
The case for holistic query evaluation

Konstantinos Krikellas
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2010

Abstract

In this thesis we present the holistic query evaluation model. We propose a novel

query engine design that exploits the characteristics of modern processors when queries

execute inside main memory. The holistic model (a) is based on template-based code

generation for each executed query, (b) uses multithreading to adapt to multicore pro-

cessor architectures and (c) addresses the optimization problem of scheduling multiple

threads for intra-query parallelism.

Main-memory query execution is a usual operation in modern database servers

equipped with tens or hundreds of gigabytes of RAM. In such an execution envi-

ronment, the query engine needs to adapt to the CPU characteristics to boost perfor-

mance. For this purpose, holistic query evaluation applies customized code generation

to database query evaluation. The idea is to use a collection of highly efficient code

templates and dynamically instantiate them to create query- and hardware-specific

source code. The source code is compiled and dynamically linked to the database

server for processing. Code generation diminishes the bloat of higher-level program-

ming abstractions necessary for implementing generic, interpreted, SQL query engines.

At the same time, the generated code is customized for the hardware it will run on. The

holistic model supports the most frequently used query processing algorithms, namely

sorting, partitioning, join evaluation, and aggregation, thus allowing the efficient eval-

uation of complex DSS or OLAP queries.

Modern CPUs follow multicore designs with multiple threads running in parallel.

The dataflow of query engine algorithms needs to be adapted to exploit such designs.

We identify memory accesses and thread synchronization as the main bottlenecks in

a multicore execution environment. We extend the holistic query evaluation model

and propose techniques to mitigate the impact of these bottlenecks on multithreaded

query evaluation. We analytically model the expected performance and scalability of

the proposed algorithms according to the hardware specifications. The analytical per-

formance expressions can be used by the optimizer to statically estimate the speedup

of multithreaded query execution.

Finally, we examine the problem of thread scheduling in the context of multi-

threaded query evaluation on multicore CPUs. The search space for possible operator

execution schedules scales fast, thus forbidding the use of exhaustive techniques. We

model intra-query parallelism on multicore systems and present scheduling heuristics

that result in different degrees of schedule quality and optimization cost. We identify

i

cases where each of our proposed algorithms, or combinations of them, are expected

to generate schedules of high quality at an acceptable running cost.

ii

Acknowledgements

There is an ancient Greek saying, according to which we owe our life to our parents

and our welfare to our teachers. During the studies towards my Ph.D. at Edinburgh my

professors and colleagues, my friends and my family members have firmly supported

and eased my efforts. I feel lucky to have pursued my studies with these people by my

side; they helped me focus on and enjoy my research work and get the most out of the

time I spent as a Ph.D candidate.

Back to 2006, when I decided to move to Edinburgh for my Ph.D. studies, little did

I know about my supervisor, Stratis D. Viglas. It soon became clear to me that I could

not have made a better choice. I was expecting that Stratis would help me get a better

understanding of my research area and teach me how to innovate and communicate my

ideas. I was expecting that, being a phenomenal researcher himself, he would push me

hard to conduct research at the highest level, with no compromises or excuses. What

I never expected was that my supervisor would also be a father and a close friend to

me. He spent infinite hours chatting with me, wisely bringing me down to earth when

I thought I had conquered the world and standing by me when I was disappointed from

bad results or paper rejections. He almost spent as much time working on our papers as

I did – will never forget June 2009, when I was at Cambridge and we kept exchanging

emails until (or even after) midnight for days, to catch the conference deadline. He

tried hard to absorb my stress, to patiently correct my mistakes and to transfer his

research skills to me. No student can ask for more.

Marcelo Cintra, my second supervisor, worked hard to provide me with a back-

ground in an area I had never studied before. He taught me to be realistic and patient

with my research work. He kept challenging me to persuade him that my ideas were

sound; that way, he helped me improve my communication skills and identify new re-

search directions. Marcelo has always been supportive and optimistic about our work;

this may seem simple but sometimes proves invaluable.

Peter Buneman, leader of the Database Group, has closely monitored my progress

during the past three years. His advice and guidance have always been greatly appre-

ciated; however, I was more impressed by his humbleness and openness, considering

that he is a legend in the Computer Science community. I also want to thank the School

of Informatics and the Engineering and Physical Sciences Research Council (EPSRC)

for funding my studies; having no financial worries allowed me to focus on my work.

I hope the outcomes justify their decision to sponsor my postgraduate studies.

iii

My doctoral studies were interrupted twice because I interned with Microsoft Re-

search at Cambridge. During my internships, I had the chance to conduct research

in an astonishing environment and collaborate with senior researchers of the calible of

Foula Vagena, Sameh Elnikety, Orion Hodson and Ant Rowstron. Sameh was the mas-

termind behind our research work. He spent most of his time transferring his knowl-

edge to me, both on his research area and on how a researcher and an engineer should

behave. He was my mentor and will definitely remain a good friend. Orion gave me

an insight of what constitutes a skillful software engineer and how successful software

products are built and extended. He taught me that code maintainability is sometimes

as important as performance and encouraged me to focus on both these aspects during

software development.

Foula has been my third supervisor. She helped me apply to Microsoft Research

and supported me throughout my internship by any means, wisely guiding me on how

to get the most out of it. She spent (and spends) lots of her precious time discussing

about my future occupation alternatives, the professional skills I need and my approach

to the job-hunting process. It is not common to meet people who are willing to help

without asking for any return, who are kind, friendly and supportive under all circum-

stances.

Moving to Edinburgh brought a change to my living environment, as I had never

lived abroad before. However, I was lucky enough to join such an amazing social circle

of Greek PhD students. My flatmate and officemate, Giannis, has been one of the few

people who can withstand my presence for so many hours a day. Besides being a gifted

engineer and researcher, his vivid and spontaneous sense of humour helped me forget

the stress of work. Savvas was the oldest Greek student in our office, but this did not

stop us from teasing him all the time. Probably the most kind, polite and outgoing

student I have met in the UK. Paul “Holeras” was the newby in our office, always full

of energy and ready to hit the pubs. Manos and Kostas were so unbelievably crazy

guys; when they met Gianni, chaos and disorder prevailed – beer showers, mermaid

statue feeding, stolen bike saddles and awful public karaoke performances are only a

small sample of their actions. Iro “Rourou” and Giorgia “Jojoka” patiently tolerated

boys’ behaviour and offered their place for our gatherings and our crazy parties –

rumors say that pieces of broken plates are still recovered from the fireplace. Jerry

“worm” was as crazy and humouristic as only a Thessalonikian can be. Panagiotis,

Anastasia, Kostas “barbas” and Ifigenia also joined our gatherings and contributed to

our company’s careless spirit.

iv

While staying at Cambridge, I often visited Niko at Cranfield. I first met him during

the first year of our undergraduate studies; he has been a true friend ever since. I also

had the chance to meet his flatmates, Elias and Takis, the twins from Tripoli. They

always made me feel at home and I enjoyed barbecueing and having all these cheerful

chats with them. I am sure our friendship will last for long.

During the past three years, I have spent some time with a few girls that helped

me relax and take my mind away from work; this was crucial for my internal balance

and mental outlook. I want to thank Anna, Alex and Mihaela for the time they spent

with me and the patience they showed. When I first met Jane at Cambridge, I would

never expect to spend so much time with her. She has been by my side from then on,

enduring distance, my focus at work and my sharp and selfish behaviour. She will

always have a place in my heart, even when we separate.

Finally, all my family members have been more than supportive during my studies.

I am blessed to be the last of five children: Ino, Dimitris, Maria and Gianna. They

have all been there when I needed them and alleviated any homesickness feelings. My

siblings in law, Nektarios, Nektarios and Nektaria, have been as close to me as my

blood siblings. I already have seven nephews and nieces, more to come in short. I

regret for not being present when my nieces, Elpida, Theodora and Stella, were born

– will try to compensate in the future. Above all, I would like to thank my parents,

Odysseas and Stella for everything they have done for me. They have sacrificed every

luxury from their life so as to make sure that all their children get the highest level

of education they could afford. Through their lives, they set us an example of how

to stand on our knees, to work hard, to always opt to excel and improve our skills.

They taught us that, if we trust our abilities and spare no pains to work, everything is

feasible. Nothing makes them more happy than learning about their children’ progress

and prosperity. I dedicate this dissertation to them.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Konstantinos Krikellas)

vi

To my parents

Odysseas and Stella

vii

 “Αἰέν ἀριστεύειν καί ὑπείροχον ἒμμεναι ἄλλων, μηδέ γένος πατέρων αἰσχυνέμεν.”
(Ever to excel, to do better than others, and to bring glory to your forebears).

Homer's Iliad

 “Ἓν οἶδα ὅτι οὐδὲν οἶδα.”
(I know one thing, that I know nothing).

 Socrates

viii

Table of Contents

1 Introduction 1

2 Background 8
2.1 Hardware primer . 8

2.2 Modern query engine design . 13

2.3 Previous work in main-memory query execution 15

3 Generating code for holistic query evaluation 18
3.1 Introduction . 18

3.1.1 Motivation . 18

3.1.2 Code generation for query evaluation 19

3.2 Query evaluation in main memory 20

3.2.1 Limitations of current query engines 20

3.2.2 Can the compiler help? . 21

3.3 System overview . 22

3.3.1 Storage layer . 22

3.3.2 Query processing . 23

3.4 Code generation . 26

3.5 Holistic query evaluation algorithms 28

3.5.1 Data staging . 30

3.5.2 Join evaluation . 33

3.5.3 Aggregation algorithms . 41

3.6 Implementation of the code generator 46

3.7 Query optimisation . 48

3.8 Experimental Study . 53

3.8.1 Testbed . 54

3.8.2 Metrics and methodology 55

ix

3.8.3 Iterators versus holistic code 57

3.8.4 Performance of holistic algorithms 62

3.8.5 Wisconsin benchmark . 65

3.8.6 TPC-H benchmark . 78

3.8.7 Query preparation penalty 86

3.9 Further reading . 87

4 Multithreaded query execution on multicore processors 88
4.1 Introduction . 88

4.2 Multithreaded processing . 90

4.2.1 Data staging . 93

4.2.2 Join evaluation . 98

4.2.3 Aggregation algorithms . 99

4.3 Performance modelling . 101

4.3.1 Sorting . 103

4.3.2 Partitioning . 105

4.3.3 Join evaluation . 107

4.3.4 Aggregation . 108

4.4 Experimental study . 109

4.4.1 Aggregation . 111

4.4.2 Join evaluation . 115

4.4.3 Pipelined operators . 119

4.5 Further reading . 121

5 Scheduling threads for intra-query parallelism 123
5.1 Introduction . 123

5.2 Formulation of scheduling . 127

5.3 Algorithms . 135

5.3.1 Node expansion variants . 138

5.3.2 Level expansion . 144

5.4 Experimental study . 147

5.4.1 Schedule optimality . 149

5.4.2 Impact of the scalability curve 149

5.4.3 Impact of the number of tasks and threads 152

5.5 Discussion . 154

5.6 Further reading . 157

x

6 Conclusions and future directions 160
6.1 Conclusions . 160

6.2 Future directions . 164

A The TPC-H benchmark 165
A.1 Schema . 165

A.2 Statistics . 171

Bibliography 176

xi

Chapter 1

Introduction

In this thesis we study issues in the areas of query evaluation and optimisation. Our

focus is on query execution when the query dataset fits inside main memory. Efficient

query execution in this environment requires the query engine to adapt to the charac-

teristics of modern hardware.

The architecture of most commercial database systems dates from two to three

decades back [72]. In that era, query processing algorithms focused on minimising

disk I/O, since the RAM was too limited to hold even the dataset of short-running queries

while main memory accesses were much faster than accesses to hard disk drives. This

environment has steadily changed over time. The capacities of both hard disk drives

and main memory have increased by almost three orders of magnitude within the last

fifteen years. For contemporary servers with large amounts of memory it is certainly

conceivable for a large portion of the on-disk data – or even the entire database –

to fit in main memory. In such cases, the difference in access latency between the

processor’s registers and main memory leads to processor stalls until data is fetched to

the CPU pipeline. In data-intensive applications, memory accesses have been shown to

become the performance bottleneck [3].

To mask the slow access rate to main memory, current processors use multiple lev-

els of cache memory that buffer recently accessed data closer to the CPU. The capacity

of each level of cache memory is typically orders of magnitude smaller than the query

dataset. For data-intensive workloads it is imperative to adjust the data flow to take

advantage of the buffering effect of the cache memories. This, however, is a complex

process, as data transfer inside the cache hierarchy is controlled by hardware. It is

therefore impossible for any application to have absolute control of the cache content.

Moreover, the advent of multicore processors has not brought any dramatic im-

1

Chapter 1. Introduction 2

provements to the efficiency of query engines in main-memory query execution. Mul-

ticore architectures provide hardware support for the parallel execution of multiple

threads. This is achieved by replicating execution pipelines and caches in separate

cores on the same die. Though this design increases the processor’s raw computational

power, it also introduces contention when all cores attempt to simultaneously access

main memory; this is a usual case in data-intensive workloads. Moreover, accesses

and updates of shared data structures require synchronisation, further restricting scala-

bility in multithreaded query execution. Parallel query execution has extensively been

studied before for shared-nothing and shared-memory parallel systems (e.g., [25, 34]).

However, the presence of cache levels that are either private or shared by multiple

cores requires revisiting the design of query engines to fine-tune parallelism for multi-

core CPUs.

To improve the performance of contemporary query engines during main-memory

query execution, we introduce the Holistic Query Evaluation model. We propose a

novel query engine architecture that is globally optimised with regard to the charac-

teristics of modern hardware. We term our model “holistic” because query execution

is optimised both for the query operations included in each query and the specifica-

tions of the host hardware platform. To reduce processor stalls during query eval-

uation, the query engine generates query-specific source code, which is then com-

piled, linked to and executed by the database back-end to produce the query results.

To exploit the multicore design of modern processors, the holistic model introduces

a framework for multithreaded query execution that incurs minimal synchronisation

overhead and favours cache locality to boost scalability. Finally, to enhance intra-

query parallelism, the query engine uses heuristics for distributing the available budget

of hardware-supported threads to query operators and generating execution schedules

of high quality.

We present the various aspects of the holistic model in three parts. In the first

part, we describe the proposed query engine architecture and give our template-based

approach for code generation, focusing on single-threaded execution. In the second

part, we provide a uniform framework to extend query operations for multithreading

so as to exploit multicore architectures. Furthermore, we present our methodology to

analytically estimate the speedup from multithreaded execution, based on hardware

parameters and performance metrics. The proposed framework and analytical model

are not restricted to query engines using code generation; they can directly be applied

to any query engine and hardware platform. Finally, we investigate how our speedup

Chapter 1. Introduction 3

estimations for multithreaded execution can be used by the query optimiser to produce

an execution schedule of high optimality. This is particularly interesting in (but not

restricted to) systems with multicore CPUs, since the design of the latter allows for

fine-grained intra-query parallelism.

The database community has realised that the generic design of contemporary

query engines proves inadequate under common workloads and hardware setups [71,

72] due to their OLTP-oriented architecture. Previous work has argued that efficiency

in main-memory query execution requires changes to the storage layer, so as to re-

duce the size of the data required to be transferred to the cache hierarchy. We believe

that changing the storage layer is a radical departure from conventional database de-

sign, that may have side-effects on concurrency control and recovery. On the contrary,

we focus on the established implementation model, namely the iterator model, that

is extensively used to build interpreted query engines for SQL. Interpretation means

genericity and composability – precisely what the iterator model provided when it was

introduced (and what it still provides). However, that comes at a cost on modern CPUs

due to the iterators’ inflated needs for both executed instructions and processed data.

Our objective is to introduce a novel query engine design that would prove efficient

in main-memory execution and also maintain the compositional aspects of the iterator

model. Moreover, we have decided to use the established storage layout of sequen-

tially storing tuples inside pages, i.e., the N-ary Storage Layout (NSM), so as not to

affect orthogonal modules of the database system. To that end, we propose the use of

per-query code generation, compilation and dynamic linking to the database back-end.

Code generation allows the customisation of the executed code for the characteristics

of each query in particular, using succinct and highly efficient code segments. Further-

more, during code generation and compilation it is possible to optimise the code for

the hardware platform it will run on, thus having another optimisation step on top of

traditional query optimisation.

The idea of on-the-fly code generation is not new; a primitive form of this technique

was introduced in System-R [9], though its use resembled more of modern query inter-

pretation. However, back then compiler optimisations and hardware-friendliness of the

native code were not as advanced as they are now and the cost of code generation and

dynamic linking outweighed their benefits. Moreover, on-the-fly generation and com-

pilation of query-specific code was tricky and error-prone since there was no common

interface to interconnect different query operations, as in the case of iterators.

This situation has radically changed during the past decades. Modern database

Chapter 1. Introduction 4

servers and compilers are powerful enough to generate and compile code for each

executed query at an acceptable cost. The issue that remains is how different query

operators can be instantiated and interconnected inside the generated source code, us-

ing a uniform and simple to implement framework. To mitigate this, we present a

template-based framework that uses composition to produce query-specific code. The

templates use a common nested-loops code segment, that is appropriately modified to

implement various sort- or partition-based query evaluation algorithms. We do not use

memory-resident hash tables, so as to avoid uncontrollable random access patterns;

instead we present algorithms that combine partitioning with sorting to exploit cache

locality. Operator interconnection is done using temporary intermediate tables, that are

handled by the storage manager and therefore can be either disk- or memory-resident.

Code generation improves the efficiency of the executed code in the following

ways: (a) the number of function calls during query evaluation is minimised, (b) the

code layout fits the superscalar design of modern processors, and (c) data locality is

enhanced by making optimal use of cache-resident data. Moreover, code compilation

allows the use of compiler optimisation techniques targeting each individual query,

an extra optimisation level on top of conventional query optimisation. The proposed

framework is easily extendable and flexible enough to accommodate sophisticated

query evaluation algorithms, such as multi-way join evaluation, with only moderate

changes.

Using this framework, we have developed a prototype query engine that we term

Holistic Integrated Query Engine (HIQUE). We have studied its performance exten-

sively by comparing it to both iterator-based solutions and existing database systems,

using a variety of workloads. The results (a) quantify the advantage of per-query code

generation over generic query operator implementations, and (b) demonstrate a superi-

ority of the holistic approach over both iterator-based and hardware-conscious systems,

therefore proving its viability as an alternative query engine design.

The next challenge in the development of the holistic model is its extension for

multicore architectures. According to previous work in parallel query processing, the

starting point is to split the input of each query operator to disjoint partitions and pro-

cess the latter independently. However, the presence of the cache hierarchy and the

high latency of uncached memory accesses complicate parallel query execution and

restrict the scalability of naı̈ve implementations when ported on multicores. Further-

more, parallelism is lightweight since it is based on threads instead of processes, as it is

common in shared-nothing and shared-memory systems. This means that the overhead

Chapter 1. Introduction 5

for thread synchronisation and scheduling should be limited, otherwise it will become

comparable to the time spent for query execution, thus reducing the performance gains

from parallel execution.

Based on these observations, we develop a uniform and widely applicable frame-

work that extends query evaluation algorithms for multithreading. The framework

divides execution to two stages: partitioning and processing. During partitioning, the

input is broken to disjoint splits that are processed independently. The number of splits

is equal to the number of the threads that can efficiently be supported by hardware in-

side the cores. That way, the scheduling overhead is negligible; threads are started and

run with minimal synchronisation needs, until they have fully processed their input

split. The output of the first stage is a number of partitions (equal to or higher than

the number of threads used) that contain tuples with range- or hash-partitioned pred-

icate values. The next step is to run the actual query processing algorithm (e.g., join

evaluation or aggregation) over the partitions that the previous step produced. Again,

the number of threads utilised is tightly connected to the hardware support capabil-

ities for multithreading. Each thread processes a disjoint range of partitions, so no

synchronisation is required during this step.

After developing our multithreading framework and integrating it to HIQUE by ex-

tending the code templates and the generator accordingly, we were concerned with the

measured performance. The question that arose is whether the speedup we measured

was good and, if not, what factor was restricting performance. Our framework was

carefully designed to have negligible synchronisation and scheduling overhead, so our

intuition was that concurrent accesses to the main memory incur inflated cost, as it

has also been shown in [57]. To model this, for each query operation we define the

multithreaded utility ratio as the ratio of the time spent for fetching data to the total

processing time that corresponds to each input unit (split, partition or page). High

values of this ratio denote fetch-dominated operations; in this case memory accesses

become effectively serialised, thus restricting scalability. On the contrary, low values

of the utility ratio show that there is sufficient computational load to overlap with data

fetching, so thread contention for the memory bus is limited; this leads to almost lin-

ear speedups. Note that the definition of the multithreaded utility ratio is not tied to

the holistic model; this ratio can be calculated for the algorithms of any query engine

implementation running on any hardware platform.

Using the methodology above, we have devised analytical cost expressions and

speedup estimations for the supported query evaluation algorithms. These formulas

Chapter 1. Introduction 6

are based on hardware parameters and performance metrics. We then used HIQUE to

experiment with different query parameters, such as input tuple size and predicate se-

lectivity, for the supported query evaluation algorithms and compared the measured

performance with the estimated one. The results verify that our scalability model ad-

equately captures the performance trends, giving reliable estimations of the expected

speedup from multithreaded query execution. Furthermore, our proposed framework

shows substantial performance merits, achieving considerable scalability in all cases

and even approximating linear behaviour in certain ones.

The last part in the development of the holistic model addresses the optimisation

problem of thread scheduling for intra-query parallelism. Multicore processors pro-

vide hardware support for parallel execution of multiple threads. Our framework for

multithreading allows the efficient use of many threads for each query operator. In a

complex query, there are many possible ways of allocating threads to the various query

operators: each operator can be assigned from one to all available threads, while its

execution can start as soon as its input has (partially or totally) been generated. Since

the holistic model can give static estimations of the speedup from multithreaded exe-

cution of each query operator, we study how these estimations can be leveraged by the

query optimiser to produce an execution schedule of high quality.

Our analysis starts with modelling the optimisation problem. We show how a query

task tree can be built from a bushy query execution plan when various forms of intra-

and inter-operator parallelism are taken into consideration. Each query task comprises

one or more (pipelined) query operators that can be individually scheduled to one or

more threads, so the query task tree is the input of the scheduler. We avoid tying our

modelling approach to HIQUE or any other query engine design by explaining how

different implementation alternatives can be modelled to exploit the characteristics of

multicore processors.

The number of possible query operator combinations in the execution schedule is

limited by data and resource restrictions. However, the use of bushy execution plans

and the increased thread budget of modern multicore CPUs counterbalance these re-

strictions and increase the size of the search space. It has been shown in [27] that the

number of possible execution schedules grows exponentially to the number of available

threads and the number of query operators. This renders the use of exhaustive tech-

niques practically inapplicable. To that end, we introduce a family of heuristics-based

techniques examining subplans that are likely to give schedules of high optimality. Our

algorithms search opportunities for parallel execution of either (a) the descendants of

Chapter 1. Introduction 7

a single node until a certain depth, or (b) all the nodes of the same level of the query

task tree. In both cases, scheduling uses a parallel execution window of width equal to

the number of hardware-supported threads. The objective is to specify groups of tasks

that, when scheduled together and following a specific thread distribution, (a) min-

imise delays due to data and resource dependencies and (b) achieve the highest degree

of parallelism for the scalability potential of all tasks, as given by our analytical scala-

bility model for multithreading.

To evaluate the optimality and the execution cost of the proposed techniques, we

simulated the execution of our scheduling algorithms for a wide range of bushy query

plans using different thread budgets and scalability estimations. The results show that

our heuristics produce schedules of high quality while incurring acceptable optimisa-

tion cost and, hence, they are practically applicable. Finally, we present cases where

each of the proposed algorithms, or combinations of them, are expected to give sched-

ules of high quality at an acceptable execution cost.

The rest of this thesis is organised as follows: in Chapter 2 we elaborate on modern

processor architecture, describe the design of modern query engines and present pre-

vious work in main-memory query execution. In Chapter 3 we present our template-

based approach to per-query code generation, along with the proposed algorithmic

extensions for main-memory query evaluation. In Chapter 4 we introduce our frame-

work for multithreaded query evaluation and present our modelling methodology for

estimating scalability. In Chapter 5 we model the optimization problem of schedul-

ing threads to query operators and introduce a family of heuristic-based scheduling

algorithms. Finally, we draw our conclusions and identify future work directions in

Chapter 6.

Chapter 2

Background

2.1 Hardware primer

Modern CPUs process multiple instructions simultaneously through pipelining and su-

perscalar execution [41]. Though individual processor architectures vary widely, most

modern CPUs follow a common design, as depicted in Figure 2.1. The key difference

between CPU core architectures is whether their pipeline follows out-of-order or in-

order execution. In the first case, if one instruction has to wait for a data transfer,

or for another instruction to be executed first, other instructions following it in the

pipeline can take its turn and execute. This allows the CPU to (partially) cover memory

access and instruction dependency stalls. Though out-of-order execution hides stalls

on single-threaded execution through Instruction Level Parallelism (ILP), it offers lim-

ited advantages when the executed code includes consecutive memory requests and

long data and control dependency chains; the latter are common in database workloads.

Out-of-order execution also requires complex circuits occupying valuable chip surface,

which could be otherwise exploited to include more cache memory, or more registers.

On the contrary, processors using in-order execution have a simpler pipeline that stalls

on branches or memory operations. For those types of processor it is common practice

to adopt hardware support for multithreading, in the sense that they switch to a thread

ready to execute when the running one is stalled. An in-depth study of the differences

of these two designs on database workloads can be found in [39]. That report can

be used as indicative of trends; it is based on simulation results using a database sys-

tem not optimised for main-memory execution, while it does not take into account the

effect of other major processor subsystems, such as the hardware prefetchers.

The superscalar design proves very efficient in performing independent calcula-

8

Chapter 2. Background 9

Figure 2.1: The pipeline architecture of modern CPUs

tions. It leads, however, to undesirable processor stalls when the execution pipeline

contains dependent instructions, such as branching conditions or successive uses of

the same data. For branching, the usual countermeasure is to speculatively continue

executing the instruction stream indicated by one of the targets of the branch. The

choice of target is based on the history of previous outcomes for a small number of the

most recent instantiations. In case of a branch misprediction, all instructions that fol-

low the mispredicted branch in the pipeline have to be flushed and the new and correct

instructions loaded, leading to wasted CPU cycles. This used to be a significant source

of stalls, especially for processors that adopted a deep pipeline, like the Intel Pentium

4.1 Branch misprediction stalls, however, have a limited impact on the performance of

modern CPUs, as the hardware community has abandoned deep pipeline designs.

Although most processors have multiple execution units for arithmetic and logical

operations, they only have one or two units for memory operations. Therefore, they

can perform only a few memory operations simultaneously, thus inevitably restrict-

ing superscalar operation in data-intensive workloads. The large difference in latency

between accessing the main memory and the processor’s registers is countered with

multiple levels of cache memory. The levels closer to the processor are smaller but

faster to access than the ones closer to the main memory. Cached data is organised in

1The Intel Pentium 4 processor had the deepest pipeline of its class – 31 stages.

Chapter 2. Background 10

fixed-length chunks, each termed a cache line, that are also the data exchange unit with

the main memory. Most modern processors incorporate a very fast to access level-1

(L1) cache of 32-128KB divided in the Instruction (I1) and the Data (D1) cache; a

moderately fast to access 0.5-12MB level-2 (L2) cache; and, in some models, an even

larger but much slower to access level-3 (L3) cache.

Caches work by exploiting both temporal locality (data tend to be repeatedly ac-

cessed within a short period) and spatial locality (contiguously allocated data tend to be

accessed in unison). Their non-blocking operation, combined with superscalar execu-

tion, allows for multiple pending memory operations, thus overlapping fetch latencies.

Data-intensive workloads, however, restrict this operation. The cache controller can

only serve a limited number of concurrent requests and therefore becomes saturated.

While caches can serve a large percentage of the processor’s instruction and data re-

quests, the remaining ones (cache misses) are extremely expensive and can become a

performance bottleneck.

To assist the caches, modern processors incorporate hardware prefetching units that

identify the instructions and data likely to be accessed shortly and prefetch them into

the appropriate cache level. That way, it is possible to avoid many cache misses and re-

duce processor stalls. A closer look at the operating principles of hardware prefetchers

([4, 26]) shows that they can identify future accesses when data is linearly accessed in

fixed strides of cache lines. The most sophisticated designs, as depicted in Figure 2.1,

employ multiple prefetching units tightly coupled with the cache hierarchy. The se-

quential pattern based prefetchers for the D1- and the L2-cache in Figure 2.1, are ca-

pable of detecting purely sequential patterns and can prefetch the next line upon a cache

miss. The history based prefetcher for the D1-cache in Figure 2.1 closely monitors the

addresses touched by the processor. It is capable of identifying more complex-strided

access patterns by (a) keeping the history of accesses for a small number of the most

frequently accessed entries, and (b) tracking the distance (stride) between successive

fetches. Modern hardware prefetchers can identify and prefetch data exactly when it is

to be accessed, without polluting the cache with data not immediately needed. There is

usually a startup penalty until the prefetcher “locks on” the strided data access pattern.

In Figure 2.2 we show the impact of hardware prefetching for an Intel Core 2 Duo

6300 processor, operating at 1.86 GHz. We present the data access latency for vari-

able examined block sizes, for sequential (forward and backward) and random access

patterns. The measurements were extracted by the RightMark Memory Analyzer [65]

program. While all accesses to the D1-cache have a uniform cost of 3 cycles, there is

Chapter 2. Background 11

Figure 2.2: Memory access latency for the Intel Core 2 Duo processor

a significant difference when switching from sequential to random access in the L2-

cache: the former takes 9 cycles and the latter 14 cycles. This gap grows further when

a data access cannot be served from caches, as sequential access in main memory

costs 28 cycles, while random access costs 77 cycles or more. Note that if we pro-

vide the CPU with sufficient computational load for out-of-order execution, the time

the prefetcher needs to fetch a cache line can be masked by independent computations

so the CPU stall time is minimised. This operation, however, can only take place in

the D1-cache: the execution pipeline of the CPU is too short to fully hide an L2-cache

miss through out-of-order execution. Furthermore, in many architectures, speculative

accesses outside the cache hierarchy are inhibited, to avoid the penalty of performing

expensive memory operations that might be dropped at a later stage.

The latest trend in processor architecture is the integration of multiple processing

cores on the same die. Termed chip multiprocessors (CMPs), multicore chips natively

support parallel execution, while combining scalability with energy efficiency [41].

Multicore chips have been implemented in various ways. The main difference is the

Chapter 2. Background 12

Execution Engine

D1-cache I1-cache

Core 1

L2-Cache L2-Cache

System Bus

M a i n m e m o r y

CPU

Execution Engine

D1-cache I1-cache

Core 2

Execution Engine

D1-cache I1-cache

Core 3
Execution Engine

D1-cache I1-cache

Core 4

Figure 2.3: The architecture of the Intel Xeon E5420

type of parallelism supported by each core. Some processor designs, e.g., the Intel

Quad Core and the AMD Phenom, support out-of-order execution and ILP; alterna-

tively, the pipelines of the Sun UltraSPARC T2 and the IBM Power 6 support only

in-order execution but there is in-core support for TLP. There are also hybrid designs,

e.g., the Intel Core i7 CPU, which combine out-of-order execution with hardware sup-

ported multithreading inside the cores, similar to Simultaneous Multithreading [42].

Multicore designs also differ in terms of the memory hierarchy, specifically whether

on-chip caches are shared between all or some of the cores. In Figure 2.3 we sketch

the Intel Xeon E5420 quad-core processor: each pair of cores shares a common L2-

cache and cores from different pairs communicate through the memory bus. In other

designs, e.g., the AMD Phenom and the Intel Core i7, each core has its own L1- and

L2-caches, while all cores share a common on-chip L3-cache. The salient challenge

in multicore CPUs is to keep all cores processing data at rates close to their clock. To

do so, manufacturers improve memory throughput by integrating memory controllers

inside the chip and using multiple memory banks. Still, if the caches and the memory

are concurrently accessed by all cores, contention for their utilisation may increase the

latency of memory operations and degrade performance.

As multiple cores share main memory but not necessarily individual caches, it

is common practice to replicate data inside the caches of different cores to enhance

parallelism. Cache coherency involves the propagation of data writes from one core

to the others. When one cache line is shared between cores and is updated by one of

them, the other cores invalidate their cached copy and refetch the cache line on the

next access. Invalidation takes place on true sharing, i.e., cores access the same data of

the cache line, or on false sharing, i.e., when one core updates a part of the cache line

Chapter 2. Background 13

that no other core accesses. Coherency protocols “snoop” updates to all cores or use

directories to maintain data sharing information [41].

Concurrent execution at the hardware level (i.e., processing independently sched-

uled threads) does not imply synchronisation at the software level. The latter is achieved

by providing hardware support for atomic operations through mutexes and spin lock-

ing. Each mutex is a memory word set to 0 when free and 1 when locked; to operate on

the mutex, a core must have it in its D1-cache. To acquire a lock, a core continuously

probes the mutex (i.e., the core “spins”) using the atomic compare-and-swap instruc-

tion. Once the lock is acquired the core executes the synchronised code and resets the

lock. Each core spins on a locally cached copy of the mutex without affecting other

cores. Whenever the mutex is released, cache coherency requires that the cache line

containing it be invalidated and refetched. The first core to refetch the cache line will

acquire the lock; other cores waiting for the lock will continue to spin.

2.2 Modern query engine design

The query engines of most database systems are based on the iterator model [33]. This

model provides an abstract interface used for streaming tuples across query operators,

in the form of three functions: (a) open(), designating the start of information ex-

change and initialisation of internal operator state, (b) get next(), for propagating

tuples between operators, and (c) close(), denoting the end of processing and allow-

ing the operators to free up their resources. Query plans are then organised as pipelined

binary trees of operators communicating through iterator calls.

Iterators are used to implement various query operators. The most commonly ap-

plied and, at the same time, demanding ones are join evaluation and aggregation [30].

Efficient execution of these operations requires the input to first be either sorted or

hash-partitioned. Sorting is used in merge join and in sort-based aggregation; the in-

put tables are first sorted using the external sorting algorithm [49] and then scanned

sequentially to evaluate the join predicate or calculate the aggregates. Hash join algo-

rithms appear in numerous variants [5, 23, 48, 68, 79]: GRACE, hybrid, radix-cluster

and cuckoo hash join, to name a few. Although in some variants both inputs are par-

titioned, this is not necessary. The usual practice is to first build a hash table for the

smaller table. This hash table maps join attribute values to tuples using an appropriate

hash function [49]. The larger table is then scanned and the values of its join attribute

are used to probe the previously built hash table, evaluate the join predicate and retrieve

Chapter 2. Background 14

the matching tuples of the smaller table.

Hash join requires only the values of the smaller input to be inserted into a hash

table, while merge join requires sorting both inputs. In addition, the building phase

of hash join requires one single pass over the input so its complexity is O(N), while

the complexity of sorting is O(Nlog(N)). However, the use of a hash table introduces

random access patterns during probing that incur an order of magnitude higher fetch-

ing cost outside the L1-cache (see also Section 2.1 and Figure 2.2), compared to the

sequential access patterns that the sort-based algorithms use extensively. Moreover, in

case the hash table cannot fit in the available memory, multiple building and probing

steps are required so the cost of hash join gets closer or exceeds the one of merge join

in practice, despite its lower complexity. This effect is also important in main-memory

execution. Unless the hash table fits in the cache hierarchy, every lookup will most

likely trigger expensive cache misses. Note that the hardware prefetcher cannot pre-

vent these cache misses since they stem from accesses due to pointer dereferencing.

The cost of each such memory access will range close to 250− 300 CPU cycles, so

the probing phase will proceed through massive processor stalls. Similar conclusions

apply to hash-based aggregation.

In Online Analytical Processing (OLAP) and Decision Support System (DSS) appli-

cations it is a common practice to use star or snowflake schemata [10], where multiple

tables connect to a common root table using primary key – foreign key constraints.

In this case the workloads contain multi-way join queries with join teams, i.e., sets of

tables joined on a common key. For instance, the conjunction R.a = S.b and S.b = T.c

and T.d = A.x and A.x = B.y contains two join teams, one with tables R, S, and T and

another with tables T , A, and B; table T is common between the two teams. Modern

query engines can identify join teams and use sophisticated algorithms such as hash

teams [35] and interesting orders [67] to evaluate them. These techniques allow the

pipelined evaluation of multiple joins without materialising intermediate results, thus

radically reducing data fetching and processing. Furthermore, the authors of [45] gen-

eralised the idea of join teams for generic join predicates, without requiring a common

interconnecting key between the joined tables. This approach proves efficient when

the number of distinct values of the join attribute is low for all tables.

Chapter 2. Background 15

2.3 Previous work in main-memory query execution

It has long been known that processors are designed for complex numerical workloads

over primitive data types and are not well-tailored for database workloads. After the

seminal paper of [3], the database community obtained a better understanding of how

databases behave on modern processors. A quantitative analysis of processor stalls was

presented in [54], along with the necessary analytical tools to describe query evaluation

algorithms using hardware performance terms. Ongoing research in the area has shown

that, to make database systems more processor-friendly, one needs to either change the

data flow of the evaluation algorithms or the storage layout, in ways conducive to the

type of processing the CPU has been designed for.

In [69], performance was not only measured in terms of response time, but also

in terms of processor metrics (e.g., cache misses and branch mispredictions). Various

modifications were proposed to improve the behaviour of join algorithms on contem-

porary processors. Along the same lines, the Alphasort algorithm [58] proposed a

sorting implementation with the goal of minimising cache misses during the internal

sorting and merging phases.

In the context of the iterator model, a buffering operator was proposed in [78] to

increase the tuple granularity in inter-operator communication. This resulted in a mea-

surable reduction in the number of iterator calls across the operator pipeline, but had no

effect on the number of evaluation function calls in the body of the operator. In [60] it

was proposed that multiple aggregation operations can be combined in a single block-

ing operator that executes these operations over a sequence of tuples through array

computations. Common computations across the aggregation functions are performed

only once and stored as intermediate results; array computations are used to evaluate

aggregates, a technique more in line with the superscalar design of modern processors.

Regarding the storage layer, it was soon realised that the established N-ary Stor-

age Model (NSM) penalised execution for the common case of only a small number

of fields in each tuple being necessary during query evaluation. This led to the intro-

duction of vertical partitioning and the Decomposed Storage Model (DSM) [20], where

each tuple field is separately stored. This reduces the amount of data touched during

query evaluation. At the same time, it allows the use of array computations when im-

plementing the operators. This change of storage layout, however, implied revisiting

all query evaluation algorithms. It also affected not only the design of the query engine,

but other orthogonal aspects of a DBMS as well, e.g., concurrency control.

Chapter 2. Background 16

Vertical partitioning was revisited in [2] with the introduction of the Partition At-

tributes Across, or PAX, storage model. The idea is that although pages still provide

a tuple-level interface, the tuples within a page are vertically partitioned, thus greatly

enhancing cache locality. This hybrid approach combines the benefits of NSM and DSM

while requiring only limited changes to the database system. Though its performance

is inferior to DSM’s because of the intervention of the buffer manager for page manip-

ulation, it appears to be the most promising storage model since it does not affect other

parts of the system. PAX can be used in conjunction with holistic query evaluation.

A paradigm of a DBMS optimised for main-memory query execution is MonetDB [5,

55]. In addition to vertical decomposition, its entire query engine is built on the no-

tion of array manipulation, with sophisticated query processing techniques (e.g., radix-

cluster hash join) having been developed in that context. Though MonetDB’s engine

employs a different data flow than that of traditional DBMSs, it still is an operator-based

approach, tightly connected to the DSM. It also requires materialising all intermediate

results, thus reducing opportunities for exploiting cache locality across separate query

operators. These restrictions led to the introduction of MonetDB/X100 [6, 80, 81],

where the idea of the block operator [60] was coupled with a column-wise storage

layout. The use of compound vectorised primitives for performing all computations

achieved performance comparable to hard-coded programs. Still, these primitives can-

not be used for computation across multiple vectors in parallel, something that would

better exploit the processor’s registers. In addition, the introduced buffer manager,

ColumnBM, can use both DSM and PAX for storage (though if PAX is used, perfor-

mance is penalised).

Prefetching has been another area that has received attention, with [12, 13] pre-

senting ways of employing software prefetching in hash join evaluation. Though this

approach may improve response times, it introduces the need for dynamically calcu-

lating the prefetching distance according to the CPU’s frequency, cache latencies, and

the runtime load. Inaccuracies result in failing to prefetch the required data on time, or

polluting the cache with not immediately needed data. In addition, the cache controller

considers software prefetching instructions as hints and may ignore them if there are

pending fetch requests. Most papers concerning software prefetching for database sys-

tems [12, 13, 14, 15] either provided measurements on processors without hardware

prefetchers, or presented simulation results. This was unfortunate, since in [29] it was

shown that modern processors mask software prefetching advantages, due to the effi-

ciency of their hardware prefetchers. In the same vein, [17] verified that using software

Chapter 2. Background 17

prefetching on a SUN UltraSparc T1 offered no gains in multithreaded aggregation, de-

spite this architecture’s lack of hardware prefetching units. Our early experiments on

processors employing the x86-64 architecture (with both Intel and AMD processors)

corroborated that using software prefetching is very complicated, highly dependant on

the specific architecture, and offers only modest speedup under very specific circum-

stances. We have therefore chosen not to employ software prefetching but solely rely

on the hardware prefetching mechanisms that almost most modern processors incor-

porate.

Chapter 3

Generating code for holistic query

evaluation

3.1 Introduction

This chapter presents the application of customised code generation for the purpose

of efficient database query processing. Our approach stems from template-based pro-

gramming. The idea is to use code templates for the various query processing algo-

rithms and then dynamically instantiate them and compose them in a single piece of

source code that can evaluate the query. Dynamic template instantiation removes most

high-level abstractions that are necessary for implementing generic query evaluators

in current query engine designs. Moreover, since the code is dynamically generated,

it can be customised to exploit the architectural characteristics of the hardware it will

execute on. The resulting performance advantage in main-memory execution is sub-

stantial; for instance, it reaches a factor of 167 over established database technology

in TPC-H Query 1. The novelty we claim and demonstrate is that template-based code

generation can be generalised to efficiently process any type of query without affecting

orthogonal aspects of the database system.

3.1.1 Motivation

Traditionally, query processing algorithms have focused on minimising disk I/O while

their in-memory efficiency has been considered to be a secondary priority. For con-

temporary servers with large amounts of memory, it is conceivable for a large portion

of the on-disk data – or even the entire database – to fit in main memory. In such cases,

18

Chapter 3. Generating code for holistic query evaluation 19

the difference in access latency between the processor’s registers and main memory

becomes the performance bottleneck [3]. To optimise such workloads, one needs to

carefully “craft” the executed code so as to minimise the processor stall time during

query execution.

Existing work has identified the data layout as the main bottleneck that prevents

contemporary processor designs with multiple levels of cache memories from exploit-

ing their full potential in database workloads. We argue that changing the storage layer

is a radical departure from existing designs. We identify the biggest problem with the

design of a query engine to be the compilation of SQL queries in operator plans and

the generality of the common operator interface, namely the iterator model. The lat-

ter results in a poor utilisation of CPU resources. Its abstract implementation and the

frequent use of function calls inflate the number of instructions and memory accesses

required for query evaluation. The use of generic code does not permit its customi-

sation according to the characteristics of both the executed queries and the hardware

platform. SQL and query processing in main memory, however, exhibit a strong poten-

tial for exploiting just-in-time compilation. We take this idea to the extreme.

3.1.2 Code generation for query evaluation

Ideally, query processing code should optimally use the cache hierarchy and reduce

the number of instructions needed for query evaluation. At the same time, one would

want to keep the compositional aspects of the iterator model and not affect separate

system modules. To that end, we introduce a novel query evaluation technique that we

term holistic query evaluation. The idea is to inject a source code generation step in

the traditional query evaluation process. The system should look at the entire query

and optimise it holistically, by generating query- and hardware-specific source code,

compiling it, and executing it.

Our approach has multiple benefits: (a) the number of function calls during query

evaluation is minimised; (b) the generated code exhibits increased data locality, there-

fore making optimal use of cache-resident data; (c) code generation and compilation

allow the use of compiler optimisation techniques targeting each individual query, an

extra optimisation level on top of conventional query optimisation; and (d) the gener-

ated code approaches the performance of hard-coded evaluation plans. The model is

flexible enough to incorporate sophisticated query evaluation algorithms and does not

affect other orthogonal system aspects, such as storage management and concurrency

Chapter 3. Generating code for holistic query evaluation 20

control.

Using this framework, we have developed a prototype holistic query engine and

compared its performance to both iterator-based solutions and existing database sys-

tems. The results (a) quantify the advantage of per-query code generation over generic

query operator implementations, and (b) demonstrate a superiority of the holistic ap-

proach over both iterator-based and hardware-conscious systems in a variant of the

Wisconsin benchmark and a subset of the TPC-H benchmark, therefore proving its via-

bility as an alternative query engine design.

The rest of this chapter is organised as follows: in Section 3.2 we discuss the rea-

sons why iterator-based query engines prove inefficient in main-memory execution

and why their implementations cannot be optimised by the compiler. In Section 3.3

we present the design of a system based on the concept of holistic evaluation. We

describe the code generation process in Section 3.4 and the holistic query evaluation

algorithms in Section 3.5. In Section 3.6 we show why our template-based framework

facilitates the implementation of a query engine employing per-query code generation,

while query optimisation in the context of the suggested model is presented in Sec-

tion 3.7. We evaluate the model in a detailed experimental study in Section 3.8, where

we also compare its performance to both established and hardware-friendly designs.

Finally, we present work for further reading in the area of customised code generation

in Section 3.9.

3.2 Query evaluation in main memory

3.2.1 Limitations of current query engines

The query engines of most database systems are based on the iterator model [36],

as described in Section 2.2. Though generic, the iterator model suffers from a large

number of function calls. For each in-flight tuple the system needs to make at least

two calls: one for the calling operator to request it and one for the called operator to

propagate it. The number of function calls is further increased as iterators need to be

generic. Their functions may be virtual to be dynamically bound to the data types they

process, which implies that all field accesses and comparisons may require a function

call. Each function call updates the stack register and saves/restores the contents of

the processor’s registers to the stack. As modern processors have tens of registers,

frequent function calls may lead to significant execution overhead. This translates to a

Chapter 3. Generating code for holistic query evaluation 21

substantial percentage of the CPU time being spent without any actual contribution to

result computation. Moreover, since a function call represents a jump in the executed

code, it forces a new instruction stream to be loaded in the execution pipeline, thus

limiting superscalar execution.

In addition to stack interaction, there is also overhead at the data level. Each iterator

maintains internal state; iterator calls require several memory operations for accessing

and updating the iterator state, each call potentially triggering cache misses. Moreover,

iterator state manipulation interferes with data stream accesses. Even if the data access

pattern is sequential it will be frequently interrupted, thus reducing the efficiency of

hardware prefetching. Note that the iterator interface does not control the data flow

of pipelined operators, as each operator implementation is independent. Consequently,

pipelined iterator calls may introduce cache contention and evict cache lines from each

other’s dataset, leading to cache thrashing.

The performance of contemporary query engines is further affected by the opera-

tors being optimised for I/O and the cost model employed by the query optimiser being

an I/O-based one. Since I/O is what hurts performance, most query evaluation algo-

rithms strive to have sequential access patterns for disk-resident data without worrying

so much about the access pattern in main memory; the latter may well be random,

especially for some highly efficient algorithms like hash join. However, sequential ac-

cess patterns in main memory exhibit cache locality and can drammatically improve

performance; but they are not widely adopted in the traditional data flow of a database

system.

3.2.2 Can the compiler help?

Developers typically rely on the compiler to perform a variety of code transformations

that reduce processor stalls during execution. Since the compiler generates the exe-

cutable code, it can optimise it for the target architecture and hardware platform. Cur-

rent compilers transform the code layout in ways that (a) keep the execution pipeline

full of independent instuctions, (b) distribute variables to registers in ways that en-

courage their reuse, and (c) group together accesses to the same data. All these re-

sult in increased parallelism, reduced memory accesses and maximised cache locality,

thus limiting processor stalls and increasing the processor’s throughput. Applicable

compiler optimisations include [46] loop interchanging, peeling, skewing, unrolling,

blocking and fusion, scalar expansion and renaming, and strip mining, to name a few.

Chapter 3. Generating code for holistic query evaluation 22

Most aforementioned code transformations are loop-oriented, so one would expect

the iterative access patterns in the data flow of a DBMS to be a perfect fit. This is far

from true: all transformations are designed for computation over fixed-length arrays

of primitive data types, like the ones found in scientific workloads. Employing the

iterator model in the design of a DBMS prevents the compiler from performing these

transformations. Each iterator call triggers a chain of function calls that will eventu-

ally produce a single tuple. The compiler cannot factor out this process to identify the

(possibly iterative) access pattern over the input tables, as interprocedural analysis and

optimisations are much more limited than intraprocedural ones. Moreover, conditions

and jumps in the source code, as the ones caused by function calls, disrupt the instruc-

tion sequence and reduce the range of code the compiler can examine for optimisation

opportunities. This is aggravated by information about the executed code (e.g., pred-

icate value types, offsets inside tuples, etc.) being only specified at run-time for each

query. These ambiguities refrain the compiler from applying a substantial part of its

code optimisation techniques on iterator implementations. Furthermore, most query

operators are either unary or binary, so there are at most two loops within the context

of a single operator. The effectiveness of code transformations, however, increases

with the number of loops, as this provides more ground for parallelism and data reuse.

3.3 System overview

We argue that to overcome the problems caused by memory stalls and make database

code more hardware friendly, one should take a holistic approach to query evaluation.

In this section, we shall present the high-level architecture of our system, that we have

named HIQUE, standing for Holistic Integrated Query Engine. In doing so, we shall

also present the layout of the generated query-specific code and the primitives used

during query evaluation. The system has been implemented in C/C++ and compiled

using the GNU gcc compiler, over the GNU Linux operating system. It adopts the

traditional client-server model. Multiple queries are submitted to the same back-end,

which generates the query-specific code and evaluates the query.

3.3.1 Storage layer

We have adopted the N-ary Storage Model (NSM) as a storage layout, with tuples con-

secutively stored in pages of 4096 bytes. As we shall see in subsequent sections, the

Chapter 3. Generating code for holistic query evaluation 23

system is not tied to the NSM in any way; any other storage model, such as the De-

composed Storage Model (DSM) or the Partition Attributes Across (PAX) model, can

be used and our proposals will still be applicable. Each table resides in its own file on

disk, and the system’s storage manager is responsible for maintaining information on

table/file associations and schemata.

The buffer manager is responsible for buffering pages from and to disk and for pro-

viding concurrency control. The adopted page replacement strategy is LRU. It follows

a slightly non-standard approach, as it favours entire files used by a single query, be

they primary tables or intermediate results, to be kept in the buffer pool. The goal is

to have complete control of when evaluation is over memory-resident or disk-resident

data. That would not be feasible if memory-mapping was employed, or if the buffer

manager followed a query-agnostic approach. We should note, however, that even with

this bias in place the efficiency of our storage manager is not to be compared with that

of commercial database systems. As we shall see in Section 3.8, the efficiency of our

system is due to its holistic evaluation model, and not any other orthogonal aspects of

its design.

In addition to standard files, the system employs indexes adhering to the princi-

ples of memory-resident evaluation [64]. Our indexes are fractal B+-trees, with each

physical page divided in four tree nodes of 1024 bytes each, as in [15]. This design

results in reducing each index lookup by as much as 20% over each index node span-

ning the entire physical page (i.e., an index node size of 4096 bytes). The nodes are

still large enough to store sufficient entries and maintain a wide fan-out. Early exper-

iments revealed that software prefetching did not exhibit any substantial performance

increase – at least not for the x86-64 architecture that we experimented with. This

was due to index and table pages spanning multiple cache lines. Software prefetching

in such an environment quickly saturates the cache controller with multiple fetch re-

quests. We therefore decided not to include any software prefetching instructions in

the index code.

3.3.2 Query processing

The route a query follows through the system is shown in Figure 3.1. The first module

is the SQL parser, which accepts an SQL query conforming to the following grammar

(with the obvious semantics):

Chapter 3. Generating code for holistic query evaluation 24

DB tables

Executor
(dynamic loading)

CompilerGeneratorParser

Query
Results

DB catalog

Templates

Scheduled
plan

Data staging
Holistic algorithms

Source
code

Shared-library
fi le

Optimizer

DB statistics

Internal query
representation

Figure 3.1: Holistic query engine overview

Query ::= SC FC (WC)? (AC)? (OC)?

SC ::= select elem (, elem)*

elem ::= function(arithmetic) | table.attribute

function ::= sum | avg | min | max | count

arithmetic ::= table.attribute | number | (arithmetic) |
arithmetic arithm-op arithmetic

FC ::= from table (, table)*

WC ::= where P (and P)*

P ::= table.attribute op constant | table.attribute = table.attribute

AC ::= group by table.attribute (, table.attribute)*

OC ::= order by table.attribute (, table.attribute)*

op ::= > | < | = | ≤ | ≥
arithm-op ::= + | − | ∗ | /

The grammar represents conjunctive queries with equi-joins and arbitrary group-

ings and sort orders. We do not support (a) complex mathematics in predicates and

projection lists, (b) statistical functions in aggregate values, and (c) nested queries. We

believe, however, that all these can be straightforward extensions without restricting

the generality of the holistic evaluation model. The supported type system includes

single and double precision integer and floating-point numbers, dates, ASCII charac-

ters and strings of fixed length.

The SQL parser checks the query for validity against the system catalogue and out-

puts an internal query representation, that is then passed to the optimiser. The latter

uses the following table statistics: minimum and maximum values, and distinct value

cardinalities for all fields of all tables. The first step in optimising a query is to identify

the presence of join teams, as defined in Section 2.2. Join teams are kept as a single

block of query execution, with the system generating code for each such block. Before

code generation, however, the optimiser reorders the blocks of the query in the best

Chapter 3. Generating code for holistic query evaluation 25

way according to the system’s statistics. As we shall see in Section 3.7, query plan

selection is based on heuristics rather than dynamic programming, the main heuristic

being the minimisation of the size of intermediate results.

The output of the optimiser is a topologically sorted list O of operator descriptors

oi. Each oi has as input either primary table(s), or the output of o j, j < i. The descriptor

contains the algorithm to be used in the implementation of each operator and additional

information for initialising the code template of this algorithm. Effectively, this list

describes a scheduled tree of physical operators since there is only one root operator. It

is organised so that the first elements describe the joins (binary operators or join teams)

of the query, followed by any aggregation and sorting operations (unary operators, at

most one descriptor for each). The optimiser keeps track of interesting orders and join

teams by grouping together join operations in a single descriptor where possible to

avoid intermediate result materialisation and processing.

The code generator will then traverse the topologically sorted list and emit a set of

functions containing the source code for each operator. This is done in two steps per

operator:

1. Data staging: all input tables are scanned, all selection predicates are applied,

and any unnecessary fields are dropped from the input to reduce tuple size and

increase cache locality on subsequent processing. Any pre-processing needed by

the following operator, e.g., sorting or partitioning, is performed by interleaving

the pre-processing code with the scanning code. The output is then materialised

(though not on disk, if the staged input is small enough to fit in main memory).

2. Holistic algorithm instantiation: the source code that implements each operator

is generated. This code is an instantiation of the appropriate holistic algorithm

template, as described in Section 3.5.

By looking at the inputs of each operator the code generator composes the operator

implementations to generate a final function. This function evaluates the entire query

and is to be called by the query engine. The final step of the code generation process

is to insert all generated functions into a new C source file.

Once the query-specific source code has been generated, a system call invokes the

compiler to compile the source file into a shared library file. This step allows the

application of aggressive compiler optimisations that target the code of the specific

query. The shared library file is then dynamically linked and loaded by the query

Chapter 3. Generating code for holistic query evaluation 26

executor. The latter calls the dynamically loaded function to evaluate the query and

redirects the output to the client.

To make the process above more concrete, we describe what happens when the

user submits the following query:

select R.a, R.b, S.c, S.d

from R, S

where R.a = S.c

Initially, the parser traverses the query and builds an internal representation of the

it, containing the scan operators for R and S, the following join operator and the final

projection. The optimizer then decides on the join operator and outputs a list containing

the sole join descriptor. This descriptor contains the access pattern for each input table,

the data types and offsets of the fields R.a, R.b, S.c and S.d (projections are pushed

down), the schemata of the temporary tables holding the staged versions of R and S, the

data types and offsets of join attributes R.a and S.c inside the temporary tables, the

output schema and the mapping of the fields R.a, R.b, S.c and S.d from the temporary

tables to the ones of the output schema. Then, the code generator traverses the output of

the optimizer and processes the join descriptor in two steps: (a) it builds two C source

functions that access R and S accordingly to fill the staged temporary tables, and (b) it

builds a C source function for implementing the selected join algorithm and generating

the final result. It finally builds a C source function containing the instatiation of the

temporary ables, the call of the staging functions followed by the joining one, the

redirection of the final result to the client and the release of all allocated resources,

including the temporary tables.

3.4 Code generation

In this section we present the implementation of the code generator. The code generator

uses a template-based approach. Each algorithm is represented as an abstract template,

which is instantiated according to the execution plan.

The code generator accepts as input the output of the optimiser (i.e., a topologically

sorted list O of operator descriptors) and produces a C source file of query-specific

code. The generation algorithm is shown in Algorithm 1. As mentioned, each descrip-

tor contains the algorithm to be implemented, along with the necessary parameters for

Chapter 3. Generating code for holistic query evaluation 27

Algorithm 1: The code generation algorithm
Input: Topologically sorted list of operators O, allocated memory budget M.

Output: Code templates for data staging (T S), join evaluation (T J) and

aggregation (TA).

foreach join operator jm ∈ O do1

retrieve code template tsm ∈ T S to stage jm’s inputs ;2

foreach input in of jm do3

instantiate tsm for in ;4

generate C function csmn for staging in ;5

retrieve code template t jm ∈ T J for jm’s algorithm ;6

instantiate t jm for jm ;7

generate C function c jm to evaluate join ;8

if ∃ aggregate operator a ∈ O then9

retrieve code template tsa ∈ T S to stage a’s input ;10

instantiate tsa for a ;11

generate C function csa for staging a ;12

retrieve code template ta ∈ TA for a’s algorithm ;13

instantiate ta for a ;14

generate C function ca to compute aggregate values ;15

if ∃ ordering operator s ∈ O then16

retrieve code template ts ∈ T S for sorting ;17

instantiate ts and generate sorting C function cs ;18

traverse O to compose the main function cm calling all functions ;19

write all generated functions to a new source file F ;20

return F ;21

instantiating code templates. These parameters include the predicate data type(s), in-

formation about the operator’s inputs, be they primary tables or intermediate results,

and the output schema.

Code generation progresses as follows: the generator traverses the operator de-

scriptor list processing the join operators first (Lines 1 to 8 in Algorithm 1) and moving

on to any aggregation (Lines 9 to 15) and ordering operators (Lines 16 to 18). For each

operator the generator emits functions that (a) stage the input (one function per input

table), and (b) execute the operator’s algorithm. These functions are built by retrieving

Chapter 3. Generating code for holistic query evaluation 28

the appropriate code template (e.g., Lines 2 and 6 for joins) and instantiating it ac-

cording to the parameters of the operator’s descriptor (e.g., Lines 4 and 7). Given that

operator descriptors in O contain information about how operators are connected, the

last bit of code generation is to traverse O and generate a main (composing) function

that calls all evaluation functions in the correct order, ensures the correct (de)allocation

of resources and sends the output to the client (Line 19). Finally, all generated func-

tions are put into a new C source file, in the same order as they have been generated.

3.5 Holistic query evaluation algorithms

In this section we present the main algorithms of holistic query evaluation, with the

goal of adapting well-known algorithms to main memory execution. The holistic

framework builds on two premises:

1. NSM is employed at the storage layer. Though NSM has been shown to have sub-

optimal performance in main-memory evaluation, most commercial and research

database systems use it. We therefore use NSM in the interest of keeping the same

storage layer and not affecting orthogonal system aspects.

2. Code is generated on a per-query basis. This technique exhibits opportunities for

fine-grained and query-specific optimisations.

The above are more design decisions than assumptions. All proposed algorithms

can be used over DSM- or PAX-based systems, while they can be implemented using

different evaluation models, even iterators, as we show in Section 3.8.3. We believe,

however, that code generation offers an elegant and compact platform for adapting

database code to in-memory query evaluation, permitting query-specific code optimi-

sations. Our algorithms perform the following optimisations: (a) since code is gen-

erated on a per-query basis, attribute types are known a priori, which means we can

revert separate function calls for data accessing and predicate checking to pointer casts

and primitive data comparisons respectively; and (b) fixed-length tuples inside each

page can be accessed in an array-like mode through pointer arithmetic and direct ref-

erencing.

As an example of performing the above optimisations, Listings 3.1 and 3.2 show

how the C code for a simple table scan-select operator can be generated in a more

hardware-friendly way. By employing type information (int in this case) and using

Chapter 3. Generating code for holistic query evaluation 29

Listing 3.1: Generic table scan-select

1 // loop ove r pages

2 f o r (i n t p = start_page ; p <= end_page ; p++) {
3 page_struct ∗page = read_page (p , table) ;

4 // loop ove r t u p l e s

5 f o r (i n t t = 1 ; t <= page−>num_tuples ; t++) {
6 tuple_struct ∗tuple = read_tuple (t , page) ;

7 i f (! (matches (tuple , predicate_value , predicate_offset)) con t i n u e ;

8 add_to_result (tuple) ;

9 }}

Listing 3.2: Type-specific table scan-select

1 // loop ove r pages

2 f o r (i n t p = start_page ; p <= end_page ; p++) {
3 page_struct ∗page = read_page (p , table) ;

4 // loop ove r t u p l e s

5 f o r (i n t t = 0 ; t < page−>num_tuples ; t++) {
6 vo i d ∗tuple = page−>data + t ∗ tuple_size ;

7 i n t ∗value = tuple + predicate_offset ;

8 i f (∗ value != predicate_value) con t i n u e ;

9 memcpy (. .) ;

10 }}

array accesses, we can eliminate all function calls (but the unavoidable for loading

pages and generating the output) from the loop over the tuples of each page, saving a

large number of CPU cycles. We also reduce the number of instructions executed, as we

evaluate predicates over primitive data types. Moreover, the use of array computations

allows the code to exploit the processor’s superscalar design. The lack of function

calls in the inner loop, in combination with directly accessing tuples and their fields

by reference, further aids the compiler in optimising the generated code in ways that

efficiently distribute data to registers and favour cache reuse.

All holistic algorithms build upon the code template of Listing 3.2 and extend it

to include more tables (e.g., in join algorithms), perform any necessary predicate(s)

evaluation (Line 8) and manipulate the retrieved tuples as needed (Line 9). For com-

pleteness, we shall provide samples of the C code emitted by the code generator. This

will highlight the efficiency of the generated code, as well as the common code patterns

across different algorithms.

Throughout the subsequent analysis, one must keep in mind the difference in la-

tencies for accessing each level of the memory hierarchy. Recall from Figure 2.2 that

switching from sequential to random access may even double the latency on accesses

Chapter 3. Generating code for holistic query evaluation 30

outside the D1-cache; moving one layer down the memory hierarchy increases latency

by one order of magnitude. The proposed algorithms therefore (a) examine the input

in blocks that fit inside the D1- or the L2-cache, (b) maximise reuse by performing

multiple operations over cache-resident data, and (c) strive for random access patterns

appearing only inside the D1-cache, as this is the only level where the fetch cost is the

same for both sequential and random accesses.

3.5.1 Data staging

Excluding the trivial case of all data needed to execute a query fitting the D1-cache,

data caches can hold a very small portion of the input tables. As mentioned in Sec-

tion 3.3, before executing any complex query operation, we stage the input by evalu-

ating local predicates, dropping unnecessary fields, and reformatting it (using sorting

and/or partitioning), according to the execution plan. In this section we shall describe

the data staging primitives of our system and show how these have been implemented

in a hardware-friendly fashion.

3.5.1.1 Sorting

Sorting builds on the standard sort-merge algorithm. The table to be sorted is parti-

tioned into L2-cache-fitting partitions. Each partition is sorted in memory; all parti-

tions are then merged in a single or multiple merging phases (depending on the input

size and the amount of available memory) to generate the result. We have chosen to use

non-recursive quicksort as the internal sorting algorithm due to the algorithm’s cache

locality merits [58]. Each page is treated as an array of tuples (as in Listing 3.2), while

the code generator inlines all comparisons and performs the appropriate type-specific

pointer casts. Given this implementation, internal sorting has a sequential access pat-

tern (therefore having better cache locality and aiding the hardware prefetcher in its

predictions) and does not make any function calls, enabling further compile-time code

optimisations.

The sorted partitions are then merged in a standard multi-level merge-tree. Note

here that although tuples are randomly accessed across different partitions during merg-

ing, the access pattern within each partition is sequential. This means that one can

raise the same arguments regarding spatial locality and hardware prefetching as be-

fore, though the impact of prefetching decreases as the number of partitions and merg-

ing stages increase. Finally, the code generator injects type information and eliminates

Chapter 3. Generating code for holistic query evaluation 31

R.a

value id

x 0

y 1

z 2

(a) A single mapping table

R.a

value id

x 0

y 1

z 2

R.b

value id

A 0

C 1

B 2

R.c

value id

10 0

30 1

40 2

20 3

(b) Multiple mapping tables

partition-ID(R.a = y,R.b = B,R.c = 20) = R.a[y] · |R.b| · |R.c|+R.b[B] · |R.c|+R.c[20]

= 1∗3∗4+2∗4+3 = 23

(c) Partitioning across three attributes

Figure 3.2: Fine-grained partitioning

all function calls.

3.5.1.2 Partitioning

The system employs two types of partitioning, termed fine-grained and coarse-grained

partitioning. The choice of partitioning depends on the number of distinct values of the

partitioning attribute, with a small number of values favouring fine-grained partitioning

and a large number of values favouring coarse-grained partitioning. We shall examine

each in turn.

Fine-grained partitioning. This is applicable if the number of distinct values of the

partitioning attribute is small enough so that a directory mapping values to partitions

can be kept inside the cache hierarchy, as shown in Figure 3.2(a). This implies that no

hash function is used, but rather that attribute values are mapped to partitions as the

input table is scanned. For each attribute value read either (a) the value does not exist

in the map, so a new entry is inserted, or (b) the value already exists in the map, so the

identifier for the corresponding partition is retrieved. The tuple is then inserted into

that partition. The directory is implemented as a sorted array of attribute values, with

lookups using binary search. Hash-based solutions are also possible, though imbalan-

cies in bucket sizes complicate their implementation and may lead to random memory

accesses outside the D1-cache.

This technique can be adjusted to work when partitioning across more than one

Chapter 3. Generating code for holistic query evaluation 32

attributes, each with a small number of distinct values. To do so, we create a mapping

table per partitioning attribute (see also Figure 3.2(b)) following the same principles

as before and use a formula to identify the partition each combination of values be-

longs to. Assuming that Mi is the map for attribute i and Mi[v] gives the identifier

for value v of attribute i, one can then reduce the multi-dimensional mapping of tuple

(v1,v2, . . . ,vn), for partitioning across n attributes, to the scalar ∑
n
i=1 (Mi[vi]∏n

j=i+1 |M j|),
where |Mi| is the size of the mapping table for attribute i. The previous formula

maps each combination of values to a unique partition offset, for a total number of

(∏n
i=1 |Mi|) partitions. An example of applying the formula is shown in Figure 3.2(c).

The constraint when using multiple attributes to partition the input is that the map-

ping tables for all attributes fit inside the cache hierarchy, else insertions and lookups

will trigger expensive cache misses in random patterns that cannot be prevented by

hardware prefetching.

Fine-grained partitioning is useful when joining on an attribute with a small num-

ber of distinct values for one of the joined tables. In the latter case, there is no par-

tition probing, but rather the entire partition is scanned to generate matches (see Sec-

tion 3.5.2.3). In addition, it is useful for aggregations resulting in a small number of

groups (see Section 3.5.3).

Coarse-grained partitioning. The goal is to ensure that each partition fits in the L2-

cache. To do so, we generate as many partitions as necessary and for each tuple read

we apply multiplicative hashing [49]. Applying the hash function is inlined by the code

generator to avoid a function call. Note that with coarse-grained partitioning there is no

mapping table built, thus the partitioning fan-out might be wider than for fine-grained

partitioning. If there are more partitions than the cache-line capacity of the D1-cache

(e.g., for a D1-cache size of 32KB and a cache-line size of 64B, if the fan-out is more

than 512), the spatial locality of partitions will gradually degrade, leading to cache

misses for each partition entry. Note that multiple attribute values will be hashed to the

same partition (hash collisions), so subsequent processing is still necessary if matches

are to be retrieved (e.g., in the case of a hash join); this is not the case for fine-grained

partitioning.

In both partitioning techniques we do not store tuple references in each partition,

but rather the actual tuples. This approach reduces the number of tuples that fit within

a partition, while copying whole tuples is certainly more expensive than storing refer-

ences of 4-8 bytes. Still, the use of tuples inside partitions ensures that we do not pay

the penalty of having another level of indirection. The latter would result in random

Chapter 3. Generating code for holistic query evaluation 33

access patterns touching data outside the L2-cache and subsequent cache misses. The

query optimiser decides whether fine-grained or coarse-grained partitioning should be

used, depending on the input statistics, as we shall show in Section 3.7.

3.5.1.3 Hybrid hash-sort

We have also implemented an alternative way of storing the tuples within each par-

tition, which is useful as a staging method in certain join evaluation and aggregation

scenarios. The idea is to keep the tuples of a partition sorted by applying the hardware-

friendly implementation of quicksort. The efficiency of the latter is assured in case the

partitioning fan-out is wide enough to allow the biggest partition to fit in the L2-cache.

Though the sorting step seems redundant, it greatly improves the efficiency of the join-

ing and grouping phases, as we shall see in Sections 3.5.2.3 and 3.5.3, by exhibiting

sequential access patterns when processing the partitions.

3.5.1.4 Index scanning

Our system employs fractal B+-trees for indexing. If there is a B+-tree index on the

attribute of interest and it is deemed the best access method for a table, the code gen-

erator interleaves index scanning with tuple retrieval from the primary table in a single

code segment. In such a case the only function calls are the unavoidable ones to the

buffer manager for retrieving pages from the primary table. Moreover, we can inject

any other staging operations in the same block of generated code. For instance, the

retrieved tuple can be hashed and inserted in a partition, or extra predicates may be

evaluated. As usual, the code generator will perform all appropriate pointer casts to

emit type-specific code.

3.5.2 Join evaluation

Join evaluation is based on nested loops, i.e., it progresses in nested iterations over

two tables (or more, as we shall see in Section 3.5.2.5). At first glance, join evaluation

using variants of nested loops seems sub-optimal in terms of performance. As we shall

see, however, it better utilises the resources of the CPU and improves response times.

The general form of nested-loops join is shown in Listing 3.3 for a query joining

tables R and S.1 We first iterate over the tables and load a page from each table; we

then iterate over the tuples of each page, injecting the appropriate join predicate tests

1We do not present any data staging operations to avoid cluttering the code.

Chapter 3. Generating code for holistic query evaluation 34

Listing 3.3: Näıve nested loops join

1 // loop ove r pages

2 f o r (i n t p_R = start_page_R ; p_R <= end_page_R ; p_R++) {
3 page_struct ∗ page_R = read_page (p_R , R) ;

4 f o r (i n t p_S = start_page_S ; p_S <= end_page_S ; p_S++) {
5 page_struct ∗ page_S = read_page (p_S , S) ;

6

7 // loop ove r t u p l e s

8 f o r (i n t t_R = 1 ; t_R <= page_R−>num_tuples ; t_R++) {
9 tuple_struct ∗ tuple_R = read_tuple (t_R , page_R) ;

10 f o r (i n t t_S = 1 ; t_S <= page_S−>num_tuples ; t_S++) {
11 tuple_struct ∗ tuple_S = read_tuple (t_S , page_S) ;

12 i f (! (matches (tuple_R , offset_R , tuple_S , offset_S))) cont inue ;

13 add_to_result (tuple_R , tuple_S) ;

14 }}}}

Listing 3.4: Holistic nested loops join

1 // loop ove r pages

2 f o r (i n t p_R = start_page_R ; p_R <= end_page_R ; p_R++) {
3 page_struct ∗ page_R = read_page (p_R , R) ;

4 f o r (i n t p_S = start_page_S ; p_S <= end_page_S ; p_S++) {
5 page_struct ∗ page_S = read_page (p_S , S) ;

6

7 // loop ove r t u p l e s

8 f o r (i n t t_R = 0 ; t_R < page_R−>num_tuples ; t_R++) {
9 vo id ∗ tuple_R = page_R−>data + t_R ∗ tuple_size_R ;

10 f o r (i n t t_S = 0 ; t_S < page_S−>num_tuples ; t_S++) {
11 vo id ∗ tuple_S = page_S−>data + t_S ∗ tuple_size_S ;

12 i n t ∗ attr_R = tuple_R + offset_R ;

13 i n t ∗ attr_S = tuple_S + offset_S ;

14 i f (∗ attr_R != ∗ attr_S) cont inue ;

15 add_to_result (tuple_R , tuple_S) ; /∗ i n l i n e d ∗/
16 }}}}

(abstracted by the matches() function call in the code, where offset R and offset S

are the offsets of the join predicate attributes within tuples from R and S respectively)

and proceeding to the next loop only if a match is obtained. We now move on to

presenting how this principle can be applied in conjunction with other join algorithms.

3.5.2.1 Holistic nested loops join

Naı̈ve nested loops can be greatly optimised if the code is generated in a hardware-

friendly way. This is shown in Listing 3.4, where, for simplicity, we assume the join

attributes are integers: (a) since the code is generated per query, the field types are

known a priori, which means we can revert separate function calls to pointer casts and

Chapter 3. Generating code for holistic query evaluation 35

primitive type comparisons (Lines 12 to 14). (b) Tuples of fixed length (denoted in

the code by the values of tuple size R and tuple size S in Lines 9 and 11) can

be accessed in an array mode through direct referencing. Both improvements elimi-

nate all function calls (apart from the unavoidable calls to store the output) from the

two inner loops, saving CPU cycles. Moreover, the array-like access pattern favours the

utilisation of the hardware prefetcher on the first iteration over each page’s tuples. Sub-

sequent tuple iterations will be performed over D1-cache-resident pages, thus without

any cache misses. This fits modern multicore processor designs, as it allows for D1-

cache-resident processing with the D1-cache being separate for each core. At the same

time it reduces resource contention for the L2-cache. All of the above are at the run-

time; since the generated code will be compiled, loop nesting, lack of function calls,

and array computations, allow the compiler to apply code optimisations targeting the

specific join.

3.5.2.2 Holistic merge join

The nested loops block can be adjusted for merging sorted inputs, as shown in List-

ing 3.5. In the code, we continuously update the bounds of the loops (both in terms

of starting and ending pages per table, and in terms of starting and ending tuples per

page) as the merging process progresses. This is controlled by the condition vari-

able match found, which can take one of three values: a value of no match means

that there is no match between the current tuples; a value of first match means that

at least one match has been found and we should continue scanning inner tuples for

matches; and a value of in group means that the group of inner matching tuples has

been exhausted, so we need to advance the outer tuple and backtrack to the beginning

of the group of matching inner tuples. If each tuple of the outer loop matches at most

once with tuples from the inner loop, we have a linear access pattern for both inputs,

while backtracking to the beginning of a group of matching inner tuples is quite likely

to result in cache hits (as small groups will tend to be resident in the L2-, or even the

D1-cache).

In case there exist indexes on the join attribute for both input tables, we can use an

algorithm that combines index nested-loops join with the multi-predicate merge join

of [76]. We term this cooperative staging and its sketch is presented in Figure 3.3. The

two indexes are scanned in a “zig-zag” mode, by testing the join predicate on their keys.

For example, if the current key value of the outer index is 10, the inner index is linearly

scanned until a value equal to, or greater than 10 is found. Then, the latter inner value

Chapter 3. Generating code for holistic query evaluation 36

Listing 3.5: Holistic merge join

1 /∗ Code f o r s t a g i n g R and S by s o r t i n g them on the j o i n a t t r i b u t e s ∗/
2

3 i n t match_found = no_match ;

4

5 f o r (i n t p_R = start_page_R ; p_R <= end_page_R ; p_R++) {
6 page_struct ∗ page_R = read_page (p_R , R) ;

7 f o r (i n t p_S = start_page_S ; p_S <= end_page_S ; p_S++) {
8 page_struct ∗ page_S = read_page (p_S , S) ;

9

10 f o r (i n t t_R = 0 ; t_R < page_R−>num_tuples ; t_R++) {
11 vo id ∗ tuple_R = page_R−>data + t_R ∗ tuple_size_R ;

12 f o r (i n t t_S = 0 ; t_S < page_S−>num_tuples ; t_S++) {
13 vo id ∗ tuple_S = page_S−>data + t_S ∗ tuple_size_S ;

14

15 i n t ∗ attr_R = tuple_R + offset_R ;

16 i n t ∗ attr_S = tuple_S + offset_S ;

17 i f (∗ attr_R < ∗ attr_S) {
18 i f (match_found == first_match) {
19 /∗ s e t end page & t u p l e bounds f o r S to c u r r e n t o f f s e t s ∗/
20 match_found = in_group ;

21 }
22 break ;

23 }
24 i f (∗ attr_R > ∗ attr_S) {
25 i f (match_found == in_group) {
26 /∗ s e t c u r r e n t page & t u p l e o f f s e t s f o r S r i g h t a f t e r t h e i r end bounds ∗/
27 /∗ s e t end page & t u p l e bounds f o r S to t a b l e & page end r e s p e c t i v e l y ∗/
28 match_found = no_match ;

29 }
30 cont inue ;

31 }
32 i f (∗ attr_R == ∗ attr_S) {
33 i f (match_found == no_match) {
34 /∗ s e t s t a r t page & t u p l e bounds f o r S to c u r r e n t o f f s e t s ∗/
35 match_found = first_match ;

36 }
37 }
38 add_to_result (tuple_R , tuple_S) ; /∗ i n l i n e d ∗/
39 }}}}

Chapter 3. Generating code for holistic query evaluation 37

Index on
 R.attr_R

R

Staged version of R

Hol ist ic merge nested loops

Tuple retr ieval
f rom R

Tuple retr ieval
f rom S

R.at tr_R = S.at t r_S

1 0
1 1
1 2
1 5
1 5
1 6
1 6
2 0
2 0
2 0
2 1
2 2
2 3
3 0
3 1
3 4
4 0
4 1
4 2
4 3
4 4

1
3
5
1 5
1 5
1 6
1 6
1 7
1 8
2 5
2 5
2 5
2 6
2 6
2 8
2 8
4 0
4 1
4 2
4 5
4 5

Index on
 S.attr_S

Staged version of S

S

Figure 3.3: Cooperative staging

is used for scanning the outer index accordingly. For matching join attribute values,

the tuples of each table are retrieved from the primary tables and any other selection

predicates are applied. If all predicates evaluate to true, the tuples are stored in the

staged versions of the corresponding tables. That way we store to temporary files only

the input tuples that contribute to the join result, along with any other fields necessary

for subsequent operations. The generated temporary files are then joined according to

the holistic merge join algorithm.

Cooperative staging ensures that we have only matching tuples in the staged input.

Even when there are multiple matches between the tuples of the inner and the outer

tables, they will be retrieved once from the primary tables. Furthermore, instead of

probing the index, the algorithm linearly scans the leaves of both indexes, thus exploit-

ing spatial cache locality and hardware prefetching. Through code generation we can

apply cooperative staging in a single code construct. The generated code integrates

(a) interleaved scanning of both indexes, (b) testing of the join predicate (and any

other selection predicates), and (c) storing of tuples in the corresponding temporary

Chapter 3. Generating code for holistic query evaluation 38

files.

Merge join bears a higher than normal branch misprediction overhead. Since loop

bounds are updated according to the current value of the join predicate, successive

predicate evaluations will yield widely differing results, except for the case where the

join selectivity is either very small or very high. This is an inherent disadvantage of the

merging phase. Modern processors, however, can adapt to the workload and minimise

stalls through speculative execution, as we shall show in Section 3.8. Finally, by using

the same ideas as before (i.e., using a sequential array-like access pattern over tuples

and eliminating function calls) hardware prefetching and compiler optimisations are

applicable.

3.5.2.3 Holistic partitioned join

We have used Grace hash join [48] as the starting point for our partitioned join imple-

mentation. The input tables are partitioned using either fine-grained, or coarse-grained

partitioning, as described in Section 3.5.1. In case fine-grained partitioning has been

chosen, both inputs are partitioned using the same value-to-partition mapping. The

next step is to join corresponding partitions using the optimised nested loops imple-

mentation of Listing 3.4, i.e., no in-memory hash table is built for the outer table’s

partition. We chose to do so since we wanted to have sequential access patterns within

each partition and avoid random ones (which would have been the case if a hash table

was built). In the case of fine-grained partitioning this results in a cross-product of par-

titions. For coarse-grained partitioning, however, and since no hash table is built for

the outer table’s partitions, we effectively perform a “mini” nested loops join across

corresponding partitions (as in Listing 3.4); this is sub-optimal and the reason why we

have implemented the hybrid hash-sort partitioning strategy.

3.5.2.4 Holistic hybrid hash-sort-merge join

Recall from Section 3.5.1.3 that hybrid hash-sort, after applying coarse-grained parti-

tioning, sorts each partition with a single quicksort call. When data is staged using this

technique, we can apply merge-join across corresponding table partitions, by extending

the ImprovedSort algorithm [69] to the hybrid hash-sort-merge join. The efficiency of

the hybrid staging algorithm is combined with the increased cache locality of the merge

join phase, as exhibited by the latter’s linear access patterns. Note that if the size of the

partitions is smaller than half that of the L2-cache, by sorting pairs of corresponding

Chapter 3. Generating code for holistic query evaluation 39

partitions just before joining them (instead of during data staging), we ensure that they

are L2-cache-resident during join evaluation. The result is a generally applicable and

globally optimised algorithm for join evaluation, as we shall show in Section 3.8.

3.5.2.5 Join teams

We have so far focused on binary joins to aid the understanding of the holistic evalu-

ation model. The nested-loops template, however, allows for pipelined evaluation of

multiple joins without materialising intermediate results, thus radically reducing mem-

ory operations and processor stalls. This is applicable in multi-way join queries with

join teams, as per the definition given in Section 2.2. Notions such as hash teams

and interesting orders, are translated to our model by increasing loop nesting. List-

ing 3.6 provides the generic code layout for a join team of m tables. For each input

table the code generator emits one loop over its pages and one over its tuples, with the

page loops preceding the tuple loops and following the same table order. The form of

the code resembles the loop-blocking code optimisation technique, which is known to

increase cache locality.

The presented algorithms will have to be adjusted for operating over more than

two inputs. Depending on the join algorithm, different code paths will be generated.

In case of holistic merge join, we sort all input tables (Line 1), omit the code block

concerning partitions (Lines 2 to 5) and inject the code for holistic merge join with

the necessary statements for updating the loop bounds of all tables (Lines 22 and 31

– see also Listing 3.5), to perform multi-way merging. The latter is controlled by a

set of control variables match found i, i ∈ [0,m− 1], one per join predicate. For

holistic hash join, we partition all input tables on the join attribute (Line 1) into M

partitions, using the same mapping table (fine-grained partitioning) or hash-function

(coarse-grained partitioning), and then examine corresponding partitions (Lines 2 to 4)

using holistic nested loops. The loop bounds are not updated inside the page and tuple

loops (i.e., no code is generated for Lines 22 and 31). For the hybrid hash-sort-merge

algorithm, we first partition all input tables as in hash join (Line 1) and then sort the

corresponding partitions (Lines 2 to 5). The next step is to merge the sorted partitions

using holistic merge join, as described before.

When we are not dealing with a join team, generalised hash teams [45] can be

adapted to holistic evaluation when data has been staged using fine-grained partition-

ing. The code generator uses multiple maps over a set of fields for each table, as

shown in Figure 3.2. The generated number of partitions is equal to the product of

Chapter 3. Generating code for holistic query evaluation 40

Listing 3.6: Generic holistic template for join teams

1 /∗ Code to hash−p a r t i t i o n or s o r t i n p u t s ∗/
2 hash : // examine c o r r e s p ond i n g p a r t i t i o n s t o g e t h e r

3 f o r (k = 0 ; k < M ; k++) {
4 /∗ update page bounds f o r a l l t a b l e s , f o r t h e i r k−th p a r t i t i o n v a l u e s ∗/
5 /∗ s o r t p a r t i t i o n s − on l y i n h yb r i d hash−s o r t−merge j o i n ∗/
6

7 f o r (p_1 = start_page_1 ; p_1 <= end_page_1 ; p_1++) {
8 page_struct ∗ page_1 = read_page (p_1 , partition_1 [k]) ;

9 f o r (p_2 = start_page_2 ; p_2 <= end_page_2 ; p_2++) {
10 page_struct ∗ page_2 = read_page (p_2 , partition_2 [k]) ;

11 . . .

12 f o r (p_m = start_page_m ; p_m <= end_page_m ; p_m++) {
13 page_struct ∗ page_m = read_page (p_m , partition_m [k]) ;

14

15 f o r (t_1 = 0 ; t_1 < page_1−>num_tuples ; t_1++) {
16 vo id ∗ tuple_1 = page_1−>data + t_1 ∗ tuple_size_1 ;

17 f o r (t_2 = 0 ; t_2 < page_2−>num_tuples ; t_2++) {
18 vo id ∗ tuple_2 = page_2−>data + t_2 ∗ tuple_size_2 ;

19 i n t ∗t1 = tuple_1 + offset_1 ;

20 i n t ∗t2 = tuple_2 + offset_2 ;

21 i f (∗ t1 != ∗t2) {
22 merge : // update bounds f o r a l l l o op s

23 cont inue ;

24 }
25 . . .

26 f o r (t_m = 0 ; t_m < page_m−>num_tuples ; t_m++) {
27 vo id ∗ tuple_m = page_m−>data + t_m ∗ tuple_size_m ;

28 t1 = tuple_k + offset_k ;

29 t2 = tuple_m + offset_m ;

30 i f (∗ t1 != ∗t2) {
31 merge : // update bounds f o r a l l l o op s

32 cont inue ;

33 }
34 add_to_result (tuple_1 , . . . , tuple_m) ; /∗ i n l i n e d ∗/
35 } . . . } } } . . . } } }

Chapter 3. Generating code for holistic query evaluation 41

distinct values over all fields used in join predicates. The produced disjoint partitions

will contain tuples with specific values for these fields. These are then directly joined

with holistic nested loops. That way, generalised hash teams can be implemented with

only modest changes to the data staging process. The overhead is an increase in mem-

ory requirements for storing the attribute maps, one per join attribute, during staging.

Hence, this approach is only applicable in the case where the number of partitions is

kept small, i.e., if the number of distinct values for all join attributes is limited. If this

is true, generalised hash teams can be used to evaluate general join predicates with

no intermediate results being materialised and, hence, evaluation proceeding in a fully

pipelined fashion.

3.5.2.6 Observations and special provisions

The algorithms we presented favour the use of a small page size. This allows the D1-

cache to simultaneously hold a sufficient number of pages when joining the tables of

one group of nested loops. It is essential to perform tuple iterations over D1-cache

resident pages, or else this process will result in numerous cache misses and degraded

performance. In addition, when multiple pages from different tables co-exist in the D1-

cache, our algorithms exploit cache locality even for wide join teams. In our system

the page size is set to 4096 bytes, enabling eight pages to be simultaneously resident in

a 32KB D1-cache, like the one we used for our experiments (see also Section 3.8.1.)

If the tuple size of the temporary input file is smaller than a cache line, the cache

line fetch pattern will be sequential. Otherwise, the stride between successive cache

line fetches will be greater that unary. Current hardware prefetchers can identify linear

non-unary strided accesses and act accordingly. When dealing with variable-sized

tuples we can replace the variable-sized fields with references to separate tables, if the

fields are too large (e.g., Character Large Objects), or allocate the maximum required

space for this field on every tuple, thus maintaining the ability to access tuples in an

array-like mode.

3.5.3 Aggregation algorithms

Multiple aggregate functions can be computed in a single block of code emitted by the

code generator. As in the case of join evaluation, any technique used for staging the

data affects the aggregation computation. Moreover, if the aggregation query does not

contain any join predicates, aggregation and staging can be coupled and combined in

Chapter 3. Generating code for holistic query evaluation 42

the same code segment to generate highly efficient code (as we shall also see in the

TPC-H experiments of Section 3.8.6). We shall provide C code samples for holistic

aggregation using the following query:

select T.A, T.B, sum(T.C), avg((1-T.C)*T.D)
from T

group by T.A, T.B

This query is a variant of Query 1 of the TPC-H benchmark. It is also quite useful in

showing that our code generator is capable of identifying computational dependencies

as the ones between sum and avg in the query. In such cases the generator re-uses

common parts of the computation by storing them in temporary variables (which the

compiler will most likely exploit to increase register reuse).

3.5.3.1 Holistic sort aggregation

Sort-based aggregation implies that the input has already been sorted on the group-

ing attributes. The code generated for the example query, and for integer grouping

attributes, is shown in Listing 3.7. The input is scanned linearly and the generated

code has two control variables per grouping attribute to keep track of groups (variables

prev i and curr i). Whenever a new group is encountered, the aggregate result is

output and aggregate computation is reset (Lines 18 to 24). Note that for any other ag-

gregate functions the code would have minimal differences: only the specific aggregate

function computation would need to change (e.g., Lines 5, 21, and 26 for computing

sum in Listing 3.7).

As usual, we perform only sequential scans over tuples thus aiding the hardware

prefetcher to lock on to the access pattern. Moreover, the lack of function calls is

especially important in aggregation as it allows the compiler to generate executable

code that widely reuses registers in a computationally-intensive operation, therefore

reducing the number of data accesses per tuple. For example, in Listing 3.7, the value

*C is reused; the compiler will most likely allocate it to a specific register through the

entire computation. Therefore it will be re-used and a fetch from the D1-cache between

Chapter 3. Generating code for holistic query evaluation 43

Listing 3.7: Holistic sort aggregation

1 /∗ I npu t has a l r e a d y been s o r t e d on the g roup ing a t t r i b u t e s ∗/

2

3 i n t ∗prev_A , ∗ curr_A ; // c o n t r o l v a r i a b l e s f o r T.A

4 i n t ∗prev_B , ∗ curr_B ; // c o n t r o l v a r i a b l e s f o r T.B

5 double sum ; // sum accumu la to r

6 double avg ; // avg accumu la to r

7 i n t group_count ; // t u p l e c a r d i n a l i t y f o r c u r r e n t group

8

9 vo id ∗temp , ∗ temp_tuple ;

10 f o r (page_offset = start_page ; page_offset <= end_page ; page_offset++) {

11 page_struct ∗page = read_page (page_offset , table) ;

12 f o r (tuple_offset = 0 ; tuple_offset < page−>tuple_counter ; tuple_offset++) {

13 temp = page−>data + tuple_offset ∗ tuple_size ;

14 curr_A = temp + offset_A ; // T.A

15 curr_B = temp + offset_B ; // T.B

16 i n t ∗C = temp + offset_C ; // T.C

17 i n t ∗D = temp + offset_D ; // T.D

18 i f (∗ prev_A != ∗ curr_A | | ∗ prev_B != ∗ curr_B) {

19 avg /= group_count ;

20 add_to_result (temp_tuple , sum , avg) ;

21 sum = ∗C ;

22 avg = (1 − ∗C) ∗ (∗ D) ;

23 group_count = 1 ;

24 }

25 e l s e {

26 sum += ∗C ;

27 avg += (1 − ∗C) ∗ (∗ D) ;

28 group_count++;

29 }

30 prev_A = curr_A ;

31 prev_B = curr_B ;

32 temp_tuple = temp ;

33 }

34 }

35 avg /= group_count ;

36 add_to_result (temp_tuple , sum , avg) ; /∗ i n l i n e d ∗/

Chapter 3. Generating code for holistic query evaluation 44

consecutive computations will be avoided. This cannot be applied in the vectorised

algorithms (e.g., [6, 60]) that drop register reuse for the sake of array computations.

In the case of the given query, vectorised aggregation would perform the sum and avg

calculations on separate column-wise operations, that cannot share register content.

3.5.3.2 Holistic map aggregation

The first partition-based algorithm we present builds on fine-grained partitioning. If it

is applicable, i.e., if the total size of the mapping tables for all grouping attributes is

small enough to fit in the cache hierarchy, aggregation can be computed in a single lin-

ear scan of the input without the need for any prior staging. If the amount of necessary

memory exceeds the capacity of caches, this technique is not a good option as it will

lead to cache thrashing.

With fine-grained partitioning aggregation can be computed through a generated

block of code as the one shown in Listing 3.8. We assume that the grouping attributes

T.A and T.B take twenty and ten distinct values respectively. A value-partition map

(map i) is built for each grouping attribute. Multiple arrays are allocated, one for

each aggregate function and one for counting the elements in each group2, as shown

in Lines 3 to 5. The length of each extra array is equal to the number of expected

partitions, i.e., the number of groups we can expect. Assuming a grouping across n

attributes with |Mi| being the size of the mapping table for attribute i, each aggregate

array needs to hold (∏n
i=1 |Mi|) values – see also Figure 3.2(c). Aggregate computation

then proceeds in one linear scan of the input. For each tuple, the grouping attribute

maps are used to identify the group (group id) the tuple belongs to (Lines 10 to 16).

Then, the accumulator variables for this group are updated with the current values of

the aggregate functions (Lines 19 and 20).

2The latter is necessary only in specific operations, like avg in this case.

Chapter 3. Generating code for holistic query evaluation 45

Listing 3.8: Holistic map aggregation

1 i n t map_A [2 0] ; // map f o r T.A

2 i n t map_B [1 0] ; // map f o r T.B

3 double sum [2 0 0] ; // sum accumu la to r pe r group

4 double avg [2 0 0] ; // avg accumu la to r pe r group

5 i n t group_count [2 0 0] ; // t u p l e c a r d i n a l i t y pe r group

6 f o r (i n t page_offset = start_page ; page_offset <= end_page ; page_offset++) {

7 page_struct ∗page = read_page (page_offset , table) ;

8 f o r (i n t tuple_offset = 0 ; tuple_offset < page−>tuple_counter ; tuple_offset++) {

9 vo id ∗tuple = page−>data + tuple_offset ∗ tuple_size ;

10 i n t group_id = 0 ;

11 i n t ∗A = tuple + offset_A ; // T.A

12 // lookup i n map A f o r key ∗A r e s u l t i n g i n i nd ex k (i n l i n e d)

13 group_id += k ∗ 10 ;

14 i n t ∗B = tuple + offset_B ; // T.B

15 // lookup i n map B f o r key ∗B r e s u l t i n g i n i nd ex k (i n l i n e d)

16 group_id += k ;

17 i n t ∗C = tuple + offset_C ; // T.C

18 i n t ∗D = tuple + offset_D ; // T.D

19 sum [group_id] += ∗C ;

20 avg [group_id] += (1 − ∗C) ∗ (∗ D) ;

21 group_count [group_id]++;

22 }

23 }

24 f o r (k = 0 ; k < 200 ; k++) {

25 i f (group_count [k] == 0) cont inue ;

26 avg [k] /= group_count [k] ;

27 add_to_result (map_A [k / 10] , map_B [k % 10] , sum [k] , avg [k]) ; /∗ i n l i n e d ∗/

28 }

Chapter 3. Generating code for holistic query evaluation 46

3.5.3.3 Holistic hybrid hash-sort aggregation

Map aggregation based on fine-grained partitioning can compute the result in a sin-

gle linear scan of its input, but its performance degrades as the number of partitions

grows (i.e., as the possible combinations of distinct values across the aggregation at-

tributes increase). We therefore propose a hybrid approach that combines partitioning

and sorting, which we term holistic hybrid hash-sort aggregation. The key idea is

to use progressively wider partitioning to stage the input. We start from fine-grained

partitioning on the first grouping attribute and progressively add grouping attributes

until the size of the value-partition mapping tables exceeds cache capacity. We now

have disjoint partitions across a subset of the aggregation attributes; we then sort each

partition on the remaining grouping attributes and proceed as for sort-based partition-

ing. If the value-partition mapping table for the first grouping attribute does not fit the

caches, then we revert to coarse-grained partitioning on this attribute and proceed as

in sort-based aggregation, i.e., by sorting each partition on all grouping attributes and

scanning each input partition to produce the result, as presented in Listing 3.7.

Hybrid aggregation, though similar to simple sort aggregation, has the advantage of

avoiding merging the sorted partitions, while it can reduce the cost of sorting each par-

tition. The grouping attributes are split between hash-partitioning and sorting. For in-

stance, in case of five grouping attributes, the first three might be used for fine-grained

partitioning, with the generated partitions being then sorted only on the remaining two

attributes. In addition, the algorithm does not suffer from the memory limitations of

fine-grained partitioning, making it more widely applicable. The generated code al-

lows for register reuse at compile-time and for hardware prefetching at run-time.

3.6 Implementation of the code generator

The main challenges in engineering a code generator for query evaluation were (a) the

identification of common code templates across different algorithms, (b) the intercon-

Chapter 3. Generating code for holistic query evaluation 47

nection of different operators, since no common interface is present any more, and

(c) the verification of correctness of the generated code for all supported operations.

The holistic evaluation model eases those problems. The main advantage is that its

algorithms exploit generic code templates for all operations. Data staging employs the

template of Listing 3.2; sorting and partitioning operations can be interleaved inside

the code. For join evaluation, the nested-loops template of Listing 3.6 is used in each

case, with differences between algorithms either being taken care of through staging,

or through extra steps inside the loops, as described in Section 3.5.2.5. Aggregation

extends the template of Listing 3.2 by injecting code for tracking different groups and

computing the aggregate functions. This is evident by the similarity of the code tem-

plates of Listings 3.7 and 3.8 for sort and map aggregation respectively. Furthermore,

operators are connected by materialising intermediate results as temporary tables in-

side the buffer pool and streaming them to subsequent operators.

The experience of developing HIQUE has verified these claims. The introduction

of new algorithms or even new operators required more effort to extend the parser and

the optimiser than to extend the generator. As a general methodology of introducing

algorithms, we would first create a model implementation of the new algorithm and

compare it to the existing templates. In most cases, the new algorithm resulted in a few

different lines of code when compared to the existing evaluation algorithms. We would

then extend the templates and the code generator to support the new algorithm. This

process was further aided by the output of the code generator being a C source code

file: the compiler helped the developer to easily identify errors in the generated code

and reduce the number of develop and test iterations required until the new algorithm

was fully supported.

Chapter 3. Generating code for holistic query evaluation 48

3.7 Query optimisation

The key premises of the holistic model is to generate query-specific and hardware-

friendly code and then take advantage of the efficiency of modern compilers and hard-

ware setups to improve performance. This is not, however, the only way to boost

query performance. There is always room for applying traditional optimisation prim-

itives like algorithm selection and join ordering. In this section we shall describe our

system’s heuristics-based optimiser and how we have adapted query optimisation for

CPU- and memory-bound evaluation.

While one can coarsely differentiate between I/O and memory accesses when opti-

mising for I/O, the multiple cache levels of modern processors complicate the analysis

of main memory execution. The situation is aggravated by data (re)placement on the

various levels of the cache hierarchy being controlled by the CPU; this is in contrast to

the buffer manager’s absolute control of which pages will be transferred from and to

the hard disks.

Execution plans have been traditionally organised as binary trees of operators, with

the optimiser deciding the order of operators and the evaluation algorithms. The search

space grows large quite soon, and the optimiser needs accurate cost models and statis-

tics to make good choices. The holistic model helps in reducing the complexity of

search space exploration by the use and inherent efficiency of join teams. The multi-

input algorithms of Section 3.5.2 (a) execute faster on modern CPUs, and (b) remove

the need for intermediate result materialisation and staging. We use join teams to re-

duce the size of the search space by identifying them and always preferring them over

binary joins. Our approach is a combination of divide-and-conquer and rule-based op-

timisation: join teams are ordered and scheduled according to their estimated output

size to form the entire execution plan. Each join team is then separately optimised by

picking the appropriate algorithm. A sketch of the optimiseQuery algorithm is shown

in Algorithm 2.

Join team ordering. The objective is to minimise intermediate result materialisation

Chapter 3. Generating code for holistic query evaluation 49

Algorithm 2: The optimiseQuery algorithm
Input: Query Q.

Output: List S of holistic templates P for join teams T ,

Holistic template PΓ for aggregation.

S = /0 ;1

T = {t | t is a (generalised) join team inQ} ;2

Γ = {γ | γ is a grouping attribute in Q} ;3

O = {o | o is a sort attribute in Q} ;4

while (T 6= /0) do5

ti←min(T): ∀(t j in T)→ |ti| ≤ |t j)| ;6

S = S t optimiseTeam (ti,O) ;7

if (∃t j∧ (j > i)∧ (t j shares tableX with ti)) then8

substitute X for ti’s output in t j ;9

T ← T − ti ;10

R = output of tlength(S);11

PΓ = optimiseAggregate (R,Γ,O) ;12

return S, PΓ;13

and, therefore, the penalty for staging the output of one join team when it becomes

an input of a following one. For this purpose, the system maintains value statistics

(see also Section 3.3) and uses them to estimate the output cardinality of each join

team. Join teams are ordered in ascending result cardinality by iteratively picking the

join team with the smallest estimated cardinality (Line 6 of Algorithm optimiseQuery,

where |ti| denotes the estimated output cardinality of join team ti). This is the order in

which they will be executed in the final query plan (i.e., the join team with the highest

estimated output cardinality will be executed last). Each team is individually optimised

through a call to Algorithm optimiseTeam (Line 7 of Algorithm optimiseQuery). The

output template is appended to the output list S (Line 7, with t denoting list append-

Chapter 3. Generating code for holistic query evaluation 50

Algorithm 3: The optimiseTeam algorithm
Input: Join team T , sort attribute O.

Output: Holistic template PT for T .

DT = {d | d is an input (either primary or temporary) table in T} ;1

FT = { f | f is a join attribute in DT } ;2

sort DT : ∀(di,d j)∧ i≤ j→ |di| ≤ |d j| ;3

if (∑i |M(fi ∈ FT)|< map-threshold) then4

PT = fine-grained partitioned join template ;5

else6

if ((maxd∈DT (|d|) < sort-threshold)∨7

(∀ fi→∃Index(fi))∨ ((∃a)∧a ∈ FT ∧a ∈ O∧T = tlength(S))) then8

PT = merge join template ;9

else10

PT = hybrid hash-sort-merge join template ;11

return PT ;12

ing), along with all the necessary parameters for instantiating the chosen holistic join

template. This list will be used by the generator to build the code corresponding to

each join team.

After individually optimising a join team, we update the inputs of the remaining

join teams. If two join teams share a common table, its occurrence in the succeeding

team (according to the global join team order) is replaced by the temporary table corre-

sponding to the preceding team’s output (Lines 8 and 9 of Algorithm optimiseQuery).

That way, the succeeding join team will have the correct information about the tempo-

rary input table’s schema and cardinality, so we can more accurately optimise it. The

last plan in S, tlength(S), will be the final join (team) operation, and the one on which

all aggregations will be applied. We therefore pass it to Algorithm optimiseAggregates

for generation of the holistic template for aggregation before we return (Lines 11, 12

Chapter 3. Generating code for holistic query evaluation 51

and 13).

Single join team optimisation. We use the optimiseTeam algorithm of Algorithm 3 to

internally optimise each join team. The key decisions are the order of the nested loops

and the choice of holistic algorithm for the entire team. To tackle the first problem

we conducted a preliminary set of experiments over various datasets. These indicated

that table ordering has minimal impact on response time, which can be justified by

the enhanced D1-cache locality of the holistic nested-loops template. An impact is

evident only when one of the tables can entirely fit in some cache level. To address

table ordering within a join team we decided to use the simple heuristic of ordering the

tables of the team (be they primary or temporary) in ascending cardinality order, and

ordering loops accordingly (i.e., the largest input in cardinality is the one processed by

the innermost loop – Line 3 of Algorithm optimiseTeam; larger tables are more likely

to have more matching tuples for each predicate value, thus increasing the efficiency

of nested loops.

Regarding the choice of join team evaluation algorithm we can either use analyti-

cal cost estimations or a calibration approach. The thresholds that specify the switch-

ing points between algorithms can be extracted by using detailed cost functions, in

a fashion similar to the description of the generic cost model for hierarchical mem-

ory of [54]. We defer presenting our analytical cost model, along with its extension for

multithreaded query execution, to Chapter 4 for the sake of exposition. Calibration [54]

is an alternative method that leads to acceptable results. This technique works by main-

taining hardware-specific statistics for each evaluation algorithm using various com-

binations of join team input counts, tuple sizes and input cardinalities. The crossing

points between the performance plots of different algorithms correspond to switching

points for the choice of algorithm. Though crossing points are only indicative of trends,

they are useful thresholds for deciding on the most efficient algorithm for each opera-

tor. They are used in Lines 4-11 of Algorithm optimiseTeam, to specify the thresholds

for switching from fine-grained partitioning to sort-based staging (map-threshold) and

Chapter 3. Generating code for holistic query evaluation 52

Algorithm 4: The optimiseAggregate algorithm
Input: Input table R, group attributes Γ, sort attributes O.

Output: Holistic template PΓ for aggregation.

if (∑i |M(γi ∈ Γ)|< map-threshold) then1

PΓ = map aggregation template ;2

else3

if (O = Γ) then4

PΓ = sort aggregation template ;5

else6

PΓ = hybrid hash-sort aggregation template ;7

return PΓ;8

for switching from sort-merge to hybrid staging (sort-threshold).

If the calibration approach is used, the optimiser first examines if the cardinality

of distinct values for the join attribute is small enough to allow the efficient process-

ing of the value-partition map (or a sequence of maps, for generalised hash teams –

Line 4). If this criterion is satisfied, the chosen algorithm is fine-grained partitioned

join. Otherwise, the optimiser tests if merge join is appropriate. This applies if: (a) the

biggest input table is small enough to allow all input tables to be sorted using a sin-

gle quicksort call (Line 7), or (b) there exist indexes for all input tables on their join

attribute (Line 8) and there is enough memory to use cooperative staging, or (c) the

optimised join team is the last one and the output needs to be grouped or sorted on the

join attribute(s) (Line 8 – in which case output staging is avoid). In all other cases, the

chosen algorithm is hybrid hash-sort-merge join (Line 11).

Aggregation. The optimiseAggregate algorithm of Algorithm 4 generates the holistic

plan for arbitrary aggregation. The first case to examine is whether the product of

distinct values for all aggregation attributes is small enough to render fine-grained map

aggregation applicable (Lines 1 and 2). This is preferable since it does not require any

Chapter 3. Generating code for holistic query evaluation 53

staging and can be computed in one scan of the input. If this criterion is not satisfied,

the optimiser tests if the aggregation result needs to be sorted and if the sort attributes

are the same and follow the same order as the grouping ones; in this case, holistic

sort aggregation is the chosen algorithm (Lines 4 and 5). In all other cases the system

employs holistic hybrid hash-sort aggregation (Line 7).

3.8 Experimental Study

To test the viability of code generation as a general solution to query evaluation we

experimented with different aspects of the system. Our aim was to measure (a) the

superiority of the holistic model over the traditional iterator-based approach, (b) the

effect of compiler optimisations on the code generated by HIQUE, (c) the competitive-

ness of the system in comparison to other approaches, both research and commercial

ones, on established benchmark queries, and (d) the penalty for generating, compiling,

and linking query-specific code at runtime.

To measure the efficiency of the holistic model against iterators we have imple-

mented iterator-based versions of the algorithms presented in Section 3.5 and com-

pared them to the code generated by HIQUE. We have also benchmarked HIQUE against

three database systems: (a) PostgreSQL (version 8.2.7), a widely-used and high-

performance open-source DBMS over NSM that uses iterators, (b) a commercial sys-

tem, which we refer to as System X for anonymity, also using NSM and iterators but

employing software prefetching instructions to reduce cache miss stalls, and (c) Mon-

etDB (version 5.8.2), an architecture-conscious DBMS using a DSM-based storage layer

and column-wise evaluation algorithms. This choice allowed the comparison of dif-

ferent storage systems and query engine designs, with PostgreSQL representing the

traditional I/O-optimised design, System X bridging the gap between I/O- and CPU-

bound execution with software prefetching, and MonetDB being a design optimised

for main-memory execution.

Chapter 3. Generating code for holistic query evaluation 54

Number of cores 2

Frequency 1.86GHz

Cache line size 64B

I1-cache 32KB ×2

D1-cache 32KB ×2

L2-cache 2MB (shared)

L1-cache miss latency (sequential) 9 cycles

L1-cache miss latency (random) 14 cycles

L2-cache miss latency (sequential) 28 cycles

L2-cache miss latency (random) 77 cycles

Branch misprediction penalty 15 cycles

RAM type 2x1GB DDR2 667MHz

Table 3.1: Intel Core 2 Duo 6300 specifications

3.8.1 Testbed

We report results on the widely used x86-64 processor architecture. Our system had an

Intel Core 2 Duo 6300 dual core processor, clocking at 1.86GHz, and a physical mem-

ory of 2GB. The operating system was Ubuntu 8.10 (64 bit version, kernel 2.6.27);

HIQUE’s generated code was compiled using the GNU gcc compiler (version 4.3.2) and

with the -O2 compilation flag. For completeness we executed the same experiments on

a box with an AMD Athlon 4200 dual core processor at 2.2GHz, with the same amount

of memory and the same operating system; both setups exhibited the same trends, so

we shall focus on the Intel results. More detailed information about the testing platform

can be found in Table 3.1. The cache latencies were measured using RightMark Mem-

ory Analyser [65], while the branch misprediction penalty of 15 cycles corresponds to

the 14-stage-deep pipeline of the Core 2 architecture.

Chapter 3. Generating code for holistic query evaluation 55

3.8.2 Metrics and methodology

We built indexes in all systems, set their memory parameters to allow in-memory exe-

cution, gathered statistics in the highest level of detail and disabled concurrency control

where possible. All queries were run in isolation and were repeated ten times each. We

report average response times for each query, with the deviation being less than 3% in

all cases. Each query ran in its own thread, using a single processor core. We did

not materialise the output in any case, as the penalty of materialisation is similar for all

systems and configurations. We also used hardware performance events as metrics. We

obtained the latter with the OProfile [59] tool, which collects sampling data from the

CPU’s performance event counters. The events captured included unhalted core cycles,

retired instructions, branch instructions and mispredictions, resource stalls, instruction

and data cache reads, misses and prefetches, and software prefetching instructions.

More information about these events can be found in [43].

We have used these measurements, along with the sampling frequencies and the

stall penalties of Table 3.1, to compute the percentage of execution time that was

wasted on each stall type. We broke down execution time to instruction execution,

D1-cache miss stalls, L2-cache miss stalls and other pipeline resource stalls.3 To ac-

count for hardware prefetching, we assumed sequential access latencies for prefetched

cache lines and random access latencies for all other cache misses. This allows for ap-

proximate calculation of the cost of cache misses, as the non-blocking design of cache

memory allows the CPU to continue executing instructions while fetching data. Still,

this methodology provides a good approximation of actual cache miss stall times. In

addition to the execution time breakdown, we also calculate the Cycles Per Instruction

(CPI) ratio, the minimum value being 0.25 for Intel Core 2 Duo processors (i.e., four

instructions executed in parallel per CPU cycle). We also measured samples for retired

instructions, function calls and D1-cache accesses, normalised to the highest value

3Other pipeline resource stalls are defined as resource stalls that are not due to D1- or L2-cache
misses – see also [43].

Chapter 3. Generating code for holistic query evaluation 56

Branch misprediction Branch prediction I1-cache miss I1-cache miss

stall time (%) efficiency (%) stall time (%) rate (%)

Min Max Min Max Min Max Min Max

PostgreSQL 0.72 3.79 93.04 98.13 0.36 2.18 0.20 1.01

System X 0.19 1.73 95.95 99.28 0.12 5.28 0.08 2.14

MonetDB 0.05 2.48 91.04 98.23 0.07 4.58 0.03 2.11

HIQUE 0.00 2.74 90.04 100.00 0.03 0.44 0.01 0.17

Table 3.2: Speculation and instruction miss statistics

among the compared configurations for each query. Finally, we report the prefetching

efficiency ratio, defined as the number of prefetched cache lines over the total number

of missed cache lines. A value closer to one denotes better performance.

In Table 3.2 we show the impact of branch misprediction across all benchmark

queries. We define the branch prediction efficiency as one minus the ratio of the number

of branch mispredictions over the total number of branches. Thus, a value closer to one

denotes optimal performance. For all systems, the percentage of execution time that

corresponded to branch misprediction stalls was less than 3%, while the efficiency of

the prediction unit was consistently greater that 90%. The table also indicates that

instruction misses have a limited impact on response time. The instruction prefetching

and caching mechanisms that all modern processors incorporate restrict the frequency

of such stall events. Observe that HIQUE’s I1-cache miss rate is less than 0.2% even

for complex queries, indicating that the I1-cache can completely hold the instruction-

set for each operation. Because of these results, we no further focus on the impact of

branch mispredictions and instruction cache misses on the reported performance, but

include them in the “Other resource stalls” measurements.

Chapter 3. Generating code for holistic query evaluation 57

3.8.3 Iterators versus holistic code

To quantify the iterator model’s deficiency compared to the proposed holistic model,

we compared the following implementations: (a) an iterator-based one using generic

functions for predicate evaluation, (b) a type-specific version of iterators with in-

lined predicate evaluation, (c) a hard-coded implementation using generic functions

for predicate evaluation and tuple accesses, (d) an improved hard-coded version with

direct tuple accesses using pointer arithmetic, and (e) the code generated by HIQUE,

that further inlines predicate evaluation. We favoured the generic implementations by

separately compiling the code for each query (including all parameters for instantiat-

ing the statically pipelined iterators), thus allowing their extended optimisation by the

compiler. For join evaluation, we experimented with (a) two tables of 10,000 tuples

of 72 bytes each using merge join, with each outer tuple matching with 1,000 inner

tuples, and (b) two tables of 1,000,000 tuples of 72 bytes each using hybrid join, with

each outer tuple matching with 10 inner tuples. For aggregation, we used a table of

1,000,000 tuples of 72 bytes each, two sum functions, and we selected as the grouping

attribute one field with either (a) 100,000 distinct values, or (b) 10 distinct values. We

employed hybrid aggregation in the first case and map aggregation in the second. All

join and grouping attributes were integers. We used both response times and hardware

performance events as metrics. We present the results for join evaluation in Figure 3.4

and for aggregation in Figure 3.5.

The first join query is inflationary, as it produces 10,000,000 tuples when joining

two tables of 10,000 tuples each. In this case, the nested-loops-based template for

join evaluation proves very efficient, as HIQUE is almost five times faster than the it-

erator implementations. The time breakdown in Figure 3.4(a) shows that all versions

exhibit minimal memory stalls, so the difference in execution time is exclusively due

to the lack of function calls, the reduction in retired instructions, and the elimination

of resource stalls. Note that the generated code requires 26.22% of the instructions,

36.67% of the data accesses and 1.08% of the function calls when compared to the

Chapter 3. Generating code for holistic query evaluation 58

0.15

0.20

0.25

m
e
(s
)

L1‐cache misses
L2‐cache misses
Resource stalls
Instruction execution

0.00

0.05

0.10

Generic
Iterators

Optimized
Iterators

Generic
hard‐coded

Optimized
hard‐coded

HIQUE
Ti

(a) Execution time breakdown for Join Query #1

0.60

0.80

1.00

1.20

m
e
(s
)

L1‐cache misses
L2‐cache misses
Resource stalls
Instruction execution

0.00

0.20

0.40

Generic
Iterators

Optimized
Iterators

Generic
hard‐coded

Optimized
hard‐coded

HIQUE

Ti

(b) Execution time breakdown for Join Query #2

CPI
Retired Function D1-cache D1-cache prefetch L2-cache prefetch

instructions (%) calls (%) accesses (%) efficiency (%) efficiency (%)

Generic iterators 0.613 100.00 100.00 100.00 8.33 43.28

Optimised iterators 0.628 91.81 66.99 94.20 10.64 68.35

Generic hard-coded 0.569 53.47 33.87 51.85 27.78 86.84

Optimised hard-coded 0.498 27.63 1.29 39.31 25.00 89.47

HIQUE 0.475 26.22 1.08 36.67 25.00 92.11

(c) Hardware performance metrics for Join Query #1

CPI
Retired Function D1-cache D1-cache prefetch L2-cache prefetch

instructions (%) calls (%) accesses (%) efficiency (%) efficiency (%)

Generic iterators 0.697 100.00 100.00 100.00 30.67 87.27

Optimised iterators 0.729 95.65 86.86 97.49 30.31 92.20

Generic hard-coded 0.720 67.32 49.56 61.95 60.55 86.38

Optimised hard-coded 0.750 56.80 32.75 56.13 60.95 89.93

HIQUE 0.769 56.62 32.37 54.03 61.07 89.97

(d) Hardware performance metrics for Join Query #2

Figure 3.4: Join profiling

Chapter 3. Generating code for holistic query evaluation 59

generic iterator version, as shown in Figure 3.4(c). Besides, the CPI ratio improves by

22.5% and closes in to the ideal value of 0.25. One can also observe that the efficiency

of hardware prefetching more than doubles as the code becomes more query-specific,

both for the D1- and the L2-cache.

The second join query uses two larger tables as inputs and has much lower join se-

lectivity. In this case, the majority of the execution time is spent on staging the input,

i.e., hash-partitioning it and sorting the partitions. Since all versions implement the

same algorithm, use the same type-specific implementation of quicksort, and display

similar access patterns, the differences in execution times are narrowed. As shown in

Figure 3.4(b) HIQUE is almost twice faster than the iterator-based versions. The penalty

for memory stalls is similar in all cases, as expected. The reduction in retired instruc-

tions, data accesses and function calls is still significant, according to Figure 3.4(d),

but does not reach the levels of the previous query. Note that the CPI ratio increases for

hard-coded versions. This is due to the retirement of fewer instructions in total, so the

contribution of costly memory operations to the CPI is more substantial. Prefetching

efficiency doubles for the D1-cache and is approximately 90% for the L2-cache in all

cases.

In terms of aggregation, the first benchmark query was evaluated using the hybrid

hash-sort algorithm. In this case staging dominates execution time, as aggregation is

evaluated in a single scan of the sorted partitions. Still, as shown in Figure 3.5(a),

HIQUE maintains an advantage of a factor of 1.61 over iterators. The use of the same

partitioning and sorting implementations leads to similar memory stall costs for all

code versions. The difference in execution times mainly stems from the reduction

in instructions, data accesses and function calls, according to Figure 3.5(c). Observe

that the efficiency of the D1-cache prefetcher increases three times, while that of the

L2-cache reaches almost 90% for all implementations.

In the case of the proposed map-based algorithm, aggregation is evaluated in a sin-

gle pass of the input without any need for intermediate staging. This allows the code

Chapter 3. Generating code for holistic query evaluation 60

0.30

0.40

0.50

0.60

m
e
(s
)

L1‐cache misses
L2‐cache misses
Resource stalls
Instruction execution

0.00

0.10

0.20

Generic
Iterators

Optimized
Iterators

Generic
hard‐coded

Optimized
hard‐coded

HIQUE
Ti

(a) Execution time breakdown for Aggregation Query #1

0.04

0.05

0.06

0.07

m
e
(s
)

L1‐cache misses
L2‐cache misses
Resource stalls
Instruction execution

0.00

0.01

0.02

0.03

Generic
Iterators

Optimized
Iterators

Generic
hard‐coded

Optimized
hard‐coded

HIQUE

Ti

(b) Execution time breakdown for Aggregation Query #2

CPI
Retired Function D1-cache D1-cache prefetch L2-cache prefetch

instructions (%) calls (%) accesses (%) efficiency (%) efficiency (%)

Generic iterators 0.796 100.00 100.00 100.00 19.16 94.76

Optimised iterators 0.798 95.35 92.48 99.88 21.73 91.95

Generic hard-coded 0.872 59.85 86.83 91.19 56.79 85.59

Optimised hard-coded 0.875 54.99 77.74 89.32 56.82 86.12

HIQUE 0.919 53.86 68.65 81.63 56.90 88.95

(c) Hardware performance metrics for Aggregation Query #1

CPI
Retired Function D1-cache D1-cache prefetch L2-cache prefetch

instructions (%) calls (%) accesses (%) efficiency (%) efficiency (%)

Generic iterators 0.791 100.00 100.00 100.00 75.71 95.05

Optimised iterators 0.881 81.85 94.06 74.79 93.18 93.17

Generic hard-coded 0.936 67.62 65.35 60.21 78.93 93.44

Optimised hard-coded 0.904 53.13 32.67 52.72 78.37 95.57

HIQUE 0.899 41.89 4.95 46.13 70.39 95.86

(d) Hardware performance metrics for Aggregation Query #2

Figure 3.5: Aggregation profiling

Chapter 3. Generating code for holistic query evaluation 61

Join Join Aggregation Aggregation

Query #1 Query #2 Query #1 Query #2

-O0 -O2 -O0 -O2 -O0 -O2 -O0 -O2

Generic iterators 0.802 0.235 1.953 0.995 1.225 0.527 0.136 0.060

Optimised iterators 0.618 0.231 1.850 0.990 1.199 0.509 0.113 0.055

Generic hard-coded 0.430 0.118 1.421 0.688 0.586 0.344 0.095 0.051

Optimised hard-coded 0.267 0.055 1.225 0.622 0.554 0.333 0.080 0.038

HIQUE 0.178 0.054 1.138 0.613 0.543 0.326 0.070 0.033

Table 3.3: Effect of compiler optimisation (response times in seconds)

generator to inline all group tracking and aggregate calculations in a single code seg-

ment. As shown in Figure 3.5(b), the code generated by HIQUE outperforms generic it-

erators by almost a factor of two. Memory stalls dominate execution time for the HIQUE

version (though their effect might be alleviated from the operation of non-blocking

caches), as the aggregate calculations require only a few instructions per tuple. Also

shown in Figure 3.5(b), the reduction in function calls is gradual as the code becomes

more query-specific and reaches 4.95% for the most optimised hard-coded version.

Furthermore, the linear scan of the input helps the hardware prefetchers achieve high

levels of efficiency, over 70% for the D1-cache and near 95% for the L2-cache in all

cases.

We next examined the efficiency of compiler optimisations on the iterator-based

and the hard-coded implementations. We compiled the various implementations with

compiler optimisations disabled (by setting the optimisation flag to -O0 for the GNU

compiler) and ran the same join and aggregation queries. The results are presented

in Table 3.3. Naturally, the differences between the various code versions are more

tangible when there are no compiler optimisations, since the compiler can apply some

of the optimisations that are included in the code generation process. For example, the

Chapter 3. Generating code for holistic query evaluation 62

compiler may inline the functions for predicate evaluation, so the differences between

the last two implementations are narrowed in all queries, but become apparent when

the -O0 optimisation flag is used.

The results show that compiler optimisations are most efficient in the first join

query, resulting in speedups between 2.67 and 4.85, as the loop-oriented code trans-

formations can improve performance on iterative tuple processing. For the rest of the

queries the speedup is almost a factor of two. Since we compile the code for each query

and for all implementations, the speedup is significant even for the iterator-based ones.

Moreover, the compiler is less efficient on the hard-coded implementations: the source

code is already minimalistic and contains various optimisations (e.g., loop blocking,

function inlining). Still, the simplicity of the code and the lack of function calls al-

lows the compiler to further improve the hard-coded versions resulting in significant

speedups.

3.8.4 Performance of holistic algorithms

We now move on to examine the performance of the proposed algorithms while vary-

ing the characteristics of the input and the predicates to be applied. We compared

the optimised iterator-based versions of the proposed algorithms with the code HIQUE

generates for each query. In Figure 3.6(a) we examine scalability in join evaluation.

We used two tables with a tuple size of 72 bytes. Each outer tuple matched with ten

inner tuples on integer join attributes. The cardinality of the outer table was set to

1,000,000, while the inner one’s varied between 1,000,000 and 10,000,000. The re-

sults show that all algorithms scale linearly, with iterator-based hash-sort-merge join

having similar performance to HIQUE’s merge join. As expected, the generated version

of the hash-sort-merge join outperforms all other versions by a substantial margin,

proving its efficiency in a wide range of input cardinalities.

In multi-way queries, the evaluation of multiple joins using a single segment of

deeply-nested loops improves performance as the generated code does not require ma-

Chapter 3. Generating code for holistic query evaluation 63

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

)

Input cardinality (Millions)

Merge - Iterators
Hybrid - Iterators
Merge - HIQUE
Hybrid - HIQUE

(a) Join scalability

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2 3 4 5 6 7 8

T
im

e
(s

)

Number of joined tables

Merge - Iterators
Merge - HIQUE (binary)
Merge - HIQUE (team)
Hybrid - HIQUE (team)

(b) Multi-way joins

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3

T
im

e
(s

)

log10(matching tuples)

Merge - Iterators
Hybrid - Iterators
Merge - HIQUE
Hybrid - HIQUE

(c) Join predicate selectivity

Figure 3.6: Join performance

Chapter 3. Generating code for holistic query evaluation 64

terialisation of intermediate results. To verify this, we joined one table of 1,000,000

tuples with a varying number of tables of 100,000 tuples each, on a single join attribute.

All tables had 72-bytes-sized tuples, while the output cardinality was 1,000,000 in all

cases. We compared the binary iterator-based merge join, its equivalent when gener-

ated by HIQUE, and the code versions when join teams where enabled in HIQUE, using

either merge or hybrid join. The results of Figure 3.6(b) show that although iterator-

based merge join takes advantage of sorted orders, it is widely outperformed by its

holistic equivalent. Furthermore, the adoption of join teams radically reduces execu-

tion time, with the difference between HIQUE and iterators reaching a factor of 3.32

when joining eight tables. The extension of the nested-loops join template to support

join teams therefore pays off in the case of multi-way join queries.

Highly-selective join predicates are expected to increase the difference in perfor-

mance between the iterator and the holistic model. This is due to the number of iter-

ator calls growing larger and the join evaluation cost surpassing that of input staging;

the latter cost is similar for all implementations. This is shown in Figure 3.6(c) for

joining two tables of 1,000,000 tuples each. Each input tuple was 72 bytes wide,

while the number of inner matching tuples per outer tuple varied between 1 and 1,000.

The results show that the gap between the iterator-based and the holistic implementa-

tions widens quickly as join selectivity increases and reaches a factor of five for 1,000

matches per outer tuple.

The salient factor in aggregation performance is the domain of the grouping at-

tribute(s). If this domain allows the value directories and the aggregate arrays (see

also Section 3.5.3) to simultaneously fit in the lowest cache level, map aggregation is

expected to outperform the algorithms that require input staging. We show the effect

of the grouping attribute’s range in Figure 3.7. The input table had 1,000,000 tuples of

72 bytes each. We used two sum functions and one grouping attribute as we varied the

number of distinct values between 10 and 100,000. The results verify that, for small

numbers of groups, map aggregation is highly efficient, both in its iterator-based and

Chapter 3. Generating code for holistic query evaluation 65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

)

log10(group cardinality)

Sort - Iterators
Hybrid - Iterators

Map - Iterators
Sort - HIQUE

Hybrid - HIQUE
Map - HIQUE

Figure 3.7: Aggregation performance

unique1 : serial (primary key)

unique2 : integer

times4 : integer (each value appears 4 times)

times10 : integer (each value appears 10 times)

ten : 0 . . .9 (ten distinct values)

stringu : 52-character string

Table 3.4: Table schema for the Wisconsin benchmark

its holistic form. However, sort and hybrid aggregation are only moderately affected

by the number of groups. They perform better than map aggregation when the auxil-

iary data structures of the latter (i.e., the value directory for the grouping attribute and

the aggregate arrays) span the L2-cache, the difference approaching a factor of two for

100,000 groups.

3.8.5 Wisconsin benchmark

In the next set of experiments we compared HIQUE with the other DBMSs over a variant

of the Wisconsin benchmark [22]. All tables we experimented with conformed to the

Chapter 3. Generating code for holistic query evaluation 66

schema shown in Table 3.4. The unique1 field is the primary key and takes serial val-

ues starting from 0. The unique2 field has the same values as those of unique1, but in

a random sequence. For fields times4 and times10, each value appears exactly four or

ten times respectively (e.g., if the table has 1000 tuples, the used values are [0,250) for

times4) and follows the distribution of unique2, i.e., times4 = unique2 mod 250.

The ten field ranges between 0 and 9 randomly. Finally, the stringu field is a string

of 52 characters; it was not used in any predicates, but was employed for padding the

tuple and expanding the size of projection lists. The tuple size was 72 bytes. The

chosen schema allowed us to easily compute the cardinality of each query result.

Based on the schema of Table 3.4, we imported four tables of 10,000 tuples each

(named k10 1, k10 2, k10 3 and k10 4), three tables of 100,000 tuples each (named

k100 1, k100 2 and k100 3) and three tables of 1,000,000 tuples each (named m1 1,

m1 2 and m1 3). We experimented with a collection of join and aggregation queries

shown in Figure 3.8. In all cases, HIQUE’s optimiser chose the optimal holistic plan.

For completeness we also report the performance of all applicable holistic algorithms.

Note that whenever we refer to “HIQUE-index”, we mean holistic merge join, com-

bined with cooperative staging. For hardware performance metrics we only present

measurements for the plan selected by the optimiser.

3.8.5.1 Join evaluation

For join queries we experimented with three variants: the first without result generation

(select count(*)), the second with two fields projected from each participating table,

and the third with all fields projected (select *). That way, we were able to check how

both the input tuple sizes and the resulting tuple size affect execution times.

We experimented with joins over pairs of tables (Query 1, Figure 3.9) or as one join

team (Query 2, Figure 3.10). In the first case all holistic algorithms exhibited similar

performance, with the cooperatively staged merge join being slightly faster; this de-

notes the efficiency of combining index scanning with join evaluation in the same code

Chapter 3. Generating code for holistic query evaluation 67

select projection list

from m1 1, m1 2, k100 1, k100 2

where m1 1.unique2 = k100 1.times4

and m1 2.unique2 = k100 2.times4

and k100 1.times10 = k100 1.times10

(a) Query 1 (1,000,000)

select projection list

from m1 1, k10 1, k10 2, k10 3, k10 4

where m1 1.unique2 = k10 1.times4

and m1 1.unique2 = k10 2.times4

and m1 1.unique2 = k10 3.times4

and m1 1.unique2 = k10 4.times4

(b) Query 2 (640,000)

select projection list

from k10 1, 10k 2

where k10 1.ten = k10 2.ten

(c) Query 3 (10,000,000)

select projection list

from m1 1, m1 2

where m1 1.unique2 = m1 .unique2

order by m1 1.unique2

(d) Query 4 (1,000,000)

select projection list

from t 1, t 2, t 3

where t 1.unique2 = t 2.times10

and t 1.unique2 = t 3.times4

t ε {k10, k100, m1}
(e) Query 5 (4x|t|)

select ten,

avg(unique2),

max(unique1)

from m1 1

group by ten

(f) Query 6 (10)

select times10,

avg(unique2),

max(unique1)

from m1 1

group by times10

(g) Query 7 (100,000)

select ten, times10,

avg(unique2),

max(unique1)

from m1 1

group by ten, times10

(h) Query 8 (100,000)

select ten, times10, times4,

avg(unique2),

max(unique1)

from m1 1

group by ten, times10, times4

order by ten, times10, times4

(i) Query 9 (100,000)

Figure 3.8: Queries for the Winsconsin benchmark (output cardinality in parentheses)

segment. In comparison to the other systems, HIQUE has an advantage ranging from a

2.5-fold performance increase over MonetDB to a 7.1-fold performance increase over

PostgreSQL. The difference is greater when count(*) is used because of the increased

cache locality of the data staging step, as well as the complete lack of function calls

inside the nested loops over tuples (see also Listing 3.4). As the projection list grows,

execution times suffer the penalty of output generation. Despite that, HIQUE maintains

its advantage; it can handle large tuple sizes better by performing join evaluation inside

D1-cache, while it integrates field types and offsets in the functions used for building

the result.

If holistic join teams are applicable, as in Query 2, the performance advantage of

Chapter 3. Generating code for holistic query evaluation 68

 0

 0.5

 1

 1.5

 2

T
im

e
(s

)

1.754

0.845

0.459

0.193 0.168 0.151

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(a) count(*)

 0

 2

 4

 6

 8

 10

 12

T
im

e
(s

)

9.651

4.861
4.019

1.694 1.704 1.666

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(b) two field projection

 0

 5

 10

 15

 20

 25

 30

 35

 40

T
im

e
(s

)

34.297

13.825
11.793

5.073 5.073 4.848

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(c) all field projection

Figure 3.9: Wisconsin Query 1 - response times

Chapter 3. Generating code for holistic query evaluation 69

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

T
im

e
(s

)

0.364

0.276

0.183

0.045
0.071

0.039

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(a) count(*)

 0

 1

 2

 3

 4

 5

 6

 7

T
im

e
(s

)

5.994

3.230

2.570

1.089 1.120 1.097

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(b) two field projection

 0

 5

 10

 15

 20

 25

 30

T
im

e
(s

)

25.295

10.139
8.538

3.519 3.547 3.551

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(c) all field projection

Figure 3.10: Wisconsin Query 2 - response times

Chapter 3. Generating code for holistic query evaluation 70

HIQUE widens to a factor of 4.1 over MonetDB, a factor of 6.2 over System X, and

a factor of 8.1 over PostgreSQL (for count(*) queries). Note that since the k10 i

tables can fit in the L2-cache, applying hybrid hash-sort staging is slightly slower than

simply sorting them with a single quicksort call, as the (redundant for this case) hash-

partitioning step is omitted. The performance of join teams justifies our decision of

preferring them during query optimisation whenever they are applicable.

The common nested-loops layout of all holistic join algorithms proves its efficiency

in inflationary joins, as is the case for Query 3 (Figure 3.11) where the input tables are

joined on the ten field. Especially when there is no result tuple production, HIQUE

outperforms other systems by a factor ranging from 39 to 51. This gap narrows as the

projection list grows. This, however, does not prevent our system from maintaining a

2.5-times advantage even when all fields of the joined tables are projected. Note that

since there are only 10 distinct values for the join attribute it is possible to use fine-

grained partitioning in holistic hash join; its advantage is apparent when the size of

the output tuples is minimal (i.e., when count(*) is used) but is masked by the output

generation cost for wider projection lists.

If the result has to be sorted on the join predicate’s attribute, the sort-based algo-

rithms exhibit the best performance, as the results of Query 4 (Figure 3.12) verify.

Employing hybrid hash-sort-merge join and sorting the result (i.e., two hash-sort stag-

ing operations and a sort-merge one) is slightly faster than using holistic merge join to

compute the result (i.e., two sort-merge staging operations). If there exist indexes on

the join predicate, their efficient implementation and their integration with the merge

join code suggest that index-scan staging should be preferred, proving the fastest algo-

rithm overall. The performance advantage of HIQUE over the other systems is narrowed

in this case. This is justified by the fact that this query includes a key-to-key join on

the unique2 field, so there effectively are no loops performed in the body of holis-

tic nested loops, as suggested in Listing 3.5: the input tables are linearly scanned, a

process calling for consecutive updates of the page and tuple loop bounds for each ex-

Chapter 3. Generating code for holistic query evaluation 71

 0

 0.5

 1

 1.5

 2

 2.5

T
im

e
(s

)

2.223

1.743
1.900

0.044 0.055 0.060 0.058

PostgreSQL
System X
MonetDB

HIQUE-hash
HIQUE-merge
HIQUE-hybrid
HIQUE-index

(a) count(*)

 0

 5

 10

 15

 20

 25

 30

 35

 40

T
im

e
(s

)

37.088

23.420
22.122

9.032 9.163 9.053 9.261

PostgreSQL
System X
MonetDB

HIQUE-hash
HIQUE-merge
HIQUE-hybrid
HIQUE-index

(b) two field projection

 0

 20

 40

 60

 80

 100

 120

T
im

e
(s

)

112.013

66.864
61.320

24.32124.84124.33124.833

PostgreSQL
System X
MonetDB

HIQUE-hash
HIQUE-merge
HIQUE-hybrid
HIQUE-index

(c) all field projection

Figure 3.11: Wisconsin Query 3 - response times

Chapter 3. Generating code for holistic query evaluation 72

 0

 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
(s

)

6.966

3.558

2.754

1.658 1.624 1.568

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(a) two field projection

 0

 5

 10

 15

 20

T
im

e
(s

)

20.258

10.734

7.493

4.591 4.552
3.588

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(b) all field projection

Figure 3.12: Wisconsin Query 4 - response times

amined tuple. This is the worst-case scenario for our holistic join algorithms; it does

not, however, prevent HIQUE from outperforming its competition, even for key-to-key

joins.

We now move on to scalability experiments. In Figure 3.13 we present response

times for Query 5 as we scaled the input cardinality between 10,000, 100,000, and

1,000,000 tuples. The performance of all systems scaled gracefully, with HIQUE al-

ways outperforming the competition. HIQUE’s performance further corroborates the

holistic model’s ability to process large datasets by aligning computation to the cache

Chapter 3. Generating code for holistic query evaluation 73

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

T
im

e
(s

)

0.294

0.166

0.132

0.062
0.075

0.058

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(a) input: 10k tuples

 0

 0.5

 1

 1.5

 2

 2.5

 3

T
im

e
(s

)

2.754

1.471

1.242

0.556 0.550 0.554

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(b) input: 100k tuples

 0

 5

 10

 15

 20

 25

 30

 35

T
im

e
(s

)

29.891

14.867
12.356

5.914 5.616 5.831

PostgreSQL
System X
MonetDB

HIQUE-merge
HIQUE-hybrid
HIQUE-index

(c) input: 1m tuples

Figure 3.13: Wisconsin Query 5 - response times

Chapter 3. Generating code for holistic query evaluation 74

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

PostgreSQL System X MonetDB HIQUE

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

(a) Execution time breakdown

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PostgreSQL System X MonetDB HIQUE

(b) Normalised time breakdown

CPI Retired D1-cache D1-cache prefetch L2-cache prefetch
instructions accesses efficiency efficiency

PostgreSQL 0.638 100.00% 100.00% 21.50% 70.74%
System X 0.614 88.65% 82.43% 26.52% 72.99%
MonetDB 0.764 60.30% 56.71% 14.41% 84.74%
HIQUE 0.676 32.11% 30.49% 13.64% 66.15%

(c) Hardware performance metrics

Figure 3.14: Wisconsin Query 1 - OProfile results

hierarchy, even when the size of the input is orders of magnitude greater than the cache

capacity.

We have so far used response time as the metric; we shall now switch metrics

and focus on the various measurements that we extracted by profiling query execu-

tion through OProfile. The profiling results for Query 1 with two fields projected

from each table are presented in Figure 3.14. HIQUE bears minimal cache stalls as

opposed to competing systems, while all systems have comparable CPI ratios. The

small retired instruction ratio of HIQUE indicates that the per-query generated code of

the holistic model only uses a minimal set of instructions and requires almost half the

instructions compared to other architecture-conscious systems like MonetDB, which

translates to reduced computational load. Although HIQUE does not widely exploit

hardware prefetching, this is more than counterbalanced by substantially fewer cache

misses as well as reduced total data requests. These results show that even though

Chapter 3. Generating code for holistic query evaluation 75

1.000

1.500

2.000

2.500

3.000

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

0.000

0.500

1.000

1.500

2.000

2.500

3.000

PostgreSQL System X MonetDB HIQUE

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

(a) Execution time breakdown

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PostgreSQL System X MonetDB HIQUE

(b) Normalised time breakdown

CPI Retired D1-cache D1-cache prefetch L2-cache prefetch
instructions accesses efficiency efficiency

PostgreSQL 0.647 100.00% 100.00% 16.47% 69.72%
System X 0.603 77.65% 64.41% 19.12% 75.12%
MonetDB 0.682 60.01% 60.52% 13.35% 87.16%
HIQUE 0.665 33.45% 28.03% 3.89% 56.80%

(c) Hardware performance metrics

Figure 3.15: Wisconsin Query 5 - OProfile results

HIQUE employs a cache-unfriendly storage representation, unlike other systems (i.e.,

it uses NSM over vertical partitioning), the generated code still exploits cache locality

and reduces the cost of memory accesses.

Profiling results for join team evaluation, as is the case for Query 5 with input car-

dinalities of 100,000 tuples, are shown in Figure 3.15. We observe the same trends

for all systems as in single join evaluation. Though HIQUE’s overall prefetching effi-

ciency is not improved, note that the number of cache misses is further reduced, as no

intermediate results are materialised.

3.8.5.2 Aggregation

We experimented with varying group cardinalities in Queries 6–9, while input cardi-

nality was set to 1,000,000 tuples. In Query 6, grouping on the ten implies only ten

groups, so map aggregation is expected to perform best, as there is no need to stage

Chapter 3. Generating code for holistic query evaluation 76

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

T
im

e
(s

)

0.528

0.283

0.069
0.036

0.241

0.299

PostgreSQL
System X
MonetDB

HIQUE-map
HIQUE-merge
HIQUE-hybrid

(a) Query 6
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1.359

2.129

3.084

0.553
0.334 0.326

PostgreSQL
System X
MonetDB

HIQUE-map
HIQUE-merge
HIQUE-hybrid

(b) Query 7

 0

 0.5

 1

 1.5

 2

T
im

e
(s

)

1.612

1.124
1.007

1.345

0.668
0.557

PostgreSQL
System X
MonetDB

HIQUE-map
HIQUE-merge
HIQUE-hybrid

(c) Query 8
 0

 1

 2

 3

 4

 5

 6

 7

 8

6.063

4.252 4.391

5.361

1.831

2.597

PostgreSQL
System X
MonetDB

HIQUE-map
HIQUE-merge
HIQUE-hybrid

(d) Query 9

Figure 3.16: Wisconsin Aggregation Queries - response times

the input. The results, presented in Figure 3.16(a), show that HIQUE is 1.9 times faster

than MonetDB, 7.9 times faster than System X and 14.7 times faster than PostgreSQL.

Compared to the other holistic aggregation alternatives, map aggregation is 6.7 to 8.3

times faster, thus verifying the efficiency of fine-grained partitioning for a small num-

ber of partitions.

As the number of distinct values grows, however, the performance of fine-grained

partitioning in map aggregation deteriorates. Recall that fine-grained partitioning re-

quires building and maintaining mapping tables for grouping attribute. This table has

as many entries as the number of distinct values for the grouping attribute, which means

that for a large number of entries it may span the L1- or even the L2-cache. As a con-

sequence, the system may suffer multiple cache misses for each map lookup. This is

apparent in Query 7 (Figure 3.16(b)), where there are 100,000 distinct values of the

Chapter 3. Generating code for holistic query evaluation 77

grouping attribute: holistic sort aggregation and hybrid aggregation outperform map

aggregation, due to the efficient implementation of the staging step. We can also spot

the advantage of the hybrid algorithm over the sort-based one, stemming from its not

having to merge partitions. MonetDB’s performance deteriorates as well, while the

NSM-based systems adapt better and outperform MonetDB, but they are still 2.7 to 4.3

times slower than HIQUE.

Similar conclusions can be drawn from Query 8 (Figure 3.16(c)), which uses two

grouping attributes and results in an output cardinality of 100,000. In that case, Sys-

tem X and MonetDB perform better and are now about two times slower than HIQUE,

while PostgreSQL’s performance deteriorates slightly. Again, the holistic aggregation

algorithms that employ input staging prove the most efficient approach overall.

In Query 9 the grouping and sorting attributes are identical; the results are shown

in Figure 3.16(d). The most appropriate algorithm is holistic sort aggregation, since it

does not require output sorting and can produce the result in a single scan. For com-

parison, hybrid aggregation may avoid the merging of sorted partitions, but introduces

another sort-merge operation over the output, so it is 30% slower than the sort-based

approach. HIQUE outperforms System X by a factor of 2.2, PostgreSQL by a factor of

3.2 and MonetDB by a factor of 2.4, proving its superiority in this case as well.

We now present profiling results for two indicative aggregation queries. In Query

7 (Figure 3.17) we observe that HIQUE’s staging of the input (through hybrid hash-sort

staging) and inlining of all aggregation calculations in the generated source code sig-

nificantly reduces cache miss stalls and results in a lower CPI ratio. In addition, the

hardware prefetchers aid in reducing access latencies. Observe that the other systems

exhibit suboptimal cache behaviour even though aggregation is, in all likelihood, com-

puted in a single pass of the input table. This performance indicates that iterator-based

or column-wise aggregation implementations introduce a significant overhead, com-

pared to the holistic approach. This is mostly evident in the case of MonetDB, which

has comparable to HIQUE retired instruction counts, but requires almost as many as

Chapter 3. Generating code for holistic query evaluation 78

1 000

1.500

2.000

2.500

3.000

3.500

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

PostgreSQL System X MonetDB HIQUE

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

(a) Execution time breakdown

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PostgreSQL System X MonetDB HIQUE

(b) Normalised time breakdown

CPI Retired D1-cache D1-cache prefetch L2-cache prefetch
instructions accesses efficiency efficiency

PostgreSQL 0.838 76.68% 57.87% 24.21% 69.32%
System X 1.079 100.00% 100.00% 4.85% 51.73%
MonetDB 4.105 45.17% 42.94% 1.61% 51.61%
HIQUE 0.751 39.04% 25.65% 48.76% 84.91%

(c) Hardware performance metrics

Figure 3.17: Wisconsin Query 7 - OProfile results

double accesses to the D1-cache. These accesses result in further cache misses and

performance penalty.

The results for Query 9 are shown in Figure 3.18. MonetDB exhibits increased

cache miss stalls and makes worse use of the hardware prefetchers. As the input table

is divided into L2-cache fitting partitions during sorting, HIQUE suffers more from D1-

than from L2-cache miss stalls. Holistic aggregation, however, exhibits fewer instruc-

tions and data reads and writes, while the use of sequential access patterns results in

a better utilisation of the hardware prefetchers, therefore shrinking the effect of cache

misses.

3.8.6 TPC-H benchmark

We now move on to experimenting with more realistic datasets and queries, namely

those of the TPC-H benchmark [73]. In Appendix A we describe the benchmark’s

Chapter 3. Generating code for holistic query evaluation 79

2 000

3.000

4.000

5.000

6.000

7.000

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

PostgreSQL System X MonetDB HIQUE

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

(a) Execution time breakdown

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PostgreSQL System X MonetDB HIQUE

(b) Normalised time breakdown

CPI Retired D1-cache D1-cache prefetch L2-cache prefetch
instructions accesses efficiency efficiency

PostgreSQL 0.753 100.00% 74.03% 26.52% 70.42%
System X 0.706 90.16% 100.00% 24.81% 70.69%
MonetDB 1.332 56.72% 63.95% 11.68% 58.37%
HIQUE 0.887 38.17% 28.67% 19.95% 81.09%

(c) Hardware performance metrics

Figure 3.18: Wisconsin Query 9 - OProfile results

database schema in detail. We used a scaling factor of one. The dataset was generated

using the benchmark’s generator and we did not alter its tables in any way (e.g., sort

or cluster them) before importing them to the systems. The “raw” dataset size was

approximately 1.3GB, without including indexes, thus fitting in our system’s main

memory.

We chose TPC-H Queries 1, 3, 5 and 10. These include highly selective join pred-

icates that cannot be evaluated as join teams, as well as aggregation operations of a

varying number of grouping attributes and aggregate functions. Moreover, TPC-H ta-

bles have wide tuples spanning multiple cache lines, with only a few fields actually

needed by any query. The expectation, therefore, is for MonetDB to benefit from its

DSM-based design and outperform all NSM-based systems.

TPC-H Query 1 is an aggregation over almost the entire lineitem table (or about

5,900,000 tuples), that produces only four output groups. As the two aggregation at-

Chapter 3. Generating code for holistic query evaluation 80

 0

 10

 20

 30

 40

 50

 60

 70

T
im

e
(s

)

59.353

37.185

1.725 0.356

PostgreSQL
System X
MonetDB

HIQUE

(a) Query 1

 0

 1

 2

 3

 4

 5
4.549

2.477

0.517 0.411

PostgreSQL
System X
MonetDB

HIQUE

(b) Query 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
im

e
(s

)

3.668

1.340

0.664
0.793

PostgreSQL
System X
MonetDB

HIQUE

(c) Query 5

 0

 1

 2

 3

 4

 5

 6

5.091

2.091

1.131 0.971

PostgreSQL
System X
MonetDB

HIQUE

(d) Query 10

Figure 3.19: TPC-H Queries - response times

tributes have a product of distinct value cardinalities equal to six, the most appropriate

holistic aggregation algorithm is hash aggregation with fine-grained partitioning. The

results in Figure 3.20(a) show HIQUE outperforming MonetDB by a factor of five and

the other NSM-based systems by two orders of magnitude, reaching a 167-fold advan-

tage against PostgreSQL. This is due to the holistically generated code: it includes

all selection, grouping and aggregation operations in a single succinct code block that

lacks function calls and is tailored towards efficient register utilisation. The generated

code resembles Listing 3.8. In such a case, the following accumulated values will be

continuously updated in each iteration:

• sum(l extendedprice);

• sum(l extendedprice * (1 - l discount));

• sum(l extendedprice * (1 - l discount)*(1 + l tax)); and

Chapter 3. Generating code for holistic query evaluation 81

20.000

30.000

40.000

50.000

60.000

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2‐cache misses
D1‐cache misses

0.000

10.000

20.000

30.000

40.000

50.000

60.000

PostgreSQL System X MonetDB HIQUE

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2‐cache misses
D1‐cache misses

(a) Execution time breakdown

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PostgreSQL System X MonetDB HIQUE

(b) Normalised time breakdown

CPI Retired D1-cache D1-cache prefetch L2-cache prefetch

instructions accesses efficiency efficiency

PostgreSQL 0.628 100.00% 100.00% 21.28% 61.68%

System X 0.941 37.48% 36.64% 12.57% 61.39%

MonetDB 0.843 2.15% 2.66% 61.35% 96.24%

HIQUE 1.606 0.24% 0.64% 87.17% 57.73%
(c) Hardware performance metrics

Figure 3.20: TPC-H Query 1 - OProfile results

• avg(l extendedprice).

The holistic model avoids calculation repetition and takes advantage of pipelined ex-

ecution of all aggregate operations by exploiting register reuse and the processor’s

superscalar design. The measured performance translates to 662.16 millions of CPU

cycles, which is comparable to that of MonetDB/X100’s DSM-based approach and

30% faster than MonetDB/X100’s NSM-based approach [81]. Hence, we posit that

HIQUE generates code that is identical to a hard-coded implementation, thus achieving

maximum efficiency in aggregation (at least for NSM-based systems).

In terms of hardware performance metrics, as presented in Figure 3.20, HIQUE

achieves the worst CPI ratio. This is expected as it uses a minimal instruction-set

Chapter 3. Generating code for holistic query evaluation 82

1 500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

PostgreSQL System X MonetDB HIQUE

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

(a) Execution time breakdown

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PostgreSQL System X MonetDB HIQUE

(b) Normalised time breakdown

CPI Retired D1-cache D1-cache prefetch L2-cache prefetch

instructions accesses efficiency efficiency

PostgreSQL 0.911 100.00% 100.00% 27.49% 58.31%

System X 0.833 64.21% 69.12% 20.72% 63.95%

MonetDB 1.003 10.75% 13.64% 30.82% 88.60%

HIQUE 1.842 4.60% 9.39% 38.63% 49.52 %
(c) Hardware performance metrics

Figure 3.21: TPC-H Query 3 - OProfile results

(ten times smaller than MonetDB’s), that mainly consists of expensive memory oper-

ations. HIQUE performs fifty times fewer D1-cache accesses than System X, while the

input size is comparable for both systems. Its efficiency in exploiting D1-cache hard-

ware prefetching reaches the maximum measured value of 87.17%, whereas MonetDB

achieves an even better L2-cache prefetching efficiency ratio of 96.24% by operating

over arrays of primitive data types. Furthermore, the number of retired instructions and

data references are small for HIQUE, asserting that the holistic model can mask NSM’s

deficiency, when compared to the DSM.

The remaining benchmark queries stress join, aggregation, and sorting perfor-

mance. In such cases, the holistic optimiser stages all input tables before further opera-

Chapter 3. Generating code for holistic query evaluation 83

tions, which proves an expensive operation over the benchmark tables. For instance, in

Query 5 the lineitem table participates with only four fields for a total tuple length of

24 bytes, out of the original length of 152 bytes. In addition, only 10% of the orders

table is used in the key-foreign-key join with the lineitem table, making it a highly

selective predicate. The combination of the above makes this query a perfect match

for DSM-based systems, like MonetDB; vertical partitioning allows fetching only the

required fields for each operator’s execution. One can make similar observations for

Queries 3 and 10 with respect to the participating tables and the selectivity of the join

predicates. As a result, HIQUE is 20% and 14% faster in Queries 3 and 10 respectively,

and 16% slower in Query 5 when compared to MonetDB. As far as the latter query is

concerned, the query plan selected by HIQUE’s optimiser computes the join between

lineitem and orders first. The staging cost for these tables and for the join’s result

for the remaining operations is quite high and impacts execution time. Performance

might improve if we adopted a more sophisticated query optimiser.

Compared to the NSM-based systems, HIQUE outperforms PostgreSQL and Sys-

tem X by a substantial margin, with System X narrowing the gap to 40% only for

Query 5. The fact that conventional query optimisers are not well-suited for optimis-

ing memory-bound queries became evident during early experiments with System X.

It wrongly chose to use indexes as access method, leading to a penalty of a factor of ten

in execution times. The reported times were obtained only after we manually disabled

index scanning.

The OProfile results for Queries 3, 5 and 10 in Figures 3.21 to 3.23 demonstrate

that HIQUE aids the D1-cache hardware prefetcher by (a) using cache-conscious stag-

ing algorithms, and (b) ensuring join evaluation stays inside this cache level. On the

contrary, MonetDB consistently exploits prefetching to reduce L2-cache misses, due to

its column-wise operator implementations. All systems, and especially HIQUE, achieve

high CPI ratios, indicating that there are many pipeline stalls, hence superscalar exe-

cution of multiple instructions is blocked. Note that, while HIQUE exhibits the worst

Chapter 3. Generating code for holistic query evaluation 84

1.500

2.000

2.500

3.000

3.500

4.000

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

PostgreSQL System X MonetDB HIQUE

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

(a) Execution time breakdown

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PostgreSQL System X MonetDB HIQUE

(b) Normalised time breakdown

CPI Retired D1-cache D1-cache prefetch L2-cache prefetch

instructions accesses efficiency efficiency

PostgreSQL 1.237 100.00% 100.00% 16.59% 58.01%

System X 1.253 41.17% 41.26% 20.76% 65.14%

MonetDB 0.906 23.14% 20.19% 26.60% 90.52%

HIQUE 1.027 26.86% 24.33% 33.11% 53.76%
(c) Hardware performance metrics

Figure 3.22: TPC-H Query 5 - OProfile results

CPI ratio in TPC-H queries, the actual percentage of time spent on instruction execution

is comparable to the other systems. This is most likely because the latter can achieve

a lower CPI ratio when the processor is not stalled due to memory operations, by pro-

viding the CPU with abundant instructions. Conversely, HIQUE displays substantially

fewer retired instruction and D1-cache access counts than the other NSM-based systems

and is surpassed by MonetDB only in Query 5.

The breakdown of execution times reveals that, despite the improvements the holis-

tic model introduces, it cannot overcome the restrictions that modern processors im-

pose on the performance of data-intensive applications. No matter how sophisticated

the operation of caches and memory becomes, it still cannot provide data to the archi-

Chapter 3. Generating code for holistic query evaluation 85

2.000

3.000

4.000

5.000

6.000

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

0.000

1.000

2.000

3.000

4.000

5.000

6.000

PostgreSQL System X MonetDB HIQUE

Ti
m
e
(s
)

Instruction execution
Other resource stalls
L2 cache misses
L1 cache misses

(a) Execution time breakdown

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PostgreSQL System X MonetDB HIQUE

(b) Normalised time breakdown

CPI Retired D1-cache D1-cache prefetch L2-cache prefetch

instructions accesses efficiency efficiency

PostgreSQL 1.061 100.00% 100.00% 15.58% 65.73%

System X 1.057 55.93% 67.36% 20.06% 63.29%

MonetDB 1.033 25.14% 26.89% 18.70% 76.23%

HIQUE 1.115 20.20% 26.71% 32.69% 56.36%
(c) Hardware performance metrics

Figure 3.23: TPC-H Query 10 - OProfile results

tectural registers in rates comparable to the CPU pipeline’s processing throughput: the

CPU will continue to stall over memory accesses. Still, the holistic model provides code

simplicity and enhances cache locality during execution, therefore reducing the num-

ber of instructions and data accesses required to evaluate queries. That way, both the

processor and the memory subsystem are stressed to a lower extent, leading to a sig-

nificant speedup of query evaluation. This allowed our NSM-based system to achieve

performance that was so far conceivable only for systems employing vertical partition-

ing.

Chapter 3. Generating code for holistic query evaluation 86

TPC-H SQL processing (ms) Compilation (ms) C file sizes (bytes)

Query Parsing Optimisation Generation with -O0 with -O2 Source Shared library

1 21 1 1 121 274 17733 16858

3 11 1 2 160 403 33795 24941

5 11 1 2 201 578 43424 33088

10 15 1 4 213 619 50718 33510

Table 3.5: Query preparation cost

3.8.7 Query preparation penalty

The main disadvantage of per-query code generation is the cost for emitting and com-

piling the query-specific source code. To quantify this cost we report the preparation

times for the TPC-H queries in Table 3.5. We separately show the query parsing, opti-

misation, code generation and compilation times, as well as the sizes of the generated

source and shared-library files. The time for parsing, optimising and generating code

is trivial (less than 20ms). On the contrary, compiling the generated code takes longer

and compilation time depends on the optimisation level. Code compilation takes 121–

213ms when no compiler optimisation is applied (-O0 compiler flag), but needs 274–

619ms when the optimisation level is increased (-O2 compiler flag). The generated

source and shared-library file sizes are limited to a few tens of kilobytes.

The query preparation time is not negligible and can cover a significant percentage

of execution time even for simple queries. In such cases it is preferable to avoid apply-

ing complex compiler optimisations that increase compilation time, as the difference

in execution time will be intangible. It is quite common, however, for systems to store

pre-compiled and pre-optimised versions of frequently or recently executed queries.

This is certainly applicable in HIQUE, especially if we take into account the small size

of the generated shared-library files. Moreover, as we have seen in previous sections,

the performance advantage gained through code generation is so wide, especially for

Chapter 3. Generating code for holistic query evaluation 87

non-trivial queries, that justifies the generation cost even for ad-hoc queries.

3.9 Further reading

The extension of interpreters to generate native code on-the-fly is a widely adopted

technique. The Java HotSpot Compiler [50] identifies frequently executed methods

inside a program during its first run and then translates them in native code. This

reduces the overhead for calling these functions and further optimises their implemen-

tation. Code generation has also been used to computationally intensive workloads

like the DSP transformation [61], allowing for the application of extensive algorithmic

and code optimisations.

Regarding query evaluation, although a primitive form of code generation was used

even in System-R [9], the adoption of the iterator model [33] has dominated query

engine design. Code generation was revisited in the Daytona data management sys-

tem [37], which was capable of on-the-fly generation of query-specific code. It re-

lied, however, on the operating system to perform most of the functionality a DBMS

would traditionally provide (e.g., buffering, concurrency control). Similarly, the au-

thors of [63] presented a Java prototype system employing dynamic query compila-

tion. The bytecode for each query was then invoked by the virtual machine. Still, this

system employed iterators for operator communication and execution, using the code

generator only to remove virtual functions from the body of iterators. Moreover, it did

not present any novel query processing options, e.g., joins were exclusively evaluated

through preconstructed join indexes, while execution was confined in main memory

since all tables were transferred to RAM during startup. As the tables were stored in the

form of contiguous arrays of tuples, this complicated concurrency control and recov-

ery. In contrast, HIQUE not only eliminates iterator and function calls, but is designed

from the ground-up with hardware efficiency in mind, without any restrictions on the

storage layout.

Chapter 4

Multithreaded query execution on

multicore processors

4.1 Introduction

We have so far focused on improving the single-threaded performance of main-memory

query execution through code generation. In this chapter we present a detailed analysis

of multithreaded query execution on multicore processors. Extending the elementary

query evaluation operators for multithreaded processing is far from straightforward.

Multithreading introduces resource contention that penalises scalability; cores share

resources both at the hardware (caches and physical memory) and at the software (lock-

based synchronisation) levels, thereby restricting the degree of parallelism. To counter

that we posit that multiple threads should independently process cache-resident data to

the highest possible extent, thereby minimising contention and enhancing parallelism.

To that end we: (a) give a uniform framework to generalise the query processing algo-

rithms of the holistic model for multithreaded execution, and (b) present an analytical

model to estimate the multithreaded performance of the proposed algorithms. The

model statically estimates the speedup of multithreaded execution.

Multicore means shared memory. Modern CPUs integrate multiple cores and pro-

88

Chapter 4. Multithreaded query execution on multicore processors 89

vide hardware support for parallel processing. Their architecture resembles shared-

memory systems: the cores share main memory and, possibly, the lowest level of the

cache hierarchy. Query evaluation on this type of parallel systems has been tackled

before (e.g., [34]); previous work, however, has not taken into consideration the cache

hierarchy and its impact on multithreaded execution. As shown in [3, 55], database

workloads suffer from excessive stalls due to the high latency of memory operations.

This is aggravated in multicore processors as the memory subsystem serves requests

from multiple cores [57].

Busier is faster. Multicore processors have more “raw” processing power, but it is not

harvested when executing data-intensive workloads. To alleviate this, we propose to

exploit cache locality by maximising the amount of processing whenever a data block

is in the CPU caches. For example, “pushing” more query-relevant processing into

partitioning an input may result in an extra per-thread processing cost for the opera-

tion of 13%; however, this means that the cores are now busier with processing the

input instead of waiting for memory operations. The busier a core is with processing

cache-resident data, the less it contends with the other cores for accessing the mem-

ory. The extra per-thread cost in the previous example results in an almost three-fold

improvement in the Cycles Per Instruction (CPI) ratio when the technique is applied

to a quad-core Intel Xeon E5420 CPU. In turn, this results in a higher speedup of the

execution of the entire query.

We apply this approach to the prominent query evaluation algorithms and provide

a uniform framework for multithreaded processing. Our goals are to: (a) minimise

data transfers from main memory, and (b) evenly distribute both work and data across

multiple threads. To minimise synchronisation overhead, we assign different input and

output streams to each thread; locking (if any) is performed on a coarse granularity,

thus aiding parallel execution.

Modelling scalability. To assess multithreaded execution, we analytically model the

effect of input cardinality, tuple size, selectivity, and projectivity to performance, ac-

Chapter 4. Multithreaded query execution on multicore processors 90

cording to the characteristics of the host hardware. We introduce the multithreaded

utility ratio: the ratio of the time spent for fetching each input unit to its total processing

time. High values of this ratio denote fetch-dominated operations; in this case memory

accesses incur an inflated effective cost, thus restricting scalability. Conversely, low

values of the utility ratio show that there is sufficient computational load to overlap

with data fetching, so thread contention for memory accesses is limited and scalability

is enhanced. Using this ratio, we analytically estimate the query processing cost and

the expected speedup of multithreaded execution.

Contributions. The main contributions of this work can be outlined as follows:

• We give a uniform framework to extend existing query processing algorithms for

multithreaded execution on multicore CPUs.

• We present partitioning and buffering techniques that determine which part of the

input each thread processes and where in the memory hierarchy it is buffered.

• We introduce an analytical model to accurately estimate the speedup of multi-

threaded query execution.

The rest of this chapter is organised as follows: in Section 4.2 we give a general

framework for multithreaded execution and algorithms for the main query processing

operations. We analytically model the proposed algorithms in Section 4.3, while in

Section 4.4 we conduct an experimental study of our proposals. We finally present

work for further reading in parallel query optimisation in Section 4.5.

4.2 Multithreaded processing

We now provide a framework for parallelising the most frequently used query pro-

cessing algorithms [33]: sorting, partitioning, join evaluation and aggregation. Our

premises are:

• We use the N-ary Storage Model (NSM) with tuples stored consecutively within

pages of 4kB. Each table resides in its own file on disk, and a storage manager

Chapter 4. Multithreaded query execution on multicore processors 91

is responsible for caching file pages in the buffer pool. We don’t use vertical

partitioning as we wanted to keep the same baseline with most commercial and

research database systems. We also wanted to explicitly account for the interac-

tion between the query engine and the storage manager in our analysis.

• Our techniques only depend on the number of threads that can be efficiently

supported by hardware. Naturally, the techniques need to be “fitted” to a specific

CPU but the approach is uniform and remains largely the same across CPUs. For

instance, the Intel Xeon 5400 series of quad-core processors of Figure 2.3 (the

one also used in our experiments) has per-core pipelines supporting out-of-order

execution. However, there is no in-core support for TLP so only four concurrent

threads are supported by hardware. We will be pointing out any such subtleties

that require fitting the data flow to each CPU.

Our approach stems from the observation that CMPs are in essence shared-memory

systems. Parallel query evaluation has been tackled before [21, 34]; the rule of thumb

is to split the input in disjoint partitions and then process them in parallel. However,

the naı̈ve extension of this technique for multicores would not take advantage of the

cache hierarchy’s buffering effect. For example, synchronising accesses to a shared

hash table would severely penalise performance, in case the table does not fit inside

caches [17]. To that end, we fine-tune the implementation of partitioning and paral-

lel processing to the characteristics of multicore processors. We focus on reducing

concurrent memory requests by interleaving memory accesses and cached data pro-

cessing to the highest possible extent. This technique keeps the cores busy and reduces

memory stalls. We also avoid using fine-grained thread synchronisation. Threads are

initialised once for each operation and use restricted affinity (i.e., they are assigned to

a specific core); that way they can run with the minimum synchronisation overhead.

Finally, we pay special attention to avoid false sharing: we align shared data (such as

mutexes) with the size of the cache line and replicate writeable variables and buffers

for each thread.

Chapter 4. Multithreaded query execution on multicore processors 92

Figure 4.1: Multithreaded operator implementation

An example of the uniform framework for the implementation of each operator is

shown in Figure 4.1. The input is first split in as many “splits” as there are threads of

execution that can be efficiently supported by hardware (e.g., four splits for the Intel

Xeon 5400, eight splits for the Intel Core i7). For each primary table we divide the

total page count by the number of threads; each split is assigned to one thread. Next,

we partition the input in disjoint partitions using the specified number of threads. Each

thread scans its split and writes tuples to appropriate output partitions. We do not use

tuple references, but copy to the partitions the fields required for further processing.

That way we increase cache locality and avoid uncontrollable and costly random access

Chapter 4. Multithreaded query execution on multicore processors 93

patterns outside the cache hierarchy. After partitioning all inputs, we invoke a new

team of threads to process the partitions. A set of disjoint partitions is assigned to each

thread and processed with no synchronisation overhead. Threads store output tuples to

individually assigned output buffers. The set of all output buffers is the final operator

output that will either be used by subsequent operators, or be forwarded to the client

as a final result.

4.2.1 Data staging

During data staging selections and projections are applied and the input is appropri-

ately “formatted”. For example, for merge join, inputs are sorted, while for hash join

the input is hash-partitioned. Our measurements have shown that data staging can take

up to 90% of the total execution time of an operator. It is therefore important to adapt

all common staging algorithms for multithreaded execution.

Our algorithms use partitioning for multithreaded processing with minimal over-

head. The main partitioning algorithms are: (a) range partitioning, (b) hash partition-

ing, and (c) value mapping. Range partitioning generates partitions containing tuples

within a specific range of values of the partitioning attribute. Value distribution statis-

tics, e.g., histograms, can be used to extract the bounds of each partition to balance the

distribution of tuples to partitions. Hash partitioning uses hash and modulo computa-

tions to map tuples to partitions with no assumption on value distributions. This leads

to similarly sized partitions. Finally, the values of the partitioning attribute can be di-

rectly mapped to partitions, a technique applicable in case the partitioning attribute has

only a few distinct values. We elaborate on each staging algorithm.

Sorting. We build on the AlphaSort algorithm [58], where input partitions fitting the

cache hierarchy are sorted with quicksort and then merged through multi-way merging.

We use N hardware-supported threads to sort partitions and assign
(1

N

)th
of the total

number of input pages to each thread. Each thread applies quicksort to partitions that

fit inside its share of the lowest cache level. For example, in the Intel Xeon processor

Chapter 4. Multithreaded query execution on multicore processors 94

7
8

1 1
1

1 8
1 2
1 4
7
9

1 9
8
2
1
3

1 4
5

1 8
2 0
1 6
1 2

Sort
T h r e a d # 1

1
1
2
3
5

7
7
8
8
9

1 1
1 2
1 2
1 4
1 4

1 6
1 8
1 8
1 9
2 0

Sort
T h r e a d # 2

Sort
T h r e a d # 3

Sort
T h r e a d # 4

M e r g e
T h r e a d # 1

[1 , 5]

M e r g e
T h r e a d # 2

[6 , 1 0]

M e r g e
T h r e a d # 3

[1 1 , 1 5]

M e r g e
T h r e a d # 4

[1 6 , 2 0]

1
7
8

1 1

1 8
7
9

1 2
1 4
1 9

1
2
3
8

1 4
5

1 2

1 6
1 8
2 0

Figure 4.2: Multithreaded sorting

of Figure 2.3 the partition size is less than half the size of the L2-cache; for the AMD

Phenom processor, where each core has its own L2-cache and shares the on-chip L3-

cache, the partition size should be less than a quarter of the L3-cache capacity.

After sorting each partition we invoke N new threads to merge the partitions. We

use range partitioning to separate work. We assign a specific range of values to each

thread, as shown in Figure 4.2 (value ranges are individually colored). Each thread

processes only the part of each partition that contains values in its assigned range. The

sorting threads specify the tuple range for each merging thread in each partition during

the previous step. Through value statistics, it is possible to assign ranges to threads

so that each thread will output approximately the same number of tuples. That way

Chapter 4. Multithreaded query execution on multicore processors 95

all threads will have comparable processing rates. Each merging thread maintains a

heap of the currently examined tuples from each partition to identify the tuple with the

minimum value. Note that no synchronisation is needed during sorting since threads

process disjoint datasets.

We tackle data skew using static and dynamic techniques. To assign value ranges

to threads, the system exploits histograms and the cardinality of each table to compute

ranges that are estimated to create partitions of similar size. We further adopt a dy-

namic approach similar to the one presented in [47]. Threads are initially assigned a

specific value range, assuming that each thread will approximately process |K|N tuples,

where |K| is the input cardinality. When a thread has processed (|K|N + T hres) tuples,

where threshold T hres denotes the expected overflow factor, the input is skewed, so

other threads have already processed the tuples within their assigned value range. At

that point, all threads join and the remaining input is redistributed to them. This process

is repeated until the input is entirely sorted.

Partitioning. Hash and range partitioning use the same multithreaded process, the dif-

ference being the function used to forward tuples to partitions. As shown in Figure 4.1,

each thread scans its split of input pages and forwards tuples to partitions by applying

a partitioning function. We use buffering on a page granularity, as each thread uses

one page from each partition to store tuples. When a page fills up, the thread replaces

it with a new one through a call to the storage manager.

This simple approach has two drawbacks. Firstly, storage manager interaction

needs to be an atomic operation; thus, requests to the storage manager need to be

serialised. Secondly, and more importantly, the only per-tuple processing is the evalu-

ation of the partitioning function. This requires at most a few tens of CPU cycles, while

fetching data from main memory costs an order of magnitude more. Since memory is a

shared resource across all cores, if multiple cores issue memory requests concurrently,

memory operations will be queued [57] and their effective latency will increase; this

restricts the scalability of multithreaded partitioning. We have verified this hypothesis

Chapter 4. Multithreaded query execution on multicore processors 96

Algorithm Threads Time CPI L2-cache misses Pending requests

Partition
1 0.085s 1.68 335 4672

4 0.072s 3.86 699 11086

Partition 1 0.148s 1.21 342 7556

and Sort 4 0.083s 1.41 661 9008

Table 4.1: Profiling results for partitioning

for the Intel Xeon 5400 processor, which uses a single memory bus, but it is likely to

hold for processors with multiple embedded memory controllers.

The solution we propose is to maximise reuse by processing the input to a greater

extent once it is cache-resident. One way of doing so is sorting each full partition page

before replacing it with a new page. That way, the partition page is prepared to be

further processed at a negligible cost. If the number of partitions is moderate we can

expect the page to be inside the L2-cache (or even the L1-cache) before being sorted,

thus sorting is performed efficiently. Since the partitions end up containing sorted

pages, one merging phase per partition is needed to sort it. This step can be integrated

with query evaluation, as we shall see in Sections 4.2.2 and 4.2.3. This technique

resembles the Map-Reduce-Merge algorithm [75]; we combine partitioning with page

sorting to better adapt execution to the characteristics of CMPs.

To quantify the difference between partitioning alone, as adopted in previous work

on parallel DBMSs, and the proposed integration of page sorting to partitioning, we

compare the results of hardware profiling for these two techniques on the reference

CPU of Figure 2.3, as given in Table 4.1.1 The input table has 1,000,000 tuples of 72

bytes each. The overhead of partitioning the input while sorting each partition page

in single-threaded execution is 74% over partitioning the input alone, but is reduced

to 13% when four threads are used. Furthermore, though in both cases the L2-cache

1We show sample counts for L2-cache misses and pending memory requests, as extracted with the
OProfile tool [59].

Chapter 4. Multithreaded query execution on multicore processors 97

Listing 4.1: Accessing the mapping directory

1 i n t offset = lookup (directory , value) ;

2 i f (offset < 0) {

3 lock (directory . lock) ;

4 offset = lookup (directory , value) ;

5 i f (offset < 0) offset = insert (directory , value) ;

6 unlock (directory . lock) ;

7 }

misses increase (due to the interaction with the storage manager and thread synchro-

nisation), simple multithreaded partitioning increases the CPI ratio by a factor of 2.3

and the number of pending memory requests by a factor of 2.4; combined partition-

ing and sorting results in a slight increase of a factor of 1.2 for the CPI ratio and the

pending requests. The above show that, though the same dataset is accessed in both

cases, the cores need to wait longer for memory operations in hash partitioning alone

because they all attempt to access main memory at the same time. When combining

partitioning with sorting, while one core is busy sorting a page, the remaining cores

face less contention for memory operations. Synchronisation overhead is also reduced,

as the time to obtain a reference to a new page from the storage manager is only a small

portion of the time to fetch a page and sort it.

Value mapping. If the partitioning attribute has a small number of distinct values, one

can map each value to a specific partition, using a directory to maintain this mapping.

We use a sorted array of attribute values and perform binary search for lookups. Hash-

based solutions are also possible; we preferred binary search to avoid the effect of data

skew in a data structure that is heavily used. Note that there is a limit beyond which this

approach becomes inefficient: if the partitioning attribute has a high distinct cardinality

the mapping directory will span outside the L1-cache and accesses will trigger cache

misses.

Each thread scans its assigned input split and copies its tuples to the corresponding

partitions. Since tuple processing requires a directory lookup (and may trigger an

Chapter 4. Multithreaded query execution on multicore processors 98

insertion), there is sufficient computational load to overlap with memory operations,

resulting in considerable speedups. The more entries the directory has, the closer to

linear the speedup will be: the time spent on lookups dominates the cost of fetching

data. Note that since the number of distinct values is small, all cores share the same

directory. In Listing 4.1 we show the code to synchronise directory insertions and

lookups. The synchronisation penalty is paid until the directory contains all entries.

From then on threads replicate the directory inside each core’s L1-cache and perform

lookups without locking it.

4.2.2 Join evaluation

Merge Join. The input tables are staged by sorting them on the join attributes. After

sorting the input tables, we initialise a new set of threads to evaluate the join predi-

cate. Each thread processes a specific value range of the join attribute and evaluates

the join for corresponding partitions; there is also a separate output buffer per thread.

Data skew is treated using the techniques we described for merging sorted partitions in

Section 4.2.1. As partitions are disjoint there is no synchronisation overhead. The only

performance restriction is the ability of the memory subsystem to provide the cores

with data in the rates the threads consume them.

Hash Join. Recall that during hash partitioning each page of each partition is also

sorted. Thus, there is no need to build per-partition hash tables during the join phase.

Each input is partitioned using a fanout wide enough for the largest corresponding

partitions of each table to fit in the lowest cache level. For example, if we join table A

of size 100MB with table B of size 250MB using four threads on a quad-core processor

with a shared 8MB L2-cache (and no L3-cache), the partitions of both tables should

be smaller than 1MB: during the join phase the threads sharing the L2-cache will be

joining two partitions each. Thus, we use a fanout of at least 250 for both tables (i.e.,

the size of the largest table over the target size of each partition). In practice, it is better

to use higher fanouts (even double). Doing so will amortise the variance in partition

Chapter 4. Multithreaded query execution on multicore processors 99

sizes, and procure for space to hold instructions and data belonging to the operating

system and the storage manager, as well as the merging buffers that will be shortly

introduced.

After partitioning the inputs and individually sorting the partition pages, we start

new threads to join the corresponding partitions. Each thread processes a disjoint set

of partitions, so all threads work independently. To address data skew, partitions are

allocated to threads so as their accummulated size to be approximately the same for

each thread. The first step is to merge the pages of each partition and generate a fully

sorted partition. As this is repeated for all partitions, we dedicate a single output buffer

per thread and we (re)use it to store the tuples of each partition in sorted order. Since

the partition size is small, one can expect the merging buffers for all threads to remain

inside the lower cache level during the join process, thus avoiding accesses to main

memory. After merging we join corresponding partitions just as in merge join. Note

that the partitions have already been brought in the lower cache level so this step is

efficient. Our hybrid join technique interleaves computation with memory operations

and efficiently exploits the cache hierarchy; at the same time it incurs negligible syn-

chronisation overhead.

Map Join. If the join attributes have a small number of distinct values we stage the

inputs using value mapping. We then join the partitions for the same attribute value

with nested loops join. Map join applies only if both inputs have a small distinct value

cardinality. Its performance degrades as more entries appear in the mapping directory:

as the directory grows it will not fit the L1-cache, so lookups will trigger cache misses.

4.2.3 Aggregation algorithms

Sort aggregation. We first sort blocks of the input on the grouping attributes. In line

with performing as much computation as we can during data staging, we modify the

merging phase of Section 4.2.1 to incorporate the on-the-fly evaluation of the aggregate

functions. That way, we avoid flushing the sorted output to memory and refetching it

Chapter 4. Multithreaded query execution on multicore processors 100

to the caches to compute the aggregate values of each group. Doing so reduces main

memory accesses and enhances parallelism.

Partition-based aggregation. We first hash- or range-partition the input and individ-

ually sort the pages of each partition (see also Section 4.2.1). The partitioning fanout

can be smaller than the one used in join evaluation, as there is only one input. Next,

we invoke new threads, each processing disjoint sets of partitions. For each partition,

the thread merges the sorted pages; instead of saving the output to a merge buffer (as

with join evaluation) it directly evaluates the aggregate values per group and outputs

them, which significantly reduces the number of memory operations.

Map aggregation. If all grouping attributes have small distinct value cardinalities,

we can aggregate in a single pass. The input is first split to the number of threads

used. We keep a mapping directory for each grouping attribute, with directories shared

across threads. We generate an array of aggregate values, one per aggregate function

per thread. A thread looks up each tuple in each directory and finds the row to update

in its private array of aggregate values, as described in Section 3.5.3. Since the distinct

value cardinality for the grouping attributes is small, the mapping directories quickly

fill up and hold all input values; thus, aggregation bears minimal synchronisation over-

head. After processing all tuples, the individual aggregate value arrays are “merged”

depending on the aggregate function (e.g., for sum, corresponding group values are

added).

The scalability of multithreaded aggregation grows with the size of the mapping

directories, as lookups become more expensive and overlap to a greater extent with

input tuple fetching. Directories, however, should not grow too large: as the directories

and aggregation arrays grow (the size of each aggregation array being the product of

distinct values of each grouping attribute), they start “spilling” outside the L1-cache, or

even the L2-cache, so lookups and aggregate value updates are likely to trigger cache

misses. This is aggravated by multiple threads sharing the lowest cache level, so the

cache capacity available per thread is reduced.

Chapter 4. Multithreaded query execution on multicore processors 101

4.3 Performance modelling

In CMPs, multiple threads can work independently provided there is no synchronisa-

tion overhead and their datasets are cache-resident; this would provide linear speedups.

This is not always feasible, though, as threads will contend to access memory-resident

data. Consider N threads processing a single relation: they will have to share the phys-

ical memory. If all need to fetch data at the same time, requests will be serialised in the

memory system [57], diminishing the performance gains of multithreaded execution.

Consider a memory block (e.g., a hash partition). Each thread’s operation on it

can be divided in three stages: (a) the fetching stage, where the block is requested

from main memory, (b) the processing stage, and (c) the locking stage, where the

thread interacts with the storage manager to request a new block. Ideally, with N

threads, one thread will be fetching and N−1 threads will be processing cache-resident

blocks. We define the multithreaded utility ratio R of Equation 4.1 as the time gained

by overlapping operations through having multiple threads operate on different parts

of the input. The numerator, C f , is the cost of fetching a block; the denominator is the

sum of the costs of fetching, processing (Cp), and locking (Cl).

R =
C f

C f +Cp +Cl
(4.1)

Let M be the cost of a memory access. In single-threaded execution main memory

is accessed by one thread. For N threads the memory bus is shared; in the worst case

an equivalent (1
N)th of the maximum memory throughput is available to each core and,

hence, the cost of a memory access reaches MN. Through overlapping operations,

captured by the utility ratio R, the effective memory throughput will be greater. We

define M′, the effective memory access cost, as shown in Equation 6.2. If R is less than

1
N , block operations will overlap so each threads will face negligible contention for

accessing memory. Else, the cost will increase depending on the multithreaded utility

ratio and will approach MN as R→ 1, i.e., when there is no processing overlap among

Chapter 4. Multithreaded query execution on multicore processors 102

P page size (bytes)

CL cache line size (bytes)

K input tuple cardinality

K′ staged tuple cardinality, 0≤ K′ ≤ K

D distinct value cardinality

T input tuple size (bytes)

T ′ staged tuple size (bytes), 1≤ T ′ ≤ T

L1 cost for L1-cache access (CPU cycles)

L2 cost for L2-cache access (CPU cycles)

M cost for main memory access (CPU cycles)

OUT cost for building an output tuple (CPU cycles)

N number of threads

LK cost per locking operation (CPU cycles), 0 for N = 1

TO overhead per thread (scheduling, joining etc)

Table 4.2: Model parameters

threads.

M′ =


M R≤ 1

N

MNR R > 1
N

(4.2)

We use this framework to estimate the speedup of multithreaded execution and give

formulas for the cost of each algorithm based on a per-memory-access model. We then

extract memory utility ratios for each algorithm of Section 4.2 and “plug in” these

ratios to the cost formulas. Our goal is not to have an accurate description of execution

on a CPU-cycle granularity (which is most likely impossible due to the complexity

of modern hardware), but a coarse characterisation of the differences between single-

and multithreaded execution. We therefore track the accesses of each algorithm to

Chapter 4. Multithreaded query execution on multicore processors 103

each level of the memory hierarchy. We do not account for calculations running over

registers, as their execution costs are negligible compared to memory operations. We

also omit the impact of hardware prefetchers, cache associativity, and non-blocking

caches: their effect depends on the design of each CPU and the runtime environment.

The parameters of our model are shown in Table 4.2; we assume a two-level deep

cache hierarchy.

4.3.1 Sorting

The first step of sorting is to split the input into partitions of B bytes each and sort

them using quicksort; the partitions are merged to produce the final sorted output. To

generate a single partition to be sorted, the core needs to fetch both the input data and

the partition’s cache lines. For primary tables we have to account for projections and

for filtering the input on (any) selection predicates, as explained in Section 4.2. The

size of the input that is used to fill one partition is estimated to KT
K′T ′B. For each partition,(

1+ KT
K′T ′
)

B bytes will be fetched from main memory, costing M cycles for each cache

line of CL bytes. The cost of fetching a single input partition is given by Equation 4.3.

A generated partition of B
T ′ tuples is (at least) L2-cache-resident. To apply quicksort,

tuples need to be L1-cache-resident. Each tuple needs to be fetched twice from the L2-

cache, for reading and writing it. In our implementation, each tuple examination and

exchange required roughly four L1-cache accesses, for a total of B
T ′ log

(B
T ′
)

operations.

The total cost of sorting a partition is shown in Equation 4.4.

Csort
f (B) =

(
1+

KT
K′T ′

)
B

CL
M (4.3)

Csort
p (B) = 2

B
CL

L2+4
B
T ′

log
(

B
T ′

)
L1 (4.4)

The utility ratio of the sorting step, Rsort(B), is given by Equation 4.5. We use that

to derive the cost of multithreaded execution. The entire relation will produce K′T ′
B

partitions, so fetching the input and the partitions requires KT+K′T ′
CL memory accesses.

Chapter 4. Multithreaded query execution on multicore processors 104

This will be divided across N execution threads, with each thread having an effective

memory access cost equal to M′, as defined by Equation 6.2 when R is substituted for

Rsort(B). Since sorting runs inside the cache hierarchy (mainly in the L1-cache), the

use of N threads will most likely result in a linear speed-up, so the cost for sorting the

input is reduced by a factor of N. Given all these observations, the cost of the sorting

step is given by Equation 4.6.

Rsort(B) =
Csort

f (B)

Csort
f (B)+Csort

p (B)
(4.5)

Csort(B) =
(
KT +K′T ′

) M′

N ·CL
+

Csort
p (B)

N
(4.6)

The second step in sorting a relation is to merge the individually sorted partitions.

We maintain a heap of processed tuples across merged partitions, as explained in Sec-

tion 4.2. The input contains K′T ′
B partitions of B

CL cache lines each, so the cost of

fetching the sorted partitions during the merging phase is given by Equation 4.7. Each

tuple will be fetched twice, since we need to insert its value in the heap, and then

output it to the appropriate position in the merged output. However, some algorithms

(e.g., merge aggregation) do not require materialising the sorted output, so we include

a factor S, set to 2 if we materialise the output, or 1 otherwise. The processing cost

is given by Equation 4.8, stemming from heap processing: for each output tuple, the

input tuple with the smallest value is retrieved and the heap is re-organised.

Cmerge
f (B,S) = S

K′T ′

B
M

B
CL

= SK′T ′
M
CL

(4.7)

Cmerge
p (B) = 2K′ log

(
K′T ′

B

)
L1 (4.8)

As with partition sorting, the utility ratio of the merging step Rmerge(B,S) is given

by Equation 4.9. For the total cost of the merging step we generalise the last two

equations for N threads, as shown in Equation 4.10. We cater for multiple threads by

substituting Rmerge(B,S) in Equation 6.2 and dividing Equation 4.7 by the number of

Chapter 4. Multithreaded query execution on multicore processors 105

threads N; we do the same for the heap processing cost of a partition. The cost of the

entire algorithm is then the sum of Equations 4.6 and 4.10.

Rmerge(B,S) =
Cmerge

f (B,S)

Cmerge
f (B,S)+Cmerge

p (B)
(4.9)

Cmerge(B,S) = SK′T ′
M′

N ·CL
+

Cmerge
p (B)

N
(4.10)

4.3.2 Partitioning

Recall from Section 4.2.1 that the general partitioning algorithm is similar to sorting,

with two differences: (a) quicksort is applied on a per-page granularity, and (b) there

is a locking overhead when directing tuples to partitions, as multiple threads will be

adding pages to them. The cost Cpart
f (P) of fetching a page for partitioning is given by

Equation 4.11, i.e., similar to Equation 4.3 with B substituted for P, as each partition

page is individually sorted. Most likely pages are buffered in the L2-cache, so they

need to be fetched to the L1-cache before being sorted, and written back to the L1-

cache. The cost of processing a partition page is given by Equation 4.12, i.e., similar

to Equation 4.4, but assuming that the page is L1-cache-resident on its second access.

Cpart
f (P) =

(
1+

KT
K′T ′

)
P

CL
M (4.11)

Cpart
p (P) =

P
CL

(L2+L1)+4
P
T ′

log
(

P
T ′

)
L1 (4.12)

The utility ratio of partitioning, Rpart(P), is defined as shown in Equation 4.13,

where the denominator includes the locking overhead (since the new page needs to be

added to the partition). The total cost of multithreaded partitioning using N threads

is given by Equation 4.14, where we use the effective memory access cost (obtained

by Equation 6.2 with R = Rpart(P)). The formula is similar to Equation 4.6 with the

difference being the addition of the cost for locking each page of each partition (a total

of K′T ′
P pages).

Chapter 4. Multithreaded query execution on multicore processors 106

Rpart(P) =
Cpart

f (P)

Cpart
f (P)+Cpart

p (P)+LK
(4.13)

Cpart(P) =
(
KT +K′T ′

) M′

N ·CL
+

Cpart
p (P)

N
+

K′T ′

P
LK

Locking is used to synchronise the interaction with the storage manager. Assuming

the partitioning fanout is F , each thread will contend with the other N−1 threads; the

probability of any thread requesting access to a partition is 1
F . The probability of

contention then depends on the factor N!
FN (i.e., all permutations of threads into the

probability of all threads accessing the same partition); that is very small. It also

depends on the ratio of the duration of the lock to the duration of page processing,

which also includes data fetching and sorting (Cl
C f +Cp+Cl

). We therefore expect that

threads rarely need to wait for a lock to be released.

The partition pages are individually sorted, so we need to merge them in a separate

step, similarly to general sorting. The difference lies in the use of the merge buffer that

replaces memory accesses with accesses to the L2-cache. The fetching and processing

costs are therefore modified as shown in Equations 4.14 and 4.15. Recall that if the

size of the L2-cache is |L2|, the partition size will roughly be |L2|
2N .

Cmerge
f (P,S,M) = K′T ′

M
CL

+SK′T ′
L2
CL

(4.14)

Cmerge
p (P) = 2K′ log

(
|L2|
2NP

)
L1 (4.15)

In Equation 4.14, S is 0 when the output is processed on-the-fly (e.g., in aggre-

gation), or 2 when the output is saved to the merge buffer. The modified utility ratio

and the merge cost are shown in Equations 4.16 and 4.17. The total cost for partition-

ing is the sum of Equations 4.14 and 4.17; M′ is given by Equation 6.2 after setting

R = Rmerge(P,S).

Chapter 4. Multithreaded query execution on multicore processors 107

Rmerge(P,S) =
Cmerge

f (P,S,M)

Cmerge
f (P,S,M)+Cmerge

p (P)
(4.16)

Cmerge(P,S) =
Cmerge

f (P,S,M′)+Cmerge
p (P)

N
(4.17)

4.3.3 Join evaluation

All join algorithms run exclusively inside the L1-cache and build on the staging prim-

itives. When joining there is no need to synchronise threads, as they operate over

disjoint inputs (see also Section 4.2.2). The difference between the algorithms lies

in where they “read” their data from. For sort-merge join each partition is read from

main memory, while for hash join the input is buffered in the L2-cache. Thus, we only

need to assess the cost of fetching the input and generating the output. Assuming two

inputs A and B, and N threads, the cost of processing the entire input will be given by

Equation 4.18, where σ./ is the selectivity factor of the join predicate. For sort-merge

join the input tables are fetched from main memory, so the cost will be given by Equa-

tion 4.19. For hash join the equivalent cost of fetching from the L2-cache is given by

Equation 4.20. To those costs we need to add the thread scheduling overhead, equal to

N ·TO in all cases.

Cjoin
p =

K′AK′Bσ./

N
OUT (4.18)

Cmerge-join
f =

(
K′AT ′A +K′BT ′B

) M
N ·CL

(4.19)

Cpartition-join
f =

(
K′AT ′A +K′BT ′B

) L2
N ·CL

(4.20)

The total cost of sort-merge join will be equal to the cost of sorting both inputs

(Equations 4.6 and 4.10 with S set to 2), plus fetching the blocks of both inputs from

main memory (Equation 4.19), plus the cost of generating the output (Equation 4.18),

plus the cost of thread scheduling (N ·TO). Similarly, one can extract the cost of hash

join evaluation: it is equal to the cost of partitioning the input (Equation 4.14 and

Chapter 4. Multithreaded query execution on multicore processors 108

Equation 4.17 with S set to 3 to include each input’s contribution to Equation 4.20 as

well), plus the output generation cost (Equation 4.18), plus the thread overhead cost.

4.3.4 Aggregation

Recall from Section 4.2.3 that aggregation evaluates aggregates on-the-fly, without

restructuring the input table. For merge and hash aggregation this means that we do

not materialise the output of the merging phase; rather, we use it directly to update the

aggregate values. The aggregation cost is given by the data staging cost equations: we

set S to 1 for merge aggregation and to 0 for hash aggregation. We also include the

scheduling cost N ·TO for multithreaded execution.

Map aggregation makes a single pass over the input with no intermediate stag-

ing. Memory accesses overlap with lookups on the mapping directories, as the latter

are cache-resident. Assuming G grouping attributes and A aggregation functions, as

well as binary search for mapping directory lookups, input fetching and processing are

given by Equations 4.21 and 4.22 respectively; Di is the distinct value cardinality of

group i.

Cmap
f =

KT
CL

M (4.21)

Cmap
p =

(
G

∑
i=0

(log(Di)L1)+A ·L2

)
K′ (4.22)

The first term in Equation 4.22 is the cost of binary search in each directory; the

second term is the cost of updating the aggregation arrays. The assumption is that the

mapping directories fit in the L1-cache, while the (possibly) larger aggregation arrays

are evicted to the L2-cache. We can now extract the map aggregation cost as shown in

Equation 4.24, where M′ is given by using the utility ratio of Equation 4.23.

Chapter 4. Multithreaded query execution on multicore processors 109

Rmap =
Cmap

f

Cmap
f +Cmap

p
(4.23)

Cmap =
KT

N ·CL
M′+

Cmap
p

N
(4.24)

4.4 Experimental study

To verify the efficiency of our proposals and the correctness of the analytical model,

we implemented our algorithms in C and conducted an extensive experimental study.

The hardware platform we used was a Dell Precision T5400 workstation, with an Intel

Xeon E5420 quad-core processor, clocked at 2.5GHz with 4GB of physical memory

running GNU/Linux (64-bit version, kernel 2.6.26). The C code was compiled with

the GNU gcc compiler (version 4.3.2) using the -O2 compilation flag. We used the

pthread thread library. Details about the testbed are shown in Table 4.3. The cache

latencies were measured with the RightMark Memory Analyser [65].

We used tables of various schemata and cardinalities and stored them using NSM.

Primary tables were cached in the buffer pool of a typical storage manager. All in-

termediate results (e.g., partitions) were saved as temporary tables, also controlled by

the storage manager. To simplify the analysis of an already complex system we used

uniform attribute distributions. Our framework uses techniques that have been shown

to efficiently tackle data skew, as presented in Section 4.2.

We integrated the proposed framework for multithreading to HIQUE. The code gen-

erator produced multithreaded C code for each benchmark query, so the instruction-

level overhead was reduced. This was beneficial to single-threaded performance, as

multithreading can exploit the instruction caching and issuing mechanisms of multiple

cores. We expect iterator-based implementations of our algorithms (e.g., based on the

exchange operator of [34]) to result in higher speedups but slower response times. We

ran each query ten times in isolation and report the average response times; the devi-

Chapter 4. Multithreaded query execution on multicore processors 110

System Dell Precision T5400

Processor Intel Xeon E5420

Number of cores 4

Frequency 2.5GHz

Cache line size 64B

I1-cache 32KB ×4

D1-cache 32KB ×4

L2-cache 6MB ×2

L1-cache access latency 3 cycles

L1-cache miss latency (sequential) 9 cycles

L1-cache miss latency (random) 14 cycles

L2-cache miss latency (sequential) 48 cycles

L2-cache miss latency (random) 85-250 cycles

RAM type
4x1GB Fully Buffered

DIMM DDR2 667MHz

Table 4.3: Testbed specifications

ation was less than 3% in all cases. We also report the speedup when moving from

single-threaded to multithreaded execution.

Measured speedups were compared with the ones estimated by the analytical model.

To apply the model, we set N to 4, as our reference CPU supports one thread per core,

L1 to 3, L2 to 14 and M to 100, as accesses are both sequential and random. We cal-

ibrated the locking cost LK to 5M and TO to 2.5% of total execution time. We set

OUT to zero and did not generate results (unless explicitly stated), to isolate the multi-

threaded performance of the algorithms; result generation runs inside the L1-cache for

each thread and thus inflates scalability.

Chapter 4. Multithreaded query execution on multicore processors 111

4.4.1 Aggregation

We measured the impact of input tuple size by using a table of 1,000,000 tuples (K =

K′) and varying the tuple size between 4 and 256 bytes (T = T ′ ∈ [4,256]), using

one grouping attribute with 1,000 distinct values (D). The estimated and measured

costs for merge, hash, and map aggregation, as well as their comparative performance

when using four threads, are shown in Figure 4.3. When R becomes greater than 1
N

we expect the effective memory access cost M′ to start increasing. This is verified

experimentally, as the slope significantly grows when R passes this threshold. The

estimate for hash aggregation is more accurate than that for merge aggregation. The

fluctuation in the latter is due to cache line alignment effects, which are not included

in our model. In terms of algorithm performance, the measured speedup is over 3

for small tuple sizes. It degrades for wider tuples, as the cores will spend more time

fetching data from memory. This is more intensive in hash than merge aggregation, as

the computational load for sorting and merging larger blocks keeps the cores busy to a

higher extent. For map aggregation, the mapping directory has enough entries to make

the lookup cost comparable to the cost of fetching small tuples. As the tuple size grows

the fetching cost scales and dominates, resulting in poorer performance. The deviation

in Figure 4.3(c) for small tuple sizes is due to overestimating the cost of updating the

aggregation arrays: it varied between L1 and L2, but is set to L2 in Equation 4.24. As

shown in Figure 4.4, merge and hash aggregation have comparable performance, as

they incur a similar number of accesses to main memory. Map aggregation needs no

input staging and is thus faster and less sensitive to changes of the tuple size, for the

given (small) number of values of the grouping attribute.

We then measured the impact of input cardinality after applying selections and

projections. We used a table of 10,000,000 (K) tuples of 72 bytes (T) each and varied

the selectivity between 0.1 and 1; each tuple after staging was 20 bytes (T ′); D was

set to 1,000 again. The results are shown in Figure 4.5. The performance is accurately

modelled, with estimated and measured curves for all aggregation algorithms being

Chapter 4. Multithreaded query execution on multicore processors 112

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250

S
pe

ed
up

Tuple size (bytes)

1/N
Rpart

Rmerge
Estimated
Measured

(a) Hash aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250

S
pe

ed
up

Tuple size (bytes)

1/N
Rsort

Rmerge
Estimated
Measured

(b) Merge aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250

S
pe

ed
up

Tuple size (bytes)

1/N
Rmap

Estimated
Measured

(c) Map aggregation

Figure 4.3: Impact of tuple size on aggregation - scalability

Chapter 4. Multithreaded query execution on multicore processors 113

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50 100 150 200 250

T
im

e
(s

)

Tuple size (bytes)

Hash
Merge

Map

Figure 4.4: Impact of tuple size on aggregation - multithreaded performance

close and following the same trends. For a small selectivity, the cost of fetching the

primary table is higher than sorting the filtered data. As selectivity grows the speedup

increases and converges to a maximum value, reached when R is less than 1
N . Note

that the merge-based implementation gives higher speedups, as it better exploits the

computational power of multiple cores. As for comparative multithreaded performance

(Figure 4.6), hash aggregation outperforms merge aggregation by a factor increasing

with growing selectivity. Map aggregation widely outperforms the other algorithms

and is less sensitive to selectivity as it does not build intermediate partitions.

The number of distinct values of the grouping attribute(s) has a detrimental effect

on the performance of map aggregation, as it affects the size of the directories and the

aggregation arrays. As the grouping cardinality increases, the auxiliary data structures

are evicted to lower cache levels. This penalises performance, as there is a significant

increase in cache misses, and scalability, as all threads compete for accessing memory

to a greater extent. This is shown in Figure 4.7 for an aggregation query on 10,000,000

tuples of 72 bytes each, using one grouping attribute of varying cardinality D and four

sum functions. In the first two cases there is no result generation; in the third case we

show the impact of result generation on scalability. Merge and hash aggregation are

Chapter 4. Multithreaded query execution on multicore processors 114

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Staged input cardinality (Millions)

1/N
Rsort

Rmerge
Estimated
Measured

(a) Hash aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Staged input cardinality (Millions)

1/N
Rsort

Rmerge
Estimated
Measured

(b) Merge aggregation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Staged input cardinality (Millions)

1/N
Rmap

Estimated
Measured

(c) Map aggregation

Figure 4.5: Impact of selectivity on aggregation - scalability

Chapter 4. Multithreaded query execution on multicore processors 115

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

)

Staged input cardinality (Millions)

Hash
Merge

Map

Figure 4.6: Impact of selectivity on aggregation - multithreaded performance

moderately affected by the cardinality of the grouping attribute, their difference being

the number of iterations during quicksort runs. Map aggregation is 2.5 times faster for

small cardinalities but its performance degrades fast, indicating the inflated cost for

accesses to the L2-cache and the main memory. In terms of scalability (Figure 4.7(b)),

hash and memory aggregation exhibit high speedups, increasing with cardinality. Map

aggregation has a low speedup for small cardinalities, as the directory lookup cost is

too small to hide memory latencies. Then, speedups increase with cardinality and start

dropping again, as the auxiliary data structures are evicted to the L2-cache or outside

it. Output generation provides sufficient computational load to mask memory accesses

(Figure 4.7(c)), with all algorithms exhibiting speedups over 3 for considerable result

sizes.

4.4.2 Join evaluation

We next studied multithreaded join evaluation for varying input tuple size, input car-

dinality, and join selectivity. We joined two tables of 1,000,000 tuples each. The outer

table’s tuples were 72 bytes long; the tuple size after staging was 20 bytes. The inner

Chapter 4. Multithreaded query execution on multicore processors 116

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6

T
im

e
(s

)

log10(D)

Map
Merge
Hash

(a) Multithreaded performance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6

S
pe

ed
up

log10(D)

Map
Merge
Hash

(b) Measured speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6

S
pe

ed
up

log10(D)

Map
Merge
Hash

(c) Speedup with output generation

Figure 4.7: Impact of group cardinality

Chapter 4. Multithreaded query execution on multicore processors 117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300

T
im

e
(s

)

Size (bytes)

Hash
Merge

(a) Input tuple size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

)

Staged input cardinality (Millions)

Hash
Merge

(b) Input selectivity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

T
im

e
(s

)

log10(|Matching tuples|)

Hash
Merge

(c) Join predicate selectivity

Figure 4.8: Multithreaded performance of join evaluation

Chapter 4. Multithreaded query execution on multicore processors 118

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300

S
pe

ed
up

Size (bytes)

Hash
Merge

(a) Input tuple size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Staged input cardinality (Millions)

Hash
Merge

(b) Input selectivity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3

S
pe

ed
up

log10(|Matching tuples|)

Hash
Merge

(c) Join predicate selectivity

Figure 4.9: Measured speedup for join evaluation

Chapter 4. Multithreaded query execution on multicore processors 119

table’s tuple size varied between 20 and 300 bytes. Each outer tuple matched with 10

inner tuples. The results shown in Figures 4.8(a) and 4.9(a) exhibit trends similar to

the ones of aggregation (Figure 4.3): input staging accounted for 90% of execution

time (omitting result generation) and is the same process for both aggregation and join

evaluation. Hash join performs better; the use of merge buffers increases cache locality

and reduces the cost of memory operations. Still, merge join results in higher speedups

by exploiting the higher computational cost of sorting larger blocks.

For cardinality experiments we used two tables with tuple sizes of 72 bytes, re-

duced to 20 bytes after staging; each outer tuple matched with 10 inner ones. The

outer table’s cardinality was 1,000,000 and the inner’s was 10,000,000, but we filtered

the inner table with a predicate of selectivity ranging between 0.1 and 1. The results

of Figures 4.8(b) and 4.9(b) are similar to those of Figure 4.5, with speedups increas-

ing and converging to a maximum value. In terms of join predicate selectivity, we

joined two tables of 1,000,000 tuples, 72 bytes each, but staged to 20 bytes. We varied

the number of matching inner tuples per outer tuple to 1, 4, 10, 100, and 1,000. As

join selectivity grows, the speedup is close to linear for both algorithms, as shown in

Figures 4.8(c) and 4.9(c). This is due to join predicate evaluation effectively “back-

tracking” between multiple matches. Processing runs inside the L1-cache, reducing

the frequency of memory accesses and resulting in high speedups.

4.4.3 Pipelined operators

We now move on to a query combining two joins and an aggregation. We used three

tables with 1,000,000 tuples of 72 bytes each. In the first join, each outer tuple matched

with 4 inner ones; in the second join the number of matching inner tuples was 10. The

two joins produce 4,000,000 and 40,000,000 tuples respectively. We used both merge

and hash join. The result was sum-aggregated over one grouping attribute with either

1,000 or 100,000 distinct values. In the first case we used map aggregation. In the

second case, the grouping attribute was the same as the join attribute of the second

Chapter 4. Multithreaded query execution on multicore processors 120

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Hash,Hash,Map Merge,Merge,Map Hash,Hash,Hash Merge,Merge,Merge

Ti
m
e
(s
)

First Join Second Join Aggregation

D = 100000D = 1000

(a) Multithreaded performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Hash,Hash,Map Merge,Merge,Map Hash,Hash,Hash Merge,Merge,Merge

Sp
ee
du

p

First Join Second Join Aggregation Total

D = 100000D = 1000

(b) Measured speedup

Figure 4.10: Multiple operators

join, to measure the impact of sorted runs. The results are shown in Figure 4.10; the

labels indicate the algorithms used for each operator.

Hash join is faster than merge join, verifying once again that the use of an L2-

cache buffer for merging pays back. For aggregation, when the number of values for

the grouping attribute is 1,000, the use of map aggregation is very efficient: it needs

0.55s for 40M tuples, resulting in a throughput of 72,600,000 tuples/s. In terms of

scalability, the reduction in tuple size allows all operators apart from the first to work

on small tuples and, hence, they do not fetch data not needed for processing. The

Chapter 4. Multithreaded query execution on multicore processors 121

observed speedups are over 3 and, for hash join and map aggregation, close to linear.

When the number of groups increases to 100,000, hash and merge aggregation

become more efficient as map aggregation exhibits excessive cache misses. We use

either all-hash or all-merge algorithms. The cost of hash aggregation is twice that of

map aggregation in the previous case (i.e., when D = 1,000). However, since the output

of the second join is already sorted on the grouping attribute, merge aggregation does

not need intermediate partitions, but is evaluated in a single pass of the join result. A

direct comparison of map and merge aggregation shows that the latter needs only a

small portion of the time needed by the former, as there are no directory lookups and

updates of aggregate arrays. However, the speedup of merge aggregation is limited as

there is no computational load to effectively mask the cost of memory accesses.

4.5 Further reading

Simultaneous multithreading (SMT), a form of TLP, was explored in [77]: a helper

thread was used to aggressively prefetch data to be used by the main thread. This

technique is not applicable in multicores with no in-core support for TLP, as the helper

thread will fetch data to a different L1-cache than the one used by the main thread. The

authors of [19] examined inter-operator communication and proposed using chunks of

the output as buffers for each thread. We use a separate output buffer per thread to

avoid synchronisation and a similar approach for partitioning (see also [18]), since each

thread has exclusive access to one partition page. As we sort pages during partitioning,

the processing time per page increases and thread contention for locking is minimised.

In [17], the authors tested and modelled the use of private and/or shared hash ta-

bles for aggregation on CMPs. Their approach is tailored to processors supporting

multiple (four for the employed CPU) threads inside each core; it is not clear how it can

efficiently be ported to architectures with no in-core support for TLP. Aggregation per-

formance in [17] reached 150Mt(uples)/s against 72.6Mt/s for us (see Section 4.4.3),

Chapter 4. Multithreaded query execution on multicore processors 122

using arrays of two-integer records as input. A per-core reduction gives 18.75Mt/s

for [17] over 18.15Mt/s for us; a per-thread one gives 18.15Mt/s for our approach

over 4.69Mt/s for [17]. Still, the testbed used in [17] is entirely different than ours,

so comparisons cannot be straightforward. The combination of SIMD instructions with

multithreading on multicores was studied in the context of mergesort [16] and join

evaluation [47]. This approach proves highly efficient when processing vertically par-

titioned data, but it cannot be directly applied to query engines processing NSM-based

pages. Our framework is independent of the storage layout.

In [54], the authors gave an analytical model for single-threaded main-memory

query execution. The model captured the cost of stalls, e.g., cache and TLB misses,

according to the access pattern. In our model, we do not distinguish between sequen-

tial and random access patterns but we account for accesses to the L1-cache, as CPUs

do not have enough memory ports to serve successive read and write operations. Fi-

nally, [44] tackled work sharing in CMPs and modelled the performance of concur-

rently processed, staged queries, [62] investigated scheduling of multiple queries for

scan sharing, and [51] suggested the use of page colouring to prevent cache thrashing

when concurrently executing multiple queries. These are complementary to our work;

we focus on intra-operator parallelism and model the contention for shared hardware

resources.

Chapter 5

Scheduling threads for intra-query

parallelism

5.1 Introduction

Multicore processors have now become the de facto standard in CPU design. The cores

share main memory and (possibly) the lowest levels of the cache hierarchy, effectively

turning the machine into a shared-memory parallel system. Moreover, the multicore

chip supports thread parallelism at the hardware level, either by using a number of

threads equal to the number of cores, or by providing hardware support for the exe-

cution of multiple threads inside each core. At any rate, there is a budget of available

threads to be used for parallel processing. In Chapter 4 we have described how a query

engine can be efficiently extended for intra-query parallelism (i.e., many threads are

used to evaluate the same query). This setup presents an interesting scheduling prob-

lem: what is the best possible allocation of threads to query plan operators, and what

parts of the plan should be executed in parallel? It is not surprising that this problem

is intractable and any meaningful solutions should leverage heuristics. In this chapter

we present our approach to thread scheduling for this processing model. Based on

our proposed analytical model for estimating scalability, as presented in Chapter 4, we

123

Chapter 5. Scheduling threads for intra-query parallelism 124

develop a family of algorithms that allow the optimiser to allocate threads to operators

and schedule these threads in an efficient way. Our results show that the proposed algo-

rithms generate parallel processing schedules of high quality and significantly improve

upon the existing scheduling alternatives. At the same time, the optimisation overhead

is kept at a minimum.

Multicore systems can be viewed as a shared-memory execution paradigm, with

multiple cores accessing the same main memory. The main difference is that, apart

from main memory, cores often share the lowest level of the cache hierarchy. This

design allows threads to efficiently share data and synchronise their execution, but

may introduce contention for the caches and the memory bus (see also [17, 57] and

Section 4.3), leading to the appearance of resource dependencies. These dependencies

restrict the degree of parallelism exploited by multithreaded query execution and lead

to sub-optimal scalability as the number of threads increases.

Scheduling threads for multithreaded query execution should account for the unique

characteristics of the processing platform, as naı̈ve approaches will fail to exploit the

processing power of the multiple cores. Existing work on parallel systems argues that

a scheduling option is to allocate a number of threads comparable to the number of

processing tasks, irrespective of the hardware restrictions on how many threads can

be efficiently supported. This would result in sub-optimal use of the processing re-

sources, due to the overhead of synchronising work across different threads (using a

producer-consumer approach) and scheduling their execution [34]. Another alternative

is to sequentially execute query operators using all available threads, thus avoiding syn-

chronisation across operators. However, this is adequate only in the ideal case where

performance scales linearly with the number of threads: using N threads would in-

crease performance N times. In practice, the more threads are used, the lower is the

gain from multithreading, so it may be more efficient to distribute threads to a few

operators and execute them concurrently than run these operators sequentially using

all available threads. It is therefore important to identify the number of threads that

Chapter 5. Scheduling threads for intra-query parallelism 125

should be allocated to each query operator; it is equally important to schedule the op-

erator execution in a way that reduces synchronisation overhead and maximises the

performance improvement from multithreading.

The number of possibilities the optimiser needs to consider when generating an

execution schedule scales quite fast as the number of operators and the budget of avail-

able threads grow. Consider, for instance, a simple execution tree of three operators.

Given a number of threads to be used, the optimiser needs to allocate threads to the

three operators. It can either execute the operators sequentially and thus allocate all

threads successively to each operator; or it can parallelise execution by allocating a

different number of threads to each operator without exceeding the thread budget; or it

can allocate threads to a pair of operators to be executed in parallel, and, once the pair

completes its computation, allocate all threads to the third operator. The number of

combinations grows exponentially with the number of threads. This is aggravated as

the number of operators in the execution tree grows and as the tree becomes bushier:

the portions of the execution plan that can be executed in parallel increase, as the likeli-

hood of data dependencies decreases. Soon enough, the problem becomes intractable.

Moreover, optimisation approaches like dynamic programming prove sub-optimal in

parallel query processing [28]. It is therefore imperative to use heuristics to efficiently

explore the search space of possible schedules.

In what follows, we present our approach to parallel query operator scheduling

on multicore processors. We use estimations for the expected execution cost of each

query operation, according to the number of allocated threads, to give our heuristics-

based algorithms that generate schedules of high quality. The key intuition behind the

proposed algorithms is to specify groups of tasks that, when scheduled together and

following a specific thread distribution, (a) minimise delays due to data and resource

dependencies and (b) extract the highest degree of parallelism for the given group of

tasks and their scalability potential.

The contributions of our work are:

Chapter 5. Scheduling threads for intra-query parallelism 126

• We model the problem of intra-query parallelism (using both inter- and intra-

operator parallelisation) when scheduling the operators of a plan in the context

of multithreaded query evaluation.

• As the scheduling problem is intractable, we present a family of heuristics-based

scheduling algorithms that operate on an already generated execution tree and

allocate threads to operators to minimise the total execution time.

• We implement the proposed algorithms and experiment with their performance.

The results show that our algorithms produce schedules of high quality and

closely approximate optimum schedules when such a comparison is possible.

In all other cases, the algorithms improve naı̈ve schedules by a factor of 50% on

average for substantially complex query plans, without penalising the running

time of the optimiser.

• We identify cases where each algorithm is likely to produce schedules of higher

quality and give a set of guidelines to anticipate which algorithm better suits a

specific type of query.

Note that, although our modelling methodology targets multicore architectures specifi-

cally, the proposed heuristics can be applied in any parallel system where one can have

reliable estimations about the execution cost and speedup. This demonstrates the wide

applicability and the generality of our proposals.

The rest of this chapter is organised as follows. In Section 5.2 we present our mod-

elling methodology for thread scheduling in the context of multithreaded query eval-

uation. Based on our modelling, we present a family of heuristics-based scheduling

algorithms in Section 5.3. We implement our proposals and experiment with the qual-

ity of plans they produce in Section 5.4, and we discuss our most important findings in

Section 5.5. Finally, we present work for further reading in parallel query execution in

Section 5.6.

Chapter 5. Scheduling threads for intra-query parallelism 127

5.2 Formulation of scheduling

A shared-memory parallel system. We consider a CPU with many cores. The cores

share main memory and possibly the lowest level of the cache hierarchy. The design is

assumed symmetric, i.e., all cores have equivalent resources and can access any level

of the memory hierarchy at the same cost, in the sense that a L1-cache miss will have

the same cost for all cores. The cores have private caches for the highest levels of

the cache hierarchy (the L1- and possibly the L2-cache, depending on the design of

each processor) and may share the lowest cache level (the L2- or the L3-cache), so

data accesses are faster for the cores that can fully buffer their dataset in their private

caches.

To keep our approach generic and avoid tying it to specific architectural setups,

we abstract the processor design and assume the CPU provides hardware support for

multithreading. This may be in the form of [41] (a) in-core support for multiple threads

(e.g., Hyperthreading in Intel Pentium 4), or (b) multiple cores with each one running

one thread (e.g., Intel Core 2 Duo, AMD Phenom), or (c) multiple cores with each

one running many threads (e.g., Intel Core i7, Sun UltraSPARC, IBM Power 6). The

execution characteristics of the query engine with regard to the processor architecture

are captured by the cost model; we will return to this issue at the end of this section.

To aid the presentation of our modelling approach, we assume a two-phase opti-

misation process, which is the norm for parallel systems [40]. The first phase is Join

Ordering and Query Rewriting (JOQR), similar to conventional query optimisation, and

produces an annotated bushy execution plan. We do not address how the execution plan

is generated; it is considered as given. We focus on the second phase that addresses

the scheduling problem, i.e., on which core(s) and when each query operator will exe-

cute. We will use the sample execution plan of Figure 5.1(a) to describe the scheduling

process. This bushy plan comprises one merge join and three hash join operators.

Forms of parallelism. We assume that the query engine supports both intra- and

inter-operator parallelism for each query. Intra-operator parallelism can be based on

Chapter 5. Scheduling threads for intra-query parallelism 128

(a) partitioning, when the input of an operator is split in disjoint partitions that are

scheduled to different cores and processed in parallel, or (b) pipelining, when multiple

operators are pipelined and executed in unison. The latter is applicable with right-

deep trees of hash join operators [66], where the build phases for all joins precede the

pipelined evaluation of all the probing phases. Conversely, inter-operator, or indepen-

dent, parallelism means that different operators are scheduled to execute concurrently.

Operator tree generation. The first step in the scheduling process is to macro-

expand [28] the execution plan. Depending on the evaluation algorithm, each oper-

ator node of the execution plan is replaced with the tree of sub-operators that con-

stitute it. In Figure 5.1(b) we show the operator tree for the execution plan of Fig-

ure 5.1(a). Merge join is expanded to two sorting operations followed by a join, while

hash join [48] is expanded to a build operation for the outer input followed by a probe

operation for the inner one.

Query tasks. The next step is to specify query tasks [31], i.e., groups of operators that

can be scheduled to run in parallel. Results across groups can be pipelined; operators

such as sorting need to block until their input is available. The goal is to reduce the

number of tasks to schedule without inducing imbalances to the total computational

load per thread.

We focus on join evaluation, as aggregation and sorting of the final result can al-

ways use all available threads. For merge join, each input can be sorted independently,

so we assign one task to each sort operator (e.g., tasks T1 and T2 in Figure 5.1(b)).

Sorting can use range partitioning to build disjoint partitions on the join attribute, that

will then be joined independently. Note that the join cannot be evaluated unless both

inputs have been sorted. If the output of merge join is used as input to a following

join operator, there is a stream of (already partitioned) data between the two join oper-

ators. We assume that each thread also prepares (e.g., sorts or builds a hash table for)

the join output for the following operator. That way, the merge and sort/build tasks

are scheduled together (e.g., task T3 in Figure 5.1(b)) and executed without any delays

Chapter 5. Scheduling threads for intra-query parallelism 129

(a) Execution plan

(b) Operator tree

(c) Query task tree

Figure 5.1: Stages of query scheduling (a)

or synchronisation overhead. We show how partitioning works in Figure 5.2(a). The

sorted output of tables B and C comprises two partitions; each pair (Bi, Ci) is then

joined independently by a separate thread. Each output Si is used to build a hash table

Chapter 5. Scheduling threads for intra-query parallelism 130

C

B1

B

B2 C1 C2

Hash Table for T

Sort Sort

Merge

S1 S2

Merge

Build Build

Hash Table for A

A1 A2

Build Build

Hash Table for D

Build Build

D1 D2

E1 E2 E3 E4

Probe
Probe
Probe

Probe
Probe
Probe

Probe
Probe
Probe

Probe
Probe
Probe

(a) Partitioned dataflow

1
2

4

5

3

6

(b) Scheduled plan

Figure 5.2: Stages of query scheduling (b)

for the following hash join, so each thread will create the entries of the hash table for

its own output. Depending on the query engine, this can be done through pipelining,

Chapter 5. Scheduling threads for intra-query parallelism 131

i.e., each joined tuple is directly inserted to the hash table; or through blocking, by first

generating all the join output tuples and then building the hash tables.

For hash join, the native support for pipelining enables multiple operators to be

scheduled as a single query task. Right-deep plans of pipelined hash join operators

enhance parallelism [66]: (a) the left inputs of all joins are first processed (possibly

in parallel) to build hash tables, (b) the right input of the deepest operator is streamed

to probe the corresponding hash table, and (c) the output is pipelined and used to

probe the hash tables of the following join operators. The build operations are thus

assigned to separate query tasks, while the probe operations for all pipelined hash joins

form a single task, provided that all hash tables can simultaneously fit in memory.1

Probing can only be scheduled after all the build tasks have completed. We show this

in Figure 5.1(b): the building of the hash tables for tables A and D, and the output of the

merge join operator are assigned to tasks T4, T5 and T3 respectively; task T6 includes

the probing operations for the three pipelined joins. The join task may include the

output preparation for any following operator, as described earlier for merge join.

We have chosen not to account for segmented bushy trees [52]. These are a coarse

form of parallelism, more appropriate for shared-nothing architectures. Instead, we

combine partitioning and pipelining, as shown in Figure 5.2(a): the deepest right table

(E) is split in equally sized partitions Ei. The tuples of each partition are then used

to probe the hash tables of the three join operations independently, so each partition

can be processed by a separate thread. This was also adopted in [8] and results in:

(a) different threads sharing common hash tables, which may be buffered in the lowest

level of cache memory in the CPU, and (b) pipelined tuples being processed by the

same thread, thus exploiting temporal cache locality and reducing the number of cache

misses that would occur if the tuples were “snooped” to other cores.

Scheduled plan. We consider query engines supporting fine-grained parallelism,

which means that all forms of parallelism can be combined in the same query. We

1In case both join inputs are partitioned, as in Grace hash join [48], the modelling of hash join is the
same as that of merge join.

Chapter 5. Scheduling threads for intra-query parallelism 132

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of cores

Ideal
Linear

Polynomial #1
Polynomial #2

Logarithmic

Figure 5.3: Scalability curves

illustrate this in Figures 5.2(a) and 5.2(b) where we assume a quad-core CPU using a

thread-per-core execution model. We can schedule three join operations to run in par-

allel: a merge join on the first two cores, with each thread sorting one of input tables

B and C, and two build operations for tables A and D. When both sorting operations

finish, the combined merge join/build task starts and uses the first two cores; the third

and fourth cores still execute the build operator. After all hash tables have been built

the final task starts, where each thread executes the three pipelined hash joins over its

individual partition of table E.

An alternative is to use all available threads for each operator and execute oper-

ators sequentially. This, however, is sub-optimal. The reason lies in the form of the

scalability curve, as depicted in Figure 5.3 and analytically described in Section 4.3. If

using N threads would speed up execution N times, as shown by the “ideal” curve, the

naı̈ve approach above would result in the ideal speedup and be sufficient. In practice,

scalability is penalised by resource contention (for the memory bus and the caches) and

synchronisation overhead. Its curve may be (approximately) linear but with a smaller

slope than the ideal (the “Linear” curve of Figure 5.3); or it may follow a decreasing

Chapter 5. Scheduling threads for intra-query parallelism 133

trend that either approaches a maximum value (the “Polynomial A” and “Logarithmic”

curves); or drops after a certain point (the “Polynomial B” curve). It may therefore be

preferable to distribute threads to different tasks and execute them in parallel instead

of running each task using all threads.

The side-effect of inter-operator parallelism is the introduction of stalls due to dif-

ferences in execution times across the tasks that start concurrently. Execution stalls

stem from [28]: (a) data dependencies, caused by blocking operators that require their

input be fully generated and processed before commencing, and (b) resource depen-

dencies, caused by the unavailability of required resources, such as cores and main

memory. We show how data dependencies create stalls in Figure 5.2(b). Task T3 must

wait for task T1 to complete, though the output of task T2 is available earlier. The same

applies to task T6, which needs to wait for tasks T3, T4 and T5. Note that task T3 does

not need to wait for tasks T4 and T5, despite T1, T2, T4 and T5 starting at the same time.

An example of resource dependency is the following: if T4 was scheduled to immedi-

ately execute after T3 on the same core(s), it would be stalled until T3 completes even

though their datasets are different. Worse, if the size of the combined dataset of T1, T2,

T4 and T5 exceeds the memory budget, they cannot run in parallel; the execution of at

least one task will be postponed until enough memory is available.

Model principles. The parameters of our model are given in Table 5.1. The query

engine allocates N threads from the budget of hardware-supported threads to the ex-

ecution of a query. Particularly bad thread allocations to cores, e.g., allocations that

may increase synchronisation overhead, or result in cache thrashing, can be captured

through the scalability curve. For each query task Ti, we estimate the execution time

(in CPU cycles or seconds) using analytical expressions for single-threaded execution,

as in [54]. The architectural parameters should be set with respect to multithreaded

execution. e.g., the query is allocated a share of the caches and the memory throughput

according to the number of threads it uses. Furthermore, we are given the scalability

curves of each task based on the resource and the synchronisation restrictions imposed.

Chapter 5. Scheduling threads for intra-query parallelism 134

Parameter Description

N number of threads used

K number of query tasks

Ti query task i

Sn
i speedup of task Ti when executed by n threads

Cn
i

cost of task Ti when executed by n threads

(CPU cycles or seconds)

M allocated memory budget

Mi required memory for task Ti

Table 5.1: Model parameters

The curves can either be statically approximated for each operator (using the calibra-

tion method of [54]), or dynamically computed using analytical expressions, accord-

ing to the methodology of Section 4.3. Note that execution pipeline stalls, e.g., due to

cache misses or contention for the memory bus [57], depend on the hardware platform

and the query engine design; their impact is captured by the cost functions, which are

considered as given.

Next, we specify the expected cost of each task when scheduled on n threads:

Cn
i = C1

i
Sn

i
. Then, we extract the cost and the memory required for a given schedule by

recursively applying the following formulas (shown here for two tasks):

• Cn
AB = Cn

A +Cn
B

MAB = max(MA,MB)≤M

if there exists a dependency between TA and TB so they need to be serialised and

run on n threads each, or else

• Cn
AB = max(Ci

A,C j
B), i+ j = n

MAB = MA +MB ≤M

if TA and TB can run in parallel using i and n− i threads respectively and their

Chapter 5. Scheduling threads for intra-query parallelism 135

Figure 5.4: Query task tree

combined dataset fits in memory.

For example, based on the generalisation of these formulas, the cost of the schedule of

Figure 5.2(b) is equal to:

C4 = max
((

max(C1
1 ,C1

2)+C2
3
)
,C1

4 ,C1
5
)
+C4

6

with the memory constraint that:

max(M1 +M2,M3)+M4 +M5 ≤M

We use the following notation to denote an execution schedule: 〈T,n〉 denotes the

execution of task T using n threads. Execution of multiple tasks can either be parallel,

denoted by the operator ‖, or sequential, denoted by the operator ++; an execution plan

is any combination of such operations, where parentheses are used to denote groupings

for readability. For instance, the schedule of Figure 5.2(b) is represented as:

(((〈T1,1〉 ‖ 〈T2,1〉)++〈T3,2〉) ‖ 〈T4,1〉 ‖ 〈T5,1〉)++〈T6,4〉

5.3 Algorithms

The scheduling problem we study can be reduced to parallel task scheduling, which

has been proven to be NP-hard [27]. Given our parallelism model and a query of K

tasks to be executed using N threads, there are 2N−1 different ways to schedule a task

over N threads (using some or all of them). The K tasks can be permuted in K! ways,

Chapter 5. Scheduling threads for intra-query parallelism 136

(a) expandChildren (b) expandDescendants

(c) expandSibling (d) greedyLevel

Figure 5.5: Scheduling algorithms

giving a total of K! · (2N − 1) plans.2 Though this is an overestimation, as data and

resource dependencies will reduce the number of interesting or even possible plans,

the number renders exhaustive techniques inapplicable even for small values of N and

2We use the terms plan and schedule interchangeably hereafter.

Chapter 5. Scheduling threads for intra-query parallelism 137

Algorithm 5: The scheduleTree algorithm
Input: query task tree Q, allocated memory budget M

Output: optimal execution plan Po and cost Co

` = maxlevel ∈ Q;1

if depth-first expansion then2

for i = `−1 to 1 do3

L = list of nodes in Q at level i;4

foreach t ∈ L do t.P = expandNode(t,N,M);5

Po = Troot.P++〈Troot,N〉;6

else /* breadth-first expansion */7

Po =⊥;8

for i = ` to 1 do9

L = list of nodes in Q at level i;10

Po = Po ++expandLevel(L,N,M);11

return Po;12

K (see also Section 5.4). The running time of the scheduling algorithm is also crucial;

in some cases, multithreaded query execution will run quite fast and we would not want

the scheduling time to be comparable to the execution time. We therefore propose and

examine heuristics-based techniques that trade the scheduling time with the quality

of the generated schedule. For simplicity and without loss of generality we assume

that the query plan is a binary tree. Our approach, however, can be straightforwardly

extended to task trees of higher arity. We use the bushy query task tree of Figure 5.4

to describe example schedules of each technique, under a thread-per-core execution

model with four threads.

The scheduling algorithms take as input the query task tree and traverse it level

by level, bottom-up, examining all the nodes of each level before moving to the upper

level. The general algorithm is given in Algorithm 5. There are two different possi-

Chapter 5. Scheduling threads for intra-query parallelism 138

bilities to expand the search space: (a) depth-first expansion, abstracted by function

expandNode, where the subtree of each node is processed in isolation to compute an

efficient schedule, or (b) breadth-first expansion, abstracted by the expandLevel func-

tion, where all the nodes of the level are processed to find an efficient schedule to

execute them. In the former case, the data dependencies are taken into account, by as-

signing nodes of different subtrees to different sets of threads. Conversely, processing

nodes that belong to the same level removes all data dependencies, as the inputs of all

involved operators will have already been generated in a previous step.

Note the semantics and the plan generation principles of each different expansion

mode. In depth-first expansion, each call to expandNode will generate a plan for the

subtree of a node at the current level; this is also evident by the traversal starting

from level `− 1. The generated plan is stored locally at that node. To denote so, we

slightly “abuse” the node notation in Line 5 to annotate node t with the plan for its

descendants. All tasks initially store the empty plan, denoted as ⊥. Each call of the

expandNode algorithm will use the stored plans of the subtree’s nodes to specify the

optimal schedule for this subtree. The full plan is constructed by sequentially running

the plan of the root’s children, followed by the task of the root node using all available

threads (Line 6). Breadth-first expansion works through calls to expandLevel; each

call will generate a plan for all the nodes of the current level. The plans are then run

sequentially (Line 11).

5.3.1 Node expansion variants

5.3.1.1 The expandChildren algorithm

This is the simplest and quickest scheduling algorithm. The description is given in

Algorithm 6. The possible ways of executing the children tasks is either to run them

sequentially using all available threads, or distribute the threads across the children

tasks and run them in parallel. In both cases, we ensure the schedule’s memory re-

Chapter 5. Scheduling threads for intra-query parallelism 139

Algorithm 6: The expandChildren algorithm
Input: node t, number of threads n, allocated memory budget M

Output: optimal execution plan Po for the subtree of t

l = left child of t; r = right child of t;1

Co = Cn
l +Cn

r ;2

if max(Ml,Mr) > M then return ⊥;3

nt = n;4

if Ml +Mr ≤M then5

foreach i ∈ [1,n−1] do6

Ct = max(Ci
l ,C

n−i
r);7

if Co > Ct then nt = i; Co = Ct ;8

if nt = n then Po = 〈l,n〉++〈r,n〉;9

else Po = 〈l,nt〉 ‖ 〈r,n−nt〉;10

return Po;11

quirements are met. An example schedule of this algorithm for Figure 5.4 is shown

in Figure 5.5(a). This algorithm considers each node of the query task tree only once.

The drawback is that only a small subset of the search space is explored so plan quality

may be low.

5.3.1.2 The expandDescendants algorithm

This is an extension of the expandChildren algorithm to deeper levels. The complete

algorithm is given in Algorithm 7. The intuition is that up to N tasks having a common

ancestor and belonging to the same level may run in parallel; this means that the algo-

rithm can look from the current level down to some level D. The parent tasks will start

as soon as both their children have completed. The algorithm uses dynamic program-

ming and stores the optimal sub-plan for the computation of each internal node. This is

achieved by comparing the costs of (a) the best plan for computing the input of the chil-

Chapter 5. Scheduling threads for intra-query parallelism 140

Algorithm 7: The expandDescendants algorithm
Input: node t, number of threads n, search depth D, allocated memory budget M

Output: optimal execution plan Po for the subtree of t

l = left child of t; r = right child of t;1

Po = l.P++r.P++expandChildren(t,n,M);2

if D = 1 then return Po;3

foreach i ∈ [2D−1,n−2D−1] do4

Pl = expandDescendants(l, i,D−1,M−Ml);5

Pr = expandDescendants(r,n− i,D−1,M−Mr);6

Pb = bottom(Pl,D−1)++bottom(Pr,D−1);7

Pll = top(Pl,D−1)++〈l, i〉;8

Prr = top(Pr,D−1)++〈r,n− i〉;9

Pt = Pb ++(Pll ‖ Prr);10

if cost(Po) > cost(Pt) then Po = Pt ;11

return Po;12

dren, plus the optimal way of scheduling the children (as returned by expandChildren)

with (b) the best cost of recursively applying the algorithm to the node’s children us-

ing various distributions of threads to each child. When the depth is 1, the algorithm

returns the best plan for the children according to the expandChildren algorithm.

The plan returned by each recursive call of the algorithm is partitioned as follows:

(a) nodes deeper than D levels from the current node generate the input of the nodes

that will be scheduled in parallel, so they need to be scheduled first (Line 7), and

(b) nodes at a depth less than or equal to D will be executed in parallel (Line 10). We

use the bottom and top functions to extract the corresponding sub-plans of the plan

returned by each recursive call. Both functions accept as input a plan and a depth.

From that plan they isolate a sub-plan that corresponds to specific nodes of the task

tree either down to the given depth (for top), or from the given depth and below (for

Chapter 5. Scheduling threads for intra-query parallelism 141

bottom). The output of top is a parallel plan for all tasks down to the given depth;

bottom returns a sequential plan of the schedules stored in tasks of the given depth.

Note that these subplans are complementary: bottom(P,D)++ top(P,D)≡ P.

To better understand the algorithm, consider the plan of Figure 5.4 and what hap-

pens when processing node T7; Figure 5.5(b) depicts a possible output schedule. Recall

that given the bottom-up traversal of the task tree, nodes T3 and T6 are already anno-

tated with the optimal execution schedules of their children. When scheduling the

execution of T3 and T6 themselves, there are two choices. The first is to sequentially

run the schedules of the children of T3 and T6 (stored in T3.P and T6.P) and then sched-

ule T3 and T6 using N threads by calling expandChildren. This is the generated plan of

Line 2 of Algorithm 7. The second alternative is to first execute sequentially the stored

schedules of T7’s descendants at depth D = 2 and then redistribute threads to nodes of

the top D levels. In this example, the bottom and top calls return:

• bottom(Pl,1) = T1.P++T2.P =⊥

• bottom(Pr,1) = T4.P++T5.P =⊥

• top(Pl,1) = 〈T1,1〉 ‖ 〈T2,1〉

• top(Pr,1) = 〈T4,1〉 ‖ 〈T5,1〉

to compose the schedule:

Pt = (((〈T1,1〉 ‖ 〈T2,1〉) ++〈T3,2〉) ‖

((〈T4,1〉 ‖ 〈T5,1〉)++〈T6,2〉))

The plans stored in the nodes of level 3 are empty as this is the last level of the task

tree. Note that the schedule (〈T1,1〉 ‖ 〈T2,1〉) above is generated by the recursive call of

Line 5; the same nodes were processed when the algorithm was called by scheduleTree

for node T3. In the latter call the nodes were scheduled using all available threads,

while recursive calls always use a smaller number of threads. The second schedule is

Chapter 5. Scheduling threads for intra-query parallelism 142

Algorithm 8: The expandSibling algorithm
Input: node t, number of threads n, search depth D, allocated memory budget M

Output: optimal execution plan Po for the subtree of t

l = left child of t; r = right child of t;1

Po = l.P++r.P++expandChildren(t,n,M);2

if D = 1 then return Po;3

foreach i ∈ [1,n−2D−1] do4

Pr = expandDescendants(r,n− i,D−1,M−Ml);5

Pt = l.P++bottom(Pr,D−1);6

Pt = Pt ++(top(Pr,D−1) ‖ 〈l, i〉);7

if cost(Po) > cost(Pt) then Po = Pt ;8

Pl = expandDescendants(l,n− i,D−1,M−Mr);9

Pt = r.P++bottom(Pl,D−1);10

Pt = Pt ++(top(Pl,D−1) ‖ 〈r, i〉);11

if cost(Po) > cost(Pt) then Po = Pt ;12

return Po;13

generated in Line 10 and the cost-based decision between the two alternatives is taken

in Line 11.

The expandDescendants algorithm is instantiated with a depth of D = log2(N) and

a number of threads n = N. When called, the algorithm effectively uses an N-wide

window to schedule all tasks. Therefore, the maximum depth of the search space

expanded for each internal node is at most D = log2(N), processing (2N − 2) nodes.

Each separate instance (i.e., recursive call) of the algorithm considers (n+(n−2D)) =

2n−2D plans.

Chapter 5. Scheduling threads for intra-query parallelism 143

5.3.1.3 The expandSibling algorithm

The expandSibling algorithm addresses the case where one node can be executed in

parallel with the descendants of its sibling, therefore ensuring there are no data de-

pendencies. As soon as each pair of descendants completes, the parent task starts.

Such plans are advantageous when the cost of a task is approximately equal to the cost

of its sibling and the sibling’s descendants (limited to a certain depth). We present

expandSibling in Algorithm 8; it is instantiated again with D = log2(N) and N threads.

Its data flow is similar to that of expandDescendants. The difference is that when

scheduling the children of a node, the algorithm tests if it is more efficient to execute

one child task in parallel with the top tasks of its sibling subtree (Lines 5 to 12). This

algorithm also uses an N-wide scheduling window, searching the subtree of each node

up to a depth of log2(N) levels; it thus expands (2N − 2) nodes. Each instance of

expandDescendants expands (n + 2(n− 2D)) = 3n− 2D+1 plans. The expandSibling

algorithm, hence, examines more plans than expandDescendants. Its running time is

greater but it has a higher probability of identifying an optimal schedule.

An example schedule generated by Algorithm 8 for the tree of Figure 5.4 is shown

in Figure 5.5(c). Task T3 is assigned to the first thread; T6 and its children are assigned

to the other three threads. Task T3 starts at the same time as T4 and T5. When the last

two tasks complete, T6 starts executing with three threads, while T3 is still executed by

the first thread. When both T3 and T6 complete, T7 is executed by all available threads.

5.3.1.4 The expandHybrid algorithm

The expandDescendants and expandSibling algorithms can be combined in a single hy-

brid algorithm; this algorithm is termed expandHybrid. Each call to expandHybrid will

compare the cost of the subplans created by the expandDescendants and expandSibling

algorithms. That way we can enumerate more possible plans for each internal node’s

subtree and explore a larger portion of the search space. The algorithm effectively tries

to distribute threads across both the children of a node, as well as its sibling. The total

Chapter 5. Scheduling threads for intra-query parallelism 144

Algorithm 9: The findParallel algorithm
Input: list L of remaining nodes to be scheduled, number of threads used so far

nu, approximation cost Cp, allocated memory budget M, memory used so

far Mu

Output: execution plan Po for a subset of L, updated list L of remaining nodes

to be scheduled

Cdist = ∞;1

foreach Ti ∈ L do2

if Mi +Mu > M then continue;3

foreach j ∈ [1,N−nu] do4

if |Cp−C j
i |< Cdist then5

Cdist = |Cp−C j
i |; To = Ti;no = j;Mo = Mi;6

if Cdist = ∞ then return (⊥,L);7

L = L−To;8

if no +nu < N then9

Pt ,L← findParallel(L,no +nu,Cp,M,Mu +Mo);10

return (〈To,no〉 ‖ Pt ,L);11

return (〈To,no〉,L);12

number of plans considered by the hybrid algorithm is 5n−3 ·2D, i.e., the sum of the

numbers of plans considered by expandDescendants and expandSibling.

5.3.2 Level expansion

Recall from the scheduleTree algorithm (Algorithm 5), that either each node can be

processed by itself, or an optimal schedule can be computed for all the nodes of a

level. The latter task is undertaken by the greedyLevel algorithm that we will introduce

shortly. It works by identifying operators at the same level of the execution plan that

Chapter 5. Scheduling threads for intra-query parallelism 145

bear a similar execution cost, thereby minimising execution stalls. This is the goal

of the findParallel algorithm of Algorithm 9. Its input is a list of unscheduled tasks,

the number of already allocated threads and the approximation cost. The algorithm

identifies which task of the non-scheduled ones bears a cost closer to the target cost

when scheduled in parallel (i.e., when using some or all of the remaining threads). If

the closest cost corresponds to a schedule that does not use all unallocated threads,

the function is recursively applied to identify the task(s) that can be scheduled to be

executed by the remaining thread(s).

Based on the findParallel algorithm, we give the greedyLevel algorithm in Algo-

rithm 10. The algorithm groups the tasks of each level in sets that can be efficiently

scheduled in parallel. The key issue is to identify the combination of task and number

of threads, the cost of which will be used as the approximation cost by the findParallel

algorithm. There are two cases: if the number of remaining tasks to be scheduled is

below a specific threshold R , we test all possible combinations of tasks and number

of threads. Otherwise, we use the findMinDistance function to identify the input task.

This function works as follows: for each task Ti and possible thread allocation for

its execution ni, we compute a list L(Ti,ni) of all other tasks that can be executed in

parallel with it, i.e., the list contains pairs (Tj,n j) of tasks Tj, j 6= i executed with n j

threads such that ni +∑ j n j ≤ N and Mi +∑ j M j ≤M. We pick the task Tm and thread

allocation nm that minimises ∑(Tj,n j)∈L(Tm,nm) |Cnm
m −Cn j

j |. The intuition is that we pick

a task that introduces the smallest possible stall if run in parallel with other tasks of the

same level. Note that this is only one possible way to identify a task. The experimental

results of Section 5.4 show that this heuristic works well in practice.

The number of plans considered by this algorithm depends on the threshold used to

specify if one or multiple approximation costs are passed to the findParallel algorithm.

This is because findMinDistance greedily decides on the task and the target cost to

be used. The R threshold can be specified through calibration, i.e., by gradually

increasing the number of tasks explored until the scheduling cost becomes significant

Chapter 5. Scheduling threads for intra-query parallelism 146

Algorithm 10: The greedyLevel algorithm
Input: list L of remaining tasks to be scheduled, allocated memory budget M

Output: optimal plan Po for L, cost of plan Co

Co = ∞;1

if length(L) < R then2

foreach Ti ∈ L do3

L′ = L−Ti;4

foreach j ∈ [1,N] do5

(P′,L′) = findParallel(L′, j,C j
i ,M,Mi);6

Pt = 〈Ti, j〉 ‖ P′;7

if length(L′) > 0 then8

Pt = Pt ++greedyLevel(L′,M);9

if cost(Pt) < Co then10

Po = Pt ; Co = cost(Pt);11

else12

(Tm,nm) = findMinDistance(L,N,M);13

L′ = L−Tm;14

(P′,L′) = findParallel(L′,nm,Cnm
Tm

,M,MTm);15

Pt = 〈Tm,nm〉 ‖ P′;16

if length(L′) > 0 then17

Po = Pt ++greedyLevel(L′,M);18

return Po;19

for the given implementation and the host hardware platform.

Chapter 5. Scheduling threads for intra-query parallelism 147

5.4 Experimental study

Our aim is to examine the behaviour of the proposed algorithms in various hardware

platforms and for a wide range of query engine designs, the performance of which is

captured by the scalability curves. The only practically applicable method to achieve

this is to use simulation. This method is widely used in the architecture community and

has been adopted in previous work as a simple and reliable technique to experiment

with query engines and architectural setups that are not available or do not currently

exist as commercial or research products. The restrictions of the simulation method

are the reliability of the scalability estimations and the accuracy of the optimiser’s cost

model; both are assumed to be given. However, these restrictions are present in every

aspect of query optimisation – the optimiser’s choices are only good as its cost model

and search strategy.

We implemented all the algorithms we have proposed, along with an exhaustive

algorithm that uses branch and bound. All algorithms were implemented in C++ and

compiled using the GNU g++ compiler (version 4.3.3, -O2 optimisation level). We ran

our experiments on a Dell Precision T5400 workstation, with an Intel Xeon E5420

quad-core processor and 4GB of physical memory, clocked at 2.5GHz, and running

GNU/Linux (64-bit version, kernel 2.6.26). The scheduling code ran in a single thread;

its running time will improve in a multithreaded implementation, in line with [38]. We

did not use multiple threads to run the scheduling algorithms as we merely wanted to

compare the performance of the scheduling algorithms and the quality of the schedules

they produce. Through calibration we set the threshold R of the greedyLevel algorithm

to seven tasks.

The parameters of our experiments are shown in Table 5.2. For each run, we spec-

ified: (a) the number of threads to be used (N), (b) the number of query tasks in the

task tree (K), and (c) the form of the scalability curve (SP). We would then create eight

distinct bushy binary query task trees; left- or right-deep trees reduce the number of

scheduling alternatives and therefore narrow the differences in optimality across the

Chapter 5. Scheduling threads for intra-query parallelism 148

Parameter Values

N [4,32] threads

K [3,63] tasks

C1
i [100,100000] milliseconds

SP
Linear, Polynomial #1,

Polynomial #2, Logarithmic

Table 5.2: Simulation parameters

K Time for N = 4 (s) Time for N = 8 (s)

3 0.001 0.001

5 0.001 2263.635

7 5.421 -

9 9553.883 -

Table 5.3: Execution time for exhaustive search

proposed algorithms.

The cost of single-threaded execution for each operator was set to randomly vary

between 100ms and 100s. We consider the following scalability curves: (a) a linear

function, with the gradient varying between 0.4 and 0.9 (Linear), (b) a polynomial

non-decreasing function of random curvature, similar to the “Polynomial A” curve of

Figure 5.3 (Polynomial #1), (c) a polynomial function of random curvature that may

be decreasing, resembling either the “Polynomial A” or the “Polynomial B” curves

of Figure 5.3 (Polynomial #2), and (d) a logarithmic function of random curvature

(Logarithmic).

We report the average execution time of ten runs of each algorithm, the deviation

being less than 1% in all cases, as well as the optimality of the output schedule. To

Chapter 5. Scheduling threads for intra-query parallelism 149

measure optimality, we compared the output schedule with two reference schedules:

(a) the optimal schedule, identified through exhaustive enumeration, and (b) the naı̈ve

schedule of assigning all available threads to each task. The first approach is the best

metric of optimality; however, it is practical only for a small number of tasks and

threads, as we show in Table 5.3. Exhaustive enumeration needs 5.4s for seven tasks

and four threads; it needs more than 2.5 hours for nine tasks; scaling to eight threads

renders exhaustive enumeration practically inapplicable even for a simple query of

five tasks. Hence, for more complex queries and setups, we used the second approach,

which shows the improvement in execution time each algorithm results in when com-

pared to the naı̈ve schedule.

5.4.1 Schedule optimality

We first measured the optimality of the generated schedules. We started off with four

threads and trees of seven tasks, to allow exhaustive enumeration to complete. We

present the results only for the Polynomial #2 scalability curve type as we treat the

impact of all scalability curves in the next section. We optimised eight randomly gen-

erated queries of the specified number of tasks. The results are presented in Figure 5.6.

On the left we show the comparison between the generated schedules and the opti-

mum one; on the right we show the improvement over the naı̈ve schedule of each

query. In all cases either extendHybrid or greedyLevel achieved an optimality of 90%;

greedyLevel also identified the optimum plan for the second query. Compared to the

naı̈ve approach, the proposed heuristics improve the quality of the schedule by at least

16%, on average by 26%, to a maximum of 42% for the sixth query of the workload.

5.4.2 Impact of the scalability curve

The scalability curve significantly affects the optimality of the generated schedules. As

the curve approximates the ideal one (see also Figure 5.3), the room for performance

Chapter 5. Scheduling threads for intra-query parallelism 150

75

80

85

90

95

100

O
pt
im

al
it
y
(%

)

Naive ExpandChilden ExpandSibling
ExpandDescendants ExpandHybrid GreedyLevel

60

65

70

75

80

85

90

95

100

Query #1 Query #2 Query #3 Query #4 Query #5 Query #6 Query #7 Query #8

O
pt
im

al
it
y
(%

)

Naive ExpandChilden ExpandSibling
ExpandDescendants ExpandHybrid GreedyLevel

(a) Optimality

15

20

25

30

35

40

45

50

Im
pr
ov
em

en
t (
%
)

Exhaustive ExpandChilden ExpandSibling
ExpandDescendants ExpandHybrid GreedyLevel

0

5

10

15

20

25

30

35

40

45

50

Query #1 Query #2 Query #3 Query #4 Query #5 Query #6 Query #7 Query #8

Im
pr
ov
em

en
t (
%
)

Exhaustive ExpandChilden ExpandSibling
ExpandDescendants ExpandHybrid GreedyLevel

(b) Improvement

Figure 5.6: Algorithm Optimality (N = 4, K = 7)

improvement from elaborate task scheduling shrinks. This is shown in Figure 5.7,

where we give the improvement of each scheduling algorithm over the naı̈ve approach

for various scalability curves. We used queries of fifteen tasks and either eight or

thirty-two execution threads. If the speedup is linear, the improvement over the naı̈ve

approach is marginal (less than 3%), so the use of sophisticated scheduling algorithms

is redundant. However, this kind of speedup is rather rare [11]; contention due to re-

Chapter 5. Scheduling threads for intra-query parallelism 151

10

15

20

25

30

35

40

Im
pr
ov
em

en
t (
%
)

ExpandChilden
ExpandSibling
ExpandDescendants
ExpandHybrid
GreedyLevel

0

5

10

15

20

25

30

35

40

Linear Polynomial #1 Polynomial #2 Logarithmic

Im
pr
ov
em

en
t (
%
)

ExpandChilden
ExpandSibling
ExpandDescendants
ExpandHybrid
GreedyLevel

(a) Improvement (N = 8)

40

60

80

100

120

Im
pr
ov
em

en
t (
%
)

ExpandChilden
ExpandSibling
ExpandDescendants
ExpandHybrid
GreedyLevel

0

20

40

60

80

100

120

Linear Polynomial #1 Polynomial #2 Logarithmic

Im
pr
ov
em

en
t (
%
)

ExpandChilden
ExpandSibling
ExpandDescendants
ExpandHybrid
GreedyLevel

(b) Improvement (N = 32)

Figure 5.7: Impact of scalability curve (K = 15)

source sharing and synchronisation gradually degrades scalability as the number of

threads increases. In such cases our scheduling algorithms exhibit significant improve-

ments over the naı̈ve plan. These improvements increase as scalability deteriorates.

For eight threads, the greedyLevel and expandHybrid algorithms reach similar levels

of optimality, outperforming the naı̈ve approach by 30% or more. With thirty-two

threads available, the expandHybrid algorithm outperforms its breadth-first counter-

Chapter 5. Scheduling threads for intra-query parallelism 152

part and achieves a 120% improvement over the naı̈ve schedule, when scalability is

low (as is the case for the Logarithmic curve).

5.4.3 Impact of the number of tasks and threads

The optimality of the schedules produced by our algorithms depends on both the num-

ber of tasks in the query and the number of threads. The depth-first algorithms consider

alternative plans in a depth up to log2(N). Thus, the more threads there are, the more

likely the algorithms will identify an optimal plan. On the contrary, the greedyLevel

algorithm processes each level separately; its efficiency increases as the levels grow

wider. This behaviour is verified in Figures 5.8 and 5.9, where we present the optimal-

ity and the execution time of our algorithms for various combinations of query task

and thread counts. In all cases, we use the Polynomial 2 scalability curve type.

In Figure 5.8 we vary the number of tasks between three and sixty three; we set

the number of threads to either four or sixteen. In the first case (Figure 5.8(a)), the

optimality of greedyLevel improves quickly and stabilises to about 50% for twenty-

three tasks or more. Conversely, the depth-first algorithms process up to a depth of

only two, or up to six children of each node in the query task tree. Since they explore

a smaller part of the search space the quality of their results is poorer, maximising

at an improvement of 40% for the expandHybrid algorithm. The fluctuation of all

curves is due to the randomness of the queries used and the scalability curve of each

query task. As the number of threads grows to sixteen, the greedyLevel algorithm stops

being the best choice as shown in Figure 5.8(b). In this case, the depth-first algorithms

explore up to four additional levels, or thirty children nodes of each node in the query

task tree (at most), covering a larger subset of the search space than the greedyLevel

algorithm. The latter converges to a 40% improvement over the naı̈ve approach, while

the expandHybrid algorithm reaches a 48% improvement.

There is, however, a penalty in execution time for this advantage in quality. The

depth-first algorithms compare an increasingly larger number of possible sub-plans as

Chapter 5. Scheduling threads for intra-query parallelism 153

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70
Im

pr
ov

em
en

t (
%

)

K

ExpandChilden
ExpandSibling

ExpandDescendants
ExpandHybrid

GreedyLevel

(a) Improvement (N = 4)

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70

Im
pr

ov
em

en
t (

%
)

K

ExpandChilden
ExpandSibling

ExpandDescendants
ExpandHybrid

GreedyLevel

(b) Improvement (N = 16)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70

E
xe

cu
tio

n
tim

e
(s

)

K

ExpandChilden
ExpandSibling

ExpandDescendants
ExpandHybrid

GreedyLevel

(c) Execution time (N = 16)

Figure 5.8: Impact of the number of tasks

Chapter 5. Scheduling threads for intra-query parallelism 154

the number of tasks increases; this is not the case for the greedyLevel algorithm, as

the number of compared plans is set by the R threshold, irrespective of the number

of tasks. This is verified in Figure 5.8(c), where the execution time of the depth-

first algorithms grows exponentially with the number of tasks. On the other hand, the

execution time of the breadth-first one is almost constant. Still, this is only observable

for large task counts (more than twenty); it is negligible in the case of four threads,

where all algorithms execute in less than 1ms. Note that the implementation of the

expandDescendants algorithm is very efficient: it identifies schedules of good quality,

while examining fewer plans than the expandSibling and expandHybrid algorithms.

That way, it runs in time comparable to the greedyLevel algorithm.

Finally, we show in Figure 5.9 how the number of threads affects the optimality

of the generated schedules. We varied the number of threads between four and thirty-

two, while the number of tasks was either seven (Figure 5.9(a)) or thirty-one (Fig-

ure 5.9(b)). Again, we observe that the greedyLevel algorithm performs best for small

thread counts; as the number of threads grows, the expandHybrid algorithm produces

plans of better quality than the competition. In terms of execution time (Figure 5.9(c)),

the difference between the expandHybrid and expandSibling algorithms and the rest

becomes significant for sixteen threads or more and follows an exponential trend.

5.5 Discussion

Since our algorithms explore a small subset of the search space, there is no guarantee

that one will yield a better plan than another. Still, the number of schedules each

algorithm considers, along with the experimental results, can provide some intuition

on the best-fitting scheduling algorithm for the query at hand. There are four basic

parameters that affect the choice of algorithm: (a) the estimated running time of the

query, i.e., if it is a long-running or a short-running query; (b) the scalability curve, i.e.,

the utility of multithreaded execution; (c) the complexity of the query, i.e., the number

Chapter 5. Scheduling threads for intra-query parallelism 155

15

20

25

30

35

40

45

50

Im
pr
ov
em

en
t (
%
)

ExpandChilden
ExpandSibling
ExpandDescendants
ExpandHybrid
GreedyLevel

0

5

10

15

20

25

30

35

40

45

50

N = 4 N = 8 N = 16 N = 32

Im
pr
ov
em

en
t (
%
)

ExpandChilden
ExpandSibling
ExpandDescendants
ExpandHybrid
GreedyLevel

(a) Improvement (K = 7)

20

30

40

50

60

Im
pr
ov
em

en
t (
%
)

ExpandChilden ExpandSibling
ExpandDescendants ExpandHybrid
GreedyLevel

0

10

20

30

40

50

60

N = 4 N = 8 N = 16 N = 32

Im
pr
ov
em

en
t (
%
)

ExpandChilden ExpandSibling
ExpandDescendants ExpandHybrid
GreedyLevel

(b) Improvement (K = 31)

N expandChildren expandSibling expandDescendants expandHybrid greedyLevel

4 0.002 0.003 0.003 0.003 0.004

8 0.002 0.008 0.003 0.008 0.007

16 0.002 0.183 0.008 0.236 0.029

32 0.002 2.699 0.219 6.429 0.108

(c) Execution time in seconds (K = 31)

Figure 5.9: Impact of the number of threads

Chapter 5. Scheduling threads for intra-query parallelism 156

of tasks in the query task tree; and (d) the available processor resources that can be

devoted to the query, i.e., the number of threads the execution engine can allocate

to process the query. The interaction of those parameters is intricate and complex

to model. At best, we can only come up with some empirical rules that, given each

parameter, can help determine the best-fitting scheduling approach.

Query running time. The key observation is that the longer a query is estimated to

run for, the longer the optimiser can afford to take for scheduling its tasks. Situations

where this arises are when the query will process a large dataset, or when the query

is inflationary, e.g., it produces large intermediate result sets. In such cases it is more

beneficial to use one of the algorithms that explore a larger portion of the search space,

i.e., the expandHybrid, or greedyLevel algorithms. One might even consider a com-

bined approach: both algorithms can be used and the plan with the highest estimated

performance improvement will be chosen in the end.

Utility of multithreaded execution. The chosen algorithms during the first phase of

optimisation (join ordering and query rewriting) will perform differently depending of

how well they scale in a multithreaded implementation. If this speedup is estimated

to be close to linear – especially with a high slope – it is not sensible to use elaborate

scheduling algorithms: scalability is high, regardless of thread allocation. As such,

it pays off to use an algorithm like expandChildren, which will quickly identify the

parallelisation potential for every task in the query tree.

Query complexity. The more query tasks are present, the larger is the search space

of potential schedules (recall that the size of the search space grows to the factorial

of the number of tasks). As such, it is more sensible to use a strategy that explores

a large enough portion of the search space and has a high probability of identifying a

plan with optimal performance. Given the evidence of Figure 5.8, for small query task

counts it is preferable to use the expandHybrid algorithm. However, as the number of

query tasks increases, the greedyLevel algorithm seems the best compromise: though

its optimality may be lower than the expandHybrid algorithm’s, it achieves comparable

Chapter 5. Scheduling threads for intra-query parallelism 157

performance improvements, but only at a fraction of the execution time.

Available resources. The size of the search space is exponential to the number of

threads used. Therefore, it is a case similar to the previous one. Algorithms that

explore a larger portion of the search space are beneficial, especially if they run fast.

GreedyLevel proves a better choice for restricted thread budgets as the number of tasks

examined on each call of expandHybrid is low; the choice is complementary for higher

thread counts (see also Figure 5.9). If there are only a few tasks in the query tree, the

tree’s levels are most likely narrow so an algorithm like expandDescendants may be a

viable option: it generates high-quality schedules in minimal optimisation time.

Finally, note that the differences between the schedules produced by the different

algorithms are usually small. Even if not the most appropriate algorithm is chosen, it

is likely that the optimality of its produced plan will be close to that of the plan chosen

by the most appropriate algorithm. Furthermore, our heuristics give plans of high

optimality in all cases, at a low running cost. We believe these to be the key aspects of

a good optimisation algorithm, thus offering conducive evidence of the viability of our

proposals.

5.6 Further reading

Parallel query execution and optimisation have been extensively studied in the past, in

the context of shared-nothing and shared-memory systems (e.g., [24, 25, 34, 53, 70]).

A theoretical perspective on parallel query optimisation was given by Ganguly et

al. [28], who analyzed the impact of data and resource dependencies on scalability

and proved that dynamic programming does not satisfy the principle of optimality

for parallel query optimisation, thus enforcing the use of heuristics. In [74], the au-

thors studied the impact of pipelining and partitioning on PrismaDB. They concluded

that combining both forms of parallelism is the most efficient approach, especially

for bushy operator trees. However, they elaborate neither on how the system decides

Chapter 5. Scheduling threads for intra-query parallelism 158

the number of processors to be allocated to each task task, nor on the order of task

execution; we address both issues.

Scheduling for parallel execution was first studied by Chen et al. [11], where it

was suggested that processors be allocated to tasks according to the scalability curve.

Our proposed scheduling techniques compare multiple schedules and core allocation

alternatives and therefore exploit parallelism to a higher extent. In [31, 32] the au-

thors studied how near-optimal heuristics can be used to allocate multi-dimensional

resources to tasks. Their techniques, however, are restricted to separately optimising

each level of the task tree and statically allocating processing cores to tasks according

to the scalability curve. If applied to the thread scheduling problem we address, they

are equivalent to the naı̈ve approach. In [56], it was proposed that resources should

be allocated to pipelined operators with the objective of matching their processing

rates and maintaining a constant tuple flow between them. In our model, by combin-

ing pipelining and partitioning we avoid queueing issues between pipelined operators.

Our techniques are based on allocating tasks to threads so the tasks that are scheduled

together will complete in approximately equal times.

Dynamic load balancing for parallel query execution was studied in [7, 8]. The

proposal was to decompose operator execution in elementary self-contained units that

can be scheduled independently. If a thread finishes with executing its assigned set of

units, it can execute units that were originally assigned to other threads. This technique

is especially useful in the presence of skew. We consider this approach complementary:

we can statically assign tasks to threads according to value distribution statistics and

dynamically re-distribute work to them. However, there is a significant synchronisation

overhead when units are shared across threads, while the dataset of an execution unit

might need to migrate from the private caches of a delaying core to the idling one’s

caches. Therefore, synchronisation and data transfers may diminish any performance

gains from load balancing.

Query optimisation for multicores was addressed in [1]. The authors proposed to

Chapter 5. Scheduling threads for intra-query parallelism 159

assign at least one thread to each query operator and initialise all threads at the same

time. The operating system is responsible for scheduling the execution of threads to the

available cores. It has been known, however, that creating more processes than avail-

able processors in a shared-memory system penalises performance due to scheduling

overhead [34]: the processes compete for the CPUs and their execution will most likely

be interrupted multiple times before completion. This is aggravated when scheduling

threads to cores because: (a) the scheduling overhead induced by the OS is compara-

ble to the execution time for short-running threads, and (b) thread switching evicts the

dataset of each thread from the cache hierarchy, leading to cache thrashing. Thus, we

argue that thread budgets should be restricted by the ability of the processor to support

their parallel execution and run with minimal synchronisation overhead.

Finally, the authors of [44] studied work sharing in multicores and modelled the

performance of concurrently processed, staged queries, while [62] investigated the

scheduling of multiple queries with the goal of work sharing (for scans). Moreover,

the authors of [51] employ page coloring to prevent cache thrashing when concurrently

executing multiple queries. These approaches are complementary to ours; we focus

on intra-query parallelism and opportunities for improved execution schedules for the

tasks of each query in isolation, given the number of allocated threads and the available

memory.

Chapter 6

Conclusions and future directions

6.1 Conclusions

In this thesis we have presented the holistic query evaluation model. Our objective

is to optimise query execution when the query dataset fits in main memory; in this

case, performance is CPU-bound rather than I/O-bound. The starting point is to replace

the static, iterator-based implementations of query operators with code templates. The

query engine instantiates and combines these templates at run-time to create query-

specific source code, which is then compiled, linked and executed to produce the query

results. This technique radically reduces the required number of instructions and data

accesses for each query, while the executed code is customised for the host hardware;

the latter task is performed both by the query engine and the compiler. To leverage

the processing power of multiple cores that modern CMPs incorporate, we present a

uniform framework for parallelising query operators. We identify thread contention

for memory accesses and for locking as the main scalability restrictions in this exe-

cution environment. To quantify the effect of thread contention to performance, we

introduce the multithreaded utility ratio and provide formulas to analytically estimate

the speedup for each query operation, based on hardware performance metrics. These

estimations can be used by the scheduler to generate query schedules that exploit the

160

Chapter 6. Conclusions and future directions 161

multicore design for enhanced intra-query parallelism. Towards this direction, we in-

troduce heuristics-based scheduling algorithms that produce schedules of high quality

while incurring negligible optimisation cost.

The first part of the holistic evaluation model focuses on template-based code gen-

eration. This technique applies just-in-time code generation to query evaluation. To

achieve this, the query engine maintains code templates for the supported query opera-

tions, which are instantiated according to the parameters of each query, as specified at

run-time. The code layout inside the templates is chosen with the following objectives:

(a) minimisation of function calls, (b) reduction of instructions and memory accesses,

and (c) enhanced cache locality. Our template-based framework for code generation

is flexible enough to accommodate sophisticated query evaluation algorithms, such as

combined hash partitioning and sorting, and join teams.

To study the viability of code-generation as an alternative query engine design,

we implemented a prototype system named HIQUE — the Holistic Integrated Query

Engine. Extensive experiments with a variety of datasets and query workloads proved

HIQUE’s performance advantage when compared with established and currently-emerging

database technology. This verifies the efficiency of a query engine that uses per-query

code generation. At the same time HIQUE operates over the conventional NSM-based

storage layer, so it does not affect any orthogonal aspects of a DBMS like concurrency

control and recovery.

We next studied multithreaded query processing on multicore processors. By iden-

tifying main memory accesses and thread synchronisation as the main performance

bottlenecks, we introduce a uniform framework for implementing query processing al-

gorithms that: (a) reduces contention for hardware resources, and (b) bears minimal

synchronisation overhead. Using this framework, we provide multithreaded versions

of sorting, partitioning, join evaluation and aggregation. We extend traditional query

evaluation algorithms to adapt their data-flow to the characteristics of CMPs. For in-

stance, combining partitioning with partition page sorting, as opposed to partitioning

Chapter 6. Conclusions and future directions 162

alone, reduces contention for memory accesses and enhances scalability.

To analytically model the performance and scalability of each algorithm, we intro-

duce the multithreaded utility ratio R for each input unit:

R =
C f

C f +Cp +Cl
(6.1)

where C f , Cp and Cl are the fetching, processing and locking costs for this unit ac-

cordingly. Using this ratio, the effective memory access cost M′ can be calculated as

follows:

M′ =


M R≤ 1

N

MNR R > 1
N

(6.2)

where N is the number of threads used and M is the memory access cost for single-

threaded execution. By “pluging in” the equations above to the analytical cost expres-

sions for each query operation we can estimate the expected speedup when utilising

multiple threads for its execution.

To verify the efficiency of the proposed multithreaded algorithmic extensions and

the correctness of our analytical model for scalability, we extended HIQUE to im-

plement the proposed framework for multithreading and experimented with various

queries and schemata. The results verify that the proposed model adequately captures

the effect of various parameters to multithreaded performance and provides accurate

estimations of the expected speedup. At the same time, our framework for multithread-

ing proves highly efficient and reduces thread contention thus achieving high speedups

that, in some cases, are almost linear.

The existence of analytical expressions for scalability in multithreaded query ex-

ecution can be exploited by the query optimiser to generate scheduled plans of high

quality. This stems from the fact that thread contention penalises scalability, so using

all available threads for each query operator is suboptimal; on the other hand, assign-

ing pipelined query operators to concurrently executing threads (using a producer–

consumer approach) incurs high synchronisation cost. To that end, we model intra-

Chapter 6. Conclusions and future directions 163

query parallelism for multicore processors and describe how a wide range of algo-

rithms and implementations can be efficiently extended for multithreading.

Regarding the optimisation problem of scheduling query operators to threads, the

size of the search space grows quickly, so it is crucial to have an optimisation strategy

that converges equally fast to a schedule of high quality. To that end, we present a

family of heuristic-based scheduling algorithms that study a subset of the search space

using either a depth-first or a breadth-first strategy, and offer a trade-off between run-

ning time and schedule quality. We have implemented and experimentally evaluated

our techniques. The results show that our algorithms significantly improve schedule

quality. Based on these results, we identify cases where an algorithm is to be preferred

over its alternatives.

To summarise, the major contributions of this thesis are the following:

• We propose a template-based framework for per-query code generation. This

framework maintains the compositional aspects of the iterator model and eases

the process of engineering a query engine leveraging code generation. This fact,

combined with the increased efficiency of the generated code when compared

with static operator implementations, renders holistic query evaluation a viable

query engine design alternative.

• We introduce a uniform framework for extending query evaluation algorithms

for multithreading, as supported by hardware inside modern CPUs. We then

model contention for main memory and provide analytical tools to estimate the

speedup from multithreaded execution for any query evaluation algorithm.

• We model the scheduling problem of assigning threads to query operators, in

the context of intra-query parallelism on multicore processors. We then propose

a family of heuristic-based scheduling algorithms that produce plans of high

quality while incurring negligible optimisation cost.

Chapter 6. Conclusions and future directions 164

6.2 Future directions

Certain future research directions can be identified. In Section 3.8.7 we saw that code

generation is expensive when compared to the direct execution of operator-based query

engines. This may penalise the response times of simple ad-hoc queries if there is no

provision for caching the generated code. It is therefore important to modify code

preparation in ways that will minimise the generation and compilation costs. To that

end, it is possible to use the compiler to directly produce the shared library file from

the SQL query. This will avoid the process of producing the C source file and compiling

it, and is expected to cut down the query preparation cost. Moreover, due to the im-

portance of compilation in the holistic query engine, compiler optimisation techniques

should be adapted to data-intensive applications. This will contribute to improving

both cache locality and pipelined execution, thus achieving a higher level of processor

utilisation during query evaluation.

Our framework for multithreading focuses on intra-operator parallelism. The next

step is to extend our approach to multi-query execution. A possible research direction

is to combine inter- and intra-query parallelism to schedule operations and maximise

processing throughput. The task is to exploit work and data sharing across queries

under the constraints imposed by hardware resources. Also, it is interesting to see

how our modelling methodology can be extended to estimate scalability when multiple

queries compete for the cache capacity and the memory bandwidth.

We model the scheduling problem of intra-query parallelism based on the premise

that the optimiser can accurately estimate the utility of multithreaded execution. It is

interesting to extend our framework to account for misestimations in scalability es-

timations. The optimiser can then follow a more conservative approach by staying

away from decisions that may prove seriously sub-optimal if the speedup has been er-

roneously estimated; it can choose a schedule with comparable performance but lower

sensitivity to misestimations.

Appendix A

The TPC-H benchmark

The TPC-H benchmark is an established benchmark for DSS applications. We will

briefly describe the employed schema and the statistics involved in the standard ta-

ble population. The interested reader can refer to [73] for more details.

A.1 Schema

The database schema is depicted in Figure A.1 and consists of the following tables:

• PART

• SUPPLIER

• PARTSUPP

• REGION

• NATION

• CUSTOMER

• ORDERS

• LINEORDERS

The following list defines the structure (list of columns) of each table.

165

Appendix A. The TPC-H benchmark 166

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

SHIP-
PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)
SF*200,000

PARTSUPP (PS_)
SF*800,000

LINEITEM (L_)
SF*6,000,000

ORDERS (O_)
SF*1,500,000

CUSTOMER (C_)
SF*150,000

SUPPLIER (S_)
SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)
25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)
5

Figure A.1: The TPC-H schema

Appendix A. The TPC-H benchmark 167

PART Table Layout

Column Name Datatype Requirements Comment

P PARTKEY identifier SF*200,000 are populated

P NAME variable text, size 55

P MFGR fixed text, size 25

P BRAND fixed text, size 10

P TYPE variable text, size 25

P SIZE integer

P CONTAINER fixed text, size 10

P RETAILPRICE decimal

P COMMENT variable text, size 23

Primary Key: P PARTKEY

SUPPLIER Table Layout

Column Name Datatype Requirements Comment

S SUPPKEY identifier SF*10,000 are populated

S NAME fixed text, size 25

S ADDRESS variable text, size 40

S NATIONKEY Identifier Foreign key reference to N NATIONKEY

S PHONE fixed text, size 15

S ACCTBAL decimal

S COMMENT variable text, size 101

Primary Key: S SUPPKEY

Appendix A. The TPC-H benchmark 168

PARTSUPP Table Layout

Column Name Datatype Requirements Comment

PS PARTKEY Identifier Foreign key reference to P PARTKEY

PS SUPPKEY Identifier Foreign key reference to S SUPPKEY

PS AVAILQTY integer

PS SUPPLYCOST Decimal

PS COMMENT variable text, size 199

Compound Primary Key: PS PARTKEY, PS SUPPKEY

NATION Table Layout

Column Name Datatype Requirements Comment

N NATIONKEY identifier 25 nations are populated

N NAME fixed text, size 25

N REGIONKEY identifier Foreign key reference to R REGIONKEY

N COMMENT variable text, size 152

Primary Key: N NATIONKEY

REGION Table Layout

Column Name Datatype Requirements Comment

R REGIONKEY identifier 5 regions are populated

R NAME fixed text, size 25

R COMMENT variable text, size 152

Primary Key: R REGIONKEY

Appendix A. The TPC-H benchmark 169

CUSTOMER Table Layout

Column Name Datatype Requirements Comment

C CUSTKEY Identifier SF*150,000 are populated

C NAME variable text, size 25

C ADDRESS variable text, size 40

C NATIONKEY Identifier Foreign key reference to N NATIONKEY

C PHONE fixed text, size 15

C ACCTBAL Decimal

C MKTSEGMENT fixed text, size 10

C COMMENT variable text, size 117

Primary Key: C CUSTKEY

ORDERS Table Layout

Column Name Datatype Requirements Comment

O ORDERKEY Identifier SF*1,500,000 are sparsely populated

O CUSTKEY Identifier Foreign key reference to C CUSTKEY

O ORDERSTATUS fixed text, size 1

O TOTALPRICE Decimal

O ORDERDATE Date

O ORDERPRIORITY fixed text, size 15

O CLERK fixed text, size 15

O SHIPPRIORITY Integer

O COMMENT variable text, size 79

Primary Key: O ORDERKEY

Appendix A. The TPC-H benchmark 170

LINEITEM Table Layout

Column Name Datatype Requirements Comment

L ORDERKEY identifier Foreign key reference to

O ORDERKEY

L PARTKEY identifier Foreign key reference to

P PARTKEY,

Compound Foreign Key Reference

to (PS PARTKEY, PS SUPPKEY)

with L SUPPKEY

L SUPPKEY Identifier Foreign key reference to

S SUPPKEY,

Compound Foreign key reference

to (PS PARTKEY, PS SUPPKEY)

with L PARTKEY

L LINENUMBER integer

L QUANTITY decimal

L EXTENDEDPRICE decimal

L DISCOUNT decimal

L RETURNFLAG fixed text, size 1

L LINESTATUS fixed text, size 1

L SHIPDATE date

L COMMITDATE date

L RECEIPTDATE date

L SHIPINSTRUCT fixed text, size 25

L SHIPMODE fixed text, size 10

L COMMENT variable text size 44

Compound Primary Key: L ORDERKEY, L LINENUMBER

Appendix A. The TPC-H benchmark 171

A.2 Statistics

The data generated by the standard benchmard dataset generator DBGEN is used to

populate the database as follows (where SF is the scale factor):

SF * 10,000 rows in the SUPPLIER table with:

• S SUPPKEY unique within [SF * 10,000].

• S NAME text appended with digit [”Supplier”, S SUPPKEY].

• S ADDRESS random v-string[25].

• S NATIONKEY random value [0 .. 24].

• S PHONE int.

• S ACCTBAL random value [-999.99 .. 9,999.99]

• S COMMENT text string [63].

• SF * 5 rows are randomly selected to hold at a random position a string matching

”Customer%Complaints”. Another SF * 5 rows are randomly selected to hold

at a random position a string matching ”Customer%Recommends”, where % is

a wildcard that denotes zero or more characters.

SF * 200,000 rows in the PART table with:

• P PARTKEY unique within [SF * 200,000].

• P NAME generated by concatenating five unique randomly selected strings from

the following list, separated by a single space: ”almond”, ”antique”, ”aquama-

rine”, ”azure”, ”beige”, ”bisque”, ”black”, ”blanched”, ”blue”, ”blush”, ”brown”,

”burlywood”, ”burnished”, ”chartreuse”, ”chiffon”, ”chocolate”, ”coral”, ”corn-

flower”, ”cornsilk”, ”cream”, ”cyan”, ”dark”, ”deep”, ”dim”, ”dodger”, ”drab”,

”firebrick”, ”floral”, ”forest”, ”frosted”, ”gainsboro”, ”ghost”, ”goldenrod”, ”green”,

”grey”, ”honeydew”, ”hot”, ”indian”, ”ivory”, ”khaki”, ”lace”, ”lavender”, ”lawn”,

”lemon”, ”light”, ”lime”, ”linen”, ”magenta”, ”maroon”, ”medium”, ”metal-

lic”, ”midnight”, ”mint”, ”misty”, ”moccasin”, ”navajo”, ”navy”, ”olive”, ”or-

ange”, ”orchid”, ”pale”, ”papaya”, ”peach”, ”peru”, ”pink”, ”plum”, ”powder”,

Appendix A. The TPC-H benchmark 172

”puff”, ”purple”, ”red”, ”rose”, ”rosy”, ”royal”, ”saddle”, ”salmon”, ”sandy”,

”seashell”, ”sienna”, ”sky”, ”slate”, ”smoke”, ”snow”, ”spring”, ”steel”, ”tan”,

”thistle”, ”tomato”, ”turquoise”, ”violet”, ”wheat”, ”white”, ”yellow”.

• P MFGR text appended with digit [”Manufacturer”,M], where M = random

value [1,5].

• P BRAND text appended with digit [”Brand”,MN], where N = random value

[1,5] and M is defined while generating P MFGR.

• P TYPE random string [Types].

• P SIZE random value [1 .. 50].

• P CONTAINER random string [Containers].

• P RETAILPRICE = (90000 + ((P PARTKEY/10) modulo 20001) + 100 * (P PARTKEY

modulo 1000))/100 P COMMENT text string [14].

For each row in the PART table, four rows in PARTSUPP table with:

• PS PARTKEY = P PARTKEY.

• PS SUPPKEY = (PS PARTKEY + (i * ((S/4) + (int)(PS PARTKEY-1)/S))))

modulo S + 1 where i is the ith supplier within [0 .. 3] and S = SF * 10,000.

• PS AVAILQTY random value [1 .. 9,999].

• PS SUPPLYCOST random value [1.00 .. 1,000.00].

• PS COMMENT text string [124].

SF * 150,000 rows in CUSTOMER table with:

• C CUSTKEY unique within [SF * 150,000].

• C NAME text appended with digit [”Customer”, C CUSTKEY].

• C ADDRESS random v-string [25].

• C NATIONKEY random value [0 .. 24].

• C PHONE int.

Appendix A. The TPC-H benchmark 173

• C ACCTBAL random value [-999.99 .. 9,999.99].

• C MKTSEGMENT random string [Segments].

• C COMMENT text string [73].

For each row in the CUSTOMER table, ten rows in the ORDERS table with:

• O ORDERKEY unique within [SF * 1,500,000 * 4].

• O CUSTKEY = random value [1 .. (SF * 150,000)]. The generation of this

random value must be such that O CUSTKEY modulo 3 is not zero.

• O ORDERSTATUS set to the following value:

”F” if all lineitems of this order have L LINESTATUS set to ”F”.

”O” if all lineitems of this order have L LINESTATUS set to ”O”.

”P” otherwise.

• O TOTALPRICE computed as:

sum (L EXTENDEDPRICE * (1+L TAX) * (1-L DISCOUNT)) for all LineItem

of this order. O ORDERDATE uniformly distributed between STARTDATE and

(ENDDATE - 151 days).

• O ORDERPRIORITY random string [Priorities].

• O CLERK text appended with digit [”Clerk”, C] where C = random value [000000001

.. (SF * 1000)].

• O SHIPPRIORITY set to 0.

• O COMMENT text string [49].

For each row in the ORDERS table, a random number of rows within [1 .. 7] in

the LINEITEM table with:

• L ORDERKEY = O ORDERKEY.

• L PARTKEY random value [1 .. (SF * 200,000)].

• L SUPPKEY = (L PARTKEY + (i * ((S/4) + (int)(L partkey-1)/S)))) modulo

S + 1 where i is the corresponding supplier within [0 .. 3] and S = SF * 10,000.

Appendix A. The TPC-H benchmark 174

• L LINENUMBER unique within [7].

• L QUANTITY random value [1 .. 50].

• L EXTENDEDPRICE = L QUANTITY * P RETAILPRICE

Where P RETAILPRICE is from the part with P PARTKEY = L PARTKEY.

• L DISCOUNT random value [0.00 .. 0.10].

• L TAX random value [0.00 .. 0.08].

• L RETURNFLAG set to a value selected as follows:

If L RECEIPTDATE ¡= CURRENTDATE

then either ”R” or ”A” is selected at random

else ”N” is selected.

• L LINESTATUS set the following value:

”O” if L SHIPDATE ¿ CURRENTDATE

”F” otherwise.

• L SHIPDATE = O ORDERDATE + random value [1 .. 121].

• L COMMITDATE = O ORDERDATE + random value [30 .. 90].

• L RECEIPTDATE = O ORDERDATE + random value [1 .. 30].

• L SHIPINSTRUCT random string [Instructions].

• L SHIPMODE random string [Modes].

• L COMMENT text string [27].

25 rows in the NATION table with:

• N NATIONKEY unique value between 0 and 24.

• N NAME string from the following series of

(N NATIONKEY, N NAME, N REGIONKEY).

(0, ALGERIA, 0);(1, ARGENTINA, 1);(2, BRAZIL, 1); (3, CANADA, 1);(4,

EGYPT, 4);(5, ETHIOPIA, 0); (6, FRANCE, 3);(7, GERMANY, 3);(8, INDIA,

2); (9, INDONESIA, 2);(10, IRAN, 4);(11, IRAQ, 4); (12, JAPAN, 2);(13, JOR-

DAN, 4);(14, KENYA, 0); (15, MOROCCO, 0);(16, MOZAMBIQUE, 0);(17,

Appendix A. The TPC-H benchmark 175

PERU, 1); (18, CHINA, 2);(19, ROMANIA, 3);(20, SAUDI ARABIA, 4); (21,

VIETNAM, 2);(22, RUSSIA, 3);(23, UNITED KINGDOM, 3); (24, UNITED

STATES, 1)

• N REGIONKEY is taken from the series above.

• N COMMENT text string [95].

5 rows in the REGION table with:

• R REGIONKEY unique value between 0 and 4.

• R NAME string from the following series of (R REGIONKEY, R NAME).

(0, AFRICA);(1, AMERICA); (2, ASIA);(3, EUROPE);(4, MIDDLE EAST)

R COMMENT text string [95].

Bibliography

[1] R. Acker, C. Roth, and R. Bayer. Parallel Query Processing in Databases on

Multicore Architectures. In ICA3PP, pages 2–13, 2008.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving Relations

for Cache Performance. In VLDB ’01: Proceedings of the 27th International

Conference on Very Large Data Bases, pages 169–180, San Francisco, CA, USA,

2001. Morgan Kaufmann Publishers Inc.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a Modern

Processor: Where Does Time Go? In VLDB ’99: Proceedings of the 25th Inter-

national Conference on Very Large Data Bases, pages 266–277, San Francisco,

CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[4] AMD corporation. Software Optimization Guide for AMD64 Processors, 2005.

[5] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Ap-

plications. PhD thesis, Universiteit van Amsterdam, 2002.

[6] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining

Query Execution. In CIDR ’05, 2005.

[7] L. Bouganim, D. Florescu, and P. Valduriez. Dynamic Load Balancing in Hier-

archical Parallel Database Systems. In VLDB, pages 436–447, 1996.

176

Bibliography 177

[8] L. Bouganim, D. Florescu, and P. Valduriez. Load Balancing for Parallel Query

Execution on NUMA Multiprocessors. Distributed and Parallel Databases,

7(1):99–121, 1999.

[9] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King,

B. G. Lindsay, R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu, P. G. Selinger,

M. Schkolnick, D. R. Slutz, I. L. Traiger, B. W. Wade, and R. A. Yost. A history

and evaluation of System R. Commun. ACM, 24(10):632–646, 1981.

[10] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP tech-

nology. SIGMOD Rec., 26(1):65–74, 1997.

[11] M.-S. Chen, P. S. Yu, and K.-L. Wu. Scheduling and Processor Allocation for

Parallel Execution of Multi-Join Queries. In Proceedings of the Eighth Interna-

tional Conference on Data Engineering, pages 58–67, Washington, DC, USA,

1992. IEEE Computer Society.

[12] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving Hash Join

Performance through Prefetching. In ICDE ’04: Proceedings of the 20th In-

ternational Conference on Data Engineering, page 116, Washington, DC, USA,

2004. IEEE Computer Society.

[13] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Inspector joins. In VLDB

’05: Proceedings of the 31st international conference on Very large data bases,

pages 817–828. VLDB Endowment, 2005.

[14] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index performance through

prefetching. In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD interna-

tional conference on Management of data, pages 235–246, New York, NY, USA,

2001. ACM.

[15] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal prefetching B+-

Trees: optimizing both cache and disk performance. In SIGMOD ’02: Pro-

Bibliography 178

ceedings of the 2002 ACM SIGMOD international conference on Management of

data, pages 157–168, New York, NY, USA, 2002. ACM.

[16] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen,

A. Baransi, S. Kumar, and P. Dubey. Efficient implementation of sorting on

multi-core SIMD CPU architecture. Proc. VLDB Endow., 1(2):1313–1324, 2008.

[17] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip multiprocessors. In

VLDB ’07: Proceedings of the 33rd international conference on Very large data

bases, pages 339–350. VLDB Endowment, 2007.

[18] J. Cieslewicz and K. A. Ross. Data partitioning on chip multiprocessors. In

DaMoN, pages 25–34, 2008.

[19] J. Cieslewicz, K. A. Ross, and I. Giannakakis. Parallel buffers for chip multipro-

cessors. In DaMoN, 2007.

[20] G. P. Copeland and S. N. Khoshafian. A decomposition storage model. In SIG-

MOD ’85: Proceedings of the 1985 ACM SIGMOD international conference on

Management of data, pages 268–279, New York, NY, USA, 1985. ACM.

[21] D. DeWitt and J. Gray. Parallel database systems: the future of high performance

database systems. Commun. ACM, 35(6):85–98, 1992.

[22] D. J. DeWitt. The Wisconsin Benchmark: Past, Present, and Future, 1993.

[23] D. J. DeWitt and R. H. Gerber. Multiprocessor hash-based join algorithms. In

VLDB ’1985: Proceedings of the 11th international conference on Very Large

Data Bases, pages 151–164. VLDB Endowment, 1985.

[24] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao, and

R. Rasmussen. The Gamma Database Machine Project. IEEE Trans. Knowl.

Data Eng., 2(1):44–62, 1990.

Bibliography 179

[25] D. J. DeWitt and J. Gray. Parallel Database Systems: The Future of High Perfor-

mance Database Systems. Commun. ACM, 35(6):85–98, 1992.

[26] J. Doweck. Inside Intel Core Microarchitecture and Smart Memory Access, 2005.

White paper.

[27] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems. SIAM

J. Discret. Math., 2(4):473–487, 1989.

[28] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel

execution. In SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD interna-

tional conference on Management of data, pages 9–18, New York, NY, USA,

1992. ACM.

[29] P. Garcia and H. F. Korth. Database hash-join algorithms on multithreaded com-

puter architectures. In CF ’06: Proceedings of the 3rd conference on Computing

frontiers, pages 241–252, New York, NY, USA, 2006. ACM.

[30] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete

Book. Prentice Hall Press, Upper Saddle River, NJ, USA, 2008.

[31] M. N. Garofalakis and Y. E. Ioannidis. Multi-dimensional Resource Scheduling

for Parallel Queries. In SIGMOD Conference, pages 365–376, 1996.

[32] M. N. Garofalakis and Y. E. Ioannidis. Parallel Query Scheduling and Optimiza-

tion with Time- and Space-Shared Resources. In VLDB, pages 296–305, 1997.

[33] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Comput.

Surv., 25(2), 1993.

[34] G. Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE

Trans. on Knowl. and Data Eng., 6(1):120–135, 1994.

Bibliography 180

[35] G. Graefe, R. Bunker, and S. Cooper. Hash Joins and Hash Teams in Microsoft

SQL Server. In VLDB ’98: Proceedings of the 24rd International Conference on

Very Large Data Bases, pages 86–97, San Francisco, CA, USA, 1998. Morgan

Kaufmann Publishers Inc.

[36] G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Extensibility

and Efficient Search. In ICDE, 1993.

[37] R. Greer. Daytona And The Fourth-Generation Language Cymbal. In SIGMOD,

1999.

[38] W.-S. Han, W. Kwak, J. Lee, G. M. Lohman, and V. Markl. Parallelizing query

optimization. Proc. VLDB Endow., 1(1):188–200, 2008.

[39] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and B. Falsafi.

Database Servers on Chip Multiprocessors: Limitations and Opportunities. In

CIDR, pages 79–87, 2007.

[40] W. Hasan, D. Florescu, and P. Valduriez. Open issues in parallel query optimiza-

tion. SIGMOD Rec., 25(3):28–33, 1996.

[41] J. Hennessy and D. Patterson. Computer architecture: a quantitative approach.

Morgan Kaumann Publishers Inc., 4 edition, 2006.

[42] Intel. First the Tick, Now the Tock: Next Generation Intel Microarchitecture

(Nehalem), 2008. White paper.

[43] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-

ual, 2007.

[44] R. Johnson, N. Hardavellas, I. Pandis, N. Mancheril, S. Harizopoulos, K. Sabirli,

A. Ailamaki, and B. Falsafi. To Share or Not To Share? In VLDB, 2007.

Bibliography 181

[45] A. Kemper, D. Kossmann, and C. Wiesner. Generalised Hash Teams for Join and

Group-by. In VLDB ’99: Proceedings of the 25th International Conference on

Very Large Data Bases, pages 30–41, San Francisco, CA, USA, 1999. Morgan

Kaufmann Publishers Inc.

[46] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., 2002.

[47] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D. Blas, V. W.

Lee, N. Satish, and P. Dubey. Sort vs. Hash Revisited: Fast Join Implementation

on Modern Multi-Core CPUs. PVLDB, 2(2):1378–1389, 2009.

[48] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of Hash to Data Base

Machine and Its Architecture. New Generation Comput., 1(1), 1983.

[49] D. E. Knuth. The Art Of Computer Programming, volume 3. Addison-Wesley,

2nd edition, 1998.

[50] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox.

Design of the Java HotSpotTMclient compiler for Java 6. ACM Trans. Archit.

Code Optim., 5(1):1–32, 2008.

[51] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang. MCC-DB: Minimizing Cache

Conflicts in Multi-core Processors for Databases. PVLDB, 2(1):373–384, 2009.

[52] B. Liu and E. A. Rundensteiner. Revisiting pipelined parallelism in multi-join

query processing. In VLDB ’05: Proceedings of the 31st international conference

on Very large data bases, pages 829–840. VLDB Endowment, 2005.

[53] M.-L. Lo, M.-S. S. Chen, C. V. Ravishankar, and P. S. Yu. On optimal processor

allocation to support pipelined hash joins. In SIGMOD ’93: Proceedings of the

1993 ACM SIGMOD international conference on Management of data, pages

69–78, New York, NY, USA, 1993. ACM.

Bibliography 182

[54] S. Manegold, P. Boncz, and M. L. Kersten. Generic database cost models for hi-

erarchical memory systems. In VLDB ’02: Proceedings of the 28th international

conference on Very Large Data Bases, pages 191–202. VLDB Endowment, 2002.

[55] S. Manegold, P. A. Boncz, and M. L. Kersten. What Happens During a Join?

Dissecting CPU and Memory Optimization Effects. In VLDB ’00: Proceedings

of the 26th International Conference on Very Large Data Bases, pages 339–350,

San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[56] M. Mehta and D. J. DeWitt. Managing Intra-operator Parallelism in Parallel

Database Systems. In VLDB ’95: Proceedings of the 21th International Confer-

ence on Very Large Data Bases, pages 382–394, San Francisco, CA, USA, 1995.

Morgan Kaufmann Publishers Inc.

[57] T. Moscibroda and O. Mutlu. Memory performance attacks: denial of memory

service in multi-core systems. In SS’07: Proceedings of 16th USENIX Security

Symposium on USENIX Security Symposium, pages 1–18, Berkeley, CA, USA,

2007. USENIX Association.

[58] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. AlphaSort: a

cache-sensitive parallel external sort. The VLDB Journal, 4(4):603–628, 1995.

[59] OProfile. A System Profiler for Linux, 2008.

http://oprofile.sourceforge.net/.

[60] S. Padmanabhan, T. Malkemus, R. C. Agarwal, and A. Jhingran. Block Oriented

Processing of Relational Database Operations in Modern Computer Architec-

tures. In Proceedings of the 17th International Conference on Data Engineering,

pages 567–574, Washington, DC, USA, 2001. IEEE Computer Society.

[61] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,

F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.

Bibliography 183

SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special

issue on “Program Generation, Optimization, and Adaptation”, 93(2):232– 275,

2005.

[62] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman. Main-memory scan

sharing for multi-core CPUs. Proc. VLDB Endow., 2008.

[63] J. Rao, H. Pirahesh, C. Mohan, and G. Lohman. Compiled Query Execution En-

gine using JVM. In ICDE ’06: Proceedings of the 22nd International Conference

on Data Engineering, page 23, Washington, DC, USA, 2006. IEEE Computer

Society.

[64] J. Rao and K. A. Ross. Cache Conscious Indexing for Decision-Support in Main

Memory. In The VLDB Journal, pages 78–89, 1999.

[65] RightMark. RightMark Memory Analyser, 2008.

http://cpu.rightmark.org/products/rmma.shtml.

[66] D. A. Schneider and D. J. DeWitt. Tradeoffs in Processing Complex Join Queries

via Hashing in Multiprocessor Database Machines. In VLDB, 1990.

[67] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In SIGMOD

’79: Proceedings of the 1979 ACM SIGMOD international conference on Man-

agement of data, pages 23–34, New York, NY, USA, 1979. ACM.

[68] L. D. Shapiro. Join processing in database systems with large main memories.

ACM Trans. Database Syst., 11(3):239–264, 1986.

[69] A. Shatdal, C. Kant, and J. F. Naughton. Cache Conscious Algorithms for Re-

lational Query Processing. In VLDB ’94: Proceedings of the 20th International

Conference on Very Large Data Bases, pages 510–521, San Francisco, CA, USA,

1994. Morgan Kaufmann Publishers Inc.

Bibliography 184

[70] E. J. Shekita, H. C. Young, and K.-L. Tan. Multi-Join Optimization for Symmet-

ric Multiprocessors. In VLDB, pages 479–492, 1993.

[71] M. Stonebraker and U. Cetintemel. ”One size fits all”: an idea whose time has

come and gone. In ICDE ’05. Proceedings of the 21th International Conference

on Data Engineering, pages 2–11. IEEE Computer Society, 2005.

[72] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and

P. Helland. The end of an architectural era: (it’s time for a complete rewrite).

In VLDB ’07: Proceedings of the 33rd international conference on Very large

data bases, pages 1150–1160. VLDB Endowment, 2007.

[73] Transaction Processing Performance Council. The TPC-H benchmark, 2009.

http://www.tpc.org/tpch/.

[74] A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallel evaluation of multi-join

queries. SIGMOD Rec., 24(2):115–126, 1995.

[75] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge: sim-

plified relational data processing on large clusters. In SIGMOD, 2007.

[76] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On Sup-

porting Containment Queries in Relational Database Management Systems. In

SIGMOD Conference, pages 425–436, 2001.

[77] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah. Improving Database Perfor-

mance on Simultaneous Multithreading Processors. In VLDB, 2005.

[78] J. Zhou and K. A. Ross. Buffering database operations for enhanced instruction

cache performance. In SIGMOD, 2004.

[79] M. Zukowski, S. Héman, and P. Boncz. Architecture-conscious hashing. In Da-

MoN ’06: Proceedings of the 2nd international workshop on Data management

on new hardware, page 6, New York, NY, USA, 2006. ACM.

Bibliography 185

[80] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-Scalar RAM-CPU Cache

Compression. In ICDE ’06: Proceedings of the 22nd International Conference

on Data Engineering, page 59, Washington, DC, USA, 2006. IEEE Computer

Society.

[81] M. Zukowski, N. Nes, and P. Boncz. DSM vs. NSM: CPU performance tradeoffs

in block-oriented query processing. In DaMoN ’08: Proceedings of the 4th in-

ternational workshop on Data management on new hardware, pages 47–54, New

York, NY, USA, 2008. ACM.

