E3 ,(w7 ,w8 ,w9))

EE1 E2 E3 ,w6 F-p3 =E4 ,(w10 ,w11 ,w12))

B ® E1 @ E2 	E4 , to4 F- Pi = (B5 , (to13, w14 , w15))/FAIL

E, to F- G(p, p, p, P4, p5) =

(E1 ® 	® E4 E5, (to13, w14 w 5 	wttoto8, wg)/FAIL

Appendix A. The Semantics of DSL
	

285

Comment

(14)—(18) These rules define the, matching of balanced interval patterns. The

major difference between these rules and those for the interval patterns is

that the matching of P2 on w1 is defined by rules (24)—(27) which check if

the sequence w1 is balanced with respect to P2 and p4 .

Balanced Matching 	E, ES, w F-B spat1 , spat2 = (E', (w1 , w2 , w3))/FAI

ES:Ae 	
24

E, ES, () 1- B spat1 , spat2 = FAIL

E, w c v I- spat2 = FAIL

E E', w o v F- spat1 = (E", (w1 , w2 , w3))

E, E• E', w c v 1B spat1 , spat2 = (E", (w1 , w2 , w3))/FAIL

ESe 	E,wovF- spat2 ='FAIL

EE',wov F- spat1 = (E",(w1 ,w2 ,w3))

E, ES, w1 F- 	 (

I,,

B spat1 , spat2 = E , ' w4 , w5 , w6))/FAIL

E, ES • E', w 0 v F-B spat1 , spat2 =' (E", (w4 , w5 , w6 w2 w3))/FAIL

, 	 ' EEDE',wvF- spat2 =(E I, ,(w1,w2,w3))

E, ES • E' • E", w 1 F-B spat1 , spat2 = (B", (w4 , to5 , w6))/FA]L

E, ES • E', to o v, F-B spat1 , spat2 = (E", (w4 , to5, w6 ww3))/FAIL

Comments

(24)—(27) These rules define the matching of spat1 on to with the extra-condition

that the matching is balanced with respect to spat2 in the usual sense

of balanced bracketing. For this definition we use a stack to keep the

environments resulting from the matchings of spat2 . This stack is necessary

because the matching of spat1 must be done on the environment resulting

from the matching of a corresponding spat2.

(25)

Appendix A. The Semantics of DSL
	

286

II spat1 matches successfully and the environment stack has only one element

then the matching is balanced and the overall matching succeeds.

If spat1 matches successfully but the stack has more than one element then

the top of the stack is removed and the matching continues with the new

stack.

If spat2 matches successfully then the environment resulting from its match-

ing is pushed on the stack and the matching for the corresponding spat1 is

attempted.

A.4 Summary and Conclusions

In this appendix, we defined the semantics of DSL. We presented the syntax

of sequence patterns and the Relational Rules for the dynamic semantics of the

pattern matching. We did not define the syntax and semantics of the basic values

and basic patterns. These definitions depend on the application in which DSL is

used. We informally discussed the definition of the basic values for the application

of DSL in the specification of debuggers based on a Relational Specification.

An actual implementation of DSL could be achieved by adding sequence pat-

terns to an existing functional language. In particular, we believe that it is

simple to include these patterns in the ML language [HMT89]. The implications

of adding sequence patterns to ML would have to be studied.

