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Abstract 

In this thesis we study the use of semantics-based formal methods in the specific-

ation and proof of correctness of compilers and debuggers. We use a Structural 

Operational Semantics as the basis for the specification of compilers and pro-

pose a notion of correctness based on an observational equivalence relation. We 

define program evaluation and a notion of evaluation step based on a Structural 

Operational Semantics and use these definitions as the basis for the specification 

of debuggers. Debugger correctness is then defined by an equivalence relation 

between a specification and an implementation of the debugger based on the 

bisimulation concept. 

The main results of this thesis are: a definition of a variant of Structural 

Operational Semantics, called Relational Semantics, which is the underlying 

formalism of this thesis; the definition of a notion of Observational Equival-

ence between Relational Semantics Specifications; a formulation of the problem 

of compiler correctness using Observational Equivalence; an evaluation model 

for programming languages and a definition of an evaluation step; an abstract 

definition of Interpreter-debuggers; a specification notation for the formal spe-

cification of debuggers, called DSL; a notion of equivalence between debuggers 

using bisimulation; a study on Compiler-debuggers and the problems involved in 

their definition. 

These results form a theory for the formal specification and proofs of cor-

rectness of compilers and debuggers. Our starting point is that the use of this 

theory helps in building better compilers and debuggers. It is our goal to provide 

theoretical foundations and tools to show that our methods are achievable. 
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One talks about mathematical discoveries. I shall try again and again 

to show that what is called a mathematical discovery had much better 

be called a mathematical invention. 

In some cases to which I point, you will perhaps be inclined to say, 

"Yes, they had better be called inventions. "; in other cases you may 

perhaps be inclined to say, "Well, it is difficult to say whether in this 

case something has been discovered or invented. 

Ludwig Wittgeustein [Dia76, page 221 



Chapter 1 

Introduction 

This thesis examines two related issues in the implementation of programming 

languages: the specification and correctness proofs of compilers, and the specific-

ation and correctness proofs of debuggers. While this thesis focuses on the latter 

problem we use, for both problems, a Structural Operational Semantics of the 

programming language as the reference point for correctness. 

In the following section we motivate the use of semantics-based methods in 

the design of compilers and debuggers. In Section 1.2, we give an overview of our 

approach to this problem. Section 1.3 briefly reviews the approachs to compiler 

correctness and semantics-based debugging that we find in the literature, and 

presents an outline of this thesis. 

1.1 The Design of Compilers and Debuggers 

The research on compiler design dates back to the early sixties. Since then, a 

vast literature has emerged describing techniques and tools for compiler writ-

ing (e.g. [Gri71,T585,A5U86,PP92J). The problem of compiler correctness has 

also been widely studied in the past [MP67,Mor73,Mos79,TWW81,Po181,CM86, 

Des86,Joy89,Sim9O]. Therefore, we have a common understanding of what the 

problems of compiler specification and correctness involve: we must give a defini-

tion of a compiler and prove that the code it generates for each program executes 

1 
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consistently with the semantics of the programming language. 

Since there exists some freedom in defining what is meant by "consistent 

execution of the compiled code", it is in this aspect that the works in the literature 

differ most. This thesis extends and improves previous work on this subject by 

presenting a notion of compiler correctness in which the execution of the code 

of a program must be observationally equivalent (in the algebraic specification 

sense) to the semantics of the program as defined by a Structural Operational 

Semantics. 

In contrast with compilers, debuggers have received little attention from a the-

oretical point of view. Therefore, it is not commonly agreed what the problems 

involved in the design of debuggers are, nor what debugger correctness means. 

However, debugging is an important phase in the development of programs ac-

counting for a large percentage of the cost of this development [Jon77,Sho83]. 

For instance, in the telecommunication industry this cost may account for over 

50 percent of the total development cost of a program [Sev87}; similar figures 

have been reported from other areas. 

Therefore, an important problem in software technology is to define methods 

and tools to reduce the time spent on the debugging phase [Lew82]. This reduc-

tion can be achieved either by producing programs that have fewer errors with 

respect to their specification (no errors in the ideal case), or by improving the 

quality of the tools and methods used in debugging, or by a combined solution. 

The problem of developing programs that are correct with respect to their 

specification is the subject of a wide area of research on formal specification and 

formal program development. We do not treat this problem in this thesis; the 

interested reader is directed to [GM86] for an overview of various approaches to 

formal program development and to [BKL91] for a survey on Algebraic Spe-

cification. 

Although the research on formal specification experienced great advances in 

the last decade, it has not reached a state in which practical programs are de- 
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veloped entirely free of errors. Therefore debuggers are still necessary in the 

process of program development, and to improve the techniques and tools used 

in their design is an important problem to be addressed. We approach this prob-

lem by proposing the use of semantics-based formal methods in the design of 

debuggers. Our objective is to define a theory to address formal specification, 

implementation, and correctness proofs of such tools. 

In the rest of this section we will study the process of debugger design and 

identify aspects in this process that can be improved by using semantics-based 

methods. Before we start looking into debugger design we should agree on what 

a debugger is and what distinguishes it from other programming tools. First, 

we are interested in automated debuggers rather than in manual debugging tech-

niques like desk checking and memory dump analysis. As an initial proposal, we 

characterise debuggers as follows: 

A debugger is a tool that produces information about the intermediate 

states of the evaluation of programs under the user's request. 

This characterisation emphasises that we are interested in dynamic information 

about a program rather than in a static analysis of its behaviour as in [Sev87]. We 

will refine and make this characterisation more precise throughout this chapter. 

Let us now analyse some questions that naturally arise from the above charac-

terisation of debuggers: 

. How are programs evaluated? 

. What information about the evaluation may be requested? 

. Is the process of requesting/obtaining information interactive? 

The answers to these questions vary in the literature and define classes of de- 

buggers. Programs may be interpreted, in which case the debugger is called an 

interpreter-debugger [vdLW85,SY087]. Alternatively, programs may be compiled 
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into machine code that is then executed on the machine, in which case the debug-

ger is known as a compiler-debugger. Finally, programs may be evaluated by a 

combination of interpretation and compilation, usually known as mixed-execution 

or selective interpretation [CH87]. 

The minimal information about the evaluation that is normally available is 

the value of the program data at intermediate states of the program evaluation. 

More sophisticated debuggers provide procedure and function trace-backs, and 

information about the control flow of the program. Symbolic- de buggers are de-

buggers in which this information is requested and presented at the level of 

the programming language structures. Finally, interactive-debuggers are those 

in which the process of requesting/obtaining information is interactive [Ze184, 

vdLW85,SY087], in contrast with post-mortem debuggers in which the user can-

not interact with the debugging process, and the information is delivered after 

program termination [Lau79}. 

Most proposals in the literature which set out to improve the quality of de-

bugger focus on two main aspects: the user interface and the information that 

the user can access through the debugger. The recent advances in hardware tech-

nology and the wide availability of graphical workstations has made possible the 

design of debuggers with sophisticated graphic interfaces [Bov87,Moh88]. The 

increasing computational power and storage capabilities of recent computers al-

lows debuggers to store complete histories of the evaluation of the program, so 

that it is possible to access information about an arbitrary point in the history 

of the evaluation [Moh88}. 

The above mentioned works and other related approaches in the literature 

(e.g. [vdLW85,Bov87]) have produced some improvements on the process of de-

bugger design. However, this process still remains ad hoc and informal which 

often leads to debuggers that either have a counter-intuitive behaviour, or are 

incorrect, or both. Let us illustrate these problems so that we can understand 

how the use of semantics-based methods can assist in their solution. 
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Hereafter, we focus our interest on interactive-debuggers, for this is the most 

used kind of debugger and also because they provide the most interesting and 

challenging problems. In general, an interactive-debugger provides debugging 

commands that give the user the ability to step through the intermediate states 

in the evaluation of a program; to stop at desired break points; and to request 

information about the current, and possibly, previous states in the evaluation. 

This characterisation of interactive-debuggers raises an important question: 

what is the meaning of "to step through the states in the evaluation of a pro-

gram"? Answering this question involves the definition of a notion of an evalu-

ation step, which is a central problem in the design of debuggers. 

The importance of the definition of an evaluation step is brought to light in 

the example below in which we wish to emphasise how a counter-intuitive notion 

of evaluation step may lead to counter-intuitive behaviour of the debugger. In 

this case, the debugger is less effective in assisting the programmer to locate 

errors, and solutions to this problem are therefore necessary. 

Suppose we have two versions of simple C [KR78] program in which the only 

difference is how the text of the program is written. The two versions of the 

program are shown below; we call the one on the left p1. c and the other p2. C: 

mainQ{ 

mt i; 

i = 0; while (1) {i++;}; 

} 

From our knowledge of the programming language, we develop an intuition about 

the evaluation steps of the above programs. According to this intuition, the first 

step in both evaluation is to assign 0 to the variable i. Then, the condition (1) 

of the while statement is tested. Since its value is different from 0, the next 

step evaluates the statement i++, which increments the value of i by 1. Since 

the value of (1) will always be different from 0, the evaluation never leaves the 

mainO{ 

mt i; 

i = 0; 

while (1) {i++;}; 

} 
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while statement, and at each step the statement i++ is evaluated, incrementing 

i by 1. 

The above description of the evaluation of p1. c and p2. c is what we call our 

intuitive notion of an evaluation step. When using a debugger, we expect to be 

able to observe the evaluation according to this intuitive notion. The following 

example shows a debugger, commonly used in practical applications, that does 

not behave as we expect. 

Let us debug the programs p1. c and p2. c using DBX [Mic] to observe the 

values of the variable i. We first compile the programs generating debugging 

code, and then load DBX with this code. A debugging session for the program 

pl.c is shown below: 

Reading symbolic information... 

Read 34 symbols 

(dbx) stop at 3 

(2) stop at "pl.c":3 

(dbx) run 

Running: p1 

stopped in main at line 3 in file "pl.c" 

3 	i = 0; while (1) {j++;}; 

(dbx) display i 

i = 0 

(dbx) step 

(dbx) 

After the step command the execution enters an infinite loop and we cannot see 

the value of the variable i inside the while statement. A debugging session for 

the program p2. c, in which the first three debugging commands are as in the 

above session, is as follows: 
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Reading symbolic information... 

Read 35 symbols 

(dbx) stop at 3 

(2) stop at "p2.c":3 

(dbx) run 

Running: p2 

stopped in main at line 3 in file "p2.c" 

3 	i0; 

(dbx) display i 

i=O 

(dbx) step 

stopped in main at line 4 in file "p2.c" 

4 	while (1) {j++;}; 

i=O 

(dbx) step 

stopped in main at line 4 in file "p2.c" 

4 	while (1) {j++;}; 

i = 2 

(dbx) 

Let us analyse two aspects of the above examples: the behaviour of the debugging 

command step in both debugging sessions; and the values output by DBX for 

the variable i during the evaluation of p2. c. 

We start by analysing the step command. According to our intuition about 

the evaluation steps of p1. c and p2. c, we expect both programs to have identical 

evaluation steps, as we discussed on page 5. Therefore, we also expect the step 

command to have identical behaviours in both debugging sessions. Nevertheless, 

the behaviours of step do not agree with our intuition because DBX's notion of 

step is based on the lines of the program rather than on the sequence of primitive 

operations involved in the evaluation of the program. 
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We argue it is essential that a debugger behaves according to our intuition 

about how programs are evaluated. A debugger that behaves intuitively is easier 

to learn and may be more effective in assisting the programmer to locate errors. 

Therefore, an important problem in debugger design is to build debuggers with 

intuitive behaviours. 

The particular problem we illustrated using the step command of DBX is an 

instance of a general problem. Let us characterise this problem to understand how 

semantic based methods may assist in its solution. On the one hand, as discussed 

above, we develop an intuitive notion of an evaluation step and consequently of 

how programs are evaluated. These intuitive notions form our mental model of 

the programming language [BOM81,Nor82] which is built mainly from the ob-

servations we make of program evaluations, and from the documentation we are 

given on the programming language, e.g, the definition of the programming lan-

guage. On the other hand, a debugger also has a model of the programming 

language, which defines its notion of evaluation step and how programs are eva!-

uated; we use the term evaluation model to refer to the debugger's model of the 

programming language. Problems therefore arise whenever our mental model 

and the debugger's evaluation model are different. 

An obvious solution to this problem is to define debuggers whose evaluation 

model behaves close to our mental model. A first aspect in which semantics-based 

methods may help the design of debuggers is in the definition of an intuitive 

evaluation model. Some formalisms used to define semantic aspects of program-

ming languages have an explicit operational meaning, e.g., definitional interpret-

ers [Lan64] and Structural Operational Semantics [P1o81]. Other formalisms can 

naturally be given an operational interpretation, e.g., Natural Semantics [Kah88]. 

This operational meaning may be used to define evaluation models paramet-

nc on a formal semantics of the programming languages; when instantiated with 

a particular semantics such an abstract evaluation model yields an actual eval-

uation model that may be used to evaluate programs. For instance, this is the 

approach taken by Berry in his Animator Generator [Ber9la]. 
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Our starting point is that, using a suitable semantics formalism and a particu- 

• lar intuitive semantics of the programming language, we can define an evaluation 

• model that has an intuitive notion of an evaluation step. Our main contention is 

that the use of such an evaluation model helps in the definition of debuggers that 

have intuitive behaviour. It is our first objective to choose a suitable semantic 

formalism and then to define an evaluation model based on this formalism. 
Let us now analyse the values output by DBX for the variable i in the debug-

ging session for program p2. c (page 6). In that debugging session, the value of 

i is shown as incrementing by two at each step. However, we intuitively expect 

it to be incrementing by just one. Since there is no formal specification of DBX, 

there are two possible interpretations for this behaviour. First, this is the beha-

viour intended by the debugger designer, in which case the behaviour of DBX is 

again counter-intuitive. Second, this behaviour is not intentional, in which case 

it is an error in DBX's implementation. 

The second possibility is the most likely and is clearly the most harmful 

because if we use a debugger to locate errors in the program it is imperative 

that the debugger is correct. Another important aspect in debugger design is to 

produce correct debuggers. 

Another aspect in which semantics-based methods may assist in the debugger 

design is in the formal specificationof the behaviours of the debuggers. The ability 

to build formal specifications is the first essential step towards correct debuggers. 

Furthermore, a formal specification is an improvement on an informal one because 

it offers an unambiguous common reference for the users, the designers, and the 

implementors of the debugger, with the following advantages: 

• A common reference between user and designer means that the behaviour 

of the debugger that the user learns is exactly what was specified by the 

designer. 

• A common reference between the designer and the implementor means that 

the implementor may implement a debugger that has the behaviour spe-

cified by the designer in the formal specification. Moreover, because the 
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specification is formal we can develop a notion of correctness between spe-

cification and implementation such that we can prove that the implemented 

debugger has the same behaviour as its specification. 

. As a consequence of the two previous points, a common reference between 

the implementor and the user means that the latter uses a concrete debug-

ger that behaves exactly like the specification. 

Our second objective is to define a theory for the specification of debuggers based 

on a formal semantics of the programming language. In this semantics-based 

approach, an evaluation model of the programming language is used as the basis 

of the debugger specification. Since this evaluation model will be defined to 

behave as close as possible to our intuition about the programming language, 

we argue that our approach will assist in formalising debuggers with intuitive 

behaviours. 

Our third and final objective is to define a notion of equivalence between 

the behaviours of a specification and an implementation of a debugger. The 

definition of an evaluation model, the methods and tools for semantics-based 

specification of debuggers, and the notion of equivalence between specification 

and implementation of debuggers form an integrated theory of debugger design. 

Our thesis is that the use of this theory helps in designing debuggers that more 

effectively assist the programmer because they are easier to learn, more intuitive 

to understand, and correct with respect to their formal specification. It is our 

goal to provide theoretical foundations and tools to show that our methods are 

achievable. 

1.2 The Approach of this Thesis 

In this section we give an overview of the main results of this thesis. The objective 

is to show how a theory of debugger design can be defined. The design of a 

debugger involves three separate phases. First, the specification, in which the 
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behaviour of the debugger is defined. Second, the implementation, i.e., another 

specification of the debugger given at a lower level of abstraction, and closer 

to an actual machine implementation. Third, the proof of correctness of the 

implementation with respect to the specification. The following discussions show 

how each phase is addressed in this thesis. 

Choosing the Semantic Formalism 

Our ability to construct formal specifications of debuggers depends on the exist-

ence of a formal notion of program evaluation and of evaluation step; we propose 

to use a formal semantics in the definition of programming languages and from 

such a semantics to derive these formal notions. The success of this proposal 

depends on the choice of a suitable semantic formalism, for on the one hand it 

is difficult to derive a notion of program evaluation from some formalisms (e.g., 

axiomatic semantics [Hoa691). On the other hand, some formalisms are difficult 

to reason about because of the complexity of their underlying mathematics (e.g. 

denotational semantics [Sto89]). Using such a formalism could make it difficult 

to reason about debuggers. 

However, some semantic formalisms have a simple underlying mathematics 

and a natural and explicit operational meaning that can be used in the defin-

ition of program evaluation. The generic name operational semantics is often 

used to refer to such a formalism. In fact, operational semantics is a class of 

formalisms that includes a diversity of styles of formal semantics: for instance, 

definitional interpreters (e.g., Landin's SECD machine [Lan64], or Milner's SMC 

machine [Mil761), Plotkin's Structural Operational Semantics [P1o81], and Kahn's 

Natural Semantics [Kah88]. 

Structural Operational Semantics is a representative example of what we call 

the transitional style of operational semantics, in which the semantics of the 

programming language is defined by a transition system whose steps describe the 

evaluation of the programs. On the other hand, Natural Semantics is an example 

of what we call the relational style in which the semantics of a programming 
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language is defined by a mathematical relation between programs and results. 

The main difference between formalisms in the transitional and the relational 

styles that is relevant for our work at this stage is in the notion of an evaluation 

step. On the one hand, such a notion is an explicit component of formalisms in 

the transitional style. On the other hand, for formalisms in the relational style a 

notion of evaluation step must be defined as a component outside the formalism. 

This seems to imply that because our goal is a definition of an evaluation step for 

the debuggers, we should use a semantic formalism in the transitional style. This 

avoids the task of defining an explicit notion of evaluation step that is necessary 

if the chosen formalism is in the relational style of operational semantics. 

Nevertheless, simple comparisons between concrete semantics written in Struc-

tural Operational Semantics and in a relational style, revealed that the latter 

provides semantics that are more concise and easier to reason about ([Ber9la, 

pages 48-501, where what we call a Structural Operational Semantics is called a 

transition semantics). The use of evaluation contexts proposed in [WF91] helps in 

making Structural Operational Semantics more concise. However, this approach 

does not solve a limitation of the formalism: certain language constructors can 

only be defined by a Structural Operational Semantics provided the language has 

a rich enough set of constructors. For instance, a while statement can only be 

defined provided the language has some kind of conditional statement. 

We propose to use the relational style of operational semantics for the defin-

ition of semantic aspects of programming languages in this work. Therefore, 

we shall need to give an explicit definition of evaluation step to be used by the 

debuggers, as will be discussed later on. 

Let us illustrate the semantic formalism that we shall use in the rest of this 

work, which we will call Relational Semantics. For this, suppose we have a 

simple language Sum of constant and sum expressions, defined by the following 

BNF rules: 
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num(n) = n 

e1 =n1 	e2 =n2  
e1  + e2='.plus(ni,n2) 

Figure 1: A Semantics of Sum 

exp ::= num(nat) I exp + exp 

nat ::= 0 1  1 

and a function plus: nat x nat -+ nat that takes two nat numbers as arguments 

and returns a nat number that is the sum of its arguments. It is convenient to 

emphasise that "+" is the language constructor whereas plus denotes the math-

ematical sum operation. Moreover, num is a coercion operator that constructs 

an exp expression from a nat number. The role of coercion operators will be cla-

rified in Chapter 2. A Relational Semantics for the expressions in this language 

may be given by the set of inference rules in Figure 1. 

The rules in Figure 1 define how to evaluate a Sum expression to a nat number: 

the first rule states that a constant expression num(n) evaluates to the nat 

number n; the second rule states that lithe expression e1  evaluates to a number 

n1  and the expression e2  evaluates to a number n2  then the sum expression 

e1  + e2  evaluates to the result of the function call plus(n1 , n2 ). This informal 

interpretation is what we call an operational interpretation of the rules; such an 

interpretation will be essential in the definition of an intuitive notion of evaluation 

step based on the Relational Semantics formalism, as will be discussed later on. 

The rules in Figure 1 can also be interpreted as an inductive definition of the 

binary relation = between exp and nat, which we denote by =>: exp x nat. We 

formalise this interpretation in Chapter 2, whereas the operational interpretation 

is defined in Chapter 5. 
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num(n) = n 

e1 =,v' 	(v',e2 )—*v 

e1  + e2  = v 

e2  = v' 	(v', e1 ) - v 

e1  + e2  =' V 

e=v' 

(v, e) - plus(v, v') 

Figure 2: An Alternative Semantics for Sum 

Equivalence between Definitions of Programming Languages 

The same semantic aspect of a programming language may be defined by differ-

ent semantic specifications. For instance, we could define the semantics of the 

language Sum by another set of rules as in Figure 2. 

An important question is whether the set of rules in Figure 2 and Figure 1 

define equivalent semantics for Sum, for if they do so we may use either of the 

two sets of rules to determine the result of a Sum expression. To answer this 

question we must first define what we mean by equivalent semantics. Using the 

operational interpretation of the two sets of rules, a suitable notion of equivalence 

for the above examples may be as follows: 

For all expressions e in Sum, e evaluates to a number n in the set of 

rules of Figure 1 if and only if e evaluates to n in the set of rules of 

Figure 2. 

Given that the function plus is commutative, a simple inspection of the two sets 

of rules tells us that they are equivalent in the above sense. 

However, there are examples of pairs of semantics that we intuitively regard 
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num(n) C-'  num(n) 

Pi -+ pi 	P2 C-'P 
cons(p1,p2) c—  cons(p,p) 

p - cons(p1,p2) 

first(p) c Pi 

p c cons(p1,p2) 

second(p) c P2 

15 

Reverse 

nurn(n) nurn(n) 

Pi '* pi 	 PC-' P 
cons(p1 ,p2 ) c—  cons(p,p) 

p 	cons(p 1 ,p2 ) 

first(p) '—' P2 

p '—* cons(p 1 ,p2 ) 

second(p) Pi 

Figure 3: Two Semantics for Pair 

as being equivalent, but are not equivalent under the above informal notion. This 

suggests that we should look for a more general notion of equivalence. Let us 

show an example that illustrates this problem. 

Consider a language Pair of pairs of numbers, defined by the following BNF 

rules: 

pair ::= num(nat) I cons(pair, pair) I flrst(pair)  J second(pair) 

where nat was defined in the BNF rules of the language Sum (page 12). The 

sets of rules in Figure 3 define two semantics for Pair. The set called Direct 

defines the intuitive semantics in which a pair expression is evaluated to another 

pair expression by removing all first and second constructors. The set called 

Reverse gives a semantics in which a pair expression is also evaluated to another 

pair expression without first and second constructors, but the pair expressions 

of the form cons(pair, pair) are constructed in reverse order. 

According to the notion of equivalence discussed above, Direct and Reverse 

do not define equivalent semantics for the language Pair. For instance, the pair 

expression cons(num(1), nuni(2)) evaluates to cons(num(1), num(2)) in Dir- 
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ect and to cons(nuin(2), num(1)) in Reverse. However, the pair expression 

first(cons(num(1), nuin(2))) evaluates to num(1) in both cases. Thus, if we 

are only interested in results of the form num(n) then the difference between 

Direct and Reverse becomes irrelevant, in which case we would like to consider 

the two sets of rules as equivalent semantics of Pair. Therefore, we need a more 

flexible notion of equivalence in which only a subset of the pair expressions are 

required to evaluate to the same result under the two sets of rules, namely those 

expressions that evaluate to some result of the form num(n). 

Instances of the above problem arises naturally in the semantics of practical 

programming languages. For instance, in languages with abstract data types, 

we may not be interested in the details of the representation of abstract data 

type values. In functional languages, we are often not interested in the details of 

the representation of function values. Therefore, semantics that choose different 

representation for such values can still be considered equivalent if we use a suitable 

notion of equivalence. 

The idea of regarding only a subset of the results of expressions as being relev-

ant, or observable, is known in the area of algebraic specification as observational 

or behavioural equivalence between algebras. However, a similar notion already 

appears implicitly in the simulation method introduced by Milner [Mil71]. This 

idea applied to algebras first appears as the concept of the "semantics" of an 

algebra in [GGM76]. 

In Chapter 3 we formalise a notion of equivalence that has the intuitive mean-

ing discussed above; this particular notion of equivalence is based on observational 

equivalence as defined in [ST87]. Also in Chapter 3, we extend the definition of 

strong correspondence relations given in [Sch87,Sch9O] to the formalism of Re-

lational Semantics to obtain a practical proof method for proofs of equivalence 

between semantics. We then use an example to illustrate the use of this proof 

method. 
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Compiler Correctness 

In order to motivate the following discussion about the compiler correctness prob-

lem let us consider a simple stack machine M-Sum which has a stack on which 

we can push nat numbers, an accumulator that is used for arithmetic operations, 

and three instructions that mampulate the contents of the stack and the accu-

mulator: push that pushes the value of the accumulator on the top of the stack; 

add that adds the top element of the stack to the accumulator, leaving the result 

in the accumulator; and load that loads a nat number into the accumulator. The 

syntax of the machine language is given by the following BNF rules: 

stack ::= empty I  nat. stack 

inst ::= push I add  I load(nat) 

A program in this machine is a sequence of instructions, for instance, 

(load(1), push, load(2), add) 

The semantics of this machine may also be defined using a Relational Semantics. 

In this definition, a machine state is a pair (S, n) where S is a stack and n is the 

accumulator. The rules in Figure 4 define how machine instructions operate on a 

machine state to produce the new values of the stack and accumulator. In those 

rules, the concatenation of two sequences of instructions 4 and 2'2  is denoted by 

i1 @i2 . 

For instance the M-Sum program (load(1), push, load(2), add) evaluating 

on a state (empty, 0) produces the state (empty, 3). This machine may be 

used as the target machine of a compiler for the language Sum. The object-

ive is to translate expressions into machine programs that evaluate to the same 

result. For instance, the expression 1 + 2 could be translated into the program 

(load(1), push, load(2), add). 

In Chapter 4 we treat the problem of defining compilers in Relational Se-

mantics and how to establish their correctness with respect to a semantics of the 

programming language. For the correctness we apply the notion of Observational 
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(S,n)I-(push)--.*(n'S,n) 

(n1 . S, n2 ) F (add) -* (S, plus(n 1 , n2 )) 

(S, n) F (load(n')) - (S, n') 

, 1!II 	II' (S, n) F i1  - ( S', n') 	(S', n') F i2 - 	, , n ) 
(S, n) F i1 ©i2  -* (S", n") 

Figure 4: A Semantics for M-Sum 

Equivalence between Relational Semantics that is defined in Chapter 3; this is an 

important practical application of the notion of equivalence between Relational 

Semantics. 

For instance, a compiler for Sum using M-Sum as the target machine could 

be defined by the following set of rules that describes how Sum expressions are 

translated into sequence of M_Sum instructions: 

num(n) -'-'+ (load(n)) 

e1 -'-c1 	e2 -'-+c2  

e1  + e2  -'--* c1 ©(push)©c2©(add) 

A definition of the semantics of Sum using this compiler may be given by the 

following rule, which defines how an expression e is evaluated into a mat number: 

e -'-* c 	(empty, 0) F c -+ (empty, n) 

e = n 

The above rule has the following operational interpretation: if a Sum expression 

e compiles to a M-Sum machine program c and this program, runing on the state 

(empty, 0), produces a state (empty, n) then the result of the evaluation of e 



Chapter 1. Introduction 	 19 

is n. We use the term Evaluation by Compilation to refer to a semantics of a 

programming language given via its translation into some target machine code. 

In our approach, the compiler defined by the relation -'.- is considered correct 

if the above definition of the relation = is equivalent to the definition of = of 

Figure 1. 

Compiler correctness has been widely studied in the past (e.g. in [MP67, 

Mor73,Mos79,TWW8 1 ,Po18 1 ,CM86,Des86, Sim9O]). Our approach strengthens 

and improves these previous approaches in two main aspects. First, it gives 

a more general, yet intuitively sufficient, criterion for correctness. Second, we 

define a proof method that can be used in practical proofs of correctness. 

Program Evaluation and a Notion of Evaluation Step 

We discussed above that a Relational Semantics of a programming language may 

be used to evaluate programs in the language, but we have not yet seen how 

this may be done. Let num(1) + num(2) be a Sum expression that we want to 

evaluate using the semantics of Figure 1. By viewing the rules as an inductive 

definition of the relation between exp expressions and nat numbers, we can 

build a proof tree [DF87] for the formula num(1) + num(2) = n, where n is a 

meta-variable. The process of constructing such a tree finds an instantiation for 

n that is the result of the evaluation of num(1) + num(2). 

We are not interested in the details of how to build proof trees. However, let 

us show the complete proof tree for num(1) + num(2) =* n as an illustration: 

num(1) = 1 	num(2) = 2 
num(1) + num(2) = 3 

where plus(l, 2) = 3. The root of this tree is an instance of the rule that defines 

"+" in Figure 1, and the leaves are instances of the rule for num in the same 

figure. 

Proof tree construction is a possible method for evaluating programs using 

a Relational Semantics of the programming language. An implementation of an 
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algorithm for constructing proof trees that is parametric on a set of rules provides 

an abstract evaluation model that may be used to generate concrete evaluation 

models, or interpreters, for programming languages based on their semantics. 

This idea was first used in the CENTAUR system [C1K89] , and has also been 

used in other more recent works [Chi89,Ber9la]. 

In principle, we could use such an evaluation model as the evaluation model of 

the programming language to be used by debuggers, as discussed in Section 1.1. 

Then, the only remaining problem would be to define a notion of evaluation 

step based on this evaluation model. In [Ber9laJ, Berry defines such a notion of 

evaluation step as a function between partial proof trees (proof trees in which 

some sub-trees are not constructed); this function characterises a depth-first left-

to-right traversal of a proof tree. 

However, Berry's definition of evaluation step involves various complex defin-

itions that make it difficult to understand and reason about, so cluttering the 

intuitive understanding of the notion of step. This complexity is necessary in 

that case because of the requirements of Berry's "theory of program animation". 

Debuggers in our framework do not have such requirements; thus we should seek 

a simpler notion of evaluation step that is intuitive and easier to reason about. 

We propose an evaluation model for programming languages inspired by the 

SOS semantics of [And9l]. This evaluation model is parametric on a Relational 

Semantics and is defined by a transition system whose states, called evaluation 

states, contain the current state of the evaluation of the program (i.e., the result 

of evaluated sub-programs) and the sub-programs or goals that still need to be 

evaluated. A transition step of this system uses the rules of the semantics to 

decompose a current goal into sub-goals to update the current state and advance 

the evaluation. For instance, suppose that num(1) + num(2) is the expression 

to be evaluated; an initial state of the transition system is as follows: 

[num(i) + num(2) = n] 

In this evaluation state num(1) + nuxn(2) 	n is the goal. A transition step 
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from this state advances the evaluation as follows: 

[nuni(1) + nuin(2) = ii] 	In = plus(n1 , n2 ) : num(1) = n1 , num(2) = n2] 

where 	denotes a transition of the system, and n = plus(n1 , n2 ) indicates that 

the meta-variable n is substituted by the term plus(n1 , n2 ) in the current state. 

A substitution of terms for meta-variables is an explicit part of every state of 

the transition system. We omit the irrelevant parts of the substitutions from the 

states to simplify the presentation of the examples. 

In the above transition, the resulting state indicates that the next goal is to 

evaluate num(1) producing a result n1 , then to evaluate num(2) producing a 

result n2 , and finally to compute the sum plus(n1 , n2 ). This transition is defined 

using the rule for "+" expression of Figure 1 to expand the goal num(1) + 

num(2) = n into the sub-goals niim(1) = nj  and num(2) = n2 , each of which 

corresponds to a premiss of the rule. The next step in the evaluation is as follows: 

In = plus(n1 , n2) : num(1) = n1 ,num(2) = n 2 1 
In = plus(l, n2 ), n1  = 1 : num(2) = n2 ] 

which is defined using the rule for the definition of num(n) expressions of Fig-

ure 1. After this transition the resulting state indicates that num(1) has been 

evaluated to 1 and num(2) = n2  is the current goal. Finally, we can apply a 

transition step to obtain the final state of the evaluation and the result of the 

sum: 

In = plus(l, n2 ), n1  = 1: num(2) = n2 ] 

In = plus(1,2),n1  = 1,n2  = 2: 

where e indicates that there are no more sub-goals and the evaluation terminated 

successfully. The substitution in the final state gives the result of the evaluation, 

in this case n = plus(l, 2) = 3. 

In Chapter 5 we formalise the transition system discussed above, which we 

call the Computational Semantics of the Relational Semantics formalism. This 

transition system is used as the evaluation model for programming languages; the 
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notion of evaluation step used by the debugger is given by the transition relation 

of this transition system. We give some evidence that this notion of evaluation 

step is indeed intuitive. Therefore, this transition system and the formalisation of 

Relational Semantics form the basic components of a theory of debugger design. 

This transition system defines an evaluation model for a wide class of pro-

gramming languages, including non-deterministic languages. Moreover, it defines 

a deterministic evaluation model for deterministic languages that may be imple-

mented to yield an evaluation model generator for such languages. This provides 

a prototyping facility for programming languages similar to that provided by the 

CENTAUR system [C1K89]  and the Animator Generator [Ber9laJ. The ad-

vantages of our transition system over other methods in the literature is that it 

has an explicit, intuitive notion of an evaluation step. 

Formal Specification of Debuggers 

The next problem we shall address is how to construct formal specifications 

of debuggers using the evaluation model discussed above. Let us motivate the 

following discussion by considering the problems involved in specifying a debugger 

for the language Sum. The first step in this specification is the definition of the 

debugging language, i.e., the language in which we write debugging commands. 

The following BNF rules define a simple debugging language, called Pico: 

deb ::= step I trace on I trace off 

Recall that using the evaluation model described above we can evaluate Sum ex-

pressions step by step. Therefore, a possible interpretation for the above debug-

ging language is as follows: step causes the evaluation of the current expression 

to advance by one transition step of the evaluation model; trace on switches on 

tracing mode; trace off switches off tracing mode. When tracing mode is on a 

step command outputs the result of the last sub-expression evaluated and the 

sub-expression that is about to be evaluated. Our goal is to discuss how this 
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informal interpretation may be formally defined, leading to a specification of the 

debugger. 

There are at least two ways in which to formalise the definition of a particular 

debugger: in an ad hoc fashion, or by first defining a formal notion of an abstract 

debugger, and then giving a definition of the concrete debugger that conforms 

with this abstract notion. The advantages of the second method are that we have 

an abstract notion of debuggers that can be formally reasoned about, as well as 

a formal definition of the concrete debugger that is also amenable to formal 

reasoning. For instance, the definition of equivalence between the behaviour of 

two arbitrary debuggers, discussed later on, depends on such an abstraction. 

To achieve an abstract notion of debuggers we need a more elaborated char-

acterisation of debuggers than that given on page 3: 

A debugger is a tool that receives debugging commands from the user, 

applies those commands to its current debugging state, and outputs 

the information about the evaluation of the program requested by the 

command as its result. In this process the debugger may advance the 

current state of the evaluation, which is a component of its current 

debugging state. 

In Chapter 6 we formalise the above characterisation leading to an abstract 

formal notion of debuggers. We also discuss various aspects of the design of con-

crete debuggers that conform to this notion. In this abstract notion a debugger 

is a monogenic labelled transition system whose states are the debugging states 

and the labels of the transition relation are the debugging commands and their 

results. An evaluation state of a program, according to the evaluation model of 

the programming language, is a component of each debugging state. 

This view of a debugger as a labelled transition system is implicit in the event- 

action model of debugging proposed by some authors in the literature [BH83, 

GB85,LL891. Our work improves on those ideas by the use of formal semantics 
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in the definition of the programming language, an evaluation model of the pro-

gramming language in the evaluation of programs, and by developing an abstract 

definition of debuggers that is amenable to formal reasoning at the level of an 

arbitrary debugger. 

A possible definition of the states of the debugger Pico is a pair of the form 

(h, tr) where: h is a sequence of evaluation states the evaluation model of the 

Sum language and tr is a boolean variable used as the tracing mode flag. II we 

want to debug the Sum expression nuxn(1) + num(2), we load the debugger with 

this expression, which causes the debugger to build an initial debugging state of 

the form: 

(([nuni(1) + num(2) = ni), false) 

and start the debugging session. A debugging session is an interactive process in 

which we input debugging commands and the debugger outputs the results; in 

this process we have no access to the debugging states. If we issue a command 

trace on, the resulting debugging state is: 

(([num(1)+num(2) = n]),true) 

If we issue a step command on this state, the resulting debugging state becomes: 

(([num(1)+num(2) = n],[num(1) => n1,num(2) = n2]),true) 

with output: no previous result. 

current expression: num(1) 

The evaluation state [num(1) = n, num(2) = n2 ] is obtained from the previous 

state [num(1) + num(2) = n] using . Here we omitted the substitution of 

plus(n1 , n2 ) for n to simplify the presentation. If we issue another step command 

on the above debugging state, the state changes as follows: 

(([nuin(1)+num(2) = n],[num(1) = n1 ,num(2) = n2],[num(2) = n2]),true) 

with output: previous result: nj  = 1 

current expression: num(2) 
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The debugging session continues until the expression is fully evaluated or we 

abort the evaluation. 

The debugger Pico changes only the st part of a debugging state (st, tr) by 

using the evaluation model 20. For this reason we say that debuggers in our 

framework are semantic-driven or based on formal semantics. This characteristic 

will be formalised in this thesis as a requirement every debugger must fulfill. 

Therefore, there is a repertoire of debugging commands in existing debuggers 

that are disallowed in our framework, e.g., changing the value of programming 

language variables. If such commands are allowed, a debugger could generate 

evaluation states that are not reachable from the initial evaluation state of a 

program using . In this case, we could not regard such a debugger as being 

based on formal semantics. 

Once we have developed an abstract characterisation of debuggers, the next 

problem is to study how we may formally specify concrete debuggers that conform 

to this characterisation. This problem is studied in Chapter 6 in two stages: we 

study some aspects of the specification of debuggers and then define a notation 

to assist in the specification of concrete debuggers. The design aspects studied 

are generic and the proposed solutions to the problems may be applied to any 

concrete debugger that uses the evaluation model defined in this thesis in the 

evaluation of programs. 

The specification notation, called DSL, is defined with the objective of making 

the specification of concrete debuggers simpler and less ad hoc. This is achieved 

because DSL provides a high-level abstraction of the objects of the evaluation 

model, and also a powerful set of constructs to express debugging commands. 

DSL is a specification notation in the sense that definitions written in the lan-

guage are abstract and concise. 

Our major goal in the definition of DSL is to achieve an expressive language in 

which a useful set of debugging commands, found in most practical debuggers can 

be specified. We present some examples that show that DSL is indeed expressive. 
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Nevertheless, the theory of debugger design does not depend on this particular 

design language; other languages may be defined and used with the theory to 

suit the needs of particular debuggers. 

The notion of an abstract debugger and the DSL notation form a basic frame-

work for the specification of concrete debuggers. This framework is based on 

the notion of program evaluation and evaluation step discussed above; thus the 

framework is formal with respect to the semantics of the programming language. 

Our goal is to show that this framework helps to define debuggers with intuitive 

behaviours; definitions that can be used as a documentation for the user and 

guides for implementors. 

Implementation and Correctness of Debuggers 

In the debugger Pico, programs are interpreted using the evaluation model . 

This definition of Pico can be viewed as a prototype of the debugger which is 

simple to specify and understand. Prototypes are useful for testing the function-

ality of the specified debuggers but they seldom have the performance required 

in practical applications. Therefore, there is the need for implementations of the 

debuggers that meet such practical requirements in performance. In this thesis 

an implementation is another specification of the debugger given at a lower level 

of abstraction which is often more efficient than the original specification. 

As discussed in Section 1.1, the main purpose of formal specifications of de-

buggers is to serve as a common unambiguous reference for the users, the design-

ers, and the implementors. It is therefore necessary that the implementation of 

a debugger behave as defined by its specification. The main problem discussed 

below is how to establish the conditions for an implementation to be correct with 

respect to a specification of a debugger. 

To illustrate the problems involved in implementing debuggers, and their cor-

rectness, let us first define another debugger, called M_Pico, that has the same 

debugging language as the debugger Pico. The debugger M..Pico uses the corn- 
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pilation of Sum expressions into M_Sum code to evaluate expressions. Therefore, 

the debugging commands of M...Pico work on the machine states instead of on 

the states of the evaluation model for Sum. 

Let us consider a modified definition of the machine states in which we add 

the code that is executing as a component; we write this new state as: 

(S,Acc) I- c 

where (5, Acc) is the state of the machine as defined on page 17, and c is a 

M_Sum program. An M_Pico debugging state is a pair [m.st, tr] where mst is a 

machine state as above and tr is a tracing mode flag. In M...Pico step advances 

the evaluation by one machine step, which corresponds to the evaluation of one 

machine instruction. The command trace on and trace off work as in Pico, 

with the difference that here the result of the last sub-expression is the value 

loaded into the accumulator by the previous instruction and the current sub-

expression is the instruction that is about to be evaluated. 

If we want to debug the Sum expression num(1) + num(2) we load M..Pico 

with the expression; the debugger calls the compiler that translates the expression 

into its corresponding M_Sum code. Finally, the debugger creates the initial 

debugging state: 

((empty, 0) I- (load(1), push, load(2), add), false) 

and starts the debugging session. We can switch on tracing mode by issuing a 

trace on command, such that the next debugging state is: 

((empty, 0) F- (load(1), push, load(2), add), true) 

If we issue a step command on this state the resulting debugging state is: 

((empty, 1) F- (push, load(2), add), true) 

with output: previous result: Acc = 1 

current instruction: push 
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Another step command produces the debugging state and the output below: 

((1 empty, 1) F- (load(2), add), true) 

with output: no previous result. 

current instruction: load(2) 

Here, since push does not load a value into the accumulator, we do not have a 

previous result. This process continues until the evaluation of the code finishes 

or we abort the debugging session. 

Although MPico can be used to debug Sum expressions we could hardly 

regard it as a correct implementation of Pico in the sense of having the same be-

haviour. The two major reasons for the different behaviours of the two debuggers 

are: 

• There are more steps in the evaluation of the expression according to 

M_Pico than there are using Pico; we need to issue four step commands in 

M_Pico to entirely evaluate the above expression, whereas it is only neces-

sary to issue three step commands in Pico. 

• M_Pico shows machine registers and instructions as the information about 

the evaluation whereas Pico shows source language expressions and results. 

The possibility that differences arise between an implementation of a debugger 

and its specification should be ruled out by a notion of correctness between 

implementation and specification. If we consider that an implementation of a 

debugger is also defined as a labelled transition system then we may informally 

characterise a notion of correctness as an equivalence between debuggers, as 

follows: 

Two debuggers are equivalent if there exists a one-to-one correspond-

ence between the states of the debuggers such that whenever the two 

debuggers are at corresponding states each debugging command pro-

duces equal results and the debuggers move to corresponding states. 
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Requiring a one-to-one correspondence between the debugging states rules 

out the first difference, and requiring that outputs from the same command at 

corresponding states must be equal makes sure that the implementation will not 

show machine registers and instructions if the specification does not do so. This 

notion is sufficient as far as the two aspects discussed above are concerned, but 

requiring equality between results may be too strong. 

Suppose that we define two debuggers for the language Pair of Figure 3 with 

the same debugging language as Pico: the debugger called D evaluates pair ex-

pressions using the Direct semantics; the debugger R evaluates pair expressions 

using Reverse. It is not difficult to check that the states of the evaluation in both 

semantics are in a one-to-one correspondence. However, suppose that at some 

state in the evaluation of a pair expression the result of the last sub-expression 

evaluated is a pair of the form cons(pair, pair) then, since Reverse implements 

such a pair in reversed order the two debuggers will not be considered equivalent 

according to the above definition. 

As in the problem of equivalence between definitions of programming lan-

guages, if we are not interested in the representation of pair results of the form 

cons(pair, pair) then we would like to regard the two debuggers as being equival-

ent. Therefore, we need a notion of equivalence between debuggers that compares 

the result of debugging commands up to observational equivalence. 

In Chapter 7 we define such a notion of equivalence between debuggers, in-

spired by the bisimularity concept of [Par8l] and strong congruence of [Mil891. 

We extend such ideas so that labels of transitions are only compared up to ob-

servational equivalence. Therefore, equivalence between programming language 

definitions - in particular, compiler correctness - and equivalence between debug-

gers are strongly related. This relationship is formally stated in various results 

in Chapter 7. 

These definitions constitute the last components of the theory of design of 

debuggers. Therefore, in this theory, debuggers may be formally specified using 

- 

the DSL language and implementations of debuggers may be formally defined and 
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proved correct with respect to their specifications. The examples throughout the 

thesis have the objective of demonstrating that, using the theory, 

• It is practical to formally define debuggers that have intuitive behaviour. 

• It is practical to prove the correctness of debugger implementations. 

Compiler-Debuggers 

Another important problem treated in this thesis is the study of Compiler-

debuggers and the problems related with their design. We use the name Compiler-

debugger for debuggers in which programs are compiled into machine code and 

debugging is performed on the execution of the code on the machine. In such a 

debugger, the debugging commands must be defined on the machine states in-

stead of on a state of the evaluation model of the language; MPico is an example 

of a Compiler-debugger. 

In Chapter 7 we characterise Compiler-debuggers and study various aspects 

of their design. In this study we clarify the main aspects in which a Compiler-

debugger differs from a specification based on the evaluation model of the pro-

gramming language, and investigate mechanisms that may be used to resolve 

these differences. The objective is to define Compiler-debuggers that are cor-

rect with respect to a specification of the debugger. The study of the design of 

Compiler-debuggers clarifies two aspects that were already discussed above: 

• Since we expect the evaluation of the machine code of a program to in-

volve more steps than its interpretation under the evaluation model, how 

can we establish a one-to-one correspondence between those two notions of 

evaluation step? 

• How do we recover the information about the evaluation that is needed by 

the debugging commands from a machine state and output the results in a 

source language form? 
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We treat these problems at the level of an abstract Compiler-debugger so 

that the proposed solutions may be used with any such a debugger. We also 

consider other aspects of Compiler-debuggers, e.g., optimiser-debuggers [Hen82, 

ZJ911, and show that these aspects may have a formalisation in the theory defined 

in this thesis. 

1.3 Outline of the Thesis 

In this section we outline the contents of the following chapters, and briefly list 

various approaches in the literature related to the problems addressed in this 

thesis. In the introductory section of each chapter we study these approaches in 

more detail. 

In Chapter 2 we define the syntactical and meta-semantical aspects of the 

formalism of Relational Semantics. For the syntactical aspects we define an 

abstract notation in which semantics may be written, characterising a Relational 

Semantics Specification. The meta-semantical aspect involves the definition of 

the semantics of this notation, which we call the Declarative Semantics of the 

formalism. 

In Section 2.1 we compare our approach to Relation Semantics with defini-

tional interpreters [Lan64,Mil76], Structural Operational Semantics [P1o81], Nat-

ural Semantics [Kah881, and Inductive Semantics [Ast89,Ast9l]. 

In Chapter 3 we define a notion of Observational Equivalence of Relational 

Semantics Specification, and extend the proof method of strong correspondence 

presented in [Sch87] to a proof method for Observational Equivalence between 

Relational Semantics Specifications, which we call Model Correspondence. We 

also present an example of a proof of equivalence using this method. 

In Section 3.1 we study two approaches to equivalence between algebras: 

Hoare's notion of representation relation [Hoa721 and observational equivalence 

(e.g. [Rei81,ST87,N088,Sch90]). We discuss the limitations of representation re- 

lation and motivate the use of observational equivalence as a notion of equivalence 
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between Relational Semantics of programming languages. 

In Chapter 4 we study the problem of compiler correctness in the framework 

of Relational Semantics. We first characterise Evaluation by Compilation as a 

Relational Specification in which programs are evaluated by the compilation into 

machine code and the execution of the code on the machine. Then, the notion of 

Observational Equivalence between Relational Semantics specifications is used as 

the notion of compiler correctness. We give an example of a compiler correctness 

proof using the method developed in Chapter 3. 

In Section 4.1 we show how the problem of compiler correctness evolved from 

the early works of McCarthy and Painter [MP67] and Burstall and Landin [BL69] 

to the algebraic approaches of Morris [Mor73] and the ADJ group [TWW81]. We 

then discuss the combined use of Natural Semantics and Morris' notion of com-

piler correctness in the work of Despeyroux [Des86]. Other related approaches are 

also discussed, e.g., [Mos79,Po18 1 ,CM86,Joy89,Sim9O]. Since these approaches 

use some form of representation relation in the sense of [Hoa72] they suffer from 

similar limitations. We discuss how Observational Equivalence improves on those 

approaches. 

In Chapter 5 we define how to evaluate programs using a Relational Semantics 

Specification of the programming language; this leads to the definition of the 

Computational Semantics of the Relational Semantics formalism. We prove the 

Computational Semantics is correct with respect to the Declarative Semantics 

defined in Chapter 2. Therefore, program evaluation is consistent with the Re-

lational Semantics of the programming language. This notion of program evalu-

ation gives rise to a natural notion of an evaluation step when the Computational 

Semantics is used with deterministic languages. We give some evidence that this 

notion of evaluation step is intuitive. 

In Section 5.1 we compare our definition of program evaluation based on a 

Relational Semantics to the CENTAUR system [C1K89] and Berry's Animator 

Generator [Ber9la]. The emphasis of this comparison is on the suitability of 

these approaches to the definition of an intuitive notion of evaluation step. 



Chapter 1. Introduction 
	

33 

In Chapter 6 we treat the problem of formally specifying debuggers. We start 

by giving an abstract definition of debuggers that uses the notion of evaluation 

step defined in Chapter 5. This definition characterises the class of Interpreter-

debuggers. Then we study various aspects of the design of concrete debuggers. 

Finally, we define a notation to assist in the specification of debuggers, called 

DSL. We give an example of a debugger specified using DSL. 

In Section 6.1 we discuss the features for the specification of debuggers that 

are found in the CENTAUR and the Animator Generator. We also discuss ap-

proaches to semantic based debugging that use denotational semantics as the 

underlying formalism: the PSG system [BS86] and Monitor Semantics [KHC91]. 

In Chapter 7 we study the problems involved in the implementation of de-

buggers and how to establish a notion of correctness of the implementation with 

respect to a specification of the debugger. We define a notion of equivalence 

between debuggers inspired by the notion of bisimularity [Par8l] and strong con-

gruence between transition systems [Mil89]. We also treat the problem of the 

formal specification of Compiler-debuggers by studying various problems involved 

in the specification of such a debugger. We demonstrate that those problems have 

a formalisation in our framework. Finally, we give an example of the definition of 

a Compiler-debugger and a proof of equivalence between this Compiler-debugger 

and a specification of it constructed in Chapter 6. 

In Section 7.1 we compare our definition of equivalence between debuggers 

with the bisimulation technique of Park [Par8l]. 

In Chapter 8 we summarise the conclusions of this thesis and give directions 

for future work. 

Finally, in Appendix A we give the complete definition of the syntax and 

semantics of DSL. 

Conventions 

Definitions, lemmas, theorems, corollaries, and examples are numbered consec- 

utively throughout each chapter. Example 2 of Chapter 3 will be referred to as 
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Example 2 within Chapter 3 and as Example 3.2 elsewhere. Rules of Relational 

Semantics that appear in the examples are numbered consecutively throughout 

each example. Rule 5 of Example 2 of Chapter 3 will be referred to as Rule 5 

within Example 2, as Rule 2(5) elsewhere within Chapter 3, and as Rule 3.2(5) 

elsewhere. The same convention for rules applies to other numbered items in 

examples, and parts of definitions, lemmas, and theorems. 

When a new term is defined it is written in slanted font. Terms defined in 

this thesis start with a capital letter to distinguish from other usage of the same 

terms in the literature. For instance, Relational Semantics refers to the definition 

of the formalism that is given in this thesis. Other notational conventions are 

always defined before their first use. The glossary contains a summary of the 

notational conventions and the main symbols used in the thesis. 



Chapter 2 

The Semantics Formalism: 

Relational Semantics 

In this chapter we define the semantic formalism that will be used in the rest 

of this thesis to define semantic aspects of programming languages. The choice 

of formalism is primarily guided by the main objective of this thesis: to define 

a theory of debugger design. An essential component of this theory is a formal 

notion of program evaluation and evaluation step; thus a requirement on the 

semantic formalism is that it must have a natural operational interpretation 

from which these two notions can be derived. 

The term Operational Semantics has been used to refer to a semantic formal-

ism in which a programming language is defined by a description of how programs 

are evaluated. However, Operational Semantics is not a single formalism but a 

class of styles of formalisms. Relational semantics is such a style in which the 

semantics of a programming language is defined by a relation between programs 

and their results. This style has an operational interpretation that makes it suit-

able for use in a theory of debugger design. Relational Semantics also provides 

concise and abstract definitions of semantics, and for these reasons is the form-

alism that will be used in this thesis. 

The ways in which a relation between programs and results is defined varies 

35 
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among the approaches to relational semantics that we find in the literature. We 

will discuss some of these approaches in Section 2.1. In the rest of this chapter we 

shall develop an entirely formal definition of a particular approach to relational 

semantics, which we call Relational Semantics. 

This formalisation is accomplished by the definition of the syntactic and meta-

semantic aspects of the formalism. For the syntactic aspects we define the concept 

of a Relational Specification Syntax in Section 2.3. In Section 2.4 we define the 

meaning of a Relational Specification Syntax by the definition of its Declarative 

Semantics. 

2.1 Introduction 

Operational Semantics is the generic name used to refer to semantic formalisms 

in which programming languages are defined by a description of how programs 

should be evaluated into their results. In fact, Operational Semantics is a class of 

formalisms which includes a variety of styles of formal semantics. All formalisms 

in the Operational Semantics class can be given an operational interpretation 

which makes them suitable candidates to be used in a theory of debugger design. 

The choice of a particular formalism is then guided by two main factors: the 

expressiveness and level of abstractness provided by the formalism, and how 

intuitive is the notion of evaluation step that may be derived from it. 

Definitional Interpreters are the earliest approach to formal Operational Se-

mantics. In this formalism a language is defined by an explicit description of 

how programs are evaluated by an abstract machine such as Lanclin's SECD ma-

chine [Lan64] or Milner's SMC machine [Mil76]. The main drawbacks of such a 

description are: the components of the machine state, e.g., memory and stack, 

must be explicitly manipulated; the semantic operations related to the evaluation 

of the program are interleaved with operations that mimic the use of a program 

counter of concrete machines. These problems obscure the understanding of se- 
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mantic description and give a counter-intuitive notion of evaluation step. 

In Plotkin's Structural Operational Semantics [Plo8l] a programming lan-

guage is defined by a transition system whose transition relation describes how 

to transform a program by steps into its result. Such a transition relation is 

defined by an inductive definition in a form of inductive rules guided by the (ab-

stract) syntax of the programs, hence the name Structural. This formalism has 

a clear and simple notion of an evaluation step given by the transition relation 

itself. However, there is evidence that concrete semantics in this formalism are 

larger and more difficult to be reasoned about than in other formalisms [Ber9la, 

pages 48-501. 

Kahn's Natural Semantics [Kah87,Kah88] aims for a more abstract account 

of Structural Operational Semantics by focusing on its logical aspects. A Nat-

ural Semantics of a programming language is defined by a deduction system in 

the form of a sequent calculus [Gen691. Deduction systems are written and inter-

preted as sets of natural deduction rules [Pra65], whose premisses and conclusions 

are sequents. Reasoning about a semantics involves proving that a sequent is a 

logical consequence of the rules of the semantics. Sequents are composed of two 

parts: an antecedent, which is in general an environment in which values of pro-

gram variables are stored, and a consequent, which is a predicate about programs, 

in general a relation between programs and results. Because the consequents 

usually define a relation between program and results, Natural Semantics is in-

cluded in what we call the relational style of Operational Semantics; in contrast, 

Definitional Interpreters and Structural Operational Semantics are called the 

transitional style. 

Astesiano's Inductive Semantics [Ast89,Ast9l] is essentially the same form-

alism as Structural Operational Semantics. The goal of Astesiano's work is to 

provide a broader interpretation of Structural Operational Semantics by relating 

it to Denotational Semantics. 

The relational style of operational semantics, or simply relational semantics, 
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has been successfully used in the definition of real languages [HMT89]. Con-

crete semantics in this formalism are often highly abstract, and it is possible 

to define a notion of evaluation of programs using such a formalism [Ber9la]. 

Therefore, relational semantics is the style of formalism we use in this thesis. 

The objective of this chapter is to give a formal definition of the syntactical and 

meta-semantical aspects of an approach to relational semantics, which we call 

Relational Semantics. 

The formalisation of the syntactical aspects of Relational Semantics defines 

the concept of a Relational Specification Syntax in which concrete Relational 

Semantics can be expressed. This definition allows syntactic manipulations to be 

defined over an abstract specification as well as over concrete ones. For instance, 

in [dS90] we presented an algorithm that performs a syntactical transformation 

on an abstract Relational Specification Syntax; such transformations require the 

syntactical aspects of a Relational Semantics to be fully formalised. 

The formalisation of the meta-semantics of Relational Semantics allows meta-

reasoning about an abstract Relational Semantics, as well as reasoning about 

concrete ones. For instance, the proof that the transformation algorithm presen-

ted in [dS90] transforms the syntax of a Relational Specification preserving its 

meta-semantics requires this level of meta-reasoning, and is possible only if all 

aspects of the meta-semantics are formalised. 

In the approaches to relational semantics in the literature, it is possible to 

reason about a particular concrete relational semantics, but this reasoning often 

does not generalise to the level of an arbitrary semantics. Moreover, in some ap-

proaches even reasoning about concrete semantics may be difficult because of the 

lack of a precise definition of the meta-semantics of the formalism. For instance, 

the meta-semantics of Kahn's Natural Semantics is formalised by its translation 

into a concrete meta-language called TYPOL [Des88] and by the compilation 

of TYPOL into Mu-Prolog [Nai83b]. This meta-semantics is difficult to reason 

about; moreover it suffers from some of the idiosyncrasies of the underlying Pro-

log semantics. For instance, the absence of an occurs check in Mu-Prolog allows 
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infinite objects to be created in a concrete Natural Semantics. Although the use 

of such objects gives concise definitions, e.g., in the definition of recursive func-

tions, they require more complex proof methods to reason about the semantics. 

Our goal in this chapter is to achieve a formalisation of Relational Semantics 

which allows syntactic manipulations and meta-reasoning over a concrete as well 

as an abstract Relational Specification. In Section 1.2 we illustrated the form-

alism that will be defined in this chapter. In that presentation we described an 

operational interpretation for inductive rules of the form: 

num(n) = n 

e1 n1 	e2 =n2  

e1  + e2 ='p1us(n1 ,n2 ) 

This operational interpretation shows how to evaluate an expression to a 

nat number through the intermediate evaluation of its subexpressions. Another 

interpretation for the above rules is as an inductive definition of the relation = 

between expressions and natural numbers. We shall formalise this interpretation 

in the rest of this chapter. In this formalisation the (abstract) syntax of inductive 

rules is defined, leading to a notion of Relational Specification Syntax, and the 

interpretation of the rules as inductive definitions of sets of relations is defined to 

be the meta-semantics of the formalism, which we call the Declarative Semantics. 

In Chapter 5, the above mentioned operational interpretation of the inductive 

rules is used in the definition of a Computational Semantics of the Relational 

Semantics formalism. This Computational Semantics defines how programs are 

evaluated using a Relational Specification of the programming language. We 

then prove the consistency of the Computational Semantics with respect to the 

Declarative Semantics. The Computational Semantics is the basis of the theory 

of debugger design that will be defined in Chapters 6 and 7. 
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2.2 Set Theoretical Preliminaries 

The set theory of this thesis is the axiomatic set theory of Zermelo-Fraenkel, 

whose formalisation can be found for example in [Hal74,Kun8O]. We assume 

that the reader is familiar with the basic concepts of set theory. The glossary 

summarises the basic set theoretical notation used in this thesis. In this section we 

present some abbreviations and terminology that are not defined in the glossary. 

Let A and B be sets, the notation A + B denotes the union of two disjoint 

sets, i.e., A + B = A U B for A fl B = 11. This notation is used when A and B 

are disjoint to help the reader. If g is a function from A into B, i.e., g E [A - B], 

we write g: A -* B. 

A family is a function whose domain is called its index set. A family a with 

index set I, called an I-indexed or I-sorted family, is denoted by {a}1i,  or {a2 } 

when I is understood; a 1  stands for a(i). If the range of a family is a subset of a 

set A, the family is called a family of elements of A. 

Let B be an I-indexed family of sets, i.e., for each i E I, B1  is a set. Whenever, 

the range of B is pairwise disjoint we will write b E B as an abbreviation for b E B1  

for some i E I. 

A finite sequence is a family a whose index set is a set [+], for some n E M. 

We often use a1  ... an  as an abbreviation for a finite sequence (a 1 ,..., a,1 ). 

IfS is a set (of sorts), w E S' is a word (s1 ,. .. , s,), and A is an S-sorted family 

of sets then Aw = A 81  x ... x A. An n-tuple is an element of A", denoted by 

(a1 ,. . ., an ). In this case, K is defined to be {O}. 

The next definitions introduce the basic concepts of the theory of inductive 

definitions; these definitions can be found in [Acz77]. 

Let U be a set. An inductive rule is a pair (P, c), where P C U is called the 

set of premisses, and c E U is called the conclusion of the rule. An inductive 

system is a set of inductive rules, usually denoted by 0. An inductive system is 

a way of defining subsets of a given set U. If 0 is an inductive system, and A is 
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some subset of U, we define A to be 4)-closed if each rule in 4) whose premisses 

are in A also has its conclusion in A. More precisely, A C U is 4)-closed if for 

each (P, c) E 4), P C A implies c E A. If 4) is an inductive system, then the set 

inductively defined by 4), written I(0), is the least (with respect to set inclusion) 

4)-closed set. 

Let S be a set (of sorts) and {U8 } 3s  be an S-sorted set. An S-sorted inductive 

rule is a pair ({8},Es,  c8s), where P. C U8  is a set (with elements of sort s) and 

c5, E U8 1 is an object (of sort s'), for s, s' E S. The definitions of 4)-closed set and 

1(0) extend trivially to sets of S-sorted inductive rules. Inductive rules are the 

special case of S-sorted rules where S is a singleton. Hereafter, we use the term 

"rules" for "S-sorted inductive rules", for some set S. 

Associated with an inductively defined set there is an important proof method 

that can be used to prove properties about the set 1(4)). The next proposition 

states the Principle of Rule Induction, or 4)-induction in Aczel's terminology. 

Proposition 1 (Principle of Rule Induction) If 4' is a total predicate over 

1(4)), such that whenever (P,c) E 4) and 4'(x) holds for all x E P implies 4'(c) 

holds, then 4'(a) holds for every a E 1(4)). 

Proof Clearly, {a E 1(4)): 4'(a) holds} is 4)-closed, and therefore contains 1(4)). 

i 

The principle of rule induction extends trivially to an S-sorted inductively defined 

set. 

2.3 Relational Specifications 

In this section we define the syntactical aspects of the formalism of Relational 

Semantics, by defining the syntactical aspects of a Relational Specification. This 

gives a formal and abstract notation in which the semantics of programming 
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languages may be expressed. This abstract notation may have a concrete real-

isation either for machine manipulation, or for making the concrete semantics 

more readable or easier to write, or both. We introduce such a concrete notation 

at the end of this section with the objective of making the examples throughout 

this thesis more readable. 

The basic syntactical objects of a Relational Specification are type names 

(called sorts), terms, formulae, and inductive rules. Those objects are defined 

using the standard concept of first order signature; the particular definition used 

in this thesis is that of [GB90]. All algebraic concepts used hereafter are stand-

ard definitions in Universal Algebra which can be found for instance in [Coh65, 

TWW78,Grä79,Wec921. 

A (many sorted) algebraic signature is a pair (S, F) where S is a set (of sorts 

or type names) and F is a S 8  x S-sorted family of sets (of function names). We 

denote an algebraic signature (S, F) by E. A (many sorted) first order signature 

(or simpiy a signature) is a triple (5, F, H), where (5, F) is an algebraic signature 

and H is a S+sorted  family of sets (of relation names); we denote a first order 

signature by Q. The class of all first order signatures is denoted by Sig. 

As a notational convention, whenever a u E F81 	, we write u: s1  x.. . x s -+ 

s; if n = 0 we write u : s. Whenever a relation name ii E H31 	we write 

ir: s1  x ... x s,,. In either case, we assume that the sorts s1 .. . s, E 58 and s E S 

whenever S is understood in the context. 

Every algebraic signature E defines a set of well formed terms that can be 

constructed from free meta-variables and the function names in F (called the 

s-terms). Let X be a S-sorted family of meta-variables. For each sort s E 5, the 

set Tx() s  of terms of sort s (with meta-vanables in X) is the least set (with 

respect to set inclusion) defined as follows: 

For all x E X 3 , x e T(E) 8  

For all u E F81• , 3 , n > 0: 

if t2  E Tx() 3 , for i E [n+], then 01(t1 ,.. ., t,,) E T()3 
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The notation V(t) denotes the set of meta-variables of a term t. Terms without 

meta-variables are called ground terms; the set of ground terms of sort s is 

denoted by T() 3 . A term in some T() 5  is usually written i to ernphasise 

that it is a ground term. The set Tx(J) (respectively T()) denotes the family 

{ T(E) 8 }3s  (respectively { T() 3 },$). 

Every first order signature n = (S, F, H) defines a set of well formed atomic 

formulae that can be constructed from free meta-variables, and E-terms. It is 

convenient, for the definitions below, to impose a restriction that for all w, vi e S 

such that w vi, fl n,, = { }. This does not restrict the theory; however, 

its relaxation would make the presentation more complex. 

For each relation name ir E H 91 , the set Fx(I of well formed atomic 

formulae with relation name ir, or ir-formulae, is defined by: 

Fx(cZ),,. = {(t1 ,... , t,) : ti  E Tx(E),} 

Hereafter, we use the term well formed formula, or simply formula, to refer 

to a well formed atomic formula. Formulae without meta-variables are called 

ground formulae; the set of ground ir-formulae is denoted by F(1),r . We Will 

use 7r(t1 ,... , t) as an alternative notation for a ir-formula to emphasise that 

(t1 ,..., t) in an element in Fx(I),r , for some ir E H; in which case we write 

• , t) E F(l) omitting the index ir from Fx(),r . 

We shall often need to simultaneously substitute all occurrencies of a meta-

variable in a term or formula by a term, therefore we need the concept of a 

(simultaneous) substitution. A substitution is an S-sorted family of total func-

tions 0 = {O} such that 0 : X 5  -+ Tx() s . Then, the instance of t by 0 is 

obtained using the function I: T() 5  X (X 5  Tx(>)s ) .' Tx() 5  recursively 

defined as follows: 

1. lIt = x, for x E X 5 , then I(t,O) = 05 (x). 

2.Ift=o(ti ,...,t,),i7:s1 x ... xs—sEF, 

then I(t,O) = a(I(t1 ,O),... ,I(t0,O)). 
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We use tO as an abbreviation for I(t, 0). The composition of two substitutions 0 

and 0' is denoted by 00'. A substitution is a ground instantiation for t E Tx(E) 3  

if tO E T(E),; in which case tO is a ground instance of t. The above definitions 

extend trivially to formulae. 

The last syntactical object of a Relational Specification is an inductive rule. A 

Relational Inductive Rule (or simpiy a Relational Rule) is a pair ({PrejEfl,  ce,1.,) 

where Pre, E F(F(c),1.) is a finite set of ir-formulae (called the premisses) and 

ce, E Fx (1),1.I, for some ir' E H, is a ir'-formula (called the conclusion). The 

definition of substitution and other related concepts extend trivially to Relational 

Rules. 

A set of Relational Rules is an inductive definition, here called a Relational 

Inductive Definition, usually denoted by 4. An inductive definition is a finitary 

way of representing a (possibly infinite) inductive system (defined in Section 2.2). 

One possible way of deriving the inductive system represented by a Relational 

Inductive Definition is by generating all possible ground instantiations of each 

Relational Rule in the definition. The Declarative Semantics of Relational Spe-

cifications, defined in Section 2.4, describes an alternative way to perform this 

derivation using evaluation of terms in a E-algebra. 

Finally, we define the concept of a Relational Specification Syntax, which 

characterises the syntactical aspects of a Relational Specification. 

Definition 1 (Relational Specification Syntax) A Relational Specification 

Syntax is a pair (1, 0), where 0 is a Relational Inductive Definition over the first 

order signature ft 	 0 

In the examples throughout this thesis it will often be necessary to name com-

pound objects like signatures and Relational Specification Syntaxes. For this 

we adopt the following convention: whenever S is the name given to a Rela-

tional Specification Syntax (1, 4), we write (1i, 0
S)  to make it explicit that çS 

and q5S  are objects of S. In this case we assume that f2 s = (SS,F,HS) and 
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ES  = ( S8 , F8). This convention applies to every other compound object defined 

in later chapters. 

The above definitions provide a formal characterisation of the syntactic as-

pects of the Relational Semantics formalism. With this characterisation it is pos-

sible to write Relational Specifications in the abstract notation of terms, formulae 

and Relational Inductive Definitions. In this sense, the theory of Relational Se-

mantics is independent of any particular concrete syntax used to write Relational 

Specifications. 

Other works, like TYPOL [Des88], and Berry's Language Specification Lan-

guage [Ber9la], formalise the concept of a semantic specification by a concrete 

specification language. We prefer the abstract definition because it keeps the 

theory isolated from idiosyncrasies of the particular concrete language, and gives 

more freedom in the choice of a concrete language to suit the needs of particular 

applications of the theory. 

In the examples throughout this thesis we use a concrete notation to write 

Relational Specifications with the objective of making them more concise and 

readable. The next paragraphs define this concrete notation. None of the the-

oretical results of the rest of this work depend on this concrete notation; all the 

theory is developed in terms of the abstract notation developed above. Moreover, 

it is always possible to unambiguously convert from a Relational Specification 

written in this concrete notation to one that fits the definition of a Relational 

Specification Syntax. 

The choice of concrete syntax for a Relational Specification Syntax is inspired 

by the correspondence between context free grammars (CFG) and initial many 

sorted algebras, as discussed in [GTWW77, page 75]. This correspondence allows 

a many sorted initial algebra to be unambiguously derived from a CFG. Inform-

ally, let G be a CFG with a set of non-terminals 5, a set of terminals F disjoint 

from S, and production rules P C S x (S + F)*. Then a suitable transformation 

on the right hand side of the productions of G defines an x S-sorted set E of 
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function constants. The initial s-algebra T() has a carrier for every sort s E S 

which is the set of parse trees derived from a non-terminal s in P. 

It is important to notice that the CFG is defining the abstract syntax of the 

language rather than its concrete syntax. It is in this sense that this approach 

to define a -a1gebra factors out parsing problems so that the CFG may be 

ambiguous yet the algebra is well defined. 

For instance, consider the grammar of the language Sum of previous examples, 

that is given below: 

exp ::= num(nat) I exp + exp 

nat ::= 0 1  1 

The non terminals of the grammar define the set of sorts S = {exp, nat}, and the 

right hand side of the productions define the operation constants num: nat -* 

exp, +: exp x exp - exp, 0 : -* nat, 1 : -* nat, and so on. 

Since, in the concrete notation, we write a ir-formula with the explicit rela-

tion name ir, e.g., ir(t1 ,.. ., t,), it is no longer necessary to consider the set of 

premisses of a Relational Rule as a 11-sorted family of sets in the concrete nota-

tion. This makes it simpler to write the concrete syntax for Relational Rules 

in the traditional Natural Deduction style of rules, such that a Relational Rule 

(Pre, ce), where Pre is the set 
. . , f,}, is normally written: 

fl ... fn 
ce 

The apparent ordering on the premisses of the rules, suggested by the format of 

the above rule, has no meaning in the theory; thus, the set of premisses of any 

Relational Rule is still considered as just a set of formulae. 

To define the set of meta-variables that is used to build terms and formulae 

in a Relational Specification Syntax we adopt the following convention. Let S be 

a set of sorts and s E 5, we say the component X, of X is generated by some 

meta-vanable v to mean that X8  contains v and all variations of v using index 

and superscripts. 

The next example shows a complete Relational Specification Syntax written 
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in the concrete notation described above. In this example, we shall see how 

relation names are declared. 

Example 1 This example defines a complete Relational Specification Syntax, 

called Exp = (Q', for a simple arithmetic expression language with local 

declarations of variables, also called Exp. The objectives of this example are to 

illustrate the use of the concrete notation described above, and to define some 

notational conventions that will be used in later examples. The sets S E' P  and 

FEZI) are defined by the following BNF rules: 

exp ::= id(var) I num(nat)  I exp + exp I let var = exp in exp 

var ::= x I Y I 
nat ::= plus(nat, nat) I 0 

The set XE  of meta-variables used to construct E'-terms and l'-formulae is 

as defined follows: 

XE is generated by e 
eXP 

X is generated by id var 

X at  is generated by n 

We will use the set XE  in the examples throughout this thesis and new compon-

ents will be added to XE  as required. 

The rules below define the semantics of Exp by an inductive definition of two 

relations: =' between expressions and natural numbers, and -' that describes 

how to substitute the free occurrences of a variable in an expression by its value. 

This semantics is called a substitution-model semantics of Exp. In later examples 

we shall see how to define Exp by an environment-model semantics, and also prove 

that both semantics are equivalent in a sense to be defined. 

In the rules below, the relation names in H' are declared in the boxes, such 

that I exp =s  nat I declares =SE 11 'xnat  and emphasises that = s-formu1ae are exp 

written in infix mode. The above BNF rules defined the abstract syntax of Exp. 

We should then use this abstract syntax to write terms in the rules. However, we 
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will use concrete syntax in the examples whenever it does not cause ambiguities 

to improve readability. 

Evaluation of Expressions 	 exp =s  nat 

num(n) =s 

e1 	n1 	e2 	n2  
e1  + e2 s  plus(n1 , n2 ) 

e1 	n1 	(711, id, e2) -* e 	e 	n2  

let id = e1  in e2  =:S fl2 

Substitution 	 I  (nat, var, exp) —4s  exp 

(n,id,nurn(n')) —4s  nurn(n') 	
(4) 

	

(n, id, id(id)) -*s num(n) 	
(5) 

cond(id 0 id') 

	

(n, id, id(id')) —+s  id(id') 	 ( ) 

	

(n, id, e1) -+ e 	(n, id, e2) —'s  e 	
(7) 

(n, id, e1  + e2) -+ e + e 

(n, id, e1) -4 

(n,id,letid=eiine2)—*sletid=eine2 	
(8) 

cond(id 54 id') 	(n, id, e1) -* 4 	(n, id, e2) - e 	(9 
(n,id,letid=e1 ine2)— s letid=eine 

Comments 

1. The sets of terminal symbols and productions of the CFG used in the above 

definition are infinite. Infinite grammars are a convenient device to define 

languages as already pointed out in [GTWW77,vW691. 
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2. The premisses of the kind cond(id $ id') are called "side conditions" in 

most approaches to relational semantics. The treatment of such premisses 

is discussed in detail below. 

Some "Syntactic Sugar" 

To simplify the examples we shall adopt the following convention: we omit the 

unary operators that are only used for sort conversion. An example of such an 

operator is the operator num, that is only used to convert nat into exp. Therefore, 

we shall write the definitions of S E P and FE2)  as follows: 

exp ::= var I  nat  J exp + exp I let var = exp in exp 

var ::= x I Y I 
nat ::= plus(nat, nat) I 0  1  1  I 

and the Relational Rules will be changed accordingly, for instance: 

n 	n 

(n, id, id) _*S  fl 

In the first rule it should be obvious from the definition of X E  that n is a meta-

variable of sort nat. In Section 8.2 we discuss the use of order-sorted signatures 

and algebras as a formalisation of the above "syntactical Sugar". However, we 

prefer to develop our theory in the simpler framework of many sorted algebras, 

and leave the use of order-sorted algebras to be studied in future research. This 

discussion finishes Example 2.1 0 

The Syntactical Treatment of Side Conditions 

The premiss cond(id 	id') in Rules 1(6) and 1(9) is usually called a side- 

condition. In most approaches in the literature side-conditions are treated in a 
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theory outside the semantics formalism. In this section we discuss the syntactical 

treatment that we give to side-conditions. 

The unary relation cond has sort MetaBool, i.e., cond: MetaBool. Moreover, 

the following Relational rule defines this relation: 

cond(MetaTrue) 
	 (0) 

where MetaTrue is a nullary function name of sort MetaBool, i.e. MetaTrue: 

MetaBool. Hereafter, we assume that the Relational Rule 0, the constants Meta-

True and MetaFalse, and the function names of the form o : w -+ MetaBool, 

for some w E S, are implicit components of any Relational Specification Syntax. 

For instance the following BNF rule is assumed to be part of the semantics 

for Exp given in Example 1: 

MetaBool ::= var var I MetaTrue I MetaFalse 

Therefore, we treat side conditions as normal premisses in this work as far as 

the syntactical aspects are concerned; in the next section we shall explain the 

meta-semantics of such treatment. 

As another "syntactic sugar" we omit the relation name cond whenever this 

does not cause ambiguity. For instance, Rule 1(6) is written: 

id 54 id' 

(n, id, id') —is  id' 
1(6) 

2.4 Declarative Semantics of Relational Specifica-

tions 

This section presents the concept of the Declarative Semantics of a Relational 

Specification, that is, we define the meta-semantics of a Relational Specifica- 

tion Syntax. While the definitions of the last section formally characterise the 
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syntactic aspects of the Relational Semantics formalism, allowing us to write con-

crete Relational Specifications, the Declarative Semantics of this section defines 

a precise mathematical meaning for those syntactic objects. 

We may informally understand the definitions of this section as follows. Sup-

pose we have written a Relational Specification Syntax (, 4)), and now want 

to know which relations it defines. To answer this question we first choose an 

arbitrary s-algebra, where the meaning of the Relational Specification will be 

given with respect to this algebra. Then, we derive an inductive system from 

the Relational Inductive Definition 4).  Intuitively, this derivation is done by con-

structing all possible ground instantiations of each rule in 4), and then evaluating 

the terms in these ground instantiations according to the chosen -a1gebra. 

A Relational Specification defines exactly the family of relations inductively 

defined by its derived inductive system. Therefore, a Declarative Semantics of a 

Relational Specification is a first order model that satisfies exactly the tuples that 

belong to the relations (inductively) defined by the specification. These notions 

are formalised below. 

Throughout this section we fix an arbitrary Relational Specification Syntax 

(, 4)), where Q = (5 )  F, II), and an S-sorted set X of meta-variables. 

The definition of the Declarative Semantics of a Relational Specification re-

quire the definition of term evaluation according to a -a1gebra. Towards the 

definition of this concept we present the standard concept of a partial -a1gebra. 

If E = (5, F) is an algebraic signature, a partial s-algebra A consists of an S-

sorted family of sets {A 3 } such that A 3  is the carrier of sort s, and a partial 

function crA 
E  EAW -' A3] for each symbol 01 E F,8 , called the interpretation of 

o in A. The class of all s-algebras is denoted by Alg(Y). 

We now define evaluation of s-terms with meta-variables in {A 3 }; this is the 

standard definition of evaluation of terms over partial algebras [Grä79]. The 

evaluation of a s-term in A is a S-sorted partial function 4) = {b} such that 

,03 : TA()S - A. is defined as follows: 
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if t = a, and a E A 5 , for some s e S, then 05 (t) = a. 

 

and (&51 (t1 ),. . . ) &.( t)) E dom oA,  then i,L 5 (t) = O.A ( ,&81 (t1 ) ,.  . . , t'sjtn )). 

We write '  for 	whenever the sort s is understood from the context. The 

evaluation of cl-formulae in A is a natural extension of & to a H-sorted function 

I1 = {1Is 1.},
1 
 such that IF,, : FA(cl) n  A", for ir E H,,,, w = s1 ... s,,, and 

n > 0, is defined as follows: 

If (t1 ,. ... t,) E FA(IZ), r , t E TA(E) S , for i E [nt], and t1  E dom ?,b, 

then W.((t 1 ,...,t)) = 

Hereafter, cbA  (respectively A)  is used to make explicit that 0 (respectively 1) 

is the evaluation function of !-terms (respectively cl-formula) with respect to a 

s-algebra A. 

The next step towards the definition of the Declarative Semantics is to use 

term evaluation in the derivation of an inductive system from a Relational Induct-

ive Definition. The inductive system derived from a Relational Inductive Defini-

tion 0 by a s-algebra A is the set of H-sorted rules OA  obtained as follows. For 

all ground instantiation ({P}, e1) of each Relational Rule ({Pre,j, ce,,.$) E 0, 

({Pn},rEn,c,rl) E OA  is defined by: 

P,,. = {'P,,(f) : f e Pre7, and f E dom W,,} 

= 'P,,. (,.$), 	for 	e dom J!,ri 

The set of relations inductively defined by a Relational Inductive Definition çb, 

with respect to a s-algebra A, is the H-sorted family of relations J(5A). 

We achieve the definition of a Relational Specification by adding a -a1gebra 

to a Relational Specification Syntax. 

Definition 2 (Relational Specification) A Relational Specification is a triple 

(cl, 0, A), where (Il, 0) is a Relational Specification Syntax, Il = (5, F, H), and 

A is a J-algebra. 	 0 
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The definition of the Declarative Semantics of a Relational Specification uses 

the notion of a first order model for an cl-signature, or an cl-model, whose defin-

ition is given below. A first order cl-model M consists of a s-algebra A and a 

relation 7M  c A" for each ir E H,1,; 7r M  is the interpretation of ir in M. Mod(cl) 

is the class of all cl-models. 

Finally, with the above definition of cl-models, we have all necessary elements 

to define the Declarative Semantics of a Relational specification. Intuitively, it 

is an cl-model in which the interpretation of the relations is defined by the rules 

of the Relational Specification. 

Definition 3 (Declarative Semantics) The Declarative Semantics of a Re- 

lational specification (cl, 0, A), where cl = (S, F, H), is the cl-model M with 

E-algebra A such that for each ir e H, ¶M = 1(A) 	 0 

Once we have defined a Relational Semantics of a programming language 

we are interested to know whether a given formulae is valid in this semantics. 

Since formulae can be interpreted as a relation between programs and results, an 

answer to this question tells us whether a program evaluates to some result. The 

ability to answer such a question is achieved by the definition of the concept of 

satisfaction of formulae by an cl-model. 

Let A be a E-algebra, M be an cl-model with s-algebra A, and f E FA(Il),, 

for some ir E H. The cl-model M satisfies f, written M = f, if and only if 

f e dom qjA and 'I'(f) E irM  Therefore, f E F(cl),,, is valid in (cl, 0 , A) if and 

only if M J= f. 

Now we want to extend the concept of satisfaction to formulae with meta-

variables over an arbitrary S-sorted set X. Suppose that f e F(cl),, for some 

ir E H. Intuitively, we want to interpret the validity of fin M as the validity of the 

existential closure of f, i.e., the logic formula 3x,, . . . , Zn .!, where x1 ,. . . , x1, are 

all the meta-variables in f. This departs from the standard logical interpretation 

of satisfaction, in which the universal closure of f is taken into account. However, 

it is in agreement with the logic programming view in which f is considered as a 



Chapter 2. The Semantics Formalism: Relational Semantics 	 54 

query for a satisfying substitution in the model M. We are interested in the logic 

programming approach since it characterises program evaluation as we discuss in 

Chapter 5. 

Therefore, we say that M satisfies f E Fx(I),, if and only if there exists a 

ground instantiation 0 such that M = fO. In the case when such a 0 exists 

it is called a satisfying substitution for f in M. In Chapter 5 we shall define 

a procedure that finds a satisfying substitution whenever one exists. Based on 

that algorithm we define program evaluation and evaluation step, which form the 

basis of the theory of debugger design of Chapters 6 and 7. 

The next example defines an algebra for the Relational Specification Syntax 

defined in Example 1; thus it also defines a Relational Specification for Exp 

together with its Declarative Semantics. 

Example 2 Let ( f ExP ExP) be the Relational Specification Syntax defined in 

Example 1. We now define the 	"-a1gebra AEr1  to be used in the Relational 

specification 	EzP AEZI). To improve the readability, we use A for AE2) in 

the rest of this example. The carriers of A are defined as follows: 

A ezp  = T(E')ezp  

Avor = T(>J')var  

Anat {O,1,...} 

The algebra A interprets plus as the standard sum operation on the natural 

numbers and 0 as the intuitive inequality between identifiers, and for each op E 

{id, num, +, let, 0, 1,... , x, y, . .. } the interpretation opA  is defined as a follows. 

Forop:si  ... sn _+ sandt2 EA s., ie[n+] , opA(ti,..., t) =op(ti,..., t) . This  

is the standard term algebra interpretation for the function names. 

Comments 

It is convenient to notice that A is a total algebra; this fact will be used in later 

examples. 
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The following examples illustrate the evaluation of terms in A, and show the 

effect of term evaluation in the derivation of the inductive system from çb "  using 

A. In these examples, we use the "desugared" version of the syntax of Exp to 

make the examples clearer. In A the evaluation of a term +(num(1), nuin(2)) E 

T() 2 )) ezp  is defined by: 

A(+( fl (1) fl (2))) = 

+A (numA (1 A ) , numA (2A )) = 

+(num(1), num(2)) 

The evaluation of the term plus(l, 2) E T(Y 1')flat is defined by: 

,A(plus(l 2)) = plusA(lA 2A) = plusA(l 2) = 3 

In general, algebras used in Relational Specification will have this characteristic: 

compound values, programs, and other complex operators receive the term al-

gebra interpretation described above; this constitutes the syntactic algebra of the 

specification. On the other hand, basic operators like plus are assigned an actual 

interpretation, which is usually well defined and understood; this constitutes the 

semantic algebra of the specification. 

Using A in the derivation of an inductive system from Ez1,  one rule of the 

derived system will have the form: 

num(1) =:S 1 	num(2) 	2 

num(1)+num(2)=s 3 

which makes the two formulae: 

num(1)-f-num(2) ='s 3 

num(1) +num(2) =?S plus(1,2) 

valid in (çEZP ,Exi A). This finishes the Example 2.2. 	 Cl 

The Semantic Treatment of Side Conditions 

As discussed in Section 2.3, side-conditions are syntactically treated as normal 

premisses in Relational Rules. Let us discuss their meta-semantic interpretation. 



Chapter 2. The Semantics Formalism: Relational Semantics 	 56 

Initially, let us assume that the interpretation of MetaTrue and MetaFalse 

is the term algebra interpretation in any E-algebra used in a Relational Specific-

ation. Moreover, any u : w - MetaBool in F is interpreted in the semantic 

algebra. For instance, in Example 2 the interpretation of 0 in AEXI7  is the in-

tuitive inequality on identifiers. Therefore, the inductive rule below is obtained 

from the rule 1(6) and belongs to the inductive system derived from the inductive 

definition ': 

cond(MetaTrue) 

(1,x,y) —ps  y 

because in that derivation the term x y evaluates to MetaTrue. Considering 

that the rule (0) defined in page 49 is part of Exp, the premiss of the above rule 

is valid in Exp, and the conclusion is therefore valid. 

Therefore, side-conditions are also treated as normal premisses at the meta-

semantic level. The uniformity achieved by treating side conditions as normal 

premisses makes the definition of program evaluation and evaluation steps sim-

pler; thus, it helps in the definition of an intuitive notion of evaluation step. For 

the purposes of this thesis the above treatment of side conditions is an advantage 

over other approaches in which side-conditions have special treatment. 

Finite Length Proofs and Proof Trees 

We briefly define the standard concepts of finite length proofs and proof trees 

for an inductive system. Those concepts provide alternative characterisations 

of inductively defined sets; thus giving an alternative characterisation for the 

Declarative Semantics of the Relational Specification. This alternative charac-

terisations are important devices for proving properties of inductively defined 

sets, thus they may also be used to prove properties of Relational Specifications. 

The set inductively defined by a finitary inductive system can be alternatively 

characterised by finite length proofs of objects [Acz77]. A finitary rule is an 

inductive rule whose set of premisses is finite. A finitary inductive system is a 

set of finitary rules. 
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Definition 4 (Finite Length Proof) Given a finitary inductive system 4, a 

sequence (b0 ,..., b) is a finite length proof, or a 4-proof, of an object b if: 

b = b, and 

fora11m<nthereisasetBC{b,i<m}suchthat(B,b)Eq5 

The next proposition shows that the set defined by an inductive system 0 is 

the set of objects that have finite q5-proofs in the inductive system. The proof is 

omitted here and can be found in [Acz771. 

Proposition 2 For every finitary set of rules 0: 

I(q$) = {aa has a 0-proof} 

The notion of proof trees is widely known in logic programming [C1a79], and is 

usually taken as an alternative declarative semantics for definite clause programs 

as in [DM85]. A particular definition of proof trees is used below as an alternative 

characterisation of inductively defined sets. Proof trees are usually used to show 

that an object belongs to an inductively defined set. The proposition below 

formally justifies this use of proof trees. 

Definition 5 (Proof Tree) Let 4 be a finitary set of rules. A proof tree for an 

object a, called a 0-tree and denoted PT(a), is an object: 

PT(b1 ) ... PT(b) 

b 

where: there exists a rule ({b 1 , ..., b,}, b) E 0, such that a = b and PT(b1 ) is a 

0-treeofb1 ,for0 <i<n. 	 D 

In a proof tree of a in the above definition, b is called the root of the tree. 
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Proposition 3 For every finitary set of rules 4): 

1(0) = {ala has a 4)-tree} 

Proof (Sketch) It is easier to show first that: 

{ala has a 4)-tree} = { ala has a 4)-proof} 

This argument is trivial. For each 4)-tree for an object a we can obtain a 4)-proof 

for a by linearising the tree by some traversal of it. Conversely, for each 4)-proof 

of a we can build a 4)-tree by putting together the rules that were used in the 

4)-proof. This proposition then follows from Proposition 2. 0 

2.5 Summary and Conclusions 

This chapter defined the semantics formalism that will be used throughout this 

thesis. This definition was carried out in two stages. We first defined the syntactic 

aspects of the formalism by defining the concept of a Relational Specification 

Syntax. We then defined the meta-semantic aspects of the formalism by defining 

the concept of a Relational Specification and its Declarative Semantics. 

The most important difference between Relational Semantics as defined in 

this chapter and other related works is the precise, yet abstract, definition of a 

Relational Specification. This definition allows formal reasoning to be done over 

an abstract Relational Specification. This level of reasoning is essential for the 

later developments in this thesis. 

Although other works have a precise definition of a semantic specification, for 

instance TYPOL [Des881, and Berry's Language Specification Language [Ber9la], 

these definitions are given by concrete specification languages with the main pur-

pose of machine manipulation of the semantics. This may have an adverse effect 

on the formalism; thus we favour the abstract approach defined in this chapter. 

Moreover, based on our abstract approach it is possible to define concrete se-

mantics specification languages with the purpose of machine manipulation. 
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The class of programming languages that may be described by Relational 

Specification is large, including non-deterministic languages. The programming 

languages discussed in texts on Operational Semantics (e.g., [P1o81,Hen90a]) have 

straightforward definitions as Relational Specifications. Furthermore, the entire 

Standard ML semantics [HMT89], including the static semantics, fits in the defin-

itions of this chapter. 

A Relational Specification has some similarities to the notion of many-sorted 

definite clause programs (DCP) [DM85]. Moreover, a many-sorted Herbrand 

Model (see [L1o87] for the one sorted case) extended with term evaluation could 

be considered as an alternative cliaracterisation of the Declarative Semantics 

of Relational Specifications. This relationship with logic programming is not 

entirely surprising since Relational Specifications and DCP's are both used to 

define relations. It would be interesting to study of this relationship in more 

detail to see how results from one theory could be applied to the other. 

We shall see in Chapter 5 that the operational semantics of DCP is also similar 

to the Computational Semantics of Relational Specifications. In that chapter we 

discuss the problems that arise when term evaluation is used in the definition of 

the Declarative Semantics, and compare the problems to approaches that set out 

to extend DCP's with external functions. 



Chapter 3 

Equivalence of Relational 

Specifications 

In Chapter 2 we described how to define the semantic aspects of programming 

languages by Relational Specifications. Such semantic aspects may have various 

definitions, given by different Relational Specifications. One reason why different 

definitions are desirable is that they may define the programming language at 

different levels of abstraction: a definition may be highly abstract and concise, 

and therefore suitable for reasoning about the language or it may serve as a 

reference for the users to learn the language. Another definition may be more 

concrete and closer to an actual implementation of the language on the machine, 

and therefore suitable as a guide for the implementors of the language. 

Furthermore, different definitions may be given at the same abstraction level 

to increase our confidence in the definition of the language. For similar reasons, 

the same semantic aspect of a language may be given in different styles of se-

mantics, for instance in operational and denotational styles. This problem has 

been addressed in the literature (e.g., [Sto8l,BF90]), but it is outside the scope 

of this thesis. 

Whatever the reason we provide different definitions of the same semantic 

aspects of a programming language, it is necessary for the definitions to be equi- 

60 
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vaient in some sense, so that we may use them interchangeably. For instance, in 

the case we provide an abstract definition as a reference for the user and a more 

concrete definition as a guide to the implementor, the equivalence between the 

definitions guarantees that the user learns the language which is implemented. 

In this chapter we define a notion of equivalence between Relational Specific-

ations. We start by defining a relation of Observational Equivalence between first 

order models in Section 3.3. Then, using this relation, we define an equivalence 

relation between Relational Specifications in Section 3.4. We also define a proof 

method that may be used in practical proofs of equivalence, and give a complete 

example of the use of this proof method in Section 3.5. 

3.1 Introduction 

In this section we shall discuss some of the problems involved in the definition 

of a notion of equivalence between Relational Specifications. We also discuss 

the particular solution we adopt and compare it with other approaches in the 

literature. 

To illustrate the following discussion, let us formalise the semantics of the 

language Pair, described in Section 1.2. The following BNF rules define the sets 

SPa*r and F Pair  of the signature f'0: 

pair ::= num(nat) I cons(pair, pair) I first(pair)  I second(pair) 

nat ::= 0 1  1 I 

The sets of rules in Figure 1.3 (page 15) define two inductive definitions of the 

relation c_p: pair x pair, i.e., 	 Let 	jr = (S", Pair  and  Pair  pair,pair 

be the E Pair...algebra  that gives the term algebra interpretation to all function 
Pair 	Pair names in F . Using A 	we obtain two Relational Specifications of Pair. 

Direct = (fPair Direct, A) 

Reverse = (çPair Reverse, A") 
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Although the algebras in the two Relational Specifications are the same, the 

Declarative Semantics D of Direct and R of Reverse give different interpretation 

for the relation i.e., + D zh R  As outside observers, we can observe this 

difference by testing the satisfaction of (ground) formulae in both specifications. 

For instance, the following observations reveal that Dc_: 

D = cons(num(1),num(2)) -* cons(num(1),nu.m(2)), but 

R does not satisfy the same formula 

In this sense, the satisfaction of formulae offers the observations we are allowed 

to make on a Relational Specification. We then consider two semantics to be 

equivalent if they have the same behaviour with respect to the satisfaction of all 

possible observations. For the semantics Direct and Reverse, since the formulae 

in F(cZl'aw)  are the all the observations we can make on the two semantics, this 

notion of equivalence requires that for all f e D = f if and only if 

RI=f. 

Clearly, the flexibility of this notion of equivalence depends on the definition 

of the observations that can be made. So far, we are considering the entire set of 

ground formulae of a Relational Specification as the observations. However, in 

many practical applications we are not interested in all details of a specification, 

e.g., internal representation of values in abstract data types, function values in 

functional languages, and so on. Therefore, it is natural to make such details non 

observable by using a smaller set of formulae as the observations. The practical 

effect of this on the number of possible observations is that more specifications 

will become equivalent. 

For example, suppose that we are only interested to observe the subset of 

F(c2t0tr) of formulae of the form pr -4 nuxn(n) for some pair expression pr and 

nat number n. In this case, the following holds 

DI=pr —*nuin(n) ifandonlyif R=prc,num ( n ) 

Therefore, if we restrict the observations we can make on Direct and Reverse to 

the set of formulae of the form p -* num(n), the specifications can be considered 
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equivalent. In this case, we say that Direct and Reverse are obseruationally 

equivalent with respect to the formulae of the form pr -+ num(n). 

There are various approaches to the correctness problem in the theory of 

Algebraic Specification that formalise the above intuitive notion of equivalence. 

We will discuss two of those approaches: Hoare's notion of representation relation 

and observational equivalence. The objective is to compare our solution with 

existing ones. 

The notion of representation of a -a1gebra by another, due to bare [Hoa721, 

requires the existence of a mapping, called an abstraction function, from the car-

riers of the representation algebra to the carriers of the algebra represented, such 

that each operation in the algebra is compatible with this mapping. This map-

ping needs only to be defined for a subset of the carrier set of the representation 

algebra, which is usually characterised by a predicate called the representation 

invariant. 

For Reverse to be considered a representation of Direct in this sense, it would 

be necessary the existence of a mapping h from a subset of APr  into APr 
w pa 	 paw 

such that for all pair expressions pr, the relation - is compatible with h in the 

following sense: 

If 3pr1  such that D = pr -* pr1  

then 1pr2  such that R = pr -* pr2  and pr2  = h(pr1 ), 

and conversely. 

Clearly, there exists an h such that Reverse is a representation of Direct under the 

above notion: just take h to be the identity on pair values of the form num(n) and 

the recursive reversal of each pair value of the form cons(pr1 , pr2 ). Therefore, 

representation relation would be a suitable notion of correctness between the 

above Relational Specifications, although it is not an equivalence relation since 

it is not symmetric. 

Behavioural or observational equivalence has also been used in the field of 
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algebraic specification as a formal criterion for one algebra to be a correct repres-

entation of another. However, the idea of regarding behaviour, rather than the 

representation of data, as the relevant aspect of algebras already appears impli-

citly in the simulation method introduced by Milner [Mil71]. This idea applied to 

algebras first appears as the concept of the semantics of an algebra in [GGM76]. 

More recently, the notion of observational equivalence has been given many form-

alisations in the literature, for instance [Rei81 , ST87,N088,Sch9O]. 

In particular, the notion of observational equivalence of [ST87] can natur-

ally be applied to Relational Specifications. Under this notion two algebras are 

equivalent if they satisfy the same set of observable formulae. Continuing with 

the example above, suppose we consider as observable the formulae of the form 

pr c*  num(n), for all pair expressions pr. Let us call OBS the set of all such 

formulae. 

Using the notion of observational equivalence of [ST87], the specifications 

Direct and Reverse are observationally equivalent with respect to the formulae 

OBSifforall f E OBS: 

D = f if and only if R = f 

Therefore, Direct and Reverse are observationally equivalent under this notion, 

because, as discussed above, they give the same result for formulae of the form 

pr —+ nuin(n). 

In this work we shall use observational equivalence as the notion of equi-

valence between Relational Specifications. This choice is motivated by several 

reasons. Initially, in [Sch87, page 255] Schoett proved that observational equi-

valence is more general than a representation relation in the sense that there 

exist algebras that are equivalent under observational equivalence but such that 

there is no representation relation from the representation algebra to the one 

represented. In Chapter 4 we shall see an example of practical interest in which 

two Relational Specifications, which we intuitively expect to be equivalent, are 

not related under any representation relation but are observationally equivalent. 
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Therefore, a notion of equivalence more general then representation relations is 

necessary for certain practical applications. 

Furthermore, there exists a proof method for observational equivalence based 

on the notion of correspondence relations [Sch87] that may also be applied to 

equivalence of Relational Specifications. This method yields practical proofs of 

equivalence, as will be demonstrated in Section 3.5. 

Finally, the particular notion of observational equivalence of [5T87] may be 

naturally applied to Relational Specification, yielding a simple theory of equi-

valence; this is the main reason why this particular approach to observational 

equivalence is chosen in this thesis. 

The theory developed in this chapter is applied in Chapter 4 to the problem of 

compiler correctness. We demonstrate in Section 4.1 how the use of Observational 

Equivalence improves and extends previous approaches to compiler correctness. 

This application provides an important motivation for the definitions and theor-

ems in this chapter. 

3.2 Algebraic Preliminaries 

In this section we define some concepts related to first order signatures and 

models. Let Q = (5, F, H) and IZ' = (5', F', II'), signature morphism p from Q to 

' is a triple (PS,PF'PH)  such that for each s ES, 01 E F, and irE H, p5 (s) E 5', 

PF(0) E F', and pn(lr) E H'; and, whenever u : s1  x ... x s - s E F and 

si x ...x Sn  E H then: 

PF(0') : ps(si) x ... x p5(s) - p5(s) 

p11( 70 : p5 (sl ) x ... x ps(s) 

If p is a signature morphism from f to IZ' we write p : Q - W. If p is an 

inclusion mapping of sets, i.e., each Ps, PF, and PH  is an inclusion mapping on 5, 

F, and H respectively, then ci is a sub-signature of ci', written ci E ci'. If ci E ci' 
and ci 0 ci', we write ci E Q. Let ci ci', and M E Mod(ci'), the reduct of M 
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by ci, written M/ci, is an cl-model that assigns the same interpretation as M to 

the symbols of Q. 

Let E = (S, F), ' = (S', F'), and A E Alg('). The above definitions ex-

tend trivially to algebraic signatures. Therefore, E E >' denotes the algebraic 

signature inclusion, and A/E denotes the reduct of A by E. Furthermore, if 

N E Mod(fl) then N/E denotes the E-algebra part of the model N. 

3.3 Observational Equivalence: the Generic Case 

In this section we define a notion of observational equivalence between first order 

models. The particular definition of observational equivalence presented here is 

that of [ST871 extended to the case of first order models. 

Although observational equivalence is a suitable equivalence between models, 

direct proofs that two models are observationally equivalent may be difficult in 

practice. Therefore, we also define a notion of Model Correspondence between first 

order models inspired by Schoett's concept of strong correspondence [Sch87], and 

use Model Correspondence as a proof method for observational equivalence. The 

main theoretical result of this chapter proves that two models are observationally 

equivalent if and only if there exists a Model Correspondence relation between 

them. 

Intuitively, two models over a signature are observationally equivalent if it 

is not possible to distinguish between them by only testing the satisfaction of 

observable formulae in the models. This notion requires the definition of how 

observations are made, i.e., a definition of observable sentences. In the framework 

of first order theories, a natural choice for observations would be logical formulae, 

formed by atomic formulae and logical connectives. As noted in [ST87], the logic 

used defines the possible observations, whereas the kind of observations we want 

to perform dictates the choice of the logic. 

In this work, we are interested in observing the semantics of programs accord- 
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ing to some Relational Specification. As discussed in Section 3.1, for an arbitrary 

Relational Specification (1, 0, A) the set of ground formula F(1) defines all the 

observations we can make. We then suggested that, in practice, we are only inter-

ested in a subset of F(l) as our observations. This subset can be characterised 

by a sub-signature of IZ, called an observation signature, which we will denote 

by QOBS.  Therefore, the set F(clOBS ) defines the observations we can make for a 

given observation signature. 

The above discussion leads to the definition of Observational Equivalence 

between first order Q-models with respect to an observation signature. In the 

rest of this chapter let Q E Sig with algebraic signature E, ROBS  E 92 be an 

observation signature of 9 such that QOBS = (SoBs FOBS,  HoBs) and let E0  

E denote the algebraic signature (SoBS FoBs) of OBS•  In order to simplify the 

presentation we will denote by M and N two models in Mod(fl) with E-algebras 

A and B respectively i.e., M/E = A and N/E = B. 

Definition 1 (Observational Equivalence) The l-models M and N are oh- 

servationaLly equivalent with respect to f2OBS,  writtenM 
OBS 

N, if and only if 

both requirements are satisfied: 

For all s E 5OBS  and t E T(Eos) 3 : 

tEdom 	if and only if tdom 

For all ir E 11OBS and f E F(1os ),1.: 

fEdom'IJ ifandonlyiffEdomW ir  

and if both sides of the above equivalence are true then 

iIi(f) E 7rM  if and only if W(f) e 
	

EM 

Two important facts about the relation of Observational Equivalence are stated 

below. 
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Fact 1 For any signature f and ROBS 	 E Mod(Z) x Mod(IZ) is an 

equivalence relation on Mod(fZ), i.e., 	
OBS is transitive, reflexive, and symmetric. 

U 

Fact 2 For any signature 91, and observation signatures nOBS, ROBS 

ROBS 	1OBS then 	
OBS OBS 

U 

Among the propertiesof -ROBS  stated above, symmetry requires some corn-

ments. In the field of algebraic specification of programs there are various notions 

of representation between algebras that do not have this property. These include 

the relations of behavioural inclusion [Sch87, page 2161 and simulation [Nip861. 

Those relations express the intuition that a program may be a partial imple-

mentation of its specification. For instance, a program may be undefined in more 

arguments than its specification, and yet be considered a suitable implementa-

tion. 

In practice, these partial implementation notions account for limitations of 

actual implementations, for instance, finite memory space, finite size of num-

bers, and so forth. For the case of non-deterministic programs, if a program is 

related to its specification by a simulation in the sense of [Nip86], the program 

may be less non-deterministic than its specification. The intuition is that in a 

real implementation we would have to choose which deterministic behaviour to 

implement. 

However, the problem of equivalence between Relational Specifications of pro-

gramming languages differs from the problem of correctness in algebraic spe-

cilication in this aspect. To illustrate this difference let us consider the non-

deterministic choice operator + of CCS LM11891. The non-deterministic beha-

viour that + introduces in the language is an essential part of CCS's semantics, 

and must be preserved across alternative definitions of the language. Therefore, 

a definition of CCS that makes this operator into a deterministic choice oper-

ator should not be considered correct since it does not preserve this essential 
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non-determinism. 

On the other hand, there is another kind of non-deterministic behaviour in the 

concrete definitions of some programming languages that we call non-essential. 

For instance, in the semantics of Standard ML [HMT891 memory locations are 

arbitrarily chosen, introducing non-determinism in the language with respect to 

the memory that results after the evaluation of an expression. However, this 

non-determinism does not introduce any new feature to the language for it can-

not be exploited by the user in any interesting way. Therefore, a definition of 

Standard ML semantics that chooses memory locations deterministically should 

be considered a correct alternative definition. 

This problem is solved in our framework by "hiding" the choice of memory 

location such that the difference between the original definition of the semantics 

and an alternative definition with deterministic choice cannot be observed. In 

general, we should make the essential characteristics of the language, like the non-

determinism of the + operator of CCS, always observable, while non-essential 

features like the non-deterministic choice of memory location should not be ob-

servable for correctness purposes. 

Let us now discuss the problem of giving concrete proofs of Observational 

Equivalence between two models. These proofs are essential in establishing the 

equivalence of Relational Specifications as shall be seen in the next section. 

However, proofs of observation equivalence can be difficult to be established. 

To understand this difficulty, suppose we try a proof by structural induction on 

the terms in the observable sentences. In general, in such a proof we will have 

to reason about non-observable sentences in order to apply the inductive hypo-

thesis. However, the original theorem does not mention non-observable sentences, 

making it impossible to apply the inductive hypothesis directly. 

In [Hen90b] Context Induction is proposed as a proof method for behavioural 

abstractions. A possible drawback of this proof method is that it requires one 

to identify all contexts in which a visible object may occur, which may involve 
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some non-trivial reasoning. Furthermore, proofs of context induction are, in 

general, large even for simple examples. However, a more detailed study is still 

required to assess the applicability of context induction in proofs of Observational 

Equivalence as defined in this thesis. 

In [Sch87,Sch9O], Schoett defines a notion of correspondence relation for many 

sorted partial algebras, which is a practical proof method to show that two al-

gebras are observationally equivalent. In the rest of this section we will use the 

concept of correspondence to define a proof method for Observational Equival-

ence that we call Model Correspondence. 

We first adapt Schoett's notion of strong correspondence [Sch87, page 240] to 

the case in which observation signatures are used instead of a set of visible sorts. 

Observation signatures are more natural to be used in our framework than a set 

of visible sorts, since observations in our approach are the satisfaction of formulae 

rather than the evaluation of terms to yield a visible result, as in [Sch87]. 

Recall from page 67 that, for some 92 E Sig with algebraic signature E, 

and A,B E Alg(>). 

Definition 2 (Strong Correspondence) 

A strong EOBS-correspondence' between A/s oBS  and B/E OBS  is an SOBS-sorted 

relation G = {G8}1EsoBs1 where G3 ç  A8  x B 3  for all s E SOBS, such that all 

o E FOBS are compatible with G in the following sense: 

Forallcr:sl x ... xsm -3SEFOBS ,m>0: 

whenever (a2 , b2 ) E G3., for i E [m+], 

then (a1 ,. . . , a) e dom o if and only if (b1,... , b) e dom rB 

and if both sides of the above equivalence are true then 

(

A 	 B o (a1 , . . . , am), 
0, (ba , • . . , bm )) E G3  

The fact that G is a strong SOBS-correspondence between A/ 08  and B/soBs  

is denoted by G: A/soBs 	Eons B/EOBS. 

1 We use the term strong correspondence to keep the consistency with the terminology used 

in [Sch87], even though we do not present a notion of (weak) correspondence in this thesis. 
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The above definition says that a relation is a strong correspondence between two 

algebras A/J oBs  and B/E OBS  when every observable function yields a result for 

some argument in A/E 0BS  if and only if it yields a related result for every related 

argument in B/E 0Bs . 

The following proposition states that every strong correspondence contains 

all the pairs of values that result from the evaluation, in each algebra, of every 

observable term. The proposition is important for the proof of Theorem 1 and 

also for the proofs of equivalence throughout this thesis. 

Proposition 1 (Strong Correspondence) 

If G is a strong soBs-correspondence between A/> oBs  and B/os then for all 

s e SOBS and t E T(OBS) 3 : 

tEdom 	ifandonlyif tEdom 
	

(1) 

and if both sides of the above equivalence are true then (&(t), (t)) E G. 

Proof The proof is by structural induction on t. 

A 	B 	A B Base Case t = o, for a: SE FOBS. In this case, (b9 (ci),'b3 (o)) = (a ,a ) 

and because G is a soBs-correspondence between A/E OBS  and B/soBs , then 

(

A a ,o. B 
 )€G8. 

Inductive Step t = a(t1 ,.. ., t,), for a: S  X ... X s, -' S E SOBS and n> 0. 

From the definition of evaluation we have: 

If t1  E dom 	, and ((t1 ),. . . , b(t,,)) E dom orA 

=a(j then ,A(t) 	A A (t1 ) . . 
S 	 ' Si Sn 

II tEdom, and ((t1),...,1(t))Edom a B  

then ,B(t) 	B B = u (b5 (t1 ),. . . 

From the inductive hypothesis, 

tEdomb if and onlyif tEdom, 	 (2) 

B and if both sides of the above equivalence are true then ((t2), b(t1)) E G5.
Si 
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Now we have two cases to analyse: 

If both sides of the equivalence (2) are false for some i G [nt], then both 

sides of the equivalence (1) are false, and the proposition holds. 

If both sides of the equivalence (2) are true for all i E [nt ), then 

(&(t1 ), 1(t1 )) E G 5 . Since G is a strong soBs-correspondence  then: 

(t1 ),. .. , 	(ta)) e dom o if and only if ('ç1 (t1 ),. . . , 	 (t,)) e dom 7B
Sn 

and when both sides of this equivalence are true then (&(t), &(t)) e G3 . 

This finishes the proof of Proposition 1. 

The following definition extends the notion of strong correspondence to first order 

models by defining a pair of relations between models, which we call a Model 

Correspondence. Recall from page 3.3 that, for some Q E Sig, ROBS  E Il, and 

M, N E Mod(f) are models with algebra A and B respectively. 

Definition 3 (Model Correspondence) 

A clOBS -Model Correspondence between M and N is a pair of relations (G, H) 

such that: 

G is a strong soBs-correspondence  between A/s oBs  and B/o8s. 

H = {Hj is a loBs-sorted  family of relations such that for all relation 

nameslr:slx ... xsn EHoBs ,H,r CAW xBW ,wherew=sl  ... sn ,wlth 

the following restrictions, for n> 0 and for all i E [n+]: 

Whenever ((a 1 ,... ,a), (b 1 ,. . . ,b,)) E H,1. then (a2 ,bj E Gsi 

For all t1  E T(>J08s ) 3 ., if t. E dom 	and t E dom çbB  then 

((b(t1 ), . . . ,1(t)), (ç1'(t1 ),. . . , 1(t))) E H.
Sn 
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and ii is compatible with H,r  in the following sense: 

whenever ((a1 ,...,a),(b1 ,...,b))EH,1. 

then (a1 ,. .., a,) E 
M if and only if (b1 ,..., b) E 

The fact that (G, H) is a o5s-Model Correspondence between M and N is de- 

noted by (G,H) : M 	N 	 D 

A Model correspondence is a natural extension of strong correspondence to first 

order models. Recall that a strong correspondence G is a relation between the 

carriers of observable sorts in a E-algebra, with the requirement that each ob-

servable function a is compatible with G. The component H of a Model Corres-

pondence extends the role of G to the relations of a first order model. Therefore, 

H is a relation between the relations in a model with the requirement that each 

observable ir must be compatible with H. 

Definition 3(2.i) says that H is consistent with G in the sense that every 

related tuple in H is built of related values in G. Definition 3(2.11) requires that 

every pair of tuples built from the evaluation of the same observable terms must 

be in H. This requirement guarantees H is not empty whenever T(E OBS ), and 

consequently F(IloBs ), are not empty. 

The following theorem shows that the notion of Model Correspondence is an 

alternative characterisation of Observational Equivalence. Therefore, the former 

can be used as a proof method for Observational Equivalence between first order 

models. The example of Section 3.5 shows that this method yields practical 

proofs of equivalence between Relational Specifications. 

Theorem 1 (Model Correspondence) The models M and N are observation-

ally equivalent with respect to QOBS  if and only if there exists a goBs-Model 

Correspondence between M and N, i.e.: 

M OBS 
N if and only if there exists (G, H), (G, H) : M +* 	N 
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Proof This is based on the proof of Theorem 4.2.3 of [Sch87, pages 223-2251, 

and is given in two parts as follows. 

Soundness We need to prove that if there exists a pair of relations (G, H) 

such that (G, H) : M ThOBS N then M 
OBS 

N. Since G is a strong OBs 

correspondence between A/S OBS  and B/soBs  then Proposition 1 apffies. There-

fore, Definition 1(1) is trivially satisfied. It remains to prove that Definition 1(2) 

is satisfied. From Proposition 1 it follows that for all ir: S1 X ... s, E 110B5  and 

7r(t1 ,..., tn ) E F(OBS),r , 

B 
tEdom 	ifandonlyif 	t1 Edom 

Si 

Therefore, 

7r(t1 ,.. ., t,) e dom IF if and only if ir(t1,.. . , t,) e dom 

Whenever both sides of the above equivalence are true it follows that for all 

i E [nt], t1  dom and t1  dom From the fact that H satisfies the
Si 

requirement of Definition 3(2.ii) we obtain that: 

((/,
Si  
A(t1) 	.. ,(t)),(t(t 1 ),... ,1(t)) E H,,. 

Since for all ir E 11oBs, ir is compatible with H,, then: 

(OP t1) ...... 1(t)) E irM if and only if ((t1),...,(t)) Eir
N  

(

Sn 

Therefore, from the definition of formula evaluation (Section 2.4, page 51): 

	

I'(ir(t1 ,...,t))EirM  if and only if 	ti,E7rN 

Therefore, Definition 1(2) is satisfied and we conclude thatM 
0OBS N. Since 

this proof is done for an arbitrary pair (G, H), it implies that the existence of 

any os-Mode1 Correspondence between M and N impliesM 
00BS 

N. 

Completeness We need to prove that M 
0OBS N implies that there exists a 

pair of relations (G, H), such that (G, H) : M E 'aoBS  N. For this proof we will 



Chapter 3. Equivalence of Relational Specifications 	 75 

show first that G defined as G. = (1)' o 	for each s E SOBS is a strong 

EOBS-correspondence between A/E oBs  and B/EOBs . 

Let (a1 ,b) e G, for n > 0 and all i E [n+]. Then, choose t E dom OA fl 

dom in T(oBs) 3 , such that '1(t) = a, t) = b1 , and t = o(t1,..., tn)
Si 

belongs to T(oBs), for some s e S0 . From Definition 1(1) we have that: 

t E dom 	if and only if t e dom 

and if both sides of this equivalence are true then we can write: 

,(s(t,))) =
Sn 

(&(t),'b(t)) E (1')' o'b' = G, 

Which proves G is a strong EOBS-correspondence between A/E 0BS  and B/EOBs . 

We will show that H defined as H,. = (1)' o 	for all ir E 11OBS satisfies the 

requirements of Definition 3(2). From this definition of H, r  it follows that for all 

t,) E F(c OBS ),,., if t2  e dom 	and t1  E dom 	for every i E [nt], 

then: 

(t1 ), 	ti& (tn)), (,/,B  (t1 ), . 	, 1'(t))) E H,,. 
Si 	 Sn  

The requirements of Definition 3(2.1) follows trivially from the definition of H,,. 

and Proposition 1. Definition 3(2.ii) is trivially satisfies by the definition of 

H,,.. Now, we must show that each ir E 11OBS is compatible with H,,.. For all 

ir: s1 x... x Sn  E 11oBS, whenever ((a 1 , . . . , a,), (b 17 . .. , b,)) E H,,., for all i E [+], 

Si e SOBS take t1  E dom OA fl dom OB in T(oBs) such that .,&A(t) = ai and
Si 

= b. It is clear that ir(t1 ,. .., tn) E F(IoBs),,.. Now, from the fact that 
Si 

M 	N, it follows that: 

7r(t1 ,. ., t,) E dom Xp if and only if ir(t1 ,. .., t) e dom pB 

and if both sides of the above equivalence are true then 

e 7rM  if and only if I(ir(ti,...,tn)) E 

It is obvious that ir(t1,.. . , tn ) E dom 'Ii and ir(t1 ,.•, tn ) E dom 'J!. Therefore, 

from the definition of evaluation of formulae (Section 2.4, page 51): 

(&(t1) ..... (t)) e irM if and only ii (i(t1),...,bB(t)) 
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Finally, we conclude that: 

(a1 ,... , a,) E ir
M  if and only if (b 1 , . . . , b,) e 7r N 

This proves that ir is compatible with H,., for all ir e HOBS, and therefore that 

(G, H) is a 1OBS-Mode1 Correspondence between M and N. This finishes the proof 

of Theorem 1. 0 

Model Correspondences offers a suitable proof method for Observational Equi-

valence between first order models in a similar way as strong correspondences 

provide a proof method for observational equivalence between algebras. As dis-

cussed above, proofs of Observational Equivalence can be difficult because the 

requirements of Definition 1 do not involve non observable objects. However, 

these objects often occur in intermediate steps of inductive proofs making it im-

possible to apply the inductive hypothesis directly. Model Correspondences solve 

this problem since Definition 3(2.1) allows non observable objects to be related 

in H. In Section 3.5, we illustrate the use of Model Correspondences. 

3.4 Observational Equivalence of Relational Spe-

cifications 

In this section we apply the results of Section 3.3 to the equivalence of Relational 

Specifications. The objective is the definition of a relation of Observational Equi-

valence between Relational Specifications. For this definition we have a choice 

between a relation parametric on an observation signature, like the -ROBS  rela-

tion, or to include an observation signature as a component of the Relational 

Specification and then define the equivalence relation on the class of Relational 

Specifications with the same observation signature. 

Both choices lead to essentially the same notion of equivalence. The first 

choice is more flexible in the sense that it directly allows two Relational Specific- 

ations to be compared using different observation signatures; the second choice 
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provides simpler and more concise definitions. Furthermore, we can indirectly 

achieve the flexibility of the first approach in the second approach by considering 

different classes of specifications, one for each observation signature. Therefore, 

we choose the second approach for its simplicity. 

We extend a Relational Specification (Definition 2.2) with an observation sig-

nature such that whenever (ci, q, A) is a Relational Specification and tIOBS 

ci is an observation signature of ci, we write the Relational Specification as 

(ci, 4, A, ci). The class of Relational Specifications with observation signa-

ture ciOBS is denoted by Spec(ciOBS). Notice that in general the specifications in 

Spec(I1OBS) have different signatures. The notion of Observational Equivalence 

between Relational Specifications will account for this. 

We now define a relation of Observational Equivalence on Spec(ciOBS).  To 

motivate this definition let us consider two Relational Specifications of a simple 

functional language without recursion, which we call Fun. The following example 

shows a substitution-model semantics for Fun, which is just an extension to the 

Relational Specification Ezp defined in examples 2.1 and 2.2. 

Example 1 This example presents a complete definition of a Relational Spe-

cification Sub = (ci5'', ,Sub  A s', ci $ ) that defines a semantic of Fun. Here, 

we have called the observation signature Q SPun instead of ci because it will be 

used in the Relational Specification of the next example as well. The components 

SIb 	 Sub 	g-,Sub and F of 	are defined by the following BNF rules: 

exp 	::= var I nat I exp + exp let var = exp in exp 

fn var exp I exp(exp) 

var 	::= xIyI... 
nat 	::= plus(nat, nat) I 0 1 1 

funval ::= fn var. exp 

val 	::= nat I  funval 

where an object of sort funval is function value, i.e., the value that results from 

the evaluation of an expression of the form fn var. exp. The meta-variables 
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used to construct terms and formulae are those in XE,  defined in Example 2.1, 

to which we add the component X 1  generated by v and n. The set of rules va 

Sub defines three relations. The relations ==>s and 	S  have the same intuitive 

meaning as in Example 2.1, extended to the new language constructs. 

The definition of the relation makes sure that only expressions without 

free-variables, i.e., closed expressions, are evaluated using the relation =. The 

evaluation of expressions with free variables may produce incorrect results due to 

the capture of the free variables in the substitution. This restriction is achieved 

by using the function FV that, when applied to an expression, returns the set of 

its free variables. The definition of FV can be given by a simple set of Relational 

Rules. However, its meaning is standard and we therefore omit its definition from 

this presentation. 

Rule (1) defines the relation = using the relation =. Rules (2)-(4) and 

(7)-(12) were defined in Example 2.1 and are also presented here to make this 

example self-contained. 

Evaluation of Expressions 	 exp = val 

	

FV(e)={} 	e=,5v 	
11 

e=,v 

	

Evaluation of Closed Expressions 	 I exp 	val 

 

	

n 	n 

e1 	n1 	e2  
 

e1  + e2 	plus(ni , n2 ) 

e1 = 	v1 	(v1 , id, e2 ) 	e 	e =:.S V2 

let id = e1  in e2  

(5) 
fri id. e =::,.s fn id. e 
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e1  ==>s  fn id. e - e2 's  v2 	(v2 , id, e) - e 	e'=t>s  v 	
(6 

ei (e2)=sv 

Substitution 
	

(val, var, exp) —4s  exp 

(7)  
(v,id,n)—* s n 

(v, id )  id) —4 s 

id 54 id' 

(v, id, id') -*S id' 

(v, id, e1) -4  e 	(v )  id, e2 ) 	e 

(v,id,e i +e2)—*s e+e 

(v, id, e 1 ) ___*s  e 

v,id,let id = e1  in e2)—*g let id = e in e2  

id :A id' 	(v, id, e 1 ) — ps  e 	(v, id, e2 ) -i. e 

(v, id, let id' = e1  in e2 ) —pg let id' = el in e 

(v ) id,fn id. e) *s fn id. e 

id:A id' 	(v,id,e) —4s  el 

(v ) id,fnid' . e) —ps  fnid' . e' 

(v, id, e1) -+ e 	(v, id, e2 ) —'s  e2 	
(15) 

(v, id, e 1 (e2 )) —ps  e(e) 

The E Sub aJgebra  ASUb is a simple extension to AEZII  of Example 2.2 in which 

A 
Sub

=  T(' 	ASUb = ASUb + A 	and the new language constructs 
funval 	 )junval, 	vol 	nat 	fj&nva1 

and new values of sort funval are assigned the term algebra interpretation. 

Finally, the observation signature 1' is defined as follows. The set OBS OBS

has only the relation , and the sets GOBS
SFun  and F7 are defined by the following 

BNF rules: 
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exp 	::= var I nat I exp + exp I let var = exp in exp 

fri var. exp I exp(exp) 

	

var 	::= xIyI• 

	

nat 	0 1 

funval ::= 

	

val 	::= nat 

This finishes the complete definition of Sub and Example 3.1. 	 0 

We now define another Relational Specification for Fun. This definition uses 

an environment-model semantics in which the variables of expression and their 

values are kept in an environment, and looked up when needed. For the purpose 

of establishing their equivalence, an important difference between this semantics 

and Sub is in the representation of function values. 

Example 2 In this example we present an environment-model semantics for Fun 

by defining a Relational Specification SEnv = (1", oSEnv ASEnV çSFun) In OBS 

this specification, the values of the free variables of an expression are kept in an 

environment. Moreover, function values are represented as triples of the form 

(E, id, e), where E is an environment, id is the formal parameter, and e is the 

body of the function. This representation for function values is normally called 

a closure in the literature (e.g., in [FH88, page 2001). 

The following BNF rules define the components 5SEnv  and FSEnV  of çSEnv 

	

funval 	(env,var,exp) 

val 	::= nat I  funval 

env 	 var i-* val• env 

where exp, var, nat were defined in Example 1. We first extend XE  with X env 

generated by E. The Relational Rules below define 0 SEnv .  Rule (1) defines the 

relation = in terms of the relation - H - 	-. Since in Sub only the evaluation 

of closed expressions is defined, in SEnv the evaluation of expressions starts with 
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an empty environment EE, as defined by rule (1). Rules (2) to (7) define the 

evaluation of expressions in an arbitrary environment E. Rules (8) and (9) define 

the result of looking up the value of a variable in the environment. 

Evaluation of Expressions 	 exp = val 

	

I- e = V 	
(1 

e = v 

Evaluation on an Environment 	 eriv I- exp => val 

	

EF- n=n 	
(2) 

 

(E,id) ---- * L v 

E F-id = v 

EFe1 v1 	EF-e2=v2 	
() EFe1 +e2 =plus(v1 ,v2 ) 

EFe1 v1 	idF-v1•EFe2='v2 	
() E I- let id = e1  in e2  = V2 

EFfn id. e=(E,id,e) 	
(6) 

EFe1 ='(E',id,e') 	EFe.±iv2 	idF-*v2 •E'Fe',v' 

EFe1(e2)v' 	 ( 

Variable Lookup 
	

(env, var) 	L vail 

	

(id i—* v. E, id) 	'L V 

	 (8) 

idzid' 	(J?jd'i*r -- 	/ 	L 	
(9) 

	

(id' '—p v' E, id) 	L V 

,-, 	ç SEnv 	 SEnv ihe 	-algebra A 	is a simple extension to AE1  of Example 2.2 in which 

- p SEnv 	ASEnV - 	+ SEnv  and the new language con- funval - L 
( 	 )frnval, Va! - not 	funvaI 

structs and new values of sort funval are assigned the term algebra interpretation. 
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The observation signature 17 was already defined in Example 1. This OB 

finishes Example 3.2. 	 U 

We now have two Relational Specifications for the programming language Fun: 

Sub and SEnv. Moreover, these Relational Specifications belong to the same 

class Spec(fZ 0 ); thus the next question we want to answer is whether Sub and 

SEnv are equivalent. To answer this question we first have to define a notion of 

equivalence between Relational Specifications in terms of the relation 

Definition 4 (Equivalence of Relational Specifications) Two Relational 

Specifications S = ( ce, OS A5, goBs)  and 1?. = (1, , A, 1oBs)  with Declar-

ative Semantics Ms  and M respectively, are observationaily equivalent, written 

S R., if and only if: 

itS!r 	- 	 irl
/
Ic 
At li / OBS 1OBS 

lvi 	OBS U 

This definition says that S and R. are equivalent if the reduct of their Declarative 

Semantics by observation signature are observationally equivalent. 

Fact 3 The relation C Spec(I oBs ) x Spec(IZOBS) is an equivalence relation on 

Spec(c1OBS), for any observation signature ROBS 	 0 

Therefore, to establish whether Sub SEnv we must establish whether: 

Sub 0SFun 	MSEnV
/ 

SFun 
M 

/" 	
flSFun OBS OBS 	 OBS 

where MSU6  and MS  are the Declarative Semantics of Sub and SEnv respect-

ively. The proof of this equivalence is done in the next section. 

3.5 A Proof of Equivalence 

In this section we prove that Sub and SEnv are observationally equivalent using 

the notion of Model Correspondence of Definition 3. The initial proposition we 

want to prove is stated below. 
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Proposition 2 The Relational Specifications Sub and SEnv are observationally 

equivalent, i.e., Sub SEnv. 	 0 

According to Definition 4 the proof of the above proposition requires a proof 

that M/l7 and M/1Z' are observationally equivalent with respect to  OBS 

Therefore, we will define a pair of relations (G, H) and prove this pair is 
OBS 

an l '-Model Correspondence between the two models. Then, Proposition 2 
OBS 

follows from Theorem 1. 

An important advantage of using Model Correspondence as a proof method, 

rather than an ad hoc approach, is that this proof method structures the proofs 

of equivalence. This structure occurs in other proofs in this thesis, for instance, 

in the compiler correctness proof in Section 4.4. This suggests that this structure 

can be exploited, for instance, by defining semi-automatic tools to assist in the 

equivalence proofs. For. this reason, we will present this proof in some detail so 

that the presentation of following proofs will be simplified. 

To simplify the presentation let us abbreviate M/1 	by MS, MS/1 OBS OBS

by MSE, A/J' by AS, and AV/ 	by ASE.OBS 

For the definition of the relation G we need to define how to close an expression 

with respect to an environment, i.e., how to substitute every occurrence of every 

free variable in an expression by its value in the environment. This closure 

operation is defined by the recursive function close: exp x eriv - exp, as follows: 

close(e,E E) = e 

close(n, E) = n 

close(id, id' i-  n E) = if id j4 id' then close(id, E) 

else n 

close(id, id' i-' (E, id", e) . E) = if id 0 id' then close(id, E) 

else fri id" . close(e,remove(id",Il)) 

close(ei  + e2 , E) = close(e1 , E) + close(e2 , E) 

close(fn id . e, E) = fri id. close(e,remove(id,E)) 
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close(e1 (e2 ), E) = close(e1 , E)(close(e2 , E)) 

close(let id = e1  in e2 ,E) = let id = close(e1 ,E) in close(e2 , remove(id, E)) 

Here, remove(id, E) is an operation that returns an environment that is the same 

as E except that all binds id '— v were removed. It is easy to verify that close is 

a total function. Furthermore, the algebras AS and ASE are total. These facts 

will simplify the following definitions and the subsequent proofs. 

Definition 5 (The Relation G) Let us define a S$-sorted relation G such 

that each G 3  C AS 5  x ASE,, s E S7, is defined as follows: 

For s E {exp, var, nat}, G. is defined as the identity relation on AS 5  x ASE8 . 

= {(fn id. e', (E, id, e)) : e' = close(e, remove(id, E))} 

Gva i = Gfrjnva l + G 0  

The component Gfr 0, relates function values, which are non observable accord-

ing to 	This component is essential in the proof of Lemma 3. 
OBS 

Definition 6 (The Relation H) The relation name = is the only relation in 

H7. Therefore, we define H (ASE 2 , x ASvaj ) X (ASE exp  x ASEva1 ) to be 

the least relation (with respect to set inclusion) such that: 

For all e E TY"' and v E T 9 " 

	

OBS 	 OBS )val 

	

AS 	AS 	ASE 	ASE 

	

((I exp (e), 1'01(v)), ('ezp (e), & 	(v) 	E val 	/ 

For all (e, e) e Ge  and (v, v') e Gvai if (e, v) E =s
MS 
 and (e, v') E 

MSE 

then ((e, v), (e, v')) E 

FW- 

Definition 6(2) includes the (non observable) function values in H. This is 

necessary for the proof of the following proposition. 
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Proposition 3 The pair of relations (G,H) is an cl7-Model Correspondence 

between MS and MSE, i.e., (G, H) : MS 	MSE 	 0 

To simplify the following presentation, whenever e e A and v E A, we will 

use e = v for (e, v) e =MS, if it is not ambiguous to do so. The same convention 

applies to the other relations in Sub and to every relation in SEnv. 

The proof of Proposition 3 requires the proof of the requirements of Defini-

tions 3(1) and 3(2). It is trivial to prove that Definition 3(1) is satisfied since AS 

and ASE give the same interpretation for all function names in FZ.  Therefore, 

we will assume hereafter that G : AS ESF ASE. 
OBS 

The proof of the requirements in Definition 3(2) becomes easier if we prove the 

following lemmas first. The proof of the Lemma 3 uses Lemmas 1 and 2 stated 

below, whose proofs are simpler than the proof of Lemma 3 and are carried out 

in a similar way. Therefore, we omit the proofs of these Lemmas 1 and 2 from 

this presentation. 

Lemma 1 For all E E ASEnV (id, id) Gvar,  (e, e) E G e2,,,, and (v1 , v) E G va i: env 

If there exists v E ASEVaI  such that idE I- e = t4, there exists 

V2 E AS vai  such that (v1 , id, close(e, remove(id, E))) 	e' and e' 	v2  

and (v2 ,v) e G 0j. 

If there exists v2  E AS 0, such that FV(v1) = { }, 

(v1,id)close(e,remove(id,E))) - e', and e' = v2 , there exists v E 

ASEva1  such that id i-+ .  E F- e = v and (v2 , v) E Gvai. 

j 

The next lemma relates the environment lookup in SEnv with the close function 

defined above. 

Lemma 2 For all E E 	(id, id) E 	and (e, e) E Gez,,: env 
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If there exists v' E ASEva1 , such that (E, id) __*L V I , 

there exists v E AS 01 , such that close(id, E) =s  v and (v, v') E Gva i 

If there exists v E AS vai , such that close(id, E) = v, 

there exists v' E ASEvaj , such that (E, id) 	3  L v' and (v, v') E G 01 

U 

The following lemma relates the evaluation of expressions in Sub and Env. 

Lemma 3 For all E E ASEUV (e, e) E G 2 : env 

If there exists v' E ASE 0, such that E F- e => 

there exists v E AS vai  such that close(e, E) 	v and (v, v') E G 0 , 

If there exists v E AS,,0, such that FV(close(e, E)) = { }, 

and close(e, E) =' v, there exists v' E ASEv01  such that 

E F- e = v' and (v, V ' ) E G,,0, 

Proof We prove 3(1) and 3(2) separately. 

1(1) Recall that Proposition 2.3 states that E F-  e = v' if and only if there 

exists a proof tree for the formula E F- e = v in M; the same is valid for the 

other relations. Therefore, we will prove the following statement: 

If] v' and 	
PT' 	

then] v and 
E F- e = v' 

PT 

close(e, E) = v 
and (V, V) E G 0, 

where PT' and PT represent proof trees of the formulae below the line. This 

proof is by induction on the height of PT'. We present one case for each rule of 

the definition of - F- - = - (Example 2) used to construct the proof tree. 

Rule 2(2) In this case e = n and v = 72ASE• Since close(n, E) = n and 

n s AS the proof trees are as follows: 

E F- 	flASE 	 close(ri, E) ==>s flAS 



Chapter 3. Equivalence of Relational Specifications 	 87 

Since n = ASE for all n E TIEm) 	then (A5 ,  BASE) E Gnat and therefore 
' OBS not' 

( HAS flASE) E Gvai. 

Rule 2(3) In this case e = id. If there exist v' and a proof tree for E F- id = 

this proof tree must be of the following form: 

PT' 
(E, id) 	L V 

E F -id = v' 

From Lemma 2(1) we have that there exists v and a proof tree PT such that: 

PT 

close(id,E) =s  v 

and (v, v') E G0i. 

Rule 2(4) In this case e = e1  + e2 . If there exists v' and a proof tree for 

E F- e1  + e2  = V I  this proof tree must be of the following form: 

	

PT 	 PI 
EF-e2 =v, 

E F- e1  + e2  = plus(z4, v) 

•where v' = plus( v, v). From the definition of close we have that close( e1  + 

e2 , E) = close(e1 , E) + close(e2 , E). From the inductive hypothesis there exist v1 , 

v2 , PT1 , and PT2  such that: 

PT 	 PT 
close(e1 , E) = V1 	close(e2 , 1) = z 

close(e1  + e2 , E) =t>s  plus(v1 , v2 ) 

and (v1 ,vi), (V2, v) E 	From the fact that G : AS X JSFU. ASE, we have 
OBS 

that (plAs( v  V2),P1USASE(V1, V)) 

Rule 2(5) In this case e = let id = e1  in e2. If there is a V and a proof tree 

for E F- let id = e1  in e2 = v, this proof tree must be of the following form: 

PI 

	

EF-e1 =>v 	id-*v•EI-e 2 =v 

E F- let id = e1  in e2  = 
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From the definition of close we have that close(let id = e1  in e2 , E) is equal to 

let id = close(ei , E) in close(e2 , remove(id, E)). From the inductive hypothesis 

there exist v1  and PT1  such that (v1 , v) E Gvai, and from Lemma 1(1) there exist 

v2 , PT2 , and PT3  such that: 

PT 
	

P?n 
close(e1 ,E) ts V1 	(v1,id,close(e2,remove(id,E))) - e 

let id = close(e1 , E) in close(e2 , remove(id , E)) = v2  

and (v2 ,v) E Gvai. 

P743  

e ='s V2 

Rule 2(6) In this case e = fn id. e'. If there exists v' and a proof tree for the 

formula E I- fn id. e' = v' this proof tree must be of the following form: 

E I- fn id. e' = (E, id, e') 

where v'=(E, id, e'). Since close(fn id. e', E) = fri id . close(e' ,remove(id, E)), 

then: 

close(fn id. e',E) g fn id. close(e', remove(id, E)) 

From the definition of Gfr flO,, (fn id . close(e', remove(id, E)), (E, id, e')) E Gvai. 

Rule 2(7) In this case e = e1 (e2 ). If there exists v' and a proof tree for the 

formula E I- e1 (e2) = v' this proof tree must be of the following form: 

PT 	 PT 	 PT 
1 	I 	I 

EFe1 .(E',id',e') 	EFe2 v 	id i-v2 -E Fe = 

E F- e1 (e2 ) 	V 

From the definition of close we have close(e1 (e2 ), E) = close(e1 , E)(close(e2 , E)). 

If there exists a proof tree for close(e1 (e2), E) v it must be of the following 

form: 

PT1 	 PT 	 PT3 	PT4  
close(e1 , E) 	fri id. e close(e2 , E) =*-S  V2 (V2 id, e) - e" e =>s  v 

close(e1 (e2), E) 

From the inductive hypothesis the proof trees PT 1  and PT2  exist. Furthermore: 

• (fri id. e, (E', id', e')) E 	and from the definition of G nvai, we have 

that close(e', remove(id' , E')) = e and id = id'. 
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• (v2 , v) E Gvai. 

Then applying Lemma 1(1) to the formulae id' 	E' F- e' = V I , 

(v2 , id, ci ose(e' , remove(id, E'))) —'s  e", and e" 	v, we obtain (v, v') E G 01. 

This completes the proof of Lemma 3(1). 

3(2) (sketch): We must prove that: 

If 3 v, FV(ciose(e, E)) = { } and 
PP 

3 v' and 
E F- = V 1  

and (v, V) E G 0, 

e  

This proof is by rule induction on the definition of = of Example 1. The proof 

is analogous to the proof Lemma 3(1). 

This finishes the proof of Lemma 3. 	 0 

Using Lemma 3 we can give proof for Proposition 3. 

Proof (of Proposition 3) We already argued that the proof of the requirement 

of Definition 3(1) is trivial, and therefore G : AS - xzsF.. ASE. It remains to 
OBS 

prove the requirements of Definition 3(2) are satisfied. 

This proof is clearer if we first restate Lemma 3 for the case when E =  EE- 

Lemma 3(1) then becomes: for all (e, e) E G e2 ,, 

1. if there exists VI 
E ASE 01  such that 6E  F- e = 

VI 

then there exists V E ASvaj  such that ciose(e )  EE) 	v and (V, v') E G 0, 

Notice that applying rule (1) of Example 2 to the proof tree for the formula 

EE I- e = v' we obtain e => V1  in SEnt'. It is easy to check that FV(e) = 11. 
Furthermore, ciose(e, EE) = e and by applying rule (1) of Example 1 we obtain 

the following statement for Lemma 3(1): for all (e, e) E 

1. 	if there exists v' E ASE va1  such that (e, V') E=M 

then there exists V E AS,,al  such that (e, V) E=.MS 	and (V, V ' ) e 

PT' 

close(e, E) 	V 
then 
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Using a similar argument we can rewrite Lemma 3(2) as follows: for all (e, e) E 

G ezp, 

2. if there exists v E AS,,01  such that FV(e) = { } and (e, v) E=MS 

then there exists v' E ASE, such that (e, v') E =MSE  and (v, v') E Gvai 

Let us prove first that Definition 3(2.i) is satisfied. Any pair ((e, v), (e', v')) can 

only be in H because of either Definition 6(1) or Definition 6(2). Suppose it is 

because of Definition 6(1), then from Proposition 1 it follows that (e', e) 

and (v, v') E Gvai. Suppose now that it is because of Definition 6(2). It is 

then clear that e = e' and (e, e') E G e ,. It follows then from Lemma 3 that 

(v, v') e G 01. We then conclude that Definition 3(2.i) is satisfied 

Definition 3(2.ii) follows trivially from Definition 6(1). II remains to show 

that = is compatible with H. in the sense of Definition 3(2). Therefore, we 

must prove the following statement: 

whenever ((e, v), (e, v')) E H. then: 

(e, v) e MS  if and only if (e, v') E MSE 

Let us prove the left to right implication first. Suppose that (e, v) e =5M5  and 

let us analyse the possible values for v. 

II v = n since (v, v') E Gvai then v = v'. In this case it follows from 

Lemma 3 that there exists v" such that (e, v") E=MSE  and (v, v") E Gvai. 

Since v = n then v = v", therefore v' = v". 

If v = fri id. e, then ((e, v), (e, v')) is in H. because of Definition 6(2) 

since there is no visible term of sort funval. In this case, ((e, v), (e, v')) e 

H. only if (e, v) E=MS  and (e, v') EMSE,  and the statement holds. 

The proof of the right to left implication follows similarly. Therefore, we have 

proved that the requirements of Definitions 3(1) and 3(2) are satisfied, concluding 

that (G, H) : MS 4*flSFun MSE. From Theorem 1 it follows that MS flSF.rn 
OBS 	 OBS 
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MSE, which according to Definition 4 establishes that Sub SEnv. This finishes 

the proof of equivalence between Sub and SEnv. 	 0 

3.6 Summary and Conclusions 

In this chapter we defined an equivalence relation between Relational Specifica-

tions and used this equivalence as a correctness criterion between two Relational 

Specifications. This equivalence relation is based on an observational equivalence 

in the algebraic specification sense. Moreover, the particular notion of observa-

tional equivalence used in this section is that of [ST87}. 

This definition provides a general criterion for correctness; the equivalence 

relation between specifications is (obviously) transitive, which is a desirable prop-

erty of a correctness criterion. Moreover, this equivalence comes equipped with 

a proof method based on correspondence relations. We extended the definition 

of strong correspondence of [Sch87, page 241] to a relation between first order 

models we called Model Correspondence. 

In our approach to correctness, non-deterministic programming languages are 

accounted for. In [Nip86] Nipkow proposes a notion of simulation of an algebra 

by another which also accounts for non-deterministic languages Our solution dif-

fers from Nipkow's simulation relation in that OBS'  and therefore , are sym-

metric relations. The symmetry between alternative definitions of a language's 

semantics expresses that essential features of the language (in the sense of Sec-

tion 3.3, page 69) must be preserved across alternative definitions. On the other 

hand, non-essential characteristics may be made non-observable for correctness 

purposes. 

An important application of the definitions of this chapter is in the problem 

of compiler correctness. This problem will be studied in Chapter 4 where we 

show that the use of Observational Equivalence extends and improves previous 

approaches to this problem. 



Chapter 4 

Compiler Correctness 

In this chapter we study the problem of compiler correctness in the framework of 

Relational Semantics. This problem consists in establishing whether a compiler 

for a programming language generates "correct machine code" for programs in 

the language. The key aspect of this problem is to define a natural and formal 

meaning for "correct machine code". 

We propose a solution to this problem by applying the concept of Obser-

vational Equivalence of Relational Specifications developed in Chapter 3. The 

initial aspect of this solution is the characterisation of the process that we call 

Evaluation by Compilation, or simply Compilation. In a Compilation, the se-

mantics of a program is defined in three stages: the program is compiled into 

machine code which is loaded and executed on the machine; if this execution is 

successful then the result of the evaluation is unloaded from the machine and 

given as the result of the program. 

Once we charactense a Compilation we show how it may be defined by a 

Relational Specification. The last aspect of our approach to compiler correctness 

is to use Observational Equivalence as the equivalence between a (standard) 

semantics and a Compilation of the programming language. This equivalence 

defines a criterion for compiler correctness and we shall argue why this is a 

suitable criterion. 

92 
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The compiler correctness problem has received a great deal of attention in 

the literature. In Section 4.1 we summarise the main approaches to this problem 

and compare their solutions to the approach we propose in this chapter. In 

Section 4.3 we give an abstract characterisation of the Compilation process in 

terms of signatures and first order models; then we use an example to show 

how a concrete Compilation may be defined by a Relational Specification. In 

Section 4.4 we prove that the Compilation defined in Section 4.3 and a Relational 

Specification derived from SEnv (see Example 3.2) are observationally equivalent. 

4.1 Introduction 

In [MP67], McCarthy and Painter presented one of the earliest approaches to 

compiler correctness. This work consists of a proof of correctness of an algorithm 

for compiling arithmetic expressions into an abstract machine. In [BL69], Burstaji 

and Landin introduced the use of algebraic methods in the compiler correctness 

problem. The use of an algebraic approach introduced structure on the objects 

involved in the correctness problem: programming language semantics, machine 

semantics, and the definition of the compiler. 

The algebraic approach was further developed in [Mor73], where compiler 

correctness is characterised as the commutativity of the diagram in Figure 1 

(page 94), known as the Morris Diagram. In that diagram, the nodes are algebras 

and the arrows are homomorphisms. The ir arrow denotes the semantics of the 

programming language, while the 1a arrow denotes the semantics of the machine 

language. 

In the Morris Diagram, the algebra k  is the initial term algebra T(E) for 

a signature E which defines the programming language. Therefore, 'y  and ir 

are unique homomorphisms by initiality. The proof method is also based on 

initiality, for if IL and 6 are also homomorphisms then the commutativity of the 

Morris Diagram follows by uniqueness. Therefore, a proof of compiler correctness 

consists of proving that the arrows of the diagram are homomorphisms. 
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L 
compiler 

M 	U 
decoding 

Figure 1: The Morris Diagram 

One limitation of Morris' approach is that the correctness criterion requires 

the existence of a homomorphism 6 from the algebra of the machine values into 

the algebra of the programming language values. To understand why this is a 

limitation let us consider a practical example. In the language Fun of Example 3.2 

the expression fn x • x + 1 evaluates to the function value (EE, x, x + 1), and 

fri y . y + 1 evaluates to (EE, y, y+l). It is conceivable that in a machine im-

plementation these two expressions evaluate to the same machine value that 

"represents" all a-conversions of a function value like (EE, x, x + 1). In this case 

there is no homomorphism 6 that makes the Morris Diagram commute. 

The approach initiated by Morris inspired several investigations which set 

out to extend and improve the ideas presented in [Mor73}. We now discuss 

some of these investigations. In [TWW81], the ADJ group proposes the use 

of a homomorphism € : M - f (of encoding) to replace the homomorphism 

6 L - in the Morris Diagram. A motivation for using c is to overcome the 

limitations of the original diagram for cases like the function values discussed 

above. 

However, the use of an encoding arrow in the correctness diagram is problem-

atic in various ways. First, the commutativity of the diagram with c : M - U is 

not a sufficient criterion for correctness. For instance, in the case where T and 

are one-point algebras and 'y, p, and c are the unique homomorphism to these 

algebras, the diagram commutes trivially, as mentioned in [TWW81]. 

Another reason why € does not give a sufficient correctness criterion is illus- 

trated by a simple example. Suppose 'y compiles every program 1 in L into the 
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(fixed) code sequence . in T. Therefore, since p. is a function, every program 

has the (fixed) meaning p.(1) in U. Furthermore, for every . in j  suppose that c 

maps ir(I)  into (the fixed) /L(I).  The diagram then commutes trivially, although 

we intuitively would not regard this compiler as being correct. 

The degenerate case of one-point algebras seems irrelevant in practice since 

we expect the machine language T never to be one-point. However, the second 

problem discussed above suggests that errors in the compiler arrow can be 

hidden by a suitable choice of the encoding arrow c. Therefore, the use of the 

encoding arrow in the Morris Diagram is not adequate for compiler correctness. 

Furthermore, the use of an encoding arrow suffers from a pragmatic problem. 

In practice, we use a compiler to translate a program into machine code; we then 

execute the code on the machine and, if a result is produce by the execution, 

we expect to obtain its source level representation as the result of the program 

evaluation. In other words, we are interested in the results as they are represented 

in the algebra M. 

However, the existence of an encoding c that makes the correctness diagram 

commute is not sufficient to guarantee we can (uniquely) convert from the ma-

chine representation of a result to its source language representation. In fact, a 

diagram with an encoding arrow only guarantees that there exists at least one 

result in M that corresponds to the result in U obtained from the execution of 

the program's code. We argue this is not sufficient from a pragmatic point of 

view. 

A major limitation of the aforementioned algebraic approaches is that the al-

gebraic semantics used to define the semantics of programming languages is func-

tional. Therefore, these approaches do not directly deal with non-deterministic 

languages. In the approach initiated by Despeyroux [Des86] and followed by 

Simpson [Sim90], the nodes of the Morris Diagram become term algebras and 

the arrows become inductively defined relations between these algebras. There-

fore, these approaches model non-deterministic languages naturally. The correct-

ness diagrams used in [Des86,Sim9O] use the encoding arrow c. Therefore, both 
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approaches suffer from the problems discussed above. 

Some authors divide the compiler correctness problem into compiler specific-

ation correctness and compiler implementation correctness [Po181,CM86]. The 

former refers to the correctness of a compiler specification with respect to the 

programming language semantics. This category includes all above cited works. 

Compiler implementation correctness refers to the correctness of a compiler im-

plementation with respect to its specification. 

Various aspects distinguish specification and implementation of compilers in 

this context. For instance, a specification is usually defined in terms of abstract 

syntax of the program while the implementation may involve lexical analysis, 

parsing, and so forth. Furthermore, a specification does not need to be execut-

able, and even when it is executable, it is too inefficient to be used in practical 

applications. On the other hand, an implementation is necessarily executable 

and often robust for real applications. 

This distinction was first addressed in [Po181]. In [CM86] Chirica and Martin 

show how to apply the ideas of the Morris Diagram to prove correctness of a 

compiler implementation. Although we believe that compiler implementation 

correctness is an important problem, it is not addressed in this thesis. 

Summarising the above discussion, we have seen that most approaches to 

the compiler correctness problem are based on the ideas proposed in [Mor73, 

TWW811. However, the original Morris Diagram (see Figure 1) is too restrictive 

for some practical applications. Furthermore, the use of an encoding arrow € 

replacing the decoding arrow S cannot be considered a sufficient criterion for 

compiler correctness. A natural question at this point is whether there is a 

suitable generalisation of the Morris Diagram which is an (intuitively) sufficient 

criterion and yet is general enough to address cases such the function value. 

Clearly, to require the encoding arrow c to be injective gives a sufficient cor-

rectness criterion in the sense that it does not suffer from the problems addressed 

above. However, this restriction means that any two distinct program phrases 
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with distinct semantics must have distinct target semantics. The example of the 

function values presented above shows that this restriction is too strong in some 

practical cases. 

A less restrictive solution would be to use Hoare's idea of a representation 

relation [Hoa72] between the algebras j  and U. Another solution would be 

to compare the algebras M and  L under observational equivalence [Rei8l,ST87, 

N088,Sch90]. The advantages of using observational equivalence over representa-

tion relation were discussed in Chapter 3. Moreover, in [Sch87, page 255] Schoett 

gives a proof that observational equivalence is more general than representation 

relation. 

In Chapter 3, we successfully applied Observational Equivalence to the prob-

lem of equivalence between Relational Specifications. If we consider the problem 

of compiler correctness as an instance of equivalence between Relational Spe-

cifications we have a criterion for compiler correctness based on Observational 

Equivalence. It is our objective in this chapter to show how the problem of com-

piler correctness can be formulated in the framework developed in Chapter 3. 

The use of Observational Equivalence as the criterion for compiler correctness 

is an improvement on previous approaches for two clear reasons. First, it is more 

general than previous approaches to the problem while it is still an (intuitively) 

sufficient criterion for correctness. Second, it is based on a formal definition which 

can reasoned about at the meta-level. This level of reasoning is important since 

it is now possible to state and prove properties about the correctness criterion, 

for instance, those stated in Facts 3.1, 3.2, and 3.3. 

It is generally agreed that a major contribution of the ideas in [Mor73, 

TWW81,Pol81,CM86,Des86,Sim90] is that they present methodologies to struc-

ture the compiler and other semantic objects involved in the compiler correct-

ness problem. However, this structure does not directly extend to the proofs 

of correctness which remains an ad hoc process. Various approaches have pro-

posed ways of structuring the correctness proofs by using semi-automatic theorem 
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provers [MW72,Coh78,Joy89,Sim90]. 

Another advantage of formulating the compiler correctness problem in the 

framework of Chapter 3 is that we can use Model Correspondence as a proof 

method. As stressed in Chapter 3, Model Correspondence is an improvement 

over ad hoc approaches because, besides being consistent with respect to Obser-

vational Equivalence, it introduces structure into the proofs of equivalence. This 

structure may suggest ways in which proofs can be semi-automated, contributing 

to the use of this framework in practical applications. 

Summarising, our approach to compiler correctness affirms the ideas proposed 

in previous approaches and improves these ideas in various aspects. First, it gives 

a more general and yet (intuitively) sufficient criterion for correctness. Second, 

it provides a proof method which is consistent with respect to the correctness 

criterion. Finally, this proof method suggests a methodology to structure the 

proofs of correctness which complements previous advice on how to structure 

the other objects involved in the compiler correctness problem. It is the main 

objective of this chapter to illustrate these improvements. 

4.2 Definitional Preliminaries 

The definitions in this, and subsequent chapters, use the concept of directed 

first order signatures in the Relational Specifications. In such a signature the 

sorts and function names are as in a (standard) first order signature and the 

relation names have an input/output direction assigned to them. Intuitively, the 

inputs of a relation characterise the programs in the programming language and 

the outputs characterise their results. Furthermore, a directed signature has a 

distinguished relation symbol, called the initial relation of the signature, which 

defines the meaning of programs by relating programs to their results. 

In this chapter we need to distinguish between programs and results so that we 

can characterise compilers from source language programs into target language 

programs. In Chapter 5, we will motivate the need for directed relations in the 
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definition of program evaluation. 

A directed first order signature (or simply a directed signature) is a quadruple 

(S, F, H, ir) such that (S, F) is an algebraic signature, H is a S x S*sorted  family 

of sets, and ir E H is a relation name called the initial relation of the signature. 

A directed signature (S, F, H, ir) is a sub-signature of (S', F', II', ir') if (S, F, II) E 

(S
, 
 , FI  ,II) and ir = irI . Hereafter, the signature of any Relational Specification is 

a directed signature. 

A relation name ir E 111 WXW1. for some w E S+, and w' E S, is called a 

directed relation name and is written ir : w w'. If w = s1 .. . Sn  and w' = 

Sn+1 ... Sm, for n > 0, m > n, and t2  E T(E) 31 , for i E [m+], then t,, is an 

abbreviation for t1 ,.. ., t, and t is an abbreviation for t. The formula 

ir(t1 , ... ) t,, 	t,,) in F(cl) is then abbreviated by ir(t, t1). 

As usual, we will treat w and w' as single sorts and t and t,,1 as single 

terms whenever it does not introduce ambiguities. Therefore, t,,, E T(E) is an 

abbreviation for t E T(E) 3  for i E [nt]. The application of a S-sorted function 

to t 1, or t is interpreted as the componentwise application; the same applies for 

substitutions or other S-sorted operations. In a formula ir(t, tm , ), ti,, is called 

the input, and t is called the output. 

The following terminology is used if ir E 	is the initial relation of a 

directed signature. A program formula is a formula ir(j, 	where [j e T(E) 

and t E Tx(s). The (ground) term j  is called the program and, whenever 

t,,, is ground, it is called the result of the program formula. Notice that this 

definition of the term "program" is different from its common usage. A program 

in our terminology contains an actual program together with the context in which 

this program evaluates. 

We denote the set of program formulae in a first order signature Q by Px(1); 

thus P(1) denotes the set of ground program formulae. Clearly, Px( 1 ) C F(1 

whenever X 0 11, and P(l) = F(cl),.. 

For example, we can define a directed signature Il = (5, F, II, - F- - = -) 
SEnv 	 SEnv based on the signature l 	, defined m Example 3.2, as follows: S = S 
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F = FSEnV, 	exp -' val, and - I- - 	- : env x exp -+ val. A program 

in 92 is a pair containing a ground environment and a ground Fun expression, 

e.g., (EE, num(1) + num(2)). A program formula in PxE(1) is, for instance, a 

formula EE F- nuxn(1) + num(2) = v, for some v E X vai. Hereafter, whenever it 

is necessary to refer to Q we will use fZFn' = (SEI, F Env , 11Env ,  , - F- - = ). The 

directed signature Q Env  will be used in Section 4.4 in the example of a compiler 

correctness proof. 

4.3 Evaluation by Compilation 

In this section we study compiler correctness in the context of the theory of 

Observational Equivalence developed in Chapter 3. The generality of the frame-

work developed in Chapter 3 makes it simple to formulate the compiler correct-

ness problem as an instance of equivalence between Relational Specifications. 

However, the compiler correctness problem possesses particular aspects which 

require specific treatment by a correctness theory. In this sense, compiler cor-

rectness is not just an instance of equivalence between Relational Specifications 

but has extra requirements that account for these particular aspects. It is our 

objective in this section to characterise these extra-requirements. 

Our approach to structuring the compiler correctness problem is inspired by 

the early algebraic approaches [Mor73,TWW81]. However, our interpretation of 

the Morris Diagram (Figure 1, page 94) is similar to the approaches in [Des86, 

Sim9O] in which the nodes of the diagram are term algebras and the arrows are 

inductively defined relations between the carriers of these algebras. We illustrate 

our interpretation of compiler correctness using the diagrams in Figure 2. 

In Figure 2, the nodes L, 1, T, /, and  M' are term algebras, the double 

arrows are directed relations and the single arrow is a partial function. Both dia-

grams describe first order models of some directed signature Q. The left diagram 

describes an cl-model ]iM in which the programming language is defined by a 

directed relation ir : ii between programs and results. The right diagram 
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L 

compiler 

programming ianuaej 7r 	 = OBS 	 A machine language 

sj unloading 

M' 

Figure 2: Evaluation by Compilation 

describes what we call an Evaluation by Compilation, or simply a Compilation, 

which is an cl-model LTUM in which the semantics of a program is defined by 

the composition of the compiler 7 : L -i , the machine language semantics 

f, and the unloading of results 8 : 

The conditions for compiler correctness are also expressed by the diagrams in 

Figure 2. Let 1108s  cl be an observation signature. The Compilation LTUM' 

is correct with respect to ]M and coBs if and only if is a (partial) function 

and LM ain OBS  LTUJVJ'. Whenever the cl-models LM and LTUM are defined 

by Relational Specifications in Spec(cloBs), say S and C respectively, the second 

requirement becomes S C. 

In the above sense, compiler correctness should be actually called Compilation 

correctness. In fact, the question of what it means for a compiler to be correct 

with respect to the semantics of the programming language is vacuous if asked 

in isolation of the other components of the Compilation. Nevertheless, we prefer 

to keep the more traditional terminology and use "compiler correctness" in this 

presentation. 

Compiler correctness is not just an instance of Observational Equivalence 
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between Relational Specifications because we require the compiler 7 to be a 

partial function instead of an arbitrary directed relation. In the rest of this 

section we will use examples to illustrate the above ideas. However, before we 

move on to the examples, let us discuss the motivations for requiring the compiler 

to be a (partial) function. 

This requirement is motivated by the behaviour we expect from the Compil-

ation process when the language is non-deterministic. Whenever a programming 

language is non-deterministic, ir will be a relation in which any program in L 

may be related to more than one result in M. In a Compilation, we have the 

freedom to simulate this non-determinism in either of the three stages, provided 

the overall non-deterministic behaviour is equivalent to that of ir. 

However, this freedom is misleading if we consider this problem from a prag-

matic point of view. In practice, whenever we need all possible results of the 

evaluation of a (non-deterministic) program we expect to be able to compile the 

program once and for all and then run the generated code as many times as 

necessary. However, if the non-determinism of the Compilation is produced by a 

non-deterministic compiler while the machine evaluation of the generated code is 

deterministic, we will have to recompile the program before each re-evaluation. 

This is clearly not what we expect in practice. The compiler correctness condi-

tion makes sure that we obtain the behaviour we expect from a non-deterministic 

Compilation by requiring 7 to be a (partial) function. 

Let us now use an example to illustrate how to define Compilations using 

Relational Specifications. This and following examples have some similarities 

with the work of Despeyroux [Des86]. Throughout the rest of this chapter we 

discuss the main similarities and differences between Despeyroux's work and our 

approach to the definition of Compilations and to compiler correctness proofs. 

In agreement with previous approaches, we advocate that the starting point in 

the design of a Compilation is the formal semantics of the programming language. 

Therefore, we start by defining a Relational Specification derived from SEnv (see 
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Example 3.2) for the language Fun of previous examples. 

First, let çEnv  be the directed signature defined in Section 4.2. Let us now 

define a Relational Specification Env = (f FJnv Env 	QFun by making q?' OBS 

and AEnV  to be the same as q5 	and A5 " respectively. Let QFn be the OBS 

directed signature that has - I- - 	- as the initial relation, 11OBS  has only the 

symbol - I- - = J, and S Pun and F Fun are defined by the following BNF rules: 

exp 	::= var I nat I exp + exp I let var = exp in exp 

fn var. exp I exp(exp) 

env 	::= CE 

var 	::= xIyI..- 

nat 	::= 0 	1 

funval 

vat 	::= nat 

The observable terms according to these BNF rules are the expressions of sort 

exp, the empty environment, variables, and values of sort nat of the form 0, 

1, and so forth. The sort funval is observable, but there is no constructor for 

building observable terms of this sort. Hereafter, let denote the Declarative 

Semantics of Env. Notice that the Declarative Semantics M SEnv  of SEnv is equal 

Env toM 

Once we have the programming language semantics, the next stage is to define 

the Compilation process. In practice, this stage starts with the definition of the 

machine language semantics. The next example defines the semantics of the 

Categorical Abstract Machine (CAM) [CCM841 by a Relation Specification. 

The definition of the CAM in the following example is the first difference 

between our approach and Despeyroux's approach in [Des86]. Despeyroux defines 

the CAM by a relation that describes the entire evaluation of a sequence of ma-

chine instructions into a final result. We define a transition relation that describes 

the evaluation of a single machine instruction and then use the transitive-reflexive 

closure of this relation to evaluate sequences of instructions. 
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We chose this approach to define the CAM because this style of defining an 

abstract machine will be used in the characterisation of Compiler-debuggers in 

Chapter 7. Furthermore, the definition of the CAM given below will also be used 

in various examples in Chapter 7. 

Example 1 In this example we present a complete definition of a subset of the 

CAM that is sufficient for the Compilation of Fun programs. This definition 

is given by a Relational Specification Cam = (]5Corn Acorn, cig ). The 

grammar below defines the sets S c"  and F Cam  of fI Corn 

state 	::= (stack,code) 

stack ::= E5 I val• stack 

code 	::= EC I inst• code 

val 	::= nat 	funval I (val, vat) I () 
nat 	::= plus(nat, nat) 0 1 1 

funval ::= [val, code] 

inst 	::= quote(nat) I push car cdr I cons 

I swap  I cur(code) app I add 

where es denotes the empty stack, E  denotes the empty sequence of machine 

instructions, and () denotes an empty pair. A stack is a sequence of machine 

values and a code is a sequence of machine instructions. We denote the concat-

enation of two code sequences c and c' as c©c'. The val component of a function 

value holds a machine environment, which is an encoding of a source language 

environment obtained using de Bruijn's method [dB72]. We extend XE  with the 

following components: 

XE generated by st 	XE 	generated by S state 0 	 stack 

• 	generated by c 	XE 	generated by op code 	 inst 

CAM 
We present the rules that define the directed relation —: state 	state. This re- 

lation defines the evaluation of a single CAM instruction. The transitive-reflexive 
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closure of 	written 	defines the evaluation of arbitrary sequences of in- 

structions. The definition of -p by a set of Relational Rules is straightforward 

and is omitted in this presentation. 

The Transition Relation 	 state CAM 
 state 

CAM 	
(1) 

(v.S,quote(n)c) -f (n.S,c) 

CAM 	
(2) 

(v . S,push. c) -+ (v v S,c) 

((v1,v2).S,car.c) CAM 
-p ( v.S,c) 	

(3) 
 

CAM 	
(4) 

((v1 ,v2).S,cdr.c) -* (v2 •S,0 

CAM 	
(5) 

(v1 . V2. S,cons• c) -* ((v2 ,v1 ). S,c) 

CAM 	 (6) 
(v1 .v2 .S,swap.c) -p (v•v.S,c) 

CAM 	 (7) 
(v S, cur(c'). c) -i ([v, c'] S, c) 

(([v,c],v') S,app. c) CAM 
- (( v,v') .S,c©c') 	

(8) 
 

CAM 	 (9) 
(v1 . v2 . S,add c) -p (plus(v2 ,v1 ). S,c) 

m am 	 CAM 
The directed signature izm  is defined by (S ,  Fc ,  Hm, 	where —: 

statex state. For all s E 5Cam
Acam= T(Ecam 	t that 	= { o 1,.. 

.}. ), 
excep 	

fbi 

Moreover, the 	m a1gebra  Acam mterprets plus as the standard sum operation 

on the natural numbers and all other function names are given the term algebra 

interpretation. 



Chapter 4. Compiler Correctness 
	

106 

Cam The observational signature cg of Cam is just the signature Il 	. There- 

fore, every object in this Relational Specification is observable. This finishes 

Example 4.1. 	 D 

Once the machine language semantics is defined, the next step in the definition 

of a Compilation process is to define the compiler. 

Example 2 In this example we define a compiler for Fun into CAM code by 

presenting a Relational Specification Trans = (1 Trans 
, 

Trans Trans 
, A goBs). The 

signature ç1ThU  is the union of çCam  with the relation names defined in the 

Relational Rules below and the algebraic signature defined by the following BNF 

rules: 

sfunval 	::= (env, var, exp) 

sval 	::= nat 	sfunval 

env 	::= EE I var '—* sval 	env 

comp_env 	::= 6 CE I (comp_env,var) 

where exp and var are defined in Example 3.1. In the grammar above sval and 

sfunval are the same as val and funval of Example 3.2. The sort names must be 

changed to distinguish them from val and funval of the signature çm• 

The compiler generates code for pairs of the form (E, e) where E is an en-

vironment and e is a Fun expression. In fact, the compiler constructs a machine 

state of the form (S, c) where c is the code generated for e with respect to the 

environment E and S is a compiled version dl E, called the machine environment. 

Such an environment is a pair in which values are accessed using a sequence of 

car and cdr instructions. This sequence is a form of de Bruijn encoding of vari-

ables [dB72]. In the rest of this section, we will write a sequence of CAM code 

Opi ... O7 Ej using the usual sequence notation (op1 , .. . , op,), to improve 

readability. 

We extend XE  with the component XE 	generated by CE. The rules comp_env 
Corny 	 . 

below define the compiler -: env x exp -' state; this defimtion uses three 
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auxiliary relations. The relation — FE: env i- comp..env x val compiles an envir-

onment into a compilation-environment and a machine environment, i.e., a pair of 

values as described above. The compilation-environment is necessary in the gen-

eration of lookup code of variables. The relation — LC: comp_env x var code 
Corny 

generates lookup code for vanables, and - F- - —4 _: eriv x exp code generates 

code for expressions. 

Environment-Compiler 	 env 'E (comp_env, val) 

	

6E 	3  E (ECE, 0) 
	 (1) 

	

E 	E (CE, v) 

	

id '—p n - E 	E ((CE, id), (v, n)) 

E' 	E  (CE', v') 	(CE', id') F- e'' c 	E 	E (CE, v) 

id i-p (E', id', e') . E 	((CE, id), (v, [v', c])) 

Lookup Code 
	

I (comp_eriv,var) 4LC code 

((CE, id), id) 	LC (cdr) 	
(4) 

id' i4 id 	(CE, id) 	LC c 

((CE, id'), id) 	LC (car)©c 
 

The Code Generator 

CE I- n 
COM 
 ' (quote(n)) 

Comp comp_env F- exp —4 code 

 

(CE, id) 	LC c 

CE F-  idc 

	

CEF-e1 c1 	CEF-e2 c2  

CE F- e1  + e2 	(push)©c 1 ©(swap)Cc2©(add) 

CEF-e1 c1 	(CE,id)F-e2 c2  

	

CE F- let id = e1  in e2 	(push)©c1©(cons)©c2  
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(CE, id) I- e 	c 
(10) 

CE I- fn id. e 	(cur(c)) 

	

CEFe1 c1 	CEFe2c2 	
( 

CE I- e1(e2) 
Corny —i (push)©c1 ©(swap)©c©(cons,app) 

The Compiler 	 (env, exp)' state 

	

E—* E (CE,v) 	CEHec 
(12) 

(E, e) -' (v Es, c) 

The algebra A 	is the trivial term algebra on all function names. The obser- 

0 2 ans vational signature ULOBS  is just the signature ci '°. This finishes Example 4.2. 

0 

There are still two remaining stages in the definition of a Compilation. First 

we must define the unload relation and then to compose the compiler, machine 

semantics, and unload relation to obtain the semantics Fun expressions. 

Example 3 This example defines the remaining components of a Compilation 

for Fun programs by presenting a Relational Specification 

Comp = (çComP Comp 
A 

 Comp 11Fun 

OBS) 

The BNF rules which define the sets S Comp  and  F Comp  of  ci Comp  are the same as in 

Example 2. The rules below define the unloading relation -pu: state val and 

the evaluation of Fun expressions given by the relation - F- _: env x exp -4 val. 

The entire set of rules q5Com  is the union of the rules below and the rules defined 

in Examples 1 and 2. 

Unloading of Results 	 state — , vail 

(v. S,ec) _'u V 
	 (1) 
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The Compilation 	 I env I- exp =t. val 

(E,e) 
c1  st 	st2!*(S, ec ) 	(S,ec) __u  

EHev 	 (2) 

In rule (1), E C  indicates we only unload results from successful states. Rule (2) is 

what we call a Compilation rule; it defines the evaluation of e in E by compiling 

e into code for the CAM, executing this code by using the transitive-reflexive 

CAM closure of -*, and unloadmg the result from the final CAM state. 

The s-algebra AC0mP  agrees with the algebras defined in Examples 1 and 2 

on all function names. The observation signature 	is the same as for the OBS 

Relational Specification Env defined above. Hereafter, let 	denote the 

Declarative Semantics of Comp. 

This finishes Example 4.3. 	 t 

In Examples 1, 2, and 3 we illustrated how to structure the design of a Corn-

pilation in Relational Specification. We started by defining the abstract machine 

which gives the target language for the compiler. We then defined the compiler 

and the unloading relation, and composed them using a Compilation rule. We 

believe this is a pattern which frequently occurs in the design of compilers in 

practice. 

There are other possibilities in the definition of a Compilation of Fun into 

CAM. For instance, it is straightforward to define a Compilation that uses the 

definition of the CAM given in [Des86]. 

4.4 A Proof of Compiler Correctness 

In Section 4.3 we presented a criterion for compiler correctness and then used an 

example to illustrate how to design a Compilation in Relational Semantics. We 

now have two definitions of the language Fun given by the Relational Specifica-

tions Env and Comp. In this section we will prove the correctness of Comp with 

respect to Env. 
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In the framework of Chapter 3, this "correctness" would mean establishing 

whether Env Comp. However, Cornp defines a Compilation and we are inter-

ested in a compiler correctness proof of Comp with respect to Env. Therefore, we 
Comp 

must prove two conditions. First, we must show that the rules for —4 defined 

in Example 2 define a (partial) function. Then, we prove that Env Comp. 

Our motivation in this sections is to emphasise that there are more require-

ments in a compiler correctness proof than in a proof of equivalence between 

Relational Specifications. Furthermore, we want illustrate the use of Model Cor-

respondence in compiler correctness proofs. 

Following the same conventions used in Section 3.5, whenever E e AV, 
env 

e e AV, and v E AV we write E I- e = v for (E, e, v) E (.. F- - 	
)ME. 

 whenval ezp

it does not introduce ambiguities; the same convention applies to other relations 

in Env and for every relation in Cornp. 

The first step in the compiler correctness proof of Comp with respect to Env 
y 

is to establish whether 
C—orn4 

 defines a function. This is stated in the followmg 

proposition. 

Proposition 1 For all E E AC0m) and e E ACOmP if there exist st st' E AC0m 

	

env 	 ezp 	 state 

such that (E, e) 	l' st and (E, e) 	l' st' then st = stI
. 

Proof (Sketch) The definition of 	l' in rule 2(12) is given in terms of the 

relations 	*E and - F- - C-
orny 

-. This proof follows easily by mduction on the 

height of the proof trees for the relation - I- - -l' -. We omit the details of the 

proof from this presentation. 	 0 

The next stage in the compiler correctness proof is to establish the equivalence 

between Env and Comp. 

Proposition 2 The Relational Specifications Env and Comp are observationally 

equivalent, i.e., Env Comp. 	 0 
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Hereafter, we drop the superscript Fun from the signature 	whenever it does OBS 

not introduce ambiguities. The proof of Proposition 2 follows the structure of 

the proof of Proposition 3.3 that established the Observational Equivalence of 

Sub and SEnv. For this proof we must establish whether: 

çEnvj-, 	- 	Compj-, 
/'OBS SOBS iv' 	/OBS 

For this proof we define a pair of relations (G, H) and prove that this pair 

is an ROBS-Model Correspondence between MB0t/fo8s  and MComP/fOBS.  To 

simplify the presentation of the proof let ME denote ME1/1oBs,  MC denote 

ComP/f05, AE denote AEnh)/oBs,  and AC denote ACOmI/EOBS.  Clearly, the 

algebras AE and AC are total algebras. This fact will simplify the presentation 

of the following proofs. 

Definition 1 (The Relation G) Let us define a SOBS-sorted relation G such 

that each G. ç AE 5  x AC3 , s E 5OBs is defined as follows 

For s E {exp, env, var, nat}, G3  is the identity relation on AE 3  x AC 9 . 

Gfunval = {((E,id,e), [S,c]) : E __*E (CE,S) and (CE,id) Fe 	c} 

Gvai = 	+ G 0 	 . 

Definition 2 (The Relation H) The relation name - I- - = - is the only rela-

tion in 110BS•  Therefore, we define H__ as the smallest (with respect to set 

inclusion) such that: 

For all E E T(EOBS) env , e E T(EoBs) 2,,, and v E T(EoBs) O, then: 

((?/AE(E) AE 
	AE 	(pAC(E) AC 	AC 

	

i/' 	(e,'ç1(v)), 	env 	,'ezp(e),t1.' 	(v)val 'val' 	1 env 	' ezpV / 

For all (E, E) E Genv , (e, e) E 	and (v, v ' ) E G 01, 

	

if (E, e, v) E - F - 	
ME and (E, e, v') E - F - 	MC then: 

((E, e, v), (E, e, v')) E H_._ 	 11 
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We now have to prove Proposition 3, and the proof of Proposition 2 then follows 

from Theorem 3.1. 

Proposition 3 The pair (G, H) of Definitions 1 and 2 is an c105 -Model Corres- 

pondence between ME and MC, i.e., (G, H) : ME 4_*OBS  MC. 	 0 

The proof of this proposition is easier if we prove the following lemmas first. The 

first lemma relates the evaluation of variables in Env and Comp. The proof of 

this lemma is simpler than the proof of Lemma 2 and carried out in the same 

way. Therefore, we omit the proof of Lemma 1 from this presentation. 

Lemma 1 For all (E, E) E Genv, (id, id) E Gvar , S' E 	and c' E A code : 

If there exists v e AE 01  such that (E, id) __*L v 

then there exists v', v" E AC,,01 , CE E AC comp _env , C E A code 

such that E 	E (CE, v"), CE I- id 	c, 

ii ,,, 	iCAM 	, 	 , , (v • , , c©c )-. (v . S , c) and (v, v') E G 01 

and conversely 
	

I 

The next lemma relates the evaluation of arbitrary expressions in Env and Comp. 

The reader familiar with the proof of correctness given in [Des86] will notice that 

Lemma 2 is similar to the central correctness theorem of that proof. In this 

sense, our proof of correctness in this example is similar to the proof in [Des86]. 

However, one of the main advantages of using Model Correspondence is that this 

proof method is formally consistent with respect to Observational Equivalence. 

Lemma 2 For all (E, E) E G env , (e, e) E G,z p 7 S' E AC 3j0Ck , and c' E A code : 

If there exists v E AE,, 0, such that E I- e = v 

then there exists v', ii"  E AC aj , CE E AC comp _env , C E Acode 

suchthat E—'E(CE,v"), CEFeJ'c, 
ii r.l 	,CAM* , 	, 

(V .,,c©c)— (v .S,c), and (v,v')eG,., 

And conversely 
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Proof We prove 2(1) and 2(2) separately. 

2(1) This proof is by induction on the height of the proof tree for E I- e = 

in Env. 

Rule 3.2(2) In this case e = n, and the proof tree in Env is as follows: 

E I- fl 	AE 

In Comp we have the following proof trees: 

E 	E (CE, v") 	CE I- n 	' (quote(n)) 

and the following single CAM transition: 

If 	I 	 iCAM 	AC 	II (v .5,(quote(n,))©c) -+ (n •S,c) 

Therefore, n = AC and it is trivial to conclude that ( RAE AC) E Gvai. 

Rule 3.2(3) The proof of this case follows immediately from Lemma 1. 

Rule 3.2(4) The proof of this case is simpler than for the other cases and we 

omit it here. 

Rule 3.2(5) The proof of this case is similar to the case of rule 3.2(7). It is 

therefore omited. 

Rule 3.2(6) In this case e = Lu id . e', and the proof tree for this expression is 

as follows: 

E I- fri id. e' =. (E, id, e') 

In Comp the corresponding proof trees are as follows: 

PT 
(CE,id) I- e' -' c 

E 	E (CE, v") 	CE I- Lu id. e' 	' (cur(c)) 
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and we have the following single CAM transition: 

if 	I 	 I CAM 	ii 	 i I 
(v •S,(cur(c))©c) -p ([v ,c

]  •S,c) 

It follows from the definition of Gfrjnval that ((E, id, e'), [v", c]) E G 01. 

Rule 3.2(7) In this case e = e1 (e2 ). If there exists v and a proof tree for 

E I- e1 (e2 ) = v in Env this proof tree must be of the following form: 

PT1 	 PT2 	 PT3  
EHe1='(E',id,e') 	EF&v2 	idi-*v2 •E'E-e'=,v 

E I- e1 (e2 ) = v 

Therefore, in Comp we must have the following proof trees: 

PT 	

1

P742 
 

CEFe1 c1 	CEFe2 c2  

E I E (CE, '') 
	

CE I- e1 
( 
e2 )

Corn 
 (push) © c1  ©(swap) © c© (cons,app) 

and the following CAM transition sequence: 

(v" S', (push)©c1©(swap)©c2@(cons,app)@c')
CAM  

II 	II 	I 	 ICAM* 
(v v •S,c1 ©(swap)©c2©(cons,app)©c)—' 	 (1) 

(v. v" S 1 , (swap)©c2©(cons,app)©c') 

II 	I 	I 	 ICAM* 
(v . v1 . S , c2©(cons,app)©c 

)-~ 	
(2) 

I 	I 	I 	 ICAM 
(v2 . v1 . S , (cons,app©c) 

III II 	I 	, 	 , CAM 
(([v ,c],v2).S,(app)©c)—' 

	

III I 	I II 	I CAM 
((v ) v2).S,c ©c)-----4 	 (3) 

(vi' 5' )  c') 

And the existence of the above transition sequence is justified as follows. From the 

inductive hypothesis applied to PT1 , PT, and (1) we have ((E', id, e'),v) E 

III 	II 	 I 	 ',-, I 	III' 

	

I 	 II 

	

Therefore, v1  = [v , c I where E 	(E , V ) and (CE', id) I- e 	c 

From the inductive hypothesis applied to PT2 , PT, and (2) we obtain that 

(v2 ,v) e Gv a . Moreover, id u—' V2 E' 3  E ((CE', id), (v l", v)); thus we can 

apply the inductive hypothesis on PT3  and (3) and obtain that (v, v') E G 01. 

This finishes the proof of 2(1). 
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2(2) (Sketch): This proof is analogous to the proof of part 2(1), and follows 

by induction on the length of the CAM evaluation of the code sequence of the 

expressions. 

This finishes the proof of Lemma 2. 

Proof (of Proposition 3) We must prove that (G, H) obeys the requirements of 

Definitions 3.3(1) and 3.3(2). Since AE and AC give the same interpretation for 

each symbol in SOBS  the proof of Definition 3.3(1) is trivial. Therefore, we can 

assume that G : AE <EQBS AC. It remains to prove Definition 3.3(2). 

First, let us prove Definition 3.3(2.i) is satisfied. Any pair ((E, e, v), (E', e', v')) 

can only be in H__ because of either Definition 2(1) or Definition 2(2). Suppose 

it is because of Definition 2(1), then from Proposition 3.1 it follows that (E, E') e 

Genv , ( e, e') E and (v, v') E G vai. Suppose now that it is because of 

Definition 2(2). It is then clear that E = E', e = e', (E, E') e Genv , and 

(e, e') e and it follows from Lemma 2 that (v, v') E G vai. We then conclude 

that Definition 3.3(2.i) is satisfied 

Definition 3.3(2.ii) follows trivially from Definition 2(1). It remains to show 

that - F- - - is compatible with H__ in the sense of Definition 3.3(2). i.e., 

we must prove the following statement: 

whenever ((E, e, v), (E, e, v')) E H__ then: 

(E, e, v) E - I- - 	ME 	and only if (E, e, v') E - I- - 	MC  if 

The proof, similarly to that of Proposition 3.3 presented in Section 3.5, follows by 

analysing the possibilities of v and v'. We omit the details from this presentation. 

Therefore, we have proved that (G, H) satisfies Definitions 3.3(1) and 3.3(2), 

concluding that (G, H) : ME 	OsF.. MC. From Theorem 3.1 it follows that 

ME
-OBS 

MC and from Definition 3.4 we obtain that Env 	Comp. This 

finishes the proof of equivalence between Eriv and Comp. 	 0 
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Comment 

There is no representation relation from MC to ME because there is no ho- 

momorphism from a subset of AC0m  to AEnV  that will make the diagram of 
funval 	funval 

Figure 1 commute. For instance, the machine closure [( ), 31 is the result of 

the evaluation of the Fun expression fri id. 3 on the empty environment for all 

formal parameters id. Therefore, this is a practical example in which the use 

of Observational Equivalence is more general than the use of representation re-

lations in compiler correctness. Furthermore, it is possible to find examples in 

which there is no representation relation in either direction between two algebras, 

as demonstrated in [Sch87, page 2551. 

Let us now establish the equivalence between Comp and the Relational Spe-

cification Sub defined in Example 3.1. We will assume that the signatures of Sub 

and SEnv were modified to be directed signatures in the obvious way. Further-

more, let the relation =: exp -+ val be the initial relation of those signatures. 

The problem in establishing the equivalence between Sub and Comp is that Comp 

does not define the relation . This relation is the initial relation in Sub and 

belongs to its observation signature. A simple solution is to add the following 

rule to the set Comp 
 

EE I- e = v 
e =:> v 

This rule is the same as rule 3.2(1) and serves the purpose of defining the relation 

= in terms of the relation - I- - = -. Then we build a Relational Specification 

SComp = ( fZSC0mP oscomp ,Ascomp , fl) where çSComp  is equal to fZComP  except OBS 

that the initial relation is = instead of - F- - = -. The set of rules OscomP  

is Comp  with the above rule, and ASCOmP  is the same as AC0m.  Therefore, 

SComp E Spec( 
SFun
OBS). 

Let MSC denote MSC0m/Q7  where MSC0m  denotes the Declarative Se-

mantics of SComp. If SEnv is the specification of Example 3.2 we can state the 

following proposition. 
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Proposition 4 The Relational Specifications SComp and SEnv are observation-

ally equivalence, i.e, SComp SEnv. 

Proof (Sketch) Let G be the relation of Definition 1 and J be the relation 

obtained from H of Definition 2 as follows: 

((E, e, v), (E', e', v')) e H if and only if ((e, v), (e', v')) E J 

Now, in both SComp and SEnv the relation = is defined by the following rule: 

EE I- e = v 

e 	v 

Therefore, since (G, H) : ME 	i O F.. MC, it is easy to prove that (G, J) 

MSE —*çsn MSC. Therefore, we conclude that SComp SEnv. 	0 

Corollary 1 The Relational Specifications SComp and Sub are observationally 

equivalent, i.e, SComp Sub. 

Proof Immediate consequence of Propositions 3.2 and 4 and the transitivity of 

the relation . 	 0 

4.5 Summary and Conclusions 

In this chapter we defined a notion of compiler correctness by applying the results 

of Chapter 3. This notion was achieved by first characterising the process we call 

a Compilation, in which a program is evaluated in three stages: translation into 

machine code, execution of the code on the machine, and unloading of the results 

from the machine state. The criterion for compiler correctness defined in this 

chapter is based on Observational Equivalence, as defined in Chapter 3. This 

criterion is more general than the previous approaches to the compiler correctness 

problem. In this sense, we argue that the results of this chapter improve on 

previous work. 
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Furthermore, our approach does not suffer from the problems found in other 

approaches (e.g., in [TWW81,Des86,Sim9O]), where an encoding arrow € is used 

to replace the arrow 8 of Figure 1 (page 94). Using this approach compilers that 

we would intuitively regard as being incorrect can be proved correct by a suitable 

choice of an encoding arrow, as discussed in Section 4.1. 

Finally, we argue that the use of Model Correspondence in the proofs of 

compiler correctness is also an improvement on previous approaches. We believe 

that the structure introduced by Model Correspondence in the correctness proofs 

can be exploited to make our methods to scale up to practical examples. A 

possible investigation in this direction is to study the use of semi-automatic 

theorem provers in the proofs of correctness. Semi-automatic proof by induction 

- is being investigated, for instance, in the work of the DReaM group [Bun88, 

BvHHS91]. Since the bulk of the proofs of compiler correctness using the Model 

Correspondence are inductive proofs, we believe that such proofs are amenable to 

semi-automatic treatment by theorem provers. Moreover, in [HP921 Hannan and 

Pfenning showed a proof of correctness of a compiler, from a simple functional 

programming language to CAM, using the LF Logical Framework [HHP87]. This 

also reinforces our belief that such proofs can be semi-automated. 



Chapter 5 

Evaluation of Programs Based on 

Relational Semantics 

In this chapter we define program evaluation and a notion of evaluation step based 

on a Relational Specification. Although semantics-based program evaluation has 

been investigated as a problem on its own, our investigation is motivated and 

guided towards the definition of an evaluation step to be used in debuggers. The 

ability to evaluate a program through a step by step evaluation of its sub-programs 

is essential for debugging programs. Therefore, a notion of an evaluation step is 

the most basic and fundamental component in the specification of debuggers. 

We first define the Computational Semantics of a Relational Specification, 

by a (non-deterministic) procedure that searches for a satisfying substitution for 

arbitrary formulae in the specification. We then define program evaluation as the 

search for a satisfying substitution for a program formula. The Computational 

Semantics is a terminal transition system inspired by the stack-of-stack (SOS) 

operational semantics of logic programming defined in [And9l]. The transitions 

of this system provide an operational interpretation for the Relational Rules which 

complements the abstract interpretation given by the Declarative Semantics. 

The first technical result in this chapter is a proof of the soundness of the 

Computational Semantics with respect to the Declarative Semantics of Defini- 

119 
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tion 2.3. This result is important since it guarantees that the notions of program 

evaluation and evaluation step defined in this chapter are consistent with with 

respect to the declarative interpretation of a Relational Specification. 

Not all Relational Specifications have an operational interpretation that agrees 

with our intuition about the programming language, and we use some examples 

to illustrate this problem. We then define the class of Data-driven Relational 

Specifications with the objective of characterising the specifications that have an 

intuitive operational interpretation. The second major result of this chapter is 

the proof of the completeness of the Computational Semantics of a Data-driven 

Specification. 

Although we argue that the operational interpretation of a Data-driven Spe-

cification is intuitive, the transition of its Computational Semantics is non-

deterministic and therefore unsuitable for debugging. We then characterise a 

subclass of Data-driven Specifications which we call deterministic and prove the 

Computational Semantics of a Deterministic Specification is monogenic. Finally, 

we define a program evaluation step to be a transition of the this monogenic Com-

putational Semantics. The class of Deterministic Specification and this notion of 

an evaluation step will be used in Chapter 6 in the specification of debuggers. 

5.1 Introduction 

In this section we discuss other approaches to program evaluation based on the 

semantics of a programming language, and compare some aspects of those ap-

proaches to our own. Some authors have proposed program evaluation based on 

a denotational semantics of the programming language, for instance in the PSG 

system [BS861. However, we concentrate our presentation on the approaches that 

use a semantic formalism closer to Relational Semantics. 

CENTAUR [C1K89] is a system that, among other features, generates in- 

terpreters from Natural Semantics specifications of programming languages. The 
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semantic specifications are written in the meta-language TYPOL [Des88], which 

the system compiles into a Mu-PROLOG [Nai83b] program that may be ex-

ecuted. Running the TYPOL specification with a program as its input yields 

program evaluation. One difference between TYPOL and our approach is that 

there is no formal proof of the correctness of the compilation of TYPOL into 

Mu-PROLOG with respect to some underlying mathematical meaning of Nat-

ural Semantics. Furthermore, the definition of a notion of evaluation step is not 

taken into consideration in the CENTAUR approach to program evaluation. For 

this reason, certain characteristics of the evaluation of TYPOL programs, like 

backtracking and the use of control strategies of Mu-PROLOG [Nai83a,Nai85] 

make the definition of an intuitive notion of evaluation step very difficult. 

The Animator Generator [Ber9la] is a system that generates program animat-

ors from a Structural Operational Semantics of the programming language. Pro-

gram Animators may be used for several purposes, including debugging. Because 

of the similarity between Relational Semantics and the formalism used in the An-

imator Generator, one would imagine that it would not be difficult to use the 

Animator Generator's concept of "compilation step" in this thesis. However, an 

animation step is unnecessarily complex for our needs and this extra-complexity 

would make reasoning about debuggers more difficult. 

Moreover, in Berry's approach there is no definition of a concept similar to 

the Declarative Semantics. His definition of program evaluation is the meta-

semantics of the formalism used in the Animator Generator. Therefore, to use 

the notion of program evaluation of the Animator Generator in the framework 

of this thesis would not be as trivial as one first imagined. 

The parallel between Relational Specifications and Definite Clause Programs 

(DCP) that we made in Section 2.5 extends to the problem of program evaluation. 

The Computational Semantics of a Relational Specification is the counterpart of 

an operational semantics for DCP. The latter is usually defined by SLD-resolution 

or some of its variants; other authors have proposed the use of proof tree construc- 
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tion in the definition of the operational semantics of DCP [DF87]. Furthermore, 

the concept of a data-driven DCP defined in [DM85] is similar to the notion of 

directed relations introduced in Section 4.2. 

Therefore, it is not a complete surprise that some concepts defined in this 

chapter for a Relational Specification have been addressed in the context of DCP. 

Our approach differs from the logic programming approach in two major aspects. 

First, we formalise the use of term evaluation in a Relational Specification. Al-

though recently some authors have proposed a theoretical account of term evalu-

ation in logic programming [Boy9la,Boy9lb], this problem has often been left as 

an implementation issue. For instance, in PROLOG term evaluation is usually 

performed using the "IS" predicate [CM87]. 

The second and major aspect that distinguishes our approach from approaches 

related to logic programming is that our main objective is the definition of a 

notion of evaluation step based on the Computational Semantics. In this sense, 

SLD-resolution and proof tree construction do not provide a suitable notion of 

Computational Semantics since they yield definitions of an evaluation step that 

are difficult to reason about. 

We present a Computational Semantics based on the SOS semantics of [And9l] 

extended with term evaluation, and derive from this semantics a notion of evalu-

ation step that agrees with our intuition about the language. Furthermore, this 

definition of evaluation step is simpler to present and easier to reason about than 

the approaches based on proof tree construction or SLD-resolution. 

Finally, the concept of directed relations is essential to our definition of an 

evaluation step since it is used in the definition of a Data-driven Relational Spe-

cification. A more restricted form of directed relations was used in [Chi89] also 

with the objective of defining semantic based program evaluation. 
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5.2 Definitional Preliminaries 

As discussed before, this chapter defines a computational semantics for the Re-

lational specifications. This computational semantics computes substitutions for 

meta-variables in formulae using unification, e.g., Robinson's algorithm [Rob65]. 

In this section we present some definitions related to substitution and unification 

that will be used in the following sections. 

Let (S, F, H, ir) be a directed signature, 0 be a substitution as defined in 

Section 2.3 (page 43), and X be an S-sorted set of meta-variables. 

A substitution 0 is variable pure if ran 0 c X. If t E T(E) then 0 is a 

renaming for t if 0 is variable-pure and for each x E V(t), 0(x) 0 V(t). If 9 is a 

renaming for t then tO is the variant of t by 0. If t, t' e T() 8 , then t and t' 

unify if there exists a substitution 0 such that tO = t'O; in this case 0 is called the 

unifier for t and t'. A substitution 0 is called the most general unifier (m.g.u.) 

for t and t' if for each unifier 0' for t and t' there exists a substitution 9" such 

that 0' = 90". Hereafter we assume that Unify is an algorithm that takes two 

terms as arguments and returns their m.g.u. if the terms unify. 

The definitions in this chapter use the concept of simplification of terms by 

evaluation. For this definition, let A be a s-algebra and X be a S-sorted set 

of meta-variables, such that A. fl X3 = { }, for each s e S. Intuitively, a 

simplification of a term t E Tx(E) with respect to a s-algebra A is a term in 

t E T(x)(E) in which the evaluation function OA  is applied to all sub-terms of 

t (including t) that can be evaluated, leaving the sub-terms with meta-variables 

in X unaltered. 

Let A be a s-algebra. The simplification of a J-term is a S-sorted partial 

function x = {x}, such that x3 : T(x+A)(E) 8  -' T(x+A)() 3  is defined as follows: 

ift=a,andaEA 3 ,then 3 (t)=a. 

ift=x,andxEX5,then3(t)=x. 
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3. if t = o(t,. .. , t0 ), t e TA(E) 8 , and t E dom A  then X8(t) = 

4.ift=u(tl)  ... ,tfl),ci:sl x ... xsfl —s,andtTA (E) B ,thenX,(t)= 

x (t)). 

From the above definition, it is easy to conclude that whenever X = 11, x is the 

same as the evaluation function &. Simplification of E-terms extends naturally to 

simplification of a-formulae. We also use x to denote simplification of formulae. 

Hereafter we write X A  for x to emphasise its dependency on the J-algebra A. 

The following paragraphs introduce some standard concepts about transition 

systems. A transition system is a pair (F, -p) where F is the set of states and 

-pc F x F is the transition relation. For (st, st') E F x F, (st, st') E—' is written 

st -p st'. 

A terminal transition system is a triple (F, -*, T) where (F, -) is a transition 

system and T C F is a set of terminal states that satisfy: for each st e T and all 

st' e F, st 74 st'. We also use the term abstract machine to refer to a terminal 

transition system. 

We use -c to denote the transitive-reflexive closure of -p, and 	to denote 

the transitive closure. Let st E F; st succeeds in (F, -*, T) if and only if there 

exists a state st' E T such that st -* st'; st fails if and only if st does not succeed 

and there exists st' E F\T such that st —'s  st', and for all st" E F, st' 74 st"; st 

terminates if st either succeeds or fails; and st diverges if st neither succeeds nor 

fails. A transition system is monogenic if and only if for all st E F there exists 

at most one st' E F such that st -+ st'. 

5.3 Computational Semantics of Relational Spe-

cifications 

In this section we define the Computational Semantics of a Relational Specifica- 

tion. From a general perspective, this semantics defines an operational interpret- 
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ation of the Relational Specification which we may use to understand the pro-

gramming language in a concrete and evaluation-oriented way. In this sense, the 

Computational Semantics provides an interpretation of the Relational Specifica-

tion that complements the more abstract interpretation given by the Declarative 

Semantics defined in Chapter 2. 

These two interpretations have different applications. On the one hand, it 

is simpler to understand a Relational Specification of a programming language 

by referring to its operational interpretation, as defined by the Computational 

Semantics. On the other hand, it is easier to formally reason about the Relational 

Specification by referring to its Declarative Semantics. 

From the perspective of this thesis in particular, the Computational Semantics 

is used in the definition of program evaluation and a notion of an evaluation step 

based on a Relational Specification. Therefore, the Computational Semantics is 

a fundamental component of the formal specification of debuggers, discussed in 

Chapter 6. 

The definition of a notion of evaluation step is the main motivation for the 

definition of the Computational Semantics in this thesis. For this reason, the 

Computational Semantics is defined as a transition system whose transition re-

lation is then interpreted as the steps of the program evaluation. This transition 

system is inspired by the SOS semantics of logic programming defined in [And9l]. 

There exist other possibilities for a Computational Semantics different from 

the SOS semantics, for instance proof tree construction [DF87] or some variant 

of SLD-resolution [L1o87]. A particular definition of proof tree construction is 

used in the Animator Generator for evaluation of programs based on Structural 

Operational Semantics [Ber9la]. However, when compared to different notions of 

evaluation step based on those approaches, the notion of evaluation step defined 

in this chapter is simpler to define, more natural to understand, and easier to 

reason about. 

Let S = (1,q5,A,QoBs ) be a Relational specification where f2 = (5, F) 



Chapter 5. Evaluation of Programs Based on Relational Semantics 	126 

and X be an S-sorted set of meta-variables, such that X 5  fl A5 = { } for each 

S E S. 

The basic objects of the Computational Semantics of the Relational Specific-

ation S are goal stacks and evaluation states. A goal stack is a sequence of 

formulae in F(cl), and the empty goal stack is denoted by e. We use a with 

indexes to stand for an arbitrary goal stack, and write the concatenation of goal 

stacks a 1  and a2  as ( a2 . 1ff E F(cl), we write I to stand for the goal stack 

(f), such that a 1  (1) a2  is written a 1  f a2 . The context and the convention 

on the names used to denote formulae and goal stacks will be enough to resolve 

ambiguities. 

An evaluation state (or simply a state) is either the constant [] (the failure 

state), or a term [0 a], where a is a goal stack, and 0 is a substitution of 

terms in T(x+A)(>) for meta-variables in X. Notice that a term in T(x+A)() has 

sub-terms from the carriers of the E-algebra A. 

Informally, the Computational Semantics of S is a non-deterministic terminal 

transition system whose states contain the a-formulae for which we are trying 

to find a satisfying substitution. At each state of this system one formula in the 

goal stack is selected. If there exists a rule in 0 whose conclusion unifies with 

this selected goal, then in the following state the selected goal is replaced by the 

premisses of the rule, which become new goals. The substitutions resulting from 

the unifications at each transition are kept in the state. If a successful state is 

reached, i.e., a state with an empty goal stack, the substitution in this state is a 

satisfying substitution for each formulae in the goal stack of predecessor states. 

Moreover, if [0 : f] is the initial state for some 1-formula f, and [0 : e] is 

a state after various transitions of the Computational Semantics, then 9 is a 

satisfying substitution for f. 

Definition 1 (Computational Semantics) The Computational Semantics of 

a Relational Specification S = (1k, q5,  A, lOBS)  is a terminal transition system 

CS = (['ce, , Tcs), where rcs  is the set of evaluation states whose formulae are 
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in Fx(fZ), Ecs  is the set of (terminal) states of the form [0 : Ej, and 	is the 

transition relation defined by the following rewrite rules: 

Goal Expansion 

[0 :ci .f. a2]J [00':c 1 .f1 .....fa2 J 

where: 

• ({f. . . , f,}, ce), n > 0, is a variant of a (non-deterministically chosen) 

rule 7Z E 4), such that no meta-variable in the rule appears on the left 

of the Cs  arrow. 

. 

• 10 E dom A 
x and 0'  = Unzfy(x

A 
 (10 ), ce), 

Failure 

[0:a1 .f.a2I2 [1 

whenever Goal Expansion does not apply. 

. 

In the definition of the transition relation , the state on the left of the arrow is 

called the current state. At the current state, the formula f is the selected goal 

and 7Z E 4) is the selected rule. The Relational Rule ({f,. . . , f,}, ce) is a suitable 

variant of R that does not contain any meta-variables already appearing in the 

current state. 

The renaming of meta-vanables is (deterministically) achieved by subscribing 

the meta-variables of 1?. with a counter (initially 0) which indicates the num-

ber of transitions from an initial state to the current state at which 7Z is the 

selected rule. This process of renaming the meta-variable is known in the liter-

ature as standardising the meta-variables apart [L1o87, page 411. Definition 6.2 

in Chapter 6 and the results in Chapter 7 depend on a deterministic choice for 

the fresh meta-variables. 
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Some points in the above definition need clarification. In contrast to the 

SOS semantics of [And9l], there is no backtrack stack in the states of the above 

transition system; instead, the rules are non-deterministically chosen. Therefore, 

only one rule is selected at each transition of CS. Another possibility would be to 

use the idea of a backtrack stack, i.e., a sequence of evaluation states, and change 

the transition relation R to be a relation between backtrack stacks. With this 

alteration, at each transition of the new R every rule in 4 whose conclusion 

unifies with the selected goal is selected, and an evaluation state is added to 

the current backtrack stack for each selected rule. Therefore, each possibility 

for the search is "tried in parallel". However, for the Relational Specifications 

that are suitable for debugging, both alternatives to define the Computational 

Semantics are equivalent. We therefore preferred the version without backtrack 

stack because it is simpler to present and easier to reason about. 

In the Goal Expansion rule, the simplification function X A  is used to evaluate 

as many sub-terms of fO as possible. The objective is to mimic the use of term 

evaluation in the derivation of the Declarative Semantics of a Relational Specific-

ation in Section 2.4 (page 52). Intuitively, the use of simplification makes terms 

like 5 and plus(3, 2) unify. 

The use of an explicit failure state in the transition system is unusual. However, 

when debugging a program, using the Computational Semantics for its evalu-

ation, we do want to know that a failure state is reached and also to be able to 

syntactically recognise this state. This necessity for the failure state shall become 

clearer when we treat the specification of debuggers in Chapter 6. 

The concepts and terminology defined in Section 5.2 for an arbitrary terminal 

transition system also apply to the CS system; thus, a state st E I' succeeds in 

CS if and only if st W [0 : s]; st fails if and only if st does not succeed and 

st W []; and st diverges if it neither succeeds nor fails. We say that a formula 

f E Fx() succeeds (fails, diverges) in CS if the initial state [0 : f] succeeds 

(fails, diverges); in an initial state [0 : f] the formula f is called the query. If a 
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formula f succeeds in CS the finite transition sequence: 

[0 : f][00 : al l 	. . . 	[0o01 . . . 	: 

is called a CS-sequence of f with length n; the composition of substitutions 

9001 . . . 0, with domain restricted to the variables of f is called an answer for 

fin CS. 

Hereafter, CS stands for the Computational Semantics of an arbitrary Rela-

tional Specification. Whenever we want to refer to the Computational Semantics 

of a particular Relational Specification S we write CSS .  

We shall prove the Computational Semantics of S is sound with respect to 

the Declarative Semantics of S. This means that if an answer 0 is found for 

f in CS then all ground instantiations of f0 are satisfiable in the Declarative 

Semantics of S. The following lemma relates simplification and evaluation of 

terms. Intuitively, it states that simplification followed by a substitution and an 

evaluation is the same as the evaluation of the instantiated term. The lemma is 

used in the proof of the Soundness Theorem. 

Lemma 1 For all terms t E T(x+A)() 5  and substitutions 0 and 0', the following 

holds: 

xA(to)oI E dom ,A  if and only if tOO' E dom /L 

and if both sides of this equivalence are true then A (xA  (tO)0) = 'A  (tOO). 

Proof (Sketch) This follows by simple structural induction on t. 0 

Lemma 1 generalises trivially to the evaluation of formulae using 1P. Now we 

are ready to prove the first main result about the Computational Semantics: 

its soundness with respect to the Declarative Semantics defined in Section 2.4 

(Definition 2.3). 
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Theorem 1 (Soundness of the Computational Semantics) 

Let (12, 0, A, goBs)  be a Relational Specification and CS be its Computational 

Semantics. For all f E F(1), and ii E II: 

if there exists a CS-sequence of f of the form [O : f] * [9 : e] then for all ground 

instantiation 0 of fO, if f Oj E dom WA  then 	(f9) 

Proof This proof consists of building a i-tree for j,A(fg)  using the CS-

sequence of f. The proof is by induction on the length of the CS-sequence. As it 

is often the case in proofs by induction, we shall prove a stronger proposition of 

which the desired theorem is a trivial corollary. 

For all f E Fx(1l),., goal stacks a 1  and a2 , and substitution 9: 

* 
if there exists a transition sequence of the form [0 : a1  f a2 ] 	 [0' : E] then for 

all ground instantiation 0 of f 0', if fO'O E dom WA  then WA(fOFO) E 

Base Case For a single transition of the form: 

[0 : a1  f a2]9 [90 : El 

a1  and a2  are empty and (11, ce) is a variant of the selected rule in the trans-

ition such that 0' = Unify ( X A(f 9), ce). Therefore, every ground instantiation 

of ceO' is a ground instantiation of (x(f0))0',  such that ceOT = x'(f0)01 . 

If xA(f0)0 E dom WA  then from Lemma 1 we have f 00'# E dom WA  and 

W A (X A (fO)O bO) = WA(fOObO) thus 111A(  0'O) = WA(fGOf) and 

WA(ceOFO) 

is a i-tree of W'(fO0'0). Therefore, from Proposition 2.3 WA(f  00) E RA  which 

proves the base case. 

Inductive Step For a transition sequence of length rn> 1 of the form: 

CS rn—i 
[0 : a1  -f a2][001  : a1 	... f . a2](=) 	[0 : El 
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such that ({f, . . . ,f}, ce), n > 0, is a variant of the selected rule in the first 

transition. By the inductive hypothesis for every ground instantiation 0 of f 0", 

for i E [n], ,A(fgII) 
 E 

A therefore there is a i-tree T 1  with root 

for each i E [n]. Moreover, 01 = Unify (xA(f 8), ce). 

Therefore, every ground instantiation 0 of ceO" is a ground instantiation 

of xA(fO)O4,  such that ceO"# = xA(f8)8u. If x'(f8)8" e dom TA then 

from Lemma 1 we have that IFA(xA(fO)OhbO) = A(f00II) thus 'l'(ceO" ) = 

A 
 (1 OO") and 

T1 ...T 
4JA(ce0II0) 

isa1'' -tree for 'I' A (1  8911 O); thus 1p A(fg0II) 

This finishes the proof of the stronger proposition. For 8 = 00  and a 1  and a2  

equal to E this proposition is exactly the Soundness theorem. 	 0 

In the rest of this section we shall discuss the completeness of the Compu-

tational Semantics of S with respect to its Declarative Semantics. Informally, 

completeness means that if there exists a substitution 0 for a formula f such that 

fO belongs to the Declarative Semantics, then f succeeds in CS with answer 0. 

This notion of Completeness is often used as the completeness of SLD-resolution, 

e.g., in [L1o87]. 

Because of the use of term evaluation in the Declarative Semantics, the 

Computational Semantics is not complete in general. To illustrate this prob-

lem, let us consider the Relational Rule 2.1(2) of the Relational Specification 

Exp = (ç EZP EZP AEXP) in Example 2.1 (page 48): 

e1 	n1 	e2 	n2  
2.1(2) 

e1 + e2 	plus(n1 , n2) 

The derivation of the inductive system from the Relational Inductive Definition 

OE.p  using AE  is achieved by first obtaining all possible ground instantiations of 

each rule in 4EZJ,,  and then applying the evaluation of terms to the instantiated 
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rules to obtain the rules of the inductive system. Let us denote this inductive 

system by q5 
Erp 

 . For instance, the following rule is a ground instance of the 

Relational Rule 2.1(2): 

num(1) 	1 	nuni(2) 	2 

num(1)+num(2) =s plus(l,2) 

Applying term evaluation to the above rule we obtain: 

num(1) 's 1 	num(2) 	2 

num(1) + nuin(2) ='s  3 
(**) 

where the term plus(l, 2) is evaluated to 3 and the other terms are evaluated to 

themselves because of their term interpretation in AEZI.  The rule (*) does not 

belong to 0 AEZP
whereas the rule (**) does. Therefore, num(1)+num(2) =' 3 is Ezp 

obviously valid in Exp because it belongs to the inductively defined set 

However, the Computational Semantics CS E"P  fails to find a satisfying substi 

tution for this formula (in this case the identity substitution) because the term 

3 in the formula does not unify with the term plus(v 1 , v2 ) in the conclusion of 

the Relational Rule 2.1(2). In this sense, CSE  is not complete with respect to 

Declarative Semantics of Exp. 

There are various solutions for this incompleteness problem in logic program-

ming. For instance, it is possible to use strategies in the Computational Se-

mantics to delay the unification until all meta-variables in terms like plus(v 1 , v2 ) 

are instantiated. Some of these strategies are discussed in [Nai83a,Nai85]. Al-

ternatively, we can use other search strategies to define CS, for instance, S-SLD-

resolution [Boy9lb]. These general solutions are not suitable in the context of 

this thesis because they would make the notion of evaluation step more difficult 

to define and reason about. 

The objective of the aforementioned solutions is to improve the completeness 

of the resulting Computational Semantics for an arbitrary Relational Specific-

ation. However, as we will demonstrate in the next section, some Relational 

Specifications are not suitable as the basis for the specification of debuggers. 
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Therefore, such Relational Specifications are excluded from the definition of an 

evaluation step and from the investigations of Chapters 6 and 7. 

Since our main goal in this chapter is to achieve a definition of an evaluation 

step, we can approach the incompleteness problem from another direction. We 

first characterise the subset of Relational Specifications that will be used to define 

an evaluation step. Then, we establish the completeness of the Computational 

Semantics of specifications in this subset. 

Our approach departs from the logic programming approach in the sense that 

we do not improve the completeness of the CS system, but characterise the class 

of Relational Specification for which CS is complete. This is sufficient for our 

objectives since this class contains the Relational Specifications we are interested 

in as the basis for the specification of debuggers. 

In our approach, an (indirect) solution to the incompleteness of the CSE2 

system is to replace rule 2.1(2) by the following rule: 

e1 	v1 	e2 	v2 	nuin(plus(v1 , v2 )) 
=±s  v 	2 1(2Y 1 

Intuitively, this rule is semantically equivalent to rule 2.1(2) and Exp using this 

rule fits in the class of specifications that are suitable as the basis of specifications 

of debuggers. We conjecture that Exp with this new rule is complete under the 

condition that, after a goal expansion using this rule, the premisses e1 = v1  and 

e2  =s  v2  are selected before num(plus(v 1 , v2 )) v. 

The reason for requiring the two leftmost premisses to be selected before the 

rightmost one is to guarantee that when the the rightmost premiss is selected 

in a state of CS E"P the instance of the term plus(v 1 , v2 ) at this state is ground; 

thus, its simplification yields a nat number, and the premiss unifies with the 

conclusion of the Relational Rule 2.1(1) that defines constant expressions. A 

term of the form plus(v 1 , t) does not unify with the conclusion of that rule. 

The generalisation of this discussion is studied in the next section. 
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5.4 Program Evaluation and Evaluation Step 

In this section we define the notion of evaluation step that will be used in the 

specification of debuggers in Chapter 6. It was mentioned above that the Com-

putational Semantics gives an operational interpretation for the Relational Spe-

cifications. For this interpretation to be suitable in a debugger it must agree with 

our intuition about the programming language, as discussed in Chapter 1. 

Initially, we describe what we think is a natural and intuitive operational in-

terpretation of a Relational Specification. Not all Relational Specifications have 

such an intuitive operational interpretation, and we use some examples to illus-

trate this problem. We then characterise a Data-driven Relational Specification 

with the objective of obtaining a class of specifications that has an intuitive 

operational interpretation, and prove the completeness of the Computational Se-

mantics of an arbitrary specification in this class. 

Although we argue the operational interpretation given by the Computational 

Semantics of a Data-driven Specification is intuitive, the transitions of this Com-

putational Semantics are non-deterministic, and therefore unsuitable for debug-

ging. We then characterise a subclass of Data-driven Specifications which we call 

deterministic and prove the Computational Semantics of a Deterministic Spe-

cification is monogenic. Finally, we define a program evaluation step to be a 

transition of the this monogenic Computational Semantics. 

The diagram in Figure 1 shows the inclusions of the subclasses of Relational 

Specifications we define in this section. 

Let us now describe an operational interpretation for Relational Rules which 

we consider intuitive. To ifiustrate this notion we use the rule for sum expressions 

defined in the previous section: 

e1 	v1 	e2  =s V2 	num(plus(v1 , v2)) =S  V 	 2 1(2)' 
e1 +e2 = 5 v 

An operational interpretation of the above rule says that the evaluation of an 

expression e1  + e2  is composed of the steps of the evaluation of e1 , plus the steps 
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Relational Specification 

Data-driven Specification 

Deterministic Specification 

Figure 1: Inclusions of Classes of Relational Specifications 

of the evaluation of e2  (not necessarily in this order), plus the step necessary 

to perform the sum operation. Let us now consider, as another example, the 

rule 2.1(3) in Exp: 

e1 = v1 	(v1)  id, e2 ) 	e 	e 	
2.1(3) 

let id = e1  in e2 	V2 

The operational interpretation of this rule is as follows: the evaluation of the 

expression let id = e1  in e2  is composed of the steps of the evaluation of e1  

into v1 , followed by the steps of the substitution of the value v1  for every free 

occurrence of id in e2  resulting in an expression e, followed by the steps of the 

evaluation of e into the result v2 , which is the result of the original expression. 

In the interpretation of the rule 2.1(3) there is an implicit order on the eval-

nation; for instance, we evaluate e1  before making the substitution of v1  for id 

in e2 . This ordering is derived from an input/output dependency among the 

premisses. For instance, the input of premiss (v 1 , id, e2) —'s  e depends on the 

output v1  of the premiss e1 = v1 . However, in the interpretation of rule 2.1(2)' 

there is no such an ordering, since the premiss are independent. This suggests 

we use a partial order on the premisses in our operational interpretation of the 

rules. 

The definition of Relational Specifications (Definition 2) allows inference rules 
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which do not have the operational interpretation discussed above. For instance, 

the two rules below do not have the above operational interpretation. 

id i-* T I . TE F- e : 

TEI- fnid. e:r'—'r 

num(n1 ) = s n2 	nuin(n2 ) =ts  ni  

nuin(n1 ) = nuin(n2 ) 

The first rule defines type inference for functional abstractions. If we try to in-

terpret this rule as we did above for rules 2.1(2) and 2.1(3) we have problems in 

"guessing" the value of the input meta-variable T 1  in the premiss. The second 

rule defines equality between two nat numbers using the rules that define the 

relation in Example 2.1. The operational interpretation of this rule is prob-

lematic because there is no intuitive criterion for choosing a premiss to start the 

evaluation. 

It may be possible to give another operational interpretation for the above 

rules. However, this would make the notion of an evaluation step more difficult to 

reason about, e.g., in the proof of debugger correctness in Chapter 7. Therefore, 

we prefer to keep our basic framework simpler and suggest the investigation of 

an alternative operational interpretation to account for the above rules as an 

extension to this framework. 

The definitions below characterise a Data-driven Relational Specification (or 

simply a Data-driven Specification). The main characteristic of such a specific-

ation is that the premisses of Data-driven Relational Rules are ordered by a 

partial order that reflects a dependency of the inputs of a premiss on the outputs 

of other premisses, as illustrated above. The motivation for this definition is to 

characterise the Relational Specification which have the operational interpreta-

tion discussed in the above examples. 

The definition of a Data-driven Specification begins with the definition of 

structural terms and structural formulae. Intuitively, the evaluation of a struc-

tural term does not change its syntactical structure, hence the name structural. 
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This property is essential in the proof of completeness of the Computational 

Semantics of a Data-drive Specification. 

A term t E Tx(>) 5  is structural with respect to a J-a1gebra A if and only if 

either t E X8 , i.e., tis a meta-variable, or t = cr(t1 ,.. ., t,), or has the term algebra 

interpretation in A, and each t1 , for i E [+], is a structural term. A formula 

ir(t, tm , ) E F(ci),1. is structural if and only if each term in tn,, is structural. 

A structural program formula is a structural formula whose inputs are ground 

terms. Hereafter, P(cl) denotes the set of structural program formulae over ci 

with meta-variables in X, unless indicated otherwise. For instance, the formula 

n1lim(1)+num(2) = p1us(v, v2 ) is not a structural formula, whereas num(1)+ 

num(2) ='s  v is structural. 

Now, we define a (formulae) dependency relation on the set Fx(ci). Intuitively, 

a formula f depends on another formula f' if there are meta-variables in the 

input terms of f that also occurs in some output term of f'. Let  f = ir(t, t) 

and f' = ir'(t, t) be formulae in Fx(1l). The predecessor relation - on F(Q) 

is defined as follows: f -< f' (read as f is a predecessor of f') if and only if 

V(t1) fl V(t,j :A { }. The formula dependency relation on F(Q) is taken to 

be the transitive and reflexive closure of —<. 

Definition 2 (Data-driven Specification) A Relational Rule (Pre, ce) with 

formulae in F(cl), and ce = ir(t, is Data-driven if all conditions below 

hold: 

The relation —< is anti-symmetric in Pre, i.e., the relation -< is a partial 

order in Pre. 

Each f E Pre is a structural formula. 

For each ir'(t, ta,) E Pre, for all x E V(t) either x e V(t), or s E V(t1) 

for some ir"(t, tb , ) e Pre\{ir'(t, t)}. 

The conclusion ce is structural, and furthermore every term in t, is struc- 

tural. 
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5. For ce as above and for all x E V(t1), either x E V(t) or x E V(t.1) for 

some ir'(t, t) E Pre. 

A Relational Specification (s), 0, A, goBs)  is Data-driven if every Relational Rule 

in 0 is Data-driven 	 D 

Definition 2(2) rules out premisses of the form e = plus(n1, n2 ). An interpret-

ation of this premiss, in a context in which n1  and n2  are not instantiated, would 

be as follows: if e evaluates to some number n then find two numbers n1  and n2  

such that ri = plus(n1 , n2 ). This is clearly undesirable from an operational point 

of view because it involves reversing the evaluation of a sum operation into the 

values of its operands. Definition 2(4) guarantees that term evaluation does not 

change the syntactical structure of the conclusion of the Data-driven rules. The 

motivations are the same as for Definition 2(2), here applied also to the inputs of 

the conclusion. Similar restrictions on the form of Natural Semantics rules were 

defined in [AFZ88,AC90] to allow evaluation of TYPOL programs without using 

unification. 

The motivation for the restrictions introduced by items 2(1), 2(3), and 2(5) 

is that they allow a formalisation of an operational interpretation of the rules 

that agrees with the informal interpretation presented at the beginning of this 

section. This operational interpretation defines a flow of evaluation that goes 

from the inputs of the conclusion of a rule, through the premisses (in any total 

order consistent with the relation ), to the outputs of the conclusion. This 

interpretation was informally introduced by Berry in [Ber9la, page 481, and is 

formalised in our framework in Theorem 2. 

We now formalise a notion of program evaluation. 

Definition 3 (Program Evaluation) Let S=(ci, , A, loBs)  be a Data-driven 

Specification and P(Q) be the set of structural program formulae over 92. Pro-

gram evaluation is the search for a satisfying substitution for a query p E 

using CS8 . 	 11 
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We now define the concepts of goal choice and expansion order for premisses 

in the context of the CS system. A goal choice in the CS system is a (total) 

function whose input is a goal stack and the output is a formulae called the 

selected goal. In logic programming, the term "computation rule" is often used 

for the term "goal choice", e.g., in [L1o87, pages 50,60]. An expansion order is a 

total order on the set of premisses of a Data-driven Rule that defines the order in 

which the premisses are added on the goal stack. In the definition of CS the goal 

choice is non-deterministic; thus, the particular expansion order is not relevant. 

However, the next definitions and theorems depend on the particular goal choice 

and expansion order defined below. 

The Standard Goal Choice is the goal choice that always chooses the left most 

element of the goal stack. Any expansion rule that is consistent with the partial 

order is called a s-expansion. The CS system of a Data-driven Specification 

that uses Standard Goal Choice and s-expansion is complete with respect to the 

Declarative Semantics of the Data-driven Specification. 

We now prove two important theorems: the first formalises an operational in-

terpretation for Data-driven Specifications; the second proves the aforementioned 

completeness result. Informally, the first theorem states that in a CS system of 

• Data-driven Specification that uses standard goal choice and s-expansion, if 

• program formula p has a CS-sequence with answer 0 then the instantiation of 

the outputs of p by 0 are ground terms. 

Theorem 2 (Operational Interpretation) 

Let (Q, 0 , A, goBs)  be a Data-driven Relational Specification and CS be its Com-

putational Semantics that uses Standard Goal Choice and s-expansion. For all 

p E Px( 1), if there exists a CS-sequence for p of the form [0 : p]°J[0 : e] then 

p0 E P(1), i.e., 0 is a ground instantiation for p. 

Proof This proof is by induction on the length of the CS-sequence of p. 

Base Case For a single transition, the selected rule is of the form (11, ce). All 

terms in the inputs of p are ground by the definition of P().  Therefore, every 
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term in ceO is ground because 0 = Unify(X A (pOo ), ce) and every meta-variable of 

the output of ce must occur in the input of Ce. Therefore, ceO E P(f), and since 

ceO = p0 then p0 E P(1). 

Inductive Step For a transition sequence of length m> 1 the rule selected 

in the first transition must be of the form ({f1,. . . , f,j, ce) such that: 

[Oof] R [OoOi : 11 ... . Al 

where fr,...  , fn  is in a total order consistent with . Now we prove by induction 

on n > 1 that if [OO : f •.. 
f0]*[9 : 

&] then j0 E P(f) for i E [nt]. We call 

this induction the inner induction. 

From the definition of Data-driven Rules, every meta-variable of the inputs 

of 11  must occur also in the inputs of Ce; thus, 11 0001  E Now, we apply 

the outer inductive hypothesis on the state [0 : f01 and obtain the following 

transition: 

[0 : f101] 	[0002  : c] 

and f1 01 02  e P(Q). The substitution 01 agrees with 02 on the meta-variables of 

fi in the following sense: for all x E V(f1), either 01 (x) = x or 01 (x) = 02 (x). 

Therefore, 

f11*[000102 : E] 

is also a transition sequence in CS. Therefore, we can assemble the following 

sequence: 

[oO : Ii •... f]C=r[000102 : f2 ... f] 

which, together with the fact that 11 01 02  E P(1), proves the base case for the 

inner induction. From the definition of Data-driven Rules, every meta-variable 

of the inputs of 12  must occur also either in the inputs of ce or in the outputs of 

11; thus, 1201 02  E P(l). Therefore, we can apply the inner inductive hypothesis 

and obtain: 

[001 02  : 12 ... 
fJC[9 

: 1-1 



Chapter 5. Evaluation of Programs Based on Relational Semantics 	141 

Therefore, fO € P(1), for every i E E+]• Each meta-variable of the ce occurs 

either in the inputs of Ce, in which case the instantiation by 9 is ground because 

of the unification with p, or else it occurs in the output of some premiss, and 

in this case its instantiation by 0 is ground by the proof of the inner induction. 

Therefore, ceO E P(Q) and p0 E P(1l). 

The next theorem states the completeness of the Computation Semantics 

of a Data-driven Specification. This theorem uses the concept of a structural 

substitution. A substitution 0 is structural if and only if every term in ran 0 is 

structural. Informally, the Completeness Theorem states that if there is ground 

structural substitution 0 which is a satisfying substitution for p E Px(fl) then 

CS finds a satisfying substitution 0 for p such that I(p) = l(p0). 

In the following proposition we show that a completeness theorem stated in 

terms of an arbitrary ground substitution for p is no more general than The-

orem 3 which is stated in terms of a ground structural substitution. The propos-

ition states that any ground substitution can be replaced by a ground structural 

substitution in the context of an evaluation function. 

Proposition 1 If # is a ground substitution for t e T() and t# E dom pA  

then there exists a ground structural substitution ' for t such that t' e dom A  

and 1,A (t) = 

Proof (Sketch) Let ir be the same as a except that for all x E dom /V(t), 

(x) = bA((x)). Notice that (x) E dom 1pA  otherwise &0 V dom 	Since all 

non-structural terms in ran /V( t) were replaced by the result of their evaluation, 

' is structural on ran /V(t). Furthermore, it is clear l,A(t) = ,A(tI) 	EJ 

The proof of Theorem 3 uses the following lemmas about the evaluation of struc-

tural terms and structural formulae, which are stated without proof. The first 

lemma is a trivial consequence of the fact that each function symbol in a struc-

tural term has the term algebra interpretation in A. 
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Lemma 2 For all ground structural terms ' E T() 8 , 

iftEdomJP'then(t)=t. 	 0 

Using Lemma 2, it is trivial to prove the following lemma about simplification of 

structural terms. 

Lemma 3 For all structural term t E Tx(E) 5  and ground structural substitution 

i 
- - 	A 	A — 	A - 
Ol tOE domX then (tO)= (t)O. 	 0 

Using the fact that X A  is the same as 0 A  for ground terms and generalising the 

above lemmas to program formulae, we obtain the following lemma. 

Lemma 4 For all structural program formulae p E P(cz) and ground structural 

substitution 0, if p0 E dorn W then WA(p ) = xA (p). 	 0 

We now state and prove the Completeness Theorem. 

Theorem 3 (Completeness of the Computational Semantics) 

Let (1k, 4, A,  goBs)  be a Data-driven Relational Specification and CS be its Com-

putational Semantics that uses Standard Goal Choice and s-expansion. For all 

p E P(1), if there exists a ground structural substitution 0 for p such that 

p0 E dom WA  and WA(p)  e irA then there exists a CS-sequence of p of the 

following form [O : p]J [0 : &] such that 'I' (pO) = 'I' (pO). 

Proof II p0 E dom WA  and WA(pO)  E irA then, from Proposition 2.3, there 

is a i-tree of WA(p)  whose root is an instance of the conclusion of a rule 

1?. = ({fi,. . . ,f,}, ce), n > 0, in 0, by a ground structural substitution such 

that: 
PT(WA(f1 f )) . . . PT(WA(fJ)) 

WA(ce) 

and because every Relational Rule in 0 is Data-driven, from Definition 2(4) every 

term in ce is structural. From Lemma 2, generalised to the evaluation of formulae, 
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it follows that WA( ce ) = ce'. The proof of Theorem 3 is by induction on the 

height of the Atree  and builds a CS-sequence for p using this q5Atree 

Base Case If the q5Atree  has height 1 the rule 7Z is of the form ({ }, ce) and 

-' 	A - 	 A - 	A - 	
0 
-

0  
1- 

i ceO = I' (p0). From Lemma 4, 'I' (p0) = x (p)0. Therefore, 	s a unifier for 

ce and xA(P).  Let 0 be the m.g.u. of ce and xA(P),  therefore the single transition 

[0 : p] R [0 : e] is a CS-sequence for p. 

It remains to prove that j,A(0) = A()• Since 0 is the m.g.u. of ce 

and x'(p) then there exists a substitution 0' such that = 00'; in particular, 

WA(pO) = A(o01). Since the meta-variable in ce are fresh V does not change 

A - 	- 	 - 
p and we can write iJi (p0'  0) = ''A  (pO); thus, W A  (p0) = '' A (p00i ), and since 

from Theorem 2 p0 is ground we have WA(pOOI) = j,A(0) Therefore, Jrk(p ) = 

WA(pO) finishing the proof of the base case. 

Inductive Step lithe i-tree has height h > 1, then the rule 1?. is of the 

-' 	- 	 - 
form 	. , f,j, ce), for n >  1, and ceO = 'I'A  (p0). From Lemma 4, A  (p0) = 

xA( p). Therefore, iri is a unifier for ce and xA( p). Let 01  be the m.g.u. of ce 

and xA(p),  and therefore the following transition is a transition in CS: 

[0 : 	: f ... In] 

Now, we prove by induction on n > 1 that: 

	

100 :f ... . fn I 	[00 . . . On : e] 

We call this induction the inner induction. For the base case of this proof, recall 

that the premisses of 1?. are added to the goal stack in a total order consistent 

with the relation. Since fl. is Data-driven all meta-variables in the inputs 

of Ii  appear in the inputs of Ce. Therefore, fj Oj  E P(1). The substitution 

01  agrees with Zr on the variables of f in the sense that for all x E V(f1),  either 

Oi (x) = x or 01 (x) = '(x). Therefore, fi01' = f' and the q5Atree  for fi0i) 

is PT(W 4 (f1 ')). Therefore, we can apply the inductive hypothesis of the outer 

induction to obtain the following transition sequence: 

	

[0 : f1011 	[02  : E] 
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which is a CS-sequence of f1 01 , with answer 02. Moreover, since 01 agrees with 

the substitution 02  on the variables of f1 then [00 : f1] 	[0001 02 : &] is also a 

transition sequence in CS. Therefore, we obtain the following transition sequence: 

[0 : p}[0001 : f1 
... 	

: f2 • -- f,j 

It follows from Theorem 2 that 11 0001 02  E P() and from the inductive hypothesis 

A 	 A 'I' (f000) = I' (f1 0); thus 02  agrees with 0 on the vanables of f. Therefore, 

because each meta-variable in the inputs of f2 also occurs either in the inputs of 

ce or in the outputs of f1 we have that 120001 02  E Therefore, we can apply 

the inner inductive hypothesis and obtain the following transition: 

[0001 02  : 12 . .. f]r[00 O1 ... 0 : 

By appending this sequence to the previous one we obtain: 

10 : p] 	[O0 . . . O : 6] 

It remains to show that TA(00 . . . 0,) = jA() First, notice that each 0, for 

i E [+], agrees with ir on the meta-variables of f; in particular they agree on 

those meta-variables of f that occur in Ce. The substitution 01  also agrees with 

on the meta-variables of the input terms of Ce. Because 7Z. is Data-driven, the 

meta-variables in the outputs of ce are either in the output of some f1 or in the 

inputs of Ce; thus 0001 . . . O agrees with ' on all meta-variables of Ce. Therefore, 

the following holds: 

Ce0001  . . . O = ceO 

since jjA (Ce l) = Ir&(p) then I1 A( ceOo0i  . . . 0,) = JA(p); because 01  is the 

m.g.u. of ce and xA(p)  we obtain I1A(Ce0o0l. ..  0,) = J(xA(p)0oo1  . . . 0,). Ap- 

plying Lemma 4 we have that IQA( ce0o0i  . . . 0,) = A(0001  . . 0) and therefore 

O) = 

This finishes the proof of the Completeness theorem. 	 11 
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The above theorem assures that the Computational Semantics of a Data-

driven Specification with Standard Goal Choice and s-expansion is complete for 

program evaluation. Together with Theorem 2, this completeness means that if a 

program formula ir(j, tm , ) has a CS-sequence with answer 0 then t 1,,9 is ground, 

i.e., t , 9 is the result of the evaluation of the program j. 

Let us now continue with the development of a notion of evaluation step. We 

argue that the operational interpretation given by the Computational Semantics 

of a Data-driven Specification is intuitive. Furthermore, it is sound and complete 

with respect to the Declarative Semantics and can be used as the underlying 

theory of a system for prototypmg of programming languages as the CENTAUR 

system or the Animator Generator. However, the transition of this Computa-

tional Semantics is non-deterministic in general, and therefore unsuitable to be 

used as the evaluation step in debugging. 

The theory of debugger specification developed in Chapter 6 only addresses 

debuggers for deterministic programming languages. Therefore, it is reasonable 

to restrict the possible Relational Specifications to a class in which only de-

terministic programming languages can be expressed. We then prove that the 

Computational Semantics of such a specification is monogenic; thus, this Com-

putational Semantics yields a deterministic notion of evaluation step which is 

suitable for debugging. 

Definition 4 (Deterministic Specification) 

A Data-driven Specification (1, 0 , A, 1oBs)  is deterministic if there is no pair of 

rules (Pre, ce) and (Pre', ce') in 4 such that, if ce = ir(t, t) and ce' = ir(t, t',), 

then t.1, and t' unify. 

The following theorem states that the Computational Semantics of a Determ-

inistic Relational Specification is monogenic. Therefore, this system has three 

desirable properties: it may be given a deterministic implementation; it yields 



Chapter 5. Evaluation of Programs Based on Relational Semantics 	146 

a deterministic and intuitive notion of evaluation step; and it is complete with 

respect to the Declarative Semantics of the specification. 

Theorem 4 (Monogenicity) 

Let (il, 0 , A, goBs)  be a Deterministic Relational Specification. The Computa-

tional Semantics of this specification that uses the Standard Goal Choice and 

s-expansion of goals is monogenic. 

Proof (Sketch) It is clearly monogenic because the standard goal choice and 

the -<-expansions are deterministic, and there is at most one rule in 0 that can 

be selected at each state of the Computational Semantics. 	 0 

To define the concept of an evaluation step we must solve one last problem. The 

above definitions and theorems were stated with respect to any -<-expansion, i.e., 

premisses are added to the goal stack on any total order consistent with -<. We 

argue that any choice for this total order will give an intuitive notion of step. 

However, in an application of the CS system, e.g., in the specification of a 

debugger, it is necessary to use one particular total order. Therefore, we have to 

make the choice of total order an explicit parameter of CS. Let <be a total order 

consistent with -<, we write CS<  to denote the CS system that uses Standard Goal 

Choice and add the premisses on the goal stack according to <. We write < 

for the transition relation of CS < . 

We are now ready to define an evaluation step based on a Relational Specific-

ation. 

Definition 5 (Evaluation Step) Let (1, qS, A, oBs)  be a Deterministic Rela-

tional Specification and < a total order on F(f) consistent with -<. An eval-

uation step of a program formula p € Px(IZ) is a transition of the CS<  system 

during the evaluation of p. 0 

Although the definition of an evaluation step is parametric on a definition of <, 

we will fix a particular total order to be used in subsequent examples. Since the 
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left-to-right order in which the premisses are written in the Relational Rules of 

all our examples is consistent with -<, we will use this order to add the premisses 

on the goal stack. In the rest of this thesis, we use the term standard to refer to 

a CS system with this total order and Standard Goal Choice. 

Let us now introduce a notational simplification. Since Standard Goal Choice 

treats the goal stack as a list of formula we will write goal stacks in the usual list 

notation using the "::" as the list constructor and e as the empty list. Therefore, 

in a goal stack f :: a, the formula f is the selected goal and a is the rest of the 

stack. 

Let us see how the transition relation of the standard CS behaves when corn-

pared to the intuitive notion of evaluation step discussed in the beginning of this 

section. For this, we consider a hypothetical evaluation of an expression e1  + e2  in 

CSE2, i.e., we consider the transitions of CSE  for a query e1  + e2  n. In the 

following examples we ignore the renaming of the meta-variables and elide some 

formulae from the goal stack to simplify the presentation. The initial transition 

of this evaluation uses rule 2.1(2)' (page 133), and is as follows: 

[Oo : e1  + e2 = n] 	: e1  =t s  n1  :: e 	:: num(plus(n1 , n2 )) =>s  v] 

The current state after this transition indicates that the evaluation of e1  + e2  starts 

with the evaluation of e1 . Using enough CS EI transitions until the evaluation of 

e1  is completed we obtain the following sequence: 

such that 00 . . . 02 (n1 ) is the result of the evaluation of e1 . The full evaluation 

of the expression is represented by the following transition sequence: 

[0001 02 03  : nuni(plus(n 1 , n2 )) => v]= [00 . . . 0 : eJ 

In this last state 00 . . . 0,(n) is the result of the evaluation of the expression 

e1  + e2  We can interpret this CS'-sequence by saying that the evaluation of 
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e1  + e2  is composed of the steps of the evaluation of e1 , followed by the steps of the 

evaluation of e2 , followed by the steps necessary to perform the sum operation. 

Given the choice of total order on the premisses discussed above, the opera-

tional interpretation of the above transitions agrees with the informal interpret-

ation discussed in the beginning of this section. 

The definition of an evaluation step in Definition 5, together with the defin-

ition of program evaluation in Definition 3, achieves the goals of this chapter. 

However, the class of Deterministic Relational Specifications excludes many Re-

lational Specifications of deterministic programming languages whose Computa-

tional Semantics also yield a natural notion of step. For instance, suppose that we 

add conditional expressions to the Exp language of Example 2.1 by the following 

grammar rule: 

exp ::= if exp then exp else exp 

Two natural Relational Rules to define the semantics of the conditional expres-

sions could be given by: 

e1  =s  true 	e2  =s  v 
(CO if e 1  then e2  else e3 = v 

e1  ==>s  false 	e3 	v 
(C2 ) 

if e 1  then e2  else e3  =:>s v 

These rules are not deterministic in the sense of Definition 4 since their conclu-

sions unify. However, there exists a natural operational interpretation for the 

above rules: the evaluation of a conditional expression if e1  then e2  else e3  

consists in first evaluating e1  and then checking its result; if it is true we use rule 

(C 1 ), and evaluate e2  to obtain the result of the conditional expression; other-

wise, we use rule (CO,  and evaluate e3  to obtain the result of the conditional. 

This operational interpretation does not fit in our previous discussions because 

it somehow suspends the choice between the rules until e1  is entirely evaluated 

Nevertheless, there is at most one CS'-sequence for each conditional ex- 

pression. The specification Exp extended with conditional expressions is still a 
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deterministic language, although we do not consider its Relational Specification 

as being deterministic. These facts suggest that we could search for an alternative 

set of Relational Rules with the following properties: it is semantically equivalent 

to the above set; it has the above operational interpretation; and is deterministic 

in the sense of Definition 4. The following rules have these properties: 

e1 	v" 	branch(v", e2 , e3 , v') 	
(Ci) 

if e 1  then e2  else e3 =s  v' 

e2 =s  v 

branch(true, e2 , e3 , v) 	 ( 

e3  =s  v 

branch(false, e2 , e3 , v) 	
(( 

where branch: val x exp x exp 4-* val is a fresh relation name. The operational 

interpretation of the evaluation of conditional expressions using these rules agrees 

with the interpretation we gave to the rules (C l ) and (C 2 ): the rules (Ci) is the 

only one that can be selected to start the evaluation of a conditional; then e1  is 

evaluated using this rule and its result is used to select between (C) and (C). 

Therefore, if we can define an automatic transformation from rules in the form 

of the first set into rules in the form of the second set we would achieve two results. 

First, we would prove that the use of non-deterministic rules like the first set of 

conditional rules does not add any expressiveness to the Relational Specifications. 

Second, that rules as the first set could be converted into Deterministic Rules 

with the same operational interpretation. 

The transformation illustrated above can be automatically performed. The 

first step towards the definition of this transformation is to characterise a class of 

semantics that contains the rules of the form of the first set of conditional rules. 

This is done in the following definition. 

Definition 6 (Dynamically-deterministic Specification) 

A Data-driven Specification (il, 0, A, c20) is Dynamically-deterministic if and 

only if for each pair of rules (Pre, ce) and (Pre', ce') in 0, such that ce = ir(t, t) 

and Ce' = 7r(t1 ,, t1 ,,), then either: 
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Relational Specification 

Data-driven Specification 

Dynamically-deterministic Specification 

Deterministic Specification 

Figure 2: (More) Inclusions of Classes of Relational Specifications 

• t, and t'1, do not unify, or 

• ce = ce', and there exits ir'(t,t , ) e Pre and E Pre', such that 

tu  = t', t, and t, do not unify, and i(ir(t,ti)) = 

where (f), for  f E Pre (respectively Pre'), denotes the premisses of Pre (respect- 

ively Pre') that are strictly smaller than I according to the (formulae) dependency 

relation (page 137). 	 0 

Figure 2 extends the diagram of Figure 1 with Dynamically-deterministic Spe-

cifications. We can relax the above definition by requiring ce and Ce'  to be 

a-convertible; the same for t and t, and each pair of corresponding formulae in 

(ir(t, t1)) and(ir(t, t,)). The more general definition is presented in [dS90]. 

However, this generalisation does not add any expressiveness and makes the 

definition more complex. Therefore, we favoured the simpler approach in this 

presentation. 

In any Dynamically-deterministic Specification, whenever two rules have con-

clusions whose inputs unify, then there exists an initial sequence (ordered by a 

total order consistent with ) of premisses in both rules equal, and there is a 

pair of premisses in each rule whose inputs are equal and whose outputs do not 
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unify. This pair of premisses is called a distinction pair. 

A distinction pair can be used to guide the transformation of the rules as 

described by the above example. In that case e1 =' true and e1  =>s  false is 

the distinction pair; this pair is factorised from the two original rules into the 

single rule (C). In [dS90] we presented an algorithm (called FAIR) that trans-

forms Dynamically-deterministic Specifications into Deterministic Specifications. 

FAIR performs the transformation that was described in the above example. We 

argue that the rules generated by factorisation have the intuitive operational 

interpretation that we discussed for the original set of conditional rules. 

Moreover, in Chapter 6 we will discuss mechanisms in which we can hide some 

evaluation steps in a debugger. Using such a mechanism we could hide the steps 

due to the evaluation of the branch premiss of rule (C'1), since this premiss does 

not occur in the original set of rules. Consequently, we can use a Dynamically-

deterministic Specification in the definition of some language, and then transform 

the specification into a Deterministic one for use in the specification of a debugger. 

Crucially, the transformed specification has the same meta-semantics and the 

same notion of evaluation step as the original. 

The class of dynamically-deterministic rules is fairly large. The semantic 

aspects of most sequential programming languages can be expressed in this class 

of specifications. In particular, the dynamic semantics of Standard ML [HMT89] 

can be expressed by a Dynamically-deterministic Specification. Therefore, the 

theory of debugger design addresses this (large) class of Relational Specifications. 

5.5 Summary and Conclusions 

In this chapter we defined an operational interpretation of a Relational Spe-

cification by presenting its Computational Semantics. Theorem 1 established 

the soundness of the Computational Semantics with respect to the Declarative 

Semantics of Definition 2.3. 

We then studied the problem of defining an intuitive notion of evaluation step 
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using the Computational Semantics. We demonstrated by examples that not all 

Relational Specifications yield such a notion. We characterised the class of Data-

driven Relational Specifications and showed that specifications in this class yield 

an intuitive notion of evaluation step. The Computational Semantics of any Data-

driven Specification can be given a formal operational interpretation, expressed 

in Theorem 2. Furthermore, such a Computational Semantics is complete as 

proved in Theorem 3. 

The restrictions that led to the class of Data-driven Specifications are similar 

to the restrictions imposed by Berry on a Structural Operational Semantics to 

define a notion of evaluation step [Ber9la, pages 70,91]. This similarity suggests 

that these restrictions are not ad hoc, but necessary whenever we want to define 

a notion of evaluation step based on a Relational Semantics. An interesting prob-

lem for future research is to compare the notions of evaluation step of [Ber9la] 

and of this thesis. This comparison could include a study of the approach to the 

evaluation of data-driven DCP in [DM85]. 

Another interesting problem is to investigate whether there exists a larger 

class of Relational Specifications whose Computational Semantics is complete. A 

related problem would be to study whether the transformation of rule 2.1(2) into 

rule 2.1(2)' given in page 133 can be done automatically. An affirmative answer 

to this problem would implicitly enlarge the class of specifications with complete 

Computational Semantics. 



Chapter 6 

Formal Specification of Debuggers 

In this chapter we study the formal specifications of debuggers. We start by 

presenting an abstract characterisation of a debugger using the notions of program 

evaluation and evaluation step developed in Chapter 5. A debugger, according 

to this characterisation, evaluates programs using the Computational Semantics 

of a Deterministic Relational Specification. 

We then study two common issues in the specification of most concrete debug-

gers: the granularity of the debugging step and the reference to unique program 

positions. Since we presented an abstract definition of debuggers, we can address 

these issues at the level of an arbitrary debugger. A clear advantage of this ap-

proach is that the solutions we propose for the design issues can be used in the 

specification of any concrete debugger that conforms with our abstract definition. 

Finally, we define a notation to assist in the specification of concrete de-

buggers. This notation expresses a useful set of debugging operations for any 

programming language that can be given a Deterministic Relational Specifica-

tion. We illustrate the use of this notation in Section 6.6. An interesting problem 

for future investigation is to provide an implementation for the specification nota-

tion. This would provide facilities for high level prototyping of debuggers. 

153 
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6.1 Introduction 

In this section we compare our approach to some other approaches to debugging 

based on formal semantics that we find in the literature. The CENTAUR sys-

tem [C1K89] has some debugging facilities for the TYPOL language [Des88]. 

When a TYPOL specification of a programming language is being interpreted, 

these facilities can be used as an (indirect) debugger for programs written in the 

programming language. 

TYPOL debuggers are LISP programs that interact with the Mu-PROLOG 

program generated by the TYPOL compiler. In the original description of the 

debugging facilities for TYPOL in [Des881, there is no mention of special features 

in LISP to assist in the specification of debuggers. It is suggested by the authors 

of [Des88] that it would be possible to use Esterel [BCG86] to specify the debug-

gers and then produce the LISP code using the Esterel compiler. However, Esterel 

does not have specific features for the specification of debuggers in terms of the 

programming language semantics; in this particular sense, we say that CENTAUR 

-- does not provide high-level facilities for the specification of debuggers. 

The PSG system [BS86] generates an interpreter, with debugging facilities, 

from a denotational semantics of the programming language [BMS87]. The inter-

preter is generated by translating the denotational semantics into an executable 

functional program. Before the evaluation of any sub-phrase of a program, the 

interpreter calls a debugger coroutine; this receives debugging commands from 

the user, updates the current state of the evaluation, checks for break-points, 

and so on. An evaluation step in the debugger is a function call to the defini-

tion of the program phrase; thus, it cannot be changed unless the whole system 

is redefined to incorporate another notion of step. Some debugging operations 

are generated automatically; more sophisticated operations must be encoded to-

gether with the semantics of the programming language. The language used to 

define these debugging operations is a simple functional language with no spe-

cial features for debugger specification; thus PSG offers little support for the 
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definition of advanced debugging operations. 

Our approach to debugger specification allows the definition of debugging 

steps of variable size, or granularity, based on the notion of evaluation step defined 

in Chapter 5. Moreover, we shall define a specification notation with features 

dedicated to the definition of debuggers at a high level of abstraction. 

The Animator Generator [Ber9la] is a system that generates a programming 

language animator from a Structural Operational Semantics. An animator is an 

interpreter for the programming language with a sophisticated graphical interface 

used to display the intermediate steps of the evaluation of the program. The an-

imation process is interactive, allowing the user to inspect the values of variables, 

single step backwards and forwards, and so on. An animation step is a function 

between partial proof trees of a program formula. Its definition is more complex 

and difficult to reason about than our definition of an evaluation step, because 

animation has other needs that are not important for the approach of this thesis, 

e.g., displaying and highlighting of (parts of) the proof tree of the program. Al-

though it is possible to display different views of the program animation, the set 

of debugging operations in an animator is fixed, that is, the Animator Generator 

does not provide the means for specification of new debugging operations. 

As mentioned above, our definition of evaluation step is simpler than an 

animation step, being easier to reason about. This property will be essential 

in proofs of debugger correctness, which are addressed in Chapter 7. Moreover, 

our approach allows the specification of a wide range of debugging operations, 

including the commands of the Animator Generator. 

In [KHC91], Kishon et al. define Monitor Semantics as a system for the pro-

totyping of program monitors based on a continuation-passing denotational se-

mantics of the programming language. Monitor functions are specified as an-

notations to the original denotational semantics of the programming language. 

There exists a proof that the inclusion of a monitor specification does not change 

the semantics of the language. In [KHC91] there is no definition of a notion of 

an evaluation step; thus it is not clear how to specify a single stepping operation, 
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and nor it is clear how such an operation would behave. 

The major difference between our approach and the four approaches discussed 

above is that while they aim at an implementation of a debugger generator we 

aim at the definition of a theory of debugger specification. This theory is the 

first, essential step towards a notion of debugger correctness, which is a major 

goal of this thesis. The definitions in this chapter set up a suitable framework in 

which we can study the problem of debugger correctness in Chapter 7. 

6.2 Definitional Preliminaries 

The following definitions are based on the definitions given in Section 4.2. 

A labelled transition system is a triple (F, L, —') where F is a set of states, 

L is a set of labels, and — F x L x F is the labelled transition relation. For 

(st, 1, st') E F x L x F, the fact that (st, 1, st') E— is written st -+ st'. 

The generalisation of transitive-reflexive closure to a labelled transition rela-

tion is defined as follows. Let sl E L* be a sequence of labels (li ,.. . , 4,) for n > 0. 
() 	 81 

If n = 0 then st -* st. If n > 0 then st -*' st' if and only if there exists a state 
81' 

li 	ii 	 I 	 I 
stII  such that st - st and stI —* st, where si I 

 = ( 12,. . . , 4,). 

6.3 Interpreter-Debuggers 

Let S = (1k, , A, goBs)  be a Deterministic Relational Specification of some pro-

gramming language and p E Px(1Z) be an arbitrary structural program formula 

in S. In this section we present a definition of an abstract debugger for p that 

evaluates the program formula using the Computational Semantics CS<  of S for 

a fixed but arbitrary total ordering < consistent with -<, as discussed in Sec-

tion 5.4 (page 146). This definition generalises trivially to a debugger for all 

program formulae in Px(cl). 

Let us recall some results and definitions from Chapter 5 related to the Corn- 
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putational Semantics of Deterministic Specifications. Initially, P (1) denotes 

the set of structural program formulae; thus p E Px(1l) is a structural formula 

whose input terms are ground. From Theorem 5.4, the Computational Semantics, 

with Standard Goal Choice and -<-expansion, of any Deterministic Specification 

is monogenic; thus, 	of CS<  is a partial function, written 9 : rcs - 

However, at the risk of some confusion, we still use the (infix) relational notation 

Cs 	I 
 i 	

Cs 	 I 

st=<st nstead of a functional notation, e.g., =-<(st) = st. 

The choice of the total order < is part of the design of a debugger in our 

framework. The following definitions are parametric on an arbitrary total order 

< consistent with . To improve the readability, we will drop the subscript < 

from CS and hereafter. In the examples in this chapter and Chapter 7 we will 

use the standard CS system defined in Section 5.4 (page 147). 

The reader will notice that some of the following definitions are more gen-

eral than strictly necessary for the results we want in this thesis. In particular, 

we give definitions that could be easily generalised to the case where R is an 

actual relation. The main reason for this added generality is that it simplifies 

extensions to the theory, for instance to address debuggers for non-deterministic 

programming language, as discussed in Section 8.2. 

We present the definition of an abstract debugger in two stages. We start 

with a very simple definition of a debugger with limited debugging functionality, 

and discuss its main problems and limitations. Motivated by this discussion, 

we present another characterisation that describes a larger class of debuggers, 

including most existing debuggers for deterministic programming languages. We 

start by defining a notion of evaluation history of programs; an evaluation history 

is sometimes called a computation in the literature. 

Definition 1 (Evaluation History) The set of evaluation histories of p in CS, 

written EH, is the subset of 1' inductively defined as follows: CS 
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([Os  : p]) E EH 

If (st 1 ,. . . , st,) E EH, and st,, 

then (st1 ,. . ., st,, st, +1) E EH 	 0 

Notice that, because = Cs is a function, there exists at most one evaluation his-

tory (st1 ,. . . , st) for a given n > 0. For each history (sti, . . . , st,) E EH, 

st1  = ([Os : p]) is the initial state, st, is the current state. The terminology 

and definitions given for finite sequence in Section 2.2 also apply to evaluation 

histories. Moreover, if h = (st1 ,. . . , st,) then fst(h) = st1 , cur(h) = st,, and 

rem(h) = (st1 ,. . . , st,_). 

Now, we define an extension of R to a (unique) function 	EH - EH 

consistent with R as follows: for all h E EH, if cur(h) 	st then h =M h o st. 
CS 

Clearly, if CS uses the function 
E  instead of 	all the results of Chapter 5 

remain valid. We use the term "CS with arrow 	whenever we want to refer 

to the Computational Semantics of S that uses =94 as the transition relation. 

The transition system CS with arrow =F4 may be considered as a primitive 

debugger that only provides a single stepping operation between (consecutive) 

evaluation histories. This debugger is interactive only in the sense that the user 

can issue a step command and the debugger answers by advancing the evaluation 

history by one step, showing the new history to the user. 

There are three major problems in considering CS as an abstract definition of 

a debugger. First, the functionality of this debugger is too limited. Second, the 

granularity of the steps is too small, i.e., little evaluation is really done at each 

evaluation step; this means that to reach a given state in the program evaluation 

we may need to issue many step commands. Third, an entire evaluation history 

contains a large amount of information; in general, we expect to be able to select 

only the parts of the evaluation history that we are interested in at each stage. 

These problems suggest we must develop a more powerful notion of debuggers so 

that we can address the three issues discussed above. 
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For this thesis, debuggers are interactive systems: the user inputs some debug-

ging command and the debugger outputs the result of the command. Commands 

may be queries about the current program's evaluation state, or actions to either 

advance or go back in the evaluation. Results may be the required information 

about the evaluation, or the required action on the evaluation. 

This view of a debugger may be formalised by characterising a debugger 

as a labelled transition system whose states contain an evaluation history as a 

component. The labels are pairs of a debugging command and its result, such 

that a transition of the form ds ds' is interpreted as follows: in a debugging 

state ds and receiving a command d the debugger changes the state to ds' and 

outputs the result r. 

We impose two restrictions on the transition systems that are allowed as de-

buggers in our approach. These restrictions have an intuitive motivation and 

are necessary so that we can prove properties about an abstract debugger. The 

first restriction ensures that debuggers are robust in the sense that all debugger 

commands evaluate to some result at every debugging state. The second restric-

tion requires the existence of at least one debugging command that advances 

the evaluation. This is the minimal functionality we expect from a debugger, 

and it guarantees that whenever p succeeds in CS then there exists a sequence 

of debugging commands that advances p from its initial evaluation state to the 

successful state in Cs. 

We believe that both restrictions arise naturally from a pragmatic point of 

view. Furthermore, in Chapter 7 we will prove results about debuggers that give 

a theoretical justification for the restrictions. 

The above discussion leads to the definition of debuggers given below. A 

debugger, according to that definition, evaluates programs consistently with the 

CS system. Since the CS system is an interpreter of the programming language, 

Definition 2 characterises a class of debuggers that we call Interpreter-debuggers. 

For this definition, recall that S = (1k, 0, A, coBs)  is a Deterministic Relational 

Specification, Q = (S,F,H,ir), > denotes (S,F), and p E P(cl) is a program 
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formula in S. 

Definition 2 (Interpreter-Debugger) An Interpreter-debugger for p based 

on Sand CS with arrow =M is a triple (ED , 1, AD) where: 

• ED = (SD,FD) and E c: ED. The sorts command and result are in SD, 

T(E D ) common d is the language of debugging commands, and T(E D ),. 8jL  is 

the language of results of debugging commands. 

AD/E = A, i.e., the E D-algebra of the debugger agrees with the E-algebra 

of the Relational Specification S on the programming language objects. 

A is a quintuple 

([' 1 ,,g, T(E D ) comman d X T(E D). zg ,4,I) 

where (FD,  T(E D ) commafl d x T(ED),.esult, -)) is a monogenic labelled trans-

ition system such that: 

rD is the set of debugging states and g : rD  -' EH is a projection 

function from rD into EH such that, for all ds E FD, g(ds) is the 

evaluation history of p at ds. 

- 	r'D X (T(E D ) comman d x T(E D ),. 8z ) x 'D  is a labelled trans- 

ition relation such that the following robustness requirement holds: 

for all dh E rD and d E T(E D ) command  there exists dh' E rD and 

r E T(E D ),. lj  such that dh dh'. 

- 1 E rD the initial debugging state, such that g(I) = ([Os : p]). 

such that the following functionality requirement holds: for all ds E rD there 

exists d E T(E D ) commafld , r E T(E D ),.. t , and ds' E "D such that ds 	ds' and 

g(ds) W g(ds'), where W is the transitive closure of =M 	 El 

Let us now analyse some aspects of the above definition. The transition relation 

- must be total, i.e., it must be defined for all debugging commands on all 
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debugging states. This requirement ensures that Interpreter-debuggers are robust 

as discussed above. It is always possible to add some failure states and results to 

a debugger to make it fulfill this requirement. Therefore, this requirement does 

not reduce the universe of debuggers that are addressed in this framework. 

The functionality requirement ensures that every Interpreter-debugger is con-

sistent with respect to the CS system regarding the evaluation of programs. In 

this sense, we can use any Interpreter-debugger as an alternative program eval-

uator. Furthermore, any correct evaluator with respect to the CS system can be 

easily transformed into an Interpreter-debugger with minimal functionality. 

Another important aspect of Definition 2 is that for every debugging state 

ds E rD, g(ds) E EH. This implies that whenever 

ds 	ds' 

then either g(ds) : 	g(ds') or, in the case that d is a backward evaluation 

command, g(ds') : 	g(ds). Therefore, because the function =M is consistent 

with CS, every Interpreter-debugger evaluates programs according to CS and 

uses the notion of evaluation step defined by the relation . This helps in the 

i definition of debuggers that behave intuitively, since = CS is an ntuitive notion of 

evaluation step, as discussed in Chapter 5. 

The above fact has an important effect on the kinds of debuggers that are 

characterised by Definition 2. Since g(ds) E EH for all ds e rD, only evalu- 

ation states that are reachable from [O : p] using Cs  are allowed in a debugging 

state. This implies that the debugging commands can only change the evaluation 

history component of a debuggm R. state consistently with . This is the main 

reason Interpreter-debuggers are said to be based on a Relational Specification 

or "semantically driven". 

There are various debugging commands in existing debuggers that allow the 

user to change the program data during debugging. In general, those commands 

produce states that are not reachable from I, in which case the debugger is not 

"semantically driven" and therefore excluded from our investigation. 
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6.4 Aspects of the Specification of Debuggers 

In this section we study some issues related to the specification of Interpreter-

debuggers. We use an example to introduce these issues. First, we define a 

semi-formal specification of a simple debugger. Then, we identify two problems 

in this specification and propose solutions for them for an arbitrary Interpreter-

debugger. In the next section we shall see how this semi-formal specification can 

be made entirely formal using the debugger specification notation. 

We will define an Interpreter-debugger for the language Fun called Tiny. The 

debugging language of Tiny is defined by the following BNF rule, which assume 

the definitions of mat and var of previous examples: 

command ::= reset I step nat I run until var = mat 

show var I show pos I show res 

We shall define Tiny based on the Relational Specification Env of Fun presented 

in Section 4.4. For this definition we replace rule 3.2(4) of the definition of Env 

by the following data-driven rule: 

EF-e1 v1 	EHe2 =v2 	EFplus(v1 ,v2)=v 

E I- e1  + e2  = v 

Tiny evaluates programs suing the Computational Semantics CSEnV  with arrow 

=Eli 

='E 
Tiny will be defined for an arbitrary program formula p E PXE(I1

Env 
 ). 

The set of states r Tiny  of Tiny is just the set EH of evaluation histories of p in 

Ti nv 	 ny 	 i 	I' ny 	. CS E  and g Ti is the dentity on 	. The mformal meanmg of the debugging 

commands is as follows: 

reset sets the debugging state to the initial evaluation history ([9 : pJ). 

step n advances the evaluation history by n steps of the relation ia E'  where n 

is a natural number, or until the evaluation terminates. In the latter case 

the command outputs the constant succeed if the evaluation is successful 

or the constant fail otherwise. The result of step n when the evaluation 

does not terminate in n steps is null. 
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run until id = n evaluates the expression from the current evaluation history 

until a state in which id is bound to n, or until the evaluation terminates. In 

the latter case the command outputs the constant succeed if the evaluation 

is successful or the constant fail otherwise. The result of run until id = n 

when id = n is null. 

show id outputs the value of the variable id in the current environment if it is 

defined, and fail otherwise. 

show pos outputs the expression that is about to be evaluated in the current 

debugging state. 

show res outputs the result of the evaluation of p if applied to a successful state, 

fail is applied to a failure state, and null otherwise. 

The debugging results are the union of T(> Env 
)val,  T(E Env 

)exp,  and three con-

stant values. The value fail indicates a failure in the evaluation, succeed indic-

ates a successful evaluation, and null denotes the empty result. 

It remains to define the transition relation 	Tiny of Tiny. The relation 

is defined for each form of debugging command defined above for an arbitrary 

pEPxE(f Env 
). 

d = reset 	For all dh E EH, dh -4 ([On : p]), for r = null 

dr 
d = step n For all dh E EH and natural number n, dh -) dli where: 

. If cur(dh) = [0 : E] then dh = dh' and r = succeed. 

. Otherwise, if cur(dh) = [] then dh = dli' and r = fail. 

. Otherwise, if n = 0 then dh = dh and r = null. 

• Otherwise, dli a dh" and dh" --4 dli' where d' = step n' for 

nI  = n - 1. 

d = run until id = n 	For all dli E EH, natural number n, and variable id, 
d,r 	i dh -p dli, where: 
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. If cur(dh) = [0 : eJ then dli = dh' and r = succeed. 

• Otherwise, if cur(dh) = [] then dli = dli' and r = fail. 

• Otherwise, if cur(dh) = [0: E I- e = v :: c] then: 

- if the value of id in E0 is n then dh = dli' and r = null; 

- otherwise, if the value of id in E0 is different from n or id is not 

defined in EG then dh =ME  dh" and dh" -- dli' 

d = show id For all dh E EH and variable id, dh -4 dh, where: if cur(dh) = 

[0 : e] then r = null; otherwise, if cur(dh) = [] then r = fail; otherwise, if 

cur(dh) = [0: E I- e => v :: a] then r is the value of id in E0 or fail if id is 

not defined in E0. 

d = show pos 	For all dh E EH, dli - i dh, where: if cur(dh) = [0 : 

then r = null; otherwise, if cur(dh) = [] then r = fail; otherwise, if 

cur(dh)=[0:EF- e=tv:: a] then r=e. 

d = show res 	For all dh E EH, dh -4 dh, where: if cur(dh) = [0: E] and 

fst(dh) = [0 : E0  I- e, => v0  then r = v00; if cur(dh) = [] then r = fail; 

otherwise r = null. 

Comments about the Specification 

It is easy to check that -* Tiny obeys the robustness requirement of Defin-

ition 2. The functionality requirement of Definition 2 is satisfied by the 

step n command. 

Single step command step 1 is equivalent to one step of the transition 

this being the most detailed step that can be defined in this framework. By 

using only step 1 and show pos commands we can see each step of the 

evaluation. However, in practice it is desirable to have a less detailed single 

step, so that we may skip details of the evaluation that we are not interested 

in. We discuss this problem for an abstract debugger in Section 6.4.1, where 
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we change the definition of Tiny's step command to account for a coarser 

debugging step. 

The definition of the show pos command is very limited because there 

may be various sub-expressions during the evaluation that are syntactically 

identical; therefore, we need context information to identify uniquely which 

sub-expression is about to be evaluated. This problem is studied in the 

context of an abstract debugger in Section 6.4.2. 

Some parts of the definition are not formalised, e.g., "of the form" and "the 

value of id in E9". For a complete formal definition of the debugger those 

parts must be formalised. As the complexity of the debuggers increase, 

ad hoc definitions of each detail of the specification will become difficult 

to carry out, leading to concrete specifications that are difficult to reason 

about. In Section 6.5 we will see how these parts can be formalised using 

a specification language. 

In general, debugging commands will require evaluation in the algebra AD 

of the debugger. For instance, suppose we allowed an arbitrary arithmetic 

expression e in the run until id— e command. The definition of this com-

mand would have to evaluate e using &AD  to obtain a natural number. 

6.4.1 The Granularity of the Debugging Steps 

In this section we study the problem of the granularity of the debugging step. For 

this, we chose to characterise this problem for an abstract debugger. A debugger 

according to Definition 2 evaluates programs using the CS system of a Relational 

Specification. Therefore, the evaluation step used by the debugger is a transition 

defined by the function 
EU . 

On the other hand, a debugger is a transition system whose states contain a 

evaluation history as a component. A step of this transition system is what we 

call a debugging step, whose granularity is informally characterised with respect 
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to the evaluation step: the debugging step is fine grained if some debugging 

command advances the evaluation at a rate close to the evaluation step; it is 

coarse grained if all debugging commands that advance the evaluation do so by 

the equivalent of many evaluation steps. 

In this sense, Tiny has fine grained debugging step because the single step 

command advances the evaluation at exactly the rate of the evaluation step. In 

fact, Tiny has the finest possible debugging step granularity that can be defined 

in this framework. 

A debugger does not necessarily need the finest granularity in the debugging 

step, and not all debugging commands have to advance the evaluation at the 

same rate. Sometimes it is useful and desirable to have coarser granularity in the 

single step command, or even alternative single step commands with different 

granularities. On the one hand, a useful definition of the granularity of the 

debugging step should show every evaluation step that is of interest for debugging. 

On the other hand, an efficient definition of the granularity should only show the 

steps of interest. This avoids the need to step through parts of the evaluation 

that are not relevant in a particular application. 

It is obvious that a definition of the optimal granularity of the debugging step 

is impossible, since it depends on the particular debugger and the applications 

in which the debugger is used. Therefore, we need a generic mechanism to define 

the granularity of the debugging steps, which leads to the definition of a step 

predicate. Informally, a step predicate is a predicate on an evaluation history. 

If SP is a step predicate and dh =M dh st for some evaluation history dh and 

evaluation state st, then if SP(dh st) is true, the evaluation step is said to be 

visible, and it is hidden otherwise. 

Let us illustrate the use of step predicates before giving a formal definition. 

Suppose that we are not interested in debugging the steps of Fun expressions 

related to the evaluation of sum operations, i.e., when using Tiny we want to skip 

over the evaluation of every expression of the form e1  + e2  and all sub-expressions 
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in e1  and e2 . Let nosum be a predicate on EH such that nosum(dh o st) holds if 

and only if dhEdh  st is not an evaluation step of a sum expression. Exactly 

how nosum is defined is left unspecified for the moment. In Section 6.6 we will 

give a definition of this predicate. 

Now we change the definition of Tiny such that the commands only show 

visible steps according to nosum. The only command that requires modifica-

tions is step n, since the command run until id = n uses step 1 to advance 

the evaluation. 

dr 
d = step n For all dh E EH, and natural number n, dli —* A l , where: 

• If cur(dh) = [0 : e] then dh = dh' and r = succeed. 

• Otherwise, if cur(dh) = [] then dh = dh' and r = fail. 

• Otherwise, if n = 0 then dh = dh' and r = null. 

• Otherwise, dh a dh st and: 

d',r 
i - f nosum(dh, st) then dh o st — dh where d = step n where 

= n - 1. 

— else dh 
d,r
-' dli'. 

The definition below formaJises a step predicate for an abstract Relational Spe-

cification, so that this concept can be used in any debugger based on such a 

specification. 

Definition 3 (Step Predicate) Let S = (Il, 0 , A, 	be a Relational Spe- 

cification with Computational Semantics CS = (['ce, , T), and EH be the set 

of evaluation histories of p in S. A step predicate is a total predicate on EH. 

If SP is a step predicate, for all dli E EH and st E rcs  the step dli : 	dli <> st 

is visible if SP(dh o st) holds; the step is hidden otherwise. If dli =E4 dh st 

is visible then st is a visible state. If dh 
EH* 

 dh
I 
 is a transition sequence in CS, 

then I dhz, * dli' Isp denotes the number of visible steps in the sequence according 

toSP. 	 11 
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Step predicates can be used in different ways in a debugger specification 

and we discuss two of them below. First, a fixed set of step predicates can be 

incorporated at the specification phase. This fixes which predicates will be used, 

and (possibly) when they will be applied. Second, debuggers may have commands 

that give the user the ability to construct step predicates at debugging time, and 

apply these predicates whenever required. Both approaches are supported in the 

framework of this thesis and the first one is illustrated in subsequent examples. 

An important aspect of the granularity of the debugging steps will be dis-

cussed in detail in Chapter 7, when we study Compiler-debuggers. In that case 

we have an (initial) specification of a debugger according to Definition 2, and an-

other specification given by a Compiler-debugger in which programs are executed 

directly on a machine. For the Compiler-debugger to be correct with respect to 

the initial specification it must map the machine execution of the program into 

the visible evaluation steps of this specification. This mapping causes an un-

desirable overhead in the execution of the program. In general, this overhead 

is greatest where the granularity of the debugging steps is finest; thus specific-

ations with a coarser granularity should allow for more efficient implementation 

of Compiler-debuggers. 

6.4.2 Unique Reference to Sub-programs 

As we pointed out before, the definition of the command show pos of Tiny is 

limited: its result, on a given evaluation history, does not reference a unique 

point in the program. However, the ability to reference a unique sub-program is 

important in debugging for setting break-points or trace-points for example. 

One way of uniquely referencing a sub-program is by the path from the root 

of the abstract syntax tree representing the program to the sub-program we want 

to reference. For instance, let us consider a parse-tree representation of the term 

+(+(5, 1), +(+(5, 1), 2)) that is shown in Figure 1. The path to the (underlined) 

sub-term +(5, 1) is indicated on the tree by the double lines. 
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/\ 
5 	1 	+ 	2 

Figure 1: Parsing Tree 

Notice that the term +(5, 1) does not give a unique reference to a sub-

expression in this example. A possible representation for this path is a sequence 

(0,2, 1), where we underlined the numbers to avoid confusion with the constant 

expressions 1, 2, and so forth. In this representation, 0 denotes the root of the 

parsing tree, 2 denotes a right branch, and ,. denotes a left branch. The sequence 

represents the order in which the branches are taken to find the desired subtree. 

This representation generalises easily to parsing trees with nodes with more than 

2 branches. 

If paths of expressions are available for the definition of Tiny, the command 

show pos can be defined such that its result on any evaluation history is the 

path of the current expression. Using a convenient user interface, this result 

could be displayed to the user, e.g., as a highlight of the sub-expression. 

However, paths are not an explicit component of an evaluation history; thus 

in the rest of this section we will address the problem of how to make them 

available for the debuggers. There are various approaches to this problem in our 

framework. We can built the path from the evaluation history whenever the path 

is required. Alternatively, we can build the path of the current sub-expression 

incrementally and keep this information as a component of every debugging state 

so that it is always readily available. Clearly there is a trade off between these two 

solutions for the former is time consuming whereas the latter consumes storage 
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resources to keep the path. 

Another solution is to make the path an explicit component of the debugging 

history. This approach poses interesting problems, and we will develop it in more 

detail here. We start by formalising the concept of syntax path, and the first 

step in this direction is the definition of a path tree. 

Definition 4 (Path Tree and Syntax Path) The path tree of a term t € 

T() is the term T0 (t), where 2(t) is defined for each n > 0 as follows: 

1.t=x,xEX, then 2(t)=n() 

2. t = (t1 , . . . , t,j, m > 0, then 2(t) = n(T1 (t1 ),. . . , 

An abstract syntax path (or simply a path) is a sequence of nodes occurring in 

the path from the root of T0 (t) to some sub-tree of T0 (t). 	 0 

For instance, the path tree of the term +(+(5, 1), +(+(5, 1), 2)) is the term 

Therefore, the path to the underlined sub-term 

+(5, 1) is the sequence (, 2, 1), as discussed above. It remains to show how paths 

can be included in the evaluation histories. 

This problem can be considered from two points of view. First, we may con-

sider that the CS system is deficient because it does not provide the information 

we need for debugging. If this view is taken, we must extend the CS system to 

incorporate this information, in this case the path of a sub-program. 

There are various ways in which this extension can be done. A simple solution, 

that can be incorporated to the CS system, is illustrated by the following example. 

Suppose that the formula &E F +(3, 6) v is the query we want to evaluate in 

CSEnV. We first annotate each term of the expression +(3, 6) with its path, such 

that the annotated term becomes +(3<, 6 (o,) ( . Therefore, the original query 

is changed into 6E +(3(, 6 (0 6 = V. 

Then we change the unification algorithm Unify used by the CS system such 

that it ignores the annotations when unifying expressions. With this new uni-

fication algorithm the (simplified) steps of the evaluation of the above query 
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become: 

[EE F-  +(3(o,, 6(o,2)( 	
Cs 

V] . 

[EE F3(o,vl ::eE H6(o, =v2 :: ... ] CJ 

[&E F 6(o , 	:: 6E plus(3, v2 ) = v] 

[&E F- plus(3, 6) = v] 

[success] 

In this example, we applied the substitution to the formulae in the goal stack 

and omitted the substitution from the states to simplify the presentation. Fur-

thermore, the successful state is represented by [success]. These simplifications 

will be adopted in the examples hereafter. At each state of the above evaluation 

history we have access to the path of the sub-term of +(3, 6) that is about to 

be evaluated. Notice that this solution works even for function application in-

volving a closure, because the expression in the body of the closure would also 

be annotated with its path. 

A second approach the problem of including paths in the evaluation histories 

is to consider that the Relational Specification used in the definition of the de-

bugger is deficient with respect to the information necessary for debugging. This 

view assumes that the Relational Specification determines the possible debugging 

functionality. In other words, two Relational Specifications that are equivalent 

with respect to final results of program evaluation may allow the definition of 

different debugging commands. The difference lies in that one specification may 

have more debugging information available than the other, although they are 

equivalent in the evaluation of programs. 

In this approach, if we need to reference a unique point in the program, the 

path of the program must be an explicit component of the Relational Specifica-

tion. For instance, we can add paths to Env as terms of sort path, and change 

the definition of closures as follows: 

closure ::= (env, var, exp,path) 

With the above changes, the following set of rules for the language Fun manip- 
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ulate the path of the expressions explicitly. In these rules, pa is a meta-vanable 

of sort path and Xath  is generated by pa. 

Evaluation with Paths 	 envl- exp,path=, val 

El- n,pa = n 

(E,id)-4 L v 

E I- id,pa = v 

EFe1 ,pao=-v1  

E F- e,pa= v2 	E F-plus(v1 ,v2 ),() = v 

E F- e1  + e2 ,pa = v 

El-- e1 ,pa< 	v1 	idi-+ v1 •El- e2 ,pao= v2  

E F- let id = e1  in e2 ,pa = v2  

E F- fn id. e,pa = (E,id,e,pao) 

El- e1 ,paolt (E',id,e',pa') 

E F- e2 ,pao 	v2 	id i- 	E' F- e',pa' = 

E I- e1 (e2 ),pa =:> v' 

It is possible to prove that the above set of rules is equivalent to the rules of cbE1) 

with respect to the final results of the evaluation of expressions. Furthermore, 

the evaluation steps produced using the new set of rules are in one-to-one cor-

respondence with the evaluation steps using the original Moreover, using 

this set of rules in the definition of Tiny makes the path of the current expres-

sion available in the evaluation history. For instance, if we evaluate the query 

E I- +(3, 6), () => v using the above rules, we obtain the following evaluation 



Chapter 6. Formal Specification of Debuggers 
	

173 

history: 

[EE H+(3,6),() = v] 

[&E F- 3,(,1)= v1  :: EEF6,(f,) = v2 
 

[EE I- 6, => v2  :: EE F- plus(3, v2), 0 = v] 

ICE H plus(3, 6), 0 = v] 

[success] 

At each state of the above evaluation history, the path of the current sub-

expression is available. In this sense, this solution is equivalent to that of an-

notating the expressions as discussed above. However, in this case we do not 

change the CS system, since the paths are just normal terms in the Relational 

Specification. 

A possible argument against this approach is that it involves changing the 

Relational Specification of the programming language to include components 

that are not relevant to the definition of program evaluation. However, in this 

thesis Relational Specifications are used to defined program debugging as well as 

program evaluation; thus it seems reasonable to include debugging information 

in the Relational Specifications. 

We adopt this approach hereafter, that is, we keep the CS system unchanged 

and extend the Relational Specifications with debugging information whenever 

it is necessary. We favour this approach for several reasons. First, it is more 

flexible than changing the CS system. Second, it keeps the basic framework 

simple. Finally, it does not preclude other solutions, including extensions to the 

CS system, as the one discussed above. 

When presenting the specification language in the next section we shall dis-

cuss another reason to choose this approach instead of changing the CS system. 

Hereafter, we assume that the above set of rules for Fun replaces the definition of 

the relation - F- - - in the Relational Specification Env (page 80). Therefore, 

paths are terms in Env of sort path. This new set of rules will be important in 

the formalisation of Tiny in the next section. 

Alternative treatments of the problem addressed in this section are given 
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in [Ber9lb,Ber92]. The former uses occurrences as defined in [Bou85] to desig-

nate unique sub-terms of a A-term. The approach in [Ber92] uses the idea of 

origin functions. In both approaches the programming language is the simple 

untyped A-calculus. It would be interesting to investigate the applicabifity of 

these approaches to other languages, e.g., imperative language. 

6.5 A Notation for Specifying Debuggers 

In the previous sections we presented an abstract definition of debuggers and 

studied some aspects of the specification of concrete debuggers according to that 

abstract definition. We showed how a semi-formal specification of a simple debug-

ger may be directly defined in terms of the CS states, formulae, and substitutions. 

This example demonstrated that giving a complete formal specification of a de-

bugger requires the formalisation of various details, for instance how to obtain the 

value of a variable from an environment at the current evaluation state. The ad 

hoc formalisation of such details is possible but may become difficult as the corn-

plexity of the debugging commands increase; moreover, it is tedious to formalise 

the same concept every time we are using a new Relational Specification. 

In this section we define a notation to assist in the specification of debuggers, 

including the definition of visibility predicates. The main features of this spe-

cification notation, called DSL, is a powerful concept of sequence patterns, which 

are used to describe evaluation histories. In the rest of this section we introduce 

DSL using examples. In Section 6.6 we present a specification of Tiny written 

in DSL, including the visibility predicate nosum discussed in Section 6.4.1. The 

syntax and formal semantics of sequence patterns are defined in Appendix A. 

The most important feature of DSL is the use of sequence patterns to spe-

cify evaluation histories. The concept of pattern matching on sequences is not 

new, appearing fist in the language SNOBOL [FGP64], and in other program- 

ming languages since then, e.g., SNOBOL4 [GPP68] and SL5 [G1177]. In these 
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languages, string patterns are used to describe strings of characters. In DSL, 

sequence patterns generalise this idea to sequences of arbitrary objects. In this 

thesis we will use DSL as a notation to describe evaluation histories; therefore 

we will be interested in sequences of evaluation states. 

DSL is a "sugared" version of the untyped A-calculus [Bar85] to which pat-

terns and pattern matching are added in the standard way, e.g., as described 

in [FH88]. The use of the A-calculus with pattern matching as the mathemat-

ical underpinings of concrete functional languages, e.g., Hope [BMS80], Standard 

ML [HMT89], and Haskell [HW90], is well known and so we assume some famili-

arity with this idea. However, the reader familiar with string pattern matching 

in SNOBOL must be warned that the pattern matching in functional languages 

is different from the SNOBOL paradigm. In SNOBOL, patterns are first class 

objects that can be constructed dynamically; it is even possible to creat recurs-

ive patterns whose meaning is determined when the pattern matching is taking 

place. In functional languages patterns are used only in function definition. It 

is the functional language notion of patterns that will be described in the rest of 

this section. 

Values in DSL are divided into basic values and sequences of basic values. This 

classification on the values imposes a classification of the patterns into basic pat-

terns and sequence patterns. Therefore, sequences in DSL are first order objects 

in the sense that there is no sequences of sequences. First order sequences are 

sufficient for the purposes of specifying debuggers since evaluation histories are 

first order sequences of evaluation states. An interesting problem is to generalise 

DSL to deal with higher order sequences. 

DSL is parametric on a Relational Specification in the sense that the Specific-

ation provides the basic constructors of DSL values. To simplify this presentation 

we will describe the particular instantiation of DSL with the Relational Specific-

ation Env. This instantiation will be called DSL Efl  hereafter. Recall that, in the 

set of rules of Section 6.4.2, the formulae in F(f were extended with a 
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term of sort path, such that E I- e 	v becomes E F- e, pa => v. 

We choose to present DSL as an untyped language mainly because it simplifies 

the presentation. Moreover, the typing of patterns does not pose new problems; 

it is the dynamic aspects of the pattern matching that are novel to DSL. 

Basic Values and Basic Patterns 

The basic values of DSL EflV  are the evaluation states of CSEnV.  Therefore, basic 

values are not atomic: they are composed of substitutions, goal stacks, formulae, 

and terms. The function names in F0,  the relation names in 11Env  and the 

meta-variables in XE  are the basic constructors in DSL EflV . The following terms 

and formulae are values in DSL EflV : 

2+x 

x i—+ 2 

(i) 

x 	2 6E  F- 2 +x,(,1) = v 

To make the constructors of the Relational Semantics different from other DSL EV  

constructors we use the following convention: reserved words of the programming 

language are written in bold type; mathematical symbols are used for the relation 

and function names of the Relational Specification of the programming language; 

meta-variables of the Relational Specification are written in italic font; DSL EflV  

reserved words and identifiers are written in type writter font. Therefore, x, + 

and 2 are programming language objects, whereas x, + and 2 are DSL EflV  objects. 

As an example, the following state in CSEThV  is a basic value in DSLEflV : 

[0:EF-e 1 ,pa1 =.(E',id,e,pa)::EHe,pa 2 =v::idF-+v.E'He,pa=.v'::...] 

where ... is an informal notation to indicate that there are more formulae on 

the right of the goal stack. We decompose a basic value into its sub-components 

using pattern matching. Basic patterns are the same as constructor patterns. 

Such patterns are commonly used in programming languages like Standard ML, 
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and are formally presented for example in [FH88]. For instance, matching the 

pattern 

[sub : 	- :: 	f2 :: 	t].] 

on the above evaluation state binds the pattern variable sub to the substitution 

O,f2totheformu1aEF,pa2 ='v,andt1toidi—*v.E'F-e,pa=v':: ... ;the 

pattern "2' is a wildcard that matches any value. To obtain the instantiation of 

the meta-variables, e.g., in the formula f 2, we must use the substitution that is 

bound to sub. For instance, I(f 2, sub) is the instantiation of E I- e2 , pa2  = v by 

0, where I is the instantiation function defined in Section 2.3. 

It is necessary to use I whenever we want to obtain the instantiation of a 

term or formula by a substitution. However, to improve the readability of the 

following examples we will "apply" the substitution to a term or formula as an 

abbreviation. For instance, we will use sub(f 2) as an abbreviation for I(f 2, sub), 

whenever this does not cause ambiguities. 

The constructor success matches an empty goal stack indicating a successful 

evaluation; thus the pattern [_ : success] matches a success state of the form 

[0 : e]. Furthermore, formulae can be decomposed into their terms also using 

constructor patterns. The matching of the pattern 

- F e, - = v 

on the formula E I- e2 , Pa2 	v binds e to e2  and v to v. Then, applying sub to 

e gives that actual instantiation of the meta-variable e2  in the above state, i.e., 

sub(e) = e20. Constructor patterns are also used to decompose a term into its 

sub-terms. 

Every DSL EflV  value is denoted by an expression. Terms, formulae, and CSEnV 

states are expressions that denote their corresponding values. Other forms of 

expression are A-abstraction and function application. These are described in 

the next section. 
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Functions 

A function value is denoted by a X-abstraction that in the concrete DSL notation 

has the following general form: 

fn pat1  => el  I ... I pat, => e, 

for some n> 0. Since patterns can overlap, i.e., more than one pat, can match 

a given value, it is important to impose that the patterns pat1 ,.. . , paç must be 

tried in this order. 

Function application is written e1  e2 , where e1  and e2  are expressions. Par-

enthesis may be used to resolve ambiguities. The bindings of variables in )-

abstractions are determined at declaration time, and functions are strict on all 

their arguments. In other words, DSL is an "eager" functional language with 

"static binding". The formal semantics of such a language is standard, and can 

be found for instance in [FH88]. 

Let d denote a declaration of the form val pat = e. As a "syntactical sugar" 

we use let expressions of the form let d in e' end, where e' is an expression. 

The meaning of the evaluation of this let expression is defined by the application 

(fn pat => e')(e). 

Moreover, the expression let d1  in ... let d in e end, for some n> 0, 

is written let d1 ;. .. ; d, in e end. We will use declarations as a way to give 

names to values. These names will then be used in the specification of debuggers. 

Moreover, a declaration of the form: 

val f = fn pat1  => e1  I ... I pat => e 

for some identifier f and n> 0, is written as a function declaration of the form: 

fun f pat1  = e1  I ... I f pat 0  = e0  

If f is applied to an argument that does not match any pat, then the result of 

the application is undefined. In later examples we will introduce other forms of 

expressions that are derived from the above expressions. 
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Furthermore, we add the integer numbers and boolean values true and false 

to DSL EflV . The usual arithmetic operators on integer numbers +, -, *, div are 

available as DSLEflV  functions. The usual relational operators <, <,>, >, , and 

<>are also available as DSL EflV  functions that produce boolean results. 

Evaluation History Values 

The sequence values of DSL EflV  that we are interested in for the specification 

of debuggers are evaluation histories in EH. Although we can use constructors 

to build evaluation histories as we do for the basic values, this use can make it 

difficult to establish the requirements of Definition 2. Therefore, we provide two 

pre-defined functions to (safely) build evaluation histories. 

The pre-defined functions initial and next are defined with respect to an 

arbitrary Relation Specification S = (, 0, A, oBs)  where Q = (S, F, II, 7r), and 

a S-sorted set of meta-variables X. 

• initial(p) = 	: p]) 	if p E Px(1l). 

• next(dh) = dh o st 	such that cur(dh) 29 st. 

The use of pre-defined functions to create histories guarantees that the debugging 

histories in DSLEflV  are correct with respect to CSEnV.  In this sense, correctness 

means that we cannot construct a debugging history that is not reachable from 

some initial evaluation history ([Os : p]) using the CSEnV  system. This is im-

portant for two main reasons. First, since PXE (fZEnv) is the set of data-driven 

program formulae of Env, according to Definition 5.2, next is complete in the 

sense of Theorem 5.3. This helps in proving the requirements of Definition 2 for 

specifications of concrete debuggers. Second, next gives the intuitive evaluation 

step defined in Section 5.4, which helps in the specification of debuggers that 

behave intuitively. The above discussion applies to an arbitrary Deterministic 

Relational Specification. 

We give some examples of the use of the predefined functions. To simplify 

the presentation we write x i—* 2 for the environment x i— 2 . EE, omiting the EE 
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constant. For instance, the following expression: 

initial(x i-* 2 I- x, (0) => v) 

evaluates to the initial debugging history ([0 : x ' -p 2 F- x, (0) = v]), where 

00  is the identity substitution on XE,  and () is the abstract-syntax path of 

the expression x. On the other hand, the value of initial(E F- x, (0) = v) is 

undefined because E is a meta-variable and therefore E F- x, () = v is not a 

program formula. As another example, the expression 

next(next(initia].(x i-* 2 F-x,() = v))) 

evaluates to the following history: 

([es : x i- 2 F- x, () => v], [09 : (x -* 2, x) 	'L ], [000102  : eJ) 

such that 0001 02 (v) = 2. 

Sequence Patterns 

Using the pre-defined functions discussed above we can construct an evaluation 

history from a program formula, and advance evaluation histories according to 

the function z •  However, we cannot extract states from a history or decompose 

a history into its sub-histories. These operations are done by pattern matching a 

sequence pattern on a debugging history value. Sequence patterns are the main 

feature of DSL for the specification of debuggers. 

The simplest sequence pattern decomposes a debugging history into its cur-

rent state and the rest of the history. For instance the following declaration: 

val <h, st> = next(next(initia1(xF-+2I - x,(2)=v))) 

binds the identifier h to the history 

([0 : x '-+ 2 F- x, (Q) => v], [00: (x i-*  2,x) 	vi) 
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and St to the state [00 01 92  : 

The generic form of the above pattern is a sequence of constructor patterns 

separated by "," and enclosed in "<" and ">". The symbol "," should be in-

terpreted as a left associative constructor. Constructor patterns were discussed 

above when we described the basic DSL EflV  values. The pattern <> matches 

the empty sequence. In the following examples, we will omit "<"and ">" from 

sequence patterns of the form <pat> in which pat is a single constructor pattern. 

Sometimes it is desirable to decompose a compound value using patterns and 

at the same time to bind the entire compound value to a pattern variable. For 

instance, in the declaration 

val h' as <h, st> = next(next(initia1(xF-+2Hx,()=v))) 

the variable h and St are bound as above, and h' is bound to the entire history 

resulting from the function application. 

The following functions show the use of sequence patterns to define the eval-

uation of an expression in an environment. In this and subsequent examples we 

use tuples of expressions and their corresponding values with the usual mean-

ing. Furthermore, we add to DSL EflV  the constructors defined by the following 

signature declaration: 

result ::= fail I succeed I null I val(val) I path(path) 

such that a term generated by this signature is a DSL EfiV  value. 

fun complete(h as <h', [_ : success]>) = h 

I complete(h as <h', [1>) = h 

I complete(h) = complete(next(h)) 

fun evaluation(E,e) = 

case complete (initial (E I- e, (0) => v)) of 

<h', [sub : success]> = > val(sub(v)) 

<h', [ J> => fail 
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Figure 2: Schematic Representation of a Debugging History 

The function complete advances the history h until either a success or a failure 

state is found. In the declaration of evaluation v is a constructor in X, and 
val 

fail is a constant that indicates a failure in the evaluation. As an example, the 

call evaluation(x -* 2, 2 + x) results in 4. 

The patterns described so far are the most basic patterns of DSL EV . Given a 

debugging history, we can write a pattern to extract any state from this history, 

any formula from a goal stack, and so forth. However, these patterns cannot 

express certain events that are important for debugging. For instance, we often 

want to know the result of the most recently evaluated sub-expression of a certain 

form. Certainly, we cannot directly express this event using the above patterns. 

Without more sophisticated patterns we would have to resort to the use of re-

cursive functions to specify these kind of events, making the specifications more 

difficult to understand and reason about. 

The next patterns we shall describe offer more expressiveness in describing 

events that occur in a debugging history. For the presentation of these patterns 

let us consider the schematic representation of a debugging history that is shown 

in Figure 2, where the entire history will be referred to as h. The current state 

cur(h) is the right most state, and the sub-histories a, b, c, d, and e indicated in 

the diagram are consecutive, i.e., h = abcde. 

The sequence pattern t(a, b, c, d, e), where a, b, c, d, and e are sequence 

patterns, is an interval pattern. Intuitively, t(a, b, c )  d, e) describes the right-most 

smallest interval delimited by sub-histories b and d such that each sub-matching 

is successful. This pattern matches h if e is the smallest sub-history of h such 

that d matches d, and once e and d are fixed then c is the smallest sub-history 
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such that b matches b, and once e, d and b are all fixed then a matches a, c 

matches c, and e matches e. Hereafter, we use the term t-pattern for interval 

pattern. 

It is important to emphasise that the matching of d on d must be fixed before 

we attempt to match b on b, and both these matchings must be fixed before 

we attempt the remaining matchings. This ensures that the pattern matching is 

deterministic and also avoids a (potentially) exponential number of attempts to 

match the t-pattern. 

The sequence pattern Na,  b, C, d, e), where a, b, c, d, and e are sequence 

patterns, is a balanced interval pattern. Consider the diagram of Figure 2. This 

pattern matches h provided the same conditions for matching t(a, b, c )  d, e) are 

established and furthermore if in c there exist an equal number, say n > 0, of 

sub-histories d2  and b2  such that d matches d and b matches b2 , for i E [nt]. 

This last condition together with the fact that e and c are the smallest sub-

histories of h for which the matchings are successful ensure that, if we consider 

b as describing an open bracket and d describing a close bracket, the brackets in 

the sequence b c d are balanced in the usual sense. 

Intuitively, /3(a, b, C, d, e) describes the right-most smallest interval delimited 

by b and d with the extra-condition that b'cd is balanced with respect to sub-

sequences that match b and d. Hereafter, we use the term 3-pattern for balanced 

interval pattern. 

The bindings resulting from the matching of an t-pattern t(a, b, c, d, e) are 

the union of the bindings resulting from the matching of a, b, c, d, and e; same 

for a /3-pattern. The same variable may occur more than once in a pattern, 

i.e., patterns do not have to be linear. For the matching to be successful, each 

occurrence of the same variable must match equal values. This assumes the 

existence of an equality relation on all values of DSL EV . However, substitutions 

are DSL EOV  values. Since substitutions are functions, and since we do not expect 

that the mathematical equality on functions to be checked automatically, we 
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will assume that two functions, and consequently two substitution, are always 

different for the purposes of pattern matching. Therefore, any two debugging 

histories and any two evaluation states are always different for the purposes of 

pattern matching. 

The sequence pattern ... is a wild card that matches any debugging history. 

It is convenient to notice that since the matching of interval patterns start from 

the sub-pattern d, a pattern of the form t(a, b, c, ..., e) makes d be the entire 

sequence h. Therefore, this pattern only matches h if the sub-patterns a, b, c, 

and e were each either ... or <>. 

Interval patterns can be used to describe the successful evaluation of a pro-

gram formula starting from the initial state. For instance, consider the pattern 

below: 

E F- e, - = v],...,[sub : success],<>) 

where [_ : E F- e, - = v] describes the initial state, [sub : success] de-

scribes a final successful state, and ... allows an arbitrary number ot states 

between the initial and final ones. If there is a successful matching of this pat-

tern on a debugging history then sub(v) is the result of the evaluation of the 

expression e on environment E. 

A combination of t-patterns and /3-patterns can be used to describe the most 

recent evaluation of an expression of a certain form. For instance, suppose we 

want to describe the most recent evaluation of a sum expression e1  + e2 . Let 

us start by defining a 3-pattern to describe a successful evaluation of a sum 

expression: 

j3(..., [_ : 	- F- el + e2, - => v : : 	gsl,..., [sub : 

To simplify the presentation, let us use SUM to refer to the above pattern. No-  
- 

tice that since sub and gs are pattern variables, the sub-pattern [sub : gs] 

matches the rightmost state in the history. Since gs must match equal values in 

both sub-patterns, SUM describes the successful evaluation of a sum expression 
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such that the last state in this evaluation is the second rightmost state of the 

history 

To describe the most recent evaluation of a sum expression we have to make 

the last state of this evaluation to be in an arbitrary position in the history. 

In other words, we must "shift" the pattern SUM to the left of the history an 

arbitrary number of states. This is achieved using the following i-pattern: 

t(...,SUJvI,...,  

In this pattern, [_: _] matches the rightmost state, and the pattern matching 

then continues to the left until SUM matches successfully. Therefore, the above 

i-pattern describes the most recent evaluation of a sum expression. When this 

pattern is matched successfully on a debugging history, sub(v) is the result of 

the evaluation of the sum expression sub(el + e2). 

Since patterns of the form 

for arbitrary b and d are likely to occur often in debugger specifications we intro-

duce the following derived form of balanced interval patterns as an alternative to 

the above patterns: 

t(b,d) 

/3(b,d) 

Therefore, in the derived forms the above patterns become: 

- I- el + e2, - = v :: gs], [sub : gs]) 

t(SUM, [..:J) 

Interval and balanced interval patterns express a large set of events in a debugging 

history that are important for debugging. To show more examples of the use of 

these patterns let SUM 1  denote the pattern 

:_ F-el 1  + e21 ,_ =v: :gs1], [sub1  : gs1]) 
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and SINGLE 2  denote the pattern [_: _], for all i e [nt] and some n > 0. The 

following balanced interval pattern describes the second most recently evaluated 

sum expression: 

t(t(SUM 1 , SINGLE 1 ), SUM 2 , ..., SINGLE2, ...) 

Using the same idea we could describe the nth  most recently evaluated sum 

expression, for any n > 0. However, it can be easily predicted that, even for n = 

3, the pattern will become tedious to write and difficult to read and understand, 

specially when we write the pattterns SUM 1  and SINGLE 2  explicitly. Therefore, 

we introduce another derived form of balanced interval patterns which, for the 

patterns SUM 1  and SINGLE 1  defined above, is written: 

t(SUM 1 , SINGLE 1 ) 

This pattern describes the n' most recent evaluation of a sum expression. In 

general this derived form is written t'(b, d) for arbitrary b and d. Using the same 

idea we introduce the derived interval pattern 3(b, d). 

The sequence patterns described above provide almost all the expressiveness 

that is required in the specification of debuggers. However, we cannot express the 

largest n such that t(b, d) matches the debugging history. For this we introduce 

the history pattern max  d) that denotes the pattern t"(b, d) for the largest 

n > 0 such that L Th (b, d) matches the debugging history. Similarly, 87nax  d) 

that denotes the pattern f3'(b, d) for the largest n> 0 such that /3"(b, d) matches 

the debugging history 

Therefore, using the patterns SUM 1  and SINGLE 1  defined above, the pattern 

f3rnaz(SuM 1  SINGLE 1 ) describes the earliest evaluation of a sum expression with 

no unfinished evaluation of a sum expression on its right. 

The combined use of interval, balanced interval, 	and 13maz  patterns is 

powerful. For instance, we can write a single pattern that expresses the right-

most unfinished evaluation of a sum expression as follows: 

t([_:J-e1 1  + e21 ,_=v1 : : gs1],Lm° (SUM2, SINGLE2)) 
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st 	 dhmaz 	 dh 1  

Figure 3: Unfinished evaluation of a Sum Expression 

We can understand the meaning of the above pattern by looking at the dia-

gram of Figure 3. In that diagram, the sub-histories dh1 ,. . . , are the 

successful evaluations of a sum expression, which are described by the pattern 

rnaz (SUM 2 , SINGLE 2 ) 

The state st is the first state on the left of dhmaz  such that the pattern 

[_ : - I- e1 1  + e21 , - = v1  :: gs 1 ] 

matches st, and the evaluation of the sum expression described by the pattern 

e1 1  + e21  is unfinished otherwise max would not denote the largest number of 

matchings of the finished evaluations. 

The patterns described in this section are all the patterns of the DSL, and 

in general of DSL. We argue that those patterns can describe most of (if not all) 

the events in an debugging history that are relevant for debugging purposes. In 

the next section we shall see some examples of the use of these patterns in the 

specification of a concrete debugger. This finishes the introduction to language 

DSL, the complete syntax and semantics of which are defined in Appendix A. 

It is possible to specify sequences, and in particular evaluation histories, using 

arbitrary recursive functions, as discussed in [GH801. An important advantage 

of using patterns is the possibility of defining equational theories. Reasoning 

about the specified histories in such a theory can be simpler than reasoning 

about arbitrary recursive functions. Consequently, such a theory would make 

reasoning about the debuggers specified in DSL easier, e.g., in proofs of debugger 
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correctness. This problem is not addressed in this thesis, but constitute an 

interesting extension to our investigation. 

6.6 The Specification of an Interpreter-Debugger 

In this section we give a complete specification of Tiny using DSLEflV . In this 

example we illustrate that the specifications in 	and in general in DSL, 

are indeed more abstract and concise than ad hoc formalisations of the debuggers. 

We present the specification in two stages. First, we give a specification of 

Tiny with the finest step granularity. Then, we formalise two step predicates, 

including the predicate nosum of Section 6.4.1, and change Tiny to use the pre-

dicates to increase the granularity of the debugging steps. 

The Definition of Some Auxiliary Functions 

We start defining some auxiliary DSL BV  functions. For these definitions we 

use two derived forms of expressions, which are defined using abstraction and 

application as follows: 

case e of pat1  => e1  I .. . 1 pat0  > e 

(fn pat1  => e1  I... I pat0  > e0 ) ( e) 

if e then e1  else e2 	case e of true => e1  I false => 

The following function specifies a stepping command. 

fun step(h as <h', [_ : success]>, n) = (h, succeed) 

I step(h as <h', [ ]>, n) = (h, fail) 

I step(h, n) = if n>O then step(next(h), n-i) 

else (h, null) 

The following function specifies the command run until id = n. 
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fun run_until(h as <h', [_ : success]>, x, n) = (h, succeed) 

I run_until(h as <h', I ]>, x, n) = (h, fail) 

I run_until h as <h', [sub : E I- -, - = - : :_]>, x, n) = 

case evaluation(sub(E), x) of 

val(nl) => 

if n = ni then (h,null) 

else run_until(step(h,1), x, n) 

I - => run_until(step(h,1), x, n) 

I run_until(h, x, n) = run_until(step(h,1), x, n) 

where the call evaluation(sub(E), x) returns the value of x in sub(E), or fail 

if x is not bound in sub M. It would be more natural to use the function next 

instead of step in the definition of run_until. However, when we define the 

step predicate nosum we will have to change the above functions to include this 

predicate. Using step in the definition of run_until we factorise the alterations 

to the function step. The following functions will be used in the specification of 

the Tiny commands show id, show pos, and show res. 

fun showid(<h, [sub : E I- _, _ 	_ : :_]>, y) = evaluation(sub(E), y) 
I showid(<h, [sub : (E,_) 	_ : :_]>, y) = evaluation(sub(E), y) 
I showid(<h, [ ]>, _) = fail 

fun showpos(<h, [sub : - F _, p = _ :: gs]>) = path(sub(p)) 

I showpos(<h, [ I>) = fail 

I showpos(_) = null 
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fun showres( t(<>,[_ :EI-e,_ =.v],...,[sub:success],<>)) = val(sub(v)) 

I showres(<h, [ ]>) = fail 

I showres(_) = null 

The Specification of Tiny with Full Granularity 

Now we define the debugger Tiny = ( E  Tiny
, 
 Tiny Tiny 

, A ) for an arbitrary p e 

PxE() based on Env and CSEnV.  The algebraic signature E 
Tiny  is the union 

of E,It, and the signature defined by the following BNF rules, which define the 

debugging language and language of results: 

command ::= reset I step mat I run until var =nat 

show var I show pos 

result 	::= fail I succeed I null I val(val) I path(path) 

where nat, var, and val are defined in E. The algebra A Tiny  agrees with AB 

on the interpretation of the symbols of EEtW,  i.e., A Tin/Env = AE, and gives 

the term algebra interpretation for the symbols defined by the above grammar. 

The next step is to define the debugging commands. Let Tiny  be as follows: 

m , Tiny 
(EH, g 

Tiny  T( Tiny )command x 1 (-' 	) resuit, 	Tiny,I) 

where EH is the set of debugging histories of p in CSEnV, g Tiny is the identity on 

EH, and the initial state ITiny  is defined as follows: 

jTiny - J initial(p) if p = E I- e,pa = v and FV(close(e,E)) = { } 

1 11 	otherwise 

Since the evaluation of expressions with free variables always fails, the definition 

of 1Tiny  guarantees that we only attempt to debug closed expressions. This is 

reasonable since in a real debugger we expect such errors to be detected in a 

static checking phase prior to the debugging phase. 



	

Chapter 6. Formal Specification of Debuggers 	 191 

Finally, we define the transition relation 	Tiny• For all dh E EH and d E 

he transiticn: 	

d,r 	- i 
dh 	'Tiny dh 

is defined as follows: 

d = reset r = null and dh' = 

d = step n (dh', r) = step(dh, 	n) 

d = run until id = n 	(dh', r) = run_until(dh, 	id, n) 

d = show id r = showid(dh, id) and dli' = dh 

d = show pos r = showpos(dh) and dli' = dh 

d = show res r = showres(dh) and dh' = dli 

Checking the Requirements of Definition 2 

It is easy to check that Tiny complies with Definition 2. First, notice that 

functions step, run_until, showid, showpos, and showres are total. It is then 

easy to check that 4  Tiny obeys the robustness requirement of Definition 2. 

The functionality requirement of Definition 2 is fulfilled by either the step n 

command. 

Specifications of Tiny using Step Predicates 

Now we define the step predicate nostm that was informally discussed in Sec-

tion 6.4.1. Then we change the step function to use nosum to enlarge the gran-

ularity of the debugging steps of Tiny. The predicate nosum is formalised as a 

DSL EflV  function that returns a boolean value: 

fun nosuin 
z 	- (t([_:J-e1 1  + e2 1 ,_=v 1 : : gs1J,t

ma ( uM 2,SINGLE2))) 

= false 

I nosuxn(_) = true 
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The pattern used in the first clause of the definition of the function nosuin was 

discussed in Section 6.5 (page 187). Therefore, nosum(dh) holds if and only if the 

result of nosuin(dh) is true. With this definition of nosum it is easy to change 

step as follows: 

fun step(h as <h', [_ : success]> , n) = (h, succeed) 

I step(h as <h', [ 1>, n) = (h, fail) 

I step(h, n) = if n>O then case next(h) of 

hi => if nosum(hi,st) 

then step(hl,n-i) 

else step(hl,n) 

else (h,null) 

If this new definition of step overrides the definition of page 188, no more changes 

are necessary in the specification of Tiny to include a coarser debugging step 

granularity. Moreover, since run_until is defined using step, we only have to 

include the nosum function in step. 

The next example defines another step predicate. This time we want to hide 

the states related to the lookup of a variable in an environment, and the state 

related to the application of the plus function. The latter state has a formula 

E I- e, () = v on the top of the goal stack, since this is the form of the third 

premiss of the rule that defines "+" expressions in page 172. Therefore, the 

pattern _ I- -, () = - will be used to describe the above formula. The function 

nolookup, defined below, is used to define a step predicate nolookup with this 

meaning. 

fun nolookup(<_, [_ : (E,e) - EV :: _]>) = false 

I nolookup(<_, [_ : - F- -, () => - : :_]>) = false 

I nolookup(_, _) = true 
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Here the first clause describes the lookup of variables and the second describes 

the application of plus as described above. Therefore, nolookup(dh) holds if 

and only if the result of nolookup(dh, st) is true. To include the nolookup 

function in the step command we just need to change the step function defined 

above, replacing the calls to nosum by the corresponding calls to nolookup. In 

the example of Section 7.4 we assume that the function step uses the nolookup 

function. 

This example illustrates the flexibility we achieve by using step predicates 

in the definition of the granularity of the debugging steps. We can imagine a 

debugger with a set of step predicates and a command that selects which one is 

to be used during the evaluation. Therefore, the same debugging session can use 

more than one step granularity, according to the needs of the user. 

6.7 Summary and Conclusions 

In this chapter we have studied the problem of how to give formal specifications 

of debuggers. This problem was addressed in three stages. First, we developed 

a formal definition of the class of Interpreter-debuggers. Second, we studied two 

problems that are common to the design of most debuggers: the granularity of 

debugging steps and the reference to sub-programs. Finally, we defined a notation 

to assist in the specification of debuggers. 

As far as we are aware, an abstract account of debuggers as presented in this 

section is novel in the literature. DSL differs from the approach of the Anim-

ator Generator in that it allows the definition of various debugging commands, 

whereas the Animator Generator only has a fixed set of commands. However, we 

have not addressed problems related to user interface, which is a strong point of 

the Animator Generator. 

In the examples, we demonstrated that definitions of concrete debuggers using 

DSL are abstract. We shall demonstrate in the Chapter 7 that these definitions 
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are suitable for formal reasoning. It remains to show how other debuggers for 

other language paradigms can be specified. We believe that debuggers for object 

oriented languages, logic programming languages, and imperative languages can 

all be expressed in DSL. 



Chapter 7 

Debugger Correctness 

In Chapter 6 we defined a class of debuggers that we called Interpreter-debuggers. 

An instance of this class is a debugger that uses the CS system defined in 

Chapter 5 as an interpreter. The specification of a concrete Interpreter-debugger 

is given in terms of the objects of a Relational Specification of the programming 

language, resulting in a definition that is easy to understand and reason about. 

Another positive point of Interpreter-debuggers is that they use the notion of 

evaluation step of Definition 5.5, which agrees with our intuitive notion of eval-

uation step. Therefore, we argue that Interpreter-debuggers are more likely to 

behave according to our intuition than debuggers designed in an ad hoc fashion. 

The main drawback of Interpreter-debuggers is that interpretation of pro-

grams using the CS interpreter is, in general, too inefficient to be used with large 

and complex programs. However, those programs are the most likely to have 

errors, and therefore to need debugging. Therefore, we are faced with the follow-

ing dichotomy: on the one hand, debuggers based on the CS system are easy to 

specify, understand, and reason about; on the other hand, there exist a practical 

need for more efficient evaluation techniques if we hope to use the debuggers with 

large and complex programs. 

A natural solution to this problem is to provide two definitions of a debug-

ger: an Interpreter-debugger to be used as the specification of the behaviours of 

195 
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a debugger, and another definition in which the evaluation of programs is per-

formed more efficiently, to be used as the actual implementation of the debugger. 

For this solution to be sound it is necessary to prove that the specification and 

the implementation are equivalent, i.e., that the two debuggers have equivalent 

behaviour. 

The means to specify Interpreter-debuggers, according to Definition 6.2, were 

already studied in Chapter 6. The main objective of this chapter is to define a 

formal criterion for the equivalence between a two specifications of a debuggers, 

that is, we shall study the problem of debugger correctness. 

Furthermore, we also characterise the class of Compiler-debuggers. An in-

stance of this class is a debugger in which a program is compiled and its code runs 

in a machine instead of being interpreted. We study aspects of the specifications 

of such debuggers and present a proof of equivalence between an Interpreter-

debugger and a Compiler-debugger. 

In Section 6.1 we discussed other approaches to formal semantics of debuggers. 

None of those approaches treats the problem of debugger correctness, nor do they 

consider Compiler-debuggers and their relationship with Interpreter-debuggers. 

Therefore, the results of this chapter are novel to this thesis. 

7.1 Introduction 

In this chapter we shall define what it means for two debuggers to have equival-

ent behaviours; thus, it is essential that we understand what characterises the 

behaviour of a debugger. According to Definition 6.2, an Interpreter-debugger is 

characterised by a monogenic labelled transition system of the form: 

(F, T(2) comman d x T(Y2) ru1, _) 

The entire behaviour of such a debugger is defined by the transition relation 

F X (T() c ,,,, mand x 	 x F. This transition has two components 

that characterise different parts of the behaviour of a debugger. The state com- 
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ponent of the transition relation characterises how the programs are evaluated, 

by describing how this evaluation changes the state at each transition. The label 

component characterises the interaction between the evaluation and the external 

world. The latter is the observable behaviour, in contrast with the internal beha-

viour characterised by the states. 

It is the observable part of the behaviour that matters when we compare 

two debuggers. We want to consider two debuggers as being equivalent if they 

have equivalent observable behaviour. This leads to the notion of observational 

equivalence between debuggers. In order to understand this notion of equivalence 

let us take two debuggers V and E, and compare their observable behaviour. 

Suppose that both debuggers are in the initial state, say e for V and I  for 

S. Let us experiment with the debuggers by issuing a debugging command d1  to 

both of them. On input d1  the debugger V moves to a state ds1  and produces 

a result r1 . Similarly, S moves to a state ds and produces a result i-i' , which is 

written: 
v (di,ri) 

I 	ds 

IE  (di,r) 

e ds1  

and the observable behaviours of these transitions are equivalent if r1  =r. As 

an initial proposal we will consider the relation = as the syntactical equality 

between results. Later on in this section we will see how this condition can be 

relaxed. Now, in the new current states we would like to repeat the experiment 

with some other debugging command, say d2 . Again, for the debuggers to be 

equivalent the new transitions must have the following form: 

(d2 ,T2) 
ds1 -+ ds2 

, (d2,r) 	, 
ds1  - ds2  

and r2  = r. The two debuggers will be considered observationally equivalent 

if they behave as described above for all possible experiments. This notion of 

equivalence certainly agrees with the discussion of the beginning of this section: 

two debuggers are equivalent if their observable behaviour are equivalent. Oh- 
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servational equivalence as discussed above has similarities with the notion of 

bisimularity developed in [Par8l] and strong equivalence in [Mil891. 

This notion of equivalence guarantees that we cannot distinguish between 

equivalent debuggers by looking only to the results of the debugging commands; 

thus, intuitively it is a sufficient criterion for equivalence. However, the require-

ment that the results of the debugging commands must be equal at each cor-

responding transition is too strong in general, for it does not allow different 

representations of the results in each debugger. 

A similar problem was encountered in Chapters 3 and 4 when we studied the 

equivalence of Relational Specifications and compiler correctness. For instance, 

in the compiler correctness case whenever a program evaluates to a value in the 

(standard) Relational Specification and to another in a Compilation, we required 

the two values to be equivalent with respect to an observation signature. 

Now let us turn back to the problem of debugger equivalence. Results of 

debugging commands will be, in most cases, the intermediate results of the eval-

uation of sub-programs. Therefore, it is natural to require the results of debug-

ging commands to be equivalent with respect to an observation signature. This 

establishes a strong connection between Observational Equivalence of Relational 

Specifications, including compiler correctness, and equivalence of debuggers, a 

connection we believe to be natural since debuggers in our framework are based 

on a Relational Specification. This connection is formalised in various results in 

Section 7.2. 

The above discussion leads to a notion of observational equivalence between 

debuggers with respect to an observation signature. This equivalence allows non-

observable results of debugging commands to have different representations in 

each debugger, while observable results must be (syntactically) equal. 

Another major objective of this chapter is to extend the framework developed 

in Chapter 6 to deal with Compiler-debuggers, i.e., debuggers in which programs 

are compiled into code for some machine and the evaluation of the program is 
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performed by running this code on the machine. Intuitively, those debuggers are 

likely to be the most relevant for practical applications and also to yield the most 

difficult proofs of equivalence. 

Our objective is to demonstrate that it is possible to formally define Compiler-

debuggers and to carry out proofs of equivalence involving such debuggers. A 

Compiler-debugger that is proved equivalent to an Interpreter-debugger will have 

the same observable behaviour as the Interpreter-debugger. We argued that 

Interpreter-debuggers are more likely to have an intuitive behaviour than debug-

gers defined in ad hoc fashion. Therefore, the equivalence between an Interpreter-

debugger and a Compiler-debugger implies that the latter also has an intuitive 

behaviour. 

7.2 Observational Equivalence between Debuggers 

Our initial objective is to formalise the notion of equivalence between debuggers 

that was informally discussed in the previous section. For this definition we have 

a similar flexibility as in the case of the equivalence between Relational Specific-

ations (see Section 3.4). We can define a relation parametric on an observation 

signature. Alternatively, we can include an observation signature as a component 

of the debugger and then define the equivalence relation on the class of debug-

gers with the same observation signature. In Section 3.4 we saw that adding the 

observation signature to the Relational Specifications led to simpler definitions. 

Therefore, we choose this approach also in the definition of equivalence between 

debuggers. 

Before we state the definition of equivalence between debuggers we must solve 

the following problem: the only abstract characterisation of debuggers that we 

have is that of Interpreter-debuggers of Definition 6.2. However, we require al-

ternative designs of debuggers because the evaluation of the programs by an 

Interpreter-debugger is often too inefficient. Therefore, we need a more general 

characterisation of debuggers in which the evaluation of programs is not required 
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to be that of an interpreter based on the CS system. 

A solution to this problem is to define a meta-class of debuggers by abstracting 

from how programs are evaluated. An instance of such a meta-class is a class 

of debuggers, e.g., Interpreter-debuggers as in Definition 6.2. Such an instance 

is obtained by supplying the meta-class with an evaluator for the programming 

language, e.g., the CS system as in the case of Interpreter-debuggers. This leads 

to the definition of Debugger-schema which is a generalisation of Interpreter-

debuggers obtained by replacing the CS system by a monogenic transition system, 

which describes the evaluation of programs and its transition relation defines the 

evaluation step used by the Debugger-schema. 

In the rest of this section, let S = (, 4, A, goBs)  be a Relational Spe-

cification with Declarative Semantics M, where Q = (S, F, H, ir), and ROBS = 

(S OBS ) FOBS, ROBS' ir). We will use E as a name for (S, F) and similarly EOBS as 

a name for (SoBs FOBS). The following definitions will be given for an arbitrary 

program formula p E P(1) for any set of meta-variables X. The generalisation 

to the entire set of program formulae P(Q) is straightforward, and is presented 

later in this section. 

The definition of a Debugger-schema is given with respect to a monogemc 
EV 

transition system EV = ( I'Ev -', 1Ev), the evaluator of p, where I E IFEV  is the 

initial state for p in EV. A particular definition of EV produces a particular 

instance of a Debugger-schema. We will see below how to define ev so that the 

instance of a Debugger-schema obtained is the class of Interpreter-debuggers. 

Definition 1 (Debugger-schema) A Debugger-schema for p based on S and 

EV is a quadruple (E D , i, AD, ED0Bs ) where ED  and  AD  are as in Definition 6.2 

and: 

• EDOBS  = (SDOBS , FDOBS ), where EDOBS 9 ED, is an observation signature 

with the following constraints: EOBS E EDOBS, i.e., the algebraic observa-

tion signature of S is included in EDOBS; and result E SDOBS. 
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L& is a quintuple 

(Fr ,g )  T(E D ) comman d X T(E D). l ,-4,I) 

where: rD, g, T(ED) comman d, T(ED),.esult, and — are as in Definition 6.2 

and 'D E IPD is the initial state, such that g(Ir) = 1EV• 

such that the following functionality requirement holds: for all ds e 1FD there 

exists d E T(ED) commofl d, r E T(E D),j , and ds' E D such that ds 	ds' and 
EV+ 	 EV+ 

 i 	
EV 

g(ds) —9 g(ds), where —+ s the transitive closure of -*. 	 D 

Let ED L  : ED be the sub-signature that defines the debugging language, i.e., 

T(ED L ) command = T(ED ) comman d. The class of Debugger-schemas for p with 

observation signature ED05  and debugging language defined by ED L  is denoted 

by Deb(ED L , ED OBS ). 

As discussed before, the definition of a Debugger-schema characterises a meta-

class of debuggers, which can be instantiated into a class of debuggers such as 

the Interpreter-debuggers. For this instantiation we need to give a definition of 

the evaluator EV. For instance, let us define EV to be the quadruple 

(EH, 	([Os  : 

where EH is the set of evaluation histories of p in S and =P4 is the function 

on EH defined in Section 6.3 (page 160). A Debugger-schema for p with the 

above EV characterises the class of Interpreter-debuggers for p based on S. A 

concrete Interpreter-debugger is an instance of this class obtained by suplying 

the remaining components of the Debugger-schema. 

So far we have generalised our definition of debuggers in order to allow more ef-

ficient program evaluation than the interpretation used by Interpreter-debuggers. 

We can now turn our attention to the problem of defining a notion of equivalence 

between debuggers. As we discussed in Section 7.1, we will define an equivalence 
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relation on Deb(ED L , ED OBS ) similar to the notion of bisimulation of [Par8l]. 

Our notion of Debugger Bisimulation differs from the (standard) notion ofbisim-

ulation in two aspects that will be discussed below. 

Informally, a bisimulation is a relation between the states of two transition 

systems that is preserved under the transition relation in the following sense: 

whenever we start with two related states and make a transition with equivalent 

labels we reach related states. In the (standard) notion of bisimulation the equi-

valence of labels is syntactical equality. In Debugger Bisimulation the commands 

of a transition must be syntactically equal and the results are compared with 

respect to an observation signature. That is, the results of corresponding trans-

itions are required to be syntactically equal only if they are observable according 

to the observation signature. 

Since the transition systems we are dealing with are Debugger-schemas the 

following definition could be simplified. For instance, trace equivalence [Mil89, 

page 2041 would also be suitable as an equivalence between debuggers. We chose 

bisimulation because it allows our approach to be generalised to debuggers for 

non-deterministic programming language without changing the notion of equi-

valence. We discuss such a generalisation in Section 8.2. 

Finally, we are ready to formalise the notion. of observational equivalence 

between Debugger-schemas with respect to an observation signature as an equi-

valence relation on Deb(ED L , EDOBS ). 

Definition 2 (Debugger Bisimulation) Let V = (ED, D  AD, ED OBS ) and 

e = (E6 , A E , A 6 , EDOBS ) be Debugger-schemas in DebP (ED L , EDOBS ). The 

Debugger-schemas V and E are observationally equivalent, written V £, if 

and only if there exists a relation B E IP D  x I' such that (1D j6) e B and for all 

(d, ds6 ) E B and d E T(E ' ) ommand the following holds: 

1. For all rD E T(E1').4  and d4, E rD, dsp 2d4 implies that there exist 

r6  E T(E 6),., and ds' E 1 6  such that ds6  ds and both requirements 

below hold: 
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(Bisimulation) (d4,, ds) E B 

(Observational Equivalence of Results) If rv E T(>2D OBS ) then rv = r. 

2. And conversely, interchanging V and L. 

A relation B as above is called a Debugger Bisimulation between V and E. 0 

Proposition 1 The relation is an equivalence relation on Deb(EDL , DoBs). 

Proof (Sketch) For reflexivity, just take B to be the identity relation on 

then it is trivial to check that V V for B. For symmetry, suppose that V L 

for a relation B. It is easy to check that L V for B'. For transitivity, suppose 

that V 1  V 2  for B 1  and V 2  V 3  for B2 . It is also simple to prove that V 1  V 3  

for the relation B 1  o B2 . 	 11 

The results of the rest of this section depend on the generalisation of a Debugger-

schema for p to a Debugger-schema for the entire set P()  of program formulae. 

First, let LV = ( I'Ev, EV , {IEvp}pEp(n)) be an evaluator for which is the 

same as in page 200 except that the initial state is replace by a Px()sorted set 

of initial states. A Debugger-schema for P(l) based on S and LV is the same 

as in Definition 1 except that for 

= (rD, g, T(D) comman d X T(>-D)resuu, 	, {'p}pEPx(I)) 

the initial state is replaced by a Px()sorted set of initial states such that for 

all p E Px(), g(I) = 'EVp 

The class of debugging-schemas for P()  with observation signature EDOBS 

and debugging language defined by ED L  is denoted by Deb(l, EDL, ED 0BS ). For 

V E Deb(1, ED L , ED0BS ), we denote by V the Debugger-schema for p E P(1) 

that is the same as V except that {Ip}PEpX(n)  is replaced by I,,. 

The relation can be naturally extended to an equivalence relation 	on 

Deb(1, ED L , EDOBS ): for each V, L E Deb(11, ED L , ED0BS ), V 	L if and only 
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if for all p E P(fl), V, 	Es,. Hereafter, we use 	for 	whenever P(Q) 

is understood in the context. It is clear that if V E Deb(IZ, ED L , DoBs) then 

V E Deb(ci', >DL , ED0ES ) for all ci' ci for which P(cl') 0 
{ }. 

An important motivation to define an equivalence between debuggers at an 

abstract level rather than to take an ad hoc approach is that we can prove prop-

erties about the abstract definition. In the rest of this section we will illustrate a 

practical example of such a property: we will prove that the equivalence between 

two Interpreter-debuggers implies the Observational Equivalence of their under-

lying Relational Specifications under certain conditions. We call this theorem 

the Coherence Theorem. 

Let us discuss the first of necessary condition to establish the Coherence The-

orem. Recall that the functionality requirement of Definition 6.2 (page 160) only 

requires the existence of a command that advances the evaluation. However, this 

requirement is not enough to guarantee the validity of the Coherence Theorem, 

as we will emphasise during its proof. 

Therefore, we need an extra functionality requirement that guarantees we 

can use a debugging command to check whether a program terminated success-

fully. This requirement is formalised by the definition of a Termination-explicit 

Interpreter-debugger (or simply a Termination-explicit debugger). 

Definition 3 (Termination-explicit Debugger) 

An Interpreter-debugger (JD,  1, Aj , DoBs)  is Termination-explicit if there exits 

a distinguished observable result succeed E 	 and for all ds e 

there exits d E T(D) comman d and ds' E FJ)  such that ds 	ds' and r = 

succeed if and only if cur(g(ds)) = [0 : e], for some substitution 0. 	D 

The minimal functionality of a Termination-explicit debugger guarantees we can 

evaluate a program step-by-step, and check whether the evaluation terminated 

successfully. From Theorems 5.1 and 5.3, this functionality is equivalent to be 

able to ask whether there exists a satisfying substitution for a program formula. 
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This functionality is still weaker than the functionality provided by the CS 

system since in the case of non-ground program formula, the CS system not 

only answers whether there exists a satisfying substitution but also constructs 

one. However, the minimal functionality of a Termination-explicit debugger is 

sufficient for the proof of the Coherence Theorem since we will only have to reason 

about ground program formulae. 

Theorem 1 (Coherence) Let 5, 7?. e Spec(QOBS) with algebras As  and A, 

and Declarative Semantics MS  and M respectively, where 

ROBS = (SOBS, FoBs, "OBS) ir) 

and ir is the only relation symbol in 11OBS•  Let V S 
V

1Z , 	e Deb(loBs , EDL, DOBS) 

be two Termination-explicit debuggers based on S and 7?. respectively. 

If A5/oB5 = AR/JOBS , then: 

DIZ 
	implies 	S_7?. 

Proof (Sketch) From Definition 3.4 we must show that: 

S V 	V 	implies 	M5/1oBs 00BS 

Therefore, we have to prove that Definitions 3.1(1) and 3.1(2) are satisfied. Since 

from the hypothesis A8 /EOBS = A/ 05, Definition 3.1(1) is trivially satisfied. 

Let us now prove that Definition 3.1(2) is satisfied, which in the context of this 

theorem is written: 

For all p E P(1oBs): 

p e dom T if and only if p E dom IF 	 (1) 

and if both sides of the above equivalence are true then 

M8 if and only if 
1JJAR() 	

(2) 

Eqinvalence (1) holds tnvially because AS  />oBS = A /EoBs . If both sides of 

equivalence (1) are false then we do not have anything further to prove. When 



Chapter 7. Debugger Correctness 	 206 

both sides are true we must prove that equivalence (2) is satisfied. Let us prove 

the left to right implication of (2) first. 

If As () 	M6  then, from the Completeness of the Computational Se- 

mantics (Theorem 5.3), there exists a CSSsequence  for p of the form: 

	

[Oo:p]CJlZ[e:] 	n > 0 

From the functionality requirement of Definition 6.2 there exists a command 

that advances the evaluation by one transition of CSS.  Therefore, there exists a 

sequence of debugging interactions in V'9  of the form: 

(d,r)" 
vs I — ds5  

such that cur(g(dss )) = [0 : E]. Since VS 	DR then there exits a relation 

B Erl~s x 	that is a Debugger Bisimulation between V' 9  and DR.  Therefore, 

it is easy to prove that there exists a sequence of debugging interactions in DR 

of the form: 
(d r e )" 

n I -p ds 

such that (dss , ds) E B. From the definition of Termination-explicit debugger 

(Definition 3) there exists a debugging command d' E T(EDL) command  and ds E 
D  such that: 

	

(d',r) 	I 

ds5  —+ ds8  

where r = succeed. Since V5 VR,  there exists a transition in DR  of the form: 

	

(d,r') 	I 
d —f  dsR  

and since succeed E T(D oBs ),. jg , then from the Observational Equivalence re-

quirement of Definition 2(1) it follows that r' = succeed. Since DR is Termination-

explicit then cur(g(ds)) = [0' : J, for some 0'. Therefore, there exists a IZ 

cSR sequence  for p, and from Soundness of the Computational Semantics (The-

orem 5.1), it follows that 'P (p) E ir 

The proof of the right to left implication in (2) follows similarly and is omitted. 

This finishes the proof of the Coherence Theorem. 	 o 
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7.3 Compiler-debuggers 

In this section we charactense the class of Compiler-debuggers and study aspects 

that are specific to the design of debuggers in this class. Our objective is to 

define a framework for the design of Compiler-debuggers along the lines of the 

framework defined in Chapter 6 for Interpreter-debuggers. As far as we are aware 

of, Compiler-debuggers have not been addressed in a formal and abstract way in 

the literature. Therefore, the results in this section are important contributions 

of this thesis. 

It becomes simpler to understand what characterises a Compiler-debugger by 

making a parallel with the notion of Compilation defined in Chapter 4. In a 

Compilation programs are evaluated in a three stage process. First, a program 

is compiled into machine code. Second, the code is loaded and executed on the 

machine. Finally, the result is unloaded from the machine whenever a successful 

evaluation is achieved. 

In a Compiler-debugger programs are debugged in a process with similar 

stages. Suppose that p is the program to be debugged. First, p is compiled into 

code for some (abstract) machine and this code is loaded into the machine for 

execution. The execution proceeds from an initial state until a halting point 

is reached; at such a point the control returns to the debugger, and we use 

the debugging commands to obtain information about the current state of the 

evaluation. The execution can then be resumed either from the current state, 

or from a previous state in the execution, until another halting point is reached; 

again, the control returns to the debugger. This process repeats until either the 

program reaches a final state in the execution (success or failure) or we find an 

error and finish the debugging session. 

A Compiler-debugger is an instance of a Debugger-schema obtained by using 

an evaluator based on an abstract machine for SV. Furthermore, a compiler is 

used to construct the initial state of EV. Therefore, the results of Section 7.2 are 

applicable to Compiler-debuggers. Our objective in the rest of this section is to 
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show how to design Compiler-debuggers and prove them correct. In Section 7.3.1 

we study various aspects that are specific to the design of Compiler-debuggers. 

We illustrate these aspects by gradually building a compiler for the language 

Fun, based on the compiler developed in Chapter 4. The code generated by this 

compiler contains extra code that is used for debugging purposes. 

In Section 7.3.2 we use the compiler developed in Section 7.3.1 in the spe-

cification of a Compiler-debugger for Fun programs. Finally, in Section 7.4 we 

prove that this Compiler-debugger is equivalent to the Interpreter-debugger Tiny 

defined in Section 6.6. 

Recall that in Section 4.3 we argued that the starting point for compiler design 

in our framework is a Relational Specification of the programming language. 

Similarly, we now advocate that the starting point for the design of a Compiler-

debugger is the specification of an Interpreter-debugger. An Interpreter-debugger 

will serve as a guide for the design as well as the reference point to establish the 

correctness of the Compiler-debugger. 

Therefore, the first step in the design of a Compiler-debugger is the specific-

ation of the Interpreter-debugger that will serve as our reference. In Section 6.6, 

we defined the Interpreter-debugger Tiny for the language Fun. We now have 

to add an observation signature to Ti'iy to specify the observable results of de-

bugging commands. The signature E  Tiny is defined by the following BNF rules OBS 

together with the definition of path terms presented in Section 6.4.2: 

result 	::= fail I succeed J null I val(val) I path(path) 

var 	::= xIyI... 
nat 	::= 0111... 
closure 

vat 	::= nat 

Therefore, as far as the results of Fun expressions are concerned, nat and path 

results are visible, whereas closure results are not, since there are no observable 

terms of sort closure. 
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Let Tiny = (ETY, A  Tiny 
A 

 Tiny , 
 E 5') be the new definition of Tiny where OB 

( y Tinv A Tiny AT) was defined in Section 6.6. For this definition of Tiny we 

will use the definition of the step command that uses the step predicate nolookup 

defined in Section 6.6. 

7.3.1 Aspects of the Specffication of Compiler-debuggers 

In this section we analyse two important differences between Compiler-debuggers 

and Interpreter-debuggers which can cause problems in establishing the equival-

ence between a Compiler-debugger and an Interpreter-debugger. Our objective 

in this section is to identify those problems and propose generic solutions for 

them at the level of an abstract Compiler-debugger. 

The first of these differences is the notion of evaluation step. While the 

steps of an Interpreter-debugger are the evaluation steps of Definition 5.5, in the 

Compiler-debugger the steps are those of the abstract machine on which the code 

of the program is executed. The second difference is the information about the 

evaluation that is available to the debuggers. An Interpreter-debugger has access 

to potentially the entire evaluation history of a program, whereas a Compiler-

debugger has access to a single machine state, and to the information about the 

evaluation that is encoded in this state. 

We start by studying the problems that arise from the difference between the 

two notions of evaluation step. The steps of the interpreter and the machine 

steps may differ in two aspects that are relevant for debugging purposes: the 

granularity of the steps, and the order of the evaluation of sub-programs. 

The Granularity of the Debugging Step 

We treat first the problems that arise from the difference between the granularity 

of the steps. To illustrate these problems, let us consider the Fun expression 

let x = 1 + 2 in x 
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and compare its evaluation in an empty environment using the CSEnV  system 

and the abstract machine CAM. The CAM code for the expression, denote by c, 

according to the compiler of Example 4.3 is as follows: 

push push. quote(1) swap . quote(2) add• cons cdr 

Below we present the evaluation of the formula EE  I- let x = 1 + 2 in x, (0) = v, 

using CSEnV , in which we omit the substitutions and elided some goals to simplify 

the presentation. In this evaluation, the hidden states according to nolookup are 

presented in boxes and the hidden transitions are not numbered. The numbered 

steps are the ones produced by the debugger Tiny. 

kE I- let x = 1 +2 in x, () = v] 
	

(1) 

 

 

[EE I- 	= 	:: EE I-plus(v1 ,v2),() = v1,:: 
...] 	

(4) 

[EE Fplus(v,v),O= v1  ::xF- V1&E Hx,(Q,)= v] 

[x+3eE Hx,(,)=v] R 	 (5) 

I [( xF-43 E ,x ) - LV]I 

[success] 

The first hidden state refers to the evaluation of plus function, which is hidden 

because it matches the pattern [_ : - F -, () = - : : j in the definition of 

the visibility predicate nolookup. Now, we show the steps of the evaluation of the 

code for the above expression, on the CAM. 
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(es ,push. push quote(1) swap• quote(2) . add•...) 	2  

e,push.quote(1).swap.quote(2).addcons ... ) 	c?  

CAM 
quote(1).s'wap.quote(2).add.coflS.cthe c )  

es ,swap.quote(2).addcoflScdr.E c ) 	2  

CAM (Q.1.().e,quote(2).add.cons.cdr.e c )  

CAM 
(2.1.O.Es ,addconscdrE c) -' 	 ( 6) 

CAM 
(plus(1,2)().e s ,cons.cdr& c ) -p 	 (7) 

CAM 
(((),3),cdrEc) -4 	 (8) 

(3 6s' ec) 

As we can easily check, there is no one-to-one correspondence between the 

CSEnV steps and the machine steps. In particular, there are more machine steps 

than there are steps of the interpreter, and we expect that this will often be 

the case. Furthermore, the use of the step predicate to hide parts of the evalu-

ation increased the gap between the two sequence of steps. However, for some 

sub-programs we may also expect that optimisations can reduce the number of 

machine steps; thus, for these sub-programs the interpreter may have more steps 

than the evaluation of the code on the machine. 

Our next objective is to show how to modify the machine steps to estab-

lish a one-to-one correspondence between the steps of the two evaluation of the 

programs. This correspondence is a necessary stage in the design of a Compiler-

debugger, whenever we intend this debugger to have the same observable be-

haviour of an Interpreter-debugger. We first discuss a solution for the example 

given above, and then show how it can be generalise to an arbitrary abstract 

machine. 

A solution to the particular problem treated above is to skip the steps (4), (6), 

and (7) of the CAM evaluation by hidding the underlined states. The remaining 



Chapter 7. Debugger Correctness 	 212 

five machine steps are on a one-to-one correspondence with the visible CSEnV 

steps. Furthermore, there is an important invariant preserved by each pair of 

corresponding states: the CAM state has at the top of the stack the machine 

environment corresponding to the source language environment that is in the 

top of the goal stack of the CSEnV  state. This can be checked, for instance, by 

comparing the two states below: 

Ix  ~-4 3EE 	 v] 	(((),3),cdr•Ec) 

where the machine environment (Q,3) corresponds to the source language envir-

onment x '-* 3 e. This invariant will be important in the definition of debugging 

commands over the machine states. 

The generic solution we are looking for is a mechanism to hide machine steps. 

We propose a mechanism similar to the concept of step predicates defined in 

Section 6.4.1, in this case applied to the steps of an abstract machine. This 

solution combines the notions of break-point predicate and debugging machine; 

we first give the definition of a break-point predicate. 

Definition 4 (Break-point Predicate) Let M = (EM, -, TM) be an ab-

stract machine. A break-point predicate in M is a total predicate on 

Let st 'M  st'  and BP be a break-point predicate in M; st is visible if BP(st) 

holds, and it is hidden otherwise. We denote by VSM (BP) the set: 

TM U {st: BP(st)} 

With the above definitions we are ready to define the concept of a Debugging 

Machine. 

Definition 5 (Debugging Machine) Let M = (EM, 	TM) be an abstract 

machine and BP be a break-point predicate in M. A debugging machine based 

on M with respect to BP is a terminal transition system (VS M (BP), VM ,  TM) 

where the transition relation —*vMC-- is defined as follows: 
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st 	st' if and only if there exists st1 ,... , st, E rm, for n > 0, such that 

st = St1j M st1 M 	M St  4M  st,. 1  = st' 

and st, st' E VS M (BP) and st1 ,. . . , st, VS M (BP). 	 0 

Given a debugging machine DM, a Compilation can be defined such that the 

execution of the code of a program in DM yields evaluation steps that match 

the CS steps of the evaluation of the program. The next example constructs 

a debugging machine based on the CAM of Example 4.1, with the objective of 

illustrating the above ideas. Moreover, this machine will be used in the definition 

of a complete Compiler-debugger in the next section. 

Example 1 In this example we define a debugging machine based on an exten-

sion of the CAM of Example 4.1. We first present this extension. 

We extend the CAM with the instructions brk, quoteid, quotep, and pop: 

brk is a break-point instruction whose execution causes the machine to halt; 

quoteid has an identifier as a parameter, and its execution loads the parameter 

on the top of the stack; quotep has an abstract syntax path (as defined in 

Section 6.4.2) as a parameter and its execution also loads the parameter on the 

top of the stack; and the pop instruction discharges the element on the top of 

the stack. 

The instructions quoteid and quotep require the CAM values to be extended 

with identifiers and abstract-syntax path. An abstract-syntax path is just a 

sequence of natural numbers, and is a term of sort path in the Relational Rules. 

The instructions quoteid, quotep, and pop can be simulated by sequences of 

CAM instructions; thus the only instruction that is necessary is brk. However, 

the use of quoteid, quotep, and pop makes the specification of the Compiler-

debugger simpler to understand, and also simplifies the proof of correctness. 

Although the signature of the new CAM is based on the signature 	1m of 

Example 4.1 we define QDCa, = (5DCam Flam 11DCam D>M) in fail to make this 
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example self contained. The sets SDCam 	DCam and F 	are defined by the following 

rr 

state ::= (stack, code) 

stack ::= ES 	val 	stack 

code ::= EC 	I inst• code 

val nat 	funval I 	(val, val) 	I 	() 
nat ::= plus(nat, nat) I 0 1 1 

funval [val, code] 

inst ::= quote(nat) I push 	car 	cdr I cons I swap 

I cur(code)  I app 	add 	quoteid(var) I brk 

I quotep(path)  I pop 

The meta-variables used in the following rules are those in XE,  to which we add 

the set Xath  generated by pa. The Relational Rules below extend the relation 
CAM . 	 . 	 . -p with the defimtion of the new mstructions discussed above. These rules are 

additions to the rules 4.1(1) to 4.1(9). 

I 	CAM 	I 
A Extension to the CAM 	 state -p state 

CAM 	 (10) 
(v.S,quoteid(id).c) -p (id.S,c) 

	

. CAM 	 (11) 
(S, quotep(pa). c1 -' (pa. S, c) 

	

CAM 	 (12) 
(v.S,popc) -p (S,c) 

CAM (S,brk.c) -* (S,c) 
(13) 

Comment 

In rule (11), the definition of the instruction quotep(pa) adds pa to the top of 

the stack instead of replacing the top of the stack by pa. The reason is that the 
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path stored on the top of the stack will be only used for debugging purposes, 

and will be discharged by a pop instruction such that the normal evaluation of 

the program may continue on the original stack. If quotep(pa) replaced the top 

element of the stack by pa than we would need an extra push instruction to save 

the original top before each quotep when compiling Fun expressions; by defining 

quotep as above we avoid this extra push instruction in the compilation. 

CAM CAM 
The transition -' defines the abstract machine CAM = ("CAM -p , TJ ) 

where rCAM = T(Y m ) state . Now, let BP be a total predicate on rCAm  defined 

FDCa Ca as follows: for all s E T(! m ) stack, 07) E 
T(Cam)jnçj, and c E T(>! m ) code : 

BP((S, op. c)) is true if and only if op = brk 

This defines a debugging machine DCAM = ( I'DCAM 
DCM T) where the set 

of states rDCAM = VS(BP) and 
DM  is defined as in Definition 5. 	 D 

The next example changes the code generate by the compiler of Example 4.2. The 

objective is to establish a correspondence between the CSEnV  steps and DCAM 

steps of the evaluation of expressions. This correspondence is achieved by the 

correct placement of brk instructions on the code of the expressions. 

Example 2 This example defines a compiler for the language Fun into code for 

the DCAM by a Relational Specification based on the compiler lJrans defined in 
DComp 

Example 4.2. This compiler is defined by a relation (comp_env, exp) - state, 

which uses (comp_env, var) I LC code and env E  (comp_env, val) of Trans 

as auxiliary relations. 

The signature for this compiler is the union of the signature of the compiler 

of Example 4.2 and the signature Q1m  defined in Example 1. Moreover, the 

meta-variables used in the Relational Rules are those defined in XE. 

The set of Relational Rides defines the code generation for expressions, in 

which break-point instructions are inserted in order to establish a correspondence 

between the machine steps and the CS'V  steps. As in Example 4.2, we write a 
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sequence Opi • ... • op, 	using the usual sequence notation (opi,... ,op), and 

denote the concatenation of two code sequences c and c' by c©c'. 

DComp 	I 
Code Generator 	 comp..env I- exp -p code 

	

DComp 	
(1) 

CE F- n -p (brk,quote(n)) 

(CE,id) 	'LC C 
DComp 	

(2) 
GEl- id -* (brk)@c 

DComp 
(CE,id)l-e -* c 	

() DComp 
CE F- fn id. e -p (brk,cur(c)) 

DComp 	 DComp 

	

CEI-e1  -* c1 	CEF-e2  -p c2  
DComp 	

(4) 
CE I- e1  + e2  —p (brk,push)©c1 ©(swap)©c2@(add) 

DComp 	 DComp 

	

CE F- e1  —p c1 	CEF-e2  -* C2 

DComp 	
(5) 

CE F- let id = e1  m e2  -* (brk,push)©c 1 ©(cons)c2  

DComp 	 DComp 

	

CEF-e1  -* c1 	CEF-e2  -* c2  
DComp 	

(6) 
CE I- e1 (e2) -* (brk,push)©c1 @(swap)@c2©(cons,app) 

DComp 
Compiler 

 
Fenv, ezp) —p state 

DComp 

	

E—+E(CE,v) 	CEF- e - c 
DComp 

(E,e) —p ( V.ES,C) 

This finishes Example 2. 

The above compiler generates the following DCAM code for let x = 1 + 2 in x 

in the empty environment: 

(7) 

(brk,push,brk,push,brk,quote( 1) ,swap,brk,quote(2) ,add,cons,brk,cdr) 

We denote the above code by c'. If we execute this code on the DCAM machine, 

starting at the state (()ES,  c'), we obtain the following DCAM steps: 
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DC M 
(().ES, brk• push. brk push brk• quote(1) ...) 	 (1) 

(QE
DCAM  s ,brk.puSh.brk.quote(1).swap...) == 	 (2) 

(()...s 	 DCAM 
5 ,brk.quote(l).swap.brk.quote(2)....) == 	(3) 

(Q.1.Q.es,brk.quote(2).add.cons.brkcdr.ec) DM 	
(4) 

(),3),brk.cdr.Ec) 
D4 	

(5) 

(3. E,6) 

The above steps nnd states are in a one to one correspondence with the CSEnV 

steps and states of page 210, after hiding from that history the states in the boxes. 

Therefore, using the concept of a debugging machine we achieve the one-to-one 

correspondence between the machine and interpreter evaluation steps. 

The Evaluation Order of Sub-programs 

Let us consider other problems related to the difference between the two notions of 

evaluation step. The point we want to emphasise is that compilation techniques, 

and in particular optimisation, may break any correspondence between the code 

and the original program; thus the evaluation of the code will produce steps that 

not only have different granularity, but in which the order of the evaluation of 

the sub-programs may be different from the steps of the interpreter. 

To illustrate this problem, let us consider the code for the sub-expression 1 + 2 

in the expression let x = 1 + 2 in x: 

(brk,quote( 1) ,swap, brk,quote(2) ,add) 

Cl 	 C2 

In this code sequence, the sub-sequences c1  and c2  are the code of the sub-

expressions 1 and 2 respectively. This correspondence between the source pro-

gram and its machine code greatly helps in establishing a correspondence between 

the steps of the interpretation of the program and the steps of the evaluation of 

its code on the machine. 
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However, there are at least two ways of replacing this code sequence by an-

other sequence that performs the same computation, i.e, produces the constant 

value 3 on the top of the machine stack, and whose evaluation steps do not cor-

respond to the CSEnV  steps. The first equivalent sequence is the single instruction 

quote(3); a reasonably simple optimiser should be able to perform this optim-

isation. Because the sum operation is commutative, another equivalent sequence 

is the code in which the relative order between c1  and c2  is changed, resulting in 

the following sequence: 

(brk,quote(2) ,swap,brk,quote( 1),add) 	 (*) 

The final evaluation of each of the three sequences of code produces 3 on the top 

of the stack. However, the evaluation steps resulting from the evaluations of the 

two alternative sequences do not match the CSEnV  steps. 

A possible solution to reestablish the correspondence between the steps is to 

define step predicates at the interpreter level that regard the evaluation of the 

expression 1 + 2 as a single step, hiding its sub-evaluations. Then, the correct 

placement of brk instructions in any of the above code sequences may also pro-

duce the machine steps in which the evaluation of 1 + 2 is considered as a single 

step. Therefore, the correspondence between the steps is established again. For 

instance, for the code sequence (*) the following placement of brk instructions 

will yield a single DCAM step for the evaluation of the entire sequence: 

(brk,quote(2),swap,quote( 1),add) 

The problem of debugging in the presence of optimised code is a difficult one 

mainly because the optimisations may break the correspondence between the 

code and the source program, as discussed above. This problem has been ad-

dressed by several authors in the literature [Hen82,ZJ91]. The basic objective of 

those approaches is to obtain a debugger with "expected behaviour" even in the 

presence of optimised code. Their main problem is that, due to the absence of a 

formal definition of evaluation step, the notion of "expected behaviour" cannot 



Chapter 7. Debugger Correctness 	 219 

be precisely defined. Therefore, it is difficult to conclude whether their objectives 

were achieved, since those objectives were not clearly defined. 

In the framework of this thesis we do have a formal notion of evaluation 

step that agrees with our intuition; thus, we have the means to give a precise 

definition of "expected behaviour". This behaviour can be specified in a concrete 

Interpreter-debugger, and step predicates can be used to refine this behaviour 

with coarser or finer debugging steps as required by the user. Then, break-point 

predicates can be used to make the behaviour of the Compiler-debugger to match 

the behaviour of the Interpreter-debugger, so that we can prove that the actual 

behaviour of the Compiler-debugger matches the expected behaviour defined by 

the Interpreter-debugger. 

We shall not discuss the problem of debugging optimised code in this thesis 

any further. However, this is certainly an important problem to be formally 

addressed, and the framework developed in this thesis can be used in this task. 

The Access to Debugging Information 

We now discuss a second difference between Interpreter-debuggers and Compiler-

debuggers that is essential for debugging purposes: the access to information 

about the evaluation. An Interpreter-debugger has access to the entire evaluation 

history of the program; a Compiler-debugger has access to only the contents of a 

single machine state. Therefore, the information that is necessary for a Compiler-

debugger must be encoded in the states of the machine or else must be explicitly 

built and manipulated by the debugger. The main conceptual difference between 

the two kinds of information is that evaluation histories are automatically built 

by the CS based interpreter, while in the Compiler-debugger the information 

must be constructed, and manipulated explicitly. 

To illustrate some problems that may occur when a debugger has to be de-

signed using only the information that is in the machine states, let us compare 

a CSEnV  state of the evaluation of the expression let x = 1 + 2 in x with the 

corresponding DCAM state of the evaluation of the code of this expression. At 
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step (5), the two corresponding states are as follows, where the state on the left 

is the CSEnV  state, and the one on the right is the DCAM state: 

[x3.EEFx,(,.)v] 	 (((),3)es,brk.cdrc) 

As far as the evaluation is concerned, both states have equivalent information. 

However, for debugging purposes the CS Env  state has more information than the 

DCAM state. For example, the identiller x and the path of the current expression 

are missing in the machine state. Moreover, we cannot reconstruct these data 

from the machine state as it stands 

A possible solution, to this problem is to add to the normal code of the 

above expression, some debugging-code that builds the required information on 

the machine states. For instance, using quoteid instructions we can build an en-

vironment with the variables in it, and using the quotep instruction we can place 

the path of the current expression on the top of the stack. These informations can 

then be used by the debugger to evaluate the debugging commands. With a suit-

able debugging code we build the machine state ((a, (x, 3))•es, brk.cdr.e c ) 

to replace the state ((( ),3) es,brk• cdr CC). 

Let us now consider another instance of the same problem. Let the two states 

below be hypothetical states of the evaluation of some Fan expression: the first 

is a CSEnV  state; the second is its corresponding DCAM state: 

[x '-p (CE, y, 1 + 2,pa) F- x,pa'  = v] 

(((),[Q,brk. quote(1) swap brk• quote(2) add . -Cl) . , brk• cdr . 

This situation is rather different from the one we just discussed above: in this 

case the closures in each environment do not have the same representation. If a 

debugger is required to output the value of ifrom the above states, an Interpreter-

debugger using the CS state would output (CE,  y,l + 2, pa) and a Compiler-

debugger using the DCAM state would output 

[,brk. quote(1) . swap . brk . quote(2) add . CC] 
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A possible solution to this problem is also to include enough information in the 

machine state so that we can reconstruct the CS Env  closure from the states. 

Another solution is to consider closures as being non observable, by choosing an 

appropriate observation signature for the debugger. This second solution agrees 

with the view that, in most cases, we are not interested in looking to the internal 

details of the closures when debugging. The latter is the solution used in Tiny 

since closures are non-observable according to 

Therefore, we can solve the problem of access to information on the Compiler-

debugger in two ways. We can add the information needed by the debugger on 

the machine state by generating debugging code that construct such information. 

Or else, we can make the information non observable in the Interpreter-debugger, 

such that we do not need to include debugging code. The choice for which solution 

to adopt depends on the functionality we require from the debugger. However, 

both solutions are supported by our framework. 

The next example shows another compiler for Fun into DCAM code; the code 

it generates builds and manipulates machine environments with identifier names, 

and creates a pointer to the current source sub-expression on the top of the stack 

of some states. The objective is to establish a correspondence between the CSEThV 

and the DCAM states with respect to the (observable) source level information 

of the state, as well as with respect to the visible evaluation steps. 

Example 3 This example modifies the definition of the relation compenv I- 
DComp 

exp —+ code. The code the new relation generates for expressions builds and 

manipulates environments with identifier names. For this, an environment be-

comes a pair whose first component is an environment and the second component 

is a pair of an identifier and its value, e.g., (O,(x,3)),  where  () denotes the empty 

environment. 

There are three parts of the code generator where changes are required to 

manipulate the new form of machine environment: the look up code must have 

an extra cdr instruction to project the value out from the pair of identifier and 
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value; the code for let expression must add the identifier, as well as the value 

of the first sub-expression, to the current environment; and the code for closures 

must update the environment with the identifier of its formal parameter. For the 

last change, we will need to prepend the following code sequence to the code of 

each closure: 

(push,car,swap,cdr,push,quoteid( id), 

swap,cons,cons,quotep(pa) ,brk) 

where id is the formal parameter of the function, and pa is the path of the 

function's body. In rule (3) we refer to this code as adj(id, pa), and use it as a 

parameterised macro. 

To include the pointer to the current source expression we use the technique 

developed in Chapter 6: during the compilation we build the abstract-syntax 

path pa of each sub-expression that is being compiled; this path is compiled into 

a quotep(pa) instruction whose execution loads the path pa on the stack. The 

debugger can use this path to identify the source expression that is about to be 

evaluated by, for instance, looking up which source expression the path refers to 

on a table built during the compilation. 

The signature for the new compiler remains the same as in Example 2. The 

new rules for the code generator and the compiler are given below. 

Debugging-Code Generator 	 compenv I- exp, path 
DC-omp 

 code 

	

DComp 	
(1) 

CEI- n,pa -* (pop,quote(n)) 

	

(CE,id) 	LC C 

	

DComp 	
(2) 

CE I- id,pa -i (pop)©c©(cdr) 

DComp 
(CE,id)F-e,pac.4 -* c 	

() DComp 
CE F- fn id. e,pa - (pop,cur(adj(id,pao)©c)) 



	

Chapter 7. Debugger Correctness 
	

223 

	

DComp 	 DComp 
CEF- e1 ,pacl —* c1 	CEF-e2 ,pao —* c2  

DComp 	
(4) 

CE I- e1  + e2 , pa. — (pop,push,quotep(pa o 1),brk)©c1 © 

(swap,quotep(pa o ) ,brk) © c2 © (add) 

	

DComp 	 DComp 

	

CEl-e1 ,pao -p c1 	CEI-e2 ,pao ! -p c2  
 

DComp  
CE I- let id = e1  in e2 , pa —' (pop,push,quotep(pa o 2),brk)©c1 © 

(push,quoteid( id),swap,cons,cons, 

quotep(pa . ),brk)©c2  

	

DComp 	 DComp 

	

CE F-  e1, pa <>.. -p Cl 	CE I- e2 , pa o ----* c2 
 

DComp  
CE F- e1 (e2 ), pa -p (pop,push,quotep(pa <>1),brk)©c 1 © 

(swap,quotep(pa c' ),brk)©c2©(cons,app) 

	

Compilation of Environments 	 eriv 	E (comp_env, val) 

	

CE 	E (&CE, ()) 

	

E 	(CE, v) 

id F-+ n - E __*E ((CE, id), (v, (id, n))) 

DComp 
E' 	(CE',v') 	(CE',id') F- e',pa —4 c 	E 	(CE,v) 

(9) 
id i–* (E', id', e',pa)• E 	*E ((CE, id), (v, (id, [v', adj(id',pa)©c]))) 

Comp 
Compiler 	 I  (env, exp) — state 

	

E —*ECE,V 	CE F-  e,pa — c 

(E,e,pa) — i (pa.v.e5 ,(brk)©c) 
DComp 

	
DComp 	

(10) 

Comments 

 

 

(3) - (6) Each rule constructs the abstract-syntax path of the sub-expressions. 
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(7) The compiler now has a third input component pa that is the initial path of 

the expression e. 

The above rules finishes the new compiler of Fun into DCAM. Informally, we will 

use DComp as a name for a Relational Semantics that has the above rules and 

the relation 
DC
-

om
p
p 	

i as the nitial relation. This finishes Example 3. 	 0 

The code generated by the above compiler for the expression let x = 1 + 2 in x, 

with initial path () and on the empty environment, is given below: 

(pop,push,quotep( (, ) ) ,brk,pop, 

push,quotep((, 2, 1)),brk,pop,quote(1),swap, 

quotep( (, , ) ) ,brk,pop,quote(2) ,plus,push, 

quoteid(x),swap,cons,cons,quotep((L )),brk,pop,cdr,cdr) 

We refer to this sequence by c". If we start the DCAM with state 

((0) . () . em (brk)©c"©e c ) 

the current state after 5 steps is: 

(2;, 3)) e, brk . pop cdr cdr• CC) 

At this state (Q, ) indicates that boxed sub-expression of let x = 1 + 2 in j is 

the current expression since (Q ) is the abstract syntax path of this expression. 

The environment (( ), (x, 3)) contains the identifier x as well as its value 3. If 

closures are not observable, then the machine states resulting from the evaluation 

of the code generated by the above compiler contains enough information for a 

definition of a Compiler-debugger with the same observable behaviour as Tiny. 

In the next section we show a design of a Compiler-debugger called CTiny that 

uses the above compiler, and in Section 7.4 we prove the equivalence between 

Tiny and CTiny. 

The inclusion of brk and quotep instructions in the code of expressions 

for debugging purposes is inspired by the techniques used in a concrete imple-

mentation of a compiler-debugger for the CHILL language presented in [CCP91]. 
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Therefore, our techniques to generate debugging code are realistic. This also 

suggests that our framework can express practical Compiler-debuggers. 

Debugging Code and Performance 

Let us now discuss the interaction between the two problems discussed above: the 

different notions of evaluation step and the different access to information about 

the evaluation between the Interpreter-debuggers and the Compiler-debuggers. 

This interaction is studied informally, but we argue that the conclusions drawn 

from this discussion apply to most debuggers in practice. 

In order to be able to design a Compiler-debugger whose behaviour is equi-

valent to the behaviour of an Interpreter-debugger, we must undertake two tasks. 

First, to establish a correspondence between the evaluation steps and states in 

both debuggers. Second, to encode in each machine state the observable source 

level information about the evaluation that is required by the debugger. 

On the one hand, how much information needs to be encoded depends directly 

on the observation signature of the debuggers: in general, the larger the signature 

the more information is necessary. On the other hand, the states in which this 

information must be present depends on the granularity of the evaluation steps: 

the finer is the granularity the more often the information will be required; thus, 

it will have to be present in more states. 

To encode the source information in the machine states often requires machine 

code to build and manipulate this information, which we call debugging-code. For 

instance, the adj code sequence in the compiler of Example 3 is a sequence of 

debugging-code. Since this code does not perform any computation related to the 

actual evaluation of the program, it will cause an overhead on the evaluation of 

the program. This overhead is directly proportional to how much information is 

necessary to be encoded and inversely proportional to how often the debugging-

code has to be evaluated. 

If we consider that a debugger is more expressive the finer is the granularity of 

its steps and the more information about the evaluation it provides, we have the 
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following problem: the more expressive the debugger is the larger the overhead 

on the evaluation of the program. This problem is part of the specification of any 

Compiler-debugger in practice, although often it is not identified nor addressed 

explicitly. Moreover, the literature does not present any formal approach to this 

problem. 

The framework we defined in this chapter for the specification of Compiler-

debuggers forms the basis for such an approach. Although we do not treat this 

problem in depth, it is an interesting problem for future work. 

Concluding Remarks 

In this section we studied various aspects of Compiler-debuggers: the evaluation 

step, the access to information about the evaluation, and the influence of debug-

ging code on the performance of the programs. Each of these aspects is part of the 

specification of every Compiler-debugger in practice. However, the approaches 

to debugger design in the literature in general do not treat these problems ex-

plicitly. When those problems are addressed, they are addressed in an ad hoc 

fashion with solutions that in general cannot be applied to different debuggers. 

In our approach, these problems are treated for an arbitrary Compiler-debugger. 

In the next section, the aspects discussed in this section will be used in the 

complete specification of a Compiler-debugger. 

7.3.2 The Specification of a Compiler-debugger 

In this section we design a debugger, called C Tiny, based on the compiler of Fun 

into DCAM, defined in Example 3. 

A Specification Notation for Compiler-debuggers 

We will use the notation DSL defined in Section 6.5 in the specification of 

Compiler-debuggers as well. In the specification of a Compiler-debugger we need 

the ability to describe single evaluation states; thus the sequence patterns of DSL 
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are not necessary in such specifications. Therefore, we will only use the subset 

of DSL that has the constructor patterns. In this sense, the subset of DSL used 

in this section is just the untyped A-calculus with pattern matching. 

Since DSL is parametric on a Relational Specification, we will use the in-

stantiation of DSLby DComp. For this instantiation we define the functions 

corresponding to initial and next that were defined in Section 6.5. The func-

tion corresponding to initial is called M_initial, and in its definition recall 
DComp 

that -+ is a partial function. 

	

M_initial(E F- e 	v) = st 	if there exists st E 
p 

such that (E, e) DCom 
-~ st 

M_initial(E I- e = v) = (ES,EC) otherwise 

The function M_next is the corresponding to the function next. In the definition 

	

of Mnext, recall that9 	is a partial function. 

Mj.iext (st) = st 	if stDC st 

Mnext (st) = (Es, E) if there is no st' such that st' 	st' 

The function M_initial builds an initial DCAM state from an environment and 

expression, by compiling them using the compiler of DComp. The function 

Mnext advances the current state by one step of the DCAM machine. These 

are the only pre-defined functions that produce states as results; in particular 

Miiext is the only function that advances the evaluation; thus, only states that 

are derivatives of an initial DCAM state can be reached using the pre-defined 

functions. This simplifies the verification of the correctness condition of Defini-

tion 1 for a Compiler-debugger using the pre-defined functions. 

Some Auxiliary Functions 

The next functions are defined to be used in the specification of the debugging 

commands of CTiny. In these definitions, the results of the functions are the 

terms of sort result defined in the specification of Tiny in Section 6.6 (page 190). 
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The following function specifies a stepping command that advances the evaluation 

by n DCAM steps, where n is an integer number. 

fun M..step((vS,&c), n) = ((v.S,e c ),succeed) 

I Mstep((es,Ec), n) = ((e s ,ec ),fail) 

I M...step(st, n) = if n>O then M_step(M_next(st),n-1) 

else (st,nul1) 

The function lookup searches for the value of an identifier on a machine 

environment. 

fun Miookup((ME(x,v)), y) = if x = y then val(v) 

else lookup(ME,y) 

I MJookup), y) = null 

The function M_run_until advances the evaluation until x has value i in 

the current machine environment. In its definition, the pattern (pa . E • -, _) 

matches a state that has a path pa on the top of the stack, and a machine 

environment E on the second position of the stack. 

fun M..run_until((v•S,Ec), x, n) = ((v•S,E c ),succeed) 

I M..zun_until((&g,ec), x, n) = ((es ,ec ),fall) 

I M.run..until (St as (pa . ME . ,), x, n) = 

case lookup(ME, x) of val(nl) => if ni = n then (s, null) 

else Mrun_until(Mnext(st), x, n) 

I - => M.iun_until(Mnext(st), x, n) 

The following functions will be used in the specification of the C Tiny commands 

show id, show pos, and show res 
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fun M_showid((_ • ME -, ), y) = Miookup(ME, y) 

I M_showid((es , EC), y) = fail 

I M_showid(_,_) = null 

fun M_showpos((pa • -, _)) = path(pa) 

I M_showpos((e 5 , EC)) = fail 

I M_showpos(_) = null 

fun M_showres((v • -, 	= val(v) 

I M_showres((Es , EC)) = fail 

I M_showres(_) = null 

The Specification of CTiny 

We define a Compiler-debugger for an arbitrary program formula p e PxE(c0mP). 

DCAM We start by defining an evaluator for p. Let EV = (FDCAM, = IEV) 	be 

the evaluator derived from the debugging machine DCAM of Example 1 where 

'Ev = M_initial(p). 

We now define the Compiler-debugger CTiny = (ECT, A  CTiny ACT2 	Tiny 
)' OBS 

for p based on DComp and EV. The algebraic signature ETZI  is the union of 

>2DComp and the signature that defines the debugging language and language of 

results. This signature is the same given for Tiny in Section 6.6 (page 190), ex-

cept that the function operations of sort val are defined in Em1)  instead of in 
y2 Env .  

DComp The algebra A CTiny  agrees with A 	on the mterpretation of the symbols 

of EOComp  and give the term algebra interpretation for debugging commands and 

results. The observation signature E Tiny was defined on page 208. OBS 
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It remains to define the debugging commands. Let 
1T27!,  be the following 

labelled terminal transition system: 

CTiny T(CTflnI\ 	X T(E' 	 CTiny 
(rDCAM, 9 	, 	) command 	 )result, 	CTiny' 	) 

where the initial state I CTiny = 
'EV' and g CTiny is the identity function on 

DCAM• It remains to define the relation 	CTiny• For all st E rDCAM and 

d E 	
CTiny 

command the transition: 

F 

	

st d,r ' CTny — 	st 

is defined as follows: 

d = reset 	 r = null and stF  = ICTiny 
 

d=step n 
	

(st', r) = M_step(st, n) 

d = run until id = n (st', r) = M_run....until(st, id, n) 

d = show id 	 r = M_showid(st, id) and st' = st 

d = show pos 	r = M_showpos(st) and st' = st 

d = show res 	r = M_showres(st) and st' = st 

Checking the Requirements of Definition 1 

It is easy to check that CTiny is a Debugger-schema for p based on DComp and 

EV. First, notice that functions M_step, M..xun_until, M_showid, M_showpos, and 

M_showres are total. Then it is easy to check that 'CTinY obeys the robustness 

requirement of Definition 1. The functionality requirement of Definition 2 is 

fuffilled by the step n command. 

7.4 A Proof of Debugger Correctness 

In this section we prove that the Compiler-debugger C Tiny is equivalent to the 

Interpreter-debugger Tiny of Section 6.6, which we redefined in Section 7.3 to 

include an observation signature. The main objectives of this example are to II-

lustrate the proof method of Debugger Bismiulation and demonstrate that proofs 
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of debugger correctness are feasible. Not all parts of the proof will be given in 

full detail. 

Proposition 2 The debuggers Tiny and CTiny are observationally equivalent, 

i.e., Tiny CTiny. 	 U 

The proof of this proposition is given for an arbitrary p E PxE(1Z). To carry 

out this proof we define a relation B C DH x EV  and prove that B is a Debugger 

Bisimulation according to Definition 2. 

We first prove some lemmas that will simplify the proof of Proposition 2. For 

these lemmas we define a relation G on the carriers of observable sorts of the 

algebras AT  and ACTI. 

Definition 6 (The Relation G) Let us define a S'-sorted relation G, such OBS 

that for all s E r Tiny
OBS' G3  C A Tinyx ACTInY. 

For s E {var, mat, path}, G5  is the identity relation on ATt?Y  x 
3 	 3 

Gjunvai = 

{([E, id, e, pa], [S, adj(id, pa)©c]) : E 	E  (CE, S) and (CE, id) I- e, pa' c} 

G 0, = Gjjnvai + Gnat  

G,.esuit = G 01 + Gexp  + Genv  + Gvar  + Gpath 
	 U 

Since the algebras A Tiny  and ACTI  give the same interpretations for terms in 

T( ETI2Y) it is trivial to prove that G : ATI , AcTy We will assume 
OBS 	 OBS 

this fact in the following proofs. 

In the rest of this section we use the following notational convention: whenever 

E I- e, pa =:> v is a program formula in Px(1 E), VE and ce  denote the. DCAM 

environment and DCAM code such that E _*E (VE, CE) and CE I- e, pa => c. 

Similarly, whenever (E, id) v belongs to VE and cd denote the 

DCAM environment and DCAM code such that E _*E (VE, CE) and CE I- 

id, () 	Cid. 
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The following lemma states the equivalence between environment manipula-

tion in Env and DComp. This lemma will be used in the proof of Lemma 2. 

Lemma 1 (Environment Lemma) 

For all E E T( ' ) env , s € T1DComp\ 	e T(FY C0mP ) COdC , ( id )  id) e Gvar , I stack, 

v E X 1 , substitution 9, and goal stack a: 

If there is a CS sequence such that [9 : (E, id) 	v :: aJ*[91 : a] 

CAM* , 
then there is v '  e Aval 

DCOmP such that (VE . S, Cid c) -) (v • S, c) 

and (vO', v') E G vai. 

And conversely. 

Proof (Sketch) The proof of Lemma 1(1) is by structural induction on E. Since 

we are assuming that there exists a CS sequence, then E 0 EE. 

E = id' '-f V eE 1 	In this case, since there is a CS sequence, id' = id. Fur- 

thermore, t'E = (VEt, (id,)) and Cd = cdr cdr. Then v9 '  = V in the first eval-

uation, and v '  = v'  in the second evaluation. From the definition of the relation 

env (val )  comp_env) in Example 3, it is simple to check that (v,7) E 

I E = id' '- V E' I If id = id', this case follows as above. If id 0 id', then 

VE = (VEt, (id', 7)) and Cd = carS c' cdr. Then the result follows by applying 

the inductive hypothesis on the following states: 

[9" : (E', id) 	L v :: a] 	(VEt . S, c' c) 

The proof of Lemma 1(2) follows similarly by structural induction on VE. 	0 

The following lemma establishes a correspondence between the steps of the eval-

uation on the CSEfl  system and on the DCAM. Therefore, it is essential in the 

proof of the equivalence between the debuggers. 
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Intuitively, the lemma says that if CSEnV  takes N visible steps to evaluate a 

sub-program to its result, then, on the machine, the code of the sub-program 

evaluates to its results in N - 1 DCAM step followed by M > 0 steps of the 

(underlying) CAM. In Lemma 3, we shall see that the CAM steps that complete 

the Nth DCAM step of the sub-program also adjust the stack in order to establish 

a correspondence between the CSEnV  state and the maclime state with respect to 

the information about the evaluation. 

Recall from section 6.4.1 that, for any debugging history dh and step predicate 

SP, I dli  Isp denotes the number of visible steps in dli according to SP. In the 

next lemma we use I dli Inolookup  denoting the number of visible steps of dli e 

DH according to the step predicate nolookup defined in section 6.6. Moreover, 

whenever st 
k 
st'  is a debugging history, we abbreviate I st 

k 
st' nolookup by 

c k 
noloolcup 

To improve the readability of the following proofs we will write a sequence 

of machine code separated by "" even where we should use the concatenation 

operator"@". The context and the names of the meta-variables will be sufficient 

to resolve ambiguities. 

Lemma 2 For all program formula E F- e, pa = v e PX(EflV),  substitution 9, 

and goal stack a the following holds: 

1. II there is a CS sequence of length K > 0 of the form 

[0: E F- e,pa = v :: a] ' [0' : a] 

then there exist L, M > 0 such that 

ML CAMM , 
(pa.vE•S,brk•c.c)'A -p (v.S,c) 

(vO', v') e G,.e,, t , and 	Inolookup L + 1 

2. And conversely. 
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Proof The proof of item 1 is by induction on the number N of visible steps of 

the transition 	. The proof is done by case analysis on the expression e. 

Base Case For N = 1, we have three cases to analyse: 

e = n 

	

	In this case the transition sequences are as follows: 

[0: E F- n,pa = v :: a] ' [0' : a] 

CAM 2  (pa.v.S,brk.pop.quote(n).c)—) (n.S,c) 

In the above sequences vU = n and L = 0; thus the result holds. 

In this case the CS transition sequence is as follows: 

[0:EF-id,pa=tv::a]=',Cs' 	 (1) 

[0" : (E, id) 	L V :: a]CJ 	 (2) 

[0" : a] 	 (3) 

Applying Lemma 1 in (2) we obtain the following sequence of machine transitions: 
CAM 2  

(pa. VE S, brk . pop. Cd c)— 	 (1) 

CAM * 
(VE S, C 2d c)— 	 (2) 

(v'.S ) c) 	 (3) 

* 

and from Lemma 1 (vU", v') e G01. Moreover, I  R InoOOLp=  0 because the 

lookup steps are hidden according to nolookup. Therefore, L = 0 and the result 

holds. 

e = fri id. e' 	In this case the transition sequences are as follows: 

[0:EF-fnid. e',pa=v::a] '[0':a] 

CAM2  
(pa. VE - S,brk• pop cur(adj 	. c)— (EVE, adj Cell S, c) 

and vU
I,,  = (E, id, e', pa). From the definition of Gfunvd,  (vU I,, 

 , v I ) E 

Moreover, L = 0 and the result holds. 
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Inductive Step For N> 1 we have three cases to analyse: 

e = e1 + e2 	In this case the transition sequences are as follows: 

[0:EFe1 +e2,pa=v::a] ' 	 (1) 

[O':EF-e1,pao1vi::EF,pav2:: ... ] 	 ( 2) 

[0" : E F e2,pa o = v2:: E F num(plus(v1 , v2)), () = v :: 	 (3) 

[0" : c] 	 (4) 

k 
Where, 

cs 
Inolooicup= m, and 	InO1Oop= n. The total number of visible 

steps of the above history is N = m+n+1, because the step (1) is visible and the 

step of the evaluation of the formula E I- plus(v 1 , v2), () = v is hidden. Now, 

we must show that the machine evaluation of the code Ce  is done in N - 1 steps 

of the DCAM. 

(pa. yE S, brk pop . push quotep(pa o) . brk c, swap• . . .fA 4 ' (1) 

(pa 1 	VE S, brk Cei  swap. quotep(pa o a).. 
)D4m1 	

+ 	( 21) 

CAM 2  
(v VE S, swap . quotep(pa o 2) . brk Ce2 .. .)-4 	 (3) 

DCAM 1  CAM* 
(pa 	. v • S, brk• c 2  add•...) = 	 (41) 

'i 	, 	 CAM 1  (v2 .v1 .,,add.c)-4 	 (5) 

(v' . S, c) 	 (6) 

Where, the transitions marked with f are the points where the inductive hy-

pothesis was applied. Therefore, (v1 0", t4) E Gvai, (v20",v) e Gvai, vO"  = 

plus(v10", v20 ... ), and v '  = plus(t4, v). Since G is a strong correspondence and 

plus is compatible with G, we have that (vO", v') E G 01. The sub-sequence from 

the state (2) to the state (4) has (m - 1) + 1 
DM 

 steps. Therefore, the total 

DCM stepsoftheabovesequenceisl+(m-1)+1+(n-1)=m+n=N-1. 

Therefore, the result holds for this case. 

e = let id = e1  in e2 	In this case the transition sequences are as follows: 
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[9:EH1etid=e1 ine,pa=tv::a] 	 (1) 

[0': E I- e1 ,pao= v1 :: id i- v1 . E I- e2 , pa3± v2 	 (2) 

[9":id-v1 .EF e2 , pao=v2 ::a] ' 	 (3) 

[0": c] 	 (4) 

' 

Where, 	
- 	 Cs 

= InoloOp m, and 	 - n. Therefore, N = m + n + 1. Now, 

we must show that the machine evaluation of the code for e is done in N —1 steps 

of the DCAM machine. 

(pa. VE S, brk . pop . push quotep(pa ) . brk• C 1  push. )D%4' 
(1) 

(pa o 2 VE VE S, brk• C 1  push quoteid(id) 
... 	 r 	(2) 

CAM4  
(v VE S,push• quoteid(id) . swapS cons . . .)- 	 ( 3) 

CAM 2  
((id, z4). VE• S,cons quotep(pa ) brk Ce2.. .)_4 	 (4) 

(pao. (vE,(id,t4)) . S,brk c2.. 
)D4 	CAM* 	

(5) 

(v2 .S,c) 	 (6) 

where the transitions marked with f are the points where the inductive hypothesis 

was applied. Therefore, (v10",v) E Gvai and (v29", v) E Gvai. 

The sub-sequence from the state (2) to the state (5) in the above transition 

sequence, has (rn - 1) + 1 
DCM D steps. Therefore, the total CM  steps of the 

above sequence is 1 + (m - 1) + 1 + ( ii - 1) = m + n = N - 1. Therefore, the 

result holds for this case. 

e = e1 (e2 ) 	In this case the transition sequences are as follows: 

[9: E F- e1 (e2 ),pa 	v :: 	 (1) 

[0': El- e1,pao1z (E,id,e',pa') :: E I- e,pa<2=, v2:: ...]r 	(2) 

[9": E F- 	 t :: id 	El- e',pa' = v :: a] 	 (3) 

(4) 

[9" : a] 	 (5) 
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where I J3 Ino1oop= m cs 
I 	I nolookup = 72, and 	 o. Therefore,  

N = m + n+ o + 1. Now, we must show that the machine evaluation of the code 

for e is done in N - 1 steps of the DCAM machine. 

(pa. VE S, brk pop push quotep(pa o 1)  brk Cej  swap . . .)' A 	(1) 

(pa o 1. VE - VE . S, brk Cei  swap• quotep(pa 2) . . . .) Am' 2* 	(21) 

CAM 2  
([SEI, adj. Cell VE S,swap. quotep(pa ) •brk. Ce2 • 	 (3) 

DCAM 1  CAM* 
(pa. VE - [ SI,adj. Cell S,brk• Ce2  .cons.app• c) 	-i 	(41) 

CAM 2  
(v2 . [SEI, adj• Cell • 8, cons• app. c)— 	 (5) 

CAM'°  
((VEt, v2 ) S, adj . c• c)—. 	 (6) 

(pa'. (vEl,(id,v2)). S,brk• Ce1 
c)AM0l 
	

(7f) 

(v'.S,c) 
	

(8) 

where the transitions marked with f are the points where the inductive hypothesis 

was applied. Therefore, ((E', id, e', pa', [VEt, adj• cat]) E Gfrnval, and (v20", v) E 

Gvai, where the code adj is as follows: 

(push,car,swap,cdr,push,quoteid( id), 

swap,cons,cons,quotep(pa') ,brk) 

The sub-sequence from the state (2) to the state (4) in the above transition 

sequence, has (m - 1) + 1 
DM  steps, the sub-sequence from (4) to (7) has 

DCM 	 DCM 
(n - 1) + 1 	steps. Therefore, the total 	steps of the above sequence 

isl+(m-1)+1+(n-1)+1+(o-1)=m+n+o=N-1. Therefore, the 

result holds for this case. 

The proof of item 2 of this lemma follows similarly by induction on the length of 

the DCAM evaluation of the code of the expressions. This finishes the proof of 

Lemma 1. 	 D 

We now define a relation B between the states of Tiny and C Tiny. 
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Definition 7 (The Relation 8) Let B C DH x çEV  be the relation inductively 

defined as follows: 

1. 
(J TinY 1CTinil) e B. 

2.11 (dh, st) E B then (step(dh,1),M_next(st)) E B. 	 0 

In the next proofs we will use the following proposition. This proposition states 

that for all program formulae in Env either its initial debugging state is the 

failure state in Tiny and CTiny or the CSEnV  evaluation of the formula and the 

execution of its DCAM code never fail. 

Proposition 3 For all program formula p = E I- e,pa = v E PxE(), 

1Timy 
= ([}) if and only if 1CTiny 

= (O,EC) p 	 p 

and whenever initial(p) = 	: p] and M_initial(p) = (VE, C e ) then there is 

no transitions of the form: 

[O : p} W [] 

D* 
(VE,C e )

CAM 
 (ES,EC) 

Proof (Sketch) For the above equivalence, if I"' = ([]) then from the definition 

of I'"' on page 230 we have that FV(close(e, E)) { }. In this case it is easy to 
DComp 

check that the compiler - ils when generatmg code for any sub-expression 

XE FV(close(e,E)). Therefore, jCTzny = (ee) 

Otherwise, if JTI = (
ES, E) then the compiler failed. It is easy to check that 

the compiler only fails in when generating code for some free-variable. Therefore, 

FV(close(e, E)) { } and I,"' = 

For the second part of the proposition, it is not difficult to prove that the 

evaluation of a closed expression and the execution of its code never fail. 	11 
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The following lemma states if a pair (dh, st) belongs to B then dh and st 

contain the same observable information about the evaluation that is used by the 

debugging commands. A completely formal proof of this lemma would have to 

consider the formalisation of the pattern matching defined in Appendix A. That 

is, to show that a pattern matches a debugging history or a state, we would have 

to use the rules of the semantic of the pattern matching of section A.3. However, 

the patterns that are treated below are very simple and we shall informally verify 

the pattern matching. However, it should be clear that the formalisation of the 

debugging specification language is essential for a completely formal proof of 

debugger correctness. 

Lemma 3 For all pairs (dh, st) E B, one of the following statements hold: 

<h, 11> matches dh if and only if (e ,E) matches st. 

t(<>,[_: E I- e, pa = v],...,[sub : success], <>) matches dh if and 

only if (v' . S, e y ) matches st and if both sides of this equivalence are 

true then (sub(v),v') E Gvaj. 

<h, [E I- e, pa = v :: _]> matches dh if and only if (pa' . SE - -' ce _) 

matches st and if both sides of this equivalence are true then ap = pa', E 

is bound to E, SE is bound to VE, e is bound to e, and ce is bound to Ce . 

Proof 

The proof of Lemma 3(1) is an immediate consequence of Proposition 3. The 

proof of Lemma 3(2) follows immediately from Lemma 2 for the case that c = 

S = e, and c = e. For the proof of Lemma 3(3), it is easy to check from the 

definition of B that for all (dh, st) E B there is a natural numbers N such that: 

dli = step(ITfl!1 ,N) 	and 	st = 

where MnextN (1CTInY) denotes the composition of N applications of the function 

M..iiext. The right to left implication of Lemma 3(3) is proved by induction on 

N. 
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Base Case N = 0. 

= 1Tiny 
= ([Oo: E F- e,pa = v]) 

M..next0 (1CTiflY) = 1CTiny = (pa. VE 6s Ce ) 

and the result holds trivially. 

Inductive Step N > 0. For an arbitrary debugging history: 

dli' o [0: E F- e,pa' = v :: a] = step(I Tiny
N) 

we have to analyse the Relational Rule in çb" that was used in the expansion 

of the current goal of this history. Such a rule exists otherwise N would be 0. 

For each case we show that the corresponding DCAM state has the required 

form, i.e., the machine pattern of Lemma 3(3) matches the DCAM state with 

the required bidings. 

Rule 3.2(4) For this rule we have to consider two cases. First, when e is the 

operand on the left of e1 + e2 , and then when e is the operand on the right of 

such expression. 

e + e2  In this case we have: 

step(I Tiny ,N-1)=dh"G[0:EF-e+e2,paPV.a] 	 ( 1) 

step(IT2 , N) = dhI [0:EHe,pa1V:: ... ) 	 (2) 

Applying the inductive hypothesis on (1) we have the following: 

N-i CTiny M..next (I 	) =(pa.v.S,brk.pop.push.quotep(pao1)brk....) 

(1) 

CTiny MnextN  (I 	) = (pa i  - VE VE S, brk Cei S...) 	
(2) 

Therefore, the state M.iiextN 
(1CTiny) has the required form, and this case holds. 

In this case we have: 

Tiny step(I 	,N - K — i) = dli" .o [0: E F- e1  + e,pa = v :: a] 	 (1) 
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(2) 

step(IT ,N) = dli' < [0" : E I- e,pa <>2 	v:: 
.. .] 	

(3) 

Applying the inductive hypothesis on (1) we have the following: 

Mnext (N—K-1)(1CTinY) = ( pa. VE  - S, brk pop. push quotep(pa <>1) 

= (pa<>1. VE VE S,brk• C 1  ...) 	 (2) 

Applying Lemma 2 on (2) we have: 

(paol. VE VE S,brk Cei . 
)D MKl 

CAM 2  (t4. VE - S, swap quotep(pa c4) brk. c 2  . . .)+ 	 (3) 

(pa <>• VE• 	S, brk C 2  add....) = M_next N 
(I

CTin i) 	 (4) 

Therefore, M_next N  (I CTiny ) has the required form, and this case holds. 

Rule 3.2(5) For this rule we also have to analyse two cases: 

let id = e in e2 l This case is similar to the first case for rule 3.2(4). 

let id = e1  in e In this case we have: 

step (ITfl!I ,N _ K _1) =dh"o[O:EF-let id = e1  in e,pa=v::a] (1) 

Tiny 	= 

dh"o[O' : E I- e1 ,pa<> 2 = vi:: id i—  v1 .  E F- e2,pao => v2 :: a] 	(2) 

Tiny 	= dliIII  <>[0IF 
 : id '—' 	E I- e,pao= V2 :: a] 	 (3) 

Applying the inductive hypothesis on (1) we have: 

M..next (N—K—i) (1CTinY) = 

(pa. tIE .  S,brk•pop. push.quotep(pao2).brk. Cei ...) 	 (1) 

Mnext (N-K) (JCTinY) = ( pao. VE VE - S,brk• Cei  .push....) 	(2) 

Applying Lemma 2 on (2) we obtain: 
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(3) 

CAM 4  
(v. VE - S, push. quoteid(id) swap. cons .. .)- 	 (4) 

CAM2  
((id,v)v E  S,cons.quotep(pa)brk. Ce2 	 (5) 

(pa.(vE,(id,v)) S,brk C12 	
=MextN(ICTu) 	 (6) 

Therefore, M.iiextN(ICT) has the required form, and this case holds. 

Rule 3.2(7) For this rule we have to analyse three cases: 

e(e2 ) 	This case is similar to the first case for rule 3.2(4). 

ei(e) I This case is similar to the second case for rule 3.2(4). 

The third case is when the current goal comes from the third premiss of rule 3.2(7). 

For this case we have: 

, step(IT 	 I,,, 
,N - K - L - 1) = ah o[O : E I- e1 (e),pa => v :: a] 	(1) 

step(ITu,N - K - L) = 

dh" G [0' : E I- e1 , pa 	. = (E', id, e, pa") :: E F- e2 , pa 	= v2:: ...] 	(2) 

Tiny 	= 

	

dh"[0" : E F- 	 v2 :: id i—* 	E F- e',pa" => v :: a] 	(3) 

step(IT ,N) = dh' <(id '—* v2 . E F- e,pa" => v :: a] 	 (3) 

Applying the inductive hypothesis on (2), we obtain: 

M..iiext (N—x—L-1) (JCT$flY) = 

(pa. VE S,brk pop .push.quotep(paoi).brk. C 1 	(1) 

(N—K—L) 
M.iiext 	

(JCTiflY) = ( pa j. . tIE . VE S,brk. Cei  swap....) 	(2) 

Apilying Lemma 2 on (2) and (4) below, we obtain: 

CAM 2  
([SEI, adj. Ce l] . VE S,swap quotep(pao) •brk Ce2 .. .)4 	 (3) 

DCAM 1  CAM+ 
(pa. VE [SS,adj Cell S,brk• C 2  .cons.app. c) = 	— 	(4) 

CAM2  
(v2. [SEI, adj. coil . S,cons . app. C)—I 	 (5) 
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((VE , , v2 ). S, adj Cs c)—.-+ 

( 	 ' I  pa (VES, (id, v2)). S,brk• c c) = MnextN(ICTY) 	 (7) 

The state M..nextN(ICTY)  is in the required form, and this case holds. This 

finishes the proof of the left to right implication of Lemma 3(3). The proof of 

the right to left implication follows similarly by analysing the compiler rule that 

generated the sequence of code on the DCAM state. This finishes the proof of 

Lemma 3. 0 

The following lemma states that the environment lookup functions lookup of 

Tiny and MJ.00kup of CTiny are equivalent. Its proof is an immediate con-

sequence of Lemma 1 and is omitted here. 

Lemma 4 For all pairs E and VE, and for all id 

(lookup (E, id),M...1ookup(v,id)) e G 01 	 0 

We are now ready to prove Proposition 2. This proof uses Lemmas 2 and 3. 

Proof (of Proposition 2) 

For this proof we must show that B is a Debugger Bisimulation according to 

Definition 2. First, (iTl ,  1CTinY) 
E B follows immediately from the definition of 

B. Let us prove first that B obeys Definition 2(1). We must show that for all 

(dh, st) e B and d E T(T )command 

for all r E 	 and dh' E DII, dh 	dh' implies that there exist L.J 

TI  e T(EcTtI),., and st E rEV such that st 
d 

 !
r'
_*CTinY  st'  and the two require-

ments hold: 

(dli', st') E B. 

II r E T(E),.,wt  then r = r OBS 

243 

(6) 
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The proof follows by case analysis on d. In this proof we will not consider the 

cases where dh = ([]) and st =(Es,EC) since these cases follows trivially from 

Lemma 3(1) and Proposition 3. 

I d = reset I In this case dli' = 1TUI and r = null. Then st' = ICIny r' = null, 

and the proposition holds. 

d=step ui Inthiscase: 

(dh',r) = step(dh,n) 

(st', r') = M_step(st, n) 

This proof is by induction on n. 

Base Case n = 0. Ifi(<>, [_: E I- e, pa = v],..., [sub : success],<>) 

matches dh, then dh' = dh and r = succeed. From Lemma 3(2) (v' • S, e) 

matches st. Therefore, st' = st and r' = succeed and r = r'. When the pattern 

t(<>,[_: E I- e, ap = v],...,[sub : success],<>) 

does not match dh we have, from Lemma 3(2), that (v' . S, e) does not match 

st. In this case, dh' = dh and r = null and st' = st and r' = null. Therefore, 

r = r' and the proposition holds. 

Inductive Step n> 0. II the pattern 

E F- e, pa = v],...,[sub : success],<>) 

matches dh, this case follows as in the base case. Otherwise, since we are 

assuming that step(dh,n) terminates, then step(dh,1) must also terminate. 

In this case, it is easy to check from the definition of step (page 123) that 

step(dh, 1)next(dh) and: 

step(dh,n) = step(step(dh,1),n-1) 

M_step(st,n) = M_step(M..next(st) ,n —1) 
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Therefore, we can write: 

(dh',r)= step (step (dh, 1) , n — 1) 

(st', r' ) = M_step(M.iiext(st) ,n —1) 

From the definition of B we have that (step ( dh, 1), Mnext (st)) C B. Therefore, 

we can apply the inductive hypothesis to obtain requirements 1 and 2. This 

finishes the proof of this case. 

I d = run until id = nI In this case: 

(dh',r) = run_until(dh,id,n) 

(st', r') = M_run_until(st,id,n) 

Since we are assuming that the call run_until(dh, id, n) terminates, there ex-

ists a finite number N of recursive calls to the function run_until in the call 

run_until(dh, id, n). The proof of this case is by induction on N. 

Base Case N = 0. We have two cases to analyse: 

t(<>, [_: E F e, pa = v], ..., [_: success] , <>) matches A. This case 

follows as in the step n case. 

t(<>, [_: E F- e, pa = v],..., [_: success],<>) does not match A. 

In this case, <Ii, [E I- e, pa =:> v :: 	]> matches dh with E bound 

to E and e bound to e. From Lemma 3(3), (pa' . SE • ..., ce • ...) 

matches st with SE bound to yE and ce bound to c. Since this call termin-

ates with no further recursive call to run_until then lookup(E, id) = n. 

From Lemma 4 MJ.00kup(SE,id) = n. Therefore, dh' = dh, st' = st, 

r = r' = null, and the result holds 

Inductive Step N > 0. We have two cases to analyse: 

1. <h, [E F e, pa 	v :: _]> matches dh with E bound to E and e bound 

to e. From Lemma 3(3), (pa' SE . ..., ce ...) matches st with SE 
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bound to VE and ce bound to Ce . Since this call there is at least one fur-

ther recursive call to run_until then lookup(E, id) n. From Lemma 4 

MJ.00kup(SE,id) 0 n. Therefore, 

(dh' )  r) = run_until(step(dh,1) ,id,n) 

(st', r') = M_run_until(M_next(st) ,id,n) 

From the definition of 13 (step(dh, 1), M_next(st)) E B. Therefore, we can 

apply the inductive hypothesis to obtain requirements 1 and 2. 

2. In this case, the pattern <h, [E F- e, pa = v :: _J> does not match 

A. This result follows trivially by applying the inductive hypothesis. 

This finishes the proof of this case. 

d = show id I The proof of this case is an immediate consequence of Lemmas 3 

and 4. 

d = show pos] The proof of this case is an immediate consequence of Lemma 3. 

I d = show res 	For the proof of this case notice that, since Gvai  is the iden- 

tity on the observable terms then the Observational Equivalence requirement in 

Definition 2(1) can be replaced by (r, r') E Gal. We have to analyse two cases. 

First, if the pattern 

E I- e, pa = vi,..., [_: success],<>) 

matches dh, from Lemma 3(2) 	1  S, 6) matches st and (r, r') E Gvai. 

Second, both patterns do not match dh and st respectively, and r = Sr' = null. 

The proof of the requirements of Definition 2(2) follows similarly. This finishes 

the proof of Proposition 2 and we conclude that Tiny C Tiny 	 0 
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7.5 Summary and Conclusions 

In this chapter we developed a theory of debugger correctness and studied some 

problems related to the design of Compiler-debuggers. We started by generalising 

the notion of Interpreter-debugger to the notion of Debugger-schema, in which 

the evaluation of programs does not have to be performed by interpretation using 

the CS system. We then defined a relation of equivalence of Debugger-schemas 

that expressed the conditions for debugger correctness, and proved a result which 

relates the equivalence of Interpreter-debuggers and the Observational Equival-

ence of their underlying Relational Specifications. 

We also characterise the concept of Compiler-debuggers and studied various 

aspects of the specification of such debuggers: the granularity of debugging steps, 

the access to information about the evaluation, the influences of optimised code 

in debugging, and the overhead caused by debugging code. This chapter fin-

ished with a complete example of the specification of a Compiler-debugger called 

C Tiny, and a proof of equivalence between Tiny and CTiny. 

As far as we are aware of, debugger correctness has not yet been addressed 

in the literature. The results of this chapter provide a general account of this 

problem that addresses the correctness of a wide class of debuggers, not only 

those under Definition 6.2. These are the main theoretical contributions of this 

chapter. 

We demonstrated that proofs of correctness of Compiler-debuggers can be 

done. It remains to show practical applications of the theory. In order to make 

the proofs scale up to real examples it will probably be necessary to define meth-

odologies and tools to assist in these proofs. Since the theory of debugger cor-

rectness is closely related to the theory of compiler correctness, tools developed 

to assist in compiler correctness proofs can also be used in debugger correctness 

proofs. We believe that the results developed in this chapter form the basis for 

practical applications of debugger correctness. 



Chapter 8 

Concluding Remarks 

This thesis has proposed a theory for the specification and correctness proofs 

of compilers and a related theory for the specification and correctness proofs of 

debuggers. In both theories, a Relational Semantics of the programming language 

was used as the reference point for specification and correctness. It has also 

demonstrated how to apply these theories to the specification and correctness 

of concrete compilers and debuggers. This chapter summarises the key issues of 

this thesis and proposes areas for further research. 

8.1 Summary 

In this section we summarise the main results of this thesis and discuss how they 

extend and improve related approaches. 

In Chapter 2 we defined Relational Semantics as the underlying semantic 

formalism used throughout this thesis. This definition was carried out in two 

stages. Section 2.3 defined the syntactic aspects of the formalism by defining the 

concept of a Relational Specification Syntax. Section 2.4 defined the semantic 

aspects of the formalism by defining the concept of a Relational Specification and 

its Declarative Semantics. 

In Chapter 3 we examined the problem of equivalence between Relational 

248 
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Specifications. We applied the definition of observational equivalence presented 

in [ST87] to first order models and from this we derived an Observational Equi-

valence relation betwen Relational Specifications. We then extended the notion 

of strong correspondence in [Sch87,Sch90] to first order models by defining a rela-

tion we called Model Correspondence. Model Correspondence yields a practical 

proof method for Observational Equivalence that can be used in proofs of equi-

valence of Relational Specifications. The main result of Chapter 3, expressed in 

Theorem 3.1, is that Model Correspondence is consistent with respect to Obser-

vational Equivalence; thus, justifying the use of Model Correspondence in proofs 

of equivalence. 

In Chapter 4 we treated the problem of compiler correctness in the framework 

of Relational Semantics. We addressed this problem in two stages. First, we gave 

a characterisation of the process of Evaluation by Compilation. Second, we used 

the theory of equivalence between Relational Specifications defined in Chapter 3 

to provide a criterion for compiler correctness. This criterion is more general 

than previous proposals in the literature, as discussed in Section 4.1. It provides 

a natural generalisation of those proposals by using Observational Equivalence. 

Furthermore, Model Correspondence can be used as a proof method for compiler 

correctness proofs. 

In Chapter 5 we defined the notions of program evaluation and evaluation 

step that were used in the theory of debugger design of Chapters 6 and 7. These 

notions were derived from the definition of the Computational Semantics of a 

Relational Specification. Theorem 5.1 stated that the Computational Semantics 

of a Relational Specification is sound with respect to the Declarative Semantics 

of this specification. 

We then discussed a notion of evaluation step that was argued to be agree with 

our intuition. The Computational Semantics of a particular class of Relational 

Specifications, called Data-driven Specifications, yields an operational interpret-

ation that agrees with that intuitive notion of evaluation step. We formalised this 
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operational interpretation in Theorem 5.2. The Computational Semantics of any 

Data-driven Specification is complete with respect to the Declarative Semantics. 

This completeness result was proved in Theorem 5.3. 

In particular, if the Data-driven Specification is Deterministic, in the sense 

of Definition 5.4, its Computational Semantics is monogenic, as proved in The-

orem 5.4. This makes the Computational Semantics of Deterministic Data-driven 

Specification suitable for use in a system for the prototyping of programming lan-

guage implementations like the Centaur system [C1K89] and Berry's Animator 

Generator [Ber9la]. The advantages of the Computational Semantics over those 

systems is its clear, formal basis, and its correctness with respect to the formalism 

of Relational Semantics. 

In Chapter 6 we studied the problem of how to give formal specifications of 

debuggers. This problem was addressed in three stages. We first characterised 

the class of Interpreter-debuggers. Then, we studied two problems that are com-

mon to the design of most debuggers: the granularity of debugging steps and the 

reference to sub-programs. Finally, we defined a notation, called DSL to assist 

in the specification of debuggers. The definitions of Chapter 6, and the specific-

ation notation DSL, were illustrated in Section 6.6 by a full specification of an 

Interpreter-debugger called Tiny. 

In Chapter 7 we treated the problem of debugger correctness. We started by 

generaiising the notion of Interpreter-debugger to the notion of Debugger-schema. 

We then defined a Debugger Bisimuiation relation between Debugger-schemas in 

Definition 7.2 that expresses the conditions for debugger correctness. 

As part of the theory of debugger correctness, we studied the relationship 

between equivalence of debuggers and equivalence of the underlying program 

evaluation. An important result of this study is that the equivalence of two 

Interpreter-debuggers implies the equivalence of their underlying Relational Spe-

cifications. This result was stated in Theorem 7.1. 

Another problem addressed in Chapter 7 was the study of Compiler-debuggers. 
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We first gave a general charactensation of Compiler-debuggers, and then stud-

ied various aspects of the specification of such debuggers: the granularity of 

debugging steps, the access to information about the evaluation, the influences 

of optixnised code in debugging, and the overhead caused by debugging code. 

Chapter 7 finished with a complete example of the specification of a Compiler-

debugger called C Tiny, and a proof of equivalence between Tiny and CTiny. 

8.2 Improvements and Extensions to the Theory 

In this section we discuss some improvements that can be made to the theoretical 

parts of this thesis. Some of these aspects are further discussed in Section 8.3 

from an implementation point of view. 

Order-sorted Signatures and Algebras 

The Relational Semantics formalism may be extended by using order-sorted al-

gebras and order-sorted first order models. An order-sorted algebra extends the 

expressiveness of many-sorted algebras by adding a partial ordering relation on 

the sorts of the algebra. Based on the definitions of [Wir89, page 351, an order-

sorted algebraic signature is a triple (S, E, 0) where S is a set of sorts, E is a 

St x S-sorted family of sets of function names, and 0 is a set of subset declarations. 

Then an order-sorted partial J-algebra A consists of an S-sorted family of sets 

{A3 } such that A 8  is the carrier of sort s, and a partial function o E -p A3 ] 

for each symbol o E E,, such that for any s, d E S, if s < s' E 0 then A3  c A3 1. 

The above definitions generalise trivially to first order signatures and first 

order models. Using order-sorted signatures the definition of the syntax of the 

language Exp of Example 2.1 becomes: 
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exp 	::= exp + exp I let var = exp in exp 

var 	::= xIyI... 
nat 	::= plus(nat, nat) I 0  I 1 

var < exp 

nat < exp 

This definition is simpler than that of Example 2.1 because the coercion con-

structors nuni and Id are no longer necessary. It would not be difficult to 

redefine the concepts of Relational Specification and Declarative Semantics of 

Chapter 2 to use order-sorted algebras. Once this is done it is necessary to check 

its influence on the results of the other chapters. 

We have not studied how order-sorted algebras influence the theory developed 

in Chapters 3 and 4. Nevertheless we believe that the definition of strong corres-

pondence generalises to the case of order-sorted algebras. Furthermore, such a 

generalisation would make our definition of strong correspondence closer to the 

strong correspondence defined in [Sch871. The reason is that we would be able to 

define observational equivalence with respect to a set of visible sorts. The results 

that could be derived from this fact remain to be studied. 

The results of Chapter 5 are not affected by changing the algebraic theory to 

order-sorted algebras, nor are the definitions of Chapter 6. Theorem 7.3, depend 

on the algebraic theory in use and it still remains to study how this result is 

affected by changing to an order-sorted theory. 

Conservative Extension and Semantic Transformations 

Let S be a Relational Specification with signature (5, F, H, it). We define an 

extension of S to be a Relational Specification 5' whose signature (5', NJ' )  H', it' ) 

is larger than (5, F, H, it) in the following sense: S C S', whenever or e 	then 
, 	 I 	,* 	 I cEE,,andwhenever1rEHthenirEH,,wherew €S andwCw. In 

this sense 5' can define more relations, and the operations and relations in 5' 

can have more components than the corresponding ones in S. 
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The problem now is to characterise a notion of conservative extension. Intuit-

ively, a conservative extension of a Relational Specification S = (1, 4, A, ZoBs), 

is an extension S' = (cl', ', A', eons)  of S that preserves satisfaction of the for-

mulae in F(1). Using the theory of equivalence of Relational Specification we 

can define this notion precisely by saying that a conservative extension of S is 

an extension 5' such that S S'. 

However, to prove that an extension is conservative is as difficult as to prove 

the equivalence of two arbitrary Relational Specifications. An interesting problem 

for future research is to define transformations on Relational Specification that 

produce conservative extensions. Once we prove that a transformation only pro-

duces conservative extensions we can use the transformed specifications whenever 

necessary without a further proof of Observational Equivalence. 

Transformations can extend the scope of theories and definitions that are 

only applicable to a particular class of specifications. This is achieved by conser-

vatively transforming a specification that does not belong to a particular class 

to another specification that does. This problem was discussed in Section 5.4 

where the transformation defined by the FAIR algorithm of [dS90] was used to 

extend the notion of evaluation step to the class of Dynamically-deterministic 

Specifications. 

Another important application of transformations, that is particular to this 

thesis, is to extend Relational Specifications with debugging informations such as 

paths, function call stacks, and so forth. We believe that the inclusion of paths 

to a Relational Specification, as discussed in Section 6.4.2, can be automated. 

Therefore, another interesting problem would be the definition of a calculus of 

transformations for debugging purposes. This problem could be tackled by first 

isolating a basic set of transformations and then defining how to compose, or 

otherwise manipulate, those basic transformations to obtain more sophisticated 

ones. 
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Debugging Concurrent and Non-deterministic Languages 

The design of debuggers for concurrent and non-deterministic languages is more 

complex than the design of debuggers for sequential and deterministic languages. 

In the case of concurrent languages, this complexity is due to problems such as 

the "probe effect", non-repeatability of the evaluation, and lack of a synchronised 

global clock. 

In a survey paper [MH89], McDowell and Heimbold listed four kinds of tech-

niques that have been used to address the problem of designing debuggers for 

concurrent languages: 

The application of conventional debugging methods and tools to concurrent 

languages. 

Event-based debugging, where the execution of a concurrent system is viewed 

as a sequence (or several parallel sequences) of events. The debugging task 

is then to collect and analyse such sequences. 

Techniques for displaying the control flow and distributed data of concur-

rent systems. 

Static analysis techniques based on data flow analysis, in which some errors 

are detected without evaluating the programs. 

A conclusion of that survey is that none of the above techniques give entirely 

satisfactory accounts of concurrent debugging. Therefore, work still remains to 

be done in integrating these techniques, or finding alternative ones, or both. We 

believe that an important problem for further research is to provide a theory for 

the specification and correctness proofs of debuggers for concurrent languages. 

The framework of this thesis is a step towards such a theory. 

In the following paragraphs we shall sketch an extension to the framework 

defined in this thesis to address debuggers for non-deterministic languages. We 

also discuss which of the above mentioned techniques would be addressed in such 

an extension. 
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Part of our framework already addresses non-deterministic programming lan-

guages, namely the Relational Semantics formalism, the notion of equivalence of 

Relational Specifications and Compiler Correctness, and the Computational Se-

mantics of Relational Specifications. On the other hand, the notion of evaluation 

step is only defined for Deterministic Relational Specifications; thus only determ-

inistic languages are addressed by these definitions. The definition of Interpreter-

debuggers (Definition 6.2) uses this deterministic notion of evaluation step and 

therefore only expresses debuggers for sequential languages. 

From a theoretical point of view, it would not be difficult to change Defini- 
Cs tion 6.2 such that it considers the evaluation relation = (and consequently the 

relation 	) as a relation instead of a function. The theory of debugger correct- 

ness developed in Chapter 7 does not preclude debuggers for non-deterministic 

programming languages. Therefore, it should not be difficult to extend the the-

oretical aspects of this thesis to address debuggers for such languages. The quite 

general definitions of Chapters 6 and 7 were presented with this extension in 

mind. 

Problems arise from the pragmatic point of view: prototyping and specifica-

tion of concrete debuggers will become non-trivial. The prototyping of debuggers 

requires a machine implementation of the CS system. If non-deterministic Data-

driven Specifications are allowed we shall need to solve the problem of selection 

of Relational Rules discussed in Section 5.4. 

However, the most important problem that arises is the specification of de-

buggers for non-deterministic languages. A theory for design of such debuggers 

must address the problem of non-repeatability of evaluation. Clearly, this prob-

lem is not addressed by the framework of this thesis even when extended to deal 

with non-deterministic programming languages. 

The general approach to this problem in the literature is to record the entire 

evaluation history of a program, and to use this record to replay the evaluation 

when necessary. The basic drawback of this solution is that the evaluation history 

of real systems can grow unmanageably large. Various proposals have been made 
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trying to make this method applicable in practice. 

We propose to extend the CS system to support replay of evaluations. The 

basic solution we propose is to record the choices of Relational Rules at each 

point when more than one rule could be used in the evaluation. We then use 

this record to guide the replay of the evaluation, making the replayed evaluation 

deterministic. We believe that a record of the choices of rules in an evaluation 

is much smaller than the entire evaluation history and possibly of a manageable 

size. 

The changes in the theory to deal with non-deterministic evaluation step and 

the extension of CS to support replay of evaluation are just the initial stages 

towards a theory of debuggers design for non-deterministic languages. It is ne-

cessary to investigate other problems, for. instance whether it is necessary to 

extend DSL with features specific to the design of such debuggers, and if this is 

necessary, what features should be included in the specification notation. 

Further Extensions 

The use of negative premisses extend the expressiveness of inductive definitions 

by allowing assertions of the form a A. In [Gro89,BG90] Groote et al. pro-

poses an extension to Structural Operational Semantics [Plo8l] with negative 

premisses. An interesting investigation would be to extend Relational Semantics 

with negative premisses, and the aforementioned works offers a starting point. 

The Relational Semantics formalism does not offer any facilities for modu-

larisation of Relational Specifications. Such a facility is desirable when dealing 

with semantics of real programming languages where the number of rules can 

be large, e.g., the definition of Standard ML [HMT89]. Therefore, to include 

some notion of modules in the formalism is an interesting problem for future 

investigation. Once such a notion is defined, we foresee that the definition of 

equivalence between Relational Specifications will have to be extended to cope 
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with the modular structure of the specifications. The work of Schoett [Sch87] 

can be used as a starting point to investigate the required extensions. 

The definition of Relational Specification can be generalised by replacing the 

E-algebra A in (1, 0 , A) by a specification Sp of a class of s-algebra containing A. 

This generalisation would allow any E-algebra that satisfies Sp to be used in the 

Relational Specification. This generalisation involves to define first how to write 

the specification Sp and then what it means for a E-aigebra to satisfy a specific-

ation. There are many alternatives for these definitions, as discussed in [ST88, 

Wir89,BKL+911. We have not assessed the advantages and disadvantages of such 

a generalisation, but it seems an interesting problem for future investigation. 

8.3 An Implementation of the Framework 

A natural problem to be addressed is to give a machine implementation of the 

framework defined in this thesis. This framework is rich enough to give scope for 

various levels of implementation. We incrementally describe how such levels can 

be built starting with a simple system for prototyping of language implement-

ations, and finishing with an integrated environment for language development 

that includes mechanised formal reasoning. In the presentation below, the Frame-

work refers to the hypothetical implementation that is being suggested. 

Language Prototypmg System 

The first component of the Framework is the implementation of a system to 

evaluate programs based on a Relational Specification. This would involve two 

main aspects. First, the syntax analysis of Relational Specifications according 

to Definition 2.1. Second, the implementation of the CS system according to 

Definition 5.1. 

The resulting system would be similar to the prototyping facilities of systems 

like Centaur [C1K891 and the AnimatorGenerator [Ber9la]. The Framework 
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would depart from those approaches in that the CS system has a formal proof of 

correctness with respect to the underlying meaning of Relational Specifications 

given by the Declarative Semantics. Therefore, the prototyping facility of the 

Framework would also be correct with respect to this underlying meaning. 

Meta-semantic Analysis and Transformations 

A natural improvement on the prototyping facility described above is to include 

a rneta-semantic checker that determines whether a Relational Specification is 

Data-driven and Deterministic in the sense of Definitions 5.2 and 5.4 respect-

ively. Such a meta-semantic checker decides whether the evaluation of program 

formulae in the Framework is complete in the sense of Theorem 5.3. 

Moreover, there are other static analysis that can be performed on Relational 

Specifications. For instance, checking whether a specification is Dynamically-

deterministic in the sense of Definition 5.6. It is possible to include in the 

Framework a set of useful meta-semantic checkers which can be used to clas-

sify Relational Specifications. 

Once we have the tools to automatically classify Relational Specification, an 

extension to the Framework is the implementation of transformation algorithms 

among classes of specifications. Such transformations are useful to extend the 

applicability of other tools in the Framework that only work over a given class, 

as discussed in Section 8.2. 

In a series of papers, Hannan et al. described various transformations on 

semantic specifications [HM90,Han9lb,Han91a]. It would also be interesting to 

investigate which, if any, of these transformations can be automated, and include 

their implementation in the Framework. 

An Implementation of DSL 

An implementation of the Framework as described above would possess useful 

features for language prototyping but no special facilities for debugger design. 
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The next stage in developing the Framework is to implement the notation DSL. 

This would add two features to the Framework: a powerful debugging language 

that can be used to debug Relational Specifications, and the capability of spe-

cifying and prototyping Interpreter-debuggers and Compiler-debuggers. 

A General Purpose Implementation of DSL 

A related problem is to study an implementation of DSL as a general purpose 

language for sequence manipulation. This implementation would extended the 

ideas of SNOBOL [FGP64,GPP68I for the manipulation of strings to the manip-

ulation of arbitrary sequences. A first stage in the study of this problem is to 

generaiise DSL sequence patterns to higher order sequences, so that we can ex-

press sequences of sequences. We believe it is possible to include DSL patterns in 

an existing functional language such as Standard ML [HMT89]. The implications 

of adding sequence patterns to ML would have to be studied. 

8.4 Conclusions 

In this thesis, we set out to examine the problems in the specification and the cor-

rectness proofs of compilers, and in the specification and the correctness proofs of 

debuggers. We proposed a framework that addresses specification, prototyping, 

implementation - in the sense of low level specification, and correctness proofs 

of such tools using a particular characterisation of Structural Operational Se-

mantics as the underlying formalism. Although this framework was presented as 

an integrated theory, it is in fact composed of the Theory and its Application. 

The Theory addresses the problem of correctness independently of the se-

mantic formalism used in compiler specifications and specification language used 

in debugger specifications. It is composed of the material developed in Sec-

tions 3.3, and 7.2. There are two main results of the Theory. First, the extension 

of the notion of strong correspondence relation of [Sch87] to Model Correspond-

ence between first order models, which is expressed by Theorem 3.1. This exten- 
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sion provides a proof method for Observational Equivalence between first order 

models. Second, the theory of debugger correctness of Section 7.2. 

The Application part of this thesis addresses specification of programming 

language semantics, specification of compilers, correctness proofs of compiler, 

specification of Interpreter-debuggers and Compiler-debuggers, and correctness 

proofs of debuggers. A Relational Semantics of the programming language is used 

as a reference for compiler correctness and as a description of program evaluation 

on which the specifications of debuggers are based. 

Two important results related to the Application are the definition of an 

Evaluation Model of programs based on Relational Semantics, and the definition 

of a debugger specification notation, called DSL, which can be used in the spe-

cification of concrete debuggers. The Evaluation Model and DSL can have actual 

implementations, yielding a prototyping system for programming languages, com-

pilers, and debuggers. These implementations are not addressed in this thesis. 

The main contributions and advances of this thesis are related to debugger 

correctness. We demonstrated that it is possible to give formal specifications 

of debuggers based on a formal semantics of the programming language. In 

practice, a given debugger may have more than one specification, tailored to 

different purposes. Related to this topic we examined the problem of Compiler-

debuggers as an alternative specification of debuggers. We demonstrated that 

it is possible to prove the equivalence of specifications of a debugger, and, in 

particular, that it is possible to prove the correctness of Compiler-debuggers. 

As far as we are aware of, the problems of specifying Compiler-debuggers, 

and of debugger correctness, have not been addressed before in the literature. 

Moreover, no other related work proposes a theory that addresses compiler and 

debugger correctness uniformly. These are the main, novel results of this thesis. 

We hope that these results will assist in the design of compilers and debuggers in 

practice, and also provide the basis of further research on the specification and 

correctness of other programming tools. 
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Appendix A 

The Semantics of DSL 

A.1 Introduction 

In this appendix we present the formal semantics of DSL in Relational Semantics. 

This semantics defines the pattern matching of sequence patterns on sequences 

of basic values. Basic values, and consequently basic patterns, are not defined 

since their definitions depend on the application in which DSL is used. 

In this thesis, DSL is used in the specification of debuggers based on a Re-

lational Specification. In this application, the basic values and basic patterns 

of DSL are defined by the Relational Specification. As described in Section 6.5, 

these basic values are constructor values and the basic patterns are constructor 

patterns whose semantics are standard and can be found, for instance, in [FH88, 

HMT89]. 

This appendix is organised as follows: 

Section A.2 defines the syntax of DSL. 

Section A.3 defines the dynamic semantics of the pattern matching. 
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atpat 
	 wildcard 

id 
	

variable 

baspatseq ::= [baspatseq,] baspat 
	

basic pattern sequence 

spat 	::= ... 	 wildcard 

< [baspatseq] > 	 sequence of basic patterns 

t(spat1 , spat2 , spat 3 , spat 4 , spat5 ) interval 

/3(spat1 , spat2 , spat3 , spat4 , spat5 ) balanced interval 

id as spat 	 layered 

Figure 1: The Syntax of Sequence Patterns 

A.2 The Syntax 

Reserved Words 

These are the reserved used in sequence patterns of DSL. 

as 	( 	 ) 9 	 ... 	- 	< 	> 

Identifiers 

A DSL identifier is any sequence of letters, digits, and "" (underbars) starting 

with a letter. The class of DSL identifiers is called Identifier and is ranged over 

by the meta-variable id. 

The Grammar 

Figure 1 presents the BNF rules that define sequence patterns. The grammar 

for baspat is not defined since it depends on the application of DSL. When DSL is 

used for specification of debuggers based on a Relational Specification the basic 

patterns are constructor patterns, whose syntax is defined by the signature of 

the specification. In grammar rules, square brackets [] enclose optional phrases. 
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v E Val=BasVal+BasValt  basic value 

by E BasVal basic value 

w E BasVal* sequence of basic values 

E E Env = [id 	Vat] dynamic environment 

ES E EStack environment stack 

FAIL matching failure 

Figure 2: The Semantic Objects of the Dynamic Semantics 

A.3 The Dynamic Semantics 

The dynamic semantics defines how to match a pattern to a value. We first 

define the semantic objects involved. As for the syntax, the basic values are not 

define. We assume the existence of a semantic class BasVal of basic values. 

When DSL is used for specification of debuggers, basic values are the states of 

the Computational Semantics of the Relational Specification under consideration. 

Therefore, basic values are built from substitutions, goal stacks, formulae, and 

terms. For an arbitrary Relational Specification S with Computational Semantics 

CS = ('cs, , T), BasVal =]PCs. In this case, sequence values are debugging 

histories in DH. 

Semantic Objects 

The semantic objects of the dynamic semantics are shown in Figure 2. FAIL 

is a semantic object used in the Relational Rules to indicate an unsuccessful 

matching; it is not a semantic value. Environment stacks are defined as follows: 

ES ::= E 	 empty stack 

ES • E 	environment stack 
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Semantic Operations on Environments and Sequences 

If E and E' are enviroment the environment E @ E', called E modified by E', is 

the environment with domain dom E U dom E' such that: 

(E E')(id) = { E'(id) if id E 
dom E' 

E(id) otherwise 

We extend environment modification to account for matching failure as follows: 

E @ FAIL = FAIL. We also use the operations on finite sequences " o " suffix 

cons, "" concatenation, and "-" difference. 

Relational Rules 

The Relational Rules below define the Dynamic Semantics of sequence patterns. 

To simplify the presentation we made some concessions with respect to the defin-

ition of Relational Rules in Chapter 2: 

The relation name - I- - = - is overloaded for all syntactical classes. 

Phrases within square brackets [} are optional and for them the following 

convention holds: in each instance of every Relational Rule the optional 

phrases must be either all present or all absent. 

Similarly, a phrase enclosed by [[]]is a second optional phrase. As for the 

first optional phrases, in each instance of every rule the second optional 

phrases must be all present or all absent. 

We allow y/FAIL to range over Y U {FAIL}, where Y is one of the above 

defined semantic classes and y ranges over Y. 

Comments explaining the semantic rules are given after each subset of the 

rules. The reader is referred to the schematic representation of a sequence in 

Figure 3 to understand how the matching of interval and balanced interval pat- 

terns is defined. 
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I 	 W1 	 4 

I 	I 	I 	i 	I 	I 	I I 	 I 	 I 	 I 	
I I 	 I 	 I 	 U 	 I 	 I 	 I 	 I 	 I 

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 

P2: -4 	; 	W4 	 I  I 	 I 	 I I 	 I 

P 
51  

I ' 
 

I 	 I 	 I 	 I 	
I 	 I 	 I 	 I 

	

P3 	IW10:W111W121 
I 	 I 	 I 	 I 

Figure 3: The Matching of Interval Patterns 

Atomic Patterns 	 v I- atpat = E'/FAIL 

E,vI-=-{} 

iddomE 

E,vF- id{idi—* v} 

idEdomE 	E(id)=v 
(3) 

E,v}- id={} 

idEdomE 	E(id)v 

E,vI- idFAIL 
	 (4) 

Comments 

(l)—(4) These rules define the matching of an atomic pattern atpat on a value v. 

The matching is defined on an environment E which keeps the bindings of 

identifiers to values that resulted from previous matchings. If the match-

ing is successful, the result is an environment E' with the new binding, if 

applicable. If the matching fails the result is FAIL. 

(2) A finite mapping is denoted by {id1  " v1 ,.. . , i4 i- v}, n> 0 

(3)—(4) Identifiers can occur more than once in a pattern. These rules ensure the 

same identifier matches syntactically equal values. 
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Sequence of Basic Patterns 
	

E, w F- baspatseq = (E', w')/FAIL 

E, () F [baspatseq,]baspat = FAIL 	
(5) 

E, v I- baspat => FAIL 

E, [[w]]v F- [baspatseq,baspat = FAIL 	
(6) 

E,vFbaspat=E' 	
7 

E, [wo]v F baspat = (E', (v)) 

E, v F- baspat = E' 	E 	w F- baspatseq = (E", w')/FAIL 	
8 

w v F baspatseq, baspat = (E' E", w' v)/FAIL 	( 

Comment 

(5)—(8) These rules define the matching of a sequence of basic patterns baspatseq 

on a sequence of basic values w. If the matching is successful the results 

are the new environment and the suftx of vi that matched baspatseq. The 

sub-sequence resulting from this matching is used in rule (13). 

Sequence Patterns 	 I  E, vi F spat = (E', (vi1, w2, 

vi F 	= ({ }, ( 0, vi,  ( ))) 	
(9) 

	

E,()F<>=({},((),Q,Q)) 	
(10) 

E, w o v F <> => FAIL 	
(11) 

W C v F baspatseq = FAIL 

E, vi F <baspatseq> 	(E', (vi1, w2, w3))/FAIL 

E,WOV F <baspatseq> =(E',(w1 ,vi2 ,w3 Gv))/FAIL 

E, vi F baspatseq 	(E', w')/FAIIL 

E, w F <baspatseq> = (E', vi - w', w', ( )))/FAIL 	
(13) 
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Comments 

(9)-(13) These rules define the simple sequence patterns ... and <[baspatseq]>. 

The results of a succesful pattern matching are the environment and a 

triple (w1 , w2 , w3 ) of consecutive sub-sequences of w, which is interpreted 

as follows: n is the sub-sequence of w that matched the pattern, w1  is the 

sub-sequence on the left of w2 , and w3  is the sub-sequence on the right of 

w2 , such that w = w1 ww3 . The three sub-sequences are necessary in the 

definition of the interval patterns. 

(12) If the first attempt to match the spat fails, then the matching is moved to 

one element to the left on the original sequence. 

Interval Patterns 

In the following rules we use p (with indexes) ranging over spat in order to simplify 

the presentation. 

E,wI-p4  =FAIL 
 

E, w I- t(p1) p2 ,p3 ,p4 ,p5 ) = FAIL 

w I- P4 = ( E1 , ( w1 , w, w3 )) 

E 	I- P2  FAIL 
 

E,w I- 01 ,p2 ,p3 ,p4 ,p5 ) => FAIL 

E, w I- p 	(E1 , ( w1 , , w3 )) 

E E1 , w1  F P2 = ( E2 , ( w4 , w5 , w6 )) 

E®E1 E2 ,w3  F p5  =FAIL 
 

E,w I- t(p1 ,p2 ,p3 ,p4,p5 ) => FAIL 
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w F p4  = ( E1 , ( w1 , w2 , w3 )) 

E E1 , w1  F P2 = ( E2 , ( w4 , w5 , w6 )) 

EE1  @ E2 ,w3  F p5  = ( E3 ,(w7 ,w8 ,w9 )) 

EE1 E2 E3 ,w6 Fp3  =FAIL 

E,w F 6(p1 ,p2 ,p3 ,p4,p5 ) 	FAIL 	
(17) 

E, w F P4 = ( E1 , ( w1 , w, w3 )) 

E E1 , w1  F P2 = ( E2 , ( w4 , w5 , w6 )) 

EE1  E2 ,w3  F D5 = ( E3 ,(w7 ,w8 ,w9 )) 

EE1 E2 eE3 ,w6 Fp3  =(E4 ,(w10 ,w11 ,w12 )) 

E E1  E2 	E, w4  F Pi = (E5 , ( w13 , w14 , w15 ))/FAIL 

E,w F 01 ,p2 ,p3 ,p4 ,p5 ) = 

(E1 	 E5 , ( w13 , 	 w9)/FAIL 

(18) 

Comments 

(14)—(18) These rules define the interval patterns. This definition guarantees 

that the pattern matching is deterministic because it forces the patterns to 

be tried in a fixed order. In the rules, this order is given by the input/output 

relation on the premisses, as defined in Section 5.4 by the relation -< 

The pattern matching must start from the pattern P4•  If the matching of 

p4  fails then the whole matching fails. 

Once the matching of p4  is fixed and results in (w1 , w2 , w) then P2  is tried 

on w1 . If the matching of P2  fails the whole matching fails. Notice that 

when this happens there is no attempt to try the matching of p4 again. 

(18) This rules describes the successful matching. Once the matching of P2  and 

p4  are fixed, the order in which the other patterns are tried is not import- 

ant, since w3 , w4 , and w6  are fixed. The environment resulting from the 
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matching is the union of the evaluation resulting from each sub-matching. 

The resulting triple of sub-sequences is better understood by referring to 

Figure 3. 

Balanced Interval Patterns 

w F- p4  => FAIL 
(19) 

E,w F-/3(p1 ,p2,p3 ,p4,p5 ) =:> FAIL 

w I- P4 = (E1 , ( w1 , w2 , w3 )) 

E, E• E1 , w1 1 B P2, P4 =:> FAIL 

E, w 1- /3(pl,p2,p3,p4,P5) = FAIL 	
(20) 

w F- P4 =>- (E1 , ( w1 , w2 , w3 )) 

B, e . B1, to1 F-B P2, P4 = (B2 , (to4, to5, to6)) 

EE1 E2,w3 F- p5  =FML 

E,w F-/3(p1 ,p2 ,p3 ,p4,p5 ) = FAIL 	
(21) 

E, w I- p4 	(E1 , (to1, w2, to3)) 

E,e.E1 ,w1  1BP2,P4 = (E2 ,(w4 , to5, to6)) 

EE1 E2 ,w3  F-p5  = (E3 ,(w7 ,w8 ,w9 )) 

E®E1 eE2 eE3 ,w6 F- p3 =-FAIL 

to F- 13(P1,P2,P3,P4,P5) = FAIL 
 

E, to F- p4  = (B1 , ( vi1 , w2 , to3)) 

B, e . E1 , to1 F-B P2, P4 => (E2 , (to4, to5, to6)) 

EE1 E2 ,w3  F-p5  = (E3 ,(w7 ,w8 ,w9 )) 

EE1 E2 E3 ,w6  F-p3  =E4 ,(w10 ,w11 ,w12 )) 

B ® E1  @ E2 	E4 , to4 F- Pi = (B5 , (to13, w14 , w15 ))/FAIL 

E, to F- G(p,  p,  p, P4, p5) = 

(E1  ® 	® E4  E5, (to13, w14 w 5 	wttoto8, wg)/FAIL 
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Comment 

(14)—(18) These rules define the, matching of balanced interval patterns. The 

major difference between these rules and those for the interval patterns is 

that the matching of P2  on w1  is defined by rules (24)—(27) which check if 

the sequence w1  is balanced with respect to P2  and p4 . 

Balanced Matching 	E, ES, w F-B spat1 , spat2  = ( E', (w1 , w2 , w3 ))/FAI 

ES:Ae 	
24 

E, ES, () 1- B spat1 , spat2  = FAIL 

E, w c v I- spat2  = FAIL 

E E', w o v F- spat1  = (E", (w1 , w2 , w3 )) 

E, E• E', w c v 1B  spat1 , spat2  = (E", (w1 , w2 , w3))/FAIL 

ESe 	E,wovF- spat2 ='FAIL 

EE',wov F- spat1  = (E",(w1 ,w2 ,w3 )) 

E, ES, w1  F- 	 ( 

I,,

B  spat1 , spat2  = E , ' w4 , w5 , w6 ))/FAIL 
 

E, ES • E', w 0  v F-B spat1 , spat2  =' (E", (w4 , w5 , w6 w2 w3 ))/FAIL 

, 	 ' EEDE',wvF- spat2 =(E I,  ,(w1,w2,w3 )) 

E, ES • E' • E", w 1  F-B spat1 , spat2  = (B", (w4 , to5 , w6))/FA]L 

E, ES • E', to o v, F-B spat1 , spat2  = ( E", (w4 , to5, w6 ww3))/FAIL 
 

Comments 

(24)—(27) These rules define the matching of spat1  on to with the extra-condition 

that the matching is balanced with respect to spat2  in the usual sense 

of balanced bracketing. For this definition we use a stack to keep the 

environments resulting from the matchings of spat2 . This stack is necessary 

because the matching of spat1  must be done on the environment resulting 

from the matching of a corresponding spat2. 

(25) 
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II spat1  matches successfully and the environment stack has only one element 

then the matching is balanced and the overall matching succeeds. 

If spat1  matches successfully but the stack has more than one element then 

the top of the stack is removed and the matching continues with the new 

stack. 

If spat2  matches successfully then the environment resulting from its match-

ing is pushed on the stack and the matching for the corresponding spat1  is 

attempted. 

A.4 Summary and Conclusions 

In this appendix, we defined the semantics of DSL. We presented the syntax 

of sequence patterns and the Relational Rules for the dynamic semantics of the 

pattern matching. We did not define the syntax and semantics of the basic values 

and basic patterns. These definitions depend on the application in which DSL is 

used. We informally discussed the definition of the basic values for the application 

of DSL in the specification of debuggers based on a Relational Specification. 

An actual implementation of DSL could be achieved by adding sequence pat-

terns to an existing functional language. In particular, we believe that it is 

simple to include these patterns in the ML language [HMT89]. The implications 

of adding sequence patterns to ML would have to be studied. 


